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Preface

The change to data-centrism in many fields, the need to extract information and
knowledge from big data, and the increasing success of machine learning (ML)
and artificial intelligence (AI) have created both opportunities and challenges to the
field of statistics. These developments have, to some extent, led to the creation of
data science, partially regarded as a new discipline, related to statistics and computer
science. The intersections among ML/AI, data science, and statistics are much larger
than people expect, particularly on theory, models, practical methods, and problems
under investigation. All communities can learn a lot from each other.

The impressive successes of ML and AI methods, especially deep learners
and convolutional networks, in many practical problems might seem to devalue
statistical approaches. Quite a few researchers as well as practitioners regard
machine learning as being more focused on problem solving and benchmark data
sets than statistics. But, on the other hand, ML solutions are often tailored to a
specific problem and thus can be difficult to generalize and implement for a wide
range of applications.

Further, there is wide range of problems related to data for which statistics pro-
vides more appropriate or even optimal solutions and allows specific interpretable
models. Stochastic models often provide mathematical descriptions of physical
processes rather than relying on black boxes. Indeed, lack of model interpretability,
potential bias, causality, and stability, and why and when deep learners may work are
common questions for the ML approaches. Statistical thinking and approaches are
good alternatives to rectify these problems, in terms of both theories, models, and
practical methods. A further issue where statistics is indispensable is the question
whether a given data set satisfies proper sampling designs, as studied by statistical
sampling theory, and the sound statistical preprocessing, handling, and cleaning of
data. Both topics are important to evaluate given data, to ensure high data quality,
and to clarify what can be learnt from a certain data set. On the other hand, the
flexibility of many ML and AI methods may yield superior results when reliable
first-class data from well-selected variables are not available and one has to rely on
noisy and surrogate data.

v



vi Preface

Focusing on environmental science, natural science, and technology, this book
contributes to the discussions of various issues and general interplay among
statistics, data science, machine learning, and artificial intelligence. The chapters
cover theoretical studies of machine learning methods, expositions of general
methodologies for sound statistical analyses of data, as well as novel approaches
for modeling and analyzing data in specific areas and problems. In terms of
applications, the chapters deal with data as arising in industrial quality control,
autonomous driving, transportation and traffic, chip manufacturing, photovoltaics,
football, transmission of infectious diseases, Covid-19, and public health.

The idea for this volume came from the meetings of the Section on Environ-
metrics, Natural Science and Technology of Deutsche Statistische Gesellschaft of
the last few years, and most authors have presented research at the annual confer-
ences Statistische Woche. All chapters of this volume have been peer reviewed, and
the editors are grateful to those colleagues who helped in the evaluation process
as anonymous reviewers. Nevertheless, the authors of each chapters are solely
responsible for their work.

Aachen, Germany Ansgar Steland
Blacksburg, VA, USA Kwok-Leung Tsui
November 2021
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Methodologies and Theoretical Studies



One-Round Cross-Validation
and Uncertainty Determination
for Randomized Neural Networks
with Applications to Mobile Sensors

Ansgar Steland and Bart E. Pieters

Abstract Randomized artificial neural networks such as extreme learning
machines provide an attractive and efficient method for supervised learning under
limited computing resources and for green machine learning. This especially applies
when equipping mobile devices (sensors) with weak artificial intelligence. Results
are discussed about supervised learning with such networks and regression methods
in terms of consistency and bounds for the generalization and prediction error.
Especially, some recent results are reviewed addressing learning with data sampled
by moving sensors leading to non-stationary and dependent samples. As randomized
networks lead to random out-of-sample performance measures, we study a cross-
validation approach to handle the randomness and make use of it to improve
out-of-sample performance. Additionally, a computationally efficient approach
to determine the resulting uncertainty in terms of a confidence interval for the
mean out-of-sample prediction error is discussed based on two-stage estimation.
The approach is applied to a prediction problem arising in vehicle integrated
photovoltaics.

Keywords Cross-validation · Extreme learning · Model comparison · Neural
network · Photovoltaics · Uncertainty interval

1 Introduction

Artificial neural networks are an attractive class of models for supervised learning
tasks arising in data science such as nonlinear regression and predictive analytics.
There is a growing interest which is mainly driven by the development of highly
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4 A. Steland and B. E. Pieters

efficient and fast algorithms for training and an improved understanding of multi-
layer deep neural network architectures, especially in terms of how to design and fit
them for concrete machine learning tasks. Supervised learning tasks are pervasive
and allow to equip devices and technical systems with weak artificial intelligence by
processing data collected by sensors. This quickly results in big data sets difficult
to handle by, for example, cars or smartphones, which have limited computing
resources but can highly benefit form autonomous learning abilities. For example,
one can attach solar panels to cars and trucks and use past and current data as well
as planned routes and geographical data to predict the energy production of the solar
panels and optimize their usage or storage during driving.

Extreme learning machines [10, 28], are widely used in applications due to
their extremely fast learning compared to full optimization of feedforward neural
networks. For this reason, they have been chosen as a benchmark classifier in the
recently updated MNIST data set of handwritten characters, see [6] for details.
They also performed very well in empirical comparison studies investigating 179
different classifiers for a large number of publicly available data sets [7]. Extreme
learning machines select the parameters of all layers except the last (output) layer
randomly. The weights of the last layer are optimized by minimizing a (regularized)
least squares error criterion. Since the output layer uses a linear activation function,
this step means that the random but data-dependent features generated by the
preceding layers are linearly combined to explain the target values (responses). The
optimization of the parameters of the output layer collapses to a linear least squares
problem, which can be solved explicitly and does not require iterative minimization
algorithms. Consequently, extreme learning machines optimize only a part of the
parameters and choose the remaining ones randomly. Therefore, they belong to
the class of randomized networks, see [20] for a broader review including random
kernel machines using random Fourier features and reservoir computing based on
randomized recurrent networks.

In this paper, cross-validation and two-stage estimation methodologies are
proposed to handle the uncertainty resulting from the randomization of feedforward
neural networks in a statistical sound way. The basic idea studied here is to apply a
simple cross-validation scheme to evaluate network realizations to pick one with
good out-of-sample generalization. The approach can be easily combined with
model selection, especially the choice of the number of hidden neurons. Since the
usual error criteria minimized by training algorithms are known to have many local
minima, the random choice of the starting point used for optimization also leads to
some degree of randomness of the trained network. This especially applies when
using early stopping techniques to achieve better generalization abilities. Hence, the
approach can also be used when optimizing all parameters of a neural net. Further,
the basic idea can easily be applied to other machine learners, but in our presentation
we focus on (randomized) feedforward networks resp. extreme learning machines.

Cross-validation is a well-established and widely used statistical approach [27],
and has been extensively studied for nonlinear regression and prediction, see, e.g.,
[1] for a review and [23] for results addressing kernel smoothers for dependent
data streams with possible changes. In its simplest form, one splits the data in a
training (or learning) sample and a validation sample. The performance of a method
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estimated (trained) from the learning sample is then evaluated by applying it to the
validation sample and tuned by choosing hyperparameters of the method. The final
fit is evaluated using a test sample. In principle, there are well-established results
when this works. Cross-validation for comparing regression procedures has been
studied by Yang [29] for i.i.d. training samples. It is, however, worth mentioning
that these results are usually not applicable to machine learning methods such as
artificial neural networks, since this would require to train and apply the methods in
such a way that consistency as statistical estimators is ensured. But this is frequently
not met in practice.

As a second statistical tool, we discuss the construction of an uncertainty interval
for the mean sample prediction error in the validation data set. Two-stage estimation
is a well-established statistical approach leading to small required sample sizes, thus
keeping the computational costs at a low level.

As a challenging data science problem we discuss the application to a predic-
tion problem arising in photovoltaics (PV) and analyze data from a pilot study
to illustrate the proposal. In recent years, especially with the electrification of
transport, there is an increasing interest in Vehicle Integrated Photovoltaics (VIPV)
applications [3, 13]. In this context there is a keen interest in photovoltaic (PV)
yield prediction for such applications. Yield prediction is complicated by the ever
changing orientation and location of the vehicle, with influences of buildings and
other objects. Many vehicles have specific routes that often repeat (e.g., home/work
commuting). Artificial neural networks may provide a powerful means to improve
the PV yield prediction on those specific routes.

The organization of the paper is as follows. Section 2 reviews artificial feed-
forward neural networks, fully optimized and randomized ones, and discusses some
recent theoretical results on fast training algorithms and learning guarantees in terms
of consistency results and bounds for generalization errors. It draws to some extent
on the expositions in [8, 10, 24]. The proposed cross-validation approach to deal
with the randomness of the out-of-sample performance of randomized networks is
presented in Sect. 3. The application to vehicle integrated photovoltaics including a
data analysis is provided in Sect. 4.

2 Classical Neural Networks and Extreme Learning
Machines

2.1 Hidden Layer Feedforward Networks

Suppose we are given input variables z = (z1, . . . , zq)
� and a vector y =

(y1, . . . , yd)
� of output variables, which are related by an assumed functional

relationship disturbed by a mean zero random noise ε,

y = f (z; θ)+ ε,
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where function f (•; θ) is a parameterized nonlinear regression function. Artificial
neural networks form a commonly used class of regression functions and correspond
to specific forms of f (•; θ). In what follows, we briefly review single hidden layer
feedforward networks with linear output layer and their extension to multilayer
(deep learning) networks, which have become quite popular, and discuss some
recent progress in their understanding. Extreme learning machines, as introduced by
Huang et al. [10], also called neural networks with random weights as first described
by Schmidt et al. [21], belong to this class of artificial neural networks.

A single hidden layer feedforward network with q input nodes,p hidden neurons,
d output neurons and activation function g computes the output of the j th neuron of
the hidden layer for an input vector zt ∈ R

q by

xtj = g
(
bj + w�

j zt

)
, j = 1, . . . , p. (1)

wj ∈ R
q are weights connecting the input nodes and the hidden units, and bj ∈ R

are bias terms, j = 1, . . . , p. The output of the j th node of output layer is then
computed as

otj = β0 +
p∑
j=1

βjxtj = β�
j xt ,

where βj = (β
(j)
0 , . . . , β

(j)
p )� are weights and xt = (1, xt1, . . . , xtp)�. There are

various proposals for the activation function. Among the most popular ones are the
sigmoid function g(u) = 1/(1 + e−u), the rectified linear unit (ReLU) function
g(u) = max(0, u) or the leaky ReLU, g(u) = δx1(x < 0) + x1(x ≥ 0), for some
small δ > 0, which allows for a small gradient when the neuron is not active. The d
output neurons we have d weighting vectors resulting in a d × p parameter matrix
β = (β1, . . . ,βp)

� and a net output ot = βxt .
Although it is well-known that a single hidden layer network suffices to

approximate rich classes of functions with arbitrary accuracy, see [9, ch. 16] for
an accessible treatment, multilayer (deep) learning networks are quite popular and
successful for specific problems, especially in imaging. Such a multilayered neural
network is formally defined in terms of the successive processing of the input
data through r ∈ N hidden layers. For r hidden layers with squashing functions
g1, . . . , gr and nk neurons in the kth layer, the j th output of the kth layer is
computed recursively via the equations

x
(1)
tj = g1(b1 + w

(1)
j

�zt ), j = 1, . . . , n1,

and

x
(k)
tj = gk(bjk + w

(k)
j

�x
(k−1)
t ), j = 1, . . . , nk, k = 2, . . . , r,
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where x
(k)
t = (x

(k)
t1 , . . . , x

(k)
tnk
)� and w

(k)
j is a nk-vector of connection weights,

k = 1, . . . , r . Let W (k) = (w
(k)
1 , . . . ,w

(k)
nk )

� ∈ R
nk×nk−1 be the matrix of weights

connecting the neurons of the kth layer with the previous layer k − 1 resp. the input
layer if k = 1, and bk = (b1k, . . . , bnk,k) ∈ R

nk the bias terms. We may write

x
(k)
t = g

(W (k),bk)
k (x

(k−1)
t ) = gk(bk + W (k)x

(k−1)
t ),

where g
(W (k),bk)
k (•) is a vector functions consisting of the nk real-valued functions

g
(W (k),bk)
k� (•), � = 1, . . . , nk , and, for a real-valued function f with domain R and

a vector u = (u1, . . . , um) ∈ R
m, f (u) is defined as the vector with entries f (u�),

� = 1, . . . ,m. To summarize, the output xt of the rth hidden layer for an input zt is
given in terms of the composition operator ◦ by

xt = g(W
(r),br )

r ◦ · · · ◦ g
(W (1),b1)
1 (zt ).

2.2 Training Neural Networks and Extreme Learning
Machines

Neural networks are trained given a learning or training sample (̃yt , z̃t ), t =
1, . . . , n of size n. We denote the training in this way, in order to reserve the symbols
xt , zt , etc. for the validation sample addressed by the proposed statistical tools, see
Sect. 3. A common approach dating back to the early days of machine learning is
to minimize the least squares criterion corresponding to the quadratic loss function
�(u) = ‖u‖2

2 = u�u, u ∈ R
d ,

θ �→ Ln(θ) =
n∑
t=1

‖̃y t − f (̃zt ; θ)‖2
2 =

n∑
t=1

‖̃y t − β�xt (̃zt ; θ ′)‖2
2,

where θ = (θ ′,β) = (W 1, . . . ,W r , b1, . . . , br,β) denotes the full set of
parameters. This needs to be done by numerical optimization, usually a gradient-
descent algorithm, where the special structure of feedforward nets allows simplified
computations of the gradient by means of backpropagation, see [14] for a review.
The optimizers mainly differ in how they choose the (gradient) direction and
the learning rate (step size) in each step. Besides well-known and widely used
classical optimizers such as BFGS or conjugate gradient methods, stochastic
gradient descent, where the algorithm cycles through the data and selects at each
step the gradient evaluated at a single observations, and ADAM, see [12] and, for
a proof of its local convergence [4], are the most popular methods to train neural
networks. Their efficiency in practice has certainly contributed to the success of
deep learning networks. Nevertheless, the optimized artificial neural network and
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hence its performance in validation samples are to some extent random, since all
algorithms require an initial starting value, which is chosen randomly. The best
mathematical guarantee we can have is convergence at some fast rate to a local
minimum, since the shape of the least squares criterion is generally known to
be wiggly and characterized by many local extrema, often with almost negligible
curvature.

Extreme learning machines resp. neural networks with random weights make
use of the following observation: If the number of neurons of the last hidden layer
is equal to the number of observations, n, such that the output matrix of that hidden
layer, Xn, is a n× n matrix, one can always find weights β with Xnβ = Ỹ n, where
Ỹ n = (̃y1, . . . , ỹn)

� is the n× d data matrix of the responses, whatever the values
of the weights θ ′ used to connect the remaining hidden layers among each other
and the inputs with the first hidden layer. In this situation, we can perfectly explain
the target values, i.e., the training data is interpolated. Here, the weights θ ′ can also
be random numbers. What happens, if nT 
 n? Then it is no longer possible to
interpolate the training data and instead it makes sense to minimize the least squares
criterion as a function of the weights β of the output layer given randomly selected
weights θ ′. This is equivalent to fitting a multiple regression model by least squares
for the covariates xt (̃zt , θ

′) calculated for the randomly chosen θ ′. Basically, we
draw randomly a set of regressors depending on the inputs and use these regressors,
which span a subspace of Rn, to explain the responses by projecting them onto that
subspace. Since one no longer fully optimizes the least squares criterion with respect
to all unknowns, but instead only optimizes the output layer, the computational
speed up is substantial. The reason is that the latter optimization only requires to
solve the normal equations X�

n Xnβ = Y n efficiently, i.e., a set of linear equations.
To improve the generalization abilities it has been proposed to apply ridge regression
at the output layer, also called Tikhonov regularization, which leads to the linear
equations (X�

n Xn + λI)β = Y n for some regularization (ridge) parameter λ > 0.

2.3 Approximation and Generalization Bounds

Let us briefly review the general approximation abilities of such machine learners
[8]. When optimizing all parameters θ = (b,W ,β) of a single hidden layer
feedforward net, fN(z) = ∑N

j=1 βjxj (b + Wz), z ∈ R
q , it is known that

the optimal achievable approximation error in the L2-norm is independent of the
dimension q of the inputs and is of the orderO(1/N1/2), see [2]. For fixed b,W and
when optimizing only β, it has been shown that the approximation error uniformly
achievable over a class of smooth functions is lower bounded by C/(qN1/q), where
the constant C does not depend on N [2]. If, however, the weights (b,W ) ∼ μ are
set randomly [11] proved that the expected L2 error is of the orderO(1/N1/2). This
result asserts that there exists some distribution μ such that the expected error is
O(1/N1/2). It does not contradict the worst case order of the L2-norm of the error
C/(qN1/q) for fixed weights, as it makes a statement about the average.
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Generalization bounds for least squares estimation based on i.i.d. training
samples resembling the results in [9, ch. 3] have been obtained by Liu et al. [17].
In their result μ is a uniform distribution and the mean approximation error is
considered, where the expectation is taken with respect to the data distribution
(as for fully optimized feedforward networks) and with respect to μ as well. This
means, the averaged performance is studied here as well. The generalization bound
is essentially also of the optimal form O(n−2r/(2r+q)), up to a logarithmic factor,
where r measures the smoothness of the true regression function and n is the number
of samples.

Such learning results are more informative for applications than pure approxima-
tion results, since they consider the relevant case that the artificial neural network
is optimized from data using the empirical least squares criterion. But one may
formulate two critiques: These results consider the framework of learning from i.i.d.
samples, which is too restrictive for complex data sets. Before discussing this issue
in greater detail, let us pose a second critique: The classical learning guarantees and
generalization bounds address, mathematically speaking, bounds for (a functional
of) the empirical generalization error which are uniform over a certain class of
regression functions f (i.e., networks). Such uniform bounds over a function class
F are based on bounds for a fixed function and break the supf∈F by imposing
appropriate assumptions on the complexity of the class F. Here, measures such as
the Rademacher complexity, the Vapnik–Chervonenkis (VC) dimension or entropy
measures provide the most satisfying and useful results, see, e.g., the monograph
[18, 22] for recent results for deep learners.

But in applications, for a fixed problem and data set, the true function f is fixed,
whether or not being a member of some nice class F, and, therefore, the validity
of learning guarantees and generalization bounds (anyway how these are defined)
matters only for a single function. It has also been criticized by Neyshabur et al.
[19] that such bounds often do not explain the phenomenon that over-parameterized
nets improve in terms of the test error when increasing the size of the net. The
authors establish generalizations for a two-layer network, which depend on two
Frobenius matrix norms: Firstly, on the Frobenius norm of the weights of the top
layer, β , and, secondly, on the Frobenius norm of W t r − W 0, where W t r denotes
the trained weights and W 0 the randomly chosen initialization weights. The intuitive
explanation of the authors is quite close to the heuristics behind extreme learning
machines: If the number of hidden neurons gets larger and finally infinity, the
hidden layer provides all possible (nonlinear) features, it mainly remains to pick
and combined the right ones to explain the response and tuning the weights of the
hidden layers is of less importance.

Let us proceed with a discussion of the critique that the i.i.d. training framework
is too restrictive for data science problems. A major issue is that many complex
big data sets used in machine learning are collected over time and may also have a
spatial structure. In [24] extreme learning machines and multivariate regression have
been studied for a non-stationary spatial-temporal noise model having in mind data
collected by moving objects (cars, drones, smartphones carried by pedestrians, etc.),
which especially covers many multivariate autoregressive moving average (ARMA)
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time series models. Since only the weights, β, of the output layer are optimized,
consistency of the least squares estimator, β̂n, is of interest as well as consistency of
the related prediction X̃nβ̂n for the truth X̃nβ. In [24] it has been shown that, under
quite mild regularity conditions given therein,

‖β̂n − β‖2
2 = OP (p/n), E‖β̂n − β‖2

2 = O(p/n),

where p denotes the number of hidden neurons of the (last) hidden layer. This
means, even for dependent noise each parameter can be estimated with the rate
1/

√
n. Having in mind applications and the typical goal of prediction when fitting

artificial neural networks, bounds for the sample prediction error are even more
interesting. The sample mean-square prediction error (MSPE) is defined by

M̂SPEn = 1

n

n∑
t=1

(
x̃�
t β − x̃�

t β̂n

)2

and measures the accuracy of the predicted targets in terms of the empirical 2-vector
norm with respect to the training sample. Here, and in what follows, we assume
univariate targets (d = 1). As shown in [24], under certain conditions it holds, given
the (random) weights b,W ,

M̂SPEn = OP (p/n).

For the ridge estimator similar learning guarantees have been established gener-
alizing and complementing result from [5, 15] and [16], which are restricted to
i.i.d. sampling. Under regularity conditions given there, one can show that if the
regularization parameter satisfies

λn = oP(n/
√
p),

then the above statements on consistency of the estimated parameters of the last
layer and in terms of consistency of the sample prediction error still remain true, see
[24]. It is worth mentioning that this result allows the regularization parameter to be
random. If λn/n → λ0 for some constant λ0 ≥ 0, then the estimator is biased.

3 Comparing and Cross-Validating Randomized Networks

Simply training an artificial neural network to a training sample (̃yt , z̃t ), t =
1, . . . , n, should only be the first step. Comparing model specifications also taking
into account additional criteria not covered by the training algorithm is generally
advisable. We start with a discussion of a possible formal approach for such
comparisons and evaluations.
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As argued above, any artificial neural network fitted to a training sample is ran-
dom given the training sample, especially randomized nets such as extreme learning
machines. As a consequence, any evaluation of the out-of-sample performance is
random as well. This implies that calculated performance measures quantifying the
generalization ability are (nonnegative) random variables instead of fixed numbers.
A simulation experiment discussed below demonstrates this effect.

Therefore, we propose and elaborate on a cross-validating approach using a
validation sample (yt , zt ), t = 1, . . . , nV , tailored for randomized networks, in
order to make use of this uncertainty to improve the behavior of the final predictions.
Lastly, a method is discussed to quantify the mean sample prediction error with
minimal computational costs.

3.1 Model Comparison and Evaluation

Suppose we are given two model specifications in terms of (b1,W 1, β̂1) and
(b2,W 2, β̂2), where bi and W i are the (random) biases and connection weights
and β̂i the optimized weights of the output layer. Model comparison is often
conducted by looking at the optimized values of the chosen training criterion. But
the comparison or evaluation can be based on a different measure than used for
training, of course, and another choice often makes sense to take into account
additional objectives. Among those objectives are data fidelity, sensitivity with
respect to input variables, prediction accuracy and robustness, amongst others.
Incorporating such criteria in the objective function minimized to optimize the
weights of the output layer is possible, but the computational costs can increase
dramatically compared with least squares and ridge regression.

Instead, one may simply select a specification (and thus a fit and prediction
model) among a (small) set of candidate models, which has better behavior in terms
of a selected criterion without conducting full optimizing the output layer.

Assume we have picked a criteria function Cn defined on R
d ×R

n×p ×R
p+1 →

R and calculate

Cni = Cn(Y n; Z̃
i
n, β̂i ), i = 1, 2,

where Z̃
i
n = (̃zi1, . . . , z̃

i
n)

� are the n × qi matrices of the n observations taken
from qi input variables and β̂ i is the vector of optimized output layer weights,
i = 1, 2. Observe that the comparison can be based on different input matrices
of different dimensions. In this way, one may compare models using a different
number of input variables. Especially, by putting z̃

(1)
t = (̃zt1, . . . , z̃tq)

� and z̃
(2)
t =

(0, . . . , 0, z̃t,q1+1, . . . , z̃tq)
� one can analyze whether or not the first q1 inputs are

relevant. In this case, W 2 is set to the last q − q1 columns of W 1 and b2 to the
corresponding entries of b1. A reasonable decision function is to decide in favor of
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model 2, if and only if the improvement expressed as a percentage is large enough,
i.e., if

Cn2 < Cn1f

for some 0 < f < 1.

Least Squares Data Fidelity The choice

Cn(Y n; Z̃
i
n; β̂i ) = 1

n

n∑
t=1

(Yt − g(bi + W ĩz
i
t )

�β̂i )
2

corresponds to the least squares training criterion and measures the achieved data
fidelity of the fit.

Robustness Let ρ : R → [0,∞) be a (non-decreasing, bounded, . . . ) function and
put

Cn(Y n; Z̃
i
n; β̂i ) = 1

n

n∑
t=1

ρ(Yt − gt (bi + W i z̃
i
t )

�β̂i ).

Here, the (loss) function ρ is used to evaluate the residuals. A common choice
corresponding to robust M estimation is Huber’s ρ-function ρ(u) = u2/21(|u| ≤
K) + K(|u| − a/2)1(|u| > K) for some constant K > 0. For small |u|, the loss
is quadratic and linear for larger values. In this way, the sensitivity to outliers is
reduced.

Mean-Square Prediction Error Estimating the prediction error arising when
predicting the true but unknown (optimal) mean responses by the optimized net
outputs leads to the choice

Cn(Y n; Z̃
i
n; β̂i ) = 1

n

n∑
t=1

(
β�xt − β̂

�
i x̃it

)2
,

where x̃it = g(bi + W i z̃
i
t ).

The following assumption ensures that, asymptotically, the sample-based crite-
rion function converge to constants.

Assumption A Cni , i = 1, 2, converge in probability to constants ci , i = 1, 2, i.e.,

Cni
P→ ci , (2)

as n → ∞, for i = 1, 2.
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Assumption A is rather weak, especially, because no rate of convergence is
required. The question arises to which extent a model needs to improve upon a
competitor.

Definition 1 Let us call model 2 (Cn, f )-preferable, if the constants from Assump-
tion A fulfill the requirement c2 < f c1 for some f ∈ (0, 1].

The following result follows almost automatically from Assumption A and tells
us that the rule will select the right model with probability one in large samples.

Theorem 1 Suppose that Assumption A holds true and let f ∈ (0, 1]. If model
2 is (Cn, f )-preferable, then the decision rule (2) selects the correct model with
probability approaching zero, i.e.,

P(Cn2 > Cn1f ) → 0, n → ∞.

The approach discussed above is mainly designed as an additional step when
training a model from the learning sample by comparing a couple of model
specifications in terms of the input variables and additional criteria such as in-
sample prediction error and robustness, for a fixed choice of the (random) model
parameters of the hidden layer(s). Their random choice, however, introduces
uncertainty and, furthermore, the prediction accuracy should be quantified with new
fresh data samples.

3.2 A Simulation Experiment

Before proceeding, let us discuss the results of a small simulation experiment con-
ducted to illustrate the effect of randomly selecting part of the network parameters.
A single hidden layer feedforward net with h neurons, 5 inputs and 1 output was
examined for standard normal inputs, zt ∼ N(0, I ), and a univariate output modeled
as yt = xt (zt , b,W )�β0 + εt , t = 1, . . . , n, where the errors εt are i.i.d. standard
normal. The training sample size was set to n = 1000 and the validation sample
size to nV = 100. Fixing realizations of the training and test data and a randomly
chosen true coefficient vector β0, an extreme learning machine with random weights
b,W following a uniform distribution on [−1, 1] was fitted to the training sample
and then evaluated in the validation sample by calculating the associated sample
mean prediction error, see below for a formula. This simulation step was repeated
1, 000 times to obtain for each network topology (given by h) an estimate of the
distribution of the conditional mean prediction error. Figure 1 shows characteristics
of the simulated distribution as a function of the number, h, of hidden neurons.
One can observe that the support of the distribution opens the door for picking a
realization of the weights leading to superior out-of-sample performance compared
to single-shot fitting of a neural network with random weights.
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Fig. 1 Simulated distributions of the expected sample prediction error in a validation sample
of size 100, for h = 2, . . . , 10, 15, 20 hidden neurons. The curves (simulated points are joined
by lines) represent from top to bottom the maximum, 95%-quantile, mean, 25%-quantile and
minimum of the simulated distribution based on 1000 runs

3.3 One-Round Cross-Validation for Randomized Networks

In what follows, we assume that a validation sample (Y i , zi ), i = 1, . . . , nV , of
size nV is available for evaluation of a fitted neural network. This corresponds to
a one-round cross-validation. In principle, this could be generalized to a k-fold
cross-validation scheme, but to keep the presentation simple and clean, we confine
ourselves to the setting of a training of size n and a validation sample of size nV
as in the experiment reported above. In such a setting, one often works with ratios
n/nV around 80/20, whereas k-fold cross-validation would split the available data
in k equal parts (folds). We elaborate on a single hidden layer network and leave the
simple, notational changes for deep learning networks to the reader.

Suppose that Zj = Z(ηj ) is a nonnegative measure for the prediction accuracy
calculated for a random draw ηj of a subvector η of the full parameter θ of a neural
network. In case of a hidden layer net we have η = (b,W ) and θ = (η,β). In view
of the randomness of ηj , Zj is a random variable attaining values in [0,∞). For
J i.i.d. draws given the training and validation samples, we obtain an i.i.d. sample
Z1, . . . , ZJ , namely the J evaluations in the validation sample, when conditioning
on the training and the validation samples.

The sample mean-square prediction validation error for the validation data
set of size nV , given in terms of the response nv-vector Y nV and inputs Z =
(z1, . . . znV )

�, a nV × q matrix, is calculated as

M̂SPEnV = 1

nV
‖Y nV − XnV (b,W ,Z)β̂n‖2

2 = 1

nV

nV∑
i=1

(Yi − g(b + Wzi )
�β̂n)

2.
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The predictions Ŷ nV for the validation data set (Yi , zi ), i = 1, . . . , nV , are,
therefore, computed using the output matrix of the hidden layer when fed with the
validation inputs, i.e., using the nV × p output matrix

XnV (b,W ,Z) =
⎡
⎢⎣
g(b + Wz1)

�
...

g(b + WznV )
�

⎤
⎥⎦

and, therefore, take the form Ŷ nV = XnV (b,W ,Z)β̂n. Here β̂n denotes the least
squares estimator of the output layer calculated from the training sample (Ỹi , z̃i ),
i = 1, . . . , n, of size n, and b,W are the random network parameters connecting
the input and the hidden layer, i.e., using the n×p output matrix of the hidden layer

X̃n(b,W , Z̃) =
⎡
⎢⎣
g(b + Wz̃1)

�
...

g(b + Wz̃n)
�

⎤
⎥⎦ ,

such that

β̂n = (X̃n(b,W , Z̃)�X̃n(b,W , Z̃))−1X̃n(b,W , Z̃)�Ỹ n.

This process is now iterated J times, i.e., we draw J sets of random parameters
(b(j),W (j)), j = 1, . . . , J , and calculate for each draw (b(j),W (j)) the
associated estimate of the sample mean prediction error in the validation sample,

Zj = ‖Y nV (j)− XnV (b(j),W (j),Z)β̂n‖2
2. (3)

These estimates are averaged to obtain an estimator of the conditional mean
E(M̂SPEnV |(Ŷ n, X̂n), (Y nV ,XnV )), where the expectation is with respect to the
distribution of the randomized network weights. Further, we have simulated a
sample of realizations of the M̂SPEnV and may select the network leading to the
best performance in the fixed validation sample, i.e., take j∗ ∈ {1, . . . , J } with

Zj∗ = min
1≤j≤J Zj

and thus use the network with the specification (b(j∗),W (j∗)) of the randomized
parameters. This algorithm is summarized below. General results on the consistency
of this approach including bounds for the estimated mean sample mean prediction
error and model selection consistency are subject of ongoing research [25].

Observe that the above algorithm covers the case of model selection, classically
understood as the selection of the number of hidden neurons of the net, as well
as the selection of the network topology. This is so because the distribution G
may take into account certain topologies, e.g., a convolutional layer which linearly
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processes all fixed-length subvectors of the inputs z by a linear filter with randomly
drawn coefficients, followed by a maxpolling layer, which is then further processed.
Similarly, G could be defined such that for a fully connected layer the connection
weights of each neuron have �0-norm s0, so that each neuron processes only s0 of the
outputs of the previous layer resp. of the inputs. In this way, one can try (randomly)
different network topologies in a systematic way.

Algorithm

1. Draw (b(j),W (j))
i.i.d.∼ G, j = 1, . . . , J .

2. For j = 1, . . . , J do
3. Estimate β from the training sample using the output

matrix X̃n(j) = X̃n(b(j),W (j), Z̃n) giving β̂n(j).
4. Compute the predictions of the validation sample

ŶnV (j) = XnV (j)β̂n(j) with XnV (j) = XnV (b(j),W (j),Z).
5. Compute the square prediction errors

Zj = 1
nV

‖Y nV − Ŷ nV (j)‖2
2.

6. Estimate the mean-square validation prediction error by

M̂SPEnV ,J = 1

J

J∑
j=1

Zj

7. Select the network by computing j∗ ∈ {1, . . . , J } with

Zj∗ = min
1≤j≤J Zj

3.4 An Uncertainty Interval for the Mean Sample Prediction
Error with Minimal Computational Costs

In order to deal with the uncertainty of the sample MSPE and to minimize the
required computational costs, one can calculate a fixed-width confidence interval

for the expected sample MSPE in the validation sample, μ = E(b,W )

(
M̂SPEnV

)
,

corresponding to the black points in Fig. 1. For a fixed uncertainty d > 0, specified
in advance as the half-length of an interval around the estimator M̂SPEnV ,J , one
wants to determine J from data, such that the resulting interval has confidence 1−α,
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α > 0 small. This means, we want to determine the smallest J , such that the fixed-
width interval

[
M̂SPEnV ,J − d, M̂SPEnV ,J + d

]

has coverage probability 1 − α. The problem to construct fixed-width uncertainty
intervals has been studied for general parameters by Steland and Chang [26] for the
classical asymptotic regime d → 0 as well as the novel high-confidence regime 1 −
α → 1. A solution, Ĵopt , which is consistent for the theoretically optimal solution,
and first as well as second order efficient, is as follows: One fixes a minimal number
of draws, J̄0, and calculates

J0 = max

{
J̄0,

⌊
	−1(1 − α/2)̂σ

d

⌋
+ 1

}
.

Here 	−1 is the quantile function of the standard normal distribution function. σ̂
is the sample standard deviation of Zj ’s of a small number of initial runs, which
can be as small as 3 according to the simulation studies in [26]. Next, perform J0

simulation runs and calculate σ̂ 2
J0

= 1
J0

∑J0
j=1(Zj − Z)2. Lastly, one calculates the

final number of runs given by

Ĵopt = max

{
J0,

⌊
σ̂ 2
J0
	−1(1 − α/2)2

d2

⌋}
.

If Ĵopt > J0, one conducts the required additional Ĵopt − J0 draws of the random
parameters of the neural net, determines the associated sample prediction errors
Z1, . . . , ZJĴopt

according to (3), and eventually computes the interval ZĴopt ± d .

4 Application to Vehicle Integrated Photovoltaics and Data
Analysis

An interesting specific problem arising in VIPV is the prediction of the yield due to
the integrated solar panels. Compared to panels mounted at the rooftop of a truck or
car, panels mounted at the sides pose additional problems, since their energy yield
depends on the orientation of the vehicle. The question arises to which extent one
can predict their contribution to the total yield by the irradiance measured at the
rooftop. The basic idea to explain the measurements of a sensor (or PV module)
facing left (or right) in terms of a sensor facing up is that it is easier to derive, in
advance, expected irradiance maps for horizontally aligned sensors. To a planned
route one can then assign an expected irradiance trajectory for the sensor facing up.
A prediction model then allows us to forecast the contribution of further sensors. In
this way, one can predict the VIPV yield.
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4.1 Vehicle Mounted Data Logger

Several sensors and a data logger were mounted on a vehicle. The sensors include
4 irradiance sensors, one acoustic wind sensor, a Global Positioning System (GPS),
and a magnetometer.

The sensors are specifically chosen to provide relevant data for VIPV yield. For
this purpose we obviously want to monitor the irradiance. The irradiance depends
strongly on the orientation of the PV module. Thus, we use 4 irradiance sensors
facing in different directions (top, left, right and back), and we log the vehicle
orientation. While the vehicle is moving we can use GPS data to provide a good
indicator for the vehicle orientation (assuming the vehicle is moving in forward
direction). However, as vehicles are also often parked, we in addition use a magnetic
sensor to provide information on the vehicle orientation.

Another important factor for yield is the module temperature, as PV modules
are less efficient at higher temperatures. The module temperature itself depends on
several environmental factors; wind, ambient temperature, and irradiance. In [13] it
was shown that the head wind from driving provides a significant positive impact
on PV yield as the additional wind cools the PV modules.

The data logger was developed around a Raspberry Pi single board computer.
The Raspberry Pi is equipped with a GPS module and a magnetometer. Note that
the magnetometer is used as GPS only provides information on the orientation of
the vehicle while the vehicle is moving (assuming the vehicle is mover forward).
However, most vehicle spend a large amount of time parked. The remaining wind
and irradiance sensors are connected with two RS485 interfaces, one for the wind
sensor and one for the four irradiance sensors. The logged sensor data is written to
a USB thumb drive. The setup is powered from the 12 V car battery and is enclosed
in a weather proof box mounted on a rooftop rack.

For the irradiance sensors we used four calibrated silicon sensors from Inge-
nieurbüro Mencke & Tegtmeyer GmbH of type SiRS485TC-T-MB. As the sensors
are silicon reference cells the measured irradiance is of particular relevance for PV
applications as the spectral range of the sensors matched that of typical PV modules.
The four irradiance sensors are mounted on the same rooftop rack, facing up, left,
right and backwards.

The wind sensor is an FT205 acoustic wind sensor from FT Technologies. The
sensor measures both wind speed and direction (2D). The sensor also reports the
acoustic air temperature, i.e., the air temperature derived from the temperature
dependent speed of sound in air.

The data used in this paper was collected during several test drives of the system.
We plan to use several car mounted data logging systems in the coming years on
several cars with different use profiles.
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4.2 Data Analysis

As a preliminary study, we analyzed a small pilot sample collected during three
test drives. In view of the limited data available for this analysis, we can only get a
first impression whether the information describing the position of the car, namely
where it is located and in which direction it drives, can be exploited to predict
measurements of a sensor facing left, right or backwards from measurements from
the sensor facing up.

The available data was split in a training sample with n = 3472 data points
and a test sample with 3669 observations. The validation sample was selected
as observations 1000–2250 from the test sample, since such PV data is highly
heterogenous, as irradiance differs substantially depending on the time of day and
weather. For the present data set, the first part of the test sample was inappropriate.

In our nonlinear model it is assume that the tth voltage measurement of the sensor
facing left, s2t , is related to the sensor facing up, s1t , via the equation

s2t = s1t (1 + f (at , xt , yt )), t = 1, . . . , n.

Here at denotes the angle (direction) of the car and (xt , yt ) is the car’s location at
time t , expressed in terms of geographical coordinates (longitude and latitude). f is
an unknown (nonlinear) function. A baseline (null) model would be to assume that f
is equal to some constant value f0. It is, however, clear that under idealized noiseless
conditions, f is a function of angle and geographical location. For example, at a
certain location the car’s side but not the roof may be shadowed by a building. Of
course, a more refined model needs to take into account time of day and season,
but estimating such models requires sufficiently big data set over much longer time
span than available for the present illustrative data analysis.

The function f can be modeled and estimated by a nonlinear regression
approach,

yt = f (at , xt , yt )+ εt , t = 1, . . . , n,

for mean zero random noise terms εt , using the targets (responses)

yt = s2t − s1t

s1t

and the input variables (regressors) zt = (αt , xt , yt ). Having a prediction ŷt the
corresponding forecast of s2t is then calculated as ŝ2t = s1t (1 + ŷt ).

We compared two model specifications. Firstly, a linear specification, i.e., a
classical multiple linear regression model, given by

yt = b0 + b1at + b2xt + b3yt + εt ,
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for regression coefficients b0, . . . , b3 ∈ R. The second model is a single hidden
layer feedforward network with p = 4 hidden units and a logistic squasher 1/(1 +
exp(−x)),

yt = f (zt ; θ)+ εt = xt (zt ; η)�β + εt ,

where θ = (η,β) with η = (b,W ), and β ∈ R
p represents the weights of the

linear output layer. We also experimented with networks with a different number
of hidden units, but the specification found and reported below uses p = 4 hidden
layers. It is worth mentioning that fitting successfully neural networks requires to
norm the input variables to the interval [−1, 1]. The neural net was trained as an
extreme learning machine using ridge regression with ridge regularization parameter
λ = 0.2 and random weights η with i.i.d. entries following a uniform distribution
on the interval [−1, 1]. In order to get more robust results, the most extreme 5% of
the observations of the training sample were omitted. Following the proposed cross-
validation method, a realization of η∗ = (b∗,W ∗) was chosen which yields the best
prediction accuracy in the validation sample.

Table 1 provides the sample mean prediction error in the validation sample for
all three prediction methods, the baseline null model, multiple linear regression
and artificial neural network. In addition, for each model the statistic M̂SPEnV =

1
nV

∑n
i=1 êi , where êi denotes the prediction error for the ith datapoint, e.g., êi =

Yi − xi (b
∗,W ∗, zi )�β̂n for the neural network, was decomposed by computing the

components

M̂SPEnV ,0.1 = 1

nV

nV∑
i=1

|̂ei |≤q0.1

ê2
i ,

M̂SPEnV ,0.1:0.9 = 1

nV

nV∑
i=1

q0.1<|̂ei |<q0.9

ê2
i ,

M̂SPEnV ,0.9 = 1

nV

nV∑
i=1

|̂ei |>q0.9

ê2
i ,

Table 1 Prediction accuracy in the validation sample

Method M̂SPEnV M̂SPEnV ,0.1 M̂SPEnV ,0.1:0.9 M̂SPEnV ,0.9

Null model 100,555.8 11,635.59 6,908.67 82,011.5

Linear regression 67,967.4 12,740.26 5,547.23 49,679.9

ELM neural network 74,502.3 4,065.44 2,133.83 68,303.0
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Fig. 2 Observed irradiance at sensor 2 and predictions for the training sample: null model (green),
linear regression (red), extreme learning machine (blue)
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Fig. 3 Observed cumulated measurements and cumulated predictions for the validation and test
sample: the neural net underestimates power generation in the test sample as several extrema are
not properly predicted

where qp denotes the p-quantile of the empirical distribution of the prediction errors
êi , i = 1, . . . , nV . In this way, one can analyze how well a method works in the tails
compared with the central 90% of the data. M̂SPEnV ,0.1 measures the prediction

error when the method overestimates and M̂SPEnV ,0.9 if it underestimates. One can
observe that the neural net predictions surprisingly well in the central part and also
when it overestimates, but the prediction errors are large when it underestimates.

Figure 2 shows the predictions of the three prediction methods in the training
sample, whereas Fig. 3 depicts the results for the validation and test sample. The
predictions of the nonlinear neural network are in most cases closer to the observed
data points, except for some extreme measurements, which are not nicely captured
by the neural net. In Fig. 3 the cumulated measurements and their predictions,
respectively, are plotted. Since the sensors provide data sampled at a fixed sampling
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Fig. 4 Observed irradiance and predictions for the validation and test sample: the neural net yields
better predictions in most cases, but underestimates several extrema

rate without gaps, the cumulated values can be regarded as proxies for the (total)
energy yield. Because the neural network is not able to capture some extremes, it
underestimates the yield.

However, the data set used in this pilot study is too small to draw conclusions,
especially about the question to which extent artificial neural networks outperform
linear methods for the problem of interest. It is also not clear whether the observed
properties of the prediction errors are artifacts or will still be present when larger
data sets are analyzed (Fig. 4).

Appendix: Proof of Theorem 1

If model 2 is (Cn, f )-preferable, then the probability of a false decision is given by

P(Cn2 > Cn1f ) = P(Cn2 − δ2 > Cn1f − c1f − δ2 + c1f ).

Consequently,

P (Cn2 > Cn1f ) = P ([Cn2 − c2] + [Cn1 − c1]f > c1f − c2)

≤ P ([Cn2 − c2] > (c1f − c2)/2)+ P ([Cn1 − c1] > (c1f − c2)/(2f ))

→ 0,

as n → ∞, since c1f − c2 > 0. From these simple bounds it is clear that a
convergence rate for the criterion automatically yields a convergence rate for the
error probability to select the wrong model.
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Scale Invariant and Robust Pattern
Identification in Univariate Time Series,
with Application to Growth Trend
Detection in Music Streaming Data

Nermina Mumic, Oliver Leodolter, Alexander Schwaiger,
and Peter Filzmoser

Abstract A method is proposed to identify a pre-defined pattern in univariate time
series. The pattern could describe an expected trend, for example, the development
of a “hit” in music streaming data, with a rapid increase of the number of streams, to
a peak, and a slow decay. With this application in mind, the method is scale invariant
in the time domain as well as for the values of the time series (e.g., number of
streams). Moreover, it is suitable also for irregularly spaced time series, and robust
against short-term seasonal movements, as well as to noisy and spiky time series.
Simulation studies compare this proposal with a method for identifying breaks in
a time series. If the number of breaks for this method is pre-defined, the windows
with the simulated patterns can be well identified with both procedures. The new
proposal can additionally filter out those time series which contain the pre-defined
pattern. This method is applied to a big data base of digital music streaming data for
the purpose of “hit” detection.

Keywords Pattern identification · Time series · Robustness

1 Introduction

With the increased digitalization, various industrial sectors from economy, technol-
ogy to healthcare have to cope with huge amounts of collected data. Often only
specific movements or patterns in the data are relevant for the user. Therefore,
pattern detection in a series of observations becomes a striking issue in many
disciplines. In the case of the music industry, agents and music labels are interested
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in finding and predicting music hits. Those might be characterized by a rapid
increase in the number of streams or downloads to a peak and a slow decay.
This is connected to several issues: the corresponding time series can show strong
serial correlation, and they can be very noisy or contain spikes, representing
exceptional events. In those cases, long term trends are contaminated with short-
term movements. Thus, pattern detection algorithms should not focus on those
seasonal patterns but rather be capable of identifying the long-run trend behind.
Another challenge is the scale invariance, as the shape expressed by a “hit” can be
the same in different songs, but the number of daily streams or downloads could be
very different. For this reason, the invariance in both time (x) and measurement (y)
scale is a crucial point in the development of an algorithm for pattern identification.
Furthermore, it is of interest to precisely identify the position of a pre-defined
pattern, with the starting and ending point. Such a procedure could be applied to
a big data base of music streaming data in order to filter out songs containing pre-
defined patterns. In a next step one could analyze external information to learn more
about the reason for the occurrence of the pattern.

Current literature for pattern detection in time series suggests computing appro-
priate similarity measures between time series. Lin et al. [10] distinguish between
supervised methods (classification, nearest neighbor, decision trees, support vector
machines, artificial neural networks), semi-supervised learning (labeled training
data is used to predict unlabeled test data), and unsupervised learning (hierarchical
clustering, k-means). They also suggest approximations of the time series via some
representation—like Symbolic Aggregate Approximation (SAX), Discrete Fourier
Transform (DFT) or Discrete Wavelet Transform (DWF), to name a few, and
compute distance measures based on extracted features.

Similarity measures between time series can also be defined based on their
shape or their structure. Representatives of the shape based approach are Euclidean
Distance or Dynamic Time Warping (DTW), which are suitable for short time
series [2, 11]. DTW works unsupervised and established as standard approach in
time series clustering. DTW fixed the issue of the Euclidean Distance not being
invariant in the time space (x) but still lacks with invariance in the measurement(y).
The structure based approach is grounded on extracting features of the time series,
like information of the covariance structure or ARMA coefficients, see [5]. This
approach is suitable for long time series but lacks in detecting long term patterns.
Furthermore, it is not capable of searching specific patterns as they may vary in
scale and covariance structure.

Deep Learning (DL) is currently a popular tool for data mining, as it works
completely unsupervised without any bigger modeling requirements of the user [6].
To achieve decent results, a sufficiently big training set is required, which is mostly
not available. Furthermore, DL is not capable of locating the position of the pattern
and shows issues in dealing with spikes and strong seasonalities [15].

In this paper we present an approach for long-run pattern detection that performs
well on noisy univariate time series and which is robust towards outliers and
exceptional events. The wanted pattern must be defined in terms of x and y
coordinates, which makes the algorithm applicable to search for any arbitrarily
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defined pattern and locates its exact position. Furthermore, no training data set
is required like in the case of DL applications. In Sect. 2 we introduce our
methodology of pattern detection. First we define the sliding windows approach
and explain how x and y scale invariance are achieved within each window. Then
we robustly regress the observations on the values of a pre-defined pattern. The
resulting regression coefficients and the robustly estimated long-run variance of
the resulting residuals inform about the likelihood of the presence of the pattern
in the window. In the last step we combine this information and define candidates
for the windows containing the wanted pattern, using appropriate cutoff values.
In Sect. 3 we evaluate the algorithm by means of a simulated time series by
varying their underlying pattern, length, magnitude, signal-to-noise ratio, and their
correlation structure. In Sect. 4 we present real data examples, where we use a data
set consisting of more than 160 million revenue records, representing the daily sales
of music titles over the period of about 3 years. The final Sect. 5 summarizes and
concludes.

2 Methodology

Depending on the application, it is possible to decompose a time series y = {yt |
t = 1, . . . , T } into

yt = pt + st + εt , (1)

where pt denotes the trend component or “pattern” which determines the general
long-run direction of the time series, st the seasonal component capturing repeating
patterns of a fixed frequency, and εt the stochastic error or residual component.
In this section we want to develop an approach to identify an arbitrarily pre-
defined, deterministic long-run pattern pt with variable magnitude and duration,
and to detect the exact position of the pattern. This method is applicable for
very noisy, univariate time series, containing additional overlaying trends and
seasonal components st . We assume that the duration of the pattern pt is longer
than the seasonal component st in order not to mix it up with pure seasonal
movement. We also assume that the observed time series is in general longer
than the pattern, thus it starts before the pattern appears, and it ends after the
pattern.

The proposed approach is based on a sliding window, where a multitude of
subsequences (windows) of varying length is extracted from a univariate time series.
Then those subsequences are normalized to achieve scale invariance for the values of
the time series. Within those windows, features are calculated, and this information
is used for identifying the patterns and their exact position.
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2.1 Sliding Windows

Given a time series y = {yt | t = 1, . . . , T }, a window w is defined by a
starting index sw ≥ 1 and an ending index ew ≤ T . We denote the corresponding
subsequence of y as yw = {yt | t = sw, sw + 1, . . . , ew − 1, ew}. In order to detect
a pattern independently of its position and length, we need a set W of windows
where the windows w ∈ W vary in the starting positions sw, as well as in lengths
lw := ew − sw + 1. The finest possible set of suitable windows for a time series y
is Wf = {w | sw < ew, 1 ≤ sw ≤ T , 1 ≤ ew ≤ T }. In most cases, using this entire
set is unnecessarily computational intense. For this reason we define a reasonable
subset by sliding windows of different lengths l ∈ L, with step lengths vl , through
the time series y. This results in the set

W =
{
w : sw ∈ {1, 1 + vl, 1 + 2vl, 1 + (�T/vl�− 1)vl}, ew = sw+ l− 1

}
, (2)

where �a� denotes truncation to the next integer ≤ a.
With a suitably defined set of windows W we can continue defining appropriate

features for the subsequences {yw | w ∈ W } and use unsupervised clustering
methods to group windows with similar features. Galeano and Pena [5] suggest
clustering according to similarity measures, like the autocorrelation function. This
would only be a reasonable choice in the case of stationary time series without
long-run trend patterns. Thus, we present alternative features that are capable of
identifying long-run patterns.

2.2 Scale Invariance

The method should detect pre-defined patterns regardless of their length
or the magnitude. We will further refer to this property as x and y scale
invariance.

Invariance along the x axis is achieved by taking subsequences yw of the
time series y of varying lengths l, as described in Sect. 2.1. This ensures
capturing the same pattern in varying length (x scale) among different time
series.

To achieve comparability across both windows yw within a single time series and
those of different time series, it is necessary to normalize the subsequences yw, w ∈
W . We will further denote the standardized time series as ỹw. Here we want to scale
such that the first observation of the series ỹw has a value of approximately 1, thus
ỹw1 ≈ 1. However, simply dividing all observations of yw by the first value yw1 could
be too sensitive to this value, and in order to gain more robustness against outliers,

we propose as a scaling factor the median of the first
⌊

1
20 · lw

⌋
observations, where
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lw is the length of the series yw, and thus

ỹt
w := ywt / med

(
yws , s = 1, . . . ,

⌊
1

20
· lw

⌋)
, t = sw, sw + 1, . . . , ew .

(3)

2.3 Pattern Identification

Assume that we are looking for a pattern of the form

p = {
(x
p

1 , y
p

1 ), (x
p

2 , y
p

2 ), . . . , (x
p
m, y

p
m)

}
,

where xp1 < x
p

2 < . . . < x
p
m correspond to positions on the time axis, and

m is the number of time points of yw. An example for constructing a pattern is
to consider coordinates {(0, 0), (0.5, 1), (1, 0)}, which define a triangular in the
range of a normed time window. If we assume equidistant time information in
yw, the pattern points xp1 , . . . , x

p
m are simply set to 1, . . . ,m, where m = lw .

The first half of the values yp1 , . . . , y
p
m are linear interpolations between 0 and 1,

and the second half are linear interpolations between 1 and 0, respectively. In case
of non-equidistant time series, the linear interpolation scheme has to be adjusted
accordingly.

Then we consider the linear model

ỹt
w = βw0 + βwx x

p
t + βwp y

p
t + εwt , t = sw, sw + 1, . . . , ew, (4)

where, without loss of generality, sw and ew are reparameterized to 1 and m,
respectively. The intercept term βw0 allows for a vertical shift of the pattern, the slope
parameter βwx enables to compress or stretch the time axis, and the slope parameter
βwp provides information about the pattern fit. We will refer to this parameter as
pattern coefficient in the following. The term εwt is the error term in the model. Since
the underlying time series can be noisy, the regression parameters in this model are
estimated with the MM-regression estimator [16], which is highly robust against
outliers.

2.4 Model Diagnostics

The estimated pattern coefficient β̂wp in model (4) provides information about the
presence of the pattern in the time series. If the pattern corresponds to the long-
run trend contained in the series ywt , the residuals εwt should not contain a long-run
trend. To evaluate the extent of uncaptured seasonality and long-run trends in εwt ,
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we propose the use of the long-run variance

ω2(εwt ) = γεt (0)+ 2
∞∑
i=1

γεt (i) , (5)

where σ 2(εwt ) = γεt (0) is the variance, and γεt (i) is the autocorrelation to lag i.
Instead of computing the long-run variance on the raw residuals εwt , we take

trimmed and smoothed residuals ε̃wt in order to reduce the effect of possible
outliers. The residuals are smoothed with a running median to downweight potential
spike effects. In our implementation, the smoothed residuals are obtained as

εws (t) := med
(
εwt−3, ε

w
t−2, . . . , ε

w
t+2, ε

w
t+3

)
. (6)

These smoothed residuals are then trimmed with a trimming factor α = 0.1, and
thus we obtain

ε̃ω(t) = εωs (t) , t = max
(
1,

⌈
lω · 0.1

⌉)
, . . . ,min

(
lω,

⌊
0.9 · lω⌋) .

This is the input information to obtain the estimated long-run variance ω̂2 (ε̃w). For
this purpose we use the Andrews quadratic spectral kernel HAC estimator [1]. The
R function lrvar from the package sandwich [17, 18] allows to compute this
estimator.

Both the estimated pattern coefficient β̂wp and the trimmed smoothed residuals
εws are used to evaluate the results from the regression fits for different windows
w ∈ W . However, they first need to be made comparable for the different considered
windows by centering and scaling appropriately. We assume that for the majority
of the windows, the residuals will not contain any long-run structure, because
there is either no structure present in the window or it was already considered
by the coefficient βwp . However, residuals from windows that cover only a part
of the pattern will contain remaining structure. These will lead to outliers in the
distribution of the residuals. Thus we can assume that the distribution of the
estimated long-run variances based on the different windows is bimodal, and the
mode for the minority will refer to the interesting structure. We estimate the modes
by a robust clustering procedure, here in terms of trimmed k-means clustering,
implemented in the R package tclust [4]. Clustering is thus performed in the
univariate space, based on the estimated long-run variances that result from all
considered windows. Since the distribution of the long-run variances is skewed,
we first log-transform (the square-root of) these values. The estimated mode of the
smaller cluster is L(ω̂(ε)wt ) = M1(log(ω̂(ε̃wt ))). We also scale the (square-root of
the) long-run variance, by using the robust scale estimator Qn [12], which is based
on pairwise absolute differences. Thus, the resulting centered and scaled version
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to compare the (square-root of the) long-run variance among different windows is

ω̃(ε̃ωt ) := log(ω̂(ε̃wt ))− L(ω̂(ε̃wt ))
σ̂ (ω̂(ε̃wt ))

. (7)

Also the pattern coefficient is scaled as

β̃wp = β̂wp

σ̂ (β̂)
∀w ∈ W, (8)

where β̂ = {β̂wp | ω̃(ε̃wt ) < 2}, and σ̂ (β̂) = Qn(β̂). Thus, here we only focus on
pattern coefficients that originate from windows resulting in sufficiently low long-
run variance.

If a window w ∈ W contains the defined pattern, the corresponding pattern
coefficient is supposed to be clearly greater than zero. In the ideal case, the pattern
already covers most of the long-run structure, such that ω̃(ε̃ωt ) is small. In this case,
such a window is a candidate for further investigation. In the next section we will
develop a strategy to decide whether such a candidate refers to a window with a
pre-specified pattern or not.

The complete algorithm is summarized as pseudo-code in Algorithm 1.

3 Simulation Experiments

The aim of this section is to derive appropriate tuning parameters for the method, to
illustrate and evaluate the proposed methodology, and to compare it to an alternative
proposal. We will first explain the simulation design, present different variations of
the proposed methodology, and then present the results.

3.1 Simulation Design

We will simulate time series based on five different types of patterns, denoted as
p0, . . . , p4. These patterns are denoted as Type 0, Type 1, etc. Within each pattern
there will be 12 different variations of the time series structure. A simulated time
series with values yt , t = 1, . . . , T , will be split along the time axis into three
distinct time intervals o1, o2, o3, defined as

o1 =
⌊
k̂1 ·m

⌋
o2 =

⌊
k̂2 ·m

⌋
o3 =

⌊
k̂3 ·m

⌋
, m ∼ U(800, 1200),
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1: Input
2: Time series (yt )t=1,...,T

3: Output
4: Found pattern type
5: for (each pattern Type 1, Type 2 ,Type 3 ,Type 4) do
6: Create set of suitable windows, where sω denotes the start index and eω the end index

W :=
{
ω : sω ∈

{
1, 1 + vl , 1 + 2vl , 1 +

(⌊
T

vl

⌋
− 1

)
vl

}
, eω = sω + l − 1

}

7: for (each subsequence yω, yω ∈ {yω|ω ∈ W }) do
8: Scale yω and denote the scaled series with ỹωt
9: Solve the linear model where (xp, yp) depends on the Type

ỹt
ω = βω0 + βωx x

p
t + βωp y

p
t + εωt , t = sω, sω + 1, . . . , eω

10: Estimate the longrun variance ω̂ of the trimmed and smoothed residuals ε̃ωt
11: Scale the estimated pattern coefficient β̂ωp and denote it with β̃ωp
12: end for
13: if more than 5% of the windows fullfill ω̂(ε̃ωt ) < 2 and β̃ωp > c then

14: Type is eligible
15: return window whose longrun variance is in the lower third of all windows and

has the highest pattern coefficient out of those

16: else
17: return Type
18: end for
19: if Types were found then
20: Out of all eligible Types choose the one where most windows fullfill

ω̂(ε̃ωt ) < 2 and β̃ωp > c
21: return Type
22: else
23: return No Type

Algorithm 1: Pseudo-code of the pattern detection algorithm

with

k̂1 = k1∑4
i=1 ki

k̂2 = k2 + k3∑4
i=1 ki

k̂3 = k4∑4
i=1 ki

and ki ∼ U(0.1, 0.9) for i = 1, . . . , 4. Thus, the sum of the three intervals o1 +
o2 + o3 equals T (up to truncating effects).
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The time series values are generated according to

yt = z + εt , t = 1, . . . , o1 , (9)

yt = p
j
t−o1

+ εt , t = o1 + 1, . . . , o1 + o2 , (10)

yt = z + εt , t = o1 + o2, . . . , o1 + o2 + o3 , (11)

where pj (for j = 0, 1, . . . , 4) is the pattern type, ε is the error term, and z is
the starting level shift of the time series. The term z is generated according to
z ∼ U(900, 1100). The pattern types p0, . . . , p4 are generated with the following
coordinate pairs (x, y):

Type 0: S0 := {(0, 0) , (1, 0)}
Type 1: S1 := {(0, 0), (0.1, 1), (1, 0)}
Type 2: S2 := {(0, 0), (0.2, 1), (1, 0)}
Type 3: S3 := {(0, 0), (0.5, 1), (1, 0)}
Type 4: S4 := {(0, 0), (0.9, 1), (1, 0)}
For each pattern we linearly interpolate between the given coordinate pairs.
For that purpose we use b · o2 equidistant points in the interval [0, 1], with
b ∼ U(0.5, 0.9). Afterwards, the resulting y-coordinate values are multiplied
by the factor h, resulting from h = z · P , where P ∼ U(0.5, 0.9) defines
the proportion to the starting level shift of the time series. Thus, for pattern
type pj , j = 0, . . . , 4, t = 1, . . . , o2, and xt equidistant ∈ [0, 1] we have:

pj =
{
(t, y

p
t ) : ypt = yi−1 + yi − yi−1

xi − xi−1
(xt − xi−1)h , (xi, yi) ∈ Sj , i = 2, . . . , |Sj |

}
.

(12)

Figure 1 shows examples of the resulting pattern time series. Type 0 contains no
pattern, and subsequently this type will refer to random noise. Type 1 and 2 present a
rapid increase at the beginning (which is stronger for Type 1), followed by a slower
decay. Type 3 results in a symmetric pattern around the center of the pattern series,
and Type 4 is the mirrored picture of Type 1.

The next step is to define the error component used in (9)–(11). We will use
a setting which is the sum of an AR(1) process with randomly generated spikes.
Define a ∈ {0.1, 0.5, 0.9} and r ∈ {0.01, 0.05, 0.1, 0.2}. For t = 1, . . . , T we
simulate:

ηt = a · ηt−1 + ξt , η0 ∼ N(0, σ 2) (13)

σ 2 := 1

1.645
r · z ·

√
1 − a2 , ξt ∼ N(0, σ 2) (14)
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Fig. 1 Pattern types which used for the simulation study

τt = χt · 6 · 1

1.645
r · z , χt ∼ Bernoulli(0.6) (15)

εt = ηt + τt . (16)

Here, 1.645 is the quantile 0.95 of the standard normal distribution. The choice of σ 2

has the effect that higher values of r and lower values of a increase the probability
of a bigger shock in the AR(1) process (13). The magnitude of a determines the
impact of a shock at time point ti to future values at tj , for i < j ≤ T ; bigger
values of a lead to a stronger effect. The term τt generates outliers, which are getting
stronger with increasing values of r . For every pattern we will generate values with
all 12 combinations of a and r . The components pj and ε are added according to
(10).

Figure 2 presents examples of the simulated pattern for Type 1 to Type 4, with
parameters a and r indicated on top of the plots.
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Fig. 2 Examples of simulated time series pattern types, with different values for a and r

3.2 Analyses of the Simulated Data

For analyzing the simulated time series with the methodology proposed in Sect. 2
we first need to define candidate windows w ∈ W , and in every window we
will search for a pattern of Type 1 to Type 4. Ideally, the methodology should
identify the correct pattern type and the correct window where the pattern has
been simulated. The starting points sw of the windows depend on the step length
vl and on the window length lw . For our simulation we will use vl = 30 and
lω ∈ L = {350, 400, 450, 500, 550, 600, 650}. The number of considered windows
will be taken as Nl = �(T − lw)/30�, where the bracket refers to the next biggest
integer. Then the starting points are defined as sw = 1+k ·30, and the ending points
as ew = lw + k · 30, for k = 0, . . . , Nl .

The remaining steps are as outlined before: The time series in a particular
window is scaled as in (3). For the considered search pattern, the corresponding
time series values are obtained by interpolation as defined in (12), where we use
length lw instead of o2. Then, regression according to model (4) is carried out, and
our particular interest is in the results for the scaled pattern coefficient β̃wp and in
ω̃(ε̃ωt ), which we denote simply as scaled long-run variance.
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3.3 Example Analyses of Simulated Data

In order to illustrate the above ideas, we will show analyses of some simulated
data examples in the following. The data are simulated as explained previously.
The upper plot in Fig. 3 shows simulated data of Type 0, representing just noise
with spikes. The setting is according to the parameters a = 0.5 and r = 0.1. The
dark marked area corresponds to the range where this pattern has been defined. A
pattern of Type 1 is then constructed in a pre-defined time window, and it is used
for regression according to model (4), resulting in a value for the scaled pattern
coefficient β̃wp and centered and scaled long-run variance ω̃(ε̃wt ). Thus, this leads to
one red dot in the lower plot of Fig. 3. Similarly, other types of patterns are used in
the regression model, resulting in three more points with different color in this plot.
More results for these 4 types are obtained by varying the start end end point of a
window, and they are all shown as colored points in this plot. We can see that most
of the results for the scaled long-run variance are below a value of 2, and all results
for the scaled pattern coefficient are below 3. Especially the latter might suggest that
none of the pattern types 1–4 is discovered (in none of the windows).

Figure 4 shows a simulated data example for pattern Type 2, a = 0.1 and
r = 0.01. The distribution of the resulting points in the lower plot now looks
quite different from the previous results. Particularly, many of the points refer
to a scaled pattern coefficient bigger than 3, which indicates the presence of the
particular search pattern in the considered search window. Most of these points are
for search pattern Type 2, especially if we select those which have a low scaled

Fig. 3 Simulated time series from pattern Type 0, with a = 0.5 and r = 0.1 (top), and results
from the evaluation (bottom)
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Fig. 4 Simulated time series from pattern Type 2, with a = 0.1 and r = 0.01 (top), and results
from the evaluation (bottom)

long-run variance (say, smaller than 2), indicating no essential remaining structure.
Thus, we focus on those points in the lower right quadrant of the plot, defined by
the horizontal and vertical line. As a representative, we select the black indicated
point, which is from a Type 2 search pattern. This point refers to the search window
shown with red dashed lines in the upper plot. Indeed, this window is close to the
window where the Type 2 pattern has been constructed.

A final simulated data example is shown in Fig. 5, originating from a pattern of
Type 4 with a = 0.5 and r = 0.2. The points in the interesting lower right quadrant
of the lower plot exclusively refer to search patterns of the correct Type 4, and the
indicated black dot originates from a search window which is almost identical with
the window of the simulated pattern.

3.4 Selection of the Pattern Type and Window

From the simulation example analyses before one could already see that a careful
selection of the results for different windows and pattern types needs to be done.
Before we had taken a particular point in the lower right quadrant of the bottom
plot. Here we propose three different options:

• Method 1: We select those “initial” candidates for which we obtain ω̂(ε̃wt ) < 2
and β̃wp > c, for a cutoff value c > 0. In order to avoid artificial solutions, at
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Fig. 5 Simulated time series from pattern Type 4, with a = 0.5 and r = 0.2 (top), and results
from the evaluation (bottom)

least 5% of the windows of every type need to lead to results that fulfill these
requirements. If this is not the case for a type, no result is reported for this type.
Thus, it can be possible that “no window found” will be reported. For obtaining
a unique solution, we ask for a compromise between low long-run variance and
high pattern coefficient. Thus, we reduce the candidates per type to those which
are in the lower third of the long-run variance. Out of those we take that solution
with the biggest pattern coefficient. If there are solutions of more than one type,
we take that which has the highest number of initial candidates.

• Method 2: This method is similar to Method 1, but we replace in Eq. (8)
the condition β̂ = {β̂wp | ω̃(ε̃wt ) < 2} by the new condition β̂ ={
β̂wp | ω̃(ε̃wt ) < 2, β̂wp > 0

}
. This makes sure that the pattern coefficients from

windows which do not contain the pattern are not used for scaling. Windows
resulting in negative pattern coefficients cannot include the complete pattern,
because there should not be a negative relationship with the response.

• Method 3: Again similar to Method 1, but instead of model (4) we omit the term
x
p
t and use the model

ỹt
w = βw0 + βwp y

p
t + εwt , t = sw, sw + 1, . . . , ew. (17)

Thus, the slope parameter for the linear trend in the time axis is not considered,
which might have affected the fit of the different pattern types.
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We took two steps to fix the method and the tuning parameter c. These steps were
based on 100 simulation replications for each parameter setting.

1. We vary c in {1, 1.2, 1.4, . . . , 4} and compute AUC (area under the curve) values
from ROC (receiver operating characteristic) curves [3]. ROC curves present
sensitivity and specificity, and thus provide a picture about correctly identifying
the pattern type, and incorrectly specifying the wrong type. AUC values are in the
range [0, 1], the closer to one, the better the algorithm. A value of 0.5 corresponds
to a random assignment [8]. According to the results we selected Method 1 as the
overall best method. Some example results from the simulation are shown in the
Appendix (Figs. 9 and 10).

2. Further simulations are conducted to select the cutoff value c. Depending on the
value c, we count how often the four different pattern types are identified with
Method 1 for a time series containing a particular pattern type. It turns out that
a cutoff value c = 3 is a good choice. Some results from the simulation are
provided in the Appendix (Figs. 11 and 12).

3.5 Simulation Results

We compare our method with the method BFAST [13, 14], which allows to
decompose a time series into trend, season and remainder components. Trend and
seasonal component are estimated iteratively, and also the number and position of
breaks in the seasonal and trend component are estimated iteratively. Thus, BFAST
is not able to identify pre-determined search patterns, but it flexibly detects breaks
in the time series.

In order to allow for a fair comparison with our method, we fix the maximum
number of breaks for the BFAST method with 3, which would correspond to what
we would like to see with our search patterns. Then we can compare the time points
of the first and last break with the time points of our simulated pattern windows. This
is done by the RMSE (root mean squared error) over 100 simulation replications,

1

100

100∑
i=1

√
(swi − ŝwi )

2 + (ewi − êwi )
2

2
,

where (sw, ew) is the true starting and ending position of the windows and
(
ŝw, êw

)
the estimated positions (by BFAST or our method). Further, we compute

αs = |ŝw − sw|
Tw

and αe := |êw − ew|
Tw

,

which provide information about the precision of estimating starting and ending
point separately, relative to the window length Tw . Also for these measures we report
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Fig. 6 Simulation results for simulated pattern Type 1

averages over the 100 simulations, for all combinations of r = 0.01, 0.05, 0.1, 0.2
and a = 0.1, 0.5, 0.9, and for each pattern type.

Figure 6 presents the results for these evaluation measures for simulated patterns
from Type 1. For our Method 1 we only report the results when searching for the
correct pattern Type 1. We can see that BFAST has more difficulties to identify the
starting point of the window, but has better abilities to find the ending point. Overall,
the RMSE is lower for most parameter settings. The bottom right plot shows that
especially for lower values of r , our method is very successful with identifying
the correct pattern type, and thus most of the simulation results have been used in
the other plots. Further simulation results for the other pattern types are shown in
the Appendix (Figs. 13, 14, and 15). Overall, BFAST and our method show similar
performance.

In a final simulation we do not provide any information on the number of breaks
for BFAST. Thus, we simply count over 100 simulations the total number of breaks
identified by BFAST. Also for our method we count this total number, where one
identified window counts for 3 breaks. Thus in the results shown in Fig. 7 we would
expect to see around 300 counts. The symmetric Type 3 pattern is more difficult
for Method 1 for higher values of r , and BFAST shows clearer deviations from the
target 300 for higher values of r in all pattern types.

When simulating data without any pattern (Type 0), the resulting total number of
breaks over 100 simulations is less than 10 for Method 1, for any combination of a
and r . BFAST leads to around 40 identified breaks if a = 0.5, and to almost 400 for
a = 0.9, for any choice of r .
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As a summary it turned out that BFAST has a similar performance in identifying
the breaks where the patterns start and end, specifically if the number of maximum
breaks is pre-defined. If this is not done, BFAST has severe difficulties for higher
values of a, specifically if only noise is present. Our proposed method has the
additional advantage that not only the position of the windows are identified but
it also aims to identify those windows which contain a pre-specified search pattern.

4 Examples from the Digital Music Industry

The streaming industry is one of the world’s rapidly growing high-volume markets.
According to the Global Music Report of 2019 of the International Federation of
the Phonographic Industry (IFPI), the streaming industry’s growth rate continues to
rise by 20–60% since 2010 [9]. Covid-19 may accelerate the existing trend of music
consumption shifting towards streaming [7].

Thus, it is of special interest for music right holders to understand, what drives the
growth of streaming figures and detect underlying patterns and trends automatically,
taking exploding data amounts into regard. In particular, we are interested in long-
run trends in streaming counts of music titles, as they allow for a classification

Fig. 7 Total number of identified breaks over 100 simulations for BFAST and Method 1
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of organic and non-organic growth trends. For example, steep growth and decline
of streaming figures might indicate non-organic consumption behavior like those
arising from streaming bots, while continuously slow growth or decline gives an
indication of organic behavior.

In this section we illustrate this use case of identifying growth patterns and
classifying organically trending music titles. Thus, we examine real streaming
accounting data provided by Rebeat Digital GmbH (https://rebeat.com), an Austria
based music distribution company. We pick 100 music titles with the biggest
numbers of total streams from their catalogue and analyze their streaming counts
for the DSP (Digital Service Provider) Spotify (https://www.spotify.com/at/). Each
title is represented by a univariate time series of streaming counts in a monthly
frequency.

We use the same four search pattern types as defined in the previous section,
and apply the algorithm for each search pattern to the individual music streaming
time series. In about half of the streams, the algorithm did not identify an eligible
window for these search patterns. For the other half of the songs we can find the
result in the upper left plot of Fig. 8, which represents the resulting scaled pattern
coefficients and scaled long-run variances. Thus, every point in this plot corresponds
to the identified window of one music title, and the color informs about the window
type. Since these are eligible solutions according to Method 1, all these points are
arranged in the lower right quadrant of the plot, see vertical line at 3 and horizontal
line at 2.

As we cannot present all the solutions as time series, we focus on some specific
results. There are five points with a very high value of the scaled pattern coefficient,
see upper left plot of Fig. 8. The corresponding streaming information with the
identified windows are presented as upper right plot in Fig. 8, as well as in the
second and third row of the plots in this figure. All these results point at interesting
developments of the streaming information. One would have to restrict the search
type if the interest would be exclusively in fast increases followed by a slow decay
(Type 1), as an example. Here we have been open also to the other pre-defined
search patterns. The identified window in the right plot of the second row is rather
surprising, and it is a signal that the maximum window length used in the algorithm
could have been chosen higher. Nevertheless, also this pattern reveals an interesting
behavior.

The lower two plots in Fig. 8 correspond to the solution points in the upper left
corner (left plot) and lower left corner (right plot) of the plot for scaled pattern
coefficient versus scaled long-run variance (upper left plot in Fig. 8). The identified
search patterns are much less visible in the time series, which is the reason for a
lower pattern coefficient.
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Fig. 8 Results from the application of the algorithm to 100 music streaming time series: for
about half of the songs, a window has been identified, and the corresponding type, scaled pattern
coefficient and scaled long-run variance for these songs is should in the upper left plot. The time
series and identified windows corresponding to the 5 rightmost points are shown in the upper right
plot, and in second and third row; the last row shows the results corresponding to the top left point
(left plot) and to the bottom left point (right plot)

5 Summary and Conclusions

Bigger music labels have access to huge amounts of streaming information for
various kinds of songs. It is of general interest to identify songs with specific
streaming patterns, such as “hits” which might be characterized by a steep increase
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in the streams, followed by a decay. The song type, interpret, starting and ending
point of the hit, combined with external information, could provide deeper insight
into the reasons of the success of the song. However, filtering those potential songs
in the data base is not at all trivial, and this problem was the motivation to develop
the methodology introduced in this paper.

The method builds on robust regression of the time series on the coordinates
which define the search pattern. Regression is performed for the values in time
windows of varying length, which are moved through the time series. Both, the
estimated regression coefficient for the pattern, as well as a measure of long-run
variance of the resulting residuals, are the basis to select the best fitting window, and,
if the search is performed for several pre-defined patterns, the best fitting pattern
type. Cutoff values are used to decide if the search pattern is present at all in the
time series.

Since the problem setting is rather specific, it was not obvious to find a method
which was suitable for a comparison. For instance, we do not have access to pre-
labeled data (e.g., for “hits”), and the window lengths of the pattern as well as the
peak window height should not matter. Here, the BFAST method has been used,
which has shown competing performance when estimating the time points that
define the window. However, BFAST could not be used for the purpose mentioned
above, because the interest is not in identifying breaks in the time series, but rather
to find time series containing a pre-specified pattern. The simulations have shown
that the precision to identify patterns depends on the structure of the time series,
here defined by the parameters a and r . Moreover, it turned out that it seems
more difficult to identify symmetric patterns, because they might result in a less
pronounced long-run variance. Overall, the method shows good performance in
detecting the correct pattern type.

The application to real streaming data from the music industry has shown that
the algorithm can indeed identify songs with interesting patterns. We used those top
100 songs from a data base with the biggest numbers of streams in the considered
time period, and in about half of the songs we have identified patterns. However,
if one would be interested in a specific search pattern, much less songs would
be identified containing such a pattern. One can also assume that songs with
much smaller numbers of streams would not be identified with the search patterns,
because the corresponding time series would rather show noise without specific
patterns.

The computation time of the algorithm depends on various parameters, in
particular, on the number of search windows. In our application, the pattern search
took a few seconds per song on a standard computer. The algorithm would thus
be appropriate for a search in bigger data bases. One also has to be aware that it
might not be necessary to run the algorithm on a daily basis. In our application
we used monthly aggregated data, which seems to be appropriate for the purpose.
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Note that the method can also be applied to irregularly spaced time series. The
algorithm would be appropriate also for any other application where a specific
pattern in a time series is to be identified, and if computation time is important,
one could parallelize the search, or limit the number of search windows and search
patterns.

6 Appendix

See Figs. 9, 10, 11, 12, 13, 14, and 15.

Fig. 9 Example of a ROC curve from a simulation of pattern Type 1 with a = 0.9, see Sect. 3.4:
we vary c and search for the four different pattern types by using Method 3
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Fig. 10 Summary of the simulation results for Type 1 patterns, see Sect. 3.4. Upper plot reports
averages of the ROC values for different parameters a and r , depending on the selection method.
Lower plot aggregates all these results per method in boxplots
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Fig. 11 We simulate 1200 time series (100 replications for the different values of a and r)
containing no structure (Type 0), and count the percentage of identifying the different types of
patterns, depending on the cutoff value c for Method 1. A cutoff c = 3 leads to a small proportion
of wrong and to a high proportion of correct assignments
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Fig. 12 We simulate 1200 time series (100 replications for the different values of a and r)
containing pattern Type 1, and count the percentage of identifying the different types of patterns,
depending on the cutoff value c for Method 1. A cutoff c = 3 leads to a small proportion of wrong
and to a high proportion of correct assignments

Fig. 13 Simulation results for simulated pattern Type 2, see Sect. 3.5
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Fig. 14 Simulation results for simulated pattern Type 3, see Sect. 3.5

Fig. 15 Simulation results for simulated pattern Type 4, see Sect. 3.5
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Fine-Tuned Parallel Piecewise Sequential
Confidence Interval and Point Estimation
Strategies for the Mean of a Normal
Population: Big Data Context

Nitis Mukhopadhyay and Chen Zhang

Abstract In this paper, we provide some new perspectives on sequential exper-
imental designs for statistical inference in the context of big data. A fine-tuned
parallel piecewise sequential procedure is developed for estimating the mean of a
normal population having an unknown variance. With the help of such fine-tuning,
asymptotic unbiasedness of the terminal sample size can be achieved along with
the added operational efficiency as a result of utilizing the parallel processing or
distributed computing. Theory and methodology will go hand-in-hand followed by
illustrations from large-scale data analyses based on simulated data as well as real
data from a health study.

Keywords Big data · Fine-tuning · Fixed-width confidence interval (FWCI) ·
Heart study · Minimum risk point estimation (MRPE) · Normal population ·
Parallel piecewise sampling · Purely sequential sampling · Real data illustration ·
Second-order asymptotic efficiency · Simulations · Stopping rule

1 Introduction

There is no denying that we now live in the era of big data. In 2011, the McKinsey
Global Institute (MGI) published a report highlighting the transformational potential
of big data, and it has been extensively cited since. As MGI [17] noted, “the ability to
store, aggregate, and combine data and then use the results to perform deep analyses
has become ever more accessible as trends such as Moore’s Law in computing, its
equivalent in digital storage, and cloud computing continue to lower costs and other
technology barriers.”

MGI [17] estimated that enterprises globally stored more than 7 exabytes of new
data on disk drives in 2010 and that at the same time consumers stored more than 6
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exabytes of new data on devices such as PCs and notebooks—one exabyte of data
is the equivalent of more than 4000 times the information stored in the U.S. Library
of Congress which is regarded as the largest library in the world.

MGI and McKinsey Analytics [12] not only confirmed the trend but further
affirmed that this progress was accelerating as a result of the convergence of several
technology trends: “The volume of data continues to double every three years as
information pours in from digital platforms, wireless sensors, and billions of mobile
phones. Data storage capacity has increased, while its cost has plummeted. Data
scientists now have unprecedented computing power at their disposal, and they are
devising ever more sophisticated algorithms.”

Mukhopadhyay and Zhang [29, 30] explored the asymptotic distribution of
stopping times, that is the terminal sample sizes, from sequential sampling strategies
in a wide variety of challenging estimation problems. They presented a gen-
eral framework for obtaining such asymptotic distributions along with practical
methodologies which also gave the rates of convergences and the sharpness of
approximations validated via extensive sets of exploratory data analysis (EDA).

Mukhopadhyay and Zhang [29, 30] indeed provided an informative foundation
as well as useful practical guidance regarding when and how one may gain better
understanding of terminal sample sizes that may be extremely large. The present
paper, on the other hand, explores the stopping time more so from the perspective
of experimental designs for statistical inference in the context of big data.

For potentially very large terminal sample sizes, we are interested in exploring
more efficient experimental designs for collecting data. By applying and modifying
the idea of parallel processing to customary purely sequential sampling strategies
with appropriate fine-tuning of each arm, our proposed methodology will achieve
sizable operational efficiency in practice. Additionally, this will also overcome the
(asymptotic) bias of the stopping variable as an estimate of the optimal fixed-sample
size. We explore this idea in the contexts of both (i) fixed-width confidence interval
(FWCI) estimation and (ii) minimum risk point estimation (MRPE) for the mean of
a normal population having an unknown variance.

1.1 A Brief Literature Review

The sampling designs of multi-stage methodologies have seen a significant growth
in recent decades. Stein [38, 39] gave the foundation of two-stage sampling strategy
for collecting data and solved the FWCI estimation problem for the unknown mean
in a normal population with preassigned coverage probability when the variance
remains unknown. This led to an exact solution to this fundamental problem in
statistical inference for which there is no fixed-sample size solution [6]. See also
[23, Chapter 13].

Anscombe [2, 3] proposed purely sequential sampling strategies for the same
problem in 1953 while in his 1952 seminal paper he developed his large-sample
theories of sequential estimation by formulating the break-through random central
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limit theorem (random CLT). Ray [31] and Chow and Robbins [5] modified the
stopping boundary and broadened Anscombe’s [2, 3] ideas. Starr [35] developed
important asymptotics. Mukhopadhyay [19] designed a modified two-stage estima-
tion strategy whose asymptotic (first-order) efficiency property reduced the margin
of oversampling associated with Stein’s [38, 39] two-stage methodology. Inspired
by Mukhopadhyay’s [19] paper Ghosh and Mukhopadhyay [9] came up with the
notion of asymptotic second-order efficiency.

In a parallel path Robbins [32] introduced the fundamental formulation of the
MRPE problem for the mean of a normal population with a purely sequential
stopping rule. This was later extended by Starr [36] and Starr and Woodroofe [37].
We briefly mention that [14, 15, 34, 42, 43] developed the machinery of the non-
linear renewal theory for checking desirable second-order approximations.

Since we will focus on normal mean estimation problems, one may get an
impression that the field of sequential estimation is very narrowly defined. In
fact, the literature on sequential estimation problems intersects very heavily and
successfully in the contexts of numerous other distributions and classes of problems,
especially in the contexts of exponential models and their derivatives, as well as a
wide range of nonparametric problems.

A quick glance at the following more or less chronologically listed references
and taking into account the citations therein may be convincing: [1, 4, 7, 10,
11, 13, 16, 18, 20–22, 25, 27, 28, 33, 34, 41, 43]. Steland and Chang [40] have
recently developed high-confidence nonparametric fixed-width uncertainty intervals
and applications to projected high-dimensional data and common mean estimation.

For added operational efficiency Mukhopadhyay and Sen [26] developed parallel
processing and introduced the notions of parallel piecewise sequential methodolo-
gies to handle both FWCI and MRPE problems. Mukhopadhyay and Datta [24]
pursued an idea of fine-tuning a purely sequential procedure, in the context of fixed-
size confidence region problems, to allow improved coverage accuracy in a variety
of sequential estimation problems. This present paper marries parallel piecewise
sequential methodologies with a new approach to fine-tuning, which will lead to
asymptotically unbiased estimators of required optimal fixed-sample sizes.

1.2 An Outline of the Paper

In Sect. 2, we begin with brief overviews of both FWCI and MRPE problems
forming the basis of the two fundamental and classical sequential inference strate-
gies. Ghosh and Mukhopadhyay [8] reviewed some of the fundamental inference
problems known at the time. Under such spirits, we propose to investigate (i)
subsequent sampling strategies and inference methodologies and (ii) a number of
appealing asymptotic properties of the associated stopping times in this paper.

Section 3 introduces our proposed fine-tuned parallel piecewise sequential
strategy for estimating the mean. With appropriate fine-tuning, the asymptotic
unbiasedness of the stopping variable, as an estimate of the optimal fixed-sample
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size, can be achieved along with the added operational efficiency as a result of the
parallelization.

In Sect. 4, we present summaries from simulation studies to illustrate the
usefulness of our proposed fine-tuned parallel piecewise sequential procedure by
comparing (i) the purely sequential strategy, (ii) the parallel piecewise sequential
strategy, and (iii) the fine-tuned parallel piecewise sequential strategy, in the contexts
of both FWCI and MRPE problems.

In Sect. 5, we implement our proposed fine-tuned methodology by illustrating
it with detailed analyses of real data from the Framingham Heart Study. These
add a distinct flavor of the practical usefulness of our newly developed parallel
piecewise sequential estimation strategies. We wrap up with brief concluding
thoughts (Sect. 6).

2 An Overview of FWCI and MRPE Problems

We begin with brief overviews in Sects. 2.1 and 2.2 which, respectively, form the
very core of fundamental and classical sequential inference strategies for the FWCI
and MRPE problems.

2.1 A Purely Sequential FWCI Strategy

Suppose that X1, · · · ,Xn, · · · , n ≥ 2, are independent and identically distributed
(i.i.d.) random variables from a N(μ, σ 2) population where the mean μ and the
variance σ 2 are both unknown with −∞ < μ < ∞ and 0 < σ < ∞. Define the
customary unbiased estimators for μ and σ 2 as

Xn = n−1�ni=1Xi and S2
n = (n− 1)−1�ni=1(Xi − Xn)

2, (1)

standing for the sample mean and the sample variance, respectively, obtained from
X1, · · · ,Xn. We denote θ = (μ, σ ).

Given two preassigned numbers d > 0 and 0 < α < 1, we wish to construct a
confidence interval In for μ such that the length of In is 2d and Pθ {μ ∈ In} ≥ 1−α
for all θ . We begin by formulating the FWCI as

In = [Xn ± d],

for the unknown mean μ.
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The associated coverage probability is expressed as

Pθ {μ ∈ In} ≡ Pθ

{|Xn − μ| ≤ d
} = Pθ

{√
n|Xn − μ|/σ ≤ √

nd/σ
}

= 2	(
√
nd/σ)− 1.

(2)

Here, we write: φ(x) = {2π}−1/2 exp(− 1
2x

2) and 	(x) = ∫ x
−∞ φ(y)dy,−∞ <

x < ∞, to denote the probability density function and the cumulative distribution
function of the standard normal distribution, respectively.

Observe that In already has the fixed width 2d . We also require that the associated
coverage probability be at least 1 − α, our preassigned confidence coefficient. From
(2), we can write

2	(
√
nd/σ)− 1 ≥ 1 − α,

which gives

n ≥ z2
α/2σ

2/d2 ≡ Cd = C, say. (3)

Here, zα/2 is the 100(1 − 1
2α)

th percentile of N(0, 1) and we interpret Cd as the
optimal fixed-sample size required to construct the corresponding FWCI In for μ,
had σ been known.

We note, however, that while the expression for Cd is known, its magnitude
remains unknown since σ 2 is assumed unknown. Indeed, this problem has no fixed-
sample size solution [6]. The stopping time associated with the ground-breaking
purely sequential sampling strategies due to [2, 3, 5, 31] is stated as follows:

N ≡ Nd = inf{n ≥ m : n ≥ z2
α/2S

2
n/d

2}, d > 0, (4)

wherem(≥ 2) is the pilot sample size. See also [35].
That is, beginning with pilot data X1, · · · ,Xm of size m, m ≥ 2, we proceed

by recording one additional observation at-a-time successively as needed until we
stop according to the stopping rule (4). Termination occurs with probability (w.p.)
1. Upon termination, the FWCI for μ is given by

INd = [XNd ± d], (5)

based on the final accrued data X1, · · · ,XNd of size Nd .
A crucial set of properties of the purely sequential FWCI estimation strategy

(Nd, INd ) from (4)–(5) were proved by Starr [35]. One may additionally refer to
[10, Section 8.2] and [25, pp. 118–119].
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2.2 A Purely Sequential MRPE Strategy

A path-breaking paper on the original formulation of a MRPE problem was due to
[32]. We again assume having aN(μ, σ 2) population, withμ and σ 2 both unknown,
from which i.i.d. observationsX1, · · · ,Xn, · · · arrive in a sequence. Let Xn and S2

n

stand for the sample mean and the sample variance, respectively, as in (1). Recall
that θ = (μ, σ ).

The overall loss in estimating μ by Xn is given by:

Ln ≡ Ln(μ,Xn) = A(Xn − μ)2 + cn with A > 0 and c > 0 both prespecified.

Here, (Xn − μ)2 represents the loss due to estimation of μ by Xn, A represents the
cost per unit squared error loss, and c represents the cost per unit observation. The
associated fixed-sample size risk function is expressed as:

Rn(c) ≡ Eθ [Ln(μ,Xn)] = Aσ 2n−1 + cn.

The optimal fixed-sample size that minimizes the risk is given by

n∗
c ≡ n∗ = (A/c)1/2σ had σ 2 been known. (6)

In fact, this problem also has no fixed-sample size solution [6, 25, Theorem 2.3.1].
Robbins [32] proposed the following stopping time associated with his purely
sequential strategy:

N ≡ Nc = inf{n ≥ m : n ≥ (A/c)1/2Sn}, c > 0. (7)

Termination occurs w.p. 1 and upon termination, we estimate:

μ by XNc, the terminal sample mean, (8)

based on the final accrued data X1, · · · ,XNc of size Nc. A crucial set of properties
of the purely sequential MRPE strategy (Nc,XNc ) from (7)–(8) were proved by
Starr [36]. One may additionally refer to [10, Section 7.2] and [25, pp. 144–147].

3 Fine-Tuned Parallel Piecewise Sequential Strategies
with Asymptotically Unbiased Sample Size Estimation

Implementation of a purely sequential sampling strategy can be operationally incon-
venient in some situations because it only allows one to collect data one at-a-time
until termination. The parallel piecewise sequential methodology, first introduced
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by Mukhopadhyay and Sen [26], achieves significant operational efficiency by
incorporating the idea of parallel processing.

However, this could also result in a large (asymptotic) bias from the stopping
variable relative to the optimal fixed-sample size, namely C from (3) or n∗ from
(6), when the number of arms (that is, the number of parallel pieces) is large.
This has motivated us to introduce a suitable fine-tuning parameter, so that the
asymptotic unbiasedness of the stopping variable can be achieved along with the
added operational efficiency gained from the parallelization.

The FWCI and MRPE problems from Sects. 2.1 and 2.2 are revisited in Sects. 3.1
and 3.2 which include essential technical details along with our major results,
Theorems 3.1 and 3.2, respectively, on approximatingEθ [Nd−Cd ] andEθ [Nc−n∗

c ]
up to the order o(1).

3.1 Parallel Piecewise Sequential FWCI Strategies

Suppose that k investigators are collecting data from one population at the same
time, but independently of each other, much in the spirit of parallel processing
or distributed computing. Also, suppose that Xij , j = 1, · · · , ni , ... are i.i.d.
observations from N(μ, σ 2) with both parameters unknown where the subscript
i corresponds to the ith investigator or the ith arm, i = 1, · · · , k.

Having recordedXi1, · · · ,Xini from the i th arm with ni ≥ 2, we letXini and S2
ini

be the customary sample mean and the sample variance, respectively, i = 1, · · · , k.
Suppose that d is half the width of the requisite confidence interval and 1 − α,
0 < α < 1, is the preassigned confidence coefficient. The optimal fixed-sample size
is given by (3): C = z2

α/2σ
2/d2 had σ 2 been known.

Mukhopadhyay and Sen [26] proposed their stopping time for the parallel
piecewise sequential estimation strategy:

Ñ ≡ Ñd = �ki=1Ni,d where Ñd = (N1,d , ..., Nk,d ) with

Ni,d ≡ inf
{
ni ≥ m : ni ≥ 1

k
z2
α/2S

2
ini
/d2

}
, d > 0, i = 1, · · · , k,

(9)

where, as before,m(≥ 2) is the pilot sample size on each arm.
The stopping times Ni,d are each run independently by our k investigators.

Termination occurs w.p. 1 and hence upon termination of sampling from all k arms,
we obtain the combined sample mean given by:

Estimator of μ : XÑd
= Ñ−1

d �ki=1Ni,dXiNi,d (10)

and the FWCI for μ is given by

IÑd
= [XÑd

± d]. (11)
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Mukhopadhyay and Sen [26] exploited a number of key non-linear renewal
theoretic techniques from [14, 15, 21, 42, 43] to derive the asymptotic bias of the
stopping variable Ñd from (9) as follows. As d → 0 [26] concluded:

Eθ [Ñd − Cd ] = kη + o(1) if m ≥ 4, (12)

with Cd coming from (3) and

η = −1

2
−�∞

n=1n
−1E[max{0, χ2

n − 2n}] ≈ −1.1828. (13)

From (12)–(13), one will clearly note that as k (= the number of independent
arms or parallel pieces) becomes larger, while the data collection process becomes
more efficient (less time-consuming), the asymptotic bias (undersampling) of the
stopping variable Ñd relative to the optimal fixed-sample size Cd becomes more
substantial.

This motivates us to propose a modified version of the original parallel piecewise
sequential strategy (9) which we refer to as the fine-tuned parallel piecewise
sequential procedure:

Q ≡ Qd = �ki=1Qi,d where Qd = (Q1,d , ...,Qk,d ) with

Qi,d ≡ inf
{
ni ≥ m : ni + ε ≥ 1

k
z2
α/2S

2
ini
/d2

}
, d > 0, i = 1, · · · , k,

(14)

where m(≥ 2) is the pilot sample size. We will show that the fine-tuning parameter
ε = η ≈ −1.1828. The fine-tuned parallel piecewise sequential strategy (14)
overcomes the asymptotic undersampling bias of the stopping variable as stated
formally in Theorem 3.1.

Theorem 3.1 The stopping variable Qd(= �ki=1Qi,d) from (14) satisfies the
asymptotic unbiasedness property, that is,

Eθ [Qd − Cd ] = o(1) as d → 0,

if m ≥ 4, ε ≡ ν − 2(= η), with Cd, η, ν coming from (3), (13), and (19)–(20).

Proof We will prove this theorem by relying upon the non-linear renewal theory
[14, 15, 42, 43]. We recall Helmert orthogonal transformation [23, pp. 197–199]
and express:

S2
ini

= (ni − 1)−1�
ni−1
j=1 Y

2
ij , (15)

where Yi1, Yi2, · · · , Yini−1
i.i.d.∼ N(0, σ 2), i = 1, · · · , k.
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Then, in view of (15), observe that we can write:

ni + ε ≥ z2
α/2S

2
ini
/(kd2) ⇔ (ni − 1)(ni + ε) ≥ (kd2)−1z2

α/2σ
2�

ni−1
j=1 (Y

2
ij /σ

2)

⇔ (ni − 1)(ni + ε) ≥ k−1Cd�
ni−1
j=1 Wij ⇔ �

ni−1
j=1 Wij ≤ k(ni − 1)(ni + ε)/Cd,

(16)

with Wij = Y 2
ij /σ

2, j = 1, 2, · · · , ni − 1 which are i.i.d. χ2
1 random variables.

Then, we can rewrite (14) and claim thatQi,d ≡ Mi,d+1 w.p. 1 where we define:

Mi,d = inf
{
ni ≥ m− 1 : �nij=1Wij ≤ kn2

i

[
1 + (1 + ε)n−1

i

]
/Cd

}
, (17)

for i = 1, · · · , k.
In order to apply the non-linear renewal theory, we match our representation from

(17) with the notations from [25, pp. 446–449] to obtain:

h∗ = k/Cd, δ = 2, L0 = 1 + ε, θ = 1, τ 2 = 2, β∗ = 1,

q = β∗2τ 2/θ2 = 2,m0 = m− 1, n∗
0 = (θ/h∗)β∗ = k−1Cd ;

(18)

with

ν ≡ β∗(2θ)−1{(δ − 1)2θ2 + τ 2} −�∞
n=1n

−1E
[
max

{
0,

(
�nj=1Wij

)
− nδθ

}]
,

(19)

that is,

ν = 3
2 −�∞

n=1n
−1E

[
max

{
0, χ2

n − 2n
}]

= 3
2 −�∞

n=1{�( 1
2n)}−12−n/2n−1

∫ ∞
y=2n(y − 2n)e−y/2y 1

2n−1dy

≈ 0.8172,

(20)

and also:

κ = β∗νθ−1 − β∗L0 − δβ∗2
τ 2/(2θ2) = ν − 3 − ε. (21)

Additionally, we have:

Pθ {W11 ≤ w} =
∫ w

0
(2π)−1/2e−y/2y−1/2dy ≤ (2π)−1/2

∫ w

0
y−1/2dy

= (2/π)1/2u1/2, (22)

so that r = 1
2 . Observe that the entity “η” from (13) coincides with ν − 2.
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Now, given (15)–(22), by Theorem A.4.2 in [25, p. 448], we claim the following
as h∗ → 0 (d → 0):

Eθ

[
Qi,d

] = Eθ

[
Mi,d

] + 1 = n∗
0 + κ + 1 + o(1) = k−1Cd + (ν − 2 − ε)+ o(1),

for i = 1, ..., k if m0 > β∗/r , that is, if m ≥ 4.
Therefore, as d → 0, we obtain:

Eθ [Qd ] = Eθ [�ki=1Qi,d ] = kEθ [Q1,d ] = Cd + k(ν − 2 − ε)+ o(1), (23)

if m ≥ 4. Finally, when we fix ε ≡ ν − 2, it immediately follows that Eμ,σ [Qd ] =
Cd + o(1) as d → 0, if m ≥ 4. ��

Remark 3.1 When k = 1, we observe that (14) coincides with the fine-tuned
version of the original sampling strategy (4), that is, we are then back to the
purely sequential sampling methodology. The choice for the fine-tuning parameter
ε, however, remains exactly the same as ν − 2 ≈ −1.1828.

3.2 Parallel Piecewise Sequential MRPE Strategies

We again suppose k investigators are collecting data from one population at the
same time, but independently of each other, in the spirit of parallel processing or
distributed computing. Also suppose that Xij , i = 1, · · · , k, j = 1, · · · , ni , ... are
i.i.d. observations from N(μ, σ 2) with both parameters unknown.

Having recorded Xi1, · · · ,Xini from the ith arm with ni ≥ 2, let us recall Xini
and S2

ini
, the customary sample mean and the sample variance, respectively, i =

1, · · · , k. The overall sample mean is given by Xn = n−1�ki=1niXini with n =
�ki=1ni .

The overall loss in estimating μ by Xn is given by

Ln(μ,Xn) = A(Xn − μ)2 + cn with A > 0 and c > 0 prespecified.

The fixed-sample size risk function can be expressed as

Rn(c) ≡ Eθ [Ln(μ,Xn)] = Aσ 2n−1 + cn.

The optimal fixed-sample size that minimizes the risk is again given by n∗
c =

(A/c)1/2σ had σ 2 been known.
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On each arm, the optimal fixed-sample size is then given by n∗
i,c ≡

k−1(A/c)1/2σ, i = 1, · · · , k. In the spirit of (9), Mukhopadhyay and Sen [26]
proposed their stopping time for the parallel piecewise sequential procedure:

Ñ ≡ Ñc = �ki=1Ni,c where Ñc = (N1,c, ..., Nk,c) with

Ni,c ≡ inf
{
ni ≥ m : ni ≥ 1

k
(A/c)1/2Sini

}
, c > 0, i = 1, · · · , k,

(24)

wherem(≥ 2) is the pilot sample size on each arm.
The stopping times Ni,c are each run independently by our k investigators.

Termination occurs w.p. 1 and thus upon termination of sampling from all k arms,
we obtain the combined sample mean given by:

XÑc
= Ñ−1

c �ki=1Ni,cXiNi,c , (25)

as the MRPE of μ.
By exploiting a number of key results from the non-linear renewal theory from

[14, 15, 42, 43] Mukhopadhyay and Sen [26] derived the asymptotic bias of the
stopping variable Ñc from (24) as follows: As c → 0,

Eθ [Ñc − n∗
c ] = kη∗ + o(1), if m ≥ 3, (26)

where

η∗ = −1

2
�∞
n=1n

−1E[max{0, χ2
n − 3n}] ≈ −0.1166. (27)

Once again, from (26), one will clearly note that as k (= the number of inde-
pendent arms or parallel pieces) becomes larger, while the data collection process
becomes more efficient (less time-consuming), the asymptotic bias (undersampling)
of the stopping variable Ñc relative to the optimal fixed-sample size n∗

c becomes
more substantial.

This motivates us to propose a modified version of the original parallel piecewise
sequential strategy (24) which we refer to as the fine-tuned parallel piecewise
sequential procedure:

T ≡ Tc = �ki=1Ti,c where Tc = (T1,c, ..., Tk,c) with

Ti,c ≡ inf
{
ni ≥ m : ni + ε ≥ 1

k
(A/c)1/2Sini

}
, c > 0, i = 1, · · · , k,

(28)

where m(≥ 2) is the pilot sample size. We will show that the fine-tuning parameter
ε ≡ η∗ ≈ −0.1166. The fine-tuned parallel piecewise sequential strategy (28)
overcomes the asymptotic undersampling bias of the stopping variable as stated
formally in Theorem 3.2.
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Theorem 3.2 The stopping variable Tc(= �ki=1Ti,c) from (28) satisfies the asymp-
totic unbiasedness property, that is,

Eθ [Tc − n∗
c ] = o(1) as c → 0,

if m ≥ 3, ε = 1
2ν − 3

4 (= η∗) with n∗
c , η

∗, ν coming from (6), (27) and (30).

Proof In the spirit of (17) and our proof of Theorem 3.1, we rewrite Ti,c = Mi,c+1
w.p. 1 as follows:

Mi,c ≡ inf
{
ni ≥ m− 1 : �nij=1Wij ≤ k2n3

i

[
1 + 2(1 + ε)n−1

i + (1 + ε)2n−2
i

]
/n∗
c

2
}
,

(29)

whereWi1,Wi2, · · · ,Wini

i.i.d.∼ χ2
1 , for i = 1, · · · , k.

In order to apply the non-linear renewal theory, we again match this representa-
tion from (29) with the notations from [25, pp. 446–449] to obtain:

h∗ = k2/n∗
c

2, δ = 3, L0 = 2(1 + ε),θ = 1, τ 2 = 2, β∗ = 1
2 ,

q = β∗2τ 2/θ2 = 2,m0 = m− 1, r = 1
2 , n

∗
0 = (θ/h∗)β∗ = k−1n∗

c ;
(30)

with

ν = 3

2
−�∞

n=1n
−1E

[
max

{
0, χ2

n − 3n
}]

≈ 1.2669, (31)

and

κ = β∗νθ−1 − β∗L0 − δβ∗2
τ 2/(2θ2) = 1

2
ν − 7

4
− ε. (32)

Now, given (29)–(32), by Theorem A.4.2 in [25, p. 448], we claim the following
as h∗ → 0 (c → 0):

Eθ

[
Ti,c

] = Eθ

[
Mi,c

]+ 1 = n∗
0 + κ+ 1 + o(1) = k−1n∗

c +
(

1

2
ν − 3

4
− ε

)
+ o(1),

for i = 1, ..., k if m0 > β∗/r , that is, if m ≥ 3.
Therefore, as c → 0, we obtain:

Eθ [Tc] = Eθ [�ki=1Ti,c] = kEθ [T1,c] = n∗
c + k

(
1

2
ν − 3

4
− ε

)
+ o(1), (33)

if m ≥ 3. Finally, when we fix ε ≡ 1
2ν − 3

4 , it immediately follows that Eμ,σ [Tc] =
n∗
c + o(1) as c → 0, if m ≥ 3. Note that the entity η∗ from (27) coincides with

1
2ν − 3

4 . ��
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It becomes clear that there is a stark difference between the conclusions stated
in (12) or (26) and those in Theorem 3.1 or Theorem 3.2. The criticism that was
labeled against (12) or (26) was the fact that Eθ [Ñd − Cd ] or Eθ [Ñc − n∗

c ] was
visibly going further and further down as a negative number up to o(1) if we made
k larger under the original parallel piecewise sequential estimation strategies (9) or
(24). But, the new and fine-tuned parallel piecewise sequential estimation strategy
(14) with ε ≈ −1.1828 or strategy (28) with ε ≈ −0.1166 provides asymptotic
unbiasedness of Qd or Tc as an estimator of Cd or n∗

c up to o(1) regardless of
the number of parallel arms or investigators, namely k. We will substantiate these
features shortly via simulations.

3.3 Other Selected Second-Order Results

In the case of both FWCI and MRPE problems, thus far we have devoted attention
to the design of sampling strategies allowing us to come up with fine-tuned total
terminal sample size Qd from (14) or Tc from (28) in such a way that they become
asymptotically unbiased for Cd or n∗

c , respectively, up to o(1). But, then, what else
happens to the original inference problems from Sects. 2.1 and 2.2 which led to
the respective fixed-sample size Cd in (3) or n∗

c in (6)? In order to address these
questions, we go back to the original formulations of the FWCI and MRPE problems
briefly.

3.3.1 FWCI Problem: Asymptotic Second-Order Expansion of the
Coverage Probability

Once sampling terminates via (14) with ε ≈ −1.1828 built in, in the spirit of (11),
we would propose the FWCI, namely

IQd
= [XQd

± d],

for μ based upon the terminal total sample size Qd after combining fully accrued
data from all k arms.

Along the lines of [26, Theorem 4.1], we can claim the following second-order
expansion of the associated coverage probability as d → 0:

Pθ

{
μ ∈ IQd

}
≡ Eθ

[
2	

(
Q

1/2
d d/σ

)
− 1

]
= (1 − α)+ b∗C−1

d + o(d2) when m ≥ 7,

(34)

where b∗ is a known real number involving k, zα/2, φ(zα/2), and κ from (21).
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Mukhopadhyay and Datta [24] introduced a different kind of fine-tuning param-
eter ε in a stopping time analogous to (14) and defined:

N
′ ≡ N

′
d = inf{n ≥ m : n+ ε ≥ z2

α/2S
2
n/d

2}, d > 0. (35)

They determined “ε” explicitly in order to conclude:

Pθ

{
μ ∈ I

N
′
d

}
= (1 − α)+ o(d2) when m ≥ 7, (36)

instead of (34) but this N
′
d from (35) remained asymptotically biased for estimating

Cd . It should be clear how our present fine-tuning approach is fundamentally
different from the notion adopted in [24].

3.3.2 MRPE Problem: Asymptotic Second-Order Expansion of the Regret

Once sampling terminates via (28) with ε ≈ −0.1166 built in, in the spirit of (25),
we would propose the terminal MRPE XTc

for μ based upon total sample size Tc
after combining fully accrued data from all k arms.

Along the lines of [26, Theorem 3.2], we can claim the following asymptotic
second-order expansion of the associated regret function, a metric put forward by
Robbins [32], as c → 0:

Eθ

[
LTc

(
μ,XTc

)]
− Rn∗

c
(c) ≡ cEθ

[
(Tc − n∗

c )
2/Tc

]
= 1

2
c + o(c) when m ≥ 4.

(37)

The parallel piecewise sequential strategy (24), originally introduced by
Mukhopadhyay and Sen [26], had this exact same asymptotic second-order
expansion of the associated regret function as c → 0; however Ñc was an
asymptotically biased estimator of n∗

c . A major difference is that our fine-tuned
version (28) with ε ≈ −0.1166 provides (37) along with the fact that Tc is also an
asymptotically unbiased estimator of n∗

c .

4 Simulation Data Analysis

In this section, we will summarize the performances of the FWCI strategies (4),
(9), and (14) followed by those of the MRPE strategies (7), (24), and (28), all
obtained from averaging over B(= 106) independent replications under each fixed
configuration. In other words, every row in every table that follows will show
selected averages of performances obtained from the estimation strategies under
consideration with one million replications.
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One million replications have led to reliable and stable estimations of all requisite
entities across the board. The simulation programs were implemented in MATLAB
R2017a installed on a LENOVO Ideapad Y700 laptop with 6th Generation Intel Core
i7-6700HQ CPU (2.60GHz), 16GB RAM, and Windows 10 Education system.

4.1 FWCI Strategies

Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 compare the purely sequential
procedure (4), the parallel piecewise sequential procedure (9), and the fine-tuned
parallel piecewise sequential procedure (14), implemented for the FWCI estimation
problem. The population used in the simulation was N(5, 4) and we considered
α = 0.05, 0.10 where 1 − α was the preassigned confidence coefficient, the initial
sample size m = 5, 10, and the optimal fixed-sample size

Cd = 30, 50, 100, 200, 500, 1000, 2000, 5000, 10000,

with the number of replications B = 106. Two scenarios, k = 2, 5, were included
for parallel piecewise sequential procedures (with or without fine-tuning). Having
fixed σ, α, and Cd, we obtained d = σzα/2C

−1/2
d .

Table 1 explains a generic set of notations used in our tables pretending that “N”
is the stopping variable that is being implemented. Tables 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, and 13 will use appropriate and obvious improvisations as needed.

Table 1 The set of notations used in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13: B = 106

replications

ni : terminal sample size in the ith run;

n̄ = B−1�Bi=1ni : average sample size, should compare with Eθ [N];
sn̄ = {

(B2 − B)−1�Bi=1(ni − n̄)2
}1/2

: estimated standard error (s.e.) of n̄;
x̄ni : terminal sample mean in the ith run;

x̄ = B−1�Bi=1x̄ni : average sample mean, should compare with μ;
sx̄ = {

(B2 − B)−1�Bi=1(x̄ni − x̄)2
}1/2

: estimated s.e. of x;
pi : 1 (or 0) if Ini covers (or does not cover) μ in the ith

run;

p̄ = B−1�Bi=1pi : estimated coverage probability, should compare
with 1 − α;

sp̄ = {
B−1p̄(1 − p̄)

}1/2
: estimated s.e. of p̄;

Time : completion time (in secs) for B replications in a row.
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Table 2 Purely sequential strategy (4) on 95% FWCI for the mean of N(5, 4) with no fine-
tuning: ε = 0, k = 1, B = 106 replications

m C d n sn n/C n− C p sp x sx Time in sec

5 30 0.716 26.93 0.010 0.90 −3.07 0.905 0.000 5.00 0.00 2

50 0.554 47.11 0.013 0.94 −2.89 0.924 0.000 5.00 0.00 4

100 0.392 98.02 0.017 0.98 −1.98 0.941 0.000 5.00 0.00 12

200 0.277 198.46 0.022 0.99 −1.54 0.946 0.000 5.00 0.00 37

500 0.175 498.64 0.033 1.00 −1.36 0.949 0.000 5.00 0.00 186

1000 0.124 998.74 0.046 1.00 −1.26 0.949 0.000 5.00 0.00 708

2000 0.088 1998.81 0.064 1.00 −1.19 0.950 0.000 5.00 0.00 2770

5000 0.055 4998.83 0.100 1.00 −1.17 0.950 0.000 5.00 0.00 16,511

10,000 0.039 9998.82 0.142 1.00 −1.18 0.950 0.000 5.00 0.00 62,004

10 30 0.716 28.02 0.009 0.93 −1.98 0.925 0.000 5.00 0.00 2

50 0.554 48.00 0.012 0.96 −2.00 0.934 0.000 5.00 0.00 4

100 0.392 98.52 0.015 0.99 −1.48 0.944 0.000 5.00 0.00 11

200 0.277 198.73 0.020 0.99 −1.27 0.948 0.000 5.00 0.00 35

500 0.175 498.75 0.032 1.00 −1.25 0.949 0.000 5.00 0.00 182

1000 0.124 998.84 0.045 1.00 −1.16 0.949 0.000 5.00 0.00 672

2000 0.088 1998.90 0.063 1.00 −1.10 0.949 0.000 5.00 0.00 2622

5000 0.055 4998.79 0.100 1.00 −1.21 0.950 0.000 5.00 0.00 15,757

10,000 0.039 9998.83 0.141 1.00 −1.17 0.950 0.000 5.00 0.00 61,928

Table 3 Purely sequential strategy (4) on 90% FWCI for the mean of N(5, 4) with no fine-
tuning: ε = 0, k = 1, B = 106 replications

m C d n sn n/C n− C p sp x sx Time in sec

5 30 0.601 26.93 0.010 0.90 −3.07 0.850 0.000 5.00 0.00 2

50 0.465 47.11 0.013 0.94 −2.89 0.871 0.000 5.00 0.00 4

100 0.329 97.98 0.017 0.98 −2.02 0.890 0.000 5.00 0.00 11

200 0.233 198.44 0.022 0.99 −1.56 0.896 0.000 5.00 0.00 35

500 0.147 498.69 0.033 1.00 −1.31 0.898 0.000 5.00 0.00 177

1000 0.104 998.76 0.045 1.00 −1.24 0.899 0.000 5.00 0.00 667

2000 0.074 1998.77 0.064 1.00 −1.23 0.900 0.000 5.00 0.00 2523

5000 0.047 4998.83 0.100 1.00 −1.17 0.900 0.000 5.00 0.00 15, 469

10, 000 0.033 9998.56 0.141 1.00 −1.44 0.899 0.000 5.00 0.00 62, 430

10 30 0.601 28.03 0.009 0.93 −1.97 0.870 0.000 5.00 0.00 2

50 0.465 48.01 0.012 0.96 −1.99 0.882 0.000 5.00 0.00 4

100 0.329 98.54 0.015 0.99 −1.46 0.894 0.000 5.00 0.00 11

200 0.233 198.70 0.020 0.99 −1.30 0.897 0.000 5.00 0.00 35

500 0.147 498.72 0.032 1.00 −1.28 0.899 0.000 5.00 0.00 177

1000 0.104 998.77 0.045 1.00 −1.23 0.899 0.000 5.00 0.00 668

2000 0.074 1998.80 0.063 1.00 −1.20 0.900 0.000 5.00 0.00 2580

5000 0.047 4998.75 0.100 1.00 −1.25 0.899 0.000 5.00 0.00 15, 686

10, 000 0.033 9998.78 0.142 1.00 −1.22 0.900 0.000 5.00 0.00 62, 594



Fine-Tuned Parallel Piecewise Sequential Strategies: Big Data Context 67

Table 4 Fine-tuned purely sequential strategy (14) on 95% FWCI for the mean of N(5, 4):
ε = −1.1828, k = 1, B = 106 replications

m C d q sq q/C q − C p sp x sx Time in sec

5 30 0.716 28.64 0.010 0.95 −1.36 0.920 0.000 5.00 0.00 2

50 0.554 48.81 0.012 0.98 −1.19 0.933 0.000 5.00 0.00 4

100 0.392 99.47 0.016 0.99 −0.53 0.944 0.000 5.00 0.00 12

200 0.277 199.75 0.021 1.00 −0.25 0.948 0.000 5.00 0.00 35

500 0.175 499.93 0.032 1.00 −0.07 0.950 0.000 5.00 0.00 182

1000 0.124 999.93 0.045 1.00 −0.07 0.950 0.000 5.00 0.00 668

2000 0.088 1999.98 0.064 1.00 −0.02 0.950 0.000 5.00 0.00 2554

5000 0.055 5000.18 0.100 1.00 0.18 0.950 0.000 5.00 0.00 15, 569

10, 000 0.039 10,000.20 0.142 1.00 0.20 0.950 0.000 5.00 0.00 62, 610

10 30 0.716 29.42 0.009 0.98 −0.58 0.933 0.000 5.00 0.00 2

50 0.554 49.41 0.011 0.99 −0.59 0.939 0.000 5.00 0.00 4

100 0.392 99.80 0.015 1.00 −0.20 0.946 0.000 5.00 0.00 11

200 0.277 199.94 0.020 1.00 −0.06 0.949 0.000 5.00 0.00 35

500 0.175 499.96 0.032 1.00 −0.04 0.950 0.000 5.00 0.00 179

1000 0.124 999.91 0.045 1.00 −0.09 0.949 0.000 5.00 0.00 671

2000 0.088 1999.96 0.063 1.00 −0.04 0.950 0.000 5.00 0.00 2579

5000 0.055 5000.02 0.100 1.00 0.02 0.949 0.000 5.00 0.00 15, 676

10, 000 0.039 9999.99 0.142 1.00 −0.01 0.950 0.000 5.00 0.00 61, 862

Table 5 Fine-tuned purely sequential strategy (14) on 90% FWCI for the mean of N(5, 4):
ε = −1.1828, k = 1, B = 106 replications

m C d q sq q/C q − C p sp x sx Time in sec

5 30 0.601 28.62 0.010 0.95 −1.38 0.867 0.000 5.00 0.00 2

50 0.465 48.84 0.012 0.98 −1.16 0.882 0.000 5.00 0.00 4

100 0.329 99.44 0.016 0.99 −0.56 0.893 0.000 5.00 0.00 12

200 0.233 199.76 0.021 1.00 −0.24 0.898 0.000 5.00 0.00 36

500 0.147 499.93 0.032 1.00 −0.07 0.899 0.000 5.00 0.00 181

1000 0.104 999.89 0.045 1.00 −0.11 0.900 0.000 5.00 0.00 671

2000 0.074 1999.92 0.064 1.00 −0.08 0.900 0.000 5.00 0.00 2582

5000 0.047 5000.19 0.100 1.00 0.19 0.900 0.000 5.00 0.00 15, 765

10, 000 0.033 9999.98 0.141 1.00 −0.02 0.900 0.000 5.00 0.00 61, 533

10 30 0.601 29.43 0.009 0.98 −0.57 0.881 0.000 5.00 0.00 2

50 0.465 49.41 0.011 0.99 −0.59 0.888 0.000 5.00 0.00 4

100 0.329 99.79 0.015 1.00 −0.21 0.896 0.000 5.00 0.00 12

200 0.233 199.93 0.020 1.00 −0.07 0.898 0.000 5.00 0.00 36

500 0.147 499.93 0.032 1.00 −0.07 0.899 0.000 5.00 0.00 180

1000 0.104 1000.00 0.045 1.00 0.00 0.900 0.000 5.00 0.00 669

2000 0.074 1999.94 0.063 1.00 −0.06 0.899 0.000 5.00 0.00 2556

5000 0.047 5000.04 0.100 1.00 0.04 0.900 0.000 5.00 0.00 15, 621

10, 000 0.033 10,000.08 0.141 1.00 0.08 0.900 0.000 5.00 0.00 62, 272
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Table 6 Parallel piecewise sequential strategy (9) on 95% FWCI for the mean of N(5, 4) with
no fine-tuning: ε = 0, k = 2, B = 106 replications

m C d ñ s
ñ

ñ/C ñ− C p sp x sx Time in sec

5 30 0.716 26.11 0.008 0.87 −3.89 0.916 0.000 5.00 0.00 1

50 0.554 44.14 0.013 0.88 −5.86 0.920 0.000 5.00 0.00 2

100 0.392 94.24 0.018 0.94 −5.76 0.936 0.000 5.00 0.00 4

200 0.277 195.99 0.023 0.98 −4.01 0.945 0.000 5.00 0.00 12

500 0.175 496.99 0.034 0.99 −3.01 0.949 0.000 5.00 0.00 52

1000 0.124 997.33 0.046 1.00 −2.67 0.949 0.000 5.00 0.00 179

2000 0.088 1997.58 0.064 1.00 −2.42 0.950 0.000 5.00 0.00 673

5000 0.055 4997.61 0.101 1.00 −2.39 0.950 0.000 5.00 0.00 3955

10, 000 0.039 9997.64 0.142 1.00 −2.36 0.950 0.000 5.00 0.00 15, 840

10 30 0.716 29.45 0.006 0.98 −0.55 0.942 0.000 5.00 0.00 1

50 0.554 46.54 0.011 0.93 −3.46 0.933 0.000 5.00 0.00 2

100 0.392 96.01 0.016 0.96 −3.99 0.941 0.000 5.00 0.00 4

200 0.277 197.03 0.021 0.99 −2.97 0.946 0.000 5.00 0.00 11

500 0.175 497.42 0.032 0.99 −2.58 0.949 0.000 5.00 0.00 52

1000 0.124 997.59 0.045 1.00 −2.41 0.949 0.000 5.00 0.00 183

2000 0.088 1997.59 0.063 1.00 −2.41 0.949 0.000 5.00 0.00 684

5000 0.055 4997.63 0.100 1.00 −2.37 0.950 0.000 5.00 0.00 3969

10, 000 0.039 9997.43 0.141 1.00 −2.57 0.950 0.000 5.00 0.00 15, 725

Table 7 Parallel piecewise sequential strategy (9) on 90% FWCI for the mean of N(5, 4) with
no fine-tuning: ε = 0, k = 2, B = 106 replications

m C d ñ s
ñ

ñ/C ñ− C p sp x sx Time in sec

5 30 0.601 26.11 0.008 0.87 −3.89 0.858 0.000 5.00 0.00 1

50 0.465 44.14 0.013 0.88 −5.86 0.862 0.000 5.00 0.00 2

100 0.329 94.21 0.018 0.94 −5.79 0.882 0.000 5.00 0.00 4

200 0.233 196.02 0.023 0.98 −3.98 0.895 0.000 5.00 0.00 12

500 0.147 497.01 0.034 0.99 −2.99 0.898 0.000 5.00 0.00 52

1000 0.104 997.35 0.046 1.00 −2.65 0.899 0.000 5.00 0.00 187

2000 0.074 1997.50 0.064 1.00 −2.50 0.900 0.000 5.00 0.00 667

5000 0.047 4997.68 0.101 1.00 −2.32 0.900 0.000 5.00 0.00 3972

10, 000 0.033 9997.68 0.142 1.00 −2.32 0.900 0.000 5.00 0.00 15, 674

10 30 0.601 29.45 0.006 0.98 −0.55 0.890 0.000 5.00 0.00 1

50 0.465 46.54 0.011 0.93 −3.46 0.879 0.000 5.00 0.00 2

100 0.329 95.99 0.016 0.96 −4.01 0.888 0.000 5.00 0.00 5

200 0.233 197.03 0.021 0.99 −2.97 0.895 0.000 5.00 0.00 14

500 0.147 497.53 0.032 1.00 −2.47 0.899 0.000 5.00 0.00 55

1000 0.104 997.55 0.045 1.00 −2.45 0.899 0.000 5.00 0.00 182

2000 0.074 1997.61 0.063 1.00 −2.39 0.899 0.000 5.00 0.00 668

5000 0.047 4997.73 0.100 1.00 −2.27 0.900 0.000 5.00 0.00 3931

10, 000 0.033 9997.66 0.141 1.00 −2.34 0.899 0.000 5.00 0.00 15, 520
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Table 8 Parallel piecewise sequential strategy (9) on 95% FWCI for the mean of N(5, 4) with
no fine-tuning: ε = 0, k = 5, B = 106 replications

m C d ñ s
ñ

ñ/C ñ− C p sp x sx Time in sec

5 30 0.716 32.81 0.005 1.09 2.81 0.957 0.000 5.00 0.00 0

50 0.554 45.75 0.009 0.91 −4.25 0.934 0.000 5.00 0.00 1

100 0.392 87.05 0.017 0.87 −12.95 0.927 0.000 5.00 0.00 1

200 0.277 184.58 0.026 0.92 −15.42 0.937 0.000 5.00 0.00 3

500 0.175 489.94 0.037 0.98 −10.06 0.947 0.000 5.00 0.00 12

1000 0.124 992.21 0.048 0.99 −7.79 0.949 0.000 5.00 0.00 35

2000 0.088 1993.16 0.066 1.00 −6.84 0.950 0.000 5.00 0.00 121

5000 0.055 4993.69 0.102 1.00 −6.31 0.950 0.000 5.00 0.00 677

10, 000 0.039 9993.91 0.143 1.00 −6.09 0.950 0.000 5.00 0.00 2592

10 30 0.716 50.85 0.001 1.69 20.85 0.989 0.000 5.00 0.00 1

50 0.554 57.61 0.005 1.15 7.61 0.964 0.000 5.00 0.00 1

100 0.392 93.89 0.014 0.94 −6.11 0.940 0.000 5.00 0.00 1

200 0.277 189.50 0.023 0.95 −10.50 0.941 0.000 5.00 0.00 3

500 0.175 492.55 0.034 0.99 −7.45 0.947 0.000 5.00 0.00 12

1000 0.124 993.57 0.046 0.99 −6.43 0.949 0.000 5.00 0.00 37

2000 0.088 1993.89 0.064 1.00 −6.11 0.949 0.000 5.00 0.00 125

5000 0.055 4994.08 0.100 1.00 −5.92 0.950 0.000 5.00 0.00 694

10, 000 0.039 9993.94 0.142 1.00 −6.06 0.950 0.000 5.00 0.00 2577

Table 9 Parallel piecewise sequential strategy (9) on 90% FWCI for the mean of N(5, 4) with
no fine-tuning: ε = 0, k = 5, B = 106 replications

m C d ñ s
ñ

ñ/C ñ− C p sp x sx Time in sec

5 30 0.601 32.81 0.005 1.09 2.81 0.911 0.000 5.00 0.00 0

50 0.465 45.75 0.009 0.91 −4.25 0.879 0.000 5.00 0.00 1

100 0.329 87.05 0.017 0.87 −12.95 0.869 0.000 5.00 0.00 1

200 0.233 184.65 0.026 0.92 −15.35 0.883 0.000 5.00 0.00 3

500 0.147 489.91 0.037 0.98 −10.09 0.895 0.000 5.00 0.00 12

1000 0.104 992.23 0.049 0.99 −7.77 0.898 0.000 5.00 0.00 35

2000 0.074 1993.09 0.066 1.00 −6.91 0.899 0.000 5.00 0.00 121

5000 0.047 4993.79 0.101 1.00 −6.21 0.900 0.000 5.00 0.00 665

10, 000 0.033 9994.14 0.143 1.00 −5.86 0.900 0.000 5.00 0.00 2565

10 30 0.601 50.85 0.001 1.69 20.85 0.967 0.000 5.00 0.00 1

50 0.465 57.62 0.005 1.15 7.62 0.921 0.000 5.00 0.00 1

100 0.329 93.88 0.014 0.94 −6.12 0.886 0.000 5.00 0.00 1

200 0.233 189.52 0.023 0.95 −10.48 0.888 0.000 5.00 0.00 3

500 0.147 492.61 0.033 0.99 −7.39 0.897 0.000 5.00 0.00 12

1000 0.104 993.48 0.046 0.99 −6.52 0.899 0.000 5.00 0.00 36

2000 0.074 1993.75 0.064 1.00 −6.25 0.899 0.000 5.00 0.00 123

5000 0.047 4994.06 0.100 1.00 −5.94 0.899 0.000 5.00 0.00 665

10, 000 0.033 9994.01 0.142 1.00 −5.99 0.900 0.000 5.00 0.00 2576
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Table 10 Fine-tuned parallel piecewise sequential strategy (14) on 95% FWCI for the mean of
N(5, 4): ε = −1.1828, k = 2, B = 106 replications

m C d q sq q/C q − C p sp x sx Time in sec

5 30 0.716 28.82 0.008 0.96 −1.18 0.932 0.000 5.00 0.00 1

50 0.554 47.46 0.012 0.95 −2.54 0.932 0.000 5.00 0.00 2

100 0.392 97.64 0.017 0.98 −2.36 0.942 0.000 5.00 0.00 4

200 0.277 198.92 0.022 0.99 −1.08 0.948 0.000 5.00 0.00 12

500 0.175 499.60 0.033 1.00 −0.40 0.949 0.000 5.00 0.00 52

1000 0.124 999.83 0.046 1.00 −0.17 0.950 0.000 5.00 0.00 187

2000 0.088 1999.84 0.064 1.00 −0.16 0.950 0.000 5.00 0.00 667

5000 0.055 5000.10 0.101 1.00 0.10 0.950 0.000 5.00 0.00 3974

10, 000 0.039 9999.91 0.142 1.00 −0.09 0.950 0.000 5.00 0.00 15, 681

10 30 0.716 31.36 0.007 1.05 1.36 0.949 0.000 5.00 0.00 1

50 0.554 49.21 0.011 0.98 −0.79 0.940 0.000 5.00 0.00 2

100 0.392 98.82 0.016 0.99 −1.18 0.945 0.000 5.00 0.00 4

200 0.277 199.58 0.021 1.00 −0.42 0.948 0.000 5.00 0.00 11

500 0.175 499.95 0.032 1.00 −0.05 0.949 0.000 5.00 0.00 52

1000 0.124 999.95 0.045 1.00 −0.05 0.950 0.000 5.00 0.00 181

2000 0.088 2000.08 0.063 1.00 0.08 0.950 0.000 5.00 0.00 670

5000 0.055 4999.83 0.100 1.00 −0.17 0.950 0.000 5.00 0.00 3967

10, 000 0.039 10,000.09 0.142 1.00 0.09 0.950 0.000 5.00 0.00 15, 765

Table 11 Fine-tuned parallel piecewise sequential strategy (14) on 90% FWCI for the mean of
N(5, 4): ε = −1.1828, k = 2, B = 106 replications

m C d q sq q/C q − C p sp x sx Time in sec

5 30 0.601 28.82 0.008 0.96 −1.18 0.878 0.000 5.00 0.00 1

50 0.465 47.45 0.012 0.95 −2.55 0.879 0.000 5.00 0.00 2

100 0.329 97.66 0.017 0.98 −2.34 0.890 0.000 5.00 0.00 4

200 0.233 198.90 0.022 0.99 −1.10 0.897 0.000 5.00 0.00 12

500 0.147 499.59 0.033 1.00 −0.41 0.900 0.000 5.00 0.00 54

1000 0.104 999.83 0.046 1.00 −0.17 0.900 0.000 5.00 0.00 181

2000 0.074 2000.00 0.064 1.00 0.00 0.899 0.000 5.00 0.00 667

5000 0.047 4999.84 0.100 1.00 −0.16 0.900 0.000 5.00 0.00 4012

10, 000 0.033 10,000.21 0.142 1.00 0.21 0.900 0.000 5.00 0.00 15, 708

10 30 0.601 31.34 0.007 1.04 1.34 0.900 0.000 5.00 0.00 1

50 0.465 49.20 0.011 0.98 −0.80 0.890 0.000 5.00 0.00 2

100 0.329 98.84 0.016 0.99 −1.16 0.894 0.000 5.00 0.00 5

200 0.233 199.59 0.021 1.00 −0.41 0.898 0.000 5.00 0.00 13

500 0.147 499.93 0.032 1.00 −0.07 0.899 0.000 5.00 0.00 54

1000 0.104 999.84 0.045 1.00 −0.16 0.900 0.000 5.00 0.00 184

2000 0.074 2000.04 0.063 1.00 0.04 0.900 0.000 5.00 0.00 666

5000 0.047 5000.05 0.100 1.00 0.05 0.900 0.000 5.00 0.00 3992

10,000 0.033 9999.97 0.142 1.00 −0.03 0.900 0.000 5.00 0.00 15, 666
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Table 12 Fine-tuned parallel piecewise sequential strategy (14) on 95% FWCI for the mean of
N(5, 4): ε = −1.1828, k = 5, B = 106 replications

m C d q sq q/C q − C p sp x sx Time in sec

5 30 0.716 36.17 0.005 1.21 6.17 0.966 0.000 5.00 0.00 0

50 0.554 51.01 0.009 1.02 1.01 0.948 0.000 5.00 0.00 1

100 0.392 94.79 0.017 0.95 −5.21 0.939 0.000 5.00 0.00 1

200 0.277 193.41 0.025 0.97 −6.59 0.943 0.000 5.00 0.00 3

500 0.175 497.36 0.035 0.99 −2.64 0.949 0.000 5.00 0.00 12

1000 0.124 998.76 0.047 1.00 −1.24 0.950 0.000 5.00 0.00 37

2000 0.088 1999.46 0.065 1.00 −0.54 0.950 0.000 5.00 0.00 124

5000 0.055 4999.75 0.101 1.00 −0.25 0.950 0.000 5.00 0.00 674

10,000 0.039 9999.69 0.142 1.00 −0.31 0.950 0.000 5.00 0.00 2561

10 30 0.716 51.53 0.002 1.72 21.53 0.990 0.000 5.00 0.00 1

50 0.554 60.38 0.006 1.21 10.38 0.968 0.000 5.00 0.00 1

100 0.392 99.85 0.014 1.00 −0.15 0.947 0.000 5.00 0.00 1

200 0.277 196.72 0.023 0.98 −3.28 0.946 0.000 5.00 0.00 3

500 0.175 499.00 0.033 1.00 −1.00 0.949 0.000 5.00 0.00 12

1000 0.124 999.65 0.045 1.00 −0.35 0.949 0.000 5.00 0.00 36

2000 0.088 1999.76 0.064 1.00 −0.24 0.950 0.000 5.00 0.00 125

5000 0.055 4999.91 0.100 1.00 −0.09 0.950 0.000 5.00 0.00 667

10,000 0.039 9999.87 0.142 1.00 −0.13 0.950 0.000 5.00 0.00 2560

Table 13 Fine-tuned parallel piecewise sequential strategy (14) on 90% FWCI for the mean of
N(5, 4): ε = −1.1828, k = 5, B = 106 replications

m C d q sq q/C q − C p sp x sx Time in sec

5 30 0.601 36.18 0.005 1.21 6.18 0.926 0.000 5.00 0.00 0

50 0.465 50.99 0.009 1.02 0.99 0.898 0.000 5.00 0.00 1

100 0.329 94.81 0.017 0.95 −5.19 0.886 0.000 5.00 0.00 1

200 0.233 193.33 0.025 0.97 −6.67 0.891 0.000 5.00 0.00 3

500 0.147 497.31 0.035 0.99 −2.69 0.899 0.000 5.00 0.00 12

1000 0.104 998.76 0.047 1.00 −1.24 0.899 0.000 5.00 0.00 36

2000 0.074 1999.40 0.065 1.00 −0.60 0.899 0.000 5.00 0.00 122

5000 0.047 4999.88 0.101 1.00 −0.12 0.900 0.000 5.00 0.00 676

10, 000 0.033 9999.88 0.142 1.00 −0.12 0.900 0.000 5.00 0.00 2607

10 30 0.601 51.53 0.002 1.72 21.53 0.968 0.000 5.00 0.00 1

50 0.465 60.38 0.006 1.21 10.38 0.927 0.000 5.00 0.00 1

100 0.329 99.85 0.014 1.00 −0.15 0.896 0.000 5.00 0.00 1

200 0.233 196.67 0.023 0.98 −3.33 0.895 0.000 5.00 0.00 3

500 0.147 498.93 0.033 1.00 −1.07 0.899 0.000 5.00 0.00 12

1000 0.104 999.60 0.045 1.00 −0.40 0.900 0.000 5.00 0.00 36

2000 0.074 1999.76 0.064 1.00 −0.24 0.900 0.000 5.00 0.00 125

5000 0.047 4999.98 0.100 1.00 −0.02 0.900 0.000 5.00 0.00 676

10,000 0.033 10,000.14 0.142 1.00 0.14 0.900 0.000 5.00 0.00 2577
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4.1.1 Descriptions of Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13

Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 implemented the original purely
sequential estimation strategy from (4)–(5) with α = 0.05, 0.10, respectively.
Eθ [N] was estimated by n (column 4) along with its estimated s.e. sn (column
5). The observed values of both n/C (column 6) and n − C (column 7) were
computed to illustrate the asymptotic first- and second-order efficiency properties
[25, Definition 6.2.2] of the stopping variables, respectively.

We also present the observed coverage probability p (column 8) with its
estimated s.e. sp (column 9) as well as the average x (column 10), the average
of all terminal sample means along with its estimated s.e. sx (column 11). The last
column 12 in each table shows the time (in seconds) taken to complete the B = 106

replications under each configuration, that is, for the construction of each row in the
tables. The entries in the remaining Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 would
be interpreted in the same way.

Tables 4 and 5 correspond to the fine-tuned parallel piecewise sequential strategy
(14) with k = 1, ε = −1.1828 and α = 0.05, 0.10, respectively. In other words,
Tables 4 and 5 equivalently correspond to the fine-tuned purely sequential strategy
(4) with ε = −1.1828.

Tables 6 and 7 correspond to the parallel piecewise sequential (non-fine-tuned,
that is ε = 0) strategy (9) with k = 2 and α = 0.05, 0.10, respectively. Tables 8
and 9 correspond to the parallel piecewise sequential (non-fine-tuned, that is ε = 0)
strategy (9) with k = 5 and α = 0.05, 0.10, respectively.

Tables 10 and 11 correspond to the fine-tuned parallel piecewise sequential
strategy (14) with k = 2, ε = −1.1828 and α = 0.05, 0.10, respectively. Tables 12
and 13 correspond to the fine-tuned parallel piecewise sequential strategy (14) with
k = 5, ε = −1.1828 and α = 0.05, 0.10, respectively.

4.1.2 An Overview of Comments on Simulated Performances: Tables 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, and 13

We note that for a parallel piecewise sequential estimation strategy (with or without
fine-tuning) the data collection process is completed as soon as the last operator
or arm is done sampling. The terminal estimation of the population mean can be
carried out immediately after by pooling data from all arms together. Indeed, the
observed runtime of our simulation program is consistent with this intuition.

The time-savings are substantial using the parallel piecewise sequential strategy
and increase as k increases. For k = 2, we find that the parallel piecewise sequential
procedure (with or without fine-tuning) for C = 10000 takes approximately the
same time (around 1.6 × 104 s) as the purely sequential procedure for C = 5000,
that the former for C = 2000 takes approximately the same time (around 670 s)
as the latter for C = 1000, and so on. The time-savings are even more remarkable
when k increases to 5— the parallel piecewise sequential procedure for C = 10000
now takes approximately the same time (around 2.6×103 s) as the purely sequential
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procedure for C = 2000, and the former for C = 5000 takes approximately the
same time (around 670 s) as the latter for C = 1000, and so on.

As shown in Tables 2 and 3, 6 and 7, and 8 and 9, respectively, and consistent
with (12), we find that the estimate n−Cd ofEθ [Ñd−Cd ] from the purely sequential
procedure (4) converges to approximately η ≈ −1.1828 as d → 0, that this estimate
from the parallel piecewise sequential procedure (9) with k = 2 arms converges to
approximately kη ≡ 2η ≈ −2.37 as d → 0, and that this estimate from the parallel
piecewise sequential procedure (9) with k = 5 arms converges to approximately
kη ≡ 5η ≈ −5.91 as d → 0. The undersampling due to the asymptotic bias of the
stopping variable Ñd from (9) relative to the optimal fixed-sample size Cd becomes
increasingly substantial as k increases.

On the other hand, according to Tables 4 and 5, 10 and 11, and 12 and 13, the
estimate q − Cd of Eθ [Qd − Cd ] from the fine-tuned parallel piecewise sequential
procedure (14) with either k = 1 (the fine-tuned purely sequential strategy), k =
2 or k = 5 converges to 0 as d → 0. This is consistent with Theorem 3.1 that
the stopping variable Qd from (14) is an asymptotically unbiased estimator of the
optimal fixed-sample sizeCd . We note that the point estimate q−Cd ofEθ [Qd−Cd ]
is accurate enough, as sq appears to be reasonably small throughout.

Additionally, in all Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13, using generic
notations from Table 1, we observe that the estimate n/Cd ofEθ [Nd/Cd ] converges
to 1 as d → 0. This is expected as the asymptotic second-order efficiency implies
the asymptotic first-order efficiency. We also briefly comment that as d → 0, the
observed coverage probabilityp converges to the preassigned confidence coefficient
1 − α, whether α = 0.05 or 0.10, which is expected according to the asymptotic
consistency property [25, Equation (6.2.30)], and that the average x of all terminal
sample means from B = 106 replications accurately estimates the population mean
μ(= 5). Overall, we observe similar and consistent behaviors for different values of
the confidence coefficient 1 − α(= 0.90, 0.95) and for different values of the pilot
sample size m(= 5, 10).

4.2 MRPE Strategies

While we continue to use notations similar to those used in Sect. 4.1, some
additional notations are laid out in Table 14 for brevity. We present Tables 15,
16, 17, 18, 19, and 20 to compare the purely sequential procedure (7), the
parallel piecewise sequential procedure (24), and the fine-tuned parallel piecewise
sequential procedure (28), all obtained from averaging over B(= 106) independent
replications under each fixed configuration.

The population used in the simulation was N(5, 4) and we fixed A = 10000,
m = 5, 10, and the optimal fixed-sample size

n∗
c = 30, 50, 100, 200, 500, 1000, 2000, 5000, 10000.
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Table 14 Additional set of notations used in Tables 15, 16, 17, 18, 19, and 20: B = 106

replications

ri = Aσ 2

ni
+ cni : estimated risk in the ith run;

r = B−1�Bi=1ri : average estimated risk, should compare with Rn∗ ;
sr = {(B2 − B)−1�B

i=1 (ri − r)2}1/2 : estimated s.e. of r.

Table 15 Purely sequential strategy (7) on MRPE for the mean of N(5, 4) with no fine-tuning:
ε = 0, k = 1, A = 10,000, B = 106 replications

m n∗c c n sn n/n∗c n− n∗c r/Rn∗c r − Rn∗c sr Time in sec

5 30 44.444 29.69 0.004 0.99 −0.31 1.02 44.217 0.256 2

50 16.000 49.81 0.005 1.00 −0.19 1.01 11.147 0.102 4

100 4.000 99.84 0.007 1.00 −0.16 1.00 2.230 0.024 12

200 1.000 199.86 0.010 1.00 −0.14 1.00 0.517 0.001 35

500 0.160 499.87 0.016 1.00 −0.13 1.00 0.081 0.000 179

1000 0.040 999.88 0.022 1.00 −0.12 1.00 0.020 0.000 660

2000 0.010 1999.84 0.032 1.00 −0.16 1.00 0.005 0.000 2532

5000 0.002 4999.86 0.050 1.00 −0.14 1.00 0.001 0.000 15,697

10,000 0.000 9999.87 0.071 1.00 −0.13 1.00 0.000 0.000 61,817

10 30 44.444 29.74 0.004 0.99 −0.26 1.01 32.616 0.085 2

50 16.000 49.82 0.005 1.00 −0.18 1.01 9.528 0.020 4

100 4.000 99.85 0.007 1.00 −0.15 1.00 2.151 0.003 12

200 1.000 199.86 0.010 1.00 −0.14 1.00 0.518 0.001 35

500 0.160 499.88 0.016 1.00 −0.12 1.00 0.081 0.000 179

1000 0.040 999.90 0.022 1.00 −0.10 1.00 0.020 0.000 665

2000 0.010 1999.91 0.032 1.00 −0.09 1.00 0.005 0.000 2557

5000 0.002 4999.87 0.050 1.00 −0.13 1.00 0.001 0.000 15,481

10,000 0.000 9999.87 0.071 1.00 −0.13 1.00 0.000 0.000 61,570

Two scenarios, k = 2, 5, were included for parallel piecewise sequential procedures
(with or without fine-tuning). Having fixed σ,A, and n∗

c ,we obtained c = Aσ 2n∗−2
c .

4.2.1 Descriptions of Tables 15, 16, 17, 18, 19, and 20

With our generic notations, Eθ [N] was estimated by the average terminal sample
size n with its s.e. sn. The observed values of both n/n∗

c and n− n∗
c were computed

to illustrate the asymptotic first- and second-order efficiencies of the stopping
variables, respectively.

We also present the estimated risk efficiency r/Rn∗
c

and regret r − Rn∗
c

with the
s.e. sr of the average estimated risk r provided as well. One may refer to [25,
Section 6.4.1] for related details. The last column in each table is the time (in
seconds) taken to complete the B = 106 replications in each case (each row in
the table).
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Table 16 Fine-tuned purely sequential strategy (28) on MRPE for the mean of N(5, 4): ε =
−0.1166, k = 1, A = 10,000, B = 106 replications

m n∗c c t st t/n∗c t − n∗c r/Rn∗c r − Rn∗c sr Time in sec

5 30 44.444 29.82 0.004 0.99 −0.18 1.02 42.471 0.246 2

50 16.000 49.92 0.005 1.00 −0.08 1.01 10.801 0.095 4

100 4.000 99.97 0.007 1.00 −0.03 1.00 2.191 0.020 12

200 1.000 200.00 0.010 1.00 −0.00 1.00 0.516 0.001 36

500 0.160 500.00 0.016 1.00 −0.00 1.00 0.081 0.000 180

1000 0.040 1000.06 0.022 1.00 0.06 1.00 0.020 0.000 666

2000 0.010 1999.99 0.032 1.00 −0.01 1.00 0.005 0.000 2551

5000 0.002 4999.98 0.050 1.00 −0.02 1.00 0.001 0.000 15,676

10,000 0.000 9999.97 0.071 1.00 −0.03 1.00 0.000 0.000 62,752

10 30 44.444 29.86 0.004 1.00 −0.14 1.01 31.757 0.081 2

50 16.000 49.94 0.005 1.00 −0.06 1.01 9.410 0.020 4

100 4.000 99.96 0.007 1.00 −0.04 1.00 2.139 0.003 11

200 1.000 199.99 0.010 1.00 −0.01 1.00 0.516 0.001 35

500 0.160 499.98 0.016 1.00 −0.02 1.00 0.081 0.000 178

1000 0.040 1000.01 0.022 1.00 0.01 1.00 0.020 0.000 665

2000 0.010 2000.02 0.032 1.00 0.02 1.00 0.005 0.000 2569

5000 0.002 5000.10 0.050 1.00 0.10 1.00 0.001 0.000 15,587

10,000 0.000 10,000.05 0.071 1.00 0.05 1.00 0.000 0.000 61,893

Table 17 Parallel piecewise sequential strategy (24) on MRPE for the mean of N(5, 4) with no
fine-tuning: ε = 0, k = 2, A = 10,000, B = 106 replications

m n∗c c ñ s
ñ

ñ/n∗c ñ− n∗∗c r/Rn∗c r − Rn∗c sr Time in sec

5 30 44.444 28.92 0.005 0.96 −1.08 1.02 48.882 0.109 1

50 16.000 49.23 0.006 0.98 −0.77 1.01 13.725 0.037 2

100 4.000 99.61 0.007 1.00 −0.39 1.00 2.370 0.005 4

200 1.000 199.71 0.010 1.00 −0.29 1.00 0.532 0.001 12

500 0.160 499.76 0.016 1.00 −0.24 1.00 0.082 0.000 54

1000 0.040 999.79 0.022 1.00 −0.21 1.00 0.020 0.000 180

2000 0.010 1999.73 0.032 1.00 −0.27 1.00 0.005 0.000 666

5000 0.002 4999.77 0.050 1.00 −0.23 1.00 0.001 0.000 3987

10,000 0.000 9999.79 0.071 1.00 −0.21 1.00 0.000 0.000 15,640

10 30 44.444 29.68 0.004 0.99 −0.32 1.01 25.750 0.037 1

50 16.000 49.41 0.006 0.99 −0.59 1.01 11.394 0.022 2

100 4.000 99.62 0.007 1.00 −0.38 1.00 2.288 0.004 5

200 1.000 199.70 0.010 1.00 −0.30 1.00 0.530 0.001 12

500 0.160 499.75 0.016 1.00 −0.25 1.00 0.082 0.000 52

1000 0.040 999.79 0.022 1.00 −0.21 1.00 0.020 0.000 182

2000 0.010 1999.78 0.032 1.00 −0.22 1.00 0.005 0.000 682

5000 0.002 4999.77 0.050 1.00 −0.23 1.00 0.001 0.000 4001

10,000 0.000 9999.76 0.071 1.00 −0.24 1.00 0.000 0.000 15,778
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Table 18 Fine-tuned parallel piecewise sequential strategy (28) on MRPE for the mean of
N(5, 4): ε = −0.1166, k = 2, A = 10,000, B = 106 replications

m n∗c c t st t/n∗c t − n∗c r/Rn∗c r − Rn∗c sr Time in sec

5 30 44.444 29.20 0.005 0.97 −0.80 1.02 45.913 0.103 1

50 16.000 49.50 0.006 0.99 −0.50 1.01 13.166 0.035 2

100 4.000 99.85 0.007 1.00 −0.15 1.00 2.329 0.005 4

200 1.000 199.94 0.010 1.00 −0.06 1.00 0.529 0.001 12

500 0.160 499.97 0.016 1.00 −0.03 1.00 0.082 0.000 54

1000 0.040 999.98 0.022 1.00 −0.02 1.00 0.020 0.000 184

2000 0.010 1999.99 0.032 1.00 −0.01 1.00 0.005 0.000 661

5000 0.002 5000.02 0.050 1.00 0.02 1.00 0.001 0.000 3962

10, 000 0.000 9999.97 0.071 1.00 −0.03 1.00 0.000 0.000 15,650

10 30 44.444 29.91 0.004 1.00 −0.09 1.01 25.111 0.035 1

50 16.000 49.66 0.006 0.99 −0.34 1.01 11.027 0.021 2

100 4.000 99.87 0.007 1.00 −0.13 1.00 2.264 0.004 4

200 1.000 199.95 0.010 1.00 −0.05 1.00 0.528 0.001 12

500 0.160 499.97 0.016 1.00 −0.03 1.00 0.082 0.000 52

1000 0.040 1000.00 0.022 1.00 −0.00 1.00 0.020 0.000 185

2000 0.010 1999.98 0.032 1.00 −0.02 1.00 0.005 0.000 670

5000 0.002 5000.06 0.050 1.00 0.06 1.00 0.001 0.000 3971

10,000 0.000 9999.98 0.071 1.00 −0.02 1.00 0.000 0.000 15,720

Table 19 Parallel piecewise sequential strategy (24) on MRPE for the mean of N(5, 4) with no
fine-tuning: ε = 0, k = 5, A = 10,000, B = 106 replications

m n∗c c ñ s
ñ

ñ/n∗c ñ− n∗c r/Rn∗c r − Rn∗c sr Time in sec

5 30 44.444 31.39 0.003 1.05 1.39 1.01 14.528 0.020 0

50 16.000 47.99 0.006 0.96 −2.01 1.01 14.009 0.023 1

100 4.000 97.65 0.009 0.98 −2.35 1.00 3.683 0.007 1

200 1.000 198.84 0.011 0.99 −1.16 1.00 0.615 0.001 3

500 0.160 499.26 0.016 1.00 −0.74 1.00 0.085 0.000 12

1000 0.040 999.35 0.023 1.00 −0.65 1.00 0.021 0.000 38

2000 0.010 1999.38 0.032 1.00 −0.62 1.00 0.005 0.000 121

5000 0.002 4999.39 0.050 1.00 −0.61 1.00 0.001 0.000 665

10,000 0.000 9999.29 0.071 1.00 −0.71 1.00 0.000 0.000 2572

10 30 44.444 50.02 0.000 1.67 20.02 1.13 356.013 0.004 1

50 16.000 54.60 0.003 1.09 4.60 1.01 8.213 0.009 1

100 4.000 98.45 0.008 0.98 −1.55 1.00 2.816 0.005 1

200 1.000 198.94 0.011 0.99 −1.06 1.00 0.591 0.001 3

500 0.160 499.27 0.016 1.00 −0.73 1.00 0.084 0.000 12

1000 0.040 999.34 0.023 1.00 −0.66 1.00 0.021 0.000 37

2000 0.010 1999.37 0.032 1.00 −0.63 1.00 0.005 0.000 122

5000 0.002 4999.38 0.050 1.00 −0.62 1.00 0.001 0.000 673

10,000 0.000 9999.36 0.071 1.00 −0.64 1.00 0.000 0.000 2574
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Table 20 Fine-tuned parallel piecewise sequential strategy (28) on MRPE for the mean of
N(5, 4): ε = −0.1166, k = 5, A = 10,000, B = 106 replications

m n∗c c t st t/n∗c t − n∗c r/Rn∗c r − Rn∗c sr Time in sec

5 30 44.444 31.79 0.003 1.06 1.79 1.01 16.373 0.022 0

50 16.000 48.62 0.006 0.97 −1.38 1.01 12.842 0.021 1

100 4.000 98.34 0.009 0.98 −1.66 1.00 3.444 0.006 1

200 1.000 199.44 0.011 1.00 −0.56 1.00 0.602 0.001 3

500 0.160 499.84 0.016 1.00 −0.16 1.00 0.084 0.000 12

1000 0.040 999.96 0.023 1.00 −0.04 1.00 0.020 0.000 37

2000 0.010 1999.98 0.032 1.00 −0.02 1.00 0.005 0.000 123

5000 0.002 4999.92 0.050 1.00 −0.08 1.00 0.001 0.000 688

10,000 0.000 10,000.06 0.071 1.00 0.06 1.00 0.000 0.000 2575

10 30 44.444 50.02 0.000 1.67 20.02 1.13 356.117 0.004 1

50 16.000 54.88 0.003 1.10 4.88 1.01 9.056 0.009 1

100 4.000 99.09 0.008 0.99 −0.91 1.00 2.692 0.004 1

200 1.000 199.54 0.011 1.00 −0.46 1.00 0.579 0.001 3

500 0.160 499.87 0.016 1.00 −0.13 1.00 0.084 0.000 12

1000 0.040 999.95 0.023 1.00 −0.05 1.00 0.020 0.000 36

2000 0.010 1999.98 0.032 1.00 −0.02 1.00 0.005 0.000 121

5000 0.002 4999.93 0.050 1.00 −0.07 1.00 0.001 0.000 681

10,000 0.000 9999.96 0.071 1.00 −0.04 1.00 0.000 0.000 2573

Table 15 corresponds to the original purely sequential strategy (7). Table 16
corresponds to the fine-tuned parallel piecewise sequential strategy (28) with k = 1,
ε = −0.1166 which is equivalent to the fine-tuned version of (7).

Table 17 corresponds to the parallel piecewise sequential (non-fine-tuned, that is
ε = 0) strategy (24) with k = 2. Table 18 corresponds to the fine-tuned parallel
piecewise sequential strategy (28) with k = 2, ε = −0.1166.

Table 19 corresponds to the parallel piecewise sequential (non-fine-tuned, that is
ε = 0) strategy (24) with k = 5. Table 20 corresponds to the fine-tuned parallel
piecewise sequential strategy (28) with k = 5, ε = −0.1166.

4.2.2 An Overview of Comments on Simulated Performances: Tables 15,
16, 17, 18, 19, and 20

We again note that for a parallel piecewise sequential procedure (with or without
fine-tuning) the data collection process is completed as soon as the last operator
is done sampling and the final estimation of the population mean can be provided
immediately by pooling data from all arms together. Indeed, the observed runtime
of our simulation program is consistent with this intuition. The time-savings
are substantial using the parallel piecewise sequential strategy and increase as k
increases.
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For k = 2, we find that the parallel piecewise sequential procedure (with or
without fine-tuning) for n∗

c = 10000 takes approximately the same time (around
1.6 × 104 s) as the purely sequential procedure for n∗

c = 5000, that the former
for n∗

c = 2000 takes approximately the same time (around 670 s) as the latter
for n∗

c = 1000, and so on. The time-savings are even more remarkable when k
increases to 5—the parallel piecewise sequential procedure for n∗

c = 10000 now
takes approximately the same time (around 2.6 × 103 s) as the purely sequential
procedure for n∗

c = 2000, and the former for n∗
c = 5000 takes approximately the

same time (around 670 s) as the latter for n∗
c = 1000, and so on.

As shown in Tables 15, 17, and 19, respectively, and consistent with (26), we
find that the estimate n − n∗

c of Eθ [Ñc − n∗
c ] from the purely sequential procedure

(7) converges to approximately η∗ ≈ −0.12 as c → 0, that this estimate from
the parallel piecewise sequential procedure (24) with k = 2 arms converges to
approximately 2η∗ ≈ −0.23 as c → 0, and that this estimate from the parallel
piecewise sequential procedure (24) with k = 5 arms converges to approximately
5η∗ ≈ −0.58 as c → 0. The undersampling due to the asymptotic bias of the
stopping variable Ñc from (24) relative to the optimal fixed-sample size n∗

c becomes
increasingly noticeable as k increases and can be substantial for large k.

On the other hand, according to Tables 16, 18, and 20, the estimate t − n∗
c of

Eθ [Tc − n∗
c ] from the fine-tuned parallel piecewise sequential procedure (28) with

either k = 1 (the fine-tuned purely sequential procedure), k = 2 or k = 5 converges
to 0 as c → 0. This is consistent with Theorem 3.2 that the stopping variable Tc
from (28) is an asymptotically unbiased estimator of the optimal fixed-sample size
n∗
c . We note that the point estimate t − n∗

c of Eθ [Tc − n∗
c ] is accurate enough, as st

appears to be reasonably small throughout.
Additionally, in all Tables 15, 16, 17, 18, 19, and 20, using generic notations,

we observe that the estimate n/n∗
c of Eθ [N/n∗

c ] converges to 1 as c → 0. This
is expected as the asymptotic second-order efficiency implies the asymptotic first-
order efficiency. We also briefly comment that as c → 0, the estimated risk
efficiency r/Rn∗

c
and regret r−Rn∗

c
, respectively, converge to 1 and 1

2c, as expected,
due to the asymptotic first- and second-order risk efficiencies [25, Equations (6.4.8)
and (6.4.14)]. Overall, we observe similar and consistent behaviors across different
values of the pilot sample size m(= 5, 10).

5 A Real Data Illustration: The Framingham Heart Study

As an illustration, we consider the Framingham Heart Study, which is a long-
term, ongoing cardiovascular cohort study on residents of the city of Framingham,
Massachusetts. Much of the now-common knowledge concerning heart disease,
such as the effects of diet, exercise, and customary medications such as aspirin,
is based on this longitudinal study. One may refer to Wikipedia:

https://en.wikipedia.org/wiki/Framingham_Heart_Study
for the history and many other details of this study.
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Admittedly, this real data set is not very “big” although it is reasonably large.
In this section, we simply demonstrate the efficiency and broad applicability of
our proposed methodologies with an interesting real data illustration. One should
quickly realize that our proposed methodologies are readily applicable to much
bigger data sets with even more substantial time-savings as practicalities may
demand.

We illustrate the fine-tuned parallel piecewise sequential procedures (14) and
(28) using a data set from the Framingham Heart Study developed by the NIH
National Heart, Lung, and Blood Institute. One may request the data set from

https://biolincc.nhlbi.nih.gov/teaching/.
This data set contains three clinic examinations and 20-year follow-up data on a
large subset of the original Framingham cohort participants and it is made publicly
available especially for graduate education.

High blood cholesterol is one of the key risk factors for heart disease. It can build
up in arteries and restrict or even block blood flow. As a result, the heart may not
get as much oxygen-rich blood as it needs, increasing the risk of a heart attack. The
variable that we are focused on here is the (natural) logarithm of the serum total
cholesterol (mg/dL) for males during the third examination period. For the purpose
of this illustration, we treated the data set of size 1312 (excluding missing values) as
our population, which had a mean of 5.403 and a standard deviation of 0.181. The
five-number summary is given as follows:

min = 4.868,Q1 = 5.288,median = 5.403,Q3 = 5.529, and max = 6.023.

Figure 1 is a histogram of the population superimposed with the N(5.403,
(0.181)2) density curve. The population did not appear to contradict a normal
distribution as confirmed via the Shapiro-Wilk (p-value = 0.733) and Anderson–
Darling (p-value = 0.547) normality tests.

Fig. 1 Histogram of
(natural) log serum total
cholesterol for males during
the third examination period,
superimposed with
N(5.403, (0.181)2 ) density
curve
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5.1 Illustration of FWCI

A 99% FWCI for the mean with d = 0.020, m = 10, and k = 3 turned out to
be [5.386, 5.426] and indeed, the true population mean of 5.403 was contained in
this interval. Let us also interpret this interval on the original scale (mg/dL). That
is, with 99% confidence the median serum total cholesterol for males during the
third examination period lay between exp(5.386) ≈ 218 mg/dL and exp(5.426) ≈
227 mg/dL—the true median serum total cholesterol of 222 mg/dL was indeed
within this range.

To give the reader some idea of serum total cholesterol (mg/dL) for males during
the third examination period (that is, the original scale, without log-transformation),
we may provide its five-number summary as follows:

min = 130,Q1 = 198,median = 222,Q3 = 252, and max = 413.

In this case, three researchers collected data independently (and simultaneously)
with n1 = 222, n2 = 158, n3 = 165, n = n1 + n2 + n3 = 545, Cd = 544.23, and
n− Cd ≈ 1. The final sample size was only one observation more than the optimal
fixed-sample size and the length of time required for data collection was reduced
by nearly two-thirds (compared to a purely sequential strategy) given that the three
researchers were about equally efficient in collecting data.

We obtained another 99% FWCI for the mean with d = 0.015, m = 10, and
k = 5, in which case the true population mean was estimated to lie between
5.390 and 5.420. This interval also contained the true population mean of 5.403.
Once again, we note that while the interval estimation became more precise with
the reduced margin of error (from 0.020 to 0.015), the required final sample size
became much larger—in this case, five researchers collected data independently
(and simultaneously) with n1 = 233, n2 = 204, n3 = 176, n4 = 171, n5 = 182,
n = n1 + n2 + n3 + n4 + n5 = 966, Cd = 967.52, and n− Cd ≈ −1.5.

However, compared to a purely sequential strategy, the parallel processing with
five “arms” helped reduce the length of time required for data collection significantly
(by nearly 80%, given that the five researchers were about equally efficient in
collecting data). We also interpret the interval on the original scale (mg/dL)
as follows—with 99% confidence the median serum total cholesterol for males
during the third examination period lay between exp(5.390) ≈ 219 mg/dL and
exp(5.420) ≈ 226 mg/dL—the true median serum total cholesterol of 222 mg/dL
was indeed within this range.

5.2 Illustration of MRPE

Let us also obtain the MRPE for the mean with c = 0.05, k = 3 (Case 1) and
c = 0.03, k = 5 (Case 2). In both cases, we fixed A = 106 and m = 10. In Case 1,
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the point estimate turned out to be 5.408 (which was very close to the true population
mean 5.403) with n1 = 289, n2 = 257, n3 = 259, n = n1 + n2 + n3 = 805, n∗

c =
810.07, and n− n∗

c ≈ −5. Back to the original scale (mg/dL), the point estimate of
exp(5.408) = 223 mg/dL for the median serum total cholesterol for males during
the third examination period was very close to the true population median serum
total cholesterol of 222 mg/dL. The length of time required for data collection was
reduced by nearly two-thirds (compared to a purely sequential strategy) given that
the three researchers were about equally efficient in collecting data.

In Case 2, we ended up with a larger sample, as expected, as the cost per unit
observation reduced from 0.05 to 0.03. Indeed, we observed n1 = 230, n2 = 214,
n3 = 200, n4 = 196, n5 = 202, n = n1 +n2 +n3 +n4 +n5 = 1042, n∗

c = 1045.79,
n−n∗

c ≈ −4. In this case, the point estimate for the mean was 5.405. On the original
scale (mg/dL), the point estimate exp(5.405) = 222.5 mg/dL for the median serum
total cholesterol for males during the third examination period came very close to
the true median serum total cholesterol of 222 mg/dL. Once again, we mention that
compared to a purely sequential strategy, the five parallel “pieces” helped reduce the
length of time required for data collection significantly (by nearly 80%, given that
the five researchers were about equally efficient in collecting data).

Remark 5.1 A reader may genuinely get confused since we have indeed mentioned
both true median and mean serum total cholesterol. The following clarification
may help on the median vs. mean issue in the Framingham Heart Study data: If a
population (Y = ln(X)) is normally distributed on the log scale of Y which implies
that mean(Y ) = median(Y ), then the population has a positively skewed distribution
on the original scale of X where median(X) < mean(X) and so the median and the
mean of X are not equal. Since the ln (and exp) transformation is a monotonic
transformation which preserves the order of the data, we have exp(mean(Y )) =
exp(median(Y )) = median(exp(Y )) = median(X). That is, if a confidence interval
for the mean(Y ), which is essentially also the median(Y ), is constructed on the log
scale of Y , then by taking the “exp” of the lower and upper limits of the interval we
will end up with a confidence interval for the median(X), rather than the mean(X),
on the original scale of X.

6 Concluding Thoughts

One referee remarked: The authors have presented the paper in the context of big
data. It is unclear what the role of stopping times is in the context of big data.
Generally, big data is synonymous with data sets, which have no cap on their size.

We truly appreciated the genuine matter of inquiry raised by the referee. We have
provided our perspective with respect to the relationship between stopping times
and big data (and data sets in general), in the context of (sequential) experimental
designs for statistical inference. We begin by agreeing that when we talk about big
data, we generally mean a data set whose size may be extremely large.
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From the experimental designs (for statistical inference) perspective, either in the
conventional (non-sequential) setting or in the sequential situation (addressed in our
paper here), however, an appropriate sample size will need to be determined first
in order for one to collect an appropriate amount of data through the experiment.
This will then lead to subsequent statistical inference (e.g., estimation or hypothesis
testing) eventually carried out to achieve the predetermined level of precision (for
estimation problems) or level of significance (for hypothesis testing problems). Such
relevance is aptly validated by the recent contributions of [40] among other sources.

In the context of sequential experimental designs particularly addressed in
our paper, a stopping time (or stopping rule) is a way of determining the most
appropriate sample size to achieve the set goal in a statistical inference problem,
more specifically, to arrive at a preassigned level of precision (i.e., half-width)
in an FWCI problem or to achieve a minimized risk in an MRPE problem with
predetermined “cost” per data point (unit observation). Generally speaking, if the
stopping time (final sample size) is less than the theoretical optimal fixed-sample
size, we would be unable to achieve the level of precision required for the FWCI
problem or the minimum risk for the MRPE problem. On the other hand, if the
stopping time is greater than the optimal fixed-sample size, we would be wasting
unnecessary resources (e.g., time and manpower in the traditional sense, data storage
and data processing time and cost in the era of big data and cloud computing) by
oversampling to achieve the set goal in a statistical inference problem that could
have otherwise been addressed with less effort, resources, or cost. Therefore, it
is critical for one to be able to determine the most appropriate final sample size
(stopping time) that is “just right” by developing a carefully designed stopping rule,
on which our paper is focused, in order to most efficiently and effectively perform
our hoped statistical inference with the data collected.
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13. Jurečkovā, J., Sen, P.K.: Robust Statistical Procedures. Wiley, New York (1996)
14. Lai, T.L., Siegmund, D.: A nonlinear renewal theory with applications to sequential analysis I.

Ann. Stat. 5, 946–954 (1977)
15. Lai, T.L., Siegmund, D.: A nonlinear renewal theory with applications to sequential analysis

II. Ann. Stat. 7, 60–76 (1979)
16. Lombard, F., Swanepoel, J.W.H.: On finite and infinite confidence sequences. South African

Stat. J. 12, 1–24 (1978)
17. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.:

Big data: the next frontier for innovation, competition, and productivity. McKinsey Global
Institute report (2011). https://www.mckinsey.com/business-functions/digital-mckinsey/our-
insights/big-data-the-next-frontier-for-innovation

18. Mukhopadhyay, N.: Sequential estimation of location parameters in exponential distributions.
Calcutta Statist. Assoc. Bull. 23, 85–93 (1974)

19. Mukhopadhyay, N.: A consistent and asymptotically efficient two-stage procedure to construct
fixed-width confidence intervals for the mean. Metrika 27, 281–284 (1980)

20. Mukhopadhyay, N.: A study of the asymptotic regret while estimating the location of an
exponential distribution. Calcutta Statist. Assoc. Bull. 31, 207–213 (1982)

21. Mukhopadhyay, N.: Sequential estimation problems for negative exponential populations.
Commun. Stat. Theory Methods Ser. A 17, 2471–2506 (1988)

22. Mukhopadhyay, N.: Two-stage and multi-stage estimation. In: Balakrishnan, N., Basu, A.P.
(eds.) The Exponential Distribution: Theory, Methods and Application, Chapter 26, pp. 429–
452. Gordon and Breach, Amsterdam (1995)

23. Mukhopadhyay, N.: Probability and Statistical Inference. Dekker, New York (2000)
24. Mukhopadhyay, N., Datta, S.: On fine-tuning a purely sequential procedure and the associated

second-order properties. Sankhyā Ser. A 57, 100–117 (1995)
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Statistical Learning for Change Point
and Anomaly Detection in Graphs

Anna Malinovskaya, Philipp Otto, and Torben Peters

Abstract Complex systems which can be represented in the form of static and
dynamic graphs arise in different fields, e.g., communication, engineering and
industry. One of the interesting problems in analysing dynamic network structures is
monitoring changes in their development. Statistical learning, which encompasses
both methods based on artificial intelligence and traditional statistics, can be used
to progress in this research area. However, the majority of approaches apply
only one or the other framework. In this chapter, we discuss the possibility of
bringing together both disciplines in order to create enhanced network monitoring
procedures focussing on the example of combining statistical process control and
deep learning algorithms. Together with the presentation of change point and
anomaly detection in network data, we propose to monitor the response time of
ambulance service, applying jointly the control chart for quantile function values
and a graph convolutional network.

Keywords Network monitoring · Statistical process control · Control charts ·
Neural networks · Machine learning on graphs · Graph convolutional networks

1 Introduction

Network representation is fascinating. It conveys complexity by introducing a
relational structure between objects and enables the incorporation of various
information. The field was founded in 1735 when Leonhard Euler solved the
Königsberg bridge problem, and since then, network science has developed into
a significant area of study. The broad interest of the statistical community in
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graph-based data analysis arose in the last century with the development of Erdös-
Rényi-Gilbert model [1, 2] introducing a probabilistic view on the problem. Another
significant factor in the growing popularity of networks is the availability of
extensive data sources. The present era of Big Data provides a unique opportunity to
gain remarkable insight into molecular, social, economic and many other structures
(cf. [3–5]). Consequently, it shifts perspective to new analytical methods, which are
not solely developed in the traditional statistical framework but also involve recent
inventions in machine learning. Although the integration of artificial intelligence in
network data analysis has achieved impressive results, the research in this area is
in its early stages. Many existing machine learning algorithms cannot be applied
directly to graphs because of their specific structural properties. To be precise,
a standard vector representation of graphs does not exist compared to such data
types as images or audio, which can be defined on regular lattices. This and
other aspects related to the methods’ generalisation and their evaluation challenge
the development of machine learning approaches for network data but also offer
the possibility to identify and unify the benefits of artificial intelligence and the
traditional statistical framework for analysing graph-structured data efficiently.

Considering dynamic networks, those which develop over time, and one of the
main interests in their study—the detection of anomalous behaviour, many powerful
techniques based on statistical inference exist to perform network monitoring.
However, the identification of the subsequent timestamp when the network system
started deviating from its target state is not a solution to the issue as the inspection
and possible improvement of the system are the following necessary steps to
undertake. If we decide to perform monitoring entirely by a machine learning
algorithm together with conducting the inspection step, we might encounter certain
obstacles. Possible problems include the detection speed, data amount, inter-
pretability and reliability, which remain poorly understood. Also, it will probably
overcomplicate the monitoring process, especially when the network is stable and
does not experience any sudden changes. However, a joint approach could combine
benefits from both classical and modern learning foundations and, as a result,
improve network surveillance and statistical learning in general. The expression
“statistical learning” is a broader term for defining the approaches to learn from
data, including algorithms based on artificial intelligence as well as methods that
are purely statistical (cf. [6]).

An example of a well-known monitoring tool from the classical statistical
framework is the control chart. It belongs to Statistical Process Control (SPC),
being an effective instrument for detecting process deviation from the in-control
or target state. Its universality and efficient technique to monitor the process online,
meaning in real time, cannot be easily outperformed by novel approaches. However,
as soon as a chart detects a change, often the investigation of a possible reason
happens manually. If we consider the surveillance of graph-structured data that can
be considerably voluminous and challenging to process in its raw format, the task to
identify the cause of the signal and, if applicable, to resolve the issue may become
extremely time-consuming. To improve the actions in the post-monitoring phase,
we propose an enhanced application of the control charts which, in case of a signal,
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is followed by a graph machine learning algorithm that can operate on graphs to
classify the cases, i.e., identify the reasons which led to the out-of-control state.

It is worth mentioning that the idea to extend the functionality of the control chart
by combining it with machine learning algorithms is already an existing approach.
Several publications propose different possibilities to bring together the two areas
and generally evaluate the usage of machine learning in SPC (cf. [7–13]). However,
the authors are not aware of the introduction to the topic from the point of network
data monitoring, which currently obtains rapidly growing attention.

In this chapter, we propose a monitoring method that consolidates the control
chart for quantile function values and a graph convolutional network. In Sect. 2
we introduce the mathematical definition of a graph, followed by the description
of the change point and anomaly detection problems with the respective literature
overview and the presentation of the control chart in Sect. 3. Section 4 focuses on
the advancements of the graph learning representation, including the description of
neural networks in general and graph convolutional networks. The simulation study
of monitoring compliance with the response time prescribed to ambulance services
is described in Sect. 5, bringing together SPC, graph theory and deep learning.
We conclude with a discussion of possibilities to expand the joint applications of
machine learning with the classical statistical tools and present several directions
for future research.

2 What Is a Graph?

A graph (interchangeably called “network”) G = (V ,E) is defined by nodes (also
known as “vertices”) vi ∈ V , where i = 1, . . . , |V | with |V | representing the total
number of nodes, and edges ei,j ∈ E with ei,j being an edge (also called “link” or
“tie”) between vertices vi and vj , j �= i. Usually, the network is defined by a binary
or weighted adjacency matrix A ∈ R

|V |×|V |. Two vertices are adjacent if they are
connected by an edge. If we consider a binary adjacency matrix, then Aij = 1,
otherwise, Aij = 0. In case of an undirected network, A is symmetric.

To illustrate these definitions, we design a small social network consisting of four
colleagues (Fig. 1, left side). Consequently, if we consider the graph representation
to display the interactions within this group, we would obtain a network positioned
in the centre of Fig. 1. In this case, we interpret the edges as connections between
two colleagues if they work on the same project. The same network can be expressed
in form of an adjacency matrix (Fig. 1, right side). Additionally, we can assign nodal
or edge attributes which are described by XV and LE so that xi defines attributes
of node vi and li,j contains attributes of edge ei,j . If the graph is weighted, we can
incorporate the weights as one of the edge attributes into LE or the representation
of A directly. For example, if we decide to create a weighted network of the case
presented in Fig. 1, the straightforward extension of our graph could be to include
the number of projects the colleagues work on jointly as the edge weight.
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Fig. 1 An example of a social network that consists of four colleagues (left side). In the centre, the
graph represents the dynamics between the colleagues, where an edge defines working in the same
project. Here, the vertex set consists of V = {v1, v2, v3, v4}, meaning v1 is the colleague A up
to v4 being the colleague D. Consequently, the edge set is defined as E = {e1,2, e1,4, e2,3, e3,4}.
On the right side is the representation of the social network as a binary adjacency matrix

Since graphs are powerful abstractions, there are numerous applications of them,
including semantic, transportation, document citation, protein-protein interactions
networks and many others (cf. [14, 15]). Consequently, the focus of the statistical
analysis of networks differs from concentrating on the descriptive properties of the
graph up to implementing inferential modelling and beyond.

To distinguish between a network as graph-structured data and the neural
network approach, we use a full name for the latter, e.g., “graph convolutional
network” or “neural network”.

3 Change Point and Anomaly Detection in Network Data

In this section, we demonstrate the application of network modelling and other
statistical approaches which enable us to analyse the graph-structured data over
time. To be precise, we discuss the change point and anomaly detection in network
data.

3.1 What Is a Change Point?

Network monitoring is a form of online surveillance procedure to detect a change
point when the network system starts deviating from a so-called in-control state,
i.e., the state when no unaccountable variation of the process is present. In other
words, consider s t = (s1(Gt), . . . , sp(Gt))

′ as a collection of p network statistics
which are derived from G at timepoint t . Following, let F0 be the in-control or
target distribution and Fτ the out-of-control distribution. We call τ a changepoint



Statistical Learning for Change Point and Anomaly Detection in Graphs 89

for a stochastic process st , if

st ∼
{
F0 if t < τ

Fτ if t ≥ τ
.

3.2 Methods for Network Monitoring

The approaches to monitor network data can be mainly subdivided into hypoth-
esis testing methods, Bayesian methods and scan methods. The first category is
dominated by the application of different forms of control charts, which represent
the leading SPC method. This graphical technique records over time the behaviour
of a control (or test) statistic, which is derived from one or more relevant process
characteristics. Figure 2 illustrates a typical control chart for monitoring process
mean, which includes a central line (CL) that defines the process average and two
horizontal red lines being the upper control limit (UCL) and the lower control
limit (LCL) [16]. When the process is in control, the control statistic is plotted
close to the CL within the area defined by the control limits. As soon as unusual
variability occurs, the observations start appearing on or outside the control limits.
This practice is known as “signalling”, meaning that the control chart “signals” an
out-of-control state, informing us about the need for an investigation of the process.
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Fig. 2 A typical control chart [16]
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There is a strong connection between control charts and hypothesis testing, as
it repeatedly tests at different points of time t the null hypothesis H0,t against the
alternative H1,t . If we are interested in monitoring the deviation of the network
statistics st from its expected value s0, then we specify

H0,t : E(s t ) = s0 against H1,t : E(s t ) �= s0 .

A hypothesis H0,t is rejected if the control statistic is equal to or exceeds the value
of the control limit.

Usually, the application of control charts is divided into Phase I and Phase II,
which have two distinct objectives. The data collected in Phase I serve as a baseline
for estimation of the parameters such as expected value and calculation of control
chart limits. In other words, we calibrate the control chart based on the observations
that were collected under the assumption that the process is in its target state. In
Phase II, we start monitoring the system, which is assumed to stay in control and
examine the functionality of the control chart in respect to detected anomalies, i.e.,
out-of-control states, and to false alarms—when no abnormality is presented but the
chart signals a change.

There are several ways to classify control charts. In terms of the number of
variables, there are univariate (c = 1) and multivariate (c > 1) control charts. It
is worth noting that for the second type, the LCL = 0 because the control charts are
typically based on distances from the in-control state. Thus, only the UCL has to
be computed. In the simulation study described in Sect. 5, we apply a multivariate
control chart for quantile function values. To be precise, we consider the control
chart introduced by Grimshaw and Alt [17]. Other examples of control charts
that involve the application of quantile function and recommendations about the
chart’s calibration can be found in [18–21]. To estimate quantile function values
of a random variable at the time point t , we need to obtain a sample of respective
observations. In other words, the choice of a control chart for quantile function
values indicates that outcomes from a specified period of the random variable are
aggregated at each timestamp. In our case, we are interested in the response time of
ambulance service, meaning we derive sample quantile function values of interest
exactly from this quantity. Although we employ only one process characteristic, the
control chart is a multivariate chart due to the specification of two quantile values
(i.e., c = 2) for the calculation of the test statistic in this application.

For both univariate and multivariate control charts there exist various examples
of applications in network surveillance. For instance, McCulloh and Carley [22]
monitor the topology statistics of military networks applying the Cumulative Sum
(CUSUM) chart. The Shewhart and Exponentially Weighted Moving Average
(EWMA) charts were used by Wilson et al. [23] in combination with the dynamic
Degree-Corrected Stochastic Block Model (DCSBM) to generate the networks and
then perform surveillance over the Maximum Likelihood (ML) estimates. The
application of EWMA and CUSUM to degree measures for detecting outbreaks
on a weighted undirected network was introduced in [24]. Sparks and Wilson
[25] detect communication outbreaks by designing an adaptive EWMA control
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chart. Malinovskaya and Otto [26] apply multivariate EWMA (MEWMA) and
CUSUM (MCUSUM) together with the Temporal Exponential Random Graph
Model (TERGM) and detect the beginning of the national lock-down period due to
the COVID-19 pandemic by monitoring daily flights in the United States. Farahani
et al. [27] evaluate the combination of the former charts used with the Poisson
regression model for monitoring social networks. An overview of further control
chart-based studies can be found in [28].

Regarding other hypothesis testing methods, Azarnoush et al. [29] propose
monitoring network attributes instead of measures derived from its connectivity
structure applying a logistic regression model and a likelihood-ratio test. Another
method that shares similar assumptions as Azarnoush et al. [29] and incorporates
vertex attributes is described in Miller et al. [30].

The Bayesian framework presented by Heard et al. [31] applies a two-stage
approach using control chart limits based on a Bayesian predictive distribution. This
technique concentrates on identifying anomalous behaviour between pairs of nodes
(stage 1) which later are monitored as a sub-network (stage 2). Technically, for
each pair of vertices, a communication trend is developed with the increments of
the process following a Bayesian probability model. The node pair is considered
anomalous if the p-value, which is derived throughout time, falls below the defined
threshold (e.g., 0.05). Scan-based monitoring is known in the engineering literature
as “moving window analysis” and is based on the concept of scanning a particular
region of data by calculating a standardised metric for each window. This idea is
applied in Priebe et al. [32] for detecting anomalies in the directed graphs (digraphs).
Woodall et al. [33] provide a broader discussion of these methods.

3.3 How Can We Specify Anomaly Detection in Terms of
Network Monitoring?

It is often the case that a monitoring statistic is aggregated from several observations
which were collected within a specific time frame. That means, if the change point
is detected, it is possible that only a few samples were anomalous and the rest not.
Thus, we would need to perform anomaly detection as a postprocessing step to
resolve a possible issue in the network system.

It is worth mentioning that there is no unique definition of the problem “anomaly
detection”. Akoglu et al. [34] use “change point detection” as a synonym for the
anomaly detection problem for dynamic graphs, emphasising the existing difference
between methods for static and temporal graphs in the survey. On the contrary,
Ranshous et al. [35], who also provide an extensive methodological overview,
introduce the change point detection as a subcategory of anomaly detection problem.
The reason for the considerably different points of view is that the meaningful
definition can only be established after a context and particular application are
specified, otherwise, the interpretation is ambiguous. Here, under “anomaly” we
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understand an abnormal activity being a sudden and a significant change in the
interaction patterns of a network [36]. Consequently, “anomaly detection” defines
the task to find the networks which significantly differ from the majority of the
reference networks and, if applicable, to ascertain the type of anomalous behaviour.

In contrast to the introduced definition of an anomalous observation in form
of a whole graph, we can also define the anomaly detection problem in terms of
edges or vertices. In other words, the aim is to find a subset of nodes/edges such
that every element in this subset presents an uncommon evolution compared to
other nodes/edges in a network. Another possible task is to identify anomalous
subgraphs. Recent advancements in the area of machine learning on graphs led to
impressive results in solving the specified problems by applying the graph convo-
lutional network (GCN) framework (cf. [37–39]). However, to extract necessary
information and provide substantial results, the neural network needs the graph
data to be constructed as a set of low-dimensional learned continuous vectors
(called “embeddings”) without neglecting the relational structure and corresponding
attributes. This task can be fulfilled by the graph representation learning techniques,
which are briefly discussed together with the GCN in the following section.

4 Graph Representation Learning

Undeniably, the hand-engineered graph statistics s t are useful in analysing the
graph-structured data in terms of interpretation and computational costs. However,
the manual selection of which features should be incorporated into the metrics, and
further determination of statistics can be a time-consuming process. Moreover, this
approach is restrictive because neither the selection of features nor metrics can be
adapted through a learning process, which crucially constrains the effectiveness
of machine learning-based algorithms. An alternative that encodes the network
structure compactly and without losing any relevant information is Graph Repre-
sentation Learning (GRL). In contrast to conventional methods, where we see the
selection and design of graph statistics as a preprocessing step, GRL techniques
regard the problem to learn embeddings as a machine learning task. To be more
precise, the goal is to learn and optimise a mapping that embeds vertices, edges
or entire (sub)graphs as points in a low-dimensional vector space R

d such that
geometric relationships in this latent space reflect the structure of the initial graph
[40]. Subsequently, the learned representation can be used as input for the main
machine learning task, for example, classification. Hamilton [41] comprehensively
reviews traditional as well as modern learning approaches over graph-structured
data.

If we consider node embedding, the main purpose is to find a projection

fΘ : vi → zi ∈ R
d ,
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where d 
 |V | and zi = {z1, z2, . . . , zd } represents the embedded vector
that captures the graph position of node vi and the structure of its local graph
neighbourhood, and fΘ is a mapping function parametrised by Θ . Depending on
the embedding method, the incorporation of edge and nodal attributes into the latent
representation zi of the node vi is also possible. Further encoding techniques which
do not only focus on node representation together with the discussion of recent
challenges in GRL can be found in [40, 42–44].

4.1 Shallow Embedding Methods

Shallow embedding approaches define the “encoder” mapping function f as an
embedding-lookup. In this case, the set of trainable parameters is optimised directly,
meaning that Θ = Z, with Z ∈ R

d×|V | being a matrix, where each column defines
node embeddings zi for each vertex vi . The best-known techniques are either based
on matrix factorisation (e.g., Laplacian eigenmaps) or random-walk statistics (e.g.,
DeepWalk and node2vec) [40]. However, shallow embedding approaches have some
considerable limitations. The first issue is that there is a unique embedding for each
node in the graph, meaning that no parameters are shared across vertices resulting in
the absence of generalisation. Another problem is the ability to generate embeddings
only for nodes that were present during the learning process. That means the graph
structure should remain unchanged for the method to work correctly, which is highly
unrealistic in many applications. To overcome these limitations, an alternative
framework was proposed, which is explained in the next section.

4.2 Graph Convolutional Networks

To understand what graph convolutional networks are, it is important to define
what “deep learning” and “neural networks” mean. “Deep learning” is a group of
machine learning algorithms that can learn gradually a large number of parameters
in an architecture composed of multiple non-linear transformations. An important
example of these is neural networks, which we discuss subsequently.

4.2.1 Feedforward Fully Connected Neural Networks and Convolutional
Neural Networks

Artificial neural networks represent a wide class of advanced computational models
whose (often multi-layer) structure was initially inspired by the biological brain,
although the current understanding and development of deep learning algorithms go
beyond this neuroscientific perspective [45].
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Fig. 3 A feedforward neural network consisting of four fully connected layers (left side) and the
computation of a value for the neuron j in the first hidden layer (right side). For simplicity, the bias
term is not included

In Fig. 3 we have an example of a simple feedforward neural network consisting
of four fully connected layers. Each layer is composed of separate processing
elements that are known as “neurons”. Here, each neuron in one layer is connected
to every neuron in the subsequent layer. Regarding Fig. 3, the input layer (yellow)
has three neurons, the two consecutive hidden layers (grey) have four neurons, and
the output layer (blue) consists of one neuron. The goal of a neural network is to
process the incoming data that are entered as the input layer up to the output layer,
where a corresponding result known as the target (e.g., a class label) is returned.

The right side of Fig. 3 illustrates calculations for obtaining a value of a particular
neuron in a hidden layer. The input Ij of the neuron j corresponds to the weighted

sum (applying the weights w(1)ij , where the (1) subscript refers to the layer being
calculated, i defines the input neuron and j describes the hidden layer neuron)
of values from neurons in the previous layer. Next, a non-linear function ω(·)
also known as “activation function” is used, with the final output of the neuron
j being Oj = ω(Ij ). To minimise the error between the desired and computed
outputs in the final layer of a neural network, the parameters (in case of Fig. 3,
the weights displayed on the arrows connecting respective neurons) are estimated
during the training phase. A general overview of methods, including the principles
of constructing and training a neural network model, can be found in [46].

In terms of graphs, the adaptation of such algorithms would enable us to generate
a generalised representation of nodes that would depend on both the structure of
the graph and additional feature information. The pioneer framework is known as
“Graph Neural Networks” (GNNs) [47] which establishes the idea of including the
neighbourhood information of a node into its latent representation, applying neural
message passing form. The earliest GNN variations were limited in covering edge
features and also were restricted in the choice of trainable parameters. Consequently,
many advanced models arose, one of the examples being Graph Convolutional
Networks (GCNs) [48]. To facilitate the understanding of the GCN, we explain first
how a conventional Convolutional Neural Network (CNN) works, using the most
popular data format they are applied on, namely images.
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Consider a binary classification of the letters into vowels and consonants.
Figure 4 provides a schematic illustration of a CNN for this machine learning
task. First of all, our input is an image displaying the letter “A”. Following, to
start extracting necessary features for learning whether this letter is a vowel or a
consonant, we apply a convolutional layer that is represented by four filters (also
known as “feature detectors” or “kernels”) with different weights of size 5 × 5.
These filters are applied sequentially to the image, sliding over all pixels and
performing convolution of the filter weights and respective neighbouring pixels.
After the introduction of nonlinearity by using a suitable activation function (this
happens after each layer in the neural network), our interim output consists of four
feature maps combined into a single three dimensional representation. As you might
notice, the width and height of our initial image do not coincide with the size
of the new output. The reason is the standard application of a pooling operation
after the convolutional layer that reduces the size of the produced feature maps,
accelerating the data processing and affirming some of the detected features. Next,
we have another convolutional layer, this time with five filters of size 3 × 3 × 4.
The convolution is performed in the same way as in the previous layer, taking into
consideration that the kernel size must be adjusted to the size of the previously
produced interim output. As result, we obtain five feature maps connected into a
single tensor. Subsequently, the convolutional operations are followed by the usage
of an activation function and pooling operation (these steps are not represented in
Fig. 4 due to the space limitation).

.

.

.

Fig. 4 An example of a convolutional neural network solving a binary classification task. The last
four layers coincide with the neural network architecture presented in Fig. 3. The input to this part
of the network is a long array, which is obtained by flattening the tensor consisting of final feature
maps
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Now feature extraction is completed, and we come to the classification step. To
proceed, we need the final feature maps to have a one-dimensional form due to the
subsequent application of fully connected layers. To obtain the desired dimension,
we apply the operation called “flatten”, reshaping the obtained tensor to an array
(the yellow neurons in Fig. 4). The motivation of applying exactly this structure for
determining the class label is the global consideration of the extracted features: the
information flow between the fully connected neurons enables the mixing of signals.
In contrast, the convolutional layers are particularly useful for data preprocessing
due to their focus on the regions of adjacent pixels. Reaching the output layer of the
CNN in Fig. 4, as we have a binary classification, only one neuron (coloured blue) is
provided, which would return a class label, meaning the letter “A” is either a vowel
or a consonant.

Coming back to the network structure, we wish to exchange the image with a
graph input. Consequently, instead of pixels, we consider nodes and their local
neighbourhoods. However, a graph is an example of non-Euclidean data [49],
therefore, the CNN cannot be directly applied to network data. Thus, the field
“geometric deep learning” has emerged, whose aim is to develop deep learning
models for irregular data structures [50]. Examples of such models are the GNNs
and the GCNs.

Both GNNs and GCNs belong to a more general category which is Message
Passing Neural Networks (MPNNs) [51]. For readers who are interested in other
neural network architectures which operate on graphs, we suggest Wu et al. [52] as
a reference.

4.2.2 Application Phases of Graph Convolutional Networks

The GCN framework generalises the concept of CNN that is especially popular in
image processing, as shown in the previous section. The application of GCNs is
structured into two main phases: message passing phase and readout phase [53].
The goal of the first phase is to propagate the information across the nodes in order
to create a new representation of the whole graph. In the readout phase, the obtained
graph representation is used to solve a particular task. As we can see, there are direct
similarities with the description of two steps defined for any GRL techniques at the
beginning of Sect. 4.

In the first phase, consider k = 0, . . . ,K to be the number of message passing
iterations. In fact, K equals the number of graph convolutional layers in the neural
network. Next, we define a set N(i) to contain the neighbouring nodes of vi . In
contrast to an image input as presented in Fig. 4 where each pixel has a constant
number of neighbouring pixels (see the blue areas), the size of the sets N(i) may
vary for each node as shown in Fig. 5. Similar to the feature map as a latent
representation of an image, in the GCN we have a collection of feature vectors
H (k) ∈ R

d×|V |, where h
(k)
i defines a d-dimensional hidden embedding of node

vi . At each iteration k, h
(k)
i incorporates the aggregated information (called the
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Fig. 5 An example of the procedure to generate the embedding z1 of the vertex v1 during the
message passing phase. The attributes of node vi are specified by xi . The setsN(3),N(4) andN(7)
define the neighbourhood of the nodes v3, v4 and v7, respectively. The δ(k) functions correspond to
the message aggregation functions, the φ(k) functions are the message creation functions and the
γ (k) defines the update functions

“message”) from N(i). As it can be seen in Fig. 5, initially at k = 0 h
(0)
i = xi

that represents the input features of the node vi . For example, considering node v1
in Fig. 5, we iterate the aggregation and update process of the node embedding for
k = 2, so that the final learned representation is z1 = h

(2)
1 , which includes the

information about the 2-hop neighbourhood.
To summarise, we have a step that creates a message for a vertex vi based on the

knowledge about N(i)

mk
i = δk

(
φk(hk−1

i ,hk−1
j , li,j ) : j ∈ N(i)),

where δk defines a differentiable, permutation invariant function of the kth con-
volutional layer, e.g., sum or average, and φ(k) is a differentiable function that
creates messages between the vertex i and the nodes in N(i), incorporating the
edge features li,j . For instance, this could be a multi-layer perceptron or a complex
filter function defined by Gaussian mixture models. In Fig. 5, these functions are
represented by grey boxes. Similar to a filter in the CNN displayed in Fig. 4, the
weights of the function φ(k) stay unchanged for the whole input in the layer k. The
message passing is followed by the update step

hki = γ k(hk−1
i ,mk

i ),

where γ specifies another differentiable function–the activation function such as
rectified linear unit (ReLU).
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In the readout phase, we aggregate node features from the final iteration to obtain
the entire graph representation hG

hG = ζ(hKi , vi ∈ V ),

where function ζ should satisfy the same conditions as δ, e.g., being invariant
to graph isomorphism. An example could a particular pooling operation. This
representation in then used for the final task, for instance, graph classification.

Depending on the types of graph convolutions (the creation and propagation of
messages), we can categorise GCN into spectral-based and spatial-based models.
The GCNs defined in the spectral domain (e.g., the Chebyshev Spectral GCN) are
based on the graph Fourier transform, starting with the construction of the frequency
filtering, whereas the spatial domain methods are specified directly on the graph,
operating on groups of spatially close neighbours [54]. In the following section, we
apply a spatial-based GCN with the Gaussian mixture model convolutional operator.

5 Simulation Study

To illustrate a possible combination of classical statistical tools together with
machine learning algorithms for creating an enhanced network monitoring proce-
dure, we consider an important and complex problem: the compliance of ambulance
stations with the maximum allowed response time.

5.1 Motivation

There are examples of networks where failure could lead to irreparable harm. These
networks can be defined as “system-relevant”, where particular nodes represent
ambulance or fire and rescue stations. To guarantee proper functionality, these
services are obliged to satisfy a strict policy regarding the time limit for arriving
at the accident epicentre. For instance, in emergency medical cases, the ambulance
must reach the patient without exceeding the legally prescribed response time. Its
fundamental part is appointed to the travelling time and in some places is not
allowed to exceed 12 min in 95% of cases. The monitoring of the compliance with
this rule can be performed by using the control chart for quantile function [17].
One of the potential choices is to create a test statistic based on the 0.95 and 0.97
quantiles so that the monitoring procedure corresponds to an early warning system
and possible deviation towards the maximum limit is detected quicker. However, in
case of a signal, it remains unclear what led to its occurrence unless we inspect the
network state. One of the supportive methods in this task would be a GCN which
can classify the network states in predefined categories, providing the first insight
into a possible issue. This motivation guides the following application demonstrated
on the simulated graph-structured data.
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5.2 Network Definition

Consider a simplified road network shown in Fig. 6 whose topology is based on
an existing city map. It can be graphically represented by |V | = 18 vertices and
|E| = 25 edges. To differentiate between an ambulance node and a patient region,
we introduce the vertex attribute “Role”. We assume that the ambulance station
can serve only one patient at once and that two fixed vertices in total define the
ambulance stations. Also, which patient needs help from an ambulance is decided
randomly. Thus, we include another vertex attribute “Involvement in an accident”
that describes whether an ambulance station provides help (in this case, the value
is set to 1) or is free (the value equals 0). Considering the patient nodes, as soon as
the patient is involved in an accident, the value is set to 1. It remains 0 if no help
is needed or obtained from the ambulance service. Both attributes are contained in
XV ∈ R

2 and can be found in Table 1.
Regarding the edges, we model two characteristics LE ∈ R

2 that reflect distinct
types of roads. continuous attribute defines travelling time in minutes (min) LE1 (we
select 1, 2, 3 and 5 min to be the expected values for passing respective roads),
which is generated by applying lognormal distribution with different μ and σ . The
selected values of μ and σ parameters displayed in Table 1 reflect the target state
of the network. The second attribute LE2 defines the level of construction works on
the roads. Here the in-control state is dominated by the attribute with values 0 or 1,
which means no or minor roadworks are observed.

Fig. 6 An example of a small road network which is derived from an existing city map on Stamen
Maps with two arbitrary placed ambulance stations (left) and its undirected graph representation
(right). Different colours of edges replicate the travelling time along the road, where a darker colour
means longer travelling time. The red nodes define ambulance stations

http://maps.stamen.com
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Table 1 Edge and nodal attributes

Type Attribute Value

Edge Travelling time (in minutes) E(1) ∼ ℱ(0.1, 0.052)

E(2) ∼ ℱ(0.7, 0.052)

E(3) ∼ ℱ(1.1, 0.052)

E(5) ∼ ℱ(1.6, 0.052)

with ℱ(·) = Lognormal(μ, σ 2)

Level of road blocking due to construction work Free: 0

Low: 1

Middle: 2

High: 3

Node Role 0: Patient

1: Ambulance

Involvement in an accident 0: No involvement

1: Help is provided, obtained or
needed

5.3 Generation of the Response Time Data

For monitoring the travelling time from the ambulance station to the patients, we
make some assumptions considering the simulation of the response time data. Daily,
as soon as there is a patient call with the need for help, the travelling time of
the ambulance which is closer to a patient is registered together with the current
network situation. Sometimes, the number of accidents can be higher than one at
the same time, so that the network situation is captured once in this case. However,
if the network is in control, the maximum number of simultaneous accidents equals
two, otherwise, there exists a personnel shortage. We assume that the ambulance
follows the most efficient route, being the shortest path in terms of travelling
time between the ambulance station and the patient. For its calculation, we apply
Dijkstra’s algorithm.

By the end of the day, the recorded response times are collected so that the 95 %
and 97 % quantiles can be derived for defining the test statistic. If the test statistic
exceeds the control limit, the collected network data are provided to the trained
GCN that classifies the scenes into four different groups: a stable condition of the
road network (label 0), an unstable condition due to the manpower shortage (label
1), an unstable condition due to the construction works (label 2) and an unstable
condition due to the traffic jams (label 3). It is important to include the label 0
graphs which dominate in the definition of the in-control state for the identification
of possible false alarms. To proceed with the application of the control chart itself,
we first will explain how different label groups were designed.
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5.4 Road Conditions

To discuss the four condition classes, we should concentrate on the problem from
the angle of what the neural network should learn in terms of the main differences
between the specified scenarios. Considering the reliable state, the neural network
needs to distinguish between the problems on the roads which affect the travelling
time so that it potentially leads to the out-of-control case and which not, as the
patient was still reached on time. It means, despite the obstacles on the roads that
can be modelled by increased values of edge attributes, each time the patient was
reached by ambulance in or under 12 min (simply because the route to the patient
was not affected considerably), the graph obtains the label “0”.

The class with the label “1” defines the problem of manpower shortage, meaning
the reason for longer travelling times is due to the imbalance in the capacity of
the ambulance service and the number of patients who needs help. In this case, we
generate a higher number of patients, i.e., more nodes with “Role = 0” are involved
into an accident ( XV2 = 1). As soon as both ambulance stations provide help
and some further patients are not treated yet, the travelling time to these nodes is
calculated as E(LE1 ) ·2 · 2, where E(LE1 ) defines the expected value of edge feature
“Travelling time” multiplied with the number of roads to pass on average and the
need to travel first to the ambulance station and then to the patient. In this case, the
network is out-of-control due to the considerably increased travelling time to the
third and further patients.

Creating the unreliable situation on roads due to construction works (label 2), a
particular group of roads which come from one or several distributions considering
the travelling time is selected and higher values of the second edge attribute LE2 are
assigned to these roads. Thus, theμ and σ parameters are changed so that the higher
attribute value corresponds to a longer travelling time along the road.

For modelling a traffic jam (label 3), LE2 is set low (0 or 1), and some values
describing the travelling time of specific roads are generated from a different
distribution that implies their increase. The examples from the groups with labels 2
and 3 do not necessarily lead to an out-of-control state if the patients are still reached
under the critical time prescription.

After defining the network composition and specifying possible in- and out-of-
control scenarios, we can collect the quantile observations for the calibration of the
control chart and the graph representations of different classes in order to train the
neural network.

5.5 Calibration of the Control Chart for Quantile Function
Values

To calculate daily 95% and 97% quantile values, we randomly simulate between
10 and 100 accidents which are repeatedly assigned to different patients. Next, the
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shortest paths between an available ambulance station and the selected patient are
found and saved. Using the control chart presented in [17], the test statistic is defined
as follows

at = (Q̂t − Q0)
′Σ−1

0 (Q̂t − Q0),

where Q̂t = (
Q̂0.95,t , Q̂0.97,t

)′ and the length of Q̂t is denoted by c.
In Phase I, the expected value Q0 is estimated by the mean Q̄ and Σ0 by the

sample covariance matrix S with 2500 in-control samples. For sufficiently large
number of samples, at follows the χ2 distribution with c degrees of freedom, if
the sample at time point t corresponds to the specified in-control state. Hence, the
control limit can be defined by χ2

α(c), selecting α with respect to the in-control
average run length (ARL) using α = 1/ARL. Here, we choose ARL = 1000,
therefore, χ2

0.001(2) = 13.816.

5.6 Construction and Training of the Graph Convolutional
Network

In this simulation study, we are interested in the classification of collected graphs
that belong to a change point. The goal is to assign a given graph to one of
the predefined categories by learning the feature representation from provided
training data which contain class labels. Consequently, we have to define the GCN
architecture so that it can solve the specified task. Also, our graph convolutional
operator should be capable to integrate the node, as well as edge attributes into the
message passing process because they encompass valuable information about the
network’s condition.

Figure 7 presents the architecture of the applied GCN. The first three graph
convolutional layers, each encoding the input in a feature vector of size 18 × 10,
perform three propagation steps and effectively convolve the 3rd-order neighbour-
hood of every node. We chose the Gaussian mixture model convolutional operator
described in Monti et al. [55] which is implemented in the programming framework
provided by Fey and Lenssen [56]. Each convolutional layer is followed by the
ReLU activation function. Afterwards, the dropout operation is applied, which
randomly sets the processed input units to 0 with a specified frequency ξ (in our
case, ξ = 25%) during the training time, preventing the model from overfitting, i.e.,
learning from the training dataset without its generalisation. Before the following
convolution begins, we normalise the inputs across the features; this technique is
known as “layer normalisation” (cf. [57]).

After the message passing phase, a readout layer that is defined by a global
mean pooling operation transforms the latent vertex representations to a graph
representation as a fixed-size vector. Here, the interim output is averaged across each
hidden node dimension so that the graph-level output size is 1×10. Next, we attach
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Fig. 7 The schematic architecture of the applied GCN. Each block represents a single layer where
the first stage (blue blocks) contains graph convolutional layers with layer normalisations for
learning the feature representation and the second stage (yellow, orange and green blocks) consists
of dense layers for classification

two fully connected layers to increase the ability to learn a complex function and
solve the classification task. Consequently, the second layer predicts the final class
probability distribution of size 1 × 4 followed by the softmax activation function.
We cannot apply the ReLU activation function as it provides continuous output in
range [0;∞]. In the final stage, we need the output to be in the finite range [0; 1]
for interpreting its results as probabilities, with the highest value corresponding to
the predicted class.

After defining the architecture of the GCN, we can start with training or fitting
the neural network. This procedure involves the usage of a training dataset to update
the model parameters (weights and biases) so that we obtain a reliable mapping
between input (graph) and output (class label). For the training dataset, we generate
2500 graphs. It is important to avoid class imbalance during the training process,
therefore, each label is represented by the same number of examples. Another vital
part of the training process is the loss function. It calculates the difference between
the computed output from the input data (this process is known as “forward pass”)
and the value provided as ground truth. Here, we choose the negative log-likelihood
loss, which is appropriate for a multiclass classification problem. It defines the
objective function that we minimise by updating the model parameters.

The results that are provided by the loss function are applied in the optimisation
step of our parameters, which are based on gradient computation (known as
“backpropagation” or “backward pass”). The negative log-likelihood is minimised
using the Adaptive Moment Estimation (Adam) function [58] with a learning rate
of 10−3.
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The execution of the backward and forward pass together defines one iteration.
During one iteration, we usually pass a subset of the dataset known as “mini-batch”.
In case we decide to pass all data at once, it is called “batch”. Here, we train
the neural network using the mini-batch with size 16, i.e., in every iteration, 16
graphs are processed together. As soon as the entire dataset was passed, one epoch
is completed.

As a performance metric that supports the selection of the best model, we
compute the weighted F-score after each epoch. Figure 8 (left side) illustrates the
training and validation history of the applied GCN. To test how well the network
generalises to unseen data, we apply the holdout validation method. The validation
set, which contains more complex samples, i.e., new examples which belong to the
classes but are not included in the training dataset, was designed with a size of 800
graphs.

In order not to overtrain the network, we use early stopping after the 100th epoch
was reached with respect to the F-score improvement of the validation dataset,
which terminates the training process if the value has not increased within ten
epochs. We find the optimal model to be at epoch 101 with 93.4% and 87.5% the
weighted F-score of the training and the validation dataset, respectively. However, to
see whether the model operates correctly, we need to test it on a new dataset coming
from the monitoring procedure.

Fig. 8 The training progress (left) shown on the training (blue curves) and validation sets (green
curves). The confusion matrix (right) presents the performance of the trained GCN in Phase II. The
numbers on the diagonal define the proportions of correctly classified examples (compared to the
size of the complete test dataset), and the off-diagonal entries correspond to the proportions of the
misclassified graphs
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5.7 Phase II Analysis

Here, we combine the implementation of Phase II with testing the trained GCN. We
define the length of the monitoring period to be 100 days, where the network in the
first 30 and the last 10 days is considered to be in control. The out-of-control period
is designed in the remaining days, where the process is exposed to the personnel
shortage (10 days), excessive construction works (30 days) and increase of traffic
jams (20 days). After simulating the cases and calculating the quantiles, we obtained
the control chart presented in Fig. 9. In terms of potential false signals, there are
several points that are close to the control limit. The possible reason may be the
high variance in the in-control data. We can also notice that not all the test statistics
show the out-of-control state in the period when the network was exposed to an
increased number of traffic jams. However, they do not define missing signals; as
it was mentioned in Sect. 5.4, if the ambulance services were still able to reach the
patients within the allowed time, then no out-of-control state is given.

Normally, we would apply the neural network only in the out-of-control state for
gaining insight into the cause. Nevertheless, the primary aim here is to evaluate the
performance of the trained GCN to classify provided graph observations in general.
Hence, we create a test dataset using the data from Phase II displayed in Fig. 9, i.e.,
from the 100 generated days that include both in-control and out-of-control periods

Fig. 9 The control chart for quantile function values on a logarithmic scale. The horizontal red
line corresponds to the control limit. The green areas are designed by the label 0 cases, the dark
orange by the label 1, followed by the label 2 and 3. The incorporation of the graphs with different
properties such as construction works (triangular symbols) or traffic jams (orange coloured edges)
defines the availability of additional information to understand the reason of the detected change
point
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and examples from each of the four classes. As we can see in Fig. 8 (right side), the
GCN can almost flawlessly identify the classes 1, 2 and 3. However, class 0 seems
to be not well learned, possibly due to lacking clarity in its representation. Overall,
the model achieves the weighted F-score of 82.9% being an encouraging result.

6 Conclusion and Discussion

In many applications, treating the underlying data as a graph can achieve greater
efficiency. However, data representation in the form of graphs is still novel for both
machine learning and statistics. Hence, it is particularly important to use synergy
effects between two different statistical learning frameworks to develop efficient
and modern analytical approaches. In this chapter, we uncover the possibility to
bring together statistical process control and deep learning algorithms to monitor
graph-structured data.

Learnable models which operate on graphs are only a stepping stone on the path
toward a significant expansion in understanding the environment. Besides the topic
of how to unify both frameworks, from the statistical perspective, there are many
other open questions in this area. How to represent the graph data and convolve the
information in a unified form, how to identify a corresponding approach to a specific
problem, how to decide on the proportions of both fields and how to measure the
model’s performance: these and many other challenges are yet to be conquered.

It is a natural question to consider whether one could expand the use of
algorithms such as GCNs to encompass the whole monitoring procedure, omitting
control charts altogether. Although an appealing idea, the complexity of the model
required for real-world data, combined with the amount of training time necessary,
would severely limit the applicability of such an approach. Applying a hybrid
method allows us to take advantage of the efficiency of classical techniques
while using modern machine learning in order to specify more subtle network
characteristics, which normally require human-lead scrutiny to determine.

We believe that a better way to understand the relationship between both frame-
works is that machine learning is the logical next step in response to the growing
volume of data. Thus, it is beneficial to see the successes in artificial intelligence
application not as an attempt to replace the traditional statistical methods but as a
direction towards their enhancement, making statistics even more powerful.
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On the Robustness of Kernel-Based
Pairwise Learning

Patrick Gensler and Andreas Christmann

Abstract It is shown that many results on the statistical robustness of kernel-
based pairwise learning can be derived under basically no assumptions on the
input and output spaces. In particular, neither moment conditions on the conditional
distribution of Y givenX = x nor the boundedness of the output space is needed. We
obtain results on the existence and boundedness of the influence function and show
qualitative robustness of the kernel-based estimator. The present paper generalizes
results by Christmann and Zhou [11] by allowing the prediction function to take
two arguments and can thus be applied in a variety of situations such as ranking,
similarity learning and distance metric learning.

Keywords Kernel methods · Machine learning · Support vector machines ·
Robust statistics

1 Introduction

Stute [45, 46] showed the (universal) consistency of conditional U-statistics under
weak conditions. Based on these results [14] reused U-statistics in the field of
statistical learning theory and more precisely for the ranking problem. The present
paper is connected with these papers in the field of statistical machine learning from
a general point of a view. That is, for general pairwise loss functions and general
kernels.

As mentioned above, an example of pairwise learning is ranking based problems
that can be simplified to a situation where profiles of entities are given and have
to be compared against each other to find the order of these entities in a particular
case. For instance, an employer is interested in two candidates and wants to select
the “better” one for the company considering their applications and the experience
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of the employer from former employees. The same problem in another setting can
be found in a lot of fields such as insurance companies, banks, product marketing,
etc.

In the field of statistical machine learning theory, one approach is kernel-
based methods such as support vector machines, see, e.g., [47, 48] for classical
textbooks on this subject. The field of kernel-based learning methods has been
widely researched, we refer to, for instance [15, 16, 41, 44]. Kernel-based pairwise
learning methods were studied by e.g. [11]. They showed the statistical robust-
ness of pairwise learning methods in the sense of bounded influence functions
and qualitative robustness, as introduced by Hampel [28], Hampel et al. [29]
and generalized by Cuevas [17]. The difference compared to classic support
vector machines is that the loss function does not only have three arguments
(x, y, f (x)), where x is from the input space X, y from the output space Y
and the prediction f (x), but rather six x, y, x ′, y ′ as pairwise components –what
explains the modified name pairwise loss functions– and the predictions f (x) and
f (x ′).

In this article, we analyze several statistical robustness properties of kernel-based
pairwise learning methods based on pairwise loss functionsL(x, y, x ′, y ′, f (x, x ′))
that take five arguments with the real valued prediction function taking two
arguments f (x, x ′). This is an additional generalization compared to [11] as
the difference f̃ (x) − f̃ (x ′) = f (x, x ′) investigated in the mentioned paper
is a special case for a “bivariate” prediction function with f̃ being a suitable
function.

Other branches where the generalized theory discussed in this paper can be
applied are similarity learning and distance metric learning, see Example 2.4 and
for references see, e.g., [38], in the classification setting [24] and for results on
clustering [50]. The before mentioned ranking problem analyzed by Clémençon et
al. [14] yields the motivation to learn functions f (x, x ′) that induce ranking rules
r(x, x ′), hence deciding for x or x ′ depending on the sign of the value of f . The
context between similarity learning and ranking has been studied by, for instance
[9, 34].

Rejchel [39, p. 1375] investigated the ranking problem in a similar way, but
considered a uniformly bounded function class with f (x, x ′) = −f (x ′, x) or
parametrized ranking rules f (x, x ′) = θT (x − x ′) in the regression setting with
X = R

d,Y = R and parameter θ ∈ R
d ([40, p. 6]). In the context of online

learning, we refer to [25, 51] and for metric learning to [2, 7] and the references
cited therein.

Using shifted loss functions, see Definition 2.16, to tackle the robustness problem
for support vector machines in the case of heavy-tailed distributions was already
done by Christmann et al. [12] using an idea going back at least to Huber [31]
and is applied here in the context of regularized pairwise learning in order to
be able to compute prediction functions without any moment assumption on the
output variable Y . To be more precise, shifted loss functions are a technical tool
to avoid moment conditions for the conditional distribution of Y given X = x

without changing the estimator, if the estimator exists based on the unshifted loss
function.
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The paper is organized as follows. Section 2 introduces the necessary mathe-
matical prerequisites. Readers familiar with kernel-based pairwise learning can skip
this section. Section 3 presents the main results: a general representer theorem and
the robustness of the kernel-based regularized pairwise learning method. Section 4
gives a discussion and an outlook for further research topics in this field. Additional
theorems and lemmas, as well as proofs for our results are listed in the Appendix A.1
or Appendix A.2, respectively.

2 Mathematical Prerequisites

In this section we collect some definitions and results which are useful to study
regularized pairwise learning. If not mentioned otherwise, we equip topological
spaces (Z, τZ) with their Borel σ -algebras B(Z). For brevity we denote the set
of all Borel probability measures on a topological space (Z, τZ) as M1(Z) instead
ofM1(Z,B(Z)). We denote the set of all continuous bounded function f : Z → R

by Cb(Z).
As mentioned in the introduction, let the input space X, and the output space

Y, be topological spaces. Let (X, Y ) and (Xi, Yi), for i ∈ N, be independent and
identically distributed pairs of random quantities with values in X×Y and unknown
distribution P ∈ M1(X × Y). We denote the realizations of (Xi, Yi) by (xi, yi) for
i ∈ N. A data set is given by Dn = (

(x1, y1), . . . , (xn, yn)
) ∈ (X × Y)n. Please

note that we denote a data set as an n-tuple and not as a set because we allow that
not all data points are different.

We define the set of measurable functions f : Z → R by L0(Z). The set of all
measurable functions f : X × Y → R satisfying

∫ |f | dP < ∞, and therefore P-
integrable, is defined byL1(X×Y,P) (or short L1(P), if the domain is obvious from
the context) with P ∈ M1(X × Y). For all f ∈ L0(X × Y) that are almost surely
bounded, given a probability measure P ∈ M1(X×Y), we write L∞(X×Y,P) (or
short L∞(P)).

Definition 2.1 Let (X,A) be a measurable space and Y ⊂ R be a closed subset.
Then a measurable function L : (X × Y)2 × R → [0,∞) is called a pairwise loss
function or pairwise loss in short.

Example 2.2 An example of a pairwise loss function is given by Clémençon et al.
[14, p. 863] utilizing an auxiliary measurable function φ : R → [0,∞) satisfying
the following two conditions: φ(0) = 1 and φ(x) ≥ 1 for all x ∈ [0,∞). It is then
possible to define the loss function

L(x, y, x ′, y ′, f (x, x ′)) : = φ
( − sign

(
y − y ′) f (x, x ′)

)
,

with sign(0) := 0 and φ chosen as, for instance, the exponential function exp(x), the
function log2(1 + exp(x)) or the hinge loss function with max{0, 1 + x}. Replacing
the sign function by a differentiable surrogate function leads to the following
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“smoothed” pairwise loss function

Lσ (x, y, x
′, y ′, f (x, x ′)) := φ

( − tanh
(
σ−1(y − y ′)

)
f (x, x ′)

)
,

with an arbitrary small σ > 0.

Example 2.3 Another example for a pairwise loss function is the least squares
ranking loss used by Chen et al. [10, p. 55]

L(x, y, x ′, y ′, f (x, x ′)) := (y − y ′ − f (x, x ′))2,

with f (x, x ′) := f̃ (x)− f̃ (x ′) for a univariate prediction function f̃ : X → R.

Example 2.4 The advantage of learning functions with two arguments can be seen
in the similarity learning and distance metric learning, see, for instance [38].

In similarity learning functions f : X2 → R of the form f (x, x ′) = xTMx ′ with
M a matrix have to be learned, whereas in most methods in distance based learning
the functions have the form f (x, x ′) = (x − x ′)T N(x − x ′) with N a positive
semidefinite matrix.

Both functions cannot be expressed as a difference like in the example above
which emphasizes the further generalization in the present paper.

We now define several quantities we will need to introduce our kernel-based
pairwise learning.

Definition 2.5 Let L : (X × Y)2 × R → [0,∞) be a pairwise loss function,
P ∈ M1(X× Y), and P2 = P ⊗ P denoting the product measure of P.

(a) Then, for a measurable function f : X2 → R, the L-risk is defined by

RL,P(f ) := EP2

[
L(X, Y,X′, Y ′, f (X,X′))

]

=
∫

(X×Y)2
L(x, y, x ′, y ′, f (x, x ′))dP2(x, y, x ′, y ′).

(b) Given a data set Dn = (
(x1, y1), . . . , (xn, yn)

) ∈ (X × Y)n and the
corresponding empirical measure Dn = 1

n

∑n
i=1 δ(xi,yi), the empirical L-risk

is defined by

RL,Dn(f ) = ED2
n

[
L(X, Y,X′, Y ′, f (X,X′))

]

= 1

n2

n∑
i=1

n∑
j=1

L(xi, yi , xj , yj , f (xi, xj )).
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(c) The minimal L-risk

R∗
L,P := inf

f∈L0(X2)

RL,P(f )

is called the Bayes risk and a measurable minimizer fL,P : X2 → R is called a
Bayes decision function, if it exists.

Please note that Dn denotes a data set and Dn denotes the corresponding empiri-
cal measure. The random empirical measure Dn is given by Dn := 1

n

∑n
i=1 δ(Xi,Yi).

In later sections of this paper, we will need finite L-risks which can be achieved
by using bounded and measurable kernels. Furthermore, shifted loss functions,
which will be defined in Definition 2.16, help us to avoid any moment conditions
on Y and therefore allow us to define and investigate our pairwise machine learning
methods for all probability measures P.

Remark 2.6 If (X, τ ) is a Polish space (with topology τ ) and Y ⊂ R is closed, then
X×Y is a Polish space and so is (X×Y)2 as a countable product of Polish spaces,
see, e.g., [32, p. 13]. Hence we can split up P into the conditional probability of Y
given X and the marginal distribution PX, i.e.,

RL,P(f ) =
∫

(X×Y)2
L(x, y, x ′, y ′, f (x, x ′))dP2(x, y, x ′, y ′)

=
∫

X

∫

Y

∫

X

∫

Y
L(x, y, x ′, y ′, f (x, x ′))P(dy|x)PX(dx)P(dy ′|x ′)PX(dx ′),

see [20, Section 10.2].

The following definition and remarks provide a very short introduction to
reproducing kernel Hilbert spaces, see [3] for a classical textbook on this subject,
in order to motivate the regularized pairwise learning method described shortly
thereafter.

Definition 2.7 Let X �= ∅ and H be an R-Hilbert space over X2 containing
functions mapping from X2 to R.

(a) A function k : X2 × X2 → R is called a kernel on X2 if there exists an R-
Hilbert space H and a map 	 : X2 → H such that for all (x, x ′), (x̃, x̃ ′) ∈ X2

we have

k
(
(x, x ′), (x̃, x̃ ′)

) =
〈
	(x̃, x̃ ′),	(x, x ′)

〉
H

in R=
〈
	(x, x ′),	(x̃, x̃ ′)

〉
H
.

(b) A kernel k : X2 ×X2 → R is called bounded if

‖k‖∞ := sup
(x,x ′)∈X2

√
k((x, x ′), (x, x ′)) < ∞.
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(c) A function k : X2 × X2 → R is called a reproducing kernel of H if we have
k
(
(·, ·), (x, x ′)

) ∈ H for all (x, x ′) ∈ X2 and the reproducing property

f (x, x ′) = 〈
f, k

(
(·, ·), (x, x ′)

)〉
H

holds for all f ∈ H and all (x, x ′) ∈ X2.
(d) The space H is called a reproducing kernel Hilbert space (RKHS) over X2 if

for all (x, x ′) ∈ X2 the Dirac functional δ(x,x ′) : H → R defined by

δ(x,x ′)(f ) := f (x, x ′), f ∈ H,

is continuous.
(e) The canonical feature map of the RKHS H with kernel k : X2 × X2 → R is

defined as follows

	 : X2 → H,	(x, x ′) := k
(
(·, ·), (x, x ′)

)
.

An RKHS H is a Hilbert space and is therefore endowed with an inner product
〈·, ·〉H : H × H → R. The associated norm is denoted by ‖ϕ‖H := √〈ϕ, ϕ〉H for
all ϕ ∈ H.

It is well-known that, if k : X2 × X2 → R is a bounded and measurable kernel
with RKHS H, 	 : X2 → H the canonical feature map and f ∈ H a function, then
for all (x, x ′) ∈ X2

∥∥	(x, x ′)
∥∥
H ≤ ‖k‖∞ (1)

∥∥	(x, x ′)
∥∥∞ ≤ ‖k‖2∞ (2)

‖f ‖∞ ≤ ‖f ‖H ‖k‖∞ , (3)

where we used ‖k‖∞ defined in Definition 2.7 (b).
It can be shown that there is a one-to-one correspondence between reproducing

kernel Hilbert spaces and kernel functions, see, e.g., [44, Theorems 4.20 and 4.21].
Computing the infimum of the risk over the set of all measurable functions for

empirical distributions Dn instead of P (as defined in 2.5) is in general not doable and
might lead to overfitting. In order to reduce the danger of overfitting, one approach
is to introduce a regularizing term to penalize such estimated predictor functions.
Another modification that can be made is to restrict the set that the risk is minimized
over from all measurable functions to a reproducing kernel Hilbert space (RKHS)
H of a measurable kernel k : X2 × X2 → R in order to simplify the computation.
If a universal kernel, such as the Gaussian RBF or the Laplacian kernel, is chosen,
then every continuous prediction function can be arbitrarily approximated due to the
denseness of the corresponding RKHS in the space of continuous functions (see,
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e.g., [44, p. 152ff.]). Both ways are used in the setting of support vector machines
and regularized pairwise learning.

The remarks above lead to the introduction of a regularized version of the risk.

Definition 2.8 Let L : (X × Y)2 × R → [0,∞) be a pairwise loss function and
P ∈ M1(X×Y). Then, for f ∈ H and λ > 0, the regularized L-risk is defined by

Rreg
L,P,λ(f ) := RL,P(f )+ λ ‖f ‖2

H .

The corresponding minimizer, if it exists, is then abbreviated with fL,P,λ : X2 → R,

fL,P,λ = arg inff∈HRreg
L,P,λ(f ).

The following definitions, theorems, and lemmas are taken from [12] and [11].

Lemma 2.9 Let L be a pairwise loss function and F ⊂ L0(X2) be a subset that
is equipped with a complete and separable metric d and its corresponding Borel
σ -algebra. Assume that the metric d dominates pointwise convergence, i.e.,

lim
n→∞ d(fn, f ) = 0 "⇒ lim

n→∞ fn(x, x
′) = f (x, x ′) ∀(x, x ′) ∈ X2, ∀f, fn ∈ F.

Then the evaluation map F × X2 → R defined by (f, (x, x ′)) �→ f (x, x ′) is
measurable and consequently the map (x, y, x ′, y ′, f ) �→ L(x, y, x ′, y ′, f (x, x ′))
defined on (X × Y)2 × F is also measurable. Finally, given P ∈ M1(X × Y), the
risk functional RL,P : F → [0,∞) is measurable.

Definition 2.10 A pairwise loss function L is called

(i) (strictly) convex, continuous, or differentiable, if L(x, y, x ′, y ′, ·) : R →
[0,∞) is (strictly) convex, continuous, or differentiable for all (x, y, x ′, y ′) ∈
(X × Y)2, respectively. We denote the partial Fréchet derivative with respect
to the fifth argument byD5L, if it exists.

(ii) locally Lipschitz continuous, if, for all b ≥ 0, there exists a constant cb ≥ 0
such that, for all t, t ′ ∈ [−b, b], we have

sup
x,x ′∈X
y,y ′∈Y

∣∣L(x, y, x ′, y ′, t)− L(x, y, x ′, y ′, t ′)
∣∣ ≤ cb

∣∣t − t ′
∣∣ .

Moreover, for b ≥ 0, the smallest such constant cb is denoted by |L|b,1.



118 P. Gensler and A. Christmann

(iii) Lipschitz continuous, if there exists a constant |L|1 ∈ [0,∞) such that, for
all t, t ′ ∈ R,

sup
x,x ′∈X
y,y ′∈Y

∣∣L(x, y, x ′, y ′, t) − L(x, y, x ′, y ′, t ′)
∣∣ ≤ |L|1

∣∣t − t ′
∣∣ .

Example 2.11 The loss function from Example 2.2 is Lipschitz continuous and
convex, if the auxiliary function φ is as well. Let t1, t2 ∈ R and |φ|1 the Lipschitz
constant of φ, then we have

∣∣L(x, y, x ′, y ′, t1)− L(x, y, x ′, y ′, t2)
∣∣ = ∣∣φ (− sign

(
y − y ′) t1

) − φ
(− sign

(
y − y ′) t2

)∣∣
≤ |φ|1

∣∣− sign
(
y − y ′)∣∣ |t1 − t2|

≤ |φ|1 |t1 − t2| .

Choosing, for instance, φ(x) = log2(1 + ex), then the Lipschitz continuity follows
from the boundedness of its derivative φ′(x) = ex

log(2)(1+ex) . For φ the exponential
function we can only obtain local Lipschitz continuity.

For convex φ it follows with υ ∈ [0, 1]

L(x, y, x ′, y ′, υt1 + (1 − υ)t2)

= φ
(− sign

(
y − y ′) (υt1 + (1 − υ)t2)

)

≤ υφ
(− sign

(
y − y ′) t1

) − (1 − υ)φ
(− sign

(
y − y ′) t2

)

= υL(x, y, x ′, y ′, υt1)+ (1 − υ)L(x, y, x ′, y ′, (1 − υ)t2).

Both properties are also satisfied by the smoothed version in Example 2.2. Differen-
tiability with respect to the fifth argument is guaranteed by both examples and only
depends on the differentiability of the auxiliary function.

Lemma 2.12 Let L be a (strictly) convex loss function and P ∈ M1(X× Y). Then
R : L0(X2) → [0,∞] is (strictly) convex.

Lemma 2.13 Let P ∈ M1(X×Y) andL be a locally Lipschitz continuous pairwise
loss function. Then for all B ≥ 0 and all f, g ∈ L∞(P2

X) with ‖f ‖∞ ≤ B and
‖g‖∞ ≤ B, we have

∣∣RL,P(f )− RL,P(g)
∣∣ ≤ |L|B,1 ‖f − g‖L1(P2

X)
.

Furthermore, the risk functional RL,P : L∞(P2
X) → [0,∞) is well-defined and

continuous.
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For f, g ∈ H and a Lipschitz continuous pairwise loss function L, Lemma 2.13
and inequality (3) yield

∣∣RL,P(f )− RL,P(g)
∣∣ ≤ |L|1 ‖f − g‖L1(P2

X
) ≤ |L|1 ‖f − g‖∞ ≤ |L|1 ‖k‖∞ ‖f − g‖H .

Definition 2.14 A pairwise loss function L : (X × Y)2 × R → [0,∞) is called a
pairwise Nemitski loss function if a measurable function b : (X × Y)2 → [0,∞)

and a monotonically increasing function h : [0,∞)→ [0,∞) exist, such that

L(x, y, x ′, y ′, t) ≤ b(x, y, x ′, y ′)+ h(|t|), (x, y, x ′, y ′, t) ∈ (X × Y)2 × R.

Lemma 2.15 Let P ∈ M1(X×Y) and L be a differentiable pairwise loss function
such that |D5L| is a P-integrable Nemitski loss function. Then the risk function
RL,P : L∞(P2

X) → [0,∞) is Fréchet differentiable and its derivative at f ∈
L∞(P2

X) is the bounded linear operator R
′
L,P : L∞(P2

X) → R with

R′
L,P(f )g =

∫

(X×Y)2
D5L(x, y, x

′, y ′, f (x, x ′))g(x, x ′)dP2(x, y, x ′, y ′).

If in Lemma 2.15 the derivative of the pairwise loss function with respect to
the fifth argument is continuous and uniformly bounded for all x, x ′ ∈ X and all
y, y ′ ∈ Y by a constant cL ∈ [0,∞), then the upper assertion follows immediately
from the lemma, because

∣∣D5L(x, y, x
′, y ′, t)

∣∣ ≤ cL, ∀(x, y, x ′, y ′, t) ∈ (X ×Y)2 ×R

and thus the condition that |D5L| is a P2-integrable pairwise Nemitski loss function
follows, because we can set b(x, y, x ′, y ′) ≡ cL and h(|t|) ≡ 0.

One problem with the L-risk is that it can easily happen that RL,P(f ) = ∞
even for bounded functions f . One example is the least squares ranking loss (see
Example 2.3) with f ≡ 0. Then, RL,P(0) = EP2

[
(Y − Y ′)2

]
and we will need some

moment conditions on P to achieve RL,P(0) < ∞.
To overcome the need for moment assumptions, a technical tool is to shift the

loss function which goes back at least to Huber [31] in the context ofM-estimation.

Definition 2.16 Let L be a pairwise loss function.

(a) The corresponding shifted pairwise loss function L∗ : (X × Y)2 × R → R is
defined by

L∗(x, y, x ′, y ′, t) := L(x, y, x ′, y ′, t)− L(x, y, x ′, y ′, 0).
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(b) The L∗-risk is defined by

RL∗,P(f ) := EP2

[
L∗(X, Y,X′, Y ′, f (X,X′))

]
.

(c) For λ > 0, the regularized L∗-risk is defined by

Rreg
L∗,P,λ(f ) := RL∗,P(f )+ λ ‖f ‖2

H .

Remark 2.17 By using the shifted loss function of a Lipschitz continuous pairwise
loss it is possible under weak assumptions on L and k to avoid any moment
assumptions on the conditional distribution Y given X = x when computing the
L∗-risk, as can be seen from the following argument:

∣∣RL∗,P(f )
∣∣ ≤ EP2

[∣∣L(X, Y,X′, Y ′, f (X,X′))− L(X, Y,X′, Y ′, 0)
∣∣]

≤ EP2

[|L|1
∣∣f (X,X′)− 0

∣∣] = |L|1 EP2

[∣∣f (X,X′)
∣∣]

≤ |L|1 ‖f ‖L∞(X2,P2
X)
< ∞,

with PX denoting the marginal distribution of X. The last inequality can be
guaranteed by, for instance, choosing a measurable and bounded kernel k : X2 ×
X2 → R, and f ∈ H with H the corresponding reproducing kernel Hilbert space
of k, see [44, Lemma 4.23].

Example 2.3 (continued): The shifted least squares ranking loss is given by

L∗(x, y, x ′, y ′, f (x, x ′)
) = L

(
x, y, x ′, y ′, f (x, x ′)

) − L
(
x, y, x ′, y ′, 0

)

= (
y − y ′ − f (x, x ′)

)2 − (y − y ′)2

= [
f (x, x ′)

]2 − 2(y − y ′)f (x, x ′).

From this, it is easily seen that some moment assumption on the conditional
distribution of Y given X = x is in general necessary to obtain

∣∣RL∗,P (f )
∣∣ < ∞.

To be more precise,
∣∣RL∗,P (f )

∣∣ < ∞ is satisfied in this case, if EP [|Y |] < ∞, and
if sup(x,x ′)∈X2

∣∣f (x, x ′)
∣∣ < ∞. The latter can easily be obtained by considering the

reproducing kernel Hilbert space of a bounded and measurable kernel, as mentioned
in the remark above. Hence, the shifted least squares ranking loss is not covered
by our main results as it is not a Lipschitz continuous pairwise loss function and
therefore the above mentioned moment assumption will in general be unavoidable.

We will now prove several lemmas to be able to show the uniqueness and
existence of (regularized) Risk-minimizing functions in the pairwise learning
setting.
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Lemma 2.18 Let L be a pairwise loss function. Then the following statements
concerning the corresponding shifted loss function L∗ are valid.

(i) L∗ is (strictly) convex, if L is (strictly) convex.
(ii) L∗ is Lipschitz continuous, if L is Lipschitz continuous. Furthermore, both

Lipschitz constants are equal, i.e., |L|1 = |L∗|1.
The absolute value of a shifted Lipschitz continuous pairwise loss function |L∗|

is a pairwise Nemitski loss function, because it follows

∣∣L∗(x, y, x ′, y ′, t)
∣∣ = ∣∣L(x, y, x ′, y ′, t)− L(x, y, x ′, y ′, 0)

∣∣ ≤ |L|1 |t|

and thus |L∗| fulfills the property of a Nemitski loss function with b(x, y, x ′, y ′) ≡ 0
and h(|t|) = |L|1 |t|. If f ∈ L1(P2

X), then |L∗| is a P2-integrable pairwise Nemitski
loss function with t ≡ f (x, x ′).

Lemma 2.19 The following assertions are valid for shifted pairwise loss functions
L∗. Let λ ∈ (0,∞).

(i)

inf
t∈RL

∗(x, y, x ′, y ′, t) ≤ 0. (4)

(ii) If L is a Lipschitz continuous loss function, then, for all f ∈ H,

∣∣RL∗,P(f )
∣∣ ≤ |L|1 EP2

[∣∣f (X,X′)
∣∣] , (5)

∣∣∣Rreg
L∗,P,λ(f )

∣∣∣ ≤ |L|1 EP2

[∣∣f (X,X′)
∣∣] + λ ‖f ‖2

H , (6)

(iii) inf
f∈H

Rreg
L∗,P,λ(f ) ≤ 0 and inf

f∈H
RL∗,P(f ) ≤ 0.

(iv) Let L be a Lipschitz continuous loss function and assume that fL∗,P,λ exists.
Then we have

λ
∥∥fL∗,P,λ

∥∥2
H ≤ −RL∗,P(fL∗,P,λ) ≤ RL,P(0), (7)

0 ≤ −Rreg
L∗,P,λ(f ) ≤ RL,P(0), (8)

λ
∥∥fL∗,P,λ

∥∥2
H ≤ min

{ |L|1 EP2

[∣∣fL∗,P,λ(X,X′)
∣∣] ,RL,P(0)

}
. (9)

If the kernel k : X2 × X2 → R is additionally bounded, then

∥∥fL∗,P,λ
∥∥∞ ≤ λ−1 |L|1 ‖k‖2∞ < ∞, (10)

∣∣RL∗,P(fL∗,P,λ)
∣∣ ≤ λ−1 |L|21 ‖k‖2∞ < ∞. (11)
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(v) If the partial Fréchet derivatives with respect to the fifth argument of L and L∗
exist for (x, y, x ′, y ′) ∈ (X× Y)2, then

D5L
∗(x, y, x ′, y ′, t) = D5L(x, y, x

′, y ′, t), ∀t ∈ R. (12)

Lemma 2.20 Let L be a Lipschitz continuous pairwise loss function and f ∈
L1(P2

X). Then RL∗,P(f ) /∈ {−∞,∞}. Moreover, we have Rreg
L∗,P,λ(f ) > −∞ for

all f ∈ L1(P2
X) ∩ H.

Definition 2.21 Let λ ∈ (0,∞). A regularized pairwise learning operator is a
function S defined by

S : M1(X×Y) → H, P �→ S(P) := fL∗,P,λ := arg inff∈HRL∗,P(f )+ λ ‖f ‖2
H .

A function fL∗,P,λ is called RPL estimator or minimizing prediction function
if it satisfies the condition above.

In the following assertions the classic problem of existence and uniqueness of
such minimizers is taken care of.

Theorem 2.22 (Uniqueness of Minimizer) Let L be a convex pairwise loss
function. Assume that

(i) RL∗,P(f ) < ∞ for some f ∈ H and RL∗,P(f ) > −∞ for all f ∈ H

or

(ii) L is Lipschitz continuous and f ∈ L1(P2
X) for all f ∈ H.

Then, for all λ > 0, there exists at most one solution fL∗,P,λ.

Theorem 2.23 (Existence of Minimizer) Let L be a Lipschitz continuous, convex
pairwise loss function and H be the RKHS of a bounded measurable kernel k on
X2. Then, for all λ > 0, there exists a minimizing prediction function fL∗,P,λ.

The theorem above shows the existence of a Bayes decision function for
regularized pairwise learning methods, if the loss function is convex. The Minimum
Error Entropy (MEE) loss function, see, e.g., [37] and [11, p. 5f.] and the references
cited therein, is a leading example for a non-convex loss function and therefore it is
relevant to prove the existence of a minimizer in such a case as well.

Theorem 2.24 If L is a Lipschitz continuous pairwise loss function, P ∈ M1(X ×
Y),RL,P(f0) < ∞ for some f0 ∈ H, and H the RKHS of a bounded and
measurable kernel k on X2, then a minimizer fL,P,λ ∈ H exists for any λ > 0.

For a general representer theorem, a couple of notational remarks and the
introduction of the subdifferential are necessary.
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Let E be a Banach space, E′ its dual space, and x ∈ E, x ′ ∈ E′. A common
notation is the so-called dual pairing

〈
x ′, x

〉
E′,E := x ′(x).

Let f : E → R ∪ {∞} be a convex function and w ∈ E with f (w) < ∞. Then
the subdifferential of f at w is defined by

∂f (w) : = {w′ ∈ E′ : 〈w′, v −w
〉
E′,E ≤ f (v)− f (w) ∀v ∈ E}

= {w′ ∈ E′ : w′(v −w) ≤ f (v)− f (w) ∀v ∈ E}.

3 Main Results

In this section we will give our main results: a general representer theorem, bounds
for bias, and (qualitative) robustness for the regularized pairwise learning method.
The proofs are given in the Appendix A.2. We use techniques from [12] and [11].
However, here we treat the more general case of prediction functions f : X×X →
R instead of the well-investigated case f : X → R by the authors mentioned
above. Our main goal is to show that no moment assumptions on the conditional
distribution of Y given X = x are needed under weak and provable (i.e., data-
independent) assumptions on L and k.

Robustness is an important statistical property as small deviations in the proba-
bility measures (or the underlying data sets), due to noise or because these measures
have been obtained by approximation, should only have little influence on the
results, i.e., the minimizing prediction function in this case. The discipline of
statistical robustness has a long tradition and goes back at least to Huber [30].

J. W. Tukey, one of the pioneers in robust statistics, motivated the issue and
mentioned in 1960 (see [29, p. 21]):

A tacit hope in ignoring deviations from ideal models was that they would not matter;
that statistical procedures which were optimal under the strict model would still be
approximately optimal under the approximate model. Unfortunately, it turned out that this
hope was often drastically wrong; even mild deviations often have much larger effects than
were anticipated by most statisticians.

If not mentioned otherwise, we will assume for the rest of this section that
Assumption 3.1 is valid. Please note that we do not make any assumptions on the
unknown probability measure P.

Assumption 3.1

(i) Let Y ⊂ R be a closed subset and X a complete separable metric space. Let
(X, Y ) and (Xi, Yi), i ∈ N, be independent and identically distributed pairs of
random quantities with values in X × Y. Let P ∈ M1(X × Y) be the joint
distribution of (Xi, Yi).

(ii) Let k : X2 × X2 → R be a continuous and bounded kernel and 	 : X2 →
H : 	(x, x ′) := k

(
(·, ·), (x, x ′)

)
with (x, x ′) ∈ X2 being the canonical feature

map.
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(iii) LetL be a Lipschitz continuous, differentiable pairwise loss function for which
the first and second partial derivatives with respect to the fifth argument are
continuous and uniformly bounded such that:

• sup
x,x ′∈X
y,y ′∈Y

∣∣D5L(x, y, x
′, y ′, ·)∣∣ ≤ cL,1 ∈ (0,∞)

• sup
x,x ′∈X
y,y ′∈Y

∣∣D5D5L(x, y, x
′, y ′, ·)∣∣ ≤ cL,2 ∈ (0,∞).

(iv) Let L be a convex pairwise loss function.

We mention that Assumption 3.1(i) and (ii) imply that the RKHS H is separable,
see, e.g., [44, Lemma 4.33].

The first result in this section is the following representer theorem which can
eventually be proven with the same methods as in the case of support vector
machines.

Theorem 3.2 (Representer Theorem) Let L∗ be the corresponding shifted pair-
wise loss function of L. Then, for all λ > 0, there exists an hP ∈ L∞((X×Y)2,P2)

such that

(i) hP(x, y, x
′, y ′) ∈ ∂L∗(x, y, x ′, y ′, fL∗,P,λ(x, x

′)), ∀(x, y, x ′, y ′) ∈ (X × Y)2,
(ii) fL∗,P,λ = −(2λ)−1

EP2 [hP	] ,
(iii) ‖hP‖∞ ≤ ∣∣L∗∣∣

1 ,

(iv)
∥∥fL∗,P,λ − fL∗,Q,λ

∥∥
H ≤ λ−1

∥∥EP2 [hP	] − EQ2 [hP	]
∥∥
H , ∀ Q ∈ M1(X× Y).

The following result gives an upper bound for the H-norm of the difference
between minimizers of the probability measure P and a contaminated probability
measure Pε , which is a mixture of P and another probability measure Q.

Theorem 3.3 (Bounds for Bias) For all λ > 0, all ε ∈ (0, 1), and all probability
measures P,Q ∈ M1(X×Y), we have, for all Pε = (1 − ε)P + εQ ∈ M1(X×Y),

∥∥fL∗,P,λ − fL∗,Pε,λ
∥∥
H ≤ cP,Qε,

where cP,Q = 8
λ
‖k‖∞ |L|1.

Hence, Theorem 3.3 shows that
∥∥fL∗,P,λ − fL∗,Pε,λ

∥∥
H increases at most linearly

for increasing radii ε ∈ (0, 1).

Theorem 3.4 Let λ ∈ (0,∞). For all probability measures P,Q ∈ M1(X × Y),
the regularized pairwise learning operator (RPL operator).

S : M1(X× Y) → H, S(P ) := fL∗,P,λ,
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has a bounded Gâteaux derivative S′
G(P) at P and

S′
G(P)(Q) = −M(P)−1T (Q; P).

To shorten the notation, we write

L′
fL∗,P,λ (X, Y,X

′, Y ′) := D5L(X, Y,X
′, Y ′, fL∗,P,λ(X,X′)).

Then,

T (Q; P)

= −2EP2

[
L′
fL∗ ,P,λ (X, Y,X

′, Y ′)	(X,X′)
]
+ EP⊗Q

[
L′
fL∗ ,P,λ (X,Y,X

′, Y ′)	(X,X′)
]

+ EQ⊗P

[
L′
fL∗ ,P,λ (X, Y,X

′, Y ′)	(X,X′)
]

equals the gradient of the regularized risk and

M(P) = 2λ idH +EP2

[
D5L

′
fL∗,P,λ (X, Y,X

′, Y ′)
〈
	(X,X′), ·〉H	(X,X′)

]
.

We obtain an important special case of Theorem 3.4 for Q being a Dirac measure,
which leads to the influence function, which is one of the most important notions
in robust statistics. For a more thorough introduction of the influence function, we
refer to [27–29].

Definition 3.5 The influence function IF : X×Y → H of S : M1(X×Y) → H
at a point (x0, y0) for a distribution P ∈ M1(X ×Y) is given by

IF
(
(x0, y0); S,P

) = lim
ε↓0

S
(
(1 − ε)P + εδ(x0,y0)

) − S(P)

ε

in those (x0, y0) ∈ X ×Y where the limit exists.

Corollary 3.6 (Bounded Influence Function) For all P ∈ M1(X × Y), for all
(x, y, x ′, y ′) ∈ (X × Y)2, and for all λ ∈ (0,∞), the influence function of S :
M1(X ×Y) → H with S(P) := fL∗,P,λ is bounded. It holds

IF((x0, y0); S,P) = −M(P)−1T (δ(x0,y0); P),

where δ(x0,y0) denotes the Dirac distribution in the point (x0, y0) ∈ X × Y,
and L′

fL∗ ,P,λ , T (δ(x0,y0); P) as well as M(P) are given by Theorem 3.4. Here
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T (δ(x0,y0); P) simplifies to

T (δ(x0,y0); P)

= −2EP2

[
L′
fL∗,P,λ (X, Y,X

′, Y ′)	(X,X′)
]

+ EP

[
L′
fL∗,P,λ (X, Y, x0, y0)	(X, x0)

]
+ EP

[
L′
fL∗,P,λ (x0, y0,X

′, Y ′)	(x0,X
′)
]
.

The definition of qualitative robustness was given by Hampel [28, p. 1890] and
generalized by Cuevas [17, Def. 1, p. 278]. We refer to [18] for the qualitative
robustness of empirical bootstrap approximations.

Definition 3.7 A sequence of estimators (Sn)n∈N is called qualitatively robust at
a probability measure P if and only if

∀ε > 0 ∃δ > 0 ∀Q ∈M1(X ×Y) :
[
d∗(Q,P) < δ "⇒ d∗(ℒQ(Sn),ℒP(Sn)) < ε ∀n ∈ N

]
,

with ℒP (Sn) and ℒQ(Sn) denoting the image measures Sn ◦ Pn and Sn ◦ Qn,
respectively, and d∗ being either the bounded Lipschitz metric or the Prohorov
metric.

Please note that originally the Prohorov metric was used by Hampel [28]. Due to
the equivalence of the Prohorov metric dPro and the bounded Lipschitz metric dBL
for separable metric spaces, see e.g. [20, Thm. 11.3.3, Cor. 11.6.5], Assumption 3.1
allows us to use the bounded Lipschitz metric which is easier to use in our situation,
see also [21].

We set Dn := 1
n

∑n
i=1 δ(Xi,Yi ) the random empirical probability measure, and

denote the distribution of the H-valued RPL estimator fL∗,Dn,λ by ℒn(S; P) for
n ∈ N, if all (Xi, Yi) are i.i.d. from P. Similarly, we denote the distribution
of the bootstrap approximated H-valued RPL estimator fL∗,D,λ, when all pairs
(X

(b)
i , Y

(b)
i ) ∼ Dn are independent and identically distributed by ℒn(S;Dn) for

n ∈ N and 1 ≤ b ≤ B ∈ N for some fixed B ∈ N.

Theorem 3.8 For all Borel probability measures P ∈ M1(X × Y) and all λ ∈
(0,∞), we have:

(i) The RPL operator S : M1(X ×Y) → H, where S(P) = fL∗,P,λ, is continuous
with respect to the weak topology onM1(X×Y) and the norm topology onH.

(ii) The operator S : M1(X×Y) → Cb(X2), where S(P) = fL∗,P,λ, is continuous
with respect to the weak topology on M1(X × Y) and the norm topology on
Cb(X2).

Corollary 3.9 For any data setDn ∈ (X×Y)n denote the corresponding empirical
measure by Dn := 1

n

∑n
i=1 δ(xi,yi). Then, for every λ ∈ (0,∞) and every n ∈ N, the
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mapping

Sn : ((X× Y)n, d(X×Y)n
) → (H, dH), Sn(Dn) = fL∗,Dn,λ,

is continuous.

Theorem 3.10 (Qualitative Robustness) For all λ ∈ (0,∞), n ∈ N and Dn :=
1
n

∑n
i=1 δ(Xi,Yi ), we have:

(i) The sequence of H-valued RPL estimators (Sn)n∈N, where Sn := fL∗,Dn,λ, is
qualitatively robust for all Borel probability measures P ∈ M1(X× Y).

(ii) If the metric space X × Y is additionally compact, then the sequence
ℒn(S;Dn), n ∈ N, of empirical bootstrap approximations of ℒn(S; P) is
qualitatively robust for all Borel probability measures P ∈ M1(X× Y).

We mention that it is not possible to replace λ in Theorem 3.10 by a null sequence
(λn)n∈N in general, as there is a goal conflict between qualitative robustness and
universal consistency, see [26, Counterexample 5.2].

4 Discussion

We showed that kernel-based pairwise learning methods have good statistical
robustness properties without making moment assumptions on the conditional
distribution of Y given X = x or boundedness assumptions on the input or
output spaces. This is valid for convex Lipschitz continuous shifted loss functions
and kernels which are continuous and bounded. This shows that such kernel-
based pairwise learning methods can be applied even for heavy-tailed distribu-
tions such as Student’s t-distributions or the Cauchy distribution. Distributions
with heavy tails often occur in insurance projects. The results can be applied
in a variety of fields such as ranking, metric, and online learning, we refer
to, for instance [2, 39, 40, 51]. The techniques we used are tied to those of
solving nonparametric regression or classification problems with support vector
machines.

Our work extends the results of [11] to the use of prediction functions f : X ×
X → R with two arguments instead of restricting ourselves on the special case
f (x, x ′) = f̃ (x) − f̃ (x ′) with f̃ : X → R being a well-investigated univariate
prediction function.

As the present paper is on statistical robustness properties, an investigation of
learning rates is beyond the scope of this paper. This also applies to the case of
multivariate ranking which was already mentioned by Clémençon et al. [14, Rem. 3,
p. 847] as an important problem for future research.
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Another problem for which the theory described above could be applied to is
localized learning in the same manner as for support vector machines to make
such kernel methods applicable for the so-called Big Data situation. Optimal
learning rates for localized support vector machines have been studied by Meister
and Steinwart [35]. The learning rates for localized classification under margin
conditions have recently been improved by Blaschzyk [5]. Dumpert and Christmann
[22] have shown consistency and robustness results, and Köhler and Christmann
[33] have shown generalized stability results for the case of localized support vector
machines without moment assumptions.

Appendix

The appendix consists of one section providing definitions, theorems, and lemmas
which are needed for the proofs of the assertions in this paper in the second section
of the appendix.

A.1 Important Definitions, Theorems, and Lemmas

The following results, see, e.g., [44, Lemmas 4.23, 4.24 and A.5.9], are well-known
and are only given here, because we are going to use them later, and to improve the
readability of this manuscript.

Lemma A.1.1 Let X be a set and k be a kernel on X2 with RKHS H. Then k is
bounded if and only if every f ∈ H is bounded. Moreover, in this case the inclusion
id : H → �∞(X2) is continuous and we have

∥∥id : H → �∞(X2)
∥∥ = ‖k‖∞.

Lemma A.1.2 Let X be a measurable space and k be a kernel on X2 with RKHS
H. Then all f ∈ H are measurable if and only if k

(
(·, ·), (x, x ′)

) : X2 → R is
measurable for all (x, x ′) ∈ X2.

Lemma A.1.3 Let H be a Hilbert space with inner product 〈·, ·〉 : H × H → R.
Then for all f, g ∈ H, we have

4 〈f, g〉 = ‖f + g‖2
H − ‖f − g‖2

H ,

‖f + g‖2
H + ‖f − g‖2

H = 2 ‖f ‖2
H + 2 ‖g‖2

H .
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Definition A.1.4 We define the local modulus of continuity for the second order
derivative of a loss function L with respect to the last argument as

ω (h)r := sup

{ ∣∣∣D5D5L(x, y, x
′, y ′, f (x, x ′))−D5D5L(x, y, x

′, y ′, f̃ (x, x ′))
∣∣∣ :

(x, y, x ′, y ′) ∈ (X ×Y)2, f (x, x ′), f̃ (x, x ′)∈ [−r, r],
∣∣∣f (x, x ′)−f̃ (x, x ′)

∣∣∣ ≤h
}
.

The next lemma which is a consequence of [23, Prop II.4.6] is necessary for the
existence and uniqueness of a risk-minimizing prediction function.

Lemma A.1.5 Let E be a Banach space and f : E → R ∪ {∞} be a convex
function. If f is continuous and lim‖x‖E→∞ f (x) = ∞, then f has a minimizer.

Moreover if f is strictly convex, then f has a unique minimizer in E.

The following proposition is a slightly modified version of Proposition 23 from
[12, p. 318] and can be proven with the same techniques.

Proposition A.1.6 Let L̂ : (X × Y)2 × R → R be a measurable function which
is both convex and Lipschitz continuous with respect to its fifth argument, P be a
distribution on X ×Y and p ∈ [1,∞). Assume that R : Lp(P2) → R ∪ {−∞,∞}
defined by

R(g) :=
∫

(X×Y)2
L̂(x, y, x ′, y ′, g(x, y, x ′, y ′))dP2(x, y, x ′, y ′)

exists for all g ∈ Lp(P2) and define p′ by 1
p

+ 1
p′ = 1. If |R(g)| < ∞ for at least

one g ∈ Lp(P2), then, for all g ∈ Lp(P2), we have

∂R(g) = {h ∈ Lp′(P2) : h(x, y, x ′, y ′) ∈ ∂L̂(x, y, x ′, y ′, g(x, y, x ′, y ′))

for P2-almost all (x, y, x ′, y ′)},

where ∂L̂(x, y, x ′, y ′, t) denotes the subdifferential of L̂(x, y, x ′, y ′, ·) at the point
t .

The next statements provide all necessities to work with subdifferentials, see [36,
Prop 1.11]

Proposition A.1.7 Let f : E → R ∪ {∞} be a convex function and w ∈ E such
that f (w) < ∞. If f is continuous at w, then the subdifferential ∂f (w) is a non-
empty, convex, and weak∗-compact subset of E′. In addition, if c ≥ 0 and δ > 0
are constants satisfying |f (v)− f (w)| ≤ c ‖v −w‖E , v ∈ w+ δBE , then we have∥∥w′∥∥

E
≤ c for all w′ ∈ ∂f (w).
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Lemma A.1.8 Let f, g : E → R∪{∞} be convex functions, λ ≥ 0 andA : F → E

be a bounded linear operator. We then have:

(i) For all w ∈ E with f (x) < ∞, we have ∂(λf )(w) = λ∂f (w).
(ii) If there exists aw0 ∈ E at which f is continuous, then, for allw ∈ E satisfying

both f (w) < ∞ and g(w) < ∞, we have ∂(f + g)(w) = ∂f (w)+ ∂g(w).
(iii) If there exists a v0 ∈ F such that f is finite and continuous at Av0, then, for

all v ∈ F satisfying f (Av) < ∞, we have ∂(f ◦ A)(v) = A′∂f (Av), where
A′ : E′ → F ′ denotes the adjoint operator of A.

(iv) The function f has a global minimum at w ∈ E if and only if 0 ∈ ∂f (w).
(v) If f is finite and continuous at all w ∈ E, then ∂f is a monotone operator, i.e.,

for all v,w ∈ E and v′ ∈ ∂f (v),w′ ∈ ∂f (w), we have 〈
v′ −w′, v −w

〉 ≥ 0.

The following theorem has been taken from [1, Thm. 2.6] and will be used in the
proof of Theorem 3.4.

Theorem A.1.9 Let E1, E2, and F be Banach spaces, U1 ⊂ E1 and U2 ⊂ E2
be open subsets and G : U1 × U2 → F, (x1, x2) �→ G(x1, x2) be a continuous
map. Then G is continuously differentiable, if and only if G is partially Fréchet
differentiable and the partial derivatives ∂G

∂x1
and ∂G

∂x2
are continuous. In this case,

the derivative ofG at (x1, x2) ∈ U1 × U2 is given by

G′(x1, x2)(y1, y2) = ∂G

∂x1
(x1, x2)y1 + ∂G

∂x2
(x1, x2)y2, (y1, y2) ∈ E1 ×E2.

The next theorem is a version of the classical implicit function theorem and can
be found in Corollary 4.2 of [1].

Theorem A.1.10 Let E,F be Banach spaces and G : E × F → F be a
continuously differentiable map. Suppose that we have (x0, y0) ∈ E × F such
that G(x0, y0) = 0 and ∂G

∂y
(x0, y0) is invertible. Then there exists a δ > 0 and

a continuously differentiable map f : x0 + δBE → y0 + δBF such that for all
x ∈ x0 + δBE, y ∈ y0 + δBF we have G(x, y) = 0 if and only if y = f (x).
Moreover, the derivative of f is given by

f ′(x) = −
(
∂G

∂y
(x, f (x))

)−1
∂G

∂x
(x, f (x)).

In order to show the qualitative robustness for the RPL estimator, the next
theorem by Cuevas [17, Thm. 2], which has been adapted to our notation, is useful.

Theorem A.1.11 Let (Sn)n∈N be a sequence of measurable estimators such that
there exists an operator S : M1(X × Y) → W with W being a com-
plete separable metric space verifying Sn(Dn) = S(Dn) for all possible sets(
(x1, y1), . . . , (xn, yn)

) = Dn ∈ (X × Y)n and Dn = n−1 ∑n
i=1 δ(xi ,yi). If S is

continuous onM1(X×Y), then the sequence (Sn)n∈N is qualitatively robust for all
P ∈ M1(X× Y).
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In order to show qualitative robustness for empirical bootstrap approximations,
the following result by Christmann et al. [13, Cor. 16.1, p. 271] will be used.

Theorem A.1.12 Let (�,A, μ) be a probability space, (Z, dZ) be a compact
metric space. Let S : (M1(Z), dBL) → (W, dW ) be a statistical operator with
(W, dW ) being a complete, separable metric space. Let Zn : (�,A, μ) →
(Z,B(Z)), n ∈ N, be independent and identically distributed random quantities
and denote the image measure by P := Zn ◦ μ. Let Sn : (Zn, dZn ) → (W, dW) be
a statistic defined by Sn(Z1, . . . ,Zn) = S(Dn) with Dn = 1

n

∑n
i=1 δZi

being the
corresponding (random) empirical measure. Then, if S is a continuous operator, the
sequenceℒn(S;Dn), n ∈ N, of empirical bootstrap approximations of ℒn(S; P) is
qualitatively robust for all P ∈ M1(Z).

A.2 Proofs

We are now ready to give our proofs.
Proof (of Lemma 2.9) Define e(x,x ′) : F → R, f �→ f (x, x ′), the evaluation
map at (x, x ′) ∈ X2. Let (fn)n∈N ⊂ F be a convergent sequence, such that
d(fn, f ) → 0 for some f ∈ F. Since d dominates the pointwise convergence,
it follows that fn(x, x ′) → f (x, x ′). This yields the continuity of e(x,x ′), as
e(x,x ′)(fn) = fn(x, x

′) → f (x, x ′) = e(x,x ′)(f ).
Furthermore, the assumption F ⊂ L0(X2) implies that, for any f ∈ F the real

valued map (x, x ′) �→ f (x, x ′) defined on X2 is measurable. After applying Lemma
III.14 due to [8, p. 70], we then obtain the first assertion. The second assertion
now follows from the measurability statement in Tonelli-Fubini’s theorem, see [20,
p. 148]. ��
Proof (of Lemma 2.12) Let β ∈ [0, 1] and f, g ∈ L0(X2), we have

RL,P(βf + (1 − β)g)

=
∫

(X×Y)2
L(x, y, x′, y′, βf (x, x′)+ (1 − β)g(x, x′))dP2(x, y, x′, y′)

≤
∫

(X×Y)2
βL(x, y, x′, y′, f (x, x′))+ (1 − β)L(x, y, x′, y′, g(x, x′))dP2(x, y, x′, y′)

= βRL,P(f )+ (1 − β)RL,P(g).

In the strictly convex case, the inequality turns into a sharp one. ��
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Proof (of Lemma 2.13) Firstly, we show the inequality

∣∣RL,P(f )− RL,P(g)
∣∣

=
∣∣∣∣
∫
L(x, y, x ′, y ′, f (x, x ′))− L(x, y, x ′, y ′, g(x, x ′))dP2(x, y, x ′, y ′)

∣∣∣∣

≤
∫ ∣∣L(x, y, x ′, y ′, f (x, x ′))− L(x, y, x ′, y ′, g(x, x ′))

∣∣ dP2(x, y, x ′, y ′)

≤
∫

|L|B,1
∣∣f (x, x ′)− g(x, x ′)

∣∣ dP2(x, y, x ′, y ′)

= |L|B,1 ‖f − g‖ℒ1(P2
X)
.

Using the inequality above, the continuity of the risk functional follows immedi-
ately. The risk functional is well-defined as L is measurable and only takes values
in [0,∞) as f, g ∈ L∞(P2

X). ��
Proof (of Lemma 2.15) Define Lz,z′(t) := L(x, y, x ′, y ′, t) with z = (x, y) and
z′ = (x ′, y ′) since we consider L as a function of its last argument and the other
four arguments are held fixed. Now let f ∈ L∞(P2

X) and (fn)n∈N ⊂ L∞(P2
X) be

a sequence with fn �= 0, n ≥ 1 and ‖fn‖∞ → 0 for n → ∞. Without loss of
generality, we assume that ‖fn‖∞ ≤ 1 for all n ≥ 1. For n ≥ 1, we define

Gn(z, z
′) := Lz,z′(f (x, x ′)+ fn(x, x

′))− Lz,z′(f (x, x ′))
fn(x, x ′)

−D5Lz,z′(f (x, x
′)),

if fn(x, x ′) �= 0,Gn(z, z′) = 0 else. It now follows that, for all n ∈ N,

∣∣∣∣∣
RL,P(f + fn)− RL,P(f )− R′

L,P(f )fn

‖fn‖∞

∣∣∣∣∣

≤
∫ ∣∣∣∣

Lz,z′ (f (x, x′)+ fn(x, x
′))− Lz,z′ (f (x, x′))− fn(x, x

′)D5Lz,z′ (f (x, x′))
‖fn‖∞

∣∣∣∣ dP2(z, z′)

≤
∫ ∣∣Gn(z, z′)

∣∣ dP2(z, z′).

Since L is differentiable with respect to its fifth argument, Gn → 0 for n → ∞
by definition of fn. Moreover, the mean value theorem yields for fn(x, x ′) �= 0 that
there exists a function gn : (X×Y)2 → R with

∣∣gn(z, z′)
∣∣ ∈ [0, fn(x, x ′)] ⊂ [0, 1]

and

Lz,z′(f (x, x ′))+ fn(x, x
′))− Lz,z′(f (x, x ′))

fn(x, x ′)
= D5Lz,z′

(
f (x, x ′)+ gn(z, z

′)
)
.
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Since |D5L| is a P-integrable Nemitski loss, it follows, for all (x, y, x ′, y ′) ∈ (X ×
Y)2, that

∣∣D5L(x, y, x
′, y ′, t)

∣∣ ≤ b(x, y, x ′, y ′)+ h(|t|),

with b ∈ L1(P2) and h : [0,∞)→ [0,∞) an increasing function. Combining these
two considerations, we get

∣∣∣∣
Lz,z′(f (x, x ′))+ fn(x, x

′))− Lz,z′(f (x, x ′))
fn(x, x ′)

∣∣∣∣
≤ b(x, y, x ′, y ′)+ h

(∣∣f (x, x ′)+ gn(x, y, x
′, y ′)

∣∣)

≤ b(x, y, x ′, y ′)+ h
(‖f ‖∞ + 1

)
,

for all n ≥ 1 with fn(x, x ′) ∈ (0, 1]. It follows for all (x, y, x ′, y ′) ∈ (X×Y)2 that

0 ≤ Gn(x, y, x
′, y ′) ≤ 2b(x, y, x ′, y ′)+ 2h

(‖f ‖∞ + 1
)
.

The assertion now follows from Lebesgue’s theorem of dominated convergence.
��

Proof (of Lemma 2.18) Follows immediately from the definition of a convex or
Lipschitz continuous pairwise loss function, respectively. ��
Proof (of Lemma 2.19)

(i) We immediately obtain, for all x, x ′ ∈ X, y, y ′ ∈ Y,

inf
t∈R

L∗(x, y, x′, y′, t) ≤ L∗(x, y, x′, y′, 0) = L(x, y, x′, y′, 0)− L(x, y, x′, y′, 0) = 0.

(ii) For all f ∈ H, we have

∣∣RL∗,P(f )
∣∣ = ∣∣EP2

[
L∗(X, Y,X′, Y ′, f (X,X′))

]∣∣
≤ EP2

[∣∣L(X, Y,X′, Y ′, f (X,X′))− L(X, Y,X′, Y ′, 0)
∣∣]

≤ |L|1 EP2

[∣∣f (X,X′)
∣∣] ,

which proves (5). The inequality (6) follows from Definition 2.8 and the
calculations given above.

(iii) As 0 ∈ H, we obtain

inf
f∈H

Rreg
L∗,P,λ(f ) ≤ Rreg

L∗,P,λ(0) = 0 = RL∗,P(0).



134 P. Gensler and A. Christmann

Hence inf
f∈H

RL∗,P(f ) ≤ 0.

(iv) Due to (iii) Rreg
L∗,P,λ(fL∗,P,λ) ≤ 0. As L is a non-negative function, we obtain

λ
∥∥fL∗,P,λ

∥∥2
H ≤ −RL∗,P(fL∗,P,λ)

= EP2

[
L(X, Y,X′, Y ′, 0)− L(X, Y,X′, Y ′, fL∗,P,λ(X,X

′))
]

≤ EP2

[
L(X, Y,X′, Y ′, 0)

] = RL,P(0)

and thus (7) follows. To prove (8), we consider

0 ≤ −Rreg
L∗,P,λ(fL∗,P,λ)

= EP2
[
L(X, Y,X′, Y ′, 0) − L(X, Y,X′, Y ′, fL,P,λ(X,X′))

] − λ
∥∥fL∗,P,λ

∥∥2
H

L≥0≤ EP2
[
L(X, Y,X′, Y ′, 0)

] = RL,P(0).

Furthermore, we obtain

− |L|1 EP2

[∣∣fL∗,P,λ(X,X′)
∣∣] + λ

∥∥fL∗,P,λ
∥∥2
H ≤ Rreg

L∗,P,λ(fL∗,P,λ) ≤ Rreg
L∗,P,λ(0) = 0,

which yields (9). Using (9) and the reproducing property, we get for fL∗,P,λ �=
0 that

∥∥fL∗,P,λ
∥∥∞ ≤ ‖k‖∞

∥∥fL∗,P,λ
∥∥
H ≤ ‖k‖∞

√
λ−1 |L|1 EP2

[∣∣fL∗,P,λ(X,X′)
∣∣]

≤ ‖k‖∞
√
λ−1 |L|1

∥∥fL∗,P,λ
∥∥∞,

which is finite as k is a bounded kernel. Hence
∥∥fL∗,P,λ

∥∥∞ ≤ ‖k‖2∞ λ−1 |L|1.
The case fL∗,P,λ = 0 is trivial. If fL∗,P,λ �= 0, the inequality (11) now follows,
immediately, as

RL∗,P(fL∗,P,λ) = EP2

[
L(X, Y,X′, Y ′, fL∗,P,λ(X,X

′))− L(X, Y,X′, Y ′, 0)
]

≤ EP2
[|L|1

∣∣fL∗,P,λ(X,X′)− 0
∣∣]

= |L|1 EP2

[∣∣f (X,X′)
∣∣]

≤ |L|1
∥∥fL∗,P,λ

∥∥∞
≤ λ−1 |L|21 ‖k‖2∞ .
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(v) We have, for all (x, y, x, y ′, t) ∈ (X × Y)2 ×R,

D5L
∗(x, y, x′, y′, t)

= lim
h→0
h �=0

L∗(x, y, x′, y′, t + h)− L∗(x, y, x′, y′, t)
h

= lim
h→0
h �=0

L(x, y, x′, y′, t + h)− L(x, y, x′, y′, 0)− L(x, y, x′, y′, t)+ L(x, y, x′, y′, 0)

h

= lim
h→0
h �=0

L(x, y, x′, y′, t + h)− L(x, y, x′, y′, t)
h

= D5L(x, y, x
′, y′, t).

��
Proof (of Lemma 2.20) Using (5) from Lemma 2.19, we have

∣∣RL∗,P(f )
∣∣ ≤ |L|1 EP2

[∣∣f (X,X′)
∣∣] < ∞,

for any f ∈ L1(P2
X). Inequality (6) yields that Rreg

L∗,P,λ(f ) > −∞. ��
Proof (of Theorem 2.22) Let us assume that the mapping f �→ λ ‖f ‖2

H+RL∗,P(f )
has two minimizers f1, f2 ∈ H with f1 �= f2.

(i) By the parallelogram identity, we then find

∥∥1

2
(f1 + f2)

∥∥2
H <

1

2

(
‖f1‖2

H + ‖f2‖2
H

)
.

As L is a convex pairwise loss function, L∗ is a convex shifted pairwise loss
function due to Lemma 2.18, and Lemma 2.12 yields that RL∗,P is also a convex
function. The convexity of the map f �→ RL∗,P(f ) and

λ ‖f1‖2
H + RL∗,P(f1) = λ ‖f2‖2

H + RL∗,P(f2)

yield for f ∗ := 1
2 (f1 + f2) that

λ
∥∥f ∗∥∥2

H + RL∗,P(f
∗) <

λ

2

(
‖f1‖2

H + ‖f2‖2
H

)
+ 1

2
RL∗,P(f1)+ 1

2
RL∗,P(f2)

< λ ‖f1‖2
H + RL∗,P(f1),

i.e., f1 is not a minimizer of f �→ λ ‖f ‖2
H + RL∗,P(f ). Consequently, the

assumption that there are two minimizers is false by contradiction.
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(ii) This condition implies
∣∣RL∗,P(f )

∣∣ < ∞ due to Lemma 2.20 and the assertion
follows from (i).

��
Proof (of Theorem 2.23) Since the kernel k is measurable, its RKHS H consists
of measurable functions. Moreover, k is bounded and thus id : H → L∞(P2

X) is
continuous. Additionally, L is non-negative and hence −∞ < L∗(x, y, x ′, y ′, t) <
∞ for all (x, y, x ′, x ′, t) ∈ (X × Y)2 × R. Thus L∗ is continuous by the convexity
of L∗ with respect to the fifth argument. Therefore, Lemma 2.13 yields that RL∗,P :
L∞(P2

X) → R is continuous and hence RL∗,P : H → R is continuous, because
H ⊂ L∞(P2

X). Furthermore, Lemma 2.12 provides the convexity of this mapping.
It follows that f �→ λ ‖f ‖2

H+RL∗,P(f ) is convex, because f �→ λ ‖f ‖2
H is convex.

Lemma A.1.5 shows that if Rreg
L∗,P,λ(·) is convex and continuous and additionally

Rreg
L∗,P,λ(f ) → ∞ for ‖f ‖H → ∞, then Rreg

L∗,P,λ(·) has a minimizer. Therefore it is
only left to show that this limit is infinite. We have

Rreg
L∗,P,λ(f )

(6)≥ − |L|1 EP2

[∣∣f (X,X′)
∣∣] + λ ‖f ‖2

H

≥ − |L|1 ‖f ‖∞ + λ ‖f ‖2
H

(3)≥ − |L|1 ‖k‖∞ ‖f ‖H + λ ‖f ‖2
H → ∞,

for ‖f ‖H → ∞, as |L|1 ‖k‖∞ ∈ [0,∞) and λ > 0. ��
We need the following auxiliary lemma in order to prove the existence of

minimizers in the non-convex case.

Lemma A.2.1 Let r ∈ (0,∞). If f0 ∈ H and if the sequence (f�)�∈N ⊂ Br(f0) :=
{f ∈ H : ‖f − f0‖H ≤ r}, then there exists a subsequence (fη(�))�∈N ⊂ (f�)�∈N ⊂
Br(f0) with η : N → N increasing and f ∗ ∈ Br(f0) such that

∥∥f ∗∥∥
H ≤ lim inf

�→∞
∥∥fη(�)

∥∥
H

and

lim
�→∞ fη(�)(x, x

′) = f ∗(x, x ′), ∀(x, x ′) ∈ X2.

Proof The closed ball Br(f0) ⊂ H is weakly compact and hence there exists a
subsequence (fη(�))�∈N ⊂ Br(f0) weakly converging to some f ∗ ∈ Br(f0), i.e.,

lim
�→∞

〈
fη(�), f

〉
H = 〈

f ∗, f
〉
H , ∀f ∈ H.
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Let f = f ∗, then by using the Cauchy–Schwarz inequality, it follows

∥∥f ∗∥∥2
H = 〈

f ∗, f ∗〉
H = lim

�→∞
〈
fη(�), f

∗〉
H ≤ lim inf

�→∞
∥∥fη(�)

∥∥
H

∥∥f ∗∥∥
H ,

which implies ‖f ∗‖H ≤ lim inf�→∞
∥∥fη(�)

∥∥
H . Let f = 	(x, x ′), (x, x ′) ∈ X2,

then the reproducing property yields the remaining assertion

lim
�→∞ fη(�)(x, x

′) = lim
�→∞

〈
fη(�),	(x, x

′)
〉
H = 〈

f ∗,	(x, x ′)
〉
H = f ∗(x, x ′).

��
Proof (of Theorem 2.24) For every � ∈ N, set f� ∈ H such that

Rreg
L,P,λ(f�) = RL,P(f�)+ λ ‖f�‖2

H ≤ inf
f∈H

RL,P(f )+ λ ‖f ‖2
H + 1

�
. (13)

Taking f = f0, we conclude that

λ ‖f�‖2
H ≤ RL,P(f0)+ λ ‖f0‖2

H + 1

and thus f� ∈ Br(0) = {f ∈ H : ‖f ‖H ≤ r} with r := λ−1
(
RL,P(f0) +

λ ‖f0‖2
H + 1

)
. Application of Lemma A.2.1 yields that there exists a subsequence

(fη(�))�∈N ⊂ Br(0) and some f ∗ ∈ Br(0) such that ‖f ∗‖H ≤ lim inf�→∞
∥∥fη(�)

∥∥
H

and fη(�)(x, x ′) → f ∗(x, x ′) for all (x, x ′) ∈ X2. By the Lipschitz continuity of L,
it follows

∣∣L(x, y, x ′, y ′, fη(�)(x, x ′))− L(x, y, x ′, y ′, f0(x, x
′))

∣∣
≤ |L|1

∣∣fη(�)(x, x ′)− f0(x, x
′)
∣∣

≤ |L|1 · (∣∣fη(�)(x, x ′)
∣∣ + ∣∣f0(x, x

′)
∣∣)

≤ |L|1
(∥∥fη(�)

∥∥∞ + ‖f0‖∞
)

≤ |L|1
(∥∥fη(�)

∥∥
H + ‖f0‖H

) · ‖k‖∞
≤ 2r |L|1 ‖k‖∞ .

Therefore

L(x, y, x ′, y ′, fη(�)(x, x ′)) ≤ L(x, y, x ′, y ′, f0(x, x
′))+ 2r |L|1 ‖k‖∞ < ∞

L(x, y, x ′, y ′, fη(�)(x, x ′)) ≥ −L(x, y, x ′, y ′, f0(x, x
′))− 2r |L|1 ‖k‖∞ > −∞

with the upper and lower bound being P2-integrable. Since fη(�) → f ∗ pointwise
for every (x, x ′) ∈ X2, we have by the continuity of L that, for all (x, x ′) ∈ X2 and
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all (y, y ′) ∈ Y2,

lim
�→∞L(x, y, x

′, y ′, fη(�)(x, x ′)) = L(x, y, x ′, y ′, f ∗(x, x ′)).

Lebesgue’s theorem of dominated convergence yields lim�→∞ RL,P(fη(�)) =
RL,P(f ∗). Taking the limit inferior on both sides of inequality (13) gives the result

Rreg
L,P,λ(f

∗) ≤ inf
f∈H

RL,P(f )+ λ ‖f ‖2
H ,

which means that f ∗ is a minimizer for the regularized risk. ��
Let us denote the partial derivative of L with respect to the fifth argument by

D5L.

Lemma A.2.2 Let Assumption 3.1 (i)–(iii) be satisfied. Let fL∗,P,λ ∈ H be any
fixed minimizer of inff∈H

(
RL∗,P(f )+ λ ‖f ‖2

H
)
. Then we have, for any g ∈ H,

EP2

[
D5L(X, Y,X

′, Y ′, fL∗,P,λ(X,X′))g(X,X′)
] + 2λ

〈
fL∗,P,λ, g

〉
H = 0.

Proof To shorten the notation, we write fP := fL∗,P,λ, as we consider L∗ and λ to
be fixed in this proof. Let g ∈ H. We define

G̃ : [−1, 1] → R, G̃(t) = RL∗,P(fP + tg)+ λ ‖fP + tg‖2
H .

G̃ is continuous as it is a composition of continuous functions. Recall that the
derivatives of L and L∗ with respect to the fifth argument are identical, because
L and L∗ only differ by the term L(x, y, x ′, y ′, 0). For t �= 0, we obtain by using
the Lipschitz continuity of L that

G̃(t)− G̃(0)

t

= 1

t

(
RL∗,P(fP + tg)+ λ ‖fP + tg‖2

H − RL∗,P(fP)− λ ‖fP‖2
H

)

= 1

t

∫

(X×Y)2
L
(
x, y, x′, y′, fP(x, x

′)+ tg(x, x′)
) − L

(
x, y, x′, y′, fP(x, x

′)
)
dP2(x, y, x′, y′)

+ 1

t
λ 〈fP + tg, fP + tg〉H − 1

t
λ 〈fP, fP〉H (14)

= 1

t

∫

(X×Y)2
L
(
x, y, x′, y′, fP(x, x

′)+ tg(x, x′)
) − L

(
x, y, x′, y′, fP(x, x

′)
)
dP2(x, y, x′, y′)

+ 2λ 〈fP, g〉H + t ‖g‖2
H

≤ 1
|t |

∫

(X×Y)2
|L|1

∣∣tg(x, x′)
∣∣ dP2(x, y, x′, y′)+ 2λ 〈fP, g〉H + t ‖g‖2

H
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= |L|1
∫

(X×Y)2

∣∣g(x, x′)
∣∣ dP2(x, y, x′, y′)+ 2λ 〈fP, g〉H + t ‖g‖2

H

≤ |L|1 ‖g‖∞ + 2λ 〈fP, g〉H + t ‖g‖2
H

< ∞.

Furthermore, we have for all (x, y, x ′, y ′) ∈ (X × Y)2,

lim
t→0

1

t

(
L
(
x, y, x ′, y ′, fP(x, x

′)+ tg(x, x ′)
) − L

(
x, y, x ′, y ′, fP(x, x

′)
))

= D5L(x, y, x
′, y ′, fP(x, x

′))g(x, x ′).

Therefore, (14) and an application of Lebesgue’s theorem of dominated convergence
yield

lim
t→0

G̃(t)− G̃(0)

t

=
∫

(X×Y)2
D5L(x, y, x

′, y ′, fP(x, x
′))g(x, x ′)dP2(x, y, x ′, y ′)+ 2λ 〈fP, g〉H .

We know from Lemma 2.19(iii) that

G̃(0) = Rreg
L∗,P,λ(fP) = inf

f∈H
Rreg
L∗,P,λ(f ) ≤ 0

and therefore G̃(t) ≥ G̃(0) which yields G̃(t) − G̃(0) ≥ 0. This inequality also
holds for the function −g. Hence the desired identity follows. ��

Theorem A.2.3 Let Assumption 3.1 be satisfied and let P,Q ∈ M1(X × Y). The
functionG : R × H → H defined by

G(ε, f ) := 2λf + EP2
ε

[
D5L(X, Y,X

′, Y ′, f (X,X′))	(X,X′)
]

with Pε = (1 − ε)P + εQ is continuously differentiable and the partial derivative
∂G
∂f
(0, f ) is invertible for all f ∈ H.

Proof We use Theorem A.1.9 and will show that ∂G
∂ε

and ∂G
∂f

are con-
tinuous. To shorten the notation in the proof, set L′

f (X, Y,X
′, Y ′) :=

D5L(X, Y,X
′, Y ′, f (X,X′)) and L′′

f (X, Y,X
′, Y ′) := D5L

′
f (X, Y,X

′, Y ′). Note
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that for ε ∈ R and f ∈ H,

∂G

∂ε
(ε, f )

= −2(1 − ε)EP2

[
L′
f (X, Y,X

′, Y ′)	(X,X′)
]

+ (1 − 2ε)EP⊗Q

[
L′
f (X, Y,X

′, Y ′)	(X,X′)
]

+ (1 − 2ε)EQ⊗P

[
L′
f (X, Y,X

′, Y ′)	(X,X′)
]

+ 2εEQ2

[
L′
f (X, Y,X

′, Y ′)	(X,X′)
]
.

For ε, ε̃ ∈ R and f, f̃ ∈ H, we have

∂G

∂ε
(ε, f )− ∂G

∂ε
(ε̃, f̃ ) =

(
∂G

∂ε
(ε, f )− ∂G

∂ε
(ε, f̃ )

)
+

(
∂G

∂ε
(ε, f̃ )− ∂G

∂ε
(ε̃, f̃ )

)

=: ∂G1 + ∂G2. (15)

Here ∂G1 equals

− 2(1 − ε)EP2

[
(L′
f − L′

f̃
)(X, Y,X′, Y ′)	(X,X′)

]
+

(1 − 2ε)EP⊗Q

[
(L′
f − L′

f̃
)(X, Y,X′, Y ′)	(X,X′)

]

+ (1 − 2ε)EQ⊗P

[
(L′
f − L′

f̃
)(X, Y,X′, Y ′)	(X,X′)

]
+

2εEQ2

[
(L′
f − L′

f̃
)(X, Y,X′, Y ′)	(X,X′)

]
.

Set Z := {(x, y, x ′, y ′) ∈ (X × Y)2 : f (x, x ′) �= f̃ (x, x ′)}. We compute the
expectation with respect to probability measures P1,P2 ∈ M1(X×Y) first, in order
to simplify the term given above. An application of the mean value theorem (MVT)
and the boundedness of the second derivative of the pairwise loss function L yield,
for all P1,P2 ∈ M1(X ×Y), that

∥∥∥EP1⊗P2

[
(L′
f − L′

f̃
)(X, Y,X′, Y ′)	(X,X′)

]∥∥∥
H

≤ EP1⊗P2

[∥∥∥(L′
f − L′

f̃
)(X, Y,X′, Y ′)	(X,X′)

∥∥∥
H

]

=
∫

(X×Y)2

∣∣∣(L′
f − L′

f̃
)(x, y, x′, y′)

∣∣∣ ∥∥	(x, x′)∥∥H d(P1 ⊗ P2)(x, y, x
′, y′)



On the Robustness of Kernel-Based Pairwise Learning 141

=
∫

Z

∣∣∣f (x, x′)− f̃ (x, x′)
∣∣∣
∣∣∣∣∣∣
(L′
f

− L′
f̃
)(x, y, x′, y′)

f (x, x′)− f̃ (x, x′)

∣∣∣∣∣∣
∥∥	(x, x′)∥∥H d(P1 ⊗ P2)(x, y, x

′, y′)

MVT≤
∫

Z

∣∣∣f (x, x′)− f̃ (x, x′)
∣∣∣ cL,2

∥∥	(x, x′)∥∥H d(P1 ⊗ P2)(x, y, x
′, y′)

≤
∫

Z
cL,2

∥∥∥f − f̃

∥∥∥∞ ‖k‖∞ d(P1 ⊗ P2)(x, y, x
′, y′)

(3)≤ cL,2

∥∥∥f − f̃

∥∥∥
H

‖k‖2∞ < ∞.

As this upper bound is valid for all P1,P2 ∈ M1(X×Y), the desired result for ∂G1
from (15) follows. We have

‖∂G1‖H
≤ (2 |1 − ε| + 2 |1 − 2ε| + 2 |ε|) ·

∥∥∥EP1⊗P2

[
(L′
f − L′

f̃
)(X,Y,X′, Y ′)	(X,X′)

]∥∥∥
H

≤ (2(1 + |ε|)+ 2(1 + 2 |ε|)+ 2 |ε|) · (cL,2 ‖k‖2∞ ||f − f̃ ||H
)

= (4 + 8 |ε|) · (cL,2 ‖k‖2∞ ||f − f̃ ||H
)
.

Moreover, the term ∂G2 in (15) equals

2(ε − ε̃)EP2

[
L′
f̃
(X, Y,X′, Y ′)	(X,X′)

]
+ 2(ε̃ − ε)EP⊗Q

[
L′
f̃
(X, Y,X′, Y ′)	(X,X′)

]

+ 2(ε̃ − ε)EQ⊗P

[
L′
f̃
(X, Y,X′, Y ′)	(X,X′)

]
+ 2(ε − ε̃)EQ2

[
L′
f̃
(X, Y,X′, Y ′)	(X,X′)

]
.

Hence, we have by the boundedness of the first derivative using the same approach
as above

‖∂G2‖H ≤ 8 |ε − ε̃|EP1⊗P2

[∥∥∥L′
f̃
(X, Y,X′, Y ′)	(X,X′)

∥∥∥
H

]

≤ 8 |ε − ε̃|EP1⊗P2

[∣∣∣L′
f̃
(X, Y,X′, Y ′)

∣∣∣
∥∥	(X,X′)

∥∥
H

]

(1)≤ 8 |ε − ε̃| cL,1 ‖k‖∞ .

Thus we obtain from (15) that

∥∥∥∥
∂G

∂ε
(ε, f )− ∂G

∂ε
(ε̃, f̃ )

∥∥∥∥
H

≤ (4 + 8 |ε|) ·
(
cL,2 ‖k‖2∞ ||f − f̃ ||H

)
+ 8cL,1 |ε − ε̃| ‖k‖∞ .

From this, we obtain for ε → ε̃ and f → f̃ the continuity of the partial derivative
∂G
∂ε

.
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The partial derivative ∂G
∂f

can be expressed as

∂G

∂f
(ε, f ) = 2λ idH +EP2

ε

[
D5L

′
f (X, Y,X

′, Y ′)
〈
	(X,X′), ·〉H	(X,X′)

]
,

for ε ∈ R and f ∈ H.To prove its continuity, we first observe, for any f̃ ∈ H,

∂G

∂f
(ε, f )− ∂G

∂f
(ε, f̃ )

= EP2
ε

[
D5L

′
f (X, Y,X

′, Y ′)
〈
	(X,X′), ·〉H	(X,X′)

−D5L
′
f̃
(X, Y,X′, Y ′)

〈
	(X,X′), ·〉H	(X,X′)

]

= EP2
ε

[
D5(L

′
f (X, Y,X

′, Y ′)− L′
f̃
(X, Y,X′, Y ′))

〈
	(X,X′), ·〉H	(X,X′)

]
.

By the definition of the local modulus of continuity for the second order derivatives
of L, see Definition A.1.4, and the Cauchy–Schwarz inequality, we obtain, for all
(x, x ′) ∈ X2, that

∥∥〈	(x, x ′), ·〉	(x, x ′)
∥∥
ℒ(H,H) = sup

h∈H‖h‖H≤1

∥∥〈	(x, x ′), h
〉
H	(x, x

′)
∥∥
H

≤ sup
h∈H‖h‖H≤1

∥∥	(x, x ′)
∥∥
H ‖h‖H

∥∥	(x, x ′)
∥∥
H

= ∥∥	(x, x ′)
∥∥2
H
(1)≤ ‖k‖2∞ .

Hence, for f, f̃ ∈ {g ∈ H : ‖g‖H ≤ r}, we obtain the upper bound

∥∥∥∥
∂G

∂f
(ε, f )− ∂G

∂f
(ε, f̃ )

∥∥∥∥
ℒ(H,H)

=
∥∥∥EP2

ε

[
D5(L

′
f (X, Y,X

′, Y ′)− L′
f̃
(X, Y,X′, Y ′))

〈
	(X,X′), ·〉H	(X,X′)

]∥∥∥
ℒ(H,H)

≤ EP2
ε

[∣∣∣D5(L
′
f (X,Y,X

′, Y ′)− L′
f̃
(X, Y,X′, Y ′))

∣∣∣
∥∥∥〈	(X,X′), ·〉H	(X,X′)

∥∥∥
ℒ(H,H)

]

≤ ‖k‖2∞ EP2
ε

[∣∣∣D5(L
′
f (X, Y,X

′, Y ′)− L′
f̃
(X, Y,X′, Y ′))

∣∣∣
]

≤ ‖k‖2∞ ω
(
‖k‖∞

∥∥∥f − f̃

∥∥∥
H

)
r‖k‖∞

.

The second difference of partial derivatives we need to consider is the following, in
which the integrands are the same, but the probability measures differ. We denote by
Tf̃ (x, y, x

′, y ′) the term D5L
′
f̃
(x, y, x ′, y ′)

〈
	(x, x ′), ·〉H	(x, x ′). We then obtain
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by elementary calculations,

∂G

∂f
(ε, f̃ )− ∂G

∂f
(ε̃, f̃ )

= EP2
ε

[
D5L

′
f̃
(X, Y,X′, Y ′)

〈
	(X,X′), ·〉H	(X,X′)

]

− EP2
ε̃

[
D5L

′
f̃
(X, Y,X′, Y ′)

〈
	(X,X′), ·〉H	(X,X′)

]

= (1 − ε)2EP2

[
T
f̃
(X, Y,X′, Y ′)

]
+ (1 − ε)εEP⊗Q

[
T
f̃
(X, Y,X′, Y ′)

]

+ ε(1 − ε)EQ⊗P

[
T
f̃
(X, Y,X′, Y ′)

]
+ ε2

EQ2

[
T
f̃
(X, Y,X′, Y ′)

]

− (1 − ε̃)2EP2

[
T
f̃
(X, Y,X′, Y ′)

]
− (1 − ε̃)ε̃EP⊗Q

[
T
f̃
(X, Y,X′, Y ′)

]

− ε̃(1 − ε̃)EQ⊗P

[
T
f̃
(X, Y,X′, Y ′)

]
− ε̃2

EQ2

[
T
f̃
(X, Y,X′, Y ′)

]

= (ε̃ − ε)(2 − ε̃ − ε)EP2

[
T
f̃
(X, Y,X′, Y ′)

]
+ (ε − ε̃)(1 − ε − ε̃)EP⊗Q

[
T
f̃
(X, Y,X′, Y ′)

]

+ (ε − ε̃)(1 − ε − ε̃)EQ×P

[
T
f̃
(X, Y,X′, Y ′)

]
+ (ε − ε̃)(ε + ε̃)EQ2

[
T
f̃
(X, Y,X′, Y ′)

]
.

Due to the boundedness of the second derivative and the inequality

∥∥〈	(x, x ′), ·〉H	(x, x ′)
∥∥
ℒ(H,H) ≤ ‖k‖2∞ ∀(x, x ′) ∈ X2,

it follows that
∥∥∥∥
∂G

∂f
(ε, f̃ )− ∂G

∂f
(ε̃, f̃ )

∥∥∥∥
ℒ(H,H)

≤ cL,2 ‖k‖2∞ |ε − ε̃| (4 + 4 |ε| + 4 |ε̃|)

= 4cL,2 ‖k‖2∞ |ε − ε̃| (1 + |ε| + |ε̃|).

Hence
∥∥∥∥
∂G

∂f
(ε, f )− ∂G

∂f
(ε̃, f̃ )

∥∥∥∥
ℒ(H,H)

=
∥∥∥∥
∂G

∂f
(ε, f )− ∂G

∂f
(ε, f̃ )+ ∂G

∂f
(ε, f̃ )− ∂G

∂f
(ε̃, f̃ )

∥∥∥∥
ℒ(H,H)

≤
∥∥∥∥
∂G

∂f
(ε, f̃ )− ∂G

∂f
(ε̃, f̃ )

∥∥∥∥
ℒ(H,H)

+
∥∥∥∥
∂G

∂f
(ε, f )− ∂G

∂f
(ε, f̃ )

∥∥∥∥
ℒ(H,H)

≤ ‖k‖2∞ ω
(
‖k‖∞

∣∣∣∣f − f̃
∣∣∣∣
H

)
r‖k‖∞

+ 4cL,2 ‖k‖2∞ |ε − ε̃| (1 + |ε| + |ε̃|),
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which yields the continuity of the partial derivative ∂G
∂f

and thus the continuous

differentiability of G. Let f ∈ H and consider the linear operator ∂G
∂f
(0, f ). We

obtain

∂G

∂f
(0, f ) = 2λ idH +EP2

[
D5L

′
f (X, Y,X

′, Y ′)
〈
	(X,X′), ·〉H	(X,X′)

]
.

Hence, for all g, g̃ ∈ H,

〈
∂G

∂f
(0, f )(g), g̃

〉

H

= 2λ 〈g, g̃〉H + EP2

[
D5L

′
f (X, Y,X

′, Y ′)
〈
	(X,X′), g

〉
H

〈
	(X,X′), g̃

〉
H

]

= 2λ 〈g, g̃〉H + EP2

[
D5L

′
f (X, Y,X

′, Y ′)g(X,X′)g̃(X,X′)
]
.

Therefore, the linear operator
〈
∂G
∂f
(0, f )(g), g̃

〉
H

is symmetric. Hence its spectrum

lies in the closed interval [a, b] where

a := inf‖g‖H=1

〈
∂G

∂f
(0, f )(g), g

〉

H
, b := sup

‖g‖H=1

〈
∂G

∂f
(0, f )(g), g

〉

H
.

Due to Assumption 3.1(iv), L is a convex pairwise loss function. This implies that
the second derivative of L with respect to the fifth argument is non-negative. Hence,
we obtain, for all g ∈ H, by the convexity of L

〈
∂G

∂f
(0, f )(g), g

〉

H

= 2λ 〈g, g〉H + EP2

[
D5L

′
f (X, Y,X

′, Y ′)
〈
	(X,X′), g

〉
H

〈
	(X,X′), g

〉
H

]

= 2λ ‖g‖2
H + EP2

[
D5L

′
f (X, Y,X

′, Y ′)g2(X,X′)︸ ︷︷ ︸
≥0

]

≥ 2λ ‖g‖2
H .

Thus it also applies for normalized functions, hence a ≥ 2λ > 0. This shows that
the operator ∂G

∂f
(0, f ) is invertible. ��

Proof (of Theorem 3.2) The existence and uniqueness of fL∗,P,λ follow from
Theorem 2.22 and Theorem 2.23. As k is bounded, Lemma 2.19(iv) is applicable
and inequalities (10) and (11) are valid. Furthermore, due to Lemma 2.18(ii) L∗ is a
Lipschitz continuous pairwise loss function, because L is given as such. Define the
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risk functional R : L1(P2) → R by

R(g) :=
∫

(X×Y)2
L∗(x, y, x ′, y ′, g(x, y, x ′, y ′))dP2(x, y, x ′, y ′).

The operator R is well-defined, because due to the Lipschitz continuity of L∗ with
respect to its fifth argument, we obtain

|R(g)| ≤ |L|1
∫

(X×Y)2

∣∣g(x, y, x ′, y ′)
∣∣ dP2(x, y, x ′, y ′) < ∞

as g ∈ L1(P2) by definition of R. The continuity of R can be shown as follows. Fix
δ > 0 and let f1, f2 ∈ L1(P2) with ‖f1 − f2‖L1(P2) < δ. The Lipschitz continuity
of L∗ yields

|R(f1)− R(f2)|

≤
∫

(X×Y)2

∣∣L∗(x, y, x ′, y ′, f1(x, x
′))−L∗(x, y, x ′, y ′, f2(x, x

′))
∣∣ dP2(x, y, x ′, y ′)

≤ |L|1
∫

(X×Y)2

∣∣f1(x, y, x
′, y ′)− f2(x, y, x

′, y ′)
∣∣ dP2(x, y, x ′, y ′)

< δ |L|1 ,

and so the continuity ofR. We can now apply Proposition A.1.6 with p = 1, because
R(f ) exists and is well-defined for all g ∈ L1(P2). The subdifferential ofR can thus
be computed by

∂R(g) = {h ∈ L∞(P2) : h(x, y, x ′, y ′) ∈ ∂L∗(x, y, x ′, y ′, g(x, y, x ′, y ′))

for P2-almost all (x, y, x ′, y ′)}.

Now, we infer from [44, p. 172 and Lemma 4.23] that the inclusion map I : H →
L1(P2) defined by

(If )(x, y, x ′, y ′) := f (x, x ′)

is a bounded linear operator. Furthermore, S : H → R, S(g) := 〈f, g〉H is a
bounded linear operator and it follows that S(EP2 [g]) = EP2 [S(g)] for bounded
linear operators and Bochner integrals, see, e.g., [19, Thm. 3.10.16]. Recall that
p = 1. Hence 1

p
+ 1

p′ = 1 yields that p′ = ∞. Moreover, for all h ∈ L∞(P2)

and all f ∈ H, the reproducing property yields with 	 : X2 → H : 	(x, x ′) :=
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k
(
(·, ·), (x, x ′)

)
the canonical feature map:

〈h, If 〉L∞(P2),L1(P2) = EP2 [hIf ]

=
∫

(X×Y)2
h(x, y, x ′, y ′)(If )(x, y, x ′, y ′)dP2(x, y, x ′, y ′)

=
∫

(X×Y)2
h(x, y, x ′, y ′)f (x, x ′)dP2(x, y, x ′, y ′)

=
∫

(X×Y)2
h(x, y, x ′, y ′)

〈
f,	(x, x ′)

〉
H dP2(x, y, x ′, y ′)

= EP2

[
h 〈f,	〉H

] = 〈
f,EP2 [h	]

〉
H = 〈

ιEP2 [h	] , f
〉
H′,H ,

with ι : H → H′ the Fréchet–Riesz isomorphism, see, e.g., [49, Thm. V.3.6]. Thus
the adjoint operator I ′ of I is given by

I ′h = ιEP2 [h	] , h ∈ L∞(P2).

Moreover, the L∗-risk functional RL∗,P : H → R satisfies

RL∗,P = R ◦ I

and hence the chain rule for subdifferentials, Lemma A.1.8(iii), see also [19,
Thm. 5.3.33], yields

∂RL∗,P(f ) = ∂(R ◦ I)(f ) = I ′∂R(If ), ∀f ∈ H.

Applying the formula for ∂R(f ) thus yields, for all f ∈ H,

∂RL∗,P(f )

= {ιEP2 [h	] : h ∈ L∞(P2) with h(x, y, x ′, y ′) ∈ ∂L∗(x, y, x ′, y ′, f (x, x ′)) P2-a.s.}.

In addition, f �→ ‖f ‖2
H is Fréchet-differentiable and its derivative at f is 2ιf for

all f ∈ H. By picking suitable representations of h ∈ L∞(P2), Lemma A.1.8 thus
gives, for all f ∈ H,

∂Rreg
L∗,P,λ(f ) = 2λιf + {ιEP2 [h	] : h ∈ L∞(P2)

with h(x, y, x ′, y ′) ∈ ∂L∗(x, y, x ′, y ′, f (x, x ′))

∀(x, y, x ′, y ′) ∈ (X × Y)2}

for all f ∈ H. Now recall that Rreg
L∗,P,λ(·) has a minimum at fL∗,P,λ ∈ H and

therefore we have 0 ∈ ∂Rreg
L∗,P,λ(fL∗,P,λ) by Lemma A.1.8(iv). This together with
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the injectivity of ι yields the assertions (i) and (ii). Of course, h will depend on P in
general, thus we often write hP instead of h. Let us now show that (iii) is valid. As
k is a bounded kernel, we have by inequality (10)

∥∥fL∗,P,λ
∥∥∞ ≤ λ−1 |L|1 ‖k‖2∞ =: Bλ < ∞.

Now part (i) and Proposition A.1.7 with δ := 1 yield, for all (x, y, x ′, y ′) ∈ (X ×
Y)2,

∣∣hP(x, y, x
′, y ′)

∣∣ ≤ sup
(x,y,x ′,y ′)∈(X×Y)2

∣∣∂L∗(x, y, x ′, y ′, fL∗,P,λ(x, x ′))
∣∣ ≤ |L|1 .

Hence hP ∈ L∞(P2
X) and the assertion (iii) follows.

To prove (iv), we use (i) and the definition of the subdifferential to obtain, for all
(x, y, x ′, y ′) ∈ (X × Y)2,

hP(x, y, x
′, y ′)(fL∗,Q,λ(x, x ′)− fL∗,P,λ(x, x ′))

≤ L∗(x, y, x ′, y ′, fL∗,Q,λ(x, x ′))− L∗(x, y, x ′, y ′, fL∗,P,λ(x, x ′)).

By integrating with respect to Q, we hence obtain

〈
fL∗,Q,λ − fL∗,P,λ,EQ2 [hP	]

〉
H ≤ RL∗,Q(fL∗,Q,λ)− RL∗,Q(fL∗,P,λ).

Moreover, an easy calculation yields

〈
fL∗,Q,λ − fL∗,P,λ,EQ2 [hP	] + 2λfL∗,P,λ

〉
H + λ

∥∥fL∗,P,λ − fL∗,Q,λ
∥∥2
H

≤ Rreg
L∗,Q,λ(fL∗,Q,λ)− Rreg

L∗,Q,λ(fL∗,P,λ) ≤ 0,

and consequently using the representation fL∗,P,λ = −(2λ)−1
EP2 [hP	], it follows

after using the Cauchy–Schwarz inequality that

λ
∥∥fL∗,P,λ − fL∗,Q,λ

∥∥2
H ≤ 〈

fL∗,P,λ − fL∗,Q,λ,EQ2 [hP	] − EP2 [hP	]
〉
H

≤ ∥∥fL∗,P,λ − fL∗,Q,λ
∥∥
H

∥∥EQ2 [hP	] − EP2 [hP	]
∥∥
H .

This yields the last assertion. We like to mention that hP depends on P but on Q.
��
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Proof (of Theorem 3.3) Denote with T (x, y, x ′, y ′) := hP(x, y, x
′, y ′)	(x, x ′).

Using Fubini’s theorem and the inequality

∥∥T (x, y, x ′, y ′)
∥∥
H = ∥∥hP(x, y, x

′, y ′)	(x, x ′)
∥∥
H ≤ ‖hP‖∞

∥∥	(x, x ′)
∥∥
H ≤ |L|1 ‖k‖∞ ,

it follows by rearranging terms

λ
∥∥fL∗,P,λ − fL∗,Pε,λ

∥∥
H

≤
∥∥∥EP2 [hP	] − EP2

ε
[hP	]

∥∥∥
H

=
∥∥∥∥ε

∫ ∫
T (x, y, x ′, y ′)dP(x, y)d(P − Q)(x ′, y ′)

+ ε

∫ ∫
T (x, y, x ′, y ′)d(P − Q)(x, y)dP(x ′, y ′)

+ ε2
∫ ∫

T (x, y, x ′, y ′)dP(x, y)d(Q − P)(x ′, y ′)

+ ε2
∫ ∫

T (x, y, x ′, y ′)dQ(x, y)d(P − Q)(x ′, y ′)
∥∥∥∥
H

≤ 4ε |L|1 ‖k‖∞ ‖P − Q‖T V︸ ︷︷ ︸
≤2

≤ 8ε |L|1 ‖k‖∞ ,

where we used that ε ∈ (0, 1) and ‖P − Q‖T V denotes the norm of total variation,
see, e.g., [42, Prop 2.2, p. 543] or [43, p. 1519], i.e.,

‖P − Q‖T V := sup
‖g‖∞≤1

g:(X×Y)2→R

∣∣∣∣
∫
gdP −

∫
gdQ

∣∣∣∣ .

Obviously ‖P − Q‖T V ∈ [0, 2] for all P,Q ∈ M1(X ×Y). In conclusion

∥∥fL∗,P,λ − fL∗,Pε,λ
∥∥
H ≤ 8

λ
|L|1 ‖k‖∞ ε.

��
Proof (of Theorem 3.4) Fix Q ∈ M1(X × Y) and λ ∈ (0,∞). Denote Pε :=
(1 − ε)P + εQ with ε ∈ (0, 1). The functionG : R ×H, defined by

G(ε, f ) = 2λ idH +EP2
ε

[
D5L(X, Y,X

′, Y ′, f (X,X′))	(X,X′)
]
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plays an important role in this proof. Since k is bounded, all functions f ∈ H in the
corresponding RKHS fulfill ‖f ‖∞ < ∞. Additionally the partial derivativeD5L is
bounded by Assumption 3.1. It follows, for all ε ∈ R, and all f ∈ H, that

‖G(ε, f )‖H ≤ 2λ ‖f ‖H + EP2
ε

[∣∣D5L(X, Y,X
′, Y ′, f (X,X′))

∣∣ ∥∥	(x, x ′)
∥∥∞

]

(2)≤ 2λ ‖f ‖H + cL,1 ‖k‖2∞ < ∞.

Therefore, the map G is well-defined and bounded with respect to the H-norm.
Hence,

‖G(ε, f )‖∞
(3)≤ ‖G(ε, f )‖H ‖k‖∞ ≤ (2λ ‖f ‖H + cL,1 ‖k‖2∞) ‖k‖∞ < ∞.

Note that for ε /∈ [0, 1] the H-valued Bochner integral is with respect to a signed
measure. Hence Lemma 2.15 yields, for all ε ∈ [0, 1], that

G(ε, f ) = ∂(RL∗,Pε (·)+ λ ‖·‖H)
∂f

(f ).

Since L is convex, the map f �→ RL∗,Pε (f ) + λ ‖f ‖2
H is continuous and convex

for all ε ∈ [0, 1]. The equation above shows that we have G(ε, f ) = 0 if and only
if f = fL∗,Pε,λ for such ε. We now want to show the existence of a differentiable
function ε �→ fε on a small interval (−δ, δ) for some δ > 0 that satisfiesG(ε, fε) =
0 for all ε ∈ (−δ, δ). According to Theorem A.1.10, we have to check that G is
continuously differentiable and that ∂G

∂f
(0, fP,λ) is invertible which was proven in

Theorem A.2.3. Hence we can apply the implicit function theorem to see that the
map ε �→ fε is differentiable on a small non-empty interval (−δ, δ). In conclusion,
we obtain

S′
G(P)(Q) =

∂fε

∂ε
(0) = −

(
∂G

∂f
(0, fL∗ ,P,λ)

)−1

◦ ∂G
∂ε
(0, fL∗,P,λ) = −M(P)−1T (Q; P),

which yields the assertion. ��
Proof (of Corollary 3.6) The assertion follows immediately by setting Q as the
Dirac measure δ(x0,y0) in Theorem 3.4. ��
Proof (of Theorem 3.8) To (i). Let P ∈ M1(X×Y) be fixed. As L∗ and λ are fixed,
we denote with

L∗′
fL∗ ,P,λ (X, Y,X

′, Y ′) 2.19(v)= L′
fL∗ ,P,λ (X, Y,X

′, Y ′)

:= D5L
∗(X, Y,X′, Y ′, fL∗,P,λ(X,X

′)).

Let (Pn)n∈N ⊂ M1(X × Y) be a weakly convergent sequence with Pn � P.
We know that due to the separability of X × Y, weak convergence of probability
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measures is equivalent to dBL(Pn,P) → 0, where dBL denotes the bounded
Lipschitz metric, see [20, Thm. 11.3.3]. Hence the metric space (X × Y)2 is
separable and thus guarantees

Pn � P ⇐⇒ P2
n � P2 (n → ∞)

see [4, Thm. 3.8(ii), p. 23]. The definition of weak convergence guarantees that

lim
n→∞

∫
gdP2

n =
∫
gdP2

for all continuous and bounded real-valued functions g : (X×Y)2 → R. However,
we need a corresponding result for H-valued Bochner integrals. The fourth part of
the representer theorem, see Theorem 3.2, yields

‖S(Pn)− S(P)‖H
= ∥∥fL∗,Pn,λ − fL∗,P,λ

∥∥
H

≤ 1

λ

∥∥∥EP2
n

[
hP(X, Y,X

′, Y ′)	(X,X′)
] − EP2

[
hP(X, Y,X

′, Y ′)	(X,X′)
]∥∥∥

H
.

As k is a continuous and bounded kernel, the canonical feature map 	 is also
continuous and bounded. Furthermore, as the shifted loss function L∗ is twice
continuously differentiable and the partial derivative is bounded, it follows that, for
every fixed P ∈ M1(X ×Y) and every fixed λ ∈ (0,∞), the function

ψP : ((X× Y)2, d(X×Y)2) → (H, dH), ψP(x, y, x
′, y ′) := hP(x, y, x

′, y ′)	(x, x ′)

is continuous and bounded, where dH denotes the metric induced by the norm
‖·‖H. We thus obtain from [6, p. III.40], see also [26, Thm. A.1], the following
convergence result for Bochner integrals

P2
n � P2 "⇒ lim

n→∞

∫
ψPdP2

n =
∫
ψPdP2,

which implies that Pn � P, which is equivalent to dBL(Pn,P) → 0 due to [20,
Thm. 11.3.3], leads to ‖S(Pn)− S(P)‖H → 0 and therefore (i) is proven.

The proof for (ii) follows immediately from part (i) and the fact that the inclusion
map id : H → Cb(X2) is continuous and bounded, see [44, Lemma 4.28]. ��
Proof (of Corollary 3.9) Let (Dn,m)m∈N ⊂ (X × Y)n be a sequence of tuples((
x
(m)
1 , y

(m)
1

)
, . . . ,

(
x
(m)
n , y

(m)
n

))
which converges to someDn,0 =

((
x
(0)
1 , y

(0)
1

)
, . . . ,



On the Robustness of Kernel-Based Pairwise Learning 151

(
x
(0)
n , y

(0)
n

)) ∈ (X × Y)n for m → ∞. Then let Dn,m = 1
n

∑n
i=1 δ

(
x
(m)
i ,y

(m)
i

)
and Dn,0 = 1

n

∑n
i=1 δ

(
x
(0)
i ,y

(0)
i

) be the corresponding empirical measures, and

g ∈ Cb(X × Y) a continuous and bounded real-valued function. Hence, it follows
that:

0 ≤
∣∣∣∣
∫
gdDn,m −

∫
gdDn,0

∣∣∣∣ =
∣∣∣∣∣
1

n

n∑
i=1

g
(
x
(m)
i , y

(m)
i

) − 1

n

n∑
i=1

g
(
x
(0)
i , y

(0)
i

)
∣∣∣∣∣

≤ 1

n

n∑
i=1

∣∣∣g(x(m)i , y
(m)
i

) − g
(
x
(0)
i , y

(0)
i

)∣∣∣

m→∞−−−−→ 0,

as g is a continuous function and Dn,m → Dn,0 for m → ∞ and therefore Dn,m �
Dn,0. Hence, the assertion follows from Theorem 3.8 and S(Dn) = fL∗,Dn,λ =
Sn(Dn). ��
Proof (of Theorem 3.10) Fix λ ∈ (0,∞). For anyDn := (

(x1, y1), . . . , (xn, yn)
) ∈

(X × Y)n denote its empirical measure by Dn := 1
n

∑n
i=1 δ(xi,yi). According to

Corollary 3.9, the function

Sn : ((X× Y)n, d(X×Y)n) → (H, dH), Sn(Dn) = fL∗,Dn,λ

is continuous and therefore measurable with respect to the corresponding Borel σ -
algebras for every n ∈ N. Theorem 3.8 yields that

S : (M1(X× Y), dBL) → (H, dH), S(P) = fL∗,P,λ

is a continuous operator. Furthermore Sn and S satisfy by definition the condition
Sn(Dn) = S(Dn) for all Dn ∈ (X×Y)n and all n ∈ N. As H is a separable RKHS,
which is implied by Assumption 3.1(i) and (ii), and [44, Lemma 4.33], (H, dH) is
a complete and separable metric space. Theorem A.1.11 yields that for the random
measure Dn = 1

n

∑n
i=1 δ(Xi,Yi ) the sequence of RPL estimators (fL∗,Dn,λ)n∈N is

qualitatively robust for all P ∈ M1(X×Y). Hence the assertion of part (i) is shown.
Part (ii) can be proven as follows. Theorem 3.8 yields that the operator S is

continuous for all P ∈ M1(X × Y). Hence all assumptions for Theorem A.1.12
are satisfied, because Z := X × Y is a compact metric space by assumption and
W := H is a complete and separable metric space. This yields the assertion. ��
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Global Sensitivity Analysis
for the Interpretation of Machine
Learning Algorithms

Sonja Kuhnt and Arkadius Kalka

Abstract Global sensitivity analysis aims to quantify the importance of model
input variables for a model response. We highlight the role sensitivity analysis can
play in interpretable machine learning and provide a short survey on sensitivity
analysis with a focus on global variance-based sensitivity measures like Sobol’
indices and Shapley values. We discuss the Monte Carlo estimation of various
Sobol’ indices as well as their graphical presentation in the so-called FANOVA
graphs. Global sensitivity analysis is applied to an analytical example, a Kriging
model of a piston simulator and a neural net model of the resistance of yacht hulls.

Keywords Interpretable machine learning · Global sensitivity analysis · Sobol’
indices · Shapley values · FANOVA graph · Kriging

1 Introduction

Machine learning is a set of methods that improve automatically through experience,
i.e. it is based on data. Popular machine learning methods are, e.g. support vector
machines (SVMs [2]), artificial neural networks (ANNs) and random forests (RFs).
Machine learning algorithms are increasingly applied in science and business and
have achieved impressive performances in diverse tasks, outperforming humans.
However, for several machine learning algorithms it is hard to tell what the machine
has actually learned from the data. For example, in the case of ANNs, what was
learned is hidden in the weights and biases of the neurons involved. If a machine
learning model performs well, one might simply trust the model and ignore why it
made a certain decision. However, such an attitude goes against human curiosity
and thirst for knowledge. This raises the issue of interpretability [24, 25]. The
straightforward way to achieve interpretability in statistical learning is to use only
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interpretable models. Interpretable models are, e.g. linear models, generalized linear
models [23], generalized additive models [12], decision trees and rules. On the
other hand, model-agnostic interpretation methods are more flexible and can be
applied to any machine learning algorithm. Graphical model-agnostic methods are,
e.g. Partial Dependence Plots (PDP) and Individual Conditional Expectation (ICE)
plots. We suggest to provide model-agnostic methods to evaluate the influence of
different regressors and their interactions by applying methods from the statistical
field of global sensitivity analysis (GSA). Sensitivity analysis is the study of how
the uncertainty in the output of a mathematical model or function can be divided
and allocated to different sources of uncertainty in its inputs [14, 29]. Given any
real-valued function on several variables –whether analytical or given by a black-
box– one wants to know which input variables affect the variability of the function
the most. GSA has proven to be a valuable tool in analysing expensive to evaluate
computer models with a surrogate model, e.g. a Kriging model, build first. Cheng et
al. [3] use support vector regression as surrogate model within GSA, whereas [37]
built a new feature selection approach upon GSA. Like in [4] we suggest to achieve
an understanding and interpretability of, e.g. ANNs, SVMs and RFs by combining
GSA and visualization.

2 Global Sensitivity Analysis

This section reviews sensitivity analysis with a focus on global variance-based sen-
sitivity measures, but we also discuss derivative-based global sensitivity measures
briefly.

2.1 Global Sensitivity Indices

Consider a function f : ! ⊆ R
d → R that is square integrable w.r.t. a d-

dimensional product measure μ. The functional analysis of variance (FANOVA)
decomposition (also called Hoeffding-Sobol’ decomposition) of f ∈ L2(μ) is the
unique decomposition

f (X) = f0 +
∑
i

fi (Xi)+
∑
i<j

fi,j (Xi,Xj )+ · · · + f1,...,d (X1, . . . , Xd) (1)

such that E(fI (XI ) | XJ ) = 0 for all J ⊂ I ⊆ [d] := {1, . . . , d}. In particular,
we have E(fI (XI )) = 0 for all ∅ �= I ⊆ [d], see e.g. [6]. Furthermore, this implies
orthogonality of all summands in the decomposition, i.e. E (fI (XI )fJ (XJ )) = 0
for all I �= J ⊆ [d]. The FANOVA decomposition can be computed recursively by
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f0 = E(f (X)), and fI (XI ) = E(f (X) | XI )−
∑
J⊂I

fJ (XJ ). (2)

Orthogonality allows for an ANOVA like decomposition of the variance of f :

D = V ar(f (X)) =
∑
I⊆[d]

V ar(fI (XI )). (3)

The variance of each term, DI = V ar(fI (XI )), gives a sensitivity index of its
effect. The standardized indices

SI = DI/D (4)

are known as Sobol’ indices [31]. Especially, Sobol’ indices Si = S{i} for individual
variables are referred to as first-order indices and Sij = S{i,j} as second-order
indices. The same holds for the unstandardized versions Di and Dij . Sobol’
introduced the closed sensitivity index to describe the influence of a group of
variables:

DclI =
∑
J⊆I

DJ = V ar(E(f (X)|XI )). (5)

The total sensitivity index by Homma and Saltelli [13] describes the total contribu-
tion of a set of variables including all interactions of any order and is defined by all
partial variances containing at least one of the variables, i.e.

DTI =
∑
I∩J �=∅

DJ , STI = DTI

D
. (6)

For I = {i}, this total sensitivity index is defined by considering all supersets. An
extension [21] of the concept of superset importance is given by

D
sup
I =

∑
J⊇I

DJ . (7)

In particular, the unnormalized and normalized total interaction indices (TIIs) [9]
are given by

D
sup
i,j =

∑
J⊇{i,j}

DJ and S
sup
i,j =

∑
J⊇{i,j}

DJ

D
. (8)

So, each of these indices characterizes a different aspect of the sensitivity of the
model response to individual input variables or interactions between them.



158 S. Kuhnt and A. Kalka

2.2 Shapley Values

A similar problem to the FANOVA decomposition has been studied in game theory
and economics, namely the problem of attributing the value created in a team effort
to individual team members. Consider the setting where one can measure the value
val(I) ∈ R created by any subset I ⊆ [d] of the d-member team. In that case
the so-called Shapley values φi are the unique choice that satisfy the following four
natural criteria [30, 36].

1. (Efficiency)
∑d
i φi = val([d]).

2. (Symmetry) val(I ∪ i) = val(I ∪ j) ∀I ⊆ [d] \ {i, j } implies φi = φj .
3. (Dummy) val(I ∪ i) = val(I) ∀I ⊆ [d] implies φi = 0.
4. (Additivity) The game with value val(1) + val(2) has Shapley values φ(1) + φ(2)

with φ(1) = φ(val(1)) and φ(2) = φ(val(2)).

Then the Shapley value of an individual variable is given by

φi = 1

d

∑
I⊆[d]\{i}

(
d − 1

|I |
)−1

(val(I ∪ i)− val(I)). (9)

Shapley values are connected to the FANOVA decomposition by Owen [27]. In
that context, for any subset I of input variables, their combined value val(I) is the
“variance explained” in the FANOVA decomposition. More precisely, the choice in
[27] is val(I) = DclI . Then, using the properties (1)− (4), it can be shown that the
Shapley value is

φi =
∑

I⊆[d],i∈I

DI

|I | (10)

according to Theorem 1 in [27]. The Shapley value does not coincide with any first-
order Sobol’ index, but it is bracketed between the closed and total sensitivity index
[27]:

Dcli ≤ φi ≤ DTi . (11)

A normalized Shapley value may be defined as φ∗
i = φi/D. Because these

indices are comparatively easy to compute, Sobol’ indices provide effectively
computable bounds for the Shapley value. An exact computation of the Shapley
value is computationally expensive because there are 2d subsets of [d], representing
coalitions of variables. Štrumbelj and Kononenko [34] and Song et al. [33] propose
effective algorithms to estimate Shapley values using Monte Carlo sampling.
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2.3 Derivative-Based Global Sensitivity Measures

Based on the work of [32] derivative-based global sensitivity measures (DGSM)
were introduced by Kucherneko et al. [20] as

νi =
∫ (

∂f

∂xi
(x)

)2

dμ. (12)

A normalized DGSM can be defined by ν∗
i = νi/

∑d
j vj . DGSMs are not associated

with a functional decomposition, but they are connected to total sensitivity indices
by the inequalityDTi ≤ C(μi)νi if for the measure μ the Poincare inequality

∫
g(x)2μ ≤ C(μ)

∫
||∇g(x)||2dμ (13)

holds for all centred functions g ∈ L2(μ) with
∫
g(x)dμ = 0 and ||∇g|| ∈

L2(μ). Friedman and Popescu [7] introduced crossed DSGMs, in particular, for
interactions:

νi,j =
∫ (

∂2f

∂xi∂j
(x)

)2

dμ. (14)

Roustant et al. [28] provide an inequality to link crossed DGSMs to superset
importance.

2.4 Estimation of Indices

For analytically tractable test functions, the indices above may be calculated
by evaluating the integrals involved. In general, the function f is not known
analytically and will be treated as black-box function. In Monte Carlo estimation,
we take a high number of n samples x(1), . . . , x(n) from the distribution μ and
approximate the integral by

1

n

n∑
k=1

f (x(k))
n→∞−→

∫
f (x)dμ = E(f (X)). (15)

The approximation is unbiased and convergent with probability one according to
the law of large numbers. For the estimation, we require a representation of the
sensitivity indices that is suitable for Monte Carlo integration. A popular choice
is based on the pick-and-freeze formula DclI = E(f (X)f (XI ,Z−I )) − f 2

0 which
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gives the pick-and-freeze Monte Carlo estimator

D̂clI = 1

n

n∑
k=1

f (x(k))f
(
x
(k)
I , z

(k)
−I

)
− f 2

0 . (16)

Here Z is an independent copy of the random variable X, and −I denotes the
complement set [d] \ I . Since, the pick-and-freeze estimator gets a large variance
if f0 is large, other formulas have been suggested that avoid the subtraction of f 2

0
[18, 31]. In particular, the total sensitivity index can be computed using the Jansen
formula DTI = 1/2E((f (X)− f (ZI ,X−I ))2).

Computationally cheaper than Monte Carlo estimation, but also slightly biased,
are frequency-based estimation methods. The first frequency-based estimation
method was the so-called Fourier amplitude sensitivity test (FAST) by Cukier et al.
[5]. TIIs can be easily estimated via the relationship with closed sensitivity indices
using pick-and-freeze. Of particular interest is a direct method using the formula of
[21]:

D
sup
i,j = 1

4
E((f (Xi,Xj ,X−{i,j})− f (Xi, Zj ,X−{i,j}) (17)

−f (Zi,Xj ,X−{i,j})+ f (Zi, Zj ,X−{i,j}))2). (18)

The corresponding Liu-Owen Monte Carlo estimator is unbiased, and it is non-
negative since it is a sum of squares. This implies that if the true TII is zero, then
the estimator is zero as well.

3 Visualizing Interaction Structures by FANOVA Graphs

In this section the FANOVA graph, an intuitive tool to visualize the most valuable
information of the FANOVA decomposition, is introduced [8, 10, 26]. Estimation
and thresholding of FANOVA graphs is discussed, and we apply GSA to a standard
non-linear test function.

3.1 General Idea of FANOVA Graphs

Usually, it is infeasible to look at all 2d − 1 terms of the decomposition of a
function with d input variables individually, and quite often only main effect Sobol’
indices are considered. The primal intention of FANOVA graphs is to overcome
this problem and to visualize the interaction structure contained in the FANOVA
decomposition by a mathematical graph [26]. The so-called FANOVA graph is
defined as a graph G = (V ,E) where each of the d input variables is identified
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by an element of the vertex set V = {1, . . . , d}. An edge is included in the edge set
(i, j) ∈ E iff there exists a superset J ⊇ {i, j } such that fJ (XJ ) �= 0. That is, the
pair of input variables (Xi,Xj ) has a non-zero two-way interaction or is involved
in a higher order non-zero interaction. Equivalently an edge (i, j) is not in G iff all
Sobol’ indices SJ = 0 for J ⊇ {i, j }. This is exactly captured by a non-zero TII,
i.e. Ssupi,j �= 0.

A FANOVA graph can be further enhanced by displaying the thicknesses of
each edges (i, j) proportional to the strength of the TII of the two involved input
variables. In the same way, each vertex i can be displayed by circles with lines
proportional in strength to the main effect Sobol’ index Si .

Let us consider the so-called Ishigami function which is frequently used for
illustrating sensitivity analysis [16]. The function, given by

f (X1,X2,X3) = sin(X1)+ 7 sin2(X2)+ 0.1X4
3 sin(X1), (19)

depends on three input variables (X1,X2,X3) and obviously contains a non-linear
interaction between X1 and X3 (see Fig. 1c). For this test function Sobol’ indices
can be computed analytically. Assuming a uniform distribution on [−π, π] for each
input variable, analytical calculation of the FANOVA decomposition and Sobol’
indices gives us the following values

D1 = 4.346, D2 = 6.125, D3 = 0, D12 = 0, D13 = 3.374, D23 = 0, D123 = 0.
(20)

This leads to the following first-order Sobol’ indices and normalized TIIs

S1 = 0.314, S2 = 0.442, S3 = 0, Ssup12 = 0, Ssup13 = 0.244, Ssup23 = 0. (21)

Figure 2 shows a bar plot and the FANOVA graph displaying the Sobol’ indices
and TIIs for the Ishigami function. Main effect stands for the normalized first-order
Sobol’ indices and interaction is the difference between the scaled total sensitivity
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Fig. 1 3d-plots for the Ishigami function. (a) f (X1, X2, 0). (b) f (0, X2, X3). (c) f (X1, 0, X3)
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Fig. 2 Bar plot and FANOVA graph displaying Sobol’ indices and TIIs for the Ishigami function.
(a) Bar plot. (b) FANOVA graph

index and the Sobol’ index. From the FANOVA graph it becomes immediately
obvious that the input variable X2 has the highest impact on the response, followed
by X1. Also, the interaction between X1 and X2 is easily detected.

In summary, FANOVA graphs visualize both first- and second-order GSA. First-
order analysis in the sense of detecting the inputs Xi for which Si is very small
or even zero. Second-order in the sense of looking at pairs of input variables
and detecting influential interactions and their strength, i.e. the pairs {i, j } with
S
sup

i,j > 0.

3.2 Estimation and Thresholding

In practice, Si and Ssupi,j are usually not analytically available and replaced by

estimates Ŝsupi,j and Ŝi . Moreover, we often even apply GSA not to the actual black-
box model but a meta-model or surrogate model of it. Then, estimates are typically
not exactly equal to zero even if the “true” or analytically calculated sensitivity index
would be. The resulting graph becomes confusing and uninformative. Therefore,
edges (i, j) may be included into the graph only if

Ŝ
sup

i,j > δ (22)

for some small threshold δ, e.g. δ = 0.01 [26]. The computation of the FANOVA
graph has been implemented in the R package fanovaGraph, providing several
estimation methods as well as a thresholding functionality [8, 10].

To exemplify, let us now assume that we cannot analyse the Ishigami function
analytically. Based on a random Latin hypercube design with 100 design points, we
build a Kriging model of the Ishigami function. Our Kriging model has the usual
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Table 1 Sobol’ indices (first
order) and TIIs for the
Kriging model of the
Ishigami function

Ŝi φ̂∗
i ŜTi Ŝ

sup
i,j

X1 0.300 0.447 0.603 X1X2 0.008

X2 0.391 0.406 0.420 X1X3 0.273

X3 0.009 0.148 0.285 X2X3 0.010

1

2

3

(a)

1

2

3

(b)

Fig. 3 Fanova graphs without and with thresholding for the Kriging model of the Ishigami
function. (a) Fanova graph. (b) Fanova graph with threshold δ = 0.025

Matern 5/2 covariance structure, no trend and no nugget effect. Table 1 shows the
results for the estimators of the first-order Sobol’ indices Ŝi , normalized Shapley
values φ̂∗

i and TIIs Ŝsupi,j of the Kriging model. These estimators have been computed
using the R packages fanovaGraph [10] and sensitivity [15]. Remember
that the inequalities

Scli ≤ φ∗
i ≤ STi (23)

hold and that Scli = Si , which is reflected by the order of the values in Table 1.
Comparison also shows that the estimates slightly deviate from the true values given
above.

Figure 3 displays on the left hand side the resulting pure FANOVA graph. This
is a complete graph as all estimated TIIs are different from zero, even if only
slightly. Therefore, we threshold the values by δ = 0.025 and gain the graph
on the right hand side, which is the same as for the analytical evaluation of the
Ishigami function. The TII’s and the FANOVA graph help to discover an underlying
block-additive structure of the function f , i.e. we can find a decomposition into
cliques of input variables such that variables in different cliques do not interact.
As outlined in [26], the detected interaction structure by the FANOVA graph can
be a valuable aid in constructing block-additive Kriging models. Therefore, the
fanovaGraph package also contains methods for block-additive Kriging analysis.
The block-additive decomposition provided by the FANOVA graph can also be used
in a parallelized global optimization procedure [17].
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4 Fields of Applications

The interpretation of a machine learning model by global sensitivity indices and
FANOVA graph is in general applicable to any kind of model with a continuous
response variable. We show examples of a Kriging model of a piston simulator and
an ANN of resistance of sailing yachts.

4.1 Kriging Model of a Piston Simulator

As an example for the application in the field of the design and analysis of computer
experiments we are using the piston simulator from the mistat package in R
[1], first presented in [19]. A piston is moving within a cylinder. The piston’s
performance is measured by the time it takes to complete one cycle, in seconds.
Here, we take the mean of 50 cycles as response, since the cycle time of the piston
fluctuates strongly. The following factors can affect the piston’s performance. The
ranges, in which these factors are varied uniformly in our sensitivity analysis, are
given in brackets.

m The impact pressure determined by the piston mass (30–60) [kg].

S The piston surface area (0.005–0.020) [m2].

V0 The initial volume of the gas inside the piston (0.002-0.010) [m3].

k The spring coefficient (1000–5000) [N/m3].

p0 The atmospheric pressure (9 · 104 − 11 · 104) [N/m2].

T The surrounding ambient temperature (290–296) [K].

T0 The filling gas temperature (340–360) [K].

Based on a random Latin hypercube design with 70 design points, we build
a Kriging model of the piston simulator. The Kriging model has a Matern 5/2
covariance kernel, no trend and no nugget effect. Table 2 shows the results for the
Sobol’ indices (first-order and total) and the Shapley values of the piston simulator.
The slightly negative value for, e.g. φ̂∗

6 is of course an artefact of the estimation
method. We observe that the piston surface X2 = S and the spring coefficient
X4 = k have the largest effect on the cycle time.

Figure 4 displays the FANOVA graph for the Kriging model of the piston
simulator after thresholding by δ = 0.005.

In Fig. 4a both the edges as well as the vertices of the graph are presented by
lines proportional to the values of the respective indices. It becomes obvious that
X2 = S and X4 = k have the highest impact, followed by X1 = m. However, as
the values of the TIIs are noticeably smaller than the first-order Sobol’ indices, it is
not possible to detect which interactions are the largest. Therefore, in the FANOVA
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Table 2 Sobol’ indices for
the Kriging model of the
piston simulator

Sobol’ Ŝi Shapley φ̂∗
i Total Sobol’ ŜTi

X1 0.109 0.091 0.103

X2 0.375 0.416 0.423

X3 0.062 0.069 0.082

X4 0.353 0.401 0.414

X5 −0.000 0.014 0.003

X6 −0.002 −0.009 0.007

X7 0.026 0.018 0.036
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(b)

Fig. 4 FANOVA graph with threshold δ = 0.005 for Kriging model of the piston simulator. (a)
FANOVA graph. (b) FANOVA graph (only TIIs displayed)

graph in Fig. 4b we only vary the edges in strength proportional to the values of the
TIIs. The largest TII is observed for the interactionX2X4 = Sk with Ŝsup2,4 = 0.033.

4.2 Neural Net Model of Resistance of Sailing Yachts

The residuary resistance of a ship is its total resistance minus the viscous resistance.
In this section we are studying the residual resistance of sailing yachts in depen-
dence of their hull geometry and the yacht velocity.

The Delft systematic yacht hull series data set [11] comprises 308 = 22 ·
14 experiments with yacht models of scale 6.25 performed at the Delft Ship
Hydromechanics Laboratory. In total, 22 different hull forms were tested with
14 different velocities. Based on the Delft series, semi-empirical models were
developed [11] which are widely used in the yacht industry [22]. The Delft data
set has 6 regressors and one dependent variable, all of which are dimensionless, i.e.
their unit is 1 or % or �. Let the weight displacement ! be the weight of water
equivalent to the immersed volume of the hull. Then the dependent variable is the
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ratio Rr/! of the residuary resistance Rr to the weight displacement, given in �.
The independent variables are as follows.

X1 The longitudinal centre of buoyancy (LCB) is the longitudinal distance, given
in % of some characteristic length, from a point of reference (often midships)
to the centre of the displaced volume of water.

X2 The prismatic coefficient Cp = ∇/LWLAm with Am the cross-sectional area
of the underwater slice at midships. Cp displays the ratio of the immersed
volume of the hull to a volume of a prism with equal length and cross-sectional
area Am.

X3 The length-displacement ratio LWL/∇1/3 where the volume displacement ∇
is the volume of water displaced by the hull.

X4 The beam-draught ratio BWL/T where the draught T is the maximal distance
from the water line to the bottom of the keel.

X5 The length-beam ratio LWL/BWL is the ratio of length to maximal width at
water line.

X6 The Froude number Fr = u/
√
gLWL. Here u is the flow velocity relative to

the yacht, g the gravitational acceleration, and LWL is the length of the hull
at water line.

We train a single hidden layer ANN to learn the relationship between input and
output variables in the Delft data set. Such ANNs are implemented in the nnet
package in R [35]. For regression, we choose an ANN with a linear activation
function to the output neuron. The data set is divided into training, validation and
testing subsets, containing 50%, 25% and 25% of the samples, respectively. The
hyperparameter to be tuned is the number n of neurons in the hidden layer. We
choose the ANN with lowest validation error, i.e. highestR2-value for the validation
data. That is according to Table 3 an ANN with 8 hidden neurons, i.e. a 6-8-1 net
with 6 · 8 + 8 = 56 weights and 8 + 1 = 9 biases.

For the chosen ANN as black-box function we perform a GSA. We compute
the Sobol’ indices as well as the scaled TIIs using the Liu-Owen method with
n = 100, 000 Monte Carlo samples with the help of the fanovaGraph package in R.
Table 4 displays these sensitivity indices with the following coding of the regressors
X1 = LCB, X2 = Cp, X3 = LWL/∇1/3, X4 = BWL/T , X5 = LWL/BWL and
X6 = Fr . The Sobol’ indices and scaled TIIs are graphically displayed in the bar
plot in Fig. 5a.

Table 3 R2 values for trainings, validation and test data for ANNs with different number of hidden
neurons

m 2 3 4 5 6 7 8 9

R2
train 0.9969 0.9992 0.9991 0.9998 0.9997 0.9998 0.9998 0.9997

R2
valid 0.9972 0.9970 0.9859 0.9989 0.9985 0.9969 0.9990 0.9988

R2
test 0.9962 0.9943 0.9939 0.9971 0.9924 0.9954 0.9957 0.9970
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Table 4 Sobol’ and Shapley
values for the neural net
model

Sobol’ Ŝi Shapley φ̂∗
i Total Sobol’ ŜTi

X1 0.024 0.020 0.142

X2 0.006 0.042 0.037

X3 0.033 0.022 0.071

X4 0.028 0.163 0.237

X5 0.021 0.031 0.087

X6 0.591 0.722 0.688

0.0

0.2

0.4

0.6

X1 X2 X3 X4 X5 X6

In
de

x

Effect
Interaction
Main

(a)

1

2

3

4

5

6

(b)

1

2

3 4

5

6

(c)

Fig. 5 Bar plot and FANOVA graphs without and with thresholding for the ANN model. (a) Bar
plot of first-order and total Sobol’ indices. (b) FANOVA graph. (c) FANOVA graph with threshold
δ = 0.025 (only TIIs displayed)

Figure 5 displays the FANOVA graph for the ANN model with and without
thresholding. The Froude number, a proxy for velocity, has by far the largest impact
on the residuary resistance. The largest interactions are X1X4, X4X6 and X1X6.

5 Summary

We have discussed the usefulness of GSA as a tool for interpretable machine
learning. Global sensitivity indices based on Sobol’ indices, Shapley values as
well as derivative-based global sensitivity measures are revisited. FANOVA graphs
allow for a very intuitive visualization of interaction structures and the strength
of first-order Sobol’ indices and TIIs. The approach is exemplified with a Kriging
meta-model for a piston simulator and an ANN model for the resistance of yachts.

Acknowledgments The financial support of the Deutsche Forschungsgemeinschaft (SFB 823,
project B1) is gratefully acknowledged.
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Improving Gaussian Process Emulators
with Boundary Information

Zhaohui Li and Matthias Hwai Yong Tan

Abstract Gaussian process (GP) models are widely used as emulators of time-
consuming deterministic simulators, which are mostly computer codes that solve
partial differential equation (PDE) models of physical systems numerically. In many
cases, the functional relationship between the inputs and output of the simulator at
parts of the boundary of the experiment domain or input domain can be determined
using mathematical analysis, logical reasoning based on physical laws, or a cheap-
to-compute low-fidelity simulator, as those subsets of the boundary correspond to
simplified physical processes. However, this information is not taken into account
in standard stationary GP priors used to construct GP emulators. This chapter
considers the problem of constructing a GP emulator that reproduces known input–
output relationships of a simulator at some boundary faces of the experiment/input
domain, called boundary information/constraints. The proposed boundary modified
GP (BMGP) emulator, which employs a nonstationary GP prior with specific forms
for the mean and variance functions chosen so that the GP prior satisfies given
boundary constraints, is shown to outperform the standard GP emulator based on a
stationary GP prior and alternative emulators that satisfy given boundary constraints
in two realistic examples.

Keywords Boundary information · Constrained Gaussian process emulator ·
Uncertainty quantification
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1 Introduction

Computer models of physical systems, also called simulators, are increasingly used
in practice. These simulators are often constructed from PDE models [7] that are
solved using numerical methods such as the finite element method [13]. Time-
consuming simulators are often approximated with cheap-to-evaluate surrogate
models, also called emulators, built with data from computer experiments [11, 34]
to save computation time.

GP models [33] are widely used as emulators to approximate time-consuming
deterministic simulators. The standard GP modeling approach is to use a stationary
GP with a parameterized correlation function as a prior for the input–output rela-
tionship represented by the simulator. The stationarity assumption corresponds to a
priori indifference about the input–output relationship over the entire experiment
domain and the correlation function is typically from a family that gives a GP
with mean square partial derivatives up to a certain order. Popular choices of
the correlation function are the product Gaussian and product Matérn correlation
functions [34]. To build the GP model/emulator, experiment data are obtained by
running the simulator at points given by an experiment design. Then, the prior GP
is updated with the data, which gives a posterior GP (i.e., the emulator) that is used
for predicting the simulator output. To ensure the emulator predicts well over the
whole experiment region, the experiment design should be a space-filling design
such as a Latin hypercube design (LHD) that optimizes a distance-based criterion
(see [21], chapter 2 of [11] and chapter 5 of [34]) or a model-based optimal design
(see chapter 6 of [34]).

In standard implementation of the GP emulator, parameters of the stationary prior
GP such as its mean, variance, and correlation parameters are usually estimated by
the maximum likelihood method. The data-driven method for parameter estimation
and the stationarity assumption imply that the simulator is essentially treated as
a black box. In practice, strong prior information about the simulator in the form
of constraints is often available and there are some existing works on utilizing
these constraints to improve the prediction performance of the GP emulator. For
example, [14, 37, 42] propose methods to modify the GP emulator to incorporate
monotonicity constraints. Tan [40] builds a GP model based on Green’s function
representation of a PDE solution. Alvarez et al. [2], Raissi et al. [31], and Chen
et al. [6] propose GP models for physical data that incorporate information from a
PDE. Other related works include [19, 20, 22, 36, 44].

In many practical problems, the value of the output y at a set of boundary points
of the experiment region or input domain is known. For example, for a simulator
with two inputs (x1, x2) and experiment region [0, 1]2, one may know from physical
reasoning or mathematical analysis that y(0, x2) = b01(x2) ∀x2 ∈ [0, 1], where
b01(·) is a known function (see Sect. 2). We call this kind of information boundary
information/constraints and we call b01(·) a boundary function. Note that boundary
information can be obtained from physical considerations. This often involves
letting a nonnegative input equal to zero or infinity (which are boundary points of
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[0,∞)). We shall give a few examples. The first example concerns modeling of the
temperature of a metal cube with five insulated faces, and one face that is raised
to and fixed at temperature T instantly at time 0, via the heat equation (a parabolic
PDE). Then, the temperature y(x) at any point in the cube at a fixed time τ > 0
converges to T as the thermal resistivity (the inverse thermal conductivity, see page
620 of [17]) x goes to zero, i.e., limx→0 y(x) = T, since heat is transferred without
resistance if x = 0. The second example concerns the bending of a plate. For this
problem, it is known from physical reasoning that the maximum displacement of
a plate approaches zero as the thickness of the plate becomes infinitely large, and
this boundary information should be satisfied by all reasonable PDE models of plate
bending such as the Mindlin and Kirchhoff plate models [43].

Boundary information can also be found from mathematical simplifications made
to a PDE model (i.e., a PDE with boundary and initial conditions), which gives as
its solution a physical quantity P as a function of space and time [12]. Specifically,
if a PDE or a boundary condition is nonlinear, one can linearize it to make the
PDE model easier to solve. This often involves setting to zero/infinity a nonnegative
parameter. For instance, in a heat equation model for the temperature P = T in
a solid body, the thermal conductivity κ may be modeled by an increasing linear
function of T [27], i.e., κ = x1 + x2(T − T̄ ), where x1 and x2 ≥ 0 are input
parameters, and T̄ is a reference temperature. This makes the PDE nonlinear. To
linearize the PDE, we can set κ = x1 (a constant over the space–time domain),
which makes it possible to obtain the PDE solution explicitly ([17], Chapter 3). As
κ = x1 is obtained by letting x2 = 0, an explicit solution found by letting x2 = 0
provides boundary information. A related example is the elimination of a nonlinear
radiation heat transfer term ([17], page 19) in a boundary condition for the heat
equation model by setting the emissivity to zero. Finally, a PDE can be simplified
by letting the length of the physical system in a spatial direction go to zero/infinity
so that P is constant in that direction, as is common in structural mechanics (see
[5], Chapter 19).

Commonly employed stationary GP priors do not take boundary information into
account. It is anticipated that if the GP prior is constrained by the known boundary
functions, it will give better prediction performance. In this chapter, we build a GP
emulator that reproduces known boundary functions of a deterministic simulator at
boundary faces of hypercube experiment regions. The proposed GP model, called
boundary modified GP (BMGP) model, is numerically shown to predict better
than the standard GP model and other existing GP models that satisfy boundary
constraints. In many cases, one may obtain boundary information at a boundary of
a domain larger than the experiment region, which is often the set of input values
where the simulator can be run. A common example is where the experiment domain
for an input x is [0, 1] but the input domain in which the simulator can be run is
[0,∞), and boundary information is available at x = ∞. We shall also discuss how
this case can be handled.

This chapter is based on the work in [39], which proposes the BMGP model
for exploiting boundary information. We employ the general BMGP model in
[39] to exploit known input–output relationships at the boundary of compact



174 Z. Li and M. H. Y. Tan

hypercube experiment domains while [39] only apply the BMGP model to problems
with boundary information at the boundary of the input domain [0,∞)d that
contains the experiment region as a proper subset. We give an improved model
parameter estimation method and additional explanations, theoretical analysis, and
examples to more clearly elucidate the ideas in [39]. Moreover, we compare the
BMGP model with alternative GP models (some of them recently developed) that
satisfy boundary constraints on hypercube domains. Note that use of boundary
information to improve GP emulator construction is a topic of recent interest in
the uncertainty quantification literature (e.g., [38, 39]). Nevertheless, the related
problem of estimating a PDE solution with noisy data using a GP model that
satisfies boundary and initial conditions has been studied as early as [15]. In contrast
to [39], which considers boundary constraints in the simulator input space [38]
considers imposing the Dirichlet boundary and initial conditions of a PDE model
in building a GP emulator to predict the solution of the PDE model. Ding et al. [9]
provide a theoretical analysis of the convergence rate of a GP emulator that satisfies
known boundary constraints, called BdryGP emulator. However, the emulator
uses a specific covariance function that gives continuous but non-differentiable
sample paths. Vernon et al. [41] and Jackson and Vernon [18] propose analytical
methods to update the standard GP emulator with data points placed along the
boundary. Nevertheless, this can only give a GP that satisfies boundary constraints
approximately when the boundary consists of an uncountable set of points. Solin and
Kok [35] proposes a method for imposing a boundary constraint on a GP. However,
they only consider a constant boundary function, while our proposed BMGP model
works for any continuous boundary functions.

Note that our work in this chapter does not involve use of GP models to infer
solutions of linear PDEs with Dirichlet boundary conditions based on noisy data,
which is a problem solved in [15, 16, 23]. These authors use a prior GP that
satisfies a linear PDE (approximately only in the first two references) and linear
boundary conditions. Indeed, the boundary information referred to in this chapter
does not refer to Dirichlet boundary conditions imposed on a PDE solution. Rather,
it refers to known simulator input–output relationships at the boundary of an input
domain, where the output is a scalar summary of the solution of a PDE model
and the inputs are parameters of the PDE model (geometric parameters, source
term parameters, parameters in boundary and initial conditions, and parameters
in the PDE). The methods by Gulian et al. [16] and Lange-Hegermann [23] for
imposing boundary conditions on a GP are limited to input domains of low (one to
three) dimensions since the authors suggest using the solution to a PDE with given
boundary conditions as the mean function of the GP and computational methods
to solve PDEs are well developed for PDEs defined on one- to three-dimensional
spatial domains only. Similarly, [15] gives an abstract method to build a GP model
that satisfies boundary conditions but only explicitly consider a two-dimensional
domain. Extension of this method to higher dimensional domains seems difficult.
Unfortunately, simulators often have high-dimensional inputs. In contrast to the
methods by Graepel [15], Gulian et al. [16], and Lange-Hegermann [23], the
proposed BMGP model is easily made to satisfy multiple continuous boundary
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constraints for a domain of dimension higher than three. Nonetheless, we shall
compare Graepel’s model for a two-dimensional domain with the BMGP model
in Sect. 4.1.

The remainder of this chapter is organized as follows. In Sect. 2, we state the
type of boundary information for a two-dimensional experiment region that can
be exploited by the BMGP model, and we give a motivating example with such
boundary information. In Sect. 3, we review the standard GP emulator and then
present the BMGP emulator. Section 4 applies the BMGP model to two examples
and compares it with several other alternative GP emulators. Section 5 concludes
the article.

2 A Motivating Example

In this section, we introduce the form of boundary information for a unit square
experiment region/domain that can be exploited by the proposed BMGP model.
Then, we introduce a practical example that involves a simulator with such boundary
information. More general forms of boundary information that can be incorporated
into the BMGP model are given in Sect. 3.3.

Suppose that {y(x) ∈ R : x ∈ [0, 1]2} denotes the continuous functional relation-
ship represented by the simulator, where we assume that [0, 1]2 is the experiment
domain for simplicity. In practice, there is often boundary information/constraints
given by one or more of the following expressions:

y(0, x2) = b01(x2) ∀x2 ∈ [0, 1], (1)

y(1, x2) = b11(x2) ∀x2 ∈ [0, 1], (2)

y(x1, 0) = b02(x1) ∀x1 ∈ [0, 1], (3)

y(x1, 1) = b12(x1) ∀x1 ∈ [0, 1]. (4)

Note that the subscript ij in bij (·), which we call a boundary function, indicates that
the boundary function is for the edge defined by xj = i. These boundary functions
may be obtained through mathematical analysis or physical considerations or cheap-
to-compute low-fidelity simulators. Thus, if any of Eqs. (1)–(4) holds, the simulator
output at one or more of the edges of the experiment domain is known, as illustrated
in Fig. 1. Hence, if one or more of (1)–(4) are known, the goal of an emulator is
to approximate the simulator well in the interior (0, 1)2 of the experiment domain
and the edges of the unit square where the boundary functions are unknown. The
BMGP emulator discussed in this chapter can be made to satisfy any combination
of (1)–(4), which helps improve predictions, especially near the boundary.

As an example, we consider a simulator implemented with Matlab PDE Toolbox
[25] that predicts the steady-state temperature T (a function of spatial coordinates)
in a cylindrical rod of length l = 0.9 m and diameter δ = 0.15 m (Fig. 2) by solving
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Fig. 1 Illustration of boundary functions

Fig. 2 Schematic diagram of rod temperature problem

the steady-state heat equation with boundary conditions. Convective heat transfer
between the cylindrical surface and the ambient air at temperature 20 ◦C occurs with
a convection coefficient of v1W/(m2 ◦C), while the right end of the rod is insulated.
The left end of the rod is uniformly at a fixed temperature of v2

◦C. The rod is made
of silicon with thermal conductivity 31033/(184.86 + T )W/(m◦C). This equation
is obtained by fitting the model κ(T ) = α1/(α2 + T ) to the thermal conductivity
κ(T ) versus temperature T (in ◦C) data in the temperature range of 250K to 1000K
from [10], which gives a good fit. Since the thermal conductivity depends on T ,
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the steady-state heat equation is a nonlinear PDE. Both v1 and v2 are inputs to the
simulator. The range of v1 of interest is 0 to 30W/(m2 ◦C), while the range of v2 of
interest is 20 ◦C to 720 ◦C. The output of interest y is the temperature (in ◦C) at the
center of the right end of the rod.

Suppose we standardize v1 (by dividing by 30) to give the standardized input x1
with range [0, 1] and we standardize v2 to give the standardized input x2 with range
[0, 1]. It is known that (1) holds with b01(x2) = 700x2 + 20 since if x1 = 0, there
will be no heat transfer between the cylindrical surface of the rod and the ambient
air, which makes the temperature of the entire rod equal to the temperature at the
left end v2 = 700x2 + 20. It is also known that (3) holds with b02(x1) = 20 since
if the temperature at the left end of the rod is equal to the ambient temperature of
20◦C (x2 = 0 yields v2 = 20◦C), the temperature in the entire rod will be equal
to 20◦C also. This constant temperature is easily verified to be the PDE solution at
v2 = 20◦C. Thus, boundary information of the form (1) and (3) is known to us.

3 Gaussian Process Modeling with Boundary Information

This section first provides a review of the standard GP emulator. Then, the proposed
BMGP emulator that exploits boundary information is described.

3.1 Review of Standard GP Emulator

In this section, we discuss the standard GP emulator for a simulator with d inputs
that each takes values in [0, 1]. The continuous functional relationship represented
by the simulator is denoted as {y(x) ∈ R : x ∈ [0, 1]d}. The commonly employed
GP emulator assumes a stationary real-valued GP prior {Y (x) : x ∈ [0, 1]d} for
{y(x) ∈ R : x ∈ [0, 1]d}. The prior mean and prior variance of Y (·) (which is
shorthand for {Y (x) : x ∈ [0, 1]d}) are constants denoted by μ and σ 2, respectively.
The prior correlation function, denoted by ρ(x, x′|θ), x, x′ ∈ [0, 1]d , where θ is a
vector of correlation parameters, is usually chosen so that the GP is one or more
times mean square differentiable. A common choice, which we use in this chapter,
is

ρ(x, x′|θ) =
d∏
i=1

[
exp

(
−|xi − x ′

i |
θi

)]( |xi − x ′
i |

θi
+ 1

)
, (5)

where x = (x1, . . . , xd), x′ = (x ′
1, . . . , x

′
d), and θ = (θ1, . . . , θd) ∈ (0,∞)d .

The correlation function (5) is a member of the product Matérn correlation function
family ([34], page 39). It gives a once mean square differentiable GP ([32], page
85). Other choices can be used as well.
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The prior GP is updated with the output data y = (
y(x1), . . . , y(xn)

)T
obtained

by evaluating the simulator at the points in the design D = {x1, . . . , xn}, which is
typically an LHD or other space-filling designs [34]. This gives the posterior GP
with posterior mean and covariance functions that are easily obtained. In particular,
for fixed μ, σ 2, and θ, the posterior GP is [8]

Y (·)|(y, μ, σ 2, θ) ∼ GP
(
M(·|μ, θ), C(·, ·|σ 2, θ)

)
, (6)

i.e., a GP with mean function M(·|μ, θ) and covariance function C(·, ·|σ 2, θ). The
posterior mean function is

M(x|μ, θ) = μ+ r(x)TR−1(y − μ1n), (7)

where r(x) = (
ρ(x, x1|θ), . . . , ρ(x, xn|θ))T , R = (

ρ(xi , xj |θ))1≤i,j≤n (an n × n

matrix with ρ(xi , xj |θ) in the i-th row and j -th column), and 1n is an n× 1 vector
of 1′s. The posterior covariance function is

C(x, x′|σ 2, θ) = σ 2
[
ρ(x, x′|θ)− r(x)TR−1r(x′)

]
. (8)

In practice, the parameters μ, σ 2, and θ are estimated by maximizing the likelihood
(see [34]), and these estimates are plugged into the formulas for the posterior mean
and covariance functions (7)–(8).

3.2 Boundary Modified GP Emulator

Let us now consider a simulator with two inputs x1 and x2, and experiment region
[0, 1]2. Clearly, the stationary GP prior described in Sect. 3.1 does not satisfy the
boundary constraints (1)–(4), i.e., it ignores the prior information given by (1)–
(4). Our proposed BMGP emulator employs a nonstationary GP prior {Y(x) : x ∈
[0, 1]2} that satisfies given boundary constraints (at a boundary edge with a given
boundary function, the prior GP equals the boundary function at each point with
probability one). To illustrate, suppose (1) and (3) are known, but (2) and (4) are
not known, and assume that y(·) is continuous (so that b01(·) and b02(·) are also
continuous). Then, we choose the prior mean function m(·) to be a function that is
continuously differentiable in (0, 1)2 and continuous on [0, 1]2 such that

m(0, x2) = b01(x2) ∀x2 ∈ [0, 1], (9)

m(x1, 0) = b02(x1) ∀x1 ∈ [0, 1]. (10)
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We choose the prior variance function v(·) to be a function that is continuously
differentiable in (0, 1)2 and continuous on [0, 1]2 such that

v(0, x2) = 0 ∀x2 ∈ [0, 1], (11)

v(x1, 0) = 0 ∀x1 ∈ [0, 1], (12)

and v(x) > 0 ∀x ∈ (0, 1]2. The act of selecting a nonconstant variance function
is called vertical rescaling in [32]. The correlation function for our BMGP model
is (5). Given these choices, we see that

lim
x1→0

E
{[
Y(x1, x2)− b01(x2)

]2
}

= 0 ∀x2 ∈ [0, 1], (13)

lim
x2→0

E
{[
Y(x1, x2)− b02(x1)

]2
}

= 0 ∀x1 ∈ [0, 1], (14)

which implies that the BMGP prior converges in mean square to b01(x2) as x1 → 0
and to b02(x1) as x2 → 0. The mean square convergence properties (13)–(14)
provide a stronger justification of the BMGP model than the simple statement
that the BMGP prior satisfies the boundary constraint (1) and (3) as it is the
properties of the BMGP prior near the boundary (rather than at the boundary) that
is of concern. The BMGP prior is mean square differentiable in (0, 1)2 as m(·)
is differentiable, and the correlation function (5) and variance function v(·) give
a covariance function c(x, x′) = ρ(x, x′|θ)√v(x)√v(x′), x, x′ ∈ (0, 1)2 whose
mixed partial derivative with respect to xi and x ′

i exists at all x, x′ ∈ (0, 1)2

([1], page 27). We assume that m(·) and v(·) are continuously differentiable
because continuous but non-differentiablem(·) and v(·) in the interior (0, 1)2 of the
experiment domain yield a GP prior that is too rough for many applications. Note
that a GP prior that is continuous but non-differentiable (in mean square sense) often
yields a posterior mean with poor prediction accuracy and very wide prediction
intervals. Furthermore, the input–output relationship of a simulator is usually at
least continuously differentiable.

There are many possible specific choices for the mean function that satisfy (9)–
(10). However, for practical purposes, we would like a parameterized function that is
not only sufficiently flexible to model nonlinear relationships but also analytically
and computationally tractable. The existence of parameters in the mean function
allows the function to be adjusted based on data. Our proposed prior mean function
is

m(x) = λ0(x)μ+ λ1(x)b01(x2)+ λ2(x)b02(x1), (15)

λ0(x) =
⎛
⎝

2∑
j=1

𝒹2(xj )

⎞
⎠ /

⎡
⎣

2∑
j=1

𝒹2(xj )+
2∑
j=1

α

𝒹2(xj )

⎤
⎦ ,
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λi(x) = α

𝒹2(xi)
/

⎡
⎣

2∑
j=1

𝒹2(xj )+
2∑
j=1

α

𝒹2(xj )

⎤
⎦ , i = 1, 2,

𝒹2(xi) = |0.5/(0.5 + xi)− 1|2, i = 1, 2,

where 𝒹(xi) is a measure of distance between xi and 0 that is obtained from the
distance metric 𝒹(x, x ′) = ∣∣0.5/(0.5 + x)− 0.5/(0.5 + x ′)

∣∣, and μ and α > 0 are
parameters. One should extend (15) by continuity when evaluating it at (x1, 0) or
(0, x2), which gives (9)–(10). The prior mean function has the intuitively appealing
property that it is a convex combination of μ, b01(x2), and b02(x1). The parameter
μ may be viewed as the prior mean far away from the boundaries given by x1 = 0
and x2 = 0 as λ0(x) increases with x1 and x2. We also see that as xi decreases to
zero, more weight is assigned to b0i (·). Our proposed prior variance function is

v(x) = s2
2∏
i=1

𝒹2η(xi), (16)

where s2 and η are positive parameters. It can be seen from (16) that as the distance
from the point x to the boundary xi = 0 increases, the prior variance increases, i.e.,
prior uncertainty about the simulator output increases, which is a sensible property.

When other combinations of (1)–(4) hold, it is simple to modify the above
approach to construct m(·) and v(·) so that the boundary constraints are satisfied.
The appropriate distance measure to use is given by (24) in Sect. 3.3, and one can
refer to [39] for a generalization of the formulas (15)–(16) to accommodate any
number of boundary constraints. There are other ways to build m(·) and the prior
covariance function c(·, ·) (which gives v(·)) so that some combination of (1)–(4)
is satisfied (e.g., see [9] for alternative choices of m(·) and c(·, ·), and Sect. 4.1).
However, we have found that the choices (15)–(16) for the case where (1) and (3)
hold give good and reliable results.

As in Sect. 3.1, the prior GP is updated with the output data y =(
y(x1), . . . , y(xn)

)T
obtained by evaluating the simulator at the design points

D = {x1, . . . , xn}. This gives the posterior GP with mean and covariance functions
that are easily obtained. In particular, the posterior GP is

Y(·)|(y, μ, α, s2, η, θ) ∼ GP
(
M ′(·|μ, α, η, θ), C′(·, ·|s2, η, θ)

)
, (17)

i.e., a GP with mean function M ′(·|μ, α, η, θ) and covariance function
C′(·, ·|s2, η, θ) (note that the mean function depends on μ, α, η, θ, while the
covariance function depends on s2, η, θ). In particular, the posterior mean function
is

M ′(x|μ, α, η, θ) = m(x)+ q(x)TQ−1(y − m), (18)
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where Q =
(√
v(xi )v(xj )ρ(xi , xj |θ)

)
1≤i,j≤n, m = (

m(x1), . . . ,m(xn)
)T

, and

q(x) = √
v(x)

(√
v(x1)ρ(x, x1|θ), . . . ,√v(xn)ρ(x, xn|θ)

)T
. The posterior covari-

ance function is

C′(x, x′|s2, η, θ) = √
v(x)v(x′)ρ(x, x′|θ)− q(x)TQ−1q(x′). (19)

Note that the boundary constraints (1) and (3) are satisfied with probability one a
posteriori. This is clear from (18)–(19), asm(x) equals the known boundary function
and v(x) = 0 when x = (0, x2) or x = (x1, 0). Moreover, as the posterior mean
and posterior variance functions are continuous, the BMGP posterior converges in
mean square to b01(x2) as x1 → 0 and to b02(x1) as x2 → 0. We estimate the
parameters μ, α, s2, η, and θ based on data and then plug the estimates into the
posterior mean and covariance functions (18)–(19). The mean parameters μ and α
are estimated by the least squares method, i.e., by minimizing the sum of squared
differences between the components of y and m, which yields μ̂ and α̂. Then, given
(μ, α) = (μ̂, α̂), we estimate the covariance parameters (s2, η, θ) by maximizing
the likelihood. For fixed (η, θ), s2 = ŝ2 = (y − m)T P−1(y − m)/n maximize the
likelihood, where P = s−2Q (which does not depend on s2). Thus, the maximum
likelihood estimate (η̂, θ̂) of (η, θ) is obtained by minimizing

n log(ŝ2)+ log(|P|). (20)

The maximum likelihood estimate of s2 is ŝ2 evaluated at (η, θ) = (η̂, θ̂). Note that
[39] uses the maximum likelihood method to estimate all parameters (including
μ and α), but we found that this can yield prediction intervals with somewhat
low coverage. The method for parameter estimation proposed above tends to give
superior coverage and equally good prediction accuracy, possibly because the least
squares method gives better estimates of mean function parameters, as shown in
[30]. As with the standard GP model in Sect. 3.1, the covariance matrix Q of the
BMGP model can become ill conditioned when n is large. To deal with this issue,
one can add a nugget s2ξ to the diagonal elements of Q [29], where ξ is a small
positive number.

In general, to make sure that the BMGP model works well, the model should
be validated. One can refer to [4] for a few methods that can be applied to validate
the BMGP model if a test set of modest size that is not used in training the BMGP
model is available. A more economical way to check the adequacy of the BMGP
model is leave-one-out cross validation [26].

We have found that space-filling designs such as LHDs and quasi-Monte Carlo
sequences [11, 34] that contain no boundary design points with known outputs
(which are zero prior variance points) are good choices for the design D as they
yield BMGP emulators that predict well. However, the result obtained by fitting a
BMGP emulator with an initial space-filling design can be improved by employing



182 Z. Li and M. H. Y. Tan

a sequential design approach, which adds design points one by one at the point of
maximum prediction variance. The details are given in [39].

3.3 BMGP Model for More General Cases

In Sect. 3.2, we propose the BMGP emulator for a two-dimensional experiment
region [0, 1]2 where boundary information of the form (1) and (3) is available. It
is straightforward to generalize this method to a d-dimensional experiment region
[0, 1]d for a continuous function y(·) (computed by a simulator) with boundary
information on a (d − k)-face boundary of the form

lim
xk−→ck−

y(x) = y(ck−, xk+) = b(xk+) ∀xk+ ∈ [0, 1]d−k, (21)

where xk− = (x1, . . . , xk), ck− = (c1, . . . , ck), and xk+ = (xk+1, . . . , xd). Note
that ci ∈ {0, 1} ∀i = 1, . . . , k, and b(·) is continuous as y(·) is continuous. Clearly,
if d = 2, c1 = 0, and k = 1, (21) reduces to (1). The prior mean function m(·)
and prior variance function v(·) of the BMGP model are chosen as functions that
are continuous on [0, 1]d , continuously differentiable in (0, 1)d , and respectively
satisfy

lim
xk−→ck−

m(x) = m(ck−, xk+) = b(xk+) ∀xk+ ∈ [0, 1]d−k, (22)

and

lim
xk−→ck−

v(x) = v(ck−, xk+) = 0 ∀xk+ ∈ [0, 1]d−k. (23)

The prior correlation function ρ(·, ·|θ) is given by (5). After updating the BMGP

prior with data y = (
y(x1), . . . , y(xn)

)T
, a posterior GP with mean function M ′(·)

and covariance function C′(·, ·) given by expressions identical to the right-hand
sides of (18) and (19), respectively, is obtained. Given the above assumptions on
m(·), v(·), and ρ(·, ·|θ), we have the following result:

Proposition 1 The BMGP prior Y(x) and the BMGP posterior Y(x)|y converge
to b(xk+) in mean square as xk− → ck−, i.e., limxk−→ck− Y(x) = b(xk+) and
limxk−→ck− Y(x)|y = b(xk+) hold in mean square. The first limit also holds with
probability one, i.e., Y(x) converges to b(xk+) almost surely as xk− → ck−.

Proof We first prove the limits hold in mean square. An immediate consequence
of (22)–(23) is that limxk−→ck− Y(x) = b(xk+) holds in mean square. Since
m(·), v(·), and ρ(·, ·|θ) are continuous, the posterior mean function M ′(·) and
the posterior covariance function C′(·, ·) are continuous. This fact and (22)–(23)
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give limxk−→ck− M
′(x) = b(xk+) and limxk−→ck− C

′(x, x) = 0, which imply that
limxk−→ck− Y(x)|y = b(xk+) holds in mean square. ��

Due to continuity ofm(·) and v(·), and the choice of ρ(·, ·|θ) in (5), the prior GP
Y(·) is sample path continuous almost surely. This is because we can write Y(x) =
m(x)+√

v(x)Ỹ(x), where Ỹ(·) ∼ GP(0, ρ(·, ·|θ)) is sample path continuous almost
surely ([28], page 47). As Y(·) is continuous with probability one, Y(x) converges
to b(xk+) almost surely as xk− → ck−.

Remark 1 Proposition 1 applies to cases with multiple constraints of the form (21).

Remark 2 Mean square convergence of the BMGP posterior and almost sure
convergence of its prior to b(xk+) as xk− → ck− are new results stated in this
paper.

We now give our recommendation for m(·) and v(·). First, we generalize the
measure of distance, i.e., 𝒹(·), defined in Sect. 3.2. We define 𝒹2

ck−(x
k−) =

k−1 ∑k
l=1 ϕ

2
cl
(xl) as the squared distance between xk− and ck−, where

ϕc(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∣
0.5

0.5 + x
− 0.5

0.5 + c

∣∣∣∣ , c = 0

∣∣∣∣
0.5

0.5 + 1 − x
− 0.5

0.5 + 1 − c

∣∣∣∣ , c = 1.

(24)

Note that the quantity ϕc(x) can be written as ϕc(x) = ϕc(x, c), where ϕ0(x, x
′) =∣∣∣ 0.5

0.5+x − 0.5
0.5+x ′

∣∣∣, and ϕ1(x, x
′) =

∣∣∣ 0.5
0.5+1−x − 0.5

0.5+1−x ′
∣∣∣. It is easy to show that

ϕ0(x, x
′) and ϕ1(x, x

′) are valid distance metrics if viewed as functions of (x, x ′).
Thus, 𝒹zk−(x

k−) =
[
k−1 ∑k

l=1 ϕ
2
zl
(xl)

]1/2
is a valid distance metric also if viewed

as a function of (xk−, zk−), where zk− = (z1, . . . , zk). We plot (24) (recommended
distance metric) in Fig. 3 for the case where c = 0. The Euclidean distance between
x and c = 0, which is a straight line, is also plotted in Fig. 3. It is seen that
(24) has a concave shape when c = 0. The reason that we choose ϕc(x) so that
ϕ1(x) = ϕ0(1−x) is for the sake of symmetry, i.e., the function {ϕ1(x) : x ∈ [0, 1]}
is a reflection of {ϕ0(x) : x ∈ [0, 1]} about x = 0.5, as we should obtain the same
distance between x and c = 0 and between 1 − x and c = 1. Note that instead
of (24), [39] sets ϕc(x) =

∣∣∣ u
u+x − u

u+c
∣∣∣ for some u > 0, which is appropriate for

the input domain [0,∞)d .
Analogous to (15), our suggested prior mean function is m(x) = λ0(x)μ +

λ1(x)b(xk+), where λ0(x) = 𝒹2
ck−(x

k−)/[𝒹2
ck−(x

k−) + α/𝒹2
ck−(x

k−)], λ1(x) =
[α/𝒹2

ck−(x
k−)]/[𝒹2

ck−(x
k−) + α/𝒹2

ck−(x
k−)], and μ and α > 0 are parameters.

Similarly, our suggested variance function is v(x) = s2[𝒹2
ck−(x

k−)]η. It is easily
seen that these choices satisfy (22)–(23). The reason we recommend the distance
measure 𝒹ck−(x

k−) constructed from (24) is because we found empirically that
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concave shaped distance measures like ϕc(x) in (24) give a GP emulator with better
coverage than the Euclidean distance measure. This is because the distance between
a point near 0 and the boundary 0 is a larger fraction of the maximum distance to
the boundary 0 achieved at x = 1 when the recommended distance measure is used
instead of the Euclidean distance. This makes the prior variance at a point near 0 a
larger fraction of the maximum prior variance within the experiment region.

Another kind of boundary information is obtained when an input goes to infinity,
which gives rise to asymptotes in graphs. Consider a simulator with a scalar input x
that produces output y(x) given input x. Suppose it is known that limx→∞ y(x) = b,
where x = ∞ can be viewed as a boundary of the input domain where the simulator
can be run. Note that this is not the boundary of the experiment region, which needs
to be specified as a compact set. For this problem, we recommend

m(x) = μ𝒹2(x,∞)

𝒹2(x,∞)+ α/𝒹2(x,∞)
+ bα/𝒹2(x,∞)

𝒹2(x,∞)+ α/𝒹2(x,∞)
, (25)

where α > 0, and μ are parameters to be estimated, 𝒹(x,∞) =
∣∣∣ 0.5

0.5+x
∣∣∣, and μ can

be viewed as the GP mean far away from ∞. Note that 𝒹(x, x ′) =
∣∣∣ 0.5

0.5+x − 0.5
0.5+x ′

∣∣∣
is a distance metric on [0,∞] when viewed as a function of (x, x ′). We suggest a
variance function of the form

v(x) = s2
[
𝒹2(x,∞)

]η
. (26)

Clearly, a prior GP {Y(x) : x ∈ [0,∞)} with these choices of mean function and
variance function will give limx→∞E

{[Y(x)− b]2
} = 0, i.e., the boundary

information is satisfied in mean square sense.

Fig. 3 Distance between x
and 0 as given by
recommended distance metric
ϕ0(x) and usual Euclidean
metric
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4 Numerical Examples

In this section, we give two simple but realistic examples to compare the proposed
BMGP model with some alternative GP emulators. Matlab codes for reproducing
the results in this section can be found in GitHub, https://github.com/ustclzh/
Gaussian-Process-With-Boundary-Information.git. The codes were run in Matlab�

R2020a (MathWorks, Inc., Natick, MA, USA).

4.1 Example 1

We revisit the rod temperature simulator (based on a nonlinear PDE model)
described in Sect. 2. We compare the BMGP emulator with four alternative GP
emulators to demonstrate the improvements that can be gained by forcing an
emulator to satisfy known boundary constraints and to show that the prior mean
and variance functions (15)–(16) tend to be better than alternative choices. The first
alternative GP emulator is the standard GP emulator given in Sect. 3.1. It does not
satisfy the known boundary constraints (1) and (3). The second, third, and fourth
alternative GP emulators satisfy the boundary constraints (1) and (3) (a priori and
a posteriori), as with the BMGP emulator. In fact, these alternative emulators also
give GP priors/posteriors that converge in mean square to b01(x2) as x1 → 0 and to
b02(x1) as x2 → 0, as with the BMGP emulator. The second alternative emulator is
obtained from the BMGP emulator by replacing the covariance function c(x, x′) =√
v(x)

√
v(x′)ρ(x, x′|θ), x, x′ ∈ [0, 1]2 of the BMGP emulator with a product of

fractional Brownian covariance functions, which we call the fractional Brownian
GP (FBGP) emulator. The product fractional Brownian covariance function is given
by

CFB(x, x′) = s2
2∏
i=1

(|xi|pi + |x ′
i |pi − |xi − x ′

i |pi
)
/2, (27)

where 0 < pi < 2, i = 1, 2, and s2 > 0 are parameters. The fractional
Brownian covariance function is well known (see [24], page 196) and it is used
in [45] for emulator construction. For the FBGP model, we employ (15) as its
prior mean function, as with the BMGP model. The FBGP model satisfies the
boundary constraints (1) and (3) as CFB((x1, 0), (x1, 0)) = CFB((0, x2), (0, x2)) =
0. Comparing the BMGP and FBGP models helps justify our proposed choice of
c(·, ·). The third alternative emulator is the BdryGP emulator [9], which uses a so-
called BdryMatérn covariance function

CBdry(x, x′) = s2
2∏
i=1

sinh
[
θi min{xi, x ′

i}
]

exp
[−θi max{xi, x ′

i}
]
. (28)
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For the BdryGP emulator, the prior mean function is a radial basis function
interpolator of boundary data points (see [9]). Its value at x = (x1, x2) is obtained
by interpolating the output values at boundary points (x1, 0) and (0, x2) using the
radial basis kernel max

{
1 − ∥∥x − x′∥∥

2 , 0
}ν , where a kernel with ν = 3 is used as

it gives good results. The fourth alternative GP emulator is constructed according to
the model proposed by Graepel [15], who models the solution T (·) to a linear PDE
with a Dirichlet boundary condition at the edges of [0, 1]2 as b(·)+ a(·)Z(·), where
a(·) is zero at the boundary and b(·) is equal to the Dirichlet boundary condition at
the edges. Using this idea and the a(·) and b(·) proposed in [15] to build a GP model
that satisfies (1) and (3) gives us the prior GP

Z(x) = (1−x1)b01(x2)+(1−x2) [b02(x1)− (1 − x1)b02(0)]+x1x2Z(x), (29)

whereZ(·) ∼ GP
(
0, σ 2ρ(·, ·|θ)), σ 2 > 0, and ρ(·, ·|θ) is defined in (5). We call the

emulator given by this prior GP as the Graepel GP (GGP) emulator. All parameters
in the FBGP, BdryGP, and GGP models (including the mean function parameters of
the FBGP emulator) are estimated by the maximum likelihood method.

We generate a sliced LHD with three slices for two inputs, where each slice
is an LHD with 20 points, using the R package SLHD [3]. The first slice is used
as the design to build the BMGP emulator (Sect. 3.2) and all four alternative GP
emulators described above. The union of the second and third slices, which has an
empty intersection with the first slice, is taken as the test input set. The simulator
is run at all points in the design and test input set, and the predictions at the test
input sites given by the BMGP emulator and the four alternative GP emulators are
computed. This process is repeated 60 times, i.e., 60 designs and 60 test input sets
are generated.

For each pair of design and test input set, we compute the mean absolute
prediction error (MAE), root mean square prediction error (RMSE), and average
length (ALPI) and empirical coverage (Coverage) of 98% prediction intervals for
the standard GP, FBGP, BdryGP, GGP, and BMGP emulators. Table 1 gives the
sample means (averages) of the 60 values of MAE, RMSE, ALPI, and Coverage
and their standard errors. We see that the average MAE and average RMSE for
the BMGP emulator are the smallest among all GP emulators, and the size of
the standard error suggests that the average MAE/RMSE of the BMGP model is

Table 1 Sample mean and its standard error (in parentheses) of the MAE, RMSE, ALPI, and
Coverage given by the standard GP, FBGP, BdryGP, BMGP, and GGP emulators for 60 pairs of
design and test set

Emulator MAE RMSE ALPI Coverage

Standard GP 7.31 (0.21) 15.33 (0.68) 43.32 (1.16) 0.934 (0.005)

FBGP 7.41 (0.34) 12.61 (0.54) 58.22 (1.49) 0.928 (0.006)

BdryGP 6.23 (0.20) 11.78 (0.49) 90.95 (1.04) 0.978 (0.003)

BMGP 4.22 (0.10) 8.23 (0.24) 25.38 (0.82) 0.938 (0.004)

GGP 6.50 (0.37) 10.36 (0.67) 93.68 (3.12) 0.928 (0.005)
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significantly smaller than that of all other models. We see that forcing an emulator
to satisfy known boundary constraints helps to improve prediction accuracy as all
four emulators that satisfy the boundary constraints (the FBGP, BdryGP, GGP, and
BMGP models) have smaller average RMSE than the standard GP emulator, and
all these emulators except the FBGP emulator have smaller average MAE than
the standard GP emulator. The BMGP model also gives significantly smaller ALPI
on average compared to all other emulators. The wide prediction intervals of the
BdryGP emulator give it an average coverage closest to the nominal value of 0.98.
However, the BMGP emulator gives an average coverage of 0.938, which is not
far from the nominal 0.98, and this is achieved with far shorter prediction intervals
than the BdryGP emulator. Overall, the BMGP emulator is superior to the other
four GP emulators as it gives the smallest sample means for the MAE, RMSE, and
ALPI, and it gives an average coverage that is close to nominal. It outperforms
the standard GP emulator and three other GP emulators (all with different prior
covariance functions and two with different prior mean functions) that satisfy the
known boundary constraints. This justifies the choice of the prior mean function (15)
and prior variance function (16) for the BMGP emulator.

For the standard GP model and the BMGP model, the maximums of the condition
numbers of the 60 prior covariance matrices for the experiment data (Rσ 2 for the
standard GP model and Q for the BMGP model) with covariance parameters fixed
at the maximum likelihood estimates are 188,390 and 35,450, respectively. Thus,
in this example, the BMGP model gives a prior covariance matrix that is better
conditioned than the standard GP model in the worst-case setting and neither model
suffers from serious ill conditioning problems as their maximum condition numbers
are not large. However, if there are design points very close to boundary edges where
the BMGP model gives a prior variance of zero, the prior covariance matrix Q can
be ill conditioned. One way to overcome this problem is to simply avoid using a
design with points very close to the boundary. Nonetheless, space-filling designs
like LHDs, which have zero probability of placing design points at the boundary,
usually do not yield an ill-conditioned prior covariance matrix for the data in our
experience.

4.2 Example 2

The second example considers the deflection of a 10 m×10 m square plate clamped
on all edges and deformed by a uniform load in the downward direction, which
is normal to the plate surface (see [25], page 3–7 and page 3–8, for details). The
simulator for this problem is developed from the Matlab codes given in pages 3–
8 to 3–11 of [25]. The plate thickness (in meters) is the input x, while the other
parameters are fixed at the values given in [25]. The output y is the deflection
(displacement) at the midpoint of the plate, which is negative as the deflection is
downward. It is known that when the thickness x goes to infinity, the midpoint
deflection y(x) will converge to 0, i.e., limx→∞ y(x) = 0.
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Fig. 4 Plot of posterior means and 98% credible intervals of prediction [LCL,UCL] given by the
BMGP and standard GP emulators constructed with a six-point design for the plate simulator. The
data and the true simulator output, i.e., midpoint deflection of the plate, are also plotted

We employ the design D = {0.1, 0.13, 0.16, 0.2, 0.3, 0.5} to fit both BMGP
and standard GP emulators. Figure 4 plots the true output and posterior means
and 98% credible intervals of prediction for the BMGP and standard GP models,
where the BMGP model has prior mean and variance functions given by (25)–(26),
respectively. The BMGP model gives point and interval predictions that are nearly
identical to the true output, and it performs better than the standard GP model in both
the experiment region [0.1, 0.5] and the extrapolation region (0.5, 0.7]. In addition,
the prediction interval length of the BMGP model, which is near zero everywhere, is
far smaller than that of the standard GP model for points in [0.2, 0.7] that are away
from design points. It can be shown that the posterior variance of the standard GP
emulator converges to its maximum, which is the prior variance, as x goes to infinity.
Thus, the prediction interval length of the standard GP emulator will increase as x
increases above 0.5 and eventually converges to a maximum. This tendency can
be seen from Fig. 4. Moreover, it is seen from Fig. 4 that the posterior mean of
the BMGP model gives better prediction accuracy than the posterior mean of the
standard GP model in the interval (0.5, 0.7]. The tendency of the posterior mean of
the standard GP emulator to revert toward the prior mean as x goes to infinity can
also be seen from Fig. 4.

We now consider another scenario with the same simulator where the goal is to
predict within the experiment domain [0.1, 1], and we assume the output at x =
1 is known, i.e., boundary information is given by y(1) = −2.754 × 10−4. We
use the design D = {0.1, 0.13, 0.16, 0.2, 0.3, 0.5} to fit the BMGP model, which
employs the prior mean and variance functions given by (25)–(26) with b = y(1)
and 𝒹(x,∞) replaced by the distance measure (24) with c = 1, i.e., ϕ1(x). For
this one-dimensional problem, the standard GP model can be made to satisfy the
boundary constraint at x = 1 by simply including the boundary data point (1, y(1))
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Fig. 5 Plot of posterior means and 98% credible intervals of prediction [LCL,UCL] given by the
BMGP emulator constructed with a six-point design D = {0.1, 0.13, 0.16, 0.2, 0.3, 0.5} and the
standard GP emulator constructed with a seven-point design D1 = D∪ {1} for the plate simulator.
The data and the true simulator output, i.e., midpoint deflection of the plate, are also plotted

in the dataset, i.e., by using the design D1 = D ∪ {1} to fit the model, which is
the method for taking into account boundary information studied in [41]. Figure 5
plots the point and interval predictions of the BMGP model fitted with data from D
and the standard GP model fitted with data from D1. The true output is also plotted
in the figure. The BMGP model gives far shorter prediction intervals in [0.2, 1] at
points far from D1 (distance to the closest point in D1 is large). This is because the
standard GP model employs a stationary GP prior (with constant variance), while
the BMGP model uses a nonstationary GP prior such that as x approaches one,
its prior variance gets smaller. It is also seen that the BMGP model gives more
accurate point predictions for x ∈ [0.6, 0.9] than the standard GP model. This is
because the standard GP model employs a constant prior mean μ, which causes its
posterior mean to be pulled toward μ = −0.101 (the maximum likelihood estimate)
at points away from D1. In contrast, as the BMGP model uses a nonconstant prior
mean function that converges to y(1) as x → 1, its posterior mean is not pulled
toward a value different from y(1) between [0.5, 1], which makes its predictions
more accurate.

5 Conclusions

In this article, we consider the problem of using known simulator input–output
relationships at the boundary of the input domain to construct a GP emulator with
improved prediction performance. These relationships can often be discovered by
physical considerations, mathematical analysis, or the use of cheap-to-compute
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low-fidelity simulators, as the boundary faces of an input domain frequently
correspond to simplified physical processes. We propose to use judiciously chosen
nonstationary mean and variance functions to build a GP emulator so that the
emulator converges to the known boundary functions in mean square sense. The
proposed GP emulator, called the BMGP emulator, is numerically compared with
the standard stationary GP emulator and alternative GP emulators that satisfy the
known boundary constraints in two realistic examples. Three such alternative GP
emulators are considered in the first example, i.e., a GP model with the product
fractional Brownian covariance function and the same prior mean function as the
BMGP model, the BdryGP model proposed by Ding et al. [9], and a GP model
adapted from the GP model proposed by Graepel [15] for inferring the solution of
a linear PDE with Dirichlet boundary conditions. The BMGP emulator outperforms
the standard stationary GP emulator and all three alternative GP emulators that
satisfy the boundary constraints in terms of prediction accuracy and prediction
interval length, and the prediction intervals of the BMGP emulator have close-to-
nominal coverage. In the second example, the BMGP emulator is compared with
the approach of adding boundary points to the standard stationary GP emulator. The
BMGP model is also shown to predict better in this case.

While we only consider the case where the boundary function on one face of the
d-dimensional experiment region [0, 1]d is known in Sect. 3.3, it is straightforward
to extend our approach to problems where the boundary functions on multiple
faces are known. Some problems need further research. First, the proposed BMGP
model needs to be modified when dealing with problems with nonrectangular input
domains and boundaries that are not planar faces or boundaries that are planar faces
but not perpendicular to any Cartesian axis. Second, theoretical properties of the
BMGP model aside from the property that it converges to given boundary functions
need further study. Third, it is of interest to use the BMGP emulator for parameter
calibration and study the improvements in calibration achieved with this emulator
over the standard GP emulator as many PDE models contain parameters that need
to be calibrated.
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An Overview and General Framework
for Spatiotemporal Modeling
and Applications in Transportation
and Public Health

Lishuai Li, Kwok-Leung Tsui, and Yang Zhao

Abstract Spatiotemporal modeling and forecasting is an essential task for many
real-world problems, especially in the field of transportation and public health. The
complex and dynamic patterns with dual attributes of time and space create unique
challenges for effective modeling and forecasting. With the advancement of data
collection, storage, and sharing technologies, the amount of data and the types of
data available for spatiotemporal modeling research in transportation and public
health are rapidly increasing. Some traditional spatiotemporal methods become
obsolete. There is a need to review existing methods and propose new ones to
harness the power of newly available data. Therefore, in this chapter, we conduct
a comprehensive survey of methods and algorithms for spatiotemporal monitoring
and forecasting, focusing on applications in transportation and public health. Then,
we propose a systematic framework to incorporate three different approaches: sta-
tistical methods, machine learning methods, and mechanistic simulation methods.
The proposed framework is expected to help researchers in the field to better
formulate spatiotemporal problems, construct appropriate models, and facilitate new
developments that combine the strengths of mechanistic approaches and data-driven
ones. The proposed general framework is illustrated via examples of spatiotemporal
methods developed in transportation and public health.
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1 Introduction

A wide variety of events in the real-world problems are featured by spatiotemporal
dynamics, such as traffic flows, population migration, infectious diseases transmis-
sion, diffusion of air pollutants, power grids failure, etc. The ubiquitous events with
dual attributes of time and space have created challenges for effective forecasting
methods to predict future changes in a timely manner. The objective of spatiotem-
poral monitoring and forecasting is to analyze such patterns in events at both
temporal and spatial dimensions and to understand and predict current and future
developments. A large number of approaches under various applications have been
developed in the literature, including statistical methods, machine learning/deep
learning methods, and simulation models. The methods and algorithms related to
spatiotemporal modeling are overabundant, yet there is no systematic approach for
researchers and practitioners to choose what to use, why and when the method(s)
works for what kind of real-world problems.

Developing a generic framework for any spatiotemporal problems is overly
ambitious; in this chapter, we focus on spatiotemporal modeling in two specific
applications: transportation and public health, particularly infectious disease trans-
mission. Both have significant societal and economic impact, and there are common
characteristics in transportation flow and infectious disease spreading in terms of
dynamics and modeling methods used. In transportation systems, congestion and
delays feature typical spatiotemporal patterns and cause significant economic and
environment costs. For road traffic, congestion cost the US economy nearly 87
billion dollars in 2018 [29]. For air traffic, domestic flight delays were found to cost
the US economy 33 billion dollars in 2019 [27]. In public health, the outbreaks and
prevalence of infectious disease can be highly life-threatening. Up to July in year
2021, the COVID-19 pandemic has resulted in around 4.2 million deaths worldwide.
In year 2009, H1N1 pandemic resulted in between 151,700 and 575,400 deaths
worldwide. It is crucial to efficiently and accurately detect and forecast the event
occurrence patterns in these problems.

With the deployment of wireless sensors, decreasing cost of data transmission
and storage, the data available for studying these spatiotemporal problems become
increasingly large and diverse. This brings both opportunities and challenges for
spatiotemporal modeling in transportation and public health. Existing spatiotem-
poral methods are not readily available to harness the power of emerging data
for real-life situations. Existing studies generally adopt three approaches: (1)
statistical models that consider mathematical description of the physical processes
of related variable, (2) machine learning/deep learning approaches that utilize
a complex model structure to estimate the future event occurrences, and (3)
mechanistic/simulation approaches that built upon domain knowledge. For the
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statistical approaches, many models are limited to strong probability and distribution
assumptions, which are not always valid for data from wireless sensors, text data,
or data generated from human behaviors. They also have limited capability to
model the spatiotemporal structure of multivariate data and are lack of flexibility
to incorporate external factors that influence the spatiotemporal patterns. These
limitations have prohibited broad applications of statistical methods involving high-
dimensional variables, especially in complex socio-technical problems. For machine
learning and deep learning methods, experience-based model construction, feature
engineering, and parameter tuning have made it difficult for researchers and prac-
titioners to generalize and implement for a wide range of applications. In addition,
model interpretability is another major shortcoming of deep learning methods. The
lack of a clear understanding of the model and the meaning of its results limits its
deployment and impact in real world. At last, the mechanistic/simulation approaches
are strong in explaining the underlying mechanism of the spatiotemporal dynamics,
yet few of the traditional mechanistic/simulation approaches can harness the power
of big data. To our best knowledge, few papers address both mechanistic and data-
driven approaches.

Motivated by the above challenges, we review methods and algorithms for
spatiotemporal monitoring and forecasting in transportation and public health
applications. We propose a systematic framework to incorporate statistical methods,
machine learning methods, and mechanistic simulation methods. The framework is
not meant to solve any specific spatiotemporal problems, but rather to structure
the problems, construct appropriate spatiotemporal models, and facilitate new
developments that combine the strengths of mechanistic approaches and data-driven
ones.

More specifically, we plan to achieve the following objectives in this chapter.

• Summarize existing spatiotemporal models and compare statistical learning,
machine learning, and simulation methods. The goal is to understand what
methods have been developed for what kind of problems, infer how they can
complement each other, and suggest what new models can be developed to
address problems in transportation and public health.

• Propose a systematic framework that integrates statistical models, machine learn-
ing methods, and simulation approaches for modeling spatiotemporal problems,
focusing on applications in transportation and public health. The focus is on how
to handle typical categories of spatiotemporal problems and what key steps are
involved in spatiotemporal modeling.

• Illustrate the proposed method and strategy with examples in transportation
and public health applications. A number of example methods are shown with
different focuses and application areas.

This chapter is expected to be useful to researchers and practitioners to meet the
increasing demand and challenges for spatiotemporal monitoring and forecasting
in transportation and public health applications. The comprehensive analysis of
spatiotemporal methods helps us to understand which methods work for what
problems in real life. It also contributes to the development of robust methods with



198 L. Li et al.

meaningful interpretability for spatiotemporal monitoring and forecasting problems
in transportation and public health. New methods proposed in this framework are
expected to incorporate multiple data sources with various data structure, reveal the
inherent evolution of target event occurrences, and deliver accurate predictions of
future changes for transportation and public health problems.

2 Literature Review

We review existing general methods for spatiotemporal modeling and forecasting
and conduct an in-depth survey of methods to address spatiotemporal problems
in the field of transportation and public health. Most of the existing methods
for spatiotemporal modeling in general take the data-driven approach, including
statistical approaches and machine learning/deep learning-based approaches. The
survey of methods used in transportation and public health provided us new
perspectives, particularity on the value of the mechanistic simulation approaches
on spatiotemporal modeling.

2.1 Statistical Approaches to Spatiotemporal Modeling

Time series forecasting has fundamental importance to various practical domains
[26, 64, 88]. Autoregressive integrated moving average (ARIMA) and its family
is the most general class of models for forecasting time series. Hamed et al. [35]
applied ARIMA model for short-term forecasting by using traffic volume data of
urban arterials. Williams and Hoel [118] presented the theoretical basis for mod-
eling univariate data streams as seasonal autoregressive integrated moving average
(SARIMA) processes. ARIMA and SARIMA work well in specific conditions, but
they are limited by the assumption of “stationary” data. Motivated by the superior
capability to cast the regression problem of a Kalman Filter (KF) [44, 45], numerous
KF-based prediction studies began to emerge [34, 76, 122]. However, traditional
time series analysis methods cannot consider the spatiotemporal correlation.

Statistical spatiotemporal models are often constructed by combining time series
models with variogram-based models. Popular time series approaches include
autoregressive moving average models [11] for stationary data and state-space
models [117] for non-stationary components. In the spatial setting, the early work
often involves kriging-based models. Spatial processes consider the correlation
depends on location as well as distance. For example, the STARMA [84] and
STARMAX [98] models were constructed by adding spatial covariance matrices to
standard vector autoregressive moving average models. However, they are limited
to stationary temporal processes. Stroud et al. [99] developed a statistical model
for non-stationary spatiotemporal data. The model is cast in a Gaussian state-space
framework and can include temporal components such as trends, seasonal effects,
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and autoregressions. Some other methods [25, 56] use the vector autoregressive
models (VARs) for spatiotemporal data, in which the Y variable is a vector of
observations at difference sites at time t, and the coefficient matrices are carefully
constructed to model the spatiotemporal autoregressive relationships.

More generally, regression analysis is widely used for prediction and forecasting
[1, 6, 47, 70, 73, 96]. The major advantage of regression models is that they can be
used to capture important relationships between the forecast variable of interest and
the predictor variables. By modeling the spatial as well as the temporal dependence
of the errors, [79] applied spatial–temporal regression with 14 variables to forecast
real estate prices. Yang et al. [128] improved the accuracy of flu activity predictions
by establishing an autoregressive model of Google search data as an external
explanatory variable. Lu et al. [66] adapted a multivariate dynamic regression
method integrating Google searches, Twitter posts, electronic health records, and
a crowd-sourced influenza reporting system to forecast influenza activity. To esti-
mate regional activity, [74] proposed a two-step augmented regression model that
efficiently combines publicly available Google search data at different resolutions
(national and regional) and spatial dependence of influenza transmission.

Probabilistic graphical models (PGMs) are a powerful framework that bring
together graph theory and probability theory. Considering the uncertainty of the
noisy data and simplifying the complexity of the real world are the main advantages
of PGMs, [61] proposed dynamic cost predictions for a trip planner by using
a spatiotemporal Markov random field (STMRF). Hoang et al. [40] proposed a
Gaussian Markov random field-based model to forecast citywide crowd flows based
on traffic big data. However, PGM is highly computationally complex at the training
stage of the algorithm, making it very difficult to retrain the model when newer data
become available.

A related topic to spatiotemporal modeling is change detection of spatiotemporal
processes, yet it is not the focus of this chapter. Many methods have been proposed
for change detection in monitoring industrial processes [85, 86], remote sensing
with digital aerial imagery [2, 9], and other applications [92].

2.2 Machine Learning/Deep Learning-Based Approaches to
Spatiotemporal Modeling

Machine learning/deep learning methods have advanced in many application fields
over the past years, especially under the big data environment. Compared with
conventional statistical methods, machine learning and deep learning methods have
more flexibility in handling data with complex structure, such as graphs and net-
works. The well-known machine learning methods for forecasting include k-nearest
neighbors (KNN) algorithm [14, 67, 136], support vector machine (SVM) [41, 135],
and neural networks (NNs) [94, 112]. To evaluate a wider range of machine learning
methods, [42] implemented a network of stacked sparse auto-encoders to detect and
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predict event occurrence. Besides, some researchers developed various extensions
of SVM [21, 91, 114, 127] on short-term forecasting problem. In addition to these
machine learning approaches, deep learning has attracted many attention and shown
superior performance in spatiotemporal modeling.

Convolutional Neural Networks (CNNs) CNNs have been widely used in mining
spatiotemporal data because it is effective in capturing the spatial correlations in the
data [57]. Especially, for data types of spatial maps and spatial rasters, which can
be represented as a two-dimensional matrix, CNN is well suited to learn the spatial
features [17, 24, 51, 68, 69, 75]. Spatiotemporal data are sometimes represented as
a tensor or a sequence of tensors, and three-dimensional CNNs can be used to learn
the complex spatial and temporal dependencies of the data [16, 53].

Recurrent Neural Networks (RNNs) RNNs have been well recognized for
sequence learning tasks [103]. Incorporating long short-term memory (LSTM)
or gated recurrent unit (GRU) enables RNNs to capture the long-term temporal
dependency of time series. RNN and LSTM are increasingly used in time series
prediction. For example, RNNs are applied for future weather forecasting where the
weather variables are modeled as time series [18]. Volkova et al. [113] evaluated
the predictive power of neural network architectures based on LSTM units and
demonstrate its capability of nowcasting and forecasting ILI dynamics. However,
these algorithms cannot capture the spatial features.

Hybrid Models of CNN+RNN New hybrid models that combine CNN and RNN
have been proposed to extract spatiotemporal dependencies simultaneously in
spatiotemporal forecasting models. The basic idea is to structure the input as a
sequence of image-like matrices, and then a hybrid model that combines CNN and
RNN can be used, where CNN extracts the spatial relationships embedded in the
matrices and RNN learns the temporal pattern from the sequences. For example,
[121, 131] proposed the structures with the combination of CNN and LSTM for
spatiotemporal forecasting. Instead of simply stacking the architectures of CNN and
RNN, by extending the fully connected LSTM (FC-LSTM) to have convolutional
structures in both the input-to-state and state-to-state transitions, [93] proposed the
convolutional LSTM (ConvLSTM) model for the precipitation nowcasting problem.
ConvLSTM was then used in the spatiotemporal forecasting on transportation
applications [3, 48]. The hybrid architectures show good performance on extracting
spatiotemporal dependencies and correlations in forecasting. But the training
procedure may become time consuming as the size of dataset increases because
the complexity of RNNs is determined by the size of data sequences. Furthermore,
[137] proposed a spatiotemporal residual network for forecasting crowd flow in each
regular region of a city, yet it cannot be adapted to deal with irregular regions.

Graph Neural Networks (GNNs) and the Hybrid Models of GNNs+RNNs
CNNs are commonly applied for dealing with Euclidean data such as images,
regular grids, etc. However, spatial features based on the topological structure of
a network or a graph have strong effects on modeling graph-structured data. Graph
Convolutional Networks (GCNs) were widely used to capture network-based spatial
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dependencies as GCNs can handle arbitrary graph-structured data. Zhao et al. [138]
developed a spatiotemporal neural network named Temporal Graph Convolutional
Network for forecasting problem, which combines the GCN with GRU. However,
the experimental results show that it has difficulty to capture the sudden changes
of events occurrence. Sun et al. [100] proposed a novel multi-view deep learning
model, named Multi-View Graph Convolutional Network, to predict the inflow and
outflow in each irregular region of a city. Besides, another graph neural network,
Diffusion Convolutional Neural Networks (DCNNs) were also developed for graph-
structured data [5]. Later on, [60] proposed the diffusion convolutional recurrent
neural network (DCRNN) to model the traffic flow as a diffusion process on a
directed graph and incorporate both spatial and temporal dependency in the traffic
flow for traffic forecasting. More recently, attention mechanism was widely applied
into temporal and graph-structured spatial dependencies’ extractions. Spatiotem-
poral graph attention models were proposed for spatiotemporal forecasts of traffic
states [80, 116].

2.3 Spatiotemporal Modeling in Transportation

In the field of transportation, spatiotemporal modeling is often used for the modeling
and forecasting of (1) traffic conditions (including flow speed, volume, congestion
level, etc.) and (2) travel demand.

Spatiotemporal modeling and forecasting for traffic conditions is a fast evolving
field in recent years. Many papers have been published using machine learning
or deep learning-based approach to do traffic condition forecasting. Ermagun and
Levinson [25] provides a comprehensive literature review. The output of these
models includes traffic flow [142], traffic speed [31], travel time [89], relative
velocity [46], etc. The forecast time horizon is normally short term, e.g., a few
minutes to 1 h. The modeling techniques are primarily data driven, ranging from
statistical approaches [20] to machine learning/deep learning methods [130]. Many
efforts have been made on developing effective methods to model the spatial
dependency, the temporal dependency, and their dynamics for traffic condition
forecasting. Regarding the spatial dependency in traffic condition forecasting, it
can be coded as regions or positions in Euclidean coordinates without network
structures. For example, [137] developed a deep learning-based approach, called
ST-ResNet, to collectively forecast two types of crowd flows (i.e., inflow and
outflow) in each and every region of a city. Yu et al. [131] proposed a network grid
representation method for traffic speed forecasting on a transportation network. The
network-wide traffic speeds are transformed into a series of images and fed into a
deep architecture combining both convolutional neural networks (DCNNs) and long
short-term memory (LSTM) neural networks for traffic forecasting. Meanwhile, net-
works are very common in transportation, such as highways, railroads, and airways.
Some recent developments in traffic condition forecasting utilize the graph/network
structure in the deep learning framework and show significant improvement in terms
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of forecasting accuracy [22, 140]. He et al. [36] focused on exploring the influencing
factors on forecasting urban rail transit (URT) ridership. In this chapter, the authors
proposed an approach based on spatial models considering spatial autocorrelation
of variables, which outperform the traditional global regression model, OLS, in
terms of model fitting and spatial explanatory power. He et al. [37] made an effort
to incorporate multiple factors, including spatial factors (distance and network
topology), temporal factors (e.g., period and trend), and external factors (e.g., land
use and socioeconomics) to estimate metro ridership based on general estimating
equation (GEE) models. A following study investigated local model selection in
ridership prediction [38]. In this study, an adapted geographically weighted LASSO
(Ada-GWL) framework is proposed for modeling subway ridership, which involves
regression coefficient shrinkage and local model selection. It takes subway network
layout into account and adopts network-based distance instead of Euclidean-based
distance [38].

Similarly, in air transportation, many methods have been developed to monitor
and forecast traffic flow, travel time, congestion level, and delay time. In the past,
statistical methods or probabilistic approaches are used to analyze factors that
influenced flight delays and estimate delay distributions [111, 123]. Several machine
learning methods have been used to predict delays, e.g., k-nearest neighbors, neural
networks, support vector machine, fuzzy logic, and tree-based methods, yet did not
explicitly utilize the spatiotemporal patterns [19, 83, 87, 97]. With the vast volume of
commercial aviation system data being collected, classic methods are not sufficient
to incorporate the complexity involved in the real-world operational data collected
from multiple sources. For instance, tracking of aircraft position becomes available
for many areas in the world, which contains rich spatiotemporal information needed
for delay predictions. However, how to use and model this kind of raw position data,
as well as incorporating external data sources (e.g., weather, airline records), is still
an open research question [133]. More recently, Kim et al. proposed a recurrent
neural network (RNN) to predict the flight delays of an individual airport with day-
to-day sequences [50].

Different from the data-driven approaches, various simulation models have been
developed and commonly used for traffic condition forecasting in research as well
as in practice. The simulation models are built upon system-level abstractions of
real world (e.g., queue theory), component-level abstractions (agent-based), or a
combination of both (e.g., delay propagation). The purpose of using simulation-
based approaches for spatiotemporal modeling is to understand the “physics” of
transportation systems, design for “optimality,” and manage operations in real time.
Some simulation models are based on representations of driver behavior, e.g., car
following, gap acceptance, and lane choice. These are considered as microscopic
models or agent-based simulations. Another type of simulation models is based on
macroscopic traffic flow theory developed during the 1950s [62, 90]. The objective
of these models is to represent temporal congestion phenomena over a road network
based on system-level equations instead of individual vehicle level.

Regarding the travel demand modeling and forecasting, the conventional focus
is on aggregate forecasts for transportation facilities, districts, cities, and regions,
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and it is normally for long-term forecasts, such as forecasting the travel demand
for the next few year(s) [23, 78]. The basic principle used to construct travel
demand models is similar to the one used in standard microeconomics, which
is utility maximization. The travel activity is a reflection of explicit preferences
and limitations [78]. Individuals are defined by socioeconomic variables. In the
conventional models, the time is discretized into intervals and space into zones, the
depiction of travel patterns can be trip-based, tour-based, or activity schedule-based,
and the forecasting methods are regression-based [10]. More recently, there are a lot
of developments in simulation-based approaches for travel demand modeling and
forecasting [52, 129, 134].

2.4 Spatiotemporal Modeling in Public Health

In public health, considerable attention has been paid to spatiotemporal modeling
approaches for real-time tracking, timely detection and early intervention of disease
outbreaks and other public health-related events. Correspondingly, related papers
can be broadly grouped into three categories: forecasting, surveillance, and simula-
tion.

Forecasting The outbreaks and prevalence of infectious disease can be highly life-
threatening. Therefore, the focus of papers in this category is on predictive modeling
and forecasting of the spread of infectious disease and other public health-related
events. One of the earliest key studies in this category is often referred to as “Google
Flu” [33]. The authors proposed the first method to use Google search queries to
track influenza-like illness and detect influenza epidemics in areas with a large
population of web search users. Later, [128] proposed an influenza tracking model,
ARGO (AutoRegression with GOogle search data), with significantly improved
performance of Google search-based real-time tracking than other existing models
for influenza epidemics at the national level of the USA, including Google Flu
Trends. This first ARGO model only considers the temporal trends of influenza
epidemics. To overcome this limitation, the ARGO2 (2-step Augmented Regression
with GOogle data) was proposed to model both spatial and temporal trends [74].
ARGO2 can efficiently combine publicly available Google search data at different
resolutions (national and regional) with traditional influenza surveillance data from
the Centers for Disease Control and Prevention (CDC) for accurate, real-time
regional tracking of influenza [74]. Along this line of research, there are many
recent research studies, such as forecasting influenza in Hong Kong with Google
search queries and statistical model fusion [64, 125], using Baidu index to nowcast
hand–foot–mouth disease in China [139], a hybrid autoregressive integrated moving
average–linear regression (ARIMA–LR) approach for forecasting patient visits
in emergency department [124], and personalized health monitoring of elderly
wellness at community level [132].
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Surveillance The objective of public health surveillance is to systematically
collect, analyze, and interpret public health data (chronic or infectious diseases)
in order to understand trends and detect changes in disease incidence and death
rates and for planning, implementation, and evaluation of public health practices.
The focus is on the accurate detection of the time or/and location(s) of changes in
the occurrence rate as soon as possible. Several review papers examined existing
methods for public health surveillance and discussed research opportunities and
challenges [107–110, 120]. The most common existing disease spread monitoring
methods can be categorized into temporal, spatial, and spatiotemporal surveillance
techniques. Most basic methods such as SPC, regression, time series, and forecast-
based methods were originally developed as temporal approaches. On the other
hand, popular public health surveillance methods such as scan statistics were
originally developed as spatial approaches [54] and later extended as temporal
and spatiotemporal approaches [55]. Most spatial surveillance techniques rely on
existing statistical clustering methods. Many techniques have been developed to
expand those models to spatiotemporal methods that also search for clusters in
time. Despite many independent implementations of surveillance systems have
been deployed across different disciplines, such as ESSENCE, Google Flu Trends,
and Global Microbial, the ability to accurately detect infectious disease outbreaks
and pandemics is still in its nascent stages. Current surveillance systems lack the
means to integrate disparate data sources, although recently proposed methods for
multivariate surveillance hold promise for deployment in future systems to provide
accurate prediction for infectious disease outbreaks and spreading trends.

Simulation The third category includes studies that use simulation models or
mechanistic models to describe the spread of infectious diseases. Mechanistic
models are built with structures that make explicit hypotheses about the biological
mechanisms that drive infection dynamics. Such hypotheses include the dynamics of
disease process among individuals (e.g., susceptible, infected, immune) and social
interactions of people in an entire country or even the world [59]. As early as 1930s,
mechanical epidemic simulators are used as research tools as well as teaching tools
for epidemic theory [58]. Since that time, modeling has become an integral part of
epidemiology and public health. The history and typical methods of mechanistic
models of infectious disease are reviewed in [58, 59]. The most commonly used
mechanistic approach is the Susceptible-Exposed-Infectious-Recovered (SEIR)
compartmental model [49]. Smieszek [95] presented a mechanistic model that
considers the different duration and intensity of contacts. Balcan et al. [7] presented
the Global Epidemic and Mobility (GLEaM) model to simulate the spread of
epidemics at the worldwide scale. The model used in a spatially structured stochastic
disease approach to integrate sociodemographic and population mobility data [7].
Andradóttir et al. [4] developed a stochastic, individual-level simulation model of
influenza spread within a structured population to investigate reactive strategies for
containing developing outbreaks of pandemic influenza [4].

The three categories of research, forecasting, surveillance and simulation tackle
different aspects of the spatiotemporal problems in public health, therefore using
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different underlying methods. In the group of public health forecasting, the key
question to answer is how would the trend develop in time and space for a particular
kind of infectious diseases? Statistical or machine learning-based spatiotemporal
methods are used in these studies. For the public heath surveillance problems, the
focus is on detection, detecting the time and (or) location(s) of significant changes
in disease incidence and death rates. Therefore, statistical process control (SPC)
and related process monitoring methods are often used. Regarding the simulation
models, the goal is to understand the dynamic nature of the process, to evaluate
the impact of policy change over time, to develop better intervention strategies for
epidemics. Therefore, the development of models that reveal the nature of infection
dynamics is more important.

2.5 Challenges and Opportunities

To summarize, many methods for spatiotemporal forecasting have been applied
in various contexts, and they generally adopt three approaches: (1) statistical
models that consider mathematical description of the spatiotemporal process of
related variables, (2) machine learning/deep learning approaches that use the
complex model structures to learn spatiotemporal patterns and forecast future
event occurrences, and (3) simulation models or mechanistic models built with
structures describing the physical/biological mechanisms that drive dynamics. In
the two specific applications, transportation and public health, classic statistical
methods and simulation models have been used for traffic prediction, infectious
disease forecasting, and other spatiotemporal modeling. Recent efforts have been
made to utilize the power of artificial intelligence for spatiotemporal modeling and
forecasting. Most papers focus on either data-driven approaches or mechanistic
approaches. Few papers address both mechanistic and data-driven approaches as
well as their interaction in feature engineering.

Each of the three approaches has its own limitations. For the statistical
approaches, many models are limited to strong probability and distribution
assumptions, which are not always valid for data from wireless sensors, text data,
or data generated from human behaviors. They also have limited capability to
model the spatiotemporal structure of multivariate data and are lack of flexibility
to incorporate external factors that influence the spatiotemporal patterns. These
limitations have prohibited broad applications of statistical methods involving
high-dimensional variables, especially in complex socio-technical problems. For
machine learning and deep learning methods, different methods/models work for
different situations. Experience-based model construction, feature engineering,
and parameter tuning have made it difficult for researchers and practitioners to
generalize and implement for a wide range of applications. In addition, model
interpretability is another major shortcoming of deep learning methods. The lack
of a clear understanding of the model and the meaning of its results limits its
deployment and impact in real world. The simulation models or mechanistic models
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require specific knowledge of particular problems, which is difficult to be scaled
up to deal with different applications. To fill this gap, there is an urgent need to
examine existing spatiotemporal monitoring and forecasting methods and develop
improved solutions for practice and complex problems.

3 A General Framework for Spatiotemporal Modeling

With existing methods and algorithms, we propose a systematic framework for
modeling spatiotemporal problems focusing on applications in transportation and
public health. The framework covers statistical models, machine learning methods,
and mechanistic simulations for spatiotemporal modeling. It introduces a unified
way for effective and efficient mining and modeling of spatial and temporal
dependences among diversified data sources while integrating domain knowledge
and various forecasting methods. The proposed framework can serve as a guideline
for researchers and practitioners to understand and structure the spatiotemporal
problems they are facing and configure the modeling steps, i.e., feature engineering,
model selection and fusion, parameter tuning, performance evaluation, and results
interpretation. The proposed systematic framework for modeling spatiotemporal
problems is shown in Fig. 1. The details of individual modules are explained in
the following subsections.

3.1 Mechanistic/Simulation Approach

The mechanistic/simulation approach models the spatiotemporal dynamics based
on explicitly theories or hypotheses about the traffic flow or the infectious diseases
transmission mechanisms. Depending on whether the fundamental unit models
the dynamics among individuals or the dynamics at a system level, agent-based
simulations or system-level simulations are used. Many classic simulation models
have been developed in the field of transportation as well as the field of public health,
and new developments of mechanistic models and simulation are still evolving.

For the system (compartment)-level simulations, there are SEIR/SIR models
[32] and stochastic Markov chain models [30, 77] in public health. Ghaffarzadegan
[32] is an example of the system-level simulation model. The model analyzes the
spread of COVID-19 in universities that can be used to conduct a what-if analysis
and estimate infection cases under different policies. In transportation, the classic
system-level simulations are LWR models [62, 90, 119] and traffic flow simulations
[13, 82].

For agent-based (component-level) simulations, examples in public health
include the FluTE model [15, 65], the EpiSimdemics simulations [8], GSAM
[81], and Andradáttir’s model [4]. Andradáttir et al. [4] is an example of the agent-
based simulation model. It simulates the transmission of pandemic influenza with
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Fig. 1 A general framework for spatiotemporal modeling

the purpose of examining reactive strategies and concluded that in reaction to
developing outbreaks combination strategies of reactive vaccination and limited
antiviral use can be substantially more effective than vaccination alone in terms
of controlling outbreaks and economic cost. In transportation, the well-known
agent-based simulations include Newell’s model [72], MITSIM [126], and IDM
[106]. Liu et al. [63] is a new development that takes the mechanistic/simulation
approach. The authors developed an agent-based simulation to model movement
direction choice and collision avoidance for pedestrian flow. The results reveal the
joint effect of several physical, psychological, and sociological factors dominating
the real-world pedestrian walking behaviors.

Empirical data are important for the development of the mechanistic/simulation
approach. The data are used to estimate and calibrate the chosen parameters in
the model, as well as to validate the output accuracy. In the process of calibration
and validation of mechanistic/simulation models, the focus is on the mechanism of
interest to investigate and the intermediate steps, while the data-driven approach
strives for the final step accuracy.
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3.2 Data-Driven Approach

The data-driven approach focuses on the performance of final predictions, rather
than the intermediate steps/processes involved in the spatiotemporal modeling. It
does not require domain knowledge, yet its performance can be enhanced by domain
knowledge. The typical steps involved in a data-driven approach include feature
engineering, feature selection, and prediction model.

3.2.1 Feature Engineering

Feature engineering and feature extraction plays a key role in spatiotemporal
modeling, directly affecting modeling accuracy, reliability, and generality. It is the
process to generate informative features from the existing raw data by discovering
hidden patterns inside them. For real-life problems, the types and characteristics of
raw data for spatiotemporal modeling can be extremely diverse as they come from
multiple sources with complex correlations. Most of existing spatiotemporal models
in transportation and public heath still rely on a trial-and-error approach to choose
and construct features.

Exogeneous Versus Endogenous Features The spatiotemporal features can be
divided into two basic groups: exogenous features and endogenous features. An
exogenous feature is one whose value is determined outside the model and is
imposed on the model, in other words, features that affect a model without being
affected by it. An endogenous feature correlates with other factors within the system
being studied. It is changed or determined by its relationship with other features
within the model.

For transportation applications, the information of weather, holiday, and cal-
endar, as well as social media information containing the big events, etc. is the
commonly used exogenous features for assisting the spatiotemporal modeling in
transportation [48, 104, 137]. Sun et al. [102] is an example of using exogenous
features, Baidu Index and Google Index, in the forecasting model. The Internet
search data were integrated into extreme learning machine (KELM) models, and
the forecasting performance was significantly improved in terms of both forecasting
accuracy and robustness analysis.

For public health applications, the feature engineering part focuses on identifying
exogenous features for improving the prediction accuracy, rather than incorporating
complex network structures as in transportation models. Taking the forecasts of
infectious disease as an example, Internet search index is the exogenous feature
for improving the prediction accuracy of ILI rate [74, 128, 139].

Temporal Versus Spatial Within endogenous features, they can be further clas-
sified into (1) temporal features, which refers to any feature that is associated
with or changes over time, and (2) spatial correlation features, which refers to
any feature that is associated with or changes over space. Temporal features are
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typically classified as three different components: correlation with previous tem-
poral measurements, upward or downward trends, and cyclical or seasonal pattern.
Some spatial features (Euclidean-based) are better represented by Euclidean-based
distance measures or an image-like matrix. Other spatial features (network-based)
are better captured by the topological structure of a network or a graph. In addition,
the spatial structure may change over time. Thus, special feature extraction and
modeling techniques are needed to deal with the dynamic spatial structure.

Spatial Versus Network Features When choosing between image-based CNN
features and network structure-based features, it mainly depends on how to char-
acterize different types of spatial dependency in the forecasting problem. There
are mainly two classes, regular or network spatiotemporal problems, which require
different sets of methods. Most existing spatiotemporal models for disease trans-
mission forecasting do not consider the network features, while for transportation
systems, the network effect is naturally embedded, e.g., road network, rail network,
air traffic network. How to model the network structure also differs depending on the
mode of transportation. Road traffic prediction focuses on traffic condition on links,
while forecasting problems in rail operations and air transport pay more attention to
the delays at stations and airports.

Casual Versus Correlated Features The input features of a data-driven approach
model could be correlated with or (and) casual factors to the output variable(s).
Correlation and causation can both exist at the same time. However, correlation
does not imply causation. Causation means that one event or action causes another
event to happen. Correlation simply means there is a relationship between two
events or two variables. Most models in the data-driven approach are only assuming
and checking correlations between input features and the output variable(s). In
contrast, the mechanistic/simulation approach has a better chance to identify casual
features because a physical or mechanistic process is explicitly modeled and causal
relationships are normally used in these models.

Typical Ways to Extract Features from Raw Data There are four typical ways
to construct these endogenous features from raw data: domain knowledge-based
features, statistical features, image-based CNN features, and network structure-
based features. Domain knowledge-based features are constructed using a set of
variables (usually have physical meanings), rules, or mechanism based on the
knowledge and experience of the specific system or problem. For example, [28]
extracted 42 parameters as features for battery lifetime prediction based on domain
knowledge. These parameters can effectively reflect the aging dynamics of lithium-
ion batteries, such as the voltage, capacity, temperature, etc. This is an effective
way to construct features as it utilizes the domain knowledge accumulated for
many years. However, it requires deep understanding of the domain, which could
be expensive and time consuming for less popular applications. Statistical features
are commonly used in various applications, including mean, standard deviation,
variance, skewness, and correlation coefficients, autoregressive coefficients. The
advantage of using these statistical features is that they are not limited to a particular
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domain or system. However, the downside is that these statistical features may not
be able to capture the hidden patterns and the fundamental structure of the system.
For examples, in traffic forecasting, the raw data collected are normally flow-rates
at major road segments. Statistical features of flow-rates are not enough to build a
traffic forecasting model because flow-rate is not sufficient to determine the traffic
condition—a small flow-rate value may correspond to either a very light traffic or a
congested traffic [71].

3.2.2 Feature Selection

Feature selection is the method to reduce a large set of features to a small number of
features. The reduced feature set size makes it computationally feasible and easier to
interpret when using certain algorithms. It may also lead to better results by reducing
overfitting.

Three typical methods are used for feature selection: (1) filter methods, (2)
wrapper methods, and (3) embedded methods, as shown in Fig. 2. Filter methods
assess feature importance based on some ranking criteria. Typical filter methods are
ANOVA, Pearson correlation, variance threshold, and information gain. Wrapper
methods evaluate and select feature subsets based on model performance. The most
commonly used wrapper methods include forward selection, backward elimination,
and bidirectional elimination (Stepwise Selection).

Embedding methods take all available features as input and perform feature
selection in model training as part of the model construction process, e.g., LASSO,
elastic net, decision tree, deep learning methods, etc.

In addition, dimension reduction techniques can also be broadly categorized
under feature selection methods, such as PCA, SVD, autoencoders, etc. These
methods transform the original features into other variables via parametric or
nonparametric projection.

Fig. 2 Three categories of feature selection methods [28]. (a) Filter method. (b) Wrapper method.
(c) Embedded method
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3.2.3 Prediction Modeling

Prediction models take the input of selected features or transformed features, model
the patterns and relationships among the features and their influence on the output
variables (sometimes they are the input features with a different time window) in the
training data, and predict the output variables. Both statistical methods and machine
learning methods have been developed for prediction models.

Most statistical forecasting methods are developed based on autoregressive
moving average models. However, these statistical forecasting methods are limited
by the assumptions that they rely on, such as stationary of time series, known
statistical distributions of features, etc. Such kind of methods have difficulty to
incorporate complex spatiotemporal correlation into modeling.

Deep learning methods have advanced in many application fields over the past
years, especially under the big data environment. Compared with conventional
statistical methods, deep learning methods have more flexibility in handling data
with complex structure, such as spatial data like maps, rasters, graphs and spa-
tiotemporal data like sequence of spatial data, and 3D tensors. However, the training
procedure may become time consuming as the size of dataset becomes very large.
Besides, existing methods may have difficulty in state forecasting in irregular
regions, directed network flow forecasting, or graph-structured data forecasting in
non-Euclidian spaces. Many ongoing research efforts are made to develop better
learning-based prediction models to overcome these difficulties.

3.3 Combining the Mechanistic and the Data-Driven Approach

A hybrid approach that involves both the mechanistic/simulation approach and the
data-driven approach is expected to combine strengthens of both. For example, the
mechanism and knowledge used in the mechanistic/simulation approach can be used
to generate better domain knowledge-based features, as well as better structured
features, such as network structure-based features. The formulated dynamics used
in the mechanistic/simulation approach can also be used to design better prediction
models in the data-driven approach, such as the structure of the statistical models,
the architecture of the deep learning models, etc.

3.4 Evaluation Metrics and Methods

The standard way of evaluating the spatiotemporal forecasting models is to test the
prediction accuracy on testing dataset. In the data preprocessing part, the original
spatiotemporal dataset is divided into training set and testing set. Training set is
used for feature evaluation, model training, and hyper-parameter optimization, while
testing set is used for the model evaluation.
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The model performance is typically evaluated based on three evaluation metrics:
RMSE (root-mean-squared error), MAPE (mean absolute percentage error), and R2
(coefficient of determination). The RMSE describes the absolute error measured
by variations in data errors, and the MAPE indicates the relative error, in terms
of percentages of predicted values. Smaller values of RMSE and MAPE indicate
better prediction accuracy. R2 measures how much of the variance in the predicted
variables can be explained by the model. A larger value of R2 represents better
performance. To evaluate the spatiotemporal forecasting models comprehensively,
the models can also be assessed from other several aspects in addition to the
prediction accuracy and prediction robustness, including computational efficiency,
model interpretability, etc.

One important aspect of spatiotemporal forecasting models is about the predic-
tion performance across different forecast horizons. The comparison of short-term
and long-term predictions can help provide a better understanding of the robustness
and adaptability of forecasting methods. For instance, an influenza forecast model
might have different performance when forecast influenza activity 1 week ahead,
1 month ahead, and 1 year ahead. However, the natural difference in the structures
of statistical models, deep learning models, and the mechanistic simulation models
may cause unfair comparisons in sliding window evaluation. Most statistical models
are naturally structured for sliding window evaluation. Many of these models are
also capable of doing one-step or multi-step ahead forecasting with parameter re-
estimation. Model parameters can be adjusted based on newly available data after
each window sliding is performed. However, conventional machine learning/deep
learning-based models reuse data at time t-1, t-2, . . . to predict output values at time
t. The hyper-parameters of the model are not refitted as the prediction time shifts
in sliding window evaluations unless the training process is explicitly re-performed
on the new training set. Moreover, the comparison of mechanistic forecasting model
may be different from the other types of forecasting models. In the simulation-based
forecasting, the changes in policy and behavior could be factored in the model, while
the data-driven approach does not have the natural structure to do this. Therefore,
the comparison among different methods needs to be carefully designed to make it
fair.

4 Examples of the General Framework for Spatiotemporal
Modeling

Many real-world data sets are available for research in transportation and public
health applications in recent years, including ILI data at different region levels,
inter-city passenger travel data, the smart card records data collected from metro
Automatic Fare Collection (AFC) system, and datasets for external factors, such
as Google search and meteorological data. We performed a number of studies
following proposed systematic framework for spatiotemporal modeling to achieve
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better prediction results, understand the spatiotemporal patterns better, and generate
application insights. In this section, we illustrate the systematic framework for
spatiotemporal modeling via several examples. The methods or models developed
in these examples are different and they have unique characteristics best suited for a
particular kind of application problem, since the framework is not meant to solve any
specific spatiotemporal problems, but rather to structure the problems and construct
appropriate spatiotemporal models.

4.1 Spatiotemporal Modeling for Road Traffic

This is a fast evolving field. Many papers have been published using machine
learning or deep learning-based approaches to forecast traffic conditions on road
network in recent years. A number of open datasets provide traffic speed and traffic
flow over major road segments or intersections measured by sensors installed on the
road or real-time information provided by the vehicles on the road. [43] provides a
summary of open data and big data tools used for traffic estimation and prediction.

How to structure the problem, including the selection of the output variables,
feature extraction, and the design of model structures, is critical for spatiotemporal
modeling in the field of road transportation. Regarding the design and selection of
the output variables, the output variable is normally flow, speed, congestion level,
relative velocity, and other traffic condition measures. Yet it can be categorical or
continuous. The selection of output variables depends on data availability and model
specification.

In terms of feature extraction, most of the recent deep learning-based approaches
to forecast traffic conditions on road network have been focused on how to extract
and model spatial features in the road network. In addition to these endogenous
features, [102] is an example of using exogenous features, Baidu Index and
Google Index, in the forecasting model. The Internet search data were integrated
into extreme learning machine (KELM) models, and the forecasting performance
was significantly improved in terms of both forecasting accuracy and robustness
analysis.

One of our ongoing work is the development of data-driven approaches to predict
traffic condition on a city road network [115]. In this study, we are using a dataset
provided by Baidu, named MapBJ, which provides the traffic conditions categorized
into four levels (unblocked, slow, congested, extreme congested) over major roads
in Beijing [18], and another dataset provided by DiDi Chuxing for a similar set of
traffic condition measures in Xi’an. Following the proposed general framework, the
challenges of developing a data-driven approach to predict traffic condition on a
city road network come from how to structure the model so that it can capture the
temporal dependency, the spatial dependency, and the changes of spatial dependency
overt time over a road network. A number of deep learning model architectures
are being examined, and below is an architecture that we proposed. The proposed
architecture is named, periodic spatial–temporal deep neural network (PSTN) as
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Fig. 3 Illustration of PSTN architecture of spatiotemporal model for road traffic. From [115],
©Tiange Wang, Zijun Zhang, Kwok-Leung Tsui, 2021, used under the Creative Commons
Attribution 4.0 International License: https://creativecommons.org/licenses/by/4.0/

shown in Fig. 3. The basic idea is to have three sequentially parts: (1) graph
convolutional networks (GCNs) to capture the topological structure of road network,
(2) the temporal convolutional networks (TCNs) and the gated recurrent units
(GRUs) to capture periodic temporal dependency and local temporal dependency,
respectively, and (3) the multi-layer perceptron (MLP) to combine road attributes
and make the final prediction.

4.2 Spatiotemporal Modeling for Transit Passenger Flow

Forecasting short-term passenger flow on urban metro networks is an essential
task for proactive traffic management in cities, which monitors real-time traffic
conditions and forecast the condition in the immediate future. The challenges are
mainly driven by complex spatiotemporal characteristics in metro passenger flow
data and other external influence factors such as weather effect. We performed a
number of studies following proposed systematic framework for spatiotemporal
modeling to achieve better prediction results, understand the spatiotemporal patterns
better, and generate application insights [36, 63, 104, 105].

Liu et al. [63] is an example of taking the mechanistic/simulation approach. The
authors developed an agent-based simulation to model movement direction choice
and collision avoidance for pedestrian flow. This developed microscopic simulation
of pedestrian flow could be used for studying problems related to pedestrian traffic
and evacuation dynamics.
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Tang et al. [104] is an example of taking the statistical approach to forecast the
short-term passenger flow on Shenzhen metro. In the proposed framework, there
are three modules: traffic data profiling (feature engineering), feature extraction,
and predictive modeling. In the feature engineering and feature extraction part,
three types of features were comprehensively investigated in this study. They are
(1) temporal features from passenger flow time series data, (2) spatial features
based on origin-destination (OD) patterns, and (3) external weather factors. In the
prediction model part, this study employed a number of forecasting models to
evaluate the performance of the proposed framework, i.e., the time series model
autoregressive integrated moving average, linear regression, and support vector
regression. Moreover, the evaluation of this framework pays special attention to
forecasting steps and horizons. The results suggest that smaller forecasting step
predicts better for longer forecasting horizon, while larger forecasting step performs
well for t + 1 prediction yet the prediction performance degrades when forecasting
horizon grows.

Focusing on how to construct the features and extract the complex spatiotemporal
relationships, we have studied both the statistical approach and the deep learning
approach. He et al. [36] used a statistical approach, focusing on the travel demand
forecasting and exploring the influencing factors on urban rail transit (URT)
ridership. In this paper, the authors proposed an approach based on spatial models
considering spatial autocorrelation of variables, which outperform the traditional
global regression model, OLS, in terms of model fitting and spatial explanatory
power. A following study investigated local model selection in ridership prediction
[38]. In this study, an adapted geographically weighted LASSO (Ada-GWL)
framework was proposed for modeling subway ridership, which involves regression
coefficient shrinkage and local model selection. It takes subway network layout into
account and adopts network-based distance instead of Euclidean-based distance.
In addition, [37] made an effort to incorporate multiple factors, including spatial
factors (distance and network topology), temporal factors (e.g., period and trend),
and external factors (e.g., land use and socioeconomics) to estimate metro ridership
based on general estimating equation (GEE) models.

He et al. [39] is an example of taking the deep learning approach for short-term
passenger flow forecasting on Shenzhen metro. This work focused on investigating
how to encode the network-based spatial features and other heterogeneous inter-
station correlations in the model. The solution proposed in this work is a multi-graph
convolutional recurrent neural network (MGC-RNN) (shown in Fig. 4) to generate
multiple graphs that each represents a type of network structure and then to
employ multiple parallel graph convolutional operators on multigraphs in the
prediction model. This work illustrates that feature engineering and feature selection
are both embedded in the deep learning-based prediction model. Specifically, by
incorporating various types of inter-station correlations, temporal dependencies,
and exogenous factors, the framework exhibits a possibility for multi-source
heterogeneous data fusion in a big data environment.
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Fig. 4 The architecture of MGC-RNN [39]

4.3 Spatiotemporal Modeling for Air Traffic

Flight time prediction and, a related topic, flight delay prediction have been studied
for years in the field of aviation. Many prior works employ statistical methods or
probabilistic approaches. However, the accuracy of these models is not sufficient
for the individual flight predictions. With the increasing amount of aviation system
data being collected and available, such as Automatic Dependent Surveillance—
Broadcast (ADS-B) data, aviation meteorological data, it is possible to utilize
machine learning methods to learn the patterns of aircraft movement on a national
air traffic network and predict individual flight time.

Sun et al. [101] is an example of combing statistical approach and deep learning
approach to forecast air passenger flows. The proposed model incudes nonlinear
vector autoregression and neural network. The results show that it outperforms
single models and other hybrid approaches in terms of level forecasting accuracy,
directional forecasting accuracy, and robustness analysis.

Zhu and Li [141] developed a novel spatial weighted recurrent neural network
(SWRNN) model to provide flight time predictions for individual flights at a scale of
national air traffic network, as shown in Fig. 5. Following the systematic framework
for spatiotemporal modeling, the feature engineering part is a combination of
domain knowledge-based and imagine-based CNN features. Based on domain
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Fig. 5 Framework of SWRNN model [141]

knowledge, the network delay state features are extracted from the aircraft position
tracking data, ADS-B, manually, including the average flight delay of each origin–
destination (OD) pair, the average flight delay at each arrival airport, and the average
flight delay at each departure airport for a specific time interval. Then, these network
delay state matrices are sequenced based on time and fed into the spatial weighed
layer to extract the spatial dependency and reduce the dimensionality for the network
delay state features. The learnable weights of the spatial weighted layer show the
importance of different OD pair/airports to the sample flight. Then, long short-
term memory (LSTM) networks are used after the spatial weighted layer to extract
the temporal dependency of network delay states. Therefore, the feature selection
is an embedded method in this work. Finally, features from delays, weather, and
flight schedules are fed into a fully connected neural network to predict the flight
time of a particular flight. Evaluation of the SWRNN model was conducted using
1 year of historical data from an airline’s real operations. Results show that the
SWRNN model can provide a more accurate flight time predictions than baseline
methods, especially for flights with extreme delays. In the paper, the authors also
demonstrated that fuel loading can be optimized with the improved flight time
prediction and resulting reduced fuel consumption by 0.016%–1.915% without
increasing the fuel depletion risk for airlines.
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4.4 Spatiotemporal Modeling for Infectious Disease
Transmission

Taking the forecast of infectious disease transmission as an example, the systematic
framework for spatiotemporal modeling can also be followed. Tsui et al. [108]
provided a comprehensive review of research and developments in temporal and
spatiotemporal surveillance for public health. Compared with the transportation
problems, the feature engineering part focuses on identifying exogenous features
for improving the prediction accuracy, rather than incorporating complex network
structures. Several studies have shown that Google search data are effective
exogenous features for improving the prediction accuracy of ILI rate [74, 128, 139].

Following the statistical approach, [125] studied the value of using online social
media and web search queries to forecast new cases of influenza-like illness (ILI) in
general outpatient clinics (GOPC) in Hong Kong. The study tested four individual
models to forecast ILI-GOPC both 1 week and 2 weeks in advance, which are
generalized linear model (GLM), least absolute shrinkage and selection operator
(LASSO), autoregressive integrated moving average (ARIMA), and deep learning
(DL) with feedforward neural networks (FNNs). Furthermore, the authors also
proposed a statistical fusion model using Bayesian model averaging (BMA) to
integrate multiple forecast scenarios.

Regarding the machine learning approach, [64] used a deep learning method to
forecast influenza epidemics in Hong Kong, which also uses Google search queries.
In this method, the innovative parts are mainly feature engineering on the output
data. Variational mode decomposition (VMD), a signal decomposition method, is
used to decompose the influenza data (the output data) into modes with different
frequencies. Then, each mode extracted by VMD is forecasted by artificial neural
networks (ANNs) and then these forecasts of each mode are added to generate the
final forecasting results.

Zhao et al. [139] is an example of combining both the traditional statistical
approach and the machine learning approach for spatiotemporal modeling of
infectious disease transmissions. A meta learning framework (shown in Fig. 6)
is proposed to select appropriate predictive model based on the statistical and
time series meta features to nowcast the monthly hand, foot, and mouth disease
(HFMD). In addition, the feature engineering part incorporated search engine index.
The proposed meta learning method significantly improves the HFMD prediction
accuracy, demonstrating that (1) the Internet-based information offers the possibility
for effective HFMD nowcasts and (2) the meta learning approach is capable of
adapting to a wide variety of data and enables selecting appropriate method for
improving the nowcasting accuracy.

More recently, a study evaluated thirteen different methods for short-term
forecasting of COVID-19 in Germany and Poland for 10 weeks, 12 October–19
December 2020, [12]. The study found that these forecasts from thirteen different
teams are heterogeneous in terms of both point predictions and forecast spread. The
performance of ensemble forecasts was relatively better on coverage, but ensemble
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Fig. 6 Meta learning framework. From [139], ©The Author(s), 2018, used under the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

forecasts did not clearly dominate single-model predictions. The findings are
consistent with the increasingly trend of acknowledgment that combining multiple
models can improve the reliability of outputs.

5 Conclusion

There is an increasing demand for spatiotemporal monitoring and forecasting
under various applications. This work reviews recent research and developments of
spatiotemporal modeling in transportation and public health. Current spatiotemporal
modeling methods are designed for specific applications, and various techniques and
algorithms are proposed at different stages involved in the spatiotemporal modeling.
This chapter proposes a systematic framework for developing spatiotemporal
modeling, covering mechanistic/simulation approaches, statistical methods, and
machine learning/deep learning methods. The proposed framework is illustrated via
a few examples of spatiotemporal modeling in transportation and public health. The
proposed framework will be useful to help researchers and practitioners formulate
and structure the spatiotemporal modeling and forecasting problems, develop
effective and accurate models, and improve the effectiveness of spatiotemporal
modeling in solving real-life problems.
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Introduction to Wafer Tomography:
Likelihood-Based Prediction of
Integrated-Circuit Yield

Michael Baron, Emmanuel Yashchin, and Asya Takken

Abstract A concept of wafer tomography is introduced referring to a detailed
reconstruction of hidden information on integrated circuits given incomplete and
sparse layer-by-layer data that are usually available. Proposed tools associate chip
failures with all observed, partially observed, and unobserved defects on a chip
via a cause-and-effect relationship to predict the final yield at any time during
the production process. The method also allows to determine the most probable
causes of failures, the most dangerous defects, the most vulnerable layers, the most
influential factors, and their combinations.

Keywords Diagnostics · EM algorithm · Kill ratio · Tomography · Wafer
inspection · Yield prediction

1 Introduction

Over the last three decades, a variety of stochastic models have been proposed
that explain the patterns of defective chips in semiconductor manufacturing. Earlier
works focus on the total number of failed chips [11, 21, 29], while recent papers
deal with their spatial dependence [9, 10, 14, 20, 23, 28], effect of the critical area
[13, chap. 4], [27, 31], and defect types [5, 8, 12], emphasizing more and more often
the large volumes of integrated-circuit test data and the consequent computational
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challenges [2–4, 17, 22], and others. For a more complete list of classical references
on semiconductor yield modeling and prediction, see [1].

As recognized in the literature, the probability for a chip to fail is affected by the
number of defects, their size, type, and location. These factors are accounted in the
model proposed in [1] that relates chip failures to all the measurable and available
characteristics of defects. In reality, for the sake of cost economy, many defects are
observed but not classified, and a majority of layers are not inspected at all. Thus,
a multitude of substantial information is missing, whereas the fatal defects causing
chip failures are often unobserved or unclassified. Nevertheless, it is possible to
use all the pieces of available information effectively to reconstruct relationships
between defects and chip failures and to predict failures with a reasonably high
probability. We refer to such a process as wafer tomography, by analogy with
the tomographic image reconstruction techniques via mathematical superposition
of information obtained from sectional images, absorbed neutrons, photoacoustic
signals, or wave travel time measurements.

In this chapter, we supply the proposed methodology with a theoretical treatment,
explain mathematics supporting wafer tomography, assess its benefits and limita-
tions for semiconductor yield prediction, and propose new computational tools for
mining large volumes of detailed multidimensional integrated-circuit defect data.

Incorporating all the observed and unobserved information for the explanation
and prediction of chip failures, the proposed model inevitably contains a very large
number of parameters. It has to account for effects of tens of defect types occurring
on tens of different layers of the chip, hundreds of interactions between defect types
and layers, effects of other causes, distribution of defect sizes of each type, as well as
thousands of frequencies of defects of different types on different layers in different
lots. Direct optimization over such a large number of parameters is computationally
problematic. At the same time, inclusion of unobserved and unclassified chips into
the model is rather crucial. Our analysis of over 1000 lots and millions of chips
showed that failure of any chip is more likely to be caused by one or several
unobserved or unclassified defects than by an observed and classified defect. In
addition, a chip may fail due to reasons specific to a lot but other than observable
defects.

In the next section, the detailed tomographic model of the cause-and-effect
relationship between the defects and yield is developed. The value and limitations
of this model are discussed in a theoretical context of the accuracy of any model
predicting the yield. Computational aspects of wafer tomography are studied in
Sect. 3. Proposed modifications of the EM algorithm enhance the success and
fast convergence of the multidimensional estimation routine. Section 4 discusses
the goodness-of-fit criteria for the tomographic yield predicting models and their
limitations for the correct prediction of yield. The proofs are given in Appendix.
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2 Tomographic Models

In this section, we derive a stochastic model explaining a cause-and-effect relation-
ship between (a) defects of different types and sizes, occurring at different layers of
a wafer, and (b) the yield of each chip.

This model was originally introduced in [1]. Here, we provide theoretical
justification for each of its components and discuss possible variations. We then
assess limitations of the model and present a theoretical result on the prediction
power of any yield predicting model.

We start by modeling the probability for a chip to survive a single observed
and classified defect of a given size, type, and location. Then, using basic rules of
probability, we extend the formula to unclassified defects and unobserved defects
occurring on uninspected layers. Combining all the components, we obtain the
probability for a chip to survive given all its classified and unclassified observed
defects as well as all the uninspected layers and lot-specific other causes.

The model is based on the following general assumptions:

(1) Failure of a chip can be caused by defects occurring on it as well as other factors
that are specific to a lot.

(2) Any defect can be fatal, independently of other defects, with a probability that
is a function of the defect type, its size, and the layer on which it occurs.

(3) The number of defects of each type on each layer follows a Poisson distribution
with a parameter determined by the defect type, layer, and lot.

2.1 Notation

Let us introduce the following notation. Throughout the paper, index k represents a
defect, j is a defect type, s is a defect size, x is the transformed defect size, l is a
layer, i is a chip, w is a wafer, and m is a lot. Thus, jk is the type of the k-th defect,
lk is a layer on which it occurred, etc. The numbers of chips, wafers, layers, etc., are
denoted by the corresponding capital letters, I for the number of chips, W for the
number of wafers, L for the number of lots, and so on.

Next, C and U will denote the sets of classified and unclassified defects,
respectively. Likewise, Clw is the set of classified defects on layer l of waferw. The
number of classified defects (of type j on layer l) is denoted by d (djl), whereas the
number of unclassified defects (on layer l) is u (ul). The total number of defects on
layer l is then Nl = ul + ∑

j djl .
Also, let ξi be a binary variable representing the quality of chip i; ξi = 1 if the

chip is good, 0 otherwise. At the same time, ϕi will be the probability for chip i to
survive, given all its defects and other causes. Thus, each ξi is a Bernoulli random
variable with parameter ϕi .
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Finally, let Lw be a set of layers that were inspected on wafer w. For any layer
l ∈ Lw , all the defects are counted and measured although only a small portion
of them is classified. No information is available about defects on the remaining,
uninspected layers l �∈ Lw. Layers are inspected by wafer; hence, under normal
circumstances, each layer is either inspected on all chips i ∈ w or left uninspected
on all chips.

2.2 Parameters

The proposed model is parameterized by the following five groups of parameters,
where r(j) for j = 1, . . . , J is the effect of defect type j ; a(l) for l = 1, . . . , L is
the effect of layer or operation l; b(m) form = 1, . . . ,M is the effect of other causes
for lot m; λ(j, l,m) is the frequency of defects of type j on layer l of lot m, i.e.,
the expected number of such defects per chip; and πj (x) = π(x | defect type j)
is the density function of transformed sizes x of defects of type j . The whole
parameter vectors will be denoted by r = (r(1), . . . , r(J )), a = (a(1), . . . , a(L)),
b = (b(1), . . . , b(M)), and λ = {λ(j, l,m)}.

The final group of parameters are interactions between defect types and layers,
which is found significant for the prediction of chip failures. Essentially, defects of
the same type can have different effects on the yield if they occur on different layers
of a wafer. Without losing prediction power, the number of interaction parameters
can be reduced by considering groups of layers such as light metal layers, darkfield,
brightfield, and so on. Then, by a defect type j , we consider a given type of
defects occurring within a given group of layers. For example, let j1 be a scratch
on darkfield, j2 be a puddle on lightfield, j3 be a scratch on lightfield, etc. In other
words, j is understood as a pair of a defect type and a group of layers where it
occurred.

When the overall number of parameters is too large for the available computing
resources, one may also consider grouping defect types. For example, surface
defects include scratches and improperly etched traces; processing defects including
poorly connected wires, inadvertent shorts, and improperly drilled vias; misalign-
ment of layers, and so on. Grouping reduces the number of parameters, especially
interactions and defect frequencies, simplifying computations and accelerating the
data analysis.

2.3 Effect of Classified Defects

We start building the likelihood from a single defect. Suppose a defect of type j and
size s occurred on layer l of chip i. What is the probability P {ξi = 1} that the chip
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survives this defect? A number of competing models can be proposed, such as:

(1) P{survival} = exp {−r(j)a(l)g(s)} (multiplicative model)
(1a) P{survival} = exp {− [r(j)+ a(l)] g(s)} (additive model)
(1b) P{survival} = exp {−r(j)g(s)− a(l)} (simplified additive model)

and others. Effects of categorical factors such as defect types and layers are given
in the most general form by parameters r(j) and a(l), whereas the effect of the
quantitative variable size, s, is represented by a function g(s).

According to our experiments, model (1), calibrated on training data, provided
the best fit in terms of the highest prediction accuracy on test data. Therefore, the
rest of this chapter is based on the multiplicative model. Also, among other functions
of size, the logarithmic transformation

x = g(s) = log(1 + s) (2)

was found to give the best fit to the actual data.
No theory can guarantee that the multiplicative model will continue to dominate

for future chip designs. Thus, it is natural to keep a bank of plausible models that
can be compared for each new mode of production, so that the model with the best fit
can always be chosen. Also, another form of the function g(s)may perform well for
certain types of chips. A possible approach is to specify this function up to unknown
parameters that will then be estimated among many other parameters of the model.

Estimation, prediction, and diagnostics methods proposed here and in [1] are not
tied to any specific form of g(s), and they can be readily applied to any model in
(1)–(1b).

2.4 Effect of Unclassified Defects on Inspected Layers

From our experience, only a small portion of defects gets classified. A majority
of defects remain unclassified, which means that the defect types are unknown. The
observed information on these defects is confined to their size s and layer l on which
they occur.

The portion of the likelihood that corresponds to unclassified defects can be
derived from basic laws of probability. A chip will survive an unclassified defect
k with probability

P{ξ = 1 | xk} =
J∑
j=1

P {jk = j | xk} P{ξ = 1 | jk = j, xk}, (3)

according to the formula of total probability. Essentially, the expectation is taken
with respect to an unknown defect type j .
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Components of (3) are computed as follows. Conditional survival probabilities
P{ξ = 1 | jk = j, xk}, given the defect type, are obtained from (1), the formula that
assumes known defect types. Next, the marginal probabilities of defect types, given
their sizes, follow from the Bayes rule,

P {jk = j | xk = x} = P {jk = j }π(x | jk = j)∑
j ′

P
{
jk = j ′}π(x | jk = j ′)

.

Finally, the overall marginal probability of each defect type is the proportion
of defects of the given type among all the defects, which is the ratio of the
corresponding defect frequencies. Hence, P(jk = j) = λ(j, lk,mk)/λ(lk,mk),

where λ(l,m) = ∑
j λ(j, l,m) is a cumulative frequency of defects per chip on

layer l of lot m, regardless of the defect type.
Substituting the obtained expressions into (3), we obtain the likelihood function

for the probability for a chip to survive an unclassified defect k of a given size xk ,

P{ξ = 1 | xk} =

∑
j

λ(j, lk,mk)πj (xk) exp{−r(j)a(lk)xk}
∑
j

λ(j, lk,mk)πj (xk)
. (4)

2.5 Effect of Uninspected Layers

Equations (1) and (4) express the probabilities for a chip to survive all its observed
defects, classified and unclassified. According to them, the probability of surviving
all the inspected layers can be evaluated.

Often, however, inspection of all the layers is expensive and time consuming.
Then, a majority of layers remain uninspected, and therefore, they represent the
main source of potential fatal defects that cause chip failures. Among tens of layers,
only a few wafers had more than 75% of their layers inspected, whereas the majority
had only one or two inspected layers.

Any uninspected layer provides no observed information. The numbers of
defects, their types, and sizes remain unknown. Nevertheless, the effect of unin-
spected layers can be included into the likelihood function. The probability for a
chip to survive uninspected layers can be evaluated by taking expectations over
all the unobserved and unknown pieces of information. Again, the law of total
probability will be the main tool in this derivation.

Let Nijlm be the (unobserved) number of type j defects on layer l of chip i in
lot m. Chip i survives the entire layer l if all the defects of all types on this layer
appear not fatal. According to our main assumptions,Nijlm has Poisson distribution
with the frequency parameter λ(j, l,m), and effects of all the defects on the chip’s
failure are independent.
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Then, following the equation (4) of [24],

P {chip i survives layer l}

=
J∏
j=1

( ∞∑
n=0

P
{
Nijlm = n

}
P
{

chip i survives n defects
of type j on layer l

})

=
J∏
j=1

E (P {chip i survives a type j defect on layer l})Nijlm

=
J∏
j=1

Eψ
Nijlm
jl =

J∏
j=1

exp
{−λ(j, l,m) (1 − ψjl

)}
, (5)

where ψjl is the probability that a type j defect is not fatal. Applying the law of
total probability once again, integrating over the (transformed) size of the defect,
this probability is evaluated as

ψjl = P {a type j defect is not fatal}
= Exj P {a type j defect of size x is not fatal}

= Exj e
−r(j)a(l)x =

∫
e−r(j)a(l)xπj (x)dx. (6)

Thus, the survival probabilityψjl is the value of the moment generating function
of transformed defect sizes of type j defects, computed at (−r(j)a(l)). For its
estimation, see Sect. 6 and, in particular, Eq. (15).

2.6 Survival of All the Observed and Unobserved Defects and
Other Causes

Components of the likelihood derived in the previous three subsections will now be
combined to obtain the overall likelihood function of defects and chip failures.

The chip’s survival of a collection of defects is the intersection of events
representing the chip’s survival of all the individual defects. Studies show [24, 26]
that these events are mutually independent and also independent of the effect
of other causes, specific to the lot. Therefore, the survival probabilities given
by (1), (4), and (5) can be multiplied over all the defects on a chip.

Also, conditioned on all the defects, the chip failures are conditionally indepen-
dent. This means that the chip failure can be caused by its own defects only, and
not by defects occurring on another chip. With chip failures denoted by Bernoulli



234 M. Baron et al.

(indicator) variables ξi , we obtain the likelihood function

L(a, b, r,λ) (7)

=
∏
m

∏
w∈m

∏
l∈Lw

∏
i∈w

e−λ(l,m) λ
Nil (l,m)

Nil !
J∏
j=1

(
λ(j, l,m)

λ(l,m)

)dijl
ϕ
ξi
i (1 − ϕi)

1−ξi ,

in which the products are taken over all lots m in the dataset, wafers w in these lots,
chips i and inspected layers l ∈ Lw on these wafers, and defect types j . In this
formula,

plm(Nil) = e−λ(l,m) λ
Nil (l,m)

Nil !
is the Poisson probability of observing Nil defects (of all types) on inspected layer
l of chip i;

pjlm = λ(j, l,m)/λ(l,m)

is the probability that the observed defect is of type j , and it is a part of the likelihood
for all dijl classified type j defects on layer l of chip i.

The last portion of the likelihood function (7) represents the probability mass
function of the survival indicator ξi , a Bernoulli variable with parameter

ϕi = P {ξi = 1} = P { chip i is good } .

This parameter, the probability that chip i survives all its defects and lot-specific
other causes, equals

ϕi = e−b(m)
∏
l∈Li

⎧
⎨
⎩

∏
k∈Cil

e−r(jk)a(l)xk
∏
k∈Uil

∑
j λ(j, l,m)πj (xk)e

−r(j)a(l)xk
∑
j λ(j, l,m)πj (xk)

⎫
⎬
⎭

×
∏
l �∈Li

J∏
j=1

e−λ(j,l,m)(1−ψjl ), (8)

according to expressions (1), (4), and (5) derived above for the effects of classified,
unclassified, and unobserved defects. The products here are taken over all the layers
l ∈ Li inspected on chip i and all the layers l �∈ Li uninspected on it. The defects
k on inspected layers are further divided into classified k ∈ Cil and unclassified
k ∈ Uil = C̄il .

The likelihood function (7) of all the observed defects and chip failures, derived
from the model assumptions, is now ready for further analysis.
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3 Computational Aspects and Optimization

The cause-and-effect model and the likelihood function derived in the previous
section contain a rather large number of parameters consisting of effects of L layers,
J defect types on each layer type,M lot-specific other causes, andL×J ×M defect
frequencies. The latter group is the largest, sometimes reaching 100,000 parameters
to be estimated. However, besides explaining the chip failures and predicting the
yield, estimation of defect frequencies is a problem of separate importance in
semiconductor manufacturing.

The large number of parameters presents the main challenge in their estima-
tion, making most of the classical methods (maximum likelihood, least squares,
Bayesian) computationally difficult if not completely infeasible.

To deal with the large dimension of the problem, [1] use the expectation–
maximization (EM) algorithm [6, 7, 15, 18]. According to it, thousands of defect
frequencies are estimated during the E-step, by computing the expected number of
defects of each type on each layer of each lot. All the other parameters representing
effects of defects and other causes on chip failures are estimated during the M-step
by maximizing the likelihood function (7), given the defect frequencies λ(j, l,m)
obtained during the preceding E-step.

In our experience, direct application of the EM algorithm for model (7) is
not always successful. The algorithm converges rather slowly and often ends in
a local extremum of the log-likelihood function rather than the global maximum
likelihood estimator. This is due to the complicated multidimensional structure
of the likelihood function and non-existence of a tractable stochastic model that
provides a perfect fit to the chip and defect data.

Two modifications of the algorithm are proposed here. First, we propose an
efficient data-driven initialization of the algorithm that is essentially a quick and
sketchy estimation of all the model parameters. Second, we propose to introduce
the third directional step (“D-step”) during each iteration cycle, where we compute
the most recently found direction of the growth of log likelihood and search for
the optimal parameter vector along that direction. This often allows to make a
strong step into the direction of higher log likelihood, preventing the algorithm from
staying in the neighborhood of a local maximum and converging to it eventually.

Initialization of the parameter estimates and the analysis necessary for the E-step,
M-step, and D-step are given below. Longer derivations are in the appendix.

3.1 Initialization of Parameter Estimates

A meaningful initial point in the iterative numerical routine may accelerate the entire
scheme and prevent it from converging to a local but not global extremum. Here we
propose simple choices for the initial values of parameter estimates, a(0), b(0), r (0),
and λ(0), that follow from the observed data by a quick, sketchy computation.
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It is natural to set the initial frequencies of defects of different types proportional
to the corresponding observed counts of classified defects, i.e.,

λ(0)(j, l,m)/λ(0)(l,m) = djlm/dlm.

Denominator λ(0)(l,m) in this expression is the total frequency of all defects on
layer l of lot m. It can be quickly estimated by the sample frequency of defects on
all the chips where layer l is inspected,

λ(0)(l,m) = dlm + ulm∑
i∈m

I {l ∈ Li}
.

Then, all frequencies are initialized as λ(0)(j, l,m) = (
djlm/dlm

)
λ(0)(l,m).

Next, without any additional information at the initial step, suppose that r(j) ≡
r , b(m) ≡ b, and a(l) ≡ 1 (we notice that al are multipliers in model (1); hence,
they are determined only up to a constant coefficient). Replacing, for a rough
approximation, transformed defect sizes xk by their sample average x̄, we obtain
from (8) that for any chip i of lot m,

ϕi
·≈ e−b

J∏
j=1

L∏
l=1

(
e−r(j)a(l)x̄

)λ(j,l,m) = e
−b−rx̄∑

j

∑
l λ(j,l,m) = e−b−rx̄JLλ̄(m),

where λ̄(m) = ∑
j

∑
l λ(j, l,m)/(JL) ≈ λ̄ is the average number of defects

per chip, defect type, and layer for lot m, which, for the initial approximation, we
assume equal for all the lots.

Equating, by the method of moments, the expected and the actual yield,
∑
ϕi

and
∑
ξi , one obtains

r(0) = − log(
∑
ξi/I)+ b(0)

JLx̄λ̄(0)
= −M log(

∑
ξi/I)+ b(0)

x̄
∑∑∑

λ(0)(j, l,m)
, (9)

an equation connecting the initial choice of the averaged effect of a defect and the
averaged effect of other causes, where M is the number of lots and I is the number
of chips, so that

∑
ξi/I = ξ̄ is the observed yield per chip.

It remains to choose a reasonable initial approximation for the effect of other
causes b. It can be obtained, for example, from the average yield ξ̄∗ of all defect-
free chips if they are available. Failures of defect-free chips can only be attributed
to other causes, i.e., ϕi = e−b, and by the introduced version of the method of
moments, b(0) = − log(ξ̄∗).
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3.2 M-Step

Available optimization routines can handle computations arising during the M-
step if they involve a moderate number of parameters. In the proposed estimation
scheme, the likelihood function given by (7) and (8) is maximized over all the effects
a(l), b(m), and r(j), whereas the frequencies λ(j, l,m) are updated during the E-
step.

Then, at this step, only a part of the likelihood function containing a, b, and r

needs to be maximized, which is equivalent to maximizing

∑
i

{ξi logϕi + (1 − ξi) log(1 − ϕi)} , (10)

with logϕi given in (8). The speed and accuracy of the algorithm depend on the
chosen optimization routine and convergence criteria. Also, the following remarks
allow to reduce the number of operations significantly.

Remark 1 Since only a few layers are inspected on each wafer, there is a large
number, often a vast majority, of chips without a single detected defect. Within each
wafer, such chips share the same value of ϕi . Thus the corresponding terms of (10)
can be computed only once for each wafer (but distinguish between good chips with
no defects and bad chips with no defects).

Remark 2 It is not difficult to compute and supply the analytic gradient of (10);
for its explicit derivation, see Sect. 6. Thus, it is recommended to include it into the
routine instead of forcing its estimation by finite differences. Supplying the Hessian
would be efficient too although it is cumbersome.

Remark 3 It is beneficial to terminate the computationally intensive M-step under
rather mild convergence criterion and proceed to other steps, since high-precision
optimization is inefficient (and not really necessary) in intermediate stages.

3.3 E-Step

An unbiased estimator of defect frequencies λ(j, l,m) is

λ̂(j, l,m) = I−1
m E

{
Njlm | d,u, x, ξ , a, b, r,λ} , (11)

where Im is the total number of chips in lotm; Njlm is the number of defects of type
j on layer l of lot m; and vectors d, u, x, ξ , a, b, r, and λ represent, respectively,
the number of classified and unclassified defects, their transformed sizes, yield of
each chip, and the current refined values of all estimated parameters. This frequency
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estimator is computed as the conditional expectation of the number of type j , layer
l defects per chip, given the number and sizes of classified and unclassified defects
(ui, di, xk), the quality of chips (ξi ), and the true values of parameters.

Then, at each iteration n, the set λ of defect frequencies will be updated as

λ(n+1) = I−1
m E

{
N | d,u, x, ξ , a(n), b(n), r(n),λ(n)

}
,

which results in the following refining equation (for details, see Sect. 6)

λ(n+1)(j, l,m) =
⎧
⎨
⎩djlm+

∑
i:l∈Li

⎛
⎝ 1 − ξi

1 − ϕ
(n)
i

∑
k∈Uil

v
(n)
jkm

v
(n)
km

+ ξi − ϕ
(n)
i

1 − ϕ
(n)
i

∑
k∈Uil

w
(n)
jkm

w
(n)
km

⎞
⎠

+λ(n)(j, l,m)
∑
i:l �∈Li

(
1 − ξi

1 − ϕ
(n)
i

+ ξi − ϕ
(n)
i

1 − ϕ
(n)
i

ψ
(n)
j lm

)⎫
⎬
⎭ /I, (12)

where, for each defect k,

v
(n)
jkm = λ(n)(j, lk,m)πj (xk), v

(n)
km =

∑
j

v
(n)
jkm, (13)

w
(n)
jkm = v

(n)
jkme

−r(n)(j)a(n)(l)xk = λ(n)(j, lk,m)πj (xk)e
−r(n)(j)a(n)(l)xk ,

and

w
(n)
km =

∑
j

w
(n)
jkm.

During each iteration, the functions of parameters ϕi , vjkm, and wjkm are re-
estimated with the use of updated parameter estimates.

During the E-step, each frequency is recomputed once, and no iterations are
involved. Therefore, the E-step is much faster and computationally cheaper than the
M-step, where a numerical optimization routine is used to maximize the likelihood
under fixed λ.

3.4 Modification and Directional D-Step

The EM algorithm possesses a number of appealing properties [15, 30]; however, in
a wide range of practical problems (specifically, those dealing with a large number
of parameters and large datasets), its performance can typically be improved via
suitable modifications [15, chap. 4], [16]. The problem described in this chapter is
not an exception.
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Here we introduce an additional step that enables one to achieve a sizeable
improvement in the speed of convergence and prevent the algorithm to get caught
near a local but not global extremum. This step essentially tries to guess the correct
search direction for the maximum of the likelihood function L(a, b, r,λ). When
it succeeds, it starts making increasingly larger steps in that direction preventing
the routine from too many iterations in the area where the likelihood is increasing
slowly. If it fails to find the direction of improvement, we skip the step for the current
cycle and proceed with the standard EM algorithm until the next iteration.

The step is introduced as follows. It starts by analyzing results of the latest E-step
and M-step. Let θ0 be the vector of parameter estimates (â, b̂, r̂, λ̂) obtained as a
result of the previous cycle, and θ1 be the refined vector. That is, the latest E-step
and M-step transformed θ0 into θ1. If the chosen global convergence criterion is
met, then the last cycle failed to improve the value of L(θ) by more than ε, and the
entire estimation routine stops. In all other cases, we obtain that L(θ1) > L(θ0)+ε;
hence, the likelihood function is seemingly increasing in the direction of

Δθ = θ1 − θ0.

We now follow this direction and check if the likelihood continues to increase. Also,
each time we increase the step, therefore “shaking” the system and preventing it
from convergence to a local extremum. That is, we consider a sequence of vectors
{θn} defined recursively as

θn = θn−1 + γ (n)Δθ , n ≥ 2,

where γ (n) is a chosen increasing function of n (polynomial or even exponential)
that controls the rate of search. The value of L(θn) is calculated for each n =
2, 3, . . ., and the algorithm proceeds only if this value is improved. The D-step stops
at the time

T = min {n ≥ 2 : L(θn) < L(θn−1)} .

Then, θT−1, the best set of parameter estimates obtained so far, serves as an initial
point of the next EM iteration.

Clearly, this step is activated only if it leads to larger values of L(θ). Otherwise,
it is skipped, and the routine proceeds to the next EM iteration. Thus, it will
generally result in an equal or a higher value of the likelihood. And above all, it
is computationally the cheapest of all three steps, requiring only computation of the
likelihood function, but no optimization or gradient evaluation.

Based on our experience, insertion of this step into the EM algorithm always
resulted in the same or, even more often, higher value of the maximum likelihood. It
always accelerated the EM algorithm in the beginning by making aggressive steps
and saving a considerable number of EM iterations. During the late iterations, it
rarely went beyond θ2.
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3.5 Scalability and Computational Complexity

Due to the increasing complexity of integrated circuits, one may wonder how scal-
able the proposed modified EM algorithm is in modern manufacturing standards.
In general, its computational complexity depends on the sample size, the number
of parameters, and the number of iterations [15, 19]. A majority of estimated
parameters are frequencies λ(j, l,m), which are updated during the E-step and
are completely excluded from the M-step. As a result, the time complexity of the
algorithm largely depends on (J + L + M) parameters that are being estimated
during the most expensive M-step.

The study described in [1, section 5], involved 25 lots with 33,634 chips and
284,796 observed defects of 65 types on 24 layers. Reportedly, each iteration took
approximately 30 min of pure CPU time on a 2.4 mhz computer.

The introduced D-step and the use of previous parameters estimates as initial
values reduce the number of iterations to about 7–10, according to our experience.
On the other hand, increasing the sample size affects the computational complexity
nearly proportionally, which may slow the algorithm. When it becomes a concern,
grouping of layers or defect types can be considered along the lines of Sect. 2.2
above.

4 Goodness of Fit and Its Theoretical Limitations

Two general goodness-of-fit criteria are proposed for the introduced tomographic
model.

One method measures the closeness between the yield predicted by the model
for each lot m

Ŷm = predicted yield =
∑
i∈m

E(ξi) =
∑
i∈m

ϕi

and the actually observed yield

Ym = actual yield =
∑
i∈m

ξi .

One looks for a small difference between {Ym} and {Ŷm} or a high correlation
coefficient between Ym and Ŷm.

The second method compares the proportional predicted yield among good chips

ŷg = P̂ { predicted good | actually good } =
∑
i ϕiξi∑
i ξi
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with the proportional predicted yield among bad chips

ŷb = P̂ { predicted good | actually bad } =
∑
i ϕi(1 − ξi)∑
i (1 − ξi)

.

Here, we look for the best separation between ŷg and ŷb. Of course, we would
like to see a predicted yield of 100% among good chips and 0% among bad chips.
However, it is not possible due to the uncertainty and randomness involved in chip
failures, even in the extreme and unrealistic case when all the layers are inspected,
all the defects are classified, and therefore, the yield prediction is based on all the
occurred defects.

Indeed, it is not unusual to see a failed chip that was only exposed to the non-
defect causes and no detected defects and a good chip that survived the same non-
defect causes in addition to many observed defects.

Then, how well can the model separate ŷg and ŷb, and what difference between
them should be considered satisfactory, or a good fit? The following theoretical
result answers these questions.

Lemma 1 Let {ϕi, i = 1, . . . , I } be mutually independent, identically distributed
random variables with the distribution F(ϕ). For each i, consider ξi , a Bernoulli
variable with parameter ϕi , and let ξ1, . . . , ξI be conditionally independent, given
ϕ1, . . . , ϕI . Let ŷg = ∑

i ϕiξi/
∑
i ξi and ŷb = ∑

i ϕi(1 − ξi)/
∑
i (1 − ξi).

Then the strong law of large numbers holds for ŷg and ŷb. Namely,

lim
I→∞ ŷg = EF ϕ2

EF ϕ
and lim

I→∞ ŷb = EF ϕ − EF ϕ2

1 − EF ϕ
,

with probability one, where EF represents the expectation with respect to the
distribution F .

The proof of Lemma 1 is given in the Appendix.
Applying this lemma to defects and failures, we define ϕi as the probability that

chip i is good, given its defects, and ξi ∼ Bernoulli(ϕi) as the binary variable that
equals 1 if the chip is good. For each i, the value of ϕi is a function of the number,
types, locations, and sizes of defects occurring on chip i, as in (8). In turn, all these
factors are random variables that collectively determine the distribution F of ϕi .

Corollary 1 Under the conditions of Lemma 1,

lim
I→∞

(
ŷg − ŷb

) = VarF (ϕ)

EFϕ(1 − EFϕ)
(14)

with probability one.

This corollary along with Lemma 1 establishes theoretical limitations of yield
prediction and possible separation of predicted proportional yield among good and
bad chips. Under no circumstances can we achieve ŷg ≈ 100% and ŷb ≈ 0%. As
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follows from (14), the difference between ŷg and ŷb is controlled by the variation
among ϕi , the probabilities of good chips, which, in turn, depend on a number of
factors considered in Sect. 2.

As an extreme situation, suppose that all the defects are getting eliminated by
constant modification and improvement of the manufacturing line. Then ϕ ↑ 1, and
both ŷg and ŷb approach 1. At the other extreme, if ϕ ↓ 0, then both ŷg and ŷb
approach 0, and in both cases, the difference between them vanishes.

5 Performance of the Algorithm and the Case Study

The algorithm proposed in this chapter has been used in the IBM Microelectronics
Division for parameter estimation and yield prediction on many lots of different
grades. Besides forecasting the yield, parameter estimates allowed to compare
effects of different factors, evaluate kill ratios, determine the most critical defect-
layer combinations and the most influential layers, identify the most probable fatal
defects, and as a result, suggest business decisions and optimal yield enhancement
strategies.

This section focuses on three aspects of the algorithm performance discussed in
our paper—effect of uninspected layers on the prediction power, efficiency of the
additional D-step for the acceleration of the EM algorithm, and the spread between
predicted yield on the good and bad chips.

Based on the data analyzed at IBM, the accuracy and power of wafer tomography
strongly depend on the amount of available information, i.e., the number of
inspected layers within a lot. This is clearly seen in Fig. 1. In this figure, two sets of
lots differ in the number of inspected layers.

In Fig. 1a, each lot has at least 7 out of 11 layers inspected. As a result, there
is a noticeable variation in the predicted yield on different lots. Although a few
predictions appear totally inaccurate, the predicted yield is strongly correlated to
the actual yield on the majority of lots.

Each lot in Fig. 1b has only one or two layers inspected. As a result, the predicted
yield is close to the overall average yield, with some variation caused by these
few inspected layers. For the other layers, survival probability is computed by (5),
based on the general parameter estimates instead of the actual defects, and it is
approximately the same for all the lots.

Figure 1 shows the real data; the scale is removed because of commercial
confidentiality.

Efficiency of each step of the proposed accelerated EM algorithm can be traced
in Table 1. For this data analysis, it took the algorithm 9 iterations to converge, and
only during the first iteration, the directional D-step resulted in the increase of the
overall joint likelihood. However, it was a large step in the correct general direction
of parameter estimates. It resulted in a very significant change of the negative log-
likelihood function from 363,927 to 222,530. After this step, the likelihood did not
experience substantial changes, and the algorithm converged quickly.
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Lot number

Lot number

actual yield predicted yield

actual yield predicted yield

(b)

(a)

dlei
Y

dle 
Y

Fig. 1 Yield prediction on 41 lots with many inspected layers (a) and on 115 lots with only a few
inspected layers (b)

Application of the D-step saved the algorithm from slow convergence to a
local but possibly not global maximum of the likelihood. After Step 1, no D-step
yielded any likelihood increase, so it was not activated. Moreover, after Step 2, the
E-step corrected the estimated defect frequencies but also did not yield a larger
likelihood. Only M-steps were able to further reduce the current smallest negative
log-likelihood function − logL(â, b̂, r̂, λ̂) shown in column 3 of the table.

Besides the likelihood function, two other indicators of a good fit are in the last
two columns of Table 1. Column 4 contains

relative prediction error = |predicted yield − actual yield|
actual yield

= |Ŷ − Y |
Y

.

The last column contains

prediction ratio = predicted yield among good chips

predicted yield among bad chips
= ŷg

ŷb
.

Ideally, we would like to see a very low prediction error and a very high prediction
ratio; however, we know the limitations established by Lemma 1.

Looking for the maximum likelihood estimators of all the parameters, the
algorithm continued as long as (− logL) reduced.
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Table 1 Steps, convergence, and performance of the accelerated EM algorithm

Iteration Step
Min. negative log
likelihood

Relative prediction
error Prediction ratio

0 Initiation 406,254 0.1227 1.0590

1 E-step 404,988 0.0189 1.2947

M-step 363,927 0.3261 1.5298

D-step 222,530 0.2750 1.5292

2 E-step 221,074 0.0370 1.3752

M-step 220,638 0.0244 1.3706

3 E-step 220,638 0.0244 1.3706

M-step 220,453 0.0224 1.3714

4 E-step 220,385 0.0146 1.3552

M-step 220,453 0.0224 1.3714

5 E-step 220,453 0.0224 1.3714

M-step 220,360 0.0059 1.3645

6 E-step 220,360 0.0059 1.3645

M-step 220,355 0.0043 1.3614

7 E-step 220,355 0.0043 1.3614

M-step 220,343 0.0063 1.3617

8 E-step 220,343 0.0063 1.3617

M-step 220,340 0.0039 1.3649

9 E-step 220,340 0.0039 1.3649

M-step 220,336 0.0039 1.3649

At the same time, it can be noticed, in line with the standard statistical practice,
that lower values of the negative log likelihood are not necessarily associated with
the improvement of predictive performance in terms of the relative prediction error
and the prediction ratio. For example, a low relative prediction error of 0.0189
is observed early during the EM algorithm (the first iteration, E-step), although
the likelihood is far from its maximum at this stage; hence, the model fit is still
problematic. Despite an imperfect fit, the subsequent M-step yields a relatively high
prediction ratio of 1.5298, although the relative prediction error is high, indicating
that this value should be generally evaluated only in the context of the overall
performance of the estimation procedure.

6 Summary and Conclusions

Despite a large number of parameters to be estimated, many unclassified defects,
a majority of layers left uninspected, and the overall complexity of the model,
the proposed computational modifications make wafer tomography feasible and
reasonably fast. As a result, the yield on a wafer, a lot, or a series of lots can
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be predicted at any time during the manufacturing process based on the observed
defects. All the information about the defects, their location, size, and type, is
included in the model, whether it is observed or not. Accuracy of wafer tomography
depends on the proportion of inspected layers and classified defects and the overall
quality of data, in particular, our ability to identify and handle outliers.

As noted, the number of estimated parameters can be high, including possibly
tens of thousands of defect frequencies λ. Due to a very large amount of processed
training data, there was no need for regularization. However, in the cases when the
number of parameters is compatible with the sample size, one may turn to shrinkage
methods and augment our derived likelihood function with a penalty term resulting
in a penalized likelihood and enhanced prediction accuracy [25].

A good measure of prediction power is the discrepancy between the predicted
yield on functioning chips and the predicted yield on failed chips. Although it may
seem that it is a must for an ideal statistical procedure to predict a 100% yield
on good chips and a 0% yield on bad chips, such a result is theoretically possible
only if yield is a deterministic (non-random) function of defects. Accounting for the
uncertainty of failures, prediction limitations on good and failing chips are stated by
Lemma 1.

Accurate yield prediction carries several important benefits. Besides planning,
business development, and process control considerations, a reliable yield forecast
obtained during lot manufacturing can be used to decide whether to continue
processing the lot, to scrap it, or to rework the most recent layers.

In addition to its prediction capability, the algorithm results in parameter
estimates such as the effects of defects, layers, and other causes and frequency of
defects of each type on each layer in each lot. These statistics can be further used for
determining the most critical defect-layer combinations, the most influential layers,
the most probable fatal defects, etc. One can also predict, given the causal nature
of the model, the yield improvement that elimination or reduction of certain defect
types can cause, suggesting the optimal yield enhancing strategies.

Appendix

Gradient of the Log Likelihood for the M-Step

Here we derive analytic expressions for ∇ logL that are used by the optimization
routine during the M-step. It is seen from (7) and (10) that for any parameter θ ∈
{a(1), . . . , a(L) ; b(1), . . . , b(M); r(1), . . . , r(J )},

∂ logL
∂θ

=
∑
i

(
ξi − ϕi

1 − ϕi

)
∂ logϕi
∂θ

.
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Thus, it remains to compute the partial derivatives of ϕi for each chip i. One has

∂ logϕi
∂b(m)

=
{−1 if chip i belongs to lot m

0 otherwise;

∂ logϕi
∂a(l)

= −
∑
k∈Cil

r(jk)xk −
∑
k∈Uil

xk
∑
j

r(j)wjk/wk

for any layer l inspected on the chip i (Cil and Uil represent the sets of classified
and unclassified defects, respectively, jk is the type of classified defect k, and the
quantities wjk and wk are defined in (14));

∂ logϕi
∂a(l)

=
∑
j

λ(j, l,mi)
∂ψjl

∂a(l)

for all layers l that are not inspected on chip i; and

∂ logϕi
∂r(j)

= −
∑
k∈Cij

a(lk)xk −
∑
k∈Uil

a(lk)xkwjk/wk +
∑
l∈Li

λ(j, l,m)
∂ψjl

∂r(j)
.

The last two expressions contain partial derivatives of the moment generating
function (6) of the distribution of defect sizes. They will certainly depend on the
model used for this distribution. However, simple nonparametric estimators for
these partial derivatives are available, as well as for ψjl itself.

Indeed, since ψjl = Exj e
−a(l)r(j)x, it has partial derivatives

∂ψjl

∂a(l)
= −r(j)Exj xe−a(l)r(j)x and

∂ψjl

∂r(j)
= −a(l)Exj xe−a(l)r(j)x.

All three sets of quantities can be estimated by the method of moments from the
classified defects,

ψ̂j l = 1

djl

∑
k∈Cjl

e−a(l)r(j)xk; (15)

∂̂ψjl

∂a(l)
= − r(j)

djl

∑
k∈Cjl

xke
−a(l)r(j)xk; ∂̂ψjl

∂r(j)
= −a(l)

djl

∑
k∈Cjl

xke
−a(l)r(j)xk.

This completes the computation of the analytic gradient that is supplied to the
optimization routine that maximizes the log-likelihood function with respect to a,
b, and r during the M-step.



Wafer Tomography and Yield Prediction 247

Derivation of the E-Step

In this section, we derive recursive estimators of λ(j, l,m) for the E-step and prove
Eq. (12).

The expected number of (j, l)-defects in (11) consists of three parts: (1) all the
detected defects classified to type j on layer l, (2) a suitable portion of unclassified
defects that “should” be attributed to type j , and (3) a portion of (j, l)-defects that
is expected on wafers where layer l is uninspected.

That is,

λ̂(j, l,m) = I−1
m

⎛
⎝djlm +

∑
k∈Ulm

P {jk = j | xk, ξi} +
∑
i:l �∈Li

E
{
Nijl | ξi

}
⎞
⎠ , (16)

where Im is the total number of chips in lot m.
We compute these three terms separately. The first term is simply the observed

number of classified type j defects observed on layer l. For the second term,
consider two cases, when the chip containing defect k is good and when it is bad.

Suppose for a moment that an unclassified defect k is in fact of type j and
consider the conditional probability

ϕi(j, k) = P {ξ = 1 | jk = j, xk} . (17)

The only difference between logϕi(j, k) and logϕi in (8) is caused by this defect
appearing in the set Cijl instead of Uil . Hence,

logϕi(j, k)− logϕi = −r(j)a(lk)xk − log

∑
j ′ λ(j ′, l,m)πj ′(xk)e−r(j

′)a(lk)xk
∑
j ′ λ(j ′, l,m)πj ′(xk)

,

so that

ϕi(j, k) = e−r(j)a(lk)xkϕi/ρkm,

where

ρkm = wkm

vkm
=

∑
j ′ wj ′km∑
j ′ vj ′km

is the probability for a chip to survive an unclassified defect k, which is independent
of the (unknown) defect type j , and vjkm, vkm, wjkm, and wkm are defined in (13)
and (14).
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Then, for an unclassified defect k ∈ Ul occurring on a good chip i,

P {jk = j | xk, ξi = 1}

= P {jk = j }π(xk | jk = j)P {ξi = 1 | jk = j, xk}∑
j ′ P {jk = j ′}π(xk | jk = j ′)P {ξi = 1 | jk = j ′, xk}

= [λ(j, lk,m)/λ(lk,m)]πj (xk)ϕi(j, k)∑
j ′

[
λ(j ′, lk,m)/λ(lk,m)

]
πj ′(xk)ϕi(j ′, k)

= vjkme
−r(j)a(lk)xkϕi/ρkm∑

j ′ vj ′kme−r(j ′)a(lk)xkϕi/ρkm
= wjkm

wkm
.

Similarly, for an unclassified defect k occurring on a bad chip i,

P {jk = j | xk, ξi = 0}

= [λ(j, lk,m)/λ(lk,m)]πj (xk) [1 − ϕi(j, k)]∑
j ′

[
λ(j ′, lk,m)/λ(lk,m)

]
πj ′(xk)

[
1 − ϕi(j

′, k)
]

= vjkm
[
1 − e−r(j)a(lk)xkϕi/ρkm

]
∑
j ′ vj ′km

[
1 − e−r(j ′)a(lk)xkϕi/ρk

] = vjkm −wjkmϕi/ρkm

vkm −wkmϕi/ρkm

= vjkm −wjkmϕi/ρkm

vkm(1 − ϕi)
= vjkm/vkm − ϕiwjkm/wkm

1 − ϕi
.

Hence, the second term of (16), the expected number of type j defects among
unclassified defects on layer l, equals

∑
k∈Ul

P{jk = j |x, ξ } =
∑
i:l∈Li

∑
k∈Uil

{
ξi
wjkm

wkm
+ (1 − ξi)

vjkm/vkm−ϕiwjkm/wkm
1 − ϕi

}

=
∑
i:l∈Li

⎧⎨
⎩

1 − ξi

1 − ϕi

∑
k∈Uil

vjk

vkm
+ ξi − ϕi

1 − ϕi

∑
k∈Uil

wjk

wkm

⎫⎬
⎭ . (18)

Finally, we compute the expected number of type j defects on an uninspected
layer l. This expectation is not just the ratio of corresponding defect frequencies.
Although the defect situation on an uninspected layer is hidden, the quality of a
chip (ξi) is still known, and it should be used in our computation.

Similarly to (17), we define ϕin(j, l) to be the probability for chip i to be good,
despite of its n defects of type j on an uninspected layer l. Sizes of these defects
are hidden and thus replaced by the corresponding expectation as in (6). Then,
logϕin(j, l) can be obtained from logϕi by moving the effect of all n defects of
type j from the set {k ∈ i, l �∈ Li} of defects on uninspected layers to the set Cijl of
classified defects, replacing, by the formula of total probability, their missing sizes
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by expectations ψjl . That is,

logϕin(j, l) = logϕi + λ(j, l)(1 − ψjl)+ n logψjl.

Then, the expected number of type j defects on an uninspected layer of a good
chip i equals

E
{
Nijl | ξi = 1

} =
∞∑
n=0

nP
{
Nijl = n | ξi = 1

}

=
∑
n

n
ϕin(j, l)e

−λ(j,l,m)λn(j, l,m)/n!
ϕi

=
∞∑
n=0

n
(
eλ(j,l,m)(1−ψjl)ψnjl

) (
e−λ(j,l,m)λn(j, l,m)/n!

)

=
∞∑
n=0

ne−λ(j,l,m)ψjl
(
λ(j, l,m)ψjl

)n
/n! = λ(j, l,m)ψjl .

(19)

Similarly, for a bad chip i of lot m,

E
{
Nijl | ξi = 0

} =
∞∑
n=0

nP
{
Nijl = n | ξi = 0

}

=
∑
n

n
[1 − ϕin(j, l)] e−λ(j,l,m)λn(j, l,m)/n!

1 − ϕi

= 1

1 − ϕi

∞∑
n=0

(
1 − ϕie

λ(j,l,m)(1−ψjl)ψnjl
)
e−λ(j,l,m)λn(j, l,m)/(n− 1)!

= 1

1 − ϕi

( ∞∑
n=0

e−λ(j,l,m) λ
n(j, l,m)

(n− 1)! −
∞∑
n=0

ϕie
−λ(j,l,m)ψjl (λ(j, l,m)ψjl)

n

(n− 1)!

)

= 1

1 − ϕi

(
λ(j, l,m)− ϕiλ(j, l,m)ψjl

) = λ(j, l,m)(1 − ϕiψjl)

1 − ϕi
. (20)
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Combining (19) and (20), we obtain the third term of (16),

∑
i:l �∈Li

E
{
Nijl | ξ

} =
∑
i:l �∈Li

{
ξiλ(j, l,m)ψjl + 1 − ξi

1 − ϕi
λ(j, l,m)(1 − ϕiψjl)

}

= λ(j, l,m)
∑
i:l �∈Li

(
ξi − ϕi

1 − ϕi
ψjl + 1 − ξi

1 − ϕi

)
. (21)

Finally, using (18) and (21) in (16) and adding the classified type j defects, we
obtain the expression for the refined frequency estimator,

λ(n+1)(j, l,m) =
⎧
⎨
⎩djl +

∑
i:l∈Li

⎛
⎝ 1 − ξi

1 − ϕi

∑
k∈Uil

vjkm

vkm
+ ξi − ϕi

1 − ϕi

∑
k∈Uil

wjkm

wkm

⎞
⎠

+λ(n)(j, l,m)
∑
i:l �∈Li

(
1 − ξi

1 − ϕi
+ ξi − ϕi

1 − ϕi
ψjl

)⎫
⎬
⎭ /I.

Such a refinement of λ(n)(j, l,m) for all defect types, layers, and lots completes the
E-step.

Prediction on Good and Failed Chips: Proof of Lemma 1

Since ξi ∼ Bernoulli(ϕi), we have E {ξ | ϕ} = ϕ. Unconditionally, ξi are i.i.d.
random variables with the compound distribution,

P {ξ = 1} =
∫
ϕdF(ϕ), P {ξ = 0} =

∫
(1 − ϕ)dF(ϕ).

By the strong law of large numbers,

ŷg =
∑I
i=1 ϕiξi∑I
i=1 ξi

→ E(ϕξ)
E(ξ)

= E(ϕ; ξ = 1)

P {ξ = 1} = E {ϕ | ξ = 1} . (22)

By the Bayes formula,

dF(ϕ | ξ = 1) = P {ξ = 1 | ϕ}dF(ϕ)∫
P {ξ = 1 | ϕ}dF(ϕ) = ϕ dF(ϕ)

EF (ϕ)
. (23)

Objectively, we deal with a Bayesian model, where F(ϕ) is a prior distribution of
ϕi . Then, taking expectation over the posterior distribution of ϕ and combining it
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with (22), we obtain

lim
I→∞ ŷg = E {ϕ | ξ = 1} =

∫
ϕ

ϕ

EF (ϕ)
dF (ϕ) = EF (ϕ2)

EF (ϕ)
.

The posterior distribution of ϕi given a bad chip, ξ = 0, is considered similarly.
In this case, we have

F(ϕ | ξ = 0) = P {ξ = 0 | ϕ} F(ϕ)∫
P {ξ = 0 | ϕ}dF(ϕ) = (1 − ϕ)F (ϕ)

1 − EF (ϕ)
,

so that

lim
I→∞ ŷb = E {ϕ | ξ = 0} =

∫
ϕ

(1 − ϕ)

1 − EF (ϕ)
dF (ϕ) = EF (ϕ)− EF (ϕ2)

1 − EF (ϕ)
.
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Uncertainty Quantification Based on
Bayesian Neural Networks for Predictive
Quality

Simon Cramer, Meike Huber, and Robert H. Schmitt

Abstract In the context of production metrology, the field Predictive Quality
develops methods based on statistics and machine learning to predict quality
characteristics from process data. In prior work, conventional machine learning
methods such as feed-forward neural networks have been successfully applied. Yet,
an uncertainty quantification for the prediction is not provided. Therefore, it is
not possible to prove the suitability of the applied predictive quality methods for
quality inspections. However, we can estimate the uncertainty by taking a Bayesian
perspective and utilizing suitable algorithms.
Here we definePrediction of Quality Characteristics (PQC), which is the foundation
for every Predictive Quality application. We extend our definition of PQC into a
general Bayesian framework to interpret predicted quality characteristics. As an
example, we show how Bayesian neural networks are applied to PQC to estimate
the uncertainty of every prediction. We interpret the results in the industrial context
and determine the suitability of the PQC method.
Our results demonstrate that the application of Bayesian methods is highly promis-
ing to get Predictive Quality recognized in industry as an accredited method for
quality inspections.
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1 Prediction of Quality Characteristics

As Industry 4.0 strategies are rolled out progressively, process data is becoming
accessible in large amounts. The available data offers engineers and scientist
innumerable opportunities to analyze and improve production processes. Some
exemplary applications are predictive maintenance and process mining [23]. The
research field Predictive Quality describes the user’s ability to optimize product and
process-related quality characteristics by using data-driven forecasts as a basis for
actions to be taken [5]. The foundation for all predictive quality applications is the
prediction of quality characteristics (PQC).

The prediction those characteristics can be regarded as a virtual inspection
process, as it replaces a physical inspection.

In conventional physical inspection processes for determining product quality, a
specific operation (e.g., measuring or gauging) is used to decide whether a quality
characteristic meets a pre-defined requirement. In order to make this decision, it is
checked whether the considered quality characteristic lies within previously defined
specification limits.

Since every inspection process is subject to uncertainties (e.g., due to the
uncertainty of the underlying measurement process), the decision whether the
characteristic meets the requirement is also uncertain. Due to the uncertainty of
inspection results, an erroneous decision is possible. Characteristics that are within
the specification limits are rejected (α-error), and characteristics that are outside the
specification limits are accepted (β-error). Both errors entail technical, economic,
and legal consequences. To reduce the risk of a wrong decisions, the limits of
conformity are narrower than the specification limits to account for the uncertainty
of the inspection process (e.g., the measurement uncertainty). To guarantee a
product within the specification limits, the process variance, the variance of the test
process, and the specification limits must be aligned according to DIN EN ISO
14253-1 (see Fig. 1) [41].

In order to consider an inspection process as suitable, it must be ensured that the
quotient of uncertainty of the inspection process U and tolerance of the considered
quality characteristic T does not exceed a certain threshold. This threshold value
is defined differently in various standards and guidelines (see MSA [18], VDA5
[40], ISO 22514-7 [42]). As a rule of thumb, the golden rule of metrology states
that the ratio U/T should not be greater than one-tenth to one-fifth [28, 39]. To
deploy PQC in industry, the suitability of the (virtual) inspection process must be
guaranteed. Hence, the uncertainty of the underlying model must be quantified.
The determination of the uncertainty of a model is a typical example from the
mathematical field of Uncertainty Quantification [37].

Uncertainty Quantification (UQ) focuses on the quantitative characterization of
uncertainties in both real and computer-based applications. UQ methods are used to
quantify the probability of certain results if some or all input variables are uncertain.
A mathematical model is used to describe the system’s behavior extracted from
the measured data. UQ problems are divided into two classes: forward uncertainty
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Fig. 1 Limitation of the specification range due to measurement uncertainty according to ISO
14253-1 (see [28, 41])

propagation and inverse uncertainty quantification. Forward uncertainty propagation
aims to estimate the different sources of uncertainty, acting on a model to predict
an overall uncertainty of the system response. Inverse uncertainty quantification
involves estimating the so-called bias correction (i.e., the discrepancy between the
measured value and the model) and unknown parameters of the model [6, 37].

In PQC, we estimate the parameters for a given model structure from data. The
data used for parameter estimation are usually measurement data and, therefore,
affected by uncertainty [28]. For a given model structure and some data, the
objective is to minimize the model prediction’s uncertainty by setting the parameters
appropriately. The determination of uncertainty in the field of predictive quality can,
therefore, be considered an inverse uncertainty quantification problem by definition
[37].

2 Definition of Prediction of Quality Characteristics

We first define PQC in a deterministic way before introducing a Bayesian per-
spective. The definition is provided for a single product in discrete manufacturing.
Thus, the index i ∈ N identifies a unique part of one product type. With minor
modifications, the definition of PQC can be extended to the process industry. The
foundation for any machine learning (ML) application is a sufficient database. In
the case of PQC it contains the quality characteristics and the process data on a
per-part basis. PQC is an inverse problem, as we want to infer a function H from
some infinite-dimensional function space predicting the quality characteristics from
process data [37].
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We define process data and quality characteristics before constructing a database
and deriving the resulting inverse problem.

Definition 1 The process data xi for part i is generated by m ∈ N sensors, where
the readings of every sensor sj 0 ≤ j < m are given as a function of time sj : T −→
S with t ∈ T ⊂ R

+. Accordingly the process data is modelled by xi : T −→ Sm

with xi(t) := [s0(t), . . . , sm(t)]T .

Definition 2 The measurements of the quality characteristics yi ∈ R
n for part i are

given by n ∈ N measurements, where every measurement vl 0 ≤ l < n is a fixed
value yi := [vl]T .

In comparison to the process data xi we assume that the quality characteristics are
time-invariant—or measured only once. Based on Definitions 1 and 2 the data for a
unique part i is given by the tuple (xi, yi). Hence, we denote D := {(xi, yi)} (0 ≤
i < k) the database for a given PQC application with k ∈ N entries.

Given the database D we want to determine the parameters w ∈ W of the
mappingHw with

yi = Hw(xi) ∀(xi, yi) ∈ D. (1)

Thus, the inverse problem has become a parameter estimation problem, which is
usually ill-posed [37]. A common approach is the computation of a least-squares
solution:

arg min
w

||yi −Hw(xi)||2D. (2)

Note here that some kind of regularization usually improves the solution as noise in
the data is considered [37]. The presence of noise in the data motivates the expansion
of this deterministic interpretation of the parameter estimation using a Bayesian
perspective.

The measurement of a quality characteristic is subject to measurement uncer-
tainty; thus, it is better represented by a random variable. All sensor readings are also
subject to measurement uncertainty and hence – to preserve the time dependency –
interpreted as a stochastic process, which we define as follows:

Definition 3 Let u(t, ω) : T ×� −→ S be a stochastic process, where t ∈ T ⊂ R
+

and ω ∈ �. Here � is the sample space of the probability space (�,F, P ) with F
being a σ -algebra and P a probability measure.

Accordingly we give the definitions of process data and quality characteristics in the
Bayesian sense:

Definition 4 The process data X is generated by m ∈ N sensors, where the sensor
readings uj 0 ≤ j < m are given by a stochastic process. Accordingly the process
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data is modelled by X : T × �m −→ Sm with X(t, ω̄) := [uj(t, ωj )]T where
ω̄ := [ωj ]T .

Definition 5 The measurements of the quality characteristics Y : �n −→ R
n are

given by n ∈ N measurements, where every measurement vl 0 ≤ l < n is a random
variable Y (ω̄) := [vl(ωl)]T where ω̄ := [ωl]T .

Based on Definition 4 and 5 the data of a single part i is given by (xi, yi), where
(xi = X(·, ω̄i ), yi = Y (·, ω̄i )) is a realization of (X, Y ). Taking a Bayesian point of
view, Eq. (1) introduces the conditioned random variable Y |X,w and the solution to
the inverse problem is the conditioned random variable w|D [37]. The parameters
can be determined with maximum likelihood estimation (MLE) as

wMLE = arg max
w

logP(D|w) = arg max
w

∑
i

logP(yi |xi,w) (3)

or by introducing a prior P(w) on the parameters and finding the maximum a
posteriori (MAP) parameters

wMAP = arg max
w

logP(w|D) = arg max
w

logP(D|w)+ logP(w). (4)

Example 1 Let the product have n = 2 quality characteristics, and the total amount
of sensors on the involved machinery bem = 3. Then the database D is constructed
from Table 1. For sensor j = 0 there are two readings, for sensor j = 1 there is
one reading and for sensor j = 2 there are three readings. We append all sensor
readings into a single vector x ∈ R

6. The same procedure applies to the quality
characteristics, which form the vector y ∈ R

2.
Assume that Hw(x) := wx = y is a linear operator with w ∈ R

2×6, then the
least-squares solution ŵ according to Eq. (2) is

ŵ ≈
(−12.92 −89.1 1.69 3.35 −3.17 24.28

0.93 0.12 −0.002 0.04 0.002 −0.16

)
. (5)

Table 1 Database entries for
an exemplary predictive
quality application

xi yi

Part i 0 1 2 0 1

0 [0.49, 0.4] [29] [3.7, 3.7, 3.8] 100.1 0.02

1 [0.52, 0.39] [27] [3.6, 3.8, 3.9] 98.99 0.03

2 [0.5, 0.42] [30] [3.7, 3.6, 3.8] 100.2 0.03

3 [0.49, 0.37] [29] [3.6, 3.7, 3.7] 100.01 0.028

4 [0.52, 0.4] [27] [3.6, 3.2, 3.9] 100 0.03

5 [0.51, 0.42] [30] [3.5, 3.6, 3.8] 99.4 0.031
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3 State of Uncertainty Quantification for Predictive Quality

The formal proof of suitability requires a determination of the measurement uncer-
tainty. We present the results of our literature review regarding the prediction of
quality characteristics and on uncertainty quantification in (deep) machine learning.
The UQ methods are designated keystones to provide a measurement uncertainty
for PQC applications.

Current State of Predictive Quality The quality of product depends on the
interaction of the individual production steps and the condition of the compo-
nents/machinery and material characteristics. Due to the increasing complexity in
production processes, the number of interactions between individual processes is
rising. Further, the increasing individualization of products leads to a significant
increase in process variance [5].

To improve the understanding of products and processes in production engineer-
ing, data analytics methods are used to extract information from data and derive
actions based on this information [15, 35]. In this sense, data analytics describes the
steps of data investigation, data understanding, and knowledge acquisition, which
aim to uncover new relationships within the production process [11]. There are
many different methods for the implementation of this decision support, starting
with statistical methods up to complex machine learning models, which differ
in their application and depend on various factors such as purpose, expertise,
and available resources. Data analytics methods can be categorized as descriptive
analytics, diagnostic analytics, predictive analytics, or prescriptive analytics. The
categories can be seen as steps in the data analysis, which partly rely on each other
[26].

Considering the categories, PQ focuses on the application of predictive analytics
to determine product quality based on process data [5]. Besides considering
data from different process steps, existing information on intermediates and the
individual assembly can also be taken into account. This enables a comprehensive
optimization of the production process.By including data from product usage, the
fulfillment of customer requirements can be increased [16, 36].

In recent years, the use of ML algorithms for PQC has been investigated in a
manifold of applications. Especially the use of neural networks has shown potential
for predicting quality characteristics, as they are capable of mapping and detecting
complex cause-effect dependencies while the user is not required to contribute a
high amount of expert knowledge [28, 34]. For example, Chen et al. used a back-
propagation neural network algorithm and the Taguchi method for quality prediction
in plasma-enhanced chemical vapor deposition for semiconductor manufacturing
already in 2007 [12]. Ogordnyk et al. introduce a neural networks approach for
PQ in the injection molding process. The task here was to classify the product
quality based on 18 machine and process parameters [30]. Baturynska et al. describe
a prediction model for selective laser sintering. They use neural networks to
predict the deviation of manufactured parts in three dimensions depending on their
orientation and positioning in the 3D printer [3].
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The examples have in common that a model is set up to predict quality charac-
teristics without quantifying the model’s uncertainty. Thus, no proof of suitability
is obtained, making the use as an inspection tool in an industrial environment
challenging. There are, however, machine learning methods which can be used to
quantify the uncertainty of the model. These are introduced in the following.

Uncertainty Quantification in (Deep) Machine Learning In the rise of (deep)
machine learning since the 2010s, the importance of UQ has been underestimated in
the scientific community. As adoption of ML progresses in industrial and consumer
applications, safety and security regulations make some types of UQ necessary:
verification, robustness, and interpretability [13]. Verification of a ML system
provides formal guarantees about its behavior [8, 33, 44]. The robustness (i.e., the
reaction to novel/noisy data) is highly relevant for industrial applications, as self-
learning robots, and consumer applications, as autonomous vehicles [10, 27, 32].
Interpretability is another active field, where researchers try to understand why an
ML system behaves a certain way [31]. We argue that verification and robustness
are a form of UQ and that at least a subset of interpretability can be classified as
UQ. In all cases, uncertainty in the model or the data are investigated.

Uncertainty in the data and the model are studied using Bayesian approaches
since 1989. Early examples of Bayesian learning and Bayesian approaches to neural
networks are [25] and [22]. In the 1980s, data sets were significantly smaller than
today, and computational power was expensive. Since, the definition of UQ has been
significantly expanded. Sullivan et al. consider the treatment of all uncertainties in
real and computer-based applications [37]. Especially in the simulation community,
where finite element and finite volume methods and their variants are commonly
used, UQ did not gain traction until the early 2000s [43]. This was mainly due
to the curse of dimensionality and the lack of computational power to perform
the simulations for all parameter sets to be investigated [4]. The development of
improved methods (e.g., sparse collocation) opened novel possibilities to overcome
the curse of dimensionality and explore large parameter spaces efficiently [37].

In deep learning, there are three main movements for UQ [9]. There is Concrete
Dropout [14]. The dropout rate becomes a learnable parameter, and nodes are
dropped during the evaluation. Thus, a sample from a posterior distribution is
generated from a single neural network by randomly omitting a certain percentage
of neurons in each layer at each evaluation. This method is an extension to Dropout,
which is used as a regularization method to prevent overfitting during model training
[19]. Secondly, Deep Ensembles, as introduced in [24], are more sophisticated
than Concrete Dropout. Depending on the algorithm’s variant, multiple neural
networks are trained with different initializations and on different data subsets. At
the evaluation, the outputs of all the neural networks are interpreted as samples
from a posterior distribution. If we expand the number of models to infinity,
we converge to Bayesian Neural Networks (BNN). For a BNN, the weights of
each layer are represented by a probability distributions [17]. These networks are
evaluated by sampling multiple times from the posterior distributions. In [20] a
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different classification is discussed, which takes other approaches into account that
do not apply to PQC.

BNN are capable of representing aleatoric uncertainty (e.g., variability in the
data) and epistemic uncertainty (e.g., model neglecting effects or missing data)
via the posterior distribution [7]. This is a crucial feature for PQC applications
as by Definitions 4 and 5 we have (commonly) unknown uncertainty in our data
and no indication whether an employed model structure is sufficiently expressive.
Even though we have seen successful applications of neural networks to PQC (cmp.
[3, 12, 30] and more), assumptions regarding the structure or the hyperparameters
of the models may be inherently flawed. BNN are successfully applied to various
disciplines as physics [38], civil engineering [1], and others [2, 21, 45]. The BNN
have shown excellent results, not only on theoretical toy problems (cmp. [7]) but in
real world applications. Thus, we focus on BNN given their benefits and apply them
to production engineering, and in particular to PQC. We demonstrate briefly how we
apply BNNs to PQC, when predicting a quality characteristic ŷ from process data
x̂.

The (posterior) predictive distribution of the unknown value ŷ for the test item
x̂ is given by P(ŷ|x̂) = EP(w|D)

[
P(ŷ|ŷ,w)]. The unknown distribution P(w|D)

can be rewritten using Bayes’ theorem:

P(w|D) = P(D|w)P (w)
P (D)

, (6)

where P(w) is the prior on the weights, P(D) is a normalizing constant, and
P(D|w) is the likelihood of observation. To enable PQC in industrial settings,
the predicted distribution P(ŷ|x̂) requires a small variance σ 2. However, this is
not a specific goal of training a BNN since this method aims to approximate the
distribution based on the given data. Hence the ambitions of quality engineers and
mathematicians are not necessarily aligned.

There is not yet a consensus on how to quantify the quality of uncertainty
quantification. Standard measures for a good fit of the posterior are the average
marginal-log-likelihood, the prediction interval coverage probability, or the mean
prediction interval width. However, Yao et al. show that these measures depend on
the inference method used to determine the posterior distribution; we refer to [46]
for a discussion of this matter.

Interim Conclusion As detailed above, ML algorithms are successfully applied
to PQC applications. In special use cases, we even see deployments in industrial
applications even though uncertainties are not considered. Further, we established
that UQ essential part for PQC and almost all other ML applications outside of
laboratories.

To accomplish the overall goal to certify PQC methods as an inspections process,
the application of UQ on PQC methods is imminent. We focus our upcoming
research on BNN, as we see them as the most comprehensive and expressive
method.
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4 Application of Bayesian Neural Networks to the Prediction
of Quality Characteristics

We apply a BNN to an injection molding process of a thin-walled thermoplastic
part. In expert interviews, 14 process parameters (e.g., tool temperature, cycle time,
pressure) were identified, each of which is recorded with one sensor. Hence, the
machine provides m = 14 sensors for process data. We focus on n = 1 quality
characteristic, i.e., a length of the exemplary part with a nominal value of 72.6
mm. The database D was generated using a full-factorial design of experiments
(DoE), where machine settings are explicitly varied, with k = 600 experiments.
The measurements of the quality characteristic were performed on a coordinate-
measuring machine, whose suitability was proven by a Gage R&R Study (MSA) in
advance [29].

The data quality is excellent, as it was manually verified during the recording
and before model training. All sensors and the quality characteristic are scaled to
the interval [0, 1] to facilitate efficient model training. The original scaling is used
for the interpretation in the industrial context in Sect. 4.1.

We use a feed-forward neural network with two hidden layers and leaky ReLU
activation functions. The first hidden layer has four nodes, while the second hidden
layer has two nodes. The second layer’s output is used to parametrize a normal
distribution N(μ, σ ): the first node is interpreted as the mean μ, while the second
node is understood as the variance σ .

Comparably to [7], we use a prior P(w) on our weights w and fit a posterior
P(w|D). A prior is placed on the weights Pt (w) = ∏

j N(wj |tj , σp) where
N(x|μp, σp) is the Gaussian density evaluated at x with mean μp and variance
σp. The prior is learnable as the means tj are fitted during training, while σp = 1 is
fixed. We use a Gaussian variational posterior with trainable mean and variance.

The network is trained for 1250 epochs with a learning rate of 0.001 using the
Adam optimizer. The other hyperparameters of the optimizer are the default values.1

For the loss L we use the sum of the Kullback–Leibler divergence from both hidden
layers and add the negative log-likelihood:

L = KL1 +KL2 + Eq1(w1|θ1),q2(w2|θ2) [logP (w|D)] . (7)

Here KLi = KL [qi(wi |θi)||P(wi )] where i = 1, 2 indexes the hidden layers
and θi are the parameters of a distribution on the weights. We keep the notation
according to [7] and refer the interested reader for details. The loss L over the 1250
epochs is given in Fig. 2. After plateauing for about 1000 epochs, a final drop occurs
over another 200 epochs before optimal performance is reached.

We train the BNN on 540 data points (≈ 90%) and randomly select 60 (≈ 10%)
points for the evaluation. We sample the trained BNN 5000 times for each evaluation

1 https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam.
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Fig. 2 Loss L during the training with 1250 epochs
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Fig. 3 Quality characteristic y1 (blue) with a box plot of the prediction Hw(x) based on 5000
model evaluations for 15 samples from the test data set

point to generate as many pairs (μi, σi) for the parametrized normal distribution.
Figure 3 depicts the meansμi in a box plot for the first 15 evaluation points and give
the results for the first 10 as tabular data in Table 2. The actual quality characteristics
y1 are given in blue in the box plot for comparison. The mean absolute error (MAE)
between the mean of means 1

5000

∑5000
i=0 μi and the actual value y1 is ≈ 0.1814.

In relation to the size of the data set, this is a reasonably low MAE. In Fig. 3 only
sample i = 7 is an outlier regarding the mean of means. A more extensive data set
would allow more rigorous training of the BNN and yield a better MAE. We provide
code and the scaled data set in our GitHub repository.2

2 https://github.com/predictive-quality/bnn-example.
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Table 2 Quality
characteristic y1 with the
mean prediction E [Hw(x)]
and the variance of the
prediction V [Hw(x)] after
the training

y1 E [Hw(x)] V [Hw(x)]

0.30239546 0.2830744 0.00976317

0.48470376 0.43315677 0.00700909

0.30063383 0.27861683 0.00965479

0.15363564 0.1343955 0.00571805

0.49191045 0.5456889 0.00547123

0.35253981 0.356259 0.00638528

0.30983144 0.296187 0.00978199

0.32386012 0.26562449 0.00686061

0.51326475 0.51090966 0.00551332

0.35963779 0.36319379 0.0046631

Table 3 Quality
characteristic y1 with the
mean prediction E [Hθ(x)]
and the variance of the
prediction V [Hθ(x)] after
transformation to the original
scale

y1 E [Hθ(x)] V [Hθ(x)]

72.15644055 72.1800606 0.01459118

72.33991666 72.402933 0.01047518

72.15099116 72.177907 0.0144292

71.97468018 71.9982013 0.0085457

72.47748751 72.4117432 0.00817683

72.24590892 72.2413622 0.00954288

72.17247074 72.1891511 0.01461932

72.13510798 72.2063012 0.01025328

72.43496978 72.4378489 0.00823973

72.25438673 72.2500395 0.00696906
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Fig. 4 Quality characteristic y1 (blue) in its original scale with a box plot of the prediction Hw(x)
based on 5000 model evaluations for 15 samples from the test data set

4.1 Interpretation in the Industrial Context

For the industrial practitioner, the raw results of the BNN need further interpretation.
Primarily, we have to restore the original scaling to evaluate the PQC in context.
In Table 3 and Fig. 4 the predicted values are restored to their original scaling. It
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is notable how the variance decreases after the rescaling. This does not indicate a
better model performance but is rather due to the dependency of variance on the
mean. Similarly, the MAE decreases to ≈ 0.0641.

To prove the suitability for this virtual inspections process, the golden rule of
metrology according to which the ratio U

T
of the uncertainty of measurements U to

tolerance T shall not be greater to one-tenth to one-fifth [39]. For our example, we
can interpret the 2σ -interval γ of Hw(x) as the uncertainty of measurement. Then
with V [Hw(x)] < 0.0167:

γ = 2
√
V [Hw(x)] ≤ 0.258. (8)

Given T = 0.6 and choosing U = �γ �, we derive

U

T
≤ 0.258

0.6
= 0.43

!≤ 0.2. (9)

Thus, based on this conservative estimate of the uncertainty of measurement, this
BNN is not suitable as an inspection process. However, the following aspects need
further consideration:

• Using a more advanced inference method (e.g., Hamiltonian Monte Carlo) can
better approximate the posterior and generate more favorable results regarding
the suitability.

• As the database was generated by a DOE, the process variation is deliberately
high. This is in stark contrast to a real production environment, where the
variation is usually low, and process capability is ensured.

• The size of the database is relatively small compared to the number of trainable
parameters (≈ 210) in the BNN.

• The hyperparameters have a significant influence on the performance of the
BNN. Deliberate, application-specific manual tuning or the use of AutoML-
methods could guarantee proof of suitability.

Overall, we are certain that BNN are a well-suited method for PQC, but we
openly acknowledge that more research is necessary before adopting industrial
applications.

Furthermore, for a formal evaluation of the suitability, the measurement uncer-
tainty must be determined by an approved procedure as the GUM or the VDA 5 (see
[39] for details). However, none of these procedures considers algorithms based on
process data. Many aspects from physical inspection procedures are transferable
to PQC, yet some error sources (e.g., numerical concerns) are not addressed. As
the adoption and development of PQC methods progress, the process to determine
suitability will be extended as well.
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5 Concluding Remarks

We identified the prediction of quality characteristics as the fundamental foundation
of every predictive quality method. To give a framework for future research, we
provided a formal definition of prediction of quality characteristics. Further, we
established PQC as a virtual inspection process, which can complement and/or
reduce costly physical inspections. For every inspection process, a proof of suitabil-
ity is necessary, which requires the determination of the measurement uncertainty
of the underlying method. Hence we added a Bayesian perspective to our definition
to PQC, to consider model- and data-inherent uncertainties.

Based on our literature review, we reason that existing machine learning methods,
as BNN, can provide an adequate uncertainty estimation. The uncertainty estimates
are a decisive keystone to establish PQC as a virtual inspection process and permit
proof of suitability. As a showcase, we applied a BNN to an injection molding
process and give several hints on how to improve the uncertainty estimate for
future applications. To facilitate adoption in industry, we advocate for a revision of
standards as the VDA5 or the ISO 22514-7 to accommodate for virtual inspection
processes.
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Two Statistical Degradation Models
of Batteries Under Different Operating
Conditions

Jin-Zhen Kong and Dong Wang

Abstract The commercialization of electric vehicles (EVs) demands higher perfor-
mances of rechargeable batteries. Accurate assessments of state of health (SOH) and
remaining useful life (RUL) of batteries are important to indicate battery status and
ensure EVs safety. However, the accuracies of existing battery capacity degradation
models are not sufficient to describe battery states under the complicated impacts of
usage environments. Various operating conditions will make degradation modeling
more challenging and difficult, for instance, different discharge rates and discon-
tinuous charge and discharge can influence the capacity degradation tendencies
of batteries. To address the above issues, two statistical degradation models are
respectively proposed to implement battery prognostics in different usage conditions
based on the knowledge of big data and data science. Results show that the proposed
methods outperform many existing works.

Keywords Statistical degradation model · Remaining useful life · Batteries ·
Data science

1 Introduction

Rechargeable batteries are widely applied to provide power for equipment such as
smartphones, unmanned aerial vehicles, and EVs. They are getting more attention
because of great power density and long lifetime [1]. The health status of batteries
has a key impact on the safety of devices so that a reliable battery management
system (BMS) is much necessary. To guarantee the performances of batteries in
actual scenarios, accurate prognostics and health management (PHM) of batteries
are essential, including SOH and RUL [2]. However, since operating conditions in
reality are complicated and changeable, PHMs of batteries contain notable errors,
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and inaccurate estimations of SOH and RUL may cause safety hazards [3]. Most
estimation methods assume that operating conditions are continuously changeless,
ignoring the effects of operating conditions on batteries to simplify the modeling
process, which may cause these methods do not satisfy the actual usage of battery
PHM assessment [4].

Battery PHM has attracted much attention. The existing battery PHM approaches
can be classified into data-driven methods and mechanism-based model. Data-
driven methods consist of machine learning (ML) approaches and statistical models.
ML approaches have already got much attention due to their flexibility and
predictive accuracy [5]. Severson et al. [6] extracted features from discharge voltage
curves and used a ML approach to predict the lifetime of batteries under fast-
charging conditions. Li et al. [7] proposed an online battery capacity estimation
method based on random forest, one of the ML approaches. The advantage of this
method is that online data can be used as input features without pre-processing so
that online assessment can be convenient. Besides, neural networks are appropriate
tools in battery PHM. Sbarufatti et al. [8] developed an algorithm using radial basis
function neural networks and achieved adaptive prognosis of batteries. Ma et al.
[9] combined a hybrid neural network and false nearest neighbors to predict the
remaining useful life of batteries.

In addition, approaches using statistics and probability knowledge are also
attractive. This kind of methods can provide prognostics results and uncertainty
simultaneously, making up for the disadvantages of ML methods [10]. Statistics
and probability modeling has been widely used in battery PHM assessment, and it
shows the superiority of uncertainty measurement, which is vital in this field. Tang
et al. [11] put forward a migration-based method combining Bayesian Monte Carlo
to predict the battery aging trajectory. Also, He et al. presented a RUL prediction
method of batteries using Dempster–Shafer theory and the Bayesian Monte Carlo
method. Cripps [12] proposed a Bayesian nonlinear random-effect model to identify
defective batteries and used it for statistical analysis. Wang et al. [13] considered
heterogeneous noise variances into consideration and utilized a state-space model
to conduct prognostics of batteries.

PHM assessments of batteries are influenced by some operation conditions,
such as discharge rates and discontinuous charge–discharge that will cause capacity
recovery. To the best of our knowledge, there have remained research gaps that sel-
dom researchers regard how to model the battery capacity at different discharge rates
and deal with capacity recovery phenomenon (CRP) while degradation modeling.

This chapter aims at analyzing battery capacity degradation and constructing bat-
tery estimation models at different operating conditions, including the degradation
with CRP because of discontinuous charge and discharge, and degradation under
different discharge rates. We develop two statistical degradation models of batteries
separately. The first one models battery degradation considering CRP, while the
second one considers different discharge rates of batteries in degradation modeling.
The major contributions of this work are summarized as follows. First, a piecewise
degradation model considering the CRP of batteries is constructed. To verify the
effect of the model, NASA battery data is utilized, and the prediction error compared
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with the true RUL is less than 1%. Besides, according to the battery degradation data
under different discharge rates, a coupling capacity degradation model considering
the coupling effect of cycle number and discharge rate is presented. A prognostic
surface under various discharge rates can be established, and the PHM of batteries
can be obtained. Battery degradation data from a four-cycle rotation fading strategy-
based cycle testing were generated to validate the effectiveness of the model.

The rest of this chapter is organized as follows. Two statistical degradation
modeling ideas of batteries are introduced respectively in Sects. 2 and 3. Section 2
presents a piecewise degradation model for batteries in view of CRP. In Sect. 3, a
capacity degradation model for batteries under different discharge rates is presented.
Finally, Sect. 4 draws conclusions of this work.

2 Piecewise Degradation Model for Batteries in View of
Capacity Recovery Phenomenon

For batteries, discontinuous charging and discharging behaviors can cause the phe-
nomenon of battery capacity recovery. The existence of CRP will make degradation
modeling more difficult. In this section, considering CRP, a piecewise degradation
model is proposed based on statistical domain knowledge.

2.1 Theory of Piecewise Degradation Modeling

As shown in Fig. 1, CRPs occur in battery capacity fade curves due to discontinuous
charge–discharge of batteries. The battery capacity was measured during discharge
processing of each cycle number. Current research usually ignores CRPs and

Fig. 1 NASA battery
degradation data of three
batteries with CRP
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constructs global degradation models. However, CRPs will hinder the accurate
estimation of battery PHM because degradation modeling for global degradation
process cannot capture the detailed information during capacity fade. A piecewise
degradation model is constructed considering locations of CRPs and local fade
information in this work, expressed as Eq. (1).

Xk =
{
p1(k, γ1,#1), k < γ1

pi(k − γi, γi,#i), γi ≤ k < γi+1
. (1)

In Eq. (1), k is the charging and discharging cycle number; Xk is a stochastic
process representing battery fade data in cycle k; i ( i > 0, i ∈ N ) denotes the
series number of CRP; the phases are divided by i; γi represents a random variable
representing the location of ith CRP, and it splits the whole process into i+1 phases;
pi denotes the general piecewise degradation model in ith phase, whose parameters
can be marked as #i .

The key of the model is determining the patterns of pi and γi . The pi can be
selected or designed according to the actual degradation trajectory, and γi should
be detected by some approaches. In the training stage, it assumes that locations of
CRPs are known using historical data so that we can directly obtain the parameters
of piecewise degradation models. However, in the testing stage, the new data
are updated online, locations of CRPs should be detected probabilistically using
the probability approach such as expectation–maximization (EM) algorithm, and
parameters should be updated as new data are available. After having detected
the locations of CRPs, remaining useful cycles can be predicted resorting to the
extrapolation of the proposed piecewise model.

2.2 Case Study A

2.2.1 Dataset Description

We conduct a case study to describe the modeling process in detail. The battery
capacity degradation dataset we choose is provided by the Prognostics CoE at
NASA Ames [14]; here we demonstrate degradation data of batteries 5, 6, and 18;
in the data exists the phenomenon of capacity recovery in the whole degradation
process, shown as Fig. 1. The CRPs split battery degradation process into several
phases. The experiments were carried out at room temperature. Charging process
was conducted under a constant current mode of 1.5 A first, then voltage reached
4.2 V, and a constant voltage mode was utilized until the current dropped to
20 mA. Discharging process was conducted at a constant current mode of 2 A,
and cut-off voltages were 2.7 V for battery 5, 2.5 V for battery 6, and 2.5 V for
battery 18, respectively. As charge and discharge cycles increased, the capacity
of batteries faded gradually from the initial rated capacity 2 Ahr. While the actual
capacity dropped to 1.4 Ahr, the experiments were stopped. Note that in our study,
normalized capacities are regarded as battery SOH.
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2.2.2 Piecewise Model Construction and Monitoring Locations of CRPs

For constructing a piecewise degradation model for the NASA dataset based
on Eq. (1), we analyze the degradation rules of NASA batteries and general
fade model pattern. Exponential model [15, 16] and polynomial model [17] are
reasonable functions to describe different kinds of batteries. Finally, we determine
the exponential model as the pattern of sub-models in our work. The piecewise
degradation model we first built is shown as follows:

Xk =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

θ1 exp(βk) exp

(
ε(k − σ 2

2
)

)
, k < γ1

θ1 exp(β(k − γi)) exp

(
ε(k − γi)− σ 2

2

)
, γi ≤ k < γi+1

. (2)

In contrast to Eq. (1), in this case study, the sub-model pi is defined as pi =
θ1 exp(β(k − γi)) exp

(
ε(k − γi)− σ 2

2

)
; the parameter set #i is #i = {β, θi, ε}.

Specifically, in Eq. (2), θi denotes a logarithm random variable that represents
initial capacity, and its mean and variance are μθ1 , σ 2

θ1
, respectively, that is θi ∼

N(μθ1, σ
2
θ1
). β reflects the fade rate of batteries in different phases, with a mean

μβ and a variance σ 2
β , that is β ∼ N(μβ, σ

2
β ). ε(k) is an error term having a mean

0 and variance σ 2, that is ε(k) ∼ N(0, σ 2); and it can be easily obtained that the

expectation of E
(

exp
(
ε(k)− σ 2

2

))
= 1 according to the property of log-normal

distribution; in Eq. (2), each phase shows an exponential trend θ1 exp(β(k − γi)).
After applying logarithm operation to Eq. (2), the piecewise degradation model can
be expressed as follows:

lnXk =
{

ln θ + βk + ε(k), k < γ1

ln θ1 + β(k − γi)+ ε(k − γi), γi ≤ k < γi+1
. (3)

In Eq. (3), ln θ = ln θ1 − σ 2/2 with a mean μθ and variance σ 2
θ . As a result,

a prognostic model for NASA batteries considering CRP into consideration is
constructed. Three main parts of battery prognostics in view of CRP consist of
battery degradation modeling, detection of the location γi of the ith CRP, and RUL
prediction of batteries.

In the training stage, capacity data of battery 6 are regarded as historical data and
used to obtain distributions of ln θ1 and β. The whole degradation process includes
11 phases split by CRPs, and for each phase, an exponential sub-model θ1 exp(βk) is
utilized to fit the battery degradation data. With exponential sub-models, the fitting
results of exponential sub-models and actual SOH of battery 6 are illustrated in
Fig. 2a. To investigate the goodness of fitting, a goodness-of-fit statistic R-square is
used, and the boxplots of R-square values are plotted in Fig. 2b. With the help of
the toolbox cftool in Matlab, the R-square values can be obtained. R-square values
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Fig. 2 Fitting results in the training stage of NASA battery degradation data: (a) comparison
between fitting of exponential sub-models and actual SOH of battery 6; (b) the logarithm of the
initial values and slope parameter of fitted exponential sub-models and their R-square values

are around 0.94 so that the fitting effect is good. Besides, the logarithm of the initial
values and slope parameter of fitted exponential sub-models are given in Fig. 2b;
it can be obvious that ln θ1 and β are subject to normal distributions, respectively.
After testing by Lilliefors test [18], the normality of ln θ1 and β is verified. The
mean and variance can be derived. Note that the command “lillietest” in Matlab can
be easily used to conduct Lilliefors test. The results indicate that Lilliefors test does
not reject the null hypothesis that the data comes from a normal distribution at the 5
% significance level.

Then, we are going to monitor locations of CRP for the whole degradation
data. Given the information in ith phase, including observations xi1, . . . , x

i
l of cycle

c1, . . . , cl , and location γi of the ith CRP. If the i + 1th CRP does not exist,
battery capacity degradation data in the ith phase will lie within a band around
E(ln θ + βtj ) = μθ ′ + μβ ′ tj , where μθ ′ , μβ ′ denote the posterior means of
ln θ and β; otherwise, if i + 1th CRP occurs, battery capacity degradation data
at γi are supposed to lie within a band around the mean of ln θ . To estimate
the latent variable γi+1, the expectation–maximization (EM) algorithm can be
employed. It is deduced that the probability of cj < (γi+1 − γi) is proportional
to exp(−(ln xj − μθ ′ − μβ ′cj )2/2σ 2

l,m), where σ 2
l,m denotes the covariance at cycle

cl and iterationm. The above relation can be expressed as follows:

p(cj < (γi+1 − γi)|σ 2
l,m, γi , μθ ′ , μβ ′ , μθ , σ

2
θ )

=
1√

2πσ 2
l,m

exp

(
− (lnxj−μθ ′−μβ′ cj )2

2σ 2
l,m

)

1√
2πσ 2

l,m

exp

(
− (lnxj−μθ ′−μβ′ cj )2

2σ 2
l,m

)
+ 1√

2πσ 2
θ

exp

(
− (lnxj−μθ )2

2σ 2
θ

)
. (4)
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Fig. 3 Flowchart of the proposed method for monitoring locations of CRP

By using Bayesian updating thought to update posterior estimations of param-
eters and EM algorithm to estimate latent variables, the locations of CRP can
be obtained automatically. The flowchart of the proposed method for monitoring
locations of CRP is illustrated in Fig. 3.

2.2.3 RUL Prediction for Batteries

Using battery 6 as historical data and detecting the locations of CRP of battery 5,
the probabilities of CRP and SOH estimation can be derived. Given observations
xi1, . . . , x

i
l of cycle c1, . . . , cl and location γi of the ith CRP, we can get that ln θ +

βcl+k+ε(cl+k) is the extrapolated capacity data of battery at cycle cl+k that follows
a normal distribution. And the RUL can be predicted by setting a failure threshold
D (D is defined as 75 % in our study):

P(T ≤ k|xi1, . . . , xil ) = P(ln θ + βcl+k + ε(cl+k) ≤ D|xi1, . . . , xil )

= P

(
Z ≤ D − E(ln θ + βcl+k + ε(cl+k))√

var(ln θ + βcl+k + ε(cl+k))

)
= 	(f (k)),

(5)
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where Z denotes the standard normal random variable; 	(•) is the cumulative
distribution of Z; f (k) = Z ≤ D−E(ln θ+βcl+k+ε(cl+k))√

var(ln θ+βcl+k+ε(cl+k))
. Because the RUL T should

be positive, Eq. (5) can be revised as

P(T ≤ k|xi1, . . . , xil ) = P(ln θ + βcl+k + ε(cl+k) ≤ D|xi1, . . . , xil , T ≥ 0)

= P(0 ≥ T ≤ k|xi1, . . . , xil )
P (T ≥ 0|xi1, . . . , xil )

= 	(f (k))−	(f (0))

1 −	(f (0))

.

(6)

Implementing the derivative of Eq. (6) with respect to k, we can get the following
equation:

gT |xi1,...,xil ,T≥0(k) = φ(f (k))f ′(k)
1 −	(f (0))

, (7)

where φ(•) is the probability density function (PDF) of Z.
Then we can get the RUL prediction results shown in Fig. 4, excluding the impact

of cycle shifts resulting from the future unknown CRP at a certain prediction time.
The results show that the 5th, 50th, and 95th percentiles of the PDF of the RUL are
55, 61, and 69 cycles, respectively. The 50th percentile of the PDF of the RUL is
regarded as the predicted RUL in our work, and the prediction error compared with
the true RUL is less than 1%, which is more accurate than the existing literature
[16]. The detailed results and descriptions are demonstrated in the literature [19].

Fig. 4 RUL prediction at cycle 43 of battery 5 using the proposed method
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3 State-Space-Based Capacity Degradation Model for
Batteries Under Different Discharge Rates

Various operation conditions such as different discharge rates will influence the
degradation of batteries; however, current research seldom considers it while
modeling. In this section, a state-space-based capacity degradation model for
batteries under different discharge rates is presented to improve the accuracy of
battery PHM.

3.1 Theory of Degradation Modeling Under Different
Discharge Rates

Battery discharge capacity degradations are remarkably affected by several envi-
ronmental factors, and discharge rate is one of the key factors. In actual scenarios,
batteries may work under different discharge rates because users have various usage
habits. The velocities of chemical reactions inside the battery are diverse so that the
capacity fades vary from various discharge rates.

Most existing studies pay attention to battery capacity estimation at constant
working conditions, assuming the discharge environments are changeless [20].
To investigate the influences of discharge rates on battery capacity degradation
and estimate SOH of batteries under corresponding discharge rates, we design an
experiment and construct a SOH estimation model.

Considering the discharge rates variable while estimating SOH, we construct the
following framework of SOH estimation, expressed as Eq. (8).

Q(k,R) = H · � + ε(k). (8)

In Eq. (8), Q is the discharge capacity of battery; R represents the discharge
rate; k is the cycle number; H denotes the related variables; here we can define
H = [1, k, R, kR], where the term kR reflects the coupling effect of cycle number
and discharge rate on battery capacity degradation; � is the coefficient variable of
above four factors, which can be marked as � = [λ1, λ2, λ3, λ4]′.

3.2 Case Study B

3.2.1 Experimental Dataset Description and Capacity Model
Construction

The experiments we conducted are continuous battery cycle testing at several
discharge rates. Due to the battery degrades slowly at low discharge rates, a
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four-cycle rotation fading strategy-based cycle testing was designed, aiming at
accelerating degradation process and saving experimental time. In this experiment,
each battery went through four continuous charge–discharge cycles. The battery
was charged under a constant current of 1 C (C-rate, a measure of the rate at which
a battery is discharged relative to its maximum capacity) until the voltage reached
3.6 V, and then a constant voltage mode was conducted until the current dropped to
C/20. And in the discharge stage, a 0.5 C constant current was utilized until the
voltage reached 2 V. Then the battery was charged again and discharged at 1 C
constant current, and experimental conditions of 3 C and 5 C discharge rates are
similar. The current and voltage curves in one cycle are shown in Fig. 5. The capacity
dataset obtained from the designed experiments includes capacity fade at 0.5 C, 1 C,
3 C, and 5 C, respectively, shown in Fig. 6a. We can deduce that the dataset agrees
with the linear framework of capacity estimation in Eq. (8). According to Eq. (8),
the concrete model is reformulated as follows:

Q(k,R) = λ1 + λ2 · k + λ3 · R + λ4 · k · R + ε(k), (9)

where the error term follows Gaussian distribution with a zero mean and variance
respect to cycle numbers, marked as ε(k) ∼ N(0, σ 2).

Fitting results in Fig. 6b show that the above model in Eq. (9) can match the
capacity degradation at different discharge rates well because R-square reaches
0.9778. For sake of letting the model adapt unit-to-unit variances and use online
operating data of a certain battery to update model-related parameters posteriorly,
the model in Eq. (9) is transformed into a state-space-based model:

{
�k = �k−1 + ωk

Qk = Hk · �k + ε(k),
(10)

Fig. 5 The experimental setting of current and voltage curves in one cycle
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Fig. 6 Capacity data and model results: (a) Discharge capacity degradation at different discharge
rates; (b) fitting of capacity and results of the proposed model at different discharge rates

where ωk is the multivariate Gaussian noises with a zero mean and a covariance
σ 2
ω; other parameters have the same meanings as above. The models in Eq. (10)

have linear forms so that in this work, traditional Kalman filter was used, including
predicting step and updating step. More information about Kalman filter can be
found in Ref. [21].

3.2.2 RUL Prediction for Batteries at Different Discharge Rates

RUL prediction at different discharge rates can be divided into offline stage and
online stage. The flowchart of the proposed method to predict RUL of an operating
battery at different discharge rates is illustrated in Fig. 7.

In the offline stage, using historical capacity data at different discharge rates,
the initial discharge capacity model is established. Then, transforming the proposed
model to a state-space-based model and obtain prior distributions of parameters.

Secondly, in the online stage, the online capacity data of a certain operating
battery at different discharge rates are fed into the state-space-based model and
posterior distributions of the state-space-based model can be derived using Kalman
filter. In addition, RUL prediction process is similar to Sect. 2.2.3 (Eqs. (6) and (7)
can be references.) so that we will not introduce it in detail here.

Define the predicted time as a percent of actual battery lifetime and set 80%
of actual battery lifetime as failure threshold; we can get the RUL prediction and
uncertainty measurement by extrapolations of the proposed method, according to
the procedures in Fig. 7. The results of RUL prediction and PDF of RUL for
batteries at four different discharge rates are shown in Fig. 8. We can obtain that
MSEs of prediction are less than 1.7 × 10−6. The proposed method has good
performance on RUL prediction at different discharge rates. The detailed results
and descriptions are explained in the literature [22].
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Fig. 7 Flowchart of the proposed method to predict RUL of an operating battery at different
discharge rates

Fig. 8 RUL prediction results at different discharge rates using the proposed method: (a) RUL
prediction results of batteries at four different discharge rates; (b) comparison of PDF of RUL and
true RUL
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The SOH estimations at different temperatures are similar to this work, but the
model form should be modified, according to the analysis, capacity fade tends to be
exponential, and then the linear model is not suitable.

4 Conclusions

PHM of batteries is an attractive and enabling research domain as EVs become
more commercialized. In this chapter, we explored two actual issues in battery
capacity degradation modeling and provided two modeling ideas by statistical
and probabilistic-related approaches. Considering CRP of batteries caused by
discontinuous charge and discharge, the piecewise degradation model was proposed
by considering CRP, and then RUL of batteries was predicted based on some
specific degradation phases. Next, battery degradation modeling under different
discharge rates was studied. The state-space-based capacity degradation model for
the batteries under different discharge rates was presented. The battery degradation
data at different discharge rates could be described by a surface. These two
works achieved good prediction effects, which exhibited the ability of statistical
approaches for data modeling and prediction.

In future work, more operating conditions will be considered such as depth
of discharge, environmental factors, etc. More modeling ideas are needed for
improving the accuracy of battery PHM with the help of statistical approaches
and big data, which include huge amounts of battery historical data and online
monitoring data.

References

1. Lucu, M., Martinez-Laserna, E., Gandiaga, I., Camblong, H.: A critical review on self-adaptive
Li-ion battery ageing models. J. Power Sources 401, 85–101 (2018)

2. Meng, H., Li, Y.-F.: A review on prognostics and health management (PHM) methods of
lithium-ion batteries. Renew. Sust. Energ. Rev. 116, 109405 (2019)

3. Xiong, R., Li, L., Tian, J.: Towards a smarter battery management system: A critical review on
battery state of health monitoring methods. J. Power Sources 405, 18–29 (2018)

4. Si, X.-S., Wang, W., Hu, C.-H., Zhou, D.-H.: Remaining useful life estimation A review on the
statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)

5. Tan, P., Jiang, H.R., Zhu, X.B., An, L., Jung, C.Y., Wu, M.C., et al.: Advances and challenges
in lithium-air batteries. Appl. Energy 204, 780–806 (2017)

6. Severson, K.A., Attia, P.M., Jin, N., Perkins, N., Jiang, B., Yang, Z., et al.: Data-driven
prediction of battery cycle life before capacity degradation. Nat. Energy 4(5), 383–91 (2019)

7. Li, Y., Zou, C., Berecibar, M., Nanini-Maury, E., Chan, J.C.W., van den Bossche, P., et al.:
Random forest regression for online capacity estimation of lithium-ion batteries. Appl. Energy
232, 197–210 (2018)

8. Sbarufatti, C., Corbetta, M., Giglio, M., Cadini, F.: Adaptive prognosis of lithium-ion batteries
based on the combination of particle filters and radial basis function neural networks. J. Power
Sources 344, 128–40 (2017)



282 J.-Z. Kong and D. Wang

9. Ma, G., Zhang, Y., Cheng, C., Zhou, B., Hu, P., Yuan, Y.: Remaining useful life prediction
of lithium-ion batteries based on false nearest neighbors and a hybrid neural network. Appl.
Energy 253, 113626 (2019)

10. Peng, W., Ye, Z.-S., Chen, N.: Bayesian deep learning based health prognostics towards
prognostics uncertainty. IEEE Trans. Ind. Electron. 67(3), 2283–2293 (2019)

11. Tang, X., Zou, C., Yao, K., Lu, J., Xia, Y., Gao, F.: Aging trajectory prediction for lithium-ion
batteries via model migration and Bayesian Monte Carlo method. Appl. Energy 254, 113591
(2019)

12. Cripps, E., Pecht, M.: A Bayesian nonlinear random effects model for identification of
defective batteries from lot samples. J. Power Sources 342, 342–350 (2017)

13. Wang, D., Yang, F., Zhao, Y., Tsui, K.-L.: Prognostics of Lithium-ion batteries based on state
space modeling with heterogeneous noise variances. Microelectron. Reliab. 75, 1–8 (2017)

14. B. Saha KG.: Battery Data Set. In: (http://ti.arc.nasa.gov/project/prognostic-data-repository)
NAPDR, editor. NASA Ames Research Center, Moffett Field, CA2007

15. He, W., Williard, N., Osterman, M., Pecht, M.: Prognostics of lithium-ion batteries based on
Dempster Shafer theory and the Bayesian Monte Carlo method. J. Power Sources 196(23),
10314–10321 (2011)

16. Gebraeel, N.Z., Lawley, M.A., Li, R., Ryan, J.K.: Residual-life distributions from component
degradation signals: A Bayesian approach. IIE Trans. 37(6), 543–557 (2005)

17. Micea, M.V., Ungurean, L., Cârstoiu, G.N., Groza, V.: Online state-of-health assessment for
battery management systems. IEEE Trans. Instrum. Meas. 60(6), 1997–2006 (2011)

18. Dallal, G.E., Wilkinson, L.: An analytic approximation to the distribution of Lilliefors’ test
statistic for normality. Am. Stat. 40(4), 294–296 (1986)

19. Wang, D., Kong, J.Z., Zhao, Y., Tsui, K.L.: Piecewise model based intelligent prognostics
for state of health prediction of rechargeable batteries with capacity regeneration phenomena.
Measurement. 147, 106836 (2019)

20. Ng, S.S.Y., Xing, Y., Tsui, K.L.: A naive Bayes model for robust remaining useful life
prediction of lithium-ion battery. Appl. Energy 118, 114–23 (2014)

21. Welch, G., Bishop, G.: An Introduction to the Kalman Filter: University of North Carolina,
Chapel Hill (1995)

22. Wang, D., Kong, J.-z., Yang, F., Zhao, Y., Tsui, K.-L.: Battery prognostics at different operating
conditions. Measurement 151, 107182 (2020)


 1019 973 a 1019 973 a
 
http://ti.arc.nasa.gov/project/prognostic-data-repository


Detecting Diamond Breakouts of
Diamond Impregnated Tools for Core
Drilling of Concrete by Force
Measurements
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Abstract Diamond impregnated tools for core drilling consist of segments in which
synthetical diamonds are bounded in a metal matrix. The wear of these tools
depends on the time points when active diamonds breakout and new diamonds
from deeper layers of the metal matrix become active. Up to now, these time
points were measured only by visual inspection at given inspection time points,
a measurement which is very error-prone and labor-intensive. Hence the aim is to
use the automatic force measurements during the drilling process for detecting the
breakouts of the diamonds. These force measurements consist of three time series
observed over about 75 min, each minute with over 300,000 measurements. At first,
we present here an approach of an analysis of these time series in three steps:
identification of the time periods of active drilling, identification of the rotation
periods, and determination of differences between successive rotations. Based on the
detected rotation periods, 147 features for classification of minutes with and without
diamond breakout are created. Some of these features are based on the differences
between successive rotations and some on p-values for testing the independence
of the detected rotation lengths. After a feature selection step, random forest and
logistic regression are applied. This leads at least for one of two considered series
of experiments to a classification error which is smaller than the trivial classification
error.
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1 Introduction

The wear of diamond impregnated tools for core drilling of concrete depends on
the wear of active diamonds visible on the surface of the segments of the tool. The
segments consist of synthetical diamonds bounded in a metal matrix. As soon as an
active diamond breaks out, usually a new diamond embedded in a deeper layer of
the metal matrix becomes active. This so-called self-sharpening property means that
new sharp diamonds are exposed at the tool surface at any time of the process.

Several authors already identified the main wear mechanisms of diamond
impregnated tools, e.g., [8, 21]. The authors as [3, 12, 17] considered also some
statistical analysis. However, these approaches mainly concern diamond impreg-
nated tools for sawing applications of rock. Only a few authors are dealing with the
diamond core drilling process, see, e.g., [1, 9, 10, 15]. In particular, [15] showed
how the size of the diamonds and the used concrete influence the lifetime of the
active diamonds. This analysis was complicated by the fact that the breakout times
of the active diamonds and the appearance times of new active diamonds were only
measured by visual inspections at given inspection times. Thereby, the number of
visible and active diamonds on the tool surface was determined by microscopical
inspections of the tool at the given points in time. This leads to the so-called doubly
interval-censored data. Moreover, the intervals between the inspection times lasted
always 1 min which is not the best choice as indicated by Malevich and Müller [14].
However, more grave is the fact that the visual inspections are very labor-intensive
and so error-prone that different inspectors provided different results.

Hence an important aim is to detect automatically the time points of the breakout
of active diamonds and the appearance of new diamonds. The automatic measure-
ments of the process forces during the drilling process are especially appropriate for
this task. Since in the given experimental setup, the force measurements are given
by the intervals between the visual inspections, we consider the task to identify
the intervals with and without diamond breakout via the force measurements. Each
interval consists of three time series in x, y, and z direction of drilling, each
with about 300,000 observations. The first attempt of classifying these intervals
with and without diamond breakout was done in [9] by using simple features like
classical and robust measures of location and scale of the force measurements in the
intervals. Additionally, the number of bivariate change points was used by applying
the method of [7] to two of the three time series. In particular, the number of change
points in the intervals looked promising for the classification problem in the first
series of experiments with 25 intervals. However, this result could not be confirmed
using further 25 intervals, see [10].

The change point analysis suffers from the fact that there are additional oscilla-
tions within each rotation, see Fig. 6. These oscillations vary over time. Hence, we
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consider here the approach to identify at first the rotations and then to measure the
differences of the oscillations between successive rotations. However, in the first
step, the time periods of active drilling must be identified automatically. Although
this was done already in [9], even this task is challenging. Further challenges appear
by identifying the rotations and by calculating the differences between the rotations.
In particular, to test the quality of the identification of the rotations, we test for
independence of the detected rotation lengths with the runs test of [20] (see [5] pp.
78–86) and a new test based on the recently proposed generalized sign test of [13].
The differences between rotations are calculated by applying the method of dynamic
time warping of [6].

We create 147 features from the identified rotations, the differences between
rotations, the p-values of the independence tests, and additionally from more simple
quantities per interval. After a feature selection step, we use the random forest and
the logistic regression for classifying minutes with and without diamond breakout.
We apply this for two series of experiments with two types of concrete. The
experiments at the more homogeneous concrete provide a low breakout rate of 0.173
so that the trivial classification method which classifies all minutes as “no breakout”
could not be beaten. However, the experiments at the inhomogeneous concrete show
a breakout rate of 0.342 while the leave-one-out misclassification rate was 0.260 for
the logistic regression and 0.329 for the random forest.

The paper is organized as follows. The experimental setup is given in Sect. 2.
Section 3 deals with identification of periods of active drilling and Sect. 4 with the
identification of the rotations. Section 5 shows how time warping can be used to
calculate differences between rotations. In Sect. 6, the 147 features are given and
used for the classification problem. Finally, a discussion of the results is given in
Sect. 7.

2 Experimental Setup and the Data

Four sequences of experiments, each with 75 sequential drilling phases of (approx-
imately) equal length, were conducted. In each drilling experiment, automatic force
measurements were obtained in time intervals of length of 61 up to 83 seconds
where each time interval should contain active drilling of about 1 min length.
During each interval, the process forces Fz, Fx , Fy in z, x, and y direction were
measured with measurement frequency of about 5000 Hz so that each process time
series consists in average about 300 000 measurements per time interval of active
drilling. The circumferential speed was 3.225 m/s leading to ca. 616 rotations per
minute with ca. 487 observations per rotation. After each experiment, the number
of diamonds which have been broken out and which newly appeared were recorded
by visual inspections of photos obtained by a microscope. For more details of the
experiments, see [9].

The four sequences of experiments differ by the size of diamonds (small
diamonds from grid size of dk = 40/50 mesh and large diamonds from grid size of
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Fig. 1 Flowchart of data collection, preprocessing, and analyzing

dk = 20/30 mesh) and two types of concrete (conventional concrete with compres-
sive strength of C20/25 and homogeneous concrete with high strength of C100/115).
However, only the sequences of experiments with the small diamonds provided
enough intervals with diamond breakouts. These two sequences of experiments are
called B28 and B29, where B28 concerns the drilling in the C20/25 concrete and
B29 the drilling in the C100/115 concrete. In the sequence B28, 22 diamonds were
visible at the beginning and a diamond breakout was observed in 25 intervals while
35 diamonds were visible in the beginning of the series B29 and here 13 intervals
showed a diamond breakout.

Figure 1 shows a flowchart describing how the data were collected, preprocessed,
and analyzed. The parts displayed in yellow concern the preprocessing of the time
series of the force measurements as well as the feature generation based on these
measurements as described in this paper. The blue parts provide the preprocessing
steps to get the classification of minutes with and without diamond breakout by
visual inspection. Details concerning this procedure are given in [15]. The final
aim of this paper, which is the classification of minutes with and without diamond
breakout by force measurements, is given in the purple part. All calculations were
done in R [18] and all cited packages are R packages available on the website given
by R Development Core Team [18].

3 Identification of Periods of Active Drilling

Each single drilling experiment in the sequence of experiments should last about 1
min before it is interrupted for the visual inspection. Because of these interruptions,
there are phases of no active drilling at the beginning and at the end of each of the
75 time series so that the time intervals for each experiment are longer than 1 min.
Hence, identifying the phase of active drilling is a necessary first step. For this, the
examination of the feed forces Fz in the time intervals is the most appropriate.
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Fig. 2 Fz time series of the 25th min of the B28 data with different phases separated by red lines

Figure 2 depicts the different phases of Fz in a time slot of 66 s, which are
separated by the dashed, red lines. In the beginning of the drilling no forces are
acting. As soon as the drilling tool comes into contact with the concrete workpiece,
the feed forces start to rise until a stationary main phase is reached. At the end of
the drilling, the segment is drawn back and the acting forces decrease rapidly.

The beginning and end phase of each drilling are not relevant for the analysis
of diamond breakouts and should not be considered for statistical analysis. Never-
theless, breakouts might possibly occur in the phase of rising forces. But since the
length and form of this phase varies a lot over the different experiments (especially
in B28), including this phase would lead to a distortion of statistical properties of the
drilling. Hence these phases also were excluded from further analysis, concentrating
merely on the stationary phase.

An automatic detection of the phase of interest for each experiment was achieved
by calculating the standard deviation in running windows of 100 observations
throughout the time series of the feed forces Fz (see Fig. 3) using the function
rollapply from the zoo-package [22]. The mean of these windowed standard
deviations was defined as μw and their standard deviation as σw . At first, the end
of the stationary phase was detected by simply identifying the point in time when
the windowed standard deviation of the feed forces takes a value above a threshold
TEnd for the last time. Here, TEnd was set as TEnd = μw + 0.15 · σw , where the
factor 0.15 appeared to be most appropriate for the experiments B28 and B29.

Next, a threshold for the beginning of the stationary phase was defined. For this
purpose, the standard deviation of 10,000 preceding observations before reaching
the detected endpoint of the stationary phase was calculated and defined as σmain.
This represents the standard deviation during the main phase of the drilling. The
threshold TStart was set as TStart = σmain + 0.5 · σw . Defining the beginning
of this phase as the first point in time when the windowed standard deviations
exceed this threshold leads to satisfactory results for each experiment in the B29
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Fig. 3 Windowed standard deviations of Fz time series of Fig. 2 with thresholds for the beginning
and the end of the stationary phase

as well as in the B28 data. However, some minutes of the B28 data provide very
bad results. An ensuing inspection of those minutes shows that those minutes were
badly affected by measuring disturbances so that they were removed ending up with
73 min.

In other drilling experiments the thresholds might require some adjusting which
can be achieved by modifying the factors of the standard deviations σw and σmain.
In choosing the thresholds, it is particularly difficult to classify the beginning of
the stationary phase since it varies a lot over the different experiments and minutes.
Thus, it was important that the corresponding threshold is a function of the actual
variance of this phase (here σmain). Furthermore, if the threshold was defined too
small some drilling periods contained big parts of the phase of the rising forces
leading to distortion of statistical properties. Too large thresholds, on the other hand,
resulted in later onset points and a loss of information due to unnecessary short
active drilling periods that were to be considered for further analysis. In extreme
cases, no onset points can be detected.

4 Identification of the Rotations

Since statistical methods will be applied for the single rotations of the drilling
tool (e.g., dynamic time warping), the second step is to identify the starting and
endpoints of each rotation. To accomplish this, a local polynomial regression (loess)
(see [2]) was run on the time series of the tangential forces Fx of the experiments
since the periodic structure, which can be attributed to the rotations, is clearly visible
in these time series (see Fig. 4). For reasons of symmetry, using Fy would lead to
similar results.
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Fig. 4 Close up of the time series of tangential force Fx together with the smoothed time series
by loess (red dashed line)

The loess method is used to smooth a time series by fitting a polynomial
function to a neighborhood N(x0, h) = [x0 − h(x0), x0 + h(x0)] of an observation
x0 from a time series (xt )t∈T , where h is a span function. The function loess
in R uses a so-called span parameter α, which defines the relative amount
p = �αn� of n observations in the neighborhood N(x0, h) of x0. The degree
of the polynomial can be specified using the parameter degree and fitting is
accomplished by using weighted least squares with a tricube weight function, see
[2].

Here, loess was used to smooth Fx by using quadratic polynomials and
a final span parameter of 0.0015 for the B28 experiments and 0.00125 for
B29. The starting and endpoints of each rotation were then calculated by
applying the differences operator Δ on the smoothed time series. Then the sign
changes from negative to positive of these differences represent the minima
of the smoothed curve. These minima are used as the onset points of a new
rotation.

Note that too small span parameters lead to unrealistic short rotations which
result in strong distortions of the computed features for classification. Too large
parameters, on the other hand, result in alternating lengths of rotations. In particular,
if a rotation length is determined as slightly too long by a too large parameter then
the following identified rotation length is too short and vice versa. This leads to
the chain structure of rotation lengths shown in Fig. 5 and means that the rotation
lengths are negatively correlated. Hence in choosing appropriate span parameters, it
is necessary to compromise between correlated rotation lengths and the amount of
unrealistic short rotations.

To test for correlation, we applied the runs test of [20] (see [5] pp. 78–86) and
the generalized sign test of [13]. This generalized sign test is based on the 3-sign
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Fig. 5 Detected rotation lengths in the first minute of Experiment B29 using the span parameter
α = 0.002

depth (3-depth) of residuals r1, . . . , rN defined by

d3(r1, . . . , rN ) := 1(
N
3

)
∑

1≤n1<n2<n3≤N

(
1{rn1 > 0, rn2 < 0, rn3 > 0}

+1{rn1 < 0, rn2 > 0, rn3 < 0}
)

where 1{·} denotes the indicator function. Hence, the 3-depth is the relative number
of 3-tuples with alternating residuals. Here, the residuals are the deviations of the
rotation lengths from their median in the considered minute. The null hypothesis

H0 : The residuals are independent

is rejected if the 3-depth is too small or too large. A too small 3-depth indicates
positive correlation while a too large 3-depth indicates negative correlation.

Table 1 provides the rejection rates ofH0 by the 3-sign depth tests (3-depth tests)
and the runs tests, as well as the 1%-quantiles of the rotation length, the number
of unrealistic short rotations and the minimal rotation length over all minutes using
different values for the span parameter α. A rotation is regarded as too short, when
its shorter than the median of rotation lengths minus 3 times their IQR (interquartile
range). Table 1 shows that the runs test always rejects the independence assumption
in more than 50% of the minutes. The rejection rates of the 3-depth test are smaller
but also increases with growing span parameter. These high rejection rates also
occur when two successive rotations were put together. Hence, these rejection rates
indicate to choose the span parameter as small as possible as soon as the number of
short rotations is small enough. Based on Table 1, the choice of the span parameters
(0.0015 for B28 and 0.00125 for B29) is comprehensible. Note that the number of
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Table 1 Rejection rates of the 3-depth test and the runs test of H0, 1%-quantiles of rotation
lengths, number of short rotations and minimal rotation length for the experiments B28 and B29
over all minutes using α as span parameter for detecting the rotations

Span parameter Rejection rate Rejection rate 1%-quantile of Minimal Number of

α 3-depth test runs test rotation lengths rotation length short rotations

B28

0.00075 0.0000 0.8082 0.0048 0.0004 0

0.001 0.0274 0.7945 0.0042 0.0008 7912

0.00125 0.0685 0.6712 0.0918 0.0024 92

0.0015 0.1096 0.6986 0.0918 0.0836 1

0.002 0.4110 0.7397 0.0904 0.0854 0

B29

0.00075 0.0267 0.6267 0.0046 0.0008 5817

0.001 0.1200 0.5067 0.0052 0.0006 930

0.00125 0.2933 0.7600 0.0934 0.0890 0

0.0015 0.3067 0.7867 0.0928 0.0890 0

0.002 0.4933 0.8000 0.0908 0.0888 0

short rotations for the B28 experiment and span parameter 0.00075 is zero, because
almost all rotations are predicted as too short. Furthermore for α = 0.0015, only one
rotation is considered as too short (with a rotation length of 0.0836). Nevertheless,
this circumstance is negligible since its length is not unrealistic like it is the case for
smaller span parameters.

An explanation for the different optimal values of the span parameters may be
the different kind of concrete used. Here, the time series of the more inhomogenous
concrete (B28) might require more smoothing. This results in a higher optimal span
parameters because a wider window of local polynomial regression reduces the
variance of the smoothed time series. The experiments with larger diamonds leads
to the same relationship of the appropriate span parameters.

5 Calculation of Differences Between Rotations

Differences between rotations can be calculated with the method of dynamic time
warping as given by the R package dtw of [6], see also [19]. This method can
be applied for time series x = (x1, . . . , xN) and y = (y1, . . . , yL) of eventually
different lengths N and L as this can be the case for successive rotations. The idea
of time warping is to find a warping of the time axis so that the distance between
x and y becomes as small as possible. The minimized distance between x and y is
then the so-called time warping distance. To define the distance between x and y,
consider the matrixM = (d(xn, yl)n=1,...,N,l=1,...,L) of pointwise distances between
x and y where d is a given metric. Usually d is the Euclidean distance. Additionally,
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define a path through the indices of the matrix M by

Φ : {1, . . . , T } / k → Φ(k) = (Φx(k),Φy(k)) ∈ {1, . . . , N} × {1, . . . , L}

with (Φx(1),Φy(1)) = (1, 1), (Φx(T ),Φy(T )) = (N,L) and Φx(k + 1) ≥ Φx(k),
Φy(k + 1) ≥ Φy(k) for k = 1, . . . , T , where T ∈ {max{N,L}, . . . , N + L − 1}.
The distance between x and y with respect to Φ is then given by

dΦ(x, y) := 1

T

T∑
k=1

d(xΦx(k), yΦy(k))

The path Φ∗ with

dΦ∗(x, y) := min
Φ
dΦ(x, y)

provides then the smallest distance between x and y and dΦ∗(x, y) is called the
dynamic time warping (DTW) distance between x and y. Figure 6 demonstrate the
principle of time warping using two successive rotations. It also shows the similarity
of successive rotations.

Here, dynamic time warping was applied on the Fz time series of successive
rotations in the periods of active drilling. In the case of a diamond breakout, it might
be reasonably assumed that the drilling performance changes rapidly. Such events
should be reflected in high time warping distances. Unfortunately, high peaks in the
dynamic time warping distances appear several times in multiple minutes of the B28
and the B29 experiments and do not seem to relate directly with breakouts.
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Fig. 6 Example of time warping applied to two successive rotations
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Fig. 7 Means of the dynamic time warping distances in the B29 data over all minutes with
suspected changes of the workpiece marked by red lines

However, an interesting observation can be made when investigating the means
and standard deviations of the DTW distances for each minute. In both experiments
these features show obvious time dependent clusters. The minutes that mark the
beginning of a new cluster can be associated with exchanges of the concrete
workpiece which occurred at minute 25 and 51 (see Fig. 7). These effects within the
DTW distances are more pronounced in the B29 experiments. This might result from
the more homogeneous concrete used which leads to more noticeable differences
between workpieces.

Since some successive rotations show a different number of peaks (compare
Fig. 6), one might assume that the identification of rotations as described in Sect. 4
might not be optimal. Thus, it seems convenient to relax the constraint that
beginnings and ends of two rotations have to match allowing a subsequence finding
procedure. Applying this modification, which can be computed by setting the
parameters open.end=TRUE and open.beginning=TRUE in the dtw func-
tion, should eliminate distortions of the DTW distances by suboptimally detected
rotation onset- and offset-points. However, the results using this modification are
hardly distinguishable from the ones obtained from the regular DTW method so
that the classical DTW method is used hereinafter.

6 Feature Generation and Classification

In the following, various features for each minute of the B28 and B29 data were
collected which should serve for the task of classifying a diamond breakout. The
single rotations of the drilling tool, whose detection has been discussed in Sect. 4,
form the basis of all these features. An overview of the 147 generated features can
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be found in Tables 2 and 3. Note that location and scale parameters are given only by
the mean and standard deviation in these tables although their robust counterparts
(median and MAD, the median of the absolute deviation from the median) were
calculated as well. Several features concern location and scale parameters as well
as the number of outliers of parameters calculated from the measurements of single
rotations. The parameters calculated for single rotations are again location and scale
parameters and additionally the surface under the curve of a single rotation. The
surface under the curve was approximated by trapezoids like it is usually done in
numerical integration. A rotation has been classified as an outlier in a minute if
its feature value is either bigger than the median of the feature plus 3 times its
IQR or smaller than the median minus 3 times its IQR. This was done for the
acting forces Fy , Fx , and Fz separately, but also two or three of the acting forces
were treated simultaneously by calculating the Euclidean distances from the spatial
median. Since we, in particular, expected changes in the dynamic time warping
distances (DTW distances) of rotations, especially outliers and change points of the
DTW distances are considered. All features of change points were computed with
the function cpt.mean of the changepoint package using the PELT method
of [11] for the detection of change points. Since the independence assumption of
the rotation lengths was often rejected by the runs test and the 3-depth test, their
p-values and the differences of their p-values are considered as features as well.
Features concerning all three forcesFy , Fx , Fz are given in Table 2. Table 3 contains
features which make sense only for one force. These are features based on the time
warping distances of rotations and the p-values of the independence tests.

Before the actual classification task, all of the 147 mentioned features in Tables 2
and 3 were put through a feature selection. In the first step, the LASSO method for
logistic regression [4], which can be carried out with the function cv.glmnet of
the glmnet-package, was applied for all observations with default settings except
the parameter nfolds concerning the number of folds used in the cross-validation.
Since the number of observations is quite small, namely 75 for the B29-data and 73
for the B28-data, the number of folds was set to the number of observations in both
cases which leads to a leave-one-out procedure. The default settings mean here that
the l1-penalty λ‖β‖1 is used to get the leave-one-out estimates β̂iλ, i = 1, . . . , n, for
which the binomial deviance D(yi, π(β̂iλ)) of [16, p.118] for the ith observation yi
is calculated.

For the B29-data only 4 important features were detected by using the penalty
factor λ which provides the smallest mean value of D(yi, π(β̂iλ)). These are
MaxXZMean, CptsMADZ, MADFlZ, and MADMedianY. It should be noted that,
in the case of highly correlated features (which may be expected here due to the fact
that all features were also computed with their robust counterparts), the LASSO
algorithm only chooses one of those features which may lead to the small number
selected. A useful tool to judge whether the choice of only four features is justified is
the so-called cross-validation curve which can be plotted for a cv.glmnet object.
This curve is given in Fig. 8 and shows that the choice of more than 4 features
significantly increases the binomial deviance of the model and thus reduces its
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Table 2 Designations and descriptions of the generated features based on the single rotations of
each minute which are used for all acting forces Fx , Fy , Fz where the terms in brackets (X,Y,Z)
are associated with the forces Fx , Fy , Fz

Featurename Description

MeanAbsMax(X,Y,Z) Mean of the absolute maximal force values of each rotation

MeanMean(X,Y,Z) Mean of the means of force value of each rotation

MeanFl(X,Y,Z) Mean of the surface under the graph of each rotation

MeanSd(X,Y,Z) Mean of the standard deviation of each rotation

SdAbsMax(X,Y,Z) Standard deviation of the absolute maximal force values of each
rotation

SdMean(X,Y,Z) Standard deviation the means of force values of each rotation

SdFl(X,Y,Z) Standard deviation of the surface under the graph of each rotation

SdSd(X,Y,Z) Standard deviation of standard deviations of force values of each
rotation

OutSd(X,Y,Z) Number of outliers of the standard deviations of rotations

OutMean(X,Y,Z) Number of outliers of the mean values of rotations

CptsMean(X,Y,Z) Number of change points in the mean values of rotations

CptsSd(X,Y,Z) Number of change points in the standard deviation of rotations

Max(XY,XZ,YZ)Mean Maximal Euclidean distance of the two-dimensional

means of rotations from the spatial median

Mean(XY,XZ,YZ)Mean Mean Euclidean distance of the two-dimensional

means of rotations from the spatial median

Out(XY,XZ,YZ)Mean Number of outliers of the Euclidean distances of the

two-dimensional means of rotations from the spatial median

Max(XY,XZ,YZ)Sd Maximal Euclidean distance of the two-dimensional

standard deviations of rotations from the spatial median

Mean(XY,XZ,YZ)Sd Mean Euclidean distance of the two-dimensional

standard deviations of rotations from the spatial median

Out(XY,XZ,YZ)Sd Number of outliers of the Euclidean distances of the two-dimensional

standard deviations of rotations from the spatial median

Max(X,Y,Z)SdMean Maximal Euclidean distance of the two-dimensional feature of the

standard deviation and mean of rotations from the spatial median

Mean(X,Y,Z)SdMean Mean of the Euclidean distances of the two-dimensional feature of the

standard deviation and mean of rotations from the spatial median

Out(X,Y,Z)SdMean Number of outliers of the Euclidean distances of

the Euclidean distances of the two-dimensional feature of the

standard deviation and mean of rotations from the spatial median

MaxMeanXYZ Maximal Euclidean distance of the three-dimensional means

of rotations from the spatial median

MeanMeanXYZ Mean of the Euclidean distances of the three-dimensional

means of rotations from the spatial median

OutMeanXYZ Number of outliers of the Euclidean distances of the three-dimensional

means of rotations from the spatial median

(continued)
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Table 2 (continued)

Featurename Description

MaxSdXYZ Maximal Euclidean distance of the three-dimensional standard

deviations of rotations from the spatial median

MeanSdXYZ Mean of the Euclidean distances of the three-dimensional standard

deviations of rotations from the spatial median

OutSdXYZ Number of outliers of the Euclidean distances of the three-dimensional

standard deviations of rotations from the spatial median

Table 3 Designations and descriptions of the generated features based on the single rotations of
each minute which are only associated with one acting force

Featurename Description

DTWMeans Mean value of the DTW distances based on Fz
DTWSd Standard deviation of the DTW distances based on Fz
OutDTW Number of outliers of the DTW distances based on Fz
CptsDTW Number of change points in the DTW distances between rotations based on Fz
pValueVZT The p-value of the 3-depth test based on Fx
pValueRuns The p-value of the runs test based on Fx
DifpValues The differences of p-values of the correlation tests based on Fx
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Fig. 8 Leave-one-out cross-validation curve of the B29 data

predictive power which can be seen by an obvious minimum in the curve. Using
only those four identified features leads to a misclassification error of 0.186 which
is above the “trivial” error of 0.173 that arises, when all observations are classified
as “no breakout” and thus is no satisfactory result.

Using the same approach for the B28 data leads to the choice of the features
OutMADX, OutSdX, and MADAbsMaxY and a misclassification error of 0.369
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Fig. 9 Leave-one-out cross-validation curve of the B28 data

when the trivial error is 0.342. Studying the shape of the cross-validation curve
reveals that for the B28 data the selected number of features is not so clear, see
Fig. 9. Here the binomial deviance does not significantly increase up to a number of
14 features. For that reason, it seems to make sense to identify more features which
can contribute to the predictive performance of the classification.

For this purpose, the first approach was to use the integrated methods of the
random forest. The randomforest package provides the possibility to compute
the mean decreased Gini index and the mean decreased accuracy for each feature in
the random forest based on its bootstrapping approach. This can be carried out by
using the VarImpPlot function which plots the 30 most important features with
corresponding importance values.

These plots show clearly visible gradations in the importances for both datasets.
However, when trying to reproduce these results, which means constructing a new
random forest, the important variables look quite different. For that reason it is not
possible to identify a set of features which has systematically high importance so
that the feature selection methods of the random forest do not seem to be very
suitable for this classification task. A possible reason for this behavior might be
the small sample size which could lead to problems concerning the bootstrapping
approach of the random forest, paired with the high amount of features.

Therefore, to identify further important features, the cross-validation-curves of
the LASSO were considered once again. This time the maximal amount of variables
that does not lead to a significant increase in the binomial deviance was used
for the classification task. For B29, there is an obvious minimum in the binomial
deviance curve for the mentioned 4 features so that this procedure does not lead
to additional important features for the classification task. However, for B28, as
already mentioned before, 14 features can be selected this way. These features are
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MeanFlY, MeanAbsMaxZ, MADAbsMaxX, SdMeanY, SdMeanZ, MADAbsMaxY,
MaxZSdMean, OutMedianXYZ, OutSdX, OutMADX, OutMADY, OutMeanX,
OutMedianX, OutMedianZ. Note that these features include the three features
identified in the first approach.

Based on the 4 and 14 detected features of the B29 and B28 data, respectively, a
random forest and a logistic regression were constructed and the corresponding mis-
classification errors were computed by performing a leave-one-out cross-validation.
Using the 4 features for B29 which are the same as before, the misclassification
error for the logistic regression cannot be improved while it is even worse for the
random forest with 0.213. Using the 14 features of the B28 data, on the other
hand, the misclassification error in the logistic regression managed to outperform
the trivial rule by 6 correctly classified observations with a misclassification error
of 0.260 while the random forest with a relative error of 0.329 also provides a slight
improvement compared to the trivial error of 0.342.

The selected features for the B29 and B28 data do not have much in common
besides the result that they are mainly based on one of the three process forces in
x, y, and z direction. However, the process forces in drilling direction z as well as
the lateral forces in x and y direction all provide selected features. Moreover, both
selected feature sets include a feature which is based on the surface under the curve
of each rotation, but it is the MAD for the B29-data and the mean for the B28-data.
The number of change points is only a selected feature for the B29-data. On the
other hand, features based on outliers are only selected for the B28-data. Since only
the selected features for the B28-data provide a misclassification error smaller than
the trivial classification, these features are more relevant.

7 Discussion

It was tried to classify minutes with and without diamond breakout by generating
147 features based on the ca. 616 rotations per minute. After a feature selection step,
random forest and logistic regression were used for the classification. It turned out
that the logistic regression combined with LASSO is superior to the random forest
in the selection step. Moreover, logistic regression provides better classification
results than random forest applied to the selected features. However, only for one of
the two considered series of experiments, the misclassification error was smaller
than the trivial classification. This is the series of experiments with the higher
amount of minutes with diamond breakout. Hence, only the selected features of this
series can provide promising features for the classification task. Apart from simple
features based on location and scale parameters, mainly outlier based features are
selected. Also, a feature based on the surfaces under the graphs of each rotation
was considered to be important. The selected features concern all three process
forces. However, features based on more than one process force, change points,
DTW distances, or p-values do not seem to be very relevant.
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One problem of the analysis could be that the diamond breakout happens before
the used stationary part of active drilling which was identified in the first step of
the analysis. Another problem was the questionable identification of the start and
end points of the rotations which could cause features based on differences between
rotations which achieve no good classification power. Surprisingly, these features
were able to detect differences in the three concrete samples used in the series of
experiments which were expected to behave similarly. This showed that in fact, the
three concrete samples behaved differently. As a consequence, the three different
concrete samples complicated the classification problem. Since only 25 drilling
experiment were performed at each of the three concrete samples, the resulting 75
min are not enough to find a good classification rule for both series of experiments
so that more experiments are necessary. Moreover, a better identification of the start
and end points of the rotations could improve the classification results. However, it
may be too difficult to detect diamond breakouts via force measurements because
of the inhomogeneity of the concrete.
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Visualising Complex Data Within a Data
Science Loop: A Spatio-Temporal
Example from Football

Leo N. Geppert, Katja Ickstadt, Fabian Karl, Jonas Münch,
and Michael Steinbrecher

Abstract The cross-sectional research area of data visualisation plays an important
role in data science. Graphical presentations provide an accessible way to under-
stand distributions, outliers, processes, trends and patterns in data, and to separate
signal from noise. Visualisation tools support the data scientist in representing and
analysing Big Data and/or data streams. They are a central tool in all steps of the data
science loop. In this contribution we will point out some pitfalls when visualising
complex data and will give recommendations on how to avoid them. We will go into
more detail about different roles of visualisations, in particular, covering the roles of
exploration and presentation and the role of the viewer (data scientist, practitioner,
public). For demonstration, we will be using two example data sets from association
football.

Keywords Visual analysis loop · Tracking data · Data representation · Derived
information · Limitations of data · Static vs. interactive visualisation

1 Introduction

Visualisation plays an important role in all data analyses and is essential for
analysing Big Data. Visual representations of data and results complement spread-
sheets of mere numbers and summary measures thereof. Our visual perception
adds to understanding data and is particularly helpful in finding patterns in data
or understanding data structures.
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Data visualisation, i.e., the graphical representation of information and data
by using visual tools, is a cross-sectional research area that plays an important
role in data science. Graphical presentations, like charts, histograms, flow charts,
graphs, decision trees, time series or (choropleth) maps, supported by colours and/or
shading, provide an accessible way to see and understand distributions, outliers,
processes, trends and patterns in data and to separate signal from noise. They enable
to highlight useful information and, thus, play a key role in storytelling. When
analysing Big Data and/or data streams, visualisation tools are essential to support
the data scientist in representing massive amounts of data. For overviews on the
topic see, e. g., [4, 6, 10]. Especially the works of William Cleveland inspired the R
language [9] and its focus on well-made visualisations.

The main steps in a data science analysis comprise data acquisition, data
exploration, data analysis and modelling, model validation and selection, and the
representation and deployment of results. From a structural perspective, these are
inspired by the famous CRISP-DM (Cross Industry Standard Process for Data
Mining) [1], a predecessor of data science. The following six steps are crucial for
CRISP-DM:

1. Business understanding
2. Data understanding
3. Data preparation
4. Modelling
5. Evaluation
6. Deployment

Usually, these steps are iterated in a cyclic loop, which leads to the term data
science loop or data analysis loop. The number of building blocks for the data
science loop may be enlarged, see, e.g., [12] for an enlargement from a statistics
point of view, or [2] from a computer science perspective.

While visualisation plays a role in every one of the six steps of the CRISP-DM
loop, it is particularly relevant for steps (2) and (3), in which the data are explored
and prepared for subsequent analyses. It is also essential for presenting the results of
the modelling step (4), and for graphical presentations such as residual diagnostics
in support step (5). Visualisation is also a central tool in the deployment step (6).
Since visualisation is a key ingredient in all building blocks of the data analysis
loop and visual analyses typically exhibit the same adaptive nature as data analyses
in general, the loop is also valid and can be transferred to visualisation tasks. In this
situation, we can, hence, refer to it as visual analysis loop.

Thus, visualising data and results is an adaptive process just as any data analysis
is. In this contribution we will point out some pitfalls when visualising complex
data, i.e., data that is large in terms of observations or variables or that exhibits
intricate structure, and will give recommendations on how to avoid them. We will
go into more detail about different roles of visualisations, in particular, covering
the roles of exploration and presentation and the role of the viewer (data scientist,
practitioner, member of the public). We will be discussing interactive as well as
static graphics. Throughout we will be using two example data sets from association
football.
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2 Data

Our data consists of two matches of the highest German football league, the
Bundesliga, between SV Darmstadt 98 and Borussia Mönchengladbach as well as
FC Augsburg and Hamburger SV. Both matches took place on the 34th and last
match day of the 2015/16 season and were kindly provided by Deutsche Fußball-
Liga (DFL).

Each data set consists of tracking data recorded by special cameras installed in
the stadiums for that purpose. They record the ball’s position in three dimensions
and every player’s position in two dimensions. The cameras record 25 frames per
second, resulting in 135,000 observations per player and the ball for a match of 90
min, not including extra time.

Figure 1 shows a processed version of one frame as an example. The frame
in question is taken from the match between SV Darmstadt 98 and Borussia
Mönchengladbach. We overlay the positions of all players and the ball onto a
football pitch. The ball is represented by a black dot, while the players are given
in circles with background corresponding to the teams’ kit colours, in this case blue
for Darmstadt and white for Mönchengladbach. We also add convex hulls around
both teams, the filled one corresponding to the Mönchengladbach team indicates
that they are in possession of the ball at this moment. The ball is not currently
controlled by any player, but the last player who controlled it is a Mönchengladbach
player, thus possession has not changed.

In addition, some meta-information are available. For the ball, these are the ball’s
speed, the minute of the match, whether the ball is in play, and which team has
possession of the ball. For the players, the speed as well as the minute of the match
are available. Meta-data like identification numbers for players and teams as well as
dimensions of the pitch are also given. These make it possible to uniquely identify
players and teams over different matches or seasons.

The quality of the data is very good in principle, no observations are missing
and documentation is available. However, information about the precision of
measurements is not known. Imprecisions may occur, as illustrated by Fig. 2. This
frame taken from the match between Darmstadt and Mönchengladbach seemingly
shows the ball missing the goal, but it actually is the first goal for Mönchengladbach
in the match. This incongruency may be because of measurement inaccuracies or
may also be a result of a goal that was not placed completely in the centre of the
pitch. For more details, see Sect. 3.1.

3 Pitfalls and Recommendations

In this section, we put the focus on pitfalls a data scientist may encounter when
analysing data with the help of visualisations, especially for large or complex data
sets. We do not cover how to visualise the data in the first place as this is outside
the scope of this contribution. For the purposes of this section, we will assume that
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Fig. 2 Same frame as in Fig. 1, zoomed in to focus on ball and goal. Although the ball seems to
miss the goal, the frame shows the first goal for Mönchengladbach in the match

visualisations, graphical representations, and sets of colour are chosen in a useful
way and graphics in general are well presented. For further reading on these topics,
we refer to the excellent books [4, 6, 10].

3.1 Raw Data Might Not Be Suitable for the Underlying
Question

In general, it is a good idea to produce simple univariate or bivariate plots of the data
that show every observation as one of the first steps of the analysis. This will give
some insights about location and dispersion of the data, uni- or multimodality, and
seasonal effects, among other things. However, this strategy may reach its limits for
large or complex data.

A problem that may arise irrespective of the size of the data is the quantification
of uncertainty. Data uncertainties can have an influence on measures of dispersion
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and location—if they are systematic—and in turn on the results of the analysis. Our
football data come without any description of the accuracy of the raw data. As we
see in Figs. 1 and 2, there are some inaccuracies that can have a huge impact on the
analysis. From the data, it is not possible to decide whether they are caused by the
ball tracking, the location of the goal post or some other factor. Additional tracking
data from matches by the same teams or in the same stadium could help to (better)
quantify the uncertainty. Another alternative would be to include other types of data
like football action data (see Sect. 3.4) or a video feed that can be used to measure
distances or determine positions of players or the ball.

Large data sets often lead to considerable amounts of overlap between obser-
vations that can visually mislead viewers. Such problems can even arise for box
plots, a graphical representation that scales well with the number of observations,
if the number of outliers becomes too large and visually dominates, even though
the outliers are only a fraction of the data. Working with an amount of transparency
in a way that single observations show up in grey and multiple observations at the
same spot in black may help to some extent in such cases. However, if the data
are too large or too complex, just plotting the raw data may be of no avail or even
misleading.

In our football data, simple plots of the two-dimensional positions of a single
player’s positions over time are not of great help, see Fig. 3 for an example. In
football matches, teams usually switch sides at half-time. This may lead to confusion
when not taken into account. Even after an appropriate correction (as was done in
Fig. 3), it is difficult to gain insights from the positions or the path of positions due
to the nature of football matches, where every player will make multiple runs up and
down the pitch over the course of a match. In Fig. 3 we can see that Lewis Holtby

Fig. 3 Two-dimensional scatter plot of the positions of Lewis Holtby (left defensive midfield)
over the whole match
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Fig. 4 Two-dimensional kernel density estimate of the positions of Marcel Heller (right midfield),
divided into ball in play (left-hand side) and ball not in play (right-hand side) as well as own team
in possession of the ball (upper row), opposing team in possession of the ball (middle row), and
total (lower row)

covered most of the pitch, but whether he just ran across a position for a split-second
or whether he stayed at one place for some time is not clear.

For large or complex data, it may be beneficial to reflect on what the underlying
question is. If we are interested in what amount of time a player spends at what
position on the pitch, plotting the data as a two-dimensional kernel density estimate
will bring a lot more insight compared to the raw positions, see Fig. 4.



308 L. N. Geppert et al.

Recommendations:

• Be aware of uncertainty in your data and quantify if possible
• Use a suitable amount of transparency for large data sets
• Abstract representations such as kernel density estimates may be beneficial

3.2 Raw Data Might Not Be Given on a Suitable Scale

Especially when analysing complex data, it may be necessary to aggregate or
compress raw data before visualising it. This compression may be done with regard
to the size of the data, but it may also be related to other dimensions like space, time
or frequency. Thinking about the right scale and the right granularity and checking
visualisations on different scales is helpful in the visual analysis loop.

Our football tracking data is measured at a frequency of 25 frames per second
with relatively small changes in position between any two frames. In some
situations, e.g., when players are sprinting or when the ball is kicked with high
velocity, changes between frames may be of interest. However, data at such a fine
granularity often visually exhibits a lot of noise and it may be hard to identify the
signal in these circumstances. For this reason, it can often be more useful to smooth
the data, in our case, e.g., by averaging over 25 frames to obtain second-by-second
values.

The search for a suitable scale involves decisions on other levels. In Fig. 4, we
compressed positional data of Marcel Heller to obtain a two-dimensional kernel
density estimate over different states of the match. In Fig. 5, we look at Patrick
Herrmann’s positional data over his match, but classify all observations into 18
classes or zones on the football pitch. Both variants compress the raw data on
a useful scale. While kernel density estimates offer a smooth version of the
compression, classification into 18 zones may lead to discontinuities or rather abrupt
changes and thus visual artefacts. However, the 18 zones offer a more intuitive
explanation in football terms, e.g., time spent in the opposing box, and may thus
be more meaningful and relevant to viewers with a strong football background.

Both Figs. 4 and 5 compress the positional data over time. This is useful if we
are interested in players’ typical positions and the time they spent there. However,
such visualisations will not be helpful if we want to analyse players’ movements
with or without the ball or even a team’s attacking patterns. In such cases, we would
have compressed the data on the wrong scale and lost the interesting information.
Aggregating or compressing data is an important and often necessary tool, but we
need to keep its limitations and our aim in mind.
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Fig. 5 Time Patrick Herrmann (left midfield) spent in 18 different zones on the pitch, divided
by own team in possession of the ball (left-hand side) and opposing team in possession of the ball
(right-hand side) as well as first half (upper row), second half (middle row) and whole match (lower
row)

Recommendations:

• Compressing data on a suitable scale and granularity enables better
identification of signals in the data

(continued)
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• Be aware of what you may lose when compressing
• Investigate different granularity levels or subsets of data to obtain a detailed

picture and perhaps extended perspectives

3.3 Visualising Derived Information from (Raw) Data

In addition to aggregating and compressing data as described in Sect. 3.2, the visual
analysis may benefit from deriving information from the raw data. Our football
tracking data sets include information about which team is in possession of the ball
for every time frame. From this, we can easily derive wins of possession of the ball,
i.e., the moment when possession of the ball switched from one team to the other.
We will elaborate on this from a different perspective in Sect. 3.4. Another example
are typical positions of all players over the course of a match as illustrated in Fig. 6.

Figure 6 shows the mean position for all players of SV Darmstadt 98 and
Borussia Mönchengladbach during the first half with the ball in play. Half-time
coincides with the first substitution. The figure is divided into the categories “team
is in possession of the ball” and “opposing team is in possession of the ball.” This
allows for an easy visual comparison of the teams’ basic strategies, both with regard
to a comparison of both teams and to a comparison of the changes in mean positions
on attack and defence for each team.

The lower row of Fig. 6 illustrates the typical defensive positions for both
teams. SV Darmstadt 98 chose a 4-4-1-1-formation with four defenders, four defen-
sive midfielders, one attacking midfielder and one forward. In contrast, Borussia
Mönchengladbach opted for a 3-5-2-formation. As Borussia Mönchengladbach was
in possession of the ball for about two thirds of the time, the subfigures in the
upper right corner and the lower left corner are based on more observations than
the other two subfigures. The difference between typical positions on offence and
defence seem to be greater for Borussia Mönchengladbach than for SV Darmstadt
98. The most illustrious example of this is the Mönchengladbach’s left midfielder
Patrick Herrmann (number 7) whose position on offence resembles a third attacker
more than a midfielder. In contrast, SV Darmstadt 98 keeps more closely to their
formation also on attack, with the possible exception of the wide midfielders who
both play further up the field.

In addition to Fig. 6, we also calculated the Euclidean distances (in metres)
between each player’s position on attack and on defence (with the exception of
the goalkeepers). Mönchengladbach’s player Herrmann indeed shows the highest
distance between his positions on attack and defence with 15.39 m. However,
when looking at the whole team, the average positional difference is 7.32 m for
SV Darmstadt 98 and 6.60 m for Borussia Mönchengladbach and thus higher
for Darmstadt. Even though SV Darmstadt kept their formation both on attack
and defence, they collectively moved up the pitch substantially. Darmstadt’s right
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Fig. 6 Mean position of each player of SV Darmstadt 98 (left-hand side) and Borussia
Mönchengladbach (right-hand side) while the team is in possession of the ball (upper row) and
while the opposing team is in possession of the ball (lower row). This figure is based on times
the ball was in play. The numbers in the circles indicate the players’ shirt numbers. Both teams
are rotated in such in way that the opposing team’s goal is on the right-hand side of the pitch as
indicated by the arrow. The numbers in the upper right corner of each subfigure indicate how much
time the subfigures are based on. The diagonal and the off-diagonal show the same subset of the
game from the different teams’ perspective, respectively

centre-back Aytaç Sulu (number 4) shows the lowest positional difference of his
team, but with still almost 5 m it is substantially higher than the lowest positional
difference for Mönchengladbach, 2 m positional difference by centre-back Andreas
Christensen (number 3). Indeed, for the other two teams Augsburg and Hamburg, the
lowest positional difference is also just over 2 m, see Table 1 that gives an overview
of the average positional difference as well as minimum, maximum, and range for
the two matches. For both matches, these values cover the first half of the match,
during which no substitutions took place in either of the matches.

It is easily possible to include derived data, e.g., when goals were scored, and
incorporate them into the visualisation. Figure 7 takes up on the players’ mean
positions shown in Fig. 6 but distinguishes between the mean positions of Borussia
Mönchengladbach’s players before and after their first goal after 31 min. Here, it
is additionally possible to compare tactical changes that occurred after the lead. On
offence, Mönchengladbach’s players take more attacking positions after scoring the
first goal but also seem to concentrate more on the left wing. The mean positions
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Table 1 Summary statistics of the positional differences (in metres) between players’ positions
on offence and defence with the ball in play. The upper half of the table corresponds to the data
underlying Fig. 6. For the lower half, the corresponding figure is not shown

Team Average Minimum Maximum Range

SV Darmstadt 98 7.32 4.92 14.44 9.52

Borussia Mönchengladbach 6.60 2.05 15.39 13.34

FC Augsburg 5.91 2.06 10.75 8.69

Hamburger SV 5.52 2.08 13.15 11.07
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Score: 0:0 Score: 0:1

Fig. 7 Mean position of each player of Borussia Mönchengladbach at a score of 0:0 (minutes
1–31, left-hand side) and after Borussia Mönchengladbach’s 0:1 (minutes 32–45, right-hand side)
while the team is in possession of the ball (upper row) and while the opposing team is in possession
of the ball (lower row). This figure is based on times the ball was in play. The numbers in the circles
indicate the players’ shirt numbers. The opposing team’s goal is on the right-hand side of the pitch
as indicated by the arrow. The numbers in the upper right corner of each subfigure indicate how
much time the subfigures are based on

of SV Darmstadt 98 (not shown) analogously exhibit more defensive positions and
a slight change towards the right wing. The numbers in the upper-right corner of
each subfigure indicate that Borussia Mönchengladbach spent around two thirds of
the time in possession of the ball for both intervals of the first half but became even
more dominant after scoring.

Table 2 shows the distances for both teams on offence and defence before and
after the goal. The mean positional distance is higher for Mönchengladbach on
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Table 2 Summary statistics of the positional differences (in metres) between players’ positions
with the ball in play up until Borussia Mönchengladbach’s first goal (minute 31) and from then on
until half-time. The data for Borussia Mönchengladbach correspond to the data underlying Fig. 7,
the corresponding figure for SV Darmstadt 98 is not shown

Team Situation Average Minimum Maximum Range

SV Darmstadt 98 Offence 8.17 5.80 9.90 4.11

Borussia Mönchengladbach Offence 6.80 3.51 11.27 7.77

SV Darmstadt 98 Defence 6.57 3.80 10.39 6.59

Borussia Mönchengladbach Defence 9.10 6.30 13.22 6.91

defence and conversely for Darmstadt on attack. The distances in Fig. 7 may seem
more striking for the upper two subfigures, i.e., when Borussia Mönchengladbach
is on attack, whereas Table 2 shows a higher mean distance on Mönchengladbach’s
defence. Both representations of the data capture different aspects; the visual focus
lies on changes in the team’s tactical formation while Table 2 complements this by
stressing that their defensive formation is much more aggressive as they defend in
higher positions on average.

Recommendations:

• Data derived from raw data may add visual structure
• Visualisations of derived data might lead to further research questions and

answers
• The interpretation of graphics benefits from additional summary statistics

3.4 Limitations of Data

Over the course of both the visual analysis loop and the data analysis loop, it is vital
to find out what the data can tell you, but also what the data structurally cannot tell
you. Our football tracking data offers a rich source of positional data for the ball
and the players. It also contains information on the possession of the ball and thus
changes in the possession. However, it neither provides means for the quantification
of data uncertainty nor information on the actions players took, e.g., whether they
shot the ball, passed it to a teammate, tackled an opponent or fought for the ball.
Some of these information may be derived from the data (see Sect. 3.3), but uniquely
identifying such situations in difficult.

If the information the data does not contain is vital for the analysis, it may be
necessary to search for more data to include in the analysis. In football, there also
exist game action data, e.g., such data sets note which player took what action out
of a catalogue of recognised possible actions. Combining a tracking data set and a
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FC Augsburg Hamburger SV

1 2 3 4 5 6

ball win per 
hexagon

mean direction and 
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Fig. 8 Pitch overlaid by 57 equally sized hexagons. The colour of each hexagon indicates the
number of wins of possession of the ball in open play in this area by FC Augsburg (left subfigure)
and Hamburger SV (right subfigure). Green hexagons indicate no wins of possession in this area.
The black arrows indicate mean direction and mean length of a pass after a change of possession,
centred on the hexagon with the highest number of wins of possession

game action data set may provide an opportunity to gain additional insight. In our
analysis, we utilised another technique: using a proxy variable.

Figure 8 shows a characterisation of the teams’ transition match, in our case
where teams won the ball and where they played the ball next. We visualised the first
component, winning the ball, by dividing the pitch into 57 equally sized hexagons
and counting the number of wins of possession of the ball within that area. This
part of the visual analysis is completely based on the tracking data. The second
component, where the ball went next, is not easily extracted from the tracking data,
as it is not clear whether the following action was a controlled pass or an attempted
clearance kick to touch. We decided to use the difference between the position of
the win of possession and the position of the ball a short time afterwards as a proxy.
We then calculate the average over all positional differences and indicate them as
an arrow overlaid on top of the hexagon connected to the most wins of possession.
In the caption of Fig. 8, we relate to the arrow as mean direction and mean length
of a pass, but keep in mind that we average over all passes, clearances, lost duels
immediately after the win of possession, and other possible actions.

In a reprise of Sect. 3.2, it is possible to look at the typical passes on a different
level and, e.g., differentiate between wins of possession in the own half and in the
opposing half.

Other limitations of the data may be due to the way the data were collected.
Especially convenience samples that are not the result of an experimental design but
rather were collected because they were there or easy to obtain, may show biases
or otherwise not generalise well from sample to population. In some cases, possible
problems may be identified visually, e.g., by looking at the distribution across age-
groups in the sample and comparing them to the corresponding distribution in the
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population or by studying diagnostic plots of a model built on the data like residual
plots for regression models. But generally speaking, it is difficult to find out what
the data cannot tell you by analysing the data, visually or otherwise. Business
understanding, step (1) of the analysis loop, is vital in identifying limitations of
the data.

Recommendations:

• Deeply understand your problem and your data set (and how it was
collected)

• Identify additional data sources or proxy variables
• Use diagnostic plots
• Compare distribution of a sample to distributions in the population

4 Visualising the Data

Visualising data plays different roles in different stages of the data analysis loop.
When understanding the problem or the data is the central task (steps (1) to (3)
in Sect. 1), visualisations are more focused towards exploration. Finding typical
values, patterns, connections, outliers or otherwise interesting observations are
typically central goals in these stages. Visualisations primarily aim at helping the
viewer (here especially data scientists) in finding interesting directions to follow
with the analysis.

In later steps, the focus shifts towards presentation or sometimes confirmation
(steps (4) to (6) in Sect. 1). This is especially true in the evaluation and deployment
steps. Here, typical goals are finding out whether a model or its assumptions are
suitable as well as conveying findings to other people (practitioners, members of the
public) who were typically not involved in the analysis process.

Another, loosely related, dimension of visualisations is their mode of presenta-
tion. We classify the mode into two broad categories: interactive visualisations and
static visualisations.

Suitable software tools are required to carry out the visual analysis loop. In
the R world, a great number of options to produce high-quality visualisations are
available. We employ both the built-in graphics system in package graphics
[9] and ggplot2 [13] for static visualisations. For interactive visualisations, we
combine these packages with shiny [5]. To calculate the results we visualise, we
use package MASS [11] for two-dimensional kernel density estimates and package
hexbin [3] for hexagonal binning.
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4.1 Interactive Visualisations

Interactive visualisations are a very direct and immersive way of presenting data or
results. They allow the viewer to set their own course and their own priorities. If the
viewer chances upon a finding that sparks his:her interest, s:he can easily follow up
on this and delve into a deeper visual analysis. On the other hand, interacting with
a data set or model results in such a way may require considerable knowledge on
part of the viewer. Recreating the analysis path a person with expert knowledge took
may be difficult. Seen from this perspective, it may be more natural for interactive
visualisations to be used in the earlier steps of the visual analysis loop or in cases
where domain experts and visualisation experts study the results together.

In our analyses of the football tracking data, we employ interactive visualisations
mostly in two different situations. One example is to visualise the ball’s and the
players’ positions over time within a relatively short time frame, e.g., thirty seconds
leading up to a goal. Our main aims here are to look for typical patterns in players’
behaviour and to try out different ways of visualising the positions. Figure 1 is an
example taken from such an interactive visualisation.

Interactive visualisations can make it very easy to examine possible connections
between different aspects of the data. In football, winning possession of the ball
is important, albeit frequent. Generally speaking, winning possession of the ball
closer to the opponent’s goal is more advantageous as the distance to the goal and the
number of defenders in the way is lower. In our analyses, we introduced an overview
of all positions where the ball was won in open play on a pitch. This in itself makes
an interesting pattern that is also depicted in Fig. 8. In our related interactive version,
it is possible to select one of the positions and view the positions of ball and players
over the 5 s following the change of possession.

From a practical perspective, interactive visualisations may be a challenge for
large and/or complex data sets and complex models. In our football example,
calculating the typical position of a player over the duration of a match to visualise
their typical positions as in Figs. 4 and 5 can also be done interactively by choosing
between the different matches, the different teams, and the different players.
However, loading the data for the chosen player or calculating the two-dimensional
kernel density estimates takes considerable time. In such cases, where the amount
of interactivity is limited to choosing a certain player, it might be more useful to
pre-produce a limited number of static visualisations and allow for an interactive
and easy way of switching between them.

4.2 Static Visualisations

Static visualisations offer less interaction between viewer and visualisation, but can
be optimised for the intended use more easily. If a data scientist wants to share and
emphasise an insight s:he gained, it is easier to draw the viewers’ attention to it using
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static visualisations. Static visualisations might also simplify technical choices like
which colours to use for which group, as the number of required colours is known
beforehand whereas in an interactive case, viewers might select or deselect groups.

In our analysis of the football tracking data, some static visualisations are
motivated by the need for a visual summary of insights we gain during the interactive
analysis. Some of the static visualisations contain the insights from the interactive
visualisations, boiled down or aggregated over time. As a result, these static
visualisations typically become more complex compared to each single frame of
their interactive predecessors. Figures 6, 7, and 8 are good examples of this. Figure 6
aggregates the information in Figs. 4 and 5 for each player, resulting in a typical
location of all players in one team that can be viewed at the same time. Figure 8,
on the other hand, combines the relatively straightforward overview of locations
where the team won possession of the ball in open play with the more complicated
questions of where the ball went next. Not every analysis will show such a link
between interactive and static visualisations, but it may be helpful to view as much
of the data as possible in an interactive way first, before narrowing down the analysis
and introducing more targeted static visualisations.

How well static visualisations can handle very large data sets or streams depends
mainly on the graphical representation chosen. A stripchart—also known as one-
dimensional scatterplot—shows every single observation and will quickly reach its
limits as the number of observations grows. In contrast, a simple box plot depends
on the five values minimum, lower quartile, median, upper quartile, and maximum
only and thus scales very well with the number of observations.

5 Conclusion

Visualisation plays an important role in all steps within a data analysis loop. It is
an important tool for investigating and understanding the data prior to any analysis
and is helpful within the process of data preparation. Visualising results supports
the modelling task as well as evaluating the models and is an important link towards
telling the story of the data analysis to the scientific community, the practitioner,
and the public.

Therefore, visualisation is an important task of the data scientist, and graphical
tools belong to his or her toolbox. The data scientist needs to decide when and
which type of graphical representation to use, which additional information to give,
and how to choose symbols and colours in order to present the information in a
clear and appropriate way. Keeping the graphical toolbox up-to-date is as important
as being aware of new methodology and algorithmic approaches.

This contribution raises the awareness for pitfalls when visualising complex data
and gives some recommendations on how to avoid them. It is important to keep the
underlying (research) question in mind when visualising the data, and to consider
compression of the complex data for graphical representations on a suitable scale or
granularity. The data scientist also needs to decide whether to visualise (parts of) the
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original data or derived information thereof and needs to understand and be aware
of the limitations of the data.

Our data only allow conclusions for the two Bundesliga matches at hand, but
similar data exist for all other Bundesliga matches in recent years. These data would
be suitable for further analyses such as the temporal development of the playing
style of a team, how/whether the style of play is affected by the change of a coach,
and comparisons of home and away matches. However, these data are not publicly
available. In training situations it is common to collect data by player-specific chips;
these facilitate obtaining more precise position data and perhaps the strength of body
checks.

This contribution is mainly concerned with scientific graphics. However, often
there is a smooth transition between visualising complex data and analytic results
and infographics that aim at providing an easy-to-understand overview of a topic
and usually comprise a collection of imagery, see [7] for a discussion of both mainly
from a statistical perspective. A collection of infographics for a variety of sports are
presented in [8].

The last step in the data science loop, deployment, is dedicated to translating data
into information and telling the story of the analysis to practitioners and the public.
Here, visualisation might directly lead to an infographic or may be used as input
for further infographics. This can also be seen in our football example. Figure 8
aims at illustrating the transition game. It can be viewed as a scientific graphic that
emerged from the research question where the transition game most likely takes
place. However, it can also be seen as an infographic that displays a complex data
situation in an intuitive way.
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Application of the Singular Spectrum
Analysis on Electroluminescence Images
of Thin-Film Photovoltaic Modules

Evgenii Sovetkin and Bart E. Pieters

Abstract This paper discusses an application of the singular spectrum analysis
method (SSA) in the context of electroluminescence (EL) images of thin-film
photovoltaic (PV) modules. We propose an EL image decomposition as a sum of
three components: global intensity, cell, and aperiodic components. A parametric
model of the extracted signal is used to perform several image processing tasks. The
cell component is used to identify interconnection lines between PV cells at a sub-
pixel accuracy, as well as to correct incorrect stitching of EL images. Furthermore,
an explicit expression of the cell component signal is used to estimate the inverse
characteristic length, a physical parameter related to the resistances in a PV module.

Keywords Singular spectrum analysis (SSA) · ESPRIT · Electroluminescence
images · Photovoltaics · Thin-film modules

1 Introduction

There has been an increasing interest in automated image analysis of spatially
resolved characterisation methods for photovoltaic (PV) modules such as elec-
troluminescence (EL) [8–11, 24, 44–46]. Such automated image analysis aims at
quality control of modules and is thus of great interest for manufacturers, PV system
owners, and insurance companies, as it allows for a systematic inspection of a large
number of modules, both prior and after installation.

Electroluminescence is a commonly used imaging technique for PV modules.
It relies on the reciprocal operation of the photovoltaic module as a light-emitting
diode, so instead of generating an electric current from light, an electric current
is driven through the solar cell, which then emits light. As generating electricity
and emitting light are reciprocal processes, one process reveals much about the
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other. Electroluminescence (EL) images provide spatially resolved information on
the solar module and is commonly used to locate and identify defects in the device
or extract other (local) solar cell properties.

In this paper our focus lies on EL images of thin-film PV modules. For thin-
film technology, unlike for a more common crystalline silicon, little is known about
shapes and appearances of defects in EL images. For the crystalline silicon PV
modules there exists a well-established catalogue of defects visible in EL images
(see [25]), whereas such a catalogue does not exist for thin-film modules.

To study defects in EL images, it is important to find a compact way to represent
EL image data. This paper proposes such an approach and considers several image
processing algorithms for EL images of thin-film PV modules that are based on the
singular spectrum analysis (SSA). Our contributions here are manifold.

Firstly, a specific grouping in the SSA algorithm decomposes an EL image into
several components: global intensity variation component, local periodic intensity
component (or cell component), and a residual image that contains various local
aperiodic features. We argue that each of these components has a different physical
origin.

Secondly, the extracted components of an EL image can be approximated by a
parametric model that represents an EL image as a small dimensional vector, and
hence our methods can also be considered as a dimensionality reduction technique.
Furthermore, the parametric model of the cell components is used to estimate the
position of the interconnection line between individual PV cells. Our algorithm
features symbolic differentiation and estimates positions of the interconnection lines
at a sub-pixel accuracy. A similar technique is used in the estimation of the inverse
characteristic length, a physical characteristic of a PV module that equals the square
of the ratio between different resistances in a module.

Lastly, the cell component signal is used to estimate a non-linear transformation
of an image to adjust an incorrectly stitched image.

The rest of the paper is organised as follows. Section 2 reviews the methods and
the corresponding literature used in this paper. Section 3 describes the data used in
the project. The main contribution of this paper is given in Sect. 4, which focuses
on various applications of SSA to the EL images of thin-film modules. Lastly, the
paper is concluded in Sect. 5.

2 Methods Overview

This section describes the methods used in this paper and overviews related
literature. Our main tool is the singular spectrum analysis method (SSA).

The history of SSA can be traced to the works of [3], where an SSA-like method
was established and applied in the context of non-linear dynamics for the purpose
of reconstructing the attractorof a system from measured time series. Further, in
the context non-linear dynamical system, SSA can be also used for phase space
reconstruction algorithm, [12].
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The so-called Caterpillar methodology is a parallel development of SSA that
originated in the former Soviet Union, especially in Saint Petersburg, independently
of the mainstream SSA work in the West, [7]. This methodology became known to
the rest of the world more recently. “Caterpillar-SSA” [17], emphasises the concept
of separability, a concept that leads, for example, to specific recommendations
concerning the choice of the SSA parameters.

Originally, the SSA method was applied to the one-dimensional time-series data.
In fact, by now, it is not easy to find an applied area related to the analysis of
temporal data, where one-dimensional SSA is not being applied. To name a few
applications, the method found its way to the analysis of climate and atmospheric
data, [13, 49], to meteorological data, [51], as well as to the marine science, [6].
Lima et al. [29] used SSA for gap filling in precipitation data. This method has been
also applied in the financial sector to discover hidden economic cycles, [42]. Groth
and Ghil [20] used a multivariate extension of SSA and defined a Procrustes test to
the analysis of interannual variability in the North Atlantic sea surface temperature.
For further references to various applications of SSA in time-series analysis see
[19, 55].

More recently, SSA was also used to analyse digital images and other objects
that are not necessarily of planar or rectangular form. This particular development
is utilised in this paper. Rodriguez-Aragon and Zhigljavsky [39], used SSA to
define a distance between images with a possible application in face verification.
In [37, 53, 54] the 1D-/2D-SSA variants were used in the context of hyperspectral
images for the purpose of denoising, feature extraction, and classification tasks.
In [30] SSA was applied in the context of ultrasonic imaging for improving the
imaging of brachytherapy seed. In application related to geoscientific data, 2D-SSA
was utilised for gap-filling, [56]. 2D-SSA was also applied in texture classification
[34], seismology [47], gene expression [23], and medical imaging [43].

In our application of the 2D-SSA, we utilise the ability of the method to separate
signal into trend and periodic components. Further, we use the parametric form of
the extracted signal to perform various image processing tasks.

In order to explain our algorithms, we give a review of necessary theory in the
following subsections. The SSA algorithm is reviewed in Sect. 2.1. SSA itself is
non-parametric, however, a parametric model can be given to describe the extracted
signal. There are two sets of parameters to be estimated in the model. The ESPRIT
method (Sect. 2.2) estimates frequencies and damping factors of a signal, where the
least squares provides an estimation of the amplitude and phases (Sect. 2.3). Lastly,
remarks on implementation and comparison to similar methods are discussed in
Sect. 2.4.

2.1 SSA

Singular Spectrum Analysis (SSA) is a model-free time-series analysis method that
belongs to the so-called subspace methods, [48]. In subspace methods, a signal
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estimation is performed by taking a certain linear subspace. SSA can also be
considered as a low-rank approximation method, [31].

The general theory of SSA for one-dimensional time series is elaborated in [17].
Golyandina et al. [19] provide more updated information on extensions with a strong
focus on applications.

The output of SSA-like methods is a decomposition of an observed signal x
(e.g. a time series, a multivariate time series or an image) into a sum of identifiable
components:

x = x1 + . . .+ xn. (1)

Among all SSA-like methods, the following four common algorithm steps can
be isolated.

1. Embedding. The original signal x (e.g. time series or an image) is mapped into
a matrix X, that is called a trajectory matrix.
The embedding is parametrised by a single parameter denoted by L (a number
or a vector).

2. Decomposition. The second step consists of the decomposition of the trajectory
matrix X into a sum of matrices of rank 1.
Often the singular value decomposition (SVD) is used for this purpose, which is
an optimal rank-one matrix decomposition in the Frobenius norm sense.

3. Grouping. The third step is a grouping of the decomposition components. At the
grouping step, the elementary rank-one matrices are grouped and summed within
groups.
The grouping algorithm step is often semi-automatic and depends on the type of
data and application.

4. Reconstruction. The grouped components are not necessarily valid trajectory
matrices. Hence a projector operator to trajectory matrix space is applied on the
grouped components, resulting in the final signal decomposition (1).

In this paper, we utilise the 2D-SSA variant of the algorithm, [15, 16, 18].
For this variant, the trajectory matrix is a Hankel-block-Hankel matrix and the
corresponding embedding is parametrised by a two-dimensional parameter L =
(L1, L2) ∈ N

2. The decomposition is performed with SVD, and the reconstruction
projection operator is a 2-step diagonal averaging procedure. The precise forms of
the embedding, SVD, and reconstruction projection operator are provided in the
Appendix.

The grouping step of the SSA algorithm determines the form of the final signal
decomposition. A typical SSA decomposition of a signal is the decomposition into a
slowly varying trend, regular oscillations, and noise. An important notion in the SSA
theory is the notion of the signal of finite rank. This notion allows us to classify and
group together rank-one matrices into a trend, oscillations, and noise components.

Informally, finite rank signals are those that have a trajectory matrix of a finite
rank (see a formal definition in the Appendix). 2D-SSA produces a class of signals
of specific objects of finite rank. Those objects have the form described in the
following theorem, [15, 18].
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Theorem 1 And infinite 2D-array {x(n,m)}n,m∈N is of finite rank if and only if

x(n,m) =
K∑
k=1

pk(n,m)ρ
m
1kρ

n
2k cos

(
2π(ω1kn+ ω2km)+ φk

)
, n,m ∈ N, (2)

where pk(n,m) are polynomials in n and m variables, ρ·k are the damping factors,
ω·k the frequency parameters and φk are the phase parameters.

2.2 ESPRIT

Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) is
a method to estimate parameters of a mixture of one-dimensional, [41], and two-
dimensional amplitude-modulated sinusoids, [40, 50], in background noise.

For the 2D-ESPRIT method, [40], the observed data y is generated by the
following additive model:

y(m, n) = x(m, n)+ ε(m, n), (3)

where 0 ≤ m ≤ Nx−1 and 0 ≤ n ≤ Ny−1, ε is the zero-mean Gaussian noise with
variance σ 2. The model for the signal x is given by the sum of amplitude-modulated
two-dimensional sinusoid

x(m, n) =
K∑
k=1

skρ
m
1kρ

n
2k cos

(
2π(ω1km+ ω2kn)+ φk

)
, (4)

where ω1k, ω2k are the normalised frequencies in different directions, α1k, α2k are
the damping factors, sk amplitudes, and φk phases.

By Theorem 1 the signal (4) is of finite rank. The ESPRIT methods utilises the
fact of the rank-deficiency of the trajectory matrix of the observed signal y, and
a certain transformation matrix between sub-trajectory matrices is obtained. The
frequency and damping factor parameters are computed from the argument and
absolute values of the complex-valued eigenvalues of the obtained transformation
matrix. See more details in [40, 41].

2.3 Amplitude, Phase Estimation

The ESPRIT estimates the frequencies ω·k and the damping factors ρ·k of the signal
model (4). Here only the amplitudes sk and phases φk remain to be estimated. This
problem can be reformulated as a linear regression model using the formula of the
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cosine of sums. With this formula, (4) can be rewritten as

x(m, n) =
K∑
k=1

Akρ
m
1kρ

n
2k cos(2π(ω1kn+ ω2km))

−Bkρm1kρn2k sin(2π(ω1kn+ ω2km)), (5)

where ρ·k, ω·k are the parameters estimated from the ESPRIT, and Ak,Bk are the
parameters of the linear model to be estimated.

Note that the dependent variable in the linear regression model are the values of
x(n,m), the finite rank signal extracted from y. In terms of the SSA algorithm this
corresponds to the series reconstructed from the selected components.

The amplitude and phase are given by:

sk =
√
A2
k + B2

k , φk = atan(Bk/Ak). (6)

2.4 Implementation: Comparison to Alternatives Methods

For our application, we use an R-package “Rssa”, [14, 18, 19, 26], where all the
required functionality including the ESPRIT method is implemented. It should be
noted that the trajectory matrix for 2D-SSA is large and has O(N2) number of
elements, whereN is a number of pixels in the signal image. However, the structure
of the Hankel-block-Hankel matrix allows implementing of SVD with Lanczos
algorithm efficiently in time and memory by computing product of a matrix and
a vector with Fast Fourier Transform, [26, 28].

For computing amplitude and phase parameters, we utilise a standard R-function
“lm”, [4].

The form of the parametric model of the SSA signal suggests that Fourier
analysis can be used to obtain similar results. However, in order to obtain a compact
representation of a signal a small Fourier coefficient should be discarded. For that
purpose a sparse Fourier analysis approach can be used, [21].

However, the parametric model of the SSA signal is more flexible, as every
periodic has an amplitude modulation. Furthermore, the Fourier analysis is a low-
resolution type of method, as in the context of time series, frequency can be
estimated only up to 1/N , whereN is the length of the time series. Whereas ESPRIT
is regarded as a high-resolution method.
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3 Data

In this section we discuss the data that is used in this paper. The data was acquired
within the framework of the PEARL-TF project. The [35] website contains detailed
information about the project and the involved partners. In this project, the data from
several solar parks with thin-film modules were collected. In addition to EL images,
also performance characteristics of the modules were measured.

The EL images are taken at predefined conditions (selected fixed applied current
and/or fixed applied voltage). A silicon CCD sensor camera is used to measure
subsequently several parts of the module, with the images being stitched afterwards.
The applied voltage and the applied current together with the temperature of the
module are being recorded. The I/V characteristics are also measured and the solar
cell performance parameters are determined.

The database contains over 9500 EL images of thin-film PV modules. The bulk
of these EL images (about 6000) are from co-evaporated Copper Indium Gallium
di-Selenide (CIGS) modules with a chemical bath Cadmium Sulfide buffer. All EL
images shown in this work are from such CIGS modules. Every image is supplied
with measured performance data. A typical EL image of a thin-film module from our
database is depicted in Fig. 1. The module consists of 150 connected cells in series
(in Fig. 1 the cells are recognised as horizontal stripes). The cells are separated by

Fig. 1 Thin-film module EL image. A module consists of 150 cells (positioned horizontally)
connected in series. The cells are separated by interconnection lines (horizontal dark lines). The
module consists of several submodules separated by vertical isolation lines, which appear dark in
the EL image. The EL image is stitched (there are 1 horizontal and 3 vertical stitch lines); overall
intensities of different patches of images are different. These intensity differences are attributed to
metastable changes during the measurement
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interconnection lines (horizontal dark lines in Fig. 1). In addition, the module is
separated into 5 parallel submodules by vertical isolation lines (dark vertical lines).

Every EL image consists of several stitched images. Different stitched parts of
the image have different overall intensities (see Fig. 1). This is attributed to the
metastable behaviour of thin-film solar cells, where the electrical properties of the
cell can change during the measurement.

4 Results

In this section we discuss a selection of image processing methods that we build on
top of the SSA framework.

Firstly, Sect. 4.1 describes a decomposition of EL images into several compo-
nents: global intensity, cell, and aperiodic components. This is a direct result of
the SSA decomposition, where grouping is performed using prior knowledge of the
image size and number of cells in a module.

Secondly, a parametric model of the cell component signal is used to achieve
several goals. The symbolic differentiation allows a global search for the minimum
points in the cell components that can be used to identify the interconnection lines
(Sect. 4.2). Furthermore, we demonstrate the estimation of the inverse characteristic
length, a physical parameter that depends on several resistances in a PV module
(Sect. 4.3).

Lastly, MSSA and its parametric model is used to obtain a non-linear transfor-
mation needed to correct the stitch line in EL images.

4.1 Image Decomposition

The grouping step of the SSA algorithm allows combining of decomposed rank-
one components into groups. We define these groups that result in EL image
decomposition onto 3 components: global intensity variation, cell, and aperiodic
components.

Figure 2 shows a close up image of the module, that clearly identifies a set
of 10 parallel cells separated by interconnection lines. The EL intensity varies
systematically over the cell width. This is the result of the series resistance of the
electrodes. As the transparent zinc-oxide front electrode exhibits a much larger sheet
resistance than the molybdenum back contact, the voltage over the diode junction
drops from one side to the other [22, 36]. As the EL intensity depends primarily on
the cell voltage this leads to a clear intensity gradient over eachcell.

To achieve good separability of the periodic components, the parameter L of the
SSA embedding is selected to equal approximately half of the dimensions of the
input image, [17, 19]. The ESPRIT estimates frequencies and damping factors of
the components, which are used in the decision of the grouping step.
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Fig. 2 An enlargement of a 10-cells EL image region. Each cell exhibit periodic behaviour

A thin-film module consists of a fixed number of interconnected cells, therefore,
the cell components can be identified as periodic components that have a period
smaller than image width

150 . The other components are grouped together as the global
variation and the residual image captures information of non-low rank signals, such
as aperiodic features of an EL image.

The image decomposition algorithm steps are described in the Algorithm 1.

Input: EL image X with dimensions Nx ×Ny .
Output: Three images with the same dimensions as X: global intensity component G, cell
component S and aperiodic component R.

1. Perform embedding and decomposition steps of the 2D-SSA algorithm for X. Compute first 50
elements in the rank-one decomposition of SVD, denote the sum of this components as X̃.

2. Apply ESPRIT on the low-rank signal X̃.
3. • Set the cell components S as in (4), choosing only components with frequency ω1k >

150
Nx

.
• The global intensity component G is composed from non-periodic components and compo-

nents with frequency ω1k <
150
Nx

.
• The R := X − S −G.

Algorithm 1: EL image decomposition

The choice of the 50 computed components is arbitrary, as 10 components
incorporate 99.9% of the Frobenius norm of the trajectory matrix X. The RMSE of
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(a) (b) 

(c) (d) 

Fig. 3 Decomposition of an EL image onto 3 components. (a) Original image. (b) Cell compo-
nent. (c) Global variations component. (d) Aperiodic component

the linear regression model in the ESPRIT indicates the accuracy of the model (4).
For a set of 50 EL images, the mean RMSE equals 0.033.

Figure 3 depicts the non-cell components, the cell components, and the residual
image. It can be argued that different components have a different physical origin.
By its nature, the global variation component describes changes in a material
which results in large losses that spread over large portions of a module. The cell
component variation is influenced by the EL measurement conditions. Lastly, the
aperiodic component captures effects caused by non-regular changes in material
like shunts, or droplets (see [46]).

Shunts are characterised by a more conductive connection between the front and
back electrodes than the normal solar cell structure (i.e. the solar cell structure is
damaged or missing). There are many causes for shunts. Commonly shunts originate
from debris of the copper evaporation source or pinholes in the CIGS absorber [32,
33]. Shunts are generally relevant to the solar module performance, in particular
under low light conditions [52].

In addition to shunts we noticed the CIGS modules often exhibit “droplets” in
the EL images. The appearance of droplets resembles water stains and thus we
speculate these structures originate from the chemical bath deposition. At this point
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it is unknown what the impact of droplets is on the module performance, however,
the bright appearance imply a local change in quantum efficiency according to the
reciprocity relations between luminescence and quantum efficiency [38].

We remark that decomposition can be applied to an image (additive model
assumption) as well as to the logarithm of an image (multiplicative model assump-
tion). The logarithm of an image corresponds to the internal voltage (see (8),
Sect. 4.3).

Furthermore, we remark that it is important to correct any perspective distortion
present in images, as a periodic image distorted in such a way is no longer a signal
with a finite rank in the settings of the 2D-SSA methodology.

4.2 Interconnection Line Detection

In order to identify interconnection lines, it is sufficient to locate the global minima
for every level in the normal direction of the interconnection lines.

The ESPRIT model satisfies Eq. (4), which is a sum of amplitude-modulated
cosine functions. A derivative of such function is again a sum of polynomial
amplitude-modulated cosine functions, similar to the general form of the signal of
finite rank (2). Such derivatives can be computed symbolically. Hence all the global
minima in the normal direction of the interconnection lines can be identified by
evaluating precise values of the derivatives, and filtering out points that satisfy a
minima extreme point requirement.

Algorithm 2 describes the steps of the interconnection line identification. Sym-
bolic derivatives are computed using the “Deriv” R-package, [5].

Input:

• EL image with dimensions Nx ×Ny .
• Regular mesh of points P = {n,m ∈ R, 1 ≤ n ≤ Nx, 1 ≤ m ≤ Ny}.
Output: Array of coordinates O ⊂ P , corresponding to the estimated locations of interconnection
lines.

1. Compute EL image decomposition with Algorithm 1.
2. Use ESPRIT and linear regression to estimate parameters of the model (4), see Sects. 2.2

and 2.3. Denote the resulting signal as S : P → R.
3. Compute symbolically expression for derivative dS := ∂S

∂m
: P → R.

4. The output set O := {p ∈ P : dS(p−) < 0 and dS(p+) > 0}, where p−, p+ are the
neighbours in P of the point p in the m-variable direction.

Algorithm 2: Interconnection line detection

We remark that the resulting expression for the cell component signal, as well as
its derivatives, can be computed on a finer grid P than the original pixel coordinates.
Hence the interconnection line identification is performed with sub-pixel accuracy.
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Fig. 4 Detection of the interconnection lines. (a) Isolated cell components. (b) Pixel value inten-
sity in the normal direction to the interconnection lines. (c) A cell with indicated interconnection
lines (red)

Figure 4 visually demonstrates the steps of the method. Figure 4a displays the
estimated cell component. Figure 4b shows a slice of a pixel value intensities in
Fig. 4a, where computed local minima identified with red dots. Lastly, Fig. 4c shows
the module with its interconnection lines identified by red lines.
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4.3 Inverse Characteristic Length Estimation

Another application of the obtained parametric expression for a module is an
estimation of the inverse characteristic length λ [22, 36].

In a defect-free PV module, there are no currents in the vertical direction (along
the interconnection line direction), and thus current satisfies the following linearised
1D Poisson equation, [2, 22].

∂2V

∂x2 = λ2V, (7)

where λ =
√
Rsheet
rj

is the inverse characteristic length, where Rsheet is the sheet

resistance and rj is the local differential junction resistance. Note that (7) is an
equation between two fields, where V (x, y) and λ(x, y) depend on the position
(x, y) in a PV module.

The luminescence intensity relatedto the internal voltage via the following
relation

I = c exp(V c0) "⇒ V = 1

c0
ln(I/c), (8)

where the constant c0 = q
kT

is the thermal voltage (with the elementary charge, q ,
Boltzmann’s constant, k, and the temperature, T ), c is a parameter that describes
the optical system from the photon generation in the solar cell absorber material to
the photon detection within the camera. As such the parameter c depends on the
quantum efficiency of both the solar cell and the used camera including all optical
components, and the spectral photon density of a black body [38]. Generally, the
constant cmay vary over the solar cell area due to the camera optics and variations in
the solar cell properties. However, in general, the variations in c are small compared
to the exponential voltage-dependency [1]. In our analysis, we assume that c is
constant over the whole module area and is accessible to a researcher.

The decomposition of a signal onto trend and cell components provides us an EL
image signal without small aperiodic defects like shunts (small dark areas within
cells boundaries). The global intensity and cell components without small aperiodic
defects can be considered as a module without defects. Hence, we consider a module
without defects to be an imageG+ S, of the output of Algorithm 1.

Hence combining (7) and (8) allows us to express inverse characteristic length as
a function of intensity and its derivative:

∂2V

∂x2 =
∂2I
∂x2 I − (

∂I
∂x

)2

c0I 2,
(9)
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and, therefore,

λ2 =
∂2I

∂x2 I − (
∂I
∂x

)2

I 2 ln(I/c)
. (10)

All derivatives are computed symbolically from the estimated cell component
signal.

4.4 Stitched Image Correction

In order to achieve higher image resolution, several EL images can be stitched
together. However, the image aligning can be imperfect, as shown in Fig. 5a. These
misaligned image patches and the resulting stitch line can be attributed to incorrect
perspective as well as radial distortions. The latter distortion leads to a non-linear
transformation that is needed to be applied to an image for the stitch line correction.

Algorithm 3 proposes an approach to correct such distortion. The basic idea of
the algorithm is the estimation of phase shifts in neighbouring locations, where each
shift is estimated by application of MSSA, [19], in a direction perpendicular to the
interconnection lines.

The result of the algorithm is a displacement map that defines shifts in the
horizontal direction. Note that shifts have sub-pixel accuracy.

Figure 5 shows the result of the algorithm. Figure 5a shows a patch of the original
EL image with a stitched part. Figure 5b depicts the shifted image, resulting from
applying the displacement map. As each displacement is estimated locally between
neighbours, the resulting transformation is a non-linear transformation.

(a) (b) 

Fig. 5 An example of the stitched image correction. (a) Original stitched image. (b) Corrected
image
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Input: EL image X with dimensions Nx ×Ny .
Output: A displacement mapM , a vector of dimension Nx − 1 indicating size of horizontal shifts
in image X (except for the first row).

1. For each image row i starting from the second row:

a. Compute MSSA of the i and i − 1 row of the image I .
b. Estimate the ESPRIT parameters.
c. Filter out periods not corresponding to cell components. Let cell component indices be I .
d. Compute shift for cell each component sk := φk

2πωk
, k ∈ I .

2. Set Mi := maxk∈I sk .

Algorithm 3: Stitched image correction

To evaluate the accuracy of the phase shift estimation we model the following
two time series

s1(x) = cos(2πx/50)+ cos(2πx/20)+ cos(2πx/30)+ ε1(x), (11)

s2(x) = 2 cos(2πx/70)+ cos(2π(x + 7)/20)+ cos(2π(x + 7)/30)︸ ︷︷ ︸
signal

+ε2(x),

(12)

where x ∈ {1, 2, . . . , 1000}, components with period 20 and 30 correspond to
the signal (models the cell component), components with period 50 and 70 slowly
varying trend, and ε1, ε2 are two independent Gaussian iid processes with zero-mean
and unit variance.

The signal part of the series s1 is shifted by 7 units relative to the signal of the
series s2. Figure 6 shows a part of those series on the interval [1, 100].

Table 1 shows the accuracy of the shift estimation of the selected signal
components. That simulation was performed using 100 repetitions.

5 Conclusions

In this paper we demonstrated an application of SSA on EL images of thin-film
PV modules. This low-rank approach allows capturing several important aspects of
those images, namely global and local repetitive variations (or cell components) in
an EL image.

Several image processing algorithms based on parametric models of SSA
are proposed. The first method identified the interconnection lines between the
individual cells at sub-pixel accuracy, and the second method corrects the incorrectly
stitched images.
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Fig. 6 s1(x) and s2(x) time series, for x ∈ [1, 100]. The signal (periods 20 and 30) are “hidden”
with a trend and a noise components

Table 1 Accuracy of the shift estimation between signals in time series s1 and s2

RMSE Estimate mean 25% quantile 75% quantile

0.248 7.003 6.836 7.160

Furthermore, we propose an approach based on symbolic differentiation of
the SSA signal to estimate the so-called inverse characteristic length, a physical
parameter of a module.

We note that in the settings of 2D-SSA it is important to correct perspective
distortion in such EL images. The two-dimensional cosine array transformed with
perspective distortion is no longer a finite rank signal.

It should be noted that the information captured by SSA is not complete,
as local aperiodic features, such as shunts and droplets are not signals of finite
rank. Therefore, the full analysis of such PV modules requires other methods. For
example, we complement the signal captured by SSA using an encoder-decoder
segmentation approach of individual defects (see [45, 46]).

Lastly, we remark that source code and a sample of EL images data are available
upon request.
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Appendix

2D-SSA Embedding and Projection

Following notations of [16], let x be an 2D-array with dimensions (Nx,Ny) ∈ N
2:

x =

⎛
⎜⎜⎜⎝

x(0, 0) x(0, 1) . . . x(0, Ny−1)

x(1, 0) x(1, 1) . . . x(1, Ny−1)
...

...
. . .

...

x(Nx−1, 0) x(Nx−1, 1) . . . x(Nx−1, Ny−1)

⎞
⎟⎟⎟⎠ . (13)

The 2D-SSA embedding is defined by the window size vector (Lx, Ly), which
is restricted by 1 ≤ Lx ≤ Nx, 1 ≤ Ly ≤ Ny , and 1 < LxLy < NxNy . Let
Kx := Nx −Lx + 1 andKy := Ny −Ly + 1, then the trajectory matrix of 2D-SSA
is given by the following Hankel-block-Hankel matrix:

X :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X0 X1 X2 . . . XKy−1

X1 X2 X3 . . . XKy

X2 X3
. . .

. . .
...

...
...
. . .

. . .
...

XLy−1 XLy . . . . . . XNy−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (14)

where each block

Xi :=

⎛
⎜⎜⎜⎝

x(0, i) x(1, i) . . . x(Kx − 1, i)
x(1, i) x(2, i) . . . x(Kx, i)
...

...
. . .

...

x(Lx − 1, i) x(Lx, i) . . . x(Nx − 1, i)

⎞
⎟⎟⎟⎠ . (15)

By construction there is a one-to-one correspondence between 2D-arrays of size
Nx × Ny and the Hankel-block-Hankel matrices.

Let Z be an arbitrary matrix with a block-structure, where each block Zi has the
same dimension as the matrix Xi

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Z0 Z1 Z2 . . . ZKy−1

Z1 Z2 Z3 . . . ZKy

Z2 Z3
. . .

. . .
...

...
...
. . .

. . .
...

ZLy−1 ZLy . . . . . . ZNy−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (16)
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Then a projection of Z to Hankel-block-Hankel matrix can be computed in two
steps. Firstly, diagonal averaging is performed within blocks Zi , i ∈ 0, . . . , Ny − 1.
Secondly, the blocks of the matrix Z are averaged between themselves. The
projection can be applied in the reverse order as well.

SVD

Let S = XXT , λ1 ≥ . . . ≥ λd > 0 be non-zero eigenvalues of the matrix S,
U1, . . . , Ud be the corresponding eigenvectors, and Vi := XT Ui/

√
λi, i = 1, . . . , d .

Then SVD of the matrix X can be written as

X = X1 + . . .+ Xd . (17)

The values
√
λi are the singular values of X.

Finite Rank Signal

An image x has rank r if the rank of trajectory matrix X equals r <

min(Lx, Ly,Ky,Ky). In other words, the trajectory matrix is rank-deficient. If
rank r does not depend on the choice of L for any sufficiently large dimensions of
x, then x is called to have a finite rank.

Objects of finite rank are closely related to the linear recurrent sequences, [27].
Linear recurrent formulae are used to build forecast based on the SSA signal.

Computational Complexity

From the computational point of view, the hardest steps of the proposed algorithms
are the singular value decomposition (SVD), ESPRIT (Sect. 2.2), and the phase and
amplitude least-squares fit (Sect. 2.3).

In the context of the SSA application, the computational complexity of the SVD
of a Hankel-block-Hankel matrix is O(kN logN + k2N), where N is the number
of pixels in an image and k is the number of computed eigentriples, [26]. The linear
equations solved for ESPRIT and the phase and amplitude parameters estimations
are solved using QR-decomposition, and requireO(N3) operations. Our numerical
experiments show that the SVD decomposition dominates the computational time
for the proposed algorithms for image sizes with width and height less than 4000
pixels.
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Fig. 7 Computation time required for Algorithm 1 for different input image sizes

Table 2 Maximum memory required for Algorithm 1 for different input image sizes

Image width and height 500 1000 1500 2000

Maximum RAM in GB 0.5 1.6 3.2 5.5

Table 3 Running time of the symbolical differentiation routine used in Algorithm 2 and the
inverse characteristic length estimation in Sect. 4.3

Number of components 5 9 13 17

Execution time in seconds 0.15 0.46 1.27 1.79

To measure the required time and memory of the proposed algorithms we utilise
a machine with Intel(R) Xeon(R) CPU E5-1620 3.5 GHz processor and 31 GB of
RAM. The time measurements are performed on a single CPU.

Figure 7 shows the time required to perform steps of Algorithm 1 for square
images (width equals height) for different image widths. The red points correspond
to the measured time in seconds, and the black line is a parabola fitted to the points.
Table 2 shows the amount of memory required for the steps of Algorithm 1.

Algorithm 2 utilises results of the Algorithm 1 and requires additional symbolical
differentiation. Such computation is also required for the inverse characteristic
length (Sect. 4.3). The running time of the symbolical differentiation depends on the
number of terms of the signal (4). Table 3 demonstrates the relationship between
the number of terms in the signal and the running time required for the symbolic
differentiation. Algorithm 2 and the inverse characteristic length computation works
with the cell component that typically consists of 5–7 terms.

Algorithm 3 utilises a different version of SSA that requires less time and
memory, however, the algorithm computes MSSA multiple times for several pairs
of neighbour rows. A single iteration of the algorithm loop requires 0.7 s and 0.78
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of RAM for an image with width of 4000 pixels. Different iterations of the loop
can be run in parallel. Note that most of the used memory is occupied by an image
itself, and hence the memory can be shared by multiple processes. Algorithm 3
usually requires running about 100–200 iterations, as an approximate location of
the stitching lines is known. Hence, the total running time an 8-core processor can
be as little as 20 s.

Lastly, we remark the proposed algorithms run in a deterministic amount of time.
Hence, the methods can be run in real-time applications.

Acknowledgments This work is supported by the Solar-era.net framework in the project “PEARL
TF-PV” (Förderkennzeichen: 0324193A) and partly funded by the HGF project “Living Lab
Energy Campus (LLEC)”.
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The Impact of the Lockdown Restrictions
on Air Quality During COVID-19
Pandemic in Lombardy, Italy

Paolo Maranzano and Alessandro Fassó

Abstract Environmental agencies and scientists around Europe have reported that
COVID-19 lockdown caused an extended environmental clean-up. Considering air
quality, we focus on the Lombardy region (Northern Italy), which is at the same
time the most populous region and the area most affected by COVID-19 in Italy.
Lombardy is also one of the most polluted areas in the European Union. The central
research hypothesis concerns if and how the first-wave restrictions imposed during
the 2020 spring have improved the air quality in Lombardy and if the improvements
are similar throughout the territory. To answer these questions, we use weekly
data from January 2015 to mid-June 2020 for 74 ground monitoring stations and
provided by the regional environmental protection agency (ARPA Lombardia). We
estimate an autoregressive time series model with exogenous covariates (ARX) to
assess the combined impact of meteorology, seasonality, trend, and lockdown on
the NO2 concentrations at each monitoring site. We also propose using the LASSO
algorithm to select the set of relevant covariates to model the concentrations and
then estimate the effect of lockdown restrictions with a maximum likelihood post-
LASSO estimator. Statistical modelling confirms a generalised NO2 reduction due
to the lockdown throughout the whole region, despite considerable variability due
to the morphological and geographical heterogeneity of Lombardy. Compared to
the observed average variations, the estimated lockdown impacts are mitigated by
meteorology and natural trends. Expectantly, the most significant and remarkable
NO2 reductions have been estimated near urban and congested areas and in the
proximity of industrialised sites.
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1 Introduction

With the global COVID-19 pandemic, the quality of the air we breathe every day
has acquired a role of primary importance worldwide, both in scientific research and
in daily media storytelling.

Air pollution is seen as having both an active and passive role in managing the
epidemic. On the one hand, many research studies have provided evidence of strong
correlations between poor air quality and COVID-19 spread, especially in large
urban centres with severe air quality conditions. On the other hand, air quality has
improved significantly worldwide due to partial and total lockdown measures and
to human mobility restrictions imposed on citizens to avoid spreading the virus.

This paper analyses the case of Lombardy, the economic and financial centre
of northern Italy, to assess how restrictive measures to control the spread of
the COVID-19 virus have influenced the concentrations of oxides, in particular,
nitrogen dioxide (NO2), in the atmosphere. We focus on the first-wave lockdown
restrictions imposed on citizens and their productive activities between 9th March
and 18th May 2020 all over the country. The choice of NO2 as the main pollutant
of interest is justified by physical-chemical reasons well-known in the literature.
Oxides are classified as both primary and secondary pollutants emitted mainly
by anthropogenic activities, such as heating systems, motor vehicle traffic, power
plants, industrial activities and combustion and, therefore, directly affected by the
lockdown restrictions. In particular, the emission inventory for Lombardy [19]
estimates that road traffic is responsible for 51% of the annual NOX emissions in
the Lombardy region and the 65% in the metropolitan area of Milan.

Moreover, the choice to analyse NO2 is also reasonable as it is a pollutant that
responds immediately to emission shocks, while other airborne pollutants, such
as the atmospheric particulate matter, have more complex and slower reactions.
Therefore, nitrogen dioxide is a suitable candidate for a preliminary investigation
into the impacts of a severe limitation to anthropogenic activities, especially vehicle
traffic, on air quality. We pose some questions: have the restrictions improved the air
quality in the region? Are there similar improvements throughout the region? Can
we measure the variation of airborne pollutants related explicitly to car traffic?

Although the measures may have generated socio-economic issues in the popu-
lation, they may have improved air quality in an area that suffers from longstanding
environmental problems. Expectations were for substantial reductions in concentra-
tions generalised to all areas of the region. We implemented a time series modelling
approach for the available air quality monitoring stations, controlling for the effect
of local meteorology, seasonality, and trends.

We propose to use a data-oriented approach based on the combination of time
series and statistical learning methods to simultaneously address the statistical
variable selection issue and the model estimation using a penalised least squares
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approach. We estimate the effects of local meteorology, long-term weather trends,
and lockdown restrictive measures on NO2 concentrations in Lombardy implement-
ing an order-one autoregressive with exogenous covariate model, namely ARX(1)
model, for each considered station. These models express the response time series
as a linear combination of both autoregressive components and exogenous variables
and are easily estimated using the maximum likelihood approach. The ARX form
allows to estimate the effect of covariates on the response and at the same time
allows modelling the temporal dynamics of the dependent variable explicitly. Each
time series is modelled as a function of several regressors and one lag of the
dependent variable, also known as the ARX(1) model. In our application, the
dependent variable is the weekly concentration of NO2 observed at each ground site,
while the covariates include local meteorology, long-run trends and the lockdown.
The lockdown’s estimated effect will depend both on the estimated coefficient for
the lockdown event and the autoregressive dynamics of the dependent variable. The
most suitable model to describe the temporal evolution of concentrations for each
control unit is determined using the least absolute shrinkage and selection operator
(LASSO) algorithm. To validate the correct specification assumptions, we will also
provide several diagnostic checks on the residuals. Finally, the estimated effects
are discussed and contextualised concerning their geographical location, the area
surrounding the station and the type of station they are associated with.

The rest of the paper is organised as follows. In Sect. 2, we report and discuss
the most recent contributions to the COVID-19 literature quantifying the impact
that the lockdown restrictions on the levels of airborne pollutant concentrations.
Section 3 reports the leading facts connected to the pandemic in Italy and Lombardy,
and describes the environmental context of the region, focusing on the primary
airborne pollution sources and the geographical features. In Sect. 4, we introduce
and describe the data set. In Sect. 5, we present the statistical modelling approach by
illustrating the main characteristics of the ARX(1) model, how the lockdown effect
is computed and the proposed model selection algorithm. In Sect. 6, we discuss the
LASSO algorithm’s output, the fitting of the models and some diagnostic checks
for the regression residuals. In Sect. 7, we discuss the estimated NO2 variations due
to the lockdown restrictions’ main findings regarding the estimated lockdown vari-
ations, analysing the gaps between the observed and the estimated reductions and
contextualising the estimates with respect the geography of Lombardy and its socio-
economic structure. Finally, Sect. 8 sums-up the discussion, giving some concluding
remarks and outlining some possible extensions to be developed in future works.

2 The Relationship Between the COVID-19 Pandemic
and Air Quality in the World

Since the beginning of the pandemic and the early containment measures of the
virus, many researchers have focused on the effects of these restrictions on air qual-
ity in various parts of the World. In this context, we could refer to the research stream
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as the analysis of the passive role played by the air quality during the COVID-19
lockdowns. In other words, the focus is on estimating the reduction of airborne
pollutant concentrations due to the lockdown restrictions to mobility, industries
and, more in general, human activities. Scientists and researchers are compact
in stating that, in general, air quality has significantly improved everywhere,
reaching minimal levels of pollution. This fact holds particularly true in large urban
centres and densely populated areas, often affected by poor air quality. The most
considerable improvements were registered in Europe, where oxides and particulate
concentrations were reduced by around 40%–70% as in Spain [2, 34], Italy [10], and
France [11], and in Brazil, where concentrations were reduced by 50% [25]. Smaller,
but still significant, reductions were reported for the USA [4, 36] and other Asian
countries, such as Kazakhstan [21] and India [29, 30], in which both the average
levels of both oxides and particulates fell from 20% to 30%. These papers measured
the impact of lockdown restrictions on air quality controlling for weather conditions,
possible counterfactual terms, and long-run trends in the concentrations.

In some cases, including in the models temporal trends as in [36] for New York
City, or [7] for the city of Brescia (northern Italy), no significant difference between
the years was found, suggesting that the reduction in concentration levels in 2020
was similar to that measured in the previous 5 years.

However, in other studies which analysed the impact both on macro-areas, such
as US counties [4], and on micro-areas, such as Sao Paulo in Brazil [25], Los
Angeles, New York and Paris [11], or Barcelona [2, 34], the differences proved to
be significant while including meteorological factors and time trends. According
to all these studies, all the common air pollutants were affected by significant
reductions: nitrogen dioxide (NO2) in Barcelona, Sao Paulo, Los Angeles, New
York, Paris, and Almaty (Kazakhstan) fell by 50%, 30%, 38%, 25%, 39%, and
35%, respectively; particulate matter concentrations fell approximately by 31%,
12%, 37%, 36%, and 28% and carbon monoxide (CO) decreased by 40% in São
Paulo, 49% in Almaty, 24% in Los Angeles, 19% in New York, and 67% in Paris. By
contrast, ozone (O3) level increased in most parts of the World. It increased by 30%
in São Paulo, 7% in New York and 12% in Paris. At the national level, prominent air
quality improvements were detected in many countries. As example, in the USA
NO2 and PM2.5 reduced at county level of 25.5% and 4.45%, respectively, [4]
and in UK [18, 28], which registered reductions in oxide concentrations of −32%
(NO2), −38% (NOx), and −50% (NO). Or also in India, which registered a general
reduction in PM2.5, PM10, CO, and NO2 levels by 43%, 31%, 10%, and 18% during
the lockdown period [29].

3 Air Quality in Lombardy During the COVID-19 Lockdown

For many years, the Po Valley in northern Italy has been ranked among the most
polluted areas in Europe and the world [12]. According to the report about air
quality in 2018 by the European Environment Agency (EEA), in Europe around
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3.9 million people live in areas where the limits of the air pollutants are frequently
exceeded. Among these, the 95% live in the Po Valley. Moreover, Italy is at the first
place in Europe as concerns the number of premature deaths attributable to exposure
excess of nitrogen dioxide (around 14,600 victims per year) and ozone (around 3000
victims per year) and at second place after Germany as regards deaths due to fine
particulates (PM2.5) pollutant. As represented in Fig. 1, which shows the average
NO2 concentrations in Europe in 2018, the Po Valley area is easily identifiable since
it reports dark spots (high concentrations) all over its surface.

The main physical and geomorphological features of the Po Valley are depicted
in Fig. 2. The area is surrounded by a C-shape mountain range, which acts as a

Fig. 1 Average NO2 concentrations in Europe in 2018. Source: EEA website - Air quality statistics
dashboard

Fig. 2 Physical map of Po Valley in Northern Italy
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barrier and prevents wind movement from the West. As a result, the wind speed on
the Po Valley is among the lowest in Europe, about 1.5 m/s on average, causing a
high accumulation of smog and pollution close to the ground. According to a recent
simulation study by Raffaelli et al. [26], if Po Valley had the same meteorological
conditions typical of central-northern Europe and kept the same emission levels,
average monthly concentrations of PM10 and NO2 would be lowered by 60–80%
compared to concentration levels of 2013. Consequently, it is more difficult for the
Po Valley region to comply with international air quality standards than other EU
and non-EU member states.

The Lombardy region is the economic and financial centre of Po Valley. It is
organised in eleven provinces and is home to more than ten million inhabitants. The
region holds the highest gross domestic product per inhabitant of the country [27].
In Lombardy are located many industrial facilities, as well as small and medium
enterprises, and the road transport is an essential component of economic structure.
Lombardy is also the most densely populated region of Italy, with large and very
dense urban agglomerations. The average population density in Lombardy is around
419.9 inhabitants/km2, whereas at national level it is 200 inhabitants/km2 [27]. This
fact also reflects on the spatial distribution of airborne emissions. In fact, the four
largest and populated provinces, i.e. Milano (MI), Monza (MB), Bergamo (BG),
and Brescia (BS), generated the 52% of total emissions of NOX and the 51% of
particulate matters in 2017.

Figure 3 shows that the region can be geographically divided into three zones.
The mountain range of the Alps in the North, the sloping foothills in the mid-
north, and the flat southern area. The strong heterogeneous physical conformation
of the territory influences the socio-economic organisation of the society and,
consequently, the airborne pollution levels in the atmosphere. The mountainous
area is sparsely populated and less trafficked, the central area between the hills
and the plain is densely urbanised and industrialised, while the southern rural
area is less densely populated and oriented towards agriculture and farming. The
major urban centres (the metropolitan area of Milan and the cities of Monza,
Bergamo, and Brescia) are located in the central foothills belt. The poor air quality
in the proximity of large urban centres is mainly due to the emissions of oxides
(NOX and NO2), carbon (CO and CO2), and sulphur dioxide (SO2), produced
by industry, heating plants, and road transport. At the opposite, the southern
rural provinces are dominated by emissions of pollutants produced by agricultural
and breeding activities. In particular, ammonia (NH3), methane (CH4), and fine
particulates (PM2.5) emissions. Furthermore, according to the emission inventory
for Lombardy [19], in 2017 the sum of industrial combustion plants, non-industrial
combustion plants (i.e. house heating), and road transport represented more than
73% of particulate matter emission sources and more than 76% of total nitrogen
oxide emissions in the region. In the metropolitan area of Milan, road traffic alone
was responsible for the 65% and 69% of the total emissions of NOX and CO,
respectively. Overall, its unfavourable geographical context, an aggressive land use,
climate characteristics, and high pollutant emissions turn in the accumulation of
toxic elements in the atmosphere.
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Fig. 3 Physical map of Lombardy

As will be shown in Sect. 7.2, estimates of the effects of the restrictions on
nitrogen oxide concentrations will depend strongly on the type of area surrounding
the ground station and by the geomorphological structure of the territory and its
reliefs. In particular, it will be shown that the proximity of the stations to congested
or urban areas leads to substantial reductions in concentrations during the lockdown
phase, while in agricultural or rural areas the reductions will be much smaller and,
in several cases, zero.

Eventually, seasonal and meteorological variations and human activities have
a relevant influence on air quality in Lombardy, as they act as confounders
when dealing with the assessment of the lockdown effect on airborne pollutant
concentrations. Recent studies of the air quality in Lombardy, such as the case
study by Maranzano et al. [24] about the city of Milan or the analysis of [8]
concerning the main urban centres of Lombardy, highlighted that the whole region
has been experiencing a significant and constant reduction in airborne pollutant
concentrations since the early 2000s. To show such decreasing pattern, we reported
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Fig. 4 NO2 concentration in the North of Milan (Marche traffic monitoring station), years 2015–
2020. The plot shows seasonality, intra-seasonal variability and a decreasing trend (red line) of
4µg/m3

in Fig. 4 the average NO2 concentrations observed at a highly trafficked area of
Milan which shows a reduction of approximately 4µg/m3 per year starting from
2016. In the next sections of this paper, we will devote much effort to the effect
of meteorology on estimates of the impacts of restrictions. In particular, we will
use several environmental parameters, such as air temperature and wind strength, to
filter out spurious effects from the regressions and obtain adjusted estimates.

3.1 The COVID-19 Lockdown in Italy

The Italian government imposed a total lockdown period between 9th March and
18th May 2020, totalling 71 days. It was characterised by the closure of all non-
essential activities and enterprises and minimised individual mobility and social
distancing. It resulted in a generalised reduction of car traffic and personal travel,
as discussed by Finazzi and Fassò [14]. According to their estimates, obtained with
a sample of 20 thousands Italian users of an earthquake-tracker application, at the
peak of the lockdown, the daily mean distance travelled decreased by approximately
50%, and the percentage of users who did not move within 24 h reached 65%.

In principle, the variation due to lockdown can be measured by the difference
between the average NO2 concentration during the event and the corresponding
average before. Hence, we could compare air quality during the lockdown and the
average of the preceding 71 days. Since this means comparing spring and winter
concentrations, it is a biased comparison.
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Fig. 5 Observed pre-lockdown and in-lockdown air quality. Average NO2 levels by province
observed between 9th March and 18th May of years 2015–2019 (pre-lockdown) and 2020
(lockdown). Provinces: Varese (VA), Como (CO), Lecco (LC), Sondrio (SO), Bergamo (BG), Brescia (BS), Milano

(MI), Monza e Brianza (MB), Pavia (PV), Lodi (LO), Cremona (CR) and Mantova (MN)

To avoid the impact of seasonal variations, we compared the lockdown average
concentration with the average of the same period (9th March–18th May) in
the preceding years. Figure 5 shows how the average concentrations fell in all
provinces1 during the lockdown, especially in large urban areas, such as Milano,
Bergamo, Monza, and Brescia.

At a glance, it is clear that the restrictions generated a positive effect on the whole
territory, especially in the urbanised central area. The provinces of Monza-Brianza
and Milano experienced reductions close to 20µg/m3, while Bergamo, Brescia,
and the northern mountain provinces recorded reductions of around 15µg/m3. In
these latter cases, the reductions were around 50% compared to previous years. The
southern areas, which are less inhabited and less industrialised, experienced smaller
decreases.

Are these reductions due to the lockdown measures, or other factors occurred? In
other words, uncertainty and biases may still be present due to variations between
years. These may be related to both meteorological variations and anthropogenic
variations, such as traffic policies or changes in vehicle emissions [24]. Our purpose
is to measure the variation of airborne pollutants such as nitrogen dioxide (NO2),
which is related to car traffic limitations and activity restrictions during the COVID-
19 period, controlling for meteorology and trends characterising the phenomenon.

1 Provinces: Varese (VA), Como (CO), Lecco (LC), Sondrio (SO), Bergamo (BG), Brescia (BS),
Milano (MI), Monza e Brianza (MB), Pavia (PV), Lodi (LO), Cremona (CR), and Mantova (MN)



352 P. Maranzano and A. Fassó

4 Air Quality and Weather Data

We collected air quality and weather measurements from Regione Lombardia Open
Data portal (https://www.dati.lombardia.it/), the regional open-source database
which stores, among other things, environmental data acquired by the regional
agency for environmental protection, ARPA Lombardia.

The full sample comprises weekly observations from 1st January 2015 to 8th
June 2020, a total of 289 observations, from 74 monitoring stations. Stations are
classified as background (B), traffic (T), or rural (R), according to the environmental
context in which they are installed. Overall, the number of background, traffic,
and rural stations are 42, 25, and 7, respectively. Monitoring stations are located
heterogeneously over the provinces, ranging from three control units in Como
to sixteen units in Milan while considering the population density of the areas.
Moreover, given the geographical specificities of each province, the rural stations
are predominantly located in the flat southern strip of land, while traffic stations are
placed in the large urban areas in the centres.

The lockdown period (9th March–18th May 2020) is modelled through a
dummy variable which assumes value 1 for the lockdown weeks, for a total of 10
observations, and value 0 for the other observations. Thus, the whole period can
be divided into three parts: the pre-lockdown period composed of 275 weeks from
1st January 2015 to 4th March 2020, the lockdown period of 10 weeks, and the
post-lockdown term from the 20th May 2020 to the latest available observation.

To obtain an unbiased estimate of the effect of lockdown restrictions on nitrogen
dioxide concentrations, we considered a set of weather variables to control for
possible confounding effects: temperature (measured in degrees Celsius), rainfall
(cumulative millimetres), relative humidity (%), and the average wind speed for
each quadrant of the Cartesian plane (metres per second).2 Therefore, overall, we
have considered the weekly NO2 concentrations and eight meteorological variables
for each station.

5 Statistical Modelling

The lockdown effect has been estimated for each station using an autoregressive
model with covariates, namely ARX model [5]. In particular, we used a steady-state
representation of the ARX(1) model, as described by Fassò [13]. The dependent
variable is the weekly concentration of NO2 observed at ground level. The covariates
list includes the above seven meteorological variables, a linear trend component, and
the dummy for the lockdown period. Given the natural seasonality of the phenomena
under analysis, we decided to consider the interactions between the meteorological

2 We computed four variables measuring the average wind speed blowing from North-East, South-
East, South-West, and North-West.
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variables and the four climatic seasons’ dummies. Instead, the linear trend is treated
as a non-seasonal component. In this specific case, we considered spring to be from
March to May, summer from June to August, autumn from September to November,
and winter from December to February. Hence, the full model considers one lagged
term and 30 covariates, that is 28 seasonal weather variables, the linear trend and
the lockdown dummy.

Let y(si, t) be the weekly observation of NO2 concentration from the station
located in si , i = 1, 2, . . . , 74 and time t = 1, . . . , 289 (weeks) and let Xt be the
vector of weekly seasonal weather covariates, Tt be the linear trend component, and
let Lt be the lockdown dummy variable for station i at time t . The model equation
for each location i = 1, 2, ..., 74 is the following:

yt = α + βyt−1 + νTt + γLt + θXt + εt , (1)

where εt is a Gaussian random noise, γ defines the NO2 variation at the correspond-
ing station i due to the lockdown, β represents the lag-1 autoregressive coefficient
for pollution concentrations, and ν is the linear trend parameter.

In order to consider the best set of covariates able to describe the local
meteorology, we performed a variable selection by implementing the Least Absolute
Shrinkage and Selection Operator, or LASSO estimator [32], trained with a 20-fold
cross-validation setup. For each station, the optimal model has been selected using
the one standard error empirical rule [16, 17], that is we selected the model with
largest penalisation parameter (λ) value such that the MSE is within one standard
error of the minimum MSE. This approach ensures that the most parsimonious
model whose error is no more than one standard error above the best model’s
error is selected while considering the randomness generated by the out-of-sample
randomisation used to construct LASSO. All the weather covariates, the linear
trend, the autoregressive term and the lockdown dummy have been included in the
LASSO algorithm. The inclusion of the dummy among the LASSO inputs provides
a handy tool to understand the effective impact of restriction measures on oxide
concentrations. If the LASSO includes the dummy in the list of relevant variables,
this would indicate a great relevance of lockdown restrictions in explaining the
concentrations pattern in the weeks of interest; otherwise, its exclusion would be
a signal of a modest and negligible variation during the shutdown period.

The model parameters identified by the LASSO algorithm are then re-estimated
using a maximum likelihood approach under the hypothesis of Gaussian distribution
of the errors. It is well-known that the LASSO introduces a bias in the estimates of
the regression parameters to reduce the variance. This bias can be reabsorbed by
applying the OLS or ML estimators to estimate the regression parameters of the
variables selected by the algorithm. As discussed by Belloni and Chernozhukov [3],
this approach, namely OLS post-LASSO estimator, performs at least similarly as
the LASSO regression in terms of convergence rate and can achieve a smaller bias
for the estimated parameters, even when the algorithm fails in selecting the actual
variables. Finally, the post-selection statistical inference has been made by applying
the delta method to provide the approximate lockdown impact standard errors.
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As stated in [13], the AR(1) dynamics imply that the scalar steady-state impact
on weekly NO2 concentrations is given by

δ̂ = γ̂

1 − β̂
. (2)

Moreover, ignoring the uncertainty of the pre-intervention estimation of β and
applying the delta method to the estimated parameters, it is possible to approximate
the variance for δ as follows:

VAR(δ̂) ∼= VAR(γ̂ )

(1 − β̂)2
. (3)

The parameter standard errors were simply obtained by calculating the square root
of the formula of the above variance.

To correctly assess the estimated coefficients, particularly the one associated with
the impact of lockdown, it is necessary to check the whiteness of the regression
residuals. In particular, we point out that the variance of the parameters depends
on residuals autocorrelations. Indeed, serial correlation generates bias effects on the
estimated variances of the coefficients and consequently on the respective p-values
and confidence intervals [15]. This necessarily leads to erroneous assessments of the
significance of the estimates. Thus, we assessed the goodness of the estimated mod-
els by performing several misspecification diagnostics on the regression residuals.
In particular, each residuals time series has been checked for serial correlation by
analysing the sample ACF function and by using the Ljung-Box test [23]. We also
tested for non-normality through the Jarque-Bera test [20].

Several practical and contextual reasons can be argued to justify the choice of the
ARX model with a predefined number of lags to model a complex phenomenon such
as atmospheric NO2 concentrations. Firstly, recall that the considered observations
have a weekly frequency, allowing the serial correlations to vanish after a few lags.
Besides, we want to favour statistical modelling that is as simple but effective as
possible, so that the empirical results are unbiased and meaningful. In particular,
we recall that in an ARX setting, the effect of each covariate depends both on
the estimated coefficient and on the autoregressive dynamics (see Eq. (1)). Thus,
fixing a lag order common to all the stations, we make it possible to quantify
the local impact of lockdown limitations on NO2 concentrations, while keeping a
standard temporal dependency structure across the region and preserving simplicity
and ease interpretation of the estimates. In the end, recall that airborne pollution
is a natural phenomenon mainly driven by atmospheric conditions, such as the air
temperature and the wind. Thus, by including a suitable set of weather covariates
in the regression models, it is possible to reasonably model the seasonality and
persistence of the series without requiring more sophisticated and complex models.
The residuals diagnostics presented in Sect. 6.3 validate the previous statements.
The residuals are in many of the stations non-autocorrelated, and at those stations
where some remaining autocorrelation persists, it always shows very small values
that do not bias the coefficient estimates and their significance.
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6 Model Fitting and Selection

In this section, we discuss in detail the results regarding the model selection
performed through the LASSO algorithm and the OLS post-LASSO estimated
coefficients obtained by re-estimating the parameters of the optimal model for each
station.

6.1 LASSO Performances

To understand how the LASSO algorithm identified the optimal models is primarily
necessary to assess which penalty values, i.e. the λ parameter, minimise the
cross-validated mean square errors. Recall that we identified the optimal λ using
the one standard error empirical rule that is we selected the model with the
largest penalisation parameter such that the MSE is within one standard error
of the minimum MSE. Figure 6 shows the scatterplot of the one-SE λ and the
corresponding cross-validated MSE. For each combination of λ and MSE, it is

Fig. 6 Selected 1-SE λ and corresponding MSE. Error bars represent the cross-validated standard
errors of each penalisation parameter
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also reported in an error bar the estimated uncertainty. Recall that the LASSO
solution corresponding to a null value of the penalisation parameter is equivalent
to the OLS estimator solution. Observing the horizontal axis one can notice that the
optimal penalisation values are always lower than one and largely located around 0.
Considering the full sample, the largest part reports a λ value below 0.20. It means
that the model selection procedure provided estimates that were not very penalised
and relatively close to the OLS solution. Hence, the models will contain a large
number of relevant covariates. The cross-validated MSE are concentrated between
10 and 30, while the largest mean squared errors are more dispersed. Observing the
variability, it can also be noticed that lower λs correspond lower uncertainty, while
to greater penalisation value the uncertainty increases.

6.2 Meteorology and Long-Run Trend

In aggregate, the estimated models show that some peculiar features can characterise
air quality in the region in terms of long-term trends and meteorology. As reported
by Table 1, both the linear trend and the autoregressive term play a key role in
explaining the air quality variability.

The autoregressive coefficient has been selected by the LASSO algorithm as a
relevant variable in the 85% of the stations. Moreover, the estimated coefficients
are statistically significant and with a positive sign, showing how concentrations
are particularly persistent even after several days. The estimated variability is
low (standard deviation is around 0.10 µg/m3), meaning that the same serial
dependence structure characterises almost all the stations. Furthermore, such a large
majority of significant values, combined with the low serial correlation identified
in the residuals, indicate a successful specification of the model regarding NO2
concentrations’ temporal evolution. Also, the trend appears to be a relevant factor.
In the 43% of the stations (32 out of 74), the linear trend coefficient has been
estimated as statistically significant with a negative sign, whereas it is positive or
not significant in some cases. In average, the coefficient is −0.60 µg/m3 per week.
This fact confirms what we have observed in the city of Milan and in other parts
of the region: in the long-run, the NO2 concentrations are significantly decreasing
almost all over the region, with some rare exceptions where the trend is opposite. As
we will see below, stations with null or positive trends are often isolated from urban
centres and monitor areas where oxides in the atmosphere are low and difficult to
reverse.

Regarding the local meteorology, Table 2 summarises the estimated seasonal
coefficients for each of the seven climate variables considered. Recall that the
coefficients for the temperature have to be read as the change in NO2 concentrations
(in µg/m3) associated with an increase in temperature of one degree Celsius; the
coefficients for rainfall as the change due to an increase of one mm in rainfall
fall; the coefficients for wind as the change due to one m/s increase in wind
speed, and those for humidity as the change in NO2 due to a 1% increase in
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relative humidity. The seasonality of the variables of interest is well defined by the
alternation of the estimated signs and their respective significance. For example,
during spring and summer the coefficients always assume negative and often
significant values, indicating climatic factors’ strength in reducing concentrations
during warm periods. Temperature and wind remain throughout the year the most
important factors in reducing the levels of oxide concentrations. Except for summer,
the temperature is selected and estimated as negative and significant in 70% of
the stations, while the wind is estimated as significant and negative in 30 or 40%
of the models. Although the wind in Lombardy is generally very weak, winds
blowing from the East and North are of particular importance. Humidity is often
discarded, excepting during summer, where it contributes significantly to reducing
the concentrations. On the other hand, cumulative rainfall is highlighted as crucial
for reducing concentrations especially during the winter.

6.3 Models Fitting and Diagnostic Checks

To assess the goodness of the estimates and model fitting, we performed an analysis
of multiple goodness-of-fit indicators. For each station, we evaluated the in-sample
adjusted R-squared (R2) index, the residuals root mean squared error (RMSE), and
the corrected Akaike Information Criterion (AICc). Considering the 74 stations, the
models fitting can be considered satisfactory. Indeed, most of the models report an
R2 above 80% and an RMSE below 6 µg/m3. The minimum goodness-of-fit value
is above 65%, which can be considered an acceptable share of explained variability.
The models that fit better provide also the lowest prediction error. The behaviour of
the R2 indices and prediction errors are consistent with each other, since the models
with the best fitting are also associated with the lowest estimated error. The models
with greater R2 index and lower RMSE are also associated with the minimum AICc
values. Given these characteristics, from a fitting point of view, it can be stated that
the strategy of estimating through ML post-LASSO estimator is an adequate tool
for correctly modelling NO2 concentrations for the chosen sample.

To validate the assumptions concerning the AR(1) structure of the model in
Eq. (1), we implemented several diagnostic checks on the residuals. We firstly
checked for the residual serial correlations both using graphical and analytical
methods. The sample ACF and the estimated autocorrelation tests reported in Fig. 7
provide favourable indications. In particular, looking at 20-lags Ljung-Box test,
among the 74 stations, 55 of them had p-values above 5% and 64 report a p-value
larger than 1%. Thus, at a 1% significance level, only 10 of 74 present significantly
autocorrelated residuals. Moreover, the average sample ACF distribution is always
below 10%, while the maximum estimated ACF is around 27%. In Sect. 5, we
mentioned that the residual serial correlation induces a bias on the variances
of the estimated parameters, and hence on their respective p-values, leading to
misjudgments regarding the statistical significance of the coefficients. The above
empirical results show that sample autocorrelations are very moderate in absolute



The Impact of the Lockdown Restrictions on Air Quality During COVID-19. . . 361

F
ig
.7

R
es

id
ua

ls
A

C
F

by
la

g
(l

ef
tp

an
el

)
an

d
em

pi
ri

ca
ld

is
tr

ib
ut

io
n

of
th

e
p-

va
lu

es
fo

r
th

e
L

ju
ng

-B
ox

te
st

w
it

h
20

la
g

ap
pl

ie
d

to
th

e
re

gr
es

si
on

re
si

du
al

s
(r

ig
ht

pa
ne

l)



362 P. Maranzano and A. Fassó

value. Therefore, we can consider the bias as negligible and having a minimal
impact on the estimated significance.

The Gaussianity assumption of the residuals, verified through the Bera-Jarque
test, was confirmed for just five stations out of 74. It means that the stations with
independent and normally distributed residuals are only five out of 74. However, the
violation of the distributional assumption of the ML estimator can be considered a
minor issue. In fact, it can be easily shown that under mild regularity conditions,
the QML estimator of the parameters of the autoregressive model considered is
consistent and asymptotically normal [6, 15]. Given our large sample size, the
distribution of the parameters is then approximately Gaussian and their significance
can be assessed with classical hypothesis tests based on likelihood. Moreover, these
properties hold for simple autoregressive models [35], double autoregressive models
[9], and spatial autoregressive models [22].

7 Lockdown Results

This section discusses the main empirical results related to the estimated variations
due to the COVID-19 lockdown. The discussion will focus on the geographical
and landscape profile of the considered stations to characterise and justify the
estimates. In addition to comments on the estimates by station type and province,
we will also comment on some specific stations that have an interesting relevance
for an extensive understanding of the lockdown phenomenon. In particular, we
will describe the cases of Meda and Schivenoglia as examples of null lockdown
effect and other cases in Monza, Bergamo, and Brescia provinces regarding local
meteorology and geography. The location of the specific stations is shown in Fig. 8.

The proposed statistical modelling confirms a generalised reduction of NO2
levels consequently to the lockdown. Compared to the observed average reduc-
tion, reported in Fig. 5, the lockdown effect is mitigated by seasonal trends and
meteorology. Moreover, a non-null lockdown effect was estimated for a subset of
stations among those included in the sample. In fact, the LASSO algorithm selected
the lockdown dummy among the covariates 63 times out of 74 stations. For these
locations, the lockdown variable can be considered an important factor. For the
remaining eleven stations where the dummy was discarded, the lockdown impact
on NO2 concentrations has to be considered null. The reasons for this result are
many and will be explored more deeply in the following paragraphs discussing the
different types of stations and their geographical distribution. From the statistical
modelling perspective, a first intuitive explanation can be ascribed to the presence of
external factors other than the lockdown, either embedded in the model or unknown,
able to better explain the observed reductions. First of all, the specific local weather
conditions. Table 3 reports both the pre-post lockdown observed average reduction
and the model-based effects, aggregated by station type.

Regarding the stations where the lockdown dummy was estimated via MLE,
the estimates of the coefficients were largely statistically significant. Indeed,
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Fig. 8 Geo-location of some sites of interest for the COVID-19 lockdown in Lombardy

considering the alternative hypothesis of a statistically significant negative variation,
in 47 over 63 cases, the coefficients were significant at 5%, while 35 of them were
statistically significant at a 1% significance level.

To investigate which factors may have led to some null lockdown coefficients,
we now provide two illustrative examples. Both examples are represented in Fig. 9,
which depicts the time series of the NO2 concentrations at the Meda station in
Monza-Brianza province (upper panel) and Schivenoglia (lower panel), located in
Mantova province. In both plots, the blue marks represent the weekly observed
concentrations between March and May in 2015–2019, while the red marks are
the weekly observed concentrations between March and May 2020.

Although the lockdown impact has been estimated as zero at both locations, the
historical evolution of the concentrations and the surrounding anthropogenic context
are widely different. Meda control unit is classified as a traffic sensor and is located
in a residential area far from the major high traffic roads. Schivenoglia is a rural
station surrounded by many kilometres of farmland and livestock. Several secondary
rivers and canals flow near its location.
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Table 3 Lockdown variations of NO2 concentration classified by station type

Pre-lockdown In-Lockdown Observed Model-based

Stations Number NO2 NO2 differences differences

type of stations Average Std. Dev. Average Average Estimate Std. Error

Stations with non-null effect

Background 39 25.3 3.4 15.4 −9.8 −8.7 4.2

Rural 2 16.1 3.5 11.8 −4.3 −3.5 2.8

Traffic 22 38.5 4.9 20.9 −17.5 −14.7 5.1

63 29.6 3.9 17.2 −12.3 −10.6 4.5

Stations with null effect

Background 3 15.6 2.0 10.4 −5.2 – –

Rural 5 19.6 2.9 16.5 −3.1 – –

Traffic 3 36.4 7.0 24.7 −11.7 – –

11 23.1 3.8 17.1 −6.0 – –

Overall 74 28.6 3.9 17.2 −11.4

Note: all the reported values are measured in µg/m3. The “pre-lockdown” average and the
standard error are computed using the period 9th March–18th May of years 2015–2019, while the
“lockdown average” uses the period 9th March–18th May, 2020. The observed difference is the
difference between these averages. The model-based difference and its standard error are obtained
by the statistical model discussed above.

Regarding Meda station, the plot shows a decreasing trend in average NO2
concentrations starting from 2016 and a considerable reduction of the concentrations
during the winter season in 2019 and 2020. Between 2015 and 2018, at that location
were recorded maximum winter peaks approximately from 80µ/g3 to 110µ/g3,
while in the same period in 2019 and 2020, the observed values hovered around
60µ/g3. The concentrations recorded in the 2020 lockdown period are lower and
less volatile than those observed in the previous 5-year period. However, the
variations do not appear to be large-scale. The abrupt drop in NO2 concentrations
between 2018 and 2019 leads to thinking about possible changes in the viability
around the station or at least a drastic change in the surrounding emission sources.
The downward trend (common throughout the region) and a possible change in
the road network around the station have reduced the concentrations considerably,
mitigating the positive effects of the lockdown on air quality. The case of Meda
can be considered as a suitable example of air quality improvement due to viability
changes.

On the other hand, the second plot depicts a different story about the concentra-
tions in rural areas. NO2 concentrations in Schivenoglia are always very low but
show a marked seasonality. In winter there are always maximum values around
40µ/g3, while in summer, the concentrations reach approximately 5µ/g3. The chart
also shows that the concentrations are always decreasing between March and May
and with a slight variability. Despite the lockdown restrictions, 2020 is no exception
to the above.
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Moreover, more compact values close to 15µ/g3 are observed. The values
observed during the lockdown seem even higher than in the past. There is no
downward trend, but the scale of values and the variability are much lower than
in the previous case. The effect of the lockdown is negligible.

7.1 Evaluation of the Lockdown Effect Based on Area Type

If we simultaneously analyse Table 3 and Fig. 10, which reports the geo-location
of the control units dividing the non-null and the null lockdown impact estimates,
it is interesting to note that among the stations with null lockdown effect, five are
classified as rural, and they are mainly located in the southern plain area. The non-
null effects are evenly distributed on the map. This fact is crucial in understanding
how the lockdown restrictions acted on pollution concentrations. There was a con-
siderable difference between the variations of traffic, background, and rural stations
in both observed and estimated reductions. For traffic control units, the observed and
estimated average reductions were −17.5µ/g3 and −14.7µ/g3(−38.2%), respec-
tively. At rural sensors, the estimated variations amounted to −3.5µ/g3(−21.7%).
Estimated variations at background stations stand in the middle, with an average
reduction of −8.7µg/m3(−34.4%). Also, the average variability associated with
the estimates, i.e. the estimated standard errors, follows the previous order. Indeed,
the highest variability has been estimated for traffic sensors (5.1µ/g3), while the
lowest is associated with the rural stations (2.8µ/g3). These facts can be primarily
attributed to the large differences in the counting of stations for each type (39
background, 22 traffic, and two rural), and secondly to the spatial heterogeneity

Fig. 10 Geo-location of air quality stations with relevant lockdown effect (left panel) and geo-
location of stations with null lockdown effect (right panel)
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generated by the geographical location of the stations that could capture different
traffic intensities, for traffic stations, for industrial concentrations, and background
stations.

As already mentioned in Sect. 3, which describes the air quality conditions in
Lombardy, geographical and morphological conformation plays a fundamental role
in determining variations due to lockdown. The prevalence of rural stations with null
lockdown impact, and the remarkable differences in estimated effects by station
types, provided strong evidence of how the limitations to traffic, human mobility,
and productive activities worked decisively and sharply in dense urban areas and
more lightly in agricultural areas. The former are subject to high levels of oxides
(NOX and NO2), carbon (CO and CO2), and sulphur dioxide (SO2), produced
by industry and road transport. At the same time, the latter is characterised by
emissions of pollutants produced mainly by agricultural and breeding activities, i.e.
ammonia (NH3), methane (CH4), and fine particulates (PM2.5). See, for example,
the annual reports from INEMAR Lombardia [19] and the European Environmental
Agency [12] on pollution sources and abatement policies in Lombardy. All these
facts are consistent with the analyses on movements and mobility during COVID-
19 in Lombardy by Finazzi and Fassò [14], which reported reductions of up to 65%
in human movements all over Italy that led to a natural fall in road traffic.

Figure 11 shows the empirical distribution of estimated lockdown effects for the
63 units by the type of station. Estimates in traffic sites show a high variability range,
ranging from approximately −5µg/m3 to −27µg/m3, while in background sites
there were variations between −1µg/m3 and −17µg/m3. The figure also highlights
that all the stations registered a negative variation, supporting the hypothesis of a
generalised improvement of air quality in Lombardy.

Fig. 11 Frequency distribution of the model-based lockdown variations, in µg/m3, by station type
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7.2 Geographical Distribution of the Lockdown Effect

To give a synthetic representation of the territorial heterogeneity of the effect
of lockdown measures on oxide concentrations, we aggregated the estimated
coefficients by province. Observed and estimated lockdown impacts by province
are reported in Fig. 12.

The observed average variations are computed by averaging the observed
differences of NO2 previously, and during the 2020 lockdown, whereas to compute
the estimated provincial variations, we considered as null the lockdown impact for
all the stations in which the LASSO algorithm did not include the dummy variable
among the final dataset. See Fig. 10 for the geo-location of these stations. The
figure’s left panel shows the observed average reductions by province, which are
compared with the average provincial reductions estimated by our model, reported
in the right panel. The two plots are in line with what has been said above regarding
the differences by station types and the gap between rural and urban areas. In almost
all the provinces, the estimated impacts are lower than those observed, meaning
that, according to our model, the estimated lockdown effect is mitigated by seasonal
trends and the local meteorology.

The most remarkable reductions were observed and estimated in the Milan
metropolitan area, which is notoriously strongly urbanised, followed by the
province of Como. In the latter case, the estimated NO2 reduction was
−15.8µg/m3(−55.9%). A relevant factor for air quality improvement in the
Como area could have been the interruption of cross-border traffic to and from
Switzerland. In 2018, about 18 thousands vehicles per month crossed the border at

Fig. 12 Variation of NO2 levels by province. Left panel: Observed average variation computed
as the raw difference for the period 9th March–18th May in 2020 and 2015–2019. Right panel:
model-based variation for the period 9th March–18th May 2020. Provinces: Varese (VA), Como (CO),

Lecco (LC), Sondrio (SO), Bergamo (BG), Brescia (BS), Milano (MI), Monza e Brianza (MB), Pavia (PV), Lodi (LO),

Cremona (CR) and Mantova (MN)
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Chiasso custom [33], and about 70 thousand Italian cross-border commuters were
recorded [31]. According to estimates by the Swiss statistical office, in April 2020,
there was an average daily decrease in the number of vehicles entering and leaving
the Chiasso border of 79% compared to April 2019, while in May 2020 the decrease
was 66% compared to the previous year. The observed reductions are mainly due
to the breakdown in the number of transits of commercial or industrial vehicles
(−81% in April and −66% in May).

The estimated impact and the observed variation in Milan are quite similar.
The observed reduction was −15.8µg/m3 and the estimated variation amounted to
−13.1µg/m3(−36.1%). This result is consistent with the estimates of the provincial
agency for the mobility of Milan (AMAT), which reported reductions in road
traffic up to 77% (private vehicles) and 66% (commercial vehicles) in the Milan
metropolitan area during the lockdown period [1].

Interesting results were obtained for the Monza (MB), Bergamo (BG) and
Brescia (BS) provinces. The three provinces have large, densely populated and
congested urban centres, especially the provincial capital cities, but they present
some peculiarities that can be argued to explain the empirical discrepancies.
Regarding Monza, there exists a substantial gap between the observed average
variation and the estimated reduction. Indeed, the province passes from an observed
reduction of −19.3µg/m3 to an estimate of −7.8µg/m3(−18.1%). On the Monza
territory are located only three monitoring stations, one urban traffic station and two
background stations. Both the background stations are located within the Monza
city borders, while the urban ground unit is located in Meda. The LASSO model
selection algorithm provided a non-null estimate for the background units, as it did
not select the dummy at the urban site. The model-based estimate has been fixed
at zero despite the observed variation at the traffic station −17.2µg/m3(−46.2%).
In Sect. 7, we discussed the case study of Meda, claiming that it can be taken as an
excellent example of air quality improvement due to changes in emission sources.
Local meteorology is also a contributing factor. The ML post-LASSO estimator
provided negative and statistically significant coefficients for the temperature during
spring, winter and autumn, and a significant negative trend of −1.09µg/m3 per
week. Rainfall and wind blowing from North-East contribute significantly to
reducing concentrations during the winter. Similar results, in particular, regarding
the decreasing trend and the cleaning effect of rainfall and wind, hold for both
the background stations in Monza city. At the two background sites, the estimated
lockdown impact is negative but not statistically significant. In conclusion, regarding
the specific case of the province of Monza, it is reasonable to think that the observed
reduction can be explained by meteorological factors included in the model, which
can have affected the air quality more than the lockdown restrictions.

Concerning the cases of Bergamo and Brescia, some geographical and mor-
phological reasons can be addressed. The estimated impacts are smaller than the
observed reductions, although with a smaller gap than in the case of Monza.
In Bergamo we estimated a variation of −9µg/m3(−32.1%), while in Brescia
−9.5µg/m3(−32.7%). The gaps can be attributed to the strongly heterogeneous
physical conformations of both areas. Both provinces are characterised by a northern
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mountain area, therefore, sparsely inhabited and with high environmental quality,
by the flat area in the south with high industrialised districts and medium-large
sized lakes. According to the stations’ typology, both the observed and estimated
reductions may depend on the geomorphological structure of the territory and
its reliefs. Considering the cities of Brescia and Bergamo, the urban traffic sites
estimated variations of −27.2µg/m3 and −22.5µg/m3, respectively, while near
less urbanised areas of the provinces the estimated reductions are always lower
(in absolute value) than 14µg/m3 and often not statistically significant. To have
a better insight into the geographical effect, we consider three stations in the
province of Brescia characterised by different territories. The urban station of
Brescia city, the urban background station of Lonato del Garda overlooking Lake
Garda and the suburban background station of Odolo at 350 meters altitude. At
Brescia site, the decisive weather variables are the wind blowing from South-East,
which reduces the concentrations significantly during all the seasons (−12.2µg/m3

in winter and −11.1µg/m3 in summer), and the summer rainfall (−17.5µg/m3).
The trend is negative (−1.2µg/m3 per week) and statistically significant. In Odolo,
the estimated lockdown reduction is 7.8µg/m3, but it is not statistically significant.
The trend is absent, and except for the winter rainfall and the summer temperature,
all the weather covariates are not significant. In Lonato, the estimated variation
is −4.8µg/m3. The negative trend effect is weak but significant, while the main
reducing drivers are the winds coming from the Garda Lake, i.e. from North and
East (around −8µg/m3 during summer and −5.5µg/m3 in spring).

The results associated with the southern provinces—that is, Pavia (PV), Lodi
(LO), and Cremona (CR)—were in line with expectations: given the local agricul-
tural and rural context, the observed and estimated reductions of NO2 levels were
very modest. In Pavia, the estimated reduction of NO2 is about 4.8µg/m3(−20.6%),
in Lodi it is 4.9µg/m3(−19.7%), while in Cremona it is 4.2µg/m3(−24.4%). The
only exception is represented by Mantova (MN), where the estimated NO2 reduction
reached 47.5%.

As shown in Fig. 5, the pre-lockdown NO2 concentrations in the southern
provinces during spring were considerably below the regional average and those
of the other provinces. Thus, starting from relatively low levels, the observed
reductions are small. In Cremona and Mantova, the estimated lockdown impact
appeared even stronger than the observed raw differences. This last fact can be
explained by the use of meteorological variables to adjust the estimates. The
inclusion of meteorological covariates in the models allows obtaining unbiased
estimates of the impact of restrictions on NO2 concentrations while controlling for
possible climatic variations.

It is plausible that the meteorology hid part of the reduction caused by the
restrictions during the lockdown period. Indeed, thanks to the available data, it is
possible to observe that during the lockdown period (March–May 2020) in both
provinces the observed average temperature is about 0.30 to 0.40 Celsius higher
than the average in the same period between 2015 and 2019. Moreover, the rainfall
occurring in 2020 is on average lower than in the period 2015–2019, as well as
the wind speed coming from the North-East and North-West, i.e. from the Alps.
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These facts are compatible with a reduction in the atmospheric cleaning capacity
in the area. Therefore, the higher temperatures and the failure to recycle the air
may have increased the quantities of oxides in the atmosphere, compensating for
the considerable reduction generated by the restrictions. In Sect. 7, we introduced
the case of the rural ground station in Schivenoglia as an example of null lockdown
impact. The associated plot showed that the NO2 concentrations in the area were
already deficient before the lockdown. From the estimated model at that station, we
deduce that the meteorology provides a limited effect in reducing concentrations.
Indeed, most of the coefficients are shrunk toward low values and are often not
statistically significant. In particular, the wind blowing from all the directions are
associated with coefficients around −1µg/m3 to −5µg/m3. As stated in Sect. 6.2
commenting the estimated coefficients associated with the weather covariates,
the wind is often a fundamental factor in explaining the reductions. The only
significant effect is due to the winter rainfall, which reduces the concentrations of
−17.3µg/m3.

The previous results on oxide reduction in Lombardy were consistent with
the study conducted by Agresti et al. [1], in which the impacts of vehicular
traffic on weekly NO2 concentrations in Lombardy and the metropolitan area
of Milan were investigated by implementing physical-chemical models based on
emission inventories. Their findings suggest that the lockdown restrictions generated
reductions in NO2 concentrations in March 2020 of 31% in Milan, 35% in Como,
27% in Bergamo, and 23% in Brescia compared to the data observed during previous
years.

8 Conclusions and Future Developments

Our findings suggest that during the Italian COVID-19 lockdown, the air quality in
Lombardy improved noteworthy due to the restrictions imposed by the Government.
In general, all provinces experienced remarkable improvements, especially densely
populated, and congested and trade areas.

The adopted time series model provided evidence of statistically significant
reductions of NO2 levels at 47 over 74 ground sites. Overall, the analysis of residuals
and diagnostic checks confirmed the goodness of the models used. The estimated
models report very high fitting values (often above 80%) and low prediction errors.
Moreover, the residuals are weakly or not autocorrelated at many stations, and where
some serial correlation persists, it is very poor. The estimates can, therefore, be
considered unbiased and meaningful.

Compared to the observed average reduction, the estimated lockdown impact was
mitigated by the decreasing temporal trend and local meteorology. The observed
raw differences by provinces are almost everywhere larger than the estimated
average impact. However, the reductions appear not to be ubiquitous all over the
regional territory. The aggregation of the estimated impacts by province showed
that all provinces experienced a relevant reduction. However, the effect was stronger
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in large urban areas located in the central industrialised belt (−36.1% in Milan
and −32.7% in Brescia), while the southern territories, characterised by flat
rural landscape, showed a significant but weaker reduction of NO2 concentrations
(−20.6% in Pavia and −19.7% in Lodi). Moreover, considering the type of area
covered by the stations, the highest reductions in nitrogen dioxide levels were
associated with traffic control units (−38.2%), while reductions in rural areas were
smaller (−21.7%). These results are consistent with other studies showing that the
lockdown restrictions, which affected mobility and production activities, drastically
lowered traffic and, therefore, stopped the primary sources of oxide emissions.

In this paper, we considered the spatial dimension indirectly, as it has been used
to characterise the results achieved in terms of estimated variations and not directly
at the estimation stage. However, we recognise that spatial and spatio-temporal
modelling would improve the quality of the estimates considerably. Crucial would
be the spatial prediction of variations in sites where there is no direct monitoring and
the mapping of the occurred variations over the whole region. This would improve
the accuracy of the reduction estimates by province, which currently depends on the
number of stations located within the provincial boundaries.
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