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Preface to the Second Edition

More than 10 years after the first edition of the textbook EEG-fMRI it was obvi-
ously necessary not only to revisit and update the existing contents but also to 
include coverage of important and innovative topics with new chapters. The new 
developments are very promising offering new concepts, new methodological chal-
lenges and solutions as well as first applications. For example, the new Chap. 14 
“Non-invasive Brain Stimulation with Multimodal Acquisitions” by Alexander 
T. Sack, Teresa Schumann and Tom A. de Graaf, describing concepts, methods and 
findings based on the combination of TMS with fMRI and EEG-fMRI. In a similar 
way, the new Chap. 13 “Real-Time fMRI Neurofeedback with Simultaneous EEG” 
by Vadim Zotev, Ahmad Mayeli, Chung Ki Wong and Jerzy Bodurka introduces the 
promising concept of a potential therapeutic use of these methods, the technical 
details and first applications suggesting potential benefit for patients with major 
depression. The new Chap. 20 “Simultaneous EEG-fMRI in Psychiatry” by Gebhard 
Sammer and Christoph Mulert summarizes studies using EEG-fMRI in patients 
with anxiety disorders, attention deficit hyperactivity disorder, major depression or 
schizophrenia. The new Chap. 29 “Sparse and Data-Driven Methods for Concurrent 
EEG-fMRI” by Pamela K. Douglas, Farzad Vasheghani-Farahni, Ariana Anderson 
and Jerome Gilles gives a superb overview about sparse empirical techniques for 
sampling, cleaning and jointly analysing concurrently recorded EEG-fMRI data. 
Last but not least, the new Chap. 30 “Integrating EEG-fMRI Through Brain 
Simulation” by Michael Schirner and Petra Ritter offers insights into the fascinating 
world of the computational simulation of brain signals, using the rich data of simul-
taneous EEG-fMRI to learn about underlying neural activity and neural mechanisms.

Amongst the first edition chapters that have been substantially updated or even 
completely rewritten are Chap. 1 “Principles of Multimodal Functional Imaging 
and Data Integration” by Arno Villringer and ourselves, Chap. 8 “EEG Quality: The 
Pulse Artefact” by Rodolfo Abreu, Jose Jorge and Patricia Figueiredo, and Chap. 12 
“Experimental Design and Data Analysis Strategies” by Jonathan Wirsich, Andrew 
P. Bagshaw, Maxime Guye, Louis Lemieux and Christian-G. Bénar with addition of 
the impact of EEG-fMRI in connectivity studies, and the combination of concurrent 
fMRI and intracerebral EEG recordings in epilepsy research.

Very sadly, our highly respected colleague and friend Fernando Lopes da Silva 
passed away before the publication of this edition (Michel et  al. 2019). We are 
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extremely thankful to his family for allowing us to include the updated version of 
his supremely authoritative Chap. 2 “EEG: Origin and Measurement”.

Both the editors and the contributors learned a lot during the preparation of this 
second edition. For example, EEG-fMRI has become an established tool for many 
researchers to such a degree that EEG-fMRI no longer appears in the title of many 
articles. While this has made the task of preparing this edition more arduous, we 
interpret this as a sign that although many methodological, conceptual or technical 
advances have been made, in other respects EEG-fMRI has become just a normal 
part of our toolbox.

We would like to thank all of the contributors for their hard work and patience 
throughout the editing and the production process. We are particularly grateful to 
Barbara Zöhrer and Smitha Diveshan of Springer for all their support in preparing 
the second edition.
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1Principles of Multimodal Functional 
Imaging and Data Integration

Arno Villringer, Christoph Mulert, and Louis Lemieux

1.1  Introduction

In a system as complex as the human brain, one cannot conceive of meaningful 
events involving a change in a single observable (physiological) parameter. 
Therefore, achieving the ultimate aim of a complete understanding of brain events 
and brain activity in general will require the integration of a variety of observations 
related to these events. Multimodal imaging, or more generally measurements 
whereby data from various types of instruments are brought together, has arisen 
from this realisation, partly because some events are best observed in one modality 
and the investigator is interested in another (e.g. a more recently developed modal-
ity) and to be honest sometimes as a response to the technical challenge of combin-
ing modalities for simultaneous observations. Fundamentally, multimodal imaging 
should allow the investigator to address the question: what happens to brain observ-
able Z when observable X changes (or event Y occurs)?
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In the second half of the twentieth century, and particularly since the 1990s, a 
rapid development of noninvasive functional and structural brain imaging methods 
has occurred. While some of these developments have resulted from gradual 
improvements in some methods, other developments have led to completely new 
approaches for measuring brain activity, affording new types of information about 
the brain. In the former case, the older methods were eventually replaced [e.g. scin-
tigraphic methods by positron emission tomography (PET) and SPECT or low-field 
MRI (magnetic resonance imaging) by higher-field MRI]. In the latter case, how-
ever, newer developments have not replaced older ones; rather, they have been 
added to an ever-larger orchestra of functional and structural neuroimaging methods 
consisting of techniques that offer complementary information about the brain. 
Table 1.1 gives an overview of currently available methods for noninvasive brain 
imaging and the principle that each exploits.

While in some instances combining multimodal measurements is a relatively 
straightforward task from a technical point of view [e.g. transcranial ultrasound/
near-infrared optical spectroscopy (TCD/NIRS)], the combination of other methods 
poses major technical challenges (e.g. EEG–fMRI, PET–MRI) especially when 
moving to ultrahigh-field strengths at 7 T or 9.4 T. Table 1.2 summarises which 
imaging techniques have been combined successfully in order to perform simulta-
neous observations. While all the methods listed in Table 1.2 measure brain activity, 
another multimodal approach combines techniques which stimulate/modulate brain 
activity with methods which assess brain activity, e.g. the combination of transcra-
nial magnetic stimulation (TMS) with PET or even triple combinations such as 
TMS with EEG–fMRI. While these approaches are not further addressed in this 
book, they are listed—for completeness of multimodal imaging—in Table 1.3.

While the physical principles underlying each method are crucial to the feasibil-
ity of multimodal integration (Tables 1.1, 1.2 and 1.3), subtler aspects of (or varia-
tions on) the basic principle (e.g. choice of pulse sequence in MRI, application of 
contrast agents in CT, MRI or ultrasound) determine the precise aspect of neuro-
physiology that can be captured in any given application (for an earlier review, see 
Villringer and Dirnagl 1995). From the standpoint of a neuroscientist, it seems more 
appropriate to categorise methods according to the neurophysiological processes 
that they reflect rather than according to the physical principle. Table 1.4 illustrates 
how different neuroimaging modalities can provide complementary 

Table 1.1 Noninvasive brain imaging methods

Method Physical principle
Computerised tomography (CT) Absorption of X-rays
Positron emission tomography (PET) Emission/detection of positrons
Magnetic resonance imaging (MRI) Nuclear magnetic resonance (NMR)
Optical imaging Light absorption, scattering, fluorescence
Electroencephalography (EEG) Electrical potentials
Magnetoencephalography (MEG) Magnetic fields
Electrical impedance tomography (EIT) Changes in electrical impedance
Ultrasound Doppler effect in ultrasound

A. Villringer et al.
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Table 1.2 Multimodal neuroimaging: combining different neuroimaging methods

Combination References Comments
EEG–MRI Ives et al. (1993), Busch et al. (1995), 

Bonmassar et al. (1999, 2001), Allen et al. 
(1998, 2000), Lemieux et al. (1997, 
2001a, b), Goldman et al. (2000), Krakow 
et al. (2000), Vasios et al. (2006), Neuner 
et al. (2013)

Although the feasibility of this 
combination was shown a few years 
back, broad usage started with 
further developments in equipment, 
artefact elimination and analysis

NIRS–
MRI

Kleinschmidt et al. (1996), Kida et al. 
(1996), Punwani et al. (1998), Toronov 
et al. (2001), Mehagnoul-Schipper et al. 
(2002), Strangman et al. (2002)

TES–MRI Brandt et al. (1996)
MRI–MEG Zotev et al. (2008)
fTCD–
MRI

Not found Probably feasible, since combined 
ultrasound and MRI systems have 
been demonstrated (McDannold 
et al. 2003)

PET–NIRS Villringer et al. (1997), Polinder-Bos et al. 
(2020)

PET–fTCD Sabri et al. (2003)
PET–EEG Buchsbaum et al. (1984), Sadato et al. 

(1998), Barrington et al. (1998), Gamma 
et al. (2004)

PET–MEG Not found Feasible in principle, but no 
example of a successful 
combination was found

PET–CT Mainly used in clinical oncology 
(Beyer et al. 2000)

PET–MRI Catana et al. (2008), Judenhofer et al. 
(2008), Kim et al. (2020)

EEG–
MEG

Salustri and Chapman (1989), Buchner 
et al. (1994), Plummer et al. (2019)

EEG–
NIRS

Hoshi et al. (1994), Steinhoff et al. (1996), 
Kirkpatrick et al. (1998), Obrig et al. 
(2002), Shin et al. (2018)

MEG–
NIRS

Mackert et al. (2004), Seki et al. (2012)

NIRS–
TCD

Terborg et al. (2003)

neurophysiological information that may allow neuroscientists to identify which 
combination is currently available and matches their interest. For example, in the 
assessment of brain activity for a certain cognitive task, it might be useful to com-
bine the spatial resolution and relatively uniform spatial coverage of fMRI with 
evoked potentials measured using scalp electroencephalography (EEG) to a high 
temporal resolution (along with the large amount of knowledge on cognitive corre-
lates accumulated over decades of research) in order to elucidate how the spatiotem-
poral haemodynamic and electrical patterns are correlated.

1 Principles of Multimodal Functional Imaging and Data Integration
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Table 1.3 Multimodal neuroimaging: combining stimulation methods with neuroimag-
ing methods

Combination References Comments
TMS–PET Paus et al. (1997)
TES–MRI Brandt et al. (1996) First combination of transcranial 

stimulation with MRI
TMS–MRI Bohning et al. (1998), Bestmann et al. 

(2003), Ruff et al. (2006)
TDCS–MRI Antal et al. (2011)
FUS–MRI Legon et al. (2018)
TMS–EEG Paus et al. (2001), Kähkönen et al. 

(2004)
TDCS–EEG Faria et al. (2012)
TMS–NIRS Mochizuki et al. (2006)
TDCS–NIRS Jindal et al. (2015) The study by Jindal combined TDCS 

with NIRS and EEG
FUS–EEG Legon et al. (2014)
TMS–EEG–
MRI

Peters et al. (2020) Combination of three methods

FUS focused ultrasound stimulation, DCS transcranial direct current stimulation, NIRS near- 
infrared spectroscopy, TMS transcranial magnetic stimulation, TES transcranial electrical stimula-
tion, TMS transcranial magnetic stimulation

Table 1.4 Physiological parameters and noninvasive brain imaging methods

Physiological parameters Technique Method
Vascular/metabolic parameters
Cerebral blood flow MRI Arterial spin labelling (ASL)

Bolus track MRI
Positron 
emission 
tomography

H2O PET
Butanol–PET

SPECT ECD–SPECT
Optical 
imaging
Ultrasound

Bolus track near-infrared 
spectroscopy/imaging
Functional ultrasound imaging 
(human studies so far only in 
neonates over open fontanelle and 
invasively)

∆[deoxyhaemoglobin] MRI Blood-oxygen-level-dependent
Optical 
imaging

Near-infrared spectroscopy

Plasma volume MRI Bolus track MRI
Optical Bolus track optical imaging

Corpuscular volume PET CO–PET
MRI VASO

Glucose consumption PET Deoxyglucose PET

A. Villringer et al.
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Table 1.4 (continued)

Physiological parameters Technique Method
Oxygen consumption PET O2 PET

MRI BOLD and CBF–MRI (calibrated 
with CO2 challenge)

Electrophysiological markers of brain activity
“Field potentials” (presumably 
reflecting synaptic activity)

EEG Event-related evoked potentials

Action potentials (high-frequency 
bursts)

EEG–MEG High-frequency oscillations

Evoked fields (presumably reflecting 
synaptic activity)

MEG Event-related evoked magnetic 
fields

Assessment of background rhythms 
and evoked rhythms

EEG, MEG Assessment of occipital alpha 
rhythms

Molecular markers
Various markers of energy metabolism 
containing phosphorus: ATP, ADP, 
creatinine phosphate

MR P31 magnetic resonance 
spectroscopy

Various molecules in millimolar 
concentration range: lactate, N-acetyl- 
aspartate, glutamate, GABA, etc.

MR H1 magnetic resonance 
spectroscopy

Other molecular markers at smaller 
concentrations

PET PET of various positron-emitting 
tracers

Optical Fluorescence detection of various 
fluorescent/phosphorescent tracers

Brain morphology/volumetry
Volumes of brain areas MRI Voxel-based morphometry (VBM)
Orientation of nerve fibres MRI Diffusion tensor imaging
Others
Cell volume MRI Diffusion imaging

Optical Scattering

1.2  Modes of Data Integration

The integration of different measurement modalities can be achieved in a variety of 
ways, reflecting both the level of synchrony between the data acquired for each 
modality and the ways in which the data from each modality are used to analyse or 
interpret the findings. We refer to these as modes of integration.

It goes almost without saying that the study of a given phenomenon using 
multiple modalities requires that all signals relate to the same phenomenon. 
However, the ways in which the data can be usefully acquired depend on what 
type of phenomenon and which aspect of the phenomenon one is interested in. 
For example, in experimental studies involving controlled tasks or stimuli, serial 
single-modality acquisitions may be adequate, and it is less clear why it may be 
advantageous to combine methods in order to acquire the multimodal data 
simultaneously.

1 Principles of Multimodal Functional Imaging and Data Integration



8

Similarly, a range of analytical strategies for multimodal datasets are available 
that are suited to different modes of acquisition and reflect varying degrees of 
sophistication of the underlying (integrative) model. For example, spatial coregis-
tration of independently analysed unimodal data represents one of the simplest 
forms of integration—comparison, while the estimation of biophysical models of 
brain activity based on multimodal data must be one of the end-points of the multi-
modal integration project.

1.3  Multimodal Data Acquisition Strategies: Degree 
of Synchrony

In an ideal world, a single instrument would combine all imaging modalities, and all 
brain imaging datasets would be multimodal. However, human brain imaging 
instruments are generally single modality, except for magnetoencephalography 
(MEG) systems, which often comprise an EEG recording system. Therefore, inves-
tigators interested in obtaining multimodal measurements must carefully consider 
the practical difficulties associated with simultaneous measurements in relation to 
the expected benefits for the data. These difficulties include (a) higher costs (e.g. 
adaptation of instruments to the new environment, such as nonmagnetic materials 
for MR compatibility), (b) interactions between instruments that can lead to data 
quality degradation (e.g. EEG artefacts during MRI data acquisition) or increased 
health risks for subjects (higher risk of introducing magnetic material into the MR 
environment). These issues are discussed in greater detail in chapters  7 “EEG 
Instrumentation and Safety in the MRI Environment”,  8 “EEG Quality: The Pulse 
Artifact”, 9 “EEG Quality: The Image Acquisition Artefact”,  10 “Image Quality 
Issues”, and  11 “EEG-fMRI at Ultrahigh Magnetic Fields: B.0 >= 3 Tesla”.

Given satisfactory technical solutions to the above problems, there are clear the-
oretical benefits in performing simultaneous multimodal acquisitions, although 
their value will depend on the specific scientific questions being asked. The main 
consideration is whether one is confident that the same thing (brain activity) will 
happen if the experiment is repeated across modalities. Given that the human brain 
cannot be entirely controlled, a degree of interevent signal variability is inevitable 
(above and beyond any measurement uncertainty due to the instruments), and the 
issue boils down to whether one can guarantee that the parameters of interest would 
behave identically across sessions. This means that multimodal studies based on the 
parameterisation of individual events must be performed in a single session with 
simultaneous measurements from all modalities. According to the same reasoning, 
multimodal studies of unpredictable events (interevent timing variability) also 
require simultaneous data acquisitions.

For studies of effects averaged over multiple events (such as traditional evoked 
response studies), intersession bias due to differences in the environment or possible 
learning effects, for example, must be avoided, and so the need for simultaneous 
acquisitions in a single session must be carefully considered. In all other circum-
stances, non-simultaneous multimodal acquisitions may be adequate.

A. Villringer et al.
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Note that while inferences made based on non-simultaneously acquired multi-
modal datasets can also be made based on simultaneously acquired datasets, the 
reverse is not true, given the loss of information on interevent variability in the for-
mer type of acquisition.

An interesting special case is noninvasive brain–computer interface and neuro-
feedback: Here the purpose of neuroimaging is not primarily the understanding of 
neural processes, but to provide a fast and decodable neural signal. For example, the 
combination of fNIRS and EEG has shown promise for enhanced BCI performance 
(Fazli et al. 2012) and the combination of EEG and fMRI for neurofeedback (Zotev 
et al. 2014).

1.4  Multimodal Data Integration Strategies

Data from multiple modalities, and inferences made from them, can be brought 
together in various ways that can be characterised by the degree to which the rela-
tionship between the signals is incorporated into a model. At one end of the scale, 
modalities are simply compared in time or space and may be subjected to correla-
tion analyses, for example. At the other end of the scale, we have methodologies 
that aim to model the multimodal signals from more fundamental building blocks, 
such as neuronal activity and biophysical forward models.

1.4.1  Spatial Coregistration

Cross-validation of measurements is one of the most common motivations for mul-
timodal imaging. In this approach, information on the distribution of brain activity 
involved in a given process obtained independently from a number of modalities is 
compared, usually with the aim of assessing the value of a new localising technique. 
For example, the localising information provided by EEG-correlated fMRI regard-
ing the generators of interictal spikes or event-related potentials has been compared 
to EEG source reconstruction, thus potentially validating the results from the former 
technique; however, there are many reasons for a possible lack of perfect spatial 
concordance, and the very notion of a gold standard is debatable in this specific 
context (Lemieux et al. 2001a, b; Benar et al. 2003; Mulert et al. 2004) (see Table 1.5 
for other examples).

The comparison of two independent measures of brain activity at a given loca-
tion can increase our understanding of the mechanisms that give rise to the signals. 
For example, the mechanisms that lead to T2*-weighted fMRI during functional 
activation (Kwong et al. 1992; Ogawa et al. 1992; Frahm et al. 1992; Bandettini 
et al. 1992) were studied by comparing fMRI and NIRS, which rely on the differen-
tial light absorption of deoxy-Hb. It had been previously shown that the T2*-
weighted MRI signal can change with haemoglobin oxygenation [the 
blood-oxygen-level-dependent (BOLD) effect; Ogawa et  al. 1990; Turner et  al. 
1991]; however, there are many other determinants of the T2* signal. Studies 

1 Principles of Multimodal Functional Imaging and Data Integration



10

Table 1.6 Examples of neurophysiological parameters studied using multimodal comparisons

Parameters measured 
for validation

Simultaneous combination of 
methods References

Deoxy-Hb fMRI and NIRS Kleinschmidt et al. (1996), Kida et al. 
(1996), Punwani et al. (1998), 
Toronov et al. (2001), Mehagnoul- 
Schipper et al. (2002), Strangman 
et al. (2002)

Cerebral blood 
flow

[15O]–PET and ASL–MRI Fan et al. (2017)

Cerebral oxygen 
extraction fraction 
(OEF)

[15O]–PET and quantitative 
susceptibility mapping plus 
quantitative BOLD 
(QSM + qBOLD)

Cho et al. (2021)

Cerebral blood 
flow

Bolus track MRI and bolus 
track optical imaging

Feasible in principle, not yet done

Cerebral blood 
flow

Bolus track optical imaging 
(NIRS) and transcranial 
Doppler sonography (TCD)

Klaessens et al. (2005)

Corpuscular blood 
volume (total 
haemoglobin)

CO–PET and NIRS Not yet done, although feasible in 
principle

Table 1.5 Examples of cross-validation of EEG–MEG source estimation using tomographic 
functional brain imaging

Source estimation 
approach

Imaging validation 
method References

MEG dipole source 
analysis

fMRI, PET, SPECT Walter et al. (1992), Stefan et al. 
(1992)

EEG dipole source 
analysis

fMRI, PET Menon et al. (1997), Grimm et al. 
(1998)

MEG linear source 
estimates

Not yet done

EEG linear source 
estimates

fMRI, PET Gamma et al. (2004), Mulert et al. 
(2004)

comparing the results of the two methods confirmed that T2*-weighted fMRI signal 
increases during functional activation correlate with local drops in [deoxy-Hb] 
(Kleinschmidt et  al. 1996; Kida et  al. 1996; Punwani et  al. 1998; Toronov et  al. 
2001; Mehagnoul-Schipper et al. 2002; Strangman et al. 2002). Other examples of 
multimodal comparisons are given in Table 1.6.

1.4.2  Asymmetric Integration

A more advanced form of multimodal data integration than spatial comparison for 
validation or interpretation purposes is the use of data from one modality in the 
analysis of data from other modalities. This can be either spatially or temporally 
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based. In the spatial domain, activated brain regions identified using PET or fMRI 
have been used as constraints or priors for the solution of the EEG–MEG inverse 
problem (Heinze et al. 1994; Liu et al. 1998; Daunizeau et al. 2006; Stancak et al. 
2005; Babiloni et al. 2003).

Asymmetric integration in the temporal domain is commonly performed for the 
analysis of haemodynamic correlates of brain activity captured on EEG and in par-
ticular in simultaneous acquisitions. For example, new insights into the relationship 
between neuronal activity and BOLD have been obtained by building models of 
BOLD change incorporating specific aspects of evoked responses measured at the 
single-trial level in simultaneous EEG and fMRI acquisitions (Debener et al. 2005; 
Eichele et al. 2005; Mulert et al. 2008). A further variant is the assessment of evoked 
brain activity at different baseline states of the brain [e.g. sleep states (Portas et al. 
2000), vigilance, attention, etc.], with the latter being identified by one method 
(often EEG) and the former either by the other method (e.g. fMRI) or again by a 
combination of the two (EEG–fMRI).

EEG usually provides the time or state marker in imaging studies of spontane-
ous brain activity: this is the EEG-derived hypothesis-driven approach to fMRI 
analysis. The paradigmatic example for the latter is the study of the haemody-
namic correlates of epileptic spikes recorded noninvasively (Warach et al. 1996; 
Lemieux et  al. 2001a, b; Krakow et  al. 2001a, b) or with intracranial EEG 
(Sharma et al. 2019). Again, one dataset (EEG) is used as a predictor of vascular 
changes in fMRI, PET or NIRS data. A similar situation is the assessment of 
vascular correlates of spontaneous changes in EEG rhythms (Goldman et  al. 
2002; Laufs et al. 2003; Moosmann et al. 2003) or of certain EEG features (e.g. 
slow waves during light sleep) of sleep (Betta et al. 2021). Examples are given in 
Table 1.7.

Table 1.7 Examples of multimodal imaging that follows the principles of “adding complemen-
tary information” and “identifying and measuring”

Neurophysiological event Measurement parameters
Combination 
of methods References

Event-related brain 
activity under peripheral 
stimulation

Evoked potential (EEG), 
BOLD (fMRI)

EEG, MRI Bonmassar et al. 
(1999, 2001), Allen 
et al. (2000), 
Goldman et al. 
(2000), Mulert 
et al. (2004, 2008), 
Becker et al. (2005)

Evoked potential (EEG), 
BOLD

EEG, NIRS Obrig et al. (2002), 
Horovitz and Gore 
(2004)

Variations in event- 
related brain activity 
under peripheral 
stimulation

Evoked potential (EEG), 
BOLD (fMRI)

EEG, MRI Debener et al. 
(2005), Eichele 
et al. (2005), Benar 
et al. (2007), 
Mulert et al. (2008)

(continued)
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Table 1.7 (continued)

Neurophysiological event Measurement parameters
Combination 
of methods References

Alpha rhythms 
(background)

Occipital alpha rhythm 
(EEG), BOLD (fMRI)

EEG, MRI Goldman et al. 
(2002), Moosmann 
et al. (2003), Laufs 
et al. (2003)

Occipital alpha rhythm 
(EEG), deoxy-Hb 
concentration changes 
(NIRS)

EEG, NIRS Moosmann et al. 
(2003)

Occipital alpha rhythm 
(EEG), cerebral blood flow 
(FDG–PET)

EEG, PET Sheridan et al. 
(1988)

Occipital alpha rhythm 
(EEG), cerebral blood flow 
(H2O–PET)

EEG, PET Sadato et al. (1998)

Epileptic brain activity Epileptic spikes (EEG), 
BOLD (fMRI)

EEG, MRI Warach et al. 
(1996), Lemieux 
et al. (2001a, b), 
Krakow et al. 
(2001a, b)

Epileptic spikes (EEG), 
cerebral blood flow 
changes (flow-sensitive 
MRI)

EEG, MRI Warach et al. 
(1994), Hamandi 
et al. (2008), 
Carmichael et al. 
(2008)

Epileptic spikes (EEG), 
cerebral blood flow 
changes (flow-sensitive 
MRI), BOLD (fMRI)

EEG, MRI Hamandi et al. 
(2008), Carmichael 
et al. (2008)

Generalised spike-wave 
discharges (GSWD), 
BOLD (fMRI)
Epileptic spikes (EEG), 
haemoglobin oxygenation 
changes (NIRS)

EEG, fMRI
NIRS, EEG

Pugnaghi et al. 
(2014)
Buchheim et al. 
(2004)

Epileptic spikes (EEG), 
glucose metabolism 
(FDG–PET)
Epileptic spikes 
(intracranial EEG), BOLD 
(fMRI)

EEG, PET
icEEG, fMRI

Barrington et al. 
(1998)
Sharma et al. 
(2019)

Sharp waves
Evoked brain activity 
dependent on sleep state

Epileptic spikes 
(intracranial EEG), BOLD 
(fMRI)
Sleep stage (EEG), evoked 
potential (EEG), BOLD 
(fMRI)

icEEG, MRI
EEG, MRI

Murta et al. (2016)
Portas et al. (2000)

Pericentral alpha and beta 
rhythms

Pericentral rhythms (EEG), 
BOLD (fMRI)

EEG, fMRI Ritter et al. (2009)
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Table 1.7 (continued)

Neurophysiological event Measurement parameters
Combination 
of methods References

Gamma band oscillation 40 Hz oscillation (EEG), 
BOLD (fMRI)

EEG, fMRI Foucher et al. 
(2003)

Sleep-related EEG 
patterns

Sleep spindles and 
K-complexes, BOLD 
(fMRI)
0.5–2 Hz slow waves 
during NREM sleep, 
BOLD (fMRI)
CMRO2 at transition from 
wakefulness to sleep
EEG synchronisation 
phases of sleep instability, 
BOLD (fMRI)

EEG, fMRI Caporro et al. 
(2012)
Betta et al. (2021)
Caporale et al. 
(2021)
Kokkinos et al. 
(2019)

Bursts of action 
potentials (spike bursts)

High-frequency 
oscillations (600 Hz) in 
EEG, BOLD (fMRI)

High- 
frequency 
EEG and 
fMRI

Ritter et al. (2008)

Evoked potentials (EEG) 
and evoked magnetic 
fields (MEG) (orthogonal 
to each other), both 
reflecting synaptic 
activity

MEG and 
EEG

Siedenberg et al. 
(1996)

Spreading depression Cell swelling assessed by 
DWI and DC–EEG

MRI, EEG Busch et al. (1995)

Cell swelling assessed by 
DC–EEG and changes in 
light scattering and 
haemoglobin oxygenation 
assessed by NIRS

MRI, NIRS Kohl et al. (1998)

Slow neuronal events and 
vascular response
Phase-amplitude 
coupling

Slow neuronal 
depolarisation changes 
assessed by DC–MEG; 
changes in haemoglobin 
oxygenation assessed by 
NIRS
Motor task-related 
electrophysiological 
rhythmic activities 
(intracranial EEG) and 
BOLD (fMRI)

NIRS, MEG
icEEG, MRI

Mackert et al. 
(2004, 2008)
Murta et al. (2017)

1.4.3  Symmetrical Data Fusion

The bias intrinsic to asymmetric data analysis strategies may reflect a preference 
on the part of the investigator, due to greater familiarity with, or better characteri-
sation of (e.g. due to historical precedence), one of the signals of interest. As the 
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relationship between signals from different modalities and the underlying genera-
tive mechanisms becomes better understood, this form of bias may diminish, and 
more symmetric data integration strategies can emerge. For example, heuristic 
models of the relationship between EEG and BOLD can be integrated into joint 
source estimation schemes (Daunizeau et  al. 2007; Brookings et  al. 2009; Tan 
et al. 2015).

Some investigators have proposed a more fundamental approach to data integra-
tion aimed at creating biophysical models that relate the data from each modality 
within a unified framework in order to overcome current limitations in the interpre-
tation of multimodal data and ultimately relate observations to the fundamental 
brain mechanisms. For example, while overlaying PET or NIRS activation maps 
with structural MRI can give an impression of a precise relationship between brain 
activity and structure, our understanding is ultimately limited by the lack of a proper 
model relating the two. This is also the case for the superposition of EP time courses 
at the millisecond time scale over fMRI activation sites that spatially coincide with 
electrical or magnetic source estimates. The spatial integration of EEG and fMRI is 
a much more complex issue than simply one offering another (independent) dimen-
sion to the other.

Data fusion at this neurophysiological level will require new computational 
models that link neuronal activity to haemodynamic, electrical, magnetic and other 
observables. This fundamental development represents the next frontier in neuroim-
aging and will be discussed in Chaps. 25, 28 and 29.

1.5  Summary

Multimodal brain imaging is a key tool for gaining a comprehensive understanding 
of brain activity, since any single imaging method is limited to observing a limited 
aspect of brain function. We have noted that the validation of one imaging method 
using another has been a common reason for employing multimodal approaches 
over the last few years and that various combinations of imaging methods may be 
useful, depending on the specific research questions that are being asked. However, 
the combination of information about the electrical activity of the brain with data 
on the corresponding haemodynamic changes, which offers superior spatial infor-
mation, represents one of the most powerful examples of a multimodal imaging 
technique and is one that is capable of providing new insights into brain function. 
While data acquired in separate sessions can be appropriate for some research 
questions, only simultaneous EEG–fMRI offers the opportunity to relate both 
modalities to actual brain events, an issue that is relevant to not only epilepsy but 
also numerous research questions in basic and cognitive neuroscience. In these 
cases, we believe that the extra effort required to deal with the specific practical 
problems of such a combination is easily outweighed by the potential new insights 
into human brain function that it offers. We hope to demonstrate this in the rest of 
this book.
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2EEG: Origin and Measurement

Fernando Lopes da Silva

2.1  Introduction to the Electrophysiology of the Brain

The existence of the electrical activity of the brain (i.e. the electroencephalogram or 
EEG) was discovered more than a century ago by Caton (1875). After the demon-
stration that the EEG could be recorded from the human scalp by Berger in the 
1920s (Berger 1929), it made a slow start before it became accepted as a method of 
analysis of brain functions in health and disease. It is interesting to note that this 
acceptance came only after the demonstration by Adrian and Mathews (1934) that 
the EEG, namely, the alpha rhythm, was likely generated in the occipital lobes in 
man and was not artefactual. However, the neuronal sources of the alpha rhythm 
remained undefined until the 1970s, when we demonstrated, in dog, that the alpha 
rhythm is generated by a dipole layer centred in layers IV and V of the visual cortex 
(Lopes da Silva and Storm van Leeuwen 1977). It may be not surprising that the 
mechanisms of generation and the functional significance of the EEG remained 
controversial for a relatively long time considering the complexity of the underlying 
systems of neuronal generators on the one hand and the rather involved transfer of 
signals from the cortical surface to the scalp due to the topological and electrical 
properties of the volume conductor (brain, cerebrospinal fluid, skull, scalp) on 
the other.

Fernando Lopes da Silva passed away before publication of this work was completed (Michel 2019).
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The EEG consists of the summed electrical activities of populations of neurons, 
with a modest contribution from glial cells. The neurons are excitable cells with 
characteristic intrinsic electrical properties, and their activity produces electrical 
and magnetic fields. These fields may be recorded by means of electrodes at a short 
distance from the sources (the local EEG or local field potentials, LFPs) or from the 
cortical surface (the electrocorticogram or ECoG), or at longer distances, even from 
the scalp (i.e. the EEG, in the most common sense). The associated MEG is usually 
recorded via sensors, which are placed at short distances around the scalp and are 
highly sensitive to changes of the very weak neuronal magnetic fields.

2.2  Origin of EEG and MEG: Cellular Sources

Neurons generate time-varying electrical currents when activated. These are ionic 
currents generated at the level of cellular membranes; in other words, they consist 
of transmembrane currents. We can distinguish two main forms of neuronal activa-
tion (Lopes da Silva and van Rotterdam 2005; Lopes da Silva 2002; Nunez 1995): 
the fast depolarisation of the neuronal membranes, which results in the action 
potential mediated by sodium and potassium voltage-dependent ionic conductances 
gNa and gK (DR), and the slower changes in membrane potential due to synaptic 
activation, mediated by several neurotransmitter systems. The action potential con-
sists of a rapid change in membrane potential such that the intracellular potential 
suddenly jumps from negative to positive and quickly (in 1 or 2 ms) returns to the 
resting intracellular negativity. In this way, an impulse is generated that has the 
remarkable property of propagating along axons and dendrites without loss of 
amplitude. Regarding the slower postsynaptic potentials, two main kinds have to be 
distinguished, the excitatory (EPSPs) and the inhibitory (IPSPs) potentials, which 
depend on the kind of neurotransmitter and corresponding receptor and their inter-
actions with specific ionic channels and/or intracellular second messengers.

Generally speaking, at the level of a synapse in the case of the EPSP, the trans-
membrane current is carried by positive ions inwards (e.g. Na+). In the case of the 
IPSP, it is carried by negative ions inwards (e.g. Cl−) or positive ions (e.g. K+) out-
wards. Thus, the positive electric current is directed to the extracellular medium in 
the case of an EPSP and is directed from the inside of the neuron to the outside in 
the case of an IPSP (Fig. 2.1).

As a consequence of these currents, an active sink is generated in the extracel-
lular medium at the level of an excitatory synapse, whereas in the case of an inhibi-
tory synapse, an active source occurs. The flows of these compensating extracellularly 
currents depend on the electrical properties of the local tissue. Glial cells occupy an 
important part of the space between neurons and are coupled to one another by gap 
junctions. The conductivity of the latter is very sensitive to changes in pH and extra-
cellular K+ and Ca2+ and can therefore be modulated under various physiological 
and pathological conditions (Huang et al. 2005). Furthermore, the volume of the 
extracellular space may change under various physiological and pathological condi-
tions, which will also be reflected in changes in tissue conductivity.
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Fig. 2.1 Schematic representation of four typical cases of cortical generators of LFPs, elicited in 
one case by inhibitory (a) and in the other three (b, c, d) by excitatory synaptic activity, at different 
sites along the soma-dendritic membrane of a pyramidal cell with soma in layer V. The symbols 
representing excitatory and inhibitory synapses and sinks (−) and sources (+) are indicated in the 
inset on the right-hand side. The direction of extracellular currents is indicated by the curved 
arrows. (a) Inhibitory synaptic activity (note the extracellular current pointing away from the syn-
apse) causing an active source at the level of layers IV/V and a more superficial sink in layers II/
III. At the cortical surface, this would result in a negative-going deflection. Note that the interneu-
ron (circle) represents a stellate cell that would generate an approximately closed field and would 
not generate a field potential measurable far from its source. (b) Excitatory synaptic activity on the 
apical dendrite of a pyramidal cell at the level of layers III/IV causing an extracellular active sink 
in the middle of the cortex and a passive source in superficial layers. This configuration would lead 
to a positive-going deflection at the cortical surface. (c) Excitatory synaptic activity at the level of 
the distal apical dendrite causing an active sink in superficial layers and a deeper-lying passive 
source; this would result in a negative-going deflection at the cortical surface. (d) Excitatory syn-
aptic activation near the soma causes a local sink and a source in the middle cortical layers; this 
configuration would lead to a positive-going potential, but it would be relatively weak (smaller) 
due to the distance from the source to the cortical surface [Own scheme, Adapted with permission 
from Amzica and Lopes da Silva (2018). In: Schomer DL, Lopes da Silva FH, eds. Niedermeyer’s 
Electroencephalography: Basic Principles, Clinical Applications and Related Fields. 7th ed. 
Oxford University Press 2018: pp 20–62]

Since there is no accumulation of charge anywhere in the medium, the trans-
membrane currents that flow in or out of the neuron at the active synaptic sites are 
compensated by currents that flow in the opposite direction elsewhere along the 
neuronal membrane. Consequently, in the case of an EPSP, besides the active sink 
at the level of the synapse, there are distributed passive sources along the soma- 
dendritic membrane. The opposite occurs in the case of an IPSP: besides the active 
source at the level of the synapse, distributed passive sinks are formed along the 
soma-dendritic membrane; this is illustrated in a very simplified form in Fig. 2.1.

Therefore, we can state that synaptic activity at a given site of the soma-dendritic 
membrane of a neuron causes a sink–source configuration in the extracellular 
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medium around the neurons. In the context of the present discussion, we have to 
take into consideration the geometry of the neuronal sources of electrical activity. 
Indeed, the neurons that mainly contribute to the MEG or the EEG are those that 
form “open fields” according to the classic description of Lorente de Nó (1947), i.e. 
the pyramidal neurons of the cortex, since the latter are arranged in palisades with 
the apical dendrites aligned perpendicularly to the cortical surface. Pyramidal neu-
rons, when activated with a certain degree of synchrony, generate coherent electric/
magnetic fields. In this way, these neurons are akin to “current dipoles”, the activity 
of which can be detected by electrodes placed at relatively small distances. This 
description summarises the classic view, but more recent detailed studies by Riera 
et al. (2012) showed that extracellular potentials recorded in the rat barrel cortex do 
not sum to zero over the volume of a neocortical column, as one would expect 
according to the general description presented above. This implies that besides 
ohmic or resistive currents, currents due to ion diffusion should also be taken into 
account; in this way also cortical current source monopoles may transiently coexist 
along with dipolar sources at the microscopic scale. Monopoles, however, do not 
generate magnetic fields and are thus not seen in the MEG, contrary to the case of 
the EEG.  This property should be considered when comparing simultaneously 
recorded EEG and MEG, particularly of evoked field potentials. These observations 
have been substantiated by modelling studies by Halnes et al. (2015) and Cabo and 
Riera (2014).

In quantitative terms, our current level of knowledge about the neuronal sources 
of EEG/MEG signals has benefited a great deal from recent model studies combin-
ing in vitro recordings and computational simulations, such as those proposed by 
the group of Yoshio Okada. These authors adapted the detailed compartmental mod-
els of Traub et al. (1994) and Traub and Miles (1991) and applied them to hippo-
campal slices kept in vitro and also to the neocortex. Measured electric and magnetic 
activities were compared with the theoretical results of a computer model. The 
study of Murakami and Okada (2006) in the neocortex is particularly relevant to the 
present discussion because it has yielded some results that may help interpret EEG 
and MEG recordings from the scalp. These authors made a computer model, based 
on that proposed by Mainen and Sejnowski (1996), of the four main types of corti-
cal neurons, taking into account their realistic shapes. Each neuron is described as a 
3D compartmental model, where each compartment has its typical geometric 
dimensions, passive electrical properties (membrane capacitance and resistance, 
intracellular resistance) and five voltage-dependent ionic conductances; the quanti-
tative values of these variables were taken from the literature. For example, the 
maximal sodium conductance gNa was assumed to be 40 pS/μm2 based on the mea-
surements of Stuart and Sakman (1994), but several values were used in a trial-and- 
error way to reproduce experimental results. Neuronal activity was obtained by 
stimulating each neuron with an intracellular current injected at the soma. The intra-
cellular current is represented by a vector quantity Q.

According to this model, the overall magnitude of Q for the activity of one pyra-
midal neuron of layers V and II/III is on the order of 0.29–0.90 pA, a value that is 
of the same order of magnitude as that estimated for hippocampal pyramidal 
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neurons (Okada et al. 1997). Murakami and Okada (2006) point out that, assuming 
a Q of 0.2 pA per cortical pyramidal neuron, a population of 50,000 synchronously 
active cells would generate a field with a magnitude of 10 nA, which corresponds 
precisely to the value measurable from the human cortex using the MEG according 
to Hämäläinen et al. (1993). According to the latter, the average value of the volume 
current density of the cerebral cortex is 175 nA/mm2 (=nA mm/mm3) for normal 
background activity. Assuming a cortical thickness of 3 mm, the average value of 
the corresponding surface current density is 525 nA/mm, and the average value of 
the dipole moment mi(t) associated with a neuronal population i of surface si is 
M = si × 525 (nA mm).

Note that the quantitative description discussed above is valid assuming that the 
active cells are synchronously active. In many circumstances, however, the degree 
of synchrony, or correlation between different units, within a neuronal population 
can vary considerably. This implies that the degree of correlation in the population 
has a major influence on the size of LFPs measured at a distance. The contribution 
of elementary PSPS to LFPs recorded at a distance from the sources is, on average, 
more substantial than that of action potentials or spikes, since the former tend to be 
much more strongly correlated. Interestingly, modelling studies by Reimann et al. 
(2013) revealed that active currents (i.e. associated with spikes), not synaptic ones, 
can dominate the generation of LFPs, in the high-frequency range. This effect is 
stronger if the degree of correlation between the spikes within a neuronal population 
is large, namely, if it is mediated by “gap junctions” (also termed electrical syn-
apses). Thus a local field may gather contributions both of low-frequency activities 
comprising postsynaptic LFPs and passive currents (dominant up to ±80 Hz) and 
higher-frequency activities that include, among other high-frequency oscillations 
(HFOs), as ripple (80–250 Hz) and fast-ripple (>250 Hz) oscillations.

We will return to these concepts when discussing volume conduction and source 
estimation.

2.3  Main Types of Rhythmical EEG/MEG Activities: 
Phenomenology and Functional Significance

We do not consider all different types of rhythmical activities that can be recorded 
from the brain here, only some prominent activities that are frequently the object of 
neurocognitive studies, namely, sleep rhythms, activities in the theta and alpha fre-
quency range and beta/gamma rhythms. A comprehensive, erudite and thoughtful 
analysis of these and other brain rhythms can be found in Buzsáki’s (2006) monog-
raphy Rhythms of the Brain.

2.3.1  Sleep EEG Phenomena

In the neurophysiology of sleep, two classic EEG phenomena have been estab-
lished: the spindles or waves between 7 and 14  Hz, also called sleep or sigma 
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spindles, which appear at sleep onset, and the delta waves (1–4 Hz), which are para-
digmatic of deeper stages of sleep. Steriade and his group in Quebec described 
another very slow oscillation (0.6–1 Hz) in animals that is able to modulate the 
occurrence of different typical EEG sleep events, such as delta waves, sleep spin-
dles and even short, high-frequency bursts (Amzica and Steriade 1998).

The very slow oscillation is generated within the cortex. All major classes of 
neurons in the cerebral cortex display this very slow oscillation. In the EEG one can 
distinguish a depth-positive wave (surface-negative) followed by a sharper depth- 
negative wave (surface-positive); during the depth-positive EEG wave, cortical neu-
rons are hyperpolarised (corresponding to the deep sources shown in Fig.  2.1a), 
whereas during the sharp depth-negative EEG deflection, cortical neurons are depo-
larised (corresponding to the deep sinks shown in Fig.  2.1b). The synchronous 
activity between all types of cortical neurons and EEG relies on the integrity of 
intracortical synaptic connections. Blocking axonal transmission between two cor-
tical sites through local micro-injections of lidocaine, the very slow oscillation sur-
vives at both locations and conserves some degree of synchronisation; this suggests 
that, besides direct intracortical connections, other connections, in particular 
cortico- thalamo-cortical pathways, as well as networks of gap junctions, might con-
tribute to synchronise very slow oscillations across the cortex. For a more detailed 
account of the cellular and membrane processes underlying the very slow oscilla-
tion, see Amzica and Lopes da Silva (2018).

This very slow oscillation has now also been demonstrated in the human EEG 
and in the MEG, as indicated above. One of the functional correlates of the very 
slow cortical oscillation is the fact that, at the EEG level, each sequence of depola-
rising–hyperpolarising episodes within an oscillatory cycle corresponds to a wave-
form called K-complex.

The sleep spindles are generated in thalamo-cortical circuits and result from the 
interplay between intrinsic membrane properties of the thalamo-cortical relay 
(TCR) neurons and of the GABAergic neurons of the reticular nucleus and the prop-
erties of the circuits to which these neurons belong. It is clear that the spindles are a 
collective property of the neuronal populations. Experimental evidence has demon-
strated that sleep spindle oscillations are generated in the thalamus since they can be 
recorded in this brain area after decortication and high brain stem transection. 
However, the very slow rhythm (0.6–1 Hz) is generated intracortically, since it sur-
vives thalamic lesions, but it is disrupted by intracortical lesions. Interestingly, we 
may note that the rhythmicity of the very slow oscillation appears to be reflected in 
that of the typical K-complexes of human EEG during non-REM sleep (Amzica and 
Steriade 1997).

One question is: how are these oscillations controlled by modulating systems? It 
is known that sleep spindles are under brain stem control. It is a well-known neuro-
physiological phenomenon that electrical stimulation of the brain stem can block 
thalamo-cortical oscillations, causing “EEG desynchronisation”, as shown in clas-
sic studies by Moruzzi and Magoun (1949). This desynchronisation is caused 
mainly by the activation of cholinergic inputs arising from the mesopontine cholin-
ergic nuclei, namely, the pedunculopontine tegmental (PPT) and the laterodorsal 
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tegmental (LTD) areas. Indeed, both the reticular nucleus and the TCR neurons 
receive cholinergic synapses. The extensive physiological analysis by Sun et  al. 
(2013) of the influence of cholinergic inputs on the neurons of the reticular nucleus 
showed that cholinergic activation of these neurons elicits a biphasic excitatory–
inhibitory response mediated by activation of postsynaptic nicotinic (nAChRs) and 
muscarinic (mAChRs) receptors, respectively. In this way brief trains of cholinergic 
inputs to these neurons can cause a transient depolarisation followed by a long- 
lasting hyperpolarisation; in contrast, cholinergic activation causes depolarisation 
of TCR neurons due to the suppression of various potassium currents (Curró Dossi 
et al. 1991); these distinct effects of brain stem cholinergic inputs on thalamic neu-
rons are noteworthy. Therefore the result in vivo of the activation of cholinergic 
inputs to the thalamus is complex. Nonetheless Curró Dossi et al. (1991) state that 
a general effect of mesopontine cholinergic activation is EEG desynchronisation. In 
addition, the reticular nucleus receives also inputs from the basal forebrain that may 
be GABAergic and can also exert a strong inhibition on the reticular neurons, lead-
ing to the subsequent suppression of spindle oscillations. In addition, monoaminer-
gic inputs from the brain stem, namely, those arising at the mesopontine junction 
(i.e. from the noradrenergic neurons of the locus coeruleus and the serotoninergic 
neurons of the dorsal raphe nuclei), also modulate the rhythmic activities of the 
forebrain. These neuronal systems have only a weak thalamic projection, but they 
have a diffuse projection to the cortex. Metabotropic glutamate receptors also 
appear to exert a modulating influence on the activation of thalamic circuits by 
descending cortico-thalamic systems.

Because this point is often misunderstood, we should emphasise that slow-wave 
sleep, characterised by typical EEG delta activity, does not correspond to a state 
where cortical neurons are inactive. On the contrary, in this sleep state, cortical 
neurons can display mean rates of firing similar to those that they show during 
wakefulness and/or REM sleep. Regarding the neuronal firing patterns, the main 
difference between delta sleep on the one hand and wakefulness and REM sleep on 
the other is that, in the former, the neurons tend to display rather long bursts of 
spikes with relatively prolonged interburst periods of silence, whereas in the latter, 
the firing pattern is more continuous. The functional meaning of these peculiar fir-
ing patterns of delta sleep has not yet been unravelled.

In general terms we can state that EEG signals co-vary strongly with different 
levels of arousal and consciousness. The changes in EEG with increasing levels of 
anaesthesia are typical examples of this property.

2.3.2  Theta Rhythms

Theta activity (frequency range 4–7.5 Hz) is most conspicuous in limbic brain areas 
in animals (Buzsáki 2006). The presence of theta rhythms in humans has been a 
matter of controversy, but this activity has been clearly recorded in the hippocampus 
of epileptic patients with indwelling electrodes (Arnolds et al. 1980; Kahana et al. 
1999; Ekstrom et  al. 2005), or by way of mesio-temporal corticography with 
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foramen ovale electrodes (Bódizs et al. 2001), and also using magnetoencephalog-
raphy (MEG) in normal subjects (Tesche and Karhu 2000). In all these studies, 
human hippocampal theta rhythm was studied under specific behavioural conditions.

In this context the findings of Cornwell et al. (2008) who reported hippocampal 
and parahippocampal theta oscillations during a spatial navigation task (virtual real-
ity Morris water maze), particularly during goal-directed navigation relative to aim-
less movements, using a whole-head 275-channel MEG system in normal subjects, 
are noteworthy. With respect to the neuronal sources of theta rhythmic activities in 
limbic structures, mainly in the hippocampus and for a general discussion of cellu-
lar processes underlying theta oscillations, see Amzica and Lopes da Silva (2018).

The normal theta activity should not be confused with pathological theta waves, 
described as a slowing down of alpha activity in human EEG. The presence of theta 
frequency activity in posterior cortical areas in waking EEG of adults is abnormal 
and is indicative of various pathological conditions. Nonetheless EEG activity 
within the theta frequency range may be clearly seen in the EEG of normal infants 
and children and in adults during drowsiness (Krishnan et al. 2018).

In addition, a midline theta rhythm (4–7 Hz) has been described with maximum 
at Cz in scalp EEG recordings, associated with cognitive tasks, although the cortical 
sources of this rhythmic activity have not yet been clearly demonstrated. A specially 
interesting aspect is that theta activity often does not appear in isolation; indeed 
theta oscillations can modulate gamma oscillations by a process of cross-frequency 
phase coupling (Lopes da Silva 2013). This has been specially put in evidence by 
Jensen and Colgin (2007) who proposed that oscillatory coding manifest as gamma- 
band activity (30–150 Hz) coupled to theta oscillations (5–8 Hz) likely plays a role 
in neuronal information processing, particularly in the case of memory tasks.

2.3.3  Alpha Rhythms of Neocortex and Thalamus

Alpha rhythms recorded from the occipital areas occur in relaxed awake animals 
and show a typical reactivity to closure of the eyes. Background illumination can 
result in decreased alpha rhythm amplitude (Paskewitz and Orne 1973; Cram et al. 
1977), while investigations of the suspected relationship between heart rate and 
alpha have not led to any firm conclusions (Surwillo 1965).

Although the frequency range of alpha rhythms overlaps that of sleep spindles, 
these two types of phenomena differ in a number of aspects. Namely, the behav-
ioural states at which these types of oscillations occur are quite different, and their 
distributions over the thalamus and cortex also differ considerably.

The basic mechanisms responsible for alpha oscillations at the cellular level have 
not been described in detail. The reason for this is the inherent difficulty of studying 
a phenomenon that—by definition—occurs in the state of relaxed wakefulness, 
under conditions where measurement of the underlying membrane currents is not a 
simple task, since this cannot be done under anaesthesia. To overcome this diffi-
culty, some researchers have assumed that spindles occurring under barbiturate 
anaesthesia would be analogous to alpha rhythms (Andersen and Anderson 1968). 
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This analogy, however, was challenged on experimental grounds because a com-
parative investigation of alpha rhythms obtained during restful wakefulness upon 
closure of the eyes, and spindles induced by barbiturates, recorded from the same 
sites over the visual cortex and lateral geniculate nuclei in dog, presented differ-
ences in frequency, spindle duration, topographic distribution and amount of coher-
ence among different cortical and thalamic sites (Lopes da Silva et  al. 1973). 
Investigations combining multiple electrode arrays placed on the cortical surface, 
intracortical depth profiles and intrathalamic recordings from several thalamic 
nuclei unravelled a number of elementary properties of alpha rhythms (Lopes da 
Silva 1991):

• In the visual cortex, alpha waves are generated by a current dipole layer centred 
at the level of the somata and basal dendrites of the pyramidal neurons of layers 
IV and V.

• The coherence between alpha waves recorded from neighbouring cortical sites is 
greater than any thalamo-cortical coherence.

• The influence of alpha signals recorded from the pulvinar nucleus of the thala-
mus on cortical rhythms can be conspicuously large, depending on the cortical 
area, but intracortical factors play also a significant role in establishing cortical 
domains of alpha activity.

These experimental findings led to the conclusion that, in addition to the influ-
ence of some thalamic nuclei (mainly the pulvinar) on the generation of alpha 
rhythms in the visual cortex, there are systems of surface-parallel intracortical con-
nections that are responsible for the propagation of alpha rhythms over the cortex. 
These oscillations appear to be generated in small patches of the cortex that behave 
as epicentres, from which they propagate at relatively slow velocities, about 
0.3 cm/s. This type of spatial propagation has been confirmed, in general terms, by 
experimental and model studies. A comprehensive study of alpha rhythms in the 
visual cortex of the cat (Rougeul-Buser and Buser 1997; Buser and Rougeul-Buser 
2005) showed characteristics corresponding closely to those of alpha rhythms in 
man and in dog. It was found that this rhythmic activity was localised to a limited 
part of the primary visual cortex area 18 and the border between 17 and 18.

These early findings obtained in dog and cat were further extended by experi-
mental studies in awake monkey by Bollimunta et al. (2008, 2011) who using fine 
microelectrode arrays implanted across the visual cortical areas V2 and V4 and the 
inferior temporal cortex combining current source density analysis (CSD) and mul-
tiunit activity (MUA), identified intracortical alpha current generators, with the 
infragranular neurons (layer V) acting as primary local generator. The analysis of 
the coherence between CSD sinks, and local MUA in infragranular and granular 
layers showed that these cells are depolarised and tend to generate action potentials 
during the local current sinks; however, at the supragranular layer, the coherence 
between CSD sinks and MUA was poor, suggesting that the cells of this layer are 
inhibited, possibly due to inhibitory inputs from layer V interneurons that innervate 
superficial pyramidal cells.
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These properties were reanalysed also in the visual cortex of awake monkeys 
during spontaneous activity by van Kerkoerle et al. (2014), who reported that alpha 
waves are indeed initiated in infragranular layer V but also in supragranular layers I 
and II; alpha activity both from layer V and from layers I and II showed phase 
advance with respect to activity in layer IV. A subsequent study by Haegens et al. 
(2015), also using CSD and MUA in awake monkey, described alpha current gen-
erators in the supragranular, granular and infragranular layers. These authors found 
that the strongest alpha LFP power, however, was encountered in deep layers.

In this context, more insights into the sources of alpha rhythms in humans were 
obtained using EEG and MEG recordings integrated with anatomical information 
obtained from magnetic resonance images (MRI), as shown in Fig. 2.2.

Different sources of alpha rhythms were found to be mainly concentrated in the 
region around the calcarine fissure, with most sources occurring within 2 cm from 
the midline. In addition to the alpha rhythms of the visual cortex, rhythmic activities 
with about the same frequency range (in man, 8–13 Hz; in cat, 12–15 Hz) have been 
shown to occur in other cortical areas, namely, in the somatosensory cortex (SI areas 
1, 2 and 3). These activities are known as “rolandic mu rhythms” or “wicket rhythms” 
(named after the appearance of the EEG records on the scalp in man) and have a 
typical reactivity, since they appear when the subject is at rest and are blocked by 
movement. The mu rhythm is particularly pronounced in the hand area of the 
somatosensory cortex, and it reacts typically to the movement of closing the fists. In 
the cat, there is no significant coherence between the mu rhythm of the SI cortex and 
the alpha rhythm of the visual cortex, which supports the general idea that these two 
types of rhythms are independent. Furthermore, mu rhythms of the SI area also dif-
fer from the alpha rhythms of the visual cortex recorded in the same animal, in that 
the former have systematically higher frequencies than the latter, the difference 
being about 2 Hz. Mu rhythms were also recorded in thalamic nuclei, namely, in the 
ventroposterior lateral nucleus. The mu rhythm has also been identified in MEG 
recordings over the rolandic sulcus, particularly over the somatomotor hand area. In 
addition, another spontaneous MEG activity, the so-called tau rhythm, was detected 
over the auditory cortex. This rhythmic activity was reduced by sound stimuli. This 
MEG tau rhythm, which was first described by the group of Hari (Hari et al. 1997; 
Lehtelä et al. 1997), is apparently similar to an EEG rhythm that was found using 
epidural electrodes over the midtemporal region by Niedermeyer (2005), who called 
it “third rhythm” or “independent temporal alphoid rhythm”.

The presence of dominant activity within the alpha frequency range has been 
interpreted, since Adrian and Mathews (1934), as indicating an “idling state” of the 
brain, although paradoxical findings with alpha enhancement by attention tasks 
were reported (Ray and Cole 1985). These observations are now well understood 
since a number of findings, both of visual alpha and sensorimotor mu rhythms, have 
shown that enhancement and attenuation of these rhythmic activities can be recorded 
simultaneously at different sites and successively depending on a given task. This 
can be explained taking into consideration the interaction between different thalamo- 
cortical modules, as put in evidence in computer models of the thalamo-cortico- 
thalamic system (Suffczynski et al. 2001).
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Fig. 2.2 (a, b) Dipole density plots of the MEG and EEG sleep spindles, alpha and mu rhythms 
of one subject. Voxels containing a relative high amount of dipoles are shown in red. Blue voxels 
contain relatively few dipoles. Voxels comprising less than 10% of the maximal amount of dipoles 
present in the red voxels are omitted for clarity. (a) MEG data: the “hot spots” for the MEG spin-
dles are located in the centroposterior areas. (b) EEG data: the plots demonstrate that there is no 
overlap of the alpha and mu clusters. Furthermore, the “hot spot” of the alpha rhythm is located 
more superficially than those of the spindles, whereas the spindle cluster is more widespread than 
that of the alpha rhythm. The EEG sleep spindle dipoles spread to more frontal areas than the MEG 
data (Adapted from Manshanden et al. 2002)

2 EEG: Origin and Measurement



34

In this respect, the experimental findings by Rihs et al. (2007, 2009) showing 
enhancement of occipital alpha associated with active suppression of unattended 
positions during a visual spatial orienting task provide further evidence for the facil-
itating role of alpha-power decreases (event-related alpha desynchronisation [ERD]) 
versus the inhibitory role of alpha-power enhancement (event-related alpha syn-
chronisation [ERS]) of attentional processes (Pfurtscheller and Lopes da Silva 
1999). Indeed alpha desynchronisation in a specific area occurs as attention is 
focussed on information processing related to that particular brain system. This is 
also the core of Klimesch’s inhibition-timing hypothesis formulated to account for 
the role of alpha oscillations (Klimesch et al. 2007). Accordingly, alpha ERS plays 
an active role in the inhibitory control and timing of cortical processing, whereas 
ERD reflects the gradual release of inhibition associated with the emergence of 
complex spreading activation processes, mainly in the form of spectral activity in 
the beta frequency range, as described below in more detail.

The cellular mechanisms responsible for the generation of alpha rhythms have 
recently been unveiled using in vitro preparations of thalamic nuclei. Hughes et al. 
(2004) showed that in the lateral geniculate nucleus, oscillations in the alpha fre-
quency range can be generated by the pharmacological activation of the metabo-
tropic glutamate receptor (mGluR) mGluR1a. These oscillations display similarities 
with thalamic alpha rhythms recorded in the intact animal. Hughes and Crunelli 
(2005) discovered that the occurrence of these oscillations depends on the activity 
of a subset of thalamo-cortical (TC) neurons termed high-threshold (HT) bursting 
cells, which are interconnected via gap junctions. These in  vitro thalamic alpha 
rhythms can slow down until the theta frequency range when the TC neuron popula-
tion is less depolarised.

2.3.4  Beta and Gamma Activity of the Neocortex

The identification and characterisation of high-frequency rhythms in the neocortex 
have concentrated mainly on two neocortical areas, the visual cortex and the 
somatomotor cortex. Here we examine some of the properties of beta/gamma 
rhythmic activities of these two areas, although beta/gamma rhythmic activities 
have also been recorded in other brain areas, in particular in olfactory cortex 
(Freeman 2005).

Commonly, the EEG of the visual cortex is associated with the alpha rhythm, 
with its typical reactivity upon closing and opening the eyes, as described above. 
However, different types of rhythmic activities can be recorded from the same 
cortical areas. In the dog, we showed that the EEG spectral density was character-
ised by peaks within the beta/gamma frequency range while the animal was look-
ing attentively at a visual stimulus (Lopes da Silva et al. 1970). Similarly, Freeman 
and van Dijk (1987) found in the visual cortex of a rhesus monkey that fast EEG 
rhythms (spectral peak of 30  ±  3.7  Hz) occurred during a conditioned task in 
response to a visual stimulus. A related finding is the discovery by the group of 
Charles Gray and Wolf Singer (Gray et al. 1989) and by Eckhorn et al. (1988) of 
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oscillations within the beta/gamma frequency range (most commonly between 30 
and 60 Hz) in the firing of individual neurons of the visual cortex in response to 
moving light bars. It was demonstrated using auto- and cross-correlation analyses 
that neurons tended to fire in synchrony, in an oscillatory mode, within cortical 
patches that could extend up to distances of about 7 mm. The oscillations in neuro-
nal firing rate were correlated with those of the LFPs. The cortical oscillations are 
modulated by the activation of the mesencephalic reticular formation (MRF), but 
the stimulation of the MRF alone does not change the pattern of firing of the corti-
cal neurons (Munk et al. 1996). However, MRF stimulation increases the ampli-
tude and coherence of both the LFP and multiunit responses when applied jointly 
with a visual stimulus.

In the somatomotor cortex, beta/gamma oscillations of both neuronal firing and 
LFPs were also described in the awake cat by the group of Buser and Rougeul- 
Buser (2005) and Bouyer et al. (1987), particularly when the animal was in a state 
of enhanced vigilance while watching an unreachable mouse. Also, fast oscillations 
were found in the somatomotor cortex in monkey during a state of enhanced atten-
tion (Rougeul et al. 1979). Oscillations of 25–35 Hz occurred in the sensorimotor 
cortex of awake, behaving monkeys in both LFPs and single−/multiunit recordings. 
They were particularly apparent during the performance of motor tasks that required 
fine finger movements and focussed attention. These oscillations were coherent 
over cortical patches extending up to at least 14 mm that included the cortical rep-
resentation of the arm. Synchronous oscillations straddling the central sulcus were 
also found, so they may reflect the integration of sensory and motor processes. The 
LFP reversed polarity at about 800 μm under the cortical surface indicates that the 
source of the LFP is in the superficial cortical layers. It is noteworthy that at least 
some of the cortical beta/gamma rhythmic activities appear to depend on projecting 
dopaminergic fibres arising in the ventral tegmental area, but the extent to which the 
beta rhythms of the somatomotor cortex are related to thalamic or other subcortical 
activities is not yet clear.

Currently there is a considerable interest in better defining the cortical domains 
of beta/gamma oscillations, and their modulation by imagination in the human 
EEG/ECoG, with the objective of using those signals in brain–computer inter-
faces (BCI). Within a BCI perspective, Branco et  al. (2017) studied how hand 
movements are encoded in the ECoG of the sensorimotor cortex and found clear 
broadband (50–130 Hz) increases in primary somatosensory and primary motor 
cortex prior to movement onset, combined with decreases of alpha/beta frequency 
band (10–30 Hz). These results are being explored in practical BCI applications. 
A most notable case of this kind of approach was published by Vansteensel et al. 
(2016) who realised a BCI consisting of subdural electrodes placed over the motor 
cortex in a locked-in amyotrophic lateral sclerosis (ALS) patient, who, nonethe-
less, was able to control a computer typing program at a rate of two letters per 
minute, weeks long, by imagining moving the hand contralateral to the side of the 
implanted electrodes.

With respect to the origin of beta/gamma rhythmic activity, several experimen-
tal facts have led to the interpretation that these rhythmic activities are primarily 
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generated in the cortex itself. These include the fact that oscillations in the beta/
gamma frequency range were easily recorded from different cortical sites but not 
from simultaneously obtained recordings from thalamic electrodes and the obser-
vation that in the visual cortex there are neurons that show oscillatory firing rates 
with a phase difference of about a quarter cycle, which indicates that a local recur-
rent feedback circuit may be responsible for the oscillations. Nevertheless, it is 
possible that thalamic neuronal networks also contribute to the cortical beta/
gamma rhythmic activity, since oscillatory activity (about 40  Hz) has been 
observed (Steriade et al. 1996) in neurons of the intralaminar centrolateral nucleus, 
which project widely to the cerebral cortex. The question cannot be phrased as a 
simple alternative between a cortical and a thalamic rhythmic process, both con-
sidered as exclusive mechanisms. As we have discussed in relation to other rhyth-
mic activities of the mammalian brain, both network- and membrane-intrinsic 
properties cooperate in shaping the behaviour of the population, including its 
rhythmic properties and its ability to synchronise the neuronal elements. Recently, 
new observations made in vitro have shed light on the sources of these fast corti-
cal rhythms. In an in  vitro model of the cortex, the group of Whittington and 
Traub (Roopun et  al. 2006) showed concurrent but independently generated 
gamma (30–70 Hz) rhythms in layer II/III and beta2 (20–30 Hz) rhythms in layer 
V somatosensory cortex. The beta2 rhythm occurred robustly in layer V intrinsi-
cally bursting (IB) neurons in the form of bursts admixed with spikelets and single 
action potentials. It was blocked by reducing gap junction conductance with car-
benoxolone and was unaffected by the blockade of synaptic transmission suffi-
cient to ablate the layer II/III gamma rhythm. It could also be seen in the absence 
of synaptic transmission with axonal excitability enhanced with 4-aminopyridine, 
suggesting a nonsynaptic rhythm mediated by axonal excitation. A network model 
based on the hypothesis of electrical coupling via axons is consistent with this 
hypothesis. The frequency of this network beta2 rhythm appears to depend on the 
magnitude of the M current, a non- inactivating potassium current found in many 
neuronal cell types that can be modulated by a large array of receptor types, 
including muscarinic cholinergic receptors, in IB interneurons. These findings 
suggest the possibility that a normally occurring cortical network oscillation 
involved in motor control could be generated largely or entirely by nonsynaptic 
mechanisms. According to these authors, higher beta2 frequency oscillations 
occur mainly during the anticipatory period leading up to a movement in response 
to a sensory cue. Indeed, it was found that layer V pyramidal neurons and motor 
cortex LFPs displayed coherence at beta2 frequencies with hand and forearm 
EMG in monkeys performing a precision grip task (Baker et al. 1999). This group 
showed that the generation of beta2 in layer V stands in contrast to that of gamma 
rhythms in layers II/III; the latter may underlie mainly corticocortical synchroni-
sation. There are probably a variety of rhythmic activities in the  beta/gamma 
range with different behavioural correlates, as discussed below with respect to 
event-related (de)synchronisation of EEG/MEG phenomena.

The findings, in the monkey visual cortex, of van Kerkoerle et al. (2014) already 
mentioned above are very relevant to better understand the interaction between 
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alpha and gamma activities in the processing of visual information in the cortex. 
Indeed it appears that alpha and gamma oscillations characterise different directions 
of information flow in the visual cortex. Simultaneous recordings in visual area V1 
and V4 demonstrated that alpha and gamma oscillations can coexist during a single 
task but occur in opposite directions. Estimations of time delays from the slope of 
frequency spectra showed that V1 leads to V4 by 3 ms for the gamma rhythm but 
lags V4 by 9 ms for alpha. These authors suggest that this difference between time- 
lags may be accounted for by a difference in synaptic time constants, since NMDA 
channels which play a role in the feedback effects mediated by alpha activity have 
a longer time constant than that of AMPA channels which are important for the 
feedforward propagation of gamma activity to higher visual areas. This propagation 
of alpha oscillations is in agreement with reports of ECoG recordings in humans, 
where Bahramisharif et al. (2013) showed that bursts of gamma activity propagate 
over neocortex and are locked to the phase of traveling alpha waves. Accordingly, 
these authors note that alpha oscillations serve to coordinate gamma activity both in 
time and in space.

In this context it is interesting to consider changes in EEG/MEG phenomena, 
particularly in the beta and gamma frequency ranges, that are event-related and 
reflect a decrease or an increase in the synchrony of the underlying neuronal popula-
tions. The former is called event-related desynchronisation (ERD), and the latter 
event-related synchronisation (ERS) (Pfurtscheller and Lopes da Silva 1999). In 
relation to a hand movement, both the 10–12 Hz mu rhythm and the beta (around 
20 Hz) display ERD but with a different distribution over the scalp, although both 
activities are localised around the central sulcus. The mu rhythm ERD exhibits its 
maximum magnitude more posteriorly than the beta activity, indicating that it is 
generated mainly in the post-rolandic somatosensory cortex, whereas the low beta 
activity is preferentially generated in the pre-rolandic motor area. In addition, after 
a voluntary movement, the central region exhibits a localised beta ERS that becomes 
evident in the first second after cessation of the movement, at a time where the 
rolandic mu rhythm still presents a desynchronised pattern. The exact frequency of 
this rebound beta ERS can vary considerably with the subject and type of move-
ment. This beta ERS is observed not only after a real movement but also after an 
imagined movement. Furthermore, ERS in the gamma frequency band (around 
36–40 Hz) can also be found over the central regions, preceding the execution of a 
movement, in contrast with the beta ERS, which has its maximum after the termina-
tion of the movement (Fig. 2.3).

Our understanding of the significance of ERS of the beta frequency range, which 
typically occurs after a movement, has been greatly enhanced by the observation 
that when this form of ERS occurs, the excitability of the corticospinal pathways 
decreases, as revealed by means of transcranial magnetic stimulation. This supports 
the hypothesis that the postmovement beta ERS corresponds to a deactivated state 
of the motor cortex (Pfurtscheller et al. 1996). In contrast, the ERS in the gamma 
frequency band appears to reflect a state of active information processing.

From this perspective, it is important to note the likely connection between 
gamma oscillations and synaptic plasticity. As Buzsáki (2006) colourfully writes, 
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Fig. 2.3 Event-related desynchronization (ERD) and event-related synchronization (ERS) from 
one normal subject during self-paced voluntary movement. EEG recorded from C3. The results for 
three frequency bands are shown: alpha band (mu) 10–12 Hz ERD, beta 14–18 Hz ERD–ERS and 
gamma 36–40 Hz ERS. The data analysis is triggered with respect to movement offset (vertical 
line at 0 s). Note that the ERDs or ERSs of different frequency bands have different dynamics: 
about 2 s before the movement of the mu ERD appears, followed by a pre-movement beta ERD 
that changes to a postmovement ERS, a burst of gamma ERS appears just before the movement 
[Adapted from Pfurtscheller G, Lopes da Silva FH. (2018) EEG event-related Desynchronization 
and event-related Synchronization. In: Schomer DL, Lopes da Silva FH, eds. Niedermeyer’s 
Electroencephalography: Basic Principles, Clinical Applications and Related Fields. 7th ed. 
Oxford University Press 2018: p1020 (Fig. 40.10)]

the gamma oscillation may be considered the “buzz” that provides the central tim-
ing mechanism that is essential for modulating synaptic strength, and in this way, it 
may stabilise the formation of neuronal assemblies in the cortex.

2.3.5  DC and Ultraslow Potentials

Is it possible to record DC on MEG or EEG? And if so, what is its physiological 
meaning? There are a lot of physical limitations (electrode impedances, electrode 
polarisation, skin/electrolyte junction) that do not allow EEG signals to be recorded 
down to 0 Hz, which would correspond to real DC or “direct current”. Also, envi-
ronmental low-frequency noise imposes limitations on MEG with similar conse-
quences. The point, however, is not to record down to the real DC level but to extend 
the effective frequency band to very low frequencies on the order of 0.1 Hz. (For a 
discussion of misconceptions of the meaning of “DC” in electroencephalography, 
see Niedermeyer’s footnote in Speckmann and Elger 2005.) The recording of ultra-
slow MEG/EEG signals can be achieved using appropriate techniques, as discussed, 
for example, for the EEG by Vanhatalo et al. (2005) and for the MEG by Burghoff 
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et al. (2004). Phenomena such as the contingent negative variation (CNV) and the 
Bereitschaftspotential (readiness potential) are typical cases of very slow shifts of 
electric potential or magnetic fields that can be typically recorded using appropriate 
recording and analysis techniques.

In addition, EEG activities in the spectral range below 0.1 Hz (also called ultra- 
or infra-slow potentials or in short “DC” potentials) have been proposed as being 
generated at the interface between cerebrospinal fluid and blood as a function of the 
partial pressure of CO2 (pCO2). Such “DC” potentials were suggested to originate 
across the blood–brain barrier (Amzica and Lopes da Silva 2018). In this respect the 
model of Voipio et al. (2003) has been especially useful to understand how large DC 
shifts that can be recorded on the scalp in response to hypo- or hypercapnia are not 
generated by networks of neurons and/or glial cells. Indeed Nita et al. (2004) dem-
onstrated that such ventilation-induced DC shifts occurred in the absence of any 
change in the neuronal or glial membrane potential and are not caused by cortical 
current dipolar sources. Likely, other parenchymal elements (blood–brain barrier, 
blood flow, capillary epithelial cells) can participate in the genesis of such “DC” 
potentials that translate into EEG signals at the very low spectral band.

During slow-wave sleep, ultraslow-frequency components (around 0.5 Hz) have 
been recorded in the human EEG (Achermann and Borbély 1997; Amzica and 
Steriade 1997) and in MEG (Simon et al. 2000), which correspond to the ultraslow 
oscillations that can be recorded intracellularly from cortical neurons through layers 
II to VI, and consist of prolonged depolarising and hyperpolarising components, as 
have been analysed in detail by Steriade (2006).

2.4  Origin of the EEG/MEG II: Generators, Volume 
Conduction and Source Estimation

In order to take the next step towards an understanding of how EEG/MEG signals 
recorded outside the skull are generated, we have to take the folding of the cortex 
into consideration. The fact that the cortex is folded, forming gyri and sulci, implies 
that some populations of neurons have apical dendrites that are perpendicular to the 
overlying skull (i.e. those that are at the top of a gyrus), whereas others are parallel 
to the skull (i.e. those that are on the wall of a sulcus). The orientation of the neurons 
with respect to the skull is an important factor in the appearance of the EEG and 
MEG signals recorded outside the skull. This is particularly the case for MEG, since 
the latter “sees” only those magnetic fields that are perpendicular to the skull due to 
the physical properties of magnetic fields, the way MEG is measured and the 
approximately spherical shape of the head. In effect, the observed magnetic fields 
are generated by neuronal currents that are oriented tangentially to the skull. In 
contrast, those that are oriented radially to the skull do not generate a magnetic field 
outside the head but contribute to the EEG.

The area of cortex within which the neuronal population must be synchronously 
active to produce a measurable EEG/MEG signal at the scalp is an important con-
sideration when interpreting these signals. To address this problem, we must first 
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point out some classical concepts about cortical organisation. The cortex is organ-
ised according to the columnar principle, as proposed in the 1970s by Mountcastle 
(see review from 1997), which means that the basic unit of the mature neocortex is 
the minicolumn, “a narrow chain of neurons extending vertically across the cellular 
layers II/VI, perpendicular to the pial surface”, with a cross-section of diame-
ter ~40–50 μm. A primate minicolumn contains about 80–100 neurons, although 
this number may vary between areas; in the striate cortex, the cell density appears 
to be 2.5 times larger. Many minicolumns are bound together by short-range hori-
zontal connections and thus form what have been denominated cortical columns or 
cortical modules (Mountcastle 1997). One column in the somatic sensory cortex 
contains about 80  minicolumns and is roughly hexagonal with a width of about 
300–400 μm (Favorov and Diamond 1990). These estimates can be used to give a 
rough answer to the question formulated above. Assuming that a minicolumn with 
a diameter of 40 μm contains 100 cells, the cortical surface corresponding to 50,000 
cells should form a patch with a cross-sectional area of about 0.63 mm2. If this corti-
cal patch took a circular form, then its diameter would be about 0.88  mm. 
Buxhoeveden and Casanova (2002) noted that, from a functional perspective, corti-
cal columns may exist in different dynamic states, and they coined the term “physi-
ological macrocolumn” to indicate a set of cortical columns that cooperate to realise 
a given functional state or neural process. These physiological macrocolumns must 
be considered dynamic ensembles such that the number of columns contributing to 
a macrocolumn may vary as a function of time. It is important to note that neurons 
in separate columns can present synchronous oscillatory activities, as mediated by 
tangential and recurrent connections between different columns (Gray et al. 1989; 
Freiwald et al. 1995).

Above we have already stressed the relevance of the degree of correlation, or 
synchrony, between neuronal activities in cortical columns, with respect to the 
strength of the resulting LFPs.

A general problem in EEG/MEG is how to estimate the neuronal sources that are 
responsible for a certain distribution of electrical potentials or of magnetic fields 
recorded at the scalp. This is called the inverse problem of EEG/MEG; this an ill- 
posed problem in the sense that it has no unique solution: there are an infinite num-
ber of possible source configurations that give rise to a given set of measured scalp 
potentials or magnetic fields (von Helmholtz 2004). Therefore, the estimation of 
EEG and MEG sources requires assumptions about the nature of the sources. The 
simplest source model is a current dipole, as indicated in the previous section. 
However, such a model does not imply that somewhere in the brain there is a point 
current dipole. Rather, it suggests that the EEG/MEG scalp distribution is best rep-
resented by an equivalent dipolar current source. This choice has been shown to be 
useful and accurate for certain types of activity, such as the event-related potentials 
(ERPs) and focal epileptic spikes. In such circumstances, the solution of the EEG/
MEG inverse problem that is obtained based on the equivalent current dipole can be 
thought of as the centroid of the dipole layers that are active at a certain moment, in 
the statistical sense. An increase in the number of dipoles can easily lead to rather 
complex and ambiguous interpretations. Nevertheless, methods have been 
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developed in order to obtain estimates of multiple dipoles using only the a priori 
criterion that they must be located at the surface of the cortex. An example of an 
algorithm that performs such an analysis is MUSIC (multiple signal classification). 
An alternative approach is to use linear estimation methods that apply the minimum 
norm constraint to estimate the sources within a given surface or volume of the brain.

A main feature of any estimation of EEG/MEG sources is the volume conduction 
problem, which allows the calculation of the field values given a postulated genera-
tor configuration (the so-called forward part of the inverse problem). A commonly 
used forward model is that of the three concentric conducting spheres, for which a 
convenient analytical expression for the surface potentials (or magnetic field) due to 
a dipole is available. However, realistically shaped volume conductor models 
derived from the individual subject’s MRI images have been shown to improve the 
accuracy of the localisation of the sources, particularly in nonspherical parts of the 
head (Fuchs et  al. 2007). Individual boundary element method (BEM) models 
derived from the subject’s MRI represent the “gold standard” and have clear advan-
tages over simplified spherical shell models. The core of the solution of the inverse 
problem is of course the reconstruction of brain (cortical) sources from scalp- 
recorded EEG/MEG signals. As indicated above the classic solution is to calculate 
dipolar sources, but currently this approach has been extended using distributed 
source imaging approaches, including constraints in order to estimate well-posed 
inverse solutions; relevant technical aspects are described by Michel and He (2018).

Anisotropic volume conduction properties of the bone layer or the white matter 
fibres can be modelled by the finite element methods (FEM), but the latter require 
considerable computational power and are thus not used in daily applications. The 
development of diffusion tensor magnetic resonance imaging (DT-MRI) provides a 
means to estimate the anisotropic conductivity of the cerebral white matter, which 
may further improve the accuracy of the EEG forward solution (Wolters et al. 2006). 
To reduce the computational effort, head models derived from an averaged MRI 
dataset have been proposed (Fuchs et al. 2007). New approaches are currently being 
explored that combine fMRI and EEG/MEG data in order to create more specific 
spatial constraints in order to reduce the solution space for the estimation of the 
underlying neuronal sources (Liu and He 2008). This aspect of EEG and fMRI data 
fusion is addressed in more detail in Chap. 27.

In general, the problems posed by the complexity of the volume conductor, 
including the scalp, skull, cerebrospinal fluid layer and brain, are easier to solve in 
the case of the MEG than of the EEG, since these different media have different 
conductivities, which affects the EEG much more than the MEG. Therefore, a major 
advantage of MEG over EEG is the relative simplicity of the forward modelling and 
its consequences for source localisation. This means that when a dipole source algo-
rithm is used on the basis of MEG recordings, a single homogeneous sphere model 
of the volume conductor can lead to a satisfactory solution.

The conductivity values that should be used for the different shells surrounding 
the sources, brain, cerebrospinal fluid, skull and scalp have been estimated in a 
number of studies, using both in vitro and in vivo measurements. In general, we can 
assume that the brain and scalp have the same conductivity. Using electrical 
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impedance tomography, a wide variation in the ratio of resistivities rskull/rbrain was 
encountered among subjects, most frequently in the range of 20–50 (Gonçalves 
et al. 2003). These results indicate that in order to obtain an estimate of the sources 
of a given potential distribution over the scalp as precisely as possible, conductivi-
ties measured in the same subject should preferentially be used.

2.5  Localisation Methods Applied to Spontaneous 
Oscillatory Activities: Alpha, Mu and Sleep Spindles

A basic question in EEG/MEG studies is whether the main rhythmic activities—
alpha and mu rhythms on the one hand and sleep spindles on the other—are gener-
ated in distinct or overlapping cortical areas. In order to solve this question, advanced 
spatiotemporal analysis methods are necessary. We should note that the estimation 
of equivalent dipole models is only meaningful if the scalp field has focal character 
and the number of possible active areas can be anticipated with reasonable accuracy. 
The recent development of a new algorithm (Manshanden et  al. 2002) aimed at 
estimating sources of large datasets, as is the case for this kind of spontaneous EEG 
oscillation, allowed estimating whether generators of spontaneous MEG/EEG alpha 
and mu rhythms and sleep spindles are distributed over distinct or over-overlapping 
cortical areas to be addressed. The basic approach consisted of finding well-fitting 
dipoles using a dipole model applied to successive time samples of a burst of an 
oscillation. The equivalent dipoles encountered were plotted on the corresponding 
MRI slice of the brain, as shown in Fig. 2.2 (a for the EEG and b for the MEG).

It is important to consider what equivalent dipolar sources of spontaneous brain 
activity may represent. Sleep spindles, alpha rhythms and mu rhythms are spontane-
ously occurring brain rhythms that can be recorded from the scalp. This suggests that 
extended cortical areas are involved in the generation of these signals. The use of 
equivalent dipoles as source models for these distributed brain activities yields an 
oversimplified solution to the problem of determining the underlying sources of these 
signals. The equivalent dipoles should be viewed simply as descriptors of the “centre 
of gravity” that best describe, in a statistical sense, the spatial distribution of the cor-
responding active cortical area at a given time. The positions of the dipoles with 
respect to the cortical surface depend on the extent and geometry of the activated 
cortical area: superficially positioned dipoles (i.e. near to the cortical surface), such as 
those of the mu rhythm, correspond to more localised cortical activity, while deep-
lying dipoles, like those of sleep spindles, instead represent the activity of extended 
cortical surfaces. Thus, dipole locations provide only an approximation of the locali-
sation of the active brain area and the extension of the area. When comparing the 
results of the alpha rhythms and of the sleep spindles (Fig. 2.2), we should emphasise 
that there is no overlap of the centres of gravity of these two kinds of rhythms. This 
indicates that different regions of the cortex are involved in the generation of these 
brain rhythms. The same applies to the mu rhythm, which appeared to be generated in 
a different brain region compared to the alpha rhythm and sleep spindles. The super-
ficial location of the mu rhythm dipoles (especially in MEG, Fig. 2.2b) suggests that 
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the mu rhythm is generated in a relatively well- localised cortical area. Thus, the equiv-
alent dipole model appears to be an adequate model for the estimation of mu sources. 
A comparison of the results obtained in the same subject based on EEG (Fig. 2.2a) or 
on MEG (Fig. 2.2b) data shows that the dipoles estimated using the latter occupy a 
more circumscribed number of voxels than those based on the former; this is particu-
larly clear for the spatial distribution of the dipolar sources of sleep spindles and the 
mu rhythm. The close spatial relationship of the MEG mu rhythm dipoles to the 
dipoles of the N20 component of the medial nerve somatosensory-evoked fields dem-
onstrates that the mu rhythm arises from the cortex around the central sulcus.

The advent of simultaneous EEG–fMRI acquisitions (Lemieux et  al. 1997; 
Goldman et al. 2002; Krakow et al. 2000) has allowed the study of the haemody-
namic correlates of spontaneous variations of alpha rhythm (Laufs et  al. 2003; 
Moosmann et al. 2003), focussing on group results. In this kind of work, it is impor-
tant to study individual subjects, since there is a considerable variability with respect 
to these phenomena among normal subjects. Gonçalves et al. (2006) and de Munck 
et al. (2007) found a negative correlation between the BOLD signal and the average 
power time series within the alpha band (8–12 Hz) in extensive areas of the occipi-
tal, parietal and frontal lobes. In small thalamic areas, the BOLD signal was posi-
tively correlated with the alpha-power. Results suggest that the resting state varies 
among subjects and sometimes even within one subject. As the resting state plays an 
important role in many fMRI experiments, the simultaneous recording of fMRI and 
EEG is advisable; see the chapters “Brain Rhythms” (Chap. 15), “Sleep” (Chap. 
16), “EEG–fMRI in Adults with Focal Epilepsy” (Chap. 17), “EEG–fMRI in 
Idiopathic Generalised Epilepsy (Adults)” (Chap. 18) and “EEG–fMRI in Children 
with Epilepsy” (Chap. 19) for further discussions of this issue in the healthy and 
pathological brain. In general, BOLD signals reflect most often the intensity of 
neuronal activity, as both synaptic activity and action potentials contribute to the 
metabolic activity measured by BOLD. The relationship between BOLD and neu-
ronal activity is most often linear (Shmuel and Maier 2015).

2.6  Conclusions

Knowledge of the electrical and magnetic fields generated by local neuronal net-
works is of interest to the neuroscientist because these signals can yield relevant 
information about the modes of activity of neuronal populations. This is particularly 
relevant when attempting to understand higher-order brain functions such as percep-
tion, action programming and memory trace formation. It is becoming increasingly 
clear that these functions are mediated by dynamical assemblies of neurons. In this 
respect, knowledge of the properties of the individual neurons is not sufficient. It is 
necessary to understand how populations of neurons interact and undergo self-organ-
isation processes to form dynamical assemblies. The latter constitute the functional 
substrate of complex brain functions. These neuronal assemblies generate patterns of 
dendritic currents and action potentials of course, but these patterns are usually dif-
ficult to evaluate experimentally due to the multitude of parameters and the 
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complexity of the structures. Nevertheless, the concerted action of these assemblies 
can also be revealed in the LFPs that can be recorded at distance from the generators 
as EEG or MEG signals. However, extracting information from EEG or MEG signals 
about the functional state of a local neuronal network poses a number of nontrivial 
problems that must be solved by combining anatomical/physiological with biophysi-
cal/mathematical concepts and tools (Wadman and Lopes da Silva 2018). Indeed, 
given a certain EEG or MEG signal, it is not possible to precisely reconstruct the 
behaviour of the underlying neuronal elements, since this inverse problem does not 
have a unique solution. Therefore, it is necessary to assume specific models of the 
neuronal elements and their interactions in dynamical assemblies in order to make 
sense of the LFPs. This implies that it is necessary to construct models that incorpo-
rate knowledge about cellular/membrane properties with those for the local circuits, 
their spatial organisation and organisation patterns. Furthermore, intracranial EEG 
studies (such as those in patients with epilepsy being evaluated for surgery) demon-
strate that a significant amount of brain activity does not appear in the EEG or 
MEG. This consideration, along with the fundamental limitations of the EEG/MEG 
inverse problem and the difficulty involved in estimating large or complex networks 
of generators, suggests that functional imaging combined with EEG can play a sig-
nificant role in improving our understanding of brain activity.
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3The Basics of Functional Magnetic 
Resonance Imaging

Ralf Deichmann, Ulrike Nöth, Alberto Merola, 
and Nikolaus Weiskopf

3.1  The Basics of MR Imaging

3.1.1  Spins in an External Magnetic Field

In magnetic resonance imaging (MRI), the signal that is measured usually arises 
from the nuclei of the tissue’s hydrogen atoms (i.e. protons). A proton possesses a 
physical property, its spin, which behaves roughly speaking like a compass needle: 
each spin has a small magnetic dipole moment and aligns in an external magnetic 
field. If the tissue is brought into the strong magnetic field inside the magnetic reso-
nance (MR) scanner bore, spins will align either antiparallel or parallel to the mag-
netic field B. At the field strengths relevant here, a tiny majority of the spins assume 
the latter alignment, and their magnetic moments add up, giving rise to a net macro-
scopic magnetisation M which is parallel to B, representing a state of equilibrium 
(Fig. 3.1, left). Thus, the existence of this magnetisation inside the magnetic field is 
an indicator of the presence of protons, and the measurement of M with a certain 
spatial resolution can be used to construct a proton image.
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3.1.2  The Magnetic Resonance Effect

The measurement of M is possible due to the following physical effect: if the 
protons inside the magnetic field B are exposed to an electromagnetic wave with 
a specific frequency, the so-called Larmor frequency, the magnetisation M, is 
tilted in proportion to the exposure duration (Fig. 3.1, right). The tilted magnetisa-
tion then rotates around the magnetic field vector (Fig.  3.2). This movement, 
called precession, is similar to the behaviour of an ordinary spinning top. During 
precession, the protons send out an electromagnetic wave that has the Larmor 
frequency (Fig. 3.2). The important point is that the Larmor frequency is propor-
tional to the magnetic field B, with a value of 42.6 MHz per Tesla, where Tesla (T) 
is the unit of the magnetic field strength. Thus, for clinical MR scanners which 
usually have a field strength of 1.5 or 3 T, the Larmor frequency amounts to about 
64 or 128 MHz, respectively, which encompasses the range of frequencies used 
for FM broadcasting. It should be noted that the tilted magnetisation gradually 
returns to its original state or equilibrium. This effect, called relaxation, will be 
discussed below.

B

M

B

M

Fig. 3.1 Spins align in an 
external magnetic field B, 
giving rise to a 
macroscopic magnetisation 
M which is parallel to B 
(left). If the protons inside 
the magnetic field B are 
exposed to an 
electromagnetic wave with 
the Larmor frequency, the 
magnetisation M is tilted 
(right)

B

M

Fig. 3.2 The tilted magnetisation rotates around the magnetic field vector, sending out an electro-
magnetic wave with the Larmor frequency
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In summary, M (and thus the presence of protons) is detected in the following 
way: the sample is placed inside the MR scanner and thus exposed to a strong static 
magnetic field B. As a consequence, a macroscopic magnetisation M parallel to B 
builds up. An electromagnetic wave with the Larmor frequency and duration of a 
few milliseconds is transmitted using equipment similar to a small FM radio broad-
casting station. This gives rise to a tilt and a subsequent precession of the magnetisa-
tion vector. After sending the initial electromagnetic pulse, a detector similar to an 
FM radio tuned to the Larmor frequency is switched on. If a signal is detected, there 
must be protons inside the sample under investigation. It is important to note that the 
initial step of tilting the magnetisation only works if the frequency of the transmit-
ted electromagnetic signal is exactly the protons’ Larmor frequency. Thus, we are 
dealing with a typical resonance effect, giving rise to the expression MRI. The MR 
effect was first described in 1946 (Bloch et al. 1946; Purcell et al. 1946).

3.1.3  Spatial Encoding in MR Imaging

As described so far, the MR effect only allows the detection of the presence of pro-
tons. The question of how spatial resolution of the protons throughout the sample 
can be achieved to produce an image now arises. This will be discussed step by step 
for three orthogonal directions that are defined relative to the brain as follows: x 
(left/right), y (anterior/posterior) and z (superior/inferior).

3.1.3.1  Frequency Encoding
Figure 3.3 (left) shows a so-called pulse diagram, a schematic description of an MR 
experiment. On the RF (radiofrequency) axis, there is the initial electromagnetic pulse 
that tilts the magnetisation and the signal acquired subsequently. Below, there is the 
gradient axis, showing that during signal acquisition a gradient Gx is switched on. This 
means that during acquisition the magnetic field is modified in a way that it increases 
linearly in the x-direction. Thus, during acquisition, the protons’ Larmor frequency 
depends on their position inside the brain, i.e. on their x-coordinate. Figure 3.3 (right) 
shows two small brain regions and the signal that protons inside these regions send out 
while the gradient is switched on: the protons in the region on the left-hand side are 
exposed to a slightly reduced magnetic field, so they send out an electromagnetic wave 
with a slightly lower frequency. The signal sent out by the protons in the region on the 
right-hand side has a higher frequency. The “FM radio” detects the sum signal from all 
protons. This signal undergoes a frequency analysis (mathematically, this process is 
called a Fourier transform), resulting in the signal’s frequency spectrum. The exact 
positions of the protons (or at least their x-coordinates) can then be deduced from the 
signal’s frequency spectrum. Thus, this process is called frequency encoding. The gra-
dient that is switched on during signal acquisition (or signal “readout”) is called the 
read gradient. It should be noted that this gradient is on during acquisition only, not 
during the initial RF pulse. Otherwise, the spins would have different, position-depen-
dent Larmor frequencies while the electromagnetic wave is being sent, so the magneti-
sation would be tilted for only some of the spins. The use of magnetic field gradients to 
achieve spatial resolution was first proposed by Lauterbur (1973).

3 The Basics of Functional Magnetic Resonance Imaging
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RF

Gx

x

pulse signal

left right

Fig. 3.3 The concept of frequency encoding: due to the read gradient (x-direction), the magnetic 
field increases linearly in the x-direction. Consequently, during acquisition, the protons’ Larmor 
frequencies depend on their positions inside the brain. The exact positions of the protons (or at 
least their x-coordinates) can then be deduced from the frequency spectrum

3.1.3.2  Phase Encoding
The experiment described above allows for spatial resolution in one direction only. A 
2D experiment is depicted in Fig. 3.4. This time, the pulse diagram comprises an RF 
axis and two gradient axes for gradients in the x- and y-directions. Parts of this exper-
iment correspond to the one described above: the initial RF pulse tilts the magnetisa-
tion, and a signal is acquired while the read gradient Gx is switched on, so the protons’ 
x-coordinates can be deduced from their signal frequencies. In addition, a gradient in 
the direction perpendicular to the read gradient, Gy, is switched on between the initial 
RF pulse and the acquisition process. The effect of this gradient is explained in 
Fig.  3.4 (right) for two brain regions with the same x-coordinates but different 
y-coordinates: while the gradient Gy is switched on, the protons in the anterior region 
have a higher Larmor frequency than the protons in the posterior one. The effect on 
the Larmor frequency only lasts as long as Gy is switched on. Once Gy is switched off 
and Gx is switched on, the signals from both regions have the same Larmor frequen-
cies because they have the same x-coordinate. However, the starting points of the 
signals from the anterior and posterior regions are different: for the example shown 
in Fig. 3.4, the signal from the anterior region has a maximum value when acquisi-
tion starts, whereas the signal from the posterior region has a minimum value. Thus, 
the signals appear shifted in time—they have different phases. In summary, the 
x-coordinate can be deduced from the signal frequency and the y-coordinate from the 
signal phase. The gradient Gy is called the phase encoding (PE) gradient, and the 
process of switching an imaging gradient between spin excitation and signal acquisi-
tion is referred to as PE.  It should be noted that an exact determination of the 
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y

x

anterior

posterior

RF

Gy

GX

Fig. 3.4 The concept of phase encoding (PE): while the phase gradient (y-direction) is switched 
on, protons with different y-coordinates precess with different frequencies, leading to different 
starting points (phases) when the acquisition begins. Thus, the y-coordinate can be deduced from 
the phase and the x-coordinate from the frequency

y-coordinate requires the repetition of the experiment depicted in Fig. 3.4 using dif-
ferent PE gradients. Thus, in Fig. 3.8, which shows a complete imaging experiment, 
the PE gradient (i.e. the gradient in the y-direction) is depicted as a “ladder” with an 
arrow, reflecting the different PE gradient amplitudes.

3.1.3.3  Slice Selection
Figure 3.5 shows an experiment with spatial resolution in three directions. Basically, 
this experiment corresponds to the one discussed above, comprising a phase gradi-
ent and a read gradient. However, this time a gradient Gz is switched on at the begin-
ning of the experiment and remains on during the transmission of the RF pulse. Due 
to this gradient, the magnetic field strength and thus the protons’ Larmor frequen-
cies increase in this direction. Let us assume that within a certain axial slice the 
Larmor frequency has a value of f0 (Fig. 3.5, right). If an RF pulse with this fre-
quency is sent, it will tilt the magnetisation within this slice only. It cannot influence 
protons in the upper or lower parts of the brain, because their Larmor frequencies 
are higher or lower than f0, so there is no resonance (in a certain way, this resembles 
a swing that can only be pushed effectively when using the correct rhythm/fre-
quency). Thus, only protons inside the selected slice are tilted (or “excited”) and can 
contribute to the signal. In summary, the combination of an RF pulse and a gradient 
causes a slice-selective excitation. The gradient Gz is also referred to as the slice 
gradient or slice-selective gradient. The spatial encoding within the excited slice is 
then achieved with the help of the read gradient Gx and the phase gradient Gy, as 
described above. This process is repeated for different excitation frequencies in 
order to acquire multislice image datasets.

3 The Basics of Functional Magnetic Resonance Imaging
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Fig. 3.5 The concept of slice selection: due to the slice gradient (z-direction), protons with differ-
ent z-coordinates have different Larmor frequencies. Thus, an RF pulse with a specific frequency 
can only excite protons within a certain slice

3.1.4  Relaxation Times T1 and T2

After an RF pulse has tilted the magnetisation vector, precession takes place, as 
shown in Fig. 3.2. However, as noted previously, precession has a limited duration: 
after a while, the magnetisation is once again parallel to the static magnetic field, i.e. 
at equilibrium. This process is called relaxation. Relaxation consists of two simul-
taneous processes, as follows.

The longitudinal component of the tilted magnetisation (i.e. the component par-
allel to the magnetic field) approaches a maximum value (the so-called equilibrium 
value) with the time constant T1, the longitudinal relaxation time. This process is 
also called spin-lattice relaxation because free water spins transfer energy to the 
surrounding environment, the lattice.

The transverse component of the tilted magnetisation (i.e. the component per-
pendicular to the magnetic field) vanishes with the time constant T2, the transverse 
relaxation time. This process is also called spin-spin relaxation because it arises 
from free water spins exchanging small amounts of energy.

In the human brain, there are a wide variety of T1 values: at 3 T, approximate T1 
values are 850  ms (white matter); 1300  ms (grey matter); and 4500  ms (CSF) 
(Wansapura et al. 1999). Thus, MRI acquisition sequences that exploit T1 contrast 
are commonly used to visualise and quantify brain morphology. Examples for 
T1-weighted techniques are T1-weighted spin echo sequences, T1-weighted fast 
gradient echo sequences like FLASH (Haase 1990) and magnetisation-prepared 
sequences such as MP-RAGE (Mugler and Brookeman 1990) and MDEFT (Ugurbil 
et al. 1993). It should be noted that T1 values are field-dependent. As an example, 
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T1 values in white/grey matter are approximately 650/1100  ms at 1.5  T but 
1200/2000 ms at 7 T (Rooney et al. 2007).

For T2, there is less contrast between white matter and grey matter, with values 
at 3 T amounting to about 60 ms in brain tissue and 45 ms in iron-rich regions such 
as the globus pallidus (Nöth et al. 2017). However, CSF has a very long T2 value 
(about 2000 ms), providing a means of distinguishing between brain tissue and fluid 
compartments like oedema. Thus, T2-weighted acquisition techniques such as 
T2-weighted spin echo sequences are often used to detect lesions.

3.1.5  The Relaxation Time T2* and Gradient Echoes

Figure 3.6 shows a series of MR images acquired on a phantom (in this case, a 
simple glass sphere filled with water). A tiny piece of metal was firmly attached 
to the outside of the phantom (red arrow). The metal has the effect of distorting 
the static magnetic field in its immediate environment (circled area). The images 
were acquired with increasing values of the echo time (TE) which is the time dif-
ference between the initial RF pulse and signal acquisition (see Fig. 3.8, left). 
The first effect to be noted is that the phantom signal decreases with increasing 
TE. This is to be expected as the transverse magnetisation, which gives rise to the 
signal, decays due to transverse relaxation effects, as described in the previous 
section. The second effect is that the signal decay is much faster in the area 
where the magnetic field is distorted. This can be explained as follows: due to the 
field inhomogeneity, spins at different positions in space will be exposed to dif-
ferent field strengths, so they will have different Larmor frequencies. 
Consequently, the spins dephase—i.e. their magnetisation vectors rotate at dif-
ferent speeds, thus pointing in different directions, so their contributions to the 
net magnetisation cancel each other, causing a fast signal decay. In general, it can 
be said that any inhomogeneity of the static magnetic field will have a similar 
effect, resulting in accelerated signal decay. Thus, the signal decays with the 

TE = 10 ms TE = 30 ms TE = 50 ms TE = 70 ms

Fig. 3.6 A series of images acquired on a water phantom with different echo times (TE). Due to 
transverse relaxation effects, the signal decreases with increasing TE. A small piece of metal was 
attached to the phantom (position marked with red arrow). This causes a distortion of the static 
magnetic field inside the circled area where the signal decays more rapidly. In summary, the signal 
decays with the effective transverse relaxation time T2*, which is shortened by magnetic field 
inhomogeneities
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effective (apparent) transverse relaxation time T2*, which depends on the degree 
of field inhomogeneity and can be considerably shorter than T2.

This poses a specific problem for the MRI methods discussed so far. As explained 
above (see Fig. 3.3), frequency encoding is achieved by switching a gradient in a 
certain spatial direction. Since gradients are artificial magnetic field inhomogene-
ities, this causes an accelerated signal decay, as shown in Fig. 3.7 (left). In particu-
lar, the maximum signal occurs at the beginning of the gradient. However, this part 
of the signal may provide erroneous spatial information because gradients require a 
certain switching time to achieve a stable value. The problem can be avoided by 
using the gradient echo concept shown in Fig. 3.7 (right): before the acquisition, a 
negative gradient is deliberately switched on and causes spin dephasing. Since the 
subsequent positive read gradient is just an inversion of the previous gradient, the 
dephasing effect is inverted, so the spins rephase and a strong signal called gradient 
echo occurs. Importantly, the maximum of the gradient echo is located at a time 
point where the read gradient has achieved a stable value. Gradient echo methods 
are widely used, in particular for functional imaging.

Figure 3.8 (left) shows a typical gradient echo imaging sequence. Before the 
acquisition, a negative gradient in the x-direction causes spin dephasing. When the 
positive read gradient is switched on, the spins rephase and a gradient echo occurs. 
In addition, a negative gradient is switched on after the slice gradient to compensate 
for dephasing effects due to this gradient that would otherwise reduce the signal 
strength. It should be noted that in gradient echo techniques, spin dephasing com-
pensation only occurs for the gradients that are inverted. All other field inhomoge-
neities cause additional spin dephasing and thus reduce the T2* value. Consequently, 
gradient echo images are T2* weighted, displaying lower image intensities in areas 
of reduced T2* due to local inhomogeneities of the static magnetic field.

The choice of the echo time (TE) determines the T2* contrast: if TE is too short, 
the spins do not have sufficient time to dephase, so T2* weighting is poor. If on the 

RF

Gx

RF

Gx

Fig. 3.7 (Left) In the presence of a gradient, the signal decays rapidly since a gradient constitutes 
a magnetic field inhomogeneity. (Right) The gradient echo concept: an initial negative gradient 
causes dephasing of the spins. After inversion of the gradient, this process is reversed (rephasing), 
and the signal returns (gradient echo)
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Fig. 3.8 (Left) A complete gradient echo imaging experiment. The echo time (TE) is defined as 
the time difference between the RF excitation and the centre of the gradient echo. (Right) Schematic 
description of k-space coverage for this gradient echo experiment, filling horizontal lines succes-
sively from the left to the right

other hand TE is considerably longer than T2*, the signal will have decayed by the 
time the acquisition starts, so the signal-to-noise ratio (SNR) of the image will be 
poor. The best T2* weighting is achieved if TE is approximately T2*.

Gradient echo techniques are of major importance for functional imaging studies 
because neuronal activations lead to small changes of T2* in the surrounding brain 
tissue and thus to intensity variations in T2*-weighted gradient echo images. This 
effect, which is called the blood oxygenation level-dependent (BOLD) effect, will 
be discussed in a later section.

3.1.6  k-Space

k-Space is a mathematical concept that is extremely useful for describing MR acqui-
sition sequences, in particular the echo planar imaging sequence, which is the main-
stay of functional magnetic resonance imaging (fMRI). This section will give a 
quick non-mathematical introduction to k-space.

Let us assume that a single data point is acquired, for example, one of the data 
points forming a gradient echo. Between the acquisition of this data point and the 
preceding RF excitation pulse, a gradient Gx (in the read direction) and a gradient Gy 
(in the phase direction) are switched on for a certain duration. The data point’s 
k-values kx and ky are then defined as the areas under the respective gradients (i.e. the 
product of gradient strength and gradient duration). For example, in Fig. 3.4 the ky 
value of any data point constituting the signal is the area under the preceding PE 
gradient Gy, and the kx value is the area under the read gradient Gx up to the time 
when the data point is acquired. This means that the data points constituting the 
signal in Fig. 3.4 have the same ky value but different, increasing kx values. Based on 
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this definition, we can now analyse the k values of the data points in the various 
gradient echoes that are acquired according to Fig. 3.8 (left). Please keep in mind 
that the experiment depicted in Fig. 3.8 is repeated several times using different 
values for the PE gradient Gy, i.e. several gradient echoes with different degrees of 
PE are acquired. Let us start with the kx values: the first data point of each gradient 
echo is preceded by the negative gradient on the Gx axis only, so it has a negative kx 
value. The other data points are preceded by the initial negative gradient plus the 
positive read gradient of increasing duration, so they have increasing kx values. 
However, all data points belonging to the same echo are preceded by the same gradi-
ent Gy, so they have the same ky value, which is negative for the first echo because 
Gy starts with a negative value. The different k values of the data points belonging to 
the gradient echo can be depicted in a 2D k-space diagram, as shown in Fig. 3.8 
(right): obviously, the data points cover the bottom-most horizontal line in k-space. 
For the next echo, the PE gradient Gy has a higher value, so ky is increased and the 
data points constituting this echo cover the next highest horizontal line in k-space 
(Fig. 3.8, right). In summary, one can say that for any particular MR imaging exper-
iment, several data points with different combinations of kx and ky must be acquired, 
covering the complete 2D k-space, as shown in Fig. 3.8 (right). For the experiment 
described in Fig. 3.8 (left), k-space is covered in horizontal lines, filling each line 
successively from the left to the right.

3.1.7  Echo Planar Imaging (EPI)

The gradient echo sequence depicted in Fig. 3.8 (left) is relatively time-consuming, 
mainly because each repetition with a new PE gradient requires its own slice- 
selective excitation pulse. Special gradient echo techniques such as single-shot EPI 
have been developed to circumvent this limitation (Mansfield 1977). EPI is sche-
matically described in Fig.  3.9 (left). After slice-selective excitation, a series of 
gradient echoes are acquired by successive inversions of the read gradient. A short 
gradient pulse in the y-direction, the so-called blip, is switched on between succes-
sive acquisitions. Thus, the degree of PE for a specific echo is given by the initial 
negative gradient in the y-direction and the sum of the blips up to the echo acquisi-
tion time. In summary, this satisfies the conditions posed above for imaging (perfor-
mance of a series of acquisitions while a read gradient in the x-direction is turned 
on, with each acquisition being preceded by phase gradients in the y-direction with 
different degrees of PE), so a full image can be constructed from the acquired data. 
There is only one excitation pulse, so the technique is very fast, with typical acquisi-
tion times of less than 100 ms per slice. Gradient echo EPI images are heavily T2* 
weighted, displaying reduced image intensity in areas affected by local magnetic 
field inhomogeneities, as explained above. As we will see below, T2* weighting and 
speed of acquisition make this technique ideally suited for functional MRI.

The k-space analysis is relatively simple: for the first echo, the data points have 
increasing kx values, ranging from a negative to a positive value but the same 
negative ky value due to the preceding PE gradient Gy. Thus, this echo covers the 
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Fig. 3.9 (Left) Schematic description of single-shot echo planar imaging (EPI): a series of gradi-
ent echoes is acquired by successive inversions of the read gradient. Due to short intermediate 
y-gradient pulses (blips), the echoes have different degrees of PE. (Right) Schematic description of 
k-space coverage for EPI, filling odd horizontal lines successively from the left to the right and 
even horizontal lines successively from the right to the left

bottom- most horizontal line in k-space, as shown in Fig. 3.9 (right). For the sec-
ond echo, ky is increased due to the intermediate blip. The kx values of this echo 
range from a positive to a negative value, so this echo covers the next horizontal 
line in k-space but in reverse order. In summary, it can be said that k-space is 
covered in horizontal lines in EPI, with odd lines filled successively from the left 
to the right, and even lines from the right to the left. This k-space line-filling order 
reversal, which allows for fast data acquisition, can also give rise to artefacts (see 
Chap. 10).

3.1.8  Spin Echoes

For the sake of completeness, the occurrence of spin echoes will be briefly described 
in this section. The basic experiment is described in Fig. 3.10 (top). A 90° pulse tilts 
the magnetisation vector, and a strong signal can be observed directly after the exci-
tation (time point 1). This signal decays with the time constant T2*. After a short 
while, a 180° pulse is applied (between time points 2 and 3). As a consequence, the 
signal builds up again (time point 4). This effect is known as spin echo (Hahn 1950) 
and can be explained as follows (bottom part of Fig. 3.10). Directly after the excita-
tion (time point 1), all of the spins are aligned, forming a strong signal. However, 
they start to rotate (black arrow), usually with different Larmor frequencies due to 
field inhomogeneities, as described above. For simplicity, let us assume there are 
three spin ensembles: a “fast” one (red), an “average” one (blue) and a “slow” one 
(green). After a while (time point 2), the “fast” spins are relatively advanced, 
whereas the “slow” spins are lagging behind. Consequently, the spins are dephased 
and the signal has decayed. The 180° pulse rotates the spins around the axis of 
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Fig. 3.10 Schematic description of the spin echo effect, indicating the magnetisation vectors of 
three spin ensembles with high (red), medium (blue) and low (green) Larmor frequencies. At time 
point 2, the signal is dephased because the red vector is advanced, while the green one is lagging 
behind. After application of the 180° pulse, this constellation is inverted. As a consequence, the red 
vector “catches up”, and at time point 4, the vectors are realigned, resulting in the spin echo signal
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initial alignment (green arrow). This leads to a fundamental change in constellation 
(time point 3): the “fast” spins are now lagging behind, while the “slow” ones are 
well advanced. However, the direction of precession remains unchanged (black 
arrow), so the “fast” spins catch up, and after a while (time point 4), the spins are 
realigned, once again forming a strong signal, the spin echo. This procedure com-
pensates for the effects of all field inhomogeneities, so spin echoes are T2-weighted 
(in contrast to gradient echoes, which are T2*-weighted).

As described above, T2-weighted spin echo sequences are widely used in clinical 
practice for the detection of lesions. To shorten the experiment duration, a fast spin 
echo sequence dubbed RARE (Hennig et al. 1986) is frequently used (also known 
as the turbo spin echo sequence or fast spin echo sequence). This sequence is basi-
cally similar to the EPI technique described above; however, to achieve T2 weight-
ing, a series of spin echoes (rather than gradient echoes) are acquired by applying 
180° pulses between subsequent echoes.

3.1.9  The Specific Absorption Rate (SAR)

When RF pulses are applied in MRI experiments, energy is transferred to the spin 
system. The problem is that RF pulses also induce electrical currents in the tissue, 
which lead to tissue heating. As a consequence, only a fraction of the transmitted 
RF energy is used for spin excitation, and the remaining part causes unwanted 
heating effects. The SAR is the RF power absorbed by the tissue, measured in 
watts per kilogram of body weight. For safety reasons, the SAR must not exceed 
certain limits. As an example, the maximum allowed SAR averaged over the head 
is 3.2 W/kg. The SAR depends strongly on the MRI technique in use. For example, 
EPI is a low- SAR technique because only a single RF pulse is required per imaging 
slice. In contrast, fast spin echo techniques like RARE (turbo spin echo) are high-
SAR techniques because a series of 180° pulses is required to create a train of spin 
echoes. It should be noted that SAR values increase with the scanner’s magnetic 
field strength. Due to the higher Larmor frequency and the fact that tissue conduc-
tivity increases with the frequency, a larger proportion of the energy is converted 
into heat. As a consequence, it may be difficult to run high-SAR sequences on 
high-field scanners.

The insertion of conductive material (such as EEG electrodes and leads) inside 
the scanner bore is problematic because induced currents can heat up the hardware, 
resulting in a risk of causing local RF burns where the hardware is in contact with 
the skin. Thus, high-SAR sequences should not be used in concurrent EEG–fMRI 
acquisitions. Additionally, in studies of this kind, the standard RF setup (whole- 
body coil for RF transmission and head coil for signal reception) should be avoided; 
a head transmit/receive coil should be used instead, to reduce the exposure of equip-
ment to RF fields. The dependence of electrode heating on the RF coil type and the 
SAR has been tested experimentally (Nöth et al. 2012). The issue of safety in rela-
tion to EEG–fMRI is discussed in detail in Chap. 7.
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3.2  The Cerebral Blood Flow (CBF)

3.2.1  Definition, Order of Magnitude and Measurement

Brain perfusion or CBF is a measure of the delivery of arterial blood, and thus 
of oxygen, to the brain tissue. An increase in CBF is caused, for example, by 
brain activation due to a higher demand of oxygen during neuronal activity; this 
CBF increase results in a higher oxyhaemoglobin concentration at the site of 
activity, leading to the “BOLD effect” described in Sect. 3.4 of this chapter. 
Therefore, the site of brain activation can be determined by measuring CBF 
changes (Luh et al. 2000). On the other hand, a decrease in CBF will lead to low 
levels of oxygen (hypoxia), to which the brain is very vulnerable, which can 
cause brain damage in severe cases, such as in cases of ischaemic stroke. In 
general, CBF is a crucial parameter for diagnosing, treating and understanding 
the mechanisms underlying various pathological conditions (Grade et al. 2015; 
Haller et al. 2016), in particular stroke (Wang et al. 2013), epilepsy (Storti et al. 
2014), cancer (White et al. 2014) and dementia (Le Heron et al. 2014). Combined 
EEG–CBF measurements have been successfully performed in the field of epi-
lepsy (Stefanovic et al. 2005; Hamandi et al. 2008; Carmichael et al. 2008); see 
Chaps. 17, 18, and 19.

CBF can be quantified in terms of the rate of delivery of arterial blood ΔVB/Δt 
(measured in mL per min) to the capillaries of a particular volume V or mass m of the 
brain tissue (measured in units of 100 mL or 100 g, respectively; see also Fig. 3.11):

 
CBF B= ×

1
V

V
t

D
D

.
 

Approximate values for global CBF in healthy adults are 60 mL/100 g/min in 
grey matter and 20 mL/100 g/min in white matter (Biagi et al. 2007), although the 
range of values found in the literature is large.

It should be noted that only blood in the capillaries contributes to CBF, while 
blood passing through the tissue in arteries (or arterioles) and veins (or venules) 
does not.

There are two major MR methods for measuring CBF, arterial spin labelling 
(ASL) and dynamic susceptibility contrast (DSC) MRI.

DSC MRI uses a paramagnetic gadolinium-based contrast agent, which is 
injected intravenously as a tracer, so this method is invasive. The contrast agent 
locally reduces the relaxation times T1, T2 and T2*. The passage of the contrast 
agent bolus through the tissue of interest is usually monitored by acquiring a 
time series of T2- or T2*-weighted images (e.g. using the EPI sequence), 
because the respective imaging sequences have a higher temporal resolution 
than T1-weighted sequences. By analysing the signal time course of the bolus 
passage, which has a duration of typically a few seconds, information on the 
CBF, the cerebral blood volume (CBV) and the mean transit time (MTT) can be 
derived (Buxton 2002, pp. 310–350). Since changes of the transverse relaxation 
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Fig. 3.11 The cerebral blood flow (CBF) is the rate of delivery of arterial blood to the capillaries 
of a particular volume V or mass m of the brain tissue. Only blood in the capillaries contributes to 
the CBF. Blood passing through the tissue in arteries (or arterioles) and veins (or venules) does not 
contribute

rates 1/T2* and 1/T2 can be assumed to be proportional to the contrast agent 
concentration, the latter can be obtained from changes in signal intensity, from 
which concentration-time curves can be derived. The advantage of this method 
is a high SNR. However, absolute CBF quantification is complicated as the pro-
portionality constants in the various relationships are not accurately known 
(Willats and Calamante 2013). In addition, DSC MRI does not allow for repeated 
CBF measurements before complete washout of the contrast agent. Dynamic 
contrast-enhanced (DCE) MRI is based on T1-weighted imaging after intrave-
nous injection of the paramagnetic contrast agent; however, due to the lower 
temporal resolution, it is less frequently used for brain perfusion 
measurements.

In contrast to the DSC method, ASL uses inverted blood spins as a tracer and is 
completely noninvasive. With a time resolution of approximately 4 min (for quanti-
tative high-resolution multislice or 3D CBF maps), it allows for serial determination 
of CBF. The disadvantage is the low SNR and the short lifetime of the tracer (which 
decays with T1). Therefore, ASL does profit from measurements at high magnetic 
field strengths that intrinsically provide increased SNR and longer T1 values. In the 
following paragraphs, only the noninvasive ASL method will be discussed because 
of its widespread use in human studies.
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Fig. 3.12 Schematic description of the arterial spin labelling (ASL) method for CBF quantifica-
tion: two types of images are acquired, through either a label experiment or a control experiment. 
The CBF is proportional to the difference image. To increase the signal-to-noise ratio, the acquisi-
tion is usually averaged several times
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Fig. 3.13 Schematic description of the ASL method for CBF quantification: static spins are fully 
relaxed for both the control and the label experiment. In contrast, blood spins are inverted for the 
label experiment. Thus, the difference image shows the signal for blood spins only

3.2.2  Arterial Spin Labelling Measurements

An ASL measurement consists of a label experiment, where a magnetisation prepa-
ration (inversion) of inflowing blood is performed before its entry into the imaging 
slice(s), and a control experiment, where no preparation of the inflowing blood is 
performed. Images are acquired after each experiment, giving the label and control 
signals (Fig. 3.12). The CBF is proportional to the difference in signal:

 CBF control labelµ = -DS S S  

The fact that the signal difference only shows perfused areas can be explained as 
follows. The signal in the imaging slice arises from the static tissue spins and the 
moving blood spins. The static spins provide the same signal in the label and control 
scans, so they do not contribute to the difference image. The inflowing blood spins, 
however, are relaxed in the control scan and inverted in the label scan, which results 
in a positive signal in the difference image (Fig. 3.13).

It should be noted that ΔS is generally on the order of 1% of the average signal 
strength in the label and control images, so a small measurement error in Scontrol or 
Slabel will result in a large error for CBF.
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3.2.3  Labelling Methods

The basic ASL labelling methods are continuous (CASL), pseudo-continuous 
(pCASL) and pulsed (PASL) arterial spin labelling. CASL uses special long- duration 
low-amplitude RF pulses in combination with a strong gradient in flow direction to 
continuously invert blood spins passing through a thin slice before entering the imag-
ing area. This results in a bolus of inverted blood of a well-defined length and a rela-
tively high SNR. However, high RF power consumption, leading to high SAR values, 
eddy current effects due to strong gradients as well as magnetization transfer (MT) 
effects due to long RF pulses can be a problem. A separate labelling coil is advanta-
geous but technically more challenging because it requires an additional transmit 
channel. In pCASL, an RF pulse train with varying gradients (Dai et  al. 2008) 
achieves the same labelling as in CASL with reduced SAR and MT effects. PASL 
uses a short RF pulse in combination with a weak gradient to invert spins inside a 
broad slab, resulting in a reduction of the SAR, eddy currents and MT effects. 
However, the bolus of inverted blood spins has a spatial and temporal extent which is 
usually not well defined, leading to a reduced SNR, as blood spins located in the 
bolus region distal to the imaging slice will experience a longer period of T1 relax-
ation before entering the imaging area. More recent and specialised forms of ASL are 
velocity-selective (VS-ASL) and acceleration-selective ASL (AccASL), where the 
labelling of blood is based on its flow velocity and acceleration, respectively, rather 
than on spatial location, thus minimizing the transit delay and related errors (Wong 
2013; Schmid et al. 2017). Territorial ASL (T-ASL) labels blood in selected feeding 
vessel(s) which perfuse specific brain regions (Hartkamp et al. 2013).

3.2.4  Quantification Problems in ASL

There are several sources of systematic error in CBF quantification (Wong 2005) 
that are related to problems affecting static and blood spins. Static spins can be 
erroneously influenced by subject motion and by the label experiment via the mag-
netisation transfer effect (increasing with the duration of inversion pulses), eddy 
currents (increasing with decreasing inversion slice thickness) and imperfect slice 
profiles (increasing with slice thickness). Blood spins can lead to errors due to 
inflow from areas that are not affected by the label experiment (causing underesti-
mation of the CBF), intravascular signal from labelled blood designed to perfuse 
capillaries in more distal slices (causing overestimation of the CBF) and a low label-
ling efficiency.

The following parameters influence the difference signal ΔS and need to be taken 
into account in CBF quantification: the transit delay (the time labelled blood needs 
to travel from the labelling site to the imaging slice), the natural time width τ of the 
bolus (depends on the thickness of the labelling slice and the velocity distribution of 
the spins inside), the T1 decay of labelled blood (leads to reduced SNR in the dif-
ference signal) and the exchange of water between labelled blood and the brain tis-
sue which have a different T1.
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Quantification for PASL can be improved by using saturation pulses on the 
labelling slice that cut off the tail of the bolus, leading to a well-defined bolus 
length. This makes the method independent of (1) the natural time width of the 
bolus, as the bolus length is now defined by the time between the labelling pulse 
and saturation pulse, and (2) under certain conditions of the transit delay, too. The 
respective sequences are QUIPSS II (Wong et al. 1998), where a single broad satu-
ration pulse is applied to the whole of the labelling slice (some quantification errors 
still remain due to imperfect slice profiles), and Q2TIPS (Luh et al. 1999), where a 
train of thin- slice saturation pulses (with a much better slice profile) is applied at 
the end of the labelling slice proximal to the imaging region (instead of one broad 
saturation pulse to the whole of the labelling slice), thus further improving quanti-
fication. Saturation of the imaging slice before the labelling/control experiment 
reduces errors for the static spins due to the imperfect slice profile of the broad 
labelling slice and has the additional advantage that adding the label and control 
images yields an image showing the BOLD effect (Wong et al. 1997; Luh et al. 
2000), as discussed later. A detailed review of the issues discussed in this section 
can be found in Wong (2005).

Concise advice on acquisition and control of the ASL signal and on quantifica-
tion and processing of ASL data is given in the book chapter “ASL: Blood Perfusion 
Measurement Using Arterial Spin Labelling” by van der Kleij and Petersen 
(Cergignani et al. 2018, pp. 288–294).

3.3  The Cerebral Blood Volume (CBV)

3.3.1  Definition, Order of Magnitude and Measurement

The blood volume per tissue mass or volume (mL/100 g or mL/100 mL) is expressed 
as the CBV. In the human brain, typical values are approximately 5 mL/(100 mL) in 
grey matter and 2.5 mL/(100 mL) in white matter (Kuppusamy et al. 1996; Leenders 
et al. 1990). The CBV is an important parameter in normal brain physiology and 
pathophysiology. It is used as a measure of brain activity in fMRI (Belliveau et al. 
1991; Lu et al. 2003; Vanduffel et al. 2001; Huber et al. 2017). In particular, direct 
measurements of CBV help elucidate the complex interplay between CBF, CBV 
and blood oxygenation underlying the BOLD effect used in the majority of current 
fMRI studies, and are important for the quantitative mapping of the cerebral meta-
bolic rate of oxygen consumption (CMRO2; Kida et al. 2007). CBV is also used as 
a marker of disease, for example, in the assessment of brain vasculature diseases 
(Kader and Young 1996).

Various MR methods were developed to measure the CBV, and these fall into 
two main categories: methods using contrast agents (Belliveau et  al. 1991; 
Ostergaard et al. 1998; Schwarzbauer et al. 1993; Vanduffel et al. 2001; Shen et al. 
1993) and a more recently developed contrast agent-free method (vascular space 
occupancy; VASO) (Lu et al. 2003).
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3.3.2  Contrast Agent-Based Methods

There are two main contrast agent-based methods: dynamic and steady-state imag-
ing. In each case, a paramagnetic contrast agent is injected, reducing the intravascu-
lar relaxation times. In dynamic imaging, the passage of a bolus of contrast agent 
after intravenous injection is traced. The signal time curve allows for a CBV estima-
tion which is typically based on a model of tracer kinetics (Tofts 2003, pp. 365–390). 
In steady-state imaging, images acquired before and after injection are compared. A 
sufficient waiting time is employed to ensure that the contrast agent concentration 
in the blood has reached a steady state.

3.3.2.1  Dynamic Imaging
Dynamic imaging methods vary mainly depending on the contrast agent used, the 
MRI contrast acquired and the time resolution.

Two methods in use are DSC and DCE MRI, previously introduced for their 
application in the measurement of CBF (see Sect. 3.2.1).

In DSC imaging, after the injection of the paramagnetic contrast agent (normally 
a gadolinium chelate, such as Gd-DTPA), the signal time course is monitored with 
a T2- or T2*-weighted MR sequence. The area under the signal time curve is pro-
portional to the CBV (Rosen et al. 1990). Since the proportionality constant is not 
generally known, the relative CBV (rCBV) can be calculated, where a value of 
100% corresponds to pure blood. The rCBV can be obtained from the ratio of the 
signal in the region of interest to the signal from voxels that contain blood only (e.g. 
inside the superior sagittal sinus). Since DSC imaging requires a high temporal 
resolution of about a second to sample the signal time course adequately, the spatial 
resolution is limited. Thus, partial volume effects complicate the assessment of 
CBV, and large vessels cannot be excluded (Lin et al. 1999). Moreover, the signal 
intensity may be too low in blood-only voxels during the bolus passage. Recirculation 
of the contrast agent after the first pass and an unknown arterial input function fur-
ther complicate the assessment (Tofts 2003, pp. 365–390). Therefore, often only 
quotients of CBV values are reported, for example, comparing two homologous 
brain areas in the left and right hemispheres or tissues of interest.

Similarly, in DCE imaging the signal time course following the injection of a 
bolus of paramagnetic contrast agent is monitored, but with a T1-weighted MR 
sequence (Dean et al. 1992). The time dynamics are in this case slower, requiring a 
lower temporal resolution but an acquisition period of about twice as much as for 
DSC (typically 2–3 min). While DCE is found to be less sensitive to sources of 
nuisance affecting DSC, it is characterized by lower contrast to noise that might 
hinder the precision of CBV estimates, especially for weakly vascularized regions 
(Sourbron and Buckley 2013).

A third group of dynamic imaging methods exploits iron-based contrast agents 
to estimate relative CBV or the dynamic changes in CBV. These contrast agents are 
composites of iron-oxide nanoparticles that, thanks to their small size, are not rap-
idly cleared from the plasma pool, providing a T2* contrast that is dependent on 
CBV dynamics, but much stronger than that naturally occurring, for instance, due to 

3 The Basics of Functional Magnetic Resonance Imaging



68

the presence of deoxyhaemoglobin exploited in fMRI BOLD imaging. Originally 
applied to animal models, iron-based methods have gained more popularity also for 
human brain applications, mainly for clinical protocols (Mandeville 2012; Qiu et al. 
2012) but also for applications with healthy subjects (Baumgartner et  al. 2016). 
Note that these methods and contrast agents are known by several names, such as 
MION (Shen et al. 1993), IRON (Mandeville 2012), ferumoxytol (Christen et al. 
2012) and USPIO (Kim et al. 2013).

3.3.2.2  Steady-State Imaging
The CBV can also be estimated from steady-state imaging (Kuppusamy et al. 1996; 
Moseley et al. 1992; Schwarzbauer et al. 1993). For this method, it is assumed that 
two separate compartments contribute to the signal: an extravascular (brain paren-
chyma) and an intravascular (blood vessels) compartment. When a paramagnetic 
contrast agent is injected, it will selectively lower T1 in the intravascular compart-
ment, leading to a signal increase in T1-weighted images. The increase in signal 
permits the size of the intravascular compartment, i.e. the CBV, to be calculated. 
Two acquisitions are performed, one before and one after the injection of the con-
trast agent, allowing for sufficient time to reach a steady-state distribution of the 
contrast agent. Since the data are acquired in the steady state, the imaging sequence 
does not need to be fast, allowing for higher spatial resolution and high 
SNR. Therefore, 3D gradient echo sequences are usually used for imaging.

In the original implementation, a quantitative T1 map was acquired before and 
after contrast agent injection (Schwarzbauer et al. 1993), using a spoiled, fast, low- 
angle shot (FLASH) technique (Haase 1990). The longitudinal relaxation rate 
R1 = 1/T1 is obtained for a voxel containing the tissue of interest and a control voxel 
containing blood only. The CBV can be computed as (Schwarzbauer et al. 1993)
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Since in spoiled FLASH the signal change Spost − Spre is roughly proportional to 
the underlying change in relaxation rate R1post − R1pre, the CBV can be directly 
estimated from the signals for the two voxels, bypassing T1/R1 quantification 
(Kuppusamy et al. 1996):
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The steady-state approach was further modified to include an inversion of the 
longitudinal magnetisation prior to FLASH acquisition (Perles-Barbacaru and 
Lahrech 2007). The inversion time (TI) and the repetition time (TR) are chosen in a 
way that the signal from compartments with long T1 values is nulled, leading to 
complete suppression of the extravascular signal. In contrast, intravascular blood 
yields the maximum signal since the blood T1 is strongly reduced due to the con-
trast agent. Thus, the total signal Spost arises from intravascular blood only. A second 
measurement without T1 weighting is performed, choosing long TR and TI values, 
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which yields a signal S0 arising from all compartments. As a consequence, the CBV 
can be obtained from the quotient Spost/S0. To exclude residual signal contributions, 
another T1-weighted measurement before contrast agent administration is per-
formed, and the CBV is obtained from

 
CBV =

-S S
S

post pre

0

.
 

The steady-state methods assume that the intra- and extravascular compartments 
are separate. This assumption can be violated when, for example, the blood–brain 
barrier is damaged or if diffusion of water across the capillary walls is significant 
(Perles-Barbacaru and Lahrech 2007), thus resulting in a misestimation of the CBV.

3.3.3  Contrast Agent-Free Method: Vascular Space 
Occupancy Measurement

The VASO imaging technique measures CBV without an exogenous contrast agent. 
VASO imaging is primarily used qualitatively for fMRI, but quantitative CBV mea-
surements are possible in combination with a contrast agent (Lu et al. 2005; Uh 
et al. 2009). Usually, a gradient echo EPI acquisition is preceded by a global inver-
sion that nulls the blood signal. Thus, an increase in CBV results in a reduction of 
signal intensity. The original version of VASO-fMRI allowed for the acquisition of 
a single slice only (Lu et al. 2003) but was later extended to multislice (Lu et al. 
2004) and then 3D acquisitions (Poser and Norris 2009).

Compared to contrast agent-based techniques, VASO-fMRI offers the advantage 
that it is noninvasive and can be repeated as often as necessary. Further, it is not sensi-
tive to extravascular signal changes, since it uses the intravascular blood as an endog-
enous contrast agent. Finally, due to vasodilation taking place in proximity to the site 
of neuronal activation, VASO-fMRI is found to show higher spatial specificity com-
pared, for instance, to BOLD fMRI (Huber et al. 2017; Poser and Norris 2009).

However, VASO-fMRI can systematically misestimate the changes in CBV due 
to brain activation (Donahue et al. 2006; Scouten and Constable 2007), which has 
been attributed to different factors. In particular, inflow effects, BOLD signal 
weighting, contributions of cerebrospinal fluid signal and partial volume effects of 
white and grey matter affect the results and complicate their interpretation (Donahue 
et al. 2006; Scouten and Constable 2007).

3.4  The BOLD Effect and Functional MRI

Most functional MR imaging studies exploit the intrinsic BOLD contrast mecha-
nism (Ogawa et al. 1990; Kwong et al. 1992). In the following discussion, we use 
the classic stimulus-induced activation model to explain the BOLD effect. However, 
it is important to keep in mind that numerous investigations such as EEG-correlated 
fMRI studies concern the resting state, in which one often seeks to reveal patterns 
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of signal change that may not correspond to stimulus or task-driven effects, such as 
spontaneous fluctuations in brain activity: epilepsy, sleep, brain rhythms, etc. In 
general, it has been observed that in brain images based on gradient echo techniques 
with a suitable echo time (TE), signal amplitudes are temporarily enhanced in 
regions of neuronal activation (increase in neuronal activity). This effect can be 
explained roughly as follows. During the resting state, local oxygen concentrations 
are relatively low, so blood contains a high concentration of deoxyhaemoglobin, 
which is paramagnetic (i.e. it locally increases the static magnetic field), whereas 
the brain tissue is diamagnetic (i.e. it tends to slightly decrease the static magnetic 
field). This means that at the interfaces of vessels and brain tissue there are magnetic 
field inhomogeneities that shorten T2* and give rise to a signal reduction in T2*-
weighted gradient echo images, as explained above. After neuronal activation, more 
oxygen is transported to the site of activation via an increased CBF, leading to a 
washout of deoxyhaemoglobin and an increased concentration of oxyhaemoglobin, 
which is diamagnetic. Thus, the magnetic properties of blood and brain tissue 
become more similar, field inhomogeneities are reduced and the local image inten-
sity increases.

In reality, matters are more complicated. Figure 3.14 shows a typical signal 
time course following neuronal activation associated with an external stimulus 
(task) or spontaneous brain activity, the so-called haemodynamic response. 
Initially, there is a slight signal decrease. This initial dip is not always observed 
and has been reported for high field strengths (Buxton 2001). Afterwards, there is 
a positive BOLD response that persists for about 5–10 s. For the remaining time, 
up to 30 s after the onset of the stimulus, there is a signal undershoot (van Zijl 
et al. 2012). The physiology behind these effects is only partially understood. In 
particular, it is not clear how the coupling between neuronal activity and blood 
flow is mediated (Attwell and Iadecola 2002; Filosa et al. 2016) and which aspect 
or aspects of neuronal activity it best reflects. This is one of the questions that 
studies combining electrophysiology/EEG with fMRI may help elucidate 
(Logothetis et al. 2001; Shmuel et al. 2006; Laufs et al. 2003; Moosmann et al. 
2003; Siero et al. 2014). Here, we focus on the vascular response itself, for which 
a thorough discussion of the various theories can be found in the literature (Buxton 
et al. 2004; Chen and Pike 2009). In this section, one of the most commonly cited 
models will be presented: the so-called balloon model (Buxton et al. 1998, 2004; 
Buxton 2012). Extensions to this model have also been proposed, with a more 
detailed modelling of the role of the neural activation (Havlicek et al. 2015). The 
important physiological parameters that influence the BOLD effect are the cere-
bral metabolic rate of oxygen consumption (CMRO2), the CBF and the CBV. The 
typical time courses of these parameters after activation are schematically 
sketched in Fig. 3.14.

According to this model, directly after the onset of neuronal activation, the 
CMRO2 is increased. The consumption of oxygen leads to a higher concentration 
of deoxyhaemoglobin, which reduces the signal, resulting in the initial dip. 
However, after a very short while, the CBF and the CBV go up, with opposing 
effects: due to the increased CBF, oxygen is transported to the site of activation, 
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CMRO2

CBF

CBV

Fig. 3.14 A typical haemodynamic response function following a stimulus, showing a negative 
initial dip, a strong positive BOLD response and a subsequent negative undershoot. These phe-
nomena can be explained with the different time constants of the underlying physiological param-
eters: the cerebral metabolic rate of oxygen consumption (CMRO2), the cerebral blood flow (CBF) 
and the cerebral blood volume (CBV)

giving rise to a decreased concentration of deoxyhaemoglobin and thus to a 
higher signal, as explained above. The increase in CBV is concomitant with a 
higher concentration of deoxyhaemoglobin, lowering the signal. However, the 
effect of the CBF increase outpaces the signal reduction caused by the higher 
CMRO2 and CBV values, resulting in a positive BOLD response. After about 10 
s, CMRO2 and CBF return to their baseline levels. The relaxation of CBV is 
slower, so for a certain time there is an increased concentration of deoxyhaemo-
globin due to the higher blood volume, which reduces the signal, resulting in the 
undershoot.

So far, we have focussed on the positive BOLD response for simplicity. However, 
it is important to note that the BOLD response curve may be inverted; in other 
words the large BOLD change that occurs after 5–10 s may be negative, as observed 
in various fMRI (Shmuel et al. 2006; Stefanovic et al. 2004) and EEG–fMRI studies 
(Hamandi et  al. 2008; Laufs et  al. 2003; Moosmann et  al. 2003). Though the 
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underlying mechanism is not completely understood, one important element is a 
decrease in blood flow consistent with a decrease in neuronal activity in the cortex 
compared to the baseline (Hamandi et al. 2008; Carmichael et al. 2008; Havlicek 
et al. 2015). For example, it was shown that a decrease in global neuronal activity in 
primate visual cortex is accompanied by a negative BOLD response (Shmuel et al. 
2006). Increased local field potential (LFP) activity, on the other hand, was shown 
to correlate well with the positive BOLD response (Logothetis et al. 2001). Although 
the majority of the studies exploited the main BOLD response after 5–10 s, some 
studies also targeted the initial dip and the undershoot for high-resolution fMRI (see 
in the review by Goense et  al. 2016). Moreover, both negative transients in the 
BOLD response were also studied in the context of models of the BOLD effect (see 
the review by Buxton et al. (2004) and Buxton (2012) and more recent studies from 
Havlicek et al. (2017) and Sten et al. (2017)).

From an imaging perspective, the T2* contrast and the contrast of the BOLD 
response are in the first instance determined by the choice of the echo time (TE), as 
previously discussed (see Sect. 3.1.5). The practical question arises which echo time 
(TE) should be chosen to achieve maximum BOLD contrast. Figure 3.15 shows the 
theoretical BOLD signal depending on TE for a T2* value of 45 ms (which is the 
approximate T2* of brain tissue at a field strength of 3 T). The result corresponds to 
the discussion above (see Sect. 3.1.5). For short TE, the spins do not have sufficient 
time to dephase, so the effect is small. For very long TE, there are signal losses due 
to relaxation effects. Optimum results can be obtained at 45 ms at 3 T, i.e. when TE 
equals T2*. However, as described above, gradient echo sequences are susceptible 
to all field inhomogeneities, so there are signal losses in brain areas where the static 
magnetic field is typically distorted due to the vicinity of air-filled cavities (e.g. in 
the orbitofrontal and temporal areas). Thus, the TE chosen should be as short as 
possible to avoid signal losses but as long as necessary to achieve an adequate 
BOLD contrast. According to Fig. 3.15, there is still a strong BOLD signal for a TE 
of 30 ms, which is the recommended value for fMRI studies carried out on 3 T scan-
ners. At 1.5 T, a TE of 50 ms should be chosen due to the prolonged T2* values at 
lower field strengths.

At higher field strengths, as, e.g. 7 T, even sub-millimetre resolutions can be 
achieved and were exploited for studies of the mesoscopic structures (≤1 mm) of 
the human neocortex, such as the layers or columnar structures (see reviews from 
Cheng (2018) and Schluppeck et al. (2018)). The use of fMRI for characterizing 
such subtle structures poses exceptional demands on the contrast-to-noise ratio 
and effective spatial resolution. Particularly, the draining of deoxygenated blood 
through the venules causes a dispersion effect in higher cortical layers, leading 
to a poor effective point spread function (Turner 2002; Shmuel et  al. 2007; 
Polimeni et al. 2010). Thus, the correction and reduction of this effect has become 
an active area of research, leading to new spatial modelling approaches 
(Markuerkiaga et al. 2016). This type of high-resolution imaging is a promising 
technique for investigating mesoscopic functional neuroanatomical structures 
that mediate important brain functions (e.g. ocular dominance columns; Yacoub 
et al. 2008).
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Fig. 3.15 Dependence of the theoretical BOLD sensitivity on the chosen echo time (TE) at 3 T
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4Locally Measured Neuronal Correlates 
of Functional MRI Signals

Amir Shmuel and Alexander Maier

4.1  Blood Oxygenation Level-Dependent (BOLD) Signals

The majority of functional brain imaging studies in humans rely on functional mag-
netic resonance imaging (fMRI) (Bandettini et al. 1992; Kwong et al. 1992; Ogawa 
et al. 1992). The most commonly used fMRI contrast is the BOLD signal (Ogawa 
et  al. 1990). The BOLD signal is inversely proportional to the local content of 
deoxyhemoglobin (deoxyHb). When neuronal activity increases, local arterial cere-
bral blood flow (CBF) increases to a larger extent than the metabolic increase in 
oxygen consumption (Fox and Raichle 1986; Hoge et  al. 1999). In other words, 
following increased neuronal activity, CBF overcompensates for the increased need 
for oxygenated blood. As a result, deoxyHb content drops within local capillaries, 
venules, and draining veins. This process can be monitored via MRI by tracking the 
changing magnitude of the BOLD signal over time (Buxton et al. 2004). fMRI sig-
nals are only indirect measures of neuronal activity, which rely on intermediary 
processes such as neurovascular coupling and MR contrast. Therefore, the interpre-
tation of fMRI data relies heavily on inferences about how this hemodynamic 
response relates to local changes in neural activity. In order to fully utilize fMRI as 
an effective method to study brain function, it is vital to understand how metabolic 
and hemodynamic responses relate to the underlying neural activity.
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4.2  Extracellular Neurophysiological Signals

Neurons receive inputs via synapses that are located at their soma and their den-
drites. These inputs take the form of two post-synaptic potentials, excitatory and 
inhibitory post-synaptic potentials (EPSPs and IPSPs), respectively. These post- 
synaptic potentials can be measured directly using intracellular or patch-clamp 
techniques. However, there are significant technical challenges associated with 
these measurements such as the requirement for complete immobilization of the 
sampled tissue. Thus, most in vivo studies resort to measuring electric activity in the 
extracellular space. Post-synaptic input potentials propagate along the neuron’s 
dendrites toward its soma. Depending on the ratio of concurrent excitatory to inhibi-
tory synaptic inputs, as well as on the synchronization between excitatory inputs, 
action potentials (spikes) may get initiated at the soma’s axon hillock. Action poten-
tials propagate along the axon toward the cell’s pre-synaptic axonal terminals, 
where they release the all-or-none output of the neuron to its recipients. This signal-
ing is done through chemical neurotransmitters or neuromodulators that diffuse 
from vesicles into the synaptic cleft.

The vast majority of intracortical neurophysiological measurements (recordings) 
are based on extracellular voltages. Extracellular recordings measure electric sig-
nals within the extracellular medium, which reflect both synaptic and spiking activi-
ties. However, extracellular recordings cannot resolve the membrane potentials of 
isolated neurons. When inactive, the majority of neurons harbor a voltage gradient 
of about 60–70 mV across their lipid membranes. Neurons maintain this voltage 
gradient by actively moving certain anions from the extracellular medium into their 
cell bodies via specialized ion pump membrane proteins. The resulting potential 
difference between a neuron’s intracellular space and the extracellular medium is 
called the “resting potential.” Put differently, the inside of an inactive neuron con-
tains more negative charge than the extracellular medium. When there is a mem-
brane potential difference between two distinct regions of the neuron, current will 
start to flow between them. This current flow within neurons causes a canceling 
return current in the extracellular space to flow in the opposite direction. Importantly, 
each of these currents remains isolated within its respective compartment.

In contrast, neuronal activity (both the synaptic input and the axonal output in the 
form of action potentials) takes the form of ionic current flow between the extracel-
lular fluid and intracellular compartments. The net negative (anionic) influx into an 
inactive neuron hyperpolarizes that cell. The result of such currents is that the neu-
ron’s inside is even more negative than before, which makes its activation less likely. 
Hyperpolarizing inputs thus act as inhibitory currents. Physiologically, these kinds 
of anionic currents take the form of inhibitory post-synaptic potentials (IPSPs).

Cationic influx into neurons, on the other hand, depolarizes neurons until they 
reach a threshold of activation. Once this threshold is reached, the neuron will initi-
ate an action potential. Physiologically, excitatory currents occur at synaptic sites in 
the form of excitatory post-synaptic potentials or (EPSPs).

By convention, a site through which currents either enter or leave a given system 
is termed a current source or a current sink, respectively. Note that the sign (i.e., 
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direction) of the current is dependent on the perspective of the observer. 
Consequently, the definition of what constitutes a current sink or source is also rela-
tive. When neuronal activity is concerned, however, it has become customary to 
refer to excitatory (depolarizing) currents as a current sink. Thus, neuronal current 
sinks are typically indicative of a site of synaptic excitation. To close the current 
loop, other regions of the same neuron will undergo net effluxes of positive ions. 
This current source thus leads to passive return currents (Nicholson 1973). The 
electrical dipole that results from the spatial separation between the current sink and 
source forms the basis of the time-varying voltage difference that can be measured 
with nearby microelectrodes. In other words, the microscopic ionic fluxes across the 
nerve cell membrane that arise from neuronal activation sum to extracellular voltage 
fluctuations that can be recorded as the extracellular broad-band signal.

Local field potentials (LFPs) refer to the bulk of extracellular voltage changes 
established by activity in a large number of neurons nearby a microelectrode placed 
within the extracellular space in  vivo (Fig.  4.1). The highest magnitude of the 
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Fig. 4.1 Types of extracellular neurophysiological signals. Neurophysiologists commonly dis-
criminate three major classes of signals that can be measured with microelectrodes placed inside 
the neuropil. (1) Depending on the material, geometry, and exact position of the probe, it is pos-
sible to isolate action potentials (spikes) of one or more isolated neurons. This single-unit activity 
(SUA) is quantified in a three-stage process. First, using band-limiting filters, the raw extracellular 
voltage gets narrowed down to a frequency band that matches the bandwidth of action potentials 
(~1 kHz). Next, the occurrence of individual impulses gets marked by determining the time points 
at which the signal exceeded a certain threshold. In the final step, waveform analysis gets applied 
to discriminate individual neurons. (2) The activity of larger populations of neurons (multi-unit 
activity, MUA) can be assessed by band-limiting the raw data to the frequency range of spiking 
activity, followed by either indiscriminate thresholding or by simple full-wave rectification in 
order to obtain the time-varying envelope of the band-limited signal. (3) Band-limiting the raw 
data into frequencies below the spectral range of spiking activity results in a signal called the local 
field potential or LFP
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time-varying variance of extracellular voltage fluctuations occurs in the lowest fre-
quency range. LFP magnitude decreases exponentially for increased LFP frequency. 
Given this predominance of low-frequency power in their spectral composition, 
LFPs are usually analyzed in reference to the frequency domain (i.e., in time-fre-
quency analysis or in frequency bands also used in classical EEG: delta, theta, 
alpha, beta, and gamma; Fig. 4.2). Importantly, LFPs consist of a continuous spec-
trum rather than a few discrete frequencies. Under some conditions, LFPs exhibit 
repeating patterns for limited periods of time, thus resembling actual oscillations at 
set frequencies. However, such oscillatory LFPs are the exception rather than the 
norm. Most frequently, cortical LFPs exhibit no sustained periodicity and therefore 
are better characterized as irregular fluctuations.

LFPs have proven to be a useful measure of local neural activity as they can 
provide an indication of (mostly) synaptic processes without the need for 
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Fig. 4.2 Decomposition of LFP into frequency bands. The LFP represents a complex signal that 
is dominated by slow-varying, large-amplitude fluctuations. Averaging raw LFP, although infor-
mative, thus tends to over-represent its low-frequency content. A common way to circumvent this 
bias is to break up the signal into its frequency components and study their evolution over time. 
This can be done either (1) by band-bass filtering the LFP into discrete frequency bands and esti-
mating the band-limited power (BLP) or by (2) directly transforming the signal into the frequency 
domain using the Fourier transform or related mathematical techniques. SUA, single-unit activity
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intracellular recordings. Nonetheless, LFPs are not perfect indicators of neuronal 
activity since LFPs arise from a multitude of neural events that cannot be easily 
disentangled. Specifically, LFPs’ amplitudes depend on multiple factors, such as the 
magnitude and spatial distribution of the underlying current sources and sinks, as 
well as on their temporal synchrony. The functional anatomy, relative position, and 
orientation of activated cells further influence the measured LFPs. For instance, 
stimulation of Purkinje cells in the cerebellum gives rise to large, coherent LFPs. 
The same can be found for pyramidal cells in the cerebral cortex because their den-
drites are predominantly oriented parallel to each other, which supports linear spa-
tial summation of voltages. Some interneurons, on the other hand, do not contribute 
to LFPs in the same way, as their dendrites are distributed in a radial, star-shaped 
pattern (Lauritzen 2005). Moreover, according to the relative timing of the neurons’ 
activation and their relative geometrical arrangement, field potentials generated by 
two or more neurons may add up or cancel each other across the extracellular space 
(for reviews on field potentials, see Freeman (1975) and Logothetis (2002)).

With most microelectrodes of suitable geometry placed in the close vicinity of 
neurons, the slow-varying LFPs will be recorded simultaneously with the action 
potentials of nearby neurons. Analytically, LFPs can be dissociated from spiking 
activity by temporal filtering of the raw broad-band signal into two bands of fre-
quencies above ~300  Hz and below ~150  Hz to separate the spiking activity of 
neurons (multi-unit activity, MUA) and LFPs, respectively (Figs. 4.1 and 4.2).

Separating LFPs and spiking-related activity by their frequency content, as 
described above, can be justified theoretically (Logothetis 2002). Both EPSPs and 
IPSPs are relatively slow events (10–100 ms long). In contrast, action potentials 
happen rather fast (0.4–2 ms long). As a direct consequence, the power spectra for 
synaptic events are predominated by much lower frequencies than that of spikes. 
Specifically, the average frequency spectrum of action potentials exhibits a peak 
around 1 kHz, while the frequency spectra of simulated EPSPs peak below 150 Hz. 
The same split across frequencies is found when comparing the frequency spectrum 
of a series of scattered synaptic events to the spectrum of spiking events.

Combined intra- and extracellular measurements further support the notion that 
LFPs have a synaptic-dendritic origin (e.g., Pedemonte et al. 1998). Moreover, current 
source density (CSD) analysis, a neurophysiological measurement technique that 
allows for the quantification of current flow within the neuropil, indicates that LFPs 
correspond to a weighted average of synchronized dendro-somatic activity from neu-
rons within 0.5–3 mm of the electrode tip (Mitzdorf 1987; Juergens et al. 1999).

To summarize, there is converging theoretical and empirical evidence to support 
the concept that LFPs mainly reflect synaptic events, including synchronized synap-
tic input from afferent fibers as well as synaptic activity originating from local neu-
rons. Specifically, LFPs seem to represent the summed synaptic activity of neurons 
that are located within ~2  mm of the recording electrode tip. In contrast, MUA 
seems to correspond to a weighted sum of action potentials within a ~200 μm radius 
from the electrode tip. The MUA is deemed to be dominated by the action potentials 
of pyramidal cells. However, action potentials from axons of passage, dendrites, and 
local interneurons likely also play a role.
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It is important to note that neocortical neurons are not spread out randomly. 
Instead, cortical neurons are grouped within a well-ordered layered layout that 
largely repeats itself across the cortical mantle. This cortical lamination can be 
made visible using a variety of histological staining techniques. The exact number 
of layers that can be discerned depends on the type of histological stain and varies 
between cortical areas and individual species (DeFelipe et al. 2002). This variability 
in cortical layer count has prompted neuroanatomists to propose a variety of slightly 
different labeling schemes (Billings-Gagliardi et  al. 1974; Marín-Padilla 1998). 
However, the current consensus follows neuroanatomist Korbinian Brodmann’s 
(1868–1918) original plan of dividing the neocortex into six major laminae. These 
six basic cortical layers are often grouped further into three major laminar domains. 
In particular, layer 4 and its various sublayers are commonly referred to as the 
“granular layers” due to the predominance of small neurons that give rise to a fine- 
grained appearance in some histological stains. Accordingly, superficial layers 1–3 
have been termed the “supragranular” layers, while deeper layers 5 and 6 are 
referred to as “infragranular” layers. Some neocortical areas seem to harbor no or 
little layer 4 and are thus referred to as “agranular cortex.” Cortical areas with less 
than four layers (such as the olfactory cortex and the hippocampus) are thought to 
be distinct from the neocortex and distinguished as “allocortex,” accordingly.

The reasoning for the above labeling scheme is that the connection patterns 
between these three main laminar compartments, as well as their interconnections 
with other cortical and subcortical sites, share a common scheme across the mam-
malian neocortex (but see Haug 1987; Horton and Adams 2005; Nelson 2002). This 
observation has given rise to the hypothesis that there is a “canonical” blueprint to 
the cortical laminar circuitry that is constant across the cortical sheet (Hubel and 
Wiesel 1974; Rockel et al. 1980). The signal flow across this stereotypical microcir-
cuit has been mapped using a combination of anatomical and physiological tech-
niques (e.g., Bode-Greuel et al. 1987; Nowak et  al. 1995). A consensus model 
derived from these studies (Douglas et al. 1989; Douglas and Martin 2004; Bannister 
2005; Lübke and Feldmeyer 2007; Felleman and Van Essen 1991; Sotero et  al. 
2010) suggests that the bulk of the ascending signals arrives in the granular com-
partment. Granular neurons then pass these signals onto neurons in the supragranu-
lar layers, where the ascending signals are integrated with other cortico-cortical and 
subcortical inputs. The supragranular neurons then project these integrated signals 
to other cortical areas as well as to neurons in the infragranular layers. Infragranular 
neurons back-project to the granular and supragranular layers, thus forming a rever-
berating loop between the superficial and deep cortical layers. Infragranular neu-
rons additionally project to thalamic nuclei and other subcortical structures 
(Thomson and Bannister 2003).

While this stereotypical template of excitatory cortical laminar circuitry is still 
an idealized concept (Silberberg et al. 2002; Herculano-Houzel et al. 2008; Rakic 
2008), it has been a popular concept for macroscopic models of cortical connectiv-
ity. Following the logic outlined above, any inter-cortical projections that originate 
outside granular layer 4 and terminate in layer 4 of another area are defined as 
ascending or “feedforward.” Projections that innervate another area by sparing 
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granular layer 4 are characterized as descending or “feedback” (Rockland and 
Drash 1996). Using this framework, one can derive a rough wiring diagram of the 
functional “circuitry” between cortical areas based on their laminar interconnec-
tions. The popular “distributed but hierarchical” schematic that is commonly applied 
to cortical sensory areas such as the visual system is mainly based on this organiza-
tional principle (Felleman and Van Essen 1991).

The anatomical distinction of cortical layers outlined above is of great impor-
tance for the interpretation of fMRI signals. For one, fMRI has followed a steady 
trend toward resolving activity within and between cortical layers (e.g., Self et al. 
2019; Lawrence et al. 2017; Trampel et al. 2019; Stephan et al. 2019; Huber et al. 
2017), as its spatial resolution continues to improve (e.g., Mittmann et  al. 2011; 
Polimeni et al. 2010; Goense et al. 2016; Chaimow et al. 2018). However, the lami-
nar differences of cortical organization outlined above are also relevant for fMRI 
data that—in the majority of studies—lack the spatial precision to differentiate 
between these laminae. In line with the anatomical separation of neurons across 
cortical layers, functional activation differs along the same microscopic scales 
(Schroeder et al. 1998; Snodderly and Gur 1995; Bollimunta et al. 2008; Hansen 
and Dragoi 2011; Ninomiya et al. 2015; Sotero et al. 2015; Engel et al. 2016; Klein 
et al. 2016; Dougherty et al. 2017; van Kerkoerle et al. 2017; Hembrook-Short et al. 
2017; Nandy et al. 2017; Cox et al. 2019; Sajad et al. 2019). For example, recent 
work has shown that the LFPs within the upper cortical layers (1–4) of the monkey 
visual cortex share little commonality with LFPs in the lower two cortical layers. 
This functional separation holds for both ongoing activity and sensory stimulation 
(Maier et al. 2010, 2011; Buffalo et al. 2011; Bastos et al. 2018). Likewise, the LFPs 
within cortical layers 1–5 of the rat somatosensory show different synchronization 
patterns relative to the LFPs in layer 6 (Sotero et al. 2015). These results suggest 
that the heterogeneity of neuronal activity along the cortical thickness needs to be 
taken into account when comparing neuronal signals to fMRI measurements (Maier 
et al. 2014).

4.3  Relationship Between Neuronal Activity 
and fMRI Signals

In the temporal domain, the BOLD response appears as a sluggish, low-pass filtered 
version of the neurophysiological response. A straightforward explanation for this 
observation is that changes in blood flow occur on a much slower time scale than 
changes in neuronal activity: BOLD responses to brief, discrete stimulation tran-
spire within hundreds of milliseconds to seconds, while neurophysiological 
responses typically take place within milliseconds or tens of milliseconds. The neu-
ronal response to a visual stimulus in the primary visual cortex (V1), for example, 
occurs within 20–50 ms and peaks within 30–70 ms following the onset of stimula-
tion (Maunsell and Gibson 1992). The onset of the associated vascular response lags 
1.5–2.5 s behind this neuronal response. The measured onset of the corresponding 
BOLD response depends on the specific experimental paradigm, the signal-to-noise 
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ratio (SNR), the response magnitude, and analysis parameters. Characteristically, 
peak blood flow and maximal BOLD response are measured 5–6 s following expo-
sure to a short stimulus. Hence, a vascular response to a synaptic input may still be 
developing by the time a second or more stimuli excite the active cortical region. 
Whenever such a temporal overlap between responses occurs, the vascular response 
to a stimulus may be influenced by preceding stimuli (Lauritzen 2005).

When it comes to space, the resolution of fMRI signals is influenced by both the 
choice of fMRI contrast and the strength of the magnetic field. It also depends on 
which aspect of the brain’s vasculature is probed (e.g., capillaries, venules, or veins). 
The point-spread function (i.e., “blur”) of the T2* BOLD response in human visual 
area V1 has been estimated as ~3.5 mm at 1.5 T (Engel et al. 1997) and less than 
2 mm at 7 T (Shmuel et al. 2007). The point-spread function of T2 and T2* BOLD 
responses at 7  T relative to metabolic activity has been estimated as ~0.8 and 
~1.0 mm, respectively (c.

4.4  Correlations Between Neurophysiological Signals 
and fMRI Responses

The vast majority of studies analyzing the link between neuronal, metabolic, and 
hemodynamic responses found a monotonic (or even linear) increase in metabolic 
and hemodynamic activity following increases in neural activity. For example, rela-
tive changes in the level of blood oxygenation in the cat primary visual cortex (area 
18) are proportional to increases in neuronal activity during the first phase (the so-
called initial dip) of the associated metabolic and hemodynamic response (Shmuel 
and Grinvald 1996; Fig. 4.3a). In the same vein, in rat somatosensory cortex, the 
rate of oxygen consumption is proportional to increases in neuronal activity during 
the late phase of the hemodynamic response (Smith et al. 2002; Fig. 4.3b). It has 
also been shown that the CBF response to stimulation of climbing fibers in the rat 
cerebellum is proportional to the integrated neuronal responses induced by that 
stimulation (Mathiesen et al. 1998).

The amplitudes of sensory (forepaw)-evoked potentials were found to linearly 
correlate with the BOLD responses in rat somatosensory cortex across several stim-
ulus frequencies (Brinker et al. 1999). An analogous conclusion was reached for 
humans after observing the hemodynamic response to stimulation of the median 
nerve using different stimulus intensities (Arthurs and Boniface 2003). Likewise, in 
monkeys, visual stimuli with varying luminance contrasts elicited BOLD responses 
that were proportional to the corresponding increases in neuronal activity (Logothetis 
et al. 2001).

In addition to the linear relationship between neurophysiological and BOLD 
responses observed in the studies outlined above, other studies found evidence 
for nonlinear relationships between these two measures. The CBF response to 
stimulation of parallel fibers within the cerebellum has shown a sigmoidal rela-
tion to the summated increases in neuronal activity (Mathiesen et  al. 1998; 
Fig. 4.4).
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a b

Fig. 4.3 Association between oxygen consumption and spiking activity. (a) Correlation between 
changes in blood oxygenation measured optically and the underlying action potential activity. 
These data were taken during the initial phase (“initial dip”) of the response. Linear regression was 
used to generate the best linear fit to the data, which shows a high degree of linearity. (Modified 
from Fig. 7 of Shmuel and Grinvald (1996) with permission). (b) Stimulation of the rat forepaw led 
to comparative changes in oxygen consumption and spiking activity. Responses obtained from 
baseline conditions I and II are shown in grey and black, respectively. The baseline condition II was 
lowered by ~30% from baseline condition I due to a higher dosage of α-chloralose; however, the 
incremental response from condition II was larger. In both modalities, oxygen metabolism and 
spiking activity, the same levels of activation were approximately reached upon stimulation from 
the two different starting baseline levels. CMRO2, cerebral metabolic rate of oxygen. (Modified 
from Fig. 3 of Smith et al. (2002) with permission)

a b

Fig. 4.4 Relationship between neuronal and hemodynamic responses in the rat cerebellum. (a) 
Frequency-dependent CBF increases in response to climbing fiber stimulation are correlated with 
the sum of active and passive post-synaptic activity. The figure presents the scatter plot of increases 
in CBF vs. summed field potentials (i.e., the product of field potential amplitudes and stimulation 
frequency). The line demonstrates the results of linear regression (r = −0.985, P = 0.0022). (b) 
Stimulation of parallel fibers at increasing frequencies leads to increases in summed field poten-
tials and increases in CBF responses. The figure presents increases in CBF (ordinate) vs. summed 
field potentials (abscissa) from one rat, illustrating a sigmoidal relationship between the two vari-
ables. Both panels were modified from Mathiesen et al. (1998) (Figs. 4d and 5d) with permission
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Devor et al. (2003) demonstrated a nonlinear relationship between neuronal and 
hemodynamic responses by combining optical measurements of hemodynamic sig-
nals with simultaneous recordings of neural activity. Specifically, in an event-related 
paradigm, the hemodynamic response continued to increase with stimulus intensity 
beyond the point of saturation of the electrical activity. Jones et al. (2004) and Sheth 
et  al. (2004) reported similar observations. In the latter study, nonlinear models 
provided a better fit than linear models for the observed neurovascular coupling in 
the rat somatosensory cortex. Hoffmeyer et al. (2007) examined neurovascular cou-
pling in rat sensory cortices in response to direct stimulation of transcallosal path-
ways. They showed that there is an exponential relationship between CBF responses 
and the summed amplitudes of neuronal activity. Nielsen and Lauritzen (2001) 
observed yet another type of nonlinearity, suggesting that a certain threshold of 
coordinated synaptic activity must be reached in order to trigger a hemodynamic 
response. Hence, synaptic activity needs to surpass a minimum threshold in order to 
cause an increase in CBF.

Overall, it appears that within a limited dynamic range of stimulus conditions, 
hemodynamic signals couple linearly to neuronal activity. In some parts of the brain 
or under certain stimulus conditions, however, this relationship takes on a nonlinear 
shape. Therefore, simply subtracting fMRI signal amplitudes obtained during two 
experimental conditions might not properly indicate the relative difference in under-
lying neuronal activity between these two states (Lauritzen 2005).

Interpreting fMRI data is complicated not only by the partially nonlinear relation 
between hemodynamics and neural activity but also by differences in the respective 
signal-to-noise ratio (SNR) of the two signals. The SNR of the neurophysiological 
signal associated with induced neuronal activity is about two orders of magnitude 
greater than that of the BOLD signal (Logothetis et al. 2001). Such a difference can, 
among other things, lead to statistical rejection (“false negatives”) of valid activity 
during fMRI experiments, despite the fact that the underlying neural response is 
significant. These considerations are consistent with the finding that extensive aver-
aging of fMRI data (which increases SNR) allows for more brain regions to be cor-
rectly classified as activated regions (Saad et al. 2003).

4.5  What Is the Neural Origin of fMRI Responses?

As indicated above, several studies have found a nearly linear relationship between 
metabolic and hemodynamic brain responses and local spiking activity. Specifically, 
Shmuel and Grinvald (1996) compared the optically measured reduction in blood 
oxygenation (the “initial dip”) in the cat visual cortex to the concurrently elicited 
spiking response to visual stimuli of drifting gratings. They observed an approxi-
mately linear relationship between these two measures, indicating a correspondence 
between spiking responses and activity-dependent oxygen consumption during the 
initial, negative-going phase of the BOLD response, before the increase in 
CBF. Smith et al. (2002) recorded changes in cortical spiking activity during fore-
paw stimulation of anesthetized rats and found a similar connection between 
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oxygen consumption and spiking activity for the subsequent phase of the positive 
BOLD response when CBF is increased. They also measured the localized changes 
in oxygen consumption under the same conditions. The stimulus-induced changes 
in oxygen consumption were reported to be roughly proportional to the associated 
changes in spiking activity.

Rees et  al. (2000) compared fMRI responses to visual motion stimuli in the 
motion-sensitive human area cortical MT+ to spiking responses obtained in monkey 
MT using matching stimuli. Responses in human MT+ showed a linear dependence 
on the coherence of motion signals, which mirrored similar changes in the rate of 
action potentials obtained in the animals using the same stimuli. Similar results 
were obtained by comparing BOLD responses in human V1 and action potential 
responses in monkey V1 to stimuli of varying brightness contrast (Heeger et  al. 
2000). These observations support the notion that fMRI responses of a cortical area 
are directly proportional to the average firing rate of its local cell population.

However, it is worth noting that synaptic activity is highly interrelated with the 
firing rates of pre-synaptic and post-synaptic neurons. This suggests that synaptic 
activity is also correlated with metabolic and hemodynamic responses. This assump-
tion is particularly valid for the cerebral cortex, where the majority of synapses 
(both excitatory and inhibitory) originate locally, leaving only a minority of inputs 
from more remote cortical and subcortical structures (Braitenberg and Schuz 1991; 
Peters and Payne 1993; Peters and Sethares 1991). It thus seems reasonable to 
expect that an increase in local firing rates correlates with a comparative rise in local 
synaptic activity, which in turn leads to an increase in both the metabolic demand 
and vascular response.

Given the reasoning outlined above, it may not be surprising that in many cases, 
the BOLD signal has been found to correlate equally well with LFPs and spiking 
activity. For example, Mukamel et al. (2005) contrasted both single-unit activity and 
LFPs in the auditory cortex of two neurosurgical patients with the fMRI signals of 
healthy subjects during the presentation of an identical stimulus set. Their findings 
revealed a linear relationship between spiking activity, high-frequency LFPs, and 
the fMRI BOLD signal measured in the human auditory cortex. However, since the 
spiking activity was highly correlated with the high-frequency LFP, these results 
cannot answer the question regarding which of the two signals (LFP or spikes) has 
more predictive power for estimating the local BOLD response.

To summarize, the fMRI BOLD response can be taken as a dependable estimate 
of the average firing rate of the underlying neuronal population under a wide variety 
of stimulation conditions. Yet, correlation does not equal causation. The mere obser-
vation of close coupling between these signals does not imply that spiking activity 
drives (directly causes) the BOLD signal. One problem, in particular, is that the 
magnitude of local synaptic activity (and thus the resulting LFP) tends to be closely 
coupled with simultaneous changes in spike rate. In other words, it is difficult to 
attribute the relative roles of synaptic inputs versus the spiking output for hemody-
namic changes given that both these processes tend to co-vary that closely. However, 
several studies managed to separate LFP and spiking responses in order to investi-
gate their relative effects on the BOLD response.
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Schwartz et  al. (1979) measured localized brain-glucose metabolism in rats 
using 2-deoxyglucose autoradiography (Sokoloff et al. 1977). They subjected rats to 
an osmotic load that stimulated neuronal cell bodies in the supraoptic and paraven-
tricular nuclei of the hypothalamus. The axon terminals of these neurons reside in 
the posterior pituitary gland, which is separated by a considerable distance from the 
stimulated cell bodies. The authors compared the metabolic activity in both loca-
tions and found that brain metabolism increased significantly in the area harboring 
the axon terminals (the posterior pituitary gland). In contrast, there were no measur-
able metabolism changes in the cell bodies residing in the hypothalamus. This find-
ing is consistent with the known relationship between the metabolic cost of 
sustaining ionic gradients and the surface-area-to-volume ratio of neurons (Cohen 
and De Weer 1977; Ritchie 1967; Raichle and Mintum 2006). In general, their data 
support the notion that synaptic input, and not the spiking output, is the driving 
mechanism of localized changes in the brain metabolism (see Lauritzen (2005) for 
additional evidence).

Mathiesen et al. (1998) employed laser Doppler flow and extracellular neuro-
physiological recordings to differentiate between synaptic and spiking activities in 
order to investigate their relative impact on CBF in the rat cerebellum. Stimulation 
of the monosynaptic climbing fiber system triggered LFPs and complex spikes of 
Purkinje cells with concurrent increases in CBF. However, when spiking activity 
was inhibited, CBF increased despite the decrease in spiking activity (Fig. 4.5a). 
This discovery verified that activity-dependent CBF increases in the cerebellum 
depend on synaptic excitation and that the net spiking activity of Purkinje cells is 
insignificant for the vascular response.

Thomsen et al. (2004) examined the consequences of enhanced spiking activity 
on CBF in the rat cerebellum under conditions of disinhibition, which was achieved 
by blocking GABA (A) receptors with either bicuculline or picrotoxin. Disinhibition 
increased Purkinje cell spiking rates to 200–300% of control activity. However, 
there was no increase in basal CBF.  This finding illustrates that increased spike 
activity alone is insufficient to affect CBF. In contrast, the neurovascular coupling 
between excitatory synaptic activity evoked by climbing fiber stimulation and CBF 
responses was maintained during disinhibition. Thus, increasing the spiking activity 
of principal neurons is neither sufficient nor necessary to elicit CBF responses. 
Instead, activation-dependent vascular signals seem to mainly reflect excitatory 
synaptic activity.

Logothetis et al. (2001) examined the relationship of the BOLD signal with LFPs 
and spiking activity in the monkey visual cortex. The largest increases in LFP power 
in response to visual stimulation were observed within the gamma frequency range 
(>30 Hz) of the LFPs. LFPs were found to reflect the time course of the BOLD 
response more accurately since both LFP power and BOLD tended to remain ele-
vated for the duration of the visual stimulus, while spiking activity did not (Fig. 4.5b). 
Linear systems analysis revealed that LFPs yield a better approximation of the 
BOLD response than the spiking responses. A follow-up study in alert monkeys 
verified that LFPs are more accurate and more reliable predictors of the BOLD 
response, despite the fact that both LFPs and MUA correlate with the BOLD signal 
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a

b

Fig. 4.5 CBF and BOLD responses correlate with LFPs. (a) Activity-dependent CBF increases and 
spike activity in response to parallel fiber stimulation in the cerebellum. Purkinje cell spiking activity 
diminished after 1–3 s of stimulation, and spontaneous firing did not return to baseline until 19–25 s 
after the end of stimulation (upper plot). CBF increased during stimulation and persisted for 5–10 s 
after the end of stimulation before returning to baseline after a lag of 40–50 s (lower plot). (Modified 
from Fig. 3a of Mathiesen et al. (1998) with permission). (b) Simultaneous neural and BOLD record-
ings from a cortical site showing a transient MUA response. Responses to a pulse stimulus of 4, 12, 
and 24 s are shown in the bottom, middle, and top plots, respectively. LFP is the sole signal showing 
time course matched in response to duration with that of the BOLD response. Both the spike density 
function (SDF) and the multi-unit activity (MUA) adapt back to baseline a couple of seconds after 
stimulus onset. The BOLD time series is from an ROI around the electrode. CBF cerebral blood flow, 
ROI region of interest. (Modified from Fig. 3 of Logothetis et al. (2001) with permission)
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(Goense and Logothetis 2008). More recent work expanded this result by demon-
strating that similar differences can be found in the rodent cortex, independently of 
whether local neural stimulation was achieved via sensory stimulation or optoge-
netic excitation (Iordanova et al. 2015). In either case, LFPs were well correlated 
with local cerebral blood flow, moderately with cerebral blood volume, and less 
correlated with blood oxygenation, while pre-synaptic firing rates had little impact 
on the vascular response.

Similar results were reported by Niessing et  al. (2005), who recorded neuro-
physiological signals and optically measured hemodynamic responses in the cat 
visual cortex. Increasing visual stimulus strength resulted in enhanced spiking 
activity, high-frequency LFP power, and hemodynamic responses. However, hemo-
dynamic responses were found to fluctuate when stimuli of constant intensity were 
presented to the animal. These fluctuations were only weakly related to the rate of 
action potentials. In contrast, they were tightly correlated with LFP power in the 
gamma range. When sorting the data according to the amplitude of the hemody-
namic response, clear differences were detected with respect to the frequency distri-
bution of the respective LFPs. Specifically, LFP power increases in the delta 
(~1–4  Hz), theta (~4–8  Hz), and alpha (~8–12  Hz) frequency bands were most 
prevalent for stimulus presentations that evoked the weakest hemodynamic 
responses. With the increasing hemodynamic response, the peak of LFP power 
shifted from the theta and alpha bands to the beta (~12–30 Hz) and lower gamma 
frequency bands. The strongest hemodynamic responses were linked to high power 
in the lower and upper gamma frequency bands. Quantifying the relationship 
between the strength of the hemodynamic response and LFP power in different 
frequency bands revealed that low-frequency activity in the delta band was nega-
tively correlated with hemodynamic signal strength. Theta, alpha, and beta power 
levels were not significantly correlated with the vascular response. A weak and 
strong positive correspondence existed for LFP power in the lower and upper 
gamma bands, respectively. LFP power in the high-frequency range in particular is 
thought to increase with the local synaptic events, signifying a close association 
between hemodynamic responses and neuronal synchronization.

Viswanathan and Freeman (2007) demonstrated yet another dissociation 
between synaptic and spiking activities in the cat primary visual cortex. They 
presented visual stimuli composed of gratings that were drifting at different tem-
poral frequencies. Simultaneously, they recorded neural responses and local tis-
sue oxygenation that can serve as a proxy for the BOLD signal. Spiking activity 
decreased while LFP power in the lower gamma band became more prevalent 
when the temporal frequency of the gratings increased. Compared to their maxi-
mal responses, which were obtained at a stimulus frequency of 4  Hz, spiking 
activity and low-gamma LFPs dropped to approximately 15% and 85%, respec-
tively, during visual stimulation at 20  Hz. LFP responses in the delta, theta, 
alpha, beta, and high-gamma bands plunged to approximately 40% of their maxi-
mal response at 4 Hz, while tissue oxygen fell to 60%. These results indicate the 
existence of close coupling between tissue oxygenation and LFP power, but not 
with spiking activity.
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Interestingly, Bentley et al. (2016) found that oxygen responses were correlated 
with LFP power in different cortical areas of macaque monkeys, while the apparent 
hemodynamic coupling between the oxygen level and electrophysiology differed 
across areas. Specifically, they paired oxygen polarography, an electrode-based oxy-
gen measurement technique, with standard electrophysiological recording to assess 
the relationship of oxygen and neural activity in two cortical areas: the task- negative 
posterior cingulate cortex (PCC) and the visually responsive task-positive area V3. 
Their finding suggests that cortical oxygen responses reflect concurrent changes in 
LFP power and that either the coupling of neural activity to blood flow and metabo-
lism differs between areas or that computing a linear transformation from a single 
LFP band to the oxygen level does not capture the true physiological process.

Rauch et al. (2008) used an experimental dissociation between spiking and LFPs by 
injecting a neuromodulator that primarily acts on efferent neuronal membranes into the 
primary visual cortex of anesthetized monkeys. The neuromodulator reduced popula-
tion spiking responses without significantly affecting either LFPs or BOLD activity, 
implying that the efferent neurons within the visual cortex pose a relatively small meta-
bolic burden compared to the overall pre-synaptic and post- synaptic processing of 
incoming afferents. In other words, BOLD seems to predominantly reflect pre-synaptic 
and post-synaptic processing of incoming afferents to a particular cortical region.

So far, we have described both cases of coupling and of dissociation between spik-
ing activity and the BOLD signal. Yet, the question remains: what determines whether 
the BOLD signal is associated with or dissociated from the spiking output of neurons 
in any specific paradigm? Using multiple electrodes in the human auditory cortex, Nir 
et al. (2007) measured spiking activity and LFPs and observed a wide range of cou-
pling levels between the activity of individual neurons and gamma-range LFPs. The 
gamma LFPs were well correlated with BOLD signals measured across different indi-
viduals (r  =  0.62). In contrast, the coupling of single- neuron spiking to BOLD 
responses was highly variable. However, the BOLD response was tightly related to 
interneuronal firing-rate correlations (r = 0.70). These results suggest that the BOLD 
signal could closely reflect spiking activity, depending on whether an experimental 
paradigm evokes a high degree of interneuronal correlation.

4.6  Neuronal Correlates of Negative BOLD Responses

Sustained negative responses are an interesting, pervasive phenomenon in functional 
brain imaging. Some hypotheses regarding the origin of these negative responses 
suggest a purely vascular basis for this phenomenon (such as “vascular blood steal”), 
concluding that the negative BOLD response (NBR) bears little relation to underly-
ing neuronal activity (Harel et al. 2002; Kannurpatti and Biswal 2004). Shmuel et al. 
(2002) demonstrated a robust, sustained NBR in the human occipital cortex triggered 
by stimulating part of the visual field. This NBR was linked to decreases in CBF and 
consequently reductions in oxygen consumption. These results suggest that the NBR 
is associated with reductions in  local neuronal activity. Similar links of NBRs to 
decreases in local CBF and oxygen consumption have been reported in the visual 
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(Uludağ et al. 2004; Pasley et al. 2007) and motor cortices (Stefanovic et al. 2004, 
2005). In addition, Shmuel et al. (2006) employed a similar stimulation paradigm to 
the one they used in humans in the monkey primary visual cortex and obtained a 
similar NBR outside the stimulated brain regions. Using simultaneous fMRI and 
neurophysiological recordings, they then showed that the negative BOLD response 
was associated with local decreases in the neuronal activity below the baseline level 
of spontaneous activity. Trial-by-trial comparisons showed a tight coupling between 
the NBR and reduced neuronal activity. The NBR was linked to comparable decreases 
in LFPs and MUA. These findings indicate that a large component of the NBR stems 
from decreases in neuronal activity (Fig. 4.6).

a

b

c

d

Fig. 4.6 Neuronal correlates of a negative BOLD response (NBR). (a, b) Patterns of response to 
a central and a peripheral visual field stimulus, respectively. The fMRI response from a single 
axial-oblique slice is superimposed on the corresponding anatomical image. Green arrows indicate 
the position of the recording electrode within visual area V1. Green squares represent the collec-
tive receptive field of the neurons in the vicinity of the electrode. The stimulus in (a) overlapped 
with the receptive field, invoking a positive BOLD response in the area directly surrounding the 
electrode. The stimulus in (b) did not overlap with the receptive field and induced an NBR in that 
same vicinity. (c) Time course (mean ± SEM) of the BOLD response sampled from the ROI around 
the electrode. (d) Neuronal responses to the stimuli presented in (a, b). Time courses (mean ± SEM) 
present the fractional change in power of the broad-band neuronal signal in response to stimuli that 
overlapped (red) or did not overlap (blue) with the receptive field. The data in (c, d) were averaged 
over all trials from 15 sessions. (All panels were modified from Shmuel et al. (2006) (Figs. 1a, b, 
and d and 2a) with permission)
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The neuronal and vascular mechanisms underlying NBRs in rat primary somato-
sensory cortex were also studied by Devor et al. (2007) using optical imaging tech-
niques. Stimulation of rat forepaws resulted in a central region of net depolarization 
surrounded by net hyperpolarization. Hemodynamic measurements revealed corre-
spondence between the depolarized regions with an increase in local blood oxygen-
ation, as well as an association between hyperpolarized cortical regions and 
decreased blood oxygenation. On the microscopic level of single arterioles, the vas-
cular response was found to be composed of a combination of dilatory and constric-
tive phases. The relative amplitude of vasoconstriction co-varied with the strength 
of neuronal hyperpolarization and the corresponding decrease in oxygenation. 
These findings imply that neuronal inhibition and concomitant arteriolar vasocon-
striction relate to decreased blood oxygenation, which would be consistent with a 
negative BOLD fMRI response.

Additional evidence linking negative BOLD responses to inhibited neuronal 
activity was demonstrated by Boorman et al. (2010). These authors employed 
electrical whisker-pad stimulation while imaging the rat somatosensory cortex. 
They demonstrated negative BOLD responses in deeper cortical layers. Separate 
two-dimensional optical imaging spectroscopy and laser Doppler flowmetry 
revealed that the NBR was the result of decreased blood volume and flow and 
increased levels of deoxyhemoglobin. Neural activity in the NBR region, mea-
sured with multichannel electrodes, varied considerably as a function of cortical 
depth. There was a decrease in neuronal activity in the deep cortical laminae. 
After cessation of whisker stimulation, there was a large increase in neural 
activity above baseline. Both the decrease in neuronal activity and the increase 
above baseline correlated well with the simultaneously measured blood flow, 
suggesting that the NBR is related to decreases in neural activity within the deep 
cortical layers.

4.7  Neuronal Correlates of Spontaneous Fluctuations 
in fMRI Signals

Early fMRI studies deemed the large cortical signal fluctuations that can be observed 
when a subject is resting without explicit stimulation or task instructions are just 
random, meaningless “noise.” However, more recent work has demonstrated that 
the spatio-temporal structure of these spontaneously occurring signal changes is not 
random at all. Instead, spontaneous fluctuations in BOLD are highly organized, and 
this spatial organization is consistent between subjects (Biswal et al. 1995; Fox and 
Raichle 2007). As a consequence, the relationship between BOLD and the underly-
ing neural events in the resting state is of particular interest. These spontaneous 
fluctuations in fMRI signals are reminiscent of previously demonstrated spontane-
ous fluctuations in cortical neuronal signals observed in cats (Arieli et al. 1996) and 
monkeys (Leopold et al. 2003). Importantly, these resting-state fluctuations are cor-
related across large parts of the brain (Biswal et al. 1995), a phenomenon termed 
functional connectivity.
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Several studies identified contributions of non-neuronal origins to spontaneous 
fluctuations in fMRI signals. These contributions include vascular vaso-motion 
(Mayhew et al. 1996) and respiration (Birn et al. 2006; Wise et al. 2004). However, 
there is also evidence for neural events giving rise to resting-state functional con-
nectivity. Shmuel and Leopold (2008) obtained simultaneous fMRI and intracorti-
cal neurophysiological recordings in anesthetized, paralyzed monkeys that were 
either exposed to a uniform grey field or to complete darkness. They found an asso-
ciation between slow fluctuations in the spontaneous BOLD signals and concurrent 
fluctuations in the underlying local neuronal activity. This correlation varied with 
the BOLD signal time-lag relative to neuronal activity, resembling a traditional 
hemodynamic response function with peaks at a 6-s lag of the BOLD signal 
(Fig. 4.7a–j). These associations were consistently identified when the neuronal sig-
nal consisted of either relative power variations in the LFPs gamma band, MUA, or 
the spiking rate of a small group of neurons. Further examination of the relationship 
between the fMRI time series of different parts of the cortex and the neuronal activ-
ity measured within one cortical site revealed that widespread areas of the visual 
cortex in both hemispheres were significantly correlated with neuronal activity from 
a single recording site in area V1 (Fig. 4.7k). Assuming that Shmuel and Leopold’s 
(2008) results from area V1 can be generalized to other cortical areas, fMRI-based 
functional connectivity between remote regions in the resting state can be linked to 
the synchronization of slow fluctuations in the underlying neuronal signals.

Schölvinck et  al. (2010) replicated and expanded on these results using alert 
monkeys. Their results demonstrate widespread, positive correlations of fMRI sig-
nals over nearly the entire cerebral cortex with the spontaneous fluctuations in the 
LFPs measured at a single cortical site (Fig. 4.7). The spontaneous neural activity 
reported in that study accounted for 10% of the observed BOLD signal variance, 
which is a considerable fraction of the 50% explained variance during visual stimu-
lation. Similar to the findings by Shmuel and Leopold (2008), the observed correla-
tion was especially consistent for upper gamma-range frequencies (40–80  Hz; 
Fig. 4.7m). A strong, positive correlation was also detected in a band of lower fre-
quencies (2–15 Hz), albeit with a lag closer to zero. Overall, these findings specify 
that the global constituent of fMRI fluctuations measured during the resting state is 
closely linked to neural activity.

Hutchison et al. (2015) uncovered similar results for the monkey prefrontal cor-
tex. They measured both fMRI BOLD responses and LFPs in anesthetized animals 
that were not exposed to any explicit sensory stimulation. They also found that high- 
frequency LFPs were correlated with BOLD activity at the recording site, while 
low-frequency LFPs were not. They further showed that high-frequency (i.e., beta 
to low gamma) and low-frequency (i.e., delta to theta) LFP power were anti-corre-
lated in the absence of any explicit stimuli. This finding corroborates the notion that 
complementary changes in low- and high-frequency bands are an intrinsic property 
of LFPs and explains why low- and high-frequency LFPs yield different correla-
tions with the fMRI BOLD response.

Using an electrophysiology system that can record the full band of LFPs, Pan 
et  al. (2013) demonstrated that in addition to correlation with the power of 
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Fig. 4.7 Spontaneous fluctuations in BOLD signal correlate with the underlying neurophysiologi-
cal activity. (a–i) Co-variation between spontaneous fluctuations in fMRI and neuronal signals as 
a function of temporal lag. (a) The grey curves show the correlation as a function of lag from each 
experiment. The red curve presents the correlation function averaged over seven experiments in 
five different monkeys (mean ± SEM). The vertical axis represents Spearman’s correlation coeffi-
cient between BOLD and the fluctuations in relative (fractional change) power averaged over fre-
quencies of the denoised broad-band neurophysiological signal acquired simultaneously with 
fMRI. The horizontal axis represents the lag between the two correlated signals, with positive lags 
standing for BOLD lagging behind the neuronal activity. (b) Correlation between the same signals 
as presented in (a), computed after breaking the simultaneity condition by shuffling the segments 
of BOLD and neuronal activity obtained within each experiment. (c–h) present correlation func-
tions in the format used for (a) and (b), for the LFP, mid-range, and MUA bands, respectively. (i, 
j) present similar correlation functions for fluctuations in spiking activity, estimated by counting 
identified action potentials over 1 s epochs rather than using frequency-based analysis. (Modified 
from Shmuel and Leopold (2008), with permission). (k) Spatial extent of the correlation between 
the slow relative fluctuations in power averaged over frequencies of the broad-band neuronal signal 
recorded at the tip of the electrode (yellow arrow) and the fluctuations in BOLD measured voxel 
by voxel. Pink-colored voxels showed a statistically significant positive correlation between the 
neurophysiological activity recorded in one site in V1 and BOLD signals for a 5 s time-lag (t-test, 
averaging over the correlation obtained time-segment by time-segment, p < 0.01). (Modified from 
Shmuel and Leopold (2008), with permission). (l, m) Spatial extent of the fMRI correlation with 
high-frequency LFP in frontal area 6d, parietal area 7a, and occipital area V4. (l) In all cases, spa-
tial correlations are bilateral and spread over large swathes of the cerebral cortex. (m) Cross- 
correlation functions between the fMRI and LFP power time courses for three electrodes outside 
V1 and for the three LFP frequency ranges: low (2–15  Hz), middle (15–40  Hz), and high 
(40–80 Hz). (Modified from Schölvinck et al. (2010), with permission). CBV cerebral blood vol-
ume, LFP local field potential
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high- frequency LFPs, spontaneous fluctuations in BOLD signals also correlate with 
infra-slow, 0.05–0.25 Hz components of the neural signals.

4.8  Dissociations Between BOLD Responses 
and Neurophysiological Activity

The previous sections focused on cases where metabolic and hemodynamic 
responses largely corresponded to changes in neurophysiological activity. A few 
studies reported cases where these signals dissociated. Maier et al. (2008) investi-
gated brain responses to a visual illusion in which a part of an image can become 
subjectively invisible. Perceptual disappearance of the visual stimulus elicited a 
robust drop in V1 fMRI signal in humans. In contrast, monkey single-neuron record-
ings failed to demonstrate such perception-related changes in V1 spiking. To inves-
tigate the basis of this discrepancy, they next measured both the BOLD response 
and electrophysiological signals. They found that all signals were in good agree-
ment during conventional stimulus presentation, showing strong modulation to the 
presentation and removal of a visual stimulus. During perceptual suppression, how-
ever, only the BOLD response and low-frequency (5–30 Hz) LFP power showed 
decreases, whereas both spiking and high-frequency LFP power remained unaf-
fected. These results demonstrate that the coupling between BOLD and electro-
physiological signals in V1 is context-dependent, with a marked dissociation 
occurring during a state of perceptual suppression.

While Maier et al. (2008) observed changes in lower LFP frequency bands that 
corresponded to the BOLD signal, Sirotin and Das (2009) found evidence of a com-
plete divergence of hemodynamic and neurophysiological signals. Using a dual- 
wavelength optical imaging technique that independently measured cerebral blood 
volume and oxygenation, they found two distinct components of the hemodynamic 
signal in V1 of alert animals. One component was reliably predictable from neuronal 
responses to visual stimulation. The other component, of almost comparable strength, 
was reported as an unknown signal that entrained to task structure of rhythmic stimu-
lus presentations independently of visual input or of standard neural predictors of 
hemodynamics. The resulting data exhibited robust modulations of the hemody-
namic signal at the stimulus presentation frequency, even though the animals were in 
complete darkness. This latter component showed predictive timing, with increases 
in cerebral blood volume in anticipation of future stimulus onsets. Sirotin and Das 
(2009) suggested the existence of a preparatory mechanism that brings additional 
arterial blood to the cortex in anticipation of expected tasks. This mechanism could 
be implemented via distal neuromodulatory control of cerebral arteries. This inter-
pretation was challenged by several authors (e.g., Logothetis (2010) and Handwerker 
and Bandettini (2011)), indicating that the data presented by Sirotin and Das (2009) 
did show modulation of neuronal activity in V1, likely reducing spontaneous activity 
during fixation. The increased inhibition, visible in their spectrograms, may trigger 
CBV changes and yield anticipatory responses. It was hypothesized that the responses 
are due to site-specific effects of neuromodulatory input on the cortical 
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excitation-inhibition balance, mediated by norepinephrine released from the locus 
coeruleus. Others (e.g., Tan 2009) supported the findings and interpretation of Sirotin 
and Das (2009) and suggested that the task-related properties of these responses 
point to a possible link between regional cerebral microcirculation and dopaminergic 
signaling. It was hypothesized that dopamine plays a role in the task-dependent, “on-
demand” allocation of metabolic resources.

It should be noted that both Maier et al. (2008) and Sirotin and Das (2009) pur-
sued their measurements in alert animals, while the majority of other studies of 
neurovascular coupling used anesthetized animals. Neurovascular coupling depends 
on the state of the animal—alert or anesthetized (Paasonen et al. 2018)—and on the 
anesthesia regime (Franceschini et  al. 2010; Paasonen et  al. 2018; Bortel et  al. 
2020). The findings by Maier et al. (2008) and Sirotin and Das (2009) indicate that 
neurovascular coupling may be modified in the alert state, possibly via the action of 
neuromodulators that depend on behavioral state. This adds to the complexity of the 
interplay between neurophysiological signals and hemodynamic responses, which 
remains to be addressed in future studies.
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5What Can fMRI Add to the ERP Story?

Christoph Mulert

5.1  Introduction

ERPs are unique measurements of brain activity offering information about the 
activity of the brain with a high temporal resolution. ERPs can be used to investigate 
cognition, somatosensory processing and pain, auditory and visual processing, to 
mention but a few of the most important applications. A high degree of specializa-
tion has emerged, so, for example, researchers interested in language processing can 
use the N400 potential (Kutas and Hillyard 1980; Friederici et al. 1993; Kiang et al. 
2008), scientists looking at auditory attention can use the N1 potential (Hillyard 
et al. 1973; Naatanen and Picton 1987; Mulert et al. 2001), and groups interested in 
face processing may focus on the N170 (Sagiv and Bentin 2001; Taylor et al. 2004; 
Itier et al. 2006). While it is almost impossible to identify a single starting point of 
the ERP story since the early steps in evoked potential research started in the 1930s 
(Davis 1939), the discovery of the P300 in 1965 was an important milestone (Sutton 
et al. 1965). Researchers then started “to consider that we are involved in a break-
through—evoked potentials are not just another physiological measure like the gal-
vanic skin response, or pupillography, or heart rate, but something much more 
exciting—a direct reflection of time-locked activity of the brain associated with 
specific conscious processes in awake human subjects” (Sutton 1969). Even at that 
time, the authors described the influence of stimulus probability on the amplitude of 
the P300 potential (see Fig. 5.1).

This study provided evidence that it is not only the character of the stimulus that 
influences the evoked potential, but that there is also an endogenous influence of the 
reaction or attitude to the potential waveform. For a current review concerning the 
late positive potential and the P300, please see Hajcak and Foti (2020).
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Fig. 5.1 This is part of the original figure from the first publication describing the P300 potential 
(Sutton et al. 1965; Fig. 1, p. 1187). The P300 was evoked with a stimulus uncertainty paradigm 
using paired stimuli (cue and test stimuli, P = 0.33 occurrence of uncertain test stimuli) and not 
with the “odd ball paradigm,” which is commonly used today. (Reprinted with the permission 
of AAAS)

Similar milestones were, for instance, the identification of the contingent nega-
tive variation (CNV) (Walter et al. 1964) and the detection of an influence of selec-
tive attention on the N1 potential (Hillyard et al. 1973).

ERPs have been used extensively in investigations of patients with neuropsychi-
atric diseases (for a review, see Pogarell et al. 2007). For example, reduced P300 
amplitudes are a common finding in patients with schizophrenia (Salisbury et al. 
1998; Mathalon et  al. 2000; Jeon and Polich 2003). This reduction seems to be 
especially pronounced in patients with poor premorbid adjustment, early and insidi-
ous onset, a chronic and deteriorating course of disease, negative symptoms, and a 
tendency to develop tardive dyskinesia (Hegerl et al. 1995). A small P300 has been 
found to predict nonresponse to neuroleptics concerning positive symptoms (Ford 
et al. 1994). In addition, patients with a “cycloid psychosis” (according to the clas-
sification by Leonhard), which is characterized by a favorable therapeutic response 
and long-term prognosis, do not show any reduction in P300 amplitude, or even an 
increase in amplitude in comparison to healthy controls (Strik et al. 1993a, b, 1997). 
Some lines of research with ERPs in neuropsychiatric patients gained intensified 
interest in the last few years. For example, the mismatch negativity MMN (Naatanen 
et al. 2007) is of great interest in predicting the outcome of subjects with increased 
clinical risk for psychosis (Atkinson et al. 2012; Bodatsch et al. 2015; Naatanen 
et al. 2016; Kim et al. 2018).

Interest in ERP research has also emerged due to the fact that ERPs often show a 
high heritability, in the range from 0.6 to 0.8 (Katsanis et al. 1997; Wright et al. 
2001). Several ERP components (e.g. P300, P50) are now seen as intermediate phe-
notypes or endophenotypes and meet the criteria suggested by Gottesman 
(Gottesman and Gould 2003). ERPs have been introduced in the drug development 
process for psychiatric disorders such as schizophrenia. Since they can be modeled 
in preclinical studies, they offer opportunities for use as translational biomarkers 
(Javitt et al. 2008; Haaf et al. 2018).
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Interestingly, current experimental designs allow to answer new research ques-
tions. For example, interesting new lines of research emerge around the interaction 
of bottom-up and top-down-processes with reward, looking at (novel) contralateral 
components of the N2Pc such as the target negativity or the distractor positivity 
(Hickey et al. 2009; Lockhofen et al. 2021).

Apart from the enormous and ongoing success of ERPs in several different 
research areas, the localization aspect of ERPs remains an area of investigation. In 
particular, it is obvious that all ERP analyses suffer more or less from the difficulty 
in determining precisely which parts of the brain are involved in the generation of a 
specific event-related potential. As described in Chap. 2 this difficulty is fundamen-
tal: it is called the “inverse problem” and was described more than 150 years ago 
(Helmholtz 1853). It means that different combinations of intracerebral sources can 
result in the same potential distribution on the scalp, and therefore that the inverse 
problem has no unique solution. Thus, attempts at EEG-based localizations are 
merely reasonable estimates. A starting assumption is that the combination of fMRI 
and ERPs may help in resolving this problem.

5.2  ERP Generator Localization

One traditional approach to learning about the localization of brain function as well as 
the generation of ERP has been to look at subjects with brain lesions. For example, an 
investigation of patients with bilateral damage to the hippocampus complex but undis-
turbed scalp P300 potentials suggested that the hippocampus does not contribute to 
the scalp P300 (Polich and Squire 1993), although the hippocampus is typically found 
to be responsive to targets but not to irrelevant stimuli using intracranial recordings 
(McCarthy et al. 1989). Intracranial recordings are another very interesting source of 
knowledge concerning the localization of ERP generators (Halgren et al. 1994, 1995a, 
b; Brazdil et al. 2005; Rosburg et al. 2005, 2007); see Fig. 5.2.
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supramarginal g. cingulate gyrus

medial temporal
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and perirhinal)

posterior superior
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superior temporal
sulcus
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Fig. 5.2 Summary of intracranial findings concerning the generation of different aspects of the 
P300 potential (P3a and P3b). (Reprinted from Halgren et al. 1998 with the permission of Elsevier)
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However, both approaches (lesion studies, intracranial recordings) are limited, 
although they may offer general information about ERP generation. Since both 
lesions and intracranial recordings can only be investigated in specifically selected 
groups, these strategies are not directly applicable for research questions concern-
ing healthy controls or even the vast majority of neuropsychiatric patients.

5.3  The Inverse Problem of EEG

In the authoritative textbook entitled Electroencephalography, Fernando Lopesda 
Silva writes: “The ultimate aim of electroencephalography is to find the intracranial 
sources of the potentials recorded at the scalp” (Lopes da Silva 1993). However, this 
is a difficult task because of the Non-Unicity of the solution to the inverse problem 
of EEG. Focusing on this issue, several suggestions have been made during the last 
few decades for specific assumptions that may enable us to obtain plausible esti-
mates of the underlying neural generators.

Apart from specific assumptions concerning the method of solving the inverse prob-
lem, additional assumptions have to be made concerning the (physical, geometric, ana-
tomical) properties of the generator, conductive media, and recording electrodes. Early 
head models were simple spheres (typically four concentric spheres representing the 
brain tissue, the cerebrospinal fluid, the skull, and the scalp), but in the last few years 
more realistic head models using MRI information have been developed (Schneider 
1974; Sencaj and Aunon 1982; Meijs et al. 1988; Hamalainen and Sarvas 1989).

Concerning the choice of generator model, one option to solve the inverse problem is 
the strategy of calculating a (equivalent) dipole (Schneider 1972; Henderson et al. 1975; 
Cuffin 1985; Scherg and von Cramon 1985, 1986; Scherg and Berg 1991). Such a dipole 
is a mathematical abstraction that is assumed to generate a potential on the scalp. By 
changing the parameters of the dipole (position, orientation), “forward solutions” can be 
calculated in order to get a possible scalp potential distribution. If the difference between 
a forward solution and the original scalp potential is small, the solution is generally 
sound. However, this does not mean that the solution is correct in terms of the real gen-
erators of brain activity—it only means that the solution is basically possible. This kind 
of solution is generally nonlinear. Since the correct estimation of the number of dipoles 
used in a model is an essential issue when attempting to find a valid localization, dipole 
source analyses have been used successfully in situations with a small number of active 
sources, such as localization of epileptic spikes (Scherg et al. 1999) or simple evoked 
potentials with activity mainly in the early sensory areas (Hegerl et al. 1994). In general, 
this strategy has some advantages if the number of active brain regions is small and 
additional information about the possible positions of the sources is available.

Another strategy for solving the inverse problem can be used with minimal prior 
information about the nature of the generators apart from anatomical constraints, 
which usually limit the solution space to the gray matter. The latter may be obtained 
from subject-specific or generic MRI scans. This kind of strategy has been intro-
duced as minimum-norm estimation (MNE) by Hämäläinen and Ilmoniemi 
(Hamalainen and Ilmoniemi 1984, 1994; Wang et al. 1992; Ilmoniemi 1993). This 
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method has developed further over the last few years, including “weighted” mini-
mum-norm solutions (WMN). For example, using MNE, separate time behaviors of 
the temporal and frontal mismatch negativity sources were found (Rinne et al. 2000).

The next important development was LORETA, which incorporates the “smooth-
ness assumption” (Pascual-Marqui et al. 1994, 1999). Based on neurophysiological 
findings in a number of animal studies that neighboring neurons are most likely to 
be active synchronously and simultaneously (Llinas 1988; Gray et  al. 1989), 
Pascual-Marqui proposed to assume that grid points in a current source model are 
more likely to be synchronized than grid points that are far from each other. This 
method has become quite popular during the last few years because comparisons of 
localization results with imaging methods such as fMRI or PET have often revealed 
a considerable overlap (see Fig. 5.3) (Pizzagalli et al. 2003; Mulert et al. 2004, 2005).
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Fig. 5.3 Localization of 
brain activation evoked by 
an odd ball paradigm: 
activations in the fMRI 
analysis (left), and 
simultaneously acquired 
ERP activity localized 
independently with 
LORETA (right). 
(Reprinted from Mulert 
et al. 2004 with the 
permission of Elsevier)
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Developments such as sLORETA (Pascual-Marqui 2002) and eLORETA have 
demonstrated even better localization accuracy (Wagner et al. 2004). Linear meth-
ods like LORETA seem to be advantageous if there is likely to be a large number of 
active sources, and if no information is available about the positions of the electrical 
generators. LORETA has been used in numerous studies, including investigations 
of ERP (Anderer et al. 2003; Molina et al. 2019), resting EEG activity (Gianotti 
et al. 2007; Ahmadi et al. 2020), sleep spindles (Ventouras et al. 2007), and patients 
with depression (Pizzagalli et al. 2001), schizophrenia (Mulert et al. 2001; Leicht 
et al. 2020), and epilepsy (Bela et al. 2007; Liu et al. 2021).

The development of methods for EEG-based localization is an active field with 
numerous propositions during the last few years, including hierarchical and empirical 
Bayesian approaches (Phillips et al. 2005; Friston et al. 2008; Trujillo-Barreto et al. 2008).

Obviously, the ongoing process of developing solutions for the inverse problem 
proves two points. Firstly, there is enormous interest in obtaining information about 
the neural generators of ERPs. Secondly, there is currently no method that is able to 
solve all of the complex “real-world” questions concerning ERP localization. 
However, today, we do have strategies to solve the inverse EEG problem with rea-
sonable localization accuracy that can be used reliably for a number of experimental 
questions.

5.4  Does fMRI Help to Solve the Inverse Problem?

There are practical issues with combining ERP and fMRI information that are dis-
cussed in more detail in other chapters of this book, as well as theoretical aspects 
that are concerned with understanding the workings of the brain. Generally, differ-
ent methods are sensitive to different aspects of brain function; while EEG/ERP 
emphasizes the aspect of the synchronization of neural ensembles, fMRI tends to 
point to regional specialization. Therefore, theoretically, a combination of EEG and 
fMRI is likely to significantly enhance our understanding of brain function.

From an ERP research point of view, the ability to correctly localize brain activ-
ity within millimeters, as offered by fMRI, is very attractive in terms of the addi-
tional information afforded to almost every aspect of ERP research. This perspective 
was apparently the starting point for studies that used a typical ERP paradigm for a 
fMRI study to identify the neural generators of the ERP components. Examples of 
this kind of study are provided by Menon et  al. (1997), McCarthy et  al. (1997), 
Linden et al. (1999). In these studies, the “oddball” paradigm was used, where fre-
quent and infrequent stimuli are presented and attention must be paid to the infre-
quent stimulus (controlled by button pressing or counting). This paradigm is a 
classical ERP one that evokes the P300 component after a rare and relevant event.

The authors have described activity in the supramarginal gyrus and other inferior 
parietal regions and frontal midline areas. Since these regions were already found 
using intracranial recordings, lesion studies, or ERP-based inverse solutions, the 
idea of combining ERP with fMRI to get spatial information was supported 
(McCarthy et al. 1997; Menon et al. 1997; Linden et al. 1999).
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At this point, it should be mentioned that there are, of course, several constella-
tions in which a one-to-one relationship between scalp EEG/ERP information and 
BOLD signal changes cannot be expected. For example, neural activity may be 
related to BOLD signal changes but not to scalp EEG changes if—due to the spatial 
orientations of the electrical generators (e.g. self-cancelling sources in sulci or neu-
ronal assemblies without a strictly parallel orientation)—the electrical signals are 
not measurable on the scalp. In addition, nonpyramidal neuron activity will not lead 
to measurable electrical activity on the scalp (Nunez and Silberstein 2000).

Conversely, the highly synchronous activities of a small number of neurons or 
phase shifts/changes in phase synchrony could result in a detectable EEG signal, but 
the associated hemodynamic changes may be small and not sufficiently above base-
line values to survive statistical testing.

This issue of limited overlap between EEG measures and fMRI results has been 
addressed using different strategies. Obviously, it is especially relevant for any 
fMRI-constrained source analysis. Generally, when using fMRI activations as 
“seeding points” for dipoles, a close relationship between fMRI activation and elec-
trical activity is assumed. However, if dipoles are seeded in a BOLD cluster that 
does not contribute to scalp potential, the whole dipole model and all resulting 
information (e.g. about the time courses of dipoles) could be inaccurate. Several 
validation strategies to deal with this problem have been suggested, such as scan-
ning the whole brain with “probe sources” that suggest additional electrical genera-
tors not seen in the fMRI analysis (Bledowski et al. 2007).

Today the gold standard approach with respect to the relationship of EEG and 
fMRI is to use EEG-informed fMRI analysis based on single-trial variations of the 
EEG as regressors for an fMRI analysis (Nagai et al. 2004; Hinterberger et al. 2005; 
Debener et al. 2005; Eichele et al. 2005; Mulert et al. 2008). The full potential of 
this approach has been shown in a study by Eichele and colleagues, who separated 
different aspects of the BOLD signal with regard to their relationships with single 
EEG single-trial variations of different ERP components. One example of EEG–
fMRI single-trial coupling is demonstrated in Fig. 5.4 (own data). Here, single-trial 
variations of the P300 potential were used to estimate the corresponding 
BOLD signal.

Single-trial coupling of EEG and fMRI is necessary if the focus of interest is the 
hemodynamic correlation of a specific ERP component. However, the results pro-
vided by this technique could also include brain regions that are not the actual elec-
trical generators of the respective ERP component. This kind of strategy could also 
include BOLD activations of regions that are functionally very closely connected to 
the electrical generators of the respective ERP components, but are not the actual 
electrical generators themselves. Keeping this in mind, this kind of EEG-informed 
fMRI analysis is even more interesting considering the possibility of providing the 
functional neural networks engaged in a task.

At this point, it can be stated that fMRI has the potential to push forward our 
knowledge regarding the electrical generators of ERPs, but also that oversimplifica-
tions must be avoided since no general one-to-one relationship between EEG/ERP 
signal and fMRI signal can be premised.
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Fig. 5.4 Left side: single-trial variations of the P300 potential at Pz. Right side: specific P300- 
related fMRI activations based on single-trial coupling of the P300 amplitude variation and the 
corresponding BOLD signal (own data)

5.5  Further Aspects

While most chapters of this book deal with the direct combination of EEG and 
fMRI, it may also be worth posing the question of whether there could be an indirect 
influence of the fast-growing use of fMRI for many different research questions that 
have traditionally been investigated with ERPs. While such an assessment tends to 
be fragmentary and speculative, there may be at least two interesting aspects of it.

5.6  Serial Processing vs. Parallel and Reciprocal 
Network Activity

ERPs are usually defined in the time domain. Therefore, ERP components are 
obtained and described in sequence. For example, in auditory processing, early 
(brainstem) potentials can be numbered and distinguished from mid-latency poten-
tials and late potentials. Accordingly, a sequence of information processing can be 
assumed. This assumption of serial information processing has influenced strategies 
to describe “mental chronometry” (Posner 2005), for instance, the separation of 
evoked responses in stimulus valuation processes and response-selection processes 
with separately measurable latencies (Falkenstein et al. 1994), or even four sequen-
tial steps (stimulus registration, stimulus selection, stimulus identification, stimulus 
categorization) (Dien et al. 2004). Since fMRI does not offer comparable time reso-
lution, fMRI-based mental chronometry analyses are rare (Formisano et al. 2002; 
Formisano and Goebel 2003). However, functional connectivity analyses, widely 
used for fMRI data, have stressed the issue of reciprocal relationships between brain 
regions in a common neural network—an aspect that can easily be missed using 
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traditional EEG/ERP analysis techniques (Garrido et al. 2007; Mulert et al. 2007) 
but is adequately addressed today using EEG-based effective connectivity analyses 
in the source space (e.g. Steinmann et al. 2018).

5.7  Subcortical Processing

While subcortical structures such as the thalamus play an important role in the gen-
eration of brain rhythms and brain potentials (Lopes da Silva 1991; Steriade 1994; 
Hughes and Crunelli 2005), they cannot be directly assessed by scalp measurements 
of cortical activity. Accordingly, there are a “blind spot” and (for example) “atten-
tional search light processes” (Crick 1984) that are probably mediated by thalamic 
structures (McAlonan et al. 2006), which in turn may have an enormous impact on 
cortical (electrical) processing and cannot be assessed with scalp EEG/ERP alone. 
Since fMRI can be used to gather information about thalamic activity, EEG/ERP 
research may also be stimulated here. For example, ERP components such as the 
feedback related negativity (FRN) and beta-oscillations in response to positive feed-
back (reward) can be recorded on the scalp (Leicht et al. 2013). Using trial-by-trial 
coupling of EEG and fMRI it is possible to detect involved subcortical brain regions 
such as the nucleus accumbens/ventral striatum (Andreou et al. 2017).

5.8  Conclusions

ERP research has been performed successfully for decades and will continue to be 
a major tool for brain research due to its unique properties (e.g. concerning temporal 
resolution). However, localization has always been a problematic but key issue in 
ERP research. Obviously, fMRI, with its ability to correctly localize to within mil-
limeters, is capable of providing valuable information in relation to almost every 
research question that has already been addressed with just ERPs. While, in general, 
it cannot be expected that there is a one-to-one relationship between ERPs and the 
fMRI signal, it is still interesting that both signals are related directly or indirectly 
to synaptic activity. Combining EEG and fMRI can be very helpful in obtaining a 
deeper understanding of brain activity. For many practical issues (e.g. artifact cor-
rection) established solutions exist but some basic questions (e.g. the precise rela-
tionship between EEG and fMRI signals) remain the source of debate and 
investigations. Nevertheless, many studies have already shown the enormous impact 
of combination strategies and EEG-fMRI is now a helpful tool for many research 
questions.
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6The Added Value of EEG-fMRI in Imaging 
Neuroscience

Rainer Goebel and Fabrizio Esposito

6.1  Introduction

The main objective of functional neuroimaging is to deepen our understanding of 
the neural substrate of cognitive functions by detecting and characterizing in space 
and time relevant changes of brain states and their relation to neuronal activity. 
Functional MRI (fMRI), electro-encephalography (EEG), and magneto- 
encephalography (MEG) are the most widespread non-invasive techniques available 
to experimental and clinical neuroscientists to achieve this objective starting from 
in vivo measures of brain electrical activity. Both fMRI and EEG assume that a 
given brain state can be decoded from the precise anatomical localization and the 
detailed temporal evolution of neuro-electrical brain activation signals, respectively. 
Starting from these common assumptions, fMRI neuroscientists have developed 
many different approaches to map brain states at a spatial resolution of a few milli-
meters and test many different neurophysiological and neuropathological hypothe-
ses in normal and clinical populations, despite the limited temporal resolution of the 
available signals (see previous chapters). On the other hand, EEG neuroscientists 
have posed analogous questions and addressed similar problems by developing dif-
ferent approaches for the detailed temporal analysis of EEG recordings, despite the 
limited spatial detail of their findings.
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The previous chapter has illustrated how fMRI can be used by the EEG neurosci-
entists to improve the quality of the EEG results and aid the problem of source 
localization.

The purpose of this chapter is to illustrate how the fMRI neuroscientist can inte-
grate detailed temporal information by incorporating simultaneously recorded EEG 
signals into standard as well as sophisticated fMRI spatio-temporal modeling. We 
discuss how this can be achieved in such a way that new effects become detectable 
in the fMRI domain even when the original event or state change causing possible 
fMRI effects can only be characterized at very rapid temporal scales (e.g., millisec-
ond) or frequency bands (above 1 Hz). Our description focuses on a conceptual 
level, and we refer the reader to other chapters in Part II for more details on prob-
lems such as EEG preprocessing.

We start from the problem of optimizing a common source space for fMRI and 
EEG signal projection through the use of anatomical and functional MRI models 
and EEG distributed inverse models. Then we explore different frameworks for the 
integrated analysis of simultaneously acquired EEG-fMRI data sets in the 
same space.

The basic limitation of both fMRI and EEG is represented by the indirect nature 
of measured brain signals, which always implies substantial interpretational efforts 
and caution to neuroscientists before drawing any general conclusions about the 
location and the electrical nature of the neural sources related to the investigated 
phenomena. Nonetheless, this general limitation can be elegantly counterbalanced 
by multi-modal simultaneous acquisition and comparative analysis approaches, 
which emphasize the diversity of the physical origin of fMRI and EEG signals with 
respect to the same neural generators. Nowadays, one of the most important goals 
of fMRI and EEG developers is to provide analysis tools, which optimally orient the 
neuroscientist toward the real-time comparative evaluation and interpretation of 
fMRI and EEG data. Indeed, widely used fMRI software packages have evolved 
from pure MRI/fMRI analysis programs to multi-modal neuroimaging packages, 
embedding suitable computational tools to address the combination of fMRI and 
EEG (simultaneous) measurements (see, e. g., Goebel 2012).

Historically, fMRI and EEG methodologies have followed asynchronous and 
independent paths of research and development with rather limited interaction until 
the end of the twentieth century, mostly due to technological reasons. Starting from 
the beginning of the twenty-first century, however, the advent of new systems 
equipped for the simultaneous acquisition of EEG and fMRI data from the same 
subject has boosted the research for integrated data modeling and analysis.

The combination of EEG and fMRI data sets into one unique data model is still 
a focus of intensive research and requires enormous efforts to integrate independent 
fields of knowledge such as physics, computer science and neuroscience. In fact, 
besides the classical problems of head modeling in EEG and hemodynamic model-
ing in fMRI, an additional difficulty is given by the need of understanding and 
modeling the ongoing correlations of EEG and fMRI data. Some crucial advance-
ments toward the understanding of empirical EEG-fMRI correlations have been 
also achieved by further extending the model-based data integration schemes for 
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extra-cranial EEG data to similarly handle intra-cranial EEG data in the fMRI image 
space (see, e.g., Esposito et al. 2013).

In this chapter, we discuss different strategies available to the neuroimaging 
researcher for combining and integrating EEG data into the standard framework of 
fMRI image analysis. Specifically, we discuss how the fMRI analyst can fruitfully 
incorporate the rich content of temporal information in simultaneously acquired 
EEG time-series into a standard fMRI analysis. We emphasize the potentials and the 
importance of anatomically and functionally informing distributed EEG solutions 
in the context of the classical EEG inverse problem when attempting to link the 
spatial information extracted from fMRI data to the temporal information from 
EEG data in a common shared anatomical space.

6.2  The EEG-fMRI Integrated Source Space

Functional MRI data sets are normally acquired over the whole brain with voxel 
sizes in the range from 2 to 4 mm, albeit ultra-high-field scanners (i.e., with a static 
magnetic field higher than 3 T) are pushing this spatial resolution below 1 mm (e.g., 
Kemper et al. 2018). Since simultaneous sub-millimeter EEG-fMRI studies are not 
currently performed, starting from high-resolution co-registered T1-weighted MRI 
scans with 1 mm isotropic resolution provides sufficient anatomical detail for stan-
dard fMRI signals with 2–3 mm spatial resolution that can be interpolated and co- 
registered to 1 mm anatomical voxels. Moreover, the precise segmentation of the 
white matter volumes from the T1-weighted 1 mm MRI images allows identifying 
the white matter/gray matter boundary. From this inner cortical boundary, dense 
cortex meshes can be reconstructed with vertices located along the modeled surface. 
In many cognitive studies, voxel-based functional MRI time-series and spatial pat-
terns can be projected on the cortical meshes by sampling activity within grey mat-
ter along the normal vector of each vertex. This results in mesh time-series for 
typically 100–200,000 vertices per hemisphere. Conversely, EEG signals are 
acquired from a number of scalp channels ranging from 20 to 300. Thereby, to aid 
the creation of a common source space for fMRI and EEG signal projection, cortex 
meshes obtained from MRI data are usually simplified by geometry-preserving 
mesh decimation algorithms resulting in meshes with a few thousand vertices 
(Fig. 6.1). As alternative, regular 3D rectangular grids made up of 3–10 mm voxels 
can be defined directly in the MRI volume space and used for fMRI resampling and 
EEG projection. In order to constrain the analysis on the cortical voxels, these grids 
are usually applied segmentation-derived cortical masks.

BOLD-fMRI temporal resolution is in the range of a few hundreds of millisec-
onds and is physically limited by the sluggishness of the hemodynamic response, 
which imposes time constants in the order of seconds (Boynton et al. 1996). EEG 
temporal resolution is in the order of 1 ms or less, but, even in high-density channel 
configurations, the effective spatial resolution of any detectable neural effects is 
physically limited by the distance of the neural sources from the electrodes and the 
inhomogeneous volume conductivity of the head which influences the propagation 
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Fig. 6.1 Example of definition of the EEG-fMRI source space for the MNI template brain and the 
standard MNI 81-electrode EEG configuration. Source points are visible in the volume space (a) 
and correspond to the vertices of the cortical mesh (b) automatically registered to the EEG configu-
ration. In the right panel (b), red spheres represent electrode positions, pink spheres represent 
fiducials and yellow and white meshes represent reconstructed head and cortex surfaces, 
respectively

of electric currents from the source to the electrodes through the different compart-
ments of the cranium. In order to be detectable at distant electrodes, sufficiently 
large neuronal populations must be synchronously active, and the dendritic com-
partments of participating neurons must be oriented in parallel.

In the last few decades, important fMRI and EEG/MEG studies have been 
reported supporting the notion that the preparation of anatomically informed source 
spaces for time-series projection and neural activity representation significantly 
enhances the spatio-temporal patterns yielded by fMRI and EEG/MEG measure-
ments with respect to neural source localization and dynamic brain state analysis 
(see, e.g., Kiebel et al. 2000; Dale & Sereno 1993; Dale et al. 1999, 2000).

In EEG-fMRI studies, voxel-level fMRI time-series are simultaneously acquired 
with EEG channel time-series. EEG configurations are normally digitized on the 
head of the subject prior to the MRI scanning session in such a way that automatic 
2D–3D MRI image registration and surface-based reconstruction of the head and 
brain allow to spatially refer EEG and fMRI signals to the same 3D coordinate sys-
tem. With these co-registration prerequisites, various approaches have been sug-
gested to model EEG source signals including placing current dipoles in fMRI hot 
spots (Scherg 1990) and distributed source modeling (Hamalainen and Ilmoniemi 
1984), which will be described in more detail below.

As described above, fMRI voxel-level BOLD time-courses can be projected 
from the voxel space to the cortex source space by sampling along the normal of a 
vertex from the inner (white matter/grey matter) to the outer (grey matter/CSF) 
boundary, and the corresponding time-courses are averaged to yield one unique 
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time-course at that vertex. As a result, fMRI data modeling and analysis can be 
performed directly in the cortex source space.

EEG channel time-series can be projected from the channel space to the cortex 
source space by placing a single current dipole in each vertex of the mesh and esti-
mating the distributed solution for the EEG inverse problem constrained to the ver-
tex positions (Dale & Sereno 1993; Dale et al. 2000).

More in general, assuming a mesh of N vertices and a linear (discrete) equivalent 
current dipole (ECD) model as a data model (see, e.g., Mosher and Leahy 1998; 
Mosher et al. 1999; Baillet et al. 2001), M channel time-series can be expressed as 
linear combinations of N dipolar source time-series:
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In Eq. (6.1) the columns of matrix A (M × 3 * N) contain the lead fields of the 
dipolar sources for the given M channel EEG configuration, while si(t) = [sx(t), sy(t), 
sz(t)]t represents the source activity time-series of the dipole placed on the ith vertex 
of the mesh, and n(t) represents the channel noise.

The lead fields for the EEG configurations are normally extracted from a pre- 
computed volume conductor model applied to the head of the subject (Sarvas 1985; 
Berg and Scherg 1994; Mosher et al. 1999). Optionally, the dimensionality of the 
linear problem (6.1) is reduced by a factor of 3 by constraining not only the number 
and the location of the dipoles but also their orientations, e.g., using the normal unit 
vectors of the reconstructed cortical surface mesh (see, e.g., Dale et al. 2000; Lin 
et al. 2004, 2006).

All linear ECD-based inverse solutions can be expressed as a collection of spatial 
filters (one per source dipole component) which can be directly applied to channel 
data for generating the estimated source time-series in all vertices of the mesh:

 
x W yt t( ) = ⋅ ( )  (6.2)

Matrix W (3  *  N  ×  M) contains the spatial filter weights (one collection per 
source dipole component), and x(t) is the estimated source time-series for all com-
ponents and locations. Once the filter weights have been estimated (see below), Eq. 
(6.2) can be used for generating a “point” source time-series at each vertex of the 
mesh (virtual electrode; see, e.g., Brookes et al. 2005), or, in alternative, subsets of 
adjacent vertices in one or more pre-specified regions (regional sources) can be 
jointly summarized in their orientation and temporal (or spectro-temporal) variance 
via, e.g., principal component analysis (PCA) (Kayser and Tenke 2003). The solu-
tion (6.2) for one or more sources can be visualized in the channel space in the form 
of 2D or 3D EEG channel topographies. For regional sources and free-orientation 
EEG solutions, a possible way to reduce Eq. (6.2) to a single set of channel weights 
is to first average W matrix coefficients across all regional vertices separately for 
each orientation (X, Y, and Z) and then project the weights along the orientation 
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explaining the maximum variance of the projected data by means of a singular value 
decomposition (SVD). For orientation-constrained solutions, the maximum vari-
ance projection is not necessary.

The estimation of the inverse solution W can proceed by either filling one, two 
,or three rows of W at each source location (“scanning” approach) or by attempting 
a total inversion of the distributed ECD model across the entire source space (“imag-
ing” approach) (see, e.g., Darvas et al. 2004). For instance, dipole fitting methods 
(Scherg 1990), linearly constrained minimum variance (LCMV) beamformers (van 
Veen et al. 1997), and multiple signal classification (MUSIC; Mosher and Leahy 
1998) are commonly used “scanning” approaches. Imaging approaches always 
require some form of regularization due to the ill-posed nature of the problem of 
inverting the linear model in Eq. (6.1) for N > M. A commonly adopted “imaging” 
approach is the weighted minimum norm (WMN) solution (Hamalainen and 
Ilmoniemi 1984; Hamalainen et  al. 1993; Leahy et  al. 1996) expressed by the 
formula:

 
W RA ARA Ct t
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where matrix R represents the “a priori” source covariance and is used to “inform” 
the source activities, CN is the covariance matrix of the channel noise, and λ is a 
regularization parameter (Tikhonov and Arsenin 1977). A typical weighting scheme 
called “depth-weighting” (Lawson and Hanson 1974; Jeffs et al. 1987) specifies R 
as a diagonal matrix with non-zero entries inversely proportional to the γth power of 
lead field norms (γ being the depth-weighting parameter; see also Lin et  al. 
2004, 2006).

Other common imaging approaches, such as Laplacian-weighted minimum 
norm (LORETA, Pascual-Marqui et  al. 1994) and local autoregressive average 
(LAURA, Grave de Peralta et al. 2004) (see also previous chapter and Michel et al. 
(2004) for review), are analogous to WMN but allow for additional constrains on 
the source covariance in a non-diagonal matrix R. Finally, some form of normaliza-
tion (e.g., dynamic-SPM, Dale et al. 2000) or standardization (s-LORETA, Pascual- 
Marqui 2002) with respect to the source noise and signals can be applied to the filter 
weights in matrix W before the application to channel time-series. Finally, the 
WMN scheme has been also used for fMRI-constrained distributed inverse model-
ing by “modulating” the diagonal entries with local fMRI activity, e.g., via BOLD 
percent signal change estimates, and the off-diagonal entries with some functional 
connectivity measure such as inter-regional BOLD signal correlations (see, e.g., Liu 
et al. 1998; Dale et al. 2000; Babiloni et al. 2003).

6.3  Data Integration Strategies for EEG-fMRI Studies

The major motivation for the development of EEG-fMRI systems stems from the 
need of linking the precise and detailed spatial characterization of neural phenom-
ena achievable with modern high-field fMRI to the precise and detailed temporal 
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characterization of neuronal phenomena achievable with modern high-density 
EEG. Despite the relevant problem of dealing with the presence of fMRI-specific 
artifacts in the collected EEG traces, the simultaneous acquisition of EEG and fMRI 
signals provides a strong neurophysiological and neuropsychological basis for 
establishing this link, by making sure that the same brain at the same time is studied 
while performing a cognitive task. Nonetheless both physical and physiological 
new issues have arisen about the intrinsic nature and the validity of EEG-fMRI sig-
nal correlations. The former refers to lack of knowledge about the real extent of 
temporal and spatial effect coupling between the two modalities. The latter refers to 
the different perspectives and expectations by neuroscientists from the fMRI and 
EEG fields. Based on these observations, we propose to consider two different sym-
metric approaches to the comparative analysis of simultaneously acquired EEG- 
fMRI data.

In one approach, EEG data are first analyzed in the channel or source space, and 
one or more sources are characterized in the (time or frequency) temporal domain. 
Thereby a temporal model for fMRI responses, e.g., a general linear model (GLM, 
Friston et al. 1995), is derived by extracting the trial-by-trial variation (modulation) 
or the spectro-temporal evolution of one or more pre-detected EEG sources (inte-
gration of fMRI and EEG in the temporal domain, Fig. 6.2). The effective integra-
tion of EEG data into the fMRI temporal model requires the application of a 
correction for fMRI hemodynamics, e.g., via linear convolution with a model hemo-
dynamic response function (Boynton et al. 1996) and, with the sole exception of 
resting-state fMRI studies (Laufs et  al. 2003), the orthogonalization of the EEG 
measures to the standard fMRI response (Feige et al. 2005; Eichele et al. 2005). The 
GLM results will then reveal brain regions related to an EEG-derived temporal 
reference.

In a second approach (integration of fMRI and EEG in the spatial domain, 
Fig. 6.3), fMRI spatial patterns are first extracted in the cortex source space and then 
used in combination with forward and inverse solutions for generating fMRI-derived 
channel topographies (inverse filters) in the context of EEG spatial modeling. 

EEG (sources) fMRI (preprocessed)

EEG-fMRI

Source Activity
GLMHRF

fMRI Temporal Data Model

Fig. 6.2 Integration of fMRI and EEG data in the temporal domain
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FMRI (sources) EEG (preprocessed)

EEG-fMRI

Source Activity

EEG Spatial Data Model

Fig. 6.3 Integration of fMRI and EEG data in the spatial domain

Thereby a detailed time or time-frequency characterization becomes associated 
with the fMRI spatial pattern. The fMRI spatial information can be either incorpo-
rated into the estimation of the distributed inverse solution (see, e.g., Liu et al. 1998; 
Babiloni et al. 2003) or simply used to select the regions of activity in the cortex 
source space to create the corresponding channel topography (regional source).

6.4  Illustration of the Integration of fMRI and EEG 
in the Temporal Domain

EEG-relevant neural processes can be characterized in the time or frequency 
domain. Short-lasting (few milliseconds) and broadband EEG processes are usually 
evaluated in the time domain and detected as amplitude peaks of the response at a 
specific latency, with positive or negative polarity (see previous chapter). Long- 
lasting and narrow-band EEG processes are usually evaluated in the frequency 
domain in terms of their spectral power and phase distribution in certain frequency 
ranges (Engel et al., 2001). Although it is possible to observe these processes in 
single or multiple channels, many studies have shown the importance of projecting 
EEG time-series from the channel space to a different space where specific sub- 
components are well separated and better studied. Two widely used approaches for 
EEG-fMRI integration in the temporal domain are based on independent compo-
nent analysis (ICA) and canonical correlation analysis (CCA) (Rosa et al. 2010; Lei 
et al. 2012). For instance, temporal ICA (Hyvarinen et al. 2001) is a statistical tech-
nique which decomposes channel time-series into independent components by 
removing statistical redundancy between channel observations and has been pro-
posed as a powerful tool for separating and rejecting EEG artifacts and for generat-
ing new hypotheses about the underlying source dynamics and origins (Makeig 
et al. 2002).

As an alternative to purely data-driven spaces, and especially when the principal 
aim of the study is to produce a local validation of the EEG source and a local interpre-
tation of EEG-fMRI effect coupling, the preprocessed EEG channel time-series can be 
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first projected to an anatomically informed source space (e.g., a cortex source space) 
and then analyzed for the main or differential effects of a specific temporal feature.

Examples of this integration strategy are depicted in Figs.  6.4, 6.5, and 6.6. 
Figure 6.4 shows the results of a cortically constrained distributed source analysis 
performed on a 5000-vertex source space after estimation and application of a 

Fig. 6.4 Results of the EEG distributed source analysis in the cortical space

Fig. 6.5 Results of the EEG distributed source analysis in the cortical space and projection in the 
volume. Upper panels: source ERP images (single-trial and trial-averaged responses) for the HE 
(left) and LE (right) conditions. Lower panels: equivalent current dipole sources for the HE (left) 
and LE (right) conditions. The source location is displayed in the volume space (left, sagittal view; 
right, coronal view) as red points
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Fig. 6.6 FMRI (volume) GLM map obtained from the incorporation of the trial-by-trial ampli-
tude modulation of the ERP source in the anterior cingulate cortex (ACC) during the HE session 
(triplanar view centered in the EEG source location)

WMN filter to the preprocessed EEG time-series from a single-subject EEG-fMRI 
experiment with a simple auditory-guided choice task performed under two levels 
of decision efforts (LE, low effort; HE, high effort) (for the detailed description of 
the experimental paradigm, see Mulert et al. 2005). Figure 6.5 shows the source 
ERP images for the two conditions (upper panels) and the equivalent dipoles esti-
mated in the local peak of the ERPs (lower panels). Figure 6.6 shows the FMRI 
(volume) map obtained from the incorporation of the trial-by-trial amplitude mod-
ulation of the ERP source in the anterior cingulate cortex (ACC) during the HE 
session.

6.5  Illustration of the Integration of fMRI and EEG 
in the Spatial Domain

In the example of the previous paragraph, the high temporal resolution of simultane-
ously acquired EEG data has been used to augment the fMRI temporal model and 
to study neural events whose actual occurrence or effective characterization would 
be otherwise not possible at the fMRI temporal scale.

The alternative perspective is to assume that standard fMRI temporal models are 
sufficient to map the BOLD effects of the stimulus-evoked brain activity, thus pro-
ducing a detailed spatial picture of the temporally evolving cognitive states as a 
stand-alone modality. In such cases, it might become extremely interesting for the 
fMRI cognitive scientist to enrich the meaning and the interpretation of fMRI 
spatio- temporal patterns with spatially selective EEG features using the available 
simultaneous EEG data.

Using the cortex source space as a common space for both fMRI and EEG data 
projection, it is possible to establish a spatial link between the ongoing fMRI 
activity in one or more (functionally connected) regions and the temporal or 
spectro- temporal variance of simultaneously acquired EEG data. Figures 6.7, 6.8, 
and 6.9 refer to the application of such an integration strategy (schematically 
illustrated in Fig. 6.3) to an EEG-fMRI block-design experiment (own data) based 
on a typical working-memory task, the N-back task (see, e.g., Esposito et  al. 
2006). According to this strategy, an fMRI spatial pattern is first obtained from 
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Fig. 6.7 FMRI spatial pattern of BOLD activity during the N-back working-memory task. 
Statistically significant (conjunction test, P < 0.05, FDR corrected) parametric BOLD responses 
are projected onto the cortex source space

Fig. 6.8 FMRI regions of activity are converted to EEG topographies via the application of a 
WMN filter in the cortex source space (left). FMRI-derived regional sources are jointly analyzed 
in the temporal evolution of their frequency spectral distribution in the range between 0 and 50 Hz 
during the entire fMRI run (right). In this plot the normalized spectro-temporal variance contribu-
tion in different bands from each source is emphasized via color coding from the lowest (blue- 
cyan) to the highest (yellow-red) frequencies. Peaks of temporal variance in the delta, theta, alpha, 
beta, and gamma bands are marked on the plot
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Fig. 6.9 Time-frequency plots (upper panels), theta power traces (central panels), and temporal 
correlations of the theta traces with the experimental conditions (lower panels) for the “principal” 
theta sources, associated with the left lateral frontal cortex (left panels) and right superior parietal 
cortex (right panels)

mesh time-series by performing standard GLM mapping of the linear differential 
contrasts among memory conditions in the cortex source space (Fig. 6.7 shows the 
conjunction map of the contrasts “2-back vs. 1-back” and “1-back vs. 0-back”). 
Then, the set of regions exhibiting statistically significant BOLD responses is 
used to generate a corresponding set of EEG regional sources (Fig. 6.8) using a 
cortically constrained distributed inverse solution (WMN) estimated on the same 
source space (Fig. 6.8). The WMN channel weightings of each regional source are 
visualized in the channel space as EEG topographies. Thereby the active fMRI 
network “selects” a network of EEG regional sources which can be jointly ana-
lyzed for their spectro-temporal features using, e.g., PCA. For instance, the nor-
malized distribution of the source power spectral density across all sources in 
different frequency bands can be analyzed, and the variance of fundamental EEG 
rhythms during the fMRI experiment can be visualized (Fig. 6.9). According to 
this strategy, the fMRI network parametrically activated during the N-back task of 
Fig. 6.7 exhibited prevalent peaks in the theta band (mainly in the lateral-frontal 
and superior-lateral parietal sources) and, in more composite spectra, in the alpha 
and gamma band (anterior and posterior midline sources). The time-frequency 
plots, the theta power traces, and the temporal correlations of the theta power 
traces with the experimental conditions are shown in Fig. 6.8. A positive paramet-
ric trend of the EEG theta signals with the cognitive loads of the working-memory 
conditions is evident.
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6.6  Direct Integration of fMRI and Intra-cranial EEG 
in the Spatial Domain

When projecting scalp EEG measurements to the cortex source space, the spatial 
link between the ongoing fMRI (temporal) activity and the ongoing EEG (temporal 
or spectro-temporal) activity depends on the accuracy of the forward and inverse 
solutions. However, due to the finite number of electrodes and all theoretical and 
physical issues related to electromagnetic field propagation and volume conduction 
(Acar et al. 2008; Mosher et al. 1999), scalp EEG will never achieve the same spa-
tial resolution of fMRI.

An attractive solution to empirically address the spatial coupling between EEG 
and fMRI activities is therefore represented by the possibility to directly integrate 
fMRI recordings with intra-cranial EEG (iEEG) recordings when these would be 
available from the same subject (performing the same experiment). In fact, iEEG 
data are collected from electrodes placed directly on the cortical surface of surgi-
cally implanted patients, allowing for a comparable spatial resolution between the 
two modalities. In such cases, the ECD model in Eq. (6.2) could be replaced by a 
“direct” current dipole model with the same mathematical formulation in which 
parameters essentially model the “spread” of the iEEG activity around each elec-
trode over contiguous mesh vertices as a function of the electrode-vertex distance 
(Esposito et al. 2013):
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where xv(t,f) is the iEEG activity at mesh vertex v (time bin t, frequency bin f), yi(t,f) 
is the iEEG activity at electrode (time bin t, frequency bin f), and wiv is the “weight-
ing” function of the distance of electrode i from vertex v (div).

This mathematical formulation allows flexibly increasing the weighting of the 
surface vertices that are closer to the electrode positions while ensuring both a 
“compact” support (i.e., the weight is exactly zero at a distance equal or higher than 
dmax) and a spatial continuity at the boundary (i.e., the weight approaches zero when 
the distance approaches dmax) of the spread area. More specifically, the parameters 
dmax and k in Eq. (6.4) allow to, respectively, control the radius and the attenuation 
of the activity spread around each electrode. As an example, Fig. 6.10 illustrates the 
application of this spatial model (k = 2, dmax = 1 cm) to integrate the iEEG spectro- 
temporal activity with the fMRI BOLD activity, both elicited in the same subject by 
the passive viewing of a 10-s movie clip (single-subject data set from a cohort pre-
sented by Esposito et al. 2013).

Unfortunately, while scalp EEG can be safely, routinely, and simultaneously 
measured with fMRI in healthy individuals, iEEG electrodes can only be implanted 
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Fig. 6.10 Left panel: fMRI BOLD activation map (passive movie viewing vs. baseline, t statis-
tics, p < 0.001) with superimposed spread model (transparent blue) of the iEEG activity over the 
cortical surface for “activated” electrodes. Green spheres are placed in the surface-registered posi-
tions of iEEG electrodes. Right panel: time-frequency iEEG plot (yellow-red, event-related syn-
chronization; green-blue, event-related desynchronization). In this type of integration, fMRI 
BOLD activity changes serve as “localizer” for possible theta and gamma power changes in the 
common brain (cortex) space

in the brain of some exceptional patients (typically with drug-resistant epilepsy), 
and the actual position of the electrode sites are solely determined by purely clinical 
considerations. Thereby, these investigations rarely allow the coverage of the 
whole cortex.

6.7  Discussion

In this chapter, we have presented two alternative strategies available to the fMRI 
researcher for combining simultaneously acquired EEG and fMRI data sets into one 
integrated conceptual framework. We briefly illustrated the two approaches on two 
real-world single-subject EEG-fMRI data sets. Although these illustrations made use 
of specific data models and statistical techniques, the described frameworks are to be 
considered general with respect to the implementation of other fMRI or EEG data 
models. The proposed analysis pathways of Figs. 6.2 and 6.3 conceptually represent 
the general motivations and expectations of imaging neuroscientists with regard to 
EEG-fMRI practical applications from two opposite but symmetric views. The illus-
trated pathways have been also developed or suggested in the context of real-time 
EEG-fMRI brain-computer interfaces (see, e.g., Frolov et al. 2017) and for clinical 
intra-cranial EEG-fMRI studies on implanted patients (see, e.g., Hawsawi et al. 2017).

When integrating fMRI and EEG in the temporal domain (Fig. 6.2), the high 
temporal resolution of simultaneously acquired EEG data is used to augment the 
fMRI temporal model and study neural events whose actual occurrence or effective 
characterization would be otherwise not possible at the fMRI temporal scale. As a 
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result, we gain the capability of mapping the fMRI correlates of new events whose 
characterization cannot come from the sole experimental design. From the fMRI 
modeling and analysis viewpoint, this approach turns out to be very equivalent to 
the integration of online external or behavioral measures, such as reaction times, 
ratings, etc., which is a common practice in fMRI research. Nonetheless, there are 
two critical aspects implicit to this approach. First, it is required that not only an 
EEG source exists with a given observed feature (e.g., an ERP component within a 
given interval of latencies) but also that substantial trial-by-trial modulation exists 
during the entire experiment to produce a relatively noise-free fMRI predictor for 
a statistically powerful GLM. Normally the variance of EEG-derived predictors 
after orthogonalization to the standard stimulus-coding predictors can be very low, 
therefore impairing the single-subject and group-level random-effects GLM statis-
tics. Orthogonalization is necessary to partial out the variance already explained by 
the stimulus function and isolates the real added value of embedding EEG features 
into the GLM. The use of large cohorts may suffer the additional variability caused 
by the different EEG reactivity of the subjects (Meltzer et al. 2007a, b). Second, 
significant effects are mapped for the EEG-fMRI correlations on a purely temporal 
basis. Therefore, additional difficulties can arise in the interpretation of fMRI acti-
vation clusters which are not well co-localized to the EEG source or even far away 
from it. In fact, while the full understanding of local EEG-fMRI correlations ulti-
mately requires more sophisticated physical and empirical models for the effect 
coupling, both types of findings require interpretation with extreme caution. The 
coupling of electrophysiological and BOLD activity is complex also because the 
directionality of the EEG-BOLD correlations can be a function of both space and 
of frequency (see, e.g., Scheeringa et  al. 2011; Maggioni et  al. 2016); thereby, 
simultaneous EEG-fMRI studies employing a temporal integration scheme have 
sometimes left aside the sign of the correlations in the fMRI modeling (see, e.g., 
Walz et al. 2014).

The use of EEG source analysis has been shown to improve the fMRI modeling. 
However, the known limitations of EEG inverse models may sometimes produce 
“ghost” sources (see, e.g., Michel et al. 2004), thereby making the source projection 
itself of limited validity or even biasing the integration of EEG features in the fMRI 
temporal model. With respect to this point, the use of an intermediate non- 
anatomically informed source projection, such as ICA, might provide better results 
due to the temporal decorrelation of the signals. Although the co-localization of 
EEG and fMRI sources is sometimes presented and invoked as a source cross- 
validation scheme (see, e.g., Wibral et al. 2008), it might also well be that some of 
the EEG generators are spatially masked by volume conductor effects but pops out 
nicely anyway due to the fMRI functional connectivity. This is especially true for 
subcortical and thalamic effects which have been shown to be visible with EEG- 
fMRI (Feige et al. 2005) but which are also very difficult to isolate via EEG spatial 
modeling alone (Nunez and Srinivasan 2006). In such cases, the added value of the 
simultaneous EEG measure cannot be restricted to a pure cross-validation tool.

A number of multivariate EEG measures have been actually derived with the spe-
cific purpose of reflecting functional connectivity across the brain (Abreu et al. 2018a). 
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These include the so-called partial directed coherence (Biazoli et al. 2013) and the 
phase synchronization index (Mizuhara et al. 2005) within a given frequency band of 
interest. Particularly, a study by Abreu et al. (2018b) has shown how the latter measure 
is able to best predict BOLD signal changes associated with epileptic activity.

When integrating fMRI and EEG in the spatial domain (Fig. 6.3), the high spatial 
resolution and the local physical origin of fMRI signals are used to inform an EEG 
spatial model and characterize brain activity and cognitive states at typical EEG 
time and frequency scales. As a result, it becomes possible to enrich detailed pic-
tures of fMRI-derived spatio-temporal patterns with high temporal resolution EEG- 
derived information.

The use of EEG distributed inverse models and a typical “imaging” approach 
(such as WMN) on a common anatomically informed (cortex) source space has 
been highlighted in this chapter. Besides the importance of this approach in the 
context of EEG studies (see, e.g., Riecke et al. 2009, 2012), this solution presents a 
number of attractive properties in the context of EEG-fMRI experiments where no 
single or a few isolated regions are selected, but rather distributed networks are 
involved in controlling the information flow and processing and execution of com-
plex cognitive functions. In fact, although theoretically and technically possible, the 
use of ECD dipole fitting procedures would require placing at least one single dipole 
in each region of activity, whereas scanning approaches, such as beamforming, 
implicitly pose theoretical constraints about remote source correlations (van Veen 
et al. 1997). One more attractive property of imaging solutions for EEG-fMRI stud-
ies is the possibility to add distributed fMRI constraints directly in the WMN esti-
mation (see, e.g., Liu et al. 1998; Dale et al. 2000; Babiloni et al. 2003). Nonetheless, 
for the purpose of the case illustrated here, we intended not to bias the contribution 
of the EEG sources with condition-specific fMRI effects.

We have shown how it is possible in practice to spatially select from fMRI patterns 
a set of regional EEG sources and jointly analyze their spectro-temporal contribution 
to the measured EEG variance in a simultaneous EEG-fMRI experiment. This is basi-
cally the first step before correlating any EEG spectro-temporal feature (e.g., band-
specific power traces) to the experimental conditions of the EEG-fMRI experiments.

A different procedure to obtain a voxel-wise correspondence of the reconstructed 
EEG and fMRI signals has been introduced by Ostwald et al. (2011). In this case, 
EEG inverse modeling is combined with a set of information theoretic quantities 
that can be estimated from simultaneously acquired EEG-fMRI data, allowing the 
identification of either spatio-temporal or spatio-spectral relationships between 
EEG and fMRI in terms of information content of all available EEG data (not, e.g., 
from single electrodes).

There are, however, several caveats for this approach as well, which also requires 
interpretational cautions. First, according to this scheme, significant effects are 
mapped assuming EEG-fMRI correlations on a purely spatial basis. As for the com-
bination in the temporal domain, combination in the spatial domain also expects 
more sophisticated physical and empirical models for EEG-fMRI effect coupling to 
be developed. Second, the known limitations of EEG inverse models do not allow 
concluding about the presence of one or more single EEG generators in each fMRI 
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region (Liu et al. 2006). It might well be that global effects or strong local effects 
from “close” regions substantially contribute to the spectral and temporal features 
of a given regional source. In this sense, the joint principal component analysis of 
multiple remote regional sources can be a more robust approach for identifying the 
presence of global effects (i.e., common to all regional sources) and differentially 
evaluate the relative contribution of each single region within the network.

Due to volume conduction effects, scalp recordings are known to be biased 
toward global activity (Nunez and Srinivasan 2006), and the purpose of the inverse 
spatial filters estimated via EEG spatial modeling is to remove as much as possible 
this bias and to enhance local activity. It must be also stated, however, that the pres-
ence of global activity throughout the selected EEG sources is not necessarily an 
artifact, whereas the excessive dominance of one source against all the others, espe-
cially if this happens on an extended time-frequency range, can be likely due to 
residual artifacts in the EEG data.

Several conjectures about fMRI and EEG brain dynamics have agreed that “high 
values of complexity necessarily correspond to an optimal synthesis of functional 
specialization and functional integration within a system” (Edelman and Tononi 
2000; Nunez and Srinivasan 2006). Following up this conceptual framework, the 
technical search for the optimal integration of EEG and fMRI data will likely evolve 
toward a search for the optimal balance between global and local effect coupling.

An important contribution to the understanding (as well as to the practical inter-
pretation and application) of the spatial coupling of fMRI and EEG brain dynamics 
has been provided by the combined modeling of intra-cranial EEG and fMRI data 
from the same subject (Esposito et al. 2013), as conceptually illustrated in previous 
paragraph. In fact, the comparison of intra-cranial EEG and fMRI offers the unique 
opportunity to map the relationship between hemodynamic and electrophysiologi-
cal signals during cognitive processes that cannot be replicated in animal models 
(Kadipasaoglu et al. 2014). Particularly, it has been now fully established that intra- 
cranial EEG not only captures local oscillatory signals in the (high) gamma fre-
quency band reflecting asynchronous summation of population firing but also that 
this kind of activity directly correlates with local BOLD activity, justifying the fun-
damental assumption of a direct source model that neural sources are geometrically 
distributed around each intra-cranial electrode. The use of such a direct source spa-
tial integration model has provided a powerful tool to examine the local oscillatory 
EEG signals (both in the low- and high-frequency bands) in a wider spatial context 
by assessing the mapping of responsive intra-cranial channels at the group level 
(Singer et al. 2014), whereas further developments of this spatial integration model 
have mainly dealt with improving the accuracy of the registration of intra-cranial 
EEG data to individual cortical topology (see, e.g., Kadipasaoglu et al. 2014).

In summary, fMRI researchers can enrich topographically accurate fMRI data 
with precise timing information when performing simultaneous EEG-fMRI experi-
ments. The outlined approaches may lead to new insights about the neuronal basis 
of cognitive processes but require sophisticated combined data analysis, preferen-
tially in a common cortex space, as well as careful interpretation of obtained spatio- 
temporal results.
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emf Electromotive force
EMG Electromyography
EPI Echo planar imaging
fMRI Functional magnetic resonance imaging
MR Magnetic resonance
MRI Magnetic resonance imaging
RF Radiofrequency
rms Root mean square
SAR Specific absorption rate

7.1  Introduction

The successful combination of electroencephalography (EEG) and fMRI demands 
careful consideration of three important issues: patient safety, EEG quality and 
image quality. In this chapter we first consider the implications these factors have 
for the design of EEG instrumentation, with emphasis on safety and EEG quality 
considerations, and then examine the precautions that must be taken to perform 
EEG recordings in the MR environment with acceptable additional risk for the 
subjects.

7.2  EEG Instrumentation

EEG instrumentation comprises electrodes and an acquisition system to amplify 
and digitise the EEG signals and reviews facilities for the display and analysis of the 
recorded waveforms. The design of EEG instrumentation appropriate for use in the 
magnetic resonance (MR) scanner must take into account a number of factors that 
are not applicable to conventional EEG equipment: the obvious requirement to 
avoid the introduction of ferrous materials into the scanner environment, the need to 
limit radiofrequency (RF) emissions to preserve image quality and most impor-
tantly the presence of static and time-varying magnetic fields and their associated 
EEG artefacts. These considerations dictate that EEG monitoring equipment used 
for diagnostic recordings in a clinical setting are not suitable for EEG–fMRI moni-
toring. In this section, we examine the influence exerted by the above factors on the 
design of EEG instrumentation. We start at the beginning of the EEG signal chain 
with a consideration of the electrodes and finish with the amplification and digitisa-
tion hardware. EEG artefact post-processing correction methods are discussed in 
detail in Chaps. 8 and 9. While it is mentioned briefly in this chapter, particularly in 
relation to its implications on EEG equipment design, the issue of MR image qual-
ity in the presence of EEG recording equipment is covered in Chap. 10.
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7.2.1  Electrodes

The term EEG electrode is used here to describe the combination of the electrode 
head and connecting lead. In addition to the EEG quality issues discussed in this 
section, EEG electrodes also raise safety issues when used in the MR scanner; these 
will be discussed in Sect. 7.3 of this chapter. See Mullinger et al. 2008a for an over-
view of the image quality issues linked specifically to the presence of EEG elec-
trodes in the MR scanner.

7.2.1.1  Electrode Materials
EEG electrodes are made in different types depending on the location of record-
ing: (1) scalp EEG electrodes, which are placed in the external parts of the 
scalp, are made of gold, Ag/AgCl, stainless steel or plastic, with wires made of 
copper. Other newly developed materials were used for experimental testing 
such as water salt net that covers Ag/AgCl electrodes and Ink-Net (Poulsen 
et al. 2016). (2) Invasive intracranial EEG electrodes that are placed or implanted 
inside the brain are made of platinum–iridium, steel or platinum attached with 
nichrome wires.

7.2.1.2  Electrode Lead Arrangement
The electromotive force (emf) induced in a conductive loop is proportional to the 
rate of change of magnetic flux cutting the loop and the loop area:
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(7.1)

where
Vinduced = emf induced in the loop.
A = loop area perpendicular to the field.
d

d

B

t

 
= rate of change of magnetic flux cutting the loop.

Hence, it is important to minimise the area of any loop formed by the elec-
trode leads in order to reduce signal artefacts induced by the changing magnetic 
fields. A number of methods to achieve this have been reported (Goldman et al. 
2000; Anami et al. 2003; Hoffmann et al. 2000; Negishi et al. 2004; Vasios et al. 
2006); in essence, these involve bunching electrode leads together at a single 
point on the head and then further minimising the loop area, typically by twisting 
the wires together as far as possible along their entire path from the subject’s 
head to the amplifier inputs. This not only keeps the leads in close proximity to 
each other but also results in the cancellation of the induced emfs in adjacent 
twists. Nevertheless, EEG is recorded between separate points on the head, and 
hence some loop area is inevitable. Goldman et al. proposed minimising this by 
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Fig. 7.1 Example of commercial EEG–fMRI instrumentation showing (a) electrode cap, (b) con-
nector box containing current-limiting resistors, (c) battery power pack and (d) 32-channel EEG 
amplifier/digitiser. This instrumentation is sited adjacent to the scanner bore and transmits data to 
a receiver outside the Faraday shield via fibre optic links

recording from a chain of linked bipolar pairs connected to individual differential 
amplifiers (Goldman et al. 2000). Although this can present a smaller loop than 
encountered in common reference recordings, it is more restrictive in terms of 
electrode placement, particularly when the number of channels is large. More 
common is the use of electrode caps, which combine the advantage of multichan-
nel referential recordings with relatively low loop areas (Baumann and Noll 
1999; Bonmassar et al. 1999; Srivastava et al. 2005; Laufs et al. 2003; Iannetti 
et al. 2002) (Fig. 7.1). Chowdhury et al. studied the two types of electrode cables 
(ribbon and twisted) and determined that gradient artefact can be larger when 
using the ribbon cables (Chowdhury et al. 2015).

Although some groups have advocated shielding of the electrode leads (Hoffmann 
et al. 2000) and electrodes (Anami et al. 2003), presumably to reduce artefacts caused 
by electrostatic coupling to electric field sources in the scanner, a quantitative assess-
ment of the benefit of this technique has not yet been reported. In addition, reducing 
the length of the EEG cable to 12 cm long can minimise the environmental artefacts 
to 84% at 7 T MRI scanners (Jorge et al. 2015). Minimisation of loop area is also 
important to ensure patient safety; this will be addressed in Sect. 7.3 of this chapter.

7.2.1.3  Electrode Lead Movement
EEG artefacts are induced not only by changing magnetic fields cutting a static loop 
but also by variation in loop area in the static field. Such variation can result from 
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the movement of the electrode leads caused by cardiac pulsation (Debener et al. 
2007; Allen et al. 1998), small head movements (Hill et al. 1995) and scanner vibra-
tion (Garreffa et al. 2004). A variety of methods have been used to minimise these 
artefacts, such as weighing down the electrode leads where they pass out of the 
scanner using sand bags (Benar et al. 2003), placing padding under the leads and 
amplifier (Hoffmann et al. 2000), placing a tight bandage over the patient’s head to 
secure individual electrode leads (Benar et al. 2003) or the use of an electrode cap 
(Kruggel et al. 2000). There is a general agreement that such fixation methods can 
reduce artefacts significantly.

Another important factor in reducing electrode lead movements (although not 
strictly part of the EEG instrumentation) is the reduction of patient head movement. 
Such immobilisation has been achieved using a vacuum cushion filled with polysty-
rene spheres (Benar et al. 2003; Anami et al. 2003). This method has been reported 
to be effective and well tolerated, the latter being an important factor in prolonged 
EEG–fMRI experiments, since any patient discomfort is likely to provoke gross 
movement, with its associated artefacts in both the EEG and magnetic resonance 
imaging (MRI) data.

In a comparison of three different methods for reducing lead and head move-
ment (weighing down the leads, electrodes secured by a tight bandage, head fixed 
by vacuum cushion), Benar et al. found that the former was the most important and 
the vacuum cushion the least (Benar et al. 2003). It is interesting to note, however, 
that whereas artefacts in the range 30–50 μV were observed for the subjects in this 
study, Kruggel et al. observed artefact of up to 500 μV using a broadly comparable 
arrangement (stretchable cap, twisted leads weighed down with rice bags, head 
restrained by cushions) (Kruggel et al. 2000). This tenfold difference (which can-
not be attributed entirely to the different scanner fields in these studies, of 1.5 and 
3  T, respectively) suggests that these artefact minimisation techniques are very 
sensitive, and hence local experimentation may be necessary to find the optimal 
arrangement.

Another method to reduce EEG artefacts in MR-compatible EEG caps 256-EGI 
with the wires attached in the front of the MR scanner is to place the electrode wires 
under the spine of the patient. Indeed, even though previous studies did not report 
the effectiveness of this EEG artefact reduction method, at least one manufacturer 
of MR-compatible EEG caps (Electrical Geodesics, Inc., Oregon, USA) recom-
mends the use of this procedure.

7.2.2  EEG Recording System

The EEG recorded in the MR scanner is contaminated by two different sources of 
interference that do not afflict EEG recordings. The first is often referred to as pulse 
artefact (or ballistocardiogram, BCG, although it may not be entirely of ballistic 
origin) which is caused by multiple factors associated with the cardiac cycle, such 
as pulse-related movement of the electrodes or blood flow in the static field. It is 
typically 10–100 μV in amplitude and overlaps the EEG frequency range (Allen 
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et al. 1998). A variety of techniques have been developed to reduce these artefacts 
(Allen et al. 1998; Goldman et al. 2000; Bonmassar et al. 2002; Benar et al. 2003); 
these make no additional demands on the EEG instrumentation above those required 
for conventional clinical EEG. Other studies make use of electrocardiogram (ECG) 
signals (Allen et al. 1998; Niazy et al. 2005; Iannotti et al. 2015) and the motion of 
the head that partially contains the pulse artefact to reduce these pulse artefacts 
(Jorge et al. 2015).

The second source of interference is often referred to as imaging (or sometimes 
gradient) artefact and represents the emfs induced in the electrode lead loops by the 
changing magnetic fields applied during imaging. It has two distinct components, 
attributable to the gradient and RF fields, respectively. The former range in fre-
quency from the slice repetition interval (typically 10–20 Hz) up to the kHz range. 
The RF fields have a fundamental component at the Larmor frequency of the scan-
ner, ranging from 63 MHz for 1.5 T up to 300 MHz for 7 T, but also lower-fre-
quency components reflecting the rate at which the RF is pulsed (Hoffmann et al. 
2000) and the pulse shape. In contrast to pulse artefact, imaging artefact is nor-
mally significantly larger in amplitude than the EEG, often obscuring the wave-
forms completely (Allen et al. 2000). In the early days of this technique, the EEG 
and fMRI acquisitions were interleaved in time. In studies of epilepsy, this was 
typically achieved by triggering fMRI acquisition immediately after observing an 
epileptiform spike in the EEG (Warach et  al. 1996; Seeck et  al. 1998). It was 
accepted that the EEG recording during the image acquisition would be obscured. 
Subsequent developments in artefact subtraction methods have now made truly 
simultaneous EEG and fMRI recording routine. Although this makes greater 
demands on the EEG instrumentation, particularly with regard to filtering, sam-
pling rate and dynamic range, it offers much greater freedom in experimental 
design and is now accepted as an essential requirement.

7.2.2.1  Filters
As RF artefacts occur at a frequency of many orders of magnitude higher than 
those of EEG, they can be reduced to an acceptable level by low-pass filtering 
with a −3 dB cut-off point that is substantially higher than the EEG bandwidth. 
For example, Anami et  al. demonstrated that a 3000  Hz cut-off low-pass filter 
reduced the RF artefact to below 100 μV, substantially less than that of the gradi-
ent artefact (Anami et  al. 2003) (Fig.  7.2). This filtering should, however, be 
implemented at the front end of the instrumentation to avoid possible demodula-
tion of the RF into the EEG frequency range due to nonlinearities in subsequent 
active amplifier stages. Gradient artefacts, in contrast, overlap the EEG spectrum 
and hence cannot be removed by low-pass filtering alone. Nevertheless, analogue 
low-pass filtering prior to the main gain stage in the EEG amplifier is normally 
essential to prevent saturation by the high-amplitude gradient artefact. In order to 
maximise the attenuation of these artefacts, the cut-off frequency of this filter 
should be set as low as possible consistent with the recommended EEG band-
width, typically 70 Hz (Deuschl and Eisen 1999). Attenuation of gradient artefact 
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b

c

Fig. 7.2 (a) Timings of RF emission and gradient pulses in an fMRI sequence (EPIS, Siemens: 
ep2d_fid_60b2080_62_64.ekc). RF radiofrequency wave, Gs slice selection gradient, Gp phase 
encoding gradient, Gr readout gradient. a, fat suppression pulses (1–3–3–1 pulses); b, slice selec-
tion RF; c, d, h, spoilers; e, slice selection gradient; f, dephasing and rephrasing gradient; g, read-
out gradient. (b) Schematic diagram of whole EPIS sequence. (c) Imaging artefact waveform for 
one slice scan on a dummy EEG record with a phantom using the EPIS sequence. The artefact 
corresponding to each gradient component described above in (a) can be identified and is denoted 
by the same alphabet as that denoting the original gradient but with a prime. From Anami 
et al. (2003)
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can be improved by using a higher-order (three or greater) analogue low-pass fil-
ter with a steeper roll-off. However, this comes at the expense of poorer phase-
frequency linearity, which may result in distortion of EEG transients (Janssen 
et al. 1986) and hence should be avoided.

7.2.2.2  Sampling Rate
Given that low-pass filtering alone cannot remove all of the imaging artefacts, a 
variety of post-processing artefact subtraction methods have been developed. The 
artefact removal method most commonly used to date is based on the subtraction of 
an artefact template derived from averaging the artefact over a number of scan rep-
etitions (Allen et  al. 2000). Successful artefact subtraction by this method (and 
many of its subsequent enhancements; see, for example, Negishi et al. 2004; Benar 
et al. 2003) is dependent on accurate calculation of the artefact template. As the 
imaging artefact contains rapidly changing components, a fast sampling rate (typi-
cally 5 kHz) is required in order to capture these signals adequately (Allen et al. 
2000). This is ten times higher than the rate used in conventional EEG equipment. 
Even at this high sampling rate, temporal jitter in the EEG sampling can lead to 
inaccuracies in the artefact template estimation that limit the effectiveness of this 
method (Cohen et al. 2001). Although technically feasible, increasing the sampling 
rate further results in very large datasets, especially for prolonged recordings using 
a large number of channels. Hence, an alternative approach has been proposed 
whereby the EEG sampling is synchronised to the MR scanner clock (Cohen et al. 
2001). Mandelkow et  al. demonstrated that this method can reduce the residual 
artefact, particularly the higher-frequency EEG components, and achieves good 
artefact reduction even when using a conventional EEG sampling rate of 500 Hz 
(Mandelkow et al. 2006). It is worth noting, however, that the EEG in this study was 
originally sampled at 5 kHz and then down-sampled to 500 Hz after the application 
of a seventh-order digital filter, an important step for preventing aliasing. As the 
authors comment, the application of such a high-order filter implemented in hard-
ware prior to digitising at 500 Hz would inevitably distort the EEG due to its non-
linear phase response. Nevertheless, the method holds a great promise for improving 
artefact suppression, particularly when there is a requirement to analyse higher- 
frequency EEG components such as the gamma bands. It therefore follows that the 
facility to synchronise the EEG sampling rate precisely to an external clock is a 
useful addition to the EEG instrumentation specification. This synchronisation also 
requires hardware to reduce the scanner clock to the EEG sampling rate (10 MHz to 
5 kHz in the report by Mandelkow and up to 8 kHz for the EGI system (Electrical 
Geodesics 2010)), but this can be achieved independently of the EEG instrumenta-
tion, for example, by phase-locked loop circuitry (Mandelkow et  al. 2006) or a 
clock divider.

7.2.2.3  Signal Range
The amplitude of gradient imaging artefact in the EEG is proportional to the loop 
area and the rate of change of magnetic flux cutting the loop, as described in Eq. 
(7.1). Allen et al. calculated that for a relatively high slew rate of 125 T m−1 s−1 and 
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a worst-case EEG lead loop area of 100 cm2 located 0.2 m from the scanner isocen-
tre, the induced artefact due to gradient fields is ±250 mV (Allen et al. 2000), more 
than two orders of magnitude greater than the recommended range (±1 mV) for 
conventional EEG equipment (Nuwer et al. 1999). In practice, careful alignment of 
electrode leads can help reduce the artefact amplitude substantially. Anami et al. 
recorded imaging artefact from electrodes on a phantom in a 1.5 T scanner using a 
typical blipped echo planar imaging (EPI) sequence (see Chap. 8), wide bandwidth 
[direct current (DC) to 3000 Hz] and 20 kHz sampling (Anami et al. 2003). This 
revealed a substantially lower maximum gradient artefact of 40  mV (Fig.  7.2). 
However, the use of faster slew rates or the acquisition of different physiological 
parameters such as electrocardiogram (ECG) and electromyography (EMG), which 
may necessarily involve larger loop areas, would result in proportionally larger arte-
fact. It is therefore still important that the EEG instrumentation has sufficient range 
throughout the entire signal path to record these signals without saturating—if the 
artefact saturates, then the underlying physiological signal will be lost. It is impor-
tant to note that saturation is not always obvious by inspection of the recorded EEG 
signal, due to the effect on the waveform of subsequent circuit stages such as alter-
nating current (AC) coupling and additional high- and low-pass filters. The follow-
ing factors need consideration when assessing whether EEG instrumentation has 
sufficient range: the amplitude and spectral distribution of the imaging artefact, the 
frequency response and location in the overall system of the analogue low-pass fil-
ters and the signal range at each stage of the EEG instrumentation. For example, 
Allen et al. described an EEG amplifier with an overall dynamic range in the pass-
band of 33.3 mV, which, through the judicious use of gain and filter stages, could 
handle artefact of ±250 mV pk–pk at source without saturating (Allen et al. 2000).

7.2.2.4  Signal Resolution
In addition to providing sufficient signal range, the EEG instrumentation must also 
have adequate resolution. The minimum recommended resolution for conventional 
EEG equipment is 0.5 μV (Nuwer et al. 1999). Given the need for a large signal 
range of the order 20–30 mV as described above, this resolution would require 16 
bits, which in practice requires a digitiser with more than 16 bits. However, given 
that the residual artefact from current pulse- and imaging-artefact subtraction meth-
ods is at least 5 μV (Allen et al. 2000) and that this error occurs independent of 
digitisation errors, 16-bit digitisation yields 14–15 effective bits, and hence a reso-
lution of 1–2 μV is adequate. As artefact subtraction methods improve, greater bit 
depth may be justified, especially when recording lower-amplitude EEG activity 
such as event-related potentials (ERPs). The dynamic range can, however, be 
increased for these by averaging, albeit at the expense of longer recording time.

7.2.3  RF Emissions

The MRI scanner contains an extremely sensitive RF detector. Any RF emissions 
from the EEG instrumentation may lead to artefacts in the MR images if they fall in 
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the frequency range detected by the scanner. Potential sources of these emissions are 
active circuitry in EEG instrumentation located in the scanner room or the ingress of 
RF signals via conductors that breach the scanner’s Faraday shield. For the former, 
careful design is required to minimise RF emissions, as even relatively low-frequency 
digital circuitry can generate signals in the RF range due to the presence of harmon-
ics. These may pass into the head coil by conduction along the electrode leads or by 
radiation through space. A number of techniques can be used to minimise this inter-
ference: RF signals should be minimised at source by using low- power digital com-
ponents, thereby minimising switching currents; all active circuitry should be 
enclosed in a conductive enclosure (Allen et al. 2000; Gualniera et al. 2004; Garreffa 
et al. 2004); and all conductive signal paths (e.g. connections to EEG electrodes and 
external battery packs) breaching this enclosure should do so via in-line RF filters 
(Fig. 7.3). Where active EEG instrumentation is located in the scanner room, EEG 
data is normally transmitted to a receiver in the console room via fibre optic cables, 
thereby eliminating the ingress of RF from outside the scanner (Figs. 7.1 and 7.2). 
This approach has been implemented in a number of commercial products.

Alternatively, the EEG instrumentation can be sited in the console room, with 
connection to the subject made via long electrode leads which pass through the 
Faraday shield (Huang-Hellinger et al. 1995; Anami et al. 2003). If the impedance 
of these leads is low, RF filtering must be applied at the point where the electrode 
leads breach the Faraday shield (Huang-Hellinger et al. 1995). Careful consider-
ation must also be given to the safety implications of using such long cable runs 
with direct electrical connection to the patient, especially with regard to the acci-
dental application of external voltage sources to these cables.

As stated previously, RF emissions will only cause image artefacts if they fall in 
the frequency range detected by the scanner receive coil and within the receiver 

Fig. 7.3 Example of early in-house MRI-compatible EEG instrumentation developed in 2000 by 
the Queen Square group (Allen et al. 2000). (a), nonferrous electrode connector box suitable for 
mounting in the bore of the magnet; (b), EEG amplifier and digitiser; (c), fibre optic cables trans-
mitting digitised EEG data to a receiver unit outside the scanner room; (d), in-line RF filters fitted 
to all signal lines breaching the shielded enclosure; (e), shielded enclosure limiting RF emissions
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bandwidth used for the imaging experiment, which occupies a narrow range either 
side of the Larmor frequency. Hence, it is perfectly possible that EEG instrumenta-
tion that does not generate image artefact when used with one scanner may cause 
interference in another (Jorge et al. 2015). Hence, an empirical test of image artefact 
should be undertaken prior to introducing new EEG instrumentation.

7.2.4  Miscellaneous Factors

In addition to the essential characteristics described above for high-quality EEG 
recording in the MR scanner, EEG equipment should broadly meet the requirements 
for conventional EEG. The key parameters are as follows: maximum noise at input 
of 1.5 μV pk–pk, bandwidth 0.16–70 Hz, input impedance ≥100 MΩ and common 
mode rejection ≥110 dB (Nuwer et al. 1999). A DC input range of ±300 mV is suf-
ficient to handle the likely range of electrode potentials (Kamp and Lopes Da Silva 
1998). Built-in electrode impedance checking and a 50/60 Hz notch filter are desir-
able. Furthermore, for some additional noise that are caused by other equipment 
inside the MR environment, it is recommended to handle this issue offline rather than 
recording the EEG with a notch filter. Finally, the EEG review facilities should not 
be overlooked. Although the conventional requirements such as re- montaging flexi-
ble sensitivity and time base must obviously be provided, one specific additional 
requirement for EEG–fMRI instrumentation is the facility to correlate (e.g. mark and 
export) specific EEG events the corresponding fMRI data simply and accurately.

7.2.5  Summary

The first reported recording of EEG during fMRI (Ives et al. 1993) has led to the com-
mercial development of EEG instrumentation designed specifically to meet many of 
the technical requirements described above, further extending the availability of the 
technique. Although further improvements in artefact minimisation would be desir-
able to record lower-amplitude activity such as ERPs or fast gamma activity, an EEG 
quality appropriate for studies of epilepsy and basic EEG rhythms can readily be 
achieved. However, it remains essential to pay careful attention to the entire recording 
setup comprising the subject, electrodes and EEG recording system in order to achieve 
optimal EEG signal quality. This will become even more important as higher-field 
scanners and studies of subtler EEG activity become increasingly common.

7.3  Safety

Recording EEG in the MR scanner raises important safety issues. First, there is the 
hazard associated with the introduction of ferromagnetic materials into the scanner 
environment. Secondly, currents induced in the electrodes and attached wires by the 
changing fields applied during imaging can present a hazard due to the following 
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mechanisms: eddy current heating of the electrode heads, currents induced in loops 
formed between the electrode leads and currents induced along electrode leads. The 
safety implications of induced currents are determined by the scanner’s operating 
frequency, and therefore static field strength, with different biological mechanisms 
for damage for the gradient- and RF-related fields. We begin by considering the 
relevant safety limits before moving on to a more detailed examination of each spe-
cific hazard.

7.3.1  Safety Limits

In the absence of a safety standard specifically addressing combined EEG–fMRI, 
the onus has been on users of this technique to demonstrate compliance with the 
standards applicable individually to MR and EEG equipment. Hence, the following 
safety limits derived from these standards apply: (1) maximum permissible cerebral 
temperature of 38 °C, implying a maximum temperature increase due to scanner- 
induced heating of 1 °C (IEC 2016); (2) maximum permissible temperature of an 
applied part in skin contact (such as an electrode) of 43 °C (IEC 2016); (3) maxi-
mum permissible head average SAR of 3.2 W/Kg for 6 min scan duration (IEC 
2016) or 3 W/kg for 5 min (Shellock 2004); (4) maximum permissible local SAR 
for the head of 10 W/kg averaged over 10 g of tissues (IEC 2016) or 8 W/kg aver-
aged over 1 g of tissues (Shellock 2004); and (5) maximum permissible tissue con-
tact currents ranging from 0.5 mA rms (≈1 kHz) to 10 mA rms > 100 kHz (IEC 2016).

In addition, EEG instrumentation must meet the safety requirements for general 
medical electrical equipment (IEC 2016) and the particular standard for EEG equip-
ment (IEC 2016).

7.3.2  Static Field

The principal safety issue associated with the static field is the force it exerts on fer-
romagnetic material. Fortunately, this is not a significant limitation since there are a 
range of nonferromagnetic materials that meet the requirements for high-quality 
EEG. These include combinations of silver, silver chloride, gold, carbon and con-
ductive plastic for scalp recordings and iridium–platinum for intracerebral record-
ings. However, care should be taken to exclude the presence of ferromagnetic 
material in ancillary items, such as securing springs in electrode caps or amplifier 
connectors. Stainless steel sphenoidal electrodes are clearly unacceptable.

Any new instrumentation or device introduced into the scanner must also be 
tested for displacement force and torque that can cause hazards due to the “projec-
tile effect” (Baumann and Noll 1999; Woods 2007; Nyenhuis 2003; Nyenhuis et al. 
2005; Carmichael et al. 2010; Dal Molin and Hecker 2013), including for devices 
placed inside patients (implants; ISO 2012). In addition, it should be noted that any 
electronic components dependent on ferromagnetic behaviour (such as some switch-
ing DC–DC converters, ferrites) may not function when placed in close proximity 
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to the static field. Furthermore, electrical device safety must be considered inside 
and outside the MRI environment.

One further potential hazard is the current induced in an electrode lead loop 
moved through the nonuniform region of the static field, for example, when the 
patient is introduced into the scanner. This current will flow between electrodes and 
hence through the patient. Lemieux et al. investigated this at 1.5 T and identified 
that the effect was very small and hence no additional safety measures were required 
(Lemieux et  al. 1997), which was also investigated in two 3  T MRI scanners 
(Carmichael et al. 2010).

7.3.3  Gradient Fields

The emf induced in an electrode lead loop by the gradient fields is proportional to 
the rate of change of magnetic flux cutting the loop and the loop area, as defined in 
Eq. (7.1). As the frequency of these fields typically does not extend much higher 
than 1 kHz, the dominant physiological effect is neuromuscular stimulation (Cohen 
et al. 1990; Schaefer et al. 2000; Georgi et al. 2004; Rezai et al. 2005; Bencsik et al. 
2007). Lemieux et al. calculated that for a relatively high slew rate of 120 T m−1 s−1 
and a worst case loop area of 400 cm2, loop resistance must be at least 3.3 kΩ in 
order to meet the safe limit of 0.5 mA rms under a single fault condition, namely, 
the electrode leads accidentally shorting together (Lemieux et al. 1997). As a much 
higher value of current-limiting resistor is normally required to limit heating due to 
RF-induced currents, this does not present an additional constraint. Indeed, the 
inevitable tissue contact impedance presented at each electrode (of the order of 
1 kΩ), combined with careful electrode lead arrangement to reduce the loop area 
below the pessimistic 400 cm2, means that the current limit requirements can feasi-
bly be met even if a current-limiting resistor is omitted. However, this would need 
further consideration if substantially higher slew rates were used or loop area was 
increased, for example, by recording from very widely spaced possibly noncephalic 
electrodes.

It is important to mention that heating can be caused by the switching gradient 
field (this can be calculated using Faraday’s law) depending on the geometry of the 
object and the type of the metallic implant that interact with the gradient field (Graf 
et al. 2007; Lemieux et al. 1997). However, in case of EEG electrodes, the effect of 
the gradient fields on heating increases is small (Lemieux et al. 1997; Carmichael 
et al. 2010; Hawsawi et al. 2017).

7.3.4  Eddy Currents

The RF fields applied during scanning induce eddy currents in the electrodes 
(Lemieux et al. 1997). These currents are much greater than those induced in human 
tissue, due to the relatively higher electrical conductivity of the electrode material, 
and may result in Joule heating of the electrode (Roth et al. 1992). Previous studies 
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showed the effects of large electrical currents that cause skin burns in the applica-
tion of diathermy (Aigner et al. 1997; Dempsey et al. 2001; Litvak et al. 2002; Hay 
2005; Hawsawi et al. 2017). Lemieux et al. investigated eddy current heating of a 
silver/silver chloride electrode in a 1.5 T scanner [averaged specific absorption rate 
(SAR) 0.06 W/kg] and found a maximum temperature increase of <1 °C, comfort-
ably within the permitted limit (Lemieux et  al. 1997). Similar results have been 
found at higher field strengths: Mirsattari et al. found no temperature rise in a gold- 
plated pure silver electrode in a 1.5  T scanner (averaged SAR up to 1.6  W/kg) 
(Mirsattari et al. 2004); Stevens et al. found no significant heat increase in the same 
electrode or in a silver/silver chloride in carbon embedded plastic electrode at 4 T 
with a high-power pulse sequence (8 W average per TR) (Stevens et al. 2007).

There is, however, evidence that eddy current heating may prove more signifi-
cant at 7 T: Vasios et al. recorded a 2.2 °C rise in a full-ring electrode following 
22 min of high-power turbo spin echo (TSE) with a maximum local SAR of 11 W/
kg (Vasios et  al. 2006), a power level just above the maximum SAR limit (IEC 
2016). Although this heating may not be due entirely to eddy currents (the tempera-
ture increase was recorded from a 32-electrode configuration and hence would 
include heating effects from currents induced in the associated conducting loops 
and elongated conductors), these clearly made a significant contribution since the 
temperature rise for the same configuration was reduced to 0.8 °C when the full-ring 
electrodes were replaced with half rings designed specifically to reduce eddy 
currents.

In summary, these experimental investigations indicate that at field strengths of 
4 T or less, electrode heating due to eddy currents does not appear to pose a risk to 
patients. Above 4 T, more specialised electrode design and/or SAR limits may be 
required. See Chap. 11 for further discussion.

7.3.5  RF Fields

The dominant physiological effect of induced high-frequency currents (>100 kHz) 
is tissue heating. The interaction between the scanner’s RF (B1) field and electrode 
leads can result in heating via two related mechanisms. Firstly, the magnetic com-
ponent of the B1 field will induce an emf in any conductive loop formed by the 
electrode leads. This emf is proportional to the loop area cut by the field and the rate 
of change of the field (7.1). If tissue forms part of the loop, the induced emf will 
drive a current through this, causing heating. It is worth noting that in contrast to 
gradient field-induced currents, the capacitance between bundled electrode leads 
presents relatively low-impedance conductive loops at RF frequencies, even if the 
leads are not accidentally shorted together, i.e. the non-fault condition (Lemieux 
et al. 1997). Secondly, the electric component of the B1 field can induce a current 
along the extended conductor formed by an electrode lead (the antenna effect). The 
magnitude of this current is influenced by a wide range of factors, including the 
proximity of the wires to the source of electric field in the MR transmitter coil 
(Hofman et al. 1996) and the resonant length of the electrode leads in relation to the 
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RF wavelength, with a theoretical maximum induced current for multiples of half 
wavelength (Pictet et al. 2000). As a broad guide, the resonant length of a straight 
wire in air is 2.35 m at 1.5 T and 1.17 m at 3 T (Dempsey et al. 2001), but this varies 
significantly according to the wire diameter, shape, insulation thickness and permit-
tivity and tissue conductivity and permittivity (Yeung et al. 2002). Although it is 
known that the maximum temperature increase associated with these currents 
occurs in the tissue adjacent to the tip of a conductor, where the electric field is 
maximum (Yeung et al. 2002), accurate prediction of the associated temperature 
rise for a given scenario remains problematic and usually requires specific experi-
mental testing. Both mechanisms for interaction of the electrodes and leads with the 
scanner RF fields are exacerbated by resonant conditions where the induction of 
much larger currents occurs (Dempsey et al. 2001); it is thus necessary to avoid 
these conditions.

In the first systematic study of safety due to RF heating of EEG electrodes in the 
MR scanner, Lemieux et al. investigated induced currents due to the electric and 
magnetic fields separately and concluded that the latter dominated and that a 
current- limiting resistor (12 kΩ) was required in the scalp electrode leads in order 
to limit contact currents to acceptable levels for a worst-case electrode lead loop 
(400 cm2) and high SAR for a 1.5 T scanner (Lemieux et al. 1997). This additional 
resistance is small relative to the typical input impedance of an EEG amplifier (at 
least 10 MΩ) and hence does not degrade EEG signal quality significantly. This 
study was undertaken using a head RF transmit coil—the safety of EEG–fMRI for 
body RF coils has been investigated in several works that showed higher tempera-
ture levels and using body RF transmit coils should be avoided (Carmichael et al. 
2008, 2010; Ciumas et  al. 2013). These findings were in disagreement with 
Boucousis et al. (2012). The authors stressed the importance of performing a local 
risk assessment of the specific electrode and scanner setup using the methodology 
presented (Mirsattari et al. 2004; Hawsawi et al. 2017). Data supplied by the manu-
facturer on the relationship between B1 and SAR for the quadrature transmit and 
receive head coil used in the GE Signa Excite 3 T scanner demonstrates that the 
RMS value of B1 for a given SAR value (and body weight) is less than 50% of the 
value at 1.5 T, and therefore so will be the current induced in the EEG system–
patient circuit, suggesting that the proposed safety measure is also adequate for this 
instrument, even taking into account the effect of the higher RF frequency.1

Our group has performed over 600 EEG–fMRI recordings at both 1.5 and 3 T 
using electrodes with current-limiting resistors without incident. Current-limiting 
resistors are included in a number of commercial electrodes and electrode caps 
designed for EEG–fMRI.  Such studies have been performed at multiple centres 
worldwide over the last 19 years; as far as the author is aware, there have been no 
reports of adverse incidents resulting from these recording. However, a report 
showed skin burns around ECG electrode during the application of EEG–fMRI 

1 This corresponds to the fact that more heating is induced per unit B1 at 3 T than at 1.5 T. The lower 
expected induced currents reflect the fact that the regulatory SAR limits are independent of field 
strength.
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(Abdel-Rehim et al. 2014; Hawsawi et al. 2017). It has been proposed, on the basis 
of in vivo temperature measurements in a small number of subjects for a particular 
experimental setup, that additional resistors are not in fact necessary (Lazeyras et al. 
2001) and the presence of these resistors may not be necessary at high fields such as 
7 T (Angelone et al. 2006; see Hawsawi et al. 2017 for a review). However, their use 
does provide reassurance that even under worst-case conditions (including a single 
fault), the subject will not be harmed, with only a minimal associated increase in 
EEG noise.

An alternative approach to establishing the safety of RF/EEG electrode inter-
actions is the measurement of temperature changes during the scanning of elec-
trodes attached to a head phantom. This method has been used extensively in the 
safety assessment of implants in the MR scanner (Nyenhuis et al. 1999; Shellcok 
2001; Carmichael et al. 2007a, 2008, 2010, 2012; Baker et al. 2004; Yeung et al. 
2002; Gray et al. 2005; Boucousis et al. 2012; Ciumas et al. 2013; Hefft et al. 
2013; Ahmadi et al. 2016; Darcey et al. 2016; Bhattacharyya et al. 2017; Shew 
et al. 2018) and more recently for EEG electrodes (Vasios et al. 2006; Angelone 
et  al. 2006; Vanhatalo et  al. 2014; Poulsen et  al. 2016; Balasubramanian et  al. 
2017; Foged et  al. 2017). The reliability of the temperature changes recorded 
using this approach is of course strongly influenced by the accuracy of the physi-
cal model and also the position and orientation of the temperature recording probe 
relative to the electrode or implant (Park et al. 2003; Mattei et al. 2006). In par-
ticular, the head phantom must have realistic geometric, thermal and electrical 
properties (Angelone et al. 2006; Rezai et al. 2002; Park et al. 2003). Although the 
absence of thermoregulation, which naturally operates in the living body through 
the blood flow (Athey 1989; Gokul et al. 2013; Acharya et al. 2014a, b), from the 
head models used to date is clearly an inaccuracy, this merely leads to a conserva-
tive estimate of the temperature increases expected in human studies (Akca et al. 
2007). The electrode lead length is also important: Yeung et al. observed substan-
tial differences in heating at the tip of a length of wire in response to small changes 
in its length (of the order of a few centimetres) (Yeung et al. 2002). Similarly, the 
proximity of conducting leads to the transmit coil (where the electric component 
of the RF field is maximal) can affect heating significantly (Dempsey et al. 2001; 
Georgi et al. 2004). It is also important to use electrode gel in order to accurately 
replicate the electrical contact between the phantom and electrode (Vasios et al. 
2006). The precise location of a temperature probe in the electrode gel can also 
introduce significant measurement variability (Angelone et  al. 2006). In sum-
mary, careful experimental technique combined with a knowledge of the wide 
range of factors that influence MR-induced heating is an essential prerequisite for 
a reliable safety assessment based on this methodology (Shellock 2007). Finally, 
it is important to note once again that measurements performed on one scanner are 
not transferable to other scanners and hence a local assessment combined with 
strict adherence to an experimental protocol is essential (Kainz 2007; Carmichael 
et al. 2007a).

One limitation of this empirical approach is the restricted spatial sampling that 
can be achieved with current MR-compatible thermometry (typically four sites). 
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This requires assumptions to be made regarding the location of the greatest tem-
perature rise, which may be difficult to predict with certainty for a particular 
arrangement of electrode and leads in the scanner. One potential solution is to cal-
culate temperature changes from a computational simulation of the electric field 
distribution resulting from the application of RF fields to a realistic head/electrode 
model. This approach allows the direct visualisation of the local SAR (and hence by 
application of the heat equation, the associated temperature changes; Collins et al. 
2004) throughout the entire head volume, rather than just at selected sites (Angelone 
et al. 2004; Yeung et al. 2007; Jorge et al. 2015; Angelone et al. 2010a, b; Serano 
et al. 2015; Golestanirad et al. 2016a, b, 2017, 2019; Córcoles et al. 2017; Bhusal 
et al. 2018).

Angelone et al. have used this method to investigate RF heating of EEG elec-
trodes at 7 T (Angelone et al. 2006). Electric field and SAR values were calculated 
using the finite difference time domain method applied to numerical models of the 
electrodes, leads, RF coil and anatomically accurate homogeneous head model. The 
simulated temperature changes were validated by comparison with those measured 
for an equivalent electrode/phantom head arrangement in the scanner, the two meth-
ods showing broad agreement in spatiotemporal distribution of temperature change. 
A maximum temperature rise inside the head of 3.4 °C (i.e. above the 1 °C safe 
limit) was identified for a high-power TSE sequence, indicating the need to limit 
SAR below the normal maximum permissible level (IEC 2016). Interestingly, the 
authors found minimal difference between the simulated SAR distributions for elec-
trodes with and without a modelled current-limiting resistor. It is possible that at 
such high frequencies (300  MHz for 7  T), parasitic capacitance in the resistor 
reduces its impedance, thereby limiting its current-limiting capability. This suggests 
that discrete current-reducing resistors may not provide effective protection against 
SAR increases inside the head at 7  T, although their effect on contact currents, 
which might be expected to be maximal immediately adjacent to the electrodes (i.e. 
on the surface of the phantom), was less clear. Lower-temperature increases were 
recorded when using carbon leads, suggesting that distributed resistance in the elec-
trode leads may be advantageous as assessed in 3 T (Kuusela et al. 2015) and 7 T 
MRI scanners (Mullinger et al. 2008b; Jorge et al. 2015). See Chap. 11 for further 
discussion of the specific issues related to high-field EEG–fMRI.

Carbon leads may also reduce magnetic susceptibility artefacts in the images 
(Van Genderingen et al. 1989; Van Audekerke et al. 2000). Although promising, 
the use of computational simulation to assess the safety of RF/EEG electrode 
interactions is relatively new: further validation is required before this technique 
can be used on its own to establish patient safety. Combining this computational 
method with temperature measurement in a comparable physical model may 
prove advantageous, with the former being used to identify the site of maximum 
heating and the latter to verify the temperature changes at the equivalent position 
in the physical model (Angelone et al. 2004, 2010a, b; Yeung et al. 2007; Jorge 
et al. 2015; Serano et al. 2015; Golestanirad et al. 2016a, b, 2017, 2019; Córcoles 
et al. 2017; Bhusal et al. 2018) following one of experimental standards such as 
ASTMF 2182-02a (2007).
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Although many studies have recommended the use of SAR limits to ensure the 
safety of EEG–fMRI experiments (Angelone et al. 2004; Lemieux et al. 1997), such 
limits are both scanner- and RF coil-specific. Indeed, Baker et al. have demonstrated 
that the relationship between scanner-reported SAR and the associated heating of an 
implanted electrode can be highly variable, even between scanners of identical field 
strength from the same manufacturer (Baker et al. 2004; Carmichael et al. 2008, 
2010). The differences in SAR calculations across MRI scanners were attributed to 
the different, manufacturer-specific, SAR estimation models that are not designed to 
account for the foreign objects that are introduced in the MRI environment 
(Carmichael et al. 2008). It is likely that this is also the case for scalp EEG elec-
trodes, and hence it is important to recognise that a universal SAR limit calculated 
for a specific electrode set, although attractive in its simplicity, may not be reliable.

7.3.6  Implanted Electrodes

The above discussion of safety issues has only addressed scalp electrodes. Imaging 
for postsurgical localisation of intracranial electrodes (Carmichael et  al. 2008; 
Davis et al. 1999; Erhardt et al. 2018) and the localisation of epileptic brain dis-
charges and their networks are currently performed in a number of centres 
(Vulliemoz et al. 2011). In addition, deep brain stimulation (DBS) implants that are 
similar to intracranial implants in terms of geometry and manufacture have been 
utilised in patients for decades (Hawsawi et al. 2017). Retrospective examination of 
patients with implanted electrodes who underwent MR imaging indicates that the 
risks are generally low (Zhang et al. 1993; Davis et al. 1999; Brooks et al. 1992). 
More recently, a histopathology and heat-shock immunohistochemistry analysis of 
brain tissue obtained from patients who had undergone either structural MRI only 
with implanted electrodes, or structural MRI followed by fMRI with EEG recorded 
concurrently with implanted electrodes, showed no evidence of additional tissue 
damage in the vicinity of the electrodes related to exposure to MRI/fMRI (Liu et al. 

Fig. 7.4 Temperature 
increase with time for a 
subdural grid electrode 
contact, high SAR 
(2.4–2.5 W/kg). The grey 
line shows the temperature 
rise when all the electrode 
tails were in electrical 
contact, and the blue line 
when they were all 
separated
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2022) In addition, a small number of studies have investigated the safety of imaging 
implanted electrodes and found no evidence of displacement force and RF heating 
beyond safe limits (Boucousis et al. 2005; Kanal et al. 1999). However, these stud-
ies only investigated single electrodes, whereas in practice these recordings involve 
multiple electrodes; no displacement or deflection issues were observed (Shellock 
2001; Boucousis et al. 2012). More recently, Carmichael et al. measured RF heating 
for a combination of subdural strips and depth electrodes at 1.5 and 3 T (Carmichael 
et al. 2007b). This showed that, for high SAR (≈2.5 W/kg), the worst-case tempera-
ture increase only exceeded the 1 °C limit at 1.5 T when the electrode tails were 
shorted together (contrary to the manufacturer’s recommendations); at 3 T the limit 
was exceeded even when the tails were isolated (Fig. 7.4). In addition, numerous 
studies were involved in the safety of DBS inside the MRI at 0.35 T (Gleason et al. 
1992), at 1.5 T (Georgi et al. 2004; Rezai et al. 2002; Kainz et al. 2002; Finelli et al. 
2002; Baker et al. 2004, 2005; Bhidayasiri et al. 2005; Carmichael et al. 2007a, b; 
Gorny et al. 2013; Kahan et al. 2015; Franceschi et al. 2016; Cabot et al. 2013), at 
3 T and higher (Georgi et al. 2004; Rezai et al. 2002; Baker et al. 2005; Carmichael 
et al. 2007a, b; Gorny et al. 2013; Kahan et al. 2015; Shrivastava et al. 2010, 2012; 
Eryaman et al. 2011, 2013, 2019; Sammartino et al. 2016). Furthermore, implanted 
microelectrodes, which are utilised for single event or cellular EEG recording, were 
tested for the safety inside the MRI and showed temperature increases within the 
safety limit (Papadaki et al. 2016) despite the difficulty in estimating the focal tem-
perature increases around these electrodes due to their small size. Clearly, a local 
investigation of temperature increases for a given specific electrode and lead length 
and arrangement, SAR, type of coil, type of scanner and pulse sequence, Scanner’s 
field strength is essential in order to identify the safe SAR limit (Hawsawi et al. 2017).

The electrode’s effective length (e.g. connected or disconnected from the ampli-
fication circuit, orientation and position relative to the RF coil and body have a 
strong influence on the amount of heating in surrounding tissues (Yeung et al. 2007; 
Assecondi et al. 2016).

7.3.7  Summary

RF-induced heating of electrodes or brain tissue is the principal safety issue in 
EEG–fMRI. The degree of heating is dependent on a wide range of factors, includ-
ing the number of electrodes and their shape; lead arrangement, length and proxim-
ity to the scanner transmit coil; and scanner hardware, software and scanning 
sequence (Hawsawi et  al. 2017). EEG–fMRI recordings using scalp electrodes 
with current- limiting resistors and minimised electrode lead loops have been 
shown to be safe at 1.5 T. Such studies have been performed at multiple centres 
with scanners up to 7 T for many years with no adverse incidents reported to our 
knowledge. However, limiting the SAR values and avoiding body transmit coils 
(Carmichael et al. 2008, 2010; Ciumas et al. 2013) are significant in minimising 
the hazards of RF-induced heating. In particular, the effectiveness of current-limit-
ing resistors at higher RF frequencies is unclear. In view of the range and 
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sensitivity of the factors influencing RF heating, a local risk assessment and adher-
ence to a strict experimental protocol is essential after following the manufactur-
ers’ guidelines (Hawsawi et al. 2017; Carmichael et al. 2012).
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8EEG Quality: The Pulse Artifact

R. Abreu, J. Jorge, and P. Figueiredo

8.1  Introduction

The acquisition of the electroencephalogram (EEG) inside magnetic resonance 
imaging (MRI) scanners has been pursued for over two decades, with the aim of 
obtaining both EEG and functional MRI (fMRI) measurements of brain activity 
simultaneously. The safety and feasibility of such simultaneous EEG-fMRI studies, 
and the insights about brain function that they can provide, are well documented 
(see Chap. 7 and Jorge et al. 2014; Laufs 2012; Murta et al. 2015; Hawsawi et al. 
2017). However, the severe artifacts that contaminate the EEG signal acquired in the 
MRI environment remain a limiting aspect of EEG-fMRI research and are currently 
the focus of a substantial amount of work (e.g., see the review by Abreu et al. 2018). 
Besides the overwhelming artifact generated by the magnetic field gradients 
associated with the fMRI acquisition, which is the topic of another chapter in this 
book, the second most important artifact affecting the EEG recordings in the MRI 
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scanner arises as a consequence of the ongoing function of the heart. It has been 
often referred to as the ballistocardiogram (BCG) artifact and as pulse artifact 
(PA)—we opt here for the latter terminology.

An illustrative example of the PA is presented in Fig. 8.1, which is taken from 
EEG data recorded simultaneously with fMRI on a human volunteer using a typical 
setup, at 3 Tesla. The amplitude of the EEG signal in representative channels is 
shown, together with the electrocardiographic (ECG) signal, over several cardiac 
cycles. The PA can be detected on the EEG channels as a waveform occurring at a 
certain delay relative to the R-peak on the ECG and exhibiting multiple polarity 
inversions, hence peaks, within each cardiac cycle. Consistently, the corresponding 
frequency spectra exhibit clear peaks at the heart rate and its harmonics, with a 
width that is related to heart rate variability. In Fig. 8.1, the average PA across mul-
tiple cardiac cycles is shown together with the average QRS complex obtained from 
the ECG. Despite some variability over multiple cardiac cycles, a pattern is observed 
consistently for all channels (as can be appreciated by the global field power (GFP) 
depicted in Fig. 8.1, which is defined as the standard deviation of the EEG signal 
across channels). A characteristic spatial distribution is also found for the PA, which 
nevertheless varies significantly over the cardiac cycle, evidencing its 
nonstationarity.

Although the PA exhibits considerably lower amplitude compared with the so- 
called gradient or imaging artifact, it has been proven substantially more difficult to 
correct for, and it is in fact widely recognized as the most challenging EEG artifact to 
handle in simultaneous EEG-fMRI studies. One limiting factor is the complexity of 
the mechanisms giving rise to the PA, which are not yet fully understood. On the other 
hand, the variability of the PA over multiple heartbeats limits the effectiveness of 
commonly employed artifact reduction strategies based on averaging multiple artifact 
occurrences. Additionally, the characteristics of the PA make it particularly prone to 
confounding the EEG signals of interest. Not only its amplitude but also its spectral 
profile (with frequencies related with the heart rate, around 1 Hz, and its harmonics) 
considerably overlap with EEG signals of neuronal origin, particularly in the delta and 
theta frequency bands but also possibly extending into the alpha band. As a conse-
quence, the reduction of the PA can have a substantial impact on EEG data quality and 
the accurate analysis and quantification of the brain activity of interest.

In this chapter, the current knowledge regarding the biophysical mechanisms 
underlying the PA is first overviewed, by describing the theoretical principles of the 
hypothesized artifact sources and the existing experimental evidence. A number of 
considerations are then made regarding specific requirements and recommendations 
in the acquisition of simultaneous EEG-fMRI data. Subsequently, the various meth-
ods that can be used for reducing the PA in post-processing are presented, according 
to the type of approach employed, and their assessment is then discussed. Finally, a 
summary is provided with some final remarks regarding future directions.
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8.2  Biophysical Mechanisms

The PA is a consequence of the ongoing function of the heart and the concomitant 
pulsatile flow of blood to the head, when subjects are placed in the strong static 
magnetic field of MRI scanners. Understanding the biophysical mechanisms by 
which the PA is generated is essential to guide the development of effective correc-
tion strategies, as well as the choice of experimental designs and analysis tech-
niques that are most robust against the potential confounds introduced by PA 
residuals. A number of studies have been dedicated to the assessment, characteriza-
tion, and modeling of PA mechanisms, yielding important insights: the hypothe-
sized sources and the experimental evidence supporting them will now be presented.

8.2.1  Hypothesized Sources

The current body of evidence suggests the existence of three biophysical mecha-
nisms that may contribute to measurable PAs: (1) bulk head motion induced by the 
arrival of blood to the head, (2) pulsatile scalp dilation, and (3) Hall effects in the 
moving blood.

Bulk head motion follows each cardiac systole of the left ventricle, as blood is 
ejected to the systemic circulation. Once the ejected blood reaches the head and gets 
shunted into successively narrower arteries, it slows down and transfers momentum 
to the head, causing motion. Besides such bulk head motion, the scalp is also found 
to expand and contract throughout the cardiac cycle. Although the skull is a rigid 
structure, numerous arteries located between the skull and the scalp pulsate with 
blood flow, causing this pulsatile scalp dilation. During EEG recordings performed 
in the MRI scanner, both cardiac-related bulk head motion and pulsatile scalp dila-
tion can cause motion of the EEG electrodes and wires and thereby contribute to the 
PA through a phenomenon termed electromagnetic induction. This interaction is 
described below.

Scalp EEG measures differences in electric potential between pairs of electrodes 
positioned on specific points of the scalp, such that each electrode pair effectively 
forms a conductive loop that includes the EEG amplifier, the EEG electrodes and 
wires, and the subject’s head. A useful approximation to this system is that of a 
well-defined closed conductive loop, enclosing a surface Σ, and having no current 
flow (due to the very high impedance of the EEG amplifiers). In the MRI scanner, 

this loop is exposed to the static magnetic field, 


B0  (Fig.  8.2a). According to 

Faraday’s law of induction, any change over time of the flux of 


B0  through the EEG 
loop will lead to an electromotive component V(t), which depends on changes in the 
surface Σ, as follows:

 

V t d
dt

B r N r t d
r

( ) = − ( ) ⋅ ( )∫










Σ

Σ
0

,
 

(8.1)
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Fig. 8.2 Hypothesized mechanisms by which the pulse artifact is generated. (a) Bulk head 
motion: for a given channel Ch, the EEG signal measured relative to a reference electrode Ref may 
be added of an artifactual component if the surface Σ moves in 



B0 , following Faraday’s law. Σ will 
move together with the head every time ejected blood arrives, coming from the heart’s left ventri-
cle. Assuming 



B0  to be spatially homogeneous and oriented along the z-axis (feet-head), only 
rotations of the head along the x-axis (left-right) and y-axis (posterior-anterior) will effectively 
produce artifacts (represented by red arrows). In reality, Σ is not well defined as the loop includes 
head tissues; however, the closed-loop model (represented by a traced line) is a useful and informa-
tive approximation. (b) Scalp dilation: arteries running outside the skull, such as the temporal 
arteries (marked in red), can lead to scalp expansions and contractions when they pulsate, follow-
ing the cardiac cycle; this will lead to changes in the geometry of the loop-enclosed surface Σ, 
generating artifacts as predicted by Faraday’s law. (c) Hall effects in large arteries: when blood 
moves in 



B0  with a given velocity 
v , in a large artery (example marked in red), its positively 

charged ions will experience a force 


F  (marked in dark blue) perpendicular to 
v  and 



B0 , while 
negatively charged ions will experience the same force in the opposite direction; the resulting 
charge separation creates an artifactual electric potential distribution (depicted by white traced 
lines) that may be measurable by electrodes at the scalp. This head image corresponds to a 
maximum- intensity axial projection of a time-of-flight MRI acquisition, to illustrate a real arterial 
architecture

where 


N r t,( )  denotes the normal to the surface at position 
r  and instant t and the 

scalar product 






B r N r t
0 ( ) ⋅ ( ),  can be seen as the projection of 



N  along 


B0 . As the 

EEG electrodes are attached to the scalp, both bulk head motion and scalp dilation 

can lead to changes in the EEG loop surface and/or in 


N r t,( ) . The temporal deriv-
ative of the integral term in Eq. (8.1) will therefore become nonzero, creating an 
artifactual component V(t) that is added to the measured EEG signal in each 
channel.

Equation 8.1 offers a number of valuable insights into the properties of the two 
induction-based PA contributions: (1) they scale linearly with the amplitude of 



B0  
and will therefore be stronger at higher-field MRI systems; and (2) they increase 
with the area of the loop-enclosed surface Σ. Moreover, if we assume a spatially 
homogeneous static field oriented along a direction z, 



 B r b ez0 0( ) = , Eq. 8.1 becomes

 

V t b d
dt

n r t d
r

z( ) = − ( )∫0




Σ

Σ,
 

(8.2)
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where nz is the projection of 


N  along z (Jorge et al. 2015a). Under this condition, 
and particularly in relation to bulk head motion contributions, it becomes clear that 
translations of the system as a rigid body, and rotations along z, will not affect 
n r tz
,( )  and thus will not contribute to induction-based artifacts.

This observation, however, does not apply to scalp dilation, because it can 

induce changes in the actual geometry of the enclosed surface, Σ, leading to non-
rigid body motion (Fig. 8.2b), and it is therefore in general more complex to model. 
Moreover, for both rigid and nonrigid contributions alike, it is important to note 
that the model presented here is an approximation, which assumes a closed loop. 
In reality, the presence of the subject’s head as a conductive volume prevents the 
determination of a well-defined area Σ, and the system needs to be described in 
terms of the scalar electric potential distribution, which depends on the head geom-
etry and tissue conductivities. Nevertheless, the insights discussed above have been 
found to remain valid even in these more realistic conditions as well (Yan et al. 
2010). Another important aspect to consider is the occurrence of (nonrigid) motion 
in the EEG wires, namely at the segments that transmit between the cap surface 
and the amplifier. In fact, cardiac-induced head motion and scalp dilation are likely 
to propagate from the head to these wire segments, and any exposed loop areas will 
contribute to the artifact as well (Jorge et al. 2015b). Also, in this case, both head 
translations and rotations may play important roles, which are difficult to model.

The third hypothesized source of the PA is the presence of Hall effects in the 
moving blood, which may generate electric potentials measurable by the EEG sys-
tem. Blood is an electrically conductive fluid due to the presence of various ions 
such as Na+, K+, Ca2−, and Cl−. When flowing in the strong magnetic field 



B0 , with 
a given velocity 

v , these charged particles will experience a force 


F  equal to

 






F qv B= × 0  (8.3)

where q is the electric charge, and × denotes the vector product (Tenforde et al. 
1983). Particles with opposite charges will thus experience forces in opposite direc-
tions. Their movement will generate an electric field inside the vessel, and in the 
surrounding tissues, which may be picked up at the scalp by the EEG electrodes as 
a difference in electric potential (Fig. 8.2c). Yan et al. (2010) studied the properties 
of this scalp potential by modeling a cylindrical vessel of length L and radius b 
embedded in an infinite conductive medium. The generated scalp potential could 
then be seen as that created by a simple current dipole (as often employed to model 
neuronal activity), oriented perpendicularly to the flow, 

v , and the magnetic field, 


B0 , with strength given by

 







Q b L v B= ×( )σπ 2

0  (8.4)

where σ is the conductivity of the surrounding medium (Yan et al. 2010).

R. Abreu et al.



173

Equations (8.3) and (8.4) provide important insights into the properties of Hall 
effect contributions, as follows:

 1. They are expected to be most prominent in vessel segments that are least aligned 
with 



B0 , i.e., where the flow velocity has a relevant component perpendicular to 
the field.

 2. They are stronger for larger caliber vessels (larger b) and with stronger temporal 
variations in 

v  across the cardiac cycle (necessary to generate fluctuations in the 
scalp potential and thereby signal artifacts)—suggesting that arteries, and not 
capillaries or draining veins, may generate the largest artifact contributions, 
given their caliber and pulsatility.

 3. They decay with the square of the distance from the vessel to the scalp, due to 
the dipole-like behavior of the generated potentials (Nunez and Srinivasan 
2006)—thereby downplaying the importance of deeper vessels.

 4. They scale linearly with the field strength, 


B0 .

Considering the three hypothesized generative mechanisms, it is straightforward 
to expect that PAs will vary in amplitude over the time window of a cardiac cycle 
and across EEG channels as well. Variations in anatomy and cardiovascular physiol-
ogy across individuals are also likely to introduce differences in the generated PAs. 
Finally, variations in an individual’s PA across heartbeats may also prove substan-
tial, given that drifts in head orientation are fairly common during recording ses-
sions and also considering the influence of other physiological processes such as the 
breathing cycle, for example. In the latter case, it is known, for instance that, even 
at rest, systolic blood pressure exhibits a cyclic variation that is coupled with the 
breathing cycle, with inspiratory periods being associated with a lower pressure 
compared to expiratory periods – a phenomenon known as “respiratory waves in 
arterial pressure” (Hall and Guyton 2015). Such pressure variations, affecting the 
blood ejected by the heart, could likely have an impact on all three hypothesized PA 
sources, inducing variability across heartbeats.

8.2.2  Experimental Evidence

In the past two decades, considerable work has been devoted to the investigation of 
the various hypothesized sources of the PA and to determining their relative impor-
tance. Although it is extremely challenging to isolate and characterize the different 
sources individually in practice, several studies have succeeded in providing impor-
tant evidence affording some insight into these mechanisms.

Experimental measurements of the PA amplitude at various field strengths 
have generally shown that the artifact scales approximately linearly with 



B0  
strength (Debener et al. 2008; Neuner et al. 2013), in agreement with theoretical 
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expectations for all the hypothesized PA sources. Optical measurements of head 
motion during MRI scans have shown that cardiac function can induce bulk head 
displacements in the order of 100 μm, particularly in the head-to-feet direction, 
and angular displacements in the order of 0.01°, particularly in pitch, i.e., “nod-
ding” motion, over short time periods of less than 0.5 ms (Maclaren et al. 2012). 
In EEG-fMRI recordings, the use of tight head-fixation systems such as vacuum 
pillows and/or bite bars has been found to reduce PA peak amplitudes substan-
tially, by more than 80% in some participants (Anami et al. 2002; Mullinger et al. 
2013b). These effects suggest that cardiac-induced bulk head motion is a major 
source of the observed PAs. Results from computational modeling have shown 
agreement with this observation and further suggested that Hall effect contribu-
tions are relatively much smaller—approximately 20 times (Yan et  al. 2010). 
However, experimental work recording EEG with the electrodes insulated from 
the scalp (suppressing Hall effects but not head motion contributions) also found 
important reductions in PA amplitude, of over 40% (Mullinger et  al. 2013b), 
thereby challenging this notion.

The presence of scalp dilation contributions has proved the most challenging to 
investigate. Experimental work combining both head restraining and electrode 
insulation showed that PA residuals still persist (approximately 20%), although 
these could be at least partly due to imperfect suppression of the rigid body motion 
contributions (Mullinger et  al. 2013b). Studies simulating scalp dilation experi-
mentally in phantoms, using small inflatable air pillows underneath the EEG cap, 
produced artifact topographies that do not accurately match the main PA peak 
topographies typically observed in human data but which could underlie some of 
its subtler spatial features (Debener et al. 2008). In the temporal domain, early PA 
oscillations that have been found to occur before bulk head motion can play a 
dominant influence, showing mirrored polarity between the leftmost and rightmost 
lateral electrodes, which would be consistent with effects linked to scalp expansion 
(Debener et al. 2008). Altogether, the current body of evidence suggests that all 
three hypothesized PA sources likely contribute with measurable artifacts, albeit 
with bulk head motion probably playing the most important role (Maclaren 
et al. 2012).

Concerning PA variability, experimental evidence confirms that the artifact 
assumes complex spatiotemporal profiles, with multiple signal oscillations across 
the cardiac cycle, varying considerably across channels (Allen et  al. 1998; 
Debener et al. 2008; Mullinger et al. 2013b). Substantial variations across indi-
viduals are also typically observed, both in amplitude and spatiotemporal mor-
phology. Regarding the variability of the PA across heartbeats, the importance of 
changes in head position over the recording time has often been recognized and 
taken into consideration (Allen et  al. 1998; Bonmassar et  al. 2002). Recent 
experimental results have objectively confirmed the importance of this mecha-
nism in PA variability (Jorge et al. 2019). Additionally, and in fact to a larger 
extent than head motion, the respiratory cycle and fluctuations in heart rate itself 
have also been found linked to significant variations in PA shape and amplitude 
across cycles, over relatively short timescales of only a few heartbeats (Jorge 
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et al. 2019). Aside from the PA waveform itself, others have also found important 
variability in the PA timing, i.e., the time difference between each cardiac depo-
larization (ECG) and the resulting PA occurrence (Marino et  al. 2018a). 
Altogether, these findings of multiple sources of variability demonstrate the 
complexity of PAs, and of their underlying mechanisms and interactions, and 
highlight the considerable challenges involved in adequate PA triggering, model-
ing, and reduction.

8.3  Data Acquisition Considerations

Despite the increasing effectiveness of PA reduction methods, this remains a chal-
lenging post-processing correction. It is therefore crucial to take appropriate steps 
on the acquisition side to minimize a priori the appearance of the PA on the EEG 
data as much as possible. The configuration of the EEG-fMRI setup can be opti-
mized in order to minimize MR-related artifacts on the EEG, in general. This may 
include the use of shorter and bundled EEG leads when feasible (Assecondi et al. 
2016; Jorge et al. 2015b) and their careful placement along the magnet bore in order 
to isolate them from any scanner vibrations as well as possible (Mullinger 
et al. 2013a).

Additionally, artifacts associated with head motion, including not only the PA 
but also voluntary head motion, can also be minimized by restraining head motion. 
In the study by Anami et al. (2002), a head-fixation system was proposed, whereby 
a pillow is inserted to fill the gap between the subjects’ head and the head coils 
which is subsequently deflated until small head movements are suppressed. The use 
of bite bars has also been found to effectively reduce the amplitude of the PA by 
more than 80% in some participants (Mullinger et al. 2013b). In the case of ERP 
studies, the experimental design can be adjusted in order to minimize the PA specifi-
cally. For example, Ertl et al. (2010) proposed to display the stimuli time-locked 
with the cardiac pulse. Because the PA is known to appear on the EEG approxi-
mately 150–500 ms after the QRS complex, the ERPs of interest are less prone to be 
affected by the artifact.

Most of the pulse artifact reduction methods rely on triggering events based on 
the R-peak extracted from cardiac traces recorded concurrently with the EEG (and 
the fMRI). Care must be taken when using the ECG for this purpose, because it 
becomes severely distorted in the MR environment (Niendorf et al. 2012), and is 
further degraded by the gradient artifact during the fMRI acquisitions (or by its 
residuals after gradient artifact correction), which may compromise the ability to 
detect R-peaks. According to a well-accepted recommendation (Mullinger et  al. 
2013a), a sufficiently good quality (clean and undistorted) ECG signal can in prin-
ciple be recorded from a single electrode placed at the base of the back of the sub-
ject, with the respective lead stretched along the paravertebral line. This allows for 
maximization of the signal-to-noise ratio of the R-peak, by minimizing motion arti-
facts associated with breathing (compared to placements on the chest) while also 
providing subject comfort. The requirements on the resistance of the ECG 
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electrodes are not as large as those on the EEG electrodes, given the typically larger 
amplitude of the cardiac signals. Nevertheless, the impedance of ECG electrodes 
should be kept below 50 kΩ in order to ensure sufficient data quality for R-peak 
detection (Mullinger et al. 2013a).

Although potentially more prone to motion artifacts, other electrode placement 
configurations have also been used, namely, the triangularly shaped distribution of 
two electrodes over the chest with the reference on the scalp (Iannotti et al. 2015; 
Mullinger et al. 2013b). Alternatively, the vectorcardiogram (VCG) has been con-
sidered as a potential substitute of the ECG in this context (Mullinger et al. 2008). 
It uses a 3D orthogonal lead system capable of temporally and spatially resolving 
the electromotive forces generated by cardiac depolarization, and it has been shown 
to be less affected by the gradient artifact (Mullinger et al. 2008, 2013a). Because 
ECG is still the most commonly used technique, here we refer to the cardiac traces 
as ECG signals, for the sake of simplicity.

8.4  Artifact Reduction Methods

In this section, we review the most relevant methods for PA reduction (Table 8.1). 
In general, these can be subdivided into three main types. First, the most commonly 
used type consists of the time-domain subtraction of PA temporal waveform tem-
plates extracted from the EEG data. These can be obtained by averaging across 
neighboring artifact occurrences, for instance, or by explicitly estimating the pulse 
waveform. Second, methods exploring the spatiotemporal distribution of the PA 
have been used and are mostly based on blind source separation techniques, particu-
larly independent component analysis (ICA). Their purpose is to separate EEG arti-
fact sources from neuronal sources and then remove (or correct) artifact sources 
when back-reconstructing the EEG data to its original space. Third, some approaches 
rely on dedicated sensors to measure the artifact waveforms independently from the 
EEG, followed by their modeling and subtraction from the PA-contaminated EEG 
signal. After surveying the several PA reduction methods falling into each of these 
three main approaches, the most common criteria used for evaluating PA reduction 
are presented, and some considerations on how to prevent/minimize the PA are then 
provided.

8.4.1  Temporal Waveform-Based Methods

The seminal paper by Allen et al. (1998) introduced what is still the most com-
monly used method for PA reduction: the average artifact subtraction (AAS) algo-
rithm (illustrated in Fig. 8.3). AAS operates in the time domain of the EEG sensor 
space on a channel-by-channel basis and computes a temporal template to be 
subtracted from each PA occurrence by averaging across a number of artifact 
occurrences neighboring it. For this purpose, it is necessary to first detect the 
instances at which the PA occurs. Assuming that the artifact is approximately 
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Table 8.1 List of PA reduction methods

Type of approach Subtype Brief description Reference
Temporal waveform-based AAS Allen et al. (2000)

OBS Marino et al. (2018b) and 
Niazy et al. (2005)

PA estimation from 
EEG signal

Iannotti et al. (2015), Javed 
et al. (2014), Krishnaswamy 
et al. (2016), and Wong et al. 
(2018)

Spatiotemporal 
pattern-based

ICA with 
PA-related
IC selection and 
removal (based 
on)

Correlation with ECG 
or PA templates

Mantini et al. (2007) and 
Srivastava et al. (2005)

Autocorrelation 
function

Deburchgraeve et al. (2008)

Spectral content Vanderperren et al. (2007)
Peak-to-peak values Vanderperren et al. (2010)
Variance explained Debener et al. (2008)
Constrained ICA 
(automatic IC 
selection)

Leclercq et al. (2009)

Combination of 
ICA with AAS/
OBS

OBS + IC removal Debener et al. (2005, 2007)
IC removal + OBS on 
remaining ICs

Liu et al. (2012)

AAS/OBS on selected 
ICs

Abreu et al. (2016b)

Sensor-based Piezoelectric motion 
sensors

Bonmassar et al. (2002) and 
Hill et al. (1995)

Loops of carbon fiber 
wire

Masterton et al. (2007)

Reference layers Chowdhury et al. (2014), 
Luo et al. (2014), and Steyrl 
et al. (2017)

Subset of insulated 
electrodes to capture 
artifacts

Jorge et al. (2015a) and Xia 
et al. (2014a, b)

Prospective motion 
correction (PMC) using 
camera tracker

LeVan et al. (2013)

time-locked with the heartbeat, a reference point is identified in each cardiac 
cycle, typically by recording the ECG simultaneously with the EEG and then find-
ing its R-peaks. Because the appearance of the PA on the EEG is delayed in rela-
tion to the R-peaks on the ECG, a time delay must be considered. In its original 
implementation, the AAS defines a fixed delay of 210  ms based on empirical 
observations from the data. Based on the above description, it is clear that AAS 
relies on three main assumptions: (1) the PA and the EEG signal of interest are 
uncorrelated; (2) the PA remains stable across a limited number of successive 
heartbeats; and (3) the time delay between the R-peaks and the PA occurrences is 
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Fig. 8.3 Illustration of an AAS-based method for reduction of the pulse artifact: A 10 s segment 
of the time courses of three representative EEG channels is shown, before (top) and after (middle) 
correction, together with the corresponding ECG time course (bottom). An example artifact occur-
rence is highlighted by the red box; the corresponding average artifact waveform (red trace) was 
computed by averaging across 11 artifact windows around (and including) the artifact occurrence 
to be reduced (gray boxes and red box); this was then subtracted from the artifact occurrence, 
yielding the artifact-corrected EEG segment (green trace)

stable across the entire recording. Moreover, the number of PA occurrences used 
to build the template critically determines the performance of AAS. In fact, using 
a large number of PA occurrences leads to an accurate PA template but reduces its 
sensitivity to temporal fluctuations in PA, and thus it may yield poor artifact 
reduction. In contrast, templates based on the averaging of few PA occurrences 
strongly attenuate the artifact but may also reduce EEG signal of interest that was 
not sufficiently averaged out.

Because of its strong assumptions and known limitations, several modifications 
of the AAS have been proposed in order to circumvent them. The most influential 
work was presented in 2005 by Niazy et al., where the assumption of PA stability is 
addressed. For that purpose, principal component analysis (PCA) is applied to all 
PA occurrences in order to build an optimal basis set (OBS), comprising a given 
number of principal components (PCs) that explain the PA variance to some extent 
(Niazy et al. 2005). Artifact reduction is then achieved by fitting the basis set to each 
PA occurrence, followed by a subtraction of the fit. The performance of OBS is 
determined by the number of PCs comprising the basis set, with a larger number of 
PCs yielding stronger PA reduction; as in AAS, this may also result in the attenua-
tion of EEG signal of interest. Quite recently, Marino et al. (2018b) modified the 
original OBS to account for variable delays between the R-peaks and PA occur-
rences, by estimating them on a beat-to-beat basis, and showed that a more accurate 
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PA reduction can be achieved which compromises the EEG signal of interest to a 
lesser extent.

Alternatively, a less common approach consists in estimating the PA waveform 
from the entire EEG recording and directly subtracting it from the data (for each 
channel separately). One proposed method estimates the PA waveform as a linear 
combination of several cardiac-related harmonics (Krishnaswamy et  al. 2016), 
while another one combines the empirical mode decomposition (EMD) of the EEG 
data with PCA (Javed et al. 2014). Regarding the latter, it is assumed that the PA is 
roughly periodic, and thus EMD is first applied to retrieve the oscillatory modes 
present in the data, while PCA is used to extract the PCs associated with the PA. In 
a more recent work, a multiple-scale peak detection algorithm is proposed for the 
automatic determination of the BCG cycle directly from the EEG data (Wong et al. 
2018). In a different approach, based on the observed topographical distribution of 
the PA, an artifact template was simply estimated from the difference signal between 
the right and left electrodes most affected by the artifact (facial and temporal) and 
was then used in subsequent AAS correction (Iannotti et al. 2015).

8.4.2  Spatiotemporal Pattern-Based Methods

In order to account for not only the temporal waveform but also the spatial distribu-
tion of the artifact, blind source separation techniques have been widely used for the 
identification of PA sources and subsequent artifact reduction. Temporal ICA is by 
far the most common technique, whereby an N × M EEG dataset, with N channels 
and M time points, is decomposed into a linear combination of L independent com-
ponents (ICs) with N × L weights (Bell and Sejnowski 1995; Lee et al. 1999). It is 
typically assumed that the number of sources in the brain is equal to the number of 
EEG channels and, in that case, the equation describing the relationship between the 
EEG signal, E, and the independent components, I, is given by

 
I W EN M N N N M×[ ] ×[ ] ×[ ]= ⋅  (8.5)

where W represents the unmixing matrix which carries the coefficients of the linear 
combination between the EEG data and the ICs (Bell and Sejnowski 1995; Lee et al. 
1999). Artifact reduction can then be obtained by removing the contribution of the 
PA sources from the reconstruction of the EEG (illustrated in Fig. 8.4):

 E X Z I
cor

= ⋅ ⋅  (8.6)

where Ecor is the corrected EEG signal, and Z is a N × N diagonal matrix in which 
the zii element is equal to 0 if the i-th source is associated with the PA and 1 other-
wise; X denotes the mixing matrix, that is, the inverse of W, representing the spatial 
patterns, or topographies, associated with each source.

Naturally, this type of PA reduction methods relies on two major assumptions: 
(1) ICA is capable of separating the PA sources from other EEG sources contribut-
ing to the measured signal; and (2) PA sources can be accurately classified among 
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Fig. 8.4 Illustration of an ICA-based method for reduction of the pulse artifact: The scalp maps 
of the 31 ICs obtained by temporal ICA of the EEG data are shown (top); ICs 1, 3, 4, 11, and 12 
(highlighted with the red box) were classified as PA-related using the PROJIC algorithm (Abreu 
et al. 2016a). A 10 s segment of their time courses is shown (middle). The corresponding 10 s seg-
ment of the time courses of three representative EEG channels is also shown (bottom), before 
(black) and after (green) correction, by removing all the selected ICs from the reconstruction of the 
EEG data
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all estimated sources. Most of the work in this field has been dedicated to selecting 
the best criterion (or combination of criteria) for accurately classifying the PA 
sources. The first studies assumed a direct relationship between the PA sources and 
cardiac signals. This can be evaluated in the time domain, by identifying the EEG 
sources exhibiting the highest correlation (Mantini et  al. 2007; Srivastava et  al. 
2005) or mutual information (Liu et al. 2012) with the ECG signal. In the frequency 
domain, the PA sources can be determined as those exhibiting peaks at their auto-
correlation functions and/or power spectra associated with the cardiac signal 
(Deburchgraeve et al. 2008; Vanderperren et al. 2007). In a more indirect fashion, 
one can select the PA sources as those explaining the largest amount of variance of 
the PA (Debener et  al. 2008). Following this rationale, we have proposed the 
PROJIC (PROJection onto Independent Components) algorithm, whereby the aver-
age PA occurrence of each channel is first projected onto the source space by means 
of the corresponding unmixing matrix W. The power of each projection, computed 
as the squared sum for each time instant, is then clustered by k-means; sources 
assigned to high-powered clusters are deemed PA-related (Abreu et al. 2016a, b).

Despite its reported success, the plausibility of using ICA for PA reduction can 
be questioned. In fact, one of the strongest assumptions of ICA is the spatial station-
arity of the sources to be estimated. The recognized, but frequently overlooked, 
nonstationarity of the PA sources may then hamper the ability of ICA to separate 
them from the remaining sources. One of the first attempts to tackle this was through 
the development of the so-called constrained ICA technique, where constraining 
conditions reflecting known PA characteristics are introduced during the decompo-
sition procedure, leading to the automatic identification of PA sources (Leclercq 
et al. 2009). Nonetheless, the most popular approaches for circumventing the limita-
tions of ICA and AAS (or OBS) rely on the combination of PA reduction methods 
based on temporal waveforms and spatiotemporal patterns. The first study using 
such rationale assumed that after the employment of OBS, residual PA was still 
present, which could be further attenuated by decomposing the OBS-corrected EEG 
signal with ICA and eliminating the contribution of the PA sources (Debener et al. 
2005, 2007). In order to specifically tackle the nonstationarity issue of the PA 
sources, Liu et al. (2012) applied ICA to the EEG signal and assumed that the PA 
contributed to all sources in varying degrees. The PA reduction procedure was then 
performed in two steps: the PA sources were first identified as those exhibiting the 
highest mutual information with the ECG and their contribution eliminated, fol-
lowed by the application of a modified version of OBS to the remaining sources. We 
have recently proposed the application of AAS or OBS also in the source space, but 
only to PA sources, which are subsequently kept in the EEG signal reconstruction 
together with the original non-PA sources (Abreu et al. 2016a). In contrast with Liu 
et al. (2012), this approach aims to preserve the physiological signal as much as 
possible without compromising artifact removal effectiveness.
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8.4.3  Sensor-Based Methods

Additional sensors can be used to independently monitor pulse-driven and volun-
tary head movements during concurrent EEG-fMRI recordings; this information 
can then be used to de-noise the EEG signals. Various sensor-based approaches have 
been proposed to date, differing essentially in two aspects: (1) the type of sensors 
used and (2) the method applied for artifact correction using the sensor information.

Early attempts employed a piezoelectric transducer attached to the subjects’ head 
to measure head motion and used its signal to estimate motion-related artifacts in 
general and the PA, in particular, on the EEG (Bonmassar et  al. 2002; Hill et  al. 
1995). In a similar approach, LeVan et al. (2013) recently used an optical tracking 
system designed to monitor head motion inside the scanner (Maclaren et al. 2012). 
In order to correct the PA contribution on the EEG data, the measured motion param-
eters were first converted into velocities, and the PA was then modeled as a linear 
combination of the low-pass filtered velocities, followed by its subtraction from 
the EEG.

Besides the use of piezoelectric and optical sensors to measure head motion, a 
few studies have used sensors directly measuring the electric currents induced by 
the PA and head motion in general, in the MR environment. First, carbon-wire loops 
attached to the EEG cap were employed, and the artifacts at each EEG electrode 
were estimated as linear combinations of the sensor signal time courses (Bonmassar 
et al. 2002; Masterton et al. 2007). For weight estimation, the authors employed 
time adaptive techniques to account for the nonstationarity of the PA, including 
adaptive noise reduction based on Kalman filtering (Bonmassar et  al. 2002) or 
recursive least squares estimation (Masterton et al. 2007), for example.

In order to more specifically measure the artifacts induced at each EEG elec-
trode, the concept of reference layers emerged. These are based on attaching an 
additional electrode net on top of the main EEG net, separated by an insulating layer 
(Chowdhury et al. 2014; Luo et al. 2014). With this setup, the original EEG elec-
trodes capture a mixture of neuronal signals and artifacts, while those above the 
insulating layer are only sensitive to the artifacts, as they are physically attached to, 
but electrically isolated from, the subjects’ head. A direct subtraction between the 
original and insulated electrodes can then be applied to reduce the artifacts 
(Chowdhury et al. 2014; Luo et al. 2014).

Considering the already typically intricate EEG-fMRI setups, the use of addi-
tional sensors may be questioned in terms of feasibility or even prohibitive in some 
clinical sites. A more practical approach that avoids the need for additional record-
ing hardware was proposed by Xia et al. (2014a), which consists of defining a set 
of insulated electrodes spatially surrounding each uninsulated electrode on the 
EEG cap in order to build an estimate of the local PA. Following this rationale, 
methods to determine the optimal minimum number of electrodes to be insulated 
have been developed based on the spatial redundancy of the PA measured from 
neighboring electrodes (Xia et al. 2014a). More recently, an even simpler approach 
was proposed by Jorge et al. (2015a), which introduces only small changes to a 
standard EEG cap. In this case, a limited number of the existing EEG electrodes 
are used as motion sensors by insulating them from the scalp and directly connect-
ing them to the reference electrode. Different methods can then be used to estimate 
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the artifact at each EEG electrode position, similarly to the separate loop 
approaches.

In general, the use of sensor-based reference artifact information has been found 
quite valuable, with various advantages relative to EEG data-based methods, 
because such information (1) is independent from EEG activity of neuronal origin, 
(2) is sensitive to variability in the PA across heartbeats, (3) does not require accu-
rate PA triggering, and (4) allows relatively straightforward implementations of 
real-time artifact correction (Masterton et al. 2007; Steyrl et al. 2018). Nevertheless, 
some potential limitations do exist. From a practical standpoint, the need for addi-
tional recording hardware increases the complexity of experimental setups and sub-
ject preparation and must be properly validated to ensure safety. From a conceptual 
standpoint, most of the proposed approaches employ considerably less sensor chan-
nels than EEG channels and therefore need to assume that the PA in each EEG 
channel can be accurately modeled by a combination of the available sensors. 
Moreover, not all hypothesized sources of the PA are captured by external sensors—
bulk head motion, and possibly scalp dilation, can be measured, but Hall effect 
contributions are more challenging and have not been probed so far. The latter may 
introduce PA variability that is not adequately accounted for and could be one cause 
for the observation that even the most comprehensive methods, such as reference 
layer-based de-noising, are still most effective when used in combination with EEG 
data-based methods such as AAS (Chowdhury et  al. 2014; Murray et  al. 2008; 
Steyrl et al. 2017, 2018), as well as amplitude-fitting approaches (Steyrl et al. 2017). 
Altogether, sensor-based methods are currently a topic of active research and devel-
opment (Hermans et al. 2016).

8.4.4  Artifact Reduction Evaluation

One of the most accurate and simplest ways of assessing the performance of PA 
reduction methods is to quantify changes in event-related potentials (ERPs) mea-
sured during simultaneous EEG-fMRI studies of event-related activity. It is then 
possible to assess not only the amount of PA reduction but also its effects on the 
EEG signal of interest. Several metrics have been proposed in the literature to quan-
tify the effects of PA reduction on ERPs, namely, their intertrial variability 
(Vanderperren et  al. 2010) and signal-to-noise ratio (Debener et  al. 2007), both 
known to be affected by the PA. It is also possible to quantify differences between 
the ERPs extracted from EEG data acquired outside the MR scanner, which are free 
of PA, and those measured simultaneously with fMRI. When the frequency content 
of an ERP is known, the power within that frequency band can also be compared 
before and after PA reduction (Xia et al. 2014a).

In resting-state EEG-fMRI studies, the task of assessing the performance of PA 
reduction methods is more challenging, particularly in what concerns the preserva-
tion of the EEG signal of interest. Thus, only PA reduction is quantified, typically 
by computing the root-mean-square value (Vanderperren et al. 2010) or the peak-to- 
peak value (Chowdhury et al. 2014) of the EEG signal at the PA occurrences before 
and after correction. Because of its roughly periodic nature, PA reduction has also 
been quantified in the frequency domain by the average spectral power across 
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windows around the cardiac fundamental frequency and its first harmonics (Liu 
et al. 2012). In a recent study, we proposed an evaluation pipeline that aims to assess 
not only PA reduction but also preservation of EEG signal of interest, in resting-
state data (Abreu et al. 2016a). This is achieved by computing the spectral power 
over both PA and non-PA frequency bands before and after correction and then 
linearly combining their ratios using a weighting factor reflecting the importance 
given to the preservation of EEG signal of interest relative to PA reduction.

A few systematic comparisons between different PA reduction methods have 
been reported in the literature. In one report, Grouiller et al. (2007) found that AAS 
was the method of choice if highly accurate R-peak detection was achieved. 
Additionally, and as discussed in Vanderperren et al. (2010), OBS- and ICA-based 
approaches only yielded comparable results if the ICA parameters were fine-tuned. 
In fact, optimizing the algorithms’ parameters has been shown to critically affect the 
effectiveness and reliability of the subsequent analyses (Abreu et  al. 2016a; 
Vanderperren et  al. 2010), particularly at high magnetic field strengths (Debener 
et al. 2008). In our report (Abreu et al. 2016a), AAS was the method exhibiting the 
second best results in terms of accurately reducing the PA while preserving the EEG 
signal of interest. In contrast, purely ICA-based methods either resulted in substan-
tial residual artifacts or a significantly distorted EEG signal. The best results were 
obtained by combining ICA to separate the PA sources, with AAS to correct the PA 
occurrences in the source space. We believe that this may be a relatively straightfor-
ward and effective solution for PA correction, which does not require additional 
hardware.

8.5  Conclusion

The artifact induced on the EEG recorded inside the MRI scanner due to the func-
tion of the heart remains as one of the most challenging aspects of simultaneous 
EEG-fMRI studies. Various artifact reduction techniques have been proposed and 
tested over the last few decades. While combinations of ICA- with AAS-based 
methods have been found to be the most effective in typical EEG-fMRI experi-
mental setups, a few studies have shown promising results when separately mea-
suring head motion with appropriate sensors. Although such sensor-based 
approaches require modifications of the experimental setup, they have the advan-
tage of taking the temporal variability of the artifact into account in a direct, 
empirical way. In parallel, considerable progress has been made over the past 
decade in the understanding of the artifact’s underlying biophysical mechanisms, 
which may be incorporated to further improve current artifact reduction tech-
niques. Perhaps even more importantly, knowledge of the multiple artifact sources 
and their relative contributions should be used to leverage efforts to minimize the 
occurrence of the PA in the first place. In the future, we believe that EEG-fMRI 
setups should be carefully optimized with the aim of minimizing the induction of 
EEG artifacts in general and the PA in particular, while complementary artifact 
reduction methods should be further improved by better accounting for the arti-
fact’s properties.
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SNR Signal-to-noise ratio
TDC Template drift compensation
TDD Template drift detection

9.1  Origin of the Image Acquisition Artefact

In this chapter, we focus on the artefacts that arise in the EEG during the fMRI 
acquisition process. Functional MRI using echo planar imaging (EPI) sequences 
involves the application of rapidly varying magnetic field gradients for spatial 
encoding of the MR signal and radiofrequency (RF) pulses for spin excitation (see 
Chap. 3). Early in the implementation of EEG–fMRI, it was observed that the acqui-
sition of an MR image results in complete obscuration of the physiological EEG 
(Ives et al. 1993; Allen et al. 2000). Electromagnetic induction in the circuit formed 
by the electrodes, leads, patient and amplifier exposed to a time-varying magnetic 
field causes an electromotive force. Artefacts induced in the EEG by the scanning 
process itself have a strong deterministic component, due to the preprogrammed 
nature of the RF and gradient switching sequence, and therefore artefact correction 
is generally considered a lesser problem than pulse-related artefacts (see Chap. 8). 
Another artefact originating from the vibration of a scanner’s active cooling system 
may show a slightly less deterministic nature but also a lower amplitude than the 
scanning artefact itself. According to Faraday’s law of induction, the induced elec-
tromotive force is proportional to the time derivative of the magnetic flux (summa-
tion of the magnetic field perpendicular to the circuit plane over the area circuit), 
dΦ/dt, and can therefore reflect changes in the field (gradient switching, RF) or in 
the circuit geometry or position relative to the field due to body motion (Lemieux 
et  al. 1997). Therefore, the combination of body motion with image acquisition 
artefacts can lead to random variations that represent a real challenge for artefact 
correction.

9.2  Characteristics of the Image Acquisition Artefact

In a typical EPI BOLD acquisition, the amplitude of the image acquisition artefact 
can be more than two orders of magnitude higher than the physiological EEG sig-
nal (Allen et al. 2000; Felblinger et al. 1999). The largest rate of change of the 
magnetic field occurs during the application of the RF pulses (about 30,000 T/s) 
(Huang- Hellinger et  al. 1995). However, the frequency of the RF pulses (e.g. 
64 MHz at 1.5 T) lies well outside the frequency range of conventional EEG ampli-
fiers resulting in greatly attenuated artefacts (Anami et  al. 2003). For example, 
fMRI in a 1.5 T Siemens Magnetom Vision Scanner (Siemens Erlangen, Germany) 
produced image acquisition artefacts with amplitudes of up to 12 mV (Figs. 9.1 
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Timing of RFs and Gradients of EPIS Sequence
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Fig. 9.1 (a–c) The waveform of the image acquisition artefact can be accurately measured using 
a sufficiently high digitisation rate and a band-pass filter—here 20 kHz/3 kHz. This is a representa-
tive artefact waveform from a EPI BOLD fMRI (EPI) sequence. (a) Timings of RF and gradients 
in an fMRI sequence (EPIS, Siemens: ep2d_fid_60b2080_62_64.ekc). RF radiofrequency wave, 
Gs slice selection gradient, Gp phase encoding gradient, Gr readout gradient. a fat suppression 
pulses (1-3-3-1 pulses), b slice selection RF, c, d, h, spoilers, e slice selection gradient, f dephasing 
and rephasing gradient, g readout gradient. (b) Schematic diagram of whole EPIS sequence. (c) 
Image acquisition artefact waveform for one slice scan on a dummy EEG record with a phantom 
using the EPIS sequence. The artefact corresponding to each gradient component described above 
in (a) can be identified and is denoted by the same alphabet as that denoting the original gradient 
but with a prime (Anami et al. 2003)
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Fig. 9.2 The waveform of 
an image acquisition 
artefact during a single- 
slice acquisition (stepping- 
stone sequence) using a 
1.5 T scanner (Siemens 
Vision). The artefact was 
recorded at a sampling rate 
of 5 kHz and using a 1 kHz 
hardware low-pass filter. 
Here the readout gradient 
has a frequency of 500 Hz 
(the two red dots indicate 
one gradient period of 
length 2 ms)

and 9.2). At 1.5 and 3 T, artefacts induced by gradient switching (103–104 μV) are 
generally much larger than those arising from RF pulses (up to 102 μV) (Anami 
et al. 2003).

The recorded artefact from one gradient pulse has the approximate differ-
ential waveform of the corresponding gradient pulse (Anami et al. 2003). The 
relative polarity and amplitude of the artefact varies across channels, but the 
timing of the rising and falling edges is the same across all channels. The fre-
quency range of the image acquisition artefact exceeds that of standard clini-
cal EEG equipment. The frequency of the readout gradient typically lies in the 
range of 500–900 Hz. Figures 9.1 and 9.2 illustrate typical time courses of the 
slice acquisition artefact. During periodic EPI BOLD scanning, the EEG is 
dominated by harmonics of the slice repetition frequency, typically in the 
range of 10–25 Hz (Fig. 9.3), convolved with harmonics of the volume repeti-
tion frequency of about 0.2–2 Hz (Mandelkow et al. 2006; Ritter et al. 2008a). 
The power spectrum of the image acquisition artefact thus overlaps that of 
the EEG.
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Fig. 9.3 (a–f) Fourier spectrum and time–frequency plots of EEG data from synchronised and 
unsynchronised EEG and fMRI data acquisitions before and after image acquisition artefact cor-
rection using a slightly modified interpolation–template–alignment–subtraction (ITAS) algorithm 
(Ritter et al. 2007). Fourier spectra were calculated for scan periods and for non-scan periods. The 
Fourier spectrum of the imaging artefact afflicted EEG is dominated by harmonics of the slice 
repetition frequency (10 Hz in this study). (a) Unsynchronised EEG–fMRI (1.5 T Siemens Sonata) 
with an unstable MR sequence. The application of a correction algorithm comprising interpolation, 
timing error correction and artefact template subtraction (using a slightly modified ITAS algorithm 
as described in Ritter et al. (2007)) yields good results in the frequency spectrum below 70 Hz. In 
(b), for the same EEG data, time–frequency plots before and after image artefact correction are 
depicted. (c) Synchronised EEG–fMRI (1.5 T Siemens Vision) with a temporally stable stepping- 
stone MR sequence; simple artefact template subtraction can yield good results across the entire 
frequency spectrum. (d) Here the time–frequency plot of the imaging artefact corrected EEG data 
shows only mild residual artefacts in the 500 Hz range, reflecting the switching rate of the readout 
gradient. (e) Interestingly, the same algorithm used in (a) and (b) is much less efficient when 
applied to an EEG obtained from an unsynchronised EEG–fMRI setup with a stepping-stone 
sequence. Strong image acquisition artefacts are visible after imaging artefact correction, even in 
the lower-frequency bands. This failure of the algorithm can be attributed to the oscillatory ampli-
tude fluctuations of the image acquisition artefacts. (f) Here, the time–frequency plot of the imag-
ing artefact corrected EEG is severely contaminated with residual artefacts
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9.2.1  Characterisation of the Cooling Pump Artefact

The high magnetic field strengths (usually ≥1.5 T) for MR imaging are produced by 
a superconducting coil that operates at low temperatures and requires constant cool-
ing via a helium-based cooling system. When a cold head cools the helium down to 
the required temperature, it induces mechanical vibration into the system. The 
vibrations of the cooling system can be audible outside the scanner and are transmit-
ted into the scanner itself, the body of the scanned subject and the EEG equipment 
stationed inside the bore. This leads to an artefact that shows as an unwanted voltage 
induced into the measurement equipment and superimposed to the wanted physio-
logical signal.

The artefact signal shows the signature of the pump vibration and can be 
directly attributed to the cooling process. It appears while the pump is running, 
not only during imaging. Different hypotheses exist as to how exactly the vibra-
tion leads to the EEG artefact, but no in-depth studies have been published in this 
regard. It might directly emerge as the conductive loops of the EEG are moved in 
the strong static magnetic field. This causes the magnetic flux of B0 through them 
to change and result in induction. But indirect effects may likewise serve as 
explanation: As metallic parts of the scanner itself begin to vibrate inside the 
static field, eddy currents start to occur inside them. These create varying local 
electromagnetic fields that again cause induction in the EEG loops. After all, 
both effects may contribute to the artefact and their contributions may vary 
between setups.

The vibration caused by the cooling pump differs for different scanner types 
and may have different base frequencies in the order of 20 Hz–50 Hz, 75 Hz up 
to 150  Hz (Nierhaus et  al. 2013; Neuner et  al. 2014; Jorge et  al. 2015a; Kim 
2015; Rothlübbers 2015; Chen et  al. 2020), interfering predominantly, but not 
exclusively, with measurements of the gamma frequency band. During the repeti-
tive cycle of the mechanical motion inside the cold head, the amplitude of the 
base vibration is modulated. The cycle repetition time may, for instance, lie 
around 1  s (Rothlübbers 2015); see Fig. 9.4, left. In this case, the vibration is 
perceived as repetitive (e.g. 1 Hz) humming noise (~50 Hz) which shows as mul-
tiple sharp peaks in the frequency spectrum (Fig. 9.4, right). The repetition is 
however often neither exactly stable nor synchronous to the MR scanner’s clock, 
as happened with the gradient artefact. It is also not possible to identify a trigger 
based on an external recording as the ECG for the pulse artefact. Hence, unlike 
gradient or pulse artefacts, the helium pump artefact does not exhibit an onset 
trigger signal. The artefact magnitude differs in the individual EEG channels but 
follows a common pattern. In its creation, the overall strength of the artefact 
depends on the mounting position and mounting strength of the cold head with 
respect to the scanner, and for some systems, it has even been reported negligible 
(Neuner et al. 2014). In acquisition, the recording equipment (Jorge et al. 2015a) 
and patient as well as their positioning are major factors that determine the arte-
fact magnitude.
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Fig. 9.4 Channel-by-channel noise of the cooling pump artefact showing the repetitive increases 
of magnitude (twice per ~1 s cycle) of a higher-frequency base signal (left) and respective fre-
quency spectrum compared to baseline with pump switched off (right). Data acquired at a Siemens 
7 T MRI system with the Brain Products 64-channel BrainAmpMR, as part of the work of Jorge 
et al. (2015a). The channels depicted on the left belong to a flat 32-channel acquisition cable, in the 
order of their physical layout. With the reference lead being in the centre (between channels 15 and 
16), the loop area for each channel increases to the sides of the cable and with it so does the 
strength of the artefact

9.2.1.1  Cooling Pump Artefact Prevention
A common default mode of operation for the cooling system in clinics is “always 
on” in order to prevent loss of the main magnetic field strength and associated costs 
(helium boil-off, maintenance) and hazards. However, in general, it is possible to 
safely switch off the cooling system for a limited time. Some systems can do this 
automatically during imaging (Mullinger et al. 2008). Several studies report or rec-
ommend switching off the cooling system during experiments to improve EEG 
quality (Ritter and Villringer 2006; Ertl 2010; Nierhaus et al. 2013; Mullinger et al. 
2013; Neuner et al. 2014). Nevertheless, some sites do not allow for such measures.

Additionally, it is possible to at least reduce the effect of the artefact by optimis-
ing the EEG acquisition setup to minimise induction artefacts. A study on a 7 T 
scanner (Jorge et al. 2015a) indicates a clear relation between cable configuration 
and sensitivity to the artefact: In general, shorter and more closely bundled cables 
should be considered.

9.2.1.2  Cooling Pump Artefact Removal
If the pump artefact cannot be avoided, the analysis of the EEG signal needs to 
account for it. Options are a discussion as to why the artefact does not affect the 
signal of interest significantly (Steyrl and Müller-Putz 2019) or an estimate that 
is does not interfere with the signal of interest (e.g. “gamma band not of 
interest”). Ideally however, the artefact can be further suppressed in 
post-processing.

The regularity of the helium cooling pump artefact is located somewhere between 
the very precise scanner gradient switching and the uncontrollable pulse artefact. 
Commonly, the correction for helium pump artefacts is performed after prior 
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correction for gradient switching and pulse artefacts. In order to extract the artefact, 
methods used for gradient artefact correction such as AAS can be helpful but may 
not be applicable without adaptation. Likewise, plain blind source separation ICA 
has not been reported effective yet (Kim 2015). Few algorithms have been reported 
to address the cooling pump artefact. These aim to factor in the variability of the 
artefact signal and implement measures to circumvent false-positive removal of 
physiological signal.

A local template averaging approach (Rothlübbers et al. 2015) can be used to 
discern artefact from physiological signal. To identify the unstable repetition time 
and determine the onset of the next cycle, a local autocorrelation approach is 
applied. An artefact template is obtained from the EEG channel sum. In order to 
prevent false-positive removal and conserve as much of the physiological signal as 
possible, the subtracted template is filtered in the frequency domain. The filter 
reduces the artefact spectrum to the clearly prominent peaks standing out from the 
background signal. Only then it is subtracted from the input signals of the individual 
channels.

Similarly, principal component analysis has been demonstrated (Kim et  al. 
2015) to identify characteristic patterns of the artefact. For this, the signal of a 
single channel is split into equally sized (2 s) sliding windows over the entire 
recording. Signal eigenvectors are determined and used to reconstruct parts of 
the signal recursively. In this work, the condition to accept an eigenvector to 
represent artefact data is that its spectrum shows a single clear peak in a fre-
quency range 20  Hz–50  Hz and the related time series is characterised as 
sub-Gaussian.

Rather than reconstructing the artefact from recorded EEG data, methods can be 
pursued to record the artefact itself. For pulse artefact correction, methods that 
acquire a reference of the artefact signal (Luo et al. 2014; Chowdhury et al. 2014; 
Jorge et al. 2015b; Steyrl et al. 2018) have been shown to reduce gradient, pulse and 
subject motion artefacts (see Chap. 8). These might also prove helpful in pump 
artefact correction. A work on carbon-wire loop-based artefact recording (van der 
Meer 2016) indeed reports successful suppression of the pump artefact in this man-
ner. A limitation of these methods is their additional complexity of the hardware. 
However, even if deemed to overcomplicate the setup for regular use, they could 
still be valuable tools for recording reference signals in order to judge the perfor-
mance of correction algorithms.

Future research might involve training recurrent artificial neural networks to 
identify an artefact in EEG time series data. First approaches to modelling the detec-
tion of pulse artefact from ECG by training from a reference signal have been 
reported (McIntosh et al. 2019). Using gated recurrent units (GRUs), the authors 
generate network instances that identify the pulse artefact signal without the need 
for an explicit QRS detection. Consequentially, they conclude that such an approach 
could also be applied to cooling pump artefact detection. However, since the 
approach is a form of supervised learning, it does require a known artefact signal for 
training.
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9.3  Avoiding Image Acquisition Artefacts: Interleaved 
EEG–fMRI Protocols

Depending on the type of brain activity one is interested in studying, interruptions 
in scanning can reduce the impact of image acquisition artefacts. In EEG-triggered 
fMRI, short series of fMRI images are acquired following the (random) occurrence 
of predefined EEG events such as epileptic discharges (Baudewig et  al. 2001; 
Krakow et al. 1999; Lemieux et al. 2001; Seeck et al. 1998; Symms et al. 1999; 
Warach et al. 1996). Assuming that the peak of the BOLD changes associated with 
the neural activity of interest occurs with the same time delay as those of normal 
stimuli (typically 3–8 s), the delayed onset of fMRI acquisition relative to the neural 
response does not pose a problem. However, this approach requires that the T1 satu-
ration effects are modelled explicitly (Krakow et al. 2002), and fMRI signal changes 
that occur over long timescales cannot be easily accounted for, given the irregular 
sampling.

In the periodic interleaved approach, MR acquisition is suspended at regular 
intervals, resulting in periods free of image acquisition artefacts on the EEG 
(Goldman et al. 2000, 2002; Ives et al. 1993; Kruggel et al. 2000; Sommer et al. 
2003; Ritter et al. 2008a). Although interleaved protocols are generally less flexible 
and experimentally efficient than continuous measurements, they are suitable for 
certain forms of brain activity such as slowly varying rhythms and evoked responses. 
With longer acquisition times, unintentional fluctuations in attention and vigilance 
gain more relevance.

In multimodal studies of average evoked potentials/BOLD responses, a simulta-
neous EEG–fMRI setup is not always necessary (Horovitz et al. 2002, 2004; Opitz 
et al. 1999). In such cases, separate EEG and fMRI measurements offer a reasonable 
alternative. There are, however, a number of questions that can only be addressed by 
truly simultaneous EEG–fMRI acquisition, such as studies on single trials and 
spontaneous non-task-related activity; see Chaps. 1 and 12.

9.4  Reduction of Image Acquisition Artefacts

9.4.1  Reduction at the Source

Minimising conductor loop area and avoiding conductor motion should help to 
reduce image acquisition artefacts in concurrent EEG–fMRI. Movement can be 
reduced by stabilising the subject’s or patient’s head with a vacuum cushion and 
fixing the EEG electronic devices and wires using sandbags, for example (Anami 
et  al. 2003; Benar et  al. 2003). Electrodes should be made of nonferromagnetic 
materials such as silver, silver/silver chloride, gold-coated silver and carbon (Van 
Audekerkea et al. 2000) in order to prevent motion relative to the scalp resulting 
from the strong static magnetic field. Artefact-reducing materials for the leads con-
necting electrode rings and amplifier are, for example, carbon fibres (Goldman et al. 
2000) or very thin copper leads (Easy Cap, FMS, Munich). Twisted dual leads have 
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Fig. 9.5 Effects of the helium pump of the MR tomography on the frequency spectrum of the 
EEG. These data (of 5-min duration for each condition) were obtained in a 1.5 Tesla Siemens 
Sonata scanner during non-MR acquisition periods. Similar artefacts have been found in other MR 
systems, such as the 1.5 Tesla Siemens Vision and 3 T Siemens Trio scanners. Helium pump- 
associated artefacts are not related to MR image acquisition. They occur continuously, i.e. also in 
non-MR acquisition periods. These artefacts are caused by the piston of the helium cooling head, 
which strikes the aluminium tube that functions as a cold shield. This causes vibrations of the tube 
at its resonance frequency of typically around 40 Hz. Vibrations of the tube induce eddy currents 
that generate magnetic field changes leading to the observed artefacts. The spectral peak visible in 
the Fourier spectrum at 50 Hz and its higher harmonics can be assigned to line noise

the advantage that currents induced by motion and gradient switching cancel out 
since the currents induced in consecutive twists flow in opposing directions 
(Goldman et al. 2000). When possible, switching off the scanner’s helium pump and 
patient monitoring devices can help to reduce vibration- and RF-related artefacts in 
the EEG (Fig. 9.5).

9.4.1.1  Stepping-Stone Sampling
Due to the short durations of image acquisition artefacts, a special MR sequence has 
been developed that allows EEG sampling at a digitisation rate of 1 kHz exclusively 
in the period in which the artefact resides around baseline level (Anami et al. 2003). 
This “stepping-stone” sampling of EEG data is only possible in combination with 
synchronisation of the EEG digitisation and scanner clock. Artefact amplitude is 
strongly attenuated (Fig. 9.6d), for example, to less than 5% in the study by Anami 
et al. (2003). Consequently, a greater dynamic range is available for the physiologi-
cal EEG, allowing resolutions of 0.1  μV and below (Ritter et  al. 2006; Freyer 
et al. 2009).

Non-MR signals such as EEG have been recorded using surplus RF receive 
bandwidth (Hanson et  al. 2007). To this end, EEG signals amplified and 
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Fig. 9.6 (a–d) Comparison of imaging artefact waveforms obtained from three different inter-
leaved EEG–fMRI acquisitions: 4 min of EEG data acquired simultaneously with fMRI. Sixty MR 
volumes were acquired in the 4-min recording time. Due to the high amplitudes of the artefacts, 
physiological EEG traces in between the image acquisition artefacts are only visible as a flat line. 
(a) Unsynchronised EEG and fMRI with a stable MR sequence and a TR that is an integer multiple 
of the EEG sampling rate yield EEG data containing image acquisition artefacts of high amplitudes 
and periodically varying shapes. (b) Unsynchronised EEG and fMRI with unstable MR sequence 
yield EEG data containing image acquisition artefacts of high amplitude and aperiodically varying 
shapes (see Fig. 9.7a for a zoomed-in depiction). (c) Synchronised EEG and fMRI in combination 
with a stable MR sequence yield image acquisition artefacts of high amplitude but constant shape 
(see Fig.  9.7b). (d) Application of the stepping-stone sequence and synchronised EEG–fMRI 
yields image acquisition artefacts of lower amplitudes with constant shapes

digitised within the scanner are transmitted as radio waves that are detectable 
by the MR system and subsequently reconstructed to fill the periphery of the 
MRI field of view. Gradient artefacts can be greatly reduced when sampled in 
periods free of gradient switching using a variant of the stepping-stone tech-
nique based on a gradient field detection and gating mechanism that does not 
require modification of the MR sequence, in contrast to the method by Anami 
et al. (2003).
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Fig. 9.7 (a, b) Stability of image acquisition artefacts: single-slice artefacts of two consecutive 
imaging volume artefacts are superimposed for comparison (black and grey line). Red indicates the 
difference wave for the two artefacts. (a) In the unsynchronised EEG–fMRI approach, consecutive 
image acquisition artefacts differ considerably, resulting in a distinct difference wave. (b) In the 
synchronised EEG–fMRI approach, consecutive image acquisition artefacts are identical, resulting 
in a difference wave that is almost zero and zero (i.e. only the physiological EEG signal is present)
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9.4.2  Synchronisation of EEG and fMRI Data Acquisitions

The EEG and fMRI acquisition systems can run independently of each other or in 
synchrony, with important implications for data quality (see Chap. 7 for a discus-
sion of EEG instrumentation). While simpler to implement than synchronised 
acquisitions, free-running independent EEG and fMRI data acquisitions can result 
in a great degree of variability in the shape of the artefact (Figs. 9.6a and 9.7a), 
which may be more difficult to remove using post-processing methods (discussed in 
the next section of this chapter). Synchronised acquisitions can be advantageous if 
the MR scan repetition time is chosen to be an integer multiple of the EEG sampling 
interval, resulting in stationary image acquisition artefacts (Figs. 9.6c, d and 9.7b), 
assuming that the artefact shape and amplitude do not change due to electrode 
movement and that the timing of the MR sequence is precise (Anami et al. 2003). In 
these circumstances, it is possible to reduce the EEG sampling rate down to 500 Hz 
with satisfactory results following post-processing artefact correction (Mandelkow 
et al. 2006).

It should be noted that for multislice EPI sequences, the type of slice acquisi-
tion must be considered, since it influences the precision of the TR (Mandelkow 
et al. 2006). When slice acquisitions are equidistant in time, the actual TR can 
deviate from the prescribed TR by the product of the scanner clock precision and 
the number of slices. A stationary image acquisition artefact will be obtained if 
the actual TR matches a common multiple of the EEG sample time (0.2 ms for 
5 kHz) and of the product of scanner clock precision (0.1 μs for 10 MHz) and 
number of slices. For nonequidistant slice acquisitions with pauses between suc-
cessive volume acquisitions, the TR is rounded to the full precision of the scanner 
clock, and stationary artefacts will be obtained if TR is a multiple of the EEG 
sample time. Such rounding differences have been reported for the Philips 3 T 
Achieva system running software release 1.2.2 (Mandelkow et al. 2006) and have 
been found by our group for the Siemens 1.5  T Sonata system running 
NUMARIS/4, version syngo MR 2004A.

In a phantom measurement, Mandelkow et  al. (2006) demonstrated that 
residual artefact power dominates the post-processed EEG spectra above 
roughly 80 Hz for recordings without synchronisation. This is also visible in 
Fig. 9.3a, b, which show data from a healthy subject at 1.5 T. With synchronisa-
tion, however, spectral power up to 200 Hz remains largely within 10 dB of the 
spectrum obtained without simultaneous fMRI (Mandelkow et  al. 2006). 
Figure 9.3c, d demonstrates the superior quality of the synchronised EEG of a 
subject at 1.5 T.

Synchronised EEG and fMRI digitisation has been used to study high-fre-
quency (600  Hz) and very low amplitude (few 100  nV) components of the 
somatosensory evoked potential (Ritter et  al. 2008a; Freyer et  al. 2009) and 
spontaneous variations in the theta (3–6  Hz) and gamma (28–40  Hz) ranges 
(Giraud et al. 2007).
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9.5  Correction of the Image Acquisition Artefact Using EEG 
Post-Processing

9.5.1  Artefact Template Subtraction

A widely applied processing method based on artefact template subtraction was 
demonstrated by Allen et al. (2000). This approach assumes that the shape of the 
gradient artefact does not change rapidly and that it is not correlated with the physi-
ological signal (Hill et al. 1995). Channel-specific artefact templates are computed 
by averaging the EEG over a prespecified number of TR-related epochs and sub-
tracted from the EEG traces in the current epoch, often referred to as average arte-
fact subtraction (AAS). The epochs can be identified by recording a signal generated 
by the scanner that marks each image acquisition. The technique can be imple-
mented in real time (Allen et al. 2000).

The averaging procedures implemented in different algorithms differ with 
respect to the number and selection of averaging epochs and their weighting. In the 
original implementation, the template consisted of a weighted sliding average of 
artefact epochs to account for possible changes of the artefact waveform over time 
and to account for a level of timing error and used adaptive noise cancellation 
(ANC) to further reduce residual image acquisition artefacts (Allen et al. 2000). A 
least mean square (LMS) algorithm could be used to adjust the weights of the ANC 
filter. This approach, however, needed a high sampling frequency, and some unsat-
isfactory results were obtained, even at sampling rates of 10 kHz (Niazy et al. 2005).

The Vision Analyzer algorithm (V.1.05.0002, BrainProducts, Munich, Germany) 
offers three different methods of template estimation: (1) all epochs, (2) a sliding 
average of a certain number of epochs and (3) a predefined number of initial scan 
epochs plus subsequent epochs exceeding a predefined cross-correlation with the 
initial template. Instead of a specific scanner-generated signal, epochs can be identi-
fied by searching for steep gradients or high amplitudes in the EEG exceeding a 
defined threshold. Recently, we have introduced a modified approach for dynamic 
template estimation where artefact epochs in the template are weighted according to 
a Fourier spectrum-based similarity measure. This approach allowed the recovery of 
ultrahigh-frequency EEG signatures with amplitudes in the nanovolt range even 
during image acquisition periods (Freyer et al. 2009).

Image acquisition artefact template subtraction has been successfully adopted 
for the reconstruction of spontaneous EEG signatures such as alpha rhythm 
(Goncalves et al. 2005; Laufs et al. 2003; Moosmann et al. 2003), Rolandic rhythms 
(Ritter et al. 2008b) and epileptic activity (Benar et al. 2003; Salek-Haddadi et al. 
2002, 2003) and evoked potentials in the visual (Becker et al. 2005) and somatosen-
sory system (Schubert et al. 2008).

As noted in the previous section (on synchronisation), the quality of artefact 
removal by template subtraction depends on the assumption of a stationary arte-
fact, which is best satisfied when using synchronised systems (Fig.  9.3c) and 
when the exact TR of the MR sequence is a multiple of the sampling rate of the 
EEG. Jitter between EEG sampling and MR acquisition results in greater residual 
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artefacts following imaging artefact reduction (IAR), which are particularly 
prominent in the frequency spectrum approximately above 50 Hz (Figs. 9.3c, d 
and 9.6c). Low-pass filtering (cut-off around 50 and 80 Hz) can reduce residual 
artefacts. Although physiological signals above the cut-off frequency are removed 
by this procedure too, it can still be useful for the visual evaluation of the low-
frequency EEG.

An alternative to the IAR method based on the frame-by-frame identification of 
the artefact uses an adaptive finite impulse response (FIR) filter (Wan et al. 2006). 
This method also assumes that the image acquisition artefacts are temporally sta-
tionary, except for a small frame-by-frame time shift. Using a Taylor expansion 
based on the average artefact waveform, the time-shifted image acquisition artefact 
of each frame was estimated using the average artefact waveform and its derivatives 
by LMS fitting. The algorithm outperformed simple average artefact template sub-
traction, which equals a zeroth-order FIR filter, but was not compared to artefact 
template subtraction combined with timing error correction.

An alternative to average artefact template subtraction, but one that is closely 
related to it, is based on online subtraction of a model of the image acquisition arte-
fact that is estimated prior to EEG recording and subsequently fitted to the ongoing 
EEG for subtraction (Garreffa et al. 2003). A commercial software solution is also 
available for real-time imaging artefact correction based on gradient template sub-
traction and template drift compensation (TDC) (Vision RecView, MRI correction 
module, BrainProducts, Munich, Germany). In this case, synchronised EEG–fMRI 
is highly beneficial.

9.5.2  Computing and Correcting Timing Errors

Since image acquisition artefacts contain higher frequencies than the EEG sampling 
rate, timing errors can lead to considerable changes of the image acquisition artefact 
waveform in unsynchronised acquisitions. Therefore, timing errors must be consid-
ered in the calculation of the average artefact template and in subsequent template 
subtraction to achieve adequate artefact reduction.

One method is to divide data into epochs, each containing an MRI volume or 
scan acquisition period. The epochs are then interpolated (usually by a sinc function 
with a factor of 10–15) and subsequently aligned by maximising the cross- 
correlation to a reference period. After adjusting, epochs are downsampled to the 
original sampling frequency and subsequently averaged to calculate an artefact tem-
plate (Allen et al. 2000; Negishi et al. 2004).

Another method relies on the calculation of multiple image acquisition artefact 
templates, each representing another waveform of the artefact (Benar et al. 2003). 
This algorithm is implemented in the Vision Analyzer (V.1.05.0004), providing so- 
called template drift detection (TDD) and subsequent TDC. Using the drift informa-
tion provided by TDD, different average artefact templates are calculated. Each 
individual artefact is assigned to one template. Artefact correction is then obtained 
by subtracting the corresponding template from the respective artefact epoch.
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Figure 9.6a, b shows two cases of unsynchronised EEG–fMRI acquisitions that 
require different strategies for optimal artefact correction. Figure 9.6a shows an EEG 
recorded during fMRI with a temporally stable sequence and with a TR that is an 
integer multiple of the EEG sampling time. In this case of periodically changing arte-
fact waveforms, an efficient correction would be to bin the observed types of artefact 
waveforms and then perform selective template calculation and subtraction. 
Interpolation of artefact periods would not eliminate the systematic differences 
between successive periods. Figure  9.6b depicts unsynchronised EEG acquisition 
during an fMRI sequence that was neither temporally stable nor an integer multiple of 
the EEG sampling interval. This case would benefit from the interpolation of artefact 
epochs rather than from binning, due to the large inter-artefact waveform variability.

9.5.3  Temporal Principal Component Analysis

Violations of the stationarity assumption can occur independent of the degree of 
EEG and fMRI acquisition due to electrode movement in relation to the gradient 
coil and RF antenna, leading to a degradation in artefact template subtraction 
performance.

Negishi and colleagues proposed the application of temporal principal compo-
nent analysis (PCA) to each EEG channel independently in order to remove residual 
artefacts (Negishi et  al. 2004). Temporal PCA utilises the differential statistical 
characteristics of the variance of EEG epochs during and in-between scan acquisi-
tions, yielding results similar to those obtained using IAR  +  ANC (Negishi 
et al. 2004).

The method called fMRI artefact slice template removal (FASTR) employs both 
artefact template subtraction and temporal PCA (Niazy et al. 2005). Again, slice- 
specific artefact templates are constructed as the local moving average plus a linear 
combination of basis functions describing the variation of residuals. The basis func-
tions are derived by performing temporal PCA on the artefact residuals and select-
ing the dominant components to serve as a basis set. Finally, imaging artefact 
residuals are removed by an ANC filter (see below). This algorithm has been suc-
cessfully applied in a continuous EEG–fMRI study of laser-evoked responses at 3 T 
(Iannetti et al. 2005). When the EEG signature of interest is of very high frequency, 
the beneficial outcome of a PCA-based post-processing can be further enhanced by 
employing a band-specific PCA in the high-frequency band in addition to the PCA 
on the broadband EEG. This cascaded PCA post-processing enables the recovery of 
ultrafast EEG signatures, which were otherwise obscured by imaging artefact resid-
uals (Freyer et al. 2009).

9.5.4  Independent Component Analysis

Another approach to imaging artefact correction is independent component analysis 
(ICA) in addition to artefact template subtraction (Mantini et al. 2007). ICA is a 
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signal processing technique that recovers independent sources from a set of simul-
taneously recorded signals that result from a linear mixing of the source signals 
(Hyvarinen 1999; Mantini et al. 2007). Since EEG and image acquisition artefacts 
are generated by different independent processes and are therefore uncorrelated, 
ICA seems to be an appropriate approach. Mantini and colleagues categorised the 
ICA sources into two signal categories: brain signals and artefacts. This was done 
by visual inspection or in an automated approach by correlation to reference signals. 
Only sources classified as nonartificial were back-projected and used for further 
analysis. This approach proved to be capable of not only removing residual image 
acquisition artefacts but also ballistocardiogram and ocular artefacts.

Grouiller et  al. (2007) compared an ICA-based imaging artefact removal 
approach to three other fundamental approaches to imaging artefact correction: IAR 
(Allen et al. 2000), FMRIB (Niazy et al. 2005) and Fourier transform (FT) filtering 
(Hoffmann et al. 2000). They used the implementation of the infomax ICA algo-
rithm in the EEGLAB toolbox (Computational Neurobiology Laboratory, Salk 
Institute, La Jolla, CA, USA: http://www.sccn.ucsd.edu/eeglab/) (Bell and 
Sejnowski 1995). The authors selected the components that were correlated with the 
imaging artefact template. Selected components had a normalised cross-correlation 
coefficient higher than the average plus one standard deviation of that coefficient 
computed for all the components. The components representing image acquisition 
artefacts were excluded from the EEG reconstruction. Results for the performance 
of ICA, however, differed between simulations and real data (for details, see Sect. 
9.6). Results obtained by Grouiller et al. (2007) indicate that ICA may not be appli-
cable for efficiently estimating independent components in long time series of EEG 
data. A theoretical reason for this may be the spatial nonstationarity of the EEG and 
(especially) of the imaging artefact signal.

9.5.5  Filtering in the Frequency Domain

Image acquisition artefacts are periodic and distributed over a limited range of fre-
quencies, suggesting that correction may be performed satisfactorily on the fre-
quency domain. One such method is based on the comparison of the spectral content 
of EEG data acquired with and without simultaneous MR acquisition. The Fourier 
components of the signal corresponding to the MR-specific frequencies are set to 
zero for subsequent reprojection in signal space (Hoffmann et al. 2000). This algo-
rithm was implemented in the FEMR programme provided by Schwarzer (Munich, 
Germany). The disadvantage of this method is that, due to a spectral overlap between 
the physiological EEG and image acquisition artefacts, some of the physiological 
EEG signal is removed as well. The method is characterised by ringing artefact 
(Benar et  al. 2003), which results from discontinuities (e.g. gaps between scan 
acquisitions in interleaved EEG–fMRI) in the signals to be corrected. A similar 
approach relies on channel-wise subtraction of an average gradient artefact power 
spectrum—adapted by a scaling factor to the spectrum of the individual artefact—
from the power spectrum of the artefact-distorted EEG (Sijbers et al. 1999). To filter 
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image acquisition artefacts in the frequency domain, one group (Grouiller et  al. 
2007) first calculated the FT of the imaging artefact template. Then, weights were 
applied to the spectral components of the FT of the EEG. For spectral components 
of the artefact afflicted EEG corresponding to strong spectral components in the 
artefact template, spectral filtering weights were set to the inverse. Thus, coeffi-
cients corresponding to the image acquisition artefact were attenuated. To obtain the 
corrected EEG, the inverse FT was applied. Grouiller et al. (2007) reported weight-
ing coefficients to be inversely proportional to FT coefficients of the artefacts 
instead of zeroing them (Hoffmann et al. 2000), improved signal preservation and 
reduced ringing.

9.5.6  Between Prevention and Correction: Prospective Motion 
Correction and EEG Artefacts

Various prospective motion correction techniques are available to limit the impact 
of subject motion on MR image quality (Ordidge et al. 1994; Gallichan et al. 2016), 
with implications for EEG data quality, in particular due to variations in the image 
acquisition parameters which could undermine the assumptions of some correction 
methods such as those that rely on template artefact subtraction (Maziero et  al. 
2016). See Sect. 10.3 of Chap. 10 for further discussion of this issue.

9.6  Evaluation of Correction Methods

To date, artefact correction performance evaluation has not been performed consis-
tently. In many EEG–fMRI studies, a single algorithm is chosen without proper 
justification, and often the quality of gradient artefact correction is assessed by 
visual inspection only. However, a more systematic approach to the choice of cor-
rection method may be advised for certain applications, such as the analysis of sin-
gle events and nonaveraged EEG data, when residual artefacts do not cancel out, or 
those that rely on the quantitation of EEG power in certain spectral bands. The task 
of selecting a suitable correction algorithm would be greatly facilitated by stan-
dardising their evaluation and carefully considering the experimental requirements 
in terms of the EEG–fMRI protocol and features of the signal of interest (spectral 
signature, amplitude). In the following, we describe the main evaluation strategies 
employed to date.

Knowledge of the true signal is highly advantageous for the evaluation of signal 
filtering methods. This can be obtained in tests on phantoms and using signals gen-
erated by instruments offering the opportunity to assess both signal preservation and 
artefact reduction (Negishi et al. 2004; Schmid et al. 2006). Simulations have also 
been employed in which artificially generated signals (e.g. those extracted from 
recordings made under the control condition or simulated mathematically) are 
added to true artefacts (Allen et al. 2000; Grouiller et al. 2007). The main disadvan-
tage of this approach is a lack of realism, in terms of the complexity of true 
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physiological signals, noise, subject movement and intersubject and inter-recording 
variability.

For tests based on real EEG, EEG recorded outside the MR environment should 
constitute the best gold standard. However, the specific evaluation of image acquisi-
tion artefact reduction methods can be performed adequately from signals recorded 
inside the scanner to compare signals captured without scanning (reference) and 
with scanning (and correction). For example, Allen et  al. compared the signal’s 
spectral content using this approach (Allen et al. 2000). In theory, a drawback of this 
approach is a lack of knowledge of the true EEG signal, in part due to the additional 
effects of the pulse artefact but also the sequential nature of the samples used for 
comparison. On the other hand, image acquisition artefact correction method per-
formance evaluations based on signals recorded exclusively inside the scanner have 
the advantage that the pulse artefact is a common factor. Nonetheless, sequential 
measurements under the two experimental conditions may be particularly problem-
atic for signals of interest with a high intrinsic variability, such as brain rhythms or 
epileptic discharges, but are possibly less so for evoked responses, where reproduc-
ible neuronal signals are more likely, although this bias can be reduced through 
adequate sampling.

Benar et  al. (2003) compared Fourier filtering and template subtraction using 
EEGs obtained from patients with epilepsy, which were inspected by a trained 
observer after the application of both artefact correction methods. Visual subtrac-
tion was found to result in higher EEG quality than Fourier filtering.

Different gradient artefact correction algorithms based on the approach of tem-
plate artefact subtraction were evaluated on data recorded with an unsynchronised 
EEG–fMRI setup using a visual stimulus presented to subjects at rest (Ritter et al. 
2007). In this study, a combination of the following analyses was employed for 
performance estimation: (1) the degree of artefact reduction was evaluated by com-
paring the spectral content of the corrected data to that of gradient artefact-free EEG 
epochs for six predefined frequency bands ranging from theta to omega (1–250 Hz); 
(2) the preservation of non-gradient artefact components of the EEG after correction 
was evaluated twofold—by comparing the spectral content of non-acquisition EEG 
epochs before and after gradient artefact correction for the six predefined frequency 
bands and by exploring the impact of artefact correction on artificially generated 
signals added to the EEG. The study demonstrated that the amount of artefact reduc-
tion and the degree of physiological signal preservation are important complemen-
tary performance measures.

Another approach to the comparison of different artefact correction algorithms 
was based on the generation of artificial EEG and artificial image acquisition arte-
facts by a simple forward model (Grouiller et al. 2007). Modulations of the imaging 
artefact amplitude caused by subject motion and MRI and EEG clock asynchrony—
which are typical of unsynchronised EEG-MRI setups—in combination with differ-
ent EEG sampling rates were implemented in the model. The advantages of this 
approach include as follows: it allows the effects of different experimental or empir-
ical parameters to be tested, knowledge of ground truth. The same group also evalu-
ated artefact correction in real EEG data. To this end, after artefact correction, they 
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calculated correlation coefficients between the alpha power modulated by an eyes- 
open/eyes-closed paradigm and the task function and also correlation coefficients 
between interictal spikes acquired inside and outside the scanner. For the simulated 
data, the authors found that the ICA algorithm was the method that presented by far 
the best average results, although with a high-performance variability, indicating 
that this approach might be unstable. FASTR and IAR were approximately equiva-
lent and FT performed significantly less well. For the real data, the IAR and FASTR 
algorithms obtained the best results. There was considerable discrepancy between 
the results obtained from simulations and from experimental data for the ICA 
approach, indicating a possible weakness of the modelling.

The authors assessed the effect of artefact correction on the fMRI results by 
comparing statistical parametric maps obtained from models based on alpha power 
with and without imaging artefact correction (Fig. 9.8). “…the discussed repertoire 
of available hardware and software solutions enables satisfying imaging-artefact 
correction. However, individual results can vary and therefore a continuous critical 
re-evaluation of results is necessary to ensure reasonable data quality”.

We note that the advent of multiband fMRI (MB-fMRI) has not posed a substan-
tial EEG data quality challenge using the template subtraction artefact correction 
method (Foged et  al. 2017; Kyathanahally et  al. 2017; Uji et  al. 2018; Chen 
et al. 2020).

Recently, a MATLAB-based tool with a graphical user interface (GUI) has been 
published that allows for quantitative analyses of EEG and fMRI data features col-
lected under different conditions, that is, separately or simultaneously and inside or 
outside the scanner (Schrooten et al. 2019). Such an approach may be useful for 
investigators interested in effects that do not absolutely necessitate simultaneous 
recordings, such as those that can be reliably reproduced across separate unimodal 
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sessions (in contrast to spontaneous phenomena such as interictal epileptic dis-
charges that can only be detected on EEG, for example, or indeed the multimodal 
variability of individual responses to a reproducible stimulus) considering the wis-
dom, that is, potential added value of performed synchronous EEG-fMRI recordings.
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10Image Quality Issues

David Carmichael

10.1  fMRI Pulse Sequences

The requirement of a fMRI pulse sequence is BOLD sensitivity, which means pre-
dominantly T2*-weighted1 sequences such as GE-EPI, although spin echo sequences 
such as spin echo EPI (SE-EPI) can also be used (Bandettini et al. 1994; Norris et al. 
2002; Schmidt et al. 2005).

SE-EPI suffers from reduced volume coverage relative to GE-EPI due to the 
longer echo times required and generally shows smaller signal changes (Bandettini 
et al. 1994; Schmidt et al. 2005). Spin echo sequences do not suffer from signal 
dropout and therefore perform much better in areas of large through-plane suscep-
tibility gradients (Norris et al. 2002). There is mixed opinion as to whether or in 
which parts of the brain spin echo sequences may be advantageous (Parkes et al. 
2005; Schmidt et al. 2005), but they are likely to be most usefully employed at field 
strengths of >3 T (Duong et al. 2002; Nair and Duong 2004; Koopmans et al. 2012), 
where they are considered to be more spatially specific because larger veins (which 
are displaced from the active region) contribute little to the fMRI signal. However, 
despite the increased availability of ultra-high-field 7T MRI systems, GE-EPI is still 
the most frequently used pulse sequence. Some considerable research has recently 
been devoted to using steady-state free precession sequences for fMRI (Miller et al. 
2003, 2004, 2006; Zhong et al. 2007). While these sequences have shown promise, 
they are generally employed for niche applications (Miller et al. 2006). It is also 
worth noting that hybrid approaches using spin and gradient echoes such as GRASE 

1 The transverse relaxation time including a contribution from slowly changing or constant back-
ground magnetic fields.
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(Feinberg et al. 1995; Fernandez-Seara et al. 2005) are also capable of being used to 
obtain high-quality fMRI data.

The most significant recent alteration to fMRI data acquisition is the combination 
of now readily available high-density RF receiver coils; these can be used in combi-
nation with simultaneous multi-slice (SMS) excitation (Larkman et al. 2001; Nunes 
et al. 2006; Setsompop et al. 2012). In this approach, a modified RF pulse is used so 
that after each excitation pulse, data from a number of slices (the SMS factor) are 
obtained. This means that each raw image (one for each receiver coil) has slices 
overlaid or aliased together. Each coil has a different weighting of signal from differ-
ent slices owing to their differing spatial sensitivity in the slice direction. Image 
reconstruction, given knowledge of this coil spatial sensitivity, can then be used to 
reassign signal to the correct slice. To enhance this method, an additional gradient in 
the slice direction is typically employed that spatially offsets each slice image 
(Setsompop et al. 2012) as shown in Fig. 10.1. This approach has the advantage of 
reducing the sequence TR or increasing the slice coverage or reducing the slice thick-
ness allowing these parameters to be optimised for different applications. This has 
now become widely available and has been used in large-scale projects such as the 
human connectome (Uğurbil et al. 2013). The advantage of SMS is that the excita-
tion of more of the sample for each period of data acquisition means there is not an 
intrinsic SNR penalty (in contrast to in-plane parallel imaging). However, noise can 
be enhanced particularly when more slices are excited together and therefore have a 
greater degree of signal aliasing (more slices signal is mixed) that must be disentan-
gled using the available variability in RF receiver coil sensitivity. This can cause 
noise enhancement and the mixing of signal from different slices leading to the pos-
sibility of measured signal changes in slices obtained in the same readout but that are 
remote from the active brain area (Todd et al. 2016). Recent work has shown that for 
individual fMRI results (McDowell and Carmichael 2018; Sahib et al. 2016) and 
group studies (Todd et al. 2016), SMS factors of 4 or more used to reduce the TR are 
not beneficial. A possible exception is for certain resting-state acquisitions (Hutter 
et al. 2018); this will be discussed further in the physiological noise section.

Three-dimensional echo-planar imaging also termed echo volume imaging (EVI) 
has also been the subject of renewed interest in part owing to the increased sophis-
tication of image acquisition and reconstruction methodology (e.g. Kirilina et al. 
2016; Poser et al. 2010). In EVI, the entire object is excited and spatial encoding is 
achieved via gradients in a single long echo train. For practical reasons, it is typi-
cally not possible, or desirable, to obtain all of the data in a single long readout 
owing to signal decay and strong sensitivity to distortions (described in a later sec-
tion). Therefore, the entire object is excited but the data readout is segmented into 
several parts with different spatial encoding. This data then has to be put back 
together, and it is this process that is very sensitive to phase errors that can be intro-
duced by subject motion, physiological noise or scanner instabilities (Lutti et al. 
2013). It is also worth noting that conceptually at high SMS factors, the sequence 
becomes more like EVI as a larger proportion of the object is imaged in each read-
out, with the key difference being that the data acquisition and reconstruction are in 
the spatial domain for SMS rather than signal or k-space domain for segmented 3D 
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Fig. 10.1 (a–c) Standard blipped Cartesian EPI pulse sequence and corresponding k-space trajec-
tory. The blipped EPI pulse sequence is shown (a); the standard encoding scheme for 2D EPI is 
shown. On the bottom line, the adjustments used for SMS are shown with a multi-slice RF excita-
tion and additional gradients that cause the slices to be offset. In this example, the additional gradi-
ent blips in the slice direction will cause a relative shift for each slice of one-third of the field of 
view. On the top line is the RF showing the slice-selective excitation pulse followed by a series of 
gradient echoes. Each of the gradient echoes is formed by a readout gradient of opposite polarity. 
Additionally, for each gradient reversal, a different phase encode line is readout by the application 
of a phase-encoding gradient during the read gradient reversal. ADC is the analogue-to-digital 
converter that is switched on to record the signal. At the bottom, modifications of the RF and Gz 
gradients for SMS with blipped-CAIPI are shown. (b) The k-space trajectory is shown; the posi-
tion in k-space is determined by the gradient area. The colour of the gradient corresponds to the 
k-space trajectory. Initially, the grey gradients take us to the k-space corner, and then the readout 
gradient alternately traverses from right to left while the phase-encoding blips make the jumps 
from top to bottom at the end of each readout gradient. It is worth noting that the order that k-space 
is acquired in the phase-encoding direction can be reversed (here the blips are negative), and this 
will alter the distortion (see Fig. 10.3 and consider the effect on the k-space trajectory of opposite- 
sign phase-encoding blips). (c) Alternate lines of data are reversed in direction prior to reconstruc-
tion. This effectively means that each line of k-space data should look as if it has been obtained 
under the same polarity of gradient (otherwise each line appears as if time was reversed). Any 
mismatch between positive and negative gradients creates a mismatch along the Ky direction in 
alternate lines and causes an N/2 ghost

echo-planar imaging (Stirnberg et  al. 2017). An extreme version of the use of 
receiver coils to encode spatial position has also been developed and used for EEG- 
fMRI (Jacobs et al. 2014) where spatial encoding is only used in the readout direc-
tion and encoding in the other directions is entirely performed by the receiver coils 
(Zahneisen et al. 2011).
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A final option for the fMRI pulse sequence worthy of consideration is to utilise 
a multi-echo readout. Here, after each excitation multiple images are obtained of the 
same slice. This will extend the time taken to image a slice leading to a long TR; 
however, it is also compatible with SMS that can be used to maintain the desired TR 
and temporal sampling. The main benefit of a multi-echo fMRI sequence is that it 
allows for noise and signal components to be separated. This is achieved by examin-
ing the signal change in each voxel obtained at each echo time. The fMRI signal is 
mediated by the exponential decay defined by the T2*, whereas many noise sources 
cause an alteration of signal that is constant at each echo. Therefore, by fitting the 
multiple echo data to obtain a map of T2* at each time point for subsequent analy-
sis, the effects of noise on these maps can be strongly attenuated as compared to the 
T2*-weighted images themselves (Kundu et al. 2017).

10.2  GE-EPI

The sequence of choice for most fMRI applications is GE-EPI, due to its high speed 
and a high signal-to-noise ratio (SNR) per unit time. An image can typically be 
obtained in 20–50 ms using modern hardware, giving whole brain coverage in 2–4 
s (Schmitt et al. 1998; Mansfield 1977; Ordidge 1999; Turner and Ordidge 2000). 
With SMS, this whole brain coverage can be achieved in as little as a few hundred 
milliseconds.

In the following section, we will restrict our discussion to Cartesian k-space 
trajectory EPI because it is the most frequently used and generally offers highly 
competitive performance in terms of speed and artefact level. Other k-space trajec-
tories commonly used for EPI include spirals where both read and phase-encoding 
gradients are equivalent in pulse shape and amplitude but offset in phase and oscil-
late in a sinusoidal manner (Ahn et al. 1986; Glover and Law 2001; Preston et al. 
2004; Sangill et al. 2006). This can reduce image distortion, for example, due to 
faster traversal of k-space (especially compared to the phase-encoding direction of 
Cartesian EPI), but may not necessarily yield an overall increase in performance 
over the whole brain (Block and Frahm 2005).

An EPI sequence diagram is shown in Fig. 10.1. A gradient echo is formed when 
the transverse magnetisation is dephased and then rephased by linear magnetic field 
gradients alone (unlike a spin echo). The EPI experiment involves a single RF exci-
tation pulse followed by a train of these echoes that are read out by applying a series 
of gradients with equal areas and opposite magnitude. Each echo has a different net 
phase-encoding gradient due to the extra gradients (blips) applied between the read-
out gradient reversals (Wielopolski et  al. 1998). In EPI, all of the PE steps are 
acquired in one TR, making it a fast technique. This implementation of EPI is 
termed ‘single shot’ because it requires only one RF excitation of the magnetisation 
to obtain an entire image data set.

The echo time (TE) is centred on the middle PE step, where the net phase- encoding 
gradient is zero. It is clear that as each echo is at a different position in time, the magne-
tisation will have experienced different amounts of dephasing from any local magnetic 
field differences. These are caused by interfaces between materials of different magnetic 
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susceptibility, such as the head and air. Any inconsistency between successive echoes, 
obtained at different times, has associated problems that will be discussed at greater 
length later. EPI can suffer from a number of other problems that are directly related to 
its strategy of full k-space coverage in a single shot. EPI readouts are naturally longer 
than for other pulse sequences, because a greater distance through k-space must be trav-
elled in one go (see Fig. 10.1). This is why 3D echo-planar sequences are split into seg-
ments. Additional problems are associated with having reversed the direction travelled 
through k-space in alternate lines (see Schmitt et al. 1998 for an additional description 
of EPI artefacts and their causes). Here, we first look to explain the most common 
sources of EPI artefact in a qualitative manner, and we describe the range of methods 
available to moderate their effects before going on to determine how the addition of 
EEG equipment may exacerbate these image quality issues.

10.2.1  Image Blurring

Blurring of image detail occurs because of T2*-/T2-related signal decay over the 
length of the acquisition (i.e. not all points in k-space are sampled at the same effec-
tive TE). For EPI, the large time difference between adjacent k-space data points, 
particularly in the phase-encoding direction, causes greater signal decay and thus 
increased blurring. This can be thought of as the effective application of a filter in 
k-space described by the signal decay during the readout with the blurring caused in 
the image described by the Fourier transform of this filter, which is called the point 
spread function (PSF) (see Fig. 10.2). In the tissue with a shorter T2*, due to stron-
ger local susceptibility-related magnetic fields that are increased by utilising higher 
main magnetic field strengths, this problem is increased. Blurring will thus also be 
increased where stronger local susceptibility-related magnetic fields are produced 
by EEG equipment. Reduced blurring is achieved by shorter readout lengths or 
higher-resolution images without increased readout duration. Methods to shorten 
readouts include multishot segmented EPI (Menon et al. 1997; Wielopolski et al. 
1998), related pulse sequences that split the readout into shorter segments without 
requiring multishots (Bornert and Jensen 1994; Carmichael et al. 2005; Feinberg 
et al. 2002; Priest et al. 2004; Rzedzian 1987) and parallel imaging (PI) methods 
(Carlson and Minemura 1993; Griswold et  al. 2002; Hutchinson and Raff 1988; 
Pruessmann et  al. 1999; Sodickson and Manning 1997). Alternatively, improved 
shimming (Cusack et al. 2005; Gruetter 1993; Gruetter and Tkac 2000; Mackenzie 
et al. 1987; van Gelderen et al. 2007; Ward et al. 2002; Wilson et al. 2003; Wilson 
and Jezzard 2003) can also locally decrease blurring by increasing local field homo-
geneity. In most fMRI experiments, including EEG-fMRI, blurring is not a primary 
consideration for pulse sequence optimisation. This is due to the usual spatial extent 
of activation exceeding the voxel size and because the optimisation of SNR, tempo-
ral resolution and image dropout is usually more critical. However, it is important to 
remember that the resolution is degraded, especially in the phase-encoding direc-
tion in GE-EPI, and in some cases where small structures are interrogated—such as 
high-resolution mapping of cortical columns within visual areas—some minimisa-
tion of blurring may be beneficial.
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Fig. 10.2 Blurring in EPI images. Due to the properties of the Fourier transform, we can sepa-
rately consider each of the different components that modulate the underlying k-space signal pro-
duced by an object (which are all multiplied together in actual data). Each of these components can 
be thought of as a filter. The effect seen in the image is blurring from a convolution of the object 
by the Fourier transform of each k-space filter. There is a large amount of signal decay during the 
long EPI readout (top), which can thus be considered independently of other signal modulations 
(e.g. those imposed by imaging gradients or the object itself). When the data is reordered in 
k-space, the signal decay makes a 2D function in k-space that is an effective filter, as shown in the 
bottom left. The Fourier transform of this filter determines the point spread function, which 
describes the blurring of the data from each voxel

10.2.2  Geometric Distortion

Due to the time difference between the acquisitions of adjacent k-space data points 
in the phase-encoding direction (or correspondingly the low (PE) bandwidth, which 
is simply the reciprocal), local magnetic field perturbations from various sources 
(Jezzard and Clare 1999; Wielopolski et al. 1998) have the time to cause significant 
local phase accumulation relative to that produced by the phase-encoding gradients 
(i.e. the local magnetic field gradient area is large relative to the size of the phase- 
encoding blips). This causes an apparent shift in the data from the local position in 
the image, with the shift in position proportional to the size of the local difference 
in the local static magnetic field (B0) (Jezzard and Balaban 1995). In addition to a 
simple shift of data from one position to another, data from one position may be 
stretched over a larger area or squashed into a smaller area. In Fig. 10.3, the process 
is described in terms of k-space coverage. At different positions within the brain, 
there is a local magnetic field gradient that has an additive effect, positive or 
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Fig. 10.3 Distortion in EPI images. When an extra local in-plane gradient is present in the phase- 
encoding direction due to susceptibility artefacts, the effective local k-space trajectory is altered. If 
the local gradient adds to the PE blips (as on the left), then the distance between the lines and 
k-space area covered is increased, and this will cause the data to be spread over a larger area. This 
will make the local image data appear stretched. Alternatively, if local gradients have opposite 
polarity to the PE blips (as on the right), the k-space trajectory has less distance between the lines 
and covers a smaller area, and so the local image data will appear squashed. Field map-based dis-
tortion correction is shown at the bottom. The field map was obtained using a standard gradient 
echo sequence and two complex images at different echo times, which were masked, phase 
unwrapped and smoothed. This can be converted into units of displacement (here in voxels), and 
then the EPI image can be unwarped using the voxel displacement. This improves the match to the 
anatomical image that does not suffer from distortion
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negative, on the phase-encoding gradients. This can be conceptualised as causing a 
different k-space trajectory for magnetisation at a different spatial position. In one 
spatial position, the phase encoding (Ky) covers a greater effective k-space area and 
the lines are further apart. This corresponds to squeezing the data into a smaller 
area. Alternatively, the lines are forced closer together, with the effect of stretching 
the data in the image. Distortion will be increased where stronger local susceptibility- 
related magnetic fields are produced by EEG equipment and are also increased with 
the magnetic field strength of the scanner.

The simplest method of reducing distortion is to shorten the time between the 
phase-encoding blips by switching the read gradients faster and with greater ampli-
tude, thereby requiring an increased readout bandwidth (with a concomitant reduc-
tion in SNR). This corresponds to reducing the time taken to travel through the 
k-space trajectory in Fig. 10.1. Unfortunately, the rate and maximum amplitude of 
the read gradient switching is limited by physiological constraints; rapidly varying 
magnetic fields can induce currents in nerves large enough to cause stimulation 
(Cohen et al. 1990; Mansfield and Harvey 1993). In addition, the desired gradient 
waveform is only accurately produced when both its amplitude and switching rate lie 
within certain limits. Therefore, one option that is available is to reduce the number 
and increase the size of the phase-encoding steps in the acquisition window, neces-
sitating the recovery of a full set of image information by some other means. There 
are a number of different techniques that are used to perform this function, and they 
can be classified into two approaches. First, there is interleaved segmented EPI (Butts 
et al. 1994; Hennel and Nedelec 1995) (for two segments, every other line of the 
standard k-space coverage is read out, and then the remaining lines are read out in a 
separate acquisition), although this entails a penalty in temporal resolution that 
would be unacceptable for many fMRI applications. Various strategies have been 
suggested to read out the segments consecutively. One of the simplest is to use a 45° 
RF pulse and acquisition followed directly by a 90° RF pulse and acquisition 
(Rzedzian 1987) or to take pairs of images with different spatial profiles imposed and 
then reconstruct the data (Carmichael et al. 2005; Feinberg et al. 2002; Priest et al. 
2004). The second approach uses differing degrees of prior information to recreate 
full images from reduced data sets. Partial Fourier methods that exploit the conjugate 
symmetry of k-space have been used (Feinberg et al. 1986), but they do not always 
significantly reduce distortion and can introduce increased blurring. Methods, col-
lectively known as parallel imaging (PI), have allowed a considerable increase in 
acquisition speed in-plane as opposed to in the slice direction (Carlson and Minemura 
1993; Hutchinson and Raff 1988; Pruessmann et al. 1999; Sodickson and Manning 
1997). These all rely on the parallel use of receiver coils with different spatially vary-
ing sensitivities. Some calibration of the sensitivity functions of these coils gives 
information that is complementary to standard Fourier encoding. This allows a 
reduction in the density with which k-space must be sampled, reducing the distortion 
by the factor of speed-up (reduction in sampling density) employed in the PE direc-
tion. The penalty for all of these methods is a reduction in SNR and a potential 
increase in image reconstruction artefacts that can outweigh the benefits (Lutcke 
et al. 2006). Lastly, there are methods for correcting the distortion. These rely on 
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mapping the underlying B0 field, which means that the distortion can be spatially 
calibrated and corrected. Methods for B0 mapping are numerous (e.g. Gruetter and 
Tkac 2000; Lamberton et al. 2007; Mansfield 1984; Poser et al. 2006; Priest et al. 
2006), but most methods simply perform two scans at different TEs. The local phase 
difference between the images is proportional to the local magnetic field. The phase 
difference can then be translated into a pixel shift map to visualise and correct these 
distortions, as shown in Fig.  10.3 (Chen and Wyrwicz 1999; Hutton et  al. 2002; 
Jezzard and Balaban 1995; Munger et al. 2000; Reber et al. 1998; Schmithorst et al. 
2001; Zaitsev et al. 2004). The main limitation of this method is that information 
from regions where the data is squashed into a smaller area cannot be fully recov-
ered. This can be overcome if images are obtained with alternate directions for 
k-space traversal (in the PE direction), effectively switching the areas that are 
squashed to being stretched and vice versa (Morgan et  al. 2004; Weiskopf et  al. 
2005). However, differences between alternate volumes can be hard to eliminate, and 
an effective reduction in temporal resolution or volume coverage is likely. Distortions 
can still pose a problem for standard fMRI and EEG-fMRI studies, particularly when 
high structural fidelity is required, such as when fMRI is used to assist in presurgical 
mapping of eloquent cortex, or where presurgical EEG-fMRI results from epilepsy 
patients are evaluated against structural images obtained post-resection.

10.2.3  Signal Dropout

Dropout, like distortion, is due to strong local magnetic field gradients interfering 
with the image acquisition process. There are two related but distinct mechanisms 
by which signal dropout can occur. The primary mechanism is due to local fields 
across the slice (through the imaging plane). The local magnetic fields cause mag-
netisation at different positions across the slice width to produce signals with cor-
responding frequencies. These signals from different positions will, with time, 
accumulate differing phases and so cancel; the net effect is a more rapid signal 
decay (see Fig. 10.4). If the signal decays substantially before the centre of k-space 
has been traversed, where the main low-frequency components of the signal are 
encoded, the majority of the signal is not sampled, and so the region will appear 
dark. The second mechanism is dropout due to in-plane gradients; if the in-plane 
gradients are strong enough, they will alter the k-space trajectory (i.e. an extreme 
example of what we saw previously for distortion). For dropout to occur, the trajec-
tory must be altered radically such that the central region of k-space is not covered 
(see Fig. 10.4) (Deichmann et al. 2002, 2003; Weiskopf et al. 2006, 2007). It must 
also be remembered that in-plane gradients are still problematic even when dropout 
does not occur. This is because the effective TE (the point at which the centre of 
k-space is sampled) is shifted in time to earlier or later in the readout. An earlier TE 
will mean that there is strong signal but little BOLD contrast, whereas a later TE 
will have strong contrast but the signal will have decayed too much. Both in-plane 
and through-plane local susceptibility-related gradients can be increased where 
stronger magnetic fields are produced by EEG equipment.
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Fig. 10.4 Dropout in EPI images. Different mechanisms that cause signal dropout in EPI images 
are shown. An extra local gradient is present due to susceptibility artefacts (Gx′, Gy′ or Gz′). In the 
case of a local gradient Gz′ from one particular position, this causes faster T2* decay via through- 
plane dephasing, such that the signal has decayed before the centre of k-space has been sampled. 
Dropout can also occur when the local in-plane gradients Gx′ or Gy′ cause an alteration in the 
k-space trajectory such that the centre of k-space is not sampled. Note that even if the k-space 
centre is sampled, this will occur either much earlier or later in the echo train, leading to a greatly 
reduced BOLD sensitivity

There are a number of approaches that can be adopted to minimise dropout, pri-
marily concerned with through-slice effects. The first consideration is the TE; 
reducing the TE means that the centre of k-space will be covered sooner, before the 
signal has largely decayed, and so reduces dropout. However, the BOLD sensitivity 
is reduced with TE. The balance required is to minimise the TE without strongly 
reducing the BOLD sensitivity (Deichmann et al. 2002). At 1.5 T, this means that a 
TE of around 50 ms is typically used, shortening to around 30 ms at 3 T. Another 
initial very simple approach is to decrease the slice thickness, reducing the fre-
quency range across the slice, and hence the degree of phase dispersion that will 
occur (Frahm et al. 1993; Merboldt et al. 2000). Some penalty is incurred in terms 
of signal for well-shimmed areas (i.e. areas with a uniform local magnetic field) due 
to decreased voxel volume, whereas poorly shimmed areas will benefit from a large 
increase in signal. There is also a penalty in terms of volume coverage, although 
gaps between slices can be increased. The balance between these different factors 
will depend on the particular experiment, regions of primary interest, the sequence 
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and the scanner. It is in this context that SMS sequences have a distinct advantage 
because they allow for thinner slices to be obtained in the same TR and, at least with 
modest SMS factors (typically ≤3), there is not a large SNR penalty. Therefore, 
although SMS sequences are often used to reduce the TR to increase temporal sam-
pling, they are a very useful method to mitigate signal dropouts by reducing slice 
thickness while maintaining the TR and SNR.

In addition to making the slices thinner, the orientation of the slices can also 
be altered to minimise dropout (Cho et  al. 1988; Deichmann et  al. 2002; 
Weiskopf et al. 2006). Since the primary loss is due to gradients across the slice, 
by changing the slice tilt, the size of the local gradients perpendicular to the 
slice plane can be reduced. However, slice tilting is often used to reduce the size 
of in-plane gradients that are causing dropout or reduced BOLD sensitivity. The 
increased through-plane gradients are then compensated with a z-shim (dis-
cussed below).

In addition to optimising TE, slice thickness and slice tilt, significant dropout 
can still occur, particularly in orbitofrontal regions and the temporal poles 
(Deichmann et al. 2003). The local B0 gradients produced by putting a subject into 
the magnet field can be compensated for by using a pulse sequence with an addi-
tional preparatory gradient of opposite polarity but similar area, which is generally 
referred to as a z-shim (Constable and Spencer 1999; Frahm et al. 1988; Ordidge 
et al. 1994a). There are two main effects from utilising a z-shim. Firstly, in areas of 
the brain that are not affected by strong local gradients, the T2* is effectively 
increased, and so this can reduce the BOLD sensitivity when using the same TE 
sequence. This suggests that only a moderate z-shim can be used without a signifi-
cant penalty in sensitivity over much of the brain (Deichmann et  al. 2002). 
Secondly, in areas where the z-shim compensates for local gradients, a large 
improvement in dropout is achieved with a correspondingly large improvement in 
sensitivity to BOLD signal changes. Unfortunately, it is normally difficult to 
achieve a z-shim improvement in one area without a decrease of performance in 
another, and so the optimal choice of z-shim (and slice tilt combination) will 
depend on the regions of most interest for a particular study (Deichmann et  al. 
2002; Weiskopf et al. 2006, 2007). One way to achieve a more optimal z-shim for 
a greater range of areas is to use a multi-echo EPI readout (Poser et al. 2006). This 
means that images can be obtained at several different TEs and with different com-
pensation gradient polarities or directions. The images can then be combined very 
simply (e.g. by addition) or by a weighting scheme devised from calibrating BOLD 
sensitivity to maximise the benefits (Constable and Spencer 1999; Poser et  al. 
2006). There can be some cost in terms of the time taken to obtain the data from 
each slice, which in turn may reduce volume coverage, making a simple reduction 
in slice width an attractive and simpler choice. However, multi- echo EPI sequences 
have a very high ratio of data acquisition time over scan time and so can offer a 
very efficient alternative strategy. Dropout is often the greatest problem in both 
fMRI and EEG-fMRI studies. Dropouts can be made worse (or at least BOLD 
sensitivity may be reduced) where EEG equipment produces increased magnetic 
field inhomogeneity within the brain.
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10.2.4  Image Ghosting

In EPI, ghosting is normally produced by a mismatch between echoes formed by 
read gradients of opposite polarity. In Fig. 10.1, the process of reordering k-space is 
demonstrated; alternate lines are reversed (flipped about the origin) in order to have 
traversed k-space in the same direction for each line. Any inconsistency between 
lines acquired under positive- or negative-polarity gradients will cause an error in 
the image reconstruction (i.e. a flipped positive gradient line should be the same as 
a negative line if the phase encoding is the same). As alternate lines are affected, a 
ghost (a partial repeat of the image) will appear displaced in the phase-encoding 
direction by half the field of view. While this is often referred to as the ‘Nyquist 
ghost’, this is misleading as it is not a data undersampling error but a mismatch 
between alternate PE k-space lines, and thus the term N/2 ghost is more accurate. 
Gradient inconsistencies, eddy currents and susceptibility gradients can all contrib-
ute to this mismatch (Feinberg and Oshio 1994; Fischer and Ladebeck 1998; Reeder 
et al. 1997; Wan et al. 1997; Wielopolski et al. 1998). Ghosting can be affected by 
EEG equipment where susceptibility-related fields are responsible. Hardware 
improvements to increase gradient shape accuracy and reduce eddy currents, for 
example, or corrections to account for these inconsistencies can all reduce the arte-
fact level (Fischer and Ladebeck 1998). One method frequently employed to correct 
these mismatches in alternate lines is to employ a reference scan (or navigator echo) 
(Hu and Le 1996; Ordidge et al. 1994b; Wan et al. 1997). The echo train used for the 
EPI acquisition is performed without PE gradients. A series of echoes is formed that 
can alternately be reversed in time. Any shift in the TE between them (in k-space) 
will produce a corresponding linear phase shift in image space. This allows the 
phase of the Fourier-transformed echoes to be compared and the difference between 
them used to correct all subsequent acquisitions. A further improvement can often 
be made to ghosting performance if the actual k-space trajectory is measured (Duyn 
et al. 1998; Josephs et al. 2000). One key consideration for fMRI is the stability of 
the ghost, because temporal changes due to drift or correction of imaging hardware 
can lead to false-positive activation and a reduction in temporal SNR (TSNR) (see 
Sect. 10.4.1). Ghosting can still provide significant image artefacts, particularly at 
higher field strengths and where EEG equipment decreases magnetic field 
homogeneity.

10.2.5  RF Interference

MRI systems are specifically designed to be maximally sensitive to RF signals 
around a particular frequency called the Larmor frequency of the system. RF signals 
are highly prevalent, particularly in the typical environment of a scanner in a busy 
hospital or research laboratory surrounded by a wide range of electronic equipment. 
To record the relatively weak RF signals from the sample without any of these con-
founding signals from the local RF background, the magnet is placed within a 
Faraday cage. This is an enclosed conductive metal sheet or fine mesh that is 
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connected to earth, and when external static or electromagnetic radiation is incident 
on the cage, electric currents are generated (and dissipated via the earth) which nul-
lify the signal within the enclosed region. To make this approach effective, a good 
earth and complete enclosure of a room is required. This suggests an obvious weak-
ness of MRI systems: access in and out of the room is essential, necessitating a 
door; gradient and RF systems require connection through the cage. The two weak 
points of the Faraday cage are thus the door and filter panel. Typically, attenuation 
of RF to 100 dB is specified, although in practice this can be difficult to achieve. 
Finally, equipment for stimulus presentation, physiological monitoring or indeed 
EEG equipment within the scanner room requires extra consideration. Firstly, by 
introducing these extra active components within the cage, any RF or electrostatic 
discharges they may produce will cause interference and degrade image quality. 
Secondly, equipment with any kind of highly conductive wire or cable crossing 
from the outside to inside the cage (i.e. via a waveguide) is a potential route for RF 
to be brought into the room. A more detailed description of methods for addressing 
these issues is given in Chap. 7. RF interference is generally visible in one of two 
forms in images: an increase in the overall background noise in an image more eas-
ily quantified as a corresponding decrease in SNR, attributable to incoherent broad-
band RF, and/or spatially localised bright spots in the image, attributable to coherent 
RF at distinct frequencies, as in Fig. 10.8c. In most structural imaging, the RF, due 
to its (slice-independent) constant frequency, will appear at the same position on 
each slice. For EPI, this is somewhat complicated by the fact that each readout 
direction is reversed, resulting in the N/2 ghost of the RF artefact due to local phase 
inconsistencies. A repeat of the artefact in the readout direction is often produced. 
fMRI is particularly sensitive to RF interference because it causes a local fluctuation 
in the signal intensity, which can dramatically increase the temporal variance and 
thus severely affect sensitivity to activation. This may result in false-positive activa-
tion, particularly if any of the equipment is switched on during image acquisition. 
We address detection and monitoring of RF performance in more detail in 
Sect. 10.5.3.

10.3  Other Sources of Image Artefact in fMRI

10.3.1  Bulk Head Motion

The recorded EEG and fMRI time series are both highly sensitive to motion. The 
greatest effort should be put into minimising subject movement via better head 
restraint and increased comfort (Laufs et al. 2008). This is especially important 
for patient studies in general (Hamandi et al. 2004; Salek-Haddadi et al. 2003) 
and when recording the highly motion-sensitive EMG. The use of a vacuum head 
cushion (Benar et  al. 2003) has been found to minimise both motion-induced 
artefacts on the images and motion-induced currents contaminating the electro-
physiological signal. Additionally, bite bars, inflating cuffs and subject-specific 
moulded cushions are also used in some centres. The use of sedative agents to 
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suppress motion needs careful consideration, as ‘neuroactive’ substances can 
alter net synaptic activity in a region-specific manner and thus fMRI signal inten-
sity (Kleinschmidt et al. 1999). Under certain circumstances, sedation must be 
considered, such as when studying very young children with fMRI (Jacobs 
et al. 2007).

MRI motion correction via image realignment typically entails affine coregis-
tration and is normally effective at dealing with small differences in head position 
through a scan (Ashburner and Friston 2004); example traces can be seen in 
Fig. 10.5. However, it should be remembered that the effects of motion can last 
longer than the period of movement itself; for example, the effective TR seen by 
the tissue moved into a different slice will be different, leading to signal fluctua-
tions lasting for several TR periods (Friston et al. 1996). By including the motion 
realignment parameters, and preferably an expansion to take into account these 
extra effects, motion-related variance can be effectively modelled within general 
linear model (GLM) analyses (Friston et al. 1996; Lund et al. 2005). If large motion 

a b

c d

e f

Fig. 10.5 (a–f) Motion traces from an optical camera tracking system are shown. Large motion 
events are seen when the subjects are asked to cross their legs in the camera tracking data (a, b); 
this is partially represented in the motion estimates from the realignment parameters (c). With 
prospective motion correction (b, d, f), the motion is largely corrected resulting in relatively small 
deviations in the realignment parameters (d) and improved image quality (f)
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events occur, it is worth considering nulling their effects. Again, the preferred 
method is to include extra regressors (one for each large motion event) into the 
GLM to account for this variance (Lemieux et al. 2007; Salek-Haddadi et al. 2006) 
(as opposed to removal of data from the time series). Valuable data sets can often 
be recovered if motion effects are modelled sufficiently at the analysis stage 
(Lemieux et al. 2007).

There is a fundamental limitation with realignment-based motion correction 
algorithms in that it relies on the assumption that these parameters are accurately 
capturing motion events. This assumption is clearly broken in a number of situa-
tions such as movements that are faster than the frequency that can be captured by 
sampling rate such as sudden jerks or tremor; in Fig. 10.5, motion traces during leg 
crossing show discrepancies between the head motion and realignment parameters 
although they correctly capture the trend in the motion.

There are an increasing number of image-based post-processing algorithms that 
aim to extract noise components including motion directly from the data, and this 
is an extensive field of research. However, it is clear from a wide range of studies 
that extracting these parameters whether based on the bio-physiological plausibil-
ity of signal changes (Tierney et al. 2016) or by using spatial or temporal criteria 
to define noisy voxels (Behzadi et  al. 2007), improved noise modelling can be 
achieved resulting in an improvement over scan-nulling (Tierney et  al. 2016). 
There are a number of reviews on these approaches that have predominantly been 
developed for resting-sate fMRI; for further details, see Parkes et al. (2018). These 
methods are highly relevant here because where association and comparison 
between EEG and fMRI signals are used, temporally coherent artefacts will co-
occur in both data types with ample potential to confound an analysis. However, 
this problem can also be used to provide improved motion characterisation by 
using identified motion- related EEG artefacts to inform fMRI motion correction 
(Wong et al. 2016).

Of course prevention is often better than cure, and there have been exciting 
developments in the application of prospective motion correction for EEG-fMRI 
(Daniel et al. 2019; Maziero et al. 2016). Motion correction can be performed using 
navigator echoes (Ordidge et al. 1994b; Gallichan et al. 2016), which relies on the 
Fourier shift theorem whereby a spatial shift of the image can be detected and cor-
rected by measurement of the phase shift within MRI k-space data. An approach 
that has been used increasingly involves the use of a camera and markers attached 
to the subject to track motion with a short delay. This information can then be used 
to update the scanner acquisition so that the imaging slice remains in the patient 
frame of reference. This largely removes the problem of substantial signal changes 
where the tissue within a slice receives multiple excitations (within a TR) because it 
has moved into a different slice plane between the pulses. This was often thought by 
the community to be detrimental to EEG correction strategies; however, it has been 
shown that high-quality prospective fMRI motion correction facilitates EEG correc-
tion rather than hampering it because it is the motion that introduces the non- 
stationarity into the correction algorithms rather than its correction (Maziero 
et al. 2015).
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10.3.2  Physiological Noise

Some ‘noise’ is physiological and related to global or local changes in brain state 
that happen spontaneously. These signals were previously considered as being 
purely noise in terms of cognitive, paradigm-driven experiments. However, increas-
ingly, these spontaneous changes are being treated as signals of interest (Biswal 
et  al. 1995; Fox and Raichle 2007; Laufs et  al. 2003). EEG-fMRI allows some 
interpretation of these spatial patterns in terms of brain state (Laufs et al. 2008), and 
this will be addressed in more detail in subsequent chapters.

Cardiac and respiratory cycles also can cause confounding signal changes. These 
occur due to motion of the whole head and from changes in pressure within the skull 
resulting in pulsatile motion of the brain. Due to the temporal resolution of fMRI 
normally being below that of the cardiac signals, aliasing occurs and must be 
accounted for; otherwise these effects can look like low-frequency BOLD-related 
signal changes. Methods are available to derive regressors from EEG/EOG/ECG 
signals for subsequent entry into standard GLM analysis to remove any confound-
ing signal variance from these sources (Glover et al. 2000; Liston et al. 2006).

As introduced in the motion section, an alternative and often effective strategy is 
to derive the influence of physiological noise on the fMRI time courses via estima-
tion from the data itself. Here, there are a wide variety of methods to choose from, 
but they can be categorised into a number of approaches. Firstly, independent com-
ponent analysis can be used followed by component classification to derive the tem-
poral signatures of physiological noise components (e.g. Pruim et al. 2015) that can 
be incorporated into a model such as a GLM as effects of no interest or the data 
reconstructed with those components removed. Secondly, noise models can be 
derived from spatial criteria. In simplest form, the brain tissue not BOLD active 
(e.g. CSF and white matter) can be used (Behzadi et al. 2007; Bright et al. 2017) and 
signals averaged that contain a significant relationship to physiological noise. This 
can be finessed by instead using temporal criteria where highly variable voxels are 
used that will contain a mix of physiological and motion-related variance (tComp-
Cor (Behzadi et al. 2007)) additionally with a biophysical interpretation (Tierney 
et al. 2016). Thirdly, the use of multi-echo data can be used to separate physiologi-
cal noise components if they do not contribute to exponential T2* behaviour (Kundu 
et  al. 2017). While effective, this does not account for some aspects such as 
respiration- related effects that are mediated via the same mechanisms as fMRI sig-
nals (Power et al. 2018). Lastly, with the advent of fast fMRI sequences, the aspects 
of physiological noise that occur at a different temporal frequency can be removed 
via direct filtering of the signal over frequency ranges where physiological noise 
occurs but where fMRI signal does not, for example, cardiac-related noise.

10.4  The Impact of EEG Recording on MR Image Quality

In Chaps. 8 and 9, the effects of MRI on the EEG signal were discussed; here, we 
instead look at the potential influence of the EEG system on MRI image quality. As 
previously described, fMRI relies on good SNR, a high degree of temporal stability, 
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and can be affected by artefacts due to the way that GE-EPI data is acquired. The 
presence of an EEG system can interact with both the static and rotating magnetic 
fields required for signal excitation and reception (Mullinger et al. 2007), which can 
have a subsequent impact on image quality (Krakow et  al. 2000), as described 
below. Fortunately, these effects can be minimised by careful design of the EEG 
equipment.

10.4.1  Main Static Magnetic Field (B0) Effects

MRI utilises a very strong, highly uniform main magnetic field, which is per-
turbed by the presence of any material with a magnetic susceptibility (χ). This 
degree of disturbance depends on the main field strength and the magnetic suscep-
tibility (ΔB0 = χB0). The high strength of the main field dictates that even weakly 
magnetic material such as water (χ = ~1 × 10−7) can cause a local change in the 
magnetic field that can increase the distortion, dropout and ghosting described 
above. The main magnetic field can be readily measured from two gradient echo 
images with a different TE. The local difference between the phases of the images 
is due to the local magnetic fields, and so the offset of the field in Hz can be cal-
culated (as for distortion correction). Even the weakly magnetic materials typi-
cally used in an MRI- compatible EEG cap have susceptibility values capable of 
introducing artefacts. The effect of two different commercially available MRI 
caps (both employing Ag/AgCl ring electrodes, 5 kΩ resistors, copper-braided 
wires and Abralyte 200 conductive gel) on the B0 field in a uniform phantom taken 
from Mullinger et al. is shown in Fig. 10.5. There are clear localised regions of 
decreased homogeneity caused by the electrodes of the cap that are made worse 
with higher field strength. Taken over the volume, there is an increase in the num-
ber of pixels with a large field offset (Mullinger et al. 2007). However, in the same 
study, a similar measurement over the human brain at 3 T did not yield such a 
clear difference between cap on/cap off. A range of materials are available for the 
electrode heads, connecting wires, current- limiting resistors added for safety rea-
sons (Lemieux et al. 1997), adhesives and gels, although a balance must be struck 
between EEG performance and the imaging requirements. Two factors determine 
the severity and impact of artefact caused by these components at a given field 
strength: its susceptibility and its position relative to both imaging and brain 
geometry. The relative geometry of the head and the electrodes is fixed by the 
experimental requirement of good EEG coverage (Debener et al. 2008). The avail-
able evidence suggests that plastic AgCl-coated electrodes can yield a small 
improvement in B0 performance, although Ag/AgCl electrodes can also perform 
similarly in terms of image quality (Stevens et al. 2007) and may provide improved 
EEG quality. Both of these electrode types caused B0 field perturbations over 
10–15 mm at 4 T (Stevens et al. 2007) and so should not unduly affect signals 
from the brain when imaging the human head. It should be noted that in paediatric 
applications (Arichi et al. 2017) with the brain closer to the electrodes, this arte-
fact may still be problematic. In addition, at ultra-high field ≥7 T, artefacts are 
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increased and so may extend into the brain. Alternatives to the commonly used 
metallic EEG electrode materials (silver, silver chloride, gold) such as carbon 
may also yield low artefact levels (Krakow et al. 2000), while Sn or brass plated 
with Ni and then Au can cause greater problems (Baumann and Noll 1999; Stevens 
et al. 2007). The susceptibility of most electrode gels is broadly similar to the tis-
sue (due to the conductivity required for EEG), giving limited scope for improve-
ment in susceptibility-related artefacts caused by the gel/air interface. The choice 
of material for the safety resistors needs more careful selection, as many resistors 
use ferro- or diamagnetic materials, for example, in the end caps connecting the 
terminating wires to the resistive material (Krakow et al. 2000). In the tests of 
Mullinger et al. (2007), the interface between the plastic surface of the phantom 
and the EEG electrodes and gel is likely to be the source of the greater variance in 
B0. This interface is not present in the human head (see Fig. 10.6), where B0 varia-
tion appears to be reduced compared to within the phantom. Increased inhomoge-
neity in B0 will be seen as increased EPI image artefacts, with dropout, distortion 
and potentially ghosting produced. However, provided that the materials used for 
EEG electrodes and gel are carefully chosen and tested, there is only a small 
increase in B0 inhomogeneity within the human brain, limiting the impact on 
image quality.
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Fig. 10.6 (a–i) B0 field maps (in Hz) acquired from the phantom. Maps are shown after removal 
of large-scale field variations (due to the global shim) to view primarily the effect of the EEG cap 
at 1.5 T (a–c), 3 T (d–f) and 7 T (g–i) with the 64-electrode cap (left), 32-electrode cap (centre) and 
no cap (right) on. Reproduced with permission from Mullinger et al. (2007)
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10.4.2  Transverse Rotational Magnetic Field (B1) Effects

MRI signal excitation and reception use a rotating RF field at the Larmor fre-
quency, as described in Sect. 10.3.1. To excite the sample, an RF field is applied 
that causes the magnetisation to be rotated from the longitudinal axis into the trans-
verse plane. This magnetisation then subsequently creates a rotating RF field that 
can then be detected by the RF coil. Any non-uniformity in the excitation profile 
makes it difficult to excite all of the magnetisation within the object (i.e. the flip 
angle will not be uniformly 90° across the object), and so some regions will suffer 
a corresponding signal reduction. Via the principle of reciprocity (Hoult and 
Lauterbur 1976), the B1 field created by the coil for signal excitation is the same as 
the sensitivity of the coil (the MRI correlate of an EEG gain matrix) for signal 
detection. This means that the object will have a spatial variation in signal detec-
tion performance with the same pattern as for signal excitation.2 Furthermore, the 
introduction of any conductive or dielectric material (i.e. the head or an EEG elec-
trode) causes a change in the B1 field (Sled and Pike 1998). This is because the field 
induces surface currents in the material that act to minimise the field produced 
within the object (i.e. they shield the object from the field). It is useful to consider 
the effects on two length scales: firstly, a global effect from the introduction of the 
EEG system can generally be considered a loss of coil efficiency and so SNR (see 
the section on the impact on SNR); secondly, local changes in the B1 field are pro-
duced by local current flow which acts to reduce the B1 field. This will produce 
areas with a reduced flip angle for signal excitation and so a reduced signal and a 
corresponding drop in sensitivity for signal reception.

The B1 performance for the two EEG caps described in the previous section 
in a phantom can be seen in Fig. 10.7. The EEG cap has an effect on B1 that 
appears to increase with field strength and is worse around the ECG wire. This 
is likely to be due to the increased coupling of the longer length ECG wire to the 
RF field, with the induction of greater currents than for the shorter EEG wires. 
The B1 perturbation produced by the electrodes themselves appears weak, at 
least at the lower field strengths. Increased electrode impedance decreases the 
perturbation in the B1 field: Krakow et al. demonstrated that both plastic coated 
with AgCl and carbon electrodes, which offer greater impedance than metallic 
electrode materials, gave less artefact (Krakow et al. 2000). However, in a dif-
ferent comparison of electrodes at 4 T, where B1 was independently assessed, 
similar shielding was produced by three different electrode types, with shielding 
reduced to 5% at 10–11 mm from the electrode (Stevens et al. 2007). In addi-
tion, secondary currents can flow in the safety resistors and cause artefacts, so 
these must be chosen carefully. Electrode wires can cause B1 perturbations, even 
when safety resistors are present (Mullinger et  al. 2007); higher impedance 
alternatives such as carbon can reduce this artefact (Krakow et al. 2000). These 
considerations have been revisited owing to interest in performing EEG-fMRI at 

2 This assumes that the same coil is used for both signal excitation and reception. It is increasingly 
common for different coils to be used for each purpose, with each imposing a different pattern.
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Fig. 10.7 (a–d) B0 and B1 maps obtained in the human head. Effects of 32-electrode cap at 3 T on 
B0 maps (in Hz) (a, b) and flip angle maps (normalised to average flip angle) (c, d). (a, c) Acquired 
with the cap on (regions affected are highlighted); (b, d) with no cap. Reproduced with permission 
from Mullinger et al. (2007)

7 T, for example, with improved design of EEG cap wiring (Jorge et al. 2015) or 
changes in wiring material to increase its impedance at RF.

RF pulses that aim to produce a uniform flip angle despite local variation in B1 
(frequently referred to as ‘adiabatic’ pulses) do exist (Garwood et  al. 1989; 
Garwood and Delabarre 2001) but are more commonly employed for global signal 
inversion or refocusing and normally require greater RF power than standard exci-
tation pulses (de Graaf et al. 1996). Certainly, investigation of EEG-fMRI perfor-
mance with spatially selective 90° pulses that exhibit acceptable off-resonance 
behaviour such as derivatives of the BIR4 pulse (de Graaf et al. 1996; Shen and 
Rothman 1997) is merited and may be essential to limit artefacts at higher field 
strengths. B1 perturbations will produce regional intensity variation in EPI images 
without increased distortion. One simple method to determine whether B1 or B0 
field effects are responsible for regionally reduced performance (where B0 and B1 
mapping sequences are not available) is to compare spin echo 2DFT images with 
the EPI; where both exhibit changes in image intensity, the problem can be 
assigned to a local B1 effect.
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10.4.3  Impact on SNR

The overall effect of the introduction of the EEG system is a reduction in SNR. Locally, 
this can be due to reduced signal related to decreased B0 and B1 homogeneity. Globally, 
there will be an average reduction in B1 sensitivity due to the introduction of EEG 
equipment from shielding effects, and increased noise from increased RF coil imped-
ance, with a concomitant global reduction in SNR. The shielding effect is a reduction 
in B1 in the head from induced current flow in the EEG electrodes. To understand the 
increase in noise, the system can be considered as a whole with a highly resonant RF 
coil circuit having its impedance increased by the introduction of the head and then 
further increased by the introduction of EEG components. While the increase in 
impedance (a reduction in the coil efficiency usually measured by the Q factor) is one 
effect, it is also possible that the whole system (coil with head and EEG system inside) 
suffers from a split or shifted resonant frequency. In this case, a quite dramatic reduc-
tion in coil performance can result. A reduction in SNR within the images will be 
seen, but, where the same coil is used for RF transmission, there will also be a large 
increase in the transmitted power required for a particular RF excitation and increased 
local electric fields with the associated safety risks (Lemieux et al. 1997).

In the image quality study of Krakow et al. (2000), only the increase in electronic 
noise due to the introduction of the EEG amplifier was investigated, and no noise 
increase was detected when properly shielded. While this approach will detect any 
RF interference, it does not determine the amount of SNR loss due to a reduction in 
the RF coil performance via the mechanisms described above. One previous study 
observed a reduction in SNR that was proportional to the number of electrodes in 
the cap (Scarff et al. 2004), while an innovative ink cap that uses conductive ink 
rather than conventional wires had little apparent effect on the SNR (Vasios et al. 
2006). More recently, tests of two commercially available caps at different field 
strengths on five subjects found a reduction of 4–28% in the TSNR. A smaller SNR 
reduction was found on the 3 T system, although this could be due to cap design and 
may not lead to a large difference in detected activation (Bonmassar et al. 2001). 
While some decrease in TSNR (see Sect. 10.5.1) could be caused by increased 
movement due to the greater discomfort of wearing an EEG cap, it is likely that this 
is also because of cap-coil interaction. It is worth noting that reducing the appear-
ance of B1-related artefacts is worthwhile even when they do not appear to greatly 
affect signal from the brain, because reducing this interaction will improve the over-
all SNR performance via reduced loading/detuning of the RF coil. It should be 
noted that SNR reductions may not always lead to a reduction in fMRI sensitivity 
(Luo and Glover 2012) if noise sources, predominantly physiological, are similarly 
scaled. However, as discussed below, it is increasingly possible to separate the sig-
nal and noise, and therefore reductions in SNR will then impact fMRI results.

10.5  fMRI Quality Assurance (QA)

The large demands placed on MRI hardware by scanning at close to the maximum 
gradient switching rate and amplitude for extended periods, coupled with the sen-
sitivity of fMRI to any temporal signal changes, mean that careful, regular fMRI 
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QA is important to ensure that scanner performance is maximised and any faults 
are quickly detected. In this section, some of the key QA measurements are 
described. In many respects, the principle is more important than any specific 
tests; the more that careful, regular, quantitative monitoring of the system is per-
formed, the better. In particular, we focus on tests aimed more generally at fMRI 
QA but which constitute a good basic set of tests of fMRI data quality that can be 
performed both with and without the EEG equipment. A summary of this can be 
found in Table 10.1.

Table 10.1 Examples of QA procedures

Scans
Suggested 
frequency

Example 
parameters

Example 
measurements

What to look 
out for Possible cause

Spin 
echo 
2DFT

Daily 192 × 128 
matrix, TE = 
minimum, 
TR = 3 s, 5 
central slices

SNR Change or 
fluctuations in 
value

Non-specific

EPI (as 
used for 
EEG- 
fMRI)

Weekly TR = 2000 
ms, TE = 30 
ms, 200 
volumes, 27 
slices

Temporal 
mean

Strong repeats 
of the image 
(ghosts)

Gradient 
performance, 
timing and 
pre-emphasis, 
phase correction 
errors

Temporal SD 
reformatted as 
coronal 
sections

Lines in the 
slice direction/
strong images

RF interference/B0 
and possible 
gradient drift

Weisskoff plot Change in plot Non-specific
RDC Change in 

value
Non-specific

EPI (as 
used for 
EEG- 
fMRI) 
with and 
without 
EEG 
cap

Monthly TR = 2000 
ms, TE = 30 
ms, 200 
volumes, 27 
slices

Compare with 
the 
measurements 
without EEG 
equipment

EEG system fault

Repeat 
run

Monthly Place slices 
outside the 
phantom and 
set the 
transmit gain 
to zero. Run 
for >10 min, 
i.e. 400 
volumes

Play the 
images back as 
a movie with a 
volume in each 
frame

Changes in 
background 
noise level, any 
structure in the 
noise

Coherent noise 
patterns within 
certain slices 
suggest spiking 
from the gradients 
or electrostatic 
discharges from 
another source. 
Higher signal in a 
consistent spatial 
position indicates 
RF interference
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10.5.1  Quantification of SNR and Temporal SNR

The receiver bandwidth determines the frequencies and levels of signal and 
noise obtained (given a certain object imaged at a specified resolution), since 
most of the signal is normally concentrated at low frequencies, whereas the 
noise is distributed across the frequency range. However, given that a certain 
bandwidth is used for a specific scan protocol, then the SNR describes the qual-
ity of the data and can be very sensitive, if non-specific, to the performance of 
most components of the system. A phantom should be used that approximates 
the size and loading (RF interaction) of the human head. A phantom made of gel 
to eliminate flow effects is also desirable for testing fMRI temporal stability. 
Highly accurate and easily reproducible positioning of the phantom is important 
within both the RF coil and the main magnetic field isocentres (i.e. the SNR 
measured should not change when the test is performed by a different person!). 
Where different RF coils are routinely employed, each should be regularly 
tested. Different methods can be used to take a measurement of the signal and 
noise. However, most simple SNR tests (such as those described here) make the 
assumptions that the background noise follows a Raleigh distribution in the 
magnitude image and that the spatial distribution of noise is homogeneous. 
These criteria are not met in most images from array receiver coils or where 
image filtering or corrections have been applied (Constantinides et  al. 1997; 
Dietrich et  al. 2007). To sample the signal, an image of the object must be 
obtained and the average signal within it calculated, typically by averaging the 
signal over a large (>75%) area. Noise can be measured in a similar manner by 
taking several background regions in the image and averaging them, although 
care must be taken to avoid regions exhibiting any artefact from the object, such 
as Gibbs ringing (Haacke et al. 1999), ghosting, or if any correction or filter is 
applied. An alternative approach to measure the noise is to obtain a further 
image using identical parameters, take the difference, and calculate the standard 
deviation within the same region of interest (ROI) (i.e. the area defined on the 
first image for the signal). This method can be affected by any temporal instabil-
ity and, as such, is usefully viewed to detect any structure in the noise; if edges 
are visible, centre frequency or gradient drift may be indicated, or if a low SNR 
version of the object is apparent, RF/receiver instabilities can be responsible. 
Also, the value obtained from each SNR measurement method will be different 
by a constant factor due to the rectification of Gaussian noise when a back-
ground noise region is used. Different sequences may be employed for SNR 
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calculation, but a fully relaxed 2DFT spin echo sequence is a highly reliable 
method and is complimentary to an fMRI-specific EPI run. While standard SNR 
measurement is sensitive to many aspects of scanner performance, it does not 
generally test temporal fluctuations that can affect fMRI. In contrast to the static 
SNR, the TSNR includes contributions from fluctuations from scanner drift 
from the gradients as they heat and from the main magnetic field, ghost fluctua-
tions due to timing errors, etc. The TSNR is simply the mean signal in a voxel 
divided by its variance over time. This measure of SNR can be more reliable 
where PI reconstruction methods and/or image filters are applied (Dietrich et al. 
2007). A number of values in addition to the TSNR can be calculated and moni-
tored from an EPI time series obtained from a phantom. One such standardised 
set of measurements (used by the FBIRN consortium) that can be automated is 
freely available (http://www.nbirn.net) and well described (Friedman and 
Glover 2006). These standardised QA measurements are important for cross-
centre comparison (Friedman et al. 2007).

10.5.2  The Weisskoff Test

The Weisskoff test is a simple method for assessing scanner stability (Weisskoff 
1996) and is included within the FBIRN procedure (Friedman and Glover 2006). 
In its original formulation, two ROIs are obtained inside and outside the phantom 
for each point in time and compared as the region is linearly changed in size. 
Taking the average mean and standard deviation produced, the standard deviation 
should be reduced with the square root of number of voxels in the ROI if purely 
Johnson noise is present from the scanner hardware and sample. The calculation 
can then be repeated only where the relative fluctuation from time point to time 
point is calculated again as the regions are linearly changed in size. Any differ-
ence between the two curves generated is attributable to extra temporal fluctua-
tions in the images from scanner instabilities. The performance of the scanner 
can thus be characterised for a particular phantom and scanning sequence and the 
performance assessed over time. A derivative single value measure can also be 
obtained from this test called the radius of decorrelation (RDC), which can be 
thought of as being the point at which statistical independence between voxels is 
lost; practically speaking, it is where the two curves described above begin to 
deviate (see Fig. 10.8).
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Fig. 10.8 (a–l) Flip angle maps (B1) acquired from a phantom. Flip angle maps of the phantom 
(normalised to average flip angle) with the 64-electrode cap (left), the 32-electrode cap (centre) 
and no cap (right). a–c show maps acquired at 3 T from similar slices to those shown in Fig. 10.1. 
The maps shown in the rest of the figure are taken from more inferior slices and show the effect of 
B1 perturbations occurring in proximity to the ECG and EOG wires (arrowed) at 3 T (d–f), 7 T 
(g–i) and 1.5 T (j–l). A more inferior slice is shown for the 64-electrode cap compared with the 
32-electrode cap, as the paths of the EOG and ECG wires were different on these caps. Thresholding 
in low-signal areas leads to the generation of significantly sized areas in the 7 T maps where the 
flip angle cannot be characterised. Reproduced with permission from Mullinger et al. (2007)
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10.5.3  Coherent Noise Testing

While RF interference can affect other measurements such as SNR and the RDC, 
specific testing is useful because the introduction of EEG equipment into the 
scanner environment increases the potential for this problem to occur. As an addi-
tional test to those suggested above, viewing a 3D volume of the temporal vari-
ance (e.g. taking the magnitude image time series and calculating the temporal 
standard deviation for each voxel) is highly instructive. With the data displayed 
such that the slice direction is in the image plane (e.g. axial images reformatted as 
coronal sections), RF interference will be seen as stripes running along the slice 
direction because the source of the signal is the same frequency independent of 
the RF or imaging gradients and so it will appear in the same place. Very few other 
artefacts have a similar appearance (apart from possibly some flow effects). 
Another useful and simple test for detecting noise changes is to simply scan while 
not receiving signal from the object. This is normally achieved by setting the RF 
transmit gain to zero, and/or from imaging slices outside the object, and often 
requires any automated prescanning to be skipped or performed manually (because 
most clinical scanners will detect that no signal is present and the centre fre-
quency setting, for example, will fail). By looking at a long time series of images 
containing pure noise, any transient increases or changes in time due to RF inter-
ference or electrostatic discharges (often called spike noise) can be relatively eas-
ily detected visually. Finally, the equipment should be tested in all possible states. 
For example, where different gain settings, sampling frequencies or numbers of 
channels may be used in an EEG amplifier, it is worthwhile checking each opera-
tional state because RF noise might be generated or its frequency shifted in one 
particular configuration. An example of RF noise from a malfunctioning EEG 
amplifier is shown in Fig. 10.9.

Subject Data QA Procedures
Owing to the advent of large-scale projects to obtain fMRI data in thousands of 
subjects, there has been significant work aiming to perform fMRI QA on data that 
has been obtained in subjects (Alfaro-Almagro et al. 2018; Marcus et al. 2013). In 
general, the approach taken has been to utilise measures already introduced in this 
chapter such as TSNR and summary measures of motion realignment parameters 
to evaluate data quality. These are readily available to use and therefore can be 
applied to monitor data quality in participant studies in addition to regular QA 
procedures.
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c

Fig. 10.9 (a–c) Examples of QA measurements. An example SNR measurement is shown (a) with 
the mean and standard deviation in the regions of the signal and noise compared. An example 
Weisskoff plot is shown (b), including the radius of decorrelation. Finally, an example of the appear-
ance of RF noise in images obtained with the RF transmitter effectively turned off is shown (c)

10.6  Summary and Conclusions

Image quality is at the core of any successful investigation of brain activity using 
fMRI. Therefore, it is crucial to understand the mechanisms of the image formation 
process and its possible pitfalls, particularly when special equipment is in the vicin-
ity of the MRI instrument, such as that used for EEG recording. In general, properly 
designed and tested EEG equipment should not adversely degrade image quality. 
The optimisation of fMRI sequences and the application of rigorous QA protocols 
will ensure optimal image acquisition and minimise the risks of false-negative or 
false-positive findings. It is likely that exact parameter choices are application and 
hardware dependent. However, there is increased evidence for the utility of faster 
fMRI sequences in a range of applications, and at least for modest TR reductions, 
there is a consensus that fMRI results are improved. Physiological and subject 
motion-related noise remains a challenge for all fMRI studies including EEG- 
fMRI. However, there are an increasing range of strategies available based on both 
image post-processing and acquisition developments that in concert can substan-
tially reduce their impact.
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11EEG-fMRI at Ultrahigh Magnetic Fields: 
B0 ≥ 3 Tesla

Giorgio Bonmassar, Laura Lewis, and Karen Mullinger

11.1  Introduction

Functional MRI (fMRI) can be used to map regional changes in cerebral blood flow 
and blood-oxygenation-level-dependent (BOLD) signals associated with the neuro-
nal activity (Belliveau et al. 1991; Kwong et al. 1992; Ogawa et al. 1992). In 2003, 
the US Food and Drug Administration raised the value of the static field of “no 
significant risk” for MRI to 8 Tesla (T), potentially opening up this technology to 
large numbers of laboratories in the USA. Regulatory agencies in Europe and Asia 
have reached similar conclusions, and as a result, the number of ultrahigh-field 
(UHF) systems worldwide is growing rapidly. Furthermore, commercial clinical 
systems for UHF 7 Tesla imaging are now entering the pipeline for FDA approval, 
leading to increased interest and accessibility of high-field systems.
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The increased static field B0 of high-field scanners enables improved signal-to- 
noise ratio (SNR), offering the possibility of increasing spatial resolution and reduc-
ing scan times (Yacoub et al. 2001; Wiesinger et al. 2006; Harel et al. 2006). This high 
SNR has now enabled 7T fMRI studies to resolve activity patterns across cortical 
layers, within small subcortical nuclei, and at faster timescales (Polimeni et al. 2010; 
Newton et al. 2012; deMartino et al. 2013; Lewis et al. 2016; Huber et al. 2018), 
allowing imaging of neural activity patterns that are challenging to detect at 3T. EEG-
fMRI at high field, therefore, has the potential to provide important new insights for 
neuroscience. In this chapter, we outline the safety issues raised and the challenges 
involved in performing EEG at high-field MRI or at static magnetic fields greater than 
3T, as well as the potential advantages of this approach.

11.2  Safety Considerations

11.2.1  Physical Principles and Relevant Safety Guidelines

The physical principles and mechanisms that arise from the interaction of EEG and 
MRI data acquisition systems are described in the Chap. 7, where the reader will also 
find the safety guidelines that should be taken in consideration for the simultaneous 
recording of EEG and fMRI data. In summary, those guidelines concern heat deposi-
tion inside the body (FDA 2003; IEC 2002); heating of objects, such as EEG elec-
trodes, placed in contact with the body; and tissue contact currents, such as those 
induced in conducting objects placed in contact with or close proximity to the body. 
This section focuses on safety considerations at high field; while the mechanisms 
that may result in health hazards are the same as for more standard field strengths, 
some of the effects are amplified by the stronger field. While the allowed SAR is 
constant across field strengths, the SAR of sequences employed in high-field MRI 
scanning is generally higher than that at lower field strengths. Moreover, although the 
safety record to date at standard field strengths has been good, with no reported inci-
dents to our knowledge, the experience at high field is much more limited.

At high static magnetic fields (B0 ≥ 3 T), MRI employs a correspondingly higher 
RF for signal excitation and reception because of the linear relation between Larmor 
frequency and B0 field strength. Since SAR increases as the square of the Larmor 
frequency, problems associated with exposure to RF may worsen (Ibrahim et  al. 
2001). In addition, at B0 = 7 T, the Larmor frequency for water protons is 300 MHz 
(i.e., approximately corresponding to a 1 m wavelength in empty space). Hence, at 
higher frequencies or in different media, the size of the biological object can be 
comparable to or larger than the effective wavelength; this may cause problems 
because dielectric resonant effects cause an inhomogeneous excitation field B+ (i.e., 
the circularly polarized component of the transverse magnetic field) (Sled and Pike 
1998). As is the case at lower field strengths, localized peaks in SAR caused by 
interactions between the RF coil and tissue/sample properties may be a safety issue 
when using sequences close to volume-average SAR limits and depending on how 
the scanner-reported SAR is estimated. Analytical studies using homogeneous 
spheres to simulate the human head (Bottomley et al. 1985; Bottomley and Andrew 
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1978; Glover et  al. 1985; Keltner et  al. 1991; Mansfield and Morris 1982) have 
shown that as the frequency of the B+ field increases, homogeneity tends to decrease, 
and correspondingly the peak (local) SAR may be increased.

11.2.2  Safety Studies at High Fields

MRI-compatible temperature probes have been used for in  vitro measurements 
(Kangarlu et  al. 2003; Sharan et  al. 2003), sometimes in the presence of metallic 
implants (Carmichael et al. 2008; Chou et al. 1997). Temperature measurements have 
also been carried out to test the safety of EEG caps at high field specifically. These 
tests have included investigating the effect of different wire lengths on RF heating 
(Stevens et al. 2007b). This study showed that the extent of heating at the tip of wire 
was dependent on the ratio of the wire length to the RF wavelength and that care must 
be taken not to set up a resonance effect in the wires of the EEG system. A commer-
cially available 32-channel EEG cap has also been tested for heating effects at 7 T by 
Mullinger et al. (2008b). The results of this study showed that for the particular setup 
used in this case, it was safe to record EEG at 7 T, although the authors highlighted the 
need to test new combinations of equipment, as heating effects may vary depending 
on the experimental setup. Vasios et al. (2006) also investigated the heating effects of 
a custom-made EEG cap, the “InkCap,” which was designed to reduce potential RF 
heating effects by using distributed impedance in the conductive structures of the cap, 
thus reducing RF interactions. They compared the heating effects observed with this 
cap to those produced by commercially available EEG caps at 7 T. This study demon-
strated that, at all the locations considered, the InkCap exhibited lower or equal heat-
ing effects to those recorded from the commercially available caps.

While measurements are useful and necessary for a direct evaluation of RF heat-
ing, they do have limitations. For example, in vitro models are not always anatomi-
cally accurate (e.g., they may be based on spherical phantoms). Also, temperature 
probes such as the fluoroscopic optical fibers are only able to provide measurements 
at a small number of locations (determined by the number of channels on the instru-
ment) and only over a limited part of the test object or body (on the order of 1 mm3) 
(Nitz et al. 2005). This limitation can be partly addressed using simulations that can 
provide estimates of the electromagnetic fields and SAR. Bioheating models pre-
dicted temperature rises throughout the volume of interest and for a range of test 
object configurations that may not be amenable for experimental testing.

SAR simulation studies on anatomically accurate head models have been per-
formed using the finite difference time domain (FDTD) method (Jin 1999), and sev-
eral numerical head models have been presented in the literature (Gandhi and Chen 
1999; Kainz et al. 2005). While 2 × 2 × 2.5 mm3 volume elements provide sufficient 
accuracy when evaluating whole-head SAR in MRI (Collins and Smith 2003), this 
approximation is no longer valid when peak 10 g averaged SAR is considered the 
main dosimetric parameter. Moreover, the spatial resolution limits proper modeling 
of the anatomical structures of the human head (Angelone et al. 2006), which can 
result in a lack of or limitations in the accuracy of EM estimation at radiofrequency 
in those anatomical structures. A realistic geometric model included an anatomically 

11 EEG-fMRI at Ultrahigh Magnetic Fields: B0 ≥ 3 Tesla



250

accurate head and torso model (Makris et al. 2008; Massire et al. 2012; Serano et al. 
2015), a 256-channel hdEEG sensor cap, an RF transmit (Tx) coil (Bonmassar et al. 
2013), and a phased-array RF receive (Rx) coil model; see Fig. 11.1. Simulations 
were carried out for a frequency of 300 MHz with perfectly matched layer boundary 
conditions (Berenger 1994) using the FDTD technique (Cangellaris and Wright 
1991; Dimbylow and Gandhi 1991). The resulting B1-field maps reproduced the 
typical central brightening observed at 7 T. The amount of exposure to electromag-
netic fields is determined using computational models of dosimetry tested with direct 
measurements. Numerical simulations and measurements have also been performed 
using medical implants (Chou and Guy 1979; Gangarosa et al. 1987) and EEG elec-
trodes during MRI (Angelone et al. 2004; Carmichael et al. 2007, 2008; Ho 2001; 
Mirsattari et al. 2004; Rezai et al. 2002). These studies show the presence of local 
heating, usually concentrated near the implant/electrode, and a dependence on the 
dimensions, orientation, shape, and location of the implant/electrode. Safety studies 
(Armenean et al. 2004; Lazeyras et al. 2001; Lemieux et al. 1997; Mirsattari et al. 
2004) specifically designed to address the safety of EEG-fMRI have been performed 
at 1.5 T on human subjects. These studies demonstrated that any temperature increase 

Fig. 11.1 Representation of a high-resolution head model (1 × 1 × 1 mm3) and a co-registered 
EEG InkNet. (a) Computational model of 256-channel high-density EEG (hdEEG) cap. (b) 
Anatomical model (head and torso) with the hdEEG cap; (c) anatomical model with the hdEEG 
cap and the RF receive array coil model. (d) Anatomical model with the hdEEG cap and the MRI 
RF receive and transmit coil models. (Reprinted from Atefi et al. (2018))
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and induced currents could be limited to the allowed limit if adequate measures are 
taken and protocols followed (e.g., limiting scanning to low SAR sequences such as 
gradient-echo EPI, using only head RF coils, fMRI acquisition, and prespecified MR 
instrumentation). Some studies have addressed these issues at higher field strength, 
with Angelone et al. (2006) investigating these effects through simulations and Atefi 
et al. (2018) investigating these effects through direct temperature measurements at 
7 T; both studies used a head transmit coil.

As a result of the same mechanism that leads to inhomogeneous RF excitation, 
enhanced local E fields are a common feature at high fields (Bottomley and Andrew 
1978; Glover et al. 1985; Mansfield and Morris 1982), and so there is potentially a 
greater risk of extreme peaks in SAR near the electrodes/leads (Angelone et al. 2004). 
In simulations at 7 T, it was noticed that local SAR depends on the number of electrodes, 
the lead layout (e.g., different ways for the EEG wires to escape the coil), the pulse 
sequences, the RF transmit coil type, and the head morphology. A study using an eight-
tissue model showed that whole-head SAR could increase by a factor of up to four when 
EEG is recorded using copper leads and 128 EEG electrodes compared to without EEG 
(see also the Chap. 7) (Angelone et al. 2004) due to a large increase in the resistive load 
experienced by the RF coil. Interestingly, 3 T results (Fig. 11.2) showed that peak SAR 
(pSAR, 0.1 g SAR, and 1 g SAR) increases nonlinearly, rather than exponentially as 
previously reported (Angelone et al. 2004) as a function of lead conductivity. The simu-
lations with a 256-channel hdEEG cap model with copper leads showed a sixfold 
increase in peak 1 g SAR in the head model compared to the case without the cap. 
However, the Angelone et al.’s (2004) study also showed (Fig. 11.3) the absence of a 
local hot spot irrespective of RF coil type or a number of EEG electrodes used.

Furthermore, it is well known (Wiggins et  al. 2005) that leads or cables with 
lengths of the same order as the RF wavelength may result in excessive heating 
associated with resonance effects and coil detuning (Konings et  al. 2000). This 
effect was demonstrated by Stevens (Stevens et al. 2007b), who showed that if the 
wire length was equal to a quarter of the RF wavelength, then a resonant effect could 
be set up and image artifacts created. The use of RF chokes on longer wires may be 
an effective way to overcome this problem (Stevens et al. 2007a). When the number 
of EEG leads is very high, the dense array of wires may even reduce the local SAR 
(Angelone et al. 2004), typically in the occipital lobe. The effect of lead resistivity 
on tissue EM fields has also been investigated. However, the material of the EEG 
electrodes alone has a small influence compared to the overall EEG electrode/lead 
configuration (Fig. 11.4) and that the use of current-limiting resistors between EEG 
electrodes and leads, which are designed to reduce the risk of RF burns due to con-
tact currents at the skin/electrode interface (Lemieux et al. 1997), does not have a 
significant impact on the electric field inside the body (Angelone et  al. 2006). 
However, it may be that at higher fields with decreasing resonant lengths, the use of 
distributed impedance becomes more important.

While it has been shown that scanner-supplied SAR estimates are not a reliable 
indicator of localized heating due to conductive objects such as implants across 
scanners, temperature change has been shown to be proportionally related to SAR 
for a fixed scanning configuration (Baker et  al. 2004). Furthermore, SAR is 
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Fig. 11.2 SAR dependence on lead conductivity at 3 T. (Top) Values of R for nine InkNet lead 
conductivities for peak single-point SAR (pSAR), peak 0.1 g SAR, peak 1 g SAR, and SAR aver-
aged over the whole head. (Bottom) Results of numerical simulations for the head model with 
No-Cap and with a hdEEG cap with σ1 = 5.8.107 S/m and σ2 = 40 S/m. Images show (a) single- 
point SAR (pSAR)on the head surface, (b) pSAR in mid sagittal plane, (c) electric field magnitude, 
and (d) current density magnitude. (Reprinted from Atefi et al. (2018))

currently the only available relevant index for practical use (Shellock 2007). A pos-
sible solution is to use large safety margins in combination with carefully defined 
experimental protocols, for example, by using MR sequences with the SAR well 
below power levels that cause heating close to safety guideline limits (Carmichael 
et al. 2007, 2008; Lemieux et al. 1997; Vasios et al. 2006).
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Fig. 11.3 Top left: The original pial and inflated surface of a human brain automatically seg-
mented from MRI images. Bottom left: SAR distribution in the inflated cortical surface with a 
different number of electrodes using a surface coil. Right: SAR distribution for a surface (top) and 
a birdcage coil (bottom) using 124 electrodes compared with a no electrode configuration. 
(Reprinted from Angelone et al. (2004))

Fig. 11.4 Top: Magnitude of the electric field distribution for two models with 1 TΩ (left) and 0 
V resistors (right). Axial slice corresponding to the plane on top of the head model. The electric 
field distribution is modified along the copper leads (arrows) but is not affected by the presence of 
the resistors and is the same even in these two extreme cases (scale: 0–70 dB with 0 dB = 104 
V/m). (Reprinted from Angelone et al. (2006))
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11.2.3  Safe Imaging with High-Density EEG Nets

EEG is increasingly performed with high-density (≥64 channel) systems 
(Figs. 11.1 and 11.2), to enable improved head coverage and source localization 
of neural signals. The previously described InkCap has now been adapted into a 
256-channel geodesic net, the InkNet (Fig. 11.5a), which enables high-quality 
imaging at 7T while simultaneously acquiring high-density EEG signals. 
Poulsen et al.’s (2016) study showed that that high-resistance, conductive inks 
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Fig. 11.5 The InkNet (a) allows acquisition of high-density (256-channel) EEG while preserving 
high image quality and avoiding unsafe heating levels at 7 T. (b) Flip angle at 3 T under each of the 
three conditions show large signal loss artifacts from the presence of copper wires in the Cu-Net 
condition (middle rows). In contrast, the InkNet maps (lower rows) are comparable to No-Net 
(upper rows). Maps are in neurological convention. The target FA is 60°. (c) Temperature increase 
(middle) during a high SAR TSE sequence at 7 T to induce heating in an anthropomorphic head 
phantom wearing: No-Net (left), Cu-Net (middle), and InkNet (right). (d) Phantom with no-net 
(left), Cu-Net (middle), and inknet (right) with seven temperature probes (orange-encased optical 
fibers) inserted from the base of the neck column indicated positions, along with homologous posi-
tions AF8 and T8 on the right side, and head center. Thermally conductive grease, used to ensure 
good probe contact with the phantom tissue, can be seen at each location (Poulsen et al. 2016)
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printed on polymer thick film (PTF) substrate could be effectively applied to the 
construction of electrodes and leads for a dEEG system with up to 256 channels. 
The prototype 256-channel InkNet was demonstrated to be safe to use during 
scanning at 7T field strength (Fig.  11.5c), by showing no extra heating com-
pared to a phantom with no EEG electrodes. The InkNet also exhibited no visi-
ble MRI or fMRI artifact or signal loss as tested in humans at 3T, whereas using 
a 256-channel MR-conditional EEG net with conventional copper leads showed 
a considerable signal loss (Fig.  11.5b) and reduced fMRI SNR (Poulsen 
et al. 2016).

11.3  EEG Recording and Quality

EEG recording quality poses a major challenge at high magnetic fields. While the 
methods described in the Chap. 9 that are used to minimize pulse- or motion-related 
artifacts on EEG at the source should still be employed, the laws of physics tell us 
that the residual artifact will be amplified in high-field conditions. These residuals 
can overpower the neural signals of interest, leading to important challenges and 
potential confounds.

11.3.1  Pulse-Related Artefact

Pulse artifact noise removal is one of the most important steps for the successful 
integration of simultaneously recorded EEG and fMRI data at high field. As dis-
cussed in the Chap. 9, the exact origin of the pulse artifact is still poorly understood. 
The ballistocardiogram (BCG) has been recognized for over 50 years: it is produced 
when blood from the heart is pumped upward along the ascending aorta. When the 
heart pumps blood, the major motion is along the axis parallel to the spine as a rock-
ing movement of the patient’s body at each heartbeat (Reilly 1992). This type of 
noise is of small amplitude, is not present in every subject, and is easy to eliminate 
outside of the MRI environment by using damping foam or by placing the subject 
in a position other than supine during EEG recordings.

The first EEG recordings obtained inside MRI scanners were also characterized 
by pulse-related noise (Huang-Hellinger et al. 1995); this was interpreted as being 
due to pulsatile whole-body, head, or scalp motion, time-locked to the cardiac cycle 
(Ives et al. 1993; Nakamura et al. 2006; Schomer et al. 2000). In addition to the bal-
listic effect, it has also been suggested that the Hall effect, whereby a voltage is 
induced by the flow of conducting blood in the proximity of electrodes, may con-
tribute to the artifact (Debener et al. 2008; Wendt et al. 1988). Collectively these 
cardiac-related artifact sources are known as the pulse artifact (PA, see Chap. 8 for 
more detail). The PA artifact magnitude increases greatly with field strength 
(Fig. 11.6), as does its spatial variability (Debener et al. 2008). Furthermore, recent 
work has shown that the PA artifact variability is driven by a number of factors 
(Jorge et al. 2019). While head position and orientation play a part, the contribution 
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1 s 3T EEG 7T EEG

10
0 
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Fig. 11.6 Pulse artifact (PA) amplitude increases substantially at the high magnetic field. An 
example EEG trace recorded at 3 T vs. a trace recorded at 7 T is shown. The BCG corresponds to 
the large peaks locked to the cardiac cycle; the amplitude of this noise is greatly increased in the 7 
T recording

of heartbeat variability and the respiratory cycle has been shown to also be signifi-
cant. This increased artifact amplitude combined with the sources of PA artifact 
variability means that the residual noise after standard PA removal techniques will 
also be greater at higher field strengths and can even swamp the neurally generated 
EEG signals of interest.

These artifacts can be partially reduced through hardware choices. Using a novel 
cap design based on conductive ink technology and specifically designed for use at 
7 T, Vasios et al. observed a 3.5-fold reduction of the pulse-related artifact compared 
to EEG recorded using a carbon fiber electrode set (Vasios et al. 2006). Furthermore, 
the authors suggested that the design of the new net offers greater comfort, tends to 
reduce subject movement, and allows for longer measurement times. In addition, 
altering cable length and geometry can contribute to reducing artifacts (Jorge et al. 
2015). Alternatively, as discussed in Chap. 8, methods to monitor head motion with 
additional hardware may be employed as a method to remove the PA artifact over-
coming some of the problems associated with artifact variability (Jorge et al. 2019); 
see also Sect. 11.3.3.

11.3.2  Other Noise Sources at High Field

A second, related, major challenge for high-field EEG-fMRI is that any effects of 
motion induce far greater amplitude noise than at lower field. Electromotive forces 
induced in loops formed by the EEG recording system and subject by body move-
ment are proportional to field strength, so it is particularly important to keep sub-
jects as still as possible during combined EEG-fMRI experiments carried out at high 
field. This increase also underlies an issue discussed by Mullinger et al. (2008a) and 
Purdon et al. (2005b) that the amplifiers and cables within the magnetic field must 
be isolated from any vibration. In addition, vibrations may be reduced by switching 
off cryogenic cooling compression pumps during EEG recording (Mullinger et al. 
2008a). Finally, the scanner itself may pose increased motion issues, as scanning at 
7 T often generates strong vibrations, with consequent noise in the EEG. A 7 T 
scanning, therefore, introduces motion artifacts not just from the human subject but 
from the cryogenic pump, scanner, and other equipment (Fig. 11.7).
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Fig. 11.7 Vibration-induced EEG noise at 7 T. (a) EEG time series measurements are taken from 
a phantom, either outside the scanner room or at the center of the 7 T scanner bore. (b) High- 
amplitude noise is seen inside the scanner—since no human subject is present, these artifacts are 
driven entirely by vibration and other scanner-related motion, independently of any subject- 
generated motion or PA

Studies have demonstrated that subject motion can introduce EEG noise that can, 
in turn, cause artifactual conclusions to be drawn from the fMRI data, because the 
motion is correlated across these two data sources (Fellner et al. 2016; Flanagan 
et al. 2009; Jansen et al. 2012). Special care must, therefore, be taken at 7 T to be 
aware of and control for the effects of motion. A particular concern is that even if 
attempts are made to remove noise introduced by motion, the residuals from this 
process will be larger at 7 T and can overwhelm the neural signals (Jorge et  al. 
2015). As a result, a concerted effort is currently underway to develop methods to 
remove motion artifacts from EEG data.

11.3.3  EEG Noise Removal Strategies at High Field

Because major sources of noise at high field include both the subject-generated PA 
and subject- and scanner-generated motion-driven noise, special care is needed in 
removing EEG artifacts.

In light of increased understanding of the problems of motion-induced arti-
facts (Fellner et al. 2016; Flanagan et al. 2009; Jansen et al. 2012) and the inter-
action of subject movement with PA (Jorge et  al. 2019) and gradient artifacts 
(Zhang et al. 2019), which is only exacerbated with increased field strength, a 
new wave of approaches are being developed to remove these artifacts. These 
techniques involve acquiring a separate signal that captures the ongoing noise or 
monitors motion in the scanner (on the timescale of the EEG signal) but crucially 
does not measure the neural activity. The additional signals recorded can then be 
used to monitor and, in some cases, remove motion-related artifacts from the 
EEG signal through simple subtraction or, more commonly, signal processing 
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techniques such as linear regression. PA possible approaches include (1) isolat-
ing a set of electrodes from the head and connecting these through a conductive 
reference layer so that they record solely noise primarily related to motion 
(Chowdhury et al. 2014; Luo et al. 2014; Steyrl et al. 2017; Xia et al. 2014), (2) 
using additional conductive loops that are spatially close to the EEG electrodes 
to detect motion (Cohen et al. 2019; Jorge et al. 2015; Abbott et al. 2014); (3) 
using an optical motion-tracking system to monitor motion (LeVan et al. 2013; 
Maziero et al. 2016), and (4) recording vibration directly, which then requires 
modeling to remove the corresponding EEG noise (Bonmassar et al. 1999). The 
artifacts (i.e., gradient, PA, and motion combinations) which have been shown to 
be removed using such motion monitoring devices vary across the different 
methods. However, for the artifact removals that have been tested, methods 
employing the use of specific hardware to monitor motion have been shown 
widely to surpass only using conventional post-processing methods (see Fig. 11.8 
and Jorge et al. 2015; LeVan et al. 2013; Luo et al. 2014; Maziero et al. 2016; van 
der Meer et al. 2016). Further discussion of these methods for PA correction in 
general is provided in Chap. 8. The relative merits of the current techniques for 
motion artifact correction in terms of performance and practicality are also 
becoming clearer (Daniel et al. 2019). If hardware approaches are unavailable, 
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Fig. 11.8 Comparing the performance of noise removal techniques at 7 T. Spectra are of an occip-
ital EEG channel during the presentation of a 7.5 Hz flickering checkerboard, which is expected to 
induce a corresponding peak of visually induced activity in the EEG spectrum at 7.5 Hz. The “raw” 
trace (blue) shows the spectrum after gradient artifact removal, but no further cleaning; the “OBS” 
trace (green) shows the spectrum with an optimal basis set cleaning (Nitz et al. 2005); and the 
“reference” trace (purple) shows the spectrum after regression of reference channels (Luo et al. 
2014). While previous reports have shown that each method can work well at 3 T, only the 
reference- based approach recovers the 7.5 Hz signal in these data (black arrow), due to the addi-
tional, noncardiac noise present in the 7 T signals
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data-driven approaches that aim to isolate noise processes automatically without 
the use of reference signals, such as those based on independent components 
analysis or harmonic regression, can also help to reduce EEG noise at high fields 
(Abreu et al. 2016; Krishnaswamy et al. 2015).

11.4  Image Quality

As described in Chap. 9, EEG equipment placed inside or close to the field of 
view may degrade image quality through two mechanisms: perturbation of the 
fields used for image generation (RF, gradient and static), causing image distor-
tion or signal loss, and the introduction of RF interference by the EEG amplifi-
cation and digitization electronics, resulting in noise in the images. The former 
may be more problematic in high-field scanners, particularly the effects result-
ing from interactions with the static field. In addition, RF shielding can occur 
due to the interaction of the electromagnetic field from the wires and EEG elec-
trodes and may depend on the wires’ radii and orientations, the surrounding 
tissue conductivity, and the total number of wire leads (Young and Wait 1989). 
Shielding and B1 nonuniformity may get worse if the leads or electrode electri-
cal lengths approach resonance, which may be more likely as the field strength 
increases. These effects may reduce the electric field in one location while 
increasing it in others, with possible image quality and safety implications 
(Angelone et al. 2004).

The interaction of copper EEG leads with the B1+ field has been investigated at 
1.5, 3, and 7 T using 32- and 64-channel EEG systems with braided copper wire 
leads (Mullinger et al. 2008b). Significant artifacts were only observed close to the 
wires leading to the ECG and EOG electrodes, which are longer than the EEG leads. 
Even with signal loss problems that arise from the presence of the longer copper 
leads, the same group has demonstrated that it is possible to record BOLD signals 
from areas affected (Mullinger et al. 2008b). However, most of the B0 distortions 
observed were limited to the outer 1 cm of the phantom and human head and were 
thus outside the brain, and these artifacts were mainly caused by the EEG elec-
trodes. Although the field perturbations increased with field strength, due to their 
localized nature, it was concluded that fMRI data would not be significantly 
degraded, even at high field, as the skull and scalp are ~1 cm thick on average (Luo 
et al. 2014). The B1+ distortions due to the longer leads on the cap posed a more 
significant problem since they were observed at all field strengths, though they were 
significantly worse at higher field strengths. The precise cause of this artifact 
remains to be investigated, although the longer lead lengths are believed to be a 
contributing factor, and RF chokes such as those described by Stevens et al. (2007b) 
may alleviate this problem. Importantly, the temporal SNR in the presence of the 
64-channel cap at 7 T was shown to be greater than that of images collected with no 
cap present at 3 T.

A detailed study of the effect of electrode composition on B0 and B1 artifacts at 
4 T has been carried out by Stevens et al. (2007a, b), and it showed that electrodes 
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containing any ferromagnetic material unsurprisingly produce large magnetic sus-
ceptibility artifacts. However, the spatial extent of the artifacts produced when 
diamagnetic materials are used is generally small, with Ag/AgCl producing the 
smallest artifact suggesting adequate EPI image quality even at 7 T (Mullinger 
et al. 2008b). A special EEG cap has been developed specifically for application at 
high field (Angelone et al. 2006). The cap is based on conductive ink microstrips 
which have a resistance per unit length of 2 kΩ/m, with electrodes made of Ag-/
AgCl-printed rings and two motion sensors placed on the temporal regions of the 
cap. The performance was assessed by FDTD simulations, temperature measure-
ments, and EEG recordings during structural and functional MRI recordings at 7 T 
using 12 healthy human volunteers. EM field and SAR estimates were obtained by 
simulation for different values of the microstrip resistivity (Fig. 11.4) with a circu-
larly polarized 16-rod birdcage coil (Angelone et al. 2004). Measurements on a 
phantom and human subjects (Angelone et al. 2006) demonstrated superior EEG 
and image quality compared to a cap based on carbon fiber at 7 T (Angelone 
et al. 2004).

11.5  Example of an Application of EEG-fMRI at 7 T: Auditory 
Steady-State Response (ASSR)

In the field of audiology, electrophysiological measurements play an important role 
when tests designed to obtain behavioral measurements are performed on individu-
als who are unable to respond to audible stimuli. In particular, newborns, very 
young children, elderly people, or incapacitated patients benefit from the use of 
such measurements. Although auditory brainstem responses (ABR) are considered 
the gold standard in diagnostic testing, a recent review presented a collection of 
studies linking the ASSR threshold in infants and children to the pure tone hearing 
threshold (Cone-Wesson et al. 2002). The ASSR stimulation frequency may reflect 
the activity of underlying generators (Stach 2002): low frequency (0–20 Hz) with 
late-latency responses and middle-frequency (20–60 Hz) stimuli are associated with 
middle-latency responses and high-frequency (>60 Hz) stimuli with brain stem 
responses. The ASSR is an evoked response modulated by pure tones in amplitude 
(AM) or frequency (FM). Commonly, the tones are switched on and off repeatedly 
during the session in order to determine an average reading. In adults, the strongest 
responses occur at a rate of approximately 40/s (Galambos et al. 1981). The ASSR 
amplitude at 40 Hz is usually much larger than any component of the ABR and is, 
therefore, easier to record, especially in noisy environments such as MRI.  For 
example, a 40 Hz modulation frequency sets off an increase of EEG activity in the 
delta (up to 3 Hz) and theta (4–7 Hz) bands during periods of sleep and correlates 
significantly with decreased amplitude. In this section, we present high-field ERP- 
fMRI physiological recordings from eight healthy volunteers performed by Purdon 
et al. (Fig. 11.9).

In this study, stimuli consisted of 1 ms clicks or noise bursts at 40 Hz in a 30 
s on/off pattern for a total of 15 min per run. The stimuli were delivered by a 
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laptop computer running Presentation 0.76 (Neurobehavioral Systems, Albany, 
CA) and by a custom-built, electrically shielded electrostatic headphone system 
with a frequency response to 20 kHz and an acoustic noise attenuation of >30 
dB above 800 Hz. Functional MRI acquisitions were arranged according to a 
“long-TR” auditory fMRI design, with TR = 1 s (fifteen 4 mm slices, 1 mm skip, 
coronal orientation) and a 9 s gap between volumes, allowing hemodynamic 
responses elicited by acoustic scanner noise to subside before the next volume 
acquisition. EEG acquisitions were interleaved with image acquisitions using 
the high-field one EEG recording system see Appendix 2 in this chapter with a 
high dynamic range to prevent saturation during imaging (1 kHz sampling rate, 
DC to 500 Hz bandwidth). EEG electrodes were placed in adjacent bipolar pairs 
along a coronal plane using resistive carbon fiber leads (Angelone et al. 2004). 
Motion sensors were placed above preauricular points for motion artifact rejec-
tion. ASSRs were computed from M2-Cz in the frequency domain using multi-
taper spectral analysis (Percival and Walden 1993) (bandwidth = 0.4 Hz) from 4 
s windows centered 4 s prior to each volume acquisition. For each EEG record-
ing window, the amplitude (square root of the power) at 40 Hz was computed to 
produce a 40 Hz amplitude time series. The fMRI time series were then ana-
lyzed using a linear model consisting of the 40 Hz amplitude time series plus a 
sixth-order polynomial (nuisance effect), fitted using the 3d Deconvolve method 
in AFNI (Cox RW 1996). The fluctuations in 40 Hz amplitude were found to be 
correlated with (4 s delayed) BOLD changes throughout the auditory system, 
including the cochlear nucleus, the inferior colliculus (IC), the medial genicu-
late nucleus, and the Heschl’s gyrus (HG), suggesting that brainstem structures 
play an important role in generating or modulating the 40 Hz ASSR. Figure 11.9 
shows the BOLD fMRI activity at 7 T in HG and IC, along with the time series 
fit between fMRI (blue) and ASSR amplitude (red) for the indicated voxel. 
These studies demonstrate that time-varying ERP measurements can be made 
concurrently with fMRI and that these time- varying measurements can be cor-
related with the BOLD signal at 7 T.
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Fig. 11.9 EEG-fMRI study of steady-state auditory responses (ASSR) at 7 T. (Left) Activation 
map. (Right) Time series fit from Heschl’s gyrus (HG). Spontaneous fluctuations in ASSR match 
spontaneous fluctuations in the BOLD signal. (Reprinted from Purdon et al. (2005a))
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11.6  Conclusions

In this chapter, we have presented the issues and challenges brought about by using 
EEG/MRI at high fields, including safety, noise reduction, and hardware 
considerations.

In relation to safety, we have seen that investigators have mostly focused on 
RF-induced heating, reflecting the MR regulatory guidelines on maximum SAR 
exposure. While the results of investigations on the safety of recording EEG while 
scanning at high field suggest that it can be done safely, it is important to limit those 
conclusions to the specific experimental conditions described in those studies, and 
site-specific safety assessments are always advised prior to application, whether 
using commercially marketed or “homemade” equipment. We can, therefore, expect 
the body of evidence on the safety and data quality aspects to increase with growing 
interest in combining the two modalities at high field to ensure that its promise of 
the greater signal is fully exploited. These remarks equally apply to the issues of 
EEG and MRI data quality, which—although promising results have already been 
obtained—remain a technical challenge.
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12Experimental Design and Data Analysis 
Strategies

Jonathan Wirsich, Andrew P. Bagshaw, Maxime Guye, 
Louis Lemieux, and Christian-G. Bénar

12.1  Introduction

As described in earlier chapters, EEG and fMRI are two powerful, noninvasive tools 
for studying human brain activity. Since they have complementary spatiotemporal 
properties, with EEG providing millisecond temporal resolution and fMRI millime-
tre spatial resolution, there has been a drive over the last two decades to record them 
simultaneously, a technique referred to as simultaneous EEG–fMRI or simply 
EEG–fMRI. The combined data promise to provide a more complete view of brain 
activity and hopefully improve understanding of the spatiotemporal dynamics of 
brain processes.
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The earliest attempts to combine EEG and fMRI avoided the technical issues of 
recording EEG in the MRI scanner by acquiring the two datasets separately and 
combining the results. As discussed in the Chap. 1, this approach is particularly suit-
able when the brain phenomena or effects of interest are predictable in time (e.g. 
externally triggered) and reproducible across sessions (i.e. the expected signal 
changes are unaffected by the experimental conditions). Furthermore, serially 
acquired multimodal data are best suited for analyses of effects averaged across ses-
sions. Conversely, the data obtained from simultaneous acquisitions do not have any 
such constraints and can be used to study individual events, on the condition that 
data quality is not compromised by possible interactions between the EEG and MR 
systems. Simultaneous recordings generally add an extra layer of complexity to the 
experimental setup (see the Chaps. 8 and 9) but there is a potential time saving com-
pared to serial acquisitions.

The applications of simultaneous EEG–fMRI can be grouped into two catego-
ries, according to the nature of brain activity under study. First, the technique has 
been used to investigate spontaneous transient events or fluctuations in EEG power, 
for example, interictal epileptic discharges, sleep spindles or the alpha rhythm. In 
this case, simultaneous recordings are necessary, since the activity of interest varies 
unpredictably (i.e. it is not under experimental control) and without external mani-
festation other than in the EEG or fMRI. Comparable datasets could therefore not 
be obtained with certainty across separate unimodal sessions.

Second, EEG–fMRI has been used in cognitive and sensory neuroscience appli-
cations where the activity of interest is induced by an experimental stimulus. In this 
situation, EEG–fMRI is necessary if one is interested in part of the signal that varies 
unpredictably, i.e. inter-event variation, or to eliminate potential inter-session con-
founds such as habituation, learning, attention, fatigue, etc.

This chapter’s starting assumption is the availability, in the mind of the potential 
user of EEG–fMRI, of a hypothesis or question regarding the link between a par-
ticular feature or set of features of the EEG signal and haemodynamic changes. This 
chapter’s main purpose is therefore to give the reader an overview of the different 
ways in which EEG–fMRI data can be acquired and analysed to address this type of 
question. While there is now a consensus on the most efficient way in which EEG–
fMRI can be acquired, i.e. via continuous recording in contrast to interleaved acqui-
sitions, the most effective way in which to integrate the data remains an active area 
of research.

12.2  Data Acquisition and Experimental Design

Ignoring any technical consideration, all multimodal data acquisitions should be 
performed simultaneously. However, data quality is a crucial issue in determining 
degree of multimodal acquisition synchrony. The MR scanner is a very challenging 
environment for EEG recordings, and both data acquisition processes can severely 
affect the other’s performance through electromagnetic interactions (see the Chaps. 
8 and 9). Recording good-quality EEG inside the scanner and during scanning 
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requires special measures to be taken to minimize any effect on MR image quality 
(Krakow et al. 2000; see the Chap. 10) and to ensure patient safety (Lemieux et al. 
1997; see the Chap. 7).

As highlighted in the Chap. 7, and as identified in the initial work of Ives and 
colleagues (Ives et al. 1993), EEG data recorded during fMRI scanning suffers from 
two major artefacts. The MR image acquisition artefact obscures the physiological 
EEG whenever scanning occurs, while the pulse-related artefact (often called bal-
listocardiogram or BCG, although the mechanism is not known precisely) is con-
tinuously present in most subjects placed within the scanner’s static magnetic field 
(Allen et al. 1998) (see the Chap. 8). The magnitude of the pulse artefact is strongly 
affected by the static (B0) field strength of the scanner, which also needs to be con-
sidered when designing an experiment since it can lead to significant reductions in 
EEG signal quality at high field (>3 T) and is particularly problematic at ultra-high 
field (7 T) (Neuner et al. 2013; Jorge et al. 2015a, b; Abreu et al. 2016).

These two artefacts constitute the two most important practical barriers to record-
ing continuous EEG data during fMRI. Another artefact arises from vibrations of 
the scanner’s cooling helium pump. While this artefact can be avoided by turning 
off the pump, partial artefact reduction methods are available for recording with a 
running pump (Rothlubbers et al. 2013, 2015; Kim et al. 2015). The artefact can 
also be reduced by suppressing vibrations by minimizing the distance between 
amplifier and RF coil (Jorge et al. 2015b). The internal ventilation system of the 
scanner might also add additional vibration artefacts in the gamma range of the 
EEG signal (Nierhaus et al. 2013).

The first simultaneous recordings used triggered or sparse acquisition and relied 
only on periods during which the EEG was uncontaminated by the artefact resulting 
from gradient switching. We will discuss this strategy in greater detail in Sect. 
12.2.1 (see also the Chap. 17). When it was shown that this artefact (even though it 
is impressively large) could be reduced significantly using signal processing meth-
ods, this launched the current interest in continuous recordings and increased the 
possibilities offered by simultaneous EEG–fMRI. This is discussed in Sect. 12.2.2. 
Both acquisition modes permit the investigation of two main types of activity, spon-
taneous and stimulus-related, although there can be constraints imposed by the data 
acquisition strategy on the experimental design. This issue is discussed in 
Sect. 12.2.3.

12.2.1  Interleaved EEG and fMRI Acquisitions: Triggered 
and Sparse Scanning

In the first report of EEG recorded in the MRI scanner, Ives and colleagues identi-
fied some of the major technical issues associated with the technique, namely the 
presence of artefacts on the EEG associated with the heartbeat and scanning (Ives 
et al. 1993) (see the Chaps. 8 and 9). The first use of EEG-fMRI in two patients with 
epilepsy used an interleaved data acquisition scheme to minimize the impact of the 
scanning artefact on EEG, by triggering an echoplanar image (EPI) acquisition a 
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few seconds after the observation of a paroxysmal discharge on the EEG (Warach 
et al. 1996). The trigger delay was chosen to capture images at the presumed peak 
time of the spike-related haemodynamic response (see Fig. 12.1) and resulted in a 
set of post-spike images (epileptic activity image set). Following the general 
approach in fMRI of contrasting brain states, images were also acquired following 
periods devoid of epileptic form discharges (normal background or control image 
set). Activation maps were obtained by comparing control images to epileptic activ-
ity images (voxel-wise t-tests; see in this section) or by cross- correlation analysis 
(Bandettini et al. 1993). The sequence of acquisition of the post-spike and control 
images can be random, according to the spontaneous EEG (Symms et al. 1999), or 
via sequential blocks of post-spike and control images, with the administration of a 
spike-suppressing drug in-between (Seeck et al. 1998). This acquisition technique, 
called spike-triggered fMRI, is a form of interleaved multimodal imaging.

The application of online pulse artefact reduction can lead to an increase in spike 
detection reliability (Allen et al. 1998; Salek-Haddadi et al. 2003b). Spike-triggered 
fMRI went on to be used by a number of groups who were interested in revealing 
the haemodynamic correlates of epileptic activity (Seeck et al. 1998; Krakow et al. 
1999; Patel et al. 1999; Symms et al. 1999; Al-Asmi et al. 2003). However, although 
spike-triggered fMRI represented a technical breakthrough, it has a number of 
drawbacks. Firstly, it is only applicable to the study of large, clear EEG events that 
can easily be detected visually in the EEG, allowing scan acquisition to be initiated 
reliably. Secondly, it required a highly trained observer to monitor the EEG for the 
duration of the scanning session to identify events of interest. Thirdly, degradation 
of the EEG quality during scanning and the resulting lack of information on the 
subject’s state means that only a short train of images (slices or volumes) could be 
acquired per event, limiting the total amount of data that can be acquired (per unit 

Fig. 12.1 Illustration of triggered, sparse (interleaved) and continuous acquisition schemes and 
their effect on the sampling of the event-related BOLD change. (Left) Relationship between the 
fMRI acquisition strategy and the EEG events of interest. (Right) BOLD change sampling for each 
of the acquisition techniques, for standard and delayed HRF
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time), with a resulting impact on the statistical power (Krakow et  al. 2001). 
Moreover, the sensitivity of the technique relies entirely on the assumption that the 
post-discharges can sample the peak of the spike-related BOLD change, and that no 
epileptic activity occurred during the acquisition of the control images. Finally, this 
acquisition mode does not provide continuous sampling of the MR signal, making 
it impossible to model slow drifts in the fMRI signal, which can also lead to reduced 
detection power.

An alternative interleaved acquisition mode, that we will refer to as inter-
leaved periodic EEG–fMRI, was subsequently implemented to study other EEG 
phenomena, for example, evoked potentials and spontaneous activity such as the 
alpha rhythm. By having a relatively long scan repetition time (TR) but acquiring 
a few slices spaced evenly within each TR (e.g. six slices with a TR of 4 s), the 
majority of each scan period is free from gradient switching, resulting in periods 
of clean EEG (Goldman et al. 2000). A similar strategy is to acquire all slices at 
the beginning of each TR, leaving a silent period with artefact-free EEG 
(Bonmassar et al. 1999; Kruggel et al. 2000; Feige et al. 2005). A final variant is 
to acquire a prolonged period of fMRI, for example, 30 s, followed by an equiva-
lent period without fMRI during which EEG is acquired. This approach is par-
ticularly suited for slowly varying phenomena, such as sleep patterns (Portas 
et al. 2000; Bonmassar et al. 2001). Periodic interleaved schemes are not suitable 
for the study of spontaneous brief discharges, which can occur undetected during 
periods of scanning.

While sparse sampling techniques opened up the use of EEG–fMRI to the 
study of a wider range of EEG phenomena, they still had a number of disadvan-
tages. Although statistical power was increased relative to spike triggering, sam-
pling of the haemodynamic timecourse is limited (see Fig. 12.1). For example, if 
the stimulation is time-locked to the fMRI, the same points on the HR would be 
sampled at each TR, leading to suboptimal characterization of the timecourse. 
Similarly, if the timecourse of the BOLD changes differs markedly from the pre-
sumed (i.e. canonical) response, detection power would be considerably reduced, 
a problem that also affects the spike-triggered approach (Fig. 12.1). Perhaps the 
greatest disadvantage of sparse sampling protocols is the constraint on the experi-
mental method in terms of timing of the stimuli and fMRI acquisition. Typically, 
considerably fewer slices are acquired compared to a conventional fMRI acquisi-
tion, effectively reducing the efficiency of the experimental design. Recent devel-
opments in fast EPI sequences (e.g. simultaneous multi-slice/multi-band 
acquisition) can overcome this limitation, however, and allow full brain coverage 
(Uji et al. 2018).

Given these disadvantages, sparse sampling and spike-triggered protocols have 
now been superseded with the advent of continuous EEG–fMRI, although they are 
still sometimes employed (Christmann et al. 2007; Scheeringa et al. 2011), particu-
larly in the investigation of auditory stimuli when a silent period is beneficial (Belin 
et al. 1999; Scarff et al. 2004) or to examine high-frequency activity on the EEG 
where a period without gradient artefact can help (Uji et al. 2018).
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12.2.2  Simultaneous EEG and fMRI Acquisitions: 
Continuous Scanning

Continuous scanning—i.e. uninterrupted acquisition of fMRI volumes, as is the 
case in conventional fMRI experiments—is the preferred option in terms of fMRI 
data acquisition strategy in the majority of experimental situations. By acquiring the 
maximum amount of data per unit time, statistical (detection) power and character-
ization of the HRF are optimized (see Fig. 12.1). A number of hardware and soft-
ware technical developments allow adequate EEG quality during MR scanning for 
most applications. The most widely used techniques for the removal of artefacts on 
the EEG are based on modifications of the template subtraction method developed 
by Allen and colleagues for pulse and scanning artefact reduction (Allen et al. 1998, 
2000) (see the Chaps. 8 and 9). A number of commercially available EEG recording 
and artefact correction systems allow continuous scanning. Studies have demon-
strated that EEG data quality from continuous recording can be as good as that from 
sparse sampling paradigms, at least at low frequencies (<20 Hz), thereby allowing 
analysis of a wide range of EEG phenomena (Salek-Haddadi et al. 2003a; Becker 
et al. 2005; Comi et al. 2005; Debener et al. 2005; Sammer et al. 2005; Im et al. 
2006; Bagshaw and Warbrick 2007; Bénar et al. 2007).

12.2.3  Experimental Protocol

EEG–fMRI experimental protocols reflect the two main types of EEG phenomena, 
namely spontaneous brain activity in the resting state (i.e. in the absence of any 
experimental manipulation or stimulation) and stimulus-driven paradigms, where 
the interest is focused on the brain response to particular stimuli.

12.2.3.1  Resting-State EEG–fMRI: Spontaneous Brain Activity
The first simultaneous EEG–fMRI studies concentrated on two types of spontane-
ous activity, interictal epileptic spikes (Ives et al. 1993; Warach et al. 1996; Seeck 
et al. 1998; Krakow et al. 1999; Al-Asmi et al. 2003) and alpha waves (Goldman 
et al. 2002; Laufs et al. 2003a; Moosmann et al. 2003). EEG–fMRI has also found 
application in the study of a number of other types of spontaneous activity: general-
ized spike-and-wave discharges (Archer et al. 2003; Aghakhani et al. 2004; Gotman 
et  al. 2005; Laufs et  al. 2006a; Hamandi et  al. 2008), ictal epileptic discharges 
(Jackson and Opdam 2000; Salek-Haddadi et  al. 2002; Federico et  al. 2005; 
Kobayashi et  al. 2006) and sleep paroxysms (Laufs et  al. 2006b; Schabus et  al. 
2007; Stern et al. 2011; Caporro et al. 2012). For reviews, see (Salek-Haddadi et al. 
2003a; Gotman et al. 2006; Stern 2006; Laufs and Duncan 2007; Zijlmans et al. 
2007; Formaggio et al. 2011; Pittau et al. 2012; Centeno and Carmichael 2014). 
EEG–fMRI has also been used to study the neural correlates of sleep (Lovblad et al. 
1999; Portas et al. 2000; Czisch et al. 2002, 2004; Tanaka et al. 2003; Fukunaga 
et al. 2006; Horovitz et al. 2007; Wirsich et al. 2018)—see review of methods in 
(Duyn 2012)—and arousal level (Matsuda et al. 2002; Foucher et al. 2004). It has 
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been applied extensively to the investigation of “resting state” networks and their 
relationship with electrophysiological activity (Laufs et  al. 2003b; Mantini et  al. 
2007b; Scheeringa et al. 2008; Sadaghiani et al. 2010; Hiltunen et al. 2014; Neuner 
et al. 2014; Mayhew and Bagshaw 2017). Spontaneous activity has also been used 
to explore the connectivity dynamics of brain networks, integrating both electro-
physiological and haemodynamic measurements (Britz et  al. 2010; Musso et  al. 
2010; Tagliazucchi et al. 2012b; Chang et al. 2013; Labounek et al. 2015), while 
recent studies have started to integrate concurrent EEG-fMRI data on a whole-brain 
graph theoretical level (Deligianni et al. 2014; Wirsich et al. 2017). Such combina-
tional approaches have advantageously informed investigations of functional con-
nectivity alterations related to brain pathology, particularly in Epilepsy (Centeno 
and Carmichael 2014; Khoo et  al. 2017; Ridley et  al. 2017; Abreu et  al. 2019). 
Specific effects on connectivity dynamics of transient activities (such as interictal 
epileptiform discharges (IEDs)) or brain states have also been evidenced (Xiao et al. 
2016; Omidvarnia et al. 2017; Shamshiri et al. 2017; Tangwiriyasakul et al. 2018; 
Qin et al. 2019). Resting-state functional connectivity will be addressed in more 
detail in Sect. 12.3.6.

As compared to the stimulus-dependent approaches discussed later, where physi-
ological noise is normally orthogonal to the evoked signal of interest, a continuous 
analysis of resting state data requires additional care to be taken (Tagliazucchi et al. 
2013; Tagliazucchi and Laufs 2014) to control for the impact of physiological (i.e. 
non-neuronal, primarily cardiac and respiratory) noise (Abreu et  al. 2017). In 
resting- state studies subjects are often asked to keep their eyes closed, as well as to 
stay still. Keeping the eyes closed is clearly relevant for alpha-wave studies and also 
permits eye blink artefacts on the EEG to be avoided. The advantage of keeping the 
eyes closed is not so straightforward for the study of other brain rhythms. This is a 
parameter of the protocol that needs consideration, as there could be interactions 
between having eyes open/closed (Wu et al. 2010; McAvoy et al. 2012; Mo et al. 
2013), arousal level and the activity of interest. It has thus been shown that fluctua-
tions of physiological rhythms can have an impact on the results of EEG-fMRI 
studies (Tyvaert et al. 2008). Moreover, for epileptic spikes, there can be a higher 
spike yield in low arousal or sleep states (Malow et al. 1997), which can be a con-
founding effect as the response could originate from regions involved in the fluctua-
tion of the arousal level, in the generation of alpha waves or in visual areas. The 
possibility that subjects will enter sleep inadvertently should also be considered if 
subjects’ eyes are closed since it has been suggested that many resting-state studies 
supposedly conducted during wakefulness are contaminated by the intrusion of 
sleep (Tagliazucchi and Laufs 2014).

12.2.3.2  Stimulus-Driven Paradigms
While the advantages of simultaneous EEG–fMRI are obvious for the study of 
spontaneous activity, this is less clear for paradigms involving experimental manip-
ulation of the subject’s brain state (Josephs et  al. 1997), for example, in evoked 
response studies involving repetitions of the same set of stimuli. As noted in the 
Chap. 1, one must consider the possibility of separate EEG and fMRI recording 
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sessions before embarking on simultaneous acquisitions in such situations. In par-
ticular, one must consider whether the EEG recording could take place in a separate 
session by replicating the experimental protocol performed in the scanner since 
simultaneous recordings have major drawbacks relative to separate EEG and fMRI 
sessions. For example, simultaneous recording significantly lengthens the fMRI 
session because of the time needed to apply the EEG cap or electrodes and to set up 
the EEG system in the fMRI environment (even though simultaneous recording 
shortens the total acquisition time for a given subject). In addition, simultaneous 
recording results in a less comfortable setup for the subject, which may limit the 
total scanning time and in extreme cases can result in premature termination of the 
session.

However, as noted in the Chap. 1, there are situations where simultaneous 
recordings are necessary. Firstly, to ensure that signals correspond to the same 
conditions and brain states, for example, in terms of lighting, ambient noise, con-
finement, arousal, attention, emotional state, strategy, etc. This can be of particular 
interest for attention (Okon-Singer et al. 2011; Walz et al. 2013; Wang et al. 2016; 
Bayer et  al. 2018), memory and learning protocols (Hanslmayr et  al. 2011; 
Hoppstadter et al. 2015; Herweg et al. 2016), as well as for auditory paradigms 
(Mulert et al. 2004; Li et al. 2017). Secondly, for the study of individual events 
(Fell 2007), which are the only “true” events (in contrast to averages), allowing a 
deeper study of the relationship between fMRI and EEG and behaviour (Debener 
et al. 2005; Eichele et al. 2005; Bénar et al. 2007; Nguyen and Cunnington 2014; 
Walz et al. 2014; Wirsich et al. 2014). Thirdly, monitoring of EEG markers of gen-
eral brain state (e.g. arousal) may inform the analysis of responses to stimuli and 
help to explain inter- and intra- individual response variability (Matsuda et al. 2002; 
Mayhew et al. 2013a, b). Finally, the EEG can serve as a “control” modality when 
one needs to compare the fMRI recordings with other modalities that can also be 
recorded simultaneously with EEG, such as MEG and/or intracranial EEG (Dubarry 
et al. 2014), near- infrared spectroscopy (Machado et al. 2011), etc. The simultane-
ously acquired EEG signals can then serve to assess the extent to which the activity 
of interest (e.g. evoked potentials or background activity) is reproducible across 
sessions.

In addition to paradigms that are based on repetitive stimuli, continuous nat-
uralistic stimuli such as movie watching have been used in EEG-fMRI experi-
ments (Morillon et  al. 2010; Whittingstall et  al. 2010; Lehongre et  al. 2013). 
The continuous nature of this stimulus makes analysis strategies based on sin-
gle-trial variability or averaging unsuitable. Instead the type of analysis 
approaches used in resting state analysis is more appropriate (see Sect. 12.2.3.1). 
It is equally possible to correlate brain activity timecourses across subjects as 
the naturalistic stimulus is normally the same for all participants (Simony et al. 
2016). Another interesting stimulus-driven paradigm is the utilization of bio-
feedback (Zich et al. 2015). As this paradigm relies on presenting the instanta-
neous and clean EEG signal back to the subject this approach requires efficient 
online gradient artefact rejection in particular (Jorge et  al. 2015b; Zich et  al. 
2015; Steyrl et al. 2018).
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12.3  Analysis of Simultaneously Acquired EEG–fMRI Data

Since it is a relatively underused instrument, EEG–fMRI studies have often had an 
exploratory flavour, although they are hypothesis-driven at the level of each dataset. 
This is particularly the case in the study of spontaneous brain activity (epileptic 
discharges, rhythms, etc.) aimed at identifying the spatiotemporal patterns of hae-
modynamic change related to the EEG phenomena of interest, with the primary 
question generally being “do any parts of the brain activate/deactivate in relation to 
a specific EEG phenomenon?” This has mainly been done through analyses of the 
correlation of the BOLD timeseries with a postulated EEG-derived model of hae-
modynamic changes, implemented in the form of general linear models (GLM). In 
the language of the Chap. 1, this analytical approach can be characterized as being 
asymmetric and hypothesis-driven (EEG-informed GLM). The above question can 
be rephrased to be more specific as: “assuming a fixed and well-characterized 
response to a brief neuronal (EEG) event, what are the brain regions, if any, which 
activate/deactivate in relation to the observed EEG events?” In the case of epilepsy, 
for example, this question can be answered using the timing of epileptic discharges 
for the spike-triggered acquisition mode discussed previously and in analyses of 
EEG–fMRI data that assume a fixed HRF (see below).

Another question that has often been explored is “what is the ‘optimal’ EEG- derived 
model of haemodynamic changes?”. Interest in this question has been motivated by the 
suspicion that the relationship between neuronal activity and haemodynamic changes 
for spontaneous brain activity reflected on the EEG may deviate from the norm (repre-
sented by the “canonical” HRF), particularly in pathological systems. Unfortunately, 
no ground truth against which models can be formally evaluated is generally available 
in human studies, and in practice this question has been explored by using relatively 
flexible HRF basis sets or families of GLMs to map out the spatiotemporal variability 
of the EEG-related BOLD changes, including the shape of the HRF. For stimulus-
based studies, the analysis of EEG–fMRI has focused on exploring the relationship 
between specific features of the EEG signal and the time-locked BOLD signal. These 
can be addressed within the GLM framework using parametric designs. Even more 
exploratory approaches have also been proposed that rely on the identification of pat-
terns in the multivariate data based on general assumptions relating to the statistical 
properties of the signals, such as principal component analysis (PCA) and independent 
component analysis (ICA). The above relates to the analysis of individual datasets and 
will be discussed in more detail in the remainder of this section.

Note that the methods available for group studies where an atomically consistent 
effect can be hypothesized across subjects, such as evoked responses and EEG 
rhythms, will not be reviewed here since the details are not specific to EEG–fMRI; 
we refer the reader to the Chap. 15 for further reading. However, there is one aspect 
of the analysis of group EEG–fMRI data that demands particular attention, namely 
the potential for exceedingly unbalanced designs resulting from the widely varying 
experimental efficiencies of recordings of spontaneous brain activity. A discussion 
of this point can be found in (Friston et al. 2005), and an example application in 
generalized epilepsy in (Hamandi et al. 2008).
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12.3.1  Model-Based Analysis of fMRI Time-Series Data

The basic strategy for the analysis of fMRI data aims at identifying the voxels at 
which the BOLD signal is significantly correlated with a postulated timecourse and 
therefore can be reframed as the problem of identifying the sources of signal 
variance.

12.3.1.1  Preprocessing
It has been shown that a large proportion of the variance in fMRI timeseries can be 
attributed to head motion (Friston et al. 1996). Therefore, the first step of the fMRI 
processing pipeline usually consists of the spatial realignment of the serially 
acquired scans (Friston et  al. 1995). This step is commonly followed by spatial 
smoothing to boost the signal of interest according to the matched filter principle 
and to make the data conform better to the assumptions of Gaussian random field 
(GRF) theory, which is used to make inferences in the classical statistical frame-
work (see below). The amount of smoothing must be chosen by considering the 
expected spatial scale of the haemodynamic changes and the need for the degree of 
data smoothness to be substantially greater than the voxel size (see Penny and 
Friston, Classical and Bayesian Inference in fMRI, in: Human Brain Function; see 
Josephs and Henson (1999) for a detailed discussion of event-related fMRI data 
analysis).

The rest of the analysis pipeline focuses on the derivation of maps consisting of 
voxels for which changes in the BOLD signal can be related to the aspect of brain 
activity which is of interest to the investigator.

12.3.1.2  The General Linear Model (GLM) and Statistical Inference
The most commonly used fMRI data analysis strategy relies on fitting a general 
linear model (GLM) to the data (Worsley and Friston 1995). A GLM consists of a 
set of equations expressing the predicted fMRI signal timecourse as a weighted sum 
of linear terms representing the effects of interest and confounds (i.e. effects of no 
interest such as movement). The GLM is therefore an expression of the assumption 
that fMRI changes can be linearly related to the experimental effects at every voxel. 
In the absence of prior localization-related hypotheses about this relationship, as is 
commonly the case in most fMRI studies, the same GLM (set of linear equations) is 
estimated (i.e. fitted to the data) at every brain voxel, resulting in estimated weights. 
The localizing information provided by fMRI derives from the variability of result-
ing weights across voxels.

This section provides a brief introduction to the GLM, focusing on model speci-
fication and statistical inference; explanations of model estimation and statistical 
models can be found in (Worsley et al. 2002; Lindquist 2008) or in open source 
software manuals (e.g. http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf). Note that 
the GLM approach is closely related to the often-used correlation analysis and rep-
resents a generalization of the latter that is capable of handling multiple linear 
regressions corresponding to multiple effects of interest.
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In the following we will focus exclusively on classical estimation and inference; 
the reader is invited to consult (Friston et al. 2002) for a comparative discussion of 
the classical and Bayesian approaches.

Building a GLM
The fMRI signal at any given voxel is represented as a vector of serial observations, 
yi, i = 1…N, where N is the total number of observations (scans). Each observation 
yi is modelled as a weighted sum of xk (k = 1…K) “regressors”, where K is the num-
ber of effects represented in the model, and the residual (zeromean) error ei,

 e y x x x ei i i K iK i: = + + … + +β β β1 1 2 2 ,  (12.1)

where βj are the unknown weights for each of the K effects; the βs are usually 
referred to as the model parameters. Expressed in vector and matrix form, we have

 Y e= +X .β  (12.2)

The matrix X represents the modelled effects and is known as the design matrix. 
The aim of the GLM estimation procedure is to estimate the model parameters, i.e. 
vector β, at every voxel.

Regressors are usually categorized as effects of interest or effects of no interest 
(i.e. confounds). The objective of this dichotomy is to separate signal from noise in 
all its forms, such as noise  associated with instrumental, physiological or other 
effects (body motion) not related to the specific experimental question.

Regressors of interest therefore model the part of the fMRI signal that relates to 
the experimental events or conditions (stimuli, responses, epileptic spikes, EEG 
alpha power, etc). Regressors representing the effects of interest are typically 
obtained by convolving impulses or boxcar functions, which are mathematical rep-
resentations of the events or conditions of interest, with a model of the event-related 
fMRI response such as the canonical haemodynamic response function (HRF) or 
other basis set (e.g. inclusion of additional time and dispersion derivatives; Fourier 
expansion; finite impulse response). The choice of a specific mathematical repre-
sentation for the events of interest is dictated by the nature of the events. In the case 
of a very brief external stimuli or spontaneous epileptic spikes, the events are typi-
cally represented by a stick (delta) function (epileptic spikes span approximately 
100 ms, which is very short in terms of fMRI; although this duration can vary in a 
subject, the effect of spike length is rarely taken into account (Bagshaw et al. 2005) 
and spikes are typically represented as “‘zero-duration”’ events). In contrast, runs 
(or bursts) of epileptic spikes may be represented as series of individual stick func-
tions, each presenting a spike, or as variable-duration blocks. For continually vary-
ing brain activity, such as brain rhythms, the EEG signal power may be used as a 
mathematical representation of the neuronal activity. The choice of haemodynamic 
basis set reflects a number of considerations: for example, one may wish to estimate 
the shape of the event-related BOLD change rather than assume any particular 
shape, in which case a flexible model is required using a basis set consisting of 
multiple functions over a shorter or longer time window than the canonical HRF; 
alternatively, by restricting the basis set to a single function, effects that match this 
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function can be detected with maximum sensitivity; see Josephs and Henson (1999). 
Each of these choices corresponds to a model to be tested, expressing a specific set 
of assumptions about the relationship between stimulus (when present), neuronal 
response and haemodynamic signal. This will be the subject of further discussion in 
forthcoming sections on specific EEG-derived modelling strategies.

Regressors of no interest are introduced to attempt to model the remainder of the 
fMRI signal. Examples of such regressors are: structured noise, which may include 
movement-related signal changes, and can be modelled using there alignment 
parameters of the fMRI timeseries; and slow fluctuations due to drift in scanner 
sensitivity, which can be modelled as a sum of low-frequency sine and cosine waves. 
When modelled accurately, the inclusion of such effects can be important, as it per-
mits a more reliable estimation of the coefficients of the GLM corresponding to the 
effects of interest and increases the level of confidence in the findings (Lund et al. 
2005). For example, if the regressor of interest varies slowly and is not orthogonal 
to the slow drifts, part of the energy of the slow drift could be wrongly attributed to 
the regressor of interest (i.e. the corresponding coefficient would be 
overestimated).

Within the classical framework, parameter estimation proceeds using ordinary 
least squares, a standard methodology which aims to minimize the residual sum of 
squares, i.e. the sum of the squared difference between the predicted signal change 
and the observations (sum of e terms in Eq. (12.1)). For the GLM, this procedure 
guarantees maximum likelihood estimates, which is an important, often-cited statis-
tical concept. It means that the estimated parameter values are the most probable 
given the data.

An important issue when building a GLM is that of correlation (i.e. non- 
orthogonality) between regressors, which can result in loss of sensitivity. This may 
be particularly problematic in models that contain several event-related parametric 
factors and require an orthogonalization procedure (Eichele et al. 2005). Another 
issue concerns the linearity between EEG and fMRI that is implied in the construc-
tion of a parametric regressor. Such linearity may not be guaranteed (Vazquez and 
Noll 1998; Wager et al. 2005; Wan et al. 2006), but the large literature using the 
linear model suggests that it is a reasonable assumption. Moreover, linear analysis 
may still capture some nonlinear effects (Deneux and Faugeras 2006). Additional 
regressors can also be added to a GLM (with the parameters elevated to the power 
of 2, 3, etc.) in order to model nonlinear effects (Friston et al. 1998).

Statistics
The goal of statistical inference in fMRI within the GLM framework is to test 
whether the amplitude of β (or a combination of coefficients) is significantly differ-
ent from zero. A linear combination of coefficients is called a contrast. For example, 
in a task involving an active condition (corresponding to β1) and a reference 
condition (corresponding to β2), the contrast would be (β1−β2).1 The statistical sig-
nificance of such a contrast can be tested with a t statistic:

1 Corresponding to contrast vector [1, –1] in the language of the SPM software.
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T std S= −( ) −( ) −( ) −( )β β β β β β β β1 2 1 2 1 2 1 2/ ~ /  (12.3)

where std (β) is the estimated standard deviation of β, which is proportional to the 
sum of the squares of the residuals, S(β). Taking the simple case of a GLM with a 
single regressor of interest and its corresponding parameter, β, we can use such a t 
statistic

 
T std= ( )β β/  (12.4)

To test the hypothesis, β > 0. This is the simplest contrast and is commonly used to 
test whether a predicted experimental effect (e.g. associated with a simple ON-OFF 
stimulus) is likely to be present in the data.

Another option is to test whether at least one coefficient within a set is different 
from zero. This can be necessary when the activity of interest is modelled by several 
regressors, such as in models using a basis set consisting of more than one function. 
For example, in order to test for departures of the haemodynamic response from the 
canonical HRF, it can be useful to include the derivative of the HRF into the model 
in addition to the canonical HRF to map brain regions for which the BOLD signal 
can be represented by any linear combination of the canonical HRF and its temporal 
derivative. This can be accomplished using an F test, which is essentially a general-
ization of the t test that allows us to test a hypothesis on a subset, β1, of the param-
eters β; for example, that β1 = 0. An F statistic can be devised by considering the full 
model and the reduced version of the model that is obtained if the hypothesis is true 
(β1 = 0). Representing the reduced model by the subset of parameters, β2, the appro-
priate F statistics:
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(12.5)

where S(β) is the squares of the residuals for the full model (and S(β2) for the reduced 
model), p is the rank of the design matrix for the full model (and p2 for the reduced 
model) and N is the number of scans. An explanation of the implementation of Eq. 
(12.5) in the SPM software using contrast matrices can be found in (Penny and 
Friston 2004) and in online SPM documentation.2 An example of its application 
using a Fourier basis set can be found in the Chap. 17 (Fig. 12.1).

Significance of BOLD Changes
The above process results in 3D maps representing the t or F statistic of the effect 
of interest at every voxel: the so-called statistical parametric maps or SPMs. The 
statistics are derived independently for each voxel, which can easily number in the 
tens of thousands in the brain—hence the “massively univariate analysis” terminol-
ogy often used in the context of fMRI. However, the significance of the deviations 

2 https://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/.
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from the null hypothesis (i.e. the conversion of t statistics to Z scores) must be 
assessed in relation to the maximum score or the size of an activated region. 
Crucially, only the false-positive rate (type I errors) can be controlled. Type II error 
control is generally neglected since it is difficult to specify a quantitative alternative 
hypothesis in fMRI as is required for a power calculation. To put it simply, the lack 
of activation does not prove that there is no underlying brain activity.

Numerous means of calculating significance thresholds for functional MR 
images have been developed. Seminal work was based on the theory of random 
Gaussian fields (Worsley et al. 1992). This is a parametric framework that controls 
for the fact that, in the null hypothesis of no significant effect, the maximum value 
of the map can be above the threshold with a p value of α (typically, α = 0.05). Such 
a threshold is corrected for the large multiple comparison problem that arises when 
simultaneously testing a large number of voxels and corresponds to the family-wise 
error rate (FWE). The importance of correction for multiple comparisons and con-
trolling for false positives has been emphasized (Bennett et al. 2009; Bennett and 
Miller 2010). Another option, within the same framework, is to use a threshold 
based on the extent of a given cluster of activated voxels above an uncorrected 
threshold with a low p value (typically, α = 0.001) (Poline et al. 1997; Cao 1999). 
The thresholds obtained with random field theory are typically high and require a 
large level of image smoothing (typically with a filter FWHM of 10–15 mm). To be 
noted, the specificity of cluster thresholding has been criticized (Woo et al. 2014; 
Eklund et al. 2016). A second alternative is to use the threshold that allows a given 
portion of activated voxels to be false detections. This is the “false detection rate” 
(FDR), which is a less conservative than the family-wise statistic on the maximum 
(Genovese et al. 2002). We note that the classical interpretation of FDR has been 
challenged (Chumbley and Friston 2008). A third alternative is to derive the distri-
bution of the statistic in the null hypothesis directly from the data, for example, by 
shuffling the labels of active and control conditions (Bullmore et al. 2001). This is 
the nonparametric framework, which allows the structure of the data (spatiotempo-
ral correlations) to be taken into account explicitly, and which handles the multiple 
comparison issue in a straightforward manner (Nichols and Holmes 2002; Meriaux 
et al. 2006).

12.3.2  EEG-Derived GLM: Use of Event on sets and Illustration 
in Epilepsy

The study of spontaneous brain activity using EEG–fMRI raises a number of impor-
tant issues related to GLM building, namely the identification and categorization of 
events of interest, the mathematical representation of those events and the choice of 
a basis set for the HRF, as well as model comparison. Due to fluctuations in the 
background EEG, defining the baseline (control state) is also a challenge.

Since the first applications of EEG–fMRI were in patients with epilepsy, the first 
attempts at data integration were geared towards the study of subclinical (without 
behavioural manifestations), randomly occurring, epileptic discharges (for reviews 
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on the seminal studies, see Salek-Haddadi et  al. (2003a), Gotman et  al. (2004), 
Lemieux (2004), Gotman et al. (2006); for more recent reviews see Centeno and 
Carmichael (2014), van Graan et  al. (2015)). The aim of this strategy is to find 
regions of BOLD change linked to the discharges, which can potentially help in 
presurgical evaluation (Pittau et al. 2014). The timing of interictal epileptiform dis-
charges (IED) is used in an event-related fMRI analysis to create regressors repre-
senting the effects of interest, by convolving the event onsets represented as delta 
functions3 with a model of the event-related haemodynamic change in the form of a 
haemodynamic basis set (Fig. 12.2).

One difficulty of EEG-fMRI in epilepsy is that every patient is a particular 
case, and clinical results are needed for individual patients. This implies that pro-
cessing has to be performed at the single-subject level, contrary to task-related 
analyses that can use large cohorts. In addition, the spatiotemporal aspects of 
IEDs vary greatly between patients and can also vary in time for any given patient. 
Therefore, although conceptually simple, this approach relies on the detection of 
those events—a subjective process—and their categorization. Visual or automatic 
detection of epileptic spikes can be challenging and can impact statistical results 
(Flanagan et al. 2009). Classification of spikes is important because each regres-
sor corresponds to a hypothesis that can be phrased as follows: there are brain 
regions in which the BOLD signal change averaged across the events is nonzero. 
This implies that the events grouped into each regressor are haemodynamically 
consistent. It has thus been proposed to cluster interictal discharges based on the 
waveforms as observed on the sensors (Pedreira et al. 2014). It is to be noted that 
consistency at the level of the sensors does not guarantee consistency at the voxel 

3 Usually implemented as a stick function of unitary amplitude.

a

b

c

Fig. 12.2 (a–c) Modelling of fMRI signal timecourse using event timing alone and basis set con-
sisting of a single function. (a) Each event (here, interictal epileptic spikes) is marked by visual 
inspection of the EEG data recorded in the scanner. (b) On set vector: series of identical impulse 
(“delta”) functions. (c) Corresponding regressor for a general linear model (GLM) obtained by 
convolving the events with a canonical HRF
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level, nor in terms of haemodynamic responses. Another option is to use detec-
tions based on ICA components (Ossadtchi et al. 2004; Malinowska et al. 2014), 
which can potentially separate processes corresponding to separate regions as 
suggested by their dipolar nature (Delorme et al. 2012)—although this is not guar-
anteed. A last option is to use reconstruction at the source level in order to build 
regressors (Vulliemoz et al. 2010). More sophisticated approaches can take into 
account various morphological aspects of the IED, such as duration and amplitude 
(Mirsattari et al. 2006; LeVan et al. 2010). It has also been proposed to filter the 
EEG by the topography of interictal spikes and/or artefacts, in order to improve 
signal-to-noise ratio (Siniatchkin et  al. 2007; Grouiller et  al. 2011; Tousseyn 
et al. 2014).

The haemodynamic basis set can consist of a single function such as the canoni-
cal or standard HRF, or a multiplicity of functions such as assets of time-shifted 
standard HRFs, the finite impulse response (FIR) and Fourier basis sets (Josephs 
et al. 1997; Josephs and Henson 1999; Bagshaw et al. 2004). As alluded to in the 
previous section, models based on a single function are optimal for the detection of 
BOLD changes that match that function (this is the “matched filter” principle), 
whereas models based on basis sets with multiple functions can be used to assess 
the shape of the event-related BOLD changes and to map interregional variations in 
the timecourse of the changes.

Variability in the timecourse of the IED-related BOLD changes has been 
shown to impact on detection efficiency (Kang et al. 2003; Bagshaw et al. 2004; 
Lu et al. 2006; Salek-Haddadi et al. 2006; Lemieux et al. 2008; Grouiller et al. 
2010; Storti et  al. 2013). BOLD changes time-locked with EEG events may 
appear earlier or later than predicted by the standard model, in epilepsy and in 
response to normal brain rhythms (Feige et  al. 2005; de Munck et  al. 2007; 
Lemieux et al. 2008), sometimes even prior to scalp EEG changes (Hawco et al. 
2007; Pittau et al. 2011). Such observations may be seen as highlighting a limita-
tion of the scalp EEG as a basis for modelling whole-brain activity, but also as an 
example of the added value of the combined method. However, the lack of a 
proper assessment of response variability using the specific modelling approaches 
used in the above studies in relation to event-related BOLD effects in healthy 
brains limits our ability to interpret the observed deviations as being specifically 
related to epilepsy (Rollings et al. 2016). In particular, the often-cited study by 
Aguirre on the variability of the response to a reaction-time motor task is based 
on a Fourier basis set consisting of only three sines and three cosines, which is 
less flexible than most models used in the above epilepsy studies (Aguirre et al. 
1998). More work is needed, including animal and computational models, in 
order to understand the basis of variability in the HRF in terms of physiological 
processes (Mirsattari et al. 2006; Vanzetta et al. 2010; Voges et al. 2012; Saillet 
et al. 2016).

The above issues are ultimately related to model selection, which is a funda-
mental problem of science and is particularly troublesome in the classical statis-
tical framework, which usually favours complex models over simple models 
since the former tend to “mechanically” explain a greater proportion of the 
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variance.4 Nonetheless, it is relatively common practice to compare models in 
EEG–fMRI, particularly when exploring the relationship between EEG and 
fMRI. This is often done by selecting the way in which regressors expressing 
different model variants are incorporated into GLMs. By incorporating all 
effects of interest within a single, embedded model, one can test for the signifi-
cance of the variance explained by specific factors through appropriate F con-
trasts (see Salek-Haddadi et al. (2006) and Liston et al. (2006b) for illustrations). 
An alternative is to build a set of separate GLMs. In this approach, statistical 
correction factors must be applied to account for multiple models, and selection 
of the result (“best” model and associated map) requires the application of an 
additional criterion, such as the extent of activation or t score (Bagshaw et al. 
2004). The Bayesian inference methodology offers an elegant framework for 
dealing with parameter estimation and model comparison and has been used in 
HRF estimation (Marrelec et  al. 2003). Estimation and detection normally 
impose the need to use two different datasets in order to avoid overfitting of the 
noise, although an interesting avenue (again permitted within the Bayesian 
framework) is to jointly estimate the HRF and detect activated voxels (Lu et al. 
2006; Makni et al. 2008; Chaari et al. 2013).

Evidently, the data acquisition and analysis strategies described above are 
fundamentally different from conventional “activation” fMRI experiments in 
that there is no explicit reference or control state. In the resting state, fluctua-
tions in brain rhythms are accompanied by typical BOLD patterns (Goldman 
et al. 2002; Laufs et  al. 2003b; Mantini et  al. 2007b). Therefore, background 
EEG may be used to improve models of the baseline fMRI signal fluctuations 
(Tyvaert et al. 2008) in addition to the usual confounding effects of respiration, 
the cardiac cycle, motion and instrument-related effects (e.g. low-frequency 
drifts).

The exquisite temporal resolution of EEG recorded simultaneously with fMRI 
also offers the possibility of modelling MR signal changes in the latter at a much 
faster timescale than the BOLD effect, namely the neuroelectric MR effect (some-
times referred to as neuronal current MR imaging) (Bodurka and Bandettini 2002; 
Hagberg et al. 2006). By precisely marking the onset of generalized spike and wave 
in relation to the acquisition of individual MR slices, Liston et al. employed a basis 
set consisting of a series of FIRs to study MR signal changes at a 30-ms timescale 
(Liston et  al. 2004). Using a phase-cycled stimulus-induced rotary saturation 
approach with spin-lock preparation Kiefer et al. recently showed that this neuro-
electric effect is related to IEDs and can be used to inform source reconstruction of 
IED (Kiefer et al. 2016).

4 The Bayesian approach is probably preferable as it allows inclusion of an “Occam factor” in the 
comparison, i.e. a penalization of model with many parameters.
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12.3.3  EEG-Derived GLM: Parametric Design and Single Trial

The use of single-trial variability and spectral information, which are widely applied 
in sensory and cognitive neuroscience applications, leads to event-related designs 
similar to those described above in epilepsy, differing mainly in the nature of the 
EEG information that is included in the GLM analysis.

A strategy employed to investigate the coupling between the EEG and fMRI 
signals is the manipulation of one or several parameters within the protocol and 
the comparison of the corresponding fluctuations in the EEG and fMRI signals. 
As described in the Chap. 1, this type of study may be done in separate or simul-
taneous data acquisition sessions depending on the experimental conditions and 
the type of inference that one wishes to make. For example, by varying the inter-
trial interval or stimulation intensity, one is able to divide the trials into groups, 
resulting in one EEG and one fMRI analysis per group. One can then test whether 
the two signals fluctuate similarly across groups (Horovitz et  al. 2004). This 
approach has been applied for evoked potentials (Liebenthal et  al. 2003), ERP 
fluctuations of face selectivity (Sadeh et al. 2010), high-frequency (gamma) activ-
ity (Foucher et al. 2003) and even ultra-high-frequency (600 Hz) responses (Ritter 
et al. 2008).

The inclusion of parameters derived from a single-trial analysis of the EEG data, 
i.e. from the individual EEG responses to the stimuli, offers the possibility of explor-
ing the relationship between EEG and haemodynamic signals much more deeply; 
for example, the BOLD correlates of the ERP amplitude (Debener et  al. 2005; 
Eichele et al. 2005; Bénar et al. 2007; Walz et al. 2014; Wirsich et al. 2014), latency 
(Bénar et al. 2007; Walz et al. 2014) or the amplitude of high-frequency oscillations 
(Mulert et  al. 2007). See Fig.  12.3 for a description of parametric analysis and 
Fig. 12.4 for an application.

The analysis of single-trial data is hampered by a low signal-to-noise ratio 
compared to averaged responses. Single-trial analysis techniques designed to 
improve signal-to-noise ratio based on feature extraction can be used fruitfully 
in combined EEG–fMRI analysis (Mayhew et al. 2006; Philiastides and Sajda 
2006), as well as in all fields of EEG processing, for example, brain–computer 
interfaces (Cincotti et al. 2003). Several aspects of the activity can help to char-
acterize intertrial fluctuations: temporal structure, its time–frequency structure 
(Quian Quiroga and Garcia 2003; Wang et al. 2007; Benar et al. 2009), its spa-
tial configuration across sensors or a combination of these (Ranta-aho 
et al. 2003).

Various techniques have been proposed to improve the signal-to-noise ratio of 
single trials. Instead of relying on single trial fluctuations of one electrode it has 
been proposed to use combined electrode measures (Fuglo et  al. 2012), wavelet 
denoising (Eichele et al. 2005; Bagshaw and Warbrick 2007) or independent com-
ponent analysis (ICA) (Debener et  al. 2005; De Vos et  al. 2012; Warbrick et  al. 
2014). When applied on an individual level, ICA can give inconsistent results across 
subjects depending on the quality of the data and of the decomposition. This can be 
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Fig. 12.3 (a–d) Modelling of fMRI data using parametric modulation. (a) Vector of event on sets 
as in Fig.  12.2; (b) EEG event feature vector (e.g. amplitude, duration). (c, d) Corresponding 
regressor obtained by convolution of (a) and (b), respectively, with the canonical HRF.  When 
combined in a single GLM, statistical maps can be obtained showing voxels for which each effect 
explains a significant amount of additional variance by defining appropriate contrasts (Salek- 
Haddadi et al. 2006)

improved by analysing the ICA on a group level (Eichele et al. 2011) which allows 
several single trial estimates of different components in an EEG-fMRI paradigm to 
be extracted (Wirsich et al. 2014). Alternatively, to improve the single trial quality, 
it has been demonstrated that a classifier can learn the single trial content that best 
discriminates two different stimuli. On a trained model the classifier output of each 
single trial can be used as a regressor in an EEG-Derived GLM (Parra et al. 2002; 
Goldman et al. 2009; Walz et al. 2014). This approach can not only be used in com-
bination with a GLM but also in combination with an fMRI encoder (Muraskin 
et al. 2017).

ICA is a good approach as a purely data-driven way of exploring new data or 
when using only one stimulus type. Still, hypothesis-driven approaches like classi-
fication of single trials will provide more specific and interpretable estimates 
(Calhoun and Sui 2016). Future directions may fuse these approaches by adding a 
priori information into source separation (Porcaro et al. 2010).

Source localization or spatial filtering can also serve as a way of denoising, with 
the additional potential advantage, given an appropriate model, of providing spatial 
information on the processes of interest (Brookes et al. 2008). This is a very promis-
ing approach, as it would permit the fMRI signal to be correlated with the source of 
EEG data originating from the same region (Grouiller et al. 2011), thereby remov-
ing one source of ambiguity.
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Fig. 12.4 (a, b) EEG–fMRI study in an auditory odd ball experiment. Comparison of fMRI acti-
vation for (a) rare events and (b) parametric modulation based on P300 amplitude at Cz (subject 1 
of Bénar et al. 2007). The detailed design matrix is presented on the left column. There are four 
runs and three regressors per run: frequent events, rare events and parametric modulation (see 
Fig. 12.3). In (a) the contrast is “rare–frequent”. In (b) the contrast only includes the parametric 
regressor
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12.3.4  EEG-Derived GLM: EEG Spectrum

One of the most important uses of EEG–fMRI to date has been in identifying the 
brain regions that co-vary with changes in brain rhythms and more generally EEG 
spectral power. Although oscillatory activity has been studied since the earliest days 
of EEG (Berger 1929), locating the cortical generators of this activity using EEG 
alone is difficult because of the ill-posed nature of the inverse problem (Geselowitz 
1967). fMRI provides an alternative method that has the potential advantage over 
EEG of being capable of recording activity directly from subcortical structures or 
more recently, due to ultra-high field, from different cortical laminae (Yacoub et al. 
2008; Kashyap et al. 2018; Fracasso et al. 2018, for review: Dumoulin et al. 2018).

Studies of spectral power can be split into two basic categories: those which 
examine spontaneous fluctuations and those which use an experimental manipula-
tion to modify spectral power in a specific frequency range. The analytical approach 
is essentially the same for both types of data and is conceptually similar to what has 
been discussed previously. Typically, EEG data are filtered into short epochs of the 
order of a second, and power in one or more frequency bands is quantified for each 
epoch. In most applications, the power timeseries is convolved with a postulated 
kernel function representing the BOLD change per impulse input (usually the stan-
dard haemodynamic response function) and entered as a regressor in a GLM analy-
sis (Fig.  12.5). The choice of EEG channel or group of channels for the power 
calculation requires careful consideration (e.g. see Laufs et al. (2003a)). This kind 

a

b

c

d

Fig. 12.5 (a–d) Modelling of fMRI timeseries using the energy within a frequency band. (a) 
Original EEG data, where several alpha wave bursts can be seen. (b, c) Energy in the 8–12 Hz 
band, using a sliding window Fourier transform (Goldman et al. 2002). (d) Regressor obtained by 
convolving energy with canonical HRF
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of study is particularly demanding on EEG quality because of the potential for arte-
facts to corrupt the power spectrum (see the Chaps. 8 and 9).

Early examples of this type of study were based on interleaved acquisitions, 
with posterior alpha power extracted from simultaneously acquired EEG–fMRI 
data (Goldman et al. 2002; Laufs et al. 2003a). Although this technique was origi-
nally applied to the study of the power of the alpha rhythm (Moosmann et  al. 
2003; Feige et  al. 2005; Goncalves et  al. 2006; de Munck et  al. 2007, 2009; 
Sadaghiani et  al. 2010) and to alpha phase synchronization (Jann et  al. 2009; 
Sadaghiani et al. 2012), it can also be used to examine oscillations at higher or 
lower frequency. Laufs et al. (2003b) also quantified beta power and included that 
as a regressor in the fMRI analysis and noted the similarity between the regions 
identified and those associated with the default mode network (DMN) (Raichle 
and Snyder 2007). Mantini and colleagues found different spatial patterns of 
fMRI response across EEG frequency bands (Mantini et  al. 2007b), while 
Scheeringa et al. related frontal theta power to the DMN (Scheeringa et al. 2008). 
Studies on event-related synchronization and desynchronization (ERD/ERS 
Pfurtscheller and Lopes da Silva (1999)) using EEG–fMRI have focused on the 
BOLD correlates of low-frequency oscillations in the theta and delta range (<7 
Hz) during hyperventilation (Makiranta et  al. 2004) and mental arithmetic 
(Makiranta et  al. 2004; Sammer et  al. 2007), as well as fundamental questions 
about neurovascular coupling related to the alpha and beta bands (Mullinger et al. 
2013). During a face integration task Kottlow et al. showed that global field syn-
chronization of the gamma band is correlated to the BOLD signal (Kottlow et al. 
2012), while BOLD activity was also found to correlate with the auditory gamma 
response (Mulert et al. 2010). Scheeringa et al. demonstrated frequency specific 
independent BOLD-EEG associations for high and low frequencies during a 
visual attention task (Scheeringa et al. 2011). By studying cortical depth represen-
tation of the relation between trial-by-trial variation in BOLD and EEG power 
during a visual attention task, different profiles over laminar depths in the visual 
cortex were assigned for α, β and γ-oscillations (Scheeringa et  al. 2012). 
Scheeringa and Fries were able to further our understanding of the relationship 
between specific rhythms and layer-specific anatomical projections (Scheeringa 
and Fries 2019). Feed forward projections (predominantly originating from supra-
granular layers and terminating in granular layer (layer 4)) being mainly ruled by 
gamma- band influences, and feedback projections (predominantly originating 
from infragranular layers and terminating outside granular layer) being mainly 
ruled by alpha- and/or beta-band influences (Scheeringa and Fries 2019).

Some work has been done at lower frequencies of the order of 1  Hz or less 
(Khader et al. 2007). For example, by using ICA decomposition of the EEG, it has 
been demonstrated that the BOLD signal correlated with infraslow EEG (0.01–0.1 
Hz) power (Hiltunen et al. 2014). Parkes and colleagues used the same methodol-
ogy to examine the BOLD correlates of the post-movement beta rebound (Parkes 
et al. 2006). See the Chap. 15 for a review of the findings. The presented approaches 
all assume a static linear relationship between BOLD activity and EEG frequencies. 
More recent work demonstrate a dynamic relationship of alpha and BOLD activity 
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on a trial to trial basis (Mayhew et al. 2013a) and during the resting state (Mayhew 
and Bagshaw 2017). Taking advantage of the capability of EEG to easily track vigi-
lance states derived from a combination of different EEG bands, Falahpour et al. 
created a correlated vigilance template for fMRI resting state activity (Falahpour 
et al. 2018).

Using an approach similar to (Liston et al. 2006b), Mandelkow et al. attempted 
to detect fast (neuronal current-related) signal changes linked to alpha power, but 
were hampered by the pulse artefact (Mandelkow et al. 2007). More generally, 
difficulties that can arise from narrow-band filtering are presented in Sect. 
12.5.3.2. It has been also shown that some of the BOLD-alpha coactivations are 
correlated to respiration (Yuan et al. 2013), suggesting the importance of remov-
ing physiological artefacts in both EEG and fMRI signals (Perlbarg et al. 2007). 
It is also worth remembering that even with the most advanced and effective 
methods for artefact correction, residual artefacts can still corrupt the EEG signal 
and lead to spurious but plausible EEG-BOLD correlations (Jansen et al. 2012; 
Fellner et al. 2016).

12.3.5  Multivariate Analysis

The analysis technique outlined above is based on the interrogation of the fMRI 
signal through the same EEG-derived model at each and every voxel and is there-
fore often referred to as a massively univariate approach. An alternative approach is 
the identification of meaningful patterns (e.g. across multiple voxels or EEG chan-
nels) based on more generic assumptions for the properties of signals and their 
generators (Martinez-Montes et al. 2004). Multivariate methods have the advantage 
of reducing the dimensionality of the data and also potentially finding subtle pat-
terns that are “diluted” across many voxels.

Several multivariate techniques have been proposed for the analysis of bio-
physical signals: PCA (Rosler and Manzey 1981; Lai and Fang 1999; Dien et al. 
2007), singular value decomposition (SVD), nonlinear PCA (Friston et al. 1999; 
Thirion and Faugeras 2003), canonical component analysis (Vitrai et al. 1984; De 
Clercq et al. 2006), partial least squares (PLS) analysis (McIntosh and Lobaugh 
2004), ICA (Makeig et al. 1997; Kobayashi et al. 1999; Vigario et al. 2000; Jung 
et  al. 2001; James and Gibson 2003) and parallel factor analysis (Miwakeichi 
et al. 2004).

The most commonly applied multivariate technique for EEG-fMRI is ICA 
(Jutten and Herault 1991; Comon 1994). It can be used to decompose EEG signals 
(N channels × P timepoints) into a set of fixed topographies (across the N channels) 
and a corresponding timecourse, with the constraint that the timecourses are maxi-
mally independent (temporal ICA). Spatial ICA, whereby a constraint of maxi-
mally independent spatial patterns is employed, has also been used successfully to 
identify “sources” in fMRI. The fact that the ICA constraint is applied along the 
spatial dimension for fMRI data mainly stems from the fact that this is the largest 
dimension (contrary to EEG where it is time), and ICA requires many points in 
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order to give stable results. Several algorithms have been proposed for computing 
such decompositions (Bell and Sejnowski 1995; Cardoso 1999; Hyvarinen and 
Oja 2000).

ICA can be used to identify and subsequently remove artefacts on the EEG traces 
(Benar et al. 2003; Srivastava et al. 2005; Briselli et al. 2006; Nakamura et al. 2006; 
Bagshaw and Warbrick 2007; Debener et al. 2007; Mantini et al. 2007a), or on the 
fMRI signal (McKeown et al. 2005; Bagshaw and Warbrick 2007). This approach is 
potentially very useful, but one of the major difficulties is the identification of the 
components to be removed (LeVan et al. 2006; Ting et al. 2006; Perlbarg et al. 2007; 
Tohka et al. 2008; Viola et al. 2009). Moreover, the activity to be removed (e.g. the 
pulse-related artefact) may not have a stable spatiotemporal pattern, which violates 
one of the basic assumptions of ICA, rendering the process suboptimal (Wallstrom 
et al. 2004; Debener et al. 2008). Conversely, ICA has been used to identify signals 
representing activity of interest (McKeown et  al. 1998; Jung et  al. 2001; Duann 
et al. 2002; Rodionov et al. 2007). As discussed in Sect. 12.3.3 this has two attrac-
tions: signal denoising, which is very useful for single-trial analysis (Bagshaw and 
Warbrick 2007; De Vos et al. 2012; Warbrick et al. 2014; Wirsich et al. 2014), and 
separation of activity from different sources (with a source corresponding to a brain 
region or to a synchronous network). Such an approach has been used for single- 
trial EEG–fMRI studies (Debener et  al. 2005). Beyond single trials this ICA 
approach can also be used to extract cleaned continuous EEG timecourses which are 
then fused with fMRI using a GLM (Labounek et al. 2019). A more extreme form 
of this use of ICA is to constrain the decomposition to optimize the detection of a 
particular feature of interest (e.g., an evoked potential peak or frequency band 
(Porcaro et al. 2010)). A joint ICA approach has also been proposed with both EEG 
and fMRI signals considered together (Calhoun et  al. 2006; Eichele et  al. 2007; 
Moosmann et al. 2007; Bridwell et al. 2013). Apart from fusing the modalities at 
signal level, ICA has been used to fuse EEG- and fMRI-derived functional connec-
tivity (Wirsich et al. 2020a).

We note in passing that ICA has also been employed to extract and compare 
fMRI dynamics to EEG spectral power timecourses or states in an attempt to relate 
band-specific EEG dynamics or EEG states to large-scale fMRI networks (Britz 
et al. 2010; Lamos et al. 2018).

Another multivariate approach to the fusion problem is to perform a spatial 
decomposition of the EEG data into different microstates (Lehmann and Skrandies 
1984) by using clustering analysis (Britz et  al. 2010; Musso et  al. 2010), ICA 
(Yuan et al. 2012) or time-frequency decomposition (Schwab et al. 2015). Onsets 
of these microstate features can then be correlated to the BOLD timecourses. 
Decoders of EEG and fMRI activity that learn task-specific multivariate and mul-
timodal patterns of activation have also been applied (Muraskin et al. 2017), while 
Meir-Hasson et al. used EEG-fMRI recordings and a machine learning approach 
in order to identify EEG fingerprints that predict BOLD activity of deep brain 
structures (Meir- Hasson et al. 2014). For a more general review of multivariate 
machine learning approaches to integrate EEG and fMRI data see (Dähne 
et al. 2015).
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12.3.6  EEG-informed fMRI Functional Connectivity

The models discussed so far only consider local BOLD activation and deactivation 
linked to metrics derived from EEG recordings. A different perspective is to model 
the brain as a network as derived from the interregional communication of local 
brain activity (i.e. functional connectivity, FC (Biswal et al. 2010)). FC in fMRI was 
first demonstrated in the motor cortex (Biswal et al. 1995) and has since then been 
generalized to the temporal correlation of different brain regions including the con-
struction of a whole-brain connectivity graph (Achard et al. 2006).

As discussed in the preceding section the relationship between EEG frequency 
content and BOLD activity during rest is complex, as reflected by the existence of 
several intrinsic functionally connected networks (the so-called intrinsically con-
nected networks, ICNs, or resting state networks, RSNs), for example. Here we 
discuss the EEG signatures influencing the magnitude of fMRI-derived FC. This 
section focuses on results from simultaneous EEG-fMRI only, a general discussion 
between M/EEG and fMRI connectivity can be found in Sadaghiani and 
Wirsich (2020).

Since fMRI-FC is generally measured by the temporal correlation over a 
10–20  min resting-state recording, EEG power cannot readily be integrated by 
using a GLM. Different approaches have been proposed to access the dynamic mod-
ulations of FC. To link FC changes in a conditional setting, the psychophysiological 
and modulatory interactions (PPI) approach can be used (Friston et al. 1997). This 
allows the EEG modulation of the fluctuating connectivity changes to be investi-
gated using a GLM. For example, by using PPI, Scheeringa et al. showed that high 
and low alpha power states modulate the ongoing connectivity between the visual 
cortex and the rest of the brain (Scheeringa et al. 2012).

Another approach is to subdivide the timecourses into a series of windows, 
allowing dynamic functional connectivity analyses. Resting-state functional con-
nectivity has been explored in this dynamic way by using sliding window and time- 
frequency coherence analysis (Chang and Glover 2010). Applying measures from 
pairwise BOLD connectivity and frequency specific EEG power in a 2-min sliding 
window approach, Tagliazuchi et al. showed that alpha and beta power are associ-
ated with decreased FC whereas long-range connections were correlated with 
gamma power (Tagliazucchi et al. 2012b). Considering the different resting state 
networks of the brain, Chang et al. used a sliding window of 40 s to demonstrate that 
dynamic FC between the dorsal attention network (DAN) and the default mode 
network (DMN) is anticorrelated to alpha power whereas theta power is correlated 
positively (Chang et al. 2013). For a review of time-varying analysis in resting state 
fMRI, see Hutchison et al. (2013) and Keilholz (2014).

As an alternative approach, using an ICA model Allen et al. showed that fMRI-
 FC dynamically operates in different reoccuring states that are correlated to co- 
occuring band-specific EEG power (Allen et  al. 2018; Lamos et  al. 2018). 
Furthermore, Keinänen et al. demonstrated that infraslow EEG dynamics are cor-
related with the fMRI dynamic intra-network FC of the default mode network 
(Keinänen et  al. 2018). Abreu et  al. used machine learning methods applied to 
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EEG-informed dynamic FC and identified different states of fMRI connectivity 
overtime in patients suffering from focal epilepsy (Abreu et al. 2019). It is also pos-
sible to use EEG-based FC measures to inform the BOLD signal, although this has 
been less widely done. Due to the superior temporal resolution of EEG, FC can be 
calculated over the duration of the acquisition of one fMRI volume, which enables 
the use of the previously described GLM approach to predict the BOLD signal 
based on EEG connectivity (Biazoli Jr. et al. 2013).

Analysing EEG-fMRI dynamics becomes a particularly powerful tool when 
exploring the co-occurring shifts based on well-studied EEG markers of attention or 
sleepiness (Tagliazucchi et  al. 2013). Tagliazucchi et  al. showed that fMRI-FC 
changes dynamically with the individual drowsiness of subjects (Tagliazucchi et al. 
2012b). In addition, Tagliazucchi et al. built a classifier based on EEG sleep stages 
to learn fMRI functional connectivity patterns associated with sleep (Tagliazucchi 
et al. 2012a). This classifier was then successfully applied to automatically analyse 
only fMRI data from a larger cohort (Tagliazucchi and Laufs 2014), suggesting the 
presence of sleep in ostensibly waking scans. Taken as a primary effect of interest, 
the duration of sleep stages derived from concurrent EEG-fMRI can also be used in 
a GLM as a regressor of no interest (not different than, for example, movement 
parameters) when looking at static FC differences during sleep deprivation (Wirsich 
et  al. 2018). Damaraju et  al. used different sleep stages, that were derived from 
concurrent EEG recordings in the scanner, to show that dynamic fMRI-FC states are 
depending on the sleep state (Damaraju et al. 2020).

FC-based analyses are not limited to asymmetric analysis based on the use of EEG 
to inform fMRI measures (or vice versa). Data can also be integrated at a higher level 
of connectivity-based abstraction. These advanced integration approaches use source 
reconstruction of the electrophysiological data to map the same 3D brain space as the 
fMRI data (see Chap. 2). Brookes et al. demonstrated that electrophysiological con-
nectivity derived from the source reconstructed power envelopes of MEG recordings 
is comparable to fMRI-FC (Brookes et al. 2011), while Deligianni et al. showed that 
this is equally true when comparing EEG-FC (envelope power) with fMRI during a 
concurrent EEG-fMRI experiment (Deligianni et al. 2014). More recently it has been 
shown that concurrent EEG is not only partly correlated to fMRI, but also to structural 
connectivity estimated using diffusion weighted imaging (Deligianni et  al. 2016; 
Wirsich et al. 2017). Wirsich et al. (2017) demonstrated that functional connectivity as 
measured by  amplitude-corrected imaginary part of the coherency and based on 
source reconstructed EEG improves the estimation of the functional-structural con-
nectivity relationship as opposed to an fMRI-only model (Wirsich et al. 2017). See 
Fig. 12.6.

As with many other aspects of EEG-fMRI, additional work is needed to under-
stand how metrics derived from one modality map onto those derived from the 
other. For example, a change in the temporal correlation between regions measured 
with fMRI may not necessarily be reflected in the power spectrum of EEG. Wirsich 
et al. demonstrated that not only EEG power is related to dynamic FC but there 
exists also a general link between dynamic FC derived from either EEG or fMRI 
during resting state (Wirsich et al. 2020b). Equally, during different cognitive tasks, 
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Fig. 12.6 Illustration of multimodal data integration of brain connectivity using concurrent EEG- 
fMRI and diffusion MRI (dMRI). (a) Source reconstructed EEG signal, BOLD activity and fibre 
tracks derived from dMRI are mapped onto a common anatomical atlas. (b) Between each region 
pair connectivity is derived from temporal correlation of the BOLD timeseries (fMRI) and 
amplitude- corrected  imaginary part of the coherency of the EEG timeseries (band separated). 
Diffusion connectivity is estimated by counting the number of connecting fibre tracks between 
each region. The resulting trimodal connectivity matrices are significantly correlated to each other 
(for more detail see Wirsich et al. 2017).

Abreu et al. observed correlated dynamic FC states derived from both fMRI and 
concurrently recorded EEG (Abreu et al. 2020).

This dynamic relationship might be particularly critical in conditions where elec-
trophysiological events are specific markers of pathological status such is the case 
in epilepsy. Using simultaneous intracranial EEG (icEEG) recordings and fMRI in 
patients suffering from drug-resistant focal epilepsy Ridley et al. have demonstrated 
opposite patterns of FC as measured by the two modalities simultaneously in the 
epileptic networks when applying the same connectivity analysis method (Ridley 
et al. 2017).

12.3.7  Use of intracerebral EEG in the context of concurrent 
fMRI recordings

During presurgical evaluation of patients with epilepsy, invasive recordings can be 
performed in order to define the brain region that needs to be resected to render the 
patient seizure-free. These recordings, performed solely on clinical grounds, pro-
vide a formidable opportunity to gather data in humans with unique spatial specific-
ity and signal-to-noise ratio far beyond that available with noninvasive, scalp 
recordings. There are two types of invasive EEG recordings: electrocorticography, 
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which places electrode grids at the surface of the brain, and stereo electroencepha-
lography (or “depth EEG”), which implants electrodes directly within the brain 
tissues, allowing deep brain structures to be targeted (Wennberg et  al. 1998; 
Bartolomei et al. 2017). In addition to their clinical importance in guiding surgical 
planning, these invasive recordings represent a unique opportunity to validate the 
findings of noninvasive methods by providing a “ground truth” to EEG/MEG source 
localization and EEG-fMRI analysis (Benar et  al. 2006; van Houdt et  al. 2012; 
Zhang et al. 2012; Grova et al. 2016).

A recently developed avenue consists of recording fMRI simultaneously with 
intracranial EEG. This permits fMRI analysis to be performed based on patterns 
(e.g. epileptic form discharges) identified on the EEG recorded intracranially in the 
same way as described previously for scalp EEG-fMRI and has found application in 
epilepsy (Vulliemoz et  al. 2011; Cunningham et  al. 2012; Beers et  al. 2015; 
Chaudhary et al. 2016; Ridley et al. 2017), cognition (Saignavongs et al. 2017) and 
brain stimulation (Bhattacharyya et al. 2017). Safety issues are of course of para-
mount importance and must be addressed (Carmichael et al. 2010, 2012), while a 
remaining concern is the signal loss at the electrode location due to magnetic field 
distortion (Carmichael et al. 2012). However, this could be overcome in the future 
with new electrode designs (Bonmassar et al. 2012). 

12.4  EEG and fMRI Localization: Modes of Integration

We have already seen how EEG and fMRI can be correlated using EEG-derived 
GLMs and how multivariate methods and functional connectivity can extract further 
spatial and temporal information from the signals. In many of the approaches, the 
EEG is used purely as a timemarker of brain state, in the same way as external 
stimuli or responses in conventional cognitive fMRI studies. We now step back from 
simultaneous acquisitions to explore further how the two modalities can be inte-
grated with the specific aim of localizing the generators of the underlying brain 
activity. For example, how can EEG source imaging be combined with fMRI to 
enhance localization?

As discussed in the Chap. 1, methods for the fusion of localization information 
obtained from EEG and fMRI analysis can be categorized according to the degree to 
which the relationship between the two signals forms part of a model and the role that 
each modality plays in the model. Coregistration of independently derived EEG and 
fMRI localization probably represents the least model-dependent mode of data fusion. 
In the preceding sections we have already described the mechanics of an asymmetric 
form of integration, namely the prediction of fMRI signal changes based on 
EEG. Finally, we discuss the so-called symmetric source reconstruction algorithms.

12.4.1  Comparison of Independently Derived Results

One of the most common strategies for multimodal integration has been to treat the 
EEG and fMRI datasets separately and compare the results in space (fusion a poste-
riori; Kruggel et al. 2001; Liebenthal et al. 2003; Foucher et al. 2004; Makiranta 
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et al. 2004; Becker et al. 2005; Henning et al. 2005; Otzenberger et al. 2005; Sammer 
et al. 2005). The simplest way to combine EEG source reconstruction and fMRI 
data is to compare the localization results obtained separately (e.g. from the analysis 
of averaged events) by coregistration and projection onto a common anatomical 
space (Opitz et al. 1999).

Prior to any attempt at further integration it is probably wise to use this approach 
as a first step. Spatial concordance cannot be expected in many circumstances due 
to the fundamentally different natures of the two signals (Disbrow et  al. 2000; 
Nunez and Silberstein 2000; Ritter and Villringer 2006). Nonetheless, a good degree 
of spatial concordance can provide cross-validation and reassurance that the two 
methods are sensitive to similar phenomena and activity (Lemieux et  al. 2001a; 
Bénar et al. 2006; Wirsich et al. 2014).

In situations with a few well-separated activated regions, good spatial concor-
dance (see Fig. 12.7) allows one to consider the use of the timecourse of the EEG 
sources to estimate the chronometry of activation (Rossell et al. 2003; O’Hare et al. 
2007). However, the EEG inverse problem can become ambiguous and/or inaccurate 
for a small number of electrodes, a large number of activated regions, for spatially 
extended sources, for regions close to one another, or those with highly correlated 
timecourses (Supek and Aine 1993; Huang et al. 1998). As a consequence, it seems 
intuitively obvious that guiding the EEG inverse problem within formation coming 
from fMRI, as presented in the next sections, will be helpful. As discussed in the 
Sect. 12.3.6, fMRI based whole-brain connectivity can also be readily compared to 
EEG source reconstructed connectivity (Deligianni et al. 2014; Wirsich et al. 2017).

12.4.2  fMRI as a Spatial Constraint for EEG Source Reconstruction

The good spatial coverage and localizing capability of fMRI on the one hand and 
the ambiguity of the EEG inverse problem on the other have inspired some investi-
gators to develop methods based on the use of fMRI information as a prior con-
straint that informs EEG source localization (fMRI-informed EEG analysis).

In a dipolar framework, this can be done by applying constraints based on the 
fMRI activation clusters, in the form of either solution spacemasks or initialization 
of the estimates (Menon et  al. 1997; Ahlfors et  al. 1999; Toma et  al. 2002; 
Bledowski et al. 2004). In a distributed sources framework, it is possible to give 
more weight to regions with fMRI activation (Liu et al. 1998; Babiloni et al. 2000), 
although tuning of the weighting parameter is not straightforward. The strength of 
the fMRI-derived constraints on source modelling is an important consideration: a 
hard constraint whereby solution dipoles are limited to the region of activation is 
probably inappropriate in most situations due to the potential discrepancy between 
EEG generator and BOLD localization—for example, in cases with regions that 
respond selectively to one or other of the modalities, perhaps because the task 
induces a change in neuronal synchrony that does not result in altered meta-
bolic demand.

Careful consideration of the effect of constraints on the solution requires valida-
tion when possible. This is a potentially difficult problem, as the number of sources 
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Fig. 12.7 Comparison of epileptic spike EEG dipole source localization and fMRI activation 
(subject 1 of Benar et al. 2002). Here, only one of the two dipoles (blue) matches the fMRI cluster. 
The evolution of the dipole strength at the concordant dipole location may provide additional time 
resolution

is a very sensitive parameter in EEG dipolar source localization: for example, placing 
a model dipole in a region that is silent on EEG could capture part of the signal from 
other sources. Conversely, not placing a dipole in an actual EEG source that is not 
seen by fMRI could result in a “spilling” of its activity to the other dipoles. Generally 
speaking, leaking of activity between spatially close sources is unavaoidable due to 
the ill-posed nature of the inverse problem and to smoothing arising from the inverse 
operator (Palva et al. 2018) and it is therefore necessary to carefully quantify the 
effects of mismatches over EEG–fMRI integration techniques (Liu et al. 2006).

By enabling the fMRI constraint to be incorporated probabilistically, Bayesian 
modelling (Baillet and Garnero 1997; Schmidt et al. 1999; Trujillo-Barreto et al. 
2001; Phillips et al. 2005) integrates fMRI-activated regions in the form of statisti-
cal priors, which also forms a natural framework for the evaluation of distributed 
sources. Moreover, the Bayesian formalism provides a mechanism for model com-
parison/combination (Trujillo-Barreto et  al. 2004) and to assess whether a given 
fMRI constraint is compatible with the EEG data, for example (Daunizeau et al. 
2005; Grova et al. 2008). Applied to resting state data where no activation prior is 
available, information of intrinsic networks can be alternatively used (Lei et  al. 
2012). For a detailed review see (Lei et al. 2015).

12.4.3  Towards Symmetrical Models of EEG and fMRI Fusion

There have been a few examples of alternatives to the “classical” model of EEG- 
derived fMRI modelling employed in the vast majority of studies of spontaneous 
brain activity (see the Chaps. 15, 16, 17, 18, and 19) and evoked responses. For 
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example, fMRI has been used to inform the interpretation of spontaneously occur-
ring events or patterns in simultaneously recorded EEG. Liston et al. (2006a) used 
a spike clustering method and projection of the entire EEG record onto a set of 
equivalent sources. They were able to provide additional evidence that spike-like 
events, not previously identified by expert observers, were probably low-amplitude 
spikes since their BOLD signature matched that of the visually identified spikes. 
Outside of the field of epilepsy, Mantini et al. were able to demonstrate the electro-
physiological signatures of six spatially characterized resting state networks (identi-
fied using data-driven fMRI analysis) by studying the correlation between the 
BOLD signal in those networks and the simultaneously recorded EEG across fre-
quency bands (Mantini et  al. 2007b), while Feige et  al. used a deconvolution 
approach to examine the temporal relationship between spontaneous electrophysi-
ological and haemodynamic activity (Feige et al. 2017).

The asymmetry in the role of each modality may reflect a historical bias towards 
more detailed characterization of scalp EEG, compared to the BOLD signal. The 
ultimate aim of neuroimaging is a model of all neurosignals and their relationship 
to neuronal activity, upon which an assessment of the true value of any given modal-
ity (in relation to specific brain activity) could be based. A path to such a model has 
been proposed that removes this asymmetry in biophysical models of neurosignals, 
with neural activity as input. Towards this goal, an asymmetrical Bayesian source 
estimation framework has been introduced that integrates fMRI and EEG data 
(Trujillo-Barreto et al. 2001). The theoretical promise is that such models would 
take full advantage of the available information, with resulting improved sensitivity. 
For example, a weak prediction from each modality may reach significance in the 
joint analysis. Using dynamic causal modelling (DCM, Friston et al. 2003), Nguyen 
et al. added EEG as a contextual modulator to improve model selection (Nguyen 
et al. 2014). Another example of the added value of joint analysis was given in the 
Sec. 12.3.6 where symmetrical EEG-fMRI connectivity has been used in a linear 
model to better estimate the underlying structural connectivity (Wirsich et al. 2017). 
Those complementary contributions of joint EEG and fMRI connectivity can also 
be decomposed by using ICA (Wirsich et al. 2020a). Another interesting symmetric 
path is to compute the mutual information between EEG and fMRI (Ostwald et al. 
2010; Ostwald and Bagshaw 2011; Caballero-Gaudes et al. 2013). Progresses aris-
ing in neurocomputational/biophysical modelling could be of help in the future 
(Voges et al. 2012).

Wirsich et al. estimated averaged connectivity over a 20-min timecourse (Wirsich 
et al. 2017), whereas dynamic symmetrical models offer much greater precision but 
rely on accurate coupling models, which remain the subject of investigation. In their 
current implementation, heuristic forms of the coupling function have been used 
and the Bayesian approach can be used to account for discordant EEG and fMRI- 
activated regions (Daunizeau et al. 2007) (see the Chap. 27 for further discussion of 
this approach). As the coupling of EEG and fMRI is partly determined by the under-
lying structure of the brain, Schirner et al. were able to show that EEG source activ-
ity of simultaneous recording can be used to improve neurophysiological simulations 
derived from structural connectivity, resulting in a better match between simulated 
and empirical BOLD activity (Schirner et  al. 2018). This may point towards the 
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need for symmetrical models geared towards EEG-fMRI data fusion to also incor-
porate anatomical information.

12.5  Unresolved Problems and Caveats

Ultimately, the entire EEG–fMRI enterprise aims to improve our ability to charac-
terize neuronal activity and in the process improve our understanding of the rela-
tionship between the two types of signals. We have explored a range of data 
acquisition and analysis strategies that allow the investigator to investigate the 
BOLD correlates of certain aspects of the EEG and more generally the sources of 
the EEG and fMRI signals. Despite some success at revealing novel information, 
there are unresolved issues, both conceptual and practical, which need addressing.

12.5.1  Relationship Between Neuronal Activity, EEG 
and fMRI Signals

As discussed in the Chap. 2, scalp EEG is primarily a measure of the synchronous 
post synaptic activity of cortical pyramidal neurons (Lopes da Silva and Van 
Rotterdam 2005; Nunez and Srinivasan 2005) and is largely insensitive to deep 
structures such as the hippocampus and thalamus (Merlet and Gotman 2001; 
Gavaret et al. 2004). Changes in synchrony can have a large effect on the scalp EEG 
signal even if the overall neuronal firing rate and hence metabolic load is not altered. 
Moreover, the closed morphology of certain deep structures such as amygdala or 
thalamus greatly reduces the measurable external field. However, several studies 
report sensitivity to signals from deep structures, and the final word may not have 
been said about the ability of EEG or MEG to record from the subcortex (Schnitzler 
et al. 2006; Attal et al. 2007; Attal and Schwartz 2013; Koessler et al. 2015; Pizzo 
et al. 2019; Seeber et al. 2019). Additionally, relationships between scalp EEG and 
BOLD signals have been demonstrated for different subcortical structures (Meir- 
Hasson et al. 2014; Schwab et al. 2015). Scalp EEG is a biased measure of brain 
activity, dependent not only on the location of the generating region but also the 
exact temporal relationship between cell populations. As discussed in the Chap. 3, 
fMRI reflects changes in bloodflow, oxygenation and volume. Indirectly, BOLD 
fMRI is a measure of energy consumption or metabolic demand (Arthurs and 
Boniface 2002; Logothetis and Wandell 2004). Combined intracerebral microelec-
trode and fMRI measurements have shown that the BOLD signal is correlated with 
variations in neuronal firing rate and to a greater extent with variations in local field 
potentials. In particular, strong correlations have been reported between gamma 
band electrical activity (>35 Hz) and BOLD signals (Logothetis et al. 2001; Niessing 
et al. 2005; Lachaux et al. 2007) (see the Chap. 4). Based on such observations and 
heuristic arguments, Kilner et al. postulated a linear relationship between the ratio 
of high-to low-frequency EEG signal power and BOLD (Kiefer et  al. 2016). 
However, the observation of haemodynamic signals locked to stimulus timing but 
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without sensory input or expression in the form of the local measures of neuronal 
activity potentially raises questions about the causal assumption simplified in the 
GLM and the relationship between neural activity and BOLD (Sirotin and Das 
2009). The fact that BOLD signal changes have been observed following optoge-
netic activation of astrocytes, in the absence of neuronal activation, also points 
towards the potential complexity of the relationship between EEG and fMRI (Takata 
et al. 2018).

The linear nature of most fMRI modelling strategies requires the identification of 
aspects of the EEG signal that are predicted to vary linearly in relation to the BOLD 
signal to be most efficient, an assumption that has not been investigated to any great 
extent. Evidently, this is a simple starting assumption in most cases and has been the 
subject of much work in relation to evoked or event-related responses. Studies based 
on animal models have suggested a linear coupling between the amplitude of epi-
leptic spikes and the haemodynamic response (Mirsattari et al. 2006; Vanzetta et al. 
2010). Nonlinear effects have been observed in response to sensory stimuli (Birn 
and Bandettini 2005; Wan et al. 2006), and epilepsy using the Volterra series in the 
GLM framework (Salek-Haddadi et al. 2006), and there is certainly considerable 
scope for more investigation of this issue, particularly in relation to the relative 
nonlinearities of EEG and fMRI (Arthurs et al. 2007; Liu et al. 2010).

fMRI data at the resolution of cortical-layers (laminar fMRI) using ultra-high 
field MRI could help to better understand such complex BOLD responses in certain 
tasks or during IEDs. Different laminar involvements (granular vs supragranular) 
have been identified depending on the propagated or “de novo” nature of IEDs 
defined by microelectrodes recordings in epileptic patients (Ulbert et al. 2004). This 
suggests that such laminar differentiation could help to better understand spatiotem-
poral organization of IEDs. In addition, the second part of IEDs is often dominated 
by an inhibitory nature (particularly in spike-and-wave discharges) that could have 
different effects on BOLD signal compared to excitation. Using visual-task laminar 
fMRI at 7 T a laminar dependent BOLD modulation related to the type of input (i.e. 
excitatory vs. inhibitory) has been evidenced (Fracasso et al. 2018). Thus, future 
availability of EEG-fMRI at 7 T will probably provide new insights to a better 
understanding of neuronal activity, EEG and fMRI (Mullinger et al. 2013; Neuner 
et al. 2014; Grouiller et al. 2015).

12.5.2  Specific Issues Related to Spontaneous Brain Activity

12.5.2.1  HRF
In conventional event-related cognitive fMRI experiments in healthy subjects, mod-
els based on the standard or canonical HRF (possibly with the addition of extra 
terms to allow for some variability) have proven successful. Nonetheless, as noted 
earlier, significant variability has been observed in responses to normal stimuli in 
healthy brains.

Spontaneous brain activity may be associated with neurophysiological processes 
that have no correlates on scalp EEG (e.g. in deep structures, or those which are too 
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weak to be detected on the scalp, or lack sufficient synchrony). For example, imag-
ine that a certain brain state involves two processes, both associated with haemody-
namic changes: one reflected on scalp EEG, and the other not reflected on EEG. A 
fixed temporal relationship between the two processes would lead to an apparent 
timeshift in the HRF. The relationship between the synchronous activity of cortical 
pyramidal cells in pathological areas and bloodflow may also deviate from the norm 
(see Salek-Haddadi et al. 2006 for a detailed discussion of this issue).

A number of studies have investigated the haemodynamic changes related to 
interictal epileptiform activity and revealed considerable variability in this response 
across subjects (Lemieux et al. 2001b; Benar et al. 2002; Gotman et al. 2004), with 
some evidence of delayed (Bagshaw et  al. 2004; Lu et  al. 2006; Grouiller et  al. 
2007) responses, as well as super linearity at short event durations (Bagshaw et al. 
2005). For the alpha rhythm, the presence of a travelling wave was suggested by 
flexible HRF modelling (de Munck et al. 2007). One interesting observation has 
been BOLD changes consistent with an onset occurring prior to the observation of 
the discharge on scalp EEG (Hawco et al. 2007; Lemieux et al. 2008; Pittau et al. 
2011) something that has also been seen in relation to the alpha (Feige et al. 2005) 
and other rhythms (Feige et al. 2017), and in epileptic seizures in humans and ani-
mal models (Makiranta et al. 2004; Federico et al. 2005). This suggests the potential 
importance of defining subject-specific HRFs (Kang et  al. 2003; Grouiller et  al. 
2010; Storti et al. 2013), although potential methodological confounds related to the 
temporal blurring associated with the HRF must also be considered (Rollings 
et al. 2016).

Nonetheless, these observations highlight the potential limitations of using EEG 
as a basis to model BOLD fMRI and the issue of the choice of an optimal basis set. 
Multivariate techniques such as ICA have the advantage that there is no need to 
define a model of the BOLD response. They are therefore useful tools for explor-
atory data analysis and allow the assumptions of the HRF model to be directly 
tested. How these considerations translate to resting state recordings is also largely 
unknown. For example, it has been shown that simple HRF models might be an 
oversimplification as in some brain regions resting fMRI activity precedes EEG 
power rises (Feige et al. 2017).

12.5.2.2  Experimental Efficiency of Paradigm-less fMRI
In conventional, paradigm-driven fMRI studies, such as cognitive studies, one has 
the opportunity to optimize the experimental design (Dale 1999). Moreover, the 
classical procedure is to rely on a contrast between an active and a baseline condi-
tion. For spontaneous activity, the timecourse of the activity of interest is essentially 
random, with important consequences for experimental efficiency and consequently 
the technique’s yield and clinical potential. For example, in focal epilepsy, localiz-
ing information is obtained in roughly 60% of cases in whom interictal spikes are 
observed over EEG–fMRI sessions lasting between 20 and 60 min (see the Chaps. 
17, 18, and 19), even though these are cases selected for their relatively high levels 
of EEG activity. Part of this can probably be attributed to most early epilepsy studies 
taking place at 1.5 T, with some evidence that at 3 T results are more reproducible 
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and it is less likely that there will be no activation/deactivation if spikes are observed 
(Gholipour et al. 2011).

The lack of experimental control has also highlighted the question of fMRI base-
line by blurring the boundary between “activated” and control states. Despite the 
fundamental difficulties associated with a lack of experimental control, we antici-
pate that the study of the brain’s resting state using functional imaging will continue 
to constitute an active area of investigation.

12.5.3  The Impact of Data Acquisition and Processing Artefacts 
on fMRI Data Analysis

12.5.3.1  Artefacts in the Signals
A prudent approach to fMRI analysis is to devise models that incorporate as much 
knowledge of the factors that may influence the signal as possible. In this regard, the 
EEG and ECG can provide information not normally available in conventional 
fMRI experiments. Although movements pose a considerable problem in simultane-
ous EEG–fMRI, by giving rise to artefacts in both the EEG and the fMRI timeseries, 
the combination of EEG and fMRI makes it possible to assess the occurrence of 
motion events in a way that is not normally possible in fMRI without EEG, through 
the inspection of the EEG traces in relation to the fMRI scan realignment parame-
ters. This can be useful in cases where motion is expected to be correlated with 
events of interest, such as seizures, and can be an important form of bias assessment 
(Salek-Haddadi et al. 2003c).

Other important potential sources of fMRI signal variance are respiration and 
heartbeat-related artefacts. Considerable work has been done to remove these, 
which are generally aliased in the fMRI signal but can be captured to a large extent 
in the ECG and in corporate into models of the fMRI signal (Glover et al. 2000; 
Liston et al. 2006b; Perlbarg et al. 2007). With the more widespread use of faster 
fMRI sequences this is likely to become less of an issue if only because the artefacts 
will no longer be aliased and hence easier to remove.

A very important pitfall is that some of these artefacts can be correlated (e.g. 
heartbeat and respiration artefacts) (Mandelkow et al. 2007), or, even worse, corre-
lated with the protocol itself. For example, the subject can move the head when 
responding, or close the eyes after the response. This can lead to signal changes in 
both EEG and fMRI that will be correlated with the protocol and may be mistaken 
for a brain activation in response to the protocol. The net result of stimulus (or effect 
of interest)-related confounds is a reduction of sensitivity when properly incorpo-
rated into the fMRI model or possible false activation otherwise (Lund et al. 2005). 
Again, the availability of simultaneous physiological recordings can help to devise 
models that account for effects related to such confounds.

12.5.3.2  Artefacts Introduced by EEG Preprocessing
The results of any signal processing method must always be considered very care-
fully, as every method can produce spurious results if its assumptions are not 
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b

c

Fig. 12.8 (a–c) Pitfall of narrow-band filtering. (a) Original composite signal, with an alpha 
oscillation (around 200 ms), an epileptic spike (around 800 ms) and a synthetic spiky artefact 
(around 1,300 ms). (b) All signals seem oscillatory when filtered in a narrow band. (c) Time- 
frequency analysis allows the different signals to be differentiated

fulfilled. As a consequence, such confounds must be tracked down at every step. A 
generally misleading effect is the fact that each EEG channel is recorded with 
respect to a reference electrode (Lehmann and Skrandies 1984). This means that 
any measure of relation between channels (coherence, phase locking, etc.) can be 
confounded by this common signal.

Another major source of confound is the fact that transient activity filtered in a 
limited bandwidth can be mistaken for actual oscillatory data (see Fig. 12.8). This 
means that if one wants to perform a frequency-band-related analysis in EEG–
fMRI, the data have to be checked carefully for artefacts. This can be quite easy for 
bands corresponding to low frequencies, but can prove more difficult for small arte-
facts (i.e. small spikes) that can be hidden in the data but produce a disastrous effect 
on high-frequency activity estimation.

Similarly, as mentioned in the section on multivariate analysis, there can be cross-
talk issues in ICA decomposition. Indeed, if part of the signal of interest is not captured 
by its own component but rather spills onto artefact-related components, it will be 
removed in the ICA procedure (Wallstrom et al. 2004). This can in theory also happen 
for high-frequency activity, which represents a weak signal in EEG, or for protocol-
related activity that is only present in a small time window in each trial. An additional 
consideration to account for when extracting connectivity-based measures of EEG is 
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the crosstalk introduced by primary source leakage (Nolte et al. 2004; Schoffelen and 
Gross 2009; Colclough et al. 2016) and other ghost interactions (Palva et al. 2018).

12.6  Summary and Outlook

The possibility of recording EEG inside the MRI scanner allows one to introduce 
fine temporal information from the EEG into the analysis of the fMRI signal at 
the single-trial level and allows the investigation of the haemodynamic correlates 
of spontaneous phenomena best observed on EEG, such as epileptic discharges, 
sleep or dynamic fluctuations in brain rhythms. The technique’s limitations 
reflect those of EEG and fMRI taken individually. While the most widely used 
analysis method to date has been the general linear model, data-driven tech-
niques such as ICA provide a framework for further exploratory studies with 
fewer assumptions.

Future directions could arise from the use of fast fMRI sequences, which allow a 
finer temporal sampling of the haemodynamic response (Jacobs et al. 2014; Foged 
et al. 2017), or recording with other modalities such as PET (Grouiller et al. 2015). 
Another promising avenue is computational modelling (Voges et  al. 2012) that 
allows information from other modalities such as diffusion weighted imaging to be 
integrated into a coherent framework. Modelling can be combined with Bayesian 
inference in order to fuse data and estimate “hidden” parameters of activation (Jirsa 
et al. 2017).
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13Real-Time fMRI Neurofeedback 
with Simultaneous EEG

Vadim Zotev, Ahmad Mayeli, Chung-Ki Wong, 
and Jerzy Bodurka

13.1  Introduction

Modern neuroimaging modalities (e.g., fMRI, EEG, MEG, fNIRS) offer broad 
opportunities for noninvasive brain neuromodulation based on neuroimaging sig-
nals measured in real time. The most common among such neuromodulation 
approaches is neurofeedback (nf). It allows a person to view a real-time neuroimag-
ing signal reflecting an ongoing activity of his/her own brain and volitionally con-
trol this activity. EEG neurofeedback (EEG-nf) makes it possible to modulate 
electrophysiological brain activity as registered by scalp EEG electrodes. Real-time 
fMRI neurofeedback (rtfMRI-nf) enables volitional regulation of blood- 
oxygenation- level-dependent (BOLD) activity of a target brain region as measured 
by BOLD fMRI. Advances in simultaneous EEG-fMRI (e.g., Mulert and Lemieux 
2010) have opened up new exciting possibilities in the field of neuromodulation. 
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Combination of concurrent EEG and fMRI measurements allows implementation of 
three different neuromodulation paradigms: (1) EEG-nf with simultaneous fMRI, 
(2) rtfMRI-nf with simultaneous EEG, and (3) simultaneous rtfMRI-nf and EEG-nf, 
which we abbreviate as rtfMRI-EEG-nf. Each of these paradigms can provide 
unique insights into human brain function and lead to development of new clinical 
neurofeedback applications. In this chapter, we focus on the last two paradigms and 
discuss their technical challenges, pioneering applications, neuroscience findings, 
and future directions.

Implementations of rtfMRI-nf have been made possible by the development of 
real-time functional magnetic resonance imaging (rtfMRI), a technique in which 
fMRI image processing, particularly the spatial image alignment required for head 
motion correction, keeps up with fMRI data acquisition (Cox et  al. 1995). An 
rtfMRI signal from a selected brain region, updated at a rate of fMRI acquisition 
(repetition time TR), can be displayed to a person inside the MRI scanner, for exam-
ple, in the form of a thermometer-style variable-height bar on a screen. The partici-
pant therefore has an opportunity to regulate his/her own brain activity by controlling 
the rtfMRI-nf signal in (what is experienced as) real time while performing a mental 
task engaging the target region. For reviews of rtfMRI-nf, see, for example, 
Birbaumer et  al. (2013), deCharms (2008), Sitaram et  al. (2017), Thibault et  al. 
(2018), and Weiskopf (2012).

The main advantage of rtfMRI-nf compared to other types of neurofeedback 
(EEG-nf, MEG-nf, fNIRS-nf) is its ability to target BOLD activities of small pre-
cisely defined regions anywhere in the brain, including deep subcortical areas. This 
ability derives from the tomographic nature of MRI, as well as relatively high spa-
tial resolution, whole-brain coverage, and improved sensitivity of measured signal 
to neuronal activity that can be achieved in modern fMRI (e.g., Bellgowan et al. 
2006; Bodurka et  al. 2004; de Zwart et  al. 2004). In contrast, EEG, MEG, and 
fNIRS are each characterized by limited spatial depth sensitivity and relatively low 
source localization accuracy. This advantage of rtfMRI-nf is particularly important 
in studies of emotion regulation. Early proof-of-concept applications of rtfMRI-nf 
already targeted activities of deep brain regions, such as the amygdala (Posse et al. 
2003) and subdivisions of the anterior cingulate cortex (ACC, Weiskopf et al. 2003). 
Among numerous more recent rtfMRI-nf studies, about 50% were designed to 
achieve regulation of BOLD activities of specific subcortical or deep cortical 
regions, particularly the amygdala, the insula, and the ACC (Thibault et al. 2018). 
Another important advantage of using rtfMRI for neurofeedback is sufficiently uni-
form whole-brain fMRI imaging coverage provided by modern MRI instrumenta-
tion, pulse sequences, and image reconstruction techniques. This allows a detailed 
fMRI investigation of network interactions between a target region and other regions 
throughout the brain (e.g., Zotev et al. 2011, 2013).

The rtfMRI-nf with simultaneous EEG is a very promising new multimodal 
brain research paradigm (Zotev et al. 2016, 2018a, b), which offers major research 
opportunities while presenting only minor technical difficulties beyond those of 
EEG-fMRI and rtfMRI-nf. When discussing this paradigm, we consider EEG 
recordings during rtfMRI to be passive, meaning that no EEG information is used in 
real time as part of the experimental procedure, and all EEG data analyses are 
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performed offline after the experiment. (The simultaneous multimodal rtfMRI-
EEG-nf is discussed in Sect. 13.4.) The two modalities work together as follows. 
The rtfMRI-nf procedure enables direct modulation of BOLD activity of a deep 
subcortical target brain region, such as the amygdala. This modulation enhances 
interactions within the corresponding brain network, which depends on the mental 
task being performed along with rtfMRI-nf and includes both subcortical and corti-
cal brain regions (e.g., Zotev et al. 2011, 2013). Electrophysiological activities of 
the engaged cortical regions can be efficiently probed by the simultaneous scalp 
EEG. This approach makes it possible to study associations between BOLD activi-
ties of target brain regions and various EEG activity metrics and patterns. Because 
EEG and fMRI data are acquired simultaneously, and EEG electrodes can be made 
visible in MR images if necessary, no co-registration issues arise in EEG-fMRI, in 
contrast, for example, to MEG-MRI data integration with its well-known co-regis-
tration problem (e.g., Zotev et al. 2008a, b).

The rtfMRI-nf with simultaneous EEG paradigm allows investigation of funda-
mental relationships between hemodynamic and electrophysiological processes in 
the human brain. It can enhance EEG-fMRI research in the following ways. First, it 
can provide greater sensitivity to specific EEG-fMRI effects of interest compared to 
conventional resting-state or task-based EEG-fMRI paradigms, because activity of 
a relevant brain region (or regions) is modulated more directly. Second, it can 
improve experimental power, because sufficient rtfMRI-nf training (when practical) 
can reduce both within-subject and between-subject variabilities in EEG-fMRI 
results. Therefore, this approach may be particularly well suited and beneficial in 
hypothesis-driven studies of weak EEG-fMRI phenomena. In such studies, both 
rtfMRI-nf implementation and experimental protocol should be optimized to 
enhance the procedure’s capability to detect EEG-fMRI effects of interest (Zotev 
et al. 2018a). Alternatively, EEG data acquired during rtfMRI can be used in a more 
exploratory fashion to investigate EEG correlates of a preselected rtfMRI-nf proce-
dure (Zotev et al. 2016, 2018b). Such investigation can be important from the clini-
cal applications perspective, because it can help to identify promising target 
measures for stand alone EEG-nf. Effects of such EEG-nf could potentially comple-
ment or even approximate those of the rtfMRI-nf, thus enabling development of 
more affordable, portable, and accessible neurofeedback treatment options.

While the rtfMRI-nf with simultaneous EEG approach aims to evaluate electro-
physiological processes during rtfMRI-nf training, the EEG-nf with simultaneous 
fMRI technique can be used to study hemodynamic processes accompanying 
EEG-nf training (e.g., Cavazza et al. 2014; Kinreich et al. 2012; Shtark et al. 2015; 
Zich et al. 2015). Scientifically, the two methods complement each other and can 
approach the same EEG-fMRI phenomenon from different directions. However, 
implementations of EEG-nf with simultaneous fMRI (or rtfMRI-EEG-nf) face a 
formidable technical challenge. To provide a reliable EEG-nf signal during fMRI, 
one has to achieve an accurate automatic removal of EEG- fMRI artifacts, as well 
as common EEG artifacts, from the EEG data in real time. In EEG recordings dur-
ing fMRI, the theta and alpha EEG bands are severely contaminated with cardio-
ballistic (CB) and random motion-related artifacts, while the beta and gamma EEG 
bands are contaminated with MRI gradient-switching (MR) artifacts. These 
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artifacts occur in addition to common EEG artifacts (eye-blinking, saccadic, mus-
cle, electrode pop, reference, etc.). The main advantage of the rtfMRI-nf with 
simultaneous EEG approach is that all mentioned artifacts are identified and 
removed in offline EEG-fMRI analysis. This allows careful visual inspection of the 
entire EEG dataset at every analysis step and application of the most advanced 
EEG artifact removal techniques available, including independent component 
analysis (ICA), without real-time constraints. Moreover, one can utilize motion-
related artifacts in EEG data acquired during fMRI to improve accuracy of retro-
spective fMRI motion correction (Wong et al. 2016, 2018; Zotev et al. 2012).

This chapter is organized as follows. In Sect. 13.2, we discuss rtfMRI-nf of the 
amygdala activity and its EEG correlates, with a focus on frontal alpha EEG asym-
metry. Section 13.3 is devoted to rtfMRI-nf of the thalamus activity and its effects 
on alpha EEG rhythm. In Sect. 13.4, we review implementations and initial applica-
tions of rtfMRI-EEG-nf. Section 13.5 describes a real-time ICA procedure for 
improved EEG-nf during fMRI. Conclusions are summarized in Sect. 13.6.

13.2  Regulation of Amygdala BOLD Activity and Frontal 
EEG Asymmetry

The amygdala plays a fundamental role in emotion processing. Regulation of emo-
tions involves interactions between the amygdala and areas of the prefrontal cortex 
(PFC), capable of exerting modulatory control over the amygdala activity. Emotion 
regulation employs essentially the same cognitive capacities as the executive func-
tion (i.e., attention, working memory, inhibition, planning, task shifting), except 
that they are used to control emotions. The executive function/emotion regulation 
(EF/ER) system includes the dorsolateral PFC (DLPFC), the ventrolateral PFC 
(VLPFC), and the medial PFC regions (Liberzon and Abelson 2016). The DLPFC 
also plays a central role in integrating motivation and executive function during goal 
pursuit (Spielberg et al. 2012). In major depressive disorder (MDD), emotion regu-
lation deficits lead to exaggerated amygdala responses to negative or threat-related 
stimuli and blunted amygdala responses to positive emotional stimuli (e.g., Murray 
et al. 2011). MDD is also characterized by deficient approach motivation, associ-
ated with MDD patients’ diminished reward responsiveness and reduced ability to 
engage in goal-oriented behaviors (e.g., Henriques and Davidson (2000)).

We have conducted the first study in which electrophysiological correlates of 
rtfMRI-nf training were evaluated using simultaneous EEG (Zotev et al. 2016). In 
the study, MDD patients learned to upregulate BOLD activity of their left amygdala 
using rtfMRI-nf during a positive emotion induction task based on retrieval of 
happy autobiographical memories (Fig. 13.1). The purpose of the amygdala activity 
upregulation was to strengthen the amygdala response to positive emotion and 
enhance recall of happy memories. The left amygdala (LA) was chosen as the target 
for rtfMRI-nf (Zotev et  al. 2011, 2016) following the hypothesis that the right 
amygdala (RA) is involved in a rapid automatic detection of an emotional stimulus, 
while the left amygdala is engaged in a more sustained emotional stimulus 
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Fig. 13.1 Real-time fMRI neurofeedback of the amygdala activity with simultaneous EEG. (a) 
Real-time GUI display screen with variable-height red rtfMRI-nf bar and blue target bar. (b) Left 
amygdala (LA) target ROI for the rtfMRI-nf. (c) EEG electrodes used to study frontal EEG asym-
metry. (d) Correlation between average laterality of the amygdala fMRI activity and average 
changes in frontal alpha EEG asymmetry (FAA, F4 vs F3) during the Happy Memories with 
rtfMRI-nf task (H) relative to the Rest baseline (R) for the experimental group (EG). (e) EEG- 
based PPI interaction effect indicating more positive temporal correlations between FAA and 
fMRI activities during the Happy Memories with rtfMRI-nf task compared to the Count task for 
the EG. The left hemisphere (L) is to the reader’s right. The maps are shown in the Talairach space 
with z-coordinate specified for each slice. After Zotev et al. (2016)

evaluation (Wright et  al. 2001). EEG recordings were conducted simultaneously 
with fMRI.  EEG data analyses in the described study were exploratory, and no 
assumptions about EEG activity were made at the study design stage.

The experimental session included four rtfMRI-nf runs, each consisting of alter-
nating 40 s long blocks of Happy Memories with rtfMRI-nf, Count, and Rest condi-
tions (Zotev et al. 2011, 2016). A Transfer run without nf was added to evaluate 
transfer of training effects. For the experimental group (EG, n = 13), the rtfMRI-nf 
signal was based on average BOLD activity for a spherical target region of interest 
(ROI) in the LA area (Fig. 13.1b), measured in real time as fMRI percent signal 
change with respect to the Rest baseline. For the control group (CG, n = 11), the 
(sham) rtfMRI-nf signal was based on BOLD activity of a different brain region, 
presumably not involved in emotion processing (Zotev et al. 2011). The nf signal 
was displayed to a participant inside the scanner as a variable-height red bar on the 
screen (Fig.  13.1a), with the bar height updated every 2 s. During the Happy 
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Memories conditions with rtfMRI-nf, the participant was instructed to feel happy by 
recalling happy autobiographical events, while simultaneously trying to control and 
raise the level of the red rtfMRI-nf bar to a target level. All the experiments described 
in this chapter were conducted on the General Electric Discovery MR750 3T MRI 
scanner at the Laureate Institute for Brain Research (LIBR). A single-shot gradient-
recalled echo-planar imaging (EPI) sequence was used for fMRI data acquisition. 
The rtfMRI-nf was implemented using a custom real-time MRI monitoring and 
control system (Bodurka and Bandettini 2008) utilizing real-time features of AFNI 
(Cox 1996). EEG recordings were performed simultaneously with fMRI using a 
32- channel MR-compatible EEG system from the Brain Products, GmbH, as 
described previously (Zotev et al. 2012, 2016).

The EEG recordings during fMRI made it possible to examine mean task- 
dependent variations in EEG power and EEG coherence that accompanied the 
rtfMRI-nf training. During the Happy Memories with rtfMRI-nf task, the MDD 
patients in the EG were able to successfully upregulate BOLD activity of the LA 
target ROI, while the corresponding RA activity levels were somewhat lower. Thus, 
the rtfMRI-nf procedure increased laterality of the amygdala BOLD activity. The 
most significant EEG effects were observed for the upper alpha EEG band, which 
was defined individually for each participant as [IAF…IAF+2] Hz, where IAF is an 
individual alpha peak frequency. Mean variations in the upper alpha EEG power 
also exhibited laterality: the power showed stronger reductions during the rtfMRI-nf 
task for the prefrontal and temporal EEG channels on the left, compared to those on 
the right for the EG (Zotev et  al. 2016). This observation suggested that frontal 
alpha EEG asymmetry was a relevant measure for characterizing EEG effects of the 
rtfMRI-nf procedure. Frontal alpha EEG asymmetry is commonly defined as FAA 
= ln(P(right)) − ln(P(left)), where P is alpha EEG power for the corresponding 
prefrontal EEG channels on the right and on the left. Here, we discuss FAA for 
channels F4 on the right and F3 on the left (Fig. 13.1c) for the upper alpha EEG 
band. The mean FAA changes during the rtfMRI-nf task relative to the Rest baseline 
were positive for the EG and negative for the CG (Zotev et al. 2016). The EG vs CG 
group difference in the FAA changes was significant, provided that intersubject 
variability in depression severity was taken into account. The MDD patients’ 
depression severity was assessed using the Hamilton Depression Rating Scale 
(HDRS, Hamilton 1960). Remarkably, the average individual FAA changes during 
the rtfMRI-nf task for the EG showed a strong dependence on trait depression sever-
ity and a significant positive correlation with the HDRS depression severity ratings 
(Zotev et al. 2016). Enhancements in upper alpha EEG coherence (EEG coherence 
slope across the four rtfMRI-nf runs) exhibited positive correlations with the HDRS 
ratings for pairs of frontotemporal EEG channels on the left, but not for those on the 
right. Correlation between the average individual laterality (left vs right) of such 
EEG coherence enhancement among frontotemporal EEG channels and the HDRS 
ratings was also positive and significant (Zotev et al. 2016).

These EEG findings provide important insights regarding effects of the rtfMRI-
 nf training from the EEG research perspective. A local reduction in alpha EEG 
power indicates activation of the underlying cortical area (Cook et  al. 1998; 
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Goldman et al. 2002). The observed reductions in upper alpha power revealed acti-
vations of the left prefrontal and temporal cortical regions, including the left DLPFC 
and left VLPFC, during the rtfMRI-nf task for the EG. EEG studies have demon-
strated relative hypoactivity (elevated alpha power) of the left prefrontal regions in 
depressed individuals—a finding that was hypothesized to indicate diminished trait 
approach motivation in depression (e.g., Henriques and Davidson 1991, 2000; 
Smith et al. 2018). Note that approach motivation is a construct within the positive 
valence systems domain of the research domain criteria (RDoC) matrix (e.g., Morris 
and Cuthbert 2012). The activation of the left prefrontal regions (reduced alpha 
power) during the rtfMRI-nf training can be interpreted as suggesting an enhance-
ment in approach motivation with a possibility for correction of approach motiva-
tion deficits. Indeed, rtfMRI-nf training in general is a goal-oriented behavior that 
requires approach motivation on the part of a participant to be successful. In our 
study, for example, the MDD patients were asked to raise the rtfMRI-nf bar to reach 
the target level (Fig. 13.1a). They also induced happy emotion, which is associated 
with approach motivation. Moreover, the amygdala itself is a part of the brain net-
work instantiating approach motivation, together with the left DLPFC, VLPFC 
(orbitofrontal cortex), ACC, and basal ganglia regions (Spielberg et  al. 2012). 
Therefore, the described rtfMRI-nf procedure conceivably has the potential to cor-
rect approach motivation deficits in MDD patients by combining three essential 
elements: goal pursuit, happy emotion, and modulation of the amygdala activity and 
its network interactions.

The FAA, defined above, is believed to reflect functional and anatomical differ-
ences between the approach and avoidance motivation systems (e.g., Elliot and 
Covington 2001). It is commonly interpreted according to the approach-withdrawal 
hypothesis (e.g., Davidson 1992, 1998; Harmon-Jones and Gable 2018). This 
hypothesis posits that the approach motivation system engages activity of the left 
prefrontal regions, particularly the left DLPFC, leading to reduced alpha EEG 
power on the left and more positive FAA, while the avoidance motivation system 
recruits activity of the right prefrontal regions, especially the right DLPFC, leading 
to reduced alpha power on the right and more negative FAA. Because most clinical 
EEG exams are resting-state exams, most FAA studies in the literature focused on 
resting FAA. However, the very definition of resting state implies absence of any 
emotion or motivation. Thus, resting FAA studies can only examine spontaneous 
activities of the two motivation systems (presumably reflecting trait motivational 
characteristics), which can be obscured by random and hard-to-control variations in 
emotional, motivational, and physiological states. It has been demonstrated that 
FAA levels measured during an emotional challenge provide results more consistent 
with predictions of the approach-withdrawal hypothesis than resting FAA (Stewart 
et al. 2014). In the described study, we did not evaluate resting FAA at all. Instead, 
we focused on mean FAA changes between control conditions (Rest, Count) and the 
rtfMRI-nf task, as well as temporal FAA variations. Investigation of mean FAA 
changes yielded two important results, as mentioned above. First, the FAA changes 
distinguished between effects of the actual LA-targeting rtfMRI-nf (EG) and those 
of the sham rtfMRI-nf (CG), suggesting a stronger approach motivation for the EG 
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and/or a stronger avoidance motivation for the CG. Note that avoidance motivation 
during the rtfMRI-nf training may be associated with stress, confusion, frustration, 
etc. that might accompany performance of the difficult nf task, particularly for the 
CG.  Second, the FAA changes showed significant positive correlation with trait 
depression severity (HDRS) for the EG, discussed below. These findings demon-
strate that the mean FAA changes associated with performance of the rtfMRI-nf 
task are sensitive to both specific rtfMRI-nf effects and severity of depressive 
symptoms.

We interpret the positive correlation between the average individual FAA changes 
associated with the rtfMRI-nf and the HDRS depression severity as an indication of 
a short-term correction (reversal) of FAA abnormalities specific to MDD. This cor-
rection occurs during performance of the rtfMRI-nf task and is related to the above-
mentioned capacity of the rtfMRI-nf procedure to enhance approach motivation 
while increasing BOLD activity of the amygdala and the motivation-related cir-
cuitry. More specifically, average individual FAA levels during the control condi-
tions (Rest, Count) exhibited negative correlations with the HDRS ratings (Zotev 
et al. 2016). This dependence is similar to the negative correlation between FAA 
levels and depression severity often observed in resting and task-based FAA studies 
(e.g., Smith et  al. 2018; Stewart et  al. 2014; Thibodeau et  al. 2006). During the 
rtfMRI-nf task, the corresponding average individual FAA levels for the EG were 
more positive and uncorrelated with the HDRS ratings (Zotev et  al. 2016). As a 
result, the average individual changes in FAA between the Rest baseline and the 
rtfMRI-nf task were more positive in MDD patients with higher depression severity, 
yielding the positive correlation with the HDRS ratings. Similarly, MDD patients 
with higher depression severity exhibited more positive laterality of the EEG coher-
ence enhancement among frontotemporal EEG channels across the four nf runs. 
These EEG results suggest that the beneficial short-term effects of the rtfMRI-nf 
training in terms of normalizing FAA are stronger in MDD patients with more 
severe depression. Consistent with these findings, the study by Stewart et al. (2014) 
revealed that MDD patients showed larger positive FAA changes between avoidance- 
related and approach-related tasks than did participants without history of 
depression.

EEG-fMRI data analyses in the described study demonstrated, for the first time, 
correlations between FAA variations and simultaneously measured BOLD activity 
(Fig. 13.1d, e). The average individual FAA changes between the Rest baseline and 
the rtfMRI-nf task for the EG exhibited significant positive correlation with the 
amygdala BOLD laterality (Fig. 13.1d), that is, the difference in mean BOLD activ-
ities between the LA and RA (Zotev et al. 2016). To examine task-specific temporal 
correlations between FAA and BOLD activities across the brain, we conducted a 
psychophysiological interaction (PPI) analysis (Friston et  al. 1997) adapted for 
EEG-fMRI (Zotev et al. 2014, 2016, 2018a). An EEG-based PPI correlation regres-
sor was defined by convolution of the FAA time course with the hemodynamic 
response function (HRF) (Fig. 13.2a). An EEG-based PPI interaction regressor was 
defined by first multiplying the FAA time course by a selected contrast function (+1 
for Happy Memories, −1 for Count, 0 for Rest conditions) (Fig. 13.2b) and then 
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Fig. 13.2 Definition of regressors for EEG-informed psychophysiological interaction (PPI) anal-
ysis of fMRI data. (a) Convolution of a time course of EEG activity (FAA converted to z-scores) 
with the hemodynamic response function (HRF) yields an EEG-based PPI correlation regressor. 
(b) Contrast function for the Happy Memories (H) vs Count (C) conditions for one experimental 
run. (c) Convolution of the time course of EEG activity, multiplied by the contrast function, with 
the HRF yields an EEG-based PPI interaction regressor for the specified condition contrast. After 
Zotev et al. (2016)

convolving the resulting waveform with the HRF (Fig. 13.2c). The two EEG-based 
PPI regressors (correlation and interaction) were used in a general linear model 
(GLM)-based PPI analysis of the fMRI data. Thus, the PPI analysis was similar to 
a conventional fMRI-only PPI analysis, except that the initial deconvolution step 
(used to estimate neuronal activity from an fMRI time course, Gitelman et al. 2003) 
was not used, and the actual neuronal activity (FAA) time course was employed to 
define the two regressors. The PPI interaction effect for the EG was positive and 
significant for the LA region (Fig. 13.1e), indicating a more positive temporal cor-
relation between the FAA (convolved with the HRF) and the LA BOLD activities 
during the rtfMRI-nf task relative to the control task (Zotev et al. 2016). The cor-
responding PPI interaction effect for the CG was negative, with a significant EG vs 
CG group difference. Beyond the LA, the PPI interaction for the EG was positive 
and significant for many brain regions involved in emotion regulation (Fig. 13.1e), 
particularly the left VLPFC (lateral orbitofrontal cortex, BA 47), the left DLPFC 
(BA 8), the medial frontopolar cortex (BA 10/9), the left rostral ACC (BA 32/24), 
and other cortical and subcortical areas (Zotev et al. 2016).
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The positive correlation between the average FAA changes and the amygdala 
BOLD laterality (Fig.  13.1d) means, within the approach-avoidance framework, 
that the stronger approach motivation during the rtfMRI-nf task was associated with 
the higher BOLD activity of the target amygdala region (LA) relative to the nontar-
get region (RA). The positive PPI interaction effects for the EG (Fig. 13.1e) indicate 
that volitional regulation of the amygdala BOLD activity using the rtfMRI-nf was 
accompanied by enhanced temporal correlations between the FAA and BOLD 
activities of the amygdala, the EF/ER system, and other involved regions.

From the neuroscience perspective, these EEG-fMRI correlation results demon-
strate that FAA is a meaningful measure of emotion/motivation that can indirectly 
reflect activity of the amygdala. Importantly, this conclusion retrospectively vali-
dates the main assumption behind hundreds of EEG studies of emotion/motivation 
that relied on FAA. Even though correlations between FAA and various psychologi-
cal metrics had been reported in the literature, our study (Zotev et al. 2016) was the 
first to directly relate FAA to brain activity measured simultaneously by another 
neuroimaging modality (fMRI). Note, however, that our conclusion regarding the 
meaning of FAA only applies to FAA variations associated with emotion regulation, 
and not to resting FAA, which was not examined in our study.

From the clinical applications perspective, the EEG-fMRI results suggest that 
EEG-nf aimed at upregulation of FAA (e.g., Allen et al. 2001; Cavazza et al. 2014; 
Peeters et al. 2014; Quaedflieg et al. 2016) would be compatible with the described 
rtfMRI-nf procedure for upregulation of the LA BOLD activity. Note that the FAA- 
based EEG-nf approach has conceptual similarities to the repetitive transcranial 
magnetic stimulation (rTMS) treatments for MDD.  Such treatments commonly 
involve either stimulation of the left DLPFC activity using high-frequency rTMS, or 
inhibition of the right DLPFC activity using low-frequency rTMS, or both (e.g., 
Fitzgerald et al. 2006). Obviously, clinical effectiveness of the FAA-based EEG-nf 
compared to that of the amygdala rtfMRI-nf (e.g., Young et al. 2017; Zotev et al. 
2018b) remains to be evaluated. Nevertheless, simplicity, portability, and low cost 
of a standalone FAA-based EEG-nf could make it a valuable addition to the rtfMRI-
 nf in treatment of depression.

13.3  Regulation of Thalamic BOLD Activity and Alpha 
EEG Rhythm

The thalamus is often referred to as the grand central station of the human brain 
(e.g., Taber et al. 2004). Most sensory inputs are routed through the thalamus before 
reaching the cortex. Thalamic nuclei have extensive neuronal connections to various 
cortical areas and subcortical structures. Electrical stimulation of a single thalamic 
nucleus using deep brain stimulation (DBS) electrodes allows modulation (activa-
tion or inhibition) of a large network of brain regions with inherent connectivity to 
that nucleus (e.g., Zumsteg et al. 2006). Therefore, thalamic nuclei are promising 
targets for noninvasive and spatially precise neuromodulation by means of rtfMRI-
 nf. Such modulation is especially interesting when combined with EEG recordings. 
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Activities of thalamocortical neurons are known to play important roles in genera-
tion of alpha oscillations (e.g., Hughes and Crunelli 2005; Crunelli et  al. 2018). 
However, exact mechanisms of generation, modulation, and propagation of alpha 
EEG rhythm remain poorly understood. Resting EEG-fMRI studies have revealed 
positive temporal correlations between posterior alpha EEG power and BOLD 
activities of dorsal thalamic regions (e.g., de Munck et al. 2007; DiFrancesco et al. 
2008; Goldman et al. 2002; Omata et al. 2013), particularly those of the mediodor-
sal (MD) and anterior (AN) thalamic nuclei (Liu et al. 2012). However, this phe-
nomenon is relatively weak in resting state and rather difficult to explain. Scalp 
EEG cannot probe electrical oscillations in the thalamus because of the limited 
depth sensitivity, while the MD and AN nuclei do not have extensive neuronal con-
nections to parietal or occipital cortical regions. This scientific problem can be 
addressed using rtfMRI-nf with simultaneous EEG.

We have performed the first study in which rtfMRI-nf was used for volitional 
regulation of BOLD activity of the thalamus (Zotev et al. 2018a). The target ROI 
consisted of the MD and AN thalamic nuclei, which are parts of the limbic thalamus 
(Taber et  al. 2004). Healthy participants learned to upregulate the target BOLD 
activity while recalling happy autobiographical memories (Fig. 13.3). We selected 
this task because both the MD and AN are activated during autobiographical mem-
ory retrieval (e.g., Spreng et al. 2009; Svoboda et al. 2006). EEG recordings were 
conducted simultaneously with fMRI. The study was designed to test the hypothesis 
that direct modulation of the MD and AN BOLD activities using the rtfMRI-nf 
would enhance their temporal correlations with posterior alpha EEG power. Another 
exploratory goal of the study was to identify cortical regions supporting such cor-
relation effects.

The experimental session included four rtfMRI-nf runs, each consisting of alter-
nating 40 s long blocks of Happy Memories with rtfMRI-nf, Attend, and Count 
conditions (Zotev et al. 2018a). A Transfer run without nf was added to evaluate 
transfer of training effects beyond the actual training. For the experimental group 
(EG, n = 15), the rtfMRI-nf signal was based on average BOLD activity for the AN/
MD target ROI (Fig. 13.3b), measured in real time as fMRI percent signal change 
with respect to the Attend baseline. For the control group (CG, n = 14), the sham 
feedback signal was computer-generated and independent of any brain activity. The 
nf signal was displayed to the participant inside the scanner as a variable-height red 
bar on the screen (Fig.  13.3a), as described in Sect. 13.2. During the Happy 
Memories with rtfMRI-nf conditions, the participant was asked to evoke happy 
autobiographical memories, while simultaneously trying to control and raise the 
level of the red rtfMRI-nf bar as high as possible. The fluctuating nf bar was also 
displayed, but not controlled, during the Attend and Count conditions to reduce 
variations in visual attention levels among the conditions (Zotev et al. 2018a). The 
experiment was performed using the same rtfMRI-nf system and EEG-fMRI setup 
as outlined in Sect. 13.2.

The described experimental procedure allowed us to investigate mean task- 
dependent variations in alpha EEG activity and compare them to mean thalamic 
BOLD activity. During the Happy Memories with rtfMRI-nf task, the participants 

13 Real-Time fMRI Neurofeedback with Simultaneous EEG



334

Fig. 13.3 Real-time fMRI neurofeedback of the thalamus activity with simultaneous EEG. (a) 
Real-time GUI display screen with variable-height red rtfMRI-nf bar and blue zero-level bar. (b) 
Target ROI for the rtfMRI-nf encompassing the anterior nucleus (AN) and the mediodorsal nucleus 
(MD) of the thalamus. (c) EEG electrodes used to study occipital EEG activity. (d) Correlation 
between average fMRI activity of the MD (orthogonalized with respect to V1/V2 time course) and 
average changes in normalized occipital alpha EEG power (z-scores) during the Happy Memories 
with rtfMRI-nf task (H) relative to the Attend baseline (A) for the experimental group (EG). (e) 
Group difference in EEG-based PPI interaction effects indicating more positive temporal correla-
tions between the occipital alpha power and fMRI activity during the Happy Memories with 
rtfMRI-nf task compared to the Attend baseline for the EG relative to the control group (CG). The 
left hemisphere (L) is to the reader’s right. The maps are shown in the Talairach space with z- 
coordinate specified for each slice. After Zotev et al. (2018a)

in the EG were able to successfully upregulate BOLD activities of the AN and MD 
thalamic nuclei (Zotev et  al. 2018a). Importantly, fMRI functional connectivity 
between the MD and the medial inferior precuneus (BA 31) was significantly stron-
ger during the rtfMRI-nf task for the EG compared to the CG. Because alpha EEG 
power is modulated by visual attention, we used average fMRI time course of the 
visual cortex V1/V2 as a covariate of no interest in fMRI and EEG-fMRI data analy-
ses. The alpha EEG band was defined individually for each participant as [IAF − 
2…IAF + 2] Hz, where IAF is an individual alpha peak frequency. Amplitude 
modulation of EEG activity in this alpha band was studied by considering an alpha 
activity envelope for each channel. Temporal correlations between such alpha enve-
lopes were enhanced during the rtfMRI-nf task relative to the Attend baseline for 
the EG.  Individual enhancements in the alpha envelope correlations, averaged 
across all EEG channel pairs, exhibited significant positive correlation with the 
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corresponding individual MD BOLD activity levels for the EG (Zotev et al. 2018a). 
Next, we considered average normalized occipital alpha EEG power, αO = ln(P(O1)) 
+ ln(P(O2)) + ln(P(Oz)), where P is EEG power for the occipital electrodes 
(Fig.  13.3c) in the defined alpha band. Individual changes in the occipital alpha 
power between the Attend baseline and the rtfMRI-nf task showed significant posi-
tive correlation with the corresponding MD BOLD activity levels (Fig. 13.3d). Such 
positive alpha-BOLD correlation effect for the EG was also significant for the 
Transfer run without nf (Zotev et al. 2018a).

The significant positive correlation between the enhancement in correlated mod-
ulation of alpha EEG activity throughout the EEG array and mean BOLD activity of 
the MD during the rtfMRI-nf task demonstrates that the MD plays a major role in 
modulating alpha EEG rhythm. The corresponding correlation for the AN BOLD 
activity was not significant. A possible reason for this difference is that the AN has 
connections predominantly to subcortical regions, so its ability to influence activi-
ties of large cortical areas is less pronounced than that of the MD, which has exten-
sive neuronal connections to the prefrontal cortex (Taber et al. 2004). The significant 
positive correlation between mean values of the MD BOLD activity and mean 
occipital alpha EEG power changes (Fig. 13.3d) is consistent with the positive tem-
poral correlations between temporal fluctuations in the same activities observed in 
resting EEG-fMRI.

EEG-fMRI temporal correlation analyses in our study demonstrated that perfor-
mance of the rtfMRI-nf task was associated with enhanced temporal correlations 
between occipital alpha EEG power and BOLD activities in the thalamus and other 
brain regions (Fig. 13.3e). EEG-based PPI analyses were conducted separately for 
two condition contrasts, Happy vs Attend and Happy vs Count, and were similar to 
the PPI analysis illustrated in Fig. 13.2. An EEG-based PPI correlation regressor 
was defined by convolution of a time course of the normalized occipital alpha EEG 
power (converted to z-scores) with the HRF. An EEG-based PPI interaction regres-
sor for the Happy vs Attend contrast was defined by first multiplying the alpha 
power time course by the contrast function (+1 for Happy Memories, −1 for Attend, 
0 for Count conditions) and then convolving the resulting waveform with the 
HRF. An EEG-based PPI interaction regressor for the Happy vs Count contrast was 
defined in a similar way using the corresponding contrast function (+1 for Happy 
Memories, −1 for Count, 0 for Attend conditions). The PPI interaction effects for 
both contrasts were positive for the MD and AN ROIs for the EG, meaning that 
temporal correlations between the occipital alpha EEG power (convolved with the 
HRF) and BOLD activities of these regions were more positive during the rtfMRI-
nf task than during the control tasks (Attend, Count). The corresponding PPI inter-
action effects for the CG were negative, with significant EG vs CG group differences 
for both ROIs and both contrasts (Zotev et al. 2018a). The PPI interaction effect for 
the Happy vs Attend contrast also showed significant positive EG vs CG group dif-
ferences for the medial pulvinar, caudate body, DLPFC (BA 9), supplementary 
motor area (SMA, BA 6), ACC (BA 32), precuneus/PCC (BA 31, 30), angular gyrus 
(BA 39), and other regions (Fig. 13.3e). The PPI interaction effect for the Happy vs 
Count contrast exhibited significant EG vs CG group differences for the 
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ventrolateral nucleus (VL), medial pulvinar, caudate body, putamen, DLPFC (BA 
9), SMA (BA 6), cingulate gyrus (BA 24, 32), precuneus (BA 19), middle temporal 
gyrus (BA 39), and other regions (Zotev et al. 2018a).

The whole-brain PPI results indicate that temporal correlation between the 
occipital alpha EEG power and BOLD activity was enhanced during the rtfMRI-nf 
task compared to the Attend condition (for the EG relative to the CG) for the poste-
rior DMN nodes, including the precuneus/PCC (BA 31, 30) and the right angular 
gyrus (BA 39) (Fig. 13.3e). When compared to the Count condition, the temporal 
correlation during the rtfMRI-nf task was enhanced for temporoparietal regions 
(BA 39, 19) in close proximities to the lateral DMN nodes. These results suggest 
that the positive alpha-BOLD correlation effects observed for the dorsal thalamus 
and other subcortical regions may be supported by the posterior DMN nodes. These 
nodes are activated during autobiographical memory retrieval (e.g., Spreng et al. 
2009) and show increased localized alpha power in the process (e.g., Knyazev et al. 
2015). Because these are cortical regions, their activities are reliably probed by 
scalp EEG.

Our results also highlight the important role of functional connectivity between 
the MD thalamic nucleus and the precuneus. The locus within the medial inferior 
precuneus (BA 31) that exhibited the most significant EG vs CG group difference 
in the PPI interaction effects for the Happy vs Attend contrast (Fig. 13.3e) was 
very close to the location that showed the most significant positive EG vs CG 
group difference in fMRI functional connectivity with the MD during the rtfMRI-
nf task (Zotev et al. 2018a). This region is adjacent to the parieto-occipital sulcus. 
MEG source localization studies have shown that the strongest dipole-modeled 
sources of posterior alpha rhythm are distributed around the parieto-occipital sul-
cus and around the calcarine sulcus (Hari et al. 1997; Manshanden et al. 2002). 
The parieto- occipital alpha sources (BA 31, 7, 19) are involved in cognitive and 
memory functions (e.g., Tuladhar et al. 2007; Seibert et al. 2011), while the cal-
carine alpha sources (V1/V2) are engaged in more basic visual functions. The 
stronger interaction between the MD and the inferior precuneus during the 
rtfMRI-nf task means the stronger ability of the MD to influence the parieto-
occipital sources of alpha rhythm. Therefore, it is the interaction between the MD 
and the inferior precuneus, reflected in their fMRI functional connectivity, that 
may modulate the observed positive temporal association between the posterior 
alpha EEG power and the MD BOLD activity. Indeed, the correlation between the 
MD-precuneus functional connectivity and the PPI interaction effect for the MD 
was positive and significant for the Transfer run for the EG (supplement in Zotev 
et al. 2018a).

Our study clearly demonstrates that the positive alpha-BOLD correlation effect 
for deep subcortical regions is not limited to the dorsal thalamus, but can be also 
observed for the basal ganglia. The PPI analyses revealed enhanced temporal cor-
relations between posterior alpha EEG power and BOLD activities of the caudate 
and putamen. These regions, together constituting the dorsal striatum, play impor-
tant roles in learning, including learning from feedback (e.g., Grahn et al. 2008). 
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They are engaged during the rtfMRI-nf training. The fact that resting EEG-fMRI 
studies have not shown pronounced alpha-BOLD correlations for these regions 
reflects the absence of learning in resting state. Furthermore, our results indicate 
that posterior alpha EEG power exhibited, during the rtfMRI-nf task, enhanced tem-
poral correlations with BOLD activities of the basal ganglia-thalamocortical cir-
cuits. These circuits are closed loops that enable parallel processing and integration 
(Alexander et al. 1991; Grahn et al. 2008). The PPI results revealed two such cir-
cuits: the prefrontal (dorsolateral) circuit (DLPFC → caudate → globus pallidus/
substantia nigra → MDpc → DLPFC) and the motor circuit (SMA → putamen → 
globus pallidus/substantia nigra → VLo → SMA) (Zotev et al. 2018a). Therefore, 
not only do these basal ganglia-thalamocortical circuits contribute prominently to 
the rtfMRI-nf learning cycle (Birbaumer et al. 2013), but they also show temporal 
correlations with posterior alpha EEG power. In contrast, the PPI results did not 
reveal significant effects in the amygdala, suggesting that the amygdala, though 
providing some input to the MD, is not actively involved in generation or modula-
tion of alpha oscillations.

From the neuroscience perspective, our EEG-fMRI results confirm the funda-
mental role of the thalamus, especially the mediodorsal nucleus (MD), in modula-
tion of alpha EEG rhythm. Our findings suggest that the positive temporal 
correlations between thalamic BOLD activity and posterior alpha EEG power are 
supported by the posterior DMN nodes. In particular, the positive alpha-BOLD cor-
relation effect for the MD is modulated by the interaction between the MD and the 
inferior precuneus, reflected in their fMRI functional connectivity. A promising 
direction for future EEG-fMRI research involves application of rtfMRI-nf based on 
a difference in BOLD activities of two selected nuclei of the thalamus. Such 
approach could help to elucidate functional differences between thalamic nuclei and 
understand their effects on EEG activity.

From the clinical applications perspective, the rtfMRI-nf targeting BOLD 
activities of the AN/MD can be used to correct autobiographical memory distur-
bances in MDD and posttraumatic stress disorder (PTSD), for example, by 
increasing these BOLD activities during retrieval of happy autobiographical 
memories and/or reducing them in response to traumatic memories or depressive 
rumination. The capability of the described rtfMRI-nf procedure to modify func-
tional connectivity between the MD and the posterior DMN may be relevant in 
treatment of MDD, where such connectivity is abnormally elevated during rest 
(e.g., Hamilton et al. 2015). The rtfMRI-nf of thalamic BOLD activity can also 
potentially be used as a neurorehabilitation tool in treatment of neurological dis-
orders affecting the thalamus, such as Korsakoff’s syndrome (e.g., Taber et  al. 
2004). Our EEG-fMRI findings suggest that EEG-nf targeting posterior alpha 
EEG activity (e.g., Hanslmayr et  al. 2005; Nicholson et  al. 2016; Zoefel et  al. 
2011) during a memory task would be compatible with the rtfMRI-nf of the AN/
MD BOLD activity. Therefore, both types of neurofeedback can be employed in 
combination, for example, to enhance treatment of autobiographical memory dis-
turbances in MDD and PTSD.
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13.4  Simultaneous Real-Time fMRI and EEG Neurofeedback

Simultaneous multimodal real-time fMRI and EEG neurofeedback (rtfMRI-EEG-
 nf) is a combination of simultaneously provided rtfMRI-nf and EEG-nf that enables 
simultaneous regulation of both hemodynamic and electrophysiological brain activ-
ities (Zotev et al. 2014). Promising target measures for rtfMRI-EEG-nf can be iden-
tified in rtfMRI-nf with simultaneous EEG studies, as illustrated in Sects. 13.2 and 
13.3, as well as in EEG-nf with simultaneous fMRI studies. To successfully imple-
ment rtfMRI-EEG-nf, one has to overcome two major technical challenges. First, 
rtfMRI and EEG data streams need to be synchronized, processed, and integrated in 
real time to allow simultaneous display of two neurofeedback signals from the two 
imaging modalities. Second, EEG-fMRI and common EEG artifacts must be accu-
rately removed from real-time EEG data to provide a reliable EEG-nf signal during 
fMRI, as explained in Sect. 13.1. The main promise of rtfMRI-EEG-nf is the poten-
tial for achieving greater clinical effectiveness in treatment of neurological and psy-
chiatric disorders than can be achieved with rtfMRI-nf or EEG-nf administered 
separately.

We have developed the first multimodal real-time control system for integration 
of simultaneous rtfMRI and EEG data streams to provide rtfMRI-EEG-nf (Zotev 
et al. 2014). The system is designed to operate with the General Electric Discovery 
MR750 3T MRI scanner and a 128-channel MR-compatible EEG system from the 
Brain Products, GmbH.  The EEG system’s clock is synchronized with the MRI 
scanner’s clock using Brain Products’ SyncBox device. MRI slice markers (TTL 
pulses) are sent from the scanner to the EEG system via a parallel port and recorded 
together with the EEG data. These markers are used to synchronize real-time EEG 
data processing with an fMRI pulse sequence. The multimodal real-time control 
system extends the functionality of the original real-time MRI monitoring and con-
trol system (Bodurka and Bandettini 2008) and includes a fully integrated pipeline 
for processing simultaneously acquired EEG data. The system uses real-time fea-
tures of AFNI (Cox 1996) and real-time capabilities of the BrainVision RecView 
software (Brain Products, GmbH). fMRI data are converted from DICOM to AFNI 
format in real time using a custom real-time software, which runs on the MRI scan-
ner’s host computer and utilizes the Dimon AFNI program. The converted data are 
exported via a TCP/IP socket to a computer running real-time AFNI (Zotev et al. 
2014). The AFNI real-time plugin is used to perform fMRI motion correction and 
compute mean fMRI signal values for selected ROIs for each acquired fMRI vol-
ume. EEG data are acquired using the BrainVision Recorder software and trans-
ferred to the RecView software, where MR and CB artifacts are partially removed 
in real time using built-in automated procedures for average artifact subtraction 
(AAS, Allen et  al. 1998, 2000). The Remote Data Access (RDA) feature of the 
RecView is then used to export the processed EEG data via a TCP/IP socket from 
the EEG computer to the real-time computer. Further EEG data processing includes 
automated data inspection, moving-window FFT analysis, and computation of EEG 
powers for selected channels in selected frequency bands. The rtfMRI and EEG data 
streams are finally integrated in the multimodal graphical user interface (mGUI) 
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Fig. 13.4 Simultaneous multimodal real-time fMRI and EEG neurofeedback. (a) Real-time mul-
timodal GUI display screen with variable-height red EEG-nf bar on the left and red rtfMRI-nf bar 
on the right. The blue bars are target levels. (b) Left amygdala (LA) target ROI for the rtfMRI-nf. 
(c) EEG electrodes F3 and F4 used to provide the EEG-nf. (d) Mean changes in frontal high-beta 
(beta3) EEG asymmetry during the Happy Memories with rtfMRI-EEG-nf task (H) relative to the 
Rest baseline (R). The group results are shown for four nf runs (PR, R1, R2, R3) and for Transfer 
run without nf (TR). (e) Corresponding mean fMRI activity levels for the LA.  After Zotev 
et al. (2014)

software running two processing threads and receiving data from two sockets. The 
mGUI computes rtfMRI-nf and EEG-nf signal values and generates graphics for 
real-time display (Fig. 13.4a). The multimodal real-time control system includes 
custom software modules written in Python, including NumPy, and in Perl, includ-
ing Perl/Tk (Zotev et al. 2014).

We have conducted a pilot, proof-of-concept study demonstrating the feasibility 
of simultaneous regulation of both hemodynamic and electrophysiological brain 
activities using rtfMRI-EEG-nf (Zotev et al. 2014). In the study, six healthy partici-
pants performed a happy emotion induction task based on retrieval of happy auto-
biographical memories, while simultaneously trying to control and raise two 
variable-height neurofeedback bars on the screen (Fig. 13.4a). The multimodal real- 
time control system described above was used to provide the rtfMRI-EEG-nf. The 
system was configured for 32-channel EEG.  The rtfMRI-nf signal was updated 
every 2 s, while the EEG-nf signal was updated every 0.4 s. The LA target ROI for 
the rtfMRI-nf (Fig. 13.4b) was the same as described in Sect. 13.2. Frontal EEG 
asymmetry in the high-beta band for channels F3 and F4 (Fig. 13.4c) was employed 
as a target measure for the EEG-nf. It was defined as A = [P(F3) − P(F4)] / [P(F3) 
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+ P(F4)], where P is EEG power in the high-beta (beta 3) band [21…30] Hz. Note 
that the right-hand side in this definition has an opposite sign compared to that in the 
FAA definition (Sect. 13.2), because excitatory cortical activity is associated with 
increased high-beta EEG power (e.g., Cook et al. 1998). We used the relative asym-
metry A as the target for EEG-nf, because its distribution over a finite (rather than 
infinite) interval makes it convenient for real-time applications. In offline statistical 
analyses, normalized asymmetry An = atanh(A) = [ln(P(F3))  – ln(P(F4))]/2 was 
employed instead. We selected upregulation of the high-beta EEG asymmetry as a 
goal of the EEG-nf procedure for the following reasons. First, resting frontal EEG 
asymmetry in the high-beta band is more negative in MDD patients compared to 
healthy controls due to increased high-beta activity in the right prefrontal regions 
observed in MDD (Pizzagalli et al. 2002). Alleviation of depressive symptoms is 
associated with a stronger reduction in high-beta power on the right than on the left 
(Paquette et al. 2009), leading to more positive resting high-beta EEG asymmetry. 
Second, because frontal EEG power asymmetry is a differential measure, it is less 
sensitive to global EEG phenomena and various artifacts than EEG signal power 
from a single electrode. Third, EEG signals measured in the high-beta band during 
fMRI are less affected by residual CB and random motion artifacts than signals in 
the alpha and theta EEG bands (Zotev et al. 2014).

During the rtfMRI-EEG-nf task, the study participants were able to successfully 
upregulate both the rtfMRI-nf and EEG-nf signals (Zotev et al. 2014), as evidenced 
by positive group mean values of both target measures for each of the four nf runs 
(Fig. 13.4d, e). Task-dependent temporal correlations between the normalized fron-
tal high-beta EEG asymmetry An and BOLD activity were evaluated using an EEG- 
based PPI analysis, similar to the one illustrated in Fig. 13.2. Positive PPI interaction 
effects for the Happy vs Count condition contrast were observed for the LA, left 
insula (BA 22), right orbitofrontal cortex (BA 47), right dorsomedial prefrontal cor-
tex (BA 9), right superior temporal gyrus (BA 41), and other regions. This means 
that temporal correlations between the An time course and BOLD activities of these 
regions were enhanced during the rtfMRI-EEG-nf task relative to the control task. 
In particular, the positive PPI interaction effect for the LA region indicates that the 
high-beta EEG asymmetry and the LA BOLD activity were indeed modulated 
together in real time.

More recently, another implementation of a hybrid neurofeedback platform com-
bining EEG and fMRI was reported by the INRIA group (Mano et al. 2017). It was 
developed for operation with a Siemens MAGNETOM 3T Verio MRI scanner and a 
64-channel MR-compatible EEG system from the Brain Products, GmbH. The plat-
form’s architecture is generally similar to the one we described above. The fMRI 
subsystem utilizes MATLAB programs to export fMRI data from the MRI host 
computer in real time (adapted from FieldTrip) and perform real-time motion cor-
rection (adapted from SPM8), while the EEG subsystem relies on the real-time EEG 
processing capabilities of the BrainVision RecView software (Mano et al. 2017). 
The authors also reported a study in which healthy participants learned to regulate 
laterality of the primary motor cortex activity using either unimodal (EEG-nf or 
rtfMRI-nf) or bimodal (rtfMRI-EEG-nf) neurofeedback during a motor imagery 
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task (Perronnet et al. 2017). EEG and fMRI laterality indices for motor cortex activ-
ity were used as neurofeedback target measures. The results showed that the rtfMRI-
EEG-nf was more effective at activating the motor cortex when compared to the 
EEG-nf, but not when compared to the rtfMRI-nf (Perronnet et al. 2017). This work 
demonstrated the importance of careful side-by-side performance comparisons for 
different types of neurofeedback.

The two rtfMRI-EEG-nf studies mentioned above (Perronnet et al. 2017; Zotev 
et al. 2014) had one important feature in common: real-time removal of MR and CB 
artifacts was based, in both studies, on the AAS procedures implemented in the 
BrainVision RecView software. However, the AAS algorithms only allow approxi-
mate artifact removal, so residual MR and CB artifacts are left in the processed EEG 
data, particularly in real-time applications. Moreover, random motion EEG-fMRI 
artifacts and various common EEG artifacts, which can be quite persistent during 
performance of a difficult task, cannot be corrected by such algorithms at all.

One possible way to improve suppression of residual CB and random motion 
EEG artifacts inside an MRI scanner is to employ a real-time artifact regression 
using reference artifact signals induced in wire loops added to an EEG cap 
(Masterton et al. 2007). This approach can be very practical in applications utilizing 
EEG signals from only few electrodes to provide EEG-nf. Recently, we imple-
mented an enhanced real-time EEG-fMRI artifact removal procedure for improved 
EEG-nf during fMRI (Zotev et  al. 2020). We modified a standard 32-channel 
MR-compatible EEG cap by adding four reference contours (wire loops with resis-
tors). Geometries of these contours were optimized so that recorded artifacts closely 
approximate random motion and CB artifacts registered by EEG channels F3 and 
F4. A real-time regression of the reference artifact waveforms was performed within 
the RecView software after the AAS procedure for MR artifacts and prior to the 
AAS procedure for CB artifacts. This approach allowed us to provide a reliable 
EEG-nf based on frontal alpha EEG asymmetry (FAA for channels F3 and F4), as 
well as a more accurate EEG-nf based on frontal high-beta EEG asymmetry. 
Building on these advances, we conducted the first emotion self-regulation study in 
which MDD patients used rtfMRI-EEG-nf to simultaneously modulate two fMRI 
and two EEG activity measures relevant to major depression (Zotev et  al. 2020;  
Zotev and Bodurka 2020).

Another promising strategy to achieve improved real-time EEG artifact suppres-
sion during fMRI is implementation of real-time ICA for EEG data, as described in 
the following section.

13.5  Real-Time Independent Component Analysis 
for EEG-fMRI

The main signal processing challenge in simultaneous EEG-fMRI is the need for 
accurate removal of artifacts emerging during acquisition of EEG data in MRI envi-
ronment (e.g., Mulert and Lemieux 2010). This problem is even more complicated 
in real-time applications, such as EEG-nf with simultaneous fMRI or the 
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rtfMRI- EEG- nf discussed above (Sect. 13.4). The AAS (Allen et al. 1998, 2000) is 
a common approach for reducing both MR and CB artifacts, which takes into 
account their quasiperiodic temporal properties. The AAS involves generation of an 
average artifact template and subtraction of this template from the artifact-contam-
inated EEG data. This method is implemented for real-time MR and CB artifact 
suppression in the BrainVision RecView software. It has been used in several real-
time EEG-fMRI studies (e.g., Becker et  al. 2011; Cavazza et  al. 2014; Kinreich 
et al. 2012; Mano et al. 2017; Zich et al. 2015; Zotev et al. 2014). Although the AAS 
is quite successful at reducing these types of artifacts, some residual MR and CB 
artifacts remain due to temporal variabilities in these artifacts’ properties. 
Furthermore, as mentioned in Sect. 13.4, the AAS can only attenuate MR and CB 
artifacts and cannot correct random motion- related and common EEG artifacts. 
Different hardware-based approaches have been proposed for improved correction 
of random motion, MR, and CB artifacts. They include the use of an additional 
motion sensor (Bonmassar et al. 2002), reference wire loops (Masterton et al. 2007; 
van der Meer et al. 2016; Zotev et al. 2020), and a reference conductive layer with 
reference electrodes (Dunseath and Alden 2010; Luo et al. 2014). However, these 
methods cannot handle common EEG artifacts (Sect. 13.1), such as ocular or mus-
cle artifacts.

We have introduced a novel method combining the AAS and ICA for real-time 
reduction of both fMRI-related and common physiological artifacts in EEG data 
recorded simultaneously with fMRI (Mayeli et al. 2016). ICA is a mathematical 
technique for determining hidden factors and sources from random variables, mea-
surements, and signals (e.g., Hyvärinen et  al. 2001). It has been widely used in 
offline EEG and EEG-fMRI analyses for attenuating residual MR and CB artifacts, 
as well as various common EEG artifacts (Sect. 13.1). ICA decomposes an observed 
multivariate vector into groups of stochastically independent vectors. Several prin-
ciples and procedures have been developed to maximize statistical independence 
among extracted sources, which led to different ICA methods (e.g., Infomax, 
FastICA, SOBI, Robust ICA, JADE, ORICA). These methods provide powerful 
techniques for detecting and reducing EEG artifacts. Unlike other artifact correction 
approaches (e.g., the AAS or optimal basis sets), ICA can be applied for detection 
of nearly all types of artifacts. It can also be combined with other artifact correction 
methods.

In order to achieve reliable results from an ICA decomposition, the number of 
samples submitted to an ICA algorithm should be some multiple k of n2, where n is 
the number of EEG channels and k > 20 as a rule of thumb (Onton et al. 2005). This 
requirement makes application of ICA in real time rather challenging. To overcome 
this limitation, Mayeli et  al. (2016) used a moving-window ICA decomposition. 
The second-order blind identification (SOBI, Belouchrani et al. 1997) technique, 
based on a blind identification using a joint diagonalization of several covariance 
matrices, was selected for ICA because of its higher convergence rate compared to 
other ICA methods. In the proposed real-time algorithm, MR and CB artifacts are 
first reduced using the real-time AAS in the RecView software, and the EEG data 
are downsampled to 250 S/s. The moving-window ICA decomposition is 
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commenced when the total number of acquired EEG data points per channel reaches 
10,000 (40 s). The ICA is performed for 22 EEG channels for the 40 s time window. 
The window is shifted every 4 s when the next 1000 data points are acquired, and 
the ICA is repeated. Power spectrum density, topographic map, kurtosis, and energy 
are extracted from the last 4-s data interval for each IC. Based on extracted features 
and predefined threshold values, the algorithm classifies ICs as either neuronal 
activity or four types of artifacts (Mayeli et  al. 2016). Specifically, ocular (eye-
blinking) artifact mainly affects frontopolar EEG channels and is characterized by 
high energy and largest spectrum density at very low frequencies. Random motion 
artifact has very high energy and kurtosis values and exhibits high spectrum density 
at low frequencies. Residual CB artifact is identified based on its high spectrum 
density in the theta EEG band, high energy, and predominantly bipolar topography. 
Finally, muscle and residual MR artifacts are recognized by large spectrum density 
at higher (beta and gamma band) frequencies (Mayeli et al. 2016). After removing 
ICs related to these artifacts, an inverse ICA transform is applied to reconstruct the 
corrected EEG signal.

The real-time ICA algorithm was implemented in a software module written in 
Python and utilizing NumPy functionality. The ICA module was integrated with the 
multimodal real-time control system used to provide rtfMRI-EEG-nf (Zotev et al. 
2014). The real-time ICA performance was tested in resting-state EEG-fMRI exper-
iments involving six healthy participants. Several evaluation metrics were employed 
to compare the real-time ICA artifact correction to an offline ICA correction. The 
results showed that the real-time algorithm could effectively reduce all four types of 
artifacts without removing any neuronal signal (Mayeli et al. 2016). The proposed 
methodology can be further improved in several ways. For instance, machine learn-
ing techniques could be utilized for automatic artifact detection and IC classifica-
tion. Also, GPU-based data processing would further increase the algorithm speed 
leading to more accurate real-time identification and removal of EEG and EEG- 
fMRI artifacts.

Recently, Hsu and colleagues applied another ICA method, named Online 
Recursive ICA (ORICA, Akhtar et al. 2012), for correcting EEG artifacts in real 
time (Hsu et al. 2014, 2016). However, the feasibility of using this approach for 
real-time removal of MR, CB, and random motion artifacts from EEG data acquired 
during fMRI needs to be investigated.

13.6  Conclusions

The discussed applications of the real-time fMRI neurofeedback with simultaneous 
EEG approach (Sects. 13.2 and 13.3) demonstrate that it is a powerful tool for neu-
roscience research. Its main strength compared to other neuromodulation tech-
niques is that it enables direct targeted noninvasive modulation of BOLD activities 
of deep brain regions and investigation of related EEG activities measured simulta-
neously with high temporal resolution. This allows comprehensive analysis of spa-
tiotemporal dynamic relationships between concurrent hemodynamic and 
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electrophysiological processes in the human brain. Therefore, this approach can be 
used to address fundamental problems in neuroscience (Sect. 13.3). From the clini-
cal perspective, rtfMRI-nf can help to elucidate neural interactions within brain 
circuits involved in emotion regulation and identify novel, more efficient clinical 
targets for treatment of affective disorders. Investigation of electrophysiological 
processes accompanying rtfMRI-nf training of emotion regulation using simultane-
ous EEG can lead to development of more affordable and portable EEG-only neu-
rofeedback therapies for depression and other neuropsychiatric disorders.

The simultaneous multimodal rtfMRI-EEG-nf approach (Sect. 13.4) has stim-
ulated active development efforts, which led to important technical advances in 
real- time EEG-fMRI data integration and artifact removal, including implementa-
tion of real-time ICA for EEG-fMRI (Sect. 13.5). Conceivably, rtfMRI-EEG-nf 
can have stronger therapeutic effects than either rtfMRI-nf or EEG-nf, because it 
can simultaneously and consistently target disorder-specific brain activities, iden-
tified by two very different imaging modalities—fMRI and EEG. The first appli-
cation of rtfMRI-EEG-nf in a patient population yielded promising results (Zotev 
et al. 2020). However, clinical potential of this emerging neuromodulation tech-
nique remains to be explored.
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14Non-invasive Brain Stimulation 
with Multimodal Acquisitions

Alexander T. Sack, Teresa Schuhmann, and Tom A. de Graaf

14.1  Brain Imaging: Possibilities and Limitations

Brain imaging today includes a range of methodologies that can reveal various 
aspects of the physiological basis of cognition, perception and behaviour. Foremost 
among them are functional magnetic resonance imaging (fMRI) and electroenceph-
alography (EEG). In this chapter, we mainly focus on fMRI and how it can be 
meaningfully combined with brain stimulation approaches. Towards the end, we 
return to EEG, its combination with brain stimulation and fMRI and the unique 
contributions offered by such multimodal research.

fMRI is a non-invasive imaging method, capable of visualising brain areas that 
are active during different behavioural or cognitive functions. As such, fMRI pro-
vides evidence for local (task-dependent) changes in brain activity, but it is limited 
in revealing direct causal relationships between these brain activity changes and 
their behavioural or cognitive consequences. Is the observed change in brain activ-
ity functionally relevant for the task? To answer this question, the experimental 
design must somehow be inverted. Where in functional neuroimaging the cognition 
or behaviour is the independent variable and brain activity the dependent variable, 
we wish to turn this around. We should manipulate brain activity, making this the 
experimental factor, and observe the effects of this manipulation on cognition or 
behaviour. If the experimentally induced brain activity change has effects on task 
performance, only then can one conclude that the brain activity involved is function-
ally relevant. The direction of behavioural effects moreover provides information on 
the potential specific role of the targeted brain region in the task at hand. To achieve 
this sort of controlled experimental setup, a method of transient and local brain 
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activity manipulation is required. Such methods exist and are collectively referred 
to as functional brain interference or brain stimulation techniques.

14.2  Invasive and Non-invasive Brain Stimulation

Brain stimulation techniques (also referred to as brain perturbation, brain interfer-
ence or neuromodulation techniques) can be divided into invasive and non-invasive 
approaches. Some invasive methods, such as cooling and microstimulation, are 
mainly limited to animal studies, while other invasive (deep brain) stimulations are 
used in humans but only in patient populations. In contrast, transcranial low- 
intensity electrical current stimulation (tES) and transcranial magnetic stimulation 
(TMS) are non-invasive brain stimulation techniques (NIBS), which can be safely 
used in both human volunteers and patients. NIBS allows for controlled manipula-
tion of brain activity in several ways. TES is thought to modulate cortical excitabil-
ity during application and—depending on stimulation parameters—can also outlast 
the stimulation itself. Depending on the parameters and form of tES, it can (1) 
enhance or decrease cortical excitability or (2) align/amplify local oscillations. 
TMS, depending on the parameters of the application, can (1) induce transient dis-
ruptions of neural activity (‘virtual lesions’), (2) enhance or decrease cortical excit-
ability, (3) transiently stimulate (‘activate’) neural populations or (4) even align/
amplify local oscillations. In all cases, by transiently changing activity in the stimu-
lated brain area and revealing a subsequent change in a particular behaviour, NIBS 
can be regarded as a unique research approach to investigate causal structure- 
function relationships.

14.2.1  The Physics and Physiology of Single-Pulse Transcranial 
Magnetic Stimulation (TMS)

Any TMS device consists of a bank of capacitors capable of producing high dis-
charge currents and an electromagnetic stimulating coil to apply magnetic pulses of 
up to several Tesla. The intense and rapidly changing currents are discharged into 
the coil, thereby creating a strong and time-varying magnetic field (pulse). This 
pulse can reach its peak in a few hundred microseconds and induce an electric field 
in the neuronal tissue underneath the coil. The strength of the induced electric field 
depends mainly on the rate of change of the magnetic field. Due to the electrical 
conductivity of the living tissue, the induced electric field results in electrical (eddy) 
currents in the cortex, in a parallel but opposite direction to the current in the coil 
(Lenz’s law). These currents can cause depolarisation and induce action potentials, 
in the underlying neurons.

Physical parameters of the magnetic field (e.g. rise time and spatial field dis-
tribution) determine the temporal-spatial characteristics of the magnetic pulse 
sent into the brain, but the induced electric field characteristics in neural tissue 
depend on some additional factors. The shape of the skull, the distance from 
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TMS coil to the gyrating cortical layers, the shape of coil and intensity of stimu-
lation and whether pulses are monophasic or biphasic all influence the final 
effective strength and extent of stimulation at the cortical level. Moreover, the 
magnetic field strength decreases exponentially with distance and the cortical 
surface is convoluted. Magnetic coils have different possible geometric shapes, 
affecting focality and induced current direction. All these characteristics, of 
stimulation coils and the underlying neuronal tissue, interact to determine the 
actualised neuronal depolarisation of mostly superficial levels of the brain (within 
a few cm of the coil). And that is considering the effects of one magnetic 
pulse only.

14.2.2  From Single-Pulse to Repetitive TMS: 
Stimulation Protocols

TMS pulses can be applied one at a time (single-pulse TMS), in pairs separated by 
a variable interval (paired-pulse TMS) or in multiples, ranging from triple-pulse or 
even quintuple-pulse TMS. Importantly, for these application methods, the pulses 
are usually locked to an external event (e.g. task onset), therefore potentially reveal-
ing information about the chronometry of a perceptual or cognitive process (e.g. 
Schuhmann et al. 2009, 2012; de Graaf et al. 2014). We can, therefore, refer to these 
approaches as chronometric, or event-related, TMS.  By applying chronometric 
TMS at variable times during task execution, it is possible to investigate not only 
whether a given brain region is necessary for the tested behaviour but also at what 
time point (with a temporal resolution of 5–10 ms) the neural activity at the stimula-
tion site is critical for successful task performance (chronometry of functional rel-
evance; see also Walsh and Pascual-Leone 2003).

TMS pulses can also be applied rhythmically, for a longer duration, in either 
‘conventional’ or ‘patterned’ protocols of repetitive stimulation (repetitive TMS, 
rTMS, Rossi et  al. 2009). The important feature of both conventional and pat-
terned rTMS protocols is that they can modulate the excitability of the stimulated 
area for some time after the TMS application itself. The nature of these after-
effects, whether they are inhibitory or excitatory, mainly depends on the frequency 
of stimulation. In conventional rTMS protocols, single TMS pulses are applied in 
a regular rhythm, with a core distinction between low-frequency rTMS (stimula-
tion frequency of 1 Hz or less) and high-frequency rTMS (stimulation frequency 
>1 Hz). Patterned rTMS refers to repetitive application of short high-frequency 
bursts of rTMS, interleaved by short pauses of no stimulation. In theta burst stim-
ulation (TBS), short bursts of 50 Hz rTMS are repeated with a rate in the theta 
range (5 Hz) as a continuous (cTBS) or intermittent (iTBS) train (Di Lazzaro 
2008; Huang et al. 2005). Both 1 Hz rTMS and cTBS have been found to produce 
lasting inhibitory after-effects, whereas high-frequency rTMS and iTBS can 
induce lasting facilitatory after-effects on motor corticospinal output in healthy 
participants. These, however, are group- level effects that may differ between par-
ticipants (e.g. Maeda et  al. 2000) and seem dependent on idiosyncratic brain 
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mechanisms (e.g. Chechlacz et  al. 2015). The inter- and even intra-individual 
variability of responses to rTMS is one of the reasons that combining TMS with 
brain imaging can be so valuable.

The ability of rTMS to induce longer-lasting excitability changes has opened the 
door for the clinical applications of TMS in treating various neuropsychiatric disor-
ders, for example, by ‘down- or up-regulating’ pathologically hyper- or hypoactive 
brain areas (Brighina et al. 2003; Haraldsson et al. 2004; Hoffman 2003; Hoffman 
and Becker 2005; Martin et al. 2003; Paus and Barrett 2004).

14.2.3  Clinical Applications of TMS

Over the past 20 years, an increasing number of studies of the potential therapeutic 
effects of TMS have been published (Lefaucheur et al. 2014). Disorders including 
addiction (Camprodon et al. 2007; Eichhammer et al. 2003), obsessive compulsive 
disorder (Martin et  al. 2003; Sachdev et  al. 2001), pain (Khedr et  al. 2005; 
Lefaucheur et al. 2001), schizophrenia (Chibbaro et al. 2005; Lee et al. 2005) and 
depression (George et al. 1995; Pascual-Leone et al. 1996) have been studied; how-
ever, of all the psychiatric disorders, TMS in major depressive disorder (MDD) has 
been studied most thoroughly.

To treat depression, repetitive TMS is applied to the dorsolateral prefrontal 
cortex (DLPFC). Numerous studies stimulated either left DLPFC with high-fre-
quency TMS or right DLPFC with low-frequency TMS, with diverse results (for 
review see, for example, Schonfeldt-Lecuona et al. 2010). O’Reardon et al. (2007) 
published a large multicentre trial of daily left prefrontal TMS in medication-free 
patients with MDD, reporting encouraging results. In contrast, Herwig and col-
leagues found no difference in responder rates or depression rating scales between 
real TMS and sham treatment groups in their multicentre trial (Herwig et  al. 
2007). Early meta- analyses of the antidepressant effect of rTMS (Burt et al. 2002; 
Gross et al. 2007; Holtzheimer et al. 2001; Kozel and George 2002; Martin et al. 
2003; McNamara et  al. 2001) also revealed mixed results, with differences 
between findings perhaps relating to small sample sizes as well as heterogeneous 
designs.

The validity of TMS for the treatment of depression in clinical practice thus 
remained unclear for quite some time. While TMS certainly seemed to have 
beneficial effects with therapeutic potential, the inconsistency of results needed 
explanation, so that consensus could be reached on which TMS protocols are 
effective for which types of depression patients (see also Ridding and Rothwell 
2007). Nevertheless, in 2008, the first rTMS device (NeuroStar TMS Therapy 
System) received FDA approval for the treatment of resistant major refractory 
depression in adults. Since then, FDA approval has been awarded to multiple 
manufacturers for the same rTMS protocols, always stimulating the left frontal 
cortex with excitatory protocols, daily for several weeks excluding weekends. 
Since the standard excitatory rTMS protocol takes relatively long to complete (a 
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single session takes 37 min), it is of interest that patterned rTMS (the iTBS 
protocol described above) received FDA approval as well in summer 2018. 
iTBS to treat depression achieves similar effects in only a fraction of the time 
(6 min).

An extensive consensus review on the therapeutic potential and efficacy of TMS 
was published by Lefaucheur et al. (2014). They concluded that, at that time, there 
was ‘definite efficacy’ for the antidepressant effects of high-frequency left DLPFC 
rTMS in the treatment of depression and ‘probably efficacy’ for low-frequency right 
DLPFC rTMS.

TMS was also considered ‘definitely effective’ in the treatment of neuropathic 
pain and ‘probably effective’ in the treatment of motor stroke and schizophrenia 
(Lefaucheur et al. 2014), sometimes through interesting mechanisms. Indeed, clini-
cal studies employed rTMS to alleviate behavioural or cognitive deficits in patients 
suffering from brain injury, lesions and stroke (see, for example, Brighina et  al. 
2003; Koch et al. 2008; Oliveri et al. 1999, 2001). By suppressing the intact hemi-
sphere of stroke patients, the damaged hemisphere is (to an extent) released from 
the strong interhemispheric inhibition. This allows the damaged hemisphere to 
express its remaining functionality. TMS studies based on this logic have delivered 
encouraging results, demonstrating that the counterintuitive strategy of decreasing 
neural excitability of the healthy hemisphere actually improves deficits following 
unilateral brain damage to the other hemisphere (Brighina et al. 2003; Cazzoli et al. 
2010; Koch et al. 2008; Nyffeler et al. 2009; Oliveri et al. 2000a, b, 2001; Shindo 
et al. 2006; Song et al. 2009).

14.3  The Multimodal Approach: Combinations of Brain 
Stimulation and Brain Imaging

Brain imaging and brain stimulation offer highly complementary methods for 
studying the healthy and diseased human brain. It is, therefore, sensible to combine 
these approaches in human fundamental and clinical neuroscience. But NIBS and 
functional imaging can be combined in different ways. Brain imaging can take place 
before brain stimulation, to guide and/or individually calibrate the brain stimulation 
protocols. Brain imaging and brain stimulation can be implemented simultaneously, 
for instance, to chart brain dynamics using TMS pulses as ‘system probes’ or to 
reveal the neural bases for TMS-induced changes in cognition or behaviour. In some 
cases, the latter can be achieved also by brain imaging after brain stimulation, if 
NIBS protocols are used to induce neuronal changes that last sufficiently long to 
capture them with functional imaging immediately after. Both the simultaneous 
combination and the different sequential experimental combinations can be consid-
ered ‘multimodal approaches’ (see Fig. 14.1). All are useful for the investigation of 
functional brain-behaviour relationships, though they have different applications, 
advantages and limitations.
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Fig. 14.1 The multimodal approach. Information from individual EEG and fMRI can be used to 
inform subsequent non-invasive brain stimulation (NIBS), for instance, using fMRI activations to 
guide the cortical stimulation target or using individual EEG oscillatory activity to calibrate/tailor 
TMS or TES stimulation protocols. Alternatively, NIBS can be administered simultaneously with 
brain imaging, such as EEG and fMRI, or even all together. Lastly, the neural effects of, or 
responses to, NIBS could be evaluated using brain imaging to better understand the neural basis of 
NIBS effects on cognition and behaviour

14.3.1  Brain Imaging Before Brain Stimulation

When applying TMS in cognitive studies, the brain areas of interest do not always 
have a behavioural signature output, as is the case for TMS over the motor cortex or 
visual cortex. For these brain regions, and associated cognitive research questions, 
it is not straightforward to determine the precise scalp location where TMS pulses 
should be administered. Functional imaging before TMS can be used to address this 
problem by precisely localising a task-related area of cortical activation for subse-
quent use with a frameless stereotaxic TMS neuronavigation system, thus optimis-
ing the exact coil positioning for TMS. In this way, the combination of brain imaging 
and subsequent brain stimulation permits the assessment of whether, in a given 
participant, this task-related functional activity (shown using brain imaging) is actu-
ally functionally relevant to that individual’s successful task performance (Andoh 
et al. 2006; Sack et al. 2006; Thiel et al. 2005). There are now several commercially 
available stereotaxic systems for TMS neuronavigation. Most of them allow for 
fMRI-TMS co-registration procedures so that events occurring around the head of 
the participant in real space are registered online and visualised in real time at cor-
rect positions relative to the participant’s anatomical reconstruction of the brain. By 
superimposing the functional data on the anatomical reconstruction of the brain, the 
TMS coil can be neuronavigated to a specific functional activation area of every 
participant (see Sack et al. 2009) (Fig. 14.2).

Using such neuronavigation systems, TMS coil positioning can become highly 
accurate, targeting anatomical or functional ‘hotspots’ in individual participants 
with millimetre precision. This is relevant since, despite the limited spatial resolu-
tion of the applied magnetic field, spatial TMS coil shifts in the order of millimetres 
have been shown to sometimes result in a complete loss of behavioural or cognitive 
impairment effects (Beckers and Homberg 1992; d'Alfonso et al. 2002). Comparing 
different localisation strategies for TMS-based primary motor cortex mappings in 
terms of accuracy and efficiency, Sparing et  al. (2008) found that fMRI-guided 
stimulation was most precise (accuracy was concluded to be in the millimetre 
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a b

Fig. 14.2 fMRI-Guided TMS Neuronavigation. Panel (a) shows several colour-coded fMRI 
activity clusters superimposed on a reconstruction of the cortical surface, projected within a trans-
parent mesh of a reconstructed head in Talairach space. Each of these clusters represents an indi-
vidual fMRI ‘hotspot’, that is, strongest task-related activity, of an individual participant obtained 
in a separate fMRI measurement. The spatial distribution between these individual fMRI activity 
clusters accounts for the inter-individual variability in structure-function correspondence. Panel 
(b) shows a snapshot of the BrainVoyager TMS neuronavigation system used to guide TMS coil 
positioning based on one of these activity clusters of a given participant. The red beam indicates 
where the magnetic field of TMS is strongest and is navigated in real time to the here orange 
colour-coded individual fMRI hotspot of this particular participant. The exact positioning of the 
TMS coil and thus the target area for the magnetic brain stimulation is therefore individually 
defined based on the fMRI data obtained in a separate session prior to TMS

range). Feredoes et al. (2007) used fMRI to localise TMS sites for disruption of 
short-term verbal information retention.

Sack et al. (2009) investigated the behavioural impact of right parietal TMS on a 
number comparison task, when TMS localisation was based on (1) individual fMRI- 
guided TMS neuronavigation, (2) individual MRI-guided TMS neuronavigation, (3) 
group functional Talairach coordinates or (4) the 10–20 EEG position P4. They 
quantified the behavioural effect of each TMS localisation approach, calculated the 
standardised experimental effect sizes and conducted a statistical power analysis, 
which revealed that the individual fMRI-guided TMS neuronavigation yielded the 
strongest behavioural effect size (Sack et al. 2009). This increased effect size of 
TMS when using (f)MRI-guided coil positioning has also been shown in the context 
of clinical TMS applications for various psychiatric disorders (Ahdab et al. 2010; 
De Ridder et al. 2011; Herbsman et al. 2009). Development of cortical targeting 
approaches is still ongoing, with different approaches making different trade-offs 
between practical and cost feasibility on the one hand and maximising successful 
cortical targeting on the other hand. To provide a recent example, Duecker et al. 
(2014) describe an approach that uses pre-existing functional target locations (i.e. 
published coordinates/location of an fMRI-based group functional hotspot for a task 
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for interest), back-projected onto individual anatomical data after sophisticated 
cortex-based alignment of those data to an anatomical template. This approach finds 
a middle ground, marrying some of the benefits of functional localisation and the 
consideration of individual anatomy, without requiring fMRI measurements in sin-
gle participants which may not always be available.

14.3.2  Brain Imaging After Brain Stimulation

Certain brain stimulation protocols, such as rTMS, TBS or anodal/cathodal tDCS, 
are capable of modulating neural excitability of a region beyond the stimulation 
duration. Functional imaging can then be used to investigate these prolonged 
NIBS after-effects. Imaging the immediate and longer-lasting after-effects of 
NIBS is paramount for revealing the underlying neurobiological mechanisms that 
cause the observed behavioural changes and clinical treatment effects of TMS 
stimulation.

An elegant example of this approach comes from Hubl et al. (2008). Here, the 
right frontal eye field (FEF) was stimulated outside the MR scanner using continu-
ous theta burst rTMS (TBS). Then fMRI was used to map the TBS-induced effects 
and assess their temporal persistence across the brain during a saccade task. The 
results showed a TBS-induced suppression of local BOLD activity that appeared 
20–35 min (but not immediately) after stimulation (Hubl et al. 2008). Suppression, 
albeit weaker, was also evident in more remote regions, including the (pre)supple-
mentary and parietal eye fields. Similarly, Cardenas-Morales et  al. (2011) used 
fMRI for exploring the after-effects of iTBS over the primary motor cortex. A recent 
example demonstrates how this approach is also valuable to understand more cogni-
tive and emotional brain mechanisms and their interplay. Engelen et al. (2018) pre-
sented volunteers with short movie clips of actors displaying either neutral or angry 
whole-body actions, measuring brain activity with fMRI. The left amygdala did not 
differentiate these stimuli, unless areas in the action network (inferior parietal lob-
ule, ventral premotor cortex) were first inhibited by continuous TBS. The effects of 
TBS and emotion were also clear from other action network regions, confirming 
complex dynamics between emotional and action brain systems uniquely revealed 
by the combination of TBS and subsequent fMRI.

A similar approach has been used to better understand the clinical efficacy of 
NIBS. For instance, several studies have used functional imaging to visualise TMS 
after-effects in prefrontal cortex (PFC), to explore the mechanisms underlying ther-
apeutic applications for depression (Fitzgerald et al. 2007). These studies suggest 
that prefrontal rTMS in normal and depressed participants has profound effects on 
both local and remote brain regions implicated in depression, including bilateral 
frontal, limbic and paralimbic areas (Fitzgerald et al. 2007; Kimbrell et al. 1999, 
2002; Pogarell et al. 2006, 2007; Speer et al. 2000, 2009; Teneback et al. 1999). 
Importantly, these rTMS-induced effects appear to be frequency dependent, with 
low-frequency rTMS leading to bilateral reduction in frontal activation (Fitzgerald 
et al. 2007).
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14.3.3  Simultaneous Brain Stimulation and Brain Imaging

While useful, functional imaging after TMS application remains fundamentally 
limited in elucidating the neuronal effects of TMS. Concurrent TMS and neuroim-
aging offers a broader range of ‘in vivo’ information regarding the actual and imme-
diate effects of TMS on cortical activation, both local and remote. Simultaneous 
TMS and imaging can thus be used to online track the TMS effects in the brain or 
probe intracerebral connectivity (Bestmann et al. 2003b, 2004, 2005; Bohning et al. 
1999, 2000b; Ruff et al. 2006; Sack et al. 2007). Therefore, even in the absence of 
overt behaviour, TMS during fMRI facilitates the imaging of pathways of activity 
spreading within and between brain networks. The simultaneous approach allows 
the investigation of local and remote brain responses to TMS, and/or the local and 
remote brain correlates of TMS-induced changes in cognition/behaviour, at a neu-
rophysiological level. Thus, it can be determined, in vivo, which brain areas—either 
directly or transsynaptically affected by TMS—passively respond to TMS and/or 
actively underlie the observed TMS-induced behavioural changes during task exe-
cution. However, the simultaneous combination of TMS and functional imaging 
poses great technical challenges. Therefore, it is routinely used by only few research 
groups, and the number of simultaneous TMS/fMRI publications is still consider-
ably small (see Reithler et al. 2011 for an overview).

Besides the need for specific hardware (e.g. an MR-compatible TMS system), 
simultaneous TMS and BOLD fMRI require appropriate temporal synchronisation 
between MRI acquisition and TMS pulse application. Furthermore, the discharge, 
and even mere presence, of MR-compatible TMS coils in the bore of the magnet 
produces artefacts in the echo-planar imaging (EPI) images that need to be resolved 
before the synchronised combination of functional imaging and brain stimulation 
becomes feasible. We now first briefly outline relevant technical and implementa-
tion considerations and then discuss some instructive examples of simultaneous 
TMS-fMRI experiments that highlight the unique insights offered by this multi-
modal approach.

14.3.3.1  Technical Challenges and Practical Implementation
The use of TMS inside the MR scanner during simultaneous TMS/fMRI studies 
requires several modifications to TMS hardware, specific TMS/fMRI interleaved 
experimental designs and the consideration or removal of several artefacts. Most 
importantly, the standard TMS coils routinely used outside the MR scanner are not 
appropriate for simultaneous TMS/fMRI studies. Instead, specific MR-compatible 
non-ferromagnetic TMS coils are required in strengthened casing. To fit in the scan-
ner environment, these coils generally have no handle, and positioning requires 
adaptive solutions since frameless stereotaxy is challenging. A common solution is 
to fit the coil with MR markers that allow post hoc reconstruction of coil positioning 
and triangulation of the cortical target. The MR-compatible TMS coil is connected 
to the stimulator outside the RF-shielded cabin via a cable running through a wave 
guide. Therefore, the RF shield of the MR scanner is pierced by the TMS cable, 
which acts as an antenna transmitting RF noise into the scanner. Special RF noise 
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filters then need to be installed for simultaneous TMS/fMRI studies as an additional 
hardware component. Without an RF filter, the TMS set-up causes a loss of 20–80% 
in signal-to-fluctuation-noise ratio of EPI images. An RF filter largely prevents this 
loss, at the cost of around 7% of functional TMS efficacy (Bungert et al. 2012a).

Despite the installation of an RF filter, the MR image quality is often still 
decreased in simultaneous TMS and fMRI studies. This is because the mere pres-
ence of a TMS coil in the scanner can result in static magnetic field inhomogene-
ities, which particularly affect EPI scans (commonly used for fMRI). Baudewig 
et al. (2000) systematically investigated the type and extent of the artefacts induced 
by the TMS coil during MR measurements. The authors revealed that although the 
anatomical images were unaffected, there were pronounced signal losses and geo-
metric distortions in EPI acquisitions perpendicular to the plane of the coil. However, 
these artefacts could be markedly reduced, particularly artefacts remote from the 
coil, by using an EPI orientation parallel to the coil plane. With such EPI orienta-
tion, signal losses and geometric distortions attenuate with increasing distance from 
the coil and so are restricted to the area very close to the coil. In this scenario, it is 
unlikely that functional images of the human cortex are strongly affected, given a 
scalp-cortex distance of >1 cm.

After having addressed the technical challenges discussed above, one can prog-
ress to the most important step: applying TMS pulses during actual MR EPI data 
acquisition. But actually, it must be noted that simultaneous TMS/fMRI is not 
advisable in the strictest sense. In practice, TMS pulses and MRI acquisitions are 
interleaved, to avoid the artefacts produced by the TMS-induced currents. This way, 
fMRI scans can remain artefact-free even though TMS is applied in the MR envi-
ronment. ‘Simultaneous’ or ‘concurrently combined’ TMS/fMRI thus generally 
refers to interleaved TMS and fMRI measurements. But for all intents and purposes, 
this may be considered ‘simultaneous’, since the temporal characteristics and reso-
lution of the BOLD signal render the delay ineffectual. To achieve interleaved TMS- 
fMRI, the MR sequence must send a trigger signal to the TMS apparatus (for 
instance, through a computer) with every RF pulse excitation. Timing is critical, 
since distortions may still occur up to 100 ms after administration of a TMS pulse 
(Bestmann et al. 2003a; Shastri et al. 1999), although this will differ between labs. 
These lasting artefacts are purportedly related to residual currents in the TMS coil 
and to currents induced by the vibrations in the TMS coil following a pulse (Shastri 
et al. 1999). With better vibration absorption in the TMS coil, the delay between 
TMS pulse and MR image acquisition may be reduced considerably.

There are various methods for temporally interleaving TMS and MRI for simul-
taneous experiments. For example, TMS pulses and MR images can be interleaved 
by insertion of temporal gaps after each volume (Ruff et al. 2006; Sack et al. 2007). 
Sack et al. (2007) applied bursts of rTMS at ~13.3 Hz, in an acquisition gap of 560 
ms between subsequent MR volumes. In this study, a delay of 200 ms from the last 
TMS pulse to the beginning of the next MR volume acquisition protected the sub-
sequent MR acquisition from pulse-related artefacts. Alternatively, TMS pulses can 
be separated, not by placing them at between functional volume acquisitions but by 
interleaving them after each slice within one volume (Bestmann et al. 2004, 2005; 
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Bohning et al. 2000a). This method still requires a sufficient delay between TMS 
pulses and slice acquisition so that subsequent slices are not perturbed. Finally, 
single slices might also be deliberately perturbed by the TMS pulse and then be 
identified and replaced, either by interpolation between pre- and post-pulse acquisi-
tions of the same slice or by including affected slices as covariates in a general lin-
ear model analysis. Since the latter approach does involve TMS during EPI, 
researchers should check with their hardware manufacturers whether this procedure 
is advised. When employing any of these methods with modified EPI sequences to 
optimise interleaved TMS/fMRI measurements, it is also recommended to intro-
duce oversampling of the phase-encoding direction of EPI images in order to shift 
the so-called ghosting artefact outside the volume of interest.

One additional problem for simultaneous (interleaved) TMS/fMRI studies was 
discussed by Weiskopf et  al. (2009), who reported that leakage currents may be 
generated when switching stimulation intensities. In a phantom measurement, these 
leakage currents in the TMS coil varied parametrically with the TMS output inten-
sity (its capacitor charge) and induced magnetic field inhomogeneities which led to 
false-positive fMRI findings. In other words, BOLD signal increased parametrically 
with TMS intensity in their phantom measurement (Weiskopf et al. 2009). Following 
this report, a technical solution has been pioneered which introduces a relay in par-
allel (and diodes in series) with the TMS coil. When the relay is closed, leakage 
current primarily flows through this relay, rather than the TMS coil. A trigger signal 
then briefly opens the relay so that a TMS pulse can be applied. However, although 
these (or similar) solutions are now standard in MR-compatible TMS systems, 
appropriate test measurements should be run in order to identify any remaining 
artefacts or false positives due to leakage current.

In sum, even an MRI-compatible TMS coil affects the magnetic field (Bungert 
et  al. 2012b), and TMS pulses perturb MR images within a certain timeframe. 
Several solutions were proposed to limit or circumvent the latter and development 
is still ongoing. Such development is not limited to the problem of artefacts alone 
but expands to new design of MR coils to be used with concurrent TMS (Navarro de 
Lara et al. 2017) or reliable cortical target localisation in concurrent TMS/fMRI, for 
example (Hubl et  al. 2008). Below, we discuss why the benefits of multimodal 
imaging justify these efforts.

14.3.3.2  TMS Affects Networks, Not Just a Local Region
Generally, studies using concurrent TMS-fMRI have shown that TMS affects the 
BOLD signal in the targeted site and moreover task dependently. This is encourag-
ing, given the widespread assumption that TMS affects excitability/activity in the 
region directly underneath the coil, and that this activity change reflects behavioural 
effects of TMS (see Reithler et al. 2011, for an exhaustive overview). However, one 
of the most important additional insights from combined TMS and functional imag-
ing studies is that locally applied TMS not affects neural activity at the stimulation 
site but also affects remote and interconnected brain regions (Bestmann et al. 2003b; 
Blankenburg et  al. 2008; Bohning et  al. 2000a; Denslow et  al. 2005; Ruff et  al. 
2006; Rushworth et al. 2002; Sack et al. 2007). This includes cortical as well as 
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subcortical brain areas, as revealed by early application to the human motor system 
(Baudewig et al. 2001; Bestmann et al. 2004; Bohning et al. 1999, 2000a). It seems 
that application of TMS in essence inserts energy into a system; TMS to an isolated 
neuronal population will excite not only that population, but a connected brain area 
will propagate the inserted energy throughout its anatomical (Boorman et al. 2007) 
and functional (Sack 2006) network. It is precisely the value of TMS-fMRI that this 
spread of TMS excitation can be tracked throughout the brain.

Bohning et al. (1999) showed that the BOLD signal resulting from TMS corre-
lated to the TMS intensity both in local (targeted) and remote brain areas. Moreover, 
Bohning et al. (2000a) could show that TMS-induced finger movements resulted in 
BOLD signals throughout the brain that were similar to BOLD signals resulting 
from voluntary finger tapping. This constituted an early demonstration of the valid-
ity of using TMS-fMRI to probe functional/anatomical networks in the brain. 
Bestmann et  al. (2004) confirmed this notion, stimulating with high-frequency 
rTMS the left primary sensorimotor cortex (M1/S1) at supra- and subthreshold 
intensities (no finger movements induced in the latter condition) and measuring the 
BOLD signals throughout the brain. A network of distinct cortical and subcortical 
motor system structures was activated in response to the TMS, again involving the 
same regions activated by voluntary finger movements. Interestingly, this was the 
case even for subthreshold stimulation, showing that TMS can probe an anatomical 
network even in the absence of overt behavioural response, although subthreshold 
stimulation in the absence of induced muscle contractions mainly led to enhanced 
BOLD responses in supplementary and premotor cortices and not in the local M1/
S1 region that was actually stimulated (see Hanakawa et  al. 2009 for similar 
intensity- dependent remote activation changes based on spTMS and Caparelli et al. 
2010, for remote effects in the visual system).

This suggests that the local BOLD effects, directly underneath the coil, may 
constitute a special case: they depend on actually induced muscle contractions, 
while remote connected motor network regions also involved in voluntary move-
ments are activated by M1/S1 TMS even subthreshold (Bestmann et  al. 2004; 
Denslow et al. 2005). Based on modelling work, Esser et al. (2005) suggest that 
TMS locally stimulates both excitatory and inhibitory neural populations (ergo the 
net activation and thus BOLD is weaker here) but remotely results mainly in excit-
atory responses which are easier to detect. However, the matter is not settled, given 
the still ill-defined intricacies of TMS effects on local neural circuits and moreover 
the connection between such effects and the BOLD signal (Logothetis 2008; 
Logothetis et al. 2010). Still, the anatomical and especially functional specificity of 
the observed remote network effects argues against a non-specific (water ripple- 
like) spread of TMS-induced activity. Moreover, the observed networks closely 
resemble the brain systems involved in natural tasks involving the same regions. For 
a more elaborate review of these issues, see Reithler et al. (2011).

14.3.3.3  TMS Network Effects Depend on Brain State
Focal TMS can lead to both local and remote neural effects, within anatomically or 
functionally connected networks. However, several combined TMS/fMRI studies 
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have also found that these effects are state or task dependent. In other words, the 
state of the brain at the moment of TMS, as induced by task demands or external 
sensory stimulation, or even by naturally occurring fluctuations, can influence the 
local and remote network response to TMS. Bestmann et al. (2008) applied TMS 
over the left dorsal premotor cortex (PMd) at two intensities (low vs. high) and two 
motor states (grip vs. no-grip). The authors revealed a significant crossover interac-
tion between motor state and TMS intensity over left PMd, arising in right M1 and 
right PMd. TMS over left PMd during rest (no-grip) led to an activation decrease in 
right PMd and M1. Such contralateral decrease following TMS has been observed 
in most (Bestmann et al. 2004; Kemna and Gembris 2003) but not all simultaneous 
TMS/fMRI studies over the motor cortex (Bohning et al. 2000a; Hanakawa et al. 
2009). Importantly, during (left-handed) grip, left PMd TMS actually induced a 
contralateral increase in activation, with stronger functional coupling following 
high-intensity TMS as compared to low intensity. This reversal of effects (activation 
increases/decreases) is likely caused by differences in the initial brain states, in rela-
tion to interregional mutual inhibition/facilitation mechanisms (see also O’Shea 
et al. (2007)).

Recently, state dependence has been demonstrated in more cognitive contexts. 
Sack et al. (2007) revealed that TMS over right IPS only resulted in right- hemispheric 
frontoparietal network effects when participants were engaged in a cognitive (spa-
tial judgement) task that required the proper functioning of the targeted brain region. 
When a control task (colour judgement) did not rely on the parietal cortex, these 
network effects of TMS were not found (Sack et  al. 2007). State-dependent 
responses to TMS have been shown in the context of spatial attention as well 
(Bestmann et al. 2007), also concurrently with fMRI (Heinen et al. 2011). Attention 
is subserved by a frontoparietal functional network, and disruption of this network 
by TMS can affect attention performance (Dambeck et  al. 2006; Duecker et  al. 
2013; Hilgetag et al. 2001). Simultaneous fMRI revealed BOLD decreases in this 
network as a whole, associated with TMS-induced attentional bias (Ricci et al. 2012).

Furthermore, recent TMS/fMRI studies showed directional influences of right 
parietal activity on regions in other networks, like the ventral attention network and 
fusiform cortex (Leitão et al. 2015), and even frontal cortices, possibly in relation to 
post-decisional processes or monitoring in the context of a signal detection task 
(Leitão et al. 2017). These recent examples demonstrate how simultaneous TMS/
fMRI continues to provide valuable insights into the neural mechanisms underlying 
TMS effects on not only motor and perceptual systems but also higher-order cogni-
tion such as attention and even memory (Hawco et al. 2017). Collectively, these 
findings indicate that TMS-induced neural activity is particularly likely to spread to 
nodes of a (currently active) functional network and that activity does not necessar-
ily spread to regions that are only anatomically connected to the target site.

14.3.3.4  TMS Network Effects Are Functionally Relevant
The demonstration of remote neural effects of TMS raises the question of whether 
(and to what extent) these indirect remote effects are also relevant, and functionally 
related, to the TMS-induced behavioural changes. In other words, are reported 
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behavioural effects of TMS solely attributable to TMS-induced neural activity 
changes at that target site, or might these behavioural effects relate to a widely dis-
tributed network effect? Frontal eye fields (FEF) are the frontal node of the fronto-
parietal attention network discussed above. Heinen et  al. (2011) stimulated right 
FEF with TMS, in the MR scanner, while participants viewed both face and motion 
stimuli. When face stimuli were attended, the TMS pulses induced BOLD increases 
in the fusiform face area. When motion stimuli were attended, the TMS pulses 
induced BOLD increases in motion area MT+. Here, the FEF-TMS effects on per-
formance correlated with the BOLD changes in local region FEF but also the BOLD 
changes in remote region MT+.

Ruff et al. (2006, 2008, 2009) also applied TMS to right FEF simultaneously 
with fMRI. They revealed remote BOLD effects in two bilateral sets of occipital 
brain regions within retinotopic visual areas V1–V4. Right FEF-TMS led to BOLD 
increases for peripheral visual field representations, but BOLD decreases for the 
central visual field. If these remote BOLD effects of TMS were functionally rele-
vant, then assuming that higher BOLD signal equals higher contrast sensitivity, the 
authors hypothesised that FEF-TMS should enhance peripheral, relative to central, 
vision. Interestingly, these behavioural predictions were later confirmed by the 
authors in a psychophysical study outside the MR scanner. This suggests that, 
indeed, remote effects of TMS can be functionally relevant.

Does that mean that the local and remote BOLD modulations by TMS, discussed 
above, reflect the operation of, and TMS-impairment of, a functional network? Sack 
et  al. (2007) applied TMS over right and left parietal cortex during whole-brain 
BOLD fMRI of spatial cognition performance. The authors found that right, but not 
left, parietal TMS (1) behaviourally impaired spatial cognition and (2) induced 
BOLD changes across a right-hemispheric network of frontoparietal regions, 
including right superior parietal lobule (SPL) and ipsilateral middle frontal gyrus 
(MFG), in specifically the spatial cognition and not a control task. Only SPL had 
been stimulated by TMS, so it is accurate to state that parietal TMS impaired spatial 
cognition performance. But when correlating the TMS-induced behavioural impair-
ment (increases in reaction times) to the TMS-induced changes in BOLD activity, 
the correlations were in fact equally high for the stimulated SPL and the remote 
MFG. This strongly suggests that the behavioural deficits are not exclusively caused 
by neural activity changes at the site of stimulation but rather caused by neural net-
work effects. If so, TMS to the other regions in the network could have equivalent 
effects on behaviour, which can be systematically tested in follow-up experiments 
(e.g. de Graaf et al. 2009).

Based on such insights, one might turn this logic around, stimulating cortical 
areas connected to remote areas precisely because those remote regions are hypoth-
esised to be causally relevant, and not directly targetable by TMS, for instance, 
because they are subcortical. In a breakthrough demonstration, Walsh and Pascual- 
Leone (2003) stimulated the lateral parietal cortex, based on evidence that hippo-
campus may interact intensively with the lateral parietal cortex in a wide 
cortico-hippocampal network to support associative memory function. However, 
the causal relevance of cortico-hippocampal interactivity had not directly been 
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demonstrated. Walsh and Pascual-Leone (2003) showed that lateral parietal modu-
lation by TMS increased functional connectivity in this network and moreover led 
to improvements in associative memory. And in fact, when it comes to the dominant 
current clinical application of TMS, left frontal TMS to treat depression, at least 
some of the beneficial effects may arise from the remote modulation of limbic sys-
tem activity through its connections to the stimulated frontal cortex (Fitzgerald 
et al. 2007).

14.4  New Developments

Out of the various interesting recent developments, we would like to briefly dis-
cuss two (1) closed-loop neuroscience and (2) TMS-fMRI-EEG multimodal 
implementations. As fMRI developed to become more widespread, EEG itself 
experienced a resurgence, particularly when it comes to the study of neuronal 
oscillations and their role in perception, cognition and behaviour. Although we 
focused on the combination of TMS-fMRI in this chapter and discussed its value 
at length, these last two new developments involve brain stimulation applied 
simultaneously with EEG.

14.4.1  Closed-Loop Neuroscience

Closed-loop neuroscience is an umbrella term that refers to a range of paradigmatic 
approaches (Zrenner et al. 2016). In the current context, the notion of closed-loop 
brain stimulation and brain imaging is most important. Brain stimulation changes 
the state of the brain, but its effects or its efficacy, have in turn been shown to depend 
on brain state at the time of stimulation. We have discussed this above for TMS- 
fMRI combinations, but it holds true for EEG as well. For instance, the power 
(Romei et al. 2008a, b) and phase (Dugué et al. 2011) of ongoing alpha oscillations 
predict the cortical response to occipital TMS pulses, as indexed by perception of 
TMS-induced visual experiences called phosphenes. This role of oscillatory phase 
seems to hold even when it is experimentally controlled by simultaneously applied 
transcranial alternating current stimulation (tACS). Schilberg et al. (2018) demon-
strated this in the motor cortex. This relevance of oscillatory phase might be 
exploited, for instance, by controlling it with tACS (e.g. Graaf et  al. 2020). 
Goldsworthy et al. (2016) found that the lasting effects of repetitive TMS (continu-
ous theta burst stimulation) depended on the phase of concurrent tACS at which 
TMS bursts were administered. But oscillatory phase, or any other observable brain 
state index, can also be measured and analysed in real time to guide brain stimula-
tion. The idea of closed-loop stimulation is that functionally relevant brain state 
indices are monitored and analysed in real time, and brain stimulation (i.e. TMS 
pulses) is applied at state-dependent, experimentally controlled, moments in time. 
Indeed, Zrenner et  al. (2018) recently showed that a real-time EEG-TMS set-up 
enabled stronger lasting effects of a repetitive TMS protocol on motor excitability, 
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by the repeated administration of bursts of pulses at certain phases of the ongoing 
sensorimotor mu rhythm.

14.4.2  Simultaneous TMS-fMRI-EEG

In this chapter, we discussed at length how TMS and fMRI can be combined in dif-
ferent ways and how specifically the simultaneous combination of TMS/fMRI 
allows a very immediate evaluation of how TMS affects the brain locally and 
remotely by stimulating a specific brain region and simultaneously monitoring 
whole-brain network changes in activity. But we also showed how such effects were 
state and task dependent. This is why the closed-loop approach seems promising.

However, simultaneous TMS-fMRI studies ignore the temporal dynamics and 
rhythmic oscillations of brain activity reflecting (spontaneous) fluctuations between 
low and high excitable states during which incoming stimuli are less or more effi-
ciently processed and neural signals are less or more propagated within brain net-
works. In order to understand and unravel these dynamics in detail, the simultaneous 
combination of EEG with fMRI and TMS makes an invaluable contribution. The 
core approach is to use EEG to track ongoing oscillatory activity, indexing brain 
state at the time of a TMS pulse. fMRI then measures the brain-wide response to the 
TMS pulse. We pioneered and successfully implemented this approach method-
ologically and showed it to be feasible and safe for human research already in 2013 
(Peters et al. 2013).

In our most recent publication (Peters et al. 2020), we demonstrated for the first 
time how this simultaneous TMS-fMRI-EEG set-up can be applied to fundamental 
questions within cognitive neuroscience by revealing how TMS as a system probe 
evokes (sub-)cortical network responses depending on EEG-indexed brain state. To 
this end, we assessed how trial-by-trial pre-TMS EEG alpha and low-beta power 
fluctuations influenced motor network activations induced by subthreshold triple- 
pulse TMS to the right dorsal premotor cortex. Strong pre-TMS alpha power 
resulted in decreased TMS-induced BOLD activations throughout the bilateral 
cortico- subcortical motor system (including striatum and thalamus), suggesting 
shunted network connectivity. In contrast to alpha activity, strong pre-TMS beta 
power did not impede TMS signal propagation but instead tended to facilitate signal 
propagation in motor circuits. Such facilitatory effects corroborate and extend 
recent insights in the key role of beta activity in coordinating communication in the 
human motor system (Peters et al. 2020). This study clearly demonstrates how con-
current TMS-EEG-fMRI allows to non-invasively chart the communication mecha-
nisms within larger, dynamically interacting networks and subsystems in the brain. 
The here described simultaneous TMS-fMRI-EEG approach provides a versatile 
framework also for future studies on the propagation of TMS-induced activity in 
functional cortico-(sub)cortical networks, allowing to test a wide range of theories 
through flexible adaptation to the oscillatory band or TMS protocol of interest and 
its applicability to different network nodes with varying functional relevance. This 
ability of concurrent TMS-fMRI-EEG also links to the above-described new 
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development in the field of closed-loop neuroscience as it holds the potential to 
inform and evaluate future EEG-triggered TMS applications aiming to apply TMS 
at predefined oscillatory brain states that either will or will not lead to specific 
remote brain activations by either facilitating or shunting signal propagation from 
the cortical TMS stimulation site.

14.5  Conclusions

The combination of brain stimulation with brain imaging offers unique experimental 
possibilities for understanding the functional architecture of the healthy and diseased 
human brain. Brain imaging before brain stimulation is useful for the identification 
(in individual participants or patients) of an exact NIBS target site. Brain imaging 
after brain stimulation is useful for identifying the spatial pattern and persistency of 
NIBS-induced neural activity changes that last beyond the stimulation itself (NIBS 
after-effects). Finally, brain imaging during brain stimulation allows one to stimulate 
a specific brain region while simultaneously monitoring whole-brain changes in 
brain activity and behaviour, allowing causal brain- behaviour inferences across the 
entire brain. Simultaneous, or more precisely interleaved, TMS/fMRI studies appear 
to converge on the following conclusions: (1) focal TMS applied to a brain region has 
not only local but rather network effects, (2) these network effects of TMS are state 
and task dependent and (3) these network effects are functionally relevant.

These results seem to have troubling implications for the interpretation of purely 
behavioural TMS (without concurrent imaging) studies. After all, without, and 
sometimes even with, concurrent imaging, we cannot determine whether behav-
ioural effects of TMS are due to its local neural effects and the local and remote 
neural effects which reflect modulation of a functional network, or whether the 
behavioural effects are even attributable to the remote neural effects rather than 
effects in the stimulated region? For the latter, there is currently no conclusive evi-
dence, and as discussed elsewhere (Sack 2010), brain stimulation experiments 
remain highly valuable also without neuroimaging. But these questions and insights 
prompt us to move away from modular views of brain function and TMS disruption 
thereof, forcing us to consider a new conceptualisation that involves functional 
interactions between various remote, connected brain regions, together constituting 
networks of integrated, functionally relevant activity. Of course, a very positive con-
sequence of this body of work is that TMS imaging can be used to investigate and 
reveal exactly these mechanisms, to show how interactions within and between 
brain networks may support perception and cognition. Simultaneous TMS imaging 
substantially adds information and insight to purely behavioural TMS experiments, 
without taking away any of the original relevance of such work. In fact, this enter-
prise can only be enriched by work employing further complementary techniques in 
combination with brain stimulation, for instance, MR spectroscopy (Stagg et  al. 
2009), functional near-infrared spectroscopy (Hada et al. 2006; Kozel et al. 2009; 
Mochizuki et al. 2006) and diffusion-weighted imaging (DWI) of white matter bun-
dles (Boorman et al. 2007; Kloppel et al. 2008).
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To complete this viewpoint, and support the system-level investigations outlined 
above, investigations at a more fine-grained level will likely be required as well. 
This is achieved most informatively through invasive animal research (e.g. see 
Funke and Benali 2010), helping us understand the neurophysiological mechanisms 
underlying the local and remote effects observed in human research. Work with cats 
(Allen et al. 2007; Aydin-Abidin et al. 2006; de Labra et al. 2007; Moliadze et al. 
2005, 2003; Pasley et al. 2009; Valero-Cabre et al. 2007, 2005), rodents (Aydin- 
Abidin et al. 2008; Trippe et al. 2009) and monkeys (Ohnishi et al. 2004; Hayashi 
et al. 2004) has already delivered important contributions in this regard, although 
not yet into the remote effects of TMS. Also, considering the intrinsic intricacies of 
neural circuits, a multimodal approach with complementary methods (Logothetis 
2008) will likely be required to achieve a cross-level understanding of TMS effects 
in the brain.

The role and potential of TMS in research and therapeutic settings have, thanks in 
part to the advances described here, not only been validated but actually increased 
over the years. With the multimodal research facilities now in place in several labs 
over the world and the analysis on several levels from animal work to human whole- 
brain analysis to computational modelling, we are starting to improve our under-
standing of TMS-induced changes in the brain and behaviour. As such, TMS has 
begun to provide unique insights into the causal relations and interactions within and 
between system-level networks in the human brain, all in vivo and non- invasively. 
With the introduction of simultaneous TMS-fMRI-EEG, a new chapter in the book 
of multimodal imaging has been opened. The new frontier in non- invasive neurosci-
ence research is to integrate the connectome (brain networks) with the ‘dynome’ 
(brain dynamics) in order to unravel the mechanisms of communication within 
larger, dynamically interacting networks and subsystems in the brain and to under-
stand how (spatial) network and (temporal) oscillation mechanisms interact. 
Ultimately, we remain confident that better understanding of the neural effects of 
TMS will lead to more informed clinical applications. Further effective and well-
controlled therapeutic interventions may thus become possible in the near future.
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15Brain Rhythms

Rene Scheeringa and Helmut Laufs

15.1  Multimodal Studies of Brain Rhythms

Ever since the very first measurements by Hans Berger, we know that the brain 
produces rhythmic electrophysiological activity that can be measured by EEG 
(Berger 1929). Since then, many different rhythmic phenomena have been studied 
not only by EEG but also by MEG and invasive intracranial recordings in patient 
populations and animals. This has yielded a wide body of knowledge on which 
types of rhythmic activity can be recorded, under which circumstances they occur, 
how they can be modulated by task demands, how they relate to clinical conditions 
and what their putative functional role is (Buzsáki 2006; Lopes da Silva 2013). The 
electrophysiological recording techniques are however in one way or another all 
limited in their spatial resolution and coverage. Microelectrodes can directly mea-
sure electrophysiological activity with unrivalled resolution in animals and patient 
populations but are highly invasive and are in practice, limited to only a few 
regions. Another invasive technique, ECoG can measure electrophysiological 
activity in up to a roughly a hemisphere but is limited in coverage to the cortical 
surface and has a resolution in the order of cortical macro-columns (Scheeringa 
and Fries 2017). Noninvasive recordings like EEG and MEG measure 
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population-level neural activity at scalp level and can in principle cover close to the 
entire brain but are in general limited to a resolution of roughly an entire cortical 
region, while its sensitivity for detecting signals is not uniformly distributed over 
the cortex. Furthermore, it requires rhythmic synchrony over a larger piece of the 
cortex, typically fully synchronous activity of ~10,000–50,000 neurons is thought 
to be needed to yield a detectable EEG response (Murakami and Okada 2006). In 
terms of coverage and resolution, fMRI is much less restricted. Recent advance-
ments in high resolution now make it possible to acquire data at submillimetre 
resolution from the entire brain in a few seconds (Polimeni et al. 2010; Zahneisen 
et  al. 2015). It measures neural activity indirectly through the haemodynamic 
response that follows it. As a consequence, its temporal resolution is in the order of 
seconds; it does not allow us to measure the vast majority of rhythmic neural activ-
ity. Combining the measurement of EEG and fMRI therefore holds the promise to 
study neural activity related to brain rhythms throughout the entire brain at in prin-
ciple up to submillimetre resolution, while preserving the millisecond resolution 
necessary to measure those brain rhythms with EEG. In this chapter, we discuss 
how these combined measurements of EEG and fMRI to study brain rhythms can 
and has been approached. While discussing this, we will make a distinction 
between studies that combine these measurements to study spontaneous endoge-
nously generate measurements during resting state and those that study changes in 
brain rhythms that are related to task conditions. In the context of resting state 
studies, we also include a discussion of endogenously generated brain rhythms 
during sleep and those related to epilepsy. This distinction ”resting state” and 
“task-related” brain rhythms is mainly made based on historical grounds. Many of 
the first studies that combined EEG-fMRI studies focused on the link between 
spontaneous rhythmic activity during resting state, in particular the alpha rhythm 
(Goldman et al. 2002; Laufs et al. 2003a; Moosmann et al. 2003). The first studies 
that focused on task-related changes followed in general a few years later (Sammer 
et al. 2007, 2005; Scheeringa et al. 2009). The approaches to combining EEG and 
fMRI in resting state and task contexts are on some aspects very similar, but there 
are also some notable differences.

15.1.1  Considerations for the Study of Rest

Accurately determining the temperature of whiskey in a shot glass is not a trivial 
task. Lowering the tip of the thermometer into the fluid will introduce both thermal 
and kinetic energy, thus biasing the measurement. Additionally, the alcohol is vola-
tile and hence the volume not constant. Similarly, experimentally assessing sponta-
neous resting brain activity is a virtually impossible task. The general scientific 
approach of externally manipulating (independent variable) the system under obser-
vation in order to obtain informative measurements (dependent variable) about the 
object of interest may suspend the resting state; in other words, it may cause the 
object of interest to change and evade. In any case, the alive brain obviously never 
truly remains at rest, as this would prohibit (re)active functioning. In this chapter, 
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the term “resting state” will refer to a state of “endogenous brain activity” that is 
spontaneously ongoing, not intentionally induced externally nor voluntarily gener-
ated by the subject.

The study of resting state brain activity becomes especially interesting if one 
perceives neural processes as being mainly intrinsic—weighting, gating and subse-
quently integrating new and external information into the brain—as opposed to a 
rather absolute resting state that contrasts with momentary activity driven by exter-
nal demands (Raichle and Snyder 2007). Unless one is creating a contextual setting 
with respect to which “rest” is defined (Fair et al. 2007; Raichle et al. 2001; Raichle 
and Snyder 2007), then paradigmatic, repetitive stimulation by definition precludes 
rest. This suggests that the method of choice is the analysis of ongoing spontaneous 
brain activity rather than averaged or induced brain activity.

The most prominent property of this activity are neuronal ensemble oscillations 
or “rhythms”.

These resting state oscillations can be perturbed by spontaneous, brief pathologi-
cal or physiological interruptions, the study of which further nourishes interest in 
the resting state and spontaneous variations of it. Conversely, knowledge of resting 
state brain activity can improve our understanding of task-induced brain activity. 
This may need to be seen in the context of the underlying spontaneous brain activ-
ity: perceiving rest as a momentary state (i.e. a brief epoch of ongoing endogenous 
activity); it has been proposed that intrinsic fluctuations within cortical systems can 
account for (intertrial) variability in human behaviour through its addition to the 
purely task-induced activity (Fox et al. 2007).

Also, there is evidence that sets of brain regions, “networks”, which typically 
exhibit coherent activity in a task context, facilitating binding (Mesulam 1990, 
1998; Munk and Neuenschwander 2000), are also intermittently active during rest 
(see the first paragraph of this section).

Their degree of prominence or even absence during rest is related to the (patho)
physiological brain state on both short (“microstate”) and long (psychiatric condi-
tion) timescales (Lehmann et al. 2005). In Alzheimer’s disease, for example, both 
electrophysiological and imaging experiments of spontaneous brain activity have 
pointed to disease-associated variability of resting state networks (Sorg et al. 2007; 
Stam et al. 2005).

15.1.2  From Unimodal to Multimodal Approaches 
to the Resting State

Endogenous changes in resting state activity can be observed across vigilance and 
sleep stages but also as pathologic activity in the form of epileptic activity. Both 
types of activity (changes) can be detected and characterised using electroencepha-
lography (EEG), the gold standard method for determining sleep stages 
(Rechtschaffen and Kales 1968) and epileptiform activity noninvasively (Gibbs 
et al. 1935). While the EEG indicates the occurrence of a state, it does not reveal 
much about its nature.
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Resting state fMRI has been around for more than two decades now (Biswal 
et al. 1995) but has largely gained traction in the last 10–15 years growing into an 
entire field of research on its own. One of the major developments in this field is the 
identification of 10–15 large-scale networks of brain regions that covary in neural 
activity during wakeful rest (Damoiseaux et al. 2006; Smith et al. 2009). This has 
spurred a large body of research into these networks in both healthy subjects and 
clinical populations (Castellanos et al. 2013).

Concurrent measurements of EEG and blood oxygenation level-dependent 
(BOLD) functional magnetic resonance imaging (fMRI) allow us to simultaneously 
assess brain activity from two angles (see the Chap. 12). One modality can be used 
to inform the other. In this manner, spontaneous neural oscillations can be studied 
without external manipulation. For example, the EEG data can describe endogenous 
modulations of vigilance or can serve to identify spontaneous events such as sleep 
spindles and epileptic discharges (see Chaps. 16, 17, 18, and 19). The EEG can be 
treated as the independent variable, forming a regressor that can be used to interro-
gate the fMRI data, the dependent variable. The reverse is also possible, and attempts 
at data fusion are also being made where all of the data are used equally as depen-
dent and independent variables simultaneously (see the Chap. 28).

In the paragraphs below, we will first discuss the unimodal approaches to study-
ing spontaneous neural activity during resting state. These will be followed by mul-
timodal simultaneous EEG–fMRI approaches to the study of resting state.

15.1.3  Unimodal Approaches to Resting State

15.1.3.1  Resting State in fMRI
The observation that cortical regions can show systematic patterns of correlations in 
the absence of any physical stimulation or experimental manipulation was already 
observed in the early years of fMRI research. Biswal et al. (1995) reported that dur-
ing rest there was a strong correlation of the BOLD signal measured in the senso-
rimotor cortices in both hemispheres. In the more than two decades that followed 
resting state, fMRI has become one of the main neuroimaging tools used in funda-
mental research on healthy subjects as well as in research in clinical populations 
(Bijsterbosch 2017). Research in healthy subjects has demonstrated that there are 
roughly ten large scale resting state brain networks that can be reliably measured in 
healthy subjects (Damoiseaux et al. 2006; Smith et al. 2009).

In the early work by Biswal et al. (1995), a strong correspondence was already 
observed between the resting state correlation maps and the fMRI-BOLD-activation 
map during a bilateral finger tapping task. This foreshadowed that there might be a 
strong correspondence between the brain regions within a resting state network that 
exhibit co-fluctuations in spontaneous activity and brain regions that regularly co- 
activate (or deactivate) in a task context. Smith et al. (2009) investigated this more 
systematically. They analysed the datasets of 30,000 subjects in a wide variety of 
task settings from the BrainMap database of functional imaging studies (Fox and 
Lancaster 2002; Laird et al. 2005) to investigate which brain regions show covary in 
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activation and deactivation across subjects and task settings. They observed that the 
networks of brain regions that consistently covary in task-induced activation 
changes are the very same networks as the large-scale brain networks observed in 
resting state fMRI. This suggests that task-related activations observed in fMRI at 
least in part reflect changes in neural activity that also underlie the spontaneous 
covariation of activity within brain networks during resting state.

15.1.3.2  Spontaneous Neural Activity in Electrophysiology
The occurrence of spontaneous brain activity reflected electrophysiology can 
already be traced back to the very first EEG recordings by Hans Berger who identi-
fied the most prominent EEG rhythm during awake resting state: an 8–12  Hz 
rhythm, the “alpha rhythm”, which can be measured at posterior regions of the 
scalp. He noticed its desynchronisation with ceasing vigilance and with engagement 
in an attention-demanding task on the other (Berger 1929), while it increased in 
amplitude when subjects closed their eyes. Despite this observation, spontaneous 
brain activity during relaxed wakefulness (“awake rest”) has historically been less 
well characterised, even though it is recorded in day-to-day clinical practice. 
Although many EEG studies (too numerous to mention) have been performed since 
the work of Berger, these have mainly been resting state examinations in a clinical 
context and in sleep research. A methodological milestone was achieved in the form 
of invasive, single-cell and multiunit recordings (Steriade 1995). In crude summary, 
human EEG activity within a certain frequency band cannot be directly linked to 
specific (mal)function without taking into account its amplitude, spatial distribu-
tion, reactivity, intra- and interindividual variability, and generally speaking the 
context in which it is observed (Laufs et al. 2006c; Nunez et al. 2001; Urrestarazu 
et al. 2007). Accordingly, a variety of EEG oscillations, from ultraslow (direct cur-
rent/below 0.1 Hz) to ultrafast (around 1000 Hz), have been observed and mostly 
assigned Greek letters ranging from alpha to omega (Curio 2000). Invasive EEG 
experiments (Steriade 2005) and noninvasive source localisation methods (Lopes da 
Silva 2004; Michel et al. 2004) have shed light on specific brain regions involved in 
the generation and maintenance of various brain oscillations.

More recetly, there have been attempts to investigate whether the networks of 
brain regions underlying neural oscillations we observe with EEG and in particu-
larly MEG (Brookes et al. 2011a, b; De Pasquale et al. 2010). Because, unlike the 
signals measured with EEG, magnetic signals recorded with MEG are undisturbed 
by the tissue located in between the source location and the sensors, higher spatial 
accuracy can be achieved. Therefore, source-level MEG has been the primary 
method of choice to identify the networks underlying the spontaneous fluctuations 
in oscillations measured at the sensor level. In one such a study, Brookes et  al. 
(2011b) set out to directly test whether the resting state networks observed in fMRI 
could also be recreated from source-level MEG power estimates. The observed that 
when similar ICA based approaches are employed to extract resting state networks 
from fMRI and source-level MEG power, very similar networks can indeed be 
observed. Further investigation to the frequency-specific nature of the networks 
observed in MEG revealed that these networks wore most strongly expressed in beta 
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band and to a lesser extent alpha band power-to-power correlations between brain 
regions within a network.

15.1.4  Multimodal Studies of Rest

15.1.4.1  Direct and Indirect Measurement of Neural Activity 
by (f)MRI

Simultaneous recordings of EEG and fMRI are often thought of as an endeavour in 
combining the best of both worlds: it combines the direct measurement of neural 
activity at high temporal resolution of EEG with the high spatial resolution and in 
principle whole brain coverage that can be achieved with BOLD-based 
fMRI. Although we can measure BOLD from practically any location in the brain 
the main disadvantages are that it is an indirect, delayed and temporally low-pass 
filtered measure of brain activity. If we were able to measure direct neural activity 
with the same spatial accuracy and coverage and noninvasively as with the BOLD 
signal haemodynamic methods like fMRI would become obsolete. Over the years, 
there have been several such attempts to measure the neural activity directly with 
MRI. These attempts make use of the fact that neural activity leads to small local 
currents that can result in a phase shift or signal loss of the recorded MRI signals. 
Phantom and in vitro experiments have demonstrated these effects are in principle 
detectable (Bodurka and Bandettini 2002; Bodurka et al. 1999; Petridou et al. 2006; 
Sundaram et  al. 2016), but in  vivo measurements have remained controversial 
(Bandettini et al. 2005; Luo et al. 2011; Parkes et al. 2007; Sundaram et al. 2010; 
Tang et al. 2008). Recently, this approach has regained new attention by a study by 
Truong et al. (2019) that reports being able to make changes in alpha activity in 
eyes-closed versus eyes-open conditions. This approach might open up a new tech-
nique to directly measure neural activity directly with MRI, but in the foreseeable 
future, it is unlikely to replace BOLD-based fMRI research.

With fMRI we measure neural activity indirectly by measuring the haemody-
namic response to changes in neural activity. This haemodynamic signal is in gen-
eral assumed to be too slow to directly measure fast changes in neural activity and 
can be seen as a low-pass filter of the neural activity. If pushed to its extremes 
though, Lewis et al. (2016) showed that that it might be possible to measure the 
oscillatory nature of neural activity up to 0.75 Hz, which is substantially higher than 
previously thought. This brings slow frequency phenomena like slow steady-state- 
evoked potentials, slow event-related potentials and slow-wave sleep possibly 
within the realm of detectability with fMRI. Most oscillations and evoked potentials 
however occur on a time-scale that is orders of magnitude faster than can be mea-
sured with fMRI. Therefore, when multimodal recordings of EEG and fMRI are 
done, the oscillatory activity in task and rest itself is not related to the BOLD signal, 
but the variation in the amplitude (or power) of the oscillations over time or trials is 
used to correlate with the haemodynamic signal. In order to match the temporal 
delay and low-pass filter characteristics of the haemodynamic response, this oscil-
latory signal is convolved with a model of the haemodynamic response to obtain to 
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obtain an EEG-based regressor that to be used in a general linear model (GLM) for 
fMRI analysis.

15.1.4.2  Functional Imaging Studies of “Brain Oscillations”
Unimodal fMRI studies of rest are primarily based on data-driven analysis 
approaches (functional connectivity; principal or independent component analysis, 
PCA/ICA). Over a dozen consistent resting state networks have been identified (Fox 
and Raichle 2007). The interpretation of signal changes in these resting state net-
works remains difficult when assessed unimodally and (necessarily) in the absence 
of a task and distinct context. Objectively assessing a subject’s state during data 
acquisition (e.g. via external observation or a post hoc interview) remains a difficult 
and inaccurate task, especially when subjects drift between wakefulness and drows-
iness. An additional perspective on brain activity at rest can be obtained via a second 
measure, that of EEG. This can give information on the subject’s “state of mind”, 
especially the level of vigilance. If functionally well-established EEG features can 
be correlated with fMRI, then the associated fMRI maps can be better interpreted. 
The meaning of the fMRI maps will most likely parallel the meaning of the associ-
ated EEG (Laufs et al. 2006c). On the other hand, EEG–fMRI can help to elucidate 
the brain processes that underlie specific, less-understood EEG phenomena if the 
related fMRI signal changes have been observed and interpreted previously, for 
example, in the context of a task (Laufs et al. 2007; Schabus et al. 2007).

15.1.4.3  Endogenous Brain Oscillations in Healthy Subjects
Neuronal oscillations in different EEG frequency bands and associated topogra-
phies have been identified in the context of different types of active mental activity. 
Spontaneous brain activity during relaxed wakefulness (“awake rest”) has inher-
ently been less well characterised, despite the fact that it is recorded in day-to-day 
clinical practice and was the first condition to have been assessed with EEG (Berger 
1929). The most prominent EEG rhythm during the awake resting state was 
described by Hans Berger: he termed the posterior 8–12 Hz oscillations the “alpha 
rhythm” and noticed its desynchronisation with ceasing vigilance on the one hand 
and with engagement in an attention-demanding task on the other (Berger 1929).

Unsurprisingly, the first EEG–fMRI investigations studying healthy volunteers 
at rest were concerned with the BOLD correlates of this very prominent EEG alpha 
rhythm. In line with neurophysiological animal studies, Goldman et al., Moosmann 
et  al. and (similarly) later Mantini et  al. noted that thalamic BOLD activity was 
positively correlated with posterior alpha oscillations on scalp EEG. They identified 
an inverse correlation of the alpha EEG with the occipital-parietal areas, reflecting 
the alpha oscillations’ scalp topography (Goldman et al. 2002; Mantini et al. 2007; 
Moosmann et al. 2003). Laufs et al., and again similarly Mantini et al., also found 
that a frontal-parietal network was associated with alpha desynchronisation (Laufs 
et al. 2003a; Mantini et al. 2007). In line with Berger’s observations, they claimed 
to have visualised endogenously waxing and waning attention with fluctuating 
alpha desynchronisation indexed by activity changes in a frontal-parietal network, 
which had previously and independently been established as being an attentional 
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system (Laufs et al. 2003a, 2006c). An almost identical network had been found to 
be engaged during a variety of attention-demanding tasks, especially mental arith-
metic (Gruber et al. 2001): a form of brain activity that is also classically known to 
suppress the alpha rhythm (Berger 1929); see Fig. 15.1.

In a strict sense, apart from any (thalamic) activation associated with alpha power 
increases (Feige et al. 2005; Goldman et al. 2002; Mantini et al. 2007; Moosmann 
et al. 2003), none of the studies mentioned above revealed notable coherent (corti-
cal) correlates of scalp EEG alpha oscillations; instead, by identifying inverse rela-
tionships, brain regions that increase their activity in the absence of marked alpha 
activity were identified (Laufs et al. 2006c). Once again, in congruence with Hans 
Berger’s observations, when they reanalysed their data, Laufs et al. found indica-
tions that the occipitally pronounced, inversely alpha-associated pattern occurred in 
association with a decline in vigilance. This finding was supported by a correspond-
ing enhanced spectral density in the theta (4–7 Hz) band, as typically observed dur-
ing drowsiness. Furthermore, positron emission tomography (PET) data had shown 
activation in occipital brain regions during light sleep when contrasted against 
wakefulness (Kjaer et al. 2002). The absence of a single average cortical BOLD 
signal pattern correlated positively with alpha power across studies may be explained 
by (spatially) nonuniform brain activity at the population level during periods of 

a

b

Fig. 15.1 (a, b) Functionally characterised imaging patterns (left), inversely alpha-correlated 
fMRI maps (middle) and associated averaged EEG spectra (right). A single EEG feature can be 
associated with a variety of fMRI maps. (a) Using PET, Kjaer et al. found higher signals in bilat-
eral occipital brain regions during drowsiness compared to at rest (Kjaer et  al. 2002). Similar 
occipital and additional parietal fMRI signal changes were inversely associated with alpha power 
in a group of resting subjects showing EEG features of drowsiness (Laufs et al. 2006c). (b) A 
bilateral frontal-parietal network is known to support attention-demanding tasks, especially mental 
arithmetic (Gruber et al. 2001). In awake, resting subjects, the fMRI signals in a set of brain regions 
very similar to that involved during mental arithmetic increase with desynchronised alpha oscilla-
tions (Laufs et al. 2003a; Mantini et al. 2007)
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prominent alpha oscillations, which fMRI group analysis must fail to detect (Friston 
et al. 1999; Laufs et al. 2006c). This can be caused by different brain regions that 
relate to the posterior alpha rhythms in different subjects that are in different men-
tal states.

Another reason why different regions correlate with alpha band activity in differ-
ent subjects is that different brain regions actually underly the generation of the 
alpha band variation in different subjects. The posterior alpha rhythm generated in 
the visual cortex is not the only neural activity that is reflected in changes in the 
alpha band at EEG channel level. It is reasonable to assume that many parts of the 
cortex generates some neural activity in the alpha frequency range, and what is 
measured at channel level with EEG is a weighted sum of all this activity. This 
weighted sum can change over conditions and mental states within a subject but can 
systematically differ over subjects due to anatomical differences in both neural and 
non-neural anatomy. Techniques that focus on unmixing this channel level mixture 
of alpha band activity can therefore contribute in separating the alpha source of 
interest from other sources of noninterest. Source analysis techniques like beam-
former approaches (Brookes et al. 2009; Hanslmayr et al. 2011; Zumer et al. 2014) 
or blind source separation techniques like ICA have been applied to achieve this 
separation of sources in the alpha range and also in other frequency bands 
(Scheeringa et al. 2008, 2011, 2012). An example of this approach in the context of 
the posterior alpha rhythm during resting state is a study by Scheeringa et al. (2012) 
who applied ICA on the EEG data in order to select a central posterior independent 
components with a peak in the alpha band. When correlating variation in alpha 
power in this component with the BOLD signal across the entire brain, they did 
observe the expected negative correlation in the visual system.

15.1.4.4  Similar Electrical Oscillations, Different fMRI Networks
The example discussed in the previous section showed that endogenous electrical 
oscillations, namely, posterior alpha power during relaxed wakefulness, can be 
associated with different fMRI maps (haemodynamic networks). Slight method-
ological or analytical differences between the cited studies can only partially explain 
this effect. It is more likely that different (dynamic) brain states were studied and 
reflected in several EEG features, among which only one, the suppression of occipi-
tal alpha oscillations, was included in the abovementioned analyses. This feature 
must be common to the different identified brain states and represents only an indi-
rect measure. This suggests that, for a more detailed assessment of neural oscilla-
tions, broader EEG spectral properties and more comprehensive EEG spatial 
information must be incorporated into such analyses. Statistical considerations also 
require the parallel evaluation of, for example, multiple EEG frequency bands, 
especially if the bands are correlated with one another (Laufs et al. 2006c; Mantini 
et al. 2007): if only one of several correlated EEG features is used as a regressor in 
a general linear model (GLM), the attribution of the associated fMRI variance to a 
frequency band will be unspecific. For instance, if alpha and theta power are highly 
correlated, then the utilisation of either the theta or the alpha regressor in an fMRI 
analysis may yield very similar fMRI maps.
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In an attempt to analyse a broader EEG frequency content (although not across 
space), Laufs et  al. simultaneously correlated occipital theta, alpha and different 
beta frequency bands with fMRI data in a GLM (Laufs et al. 2003b). They found 
that activity in the beta-2 (17–23 Hz) frequency band correlates with the DMN 
(Raichle et al. 2001). No significant theta band correlations were found in the fMRI 
data in that study (Laufs et al. 2003b). PET meta-analyses had originally identified 
the DMN (see Fig. 15.2) (Mazoyer et al. 2001). This describes a set of brain regions 
that show greater activity at rest than during states of reduced consciousness and 
states of extroverted perception and action. Thus, their activities are highest during 
an idling or intermediate activity state following which the brain can then either 
engage in more activity (e.g. a task) or less activity (e.g. sleep)—hence its name 
(Raichle et  al. 2001). While most resting state networks were later identified by 
data-driven fMRI experiments, the DMN was described in PET and fMRI meta 
analyses as a group of areas that consistently exhibited decreases from relative 

Fig. 15.2 A single fMRI map can be associated with a variety of EEG features at rest. Generalised 
spike and wave (GSW) discharges on EEG, typical rhythmic EEG oscillations during absence sei-
zures with loss of consciousness, are associated with decreased fMRI signal in the precuneus, 
dorsal prefrontal cortices and the temporoparietal junction, regions of the “default mode network” 
(Archer et al. 2003; De Tiege et al. 2007; Gotman et al. 2005; Hamandi et al. 2006; Laufs et al. 
2006a; Salek-Haddadi et al. 2003). Interictal epileptic discharges (IEDs) occurring frequently on 
EEG in temporal lobe epilepsy, characterised by complex partial seizures during which conscious-
ness is impaired, are associated with fMRI signal decreases in “default mode” brain regions 
(Kobayashi et al. 2006b; Laufs et al. 2006a). During sleep, especially sleep stage II, central alpha 
power was found to be inversely associated with fMRI signal changes in regions constituting the 
DMN (Laufs et al. 2007). Beta band EEG oscillations are associated with fMRI signal fluctuations 
in “default mode” brain regions (Laufs et al. 2003b; Mantini et al. 2007)
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baselines of a wide variety of goal-directed behavioural tasks (Raichle et al. 2001). 
This allowed a meaning to be assigned to this network.

The identification of the “default mode” regions via a regressor derived from 
spontaneous EEG (beta-2 power) oscillations during wakefulness suggested that 
this network is dynamically active even when “at rest”. Band specificity was dem-
onstrated by making EEG the dependent variable: an fMRI signal time course taken 
from a representative region within the DMN (left temporoparietal junction) was 
correlated with specific EEG sub-bands and best fitted to the beta-2 oscillations 
(Laufs et al. 2003b).

Mantini et al. further extended this EEG–fMRI integration to an awake and at 
rest condition. They incorporated EEG bands between 1 and 50 Hz, averaged across 
the entire scalp, into their analysis. They correlated the fMRI time courses of resting 
state networks (identified by means of ICA) with these bands (Mantini et al. 2007). 
There was again an almost exclusively inverse correlation between the fMRI signals 
and the EEG frequency band (delta, theta, alpha, beta, gamma) power for four out 
of six identified resting state networks. This may indicate that at the group level, a 
commonality of brain states could only be detected in the form of desynchronisation 
of brain oscillations at different frequencies. The most specific and positive EEG–
fMRI correlation was revealed for the 30–50 Hz gamma band. This will require 
validation given that the BOLD signal changes occurred in the frontal lobe near 
areas typically bound to EPI signal dropout and that 30–50 Hz EEG may contain 
increased noise.

As discussed above, occipital beta-2 power was found to correlate positively 
with the DMN (Laufs et al. 2003b). Mantini et al. additionally found that spatially 
averaged alpha power covaried with BOLD activity in the default mode network 
(Mantini et  al. 2007). Scheeringa et  al. identified a very similar network during 
eyes-open rest that was inversely correlated with frontal theta power, the latter 
derived by applying ICA on the EEG data (Scheeringa et al. 2008).

In an approach similar to Mantini et al. (2007), Sadaghiani et al. (2010) set out 
to investigate how two resting state networks, the dorsal attention network and the 
tonic alertness network relate frequency-specific changes in EEG power. They dem-
onstrated that the dorsal attention network is, as was observed by Mantini et  al. 
(2007), negatively related to the alpha and beta band power. The tonic alertness 
network, a network that just like the dorsal attention network is often active in task 
settings, however showed a positive correlation with both alpha and beta powers. 
Instead of averaging within frequency bands, the correlations in this studies were 
calculated for each frequency bin of the EEG power analysis separately. This 
revealed within the alpha range a separation in the exact frequency range the two 
networks correlated with EEG power. The dorsal attention network correlated nega-
tively with alpha in the 7–10 Hz range, while the tonic alertness network correlated 
positively with alpha in the 10–12 Hz. These frequencies overlapped with what are 
historically identified as the lower and upper alpha bands, respectively 
(Klimesch 1999).

The studies discussed in this paragraph demonstrate how the state of the subject 
(eyes open, resting in the context of a cognitive task) as well as the analytical 
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strategy pursued (frontal EEG power, single frequency band, ICA or channel level) 
can affect EEG–fMRI correspondence. This is to some extent inherent to the mea-
surement of EEG in resting state, since it is often hard to ensure all subjects are in 
the same mental state where different brain networks can relate to the same oscilla-
tory EEG phenomenon but where selecting the same oscillatory EEG feature in all 
subjects can also be a challenge.

15.1.4.5  Similar fMRI Networks, Different Electrical Oscillations
As argued in the section above, similar electrical oscillations can correlate with dif-
ferent fMRI oscillations. On the other hand, the “default mode” fMRI resting state 
oscillations have been found to correlate with power in different EEG frequency 
bands, including (during eyes-closed rest) with spatially averaged alpha and beta 
(Mantini et al. 2007), posterior beta-2 (Laufs et al. 2003b), and (during eyes open 
rest) inversely with frontal theta oscillations (Scheeringa et al. 2008); see Fig. 15.2.

Based on fMRI functional connectivity analysis, Horovitz et al. suggested that 
the dynamic resting state activity persists in this network during reduced vigilance 
(Horovitz et al. 2008). A single-case EEG–fMRI study related activity in the DMN 
during sleep stage II (Rechtschaffen and Kales 1968) primarily to decreased central 
alpha power (Laufs et al. 2007). While PET data (Maquet 2000) congruent with the 
“default mode” concept (Raichle et al. 2001) identified a relative decrease in activ-
ity in that network during sleep compared to wakefulness, it is now clear that this 
network sustains its activity despite decreasing vigilance and possibly functions at 
a lower energy level. The association of decreased activity in the DMN with other 
EEG features (focal and generalised epileptic activity) will be discussed below.

15.1.4.6  Brain Rhythms and Connectivity
Where the previous studies correlated the strength of oscillations with the strength 
of the BOLD signal, several studies have now also used multimodal measurements 
to investigate connectivity between brain regions. Two types of approaches can be 
distinguished: In the first approach the strength of specific brain rhythms can be 
used to predict changes in BOLD-based fMRI connectivity. The second approach is 
the reversed of the first, where the level of BOLD activation in brain regions or brain 
networks is used to predict connectivity measures in EEG.

In an example of the first approach Scheeringa et al. investigated whether con-
nectivity of the primary visual cortex with the rest of the brain depended on the 
strength of occipital alpha oscillations. For this they applied ICA on the EEG data 
and selected a central posterior alpha component. In previous EEG studies, this 
posterior alpha component was reliably related to visual processing, with a likely 
source location in the early visual cortex (Makeig et al. 2004a, b). In line with this, 
a negative correlation with BOLD was also observed in early visual cortex. For 
investigating whether connectivity of this region with regions in the rest of the brain 
was modulated by the strength of alpha band oscillations, a connectivity analysis 
similar to the psychophysiological interaction (Friston et al. 1997) was used, which 
tested whether the regression slope between the seed in early visual cortex and the 
rest of the brain was different for when alpha amplitude was high compared to when 
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it was low. They observed that fMRI-based connectivity between early visual 
regions and later extra-striate regions in the visual stream was lower when alpha 
amplitude was high. This indicates that an increase in alpha amplitude in a brain 
region correlates with that region being functionally uncoupled from other brain 
regions, which is in line with the notion that alpha is related to functional inhibition 
of brain regions (Jensen and Mazaheri 2010; Klimesch et al. 2007).

In electrophysiology, increased connectivity is often thought to be expressed in 
increased phase synchrony in electrophysiological signals originating from differ-
ent brain regions (Fries 2015; Jensen et al. 2014; Varela et al. 2001). Also for the 
alpha band increased phase synchrony is thought to be related to increased connec-
tivity between regions (Jensen et al. 2014). This phase synchrony is thought to be 
under active attentional control. In a reanalysis of the resting state data discussed 
above, Sadaghiani et al. (2012) investigated whether fluctuations in global phase 
locking between would be related to a network related to attention or cognitive con-
trol. For this they calculated the phase locking value in a sliding window of 10 s for 
the upper alpha band and correlated this with the BOLD signal in the entire brain. 
This revealed a network of frontoparietal brain regions that is commonly associated 
with adaptive control.

Taken together, with these two studies, Sadaghiani et al. (2012) and Sadaghiani 
et al. (2010) were able to relate three different attentional control networks to differ-
ent aspects of global alpha band oscillations. The dorsal attention network was 
inversely related to the lower alpha band, the tonic alertness network related posi-
tively with the upper alpha band, while global phase synchrony in this frequency 
band related positively to a brain network related to adaptive cognitive control. 
These findings suggest that the influence these three brain networks involved in 
attention and cognitive control have on neural processing in the cortex is reflected 
in different aspects of alpha band activity.

15.1.4.7  Brain Oscillations and Networks During Sleep
EEG is the central tool in sleep research, and oscillations serve to define sleep stages 
(Rechtschaffen and Kales 1968). EEG–fMRI is therefore an ideal tool to extend 
investigations of awake, resting brain oscillations to states of reduced vigilance. 
This will only be briefly touched on here because a separate chapter of this book is 
dedicated to EEG–fMRI and sleep (see the Chap. 16). Due to their limited temporal 
resolution, EEG–PET studies have to assess sleep stage-related mean brain activity 
over many minutes (Maquet 2000) but cannot identify within-state activity or meta-
bolic correlates of brief sleep-specific oscillations and events such as sleep spindles, 
vertex sharp waves or K-complexes. While the first EEG–fMRI study of spontane-
ous sleep without visual or acoustic stimulation was still performed in the spirit of 
these PET studies (Kaufmann et  al. 2006), since then, sleep stage-specific EEG 
frequency patterns have been studied in a single case alongside an event-related 
analysis of sleep spindles and K-complexes (Laufs et al. 2007). A larger study con-
firmed and extended the findings of sleep spindle-associated bilateral thalamic, 
superior temporal and sensorimotor cortical activations (Schabus et al. 2007). Both 
studies discussed temporal lobe activation as a possible indication of memory 
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processing during sleep, but due to the nature of resting state investigations, there 
was no probing task, and so this interpretation presently remains speculative. This 
is an example of a shortcoming of resting state studies, even when concurrent EEG 
information is available.

Delta oscillations are a prominent and characteristic feature of deeper non-rapid 
eye movement sleep stages (Rechtschaffen and Kales 1968), but correlating these 
EEGs with fMRI oscillations during sleep stages III and IV in the single case study 
did not reveal significant fMRI networks. Possible explanations for this include 
ignoring the phase of the oscillations and inappropriately limited exploitation of 
their spatial distribution, and it indicates that more sophisticated analysis strategies 
should be used in future studies (Laufs et al. 2007).

15.1.4.8  Endogenous Brain Oscillations in Patients with Epilepsy
Epilepsy is a special case of EEG–fMRI resting state studies, and three chapters of 
this book are dedicated to it (Chaps. 17, 18, and 19). This is why this chapter restricts 
itself to pathology-specific brain rhythms as well as further examples of EEG pat-
terns associated with the brain networks discussed above.

Historically, the development of EEG recording during fMRI was driven by the 
motivation to localise the source of epileptic activity via haemodynamic correlates 
of the spontaneously occurring, unpredictable EEG events. Patients at rest were 
examined in order to create an event-related model for interrogating the fMRI data, 
and additional paradigms appeared dispensable at the time (Gotman et  al. 2006; 
Laufs and Duncan 2007). The objective of the studies was not the resting state but 
to contrast epileptic activity against an implicit baseline. As it turned out, however, 
generalised epileptic activity in the form of 3/s spike and wave complexes affects 
activity in the DMN (Archer et al. 2003; De Tiege et al. 2007; Gotman et al. 2005; 
Hamandi et al. 2006; Laufs et al. 2006a; Salek-Haddadi et al. 2003). The behav-
ioural correlate of the prototype for such generalised discharges are absence sei-
zures, which are characterised by impaired consciousness. Other conditions of 
impaired consciousness have already been associated with a decrease in activity in 
default mode brain regions (Laureys et al. 2004), and the fMRI maps associated 
with absence seizures can be interpreted in an analogous way (Gotman et al. 2005; 
Laufs et al. 2006d). Surprisingly, even frequent focal interictal epileptic discharges 
in patients with temporal lobe epilepsy were associated with a relative signal 
decrease in the DMN, although behavioural changes are not obvious during focal 
interictal epileptic activity (Kobayashi et al. 2006a; Laufs et al. 2006a). Assuming 
that decreased activity in the DMN during focal epileptic activity represents another 
instance of impaired consciousness, this may explain cognitive deficits observed in 
epilepsy patients with frequent interictal discharges and complex partial seizures 
characterised by a loss of consciousness (Laufs et al. 2006a). Thus, resting state 
EEG–fMRI can identify impaired brain function. Altered brain rhythms—changes 
in ongoing EEG activity such as focal theta or delta slowing—may indicate pathol-
ogy and can be used to localise the epileptogenic area in EEG–fMRI analyses (Laufs 
et al. 2006b; Siniatchkin et al. 2007). Studies relating ongoing brain activity itself to 
epileptic pathology are underway.
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15.2  Multimodal Approaches in a Task Setting

15.2.1  General Considerations

As mentioned above, the brain regions that form the different resting state networks 
are also regularly found to coactivate in task settings (Smith et al. 2009). Furthermore, 
MEG research has indicated that these resting state networks are also expressed in 
covariations in oscillatory power, in particular in the beta band (Brookes et  al. 
2011a). From this, the question arises which brain regions and networks of brain 
regions relate to the task effects in oscillations measured by MEG and EEG. Since 
fMRI can measure neural activity from the entire brain, simultaneously recorded 
EEG and fMRI can be applied to address this question. Although measuring EEG 
and fMRI simultaneously in a task setting is technically more challenging than mea-
surements during resting state, they also provide several advantages compared to 
measurements during resting state.

The first advantage is that by virtue of introducing a task with different condi-
tions and stages (e.g. cue, encoding, retrieval and response phases of a task), there 
is more control of the mental state and mental activities of the subject compared to 
resting state. This also helps us in interpreting the relation we find (or do not find) 
between the EEG feature of interest and the fMRI results. Furthermore, the different 
stages and conditions allow us to do ask more focused questions and do more 
focused analyses. It allows us, for instance, to investigate in which brain regions 
neural activity relates to a parametric increase in frontal theta power with working 
memory load during the maintenance phase of a working memory task (Scheeringa 
et al. 2009), as is detailed in the examples below.

Another advantage from a methodological point of view is that when an EEG 
task effect is well established and characterized by earlier research or through an 
earlier independent measurement, we can use this effect to “denoise” the EEG 
from spurious brain activity we are not interested in or non-brain noise sources 
like eye blinks and MRI-related artifacts. Two well-tested approaches here are 
blind source separation techniques like ICA (Debener et  al. 2006, 2005; 
Scheeringa et  al. 2011, 2016, 2009) or beamformer-based source analysis 
(Brookes et al. 2009; Zumer et al. 2014). In the first approach, we can select one 
or more components that show the task effect of interest, while removing all 
other components that model activity and artifacts of noninterest. The beam-
former approach makes use of the noise- suppressing properties of this source 
analysis method. In this approach, a spatial filter is constructed for each source 
location under consideration. This spatial filter is constructed in such a way that 
signals coming from the source location in question are maximally let through, 
while simultaneously maximally suppressing activity not coming from this loca-
tion. By selecting the source location where the task effects is maximal, we can 
maximally suppress activity coming from other sources that are influencing the 
measurement at channel level. In this case, the noise- suppressing features of the 
beamforming approach are of more interest here than getting the exact source 
location of the effect of interest.
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While one may analyse the simultaneously recorded EEG and fMRI completely 
separately, this would negate the benefits of doing simultaneous measurements apart 
from those associated with both measurements having been carried out in exactly the 
same environment, in addition to the inevitable, albeit potentially negligible depend-
ing on the application, impact on data quality highlighted in previous chapters. The 
true advantage of simultaneous EEG and fMRI in a task context is that it allows us to 
statistically relate the two modalities across individual responses in way that is not 
possible across separate, unimodal sessions. In this context, there are two sources of 
(co)variation that can exploited. We can investigate whether EEG and fMRI covary 
in their responses over trials or whether they covary in their effects over subjects.

The first step when using variation over trials to study how EEG and fMRI relate 
is to obtain the best possible estimate of single trial variation in the oscillatory EEG 
effect of interest (Debener et  al. 2006). This can greatly benefit from the ICA or 
beamformer denoising approaches discussed above. Subsequently the single trial 
estimates of the strength of the oscillatory activity can be used as a parametric modu-
lation of the condition and phase of the trial it was measured. By including both the 
EEG-based parametric and task regressors in the statistical design, it is possible to 
test whether there is a link of the BOLD signal with the single trial variation EEG 
oscillations up and above the task modulation. If a link between EEG and fMRI is 
observed it does however not necessarily imply that there is also a link between the 
task effects in both modalities. Some of the variation of the EEG response could be 
related to non-task-related processes or spurious activity from noise sources that 
were not fully removed in the denoising stage. If there however is a link between the 
EEG task effect and the regions where the BOLD signal correlates with variation 
EEG power over trials, an fMRI-task effect that is in line with the task effect in EEG 
should be present. This can then subsequently be explicitly tested for.

Given a sufficient large number of subjects (dependent on the strength of the 
expected correlation), the strength in a task effect in EEG can be correlated with the 
same task effect in fMRI. For example, the variations over subjects in attention- 
related effects in alpha, beta or gamma band power can be correlated with attention 
effects for the same contrast in fMRI over subjects (Scheeringa et al. 2016). In this 
case, variation over subjects is the source of variance we use to establish a link 
between EEG and fMRI. By doing this analysis in multimodal measurements and 
not separate unimodal measurements in the same subjects, we capture both trait and 
mental state influences on variation in the effects over subjects. With separate mea-
surements, only trait-like influences, that is the extent to which subjects demon-
strate the same task response in EEG and fMRI over repeated measures, can be used 
as a source of variance.

15.2.2  Multimodal Measurements in a Task Context: Examples

In a task setting, many different brain regions usually show a task effects in fMRI, 
while in EEG a variety of task effects can be observed in multiple frequency bands 
over different parts of the scalp. An important question that can be addressed with 
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simultaneously recorded EEG and fMRI is which of these brain regions relate to 
which oscillatory effects observed in EEG. One example in which such a problem 
was addressed is in a working memory study by Scheeringa et al. (2009). In this 
experiment, the goal was to find the brain networks related to working memory 
induced parametric increases in posterior alpha and frontal theta power during 
working memory maintenance. The recorded EEG data did indeed reveal paramet-
ric increases in frontal theta and right posterior alpha power with working memory 
load. Trial-by-trial correlations revealed two separate nonoverlapping collections of 
brain regions that correlated negatively with alpha and theta power. More impor-
tantly some of these regions correlating with the alpha regressor and most of the 
regions correlating with the theta regressor showed a parametric decrease in activity 
with working memory load, in line with the negative correlation with the regressors 
and the parametric increase in EEG power. For the alpha band, these regions were 
in the primary visual cortex and right middle temporal gyrus which is in line with 
reduced sensory processing during working memory maintenance. The regions that 
were found to be related to frontal theta together formed the default mode network. 
This suggests that frontal theta power is indicative of deactivation of the default 
mode network during tasks, than it is to active task processes or working memory 
maintenance as was previously hypothesised (Gevins et  al. 1997; Jensen 2006; 
Jensen and Lisman 1998; Jensen and Tesche 2002; Onton et al. 2005). The fact that 
two separate nonoverlapping collections of brain regions were observed to relate to 
two brain rhythms that demonstrated a load-dependent increase in power during 
working maintenance illustrates that EEG-informed analysis of fMRI data can dif-
ferentiate between regions showing a similar task effect in fMRI alone.

Another example of how integrated EEG-fMRI can aid the interpretation of the 
results in buth modalities is a study by Hanslmayr et al. (2011) who investigated 
memory formation during a task in which a list of words needed to be remembered. 
For both fMRI and EEG they computed the subsequent memory effect were com-
paring the responses for later remembered versus later forgotten words In the EEG 
they observed lower beta power and higher theta power for later remembered com-
pared to later forgotten words. Source analysis revealed a putative source location 
in the left inferior frontal cortex for beta and bilaterally in the medial temporal lobe 
for theta. Interestingly, increased fMRI activity for remembered words was found in 
the left inferior prefrontal cortex and the right parahippocampal gyrus, overlapping 
with putative the source locations for the beta and theta effects. Only for beta how-
ever a negative correlation between BOLD and trial-by-trial variation in EEG power 
was observed in the left inferior prefrontal cortex, while no correlation was reported 
for theta in the medial temporal lobe. This negative correlation for beta in the left 
inferior frontal gyrus combined with the increased BOLD and decreased beta power 
in the same regions provides strong evidence that this region is directly related to 
the subsequent memory effect in beta power. This is in line with a negative relation 
between beta power and the BOLD signal observed in other regions of the cortex 
(Scheeringa et  al. 2011, 2016; Yuan et  al. 2010). For the theta effect the case is 
weaker. Although the increase and theta is thought to originate from a region close 
to the observed fMRI effect, no positive correlations over trials were observed here.
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What this study, combined with the study by Scheeringa et al. (2009) does 
illustrate is that both fMRI activation and deactivations observed with fMRI can 
be related to the changes observed in specific brain rhythms. For the working 
memory all effects were related to deactivations, where here a beta decrease was 
related to an increase in BOLD. Also for theta a positive relation between BOLD 
and EEG power was more likely to be observed given the overlap in fMRI acti-
vation and source location. If this would have been observed, this would have 
suggested that the neural processes underlying frontal theta power are different 
from those generating theta power in the medial temporal lobe, although both 
are reflected in changes in neural synchrony in the same frequency range. 
Combined EEG-fMRI can potentially contribute to distinguishing these 
processes.

15.2.3  Linking Neuronal Oscillations to Haemodynamic Changes

A question that often arises is whether the regions that correlate with oscillations 
are also the source location of the observed oscillatory effects with EEG at scalp 
level. Since the EEG-fMRI analyses discussed here are correlational in nature, 
this is not necessarily the case. It is however sometimes possible to make a good 
case for this. For instance in the working memory study by Scheeringa et  al. 
(2009) the medial frontal part of the default mode network that correlated with 
frontal theta is also the likely source location since it is in line with source analy-
ses that have located it in or near the medial frontal cortex (Ishii et  al. 1999; 
Martinez-Montes et  al. 2004; Miwakeichi et  al. 2004; Scheeringa et  al. 2008). 
Furthermore other candidate regions, neither negatively nor positively correlating 
with frontal theta were observed. Since the parametric decrease in fMRI activity 
with working memory load also mirrored the increase in frontal theta increase, the 
medial frontal part of the default mode network is the most likely source location 
for the medial frontal theta rhythm observed here. This conclusion does however 
depend on the presence of a direct link between oscillatory activity and BOLD at 
the source location.

For investigating the link between oscillatory activity and the BOLD signal, the 
gold standard is provided by studies that record haemodynamic signals and simul-
taneously with intracranial recordings in or very near the same patch of cortex. This 
kind of research is most readily and systematically carried out in animals (Goense 
and Logothetis 2008; Logothetis et  al. 2001; Niessing et  al. 2005; Shmuel et  al. 
2006; Viswanathan and Freeman 2007), but occasional recordings in patients with 
implanted electrodes have been reported (Vulliemoz et al. 2011). The first study that 
accomplished the technically challenging endeavour of measuring fMRI and intra-
cranial electrophysiology simultaneously was Logothetis et al. (2001). In a land-
mark study where BOLD, local field potentials and multi-unit activity simultaneously 
in the same patch of visual cortex, they observed that during visual stimulation the 
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BOLD signal better matched the response pattern in LFP amplitude than that of 
multi-unit activity, particularly in the gamma frequency range. This notion that 
gamma band activity in particular closely follows the BOLD response was further 
strengthened by work from Niessing et al. (2005); who measured haemodynamic 
signals simultaneously with local field potentials and spiking activity. Like 
Logothetis et al., they observed that LFP amplitude, especially in the high gamma 
range, was a better predictor of the BOLD signal than the spiking rate. They how-
ever extended their analysis to other frequencies and observed a pattern of negative 
correlations between BOLD and LFP for low-frequency bands (predominantly delta 
and theta) and positive correlations in high-frequency bands (beta and gamma). The 
notion of negative correlation is largely in line with most EEG-fMRI studies that 
found negative correlations between oscillatory power and BOLD in low frequency 
in low-frequency bands (Goldman et al. 2002; Laufs et al. 2003a; Moosmann et al. 
2003; Scheeringa et al. 2008, 2009; Zumer et al. 2014). It also supports the idea that 
multiple-frequency bands must be taken into account to understand how neural 
oscillation relate to the BOLD signal.

These studies however all involve invasive recordings in animals, and the ques-
tion arises whether the pattern how low and high frequencies relate to fMRI also 
hold in healthy human subjects. Scheeringa et al. (2011) set out to investigate this 
with simultaneous recorded EEG and fMRI. In order to investigate this, they chose 
a task that induced strong fMRI activation in early visual cortex (Hoogenboom 
et al. 2006) and that reliably induced decreases in alpha and beta power and an 
increase in gamma power in MEG and EEG recordings (Hoogenboom et al. 2010, 
2006; Koch et al. 2009; Muthukumaraswamy and Singh 2013; van Pelt et al. 2012) 
that source analyses located in early visual cortex as well. Furthermore, these 
responses resembled those observed in intracranial recordings in early visual cor-
tex in animals (Fries et al. 2008). By correlating the variation in the different fre-
quency bands with the BOLD signal over trials, they observed that alpha and beta 
correlated negatively with the BOLD signal while gamma correlated positively 
with BOLD. In addition, they observed that gamma band variations over trials did 
not correlate with those in the alpha and beta band, indicating that the neural pro-
cesses underlying these EEG phenomena independently contributed to changes in 
the BOLD signal. This study thus largely supports the findings in animals on how 
different frequency bands relate to the BOLD signal and the notion that multiple 
frequency bands need to be taken into account to understand the relation between 
BOLD and neural oscillations.

The finding that gamma-related neural processes independently contribute to 
the BOLD signal from processes related to alpha and beta oscillations is in itself 
not surprising considering the fact that they are thought to play different roles in 
information processing in the brain. Intracranial recordings in animals have dem-
onstrated that the gamma band activity predominately reflects a feedforward flow 
of information from lower order brain regions, while alpha and beta oscillations 
relate to the feedback flow in the opposite direction (Bastos et  al. 2015; 
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Michalareas et al. 2016; van Kerkoerle et al. 2014). On an anatomical level, feed-
forward and feedback information is carried over laminar-specific connections 
between brain regions (Douglas and Martin 2004; Gilbert 1983; Markov and 
Kennedy 2013; Markov et al. 2014). In general, feedforward anatomical connec-
tions originate in supragranular (layers II and III) layers and projects to the gran-
ular layer (layer IV). Feedback connections originate in infragranular layers 
(layers V and VI) and project back to both infra- and supragranular layers. In line 
with this, recordings in animals have revealed that gamma band activity is stron-
gest in granular and supragranular layers (Buffalo et al. 2011; Maier et al. 2010; 
van Kerkoerle et al. 2014) while beta band activity is strongest in infragranular 
layers (Maier et  al. 2011). Both infra- and supragranular sources have been 
observed for alpha band oscillations (Bollimunta et  al. 2008, 2011; Haegens 
et al. 2015; Spaak et al. 2012).

Invasive laminar electrophysiology in healthy humans is not possible. Although 
there are developments to measure at laminar resolution with MEG (Troebinger 
et al. 2014), most advances in measuring laminar level neural activity over the past 
decade have come from high-resolution fMRI (voxel size <1 mm3). Where the first 
laminar fMRI studies were focused on technical development, over the last few 
years, it has become a viable tool in cognitive research (De Martino et al. 2015; Kok 
et al. 2016; Lawrence et al. 2019, 2018; Muckli et al. 2015; Scheeringa et al. 2016). 
Since neural oscillations have been linked to cortical layers, the question arises 
whether the relation they have with BOLD is also layer specific. In a follow-up 
study from the experiment discussed above, Scheeringa et  al. (Scheeringa et  al. 
2016) investigated with combined EEG/fMRI whether alpha, beta and gamma band 
oscillations correlate with BOLD measured in different layers of the early visual 
cortex. Their results were largely in line with invasive recordings in animals. Gamma 
power correlated with BOLD at middle and superficial layers, while beta correlated 
negatively with BOLD in deep layers and alpha correlated with both deep and 
superficial layers. This study demonstrates that combining laminar fMRI with EEG 
can provide a means to study laminar-specific feedforward and feedback processes 
in healthy human subjects (Fig. 15.3).
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Are task effects observed in EEG and fMRI related? YES NO UNKNOWN

1. Does the EEG feature correlate with fMRI over trials?

2. Do the changes over conditions in EEG resemble the changes over 
conditions in fMRI?*

3. Do the task effects in EEG and fMRI correlate over subjects?

4. Are the correlations over trials and subjects and the changes over 
conditions not contradicting?**

Is an EEG-related brain regions also the source location? YES NO UNKNOWN

5. Does source analysis of the EEG feature locate it to the same or close to 
the observed region?

6. Have source analysis analyses on EEG or MEG in the past revealed the 
same region for this effect?

7. Are there no other plausible source regions where fMRI relates to the EEG 
feature?

8. Have intracranial recordings in animals and/or humans demonstrated the 
same or a similar effect in the region in question?

9. Is the observed EEG-fMRI relation in line with how the EEG feature (at 
source level) relates to fMRI in other studies?

CHECKLIST  INTERPRETATION RELATION EEG & FMRI

Fig. 15.3 Checklist for interpreting results obtained from simultaneous recorded EEG and 
fMRI. The crucial question that most often arises when combining EEG and fMRI in a task setting 
is which of the regions that show a task effect (activation or deactivation) relate to the task induced 
changes in EEG features (e.g. changes in frequency-specific power, but also evoked potentials) that 
are observed. In this checklist, questions are listed that can help to address this issue. The more the 
questions 1–4 are answered with “yes”, the stronger the case is for a relation between the task 
effects in both modalities. Assuming that a relation between task effects in EEG and fMRI is estab-
lished through questions 1–4, whether the brain region in question is also the source location of the 
EEG feature. Questions 5–9 address this question, and the more they are answered with “yes”, the 
stronger the case for a region being the source location of the EEG feature is. *Question 2: For 
instance, if EEG power increases monotonically working load (as in Scheeringa et al. 2009), a 
brain region related to this is expected to have either a monotonic increase or decrease with work-
ing memory load. **Question 4: For example, when EEG power increases with working memory 
load and a negative correlation is observed over trials (Question 1), if a region related to the work-
ing memory in EEG can be expected to show a monotonic decrease in fMRI activity with working 
memory load and a negative correlation of the effect of working memory load in both modalities 
over subjects
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15.3  Conclusions

The studies discussed above indicate that neural oscillations and the BOLD signal 
are clearly related. Although sometimes a case for a direct link at source level is 
very plausible, simultaneous EEG and fMRI will not provide the ultimate proof of 
this, and it is however not always immediately clear whether there is a direct link, 
and it remains possible there are fMRI insensitive neural processes reflected in the 
EEG and EEG insensitive processes reflected in fMRI measurements. Both in rest-
ing state and in task contexts, in many cases, combined measurements can provide 
new insights that neither technique alone is not able to provide. We can now inves-
tigate how brain rhythms measured by EEG in rest relate differentially how net-
works of brain activity across the entire brain and vice versa which features 
measured by electrophysiology relate to specific brain networks and brain regions. 
With fMRI being measured at ever higher resolution which allows for the measure-
ment of different cortical layers and small subcortical nuclei, this relation can be 
mapped in ever greater detail.
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16.1  FMRI in Sleep Research

16.1.1  Sleep

The time spent asleep consumes about one third of our lifetime. In contrast to anes-
thesia or a comatose state, the perceptual disengagement from the environment and 
alteration (“loss”) of consciousness can be reversed during sleep upon intense 
stimulation. A large body of knowledge on sleep-related processes has been col-
lected in the last decades; however, the precise functions of sleep have yet to be 
disclosed.

Most of our current understanding of cortical activity across the different 
stages of vigilance is derived from EEG recordings. Concomitant to falling asleep, 
the changes in brain activity on a cellular level—namely switching from tonic to 
burst mode firing with increased periods of hyperpolarization—induce typical 
changes in EEG (Steriade 2003; Carskadon and Dement 2017). Altered surface 
EEG during sleep in humans has first been documented as early as 1929 by Berger 
(1929), later followed by Loomis’ description of specific characteristics in sleep 
recordings like K-complexes (KCs) and sleep spindles (Loomis et al. 1938). The 
misconception of sleep as a cessation of brain activity as compared to the reticular 
activation during wakefulness was finally overthrown in 1953, when Eugene 
Aserinsky and Nathaniel Kleitman first described an active brain state accompa-
nied by rapid eye movements (REM) recurring at regular intervals within sleep 
(Aserinsky and Kleitman 1953). Awakenings from this state of high cortical activ-
ity go along with higher incidences of vivid dream reports that putatively accom-
pany the activated cortical states. REM sleep shares many features with 
wakefulness and is therefore also referred to as “paradoxical sleep.” A further 
characteristic of REM sleep is the loss of voluntary muscle control. Based on 
these distinct features, international standards for scoring sleep stages have been 
established which rely not only on EEG but also include electrooculogram (EOG) 
and electromyogram (EMG) criteria (Rechtschaffen and Kales 1968; Silber et al. 
2007). For clinical purposes, this electrophysiological triad is usually extended by 
acquisition of cardiovascular activity (electrocardiogram, pulse oximetry), breath-
ing parameters (thoracic and abdominal movements, effective breathing), snoring, 
and EMG recordings of particular muscle groups (e.g., anterior tibialis muscle). 
This multimodal recording (polysomnography, PSG) represents the standard way 
of registering sleep in humans.

The increasing depth of sleep is conventionally subdivided into stages character-
ized by specific EEG criteria: switching from predominance of high-frequency 
rhythms (gamma, beta, and alpha) during active wakefulness to frequency slowing 
toward theta, delta, and slow oscillations, including distinct graphoelements like 
KCs and sleep spindles (Fig. 16.1).

The stages of NREM sleep are paralleled by increasing arousal thresholds. 
NREM sleep makes up for about 80% of the total sleep time, and about 50% of the 
night is spent in light NREM sleep stage 2.
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b

Fig. 16.1 Sleep EEG and sleep cycles in human sleep. Figure (a) depicts typical EEG activity 
during the different vigilance stages: wakefulness is characterized by high-frequency (gamma, 
beta) activity that is shifting toward slower theta rhythms in sleep stage N1. Theta is also the back-
ground activity during sleep stage N2, which in addition is interspersed with sleep spindles (12–15 
Hz) and K-complexes. Sleep stage N3, also termed slow wave sleep, is dominated by increasing 
amounts of delta activity. During REM sleep, the cortical activation with high-frequency activities 
similar to wakefulness prevails. Figure (b) summarizes the continuous alternation of sleep cycles 
during the course of the night, with typical decreases of slow wave sleep and increases of REM 
sleep across a night

Timing and amount of sleep is regulated both by a homeostatic (increased sleep 
pressure after prolonged wakefulness) and by a circadian process (tendency to fall 
asleep according to constantly fluctuating physiological rhythms). Based on these 
rhythms, paced by the suprachiasmatic nucleus, sleep is organized in progressive 
alternations of the NREM sleep stages N1 to N3 and REM sleep, in cycles lasting 
about 90 min on average. NREM sleep stage N3, also termed slow-wave sleep (SWS) 
because of the prevailing delta slow oscillatory EEG activity reflecting homeostatic 
sleep pressure, predominates in the first sleep cycles. REM sleep episodes prevail in 
the second half of the night (Pace-Schott and Hobson 2002; Carskadon and 
Dement 2017).

Spectral EEG composition during sleep shows characteristic topographic and 
coherence patterns (Achermann and Borbely 1998; Finelli et al. 2001b; De Gennaro 
et al. 2005). A prominent example of typical regional-specific patterns is given by 
the hyperfrontality of slow oscillations. Additionally, homeostatic sleep pressure 
and individual genetic factors influence sleep structure and the spectral power dis-
tribution (Finelli et al. 2001a; Tucker et al. 2007; Ambrosius et al. 2008; Tarokh 
et al. 2011).

Parallel to the changes in neuronal activity, arousal thresholds, consciousness 
states, and the processing of information are dramatically altered during sleep: The 
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reduced responsiveness to environmental stimuli with first signs of sleep oscilla-
tions is partially mediated by attenuated transmission via the thalamus, which serves 
as central input gate for sensory stimuli. Event-related EEG components typical of 
more complex information processing during wakefulness are replaced by wave-
forms with similar behavior and longer latencies (e.g., a P450 component). Some 
large-amplitude ERP components specifically appear in NREM sleep and possibly 
reflect inhibitory processes (for review, see Bastuji and Garcia-Larrea 1999; Colrain 
and Campbell 2007). Still, strongly deviant or highly relevant stimuli may lead to 
awakenings. Contrary to NREM sleep, most late cortical potentials and the ability 
to discriminate complex stimuli are partially restored during REM sleep. The appar-
ent lack of integrating external information in REM sleep is not mediated by thala-
mocortical inhibition but assumed to occur due to altered prefrontal activity and 
generally altered connectivity patterns, possibly dominated by intrinsical loops 
(Llinas and Pare 1991). Inhibition of sensory information has been further linked to 
NREM sleep spindles that can reduce postsynaptic potentials of thalamic neurons. 
External stimulation may elicit KCs as a typical sleep-related expression of stimu-
lus response, giving KCs a special role within the sleep slow waves (Halasz 2016). 
As during the deepening of NREM sleep cortical cells “join” the rhythms, wide-
spread synchronous slow oscillations dominate and thus alter neuronal functionality 
(Steriade 2006).

16.1.2  Imaging Sleep

Various neuroimaging methods do qualify for addressing sleep-specific questions, 
and each method has its own advantages and drawbacks. Several excellent reviews 
condense findings on neuroimaging in sleep and illustrate their impact on sleep and 
brain research and characterization of sleep disorders (Drummond et  al. 2004; 
Dang-Vu et al. 2007; Nofzinger and Maquet 2017). In brief, the first studies applied 
positron emissions tomography with fluorodeoxyglucose (FDG-PET), a radioactive 
tracer that averages neuronal glucose uptake over about half an hour. The long decay 
times allow for application of the tracer in the general setting of a common sleep 
laboratory, with a delayed read-out in the PET scanner during which the subject 
may even be awake. Temporal resolution of the PET imaging procedure was later 
enhanced by application of H2

15O-PET. This tracer also opened the possibility to 
repeatedly scan an individual but introduced the drawback that participants now 
need to sleep inside the PET scanner. A related method, single photon emission 
computed tomography (SPECT), provides similar information as PET and could, 
e.g., document dissociated states of motor arousal and persisting cortical sleep dur-
ing sleepwalking (Bassetti et al. 2000).

As a further method, high-density EEG can reveal important spatial information 
as, e.g., on the site of origin and the traveling of slow oscillations, on experience- 
dependent local alterations in slow-wave activity, or even brain maturation 
(Massimini et al. 2003; Huber et al. 2006; Kurth et al. 2010). Closely related to 
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EEG, magnetencephalography (MEG) measures the magnetic fields induced by the 
electrical neuronal currents which form the EEG response. Temporal resolution of 
MEG is in the millisecond range, but signals from deep brain structures cannot be 
recorded straightforwardly. MEG was applied in sleep research to investigate, e.g., 
REM sleep saccades (Ioannides et al. 2004) or brain rhythms like sleep spindles 
(Klinzing et al. 2016).

Taken together, PET, SPECT, MEG, and high-density EEG studies have consis-
tently confirmed hypotheses from animal studies that sleep is not a single invari-
able brain state but that brain activity strongly depends on sleep stages: compared 
to wakefulness, NREM sleep is characterized by a global decrease in cerebral 
metabolism and blood flow and furthermore by regional CBF decreases in the 
pons, the mesencephalon, thalamus, basal ganglia and basal forebrain, hypothala-
mus, and various other cortical regions including the prefrontal cortex (PFC) and 
anterior cingulate cortex (ACC). For REM sleep, on the other hand, high neuronal 
activity was consistently reported. Activity increased, e.g., in the pontine tegmen-
tum, thalamus, amygdala, hippocampus, and ACC, as compared to both wakeful-
ness and NREM sleep, but less activity compared to wakefulness was reported in 
the dorsolateral PFC, posterior cingulate cortex (PCC), precuneus, and inferior 
parietal cortex.

16.1.3  EEG and fMRI in Sleep Research

In some fMRI experiments in sleeping subjects without using concomitant EEG 
recordings, missing behavioral reactions are being used to indicate that the partici-
pant had fallen asleep. However, unequivocal sleep can only be confirmed with 
concomitant EEG recordings, as sleep is basically defined by EEG criteria. 
Acquisition of simultaneous EEG recordings during fMRI is therefore mandatory to 
differentiate the characteristics of altered brain activity during sleep. Additional 
EOG and EMG recordings are needed to allow for classical scoring of all sleep 
stages according to international guidelines (Rechtschaffen and Kales 1968; Silber 
et al. 2007).

The introduction of nonmagnetic EEG recording systems which can be operated 
in strong magnetic fields, and improvement in EEG postprocessing techniques 
enabled researchers to routinely acquire simultaneous EEG/fMRI at clinical field 
strengths (up to 3 Tesla) or even in ultrahigh field scanners up to 9.4 Tesla (Abbasi 
et al. 2015; Jorge et al. 2015). Thus, it is possible to obtain fMRI data during poly-
somnographically verified, unambiguous sleep.

The higher spatial and temporal resolution of simultaneous fMRI and EEG mea-
surements in comparison to other imaging methods offers impressive new ways to 
target sleep-related phenomena that have so far been restricted to invasive measure-
ments in animal models.

Apart from serving to define the sleep stages, sleep electrophysiology hosts a 
variety of valuable information: characteristic EEG graphoelements like KCs and 

16 Sleep



410

sleep spindles, arousals and fluctuating microstates, changing spectral composi-
tions, evoked potentials, rapid eye movements. Studying the associated brain activ-
ity with fMRI is only feasible by the help of simultaneous electrophysiological 
recordings in sufficient high quality.

Nevertheless, some research questions may still benefit from utilizing each 
method separately:

• Studies focusing only on electrophysiological measures (without fMRI) might 
be preferable when targeting continuous all-night recordings, when studying 
participants other than good sleepers, when studying intervention effects on 
sleep, especially on sleep structure, and finally in sleep disorders, especially 
when increased motor activity is involved.

• Studies focusing on fMRI (without EEG recording) might be preferable when 
targeting specific cerebral functions possibly influenced by sleep, e.g., memory 
consolidation, when studying influences of sleep restriction or sleep deprivation 
(Drummond and Brown 2001; Spoormaker et al. 2012b; Peters et al. 2014) and 
when studying dysfunctional states related to sleep. The interplay of brain areas 
disclosing aspects of the functional significance of sleep may also well be stud-
ied using fMRI without simultaneous EEG acquisition.

16.2  fMRI During Sleep: Technical Challenges

Many aspects of polysomnographic sleep fMRI experiments share common prob-
lems with simultaneous EEG/fMRI recordings in general and are being described 
extensively elsewhere in this book (see the Chaps. 1, 7, 8, and 9). Nevertheless, 
specific difficulties arise when investigating sleep. Depending on hardware and 
software facilities available and linked to specific research questions, several of the 
following topics may arise:

16.2.1  Sleep Recording

16.2.1.1  Multimodality of Sleep Recording
As outlined in the introduction, the proper definition of sleep in humans is based 
not only on EEG but also further on EOG and EMG criteria. This poses additional 
requirements on the hardware facilities, like availability of additional electrodes 
and channels, with special wiring for longer cables. Potential benefit can be gained 
from bipolar recordings, e.g., of EMG recordings. Furthermore, postprocessing 
techniques must offer satisfying solutions to gain high quality of all the electro-
physiological data recorded, as otherwise events of interest cannot be unambigu-
ously distinguished. Effective solutions to eliminate ECG distortions are of major 
importance. Special requirements for high-frequency signals like EMG may be 
needed (van Duinen et al. 2005; Wehrle et al. 2005; van Rootselaar et al. 2007) 
(Fig. 16.2).
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Fig. 16.2 REM EMG. Variance of chin EMG recordings during fMRI scanning is given, as seen 
in three consecutive scans of the same participant. In contrast to the elevated EMG levels during 
NREM sleep (middle, after arousal) and wakefulness (right), unambiguous REM sleep displays 
muscle atonia (left) with only short muscle twitches interspersed (Wehrle et al. 2005, reprinted 
with kind permission of Lippincott, Walters & Kluwers)

16.2.1.2  Referentiation of Recordings
Classic sleep recording or ERP studies tend to use mastoid electrodes as a reference 
site. However, sufficient good quality of recordings at this electrode position may 
turn out to be difficult because of high susceptibility to cardioballistic artifacts. In 
addition, headphones needed for proper sound protection do often cover these elec-
trode sites and may cause subjective discomfort or pain. It seems advisable not to 
use mastoid positions as primary reference during data acquisition. EOG recording 
quality may additionally benefit from using nasion or Fpz derivation for reference, 
instead of the mastoid reference.

16.2.1.3  Extended Recording Time: 
Electrophysiological Recordings

Signal quality of most electrophysiological recording devices usually deteriorates 
over time. Increased sweating may reduce adequate contact of electrodes. Some 
electrode sites strongly deteriorate during extended sessions but cannot be reat-
tached or replaced in sleeping subjects without awakening.

16.2.2  MR Imaging

16.2.2.1  Extended Recording Time: fMRI Recordings
MR image quality is also affected when the scanner is operating for an extended period 
of time. In general, adjustment of field homogeneity by shimming procedures is done 
once at the very beginning of the session, but may degrade over time due to partici-
pants’ movements, but also due to hardware instabilities. Coils are continuously deliv-
ering magnetic field gradients with extremely short rise times and large amplitudes for 
several hours. This leads to temperature instabilities in these coils. Furthermore, the 
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stability of the main magnetic field cannot be guaranteed over an extended period of 
time, leading to intensity drifts in the images. This especially holds true if the helium 
cryogenic compressor of the magnet is transiently switched off during the experiment 
to minimize artifacts on EEG. Depending on imaging parameters, physiological arti-
facts with BOLD activity correlated to cardiac or respiratory noise may be increased 
and should be accounted for, especially for resting state experiments (see below).

16.2.2.2  Movement
Participants’ movements tend to be increased in sleep studies. Body movements are 
a common phenomenon during the process of falling asleep in the form of the com-
mon hypnagogic myocloni, as well as around REM sleep. During these periods, the 
compelling urge to move may lead to arousal and awakening of the subject or dis-
rupt fMRI recordings.

16.2.3  Effect on Participant

16.2.3.1  Participant Not Falling or Staying Asleep
fMRI procedures per se induce highly adverse effects on sleep. Due to the inevitable 
strong head fixation which also forces the participant to stay in a supine position and 
due to the narrow tunnel and noisy environment, many people raise concerns regard-
ing the chance of falling asleep under these conditions. Noisy environments inher-
ently deteriorate sleep architecture, with increases in sleep latency, sleep 
fragmentation, and sleep stage changes, resulting in reduction of total amount of 
sleep. Waxing and waning of drowsiness may easily be obtained during extended 
recording sessions, but consolidated sleep is more difficult to record.

16.2.3.2  Extended Recording Time: Subjective Discomfort
Not only is it difficult to fall asleep but also to stay asleep in the scanner. Even if 
participants manage to reach stable sleep, fMRI sessions cannot be extended end-
lessly to obtain whole-night recordings. The participant’s comfort should be par-
ticularly considered when placing the subject in the scanner, as aching electrodes or 
strong head fixation will possibly make it difficult to fall or to stay asleep. One 
should also be prepared that participants may be disoriented or feel uneasy after 
awakening in the magnet. In such situations, the complex experimental setup ham-
pers rapid removal of participants from the scanner.

16.2.4  Effect on Study Protocols

16.2.4.1  Drop-Out Rate
The issues listed above indicate that the overall drop-out in sleep studies is higher 
as compared to classical fMRI studies performed during daytime. It seems notewor-
thy to point out that one’s expectations regarding the time needed to acquire reason-
able data sets should be adjusted to these limiting factors.
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Fig. 16.3 REM suppression. Effect of fMRI procedures on sleep architecture. Head restrainment 
and scanner noise, applied without interference of magnetic fields, were applied in the sleep lab 
during one half of the night. The figure gives distribution of sleep stages across a whole night of a 
single subject: baseline night without any interference (a), MR simulation during first half (b), and 
second half (c) of the night, indicated by the red bar. Adverse effects especially on REM sleep 
include delayed REM onset and strong fragmentation of REM sleep periods, thus decreasing the 
overall amount of REM sleep to less than 50% of the baseline condition

16.2.4.2  Specific Suppression of Sleep Stages
Drop-out rates also depend on the sleep stage under investigation, because acoustic 
noise not only reduces the overall amount of sleep but predominantly affects spe-
cific sleep stages, namely, REM sleep (Fig. 16.3).

To test the detrimental influence of the scanning procedures on sleep architec-
ture, the fMRI environment was mimicked in a sleep lab situation (Wehrle et al., 
unpublished). For this, the participant’s head was fixated inside a sham MR coil, 
restricting the body posture to supine position, while repetitive scanner noise with 
comparable loudness level was replayed. Such procedures were shown to have 
severe effects on sleep structure, specifically fragmenting and reducing REM sleep. 
REM sleep with concomitant muscle atonia may represent a vulnerable sleep stage, 
highly sensitive to uncomfortable and apparently dangerous environments, and thus 
hard to be acquired in the MR scanner (see also Khubchandani et  al. 2005). 
Furthermore, attempts to move one’s body that often occur before and during REM 
sleep are not possible in the scanner.

16.2.4.3  Selection Bias
So far, subjects who are not able to sleep on their back or who are sensitive to envi-
ronmental disturbances have not been studied at all. Selection of individuals finally 
able to sleep inside the scanner might introduce a bias by recruiting only subjects 
who might display specifically sleep-protective mechanisms.
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16.2.4.4  No Control Over Sleep State
There is no guarantee or control about whether participants do or do not fall asleep 
during scanning or whether the sleep stage aimed at can be scanned for a sufficient 
long time. fMRI studies during sleep thus may face a methodological drawback, 
making it difficult to obtain possible within-subject effects based on repeated mea-
surement as, e.g., in intervention studies.

16.2.4.5  No Whole-Night Recordings
If participants manage to fall asleep in the scanner, usually one or two sleep cycles 
can be recorded. Information on a whole night of sleep with the entire sleep progres-
sion throughout the night as usually obtained in sleep laboratory recordings is 
hardly feasible in fMRI studies.

16.2.4.6  Fluctuation of Microstates
Furthermore, fluctuating microstates within sleep cannot be voluntary influenced. 
Baseline activity is presumably not even stable during wakefulness (Goncalves 
et al. 2006). During sleep, all studies so far point out very prominent BOLD signal 
changes related to even short-lived EEG elements within sleep; thus, the continuous 
change in baseline states must be expected to be increased during sleep. Depending 
on the timescales of fMRI recordings during sleep, this methodological issue should 
be taken into account in analyzing sleep data.

16.2.5  Possible Solutions

16.2.5.1  Habituation
Habituation to noisy or uncomfortable sleeping environments is a common physi-
ological adaptation process and can certainly be extended to the extreme situation 
of sleeping in an fMRI scanner. The participants should be accustomed to the exper-
imental setup to increase the probability of sleep.

16.2.5.2  Sleep Deprivation
One method to counteract the arousing effects of fMRI procedures is to apply sleep 
deprivation previous to the fMRI experiment. The elevated sleep pressure will 
shorten sleep latency and increase sleep continuity. Total sleep deprivation also 
induces changes in the composition of EEG spectral power during recovery sleep; 
however, the spatial distributions as typical for individual participants were shown 
to be basically preserved (Finelli et  al. 2001a). Sleep deprivation further affects 
mood, possibly making subjects more sensitive for any experimental discomfort.

16.2.5.3  MR Recording Techniques
Some of the first fMRI studies used interleaved recordings, where echo planar imag-
ing (EPI) acquisitions are separated by periods of undisturbed EEG (Portas et al. 
2000), or minimized gradient noise by application of pulse sequences avoiding fast 
gradient switching. The BURST method (Hennig and Hodapp 1993) was 
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successfully applied during REM sleep (Lovblad et al. 1999), and a “silent” gradi-
ent fast echo experiment was performed in NREM sleep (Czisch et  al. 2002). 
Unfortunately, a drawback of these MR techniques lies in low signal-to-noise ratios 
as compared to EPI and in restriction to only a few slices due to sequence timing. 
Reduction of the slope of the gradient flanks however reduced MR-induced artifacts 
in the EEG recordings, which allowed correction of gradient artifacts by elimination 
of discrete distorted EEG frequency bins (Hoffmann et al. 2000). With EPI imaging, 
postprocessing correction algorithms are available based on high sampling rates of 
EEG recordings (~5 kHz) synchronized to the MR scanner clock (Mandelkow et al. 
2006). In this way, any artifact caused by the rapid switching of the MR gradients is 
always sampled identically in the EEG. Based on the assumption of a stationary 
gradient artifact and a “random” EEG signal, an artifact template is calculated 
(often using a sliding window) and subtracted from the distorted EEG, resulting in 
an interpretable EEG signal. Commercial EEG systems allow for an online artifact 
correction during the fMRI experiment and thus for a close monitoring of the sub-
ject’s sleep state.

Heart rate and respiration are dependent on the sleep stage and may influence the 
fMRI analysis. Especially in resting state experiments without an external para-
digm, correction for cardiac and respiratory artefacts is needed. A number of correc-
tion strategies have been proposed, based on simultaneously acquired physiological 
signals (Glover et al. 2000), on signal fluctuations outside the grey matter compart-
ment (Behzadi et  al. 2007), or on denoising by excluding ICA components not 
showing the expected frequency profile or localization (Salimi-Khorshidi 
et al. 2014).

16.3  FMRI in Sleep: Results

The following chapter will focus on functional MRI studies performed during 
unambiguous sleep, based on the mandatory simultaneous use of polysomno-
graphic recordings. Related research lines like morphological MRI studies in sleep 
disorders (sleep apnea, narcolepsy, hypersomnia, etc.), and studies utilizing fMRI 
to investigate cognitive functions related to sleep or sleep deprivation performed 
without paralleled EEG measurements will not or only marginally be dis-
cussed here.

16.3.1  Sensory Processing During Sleep

Arousal thresholds are higher during sleep, nevertheless we can be aroused by 
external stimuli—the brain’s capacity to selectively process and evaluate stimuli 
according to their relevance must be preserved to a certain degree. Thalamocortical 
transmission of stimuli is altered during sleep, and combined EEG/fMRI opens up 
the possibility to study the underlying neuronal mechanisms of such changes in 
sensory processing in humans.
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16.3.1.1  NREM Sleep
Several fMRI studies investigated the reactivity of the human brain in sleep. In most 
cases, acoustic stimuli were applied, as they appear best suited to investigate cere-
bral activation to stimulation in sleeping participants.

Acoustic Stimulation
Many studies applied a classic block design with, e.g., 20 or 30 s of continuous 
stimulation versus rest, which yields strong activation of auditory cortex during 
wakefulness.

Investigating the effect of sleep stage 1 on auditory cortex reactivity upon pre-
sentation of pure tones revealed a reduced activation as compared to wakefulness in 
the temporal gyrus during drowsiness and falling asleep (Tanaka et  al. 2003). 
Similarly, publications investigating sensory processing in sleeping children, with-
out concomitant polysomnography, report a positive BOLD response to different 
auditory stimuli in several areas including the bilateral superior temporal gyrus dur-
ing sleep (Wilke et al. 2003; Redcay et al. 2007).

Portas and colleagues investigated the effects of two types of acoustic stimuli: a 
neutral beep tone and the subject’s own name that carries high personal affective 
significance (Portas et al. 2000), using a 17-s interleaved design, with sleep classi-
fied in the undisturbed EEG traces before and after the fMRI blocks. As expected, 
the individual’s own name provoked significantly more complete awakenings than 
neutral tones, confirming the arousing capacity of this stimulus type. The fMRI 
analysis revealed a remarkable similar activation pattern in wakefulness and sleep, 
with bilateral activation of the auditory cortex, thalamus, and caudate nucleus; how-
ever, the interleaved study protocol, lacking EEG information during stimulation, 
implies that transient arousal reactions upon stimulation may also have influenced 
the results. Finally, interaction analysis of stimulus type and sleep state revealed 
increased activation of the left amygdala and left PFC for name versus tone stimuli 
specifically during the trials where participants have been sleeping.

When applying stimuli without arousing or affective components in a 30-s block 
design and with simultaneous EEG information, the auditory cortex showed almost 
abolished positive BOLD response during NREM sleep (Czisch et al. 2002, 2004). 
Surprisingly, a negative BOLD response (NBR) was shown during extended acoustic 
stimulation in sleep, with a maximum amplitude and extent during sleep stage 2. 
Sleep stage 1 was characterized by a transition phase showing intermediate responses 
with positive BOLD signals in the auditory cortex and emerging transmodal NBR in 
the occipital cortex. Analysis of the EEG revealed a concomitant increase in slow-
wave activity (KCs and EEG delta waves) during 30-s stimulus presentation as com-
pared to the resting baseline within light NREM sleep. The amplitude of the NBR was 
best correlated to the relative increase in the KC density during stimulation, whereas 
relative increases in total delta power showed closer association to the spatial extent 
of the NBR. This finding corroborates a presumed decreased neuronal activity, as 
increased sleep depth is characterized by increased EEG slow-wave activity that pre-
sumably reflects prolonged periods of neuronal hyperpolarization. Similar findings 
were obtained during generalized epileptic seizures with slow EEG activity (Fig. 16.4).
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a b c

Fig. 16.4 NREM stimulation. Effects of block-design acoustic stimulation on brain reactivity 
across sleep. Acoustic stimulation for 30sec during wakefulness induces activation of the bilateral 
auditory cortex (a), which decreases during sleep stage 1 (data not shown). During light NREM 
sleep stage 2, continuous acoustic stimulation induces a relative decrease in BOLD signals in 
widespread cortical areas (b), reflecting induced increases in K-complexes (slow EEG activity). 
During slow wave sleep with background slow EEG activity, no further changes are elicited upon 
acoustic stimulation (c) (partly reprinted from Czisch et al. 2004 with kind permission of Blackwell 
Publishing Ltd)

In contrast, the thalamic time curves indicated an initial positive BOLD response 
which, despite ongoing acoustic stimulation, returned to baseline levels after a few 
seconds. This effect also was most pronounced in the very first stimulation epoch, 
suggesting an initial thalamic reaction to sensory stimuli assessing the potential 
meaning of the stimuli, followed by reduced activity of the thalamus probably due 
to habituation processes.

This was further explored in an event-related fashion with an acoustic oddball 
design applying frequent and rare tones during NREM sleep (Czisch et al. 2009). 
Negative BOLD response in several cortical areas including motor cortex and 
amygdala was confirmed for rare tones, accompanied by sleep-specific late negative 
slow deflection in the ERP. Rare tones followed by evoked KCs were however asso-
ciated with a more wake-like activation, indicating that the brain may be transiently 
more responsive preceding a KC, a finding corroborated by the data from Dang-Vu 
et al. (2011). In contrast, tones presented during the presence of EEG spindles elic-
ited hardly any brain activation, well in line with the notion that external signal 
processing is strongly diminished during spindle activity, given their own thalamo-
cortical interplay (Dang-Vu et al. 2011). Spontaneous brain activity like sleep spin-
dles and KCs modifies the response and decoding of sensory input, a finding 
corroborated by altered activity dynamics with increased variance of activity in sen-
sory cortices during NREM sleep (Davis et al. 2016).

Visual Stimulation
Performing fMRI in children frequently requires sedation to minimize movement 
artefacts. To investigate the infant’s ability to regulate their CBF response, Born 
and colleagues used visual stimulation with flashing stroboscopic light in sedated 
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children (Born et  al. 1998, 2002a). Upon stimulation, a consistent NBR in the 
occipital cortex was reported. Negative BOLD response upon sensory stimulation 
has been reported in further studies with sedated children (Martin et  al. 1999; 
Altman and Bernal 2001) and sleeping children (Redcay et al. 2007). Redcay et al. 
also analyzed functional connectivity of the sensory areas and report preserved 
networks during sleep. In 2002, Born and colleagues reported similar cortical stim-
ulation-induced decreases, now investigating healthy adult volunteers with simul-
taneous EEG recordings during natural SWS (Born et  al. 2002b). As during 
sedation, a NBR was observed in the occipital cortex, which was located more 
rostrodorsal as compared to the BOLD increase regularly observed during wake-
fulness. In an independent sample, Born and colleagues successfully studied fur-
ther subjects, now applying H2

15O-PET imaging. They were able to reproduce the 
fMRI results detecting a reduced relative rCBF upon stimulation in the occipital 
cortex. These findings are discussed in the context of neuronal inhibition of the 
visual cortex upon stimulation. As our findings using acoustic stimuli during 
NREM sleep describe a similar reduced BOLD response in visual areas, this reduc-
tion may be regarded as a general or cross-modal sleep protective response inde-
pendent of the modality of the stimuli.

Olfactory Stimulation
Another interesting aspect of sleep that may be investigated with fMRI is the puta-
tive role in consolidation of newly acquired memories. Olfactory stimuli, which 
have been associated to a learning session during daytime, have been applied by 
Rasch and colleagues during subsequent SWS in order to reactivate specific mem-
ories during sleep (Rasch et al. 2007). Olfactory afferents can project directly to 
higher-order regions including the hippocampus and may thus putatively modu-
late hippocampus-dependent declarative memories. Reapplication of olfactory 
stimuli during sleep actually was shown to enhance recall of the hippocampus-
dependent declarative memory, but not hippocampus-independent tasks like fin-
ger tapping. To test whether olfactory-induced reactivations are indeed related to 
increased activity in the hippocampal system, the authors re-exposed subjects to 
the same odor cues in fMRI sessions during SWS following the learning sessions. 
During sleep, renewed application of the olfactory stimulus induced a bilateral 
increase in hippocampal region of interest, which exceeded the relative changes 
found during wakefulness, supporting data from animal studies that patterns of 
hippocampal neuronal activity involved during learning are reactivated in 
the SWS.

16.3.1.2  REM Sleep
Most studies so far investigated the processing of external stimuli during stages of 
NREM sleep. Neuroimaging as well as EEG recordings indicate high thalamocorti-
cal activity in both wakefulness and REM sleep; nevertheless, sensory integration of 
external stimuli does not occur during REM sleep (Maquet 2000; Hobson and Pace- 
Schott 2002). To study the altered processing of external stimulation during REM 
sleep with fMRI, acoustic stimulation using non-arousing stimuli was applied in 
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healthy subjects (Wehrle et al. 2007). When contrasting acoustic stimulation versus 
the resting baseline in unambiguous REM sleep, we observed two distinct patterns 
of activity when separating the fMRI sessions depending on the number of con-
comitant rapid eye movements: during the tonic REM sleep background with the 
classical high-frequency EEG and low muscle tone, but with only a limited number 
of phasic rapid eye movement bursts, the cortical activation obtained upon acoustic 
stimulation resembled the regular positive BOLD response as observed during 
wakefulness, with however strongly reduced BOLD amplitudes compared to the 
ones obtained to wakefulness. As opposed to these findings, acoustic stimulation 
during phasic REM sleep epochs with a high number of rapid eye movements 
showed a diffusive negative BOLD response including the thalamus. No activation 
of the auditory cortex was observed. This is in line with evoked potential studies 
during human REM sleep, where evoked responses are strongly suppressed and 
may differ depending on the actual presence or absence of rapid eye movements 
(Sallinen et al. 1996; Takahara et al. 2002). In addition, a parallel reduction in the 
number of rapid eye movements and in thalamocortical signal intensity during 
external stimulation was observed. Investigation of temporal correlations of BOLD 
activity to time curves derived from thalamic regions of interest suggested a highly 
synchronized activity of thalamocortical areas specific during periods with rapid 
eye movements (Fig. 16.5).

These findings support an increased thalamocortical intrinsic activation associ-
ated with phasic REM sleep bursts. The high activity of the brain especially during 

Fig. 16.5 REM 
stimulation. Cortical 
activation correlated 
to—supposedly intrinsic—
thalamic activity associated 
to phasic REM periods. 
During times of high 
number of rapid eye 
movements, the brain’s 
reactivity to external 
stimulation is strongly 
suppressed (reprinted from 
Wehrle et al. 2007 with 
kind permission of 
Blackwell Publishing Ltd)
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phasic REM sleep may be regarded as a functionally isolated “closed loop” as pro-
posed by Llinas and Pare (1991), reflecting an intrinsically highly active brain state. 
These phasic periods are embedded in a tonic REM sleep background with increased 
capacities to process external stimulation.

16.3.2  EEG-Informed fMRI

fMRI was successfully applied to study unperturbed sleep, without applying any 
additional external stimulation. The first studies were an important milestone as they 
have proven the general applicability of fMRI measurements during sleep by repli-
cating and extending previous findings based on using radioactive tracer- dependent 
neuroimaging. The fMRI approach allows for improved resolution and better classi-
fication of sleep substates and associated neuronal activities—especially important 
when single EEG graphoelements like spindles or delta oscillations are investigated.

16.3.2.1  Falling Asleep
Staging of sleep according either to the older Rechtschaffen and Kales (1968) scor-
ing guidelines or the new AASM classification (Silber et al. 2007) represents the 
gold standard in sleep research. Kaufmann et al. (2006) described specific activation 
changes in the process of falling asleep by setting the BOLD response in relation to 
the respective sleep stages.

Technical limitations restricted the MR repetition time to a rather long duration 
of 10s but thus minimized cardiac artefacts in the fMRI analysis as compared to 
faster repetition rates (Kaufmann et al. 2006, 2007; Laufs et al. 2007).

Consistent with the majority of previously published findings, the cerebral activ-
ity as reflected in the BOLD signal decreased throughout NREM sleep as compared 
to wakefulness. The signal changes comprised cortical regions, the limbic lobe, the 
thalamus, the caudate nucleus, and midbrain structures such as the hypothalamus. 
In extension of previous reports, the fMRI approach allowed for a more detailed 
analysis of sleep stage-specific patterns which are involved in the successive discon-
tinuation of wakefulness, suggesting that a synchronized sleeping state can only be 
established if these regions interact in a well-balanced manner: Structures with 
reduced activation as compared to wakefulness already during sleep stage 1 were 
the anterior thalamic nuclei, the PCC, and the cuneus. In addition, during sleep 
stage 2, which is usually associated with the loss of self-conscious awareness, signal 
reduction was obtained in frontal and more ACC areas, along with the inferior pari-
etal and superior temporal gyrus, the insula, and dorsal thalamic nuclei (Fig. 16.6).

Consolidated SWS showed a further reduction of activity in the frontal and infe-
rior parietal gyrus, the insula, the caudate nucleus, and the ACC. This cascade of 
successive downregulation during the consolidation of NREM sleep may be a pre-
requisite for establishing deep sleep.

By relating the fMRI data during NREM sleep to the spectral EEG power in the 
alpha frequency range, activity in the thalamus was obtained. This effect is well in 
line with neuroimaging correlates of alpha activity found during wakefulness 
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Fig. 16.6 NREM BOLD decreases. Effect of sleep stages according to Rechtschaffen and Kales 
(1968) on relative BOLD signal changes during falling asleep. Transition from wakefulness to 
sleep stage 1 is accompanied by signal decreases in the thalamus (a). Further deepening of sleep 
toward sleep stage 2 is accompanied among other by prominent decreases in anterior cingulate 
areas (b), which increases and includes further cortical areas when proceeding to slow wave sleep 
(c) (Kaufmann et al. 2006; reprinted with kind permission of Oxford University Press)

(Goldman et al. 2002; Moosmann et al. 2003; Feige et al. 2005). Signal decreases in 
occipital regions were often reported associated to alpha rhythms in wakefulness, 
but an equivalent signal decrease when evaluated against the EEG background of 
sleep could not be obtained.

16.3.2.2  Graphoelements: Spindles, K-Complexes, 
and Slow Oscillations

Apart from relating BOLD signals to sleep stages, fMRI allows for studying BOLD 
correlates of characteristic graphoelements within sleep in event-related statistical 
designs. Although cerebral activity is generally decreased during NREM sleep as 
compared to wakefulness, distinct regional and temporal activation with respect to 
the sleep stage-specific baseline can be observed.

Schabus and colleagues investigated the cerebral correlates of sleep spindles, tran-
sient oscillations in the beta frequency range defining NREM sleep stage 2 (Schabus 
et al. 2007). Two distinct types of spindles with presumably functional differences 
have been described earlier, namely slow (<13 Hz) and fast (>13 Hz) spindles, with a 
predominance over frontal and centro-parietal areas, respectively (Fig. 16.7).

The authors first identified an activation pattern common for both spindle types, 
comprising the thalamus, ACC, left insula, and the bilateral superior temporal gyrus. 
When separating the spindle types, activity related to slow spindles largely corre-
sponded to the common pattern, including activation of the superior frontal gyrus. 
In contrast, fast spindles showed additional recruitment in the supplementary motor 
area, sensorimotor, and mid-cingulate cortex. Differential comparison to slow spin-
dles revealed increased responses for fast spindles in the left hippocampus, the 
orbital and middle frontal, mesial PFC, sensorimotor cortex, and anterior insula. 
Peak activation for slow spindles was located in the mediodorsal nucleus of the 
thalamus, and for fast spindles in the ventral posterior and pulvinar thalamic nuclei, 
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Fig. 16.7 NREM spindle correlates. BOLD correlates to onset of slow (a) and fast (c) sleep 
spindles and conjunction of both spindle types (b). Note that thalamic activation characterizes both 
types of spindles, whereas the fast spindle type is associated with an activation in cingulate and 
somatosensory cortical areas (Schabus et al. 2007; reprinted with permission, Copyright (2007) 
National Academy of Sciences, U.S.A.)

that anatomically project to sensorimotor and posterior parietal cortices. Thalamic 
activation in both spindle types is well in line with neurophysiological evidence that 
spindles are generated in the thalamus and arise by inhibition of thalamocortical 
neurons and post-inhibitory rebound spiking in thalamocortical cells in large corti-
cal regions (Schabus et al. 2007; Andrade et al. 2011). Interestingly, hippocampal- 
cortical functional connectivity was found strongest during NREM sleep stage 2 
and within sleep stage 2 mostly increased during sleep spindles (Andrade et al. 2011).

Spindle-coupled reactivation of brain activity as linked to previously declarative 
learning tasks can be traced during NREM sleep (Bergmann et al. 2012). Memory 
network connectivity increases during NREM sleep also could be found to correlate 
with following memory performance (van Dongen et  al. 2011). BOLD analysis 
linked to K-complexes suggests some degree of information processing by activa-
tion of sensory areas during KCs, however with limited involvement of anterior 
insula. This may reflect the reactive, information processing as well as the sleep- 
protective role of KCs (Jahnke et al. 2012).

Animal cellular data show that NREM sleep is organized by slow oscillations 
(SO), derived from periods with intense neuronal firing alternating with hyperpolar-
ization phases (Steriade 2006). SOs could also be evidenced in humans (Achermann 
and Borbely 1997; Massimini et al. 2003). Dang-Vu and colleagues investigated the 
BOLD response associated with SO (Dang-Vu et  al. 2008). Negative BOLD 
responses were not reported. Positive brain responses associated with SO could be 
verified in subcortical structures, including the brainstem, hypothalamus, and thala-
mus. Significant activations were also located in primary and associative neocortical 
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areas and in limbic regions, including the hippocampus. These findings again high-
light core structures underlying the organization of NREM sleep phenomena.

16.3.2.3  REM Sleep
Circadian timing in the early morning hours and suppressing effects of the study 
circumstances as outlined in the introduction are among the main reasons why fMRI 
studies of REM sleep are less often performed.

Nevertheless, in fact the first study using truly combined EEG and fMRI meth-
ods in sleep research published 1999 by Lovblad and colleagues reported REM 
sleep data (Lovblad et al. 1999). The authors investigated BOLD signal changes 
during REM sleep as compared to the NREM background preceding the REM sleep 
episode. Technically, they applied a silent BURST sequence to minimize acoustic 
noise and gradient induced EEG artifacts, which allowed for continuous sampling 
of data over several hours. Muscle atonia could not be reliably detected and sleep 
stage classification was modified, focusing on rapid eye movements and absence of 
KCs to distinguish REM sleep from sleep stage 2 and missing responses to calling 
the subject’s name via the intercom system. In their study, Lovblad et al. success-
fully examined two (out of a total of five) participants during REM sleep. An 
increased activation of the occipital cortex and reduced activity in the frontal lobes 
during REM sleep as compared to the BOLD amplitudes during NREM sleep was 
reported. These findings are in agreement with previous PET studies highlighting a 
deactivation in the frontal cortex and an increased activation in secondary, but not in 
primary visual cortex during REM sleep (Maquet et al. 1996; Braun et al. 1997, 
1998; Nofzinger et al. 1997).

Later, REM sleep data could also be acquired using a regular EPI protocol 
(Wehrle et al. 2005, 2007), with unambiguous REM sleep based on muscle atonia 
and presence of rapid eye movements (Fig. 16.8).

a b

Fig. 16.8 REM rapid eye movement correlates. BOLD activity correlated to rapid eye movements 
during REM sleep. Within REM sleep, the number of rapid eye movements per fMRI volume was 
calculated. BOLD signal intensity corresponding to eye movements in REM sleep shows activa-
tion in bilateral posterior thalamus and in occipital areas; midline view (a), axial view (b) (Wehrle 
et al. 2005; reprinted with kind permission of Lippincott, Walters & Kluwers)
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BOLD activation in direct temporal relationship to rapid eye movements within 
REM sleep revealed bilateral activation in the thalamus and the secondary visual 
cortex, a pattern remarkably consistent with PGO activity in animal models. PGO 
waves have long been described in animal models using invasive techniques and 
have been proposed to precede eye movements and to be the generators of REM 
sleep in mammals.

Taken together, these findings emphasize that spontaneous sleep is not a state of 
brain quiescence but organized in exact progressions of highly specific brain net-
work activities.

16.3.2.4  Lucid REM Sleep
Simultaneous recording of EEG and fMRI during sleep also opens the possibility to 
assess brain activity related to specific dream contents. Dreams are defined as men-
tations occurring mainly (but not exclusively) during REM sleep and which are 
remembered and can be reported by the sleeper after awakening. Previous data as 
derived from PET allow to set the REM sleep-specific pattern of regional brain 
activity into relation with the often bizarre and emotional content of typical dreams 
(Desseilles et al. 2011). However, the precise timing of dream events is normally 
concealed in an experimental setting, making it extremely difficult to analyze cor-
relations of dream imaginary with fMRI BOLD signal fluctuations. Horikawa et al. 
(2013) investigated dream-like mentations during the sleep-onset (hypnagogic) 
period testing for the similarity of the hypnagogic BOLD signal fluctuations to the 
awake response to a set of about 20 prerecorded visual items. They exploited a 
machine learning decoder trained on a number of brain regions relevant for visual 
processing. While their analysis revealed an accuracy of 70–80% for decoding the 
sleep imagery, it should be noted that most events were actually sampled during the 
sleep-wake transition period S1.

In a series of experiment in lucid dreamers, we studied aspects of REM sleep 
mentations and sleep consciousness. Lucid dreaming is defined as a state in 
which the subject gains insight into his state of mind during dreaming and may 
alter dream contents. Notably, lucid dreaming is a trainable skill. From an experi-
mental perspective, lucid dreaming is of interest since it allows to establish 
means of communication with the sleeping subjects, e.g., by predefined eye 
movements. We asked lucid dreamers to dream about hand clenching during their 
lucid dream and to communicate the change of the hands with eye movement 
cascades (Dresler et  al. 2011). The experimental design therefore copied an 
extremely stable fMRI motor task in wakefulness, but shifting the imagined exe-
cution of the hand movements into the dream state. We observed a similar pattern 
of brain activation both during the imagined tasks execution during wakefulness 
and in lucid REM sleep, showing for the first time the functional representation 
of dreamed motion.

Lucid dreaming can also be exploited to study specific aspect of consciousness. 
Conscious awareness can be classified in three subtypes (Cicogna and Bosinelli 
2001): the phenomenal experience of objects and events, the meta-awareness of 
the mental life, and self-awareness. As compared to common REM sleep dreams, 
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lucid dreaming is defined as a state of meta-awareness or higher-order conscious-
ness. Using this concept, we investigated differences in BOLD signal amplitudes 
related to the onset and the fading of a lucid dream, as compared to the regular 
background of REM sleep (Dresler et  al. 2012). Doing so, a network of brain 
regions showed higher activity in lucid dreams, namely, the bilateral precuneus, 
cuneus, parietal lobules, and prefrontal and occipitotemporal cortices activated. 
Our data complement reports showing increase EEG gamma band power in 
fronto-lateral brain regions upon onset of lucidity (Voss et al. 2009). Thus, lucid 
dreams represents itself as a state of proper REM sleep augmented be local and 
distinct increases of brain activity. In addition, the brain regions identified in our 
fMRI study show some remarkable resemblance to brain regions which under-
went strongest volumetric expansion during evolution (Van Essen and Dierker 
2007). Following the interpretation of lucid dreaming representing a state of 
higher-order consciousness, it may be speculated that higher order consciousness 
is a defining human feature. Our studies on lucid dreaming may also have implica-
tions for psychiatric research. The differences observed between REM sleep and 
lucid dreaming resemble differences between psychotic patients and healthy con-
trols (Dresler et al. 2015) (Fig. 16.9).
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Fig. 16.9 Lucid dreaming. Activity related to lucid dreaming. Color-coded clusters represent 
areas significantly activated during lucid epochs in REM sleep (pFDR < 0.005): left hemisphere (a), 
right hemisphere (b), midline view (c). Predicted (green) and fitted (black) fMRI data of the peak 
activation in the right precuneus, showing combined analysis of two independent lucid epochs in a 
single subject (boxed) (d) (Dresler et  al. 2012; reprinted with kind permission of Oxford 
University Press)
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16.3.3  Network Analysis

Today, resting state fMRI is used for detecting spontaneous low-frequency BOLD 
signal oscillations (<0.1 Hz), which not only occur during active wakefulness but 
also persist during human sleep and other states of impaired consciousness. Using 
either seed based cross-correlation analysis or independent component analysis 
(ICA), specific brain networks can be detected. Network analyses such as a graph 
theoretical approaches enable us to break down the complex intra- and inter- network 
interplay into a handful of markers characterizing the brain’s state. Not only the 
static functional connectivity but also its temporal features have recently been 
investigated.

One of the most discussed resting state networks is the default mode network 
(DMN), being related to autobiographical memory retrieval, day dreaming, and 
other mentations which are directed to internal states (Gusnard et al. 2001; Raichle 
et al. 2001; Spreng and Grady 2010).

Falling asleep and passing through different NREM sleep stages not only is 
accompanied by reduced sensory processing but also by gradually decreased con-
sciousness and self-awareness. Studying the DMN across sleep stages thus provides 
interesting insights into the sleep induced state of altered consciousness and allows 
for comparison with pharmaceutical or pathological induced loss of consciousness. 
Studying young healthy subjects across the first sleep cycle of the night, continu-
ously acquiring resting state fMRI data and polysomnography, showed a gradual 
decline of the DMN network integrity, with various brain regions losing their inte-
gration in the DMN (Sämann et al. 2011). The first regions to drop out of the DMN 
are the parahippocampal gyrus and the thalamus, already at light sleep stages 1 and 
2. The long range FC between the posterior cingulated cortex (PCC) and retrosple-
nial cortex (RspC), and the anterior cingulated cortex (ACC) progressively declines 
as well, while other brain regions, such as the inferior parietal lobule, show stable 
incorporation into the DMN. These findings demonstrate that functional connectiv-
ity strongly depends on the vigilance state and may cover a large dynamic range 
(Fig. 16.10). Similar results have been found for intrinsic networks in adults and in 
children (Horovitz et al. 2008, 2009; Larson-Prior et al. 2009; Chow et al. 2013; 
Manning et al. 2013; Wilson et al. 2015), with increases in variability during sleep, 
and however slightly varying results for the—less stable?—transition to sleep and 
light sleep (Horovitz et al. 2009; Larson-Prior et al. 2011). Even shorter than usual 
analysis epoch lengths of 30 s appear sufficient for detection of DMN alterations 
during sleep (Wilson et al. 2015). It should be noted that some authors also reported 
negative findings (Koike et  al. 2011). Investigation of thalamocortical and intra-
thalamic functional connectivity shows specific thalamocortical increases only for 
sensorimotor connections and increases intra-thalamic connectivity during sleep 
(Hale et al. 2016). The decline in RSN integrity has recently been modeled with 
consistent results, showing that while occurrence of local slow-wave activity at 
sleep onset due to reduced cholinergic input may not yet affect RSN, at very low 
levels of cholinergic modulation (deep sleep), global slow waves arise and RSN 
merge and become undifferentiated (Deco et al. 2014).
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Fig. 16.10 DMN in sleep. Sleep stage-dependent areas of the DMN and its anti-correlated net-
work (ACN). (a) Clusters represent areas with significant main effect of sleep stage on focal DMN 
strength (Pcluster.FWE < 0.05). Graph bars represent the strength (contrast estimates) for each sleep 
stage (left to right: wakefulness (W), stage N1, stage N2, and SWS) as extracted from the peak 
voxels; horizontal lines indicate significant post hoc comparisons as assessed by T contrasts. Note 
different dynamics and different final level reached. (b) Highly similar areas as compared with (a) 
appeared in the comparison of W against sleep (combined N1, N2, and SWS). Note the additional 
appearance of two significant clusters in the posterior ACN nodes, reflecting the increase from 
negative Z values (anticorrelation) during wakefulness to vanishing contribution during 
SWS.  Graph bars represent average contrast values extracted from the bilateral IPL cluster as 
defined in wakefulness. Note stable contribution of these nodes to the DMN across the NREM 
sleep stages (Sämann et al. 2011; reprinted with kind permission of Oxford University Press)

Interestingly, the uncoupling of DMN as during NREM sleep is being “recou-
pled” during REM sleep. Higher-order association areas, including DMN regions, 
and sensorimotor areas become anticorrelated and fluctuate rhythmically (Chow 
et al. 2013).

Using graph theoretical analysis, the alterations in the whole-brain functional 
organization during NREM sleep were studied (Spoormaker et al. 2010). Based on 
an atlas segmentation of the brain, 90 cortical and subcortical structures and their 
interplay were studied using a maximum overlap discrete wavelet transformation to 
the ROI’s functional time series. Overall network metrics such as small-world orga-
nization (a marker of network efficiency) revealed significant differences between 
sleep stages (SWS > wakefulness > S1/S2), mainly driven by increased local clus-
tering and a regular network structure in SWS and a shift toward a more random 
structure in S1/S2. Thalamocortical connectivity was drastically reduced upon sleep 
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onset, while cortico-cortical connectivity initially increased (similar to Larson-Prior 
et al. 2011), but broke down in subsequent SWS. Especially long-range connections 
were affected rather than local short connections. This also became evident in a 
hierarchical cluster analysis on functional connectivity (Spoormaker et al. 2012a). 
Here, disintegration of a frontoparietal network again starts in stage 1, whereas in 
SWS the number of local submodules increased. IPL, although persisting in the 
DMN during sleep, was found to be less connected to the frontal cortex in sleep. 
Intra-thalamic synchronization stayed high during sleep stage 1, while the thalamo-
cortical connectivity fades (Larson-Prior et  al. 2011; Spoormaker et  al. 2012a). 
These data thus reveal a transition from a globally integrated functional network 
present during wakefulness toward a more disintegrated network falling apart into 
local submodules in deep sleep. Similar, functional segregation of a given system 
into subsystems was reported for several RSN upon sleep (Boly et al. 2012). This 
configuration in SWS may support optimal local processing of information in seg-
regated modules, likely related to memory consolidation processes. In addition, a 
decline in frontoparietal temporal autocorrelation during sleep was reported, extend-
ing the spatial findings of DMN disintegration described above to temporal aspects 
(Tagliazucchi et  al. 2013). Timing of information transfer within the networks, 
separated for higher- and lower-frequency activity, shows a reversal of cortical- 
hippocampal signaling in slow-wave sleep, well in line with a two-stage reciprocal 
communication underlying memory consolidation (Mitra et al. 2016). Besides, even 
within sleep stages, functional connectivity is not stable: Early 12-min segments in 
an SWS epoch showed smaller functional DMN connectivity than later ones 
(Watanabe et al. 2014).

These features of the brain network can be interpreted in the light of reduced 
consciousness during sleep: Impaired thalamocortical connectivity may suppress 
transmission of sensory input, while reduced general connectivity in deep NREM 
sleep limits information integration across remote brain regions. Frontoparietal 
clusters, being part of strongly interconnected hubs in the network during wakeful-
ness enabling cognitive functions, also reduced the functional connectivity. Setting 
these results in perspective with other studies on altered states of consciousness, 
remarkable similarities in the brain network organization become evident: Subjects 
undergoing propofol-induced loss of consciousness also show a breakdown of the 
long-range PCC/ACC functional coupling and integration of the thalamus into the 
brain network as in sleep (Boveroux et al. 2010; Schröter et al. 2012). Even more 
compelling, patients suffering from different grades of trauma-induced loss of con-
sciousness (minimal responsive state, vegetative state, and coma) show a similar 
decline in the DMN architecture, with gradually reduced PCC/ACC functional con-
nectivity correlating with the patient’s impairment (Vanhaudenhuyse et al. 2010).

It should be noted that alterations in functional network organization are not 
restricted to sleep per se but can also be provoked by increased sleep pressure: 
Reduced connectivity in DMN and ACN was reported after partial as well as after 
total sleep deprivation for one night (Sämann et al. 2010; De Havas et al. 2012). 
Sleep deprivation for 36 h induced decreased thalamo-hippocampal and thalamo-
cortical connectivity (Shao et  al. 2013). Similarly, daytime sleepiness correlated 
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with reduced thalamocortical and DMN connectivity: functional connectivity (Ward 
et al. 2013; Killgore et al. 2015). Finally, patients suffering from primary insomnia 
show increase DMN connectivity in a number of connections during wakefulness, 
as compared with good sleepers (Regen et al. 2016).

In summary, an influence of vigilance fluctuations on RSN organization is well 
documented. The fact that not only sleep but even increased sleepiness alters RSN 
connectivity is alarming: differences observed, e.g., in patient populations as com-
pared with healthy controls might be caused or modulated by comorbid sleep disor-
ders rather than signifying a feature of the primary disorder. This potential confound 
should always be considered. Ideally, resting state fMRI experiments should be 
augmented by concomitant measures of the vigilance levels, such as EEG or pupil-
lometry (Schneider et al. 2016). Or, post hoc analysis of RSN data may be used to 
evaluate if the subject did fall asleep during the run. Support vector machine classi-
fiers based on resting state fMRI in large data sets collected in polysomnographi-
cally verified sleep can be applied (Tagliazucchi et al. 2012; Altmann et al. 2016). 
The importance of such a post hoc test for vigilance has been impressively docu-
mented by occurrence of sleep in a third of over 1000 tested RSN experiment which 
were recorded during wakefulness (Tagliazucchi and Laufs 2014).

16.3.4  Animal Data

Our knowledge of the neurophysiology of sleep is for the most part based on experi-
ments in animal models, where invasive protocols can be applied to derive detailed 
knowledge of the cellular mechanisms underlying sleep.

However, applying fMRI during natural sleep in animals is an extremely demand-
ing task. Usually, animal welfare considerations allow application of MRI only in 
anesthetized animals. Sedation is also needed to minimize movements in addition to 
stereotactic fixation of the animal’s head. Anesthesia of course prevents applicabil-
ity of fMRI of complex behavioral tasks which can only be measured in conscious 
and cooperating animals.

To study unsedated animals, lengthy training periods are necessary to habituate 
the animal to the experimental fMRI environment. This even more holds true for 
natural sleep, during which the animal needs to relax and fall asleep in the restricted 
and extremely loud experimental setup. These considerations render the application 
of fMRI in animal models less attractive, especially in rodents where invasive 
recordings and histological analysis are easily feasible.

Nevertheless, Khubchandani and colleagues managed to conduct the only fMRI 
study on natural sleep in animals so far (Khubchandani et al. 2005). The authors 
used nonmagnetic silver wire electrodes, implanted on the skull of rats using poly-
carbonate screws for EEG measurements sewn to the muscle of the external can-
thus of the eye for EOG or implanted in the neck muscle used for 
EMG.  Sleep- wakefulness scoring was performed differentiating low-frequency 
EEG with decreased EOG and EMG amplitudes as criteria for sleep, whereas high-
frequency EEG with concomitant increased EOG and EMG classified 
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wakefulness. To immobilize the animal during the MR procedure, a mold of dental 
cement was attached to the skull and fixed in the animal holder during measure-
ments. Training consisted of habituation to the scanner noise as well as to the body 
restraint up to several hours. Surprisingly, no gradient-induced artifacts or influ-
ences of the static magnetic field on the electrophysiological recordings have been 
reported at 4.7 T (Khubchandani et al. 2003). Prior to the final sleep recording, the 
rats were sleep deprived for 24 h. The authors applied a gradient echo fast imaging 
method, restricted to 3 planes passing the preoptic area. Based on image subtrac-
tion, the authors describe an increase in the signal intensities in the medial preoptic 
area during NREM sleep, interpreted as sleep-inducing action of this area. More 
consistent with imaging data from humans, concomitant signal decreases in a fron-
toparietal network as compared to images obtained during wakefulness were 
reported.

Recent experiments in rodent tried to circumvent the problems of fMRI studies 
during natural sleep in animals and investigated “sleep-like” states under pharma-
ceutical sedation using, e.g., propofol (Hudetz et  al. 2016; no EEG) or urethane 
(Zhurakovskaya et al. 2016), as a proxy for natural sleep. Investigating differences 
between slow-wave activity and fast-wave activity under urethane sedation in rats, 
and by using the animal’s respiration rate as an assay of current brain state, Wilson 
et al. (Wilson et al. 2011) report FC between the piriform cortex and both limbic and 
neocortical areas to be enhanced during slow-wave states. These results are in con-
tradiction to the results described above in human sleep.

16.4  Summary and Outlook

The first pioneering works applying simultaneous electrophysiological readings for 
characterizing sleep in the MR environment were published as early as 1999 
(Lovblad et al. 1999; Portas et al. 2000), mostly using stimulation protocols. The 
focus then shifted toward neural correlates of specific graphoelements within sleep 
stages like sleep spindles, slow oscillations or rapid eye movements in an event- 
related fashion, thus further exploiting the high temporal resolution of electrophysi-
ological recordings and the benefits of fMRI methodology (Dang-Vu et al. 2005; 
Wehrle et al. 2005; Schabus et al. 2007). Recently, focus advanced toward network 
analyses. This progress was made possible by constantly improved EEG hardware 
components allowing for multimodal recordings, by increased capacities of modern 
MR systems for continuous data collection, and by advanced online and postpro-
cessing algorithms simplifying classification of sleep stages during the fMRI 
experiment.

In future times, hardware and software developments will further enable research 
groups to apply more demanding experimental designs, with, e.g., fast and silent 
fMRI in ultrahigh field scanners.

fMRI with its intrinsic methodological advantages will essentially contribute to 
sleep research by targeting specific research questions. Functional changes that 
putatively differ across lifetime might also be addressed by neuroimaging methods 
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in the future. The proposed role of sleep for daytime functioning like memory con-
solidation and neuronal plasticity may be further disclosed, probably differentiating 
processes based on NREM and REM sleep-specific networks. Additional lines of 
research include new insights by modulation of sleep in the form of sleep depriva-
tion and of pharmacological modulation of sleep stages. Access to information on 
sleep and sleepiness during fMRI will help to disentangle signal fluctuations based 
on vigilance alterations from direct effects of interventional influences. Direct 
assessment of cerebral correlates linked to sleep-related disorders in the uncomfort-
able experimental environment may especially benefit from improved noise cancel-
lation methods and less restrictions to body posture. Future studies will bring new 
insights into spontaneous brain activity and into successful or dysfunctional cere-
bral compensation processes associated to sleep-related disturbances.
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17EEG–fMRI in Adults with Focal Epilepsy

Umair J. Chaudhary, Matthew C. Walker, 
and Louis Lemieux

17.1  Introduction

The application of EEG-correlated fMRI (EEG–fMRI) in adults with focal epilepsy 
has two principal aims: to improve our understanding of the generators of epilepti-
form activity and to improve the surgical treatment of epilepsy. EEG–fMRI has 
been used to study scalp interictal epileptiform discharges (IEDs) (Coan et al. 2016; 
Kobayashi et  al. 2006b; Markoula et  al. 2018; Pittau et  al. 2017; Salek-Haddadi 
et al. 2006; Thornton et al. 2011; Zijlmans et al. 2007) and seizures (Abreu et al. 
2005; Chaudhary et al. 2012a; Di Bonaventura et al. 2006b; Diekmann and Hoppner 
2014; Donaire et al. 2009a; Donaire et al. 2009b;Federico et al. 2005a; Fernandez 
et  al. 2011; Hamandi et  al. 2006; Kobayashi et  al. 2006c; Marrosu et  al. 2009; 
Morano et al. 2017; Morocz et al. 2003; Salek-Haddadi et al. 2002; Salek-Haddadi 
et al. 2009; Sierra-Marcos et al. 2013; Thornton et al. 2010b; Tyvaert et al. 2008; 
Tyvaert et al. 2009; Usami et al. 2016; Vaudano et al. 2012; Vaudano et al. 2013). 
The relative abundance of IEDs (and the lack of associated clinical manifestations) 
drove the initial development of EEG–fMRI with a view to studying the fMRI sig-
nal changes associated with epileptic activity (Hill et al. 1995; Ives et al. 1993). 
Previously, fMRI had been employed to study the haemodynamic correlates of sei-
zures, relying on visual observation of the patient for interpretation of the BOLD 
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signal changes. Ictal BOLD changes are, however, generally widespread, long last-
ing and difficult to interpret, particularly without concurrent EEG (Detre et al. 1995; 
Jackson et al. 1994; Krings et al. 2000; Salek-Haddadi et al. 2003a).

Analysis of scalp IEDs is not without its problems. Scalp IEDs may reflect prop-
agated activity rather than the source. Furthermore, even when the scalp IEDs are 
representative of the source or sources, there are no unique solutions to the genera-
tor location problem, and such solutions depend upon critical assumptions (such as 
the number of sources). EEG–fMRI is free from such assumptions and may there-
fore give a more accurate indication of the source or sources of IEDs.

EEG–fMRI may also help with surgical evaluation, and this chapter will mainly 
deal with this subject. The assessment of curative resective surgery is aimed at identify-
ing the epileptogenic zone (Rosenow and Luders 2001). This relies upon the conver-
gence of presurgical investigations, including clinical history, seizure semiology, 
long-term video EEG, neuroimaging and neuropsychometry. Discordance between 
these may lead to a lesser chance of surgical success and the need for further investiga-
tion (e.g. further non-invasive imaging, invasive EEG recordings). The relative weight 
that is lent to each of these investigations varies depending on the lobar localisation and 
the pathogenesis of the epilepsy and in many instances is either controversial or unde-
termined. The role of EEG–fMRI in the presurgical assessment of people with focal 
epilepsy has expanded over the last decade; there have been studies specifically 
addressing this issue and these are discussed below. One of the main criticisms that can 
be levelled at EEG–fMRI (indeed a criticism that can be levelled at other investigations 
such as magnetoencephalography) is that majority of studies to date have assessed 
interictal rather than ictal activity. This raises two questions: what does interictal activ-
ity represent, and how does it relate to the epileptogenic zone? We will therefore 
address the nature of an interictal spike and the relevance of interictal activity to presur-
gical evaluations before discussing in detail the possible roles of EEG–fMRI.

Up to now, most ictal EEG–fMRI data have been obtained due to the fortuitous 
occurrence of a seizure or seizures in the course of what was intended to be interic-
tal EEG–fMRI investigation, with the exception of few studies with strict selection 
criteria on seizure frequency and the use of activation procedures in patients with 
reflex epilepsy. Ictal EEG–fMRI offers the chance to address the main limitation of 
previous studies into the BOLD changes that occur in conjunction with spontaneous 
seizures, namely the lack of EEG. However, the technique is limited by the relative 
rarity and unpredictability of seizures, time constraints and safety considerations 
due to the confined space of the magnet bore and limited access.

As described in the Chap. 12, regions of BOLD increase or decrease related to 
events of interest such as epileptiform activity can be identified using EEG-derived 
linear models of the fMRI time course, in what is effectively a correlation analysis. 
The main steps in this approach are EEG event detection and classification; choice 
of a mathematical representation for the events (e.g. unitary spike, block, etc.); 
choice of haemodynamic basis set for convolution with the mathematic representa-
tion, resulting in an event-related linear model of the event; inclusion of nuisance 
effects. Individual spikes can be conceived as zero-duration events, at least on the 
timescale of fMRI, and are therefore usually represented as a mathematical spike 
with no scope for EEG-derived dynamics to be included in the models of the BOLD 

U. J. Chaudhary et al.



441

time course. However, a number of haemodynamic function basis sets are available 
for convolution, from the so-called canonical HRF to series of gamma functions, 
each corresponding to a different set of assumptions and therefore liable to reveal 
different activation patterns. This is in contrast to (extended) seizures, for which the 
choice of event mathematical representations is greater (fixed amplitude block, 
series of spikes, etc.), in addition to the choice of haemodynamic basis sets. Some 
of these modelling issues will be discussed in greater detail in this chapter.

17.2  Interictal EEG–fMRI

17.2.1  What Is an Interictal Spike?

Epileptiform interictal EEG abnormalities include spikes, which are fast electro-
graphic transients lasting less than 70 ms; and sharp waves, which last 70–120 ms 
(de Curtis and Avanzini 2001). That these are pathological is supported by their very 
rare occurrence (<1%) in healthy individuals (Gregory et al. 1993) and their strong 
association with epilepsy (Marsan and Zivin 1970). Spikes and sharp waves are 
often followed by a slow wave lasting hundreds of milliseconds. As discussed 
below, this slow wave probably represents a period of relative refractoriness. It has 
been established from concomitant field potential and intracellular recordings that 
the intracellular correlate of the interictal spike is the paroxysmal depolarising shift 
(Matsumoto and Marsan 1964), a slow depolarising potential with a high-frequency 
(>200 Hz) burst of action potentials. A number of pathological mechanisms have 
been proposed to underlie the interictal spike, including the intrinsic burst proper-
ties of neurons and the synchronisation of neuronal populations.

The interictal spike is terminated by the activation of hyperpolarising GABA(A) 
and GABA(B) receptor-mediated currents and calcium-dependent potassium cur-
rents (de Curtis and Avanzini 2001; McCormick and Contreras 2001). Therefore, 
interictal spikes activate hyperpolarising currents, resulting in a post-spike refrac-
tory period during which neuronal activity is inhibited (de Curtis and Avanzini 
2001). The effective activation of these currents by the interictal spike raises the 
possibility that spikes can be anti-ictogenic. There is evidence that this may be the 
case or at least that spikes are intrinsically different from a seizure.

A seizure is not the evolution of spike discharges but can begin as a distinct high- 
frequency rhythm. Spike discharges can precede the seizure with progressively less 
effective after hyperpolarisations in mesial temporal lobe epilepsy (King and 
Spencer 1995), but ictal activity remains a distinct phenomenon. Furthermore, 
increased interictal spiking occurs after the seizure, raising the possibility that this 
is a compensatory antiepileptic response (de Curtis and Avanzini 2001). Experiments 
in entorhinal cortex-hippocampal slice preparations have confirmed the antiepilep-
tic potential of spikes. Spike discharges generated in the CA3 region inhibited epi-
leptic activity in the entorhinal cortex, so that sectioning of the Schaffer collaterals 
led to potentiation of entorhinal cortex seizure activity (Barbarosie and Avoli 1997). 
This leads to two important conclusions: first, interictal spikes can have an inhibi-
tory effect; second, they can have this effect remote from where the spikes arise.
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Since interictal spikes are not a normal characteristic of the brain, they are neces-
sarily indicative of pathology. However, they are not necessarily indicative of the 
area from which seizures arise. This raises an important question: do all the spiking 
cortex (in addition to the area in which a seizure arises) have to be removed for a 
successful surgical outcome; in other words, once the ictogenic area has been 
removed, can the irritative zone generate seizures? If this were so, then identifying 
the full extent of the irritative zone would be critical to directing surgery and to 
predicting surgical outcome.

It appears that the irritative zone has different implications for different aetiolo-
gies and lobar localisations. Furthermore, not all spikes are equal and certain pat-
terns appear to carry greater weight, perhaps being more indicative of cortex that 
can initiate seizures as well as maintain interictal discharges.

17.2.2  Interictal Epileptiform Activity in Presurgical Assessment

This relevance of interictal activity depends on lobe and aetiology. The predictive 
value of IEDs in temporal lobe epilepsy has been the subject of numerous conflict-
ing studies. Nevertheless, a number of conclusions can be drawn about interictal 
activity and temporal lobe epilepsy. The side that most consistently has interictal 
spikes has a high chance (>90%) of being the side from which seizures arise (Blume 
et al. 1993; Blume 2001). However, in a single recording session, this probability 
drops to approximately 75% (Blume 2001). This is similar for scalp, depth and 
subdural recordings. Reassuringly, the most consistent spikes recorded with subdu-
ral electrodes have a >90% chance of arising from the same lobe and >70% chance 
of arising from the same gyrus as the seizures (Blume et al. 2001a; Blume 2001). 
Although subdural electrodes have a limited coverage, these translate into a high 
chance that seizures arise ipsilateral to and in the vicinity of interictal spikes. 
Furthermore, repeated recordings lead to improved specificity. Prominent contralat-
eral interictal activity and/or interictal activity discordant with the ictal onset zone 
carry a decreased chance of surgical success (Duncan 2007, 2011; Palmer et  al. 
1999; Schulz et al. 2000).

These results suggest that localising interictal activity in temporal lobe epilepsy 
may give accurate information on the epileptogenic zone and an indication of prog-
nosis following surgical resection. The data for interictal activity in patients with 
extratemporal lobe seizures are less promising. This is because of frequent propaga-
tion (often to other lobes) and larger irritative and epileptogenic zones. However, 
MEG studies and source localisation with high-density scalp EEG have revealed 
that, even in extratemporal studies, there can be a considerable concordance between 
interictal activity and ictal onset zone (Herrendorf et al. 2000; Stefan et al. 2003). 
Indeed, it has been suggested that highly localised MEG activity in some instances 
may obviate the requirement for intracranial EEG recordings.

The use of scalp EEG to identify interictal activity has another consequence. It is 
suggested that synchronous or nearly synchronous activation of as much as 
10–20 cm2 of gyral cortex is necessary to give a spike detectable by scalp electrodes 
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(Tao et al. 2005, 2007). The immediate conclusion is that any method that relies on 
scalp EEG activity will only detect activations involving large cortical areas. 
Alternatively, a positive consequence of this filtering may be the effective selection 
of more significant and relevant interictal activity.

Therefore, interictal activity commonly overlaps with the seizure onset zone but 
is often more extensive. Does it reveal cortex beyond the ictal onset zone that needs 
to be resected in order to obtain a successful surgical outcome? Studies in patients 
with encephalomalacia suggest that resection of spiking cortex is necessary for a 
good surgical outcome (Kazemi et al. 1997), while studies of patients with mesial 
temporal lobe epilepsy are controversial (Schwartz et al. 1997). Certainly removal 
of the whole area with epileptogenic potential is necessary for surgical success, i.e. 
removal of epileptogenic zone (Luders et  al. 2006; Rosenow and Luders 2001). 
Indeed, a note of caution needs to be made in the interpretation of many studies in 
that larger resections are, a priori, likely to be associated with better surgical out-
come; the challenge is to remove as little cortex as necessary to have a successful 
outcome. Certain spikes seem to be of greater importance, such as leading dis-
charges—those that occur on a millisecond basis prior to others (Alarcon et  al. 
1997). Further, paroxysmal fast and runs of repetitive spikes have greater signifi-
cance than isolated spikes in cortical dysplasia (Widdess-Walsh et  al. 2007). All 
spikes are therefore not equal.

What implications do these findings have for the application of EEG–fMRI in 
focal epilepsy?

 1. There may be a difference in its utility between temporal and extratemporal lobe 
epilepsies.

 2. EEG–fMRI may be of greater localising value in certain aetiologies.
 3. Scalp EEG–fMRI may be limited to the most significant spikes involving the 

largest cortical areas.
 4. The area revealed by EEG–fMRI is likely to be larger than the epileptogenic zone.
 5. Scalp EEG–fMRI is unlikely to be able to differentiate spikes that are of greatest 

importance (e.g. leading spikes) because of the temporal resolution of fMRI.

These indicate that EEG–fMRI may have utility as an additional presurgical 
investigation, perhaps to guide intracranial EEG placement. Even in this respect, 
certain problems remain. Many patients (see below) may not have suitable dis-
charges on scalp EEG and therefore cannot be used in EEG–fMRI studies. However, 
with developing analysis techniques, lack of interictal discharges on scalp EEG 
during simultaneous EEG-fMRI has been addressed to some extent (Grouiller et al. 
2010) using spike topography correlation maps. In addition, the scalp EEG spikes 
are likely to represent only a proportion of spikes that are occurring in a region, and 
since EEG–fMRI in effect compares BOLD signal at the time of scalp spikes with 
that at the time of no spikes on scalp EEG, then the power of this method may be 
reduced, resulting in a failure to detect significant BOLD changes. These factors 
may substantially reduce the impact of EEG–fMRI on presurgical investigation. For 
this reason, the search for other EEG features (such as focal fast activity or focal 
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slow) or other EEG analyses that may correlate with activity in the epileptogenic 
zone recorded with intracranial electrodes is also the subject of research.

17.2.3  Methodology

17.2.3.1  Data Acquisition
The technological aspects of EEG–fMRI data acquisitions are discussed in the 
Chaps. 7, 8, 9, 10, and 11, and the different data acquisition modes (and data analy-
sis) are discussed in the Chap. 12. Here, we will focus on the main methodological 
aspects of studies on patients with epilepsy. In brief, EEG–fMRI has mainly been 
performed on conventional MR scanners using BOLD-weighted EPI sequences, 
with field strengths in the range 1.5–3 T, and using EEG recording equipment spe-
cifically designed for EEG–fMRI. The so-called “MR-compatible” EEG devices are 
designed to minimise the electromagnetic interactions between the two data acquisi-
tion systems (artefacts in the EEG and images), ensure data synchrony (commonly 
achieved by recording a scanner clock-derived signal as one of the EEG or auxiliary 
channels), record the ECG and minimise the additional health risks to the subject.

Patients are generally at rest in the MR scanner. Manipulation of drug levels has 
been used in some studies to modulate the rate of IED, creating “control” and 
“active” states with corresponding sets of scans acquired in separate, successive 
sessions. Special attention to mechanical means of head immobilisation is recom-
mended, as patients are more prone to motion than healthy volunteers. Initial EEG–
fMRI in epilepsy studies universally utilised “spike- or EEG-triggered fMRI”, 
employing a form of interleaved multimodal acquisition, whereby two sets of fMRI 
datasets were acquired in one session: one set consisting of (single or burst) scans 
acquired following the detection of an event of interest (e.g. IED) on EEG, and 
another set of scans acquired following periods of normal background (control 
state). Spike-triggered fMRI was a way of avoiding the problem of image acquisi-
tion artefact, which is caused by the switching magnetic gradients and obscures the 
EEG.  Following technological developments that made it possible to remove or 
reduce the image acquisition artefact, continuous EEG–fMRI became possible, pro-
viding good-quality EEG data throughout the scanning process. This is now the 
favoured acquisition mode due to its ability to visualise the entire EEG, which may 
increase sensitivity but also has advantages from the point of view of fMRI model-
ling. For example, in spike-triggered fMRI, scans were acquired roughly from 4 s 
following an event of interest, based on the assumption that the BOLD change 
would peak at around 5–6 s post-spike; the lack of temporal continuity in the control 
scan dataset hinders baseline modelling. It also has the advantage of not requiring 
online identification of spikes.

17.2.3.2  Data Analysis
The primary aim of EEG–fMRI data analysis is usually the identification of regions 
of IED-related BOLD change, and the time course of those changes is an important 
secondary aim. This is the conventional brain-mapping problem of event-related 
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fMRI, with the difference that the experimental design is totally unknown until after 
the data have been acquired and the EEG has been reviewed, in contrast to conven-
tional paradigm-driven fMRI studies.

The most commonly used fMRI mapping approach is based on building a general 
linear model (GLM) of the BOLD time course (see the Chap. 12 for a further explana-
tion of the GLM-based approach to fMRI analysis). For data acquired using the spike-
triggered scheme, the two sets of scans (“spike” and “control”) were simply compared 
voxel-wise using a t test. For continuous EEG–fMRI, one must attempt to model the 
entire fMRI time series, which is a greater challenge. In summary, the main steps of 
the GLM building process to identify areas of interest in epilepsy are: (1) identifica-
tion of events of interest (spikes, runs of spikes, other pathological discharges); (2) 
classification of the events of interest (grouping according to morphology, field topog-
raphy); (3) mathematical representation of the events of interest (as “zero-duration/
delta function” events, blocks of event runs, etc.); (4) choice of a model of the HRF 
for convolution: canonical HRF with inclusion of temporal and dispersion derivatives; 
or another basis set (e.g. Fourier over block). The result is a set of regressors repre-
senting the BOLD changes predicted to occur in relation to the IED.

The reliable identification of EEG events of interest requires dedicated review 
software to reduce or remove pulse-related and image acquisition artefacts (see the 
Chaps. 8 and 9). EEG event markers are defined in real time and in relation to the 
fMRI scan series, thanks to scan time markers on the EEG record provided by the 
scanner–EEG synchronisation mechanism. The resulting event markers form the 
basis of the modelling of the effects of interest.

The baseline is the other, equally important, side of the statistical comparison 
that is applied at every brain voxel to reveal BOLD changes linked to the effect or 
effects of interest (spikes). In EEG terms, the intervals between the marked events 
of interest are usually considered to constitute the control state. In fact, this “base-
line state” is subject to multiple sources of signal variation: physiological (neuro-
logical and other) and artefactual (head motion or scanner related). For example, we 
know from intracranial EEG recordings that the scalp EEG is a very biased and 
limited representation of physiological or pathological brain activity, reflecting a 
fundamental limitation of EEG–fMRI. Nonetheless, the effects of confounding fac-
tors on the fMRI signal may be added to the model, such as motion and cardiac via 
the ECG (see Salek-Haddadi et al. 2003b).

The parameters (mathematical weight of each regressor) of the resulting GLM 
are then estimated at each voxel and can be tested against the null hypothesis (i.e. 
parameter estimate not significantly different from zero). The z scores for each 
effect are then mapped across the scanned brain to produce statistical parametric 
maps (SPM).

An important point to keep in mind is that, given a particular EEG record, one 
may have a large number of possible GLMs, each effectively corresponding to a 
different set of questions or hypotheses about the relationship between EEG and 
BOLD.  For example, different EEG observers are likely to identify and classify 
events differently; this will produce different GLMs. Given a set of EEG events, one 
may choose to focus on detecting the brain regions for which the spike-related 
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BOLD time course has a fixed shape (e.g. canonical HRF) or to identify brain 
regions for which the spike-related BOLD time course can have any of a wide vari-
ety of shapes (e.g. using the Fourier basis set). The former maximises sensitivity to 
a specific pattern (the same response is expected irrespective of position), while the 
latter can be used to both estimate the shape of the time course and identify inter-
regional variations in the relationship between event of interest and BOLD signal 
(i.e. the time course of the BOLD change can vary across the brain).

The principal outputs of fMRI model estimations are statistical maps and time 
plots of the estimated event-related responses. For example, localisation of the 
regional BOLD changes is often assessed in relation to the epileptogenic or irrita-
tive zones (known or presumed) to provide evidence of validity or potential clinical 
utility (e.g. as a potential non-invasive adjunct to current localisation techniques). 
The interpretation of the maps can be facilitated by co-registering them with more 
anatomically accurate MR images, such as those obtained from T1-weighted volu-
metric sequences, and the use of atlases (also often based on volumetric sequences 
or on photographic atlases) for anatomical labelling. However, both methods are 
prone to error due to differences in the physics of image formation for the two types 
of sequence, which can result in significant co-registration errors and mislocalisa-
tion/labelling (see Gholipour et al. 2007; Gholipour et al. 2008a; Gholipour et al. 
2008b for reviews). Concordance of the BOLD maps has been assessed in relation 
to the presumed or known irritative zone/seizure onset zone/epileptogenic zone at 
various scales, from lobar (BOLD cluster located in the same lobe) to millimetric 
(by measurement in Cartesian space or along the cortical surface). BOLD maps usu-
ally show a complex pattern of multiple clusters and various criteria have been 
employed to assess the spatial agreement between BOLD clusters and the presumed 
or known irritative zone/seizure onset zone/epileptogenic zone. These criteria 
include localisation of the most statistically significant BOLD cluster, localisation 
of the cluster corresponding to the earliest BOLD increase or localisation of the 
most statistically significant BOLD cluster with a cut-off threshold for predefined 
spatial and statistical thresholds. One of the approaches is to classify BOLD maps 
as concordant (all BOLD clusters within the independently defined epileptogenic 
zone); concordant plus (statistically most significant BOLD cluster is concordant 
but other BOLD clusters are discordant); some concordance (statistically most sig-
nificant BOLD cluster is discordant but one of the other BOLD clusters is concor-
dant; discordant (all BOLD clusters are discordant) (Chaudhary et al. 2012a, 2013, 
2016; Di Bonaventura et al. 2006b; Donaire et al. 2009b, 2013; Gotman et al. 2005; 
Hamandi et al. 2004; Salek-Haddadi et al. 2006; Thornton et al. 2011).

The interpretation of the shape of the BOLD change over time is of interest from 
two points of view: the assessment of deviations from the “canonical” HRF observed 
during physiological tasks and the direction of the epilepsy-related BOLD changes 
relative to baseline. The first can be addressed by modelling the BOLD changes 
related to spikes (considered as zero-duration events) using a flexible basis set such 
as the Fourier expansion ((Josephs et al. 1997); also see the Chap. 12). The first 
application of continuous EEG–fMRI illustrated the interest in using a flexible 
modelling approach to plot the spike-related BOLD time course (see Fig.  17.1). 
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a

b

Fig. 17.1 (a, b) Interictal continuous EEG–fMRI. Fifty-year-old patient with chronic encephalitis of 
the left hemisphere and intractable partial and secondary generalised seizures. Thirty-seven high-
amplitude (>200 μV) stereotyped sharp waves maximal at T3 (left mid-temporal) focal were the most 
prominent feature. (a) SPM{F} of the spike-related events in the continuous EEG–fMRI experiment 
projected onto orthogonal slices of the mean EPI, showing activation localisation in the left temporal 
region. The F contrast was a unit matrix across a 16-term Fourier basis set used to model the event-
related change. The crosshair is placed at the global statistical maximum. (b) Estimated time course 
of IED-related BOLD signal at global maximum (adapted from (Lemieux et al. 2001))
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Given the generally biphasic nature of the HRF, with its initial peak followed by an 
undershoot, assigning a sign to such transient changes is largely a matter of conven-
tion. One possibility is to call an “activation” any region that reaches statistical 
significance for a t test over the regressor built by convolution of the canonical (or 
similar) HRF with the chosen mathematical representation of the event of interest 
and a “deactivation” any region for which this is the case for the inverted HRF; for 
more flexible models of transient changes that do not rely on the canonical HRF, an 
alternative is to use the sign of the largest deviation from zero over the fitted 
response’s duration.

17.2.4  Relevance of the Observed BOLD Changes

The observation that local field potentials in the brain correlate with a positive 
fMRI BOLD signal is important for the interpretation of EEG–fMRI findings in 
focal epilepsy (Logothetis et  al. 2001). Importantly, it was the field potentials 
and not the single unit spiking (action potential) activity that correlated best with 
the BOLD signal. Therefore, the generator of BOLD signal correlates well with 
the generator of the EEG signal, which is also generated by field potentials and 
not by action potentials. However, EEG and BOLD measure different aspects of 
brain activity—electrical signal vs. metabolic signal—and these may be gener-
ated by different cells. In addition, EEG reflects neuronal synchrony (see the 
Chaps. 2 and 4). BOLD activation is therefore likely to represent the source and 
possibly the propagation of IEDs. Although BOLD activations are often maximal 
in the spiking temporal lobe, there are often widespread activations in disparate 
(including contralateral) temporal and extratemporal regions (Kobayashi et  al. 
2006a). These incongruent activations probably represent the propagation of 
interictal activity. Moreover, early positive BOLD changes prior to the epileptic 
discharges have also been demonstrated, suggesting that these early changes may 
reflect increased neuronal activity in the spike field prior to the EEG spike 
(Jacobs et al. 2009).

IED-related BOLD changes can occur in the form of activation (positive 
BOLD) and deactivation (negative BOLD). What do BOLD deactivations repre-
sent? Local deactivations could represent vascular steal. However, there is evi-
dence that negative BOLD signals correlate with GABA concentrations and 
relative neuronal inactivity (Northoff et al. 2007; Shmuel et al. 2006), leading to 
the possibility that negative BOLD can result from cortical inhibition. These 
propositions are critical for the interpretation of EEG–fMRI in focal epilepsy, 
because interictal spikes are the result of excitatory synaptic activity but result in 
both local and more distant inhibition (see above). This would, to some extent, 
explain the association of IEDs with not only local positive BOLD signals but also 
local and distant negative BOLD signals. A further explanation of BOLD deacti-
vations associated with IEDs is the possibility that interictal activity may disrupt 
resting-state brain activity, such as the so-called default mode network (Gotman 
et al. 2005; Laufs et al. 2007; Salek- Haddadi et al. 2006; Thornton et al. 2010a, 

U. J. Chaudhary et al.



449

2011). Spike-associated BOLD activations are more frequently concordant with 
the independently defined electroclinical localisation than BOLD deactivations, 
which are more often discordant (Liu et  al. 2008; Salek-Haddadi et  al. 2006; 
Thornton et al. 2010a, 2011). BOLD activations are also likely to overlap with or 
be adjacent to intracranial lesions (Al-Asmi et  al. 2003; Di Bonaventura et  al. 
2006b; Krakow et al. 1999a; Salek-Haddadi et al. 2006; Thornton et al. 2010a, 
2011; Tyvaert et al. 2008). Nevertheless, (Benar et al. 2006) found that the nega-
tive BOLD responses may represent EEG activity measured using intracranial 
EEG and, in some instances, may provide concordant information. A relationship 
between BOLD deactivations and type of IED (i.e. spike followed by a slow wave: 
slow wave is an electrographic correlate of neuronal inhibition) and location of 
epileptic focus (i.e. larger cortical areas in posterior quadrant) has also been sug-
gested (Pittau et al. 2013).

17.2.5  Clinical Utility

For an assessment of clinical utility, three further questions need to be addressed: 
(1) What is the yield of EEG–fMRI in unselected patients undergoing presurgi-
cal assessment? (2) How closely does EEG–fMRI correlate with intracranial 
investigation? (3) What is the added value of EEG–fMRI in presurgical 
assessment?

Over the last two decade, these questions have been addressed to some extent. 
One study that addressed replicability in focal epilepsy (Krakow et al. 1999b), 
six out of ten patients had activations that were confirmed on a subsequent scan. 
The largest “unselected” group of patients with focal epilepsy was 63 patients 
(25 males), four of whom were excluded (mainly due to excessive head move-
ment). These patients were, however, included in this study only if they had 
frequent interictal discharges (spikes, polyspikes, sharp waves) on a recent 
EEG. Examination of other studies reveals that a similar criterion was used 
(Al-Asmi et al. 2003; Kobayashi et al. 2006a; Lazeyras et al. 2000b) or some-
times that even more stringent criteria were used (Krakow et al. 1999b). Even 
with this criterion in this study, 25 of the patients (42%) had no IEDs. Of the 
remaining 34, 11 had no change in BOLD signal. Therefore, out of the original 
63 patients, EEG–fMRI revealed activations/deactivations in 23 (37%). This is 
comparable to other studies, such as a study of 38 patients with intractable par-
tial epilepsy in which only 31 studies from 48 could be analysed, mainly because 
of a lack of IEDs, and there was a significant fMRI activation in only 12 (25% 
of all studies and 39% of those that could be analysed). Therefore, even when 
frequent interictal discharges are present on a previous EEG, there is a signifi-
cant chance that no further information will be revealed by EEG–fMRI. A num-
ber of studies have analysed the features of IEDs associated with a BOLD signal 
change; these are frequent epileptiform discharges, runs of epileptiform dis-
charges, higher amplitude discharges and discharges with similar morphology 
(Al-Asmi et  al. 2003; Kobayashi et  al. 2006a; Krakow et  al. 1999b; 
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Salek-Haddadi et  al. 2006). Continuous fMRI has enabled posthoc analysis 
rather than manual triggering and so increases the yield (Al-Asmi et al. 2003), 
and the yield may be better at 3 T rather than 1.5 T (Federico et al. 2005a). Since 
one of the main problems is the lack of IEDs, then it is important to be more 
inclusive (i.e. less rigorous) of possible interictal EEG abnormalities or to use a 
method that relies less on correlation with scalp EEG such as independent com-
ponent analysis (ICA) of the fMRI data (Rodionov et al. 2007; van Houdt et al. 
2015). Another approach is to analyse other scalp EEG activity such as focal 
slow, which has been shown in a small number of patients to have a strong con-
cordance with site of lesion and intracranial EEG investigation (Federico et al. 
2005a; Laufs et  al. 2006). The tendency of expert observers to exclude dis-
charges that are not clearly epileptiform, as encountered in clinical practice, 
may also limit the technique’s sensitivity. The detection of more subtle IEDs 
using a more integrative analysis of the EEG and fMRI may provide an avenue 
for improvement (Liston et al. 2006). This has been used with some success but 
is an area that requires further research.

The other question is whether the canonical HRF is the best model for IED- 
related changes or whether deviant, noncanonical BOLD signal changes yield use-
ful additional information; systematic investigation of this issue suggests that in 
adults, noncanonical changes are relatively rare and likely to be discordant and are 
therefore likely to decrease the specificity of the method (Lemieux et  al. 2008; 
Salek-Haddadi et  al. 2006). This is in line with the observation that the yield of 
EEG–fMRI (i.e. proportion of cases in whom IEDs are captured that show signifi-
cant activations) has not drastically increased following the transition from spike- 
triggered (with its assumption of a canonical spike-related response) at roughly 
50–60% to continuous EEG–fMRI (capable of capturing a much greater number of 
events and greater modelling capability) at roughly 60–70%, although no satisfac-
tory comparison exists. Although the use of multiple haemodynamic response func-
tions in fMRI analysis may increase the yield to 80% (Kobayashi et al. 2006a), this 
may also be at the expense of specificity, and further studies are required. It is 
important to note that deviations from the canonical response have not been sub-
jected to the same scrutiny for normal stimuli in healthy subjects as it has been in 
epilepsy. Therefore, the specificity of deviant responses to epilepsy is unknown.

A critical issue is the degree of concordance of intracranial EEG with scalp 
EEG–fMRI. Two potential problems when addressing this issue are the limited cov-
erage by intracranial EEG, and the fact that the fMRI BOLD (at 1.5 T) originates 
mainly from relatively large veins that drain the neuronally activated area (Lai et al. 
1993), resulting in a discrepancy between signal location and active cortex. 
Notwithstanding this, multiple later studies have shown a significant concordance 
between intracranial EEG-based localisation of epileptic focus and IED-related 
BOLD changes in epileptic focus using EEG-fMRI (Al-Asmi et  al. 2003; Benar 
et al. 2006; Khoo et al. 2017; Lazeyras et al. 2000a; Pittau et al. 2012; Thornton 
et al. 2010a, 2011; van Houdt et al. 2013; Zijlmans et al. 2007).

Does EEG–fMRI give added value? A study comparing EEG–fMRI with scalp 
EEG source localisation has demonstrated a good degree of concordance at the 
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lobar level (Lemieux et  al. 2001). A study of five patients compared scalp EEG 
source localisation, EEG–fMRI and intracranial EEG (Benar et  al. 2006). EEG–
fMRI compared favourably against EEG source localisation. Within an error of 20 
mm, the percentage matches between BOLD activations and intracranial EEG were 
better than those between EEG source localisation and intracranial EEG. Importantly, 
BOLD and EEG source localisation identified distinct areas of intracranial EEG 
activity. This study did not consider surgical outcome or concordance with ictal 
intracranial recordings, but it indicates that EEG–fMRI and EEG source localisa-
tion can give distinct information. Another scalp EEG-fMRI study has demonstrated 
that localisation of BOLD changes, for epileptic discharges on scalp EEG, can pro-
vide more refined localisation of the epileptic focus as compared to scalp EEG alone 
(Pittau et al. 2012).

Another aspect of added value is if the EEG–fMRI can improve the prediction of 
surgical success. Thornton and colleagues demonstrated that localisation of maxi-
mal BOLD changes was concordant the surgically resected area in patient who 
became seizure free; in comparison, patients who had significant BOLD changes 
outside the resected area had reduced seizure frequency only (Thornton et  al. 
2010a). More specifically, a retrospective study in patients with temporal lobe epi-
lepsy undergoing presurgical evaluation has demonstrated that epileptiform dis-
charges related BOLD maps concordant with resected area were independently 
related to good surgical outcome. The EEG-fMRI BOLD maps had a sensitivity of 
81% and specificity of 79% to identify patients with good surgical outcome, with 
positive and negative predictive values of 81% and 79%, respectively (Coan 
et al. 2016).

An alternative approach to determining added value is to consider patients who 
have been turned down for surgery. A study of 29 patients rejected for surgery 
because of an inability to localise a single source with EEG were selected for EEG–
fMRI study (Zijlmans et al. 2007). All of these patients were noted to have frequent 
IEDs (>10 in 40 min) on a previous EEG. Of these 29 patients, a significant BOLD 
response was observed in 15. Eight patients had a BOLD signal that was topo-
graphically related to interictal discharges. For four patients (14%), there was felt to 
be enough information to proceed to intracranial studies. Two had intracranial stud-
ies and in both there was concordance between BOLD activation and ictal onset 
zone, but only one was operated on, the other patient had seizure onset zone closer 
to eloquent cortex. The operated patient had a significant improvement in seizure 
frequency (Engel grade II), but was not rendered seizure-free.

Prospective role of EEG-fMRI in clinical decision-making, i.e. (1) to decide 
about surgical candidacy; or (2) to guide the placement of intracranial electrodes; 
and (3) possibly, in the future, removing the need for intracranial electrodes 
remains under explored. Two studies (Kowalczyk et al. 2020; Markoula et al. 2018) 
have explored the impact of EEG-fMRI on epilepsy surgery decision-making. 
These studies show that when results of EEG-fMRI were presented in a multidis-
ciplinary meeting after the initial decision about epilepsy surgery was made based 
on conventional techniques, EEG-fMRI results had a critical or supportive impact 
to modify initial surgical plan. These changes in epilepsy surgical plan included 
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modification of surgical candidacy, placement of intracranial EEG electrodes and 
need for additional non-invasive tests prior to proceeding further in epilepsy sur-
gery pathway.

An interesting concept proposed by EEG-fMRI studies is the possibility of pres-
ence of a common node. Piriform cortex ipsilateral to the epileptic focus has shown 
IED-related BOLD changes in patients with heterogenous focal epilepsies (Flanagan 
et al. 2014; Garganis et al. 2013; Laufs et al. 2011). Full clinical potential of this 
area in propagation of epileptic activity, epilepsy surgery success and therapeutic 
electric stimulation remains to be elucidated in future, yet it provides insights for 
future research in epilepsy.

17.2.6  The Influence of Lesions

It is likely that different lesions will have different effects on the BOLD signal gen-
erated by IEDs. This question has not been systematically studied, and there are 
only small case series. An important consideration is EEG–fMRI in patients with 
malformations of cortical development, as these (in particular focal cortical dyspla-
sia) comprise a significant proportion of MRI-negative cases at the time of initial 
evaluation for epilepsy surgery (McGonigal et  al. 2007). From a large study of 
patients with focal epilepsy, four of eight patients with malformations of cortical 
development had concordant activations (the other four had no activations) (Salek-
Haddadi et al. 2006). This concordance of BOLD changes with the location of mal-
formation of cortical development and epileptic focus (on intracranial EEG) has 
been confirmed in later studies in larger proportion of patients (Federico et  al. 
2005b; Pittau et al. 2017; Thornton et al. 2011; Tyvaert et al. 2008; Watanabe et al. 
2014). However, BOLD changes were also seen distributed above/around the mal-
formation of cortical development and in distant cortical regions in a network fash-
ion, discordant with the epileptic focus, corroborating the evidence for epileptic 
network theory. This valuable information provided by EEG-fMRI in patients with 
malformation of cortical development (especially focal cortical dysplasia) can 
potentially be used for prognostic purposes for predicting seizure freedom after 
surgery.

In an investigation of 14 patients with either nodular or band heterotopia, out of 
26 studies, 23 were analysed and 22 had a significant BOLD change (Kobayashi 
et al. 2006b). Sixty-seven percent of the nodular heterotopia group activations and 
100% of the band heterotopia group activations were in the heterotopia and/or sur-
rounding cortex. Deactivations were also associated with the heterotopia but less 
robustly.

Polymicrogyria is a widespread abnormality associated with epilepsy. Evidence 
from intracranial EEG investigation and experimental work suggests that the epi-
leptogenic region can be outside the predominant structural abnormality. An 
EEG–fMRI study revealed significant BOLD changes in 89% of the studies with 
61.5% (8/13) of the maximal activations involving the lesion (Kobayashi 
et al. 2005).
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These studies suggest that malformations of cortical development can be the 
main source of epileptiform activity, that such activity is detectable by EEG–fMRI 
and that it may be associated with BOLD activations more than deactivations. This 
holds promise for the analysis of patients with apparently normal structural 
imaging.

What about other lesions? It would be important to consider vascular lesions 
because of potential problems. The problem with lesions containing blood vessels 
is that there may be considerable BOLD signal loss. It is therefore not surprising 
that in five patients with cavernoma, EEG–fMRI showed no responses within the 
lesion or its immediate periphery (Kobayashi et al. 2007). Reassuringly, two patients 
had perilesional BOLD changes, but the others had distant activations. This raises 
the distinct prospect that vascular lesions may be less suitable for EEG–fMRI 
studies.

17.2.7  Simultaneous intracranial EEG-fMRI

Scalp EEG-fMRI largely depends on scalp EEG and thus inherits the low sensitivity 
limitation of scalp EEG to identify epileptiform discharges. There have been devel-
opments to circumvent the low sensitivity of scalp EEG by using topographic volt-
age maps or voxel based changes in haemodynamic responses in patients with focal 
epilepsy (Grouiller et al. 2011; Lopes et al. 2012). On the other hand, epileptiform 
discharges related to BOLD response is still not seen despite the presence of epilep-
tiform discharges in a significant proportion of cases, or the distribution of epilepti-
form discharges related to BOLD changes remains unexplained (Salek-Haddadi 
et al. 2006). Simultaneous recording of intracranial EEG and fMRI (icEEG-fMRI) 
may help to answer some of these questions.

Intracranial implantation of electrodes (subdural grids, depth electrodes or 
stereo- encephalography) is performed to localise the epileptic focus and elo-
quent cortex during presurgical assessment in patients with refractory focal epi-
lepsy (Cardinale et  al. 2019; Isnard et  al. 2018; Luders and Comair 2000). 
Intracranial EEG has higher electrophysiological sensitivity and regional speci-
ficity, particularly for depth electrodes, as compared to scalp EEG (Luders 
et al. 2006).

Initial safety studies have demonstrated that icEEG-fMRI can be performed 
without posing any significant additional health risks, provided a strict protocol is 
followed. Some signal degradation is observed nearer (~1 cm) to the intracranial 
electrode contact; however, this signal degradation is orientation dependent 
(Boucousis et al. 2012; Carmichael et al. 2008, 2010, 2012). In icEEG-fMRI stud-
ies, performed on a limited number of patients, significant BOLD changes associ-
ated with epileptiform discharges on intracranial EEG were observed, often 
concordant with the intracranial EEG electrode contacts showing epileptiform dis-
charges (Aghakhani et al. 2015; Chaudhary et al. 2012b; Cunningham et al. 2012; 
Vulliemoz et al. 2011). In addition, BOLD changes associated with epileptiform 
discharges were also seen in remote areas which were not sampled by intracranial 
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EEG in some cases. This finding of a widespread BOLD network associated with 
focal epileptiform discharges on intracranial EEG suggests a wider underlying hae-
modynamic network (Chaudhary et al. 2012b, 2014, 2021; Vulliemoz et al. 2011), 
and may suggest an explanation for the persistence of seizures after surgery in some 
patients.

17.3  Ictal EEG–fMRI

Ictal is derived from the Latin word ictus, which is used to describe a sudden 
neurologic event like stroke or an epileptic seizure. Ictal is used to describe any-
thing pertaining to epileptic seizures that is a manifestation of excessive and/or 
hypersynchronous, self-limited activity of neurons in the brain (Blume 
et al. 2001b).

As mentioned previously, due to the practical difficulties and risks associated 
with acquiring MR scans during seizures, ictal EEG–fMRI had a much lesser impact 
than interictal EEG–fMRI initially. Over the last decade, there has been significant 
increase in capturing seizures during simultaneous EEG-fMRI. These studies have 
encompassed both generalised and focal epilepsy, and mapping ictal BOLD changes 
using simultaneous EEG-fMRI has potentially offered an alternative to ictal SPECT 
in carefully selected patients.

Nonetheless, ictal EEG–fMRI may play an important role in epilepsy research 
and clinical applications, as it provides the opportunity to explore haemodynamic 
and electrophysiological changes associated with a seizure, which is the defining 
event of epilepsy and central to the clinical evaluation of patients with drug-resistant 
epilepsy (Chaudhary et al. 2013).

In the following, we discuss the limitations and review the clinical applications 
of ictal EEG–fMRI in patients with focal epilepsy.

17.3.1  Limitations of Ictal EEG–fMRI

Certain methodological and procedural factors have core importance in ictal EEG–
fMRI, limiting its applicability, and they deserve careful consideration at this stage 
of the discussion.

17.3.1.1  Unpredictable Nature of Seizures
Due to the difficulty of predicting the occurrence and the relative rarity of sponta-
neous seizures, ictal EEG–fMRI has been reported in patients with either frequent 
or inducible seizures, or as fortuitous occurrences of spontaneous seizures in stud-
ies of interictal activity, thereby severely limiting the practical utility of ictal EEG–
fMRI. Daily absence seizures, pseudo absence seizures, tonic and atonic seizures, 
focal electrographic seizures, focal seizures with minimal motion and inducible 
seizures of reading epilepsy, musicogenic epilepsy, writing epilepsy and startle 
epilepsy have been investigated (Abreu et  al. 2005; Aghakhani et  al. 2004; 
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Chaudhary et  al. 2012a; Di Bonaventura et  al. 2006b; Diekmann and Hoppner 
2014; Donaire et al. 2009a; Federico et al. 2005a; Fernandez et al. 2011; Hamandi 
et  al. 2006; Kobayashi et  al. 2006c; Marrosu et  al. 2009; Morano et  al. 2017; 
Morocz et al. 2003; Salek-Haddadi et al. 2002, 2009; Sierra-Marcos et al. 2013; 
Szaflarski et  al. 2010; Tenney et  al. 2018; Thornton et  al. 2010b; Tyvaert et  al. 
2008; Usami et  al. 2016; Vaudano et  al. 2012, 2014, 2017; Zhang et  al. 2014). 
Moreover, it is not always possible to record spontaneous ictal events in all selected 
patients; e.g. only one third to half of all patients recruited in above studies had 
ictal events. While the likelihood of recording seizures generally increases with 
acquisition time, this is limited to roughly 90–120 min by resource and patient 
comfort considerations. Thus, by applying strict selection criteria based on seizure 
frequency, seizure types and seizure-related motion, yield of ictal EEG-fMRI can 
be increased.

17.3.1.2  Seizure-Related Motion
Seizure-related motion is a fundamental feature affecting the image quality and 
leads to false-positive or false-negative results in EEG–fMRI (Hajnal et al. 1994; 
Jansen et al. 2012; Lund et al. 2005). Thus, by selecting cases in whom stereo-
typical seizures have less motion, an effort has been made to minimise this prob-
lem. In addition, vacuum cushions significantly reduce motion-related noise on 
the EEG and fMRI (Benar et al. 2003). Adjusting the subject’s axial position can 
also reduce gradient artefact (Mullinger et  al. 2011). After acquisition, fMRI 
scans can be corrected for motion by slice-timing correction, realignment, spatial 
smoothing and later incorporation of the estimated rigid body realignment 
parameters (Fig. 17.2) as confounding covariates in the design matrix to remove 
any residual artefacts (Chaudhary et al. 2012a; Salek-Haddadi et al. 2009; Tyvaert 
et al. 2008). Another approach to counteracting the signal changes, secondary to 
motion events during image acquisition, is scan nulling, where additional regres-
sors for each motion event are modelled in the design matrix. Scan nulling 
reduces the effect of motion significantly (Lemieux et al. 2007). However, this 
approach of using scan nulling, practically subtracts the motion affected scans 
from any further signal processing. Prospective motion correction (Maclaren 
et al. 2013; Todd et al. 2015) may prove useful to obtain meaningful information 
from data corrupted by seizure-related motion during simultaneous ictal EEG-
fMRI. Seizure-related motion also affects EEG quality (see Fig. 17.2), prospec-
tive motion correction can also be used to improve EEG quality during large 
amplitude motion (Maziero et al. 2016).

17.3.2  Detection of Ictal Activity

In some instances, ictal EEG activity is easy to differentiate from interictal EEG 
activity (Kobayashi et al. 2006c; Salek-Haddadi et al. 2002) (Fig. 17.2). However, 
there are instances where clinical seizure onset may precede ictal rhythms on scalp 
EEG or vice versa (Ray et  al. 2007; Tao et  al. 2007). Various methods can be 
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Fig. 17.2 (a–c) Ictal EEG–fMRI. A 47-year-old right-handed patient with a two-year history of 
intractable generalised tonic-clonic seizures. An electrographic seizure started approximately 
3 min into the acquisition, with focal rhythmic delta activity emerging abruptly and being unilater-
ally maximum over the F7/T3 electrodes (see Fig. 17.1); it lasted for the next 15 s prior to evolving 
into a localised (F7/T3) 5 Hz theta rhythm and decaying slowly over the next 26 s. Brief EEG 
motion artefact was evident 5 s into the seizure. (a) EEG segment showing seizure onset (point A) 
and motion artefact on EEG (point B). (b) SPM showing seizure-related BOLD activation result of 
F test across 16-term Fourier basis set; cluster is shown on spatially normalised “glass brain”. Red 
arrowhead shows global statistical maximum. (c) Regional ictal BOLD signal change (green, 
maximum change in cluster; blue, estimated change averaged over whole cluster; red, fitted sine 
function) in relation to motion as assessed by an fMRI time series realignment process (red, green, 
blue, X, Y and Z translations, and the corresponding rotations below). Note the negative BOLD 
signal prior to seizure onset (adapted from Salek-Haddadi et al. 2002)

a

b
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employed to detect clinical seizures, such as button pressing by the patient specially 
when seizure are triggered by a known stimulus, observing and identifying clinical 
changes inside the scanner similar to typical clinical seizure, following a verbal 
signal from the patient and using simultaneous video EEG recording in the scanner 
(Chaudhary et al. 2012a; Di Bonaventura et al. 2006b; Donaire et al. 2009a; Salek-
Haddadi et al. 2009; Thornton et al. 2010b; Tyvaert et al. 2008). Although subject to 
uncertainty and imprecision, when precise synchronisation with the EEG recording 
is unavailable, these time markers can be used as a basis for modelling the associ-
ated BOLD changes.

17.3.3  Statistical Analysis of Ictal Haemodynamic Changes

As for interictal studies, the usual data preprocessing and modelling steps are com-
monly applied to the ictal fMRI time series; a high-pass filter is applied to the data 

c

Fig. 17.2 (continued)
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and design matrix, according to the noise characteristics of the scanner and the 
inclusion of autoregressive models to estimate the intrinsic temporal autocorrela-
tion structure of the data. However, modelling the effects of interest linked to ictal 
activity is a priori a much more challenging task than for interictal activity for a 
number of reasons: the long durations of the events of interest give scope for yet-
unknown patterns of signal change, affecting the choice of a mathematical repre-
sentation for the events of interest and haemodynamic basis set; the potentially 
greater degree of inter-event variability makes it more difficult to classify and 
group events; the possibility of pathological activity not reflected on scalp EEG or 
linked to behavioural changes (baseline problem); the potential for greater head 
and body motion. In addition, any interictal activity should be incorporated into 
the model.

Different EEG patterns have been used so far in various studies for modelling 
purposes, which include slow wave discharges (Salek-Haddadi et al. 2009), sharp 
rhythmic activity, sharp fast activity, rhythmic bilateral discharges, slow waves, 
spikes, polyspikes and spike wave discharges (Chaudhary et  al. 2012a; Di 
Bonaventura et al. 2006b; Donaire et al. 2009a; Salek-Haddadi et al. 2002, 2003c, 
2009; Sierra-Marcos et al. 2013; Thornton et al. 2010b; Tyvaert et al. 2008).

In the framework of general linear model, the choice of representing an ictal 
event and of basis set to explore ictal haemodynamic patterns have been variable 
across different research groups. This includes modelling a single duration ictal 
event convolved with a Fourier basis set spanning the entire event, thereby allow-
ing for an almost arbitrary BOLD signal time course at any given location (Salek- 
Haddadi et al. 2002;Thornton et al. 2010b); representing events (spikes and onset 
of ictal activity) identified on EEG as stick functions and convolved with a canon-
ical haemodynamic response function and its first temporal derivative (Salek-
Haddadi et al. 2009); modelling ictal events taking into account event duration 
and convolved with four haemodynamic response functions (Tyvaert et al. 2008); 
segmenting seizure into 10 s blocks, convolved with a time variant canonical hae-
modynamic response function and contrasted with a baseline block and/or a con-
tagious block (Donaire et al. 2009a; Sierra-Marcos et al. 2013) dividing seizure 
into phases based on their spatio-temporal and clinical evolution (i.e. ictal onset, 
ictal established and late ictal) and convolved with a canonical haemodynamic 
response function and its temporal and dispersion derivatives (Chaudhary et al. 
2012a; Thornton et al. 2010b). The inclusion of regressors to account for motion-
related fMRI signal effects and close examination of the temporal relationship 
between motion and signal change are generally advisable, and case selection 
based on a maximum allowable degree of motion is also possible, although the 
choice of a specific threshold value is problematic (see Chaudhary et al. for review 
(Chaudhary et al. 2013)).

In order to avoid operator driven selection bias for identification of seizure onset 
on EEG, data driven approach: Independent Component Analysis has also been 
used to explore seizure related haemodynamic changes. It implies minimum con-
straints on the shape, latency and duration of haemodynamic response function 
(LeVan et al. 2010; Thornton et al. 2010b).
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17.3.4  Application of Ictal EEG–fMRI

Despite the issues highlighted above, EEG–fMRI has been successful in revealing 
interesting patterns of BOLD signal change related to ictal events captured on scalp 
EEG in a small number of cases.

17.3.4.1  Localisation Potential of Ictal EEG–fMRI
Ictal EEG–fMRI has shown the potential to localise the epileptogenic zone. The first 
case report showed a region of significant BOLD change concordant with the elec-
trographic focus (Salek-Haddadi et al. 2002). The use of a flexible basis set revealed 
BOLD time-course variations across the activated region, and a suggestion of 
change prior to the EEG onset, but their pathological significance is unclear due to 
the level of inter-regional variability observed in healthy subjects (Aguirre et  al. 
1998). The large amplitude of the BOLD activation was deemed consistent with the 
levels of blood flow changes commonly observed using PET and SPECT (Salek- 
Haddadi et al. 2002).

In patients with focal epilepsy, multiple case reports (Chassagnon et al. 2009; 
Di Bonaventura et  al. 2006a; Federico et  al. 2005a; Kobayashi et  al. 2006c; 
Marrosu et al. 2009) and larger case series (Chaudhary et al. 2012a; Di Bonaventura 
et al. 2006b; Donaire et al. 2009a; LeVan et al. 2010; Salek-Haddadi et al. 2009; 
Sierra- Marcos et al. 2013; Thornton et al. 2010b; Tyvaert et al. 2008, 2009) have 
shown that ictal EEG–fMRI results were consistent with the independently 
derived, electroclinically determined epileptogenic zone and intracranial record-
ings where available. Seizure-related BOLD maps are usually rich in terms of 
multiple clusters of haemodynamic change within a single map. Therefore, con-
cordance of these maps is usually evaluated based on the location of statistically 
most significant or clinically most relevant cluster (Chaudhary et  al. 2013). 
However, haemodynamic changes at the onset of seizure (Fig. 17.3) are found to 
be most concordant with the epileptogenic zone/seizure onset zone (Chaudhary 
et  al. 2012a; Donaire et  al. 2009a; Sierra-Marcos et  al. 2013; Thornton et  al. 
2010b). A similar pattern of ictal haemodynamic changes localised to the epilep-
togenic zone/seizure onset zone at the ictal onset on intracranial EEG (i.e. gold 
standard tool to localise seizure onset; Fig.  17.4) has also been shown using 
simultaneous intracranial EEG-fMRI (Chaudhary et  al. 2016). Based on these 
studies, it appears that BOLD changes linked to ictal events can provide non-
invasive BOLD localisation at sub-lobar which can be useful for guiding implan-
tation of intracranial electrodes in patients with refractory epilepsy undergoing 
presurgical evaluation.

17.3.4.2  Mechanism of Epilepsy
In reading epilepsy (Salek-Haddadi et al. 2006), ictal EEG–fMRI revealed activa-
tions in cortical and subcortical areas, concordant with EEG changes. This observa-
tion points towards the early recruitment of subcortical structures, which may 
propagate and synchronise cortical activity. This has provided further evidence for 
a cortico-subcortical network in seizure generation.
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Fig. 17.3 Ictal and preictal BOLD changes and their comparison with the seizure onset zone and 
cortical resection. (a) Bar chart showing level of concordance of BOLD changes with the pre-
sumed seizure onset zone, during ictal and preictal phases. (b) SPMs of F-statistics overlaid on 3D 
rendered brain in individual space, showing the relationship between preictal (orange) and ictal 
onset-related BOLD changes (green), implanted electrodes and structural lesion (red). (i) Patient 
#10: The global-maximum cluster in the right occipito-temporal region for the preictal and Ictal 
phase was within the presumed seizure onset zone and was 1.8 cm and 2.5 cm respectively from 
the invasively-defined seizure onset zone. (ii) Patient #16: The global-maximum cluster in the left 
superior/middle frontal gyrus for the Ictal phase was within the presumed seizure onset zone at 
1.5 cm from the invasively-defined seizure onset zone. For the preictal phase another cluster in 
medial superior frontal gyrus was within the presumed seizure onset zone at 2.5  cm from the 
invasively-defined seizure onset zone. (iii) Patient #1: For the Ictal-onset phase, the second most 
statistically significant BOLD cluster in right inferior parietal lobe was within the presumed sei-
zure onset zone at 1.9 cm from the invasively-defined seizure onset zone. The global-maximum 
preictal cluster in the right parietal region was within the presumed seizure onset zone at 3cm from 
the invasively-defined seizure onset zone. (c) Ictal onset-related maps overlaid on co-registered 
post-surgical T1-volume. Cross-hair shows the BOLD-cluster within the presumed seizure onset 
zone. (i) Patient #1 had a cortical resection including the right parietal tuber and overlapping ictal 
onset-related cluster (cross-hair: ILAE Class-I at 1.5 year). (ii) Patient #4 underwent left anterior 
temporal lobe resection which did not involve the ictal onset-related global-maximum cluster in 
superior temporal gyrus (cross-hair; ILAE Class-III at 1 year). (iii) Patient #16 had a resection 
including right posterior superior frontal gyrus/middle frontal gyrus and part of supplementary 
motor area and ictal onset-related global-maximum cluster (cross-hair; ILAE Class-I at 1 year). 
Adapted from Chaudhary et al. (2012a)
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Fig. 17.4 Seizure-related BOLD changes based on visual segmentation of seizure (models 1 and 
2). (a) Representative sample of EEG recorded during icEEG-fMRI, (1) EEG showing Ictal onset 
phase consisted of fast activity in beta range involving RA contacts 1–4 and RH contacts 1–2. (2) 
EEG showing Late-ictal phase consisted of fast activity in gamma range involving RA contacts 
1–2 and LPH contacts 4–5. (b) BOLD changes overlaid on glass brain and on a co-registered 
T1-volume. (1) Ictal onset phase-related BOLD clusters were seen in the right fusiform gyrus 
(global statistical maximum: cross-hair) in addition to other clusters in the right temporal lobe and 
the precuneus. (2) Late-ictal phase-related BOLD clusters were seen in the precuneus (global sta-
tistical maximum: cross-hair) in addition to other clusters in the right temporal lobe and the poste-
rior cingulate. Adapted from Chaudhary et al. (2016)

In patients with different types of malformations of cortical development, differ-
ent BOLD patterns have been seen for ictal and interictal activity in lesions, overly-
ing cortex and distant areas ((Tyvaert et al. 2008); see Fig. 17.5). BOLD responses 
were found to be significantly greater for ictal compared to interictal activity. 
Studies in patients with focal cortical dysplasia demonstrated BOLD activations 
involving the lesion during both interictal and ictal recording. In contrast, patients 
with band heterotopias had BOLD activations with interictal epileptic activity 
involving the lesion and areas distant to the lesion, whereas ictal BOLD increases 
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involved the lesion only. Similarly, patients with nodular heterotopia also showed 
some discordance between BOLD changes with ictal and interictal epileptic activ-
ity; ictal activity originated in the overlying cortex, whereas spike-related BOLD 
changes were congruent with the nodular heterotopia and distant cortex (Tyvaert 
et al. 2008). However, others have found a mixture of BOLD increases and decreases 
irrespective of the presence of structural abnormality (Chaudhary et  al. 2012a; 
Hamandi et al. 2006; Jacobs et al. 2008, 2009; Laufs et al. 2007; Thornton et al. 
2010b; Vaudano et al. 2009). It is possible that that cerebral blood flow can be com-
promised in areas of structural abnormalities leading to demand perfusion mismatch 
or dysregulated neurovascular coupling resulting in variable patterns of BOLD 
activity during seizure; however, many aspects of the interaction between BOLD 
and neuronal activity still remains to be elucidated (Logothetis and Pfeuffer 2004; 
Pasley et al. 2007; Raichle et al. 2001; Sakatani et al. 2007; Schridde et al. 2008; 
Shmuel et al. 2002, 2006; Shulman et al. 2007).

Ictal scalp EEG-fMRI can reveal temporal evolution of hemodynamic changes, 
i.e. preictal: prior to the seizure onset on scalp EEG, at the seizure onset and during 

a

c

b

b c

Fig. 17.5 Nodular heterotopia. (a) Anatomical MRI showed a right occipitotemporal nodular 
heterotopia over the occipital horn (head of white arrows). Abnormal overlying cortex over the 
whole posterior quadrant. (b) Increase of BOLD signal involved essentially the nodular heteroto-
pia during right posterior temporoparietal spikes. Deactivation was confined in the cuneus. (c) 
Activation during the seizure involved only the overlying cortex; the nodular heterotopia was not 
involved. On the EEG, the seizure started by a right posterior temporoparietal sharp rhythmic 
activity. Adapted from Tyvaert et al. (2008)
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seizure propagation (Chaudhary et al. 2012a; Donaire et al. 2009a; Federico et al. 
2005a; Sierra-Marcos et al. 2013; Thornton et al. 2010b; Vaudano et al. 2012, 2013). 
Preictal changes (Fig. 17.6) involve epileptogenic and also more widespread areas 
including irritative zones and/or resting state network-related areas (Bartolomei 
et al. 2004; Gnatkovsky et al. 2008; Huberfeld et al. 2011; Schwartz et al. 2011; 
Trombin et al. 2011; Truccolo et al. 2011; Wendling et al. 2005; Zhao et al. 2007). 
These haemodynamic changes suggest recruitment and interaction of neuronal and 

a

b c

Fig. 17.6 Preictal time courses and BOLD changes. (a) Time courses of preictal BOLD clusters 
for patients #1, 4 and 10. Prior to the seizure onset on scalp-EEG, multiple areas including the 
seizure onset zone, irritative zone and remote regions showed a consistent BOLD decrease (Median 
onset: –31 s; 95% confidence-interval: –35.7 to –26.3) followed by an increase (Median onset: –16 
s (95% confidence-interval: –18.1 to –13.9) suggesting recruitment of a widespread preictal net-
work. Black arrow = seizure onset; orange bar = 30 s preictal window. *Patient #1 had a second 
irritative zone (IZ2) showing IEDs on MEG. Patient #4 had a second irritative zone (IZ2) showing 
IEDs on MEG. (b) Patient #1. (i) Multiple tubers were seen in right parietal lobe (epileptogenic: 
encircled) and left temporal lobe. (ii) The preictal map (overlaid on co-registered T1-volume) was 
classified as Concordant-plus showing global-maximum cluster in right parietal lobe within the 
presumed seizure onset zone. (c) Patient #10. (i) Long standing ischaemic damage with malforma-
tion of gyri in right occipito-parietal region extending into right posterior temporal lobe on MRI- 
scan. (ii) The preictal map (overlaid on co-registered T1-volume) had Some-concordance showing 
global-maximum BOLD cluster in left medial parieto-occipital region and another cluster in right 
lateral parieto-occipital region within the presumed seizure onset zone (Chaudhary et al. 2012a)
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metabolic network at/prior to the seizure onset, i.e. initial BOLD decreases repre-
senting active inhibitory circuits which are surpassed by the increasing neuronal 
activity (represented by BOLD increases) as seizure evolves. These preictal haemo-
dynamic changes may represent the ictal rhythm which is yet not synchronised 
enough to be represented on scalp EEG due to its inherent limitations (Chaudhary 
et al. 2012a; Ray et al. 2007; Tao et al. 2005), preictal discharges (Huberfeld et al. 
2011), fast oscillatory activity (Wendling et  al. 2005) or activity from glial cells 
(Moore and Cao 2008). Ictal haemodynamic changes during seizure propagation 
are seen in the symptomatogenic areas such as clinical semiology related areas 
(Chaudhary et  al. 2012a), musicogenic seizure-related network (Marrosu et  al. 
2009; Morocz et al. 2003), reading epilepsy-related network (Salek-Haddadi et al. 
2009; Vaudano et al. 2012) suggesting recruitment of these areas as epileptic activ-
ity spreads. Seizure-related BOLD decreases in the default mode network are 
thought to suggest changes in awareness (Chaudhary et al. 2012a).

17.4  Conclusions

EEG–fMRI, with its capacity to reveal 3D, whole-brain maps of haemodynamic 
changes related to pathological EEG patterns, is a unique tool for the study of epi-
lepsy. While the technique’s yield (though comparable to that of MEG) remains 
limited, it has provided new localising information and revealed previously unseen 
brain networks in a large proportion of the patients. The combination of fMRI with 
EEG allows the application of powerful hypothesis-driven fMRI analysis tech-
niques to reveal haemodynamic changes specifically correlated with pathological 
EEG patterns such as IED. However, this means that this approach to EEG–fMRI 
also suffers from some of the limitations of EEG, in particular its limited sensitivity, 
which can result in a poor baseline against which postulated BOLD changes can be 
assessed. The application of more sophisticated EEG analysis techniques may lead 
to more objective and reliable GLMs. Efforts are being made to both improve our 
understanding of the relationship between epileptiform discharges and BOLD sig-
nals; and use EEG-fMRI as an additional localizing tool for patients undergoing 
presurgical evaluation for refractory epilepsy, with the ultimate aim of better under-
standing the mechanism of generation of epileptic activity.
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18EEG-fMRI in Generalised Epilepsy: Adults

Patrick Carney and Graeme Jackson

18.1  Idiopathic Generalised Epilepsy

18.1.1  Definition and Classification of Generalised 
Epilepsy Syndromes

Generalised epilepsies are common and account for up to 20% of epilepsy diag-
noses particularly in younger age groups (Jallon and Latour 2005; Olafsson et al. 
2005). Although generalised epilepsies commonly present in childhood, they may 
present de novo in early or late adulthood and may persist into adulthood follow-
ing onset in adolescents (Jallon and Latour 2005). First defined by the ILAE in 
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1989 (ILAE 1989), as idiopathic generalised epilepsies (IGE), they referred to 
epilepsies in which “all seizures are initially generalized, with an EEG expression 
that is a generalized, bilateral, synchronous, symmetrical discharge”, and in addi-
tion, patients were considered to be “normal” between seizures; “a normal inter-
ictal state, without neurologic or neuroradiologic signs”. The cause was unknown 
other than a “possible hereditary predisposition”. More recent classification docu-
ments have used the term “genetic generalised epilepsies” (GGE) (Berg et  al. 
2010; Scheffer et al. 2017) which reflects a desire by the classification committee 
highlight the strong evidence in support of a genetic aetiology. Resistance to this 
view comes mostly from the limited number of known genes causing GGE 
(Mullen et al. 2018) and the potential stigma that arises from the term “genetic” 
which indicates inheritance and therefore may lead to negative perceptions of a 
patient with epilepsy. At present, the terms IGE, GGE and GE are all acceptable 
and interchangeable. We will use the term idiopathic generalised epilepsy (IGE) 
in this document. In the classification document of 2010 (Berg et al. 2010), gen-
eralised epilepsies are referred to as “Generalized epileptic seizures are conceptu-
alized as originating at some point within, and rapidly engaging, bilaterally 
distributed networks. Such bilateral networks can include cortical and subcortical 
structures, but do not necessarily include the entire cortex”. This observation 
reflects thinking on potential mechanisms of seizure generation and is key to how 
we might use EEG-fMRI to better understand the mechanisms and impacts of 
generalised seizures (Carney and Jackson 2014).

18.1.2  Diagnosing IGE

An approach to the diagnosis of IGE is considered as part of a broad approach to the 
diagnosis of epilepsy in the 2017 classification paper (Scheffer et al. 2017). In the 
initial classification, a greater emphasis was placed on EEG and neuroimaging find-
ings, whereas in the new classification, the starting point for classification is the 
seizure type; the seizure is generalised in type, as opposed to focal or unknown. This 
enables consideration of epilepsy diagnosis and then, where possible, classification 
of the epilepsy syndrome. The well-recognised and ILAE-approved syndromes of 
GE are listed in Table 18.1.

Table 18.1 Epilepsy syndromes defined by the ILAE (AS absence seizure, TCS tonic-clonic sei-
zure, MS myoclonic seizure, EM eyelid myoclonia, MAS myoclonic absence seizure, MA myo-
clonic atonic seizure)(Scheffer et al. 2017; ILAE 1985)

Epilepsy syndrome Common seizure types Age of onset
Childhood absence epilepsy
Juvenile absence epilepsy
Juvenile myoclonic epilepsy
Epilepsy with eyelid myoclonias
Epilepsy with myoclonic absence
Epilepsy with myoclonic atonic seizures
Epilepsy with generalised TCS alone

AS, TCS (less common)
AS, TCS, MS
MS, TCS, AS
EM, AS, TCS
MAS, AS, TCS
MA, AS, TCS
TCS

4–10 years
>10 years
>10 years
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18.1.3  IGE Comorbidity

Given the conceptualisation of IGE as a large scale network disorder with abnor-
mal network behaviour underpinning seizure generation, it is important to con-
sider what the impact of abnormal network behaviour might have on other 
cognitive processes, not just during seizures but in the interictal period. A sys-
temic review of cognitive studies in IGE highlighted the presence of pervasive 
cognitive impairments across a number of domains including executive function, 
processing speed and working memory which potentially impact on educational 
and vocational abilities (Loughman et al. 2014). Although there are likely to be 
effects of seizure burden and medication on cognitive outcome, it would appear 
that even in well-controlled epilepsy, cognitive outcomes may be impaired 
(Henkin et al. 2005). Mood disorders are also common in the epilepsies with a 
likely bidirectional relationship between the risk of epilepsy and severity and the 
presence of depression suggesting common underlying pathophysiological mech-
anisms (Josephson et  al. 2017). The use of functional imaging, including EEG 
fMRI, provides a specific mechanism to study network performance and poten-
tially establishes the link between functional networks and cognitive and affective 
performance.

18.2  Cortical and Subcortical Generators of Generalised 
Spike and Wave Activity

The hallmark feature of IGE is the generalised spike and wave discharge (GSW). 
GSW are defined by a low-amplitude surface negative spike followed by a dome- 
like slow wave (Avoli et  al. 2001). Discharges can display marked variability in 
morphology with single discharges as well as polyspike activity. Onset is typically 
symmetrical, but asymmetric onset and apparent “focal” features are well described 
(Holmes et al. 2004). To understand the mechanism of generation of spike and wave 
activity, one needs to consider both the cellular networks involved in seizure genera-
tion and the large-scale functional networks that whole brain functional MRI 
demonstrates.

At a cellular level thalamocortical networks appear to be the major seizure gen-
erating apparatus (Kostopoulos 2000; Steriade 2005). The thalamus displays rhyth-
mic firing and has extensive reciprocal connections to the cortex, with excitatory 
neurons (glutamatergic) arising from the dorsal thalamus conveying information to 
the cortex and excitatory cortical neurons project back to the thalamus (Steriade 
2005; Blumenfeld 2002). In addition there is an inhibitory brake on this pathway. 
Inhibition occurs as a consequence of cortical and thalamic connections to the retic-
ular nucleus of the thalamus which then projects back on to the anterior thalamus 
and cortex releasing gamma-aminobutyric acid (GABA)—an inhibitory neuro- 
transmitter (Steriade 2005). This excitatory activity is the likely generator of the 
“spike”, while reciprocal inhibition creates the after going slow “wave” 
(Blumenfeld 2005).
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Thalamocortical networks provide us with a cellular pathway for the generation 
of seizures and interictal discharges, while a number of experimental pathways have 
been used to then explain how seizures may arise. Early experimental models of 
spike and wave activity gave rise to opposing theories on the pre-eminence of the 
thalamus or cortex in seizure generation (for review, see Blumenfeld 2005). These 
contrasting theories were united by the generalised cortico-reticular theory of 
Gloor, in which spike and wave arose from interactions between ascending inputs 
from the thalamus and a diffusely hyper-excitable cortex (Gloor 1968). More 
recently, the cortical focus theory has suggested that a cortical focus is required to 
initiate generalised activity (Meeren et al. 2005). This draws strongly on evidence 
from genetic absence epilepsy models in rats (Meeren et al. 2002; Pinault 2003; 
Pinault and O’Brien 2005) where an apparent cortical focus at the onset of a seizure 
is then followed by oscillations within the thalamocortical network. It is this view 
that is encompassed in the 2010 classification commission document which refers 
to generalised seizures originating “at some point within, and rapidly engaging, 
bilaterally distributed networks” (Berg et al. 2010).

These models indicate the importance of studying the structural and functional 
relationships between large-scale brain networks in humans if we are to understand 
the mechanisms of spike and wave activity. EEG-fMRI presents an opportunity to 
understand the relevance of these models to the human condition.

18.3  What EEG fMRI Has to Tell Us About Generators 
of Generalised Spike and Wave in Adults

Although the focus of this chapter is to consider insights into adult IGE provided by 
EEG-fMRI, it is impossible to do this without also referring to the extensive paedi-
atric literature. In this section, we will discuss specifically the network insights pro-
vided by EEG-fMRI into the generation of interictal epileptiform discharges in both 
adults and children.

18.3.1  EEG-fMRI Provides a Topographic Map of Structures 
Involved in the Generation of GSW

18.3.1.1  The Thalamus and Cortex in GSW
The thalamus plays a central role as a relay station for information transfer in the 
brain, demonstrating strong reciprocal connections to the cortex, and not surpris-
ingly has been consistently identified as a major region of positive BOLD change 
during interictal epileptiform activity (GSW discharges) and ictal discharges 
(absence seizures) in adults (Aghakhani et al. 2004; Benuzzi et al. 2015; Gotman 
et al. 2005; Laufs et al. 2006; Moeller et al. 2010a; Pugnaghi et al. 2014; Hamandi 
et al. 2008; Szaflarski et al. 2010a) and children (Bai et al. 2008, 2010; Berman et al. 
2010; Carney et al. 2010, 2012; Killory et al. 2011; Li et al. 2009; Moeller et al. 
2008a, b, 2010b, c) with generalised epilepsy syndromes.
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The dominant theories of generation of GSW discussed above highlight the impor-
tant interaction of the thalamus and cortex, and not surprisingly, changes in BOLD 
involving the thalamus and cortex are seen consistently. Thalamic change is most 
commonly seen as an increase in BOLD during interictal and ictal events across EEG-
fMRI studies mentioned above. Cortical BOLD change however shows greater vari-
ability. There is a consistent negative BOLD change seen in the mesial and lateral 
parietal cortex, encompassing the precuneus and posterior cingulate mesially, and the 
angular and supramarginal gyrus laterally. These structures together are the key struc-
tures of the “default mode network” (DMN) (Raichle et al. 2001). The DMN has been 
identified as a key cognitive network subserving non- task- related cognitive process-
ing and is consistently seen not only in EEG-fMRI studies of generalised epilepsy but 
also focal epilepsies and in a range of other functional imaging studies (Centeno and 
Carmichael 2014). The reason for negative BOLD change in this region is not clear 
with a number of theories proposed (Carney and Jackson 2014). BOLD change in 
other regions of the cortex is much more variable with both positive and negative 
changes seen involving primary (Berman et al. 2010; Carney et al. 2012) and associa-
tion cortex without a consistent pattern that can be attributed to age, syndrome type 
(Aghakhani et al. 2004; Gotman et al. 2005) or nature of discharge (AS v interictal 
discharge) (Szaflarski et al. 2010a; Carney et al. 2010; Li et al. 2009). Hence, although 
both the thalamus and cortex are consistently identified as regions of BOLD change in 
response to both ictal and interictal generalised epileptic activity, exactly what this 
tells us about the mechanism of discharge generation is not so clear.

18.3.1.2  The Thalamus
Thalamic involvement in epileptic discharges in IGE is a consistent finding regard-
less of age, discharge type (interictal spike and wave or absence seizure) or epilepsy 
syndrome. An important question is to what extent particular subnuclei of the thala-
mus may be involved and what is the temporal relationship of BOLD signal change 
with regard to seizure onset thus providing insight into the potential generators of 
spike and wave.

There are significant limitations using EEG-fMRI when it comes to identifying 
thalamic subunits. An early step in the analysis of EEG-fMRI involves spatial 
smoothing to boost the signal of interest meaning that the resolution may be less 
than the size of relevant thalamic nuclei. In one study (Tyvaert et al. 2009), thalamic 
regions of interest were selected by a neurosurgeon with expertise in thalamic ste-
reotaxy. In this population of adults with a range of IGE syndromes, the time course 
of the BOLD signal indicated a role for the posterior nuclei in discharge initiation 
or propagation while the anterior nuclei were more likely to play a role in discharge 
maintenance. Using a data-driven approach, Masterton et al. (2013) has observed 
two components of the spatial extent of epileptiform discharges; one located in the 
midline may reflect the local venous drainage into thalamostriate veins, while the 
other component involves the lateral thalamic nuclei and lentiform nuclei bilaterally 
(see Fig. 18.1) suggesting a more extensive thalamostriate network.

As discussed above, understanding the timing of thalamic versus cortical BOLD 
change is important for how we might better understand the generation of GSW and 
AS. Analysis of BOLD signal provides an opportunity to better understand these 
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Fig. 18.1 Absence epilepsy subnetworks revealed by event-related independent components anal-
ysis (eICA). Panel 1 shows three axial sections of a group activation event-related analysis, while 
Image 2 shows thalamic activations identified using eICA. In panel 1, colours indicate activations 
(warm colours) and deactivations (cool colours). Panel 2 illustrates the areas of thalamic activation 
detected by the canonical HRF analysis, and components B and C of the eICA analysis. Significant 
activations from component B are represented by the orange-coloured areas, component C by the 
yellow-coloured areas, and areas where activation was detected in both components are repre-
sented by the red coloured areas. (Figure adapted from Masterton et al. 2013)

timing relationships although several methodological issues must be considered. 
The acquisition of a whole volume of MRI data usually occurs at a TR of approxi-
mately 3 s depending on the protocol used. Nonetheless, a number of methods have 
been used to extract relevant timing information, in spite of these limitations, which 
give some insight into thalamic BOLD change with regard to GSW activity. Methods 
have included selecting specific regions of interest and studying the time course 
within those regions (Bai et  al. 2010; Carney et  al. 2010; Moeller et  al. 2008a), 
using independent components analysis (ICA) (Moeller et  al. 2010a; Masterton 
et al. 2013) or using a shifting haemodynamic response function (HRF) (Szaflarski 
et al. 2010a; Bai et al. 2010; Moeller et al. 2008a; Benuzzi et al. 2012). Studies have 
shown BOLD change may precede event onset (Moeller et  al. 2008b) although 
more commonly occur congruent with event onset (Szaflarski et al. 2010a; Carney 
et al. 2010; Benuzzi et al. 2012) but may also follow event onset (Bai et al. 2010). 
There is some debate whether the time course is canonical or that it deviates signifi-
cantly form the canonical response. Our observation has been that the BOLD 
response is canonical, in contrast to the other elements consistently identified dur-
ing spike and wave discharges (which we have dubbed the core network (Carney 
et al. 2010)), and we have speculated that the thalamus therefore appears to behave 
physiologically and reactively to the onset of epileptiform activity, although it may 
be critical to sustaining the seizure (Carney et al. 2012).
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Non-Thalamic Subcortical Contributions
The study by Masterton above indicates the potential for non-thalamic subcortical 
involvement in GSW. Although several subcortical structures have been identified, 
including the reticular structures of the pons (Carney et al. 2010) and cerebellum 
(Bai et al. 2010; Benuzzi et al. 2012), the most commonly identified subcortical 
nuclei has been the caudate nuclei which commonly show symmetrical negative 
BOLD change in response to AS and GSW. The relevance of BOLD change in the 
caudate is not certain however it may be that changes in the caudate are related to 
connections with the prefrontal cortex. Zhang et al. (2008) used functional connec-
tivity analysis to assess resting state correlations in the brain and showed correla-
tions between the prefrontal cortex and the caudate nucleus. It may be that changes 
in the dorsolateral frontal cortex may interact with the caudate.

18.3.1.3  Cortical BOLD: The Importance of the Default 
Mode Network

Even in the very early studies of generalised epilepsies using spike-triggered EEG- 
fMRI, there was evidence of BOLD signal reductions in the DMN (Archer et  al. 
2003). The observation of task-induced activity decreases in parietal and frontal corti-
cal regions was first made during a meta-analysis of PET studies of visual processing 
(Shulman and Fiez 1997). This network of regions was later termed the DMN (Raichle 
et al. 2001) and was identified as a distinct network in several other studies (Binder 
et al. 1999; Mazoyer et al. 2001). The DMN is involved in internalized cognitive activ-
ity including random thoughts and free associations of ideas and memories (Mazoyer 
et al. 2001; Andreasen et al. 1995). One might expect DMN signal change to distin-
guish between adult and paediatric EEG-fMRI studies as the DMN is known to show 
functional differences in children over differing developmental ages, with paediatric 
networks demonstrating a fundamentally different structure to adults, and are not just 
a precursors to the adult form (Power et al. 2010; Fair et al. 2009). Despite these func-
tional differences, DMN change appears to be similar in adult and paediatric studies.

Several key observations have been made regarding the pattern and timing of 
BOLD change in the DMN in GSW and AS:

 1. It appears consistent across age groups, syndrome classification and discharge 
type (AS v GSW) in individuals and in group analysis.

 2. Studies analysing the timing of BOLD change in the DMN suggest this most 
commonly precedes the epileptiform event, importantly also occurring before 
thalamic BOLD increases, in both adults and children (Bai et al. 2010; Carney 
et al. 2010; Moeller et al. 2008a; Benuzzi et al. 2012; Szaflarski et al. 2010b).

 3. The time course of BOLD change is complex often with an initial increase in 
BOLD, and therefore blood flow, followed by a reduction in BOLD signal closer 
to the timing of event onset before slowly returning to baseline. This pattern in 
some studies has deviated from the usual canonical or physiological BOLD 
response (Bai et al. 2010; Carney et al. 2010; Moeller et al. 2008a; Benuzzi et al. 
2012; Szaflarski et al. 2010b).

The significance of DMN change is uncertain. In a review article, we have 
argued that DMN changes reflect a pre-emptive state of the brain which “permits” 
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or facilitate the occurrence of epileptiform events (Carney and Jackson 2014). We 
argue that “fluctuating states of awareness contribute to an environment condu-
cive to the generation of epileptiform activity. Within that ‘conducive’ environ-
ment a further ‘trigger’ is required to initiate an epileptiform event”. This is 
contrary to the argument that the DMN may be “switched off” during a gener-
alised discharge, thus being the substrate for loss of awareness during and absence 
seizure(Gotman et  al. 2005; Blumenfeld 2012; Danielson et  al. 2011), or that 
frontal BOLD might be an initiating event for a generalised discharge (Archer 
et al. 2003; Vaudano et al. 2009). One of the arguments in support DMN BOLD 
change not being an indicator of loss of awareness comes from the fact that BOLD 
change appeared to be largely the same whether an absence, with loss of aware-
ness or a brief burst of GSW, where awareness was retained. The Blumenfeld lab 
that published extensively on cognitive change associated with EEG-fMRI sug-
gested that the defining feature of an absence seizure versus GSW may be the 
extent or intensity of BOLD and EEG change in already recognised networks (Li 
et al. 2009; Guo et al. 2016). Whether BOLD change is the product of, or a neces-
sary requirement for, generalised epileptiform activity is not clear. Nonetheless, it 
is a consistent feature across a range of studies and is clearly an important com-
ponent of the network of structures necessary to generated generalised epileptic 
activity.

Cortical Change in Adults Beyond the DMN
Given the likely role of thalamocortical networks in the generation of generalised 
epileptic activity, it would be expected that corresponding regions of positive 
BOLD would also be seen in EEG-fMRI studies; however, the opposite is the 
case. Cortical BOLD increases occur but they are not seen consistently or repro-
ducibly between patients, although often these cortical patterns are reproducible 
within events in a single patient (Moeller et al. 2010b). Our interest in this vari-
able cortical phenomenon leads to the observation of changes in the dorsolateral 
prefrontal cortex (activations, or deactivations) appeared related to severity of the 
underlying epilepsy syndrome (Carney et  al. 2012). Zhang et  al.(Zhang et  al. 
2015) used a novel “EEG- informed fMRI analysis” to study event-related dis-
charges which showed activation in the medial frontal cortex, and to a lesser 
extent in the insular and sensory motor cortex, which linked strongly to activa-
tions in the medial dorsal nuclei of the thalamus. Other studies in adults have 
shown variable patterns of activation and deactivation in a range of primary and 
secondary/association cortical regions (Aghakhani et  al. 2004; Gotman et  al. 
2005; Moeller et al. 2010c). We have also considered whether genetic factors may 
play a role in differences in the pattern of BOLD change. In unpublished data 
shown in Fig. 18.2, we studied BOLD change in sib pairs (young adults and chil-
dren) with generalised epilepsy and showed the strongest correlation between 
BOLD change in matched voxels was seen in monozygotic twins with concordant 
epilepsy syndrome and with the weakest correlation in siblings with discordant 
syndromes. At this stage, it is not clear what can be inferred about cortical change 
beyond the DMN in GGE.
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Fig. 18.2 Is BOLD change genetically determined? Correlation of BOLD change across all vox-
els was compared between siblings pairs (unpublished data). Axial sections showing BOLD 
change in cortical and subcortical regions for three sibling pairs. A comparison was then performed 
between siblings comparing raw BOLD signal between homologous voxels. A mean “r” value was 
the generated from the paired voxel values. The correlations between activation maps for the sib-
ling pairs and reproducibility cohort are shown. Monozygotic twins with juvenile absence epilepsy 
(19 years) had a similarly high correlation of 0.58. A non-twin sibling pair with same syndrome 
(eyelid myoclonia with absence, ages 5 and 6) had a correlation of 0.4, whereas the sibling pair 
with different syndromes (CAE and ETCSA ages 8 and 6) had the lowest correlation of 0.23. 
Colour map images of positive BOLD (red to white; 0 to +10) and negative BOLD (blue to green 
0 to −10) displayed on the subjects mean EPI image (p < 0.001 uncorrected)

18.3.1.4  Cortical Change in Lennox-Gastaut Syndrome
One situation where cortical BOLD change may be instructive is in patients with 
Lennox-Gastaut syndrome (LGS) in comparison to IGE. LGS has superficial simi-
larities to GGE given the presence of generalised spike and wave activity, but this is 
where the similarity ends. LGS may arise in the context of an identifiable structural 
abnormality or may be cryptogenic and likely genetic (Arzimanoglou et al. 2009). 
The diagnostic clinical triad includes:

 1. Multiple seizure types including tonic seizures.
 2. Intellectual disability of varying severity.
 3. Characteristic EEG findings of diffuse slowing, slow spike and wave (in contrast 

to fast spike wave seen in GGE) and the presence of paroxysmal bursts of fast 
activity which may occur spontaneously, often in sleep, and commonly in asso-
ciation with tonic seizures.

In LGS, changes in the DMN during SSW are typical of those seen in GSW of 
IGE, that is, predominantly negative BOLD change (Archer et al. 2014a; Pillay et al. 
2013). Interestingly, the pons may be deactivated during GSW (Carney et al. 2010) 
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but shows a prominent increase in activity with SSW during fMRI regardless of the 
aetiology of LGS (that is structural or lesion negative/presumed genetic) (Pillay et al. 
2013; Siniatchkin et al. 2011). The pattern of BOLD change associated with gener-
alised paroxysmal fast activity (GPFA) is quite different with diffuse increase in 
BOLD activity involving association cortices showing simultaneous activation of 
attention and DMN networks in both children and adults (Archer et al. 2014a; Pillay 
et al. 2013; Archer et al. 2014b). This observation is unique given the DMN and atten-
tional networks are usually anti-correlated given their opposing cognitive functions 
and appears to occur in both lesional and lesion-negative patients (Archer et al. 2014b).

In an abstract presented at the American Epilepsy Society in 2013 (Carney et al. 
2014), we compared the patterns and time course of BOLD change between LGS 
and GGE. The DMN showed a similar pattern of deactivation during SSW and GSW 
with the major difference in BOLD change occurring in primary cortical areas, which 
show little change during GSW, but prominent deactivation during SSW. This was 
highlighted in the time course analysis of selected regions of interest (Fig. 18.3). The 
pons is deactivated during GSW but has rising activity prior to SSW. We hypothesise 

Fig. 18.3 Lennox-Gastaut syndrome compared to genetic generalised epilepsy. Group eICA of 
LGS compared to IGE(GGE) reveals the primary motor cortex is activated during the GSW of IGE 
but deactivated during the SSW of LGS. In this figure components of interest are displayed along 
with their associated average event-related time courses. To aid interpretation, the colour scale of 
spatial maps has been adjusted to show regions of initial signal decrease in cool colours and initial 
increase in warm colours
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that although there are superficial similarities, it is likely that there are fundamental 
differences in how epileptic activity is generated in LGS versus GGE.

18.3.1.5  Connectivity Analysis Insights into 
the Mechanisms of GSW

Functional as well as structural methods of connectivity have been employed 
using a number of differing techniques to identify how the brain networks may 
be impaired in patients with epilepsy. Although not strictly EEG-fMRI, these 
studies often use EEG recorded events during EEG-fMRI studies to enable 
event-related or event- free analysis of connectivity (Xiao et al. 2017). In these 
studies, it would appear that significant perturbations of normal cortical and 
subcortical network relationships are common in IGE when compared to 
matched controlled populations. This may be influenced by the presence or 
absence of interictal activity (Luo et al. 2012; Masterton et al. 2012), the dura-
tion of disease, background seizure frequency (Liu et al. 2017) and accentuated 
by cognitive tasks (Vollmar et al. 2011). The observation by Vollmar and col-
leagues (Vollmar et  al. 2011) that cognitive task performance in adults with 
JME leads to stronger activation of primary and supplementary motor areas, 
persistent activation of medial frontal regions and deactivation of the DMN 
(enhanced in those with active epilepsy) provides insight into how impairment 
of normal network organisation may be a substrate for neuropsychological 
impairment. Connectivity analysis provides insight into how brain function in 
patients with GGE may differ from the normal resting state between seizures 
and interictal discharges.

18.4  Conclusions

EEG-fMRI has proved to be a rich tool to explore the mechanisms which underpin 
the generation of seizures and interictal activity in adults with IGE enabling the 
non-invasive exploration of the underlying topography of seizure generation. In step 
with the extensive animal-model literature, EEG-fMRI has confirmed the impor-
tance of the thalamus as a central relay for interictal activity. However, perhaps 
more importantly, it has led to observations, such as the negative cortical BOLD 
change in the DMN, which have forced researchers to re-evaluate what thalamocor-
tical relationships are and how they might contribute to seizure generation and the 
symptoms and signs of generalised seizures. Although lacking the temporal resolu-
tion of electrophysiological studies, EEG-fMRI has enabled insights into the spatial 
and temporal relationships, providing a means of understanding of how animal 
models may apply to the human condition. The increasing use of functional con-
nectivity, often guided by in scanner EEG, will allow these spatial and temporal 
relationships to be further explored.
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Abbreviations

BECTS Benign epilepsy with centro-temporal spikes
BOLD Blood oxygenation level dependent
EEG Electroencephalography
fMRI Functional magnetic resonance imaging
HRF Haemodynamic response function

19.1  EEG-fMRI in Children with Epilepsy

Childhood epilepsies differ from adult epilepsies regarding aetiology, pathogenesis, 
seizure semiology and EEG patterns and prognosis (Roger et al. 2005). The imma-
ture brain is more prone to develop seizures, and epileptic discharges are more 
frequent and less localized in children than in adults (Holmes 1997). The clinical 
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manifestations are also age-correlated and can vary within patients throughout their 
maturation process (Ben-Ari 2006). Some epileptic syndromes are seen only in 
infants or children such as the West syndrome and severe myoclonic epilepsy of 
infancy, the idiopathic occipital epilepsies and the benign epilepsy with centro- 
temporal spikes (Roger et  al. 2005). Most of our understanding of the networks 
involved in the generation and propagation of epileptic activity in the immature 
brain derives from animal models and little from the study of human epilepsies.

Combining EEG and fMRI to study the haemodynamic correlates of spontane-
ous brain discharges, such as interictal epileptiform discharges (IED), provides a 
unique opportunity to investigate in vivo epileptogenic networks in patients with 
epilepsy (previous chapters and Moeller et al. 2013a; Maloney et al. 2015). It is a 
non-invasive technique that can be applied serially, or longitudinally, to children of 
all ages and that could add essential information on the maturation process and on 
developmental changes due to epilepsy. However, the use of EEG-fMRI in the pae-
diatric population is associated with a host of methodological issues regarding data 
acquisition and analysis.

19.2  Methodological Issues Specific to Paediatric 
EEG-fMRI Studies

19.2.1  Patient Selection and Scanning

One of the most challenging aspects of performing fMRI in children is to obtain a 
sufficient cooperation from their part so that adequate data can be collected. There 
are two main aspects to this issue: first, minimizing anxiety so that the child will 
agree to enter the scanner and remain in the scanner for the entirety of the exam, and 
second ensuring that the child stays motionless throughout the entire study 
(20–30 mins on average). Generally, sedation may be used for children undergoing 
EEG-fMRI, especially in very young children and children with developmental 
delay (Moeller et  al. 2013a). In non-sedated children, usually older and without 
developmental delay, anxiety may be reduced if a relative or someone familiar to the 
child is in the MR room during data acquisition, if EEG-fMRI is simulated first and 
the child trained for the test and, finally, if external stimulation (video and audio 
tapes), is used as early as possible before the test to distract the child (Rosenberg 
et al. 1997; Gaillard et al. 2001; Poldrack et al. 2002; Centeno et al. 2016). In some 
cases, relaxation techniques may help (Quirk et al. 1989).

Even well prepared or sedated, children are subject to motion (head and body 
movements) during the acquisition time. For instance, to reduce the effect of head 
motion on EEG-fMRI results, algorithms are used to improve quality and sensitivity 
of fMRI analysis (Bednarz and Kana 2018). Despite these difficulties, a survey of 
the literature reveals that EEG-fMRI studies have been conducted successfully in 
more than 1000 children with epilepsy to date. In our experience, so far, the record-
ings are well tolerated and the fMRI data of good quality can be obtained (see below).
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19.2.2  Modelling IED-Related BOLD Changes in Children: 
Variability and Developmental Changes

The haemodynamic response function (HRF) to external stimuli is known to change 
over the course of normal development, most notably during infancy (Schapiro 
et  al. 2004). Whereas auditory and visual stimulation results in positive BOLD 
responses (activations) in adults, several studies have reported negative BOLD 
responses (deactivations) to the same sensory stimulation in infants (for review, 
Poldrack et al. 2002). Despite a great deal of variability, there is a general pattern of 
BOLD responses in different stages of development: until 8 weeks, a significant 
proportion of children show no BOLD changes, older infants and children demon-
strate negative BOLD responses in most cases until the age of 3 years (Morita et al. 
2000; Martin et al. 1999). In children older than 3 years, positive BOLD responses 
dominate and persist throughout maturation.

The term ‘HRF’ designates the BOLD time course in response to a brief stimu-
lus. In the field of EEG-fMRI in epilepsy, HRF commonly refers to the BOLD 
change associated with brief discharges such as focal spikes. The effects of epilepsy 
and brain maturation on the shape of the HRF (amplitude, polarity and latency) are 
not well characterized. Jacobs et al. (2007) underline the impact of age on the IED- 
related BOLD changes and demonstrated that children with focal lesional epilepsy 
show deactivations more frequently than activations in the irritative zone compare 
to adults with the same type of epilepsy. In another study, the same group (Jacobs 
et al. 2008a) analysed the latency of the IED-related positive and negative BOLD 
changes using a Fourier basis set in 37 children with focal epilepsy (age range of 
3 months–18 years). Peak time of the positive BOLD changes in the youngest chil-
dren (0–2 years) was significantly longer (mean, 7.74 s) than in older age groups. 
Moreover, the negative BOLD changes peaked later compared with HRF for posi-
tive BOLD responses in all age groups. The influence of age on the HRF in children 
may be explained by a different vascular response to neural activity compare to 
adults, by a higher synaptic density and increased rates of synaptogenesis resulting 
in higher energy demand in the cortex of infants and young children or by an 
increased venous capacitance effect usually found in the paediatric age group (Meek 
et al. 1998).

Changes in brain state (vigilance, drowsiness and sleep), the effect of anaesthet-
ics or sedative drugs and of the antiepileptic medication itself probably modulate 
the BOLD signal and, hence, influence the fMRI results: for instance, more negative 
BOLD responses are observed if children are sedated during the EEG-fMRI studies 
(Altman and Bernal 2001; Bell et al. 2005; Born et al. 1998; Moehring et al. 2008). 
Whatever the mechanism and explanation, the choice of basis set for fMRI model-
ling may be particularly important in paediatric studies with possible implications 
for the technique’s yield (Jacobs et al. 2007). Modelling variability in the amplitude 
and field of the IED may further improve the yield of EEG-fMRI results (Kowalczyk 
et al. 2020).
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19.3  Results of EEG-fMRI Studies in Paediatric Epilepsy

19.3.1  Self-Limited Focal Epilepsies

Self-limited focal epilepsies represent a group of epileptic disorders that show 
well- defined focal epileptiform EEG patterns which undergo strong develop-
mental influences (Dalla Bernardina et  al. 2005). Early applications of EEG-
fMRI in children focused on the benign epilepsy with centro-temporal spikes 
(BECTS) or Rolandic epilepsy (Archer et al. 2003). Seizures in BECTS begin 
typically with paraesthesia and jerking in the mouth, face and hand, usually with 
a preserved level of consciousness, supporting their origin of epileptic activity 
in the sensorimotor cortex. Accordingly, the EEG-fMRI studies in patients with 
BECTS have shown IED- associated BOLD signal changes in the sensorimotor 
cortex, whereas distant BOLD signal changes were interpreted as propagated 
activity (Archer et  al. 2003, Boor et  al. 2003, 2007; Lengler et  al. 2007; 
Siniatchkin et al. 2007a; Masterton et al. 2013, see Fig. 19.1). Note that even in 
patients with well-localized IEDs, electrical source analysis was needed in order 
to differentiate between BOLD signal changes related to the initiation of epilep-
tic activity from BOLD effects which can be attributed to the propagated activ-
ity (Boor et al. 2007). The BOLD response to focal IED in BECTS was different 
to the canonical shape of the HRF underlining the importance of more variable 
HRF in paediatric studies (Masterton et  al. 2010). Interestingly, these early 
studies revealed some indications for possible interaction between the epileptic 
and the cognitive networks which may be responsible for cognitive deficits and 
psychiatric symptoms in patients with BECTS. In addition to activations in the 
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Fig. 19.1 Examples of two patients with benign epilepsy with centro-temporal spikes (Boor et al. 
2007). For each patient, the left picture shows results of event-related EEG-fMRI study. Only 
significant activations (FWE corrected, p < 0.05) are presented. The right picture demonstrates 
localization of equivalent current dipoles (calculated with BESA) for generators of epileptic activ-
ity (red) and propagated activity (blue). Note a good concordance between dipole localization and 
activation in the centro-temporal region in both patients. The figure illustrates how the combination 
of EEG source imaging and fMRI may disclose physiological significance of activated brain 
regions and separate areas of initiation and propagation of epileptic activity
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sensorimotor cortex, Archer et al. (2003) also described fMRI deactivation in 
both medial frontal regions, adjacent to the cingulate sulcus (p  =  0.004, cor-
rected), a location consistent with areas involved in attention and concentration, 
which may provide a link with the aforementioned psychological deficits. The 
effects of centro-temporal spikes on cognition were demonstrated in a study of 
Xiao et al. (2016). The authors performed a dynamic analysis of functional con-
nectivity in 22 medication-naïve patients with BECTS and differentiated 
between the pre-spike-, spike- and post-spike-related activities. The analysis of 
dynamic changes revealed positive correlations between bilateral rolandic areas 
and the left inferior frontal gyrus (Broca area), the left inferior parietal lobe and 
the supramarginal gyrus (areas responsible for receptive language function) as 
well as the right inferior frontal gyrus and left caudate. Anti-correlations were 
found in the default mode network. The authors suggested rolandic IED directly 
disrupt the functional brain networks responsible for language, behaviour and 
cognition in children with BECTS (Xiao et  al. 2016). IED-related and IED-
independent disturbance of functional connectivity in cognitive networks of 
patients with BECTS has been supported in a number of recent connectivity 
studies (Li et al. 2017, 2019).

It seems likely that antiepileptic drugs exert an influence on IED-related neuro-
nal networks as revealed by EEG-fMRI and on the interaction between these net-
works and networks of cognitive function. Zhang et al. (2018) demonstrated a clear 
and significant IED-associated activation in the Rolandic cortex in 11 children with 
BECTS, whereas activation strength and the overall area of activation were dimin-
ished in the levetiracetam-medicated group of 12 children with BECTS. Moreover, 
the drug-naïve group showed deactivation in the regions engaged in higher cogni-
tion networks compared with the levetiracetam-medicated group (Zhang et  al. 
2018). These findings may shed a light on the pharmacological mechanism of leve-
tiracetam therapy on BECTS.

In other benign epilepsies (benign occipital lobe epilepsies of a Gastaut type 
and Panayiotopoulos type), Leal et al. (2006, 2007) found an activation pattern in 
different cortical occipital and parietal areas corresponding well to the localiza-
tion of interictal epileptiform discharges. The authors suggested that EEG-fMRI 
provides a more satisfactory mapping of the irritative zone than those obtained 
from EEG source analysis. Moreover, Moeller et  al. (2013a) investigated ten 
patients with atypical benign partial epilepsy (ABPE or pseudo-Lennox syn-
drome) using simultaneous EEG-fMRI recording. Focal BOLD signal changes 
concordant with the spike field and distant cortical and subcortical BOLD signal 
changes were detected. The group analysis revealed a thalamic activation. This 
study demonstrated that ABPE is characterized by patterns similar to studies in 
Rolandic epilepsy (focal BOLD signal changes in the spike field) as well as pat-
terns observed in continuous spikes and waves during slow sleep (CSWS) (distant 
BOLD signal changes in cortical and subcortical structures; see below), thereby 
underscoring that idiopathic focal epilepsies of childhood form a spectrum of 
overlapping syndromes.
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19.3.2  Symptomatic and Cryptogenic Focal Epilepsies

An important motivation to perform EEG-fMRI studies in epilepsy is to use this 
method to map the epileptogenic and irritative zones for surgical purposes and any 
areas responsible for functional deficits. In adults, attempts have been made to reveal 
the epileptogenic zone using EEG-fMRI within a preoperative workup for epilepsy 
surgery in a selected group of patients (Zijlmans et al. 2007; Thornton et al. 2010, 
2011; Grouiller et al. 2011; Coan et al. 2016; Sebastiano et al. 2020). EEG- fMRI 
studies in lesional pharmacoresistant epilepsies are of a particular interest, especially 
from a clinical point of view. However, before the method finds a place in the clinical 
routine, validation studies demonstrating correspondence between lesions and 
BOLD signal changes are needed (Al-Asmi et al. 2003; Salek-Haddadi et al. 2006). 
It could be hypothesized that different lesions may cause activation of different epi-
leptogenic networks which will be specifically displayed by EEG-fMRI (Kobayashi 
et al. 2005, 2007). Also, the EEG-fMRI method may be a useful tool to study and 
understand lesional, peri-lesional and remote regions (Kobayashi et  al. 2006a, b; 
Thornton et al. 2011; Coan et al. 2016). Few studies have been performed in children 
with lesional, or non-lesional, pharmacoresistant epilepsies, often due to develop-
mental delay and need for sedation. As there is only limited evidence for added clini-
cal value of EEG-fMRI, it may not seem ethical for children to undergo sedation for 
the investigation. While some listed studies have included single paediatric patients, 
only few studies have investigated specific groups of children with focal epilepsy.

De Tiege et al. (2007a, b) presented the first study of EEG-fMRI in six children 
with symptomatic and non lesional pharmacoresistant focal epilepsy (Fig. 19.2). In 
four children (66%), activations colocalised with the presumed location of the epi-
leptic focus, and in a fifth, colocalisation was seen for both activation and deactiva-
tion. Moreover, EEG-fMRI results were concordant with either invasive EEG 
recording (1 patient), with brain lesion (2 patients) or with ictal SPECT (2 patients), 
suggesting a potential role of this method in children to map non-invasively the 
haemodynamic changes associated with epileptic activity and delineate the epilep-
togenic zone.

Jacobs et al. (2007) analysed 13 children with pharmacoresistant lesional focal 
epilepsy (Fig. 19.3). In 84% of the studies, BOLD responses were localized in the 
lesion or presumed irritative zone. In contrast to studies in adults (Salek-Haddadi 
et al. 2006), deactivations in the lesion and the irritative zone were more common 
than activations. In another study of Jacobs et al. (2008b), five children with tuber-
ous sclerosis complex (TSC) and pharmacoresistant focal epilepsy were studied in 
a 3 T MR scanner. A BOLD response was found in at least one tuber localized in the 
lobe responsible for spikes generation and presumed seizure onset zone (according 
to EEG-video monitoring) in all patients. In four patients, the same tubers were 
involved in generation of topographically different spikes and the BOLD changes 
were always multifocal, sometimes involving tubers distant from the spike field. 
The study of Jacobs et al. (2008b) demonstrated extended epileptogenic networks in 
patients with TSC which were more expanded than networks described in PET and 
SPECT studies (Chugani et al. 1998).
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a b c d

Fig. 19.2 Example of the close spatial correspondence between intracranial EEG recordings and 
EEG-fMRI activations in a child suffering from focal epilepsy. (a) Surface position of three sub-
dural strips (green, blue and violet circles) and the depth electrodes (red circle) relative to the brain 
lesion (focal cortical dysplasia in green). (b) A sample of the intracranial recording showing that 
seizures started at contacts one to four of the depth electrodes (red circle). (c) Location of contacts 
three and four of the depth electrode (red circle) involved in seizure onset on coronal and axial 
brain scan. (d) Colocalized activations found with EEG-fMRI. (From De Tiege et al., 2007 with 
permission)

a bSpike 1

Spike 2

Spike 1 Spike 2

Fig. 19.3 EEG-fMRI results (a) in 8 eight-years-old boy with a right-hemispheric extended peri-
sylvian polymicrogyria and focal seizures. The patient has two types of interictal epileptiform 
discharges (Spike 1 and Spike 2): in the right centro-parietal and right temporal areas (b). Note a 
good correspondence between bioelectrical activity and cortical deactivation. In this patient, and 
as in many other cases, the locations of the negative BOLD response were consistent with those of 
the lesion and epileptiform discharges. (From Jacobs et al. 2007 with permission)
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In a group of six children with unambiguous focus localisation (validated 
through ictal EEG, PET and ictal SPECT), the hemodynamic changes corre-
sponded to the epileptogenic zone in four children. Combined source analysis in 
these patients suggested that distant BOLD signal changes might be explained by 
propagated epileptic activity (Groening et al. 2009). The study of Groening et al. 
(2009) provided evidence that electrical source analysis shows better sensitivity 
in  localization of the epileptogenic zone in children than EEG-fMRI. Moreover, 
the source analysis revealed clear advantages separating the brain areas of the ini-
tial epileptic activity from areas involved into the propagated activity. The advan-
tages of the source analysis were illustrated by Elshoff et al. (2012). In this study, 
results of electrical source analysis were compared with results of EEG-fMRI 
recordings retrospectively in nine patients who suffered from pharmacoresistant 
focal epilepsy and underwent epileptic surgery with the favourable outcome (Engel 
class I and IIb). While the results of the source analysis were concordant with the 
resection area in all patients, EEG-fMRI revealed areas of activation within the 
resection area in only four cases.

The additive value of EEG-fMRI and electrical source imaging (ESI) for presur-
gical evaluation was demonstrated by a comprehensive study of Centeno et  al. 
(2017). Fifty-three children with drug-resistant epilepsy underwent EEG- 
fMRI. Fifty-two of 53 patients had significant maps of activation: 47 of 53 for EEG- 
fMRI, 44 of 53 for ESI and 34 of 53 for both. The epileptogenic zone was well 
characterized in 29 patients; 26 had an EEG-fMRI activation that was correct in 11, 
22 patients had ESI localization that was correct in 17 and 12 patients had combined 
EEG-fMRI and ESI that was correct in 11. Seizure outcome following resection was 
correctly predicted by EEG-fMRI activations in 8 of 20 patients and by the ESI 
maximum in 13 of 16 patients. The combined EEG-fMRI/ESI region entirely pre-
dicted outcome in 9 of 9 patients, including 3 with no lesion visible on MRI. The 
study demonstrated that EEG-fMRI combined with ESI provides a simple unbiased 
localization that may predict surgery better than each individual test, including 
MRI-negative patients (Centeno et al. 2017).

In summary, EEG-fMRI studies may represent a valuable additional investiga-
tion localise epileptogenic zone in some patients with pharmacoresistant focal epi-
lepsies. However, the sensitivity of EEG-fMRI studies in children is lower than in 
adults. To improve sensitivity, methodological optimization of spike detection and 
MR data acquisition is necessary. The correspondence between the areas of activa-
tion and epileptogenic zone was found only in some children. At the moment, the 
EEG-fMRI represents only one option among others (EEG source reconstruction, 
PET, SPECT, etc.) in the presurgical setup. Further methodological and validation 
studies are needed in order to evaluate and improve the yield of the technique in 
children with focal epilepsies. Some studies have revealed a higher sensitivity by 
performing recordings with a fast fMRI sequence called MREG (magnetic reso-
nance encephalography) which provides a temporal resolution of around 100 ms 
(Jacobs et al. 2014) or by analysing spike-specific topographic maps—instead of 
clear spikes—which may recognize even hidden spikes and improve time series 
necessary for analysis (Grouiller et al. 2011).
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19.3.3  Idiopathic Generalized Epilepsies

Idiopathic generalized epilepsy (IGE) is characterized by EEG patterns with gen-
eralized spike wave discharges (GSW) typically arising from normal background 
activity. Early EEG-fMRI studies investigated adult patients with idiopathic gen-
eralized epilepsy who showed short GSW paroxysms (Aghakhani et  al. 2004; 
Gotman et al. 2005; Hamandi et al. 2006). These studies have confirmed that the 
thalamus is activated during GSW but also showed deactivation in the medial 
frontal cortex, precuneus, lateral parietal and frontal cortex—i.e. areas of the so-
called default mode network (DMN). It has been proposed that the DMN consti-
tutes a necessary favourable neurometabolic environment for cognitive functions, 
represents a physiological baseline for processes of attention and working mem-
ory and supports dynamical integration of cognitive and emotional processing 
(Raichle and Mintun 2006). Abnormal activity in the DMN and disturbed con-
nectivity between the structures involved may influence task performance and 
contribute to pathogenesis of neuropsychiatric disorders such as attention-deficit 
hyperactivity, Alzheimer’s disease, autism, schizophrenia or depression (Broyd 
et al. 2009). Moreover, altered activity in the DMN has been associated with fluc-
tuations and disturbance of consciousness (Boly et  al. 2008). It has been sug-
gested that disruption of the resting state activity by pathological processes (e.g. 
those that give rise to spike) may be related to alterations in cognitive function and 
a possible mechanism which may underlie cognitive deficits in epilepsy (Gotman 
et al. 2005).

Labate et  al. (2005) presented results of an EEG-fMRI study in an untreated 
7-year-old girl with new onset idiopathic generalized epilepsy (IGE), frequent 
absence seizures and eyelid myoclonia. Bursts of 3-Hz spike wave and polyspike 
wave epileptiform discharges registered in a 3 T MR scanner were associated with 
prominent, bilateral activation in the thalamus (p < 0.05, corrected) and less pro-
nounced areas of cortical activation and deactivation. A few years later, Moeller and 
colleagues investigated absence seizures in drug naïve children with newly diag-
nosed epilepsy and confirmed a thalamic activation along with deactivation in the 
DMN areas and the caudate nucleus (Moeller et al. 2008a, see Figs. 19.4 and 19.5). 
These few observations on absence seizures in children extend the findings on gen-
eralized spike wave paroxysms performed in adults with idiopathic generalized epi-
lepsy (see Chap. 18 and Aghakhani et al. 2004; Gotman et al. 2005; Hamandi et al. 
2006; Laufs et al. 2007). These data seem to suggest that the age of subjects and 
antiepileptic medication (all studies in adults have been done in treated patients and 
often with drug-resistant idiopathic generalized epilepsy) does not influence the 
haemodynamic and metabolic responses during spike-and-wave activity and, hence, 
possibly reflect stable and typical neuronal networks. Additionally, in a group anal-
ysis, Carney and colleagues showed that the brainstem is also involved during 
absence seizures (Carney et al. 2010). Subgroups of absence patterns with either 
predominantly positive or negative BOLD signal changes in the dorsolateral pre-
frontal cortex seem to exist and might have phenotypic and genetic implications 
(Carney et al. 2012). Tenney et al. demonstrated that pretreatment ictal connectivity 
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Fig. 19.4 Involvement of the typical neuronal network (thalamic activation and deactivation in 
precuneus, frontoparietal cortex and caudate nucleus) associated with generalized epileptiform 
discharges in a 8-year-old boy with juvenile absence epilepsy. This patient presented with both 3/s 
absence seizures and generalized irregular polyspike-wave paroxysms (PSW). The figure repre-
sents BOLD change patterns at 3 and 6  s prior to epileptiform discharges (−3 and −6), at the 
beginning of the discharge (0) and 3 s after the discharge (3). The diagram demonstrates the time 
course of the normalized BOLD signal extracted from the voxel in the thalamus with the maximal 
t-value (for a more detailed description, see Moeller et al., 2007). X-axis shows the time (s) around 
the beginning of a generalized paroxysm (point 0). Note that with 3/s spike-and-wave discharge, 
the changes of BOLD signal in the striato-thalamo-cortical network occurs at the beginning of the 
discharge. In contrast, this network already shows changes 6  s before PSW are seen in the 
surface EEG

differences in children with CAE are associated with response to antiepileptic treat-
ment (Tenney et al. 2018).

But how are absences initiated and terminated? A sliding window analysis of 
human absences showed that areas of the DMN and the caudate nucleus were 
involved significantly earlier than the thalamus. Early patient-specific BOLD signal 
changes could mirror a cortical focus (Moeller et al. 2010a). In a dynamic group 
analysis of absence seizure, Bai and colleagues could show that BOLD signal 
changes in the medial frontal and orbitofrontal cortex preceded the onset of absence 
seizures up to 14 s whereas negative BOLD signal changes in default mode areas 
were seen up to 20 s after the end of absence seizures (Bai et al. 2010). It seems 
likely that human absence seizures start in prefrontal cortical areas and then second-
arily involve thalamocortical synchronisation. This observation was supported by 
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CSWS

West syndrome

Lennox-Gastaut

Absence epilepsy

Deactivation in the
Default Mode Network

Fig. 19.5 Pattern (glass brain) of activation and deactivation (blue) in groups of epilepsy patients 
suffering from continuous spikes and waves during slow sleep (CSWS), West syndrome, Lennox- 
Gastaut syndrome and absence epilepsy. (From Moeller et  al. 2008a; Siniatchkin et  al. 2007b, 
2010, 2011)

source analysis demonstrating two leading sources of activity during an absence 
seizure: a source in the frontal cortex and in the thalamus (Moeller et al. 2013a). 
Another study analysed the end of absence seizures (Benuzzi et  al. 2015). The 
authors suggested that the termination of absence seizures is associated with a 
decrease in BOLD signal over the bilateral dorsolateral frontal cortex and a BOLD 
signal increase over the precuneus-posterior cingulate region bilaterally. These 
changes are opposite to the onset of absence seizures as described above.

There are inconsistent results regarding the question whether BOLD signal 
changes might occur prior to GSW: while BOLD signal changes preceding GSW 
have been reported in some adult patients with GSW, in children with polyspike 
wave paroxysms and a group of patients with absence seizures (Moeller et al. 2008b; 
Bai et al. 2010), no preceding BOLD signal changes have been detected in other 
studies (Moeller et  al. 2008a, 2011). Early parietal BOLD responses prior to 
absences support the hypothesis that changes in activity within the default mode 
areas could facilitate the occurrence of GSW (Vaudano et al. 2009; Carney et al. 
2010). Further studies are needed in order to investigate preceding haemodynamic 
changes before GSW seen on the scalp EEG in detail. Now, it can be suggested that 
the conflicting results may be attributed to differences in the analysis or different 
samples of patients.

Studying children with absence seizures, Bai et al. (2011) found an increased 
interhemispheric connectivity in the orbitofrontal cortex indicating increased syn-
chronous activity between both hemispheres at rest. Increased connectivity was also 

19 EEG-fMRI in Children with Epilepsy



498

found in the network of basal ganglia when compared with healthy controls. This 
increased connectivity was even more pronounced during periods with GSW dis-
charges (Luo et al. 2012). However, decreased functional connectivity was described 
for the thalamus (Masterton et al. 2012), the DMN (Luo et al. 2011) and the atten-
tion network (Killory et al. 2011) in children with absence seizures. These findings 
might explain impaired interictal attention in these children. Decreased connectivity 
in the DMN areas was negatively correlated with epilepsy duration (Luo et  al. 
2011). Furthermore, Yang and colleagues showed that this decreased connectivity 
within the default mode network, the cognitive control network and the attention 
network was more pronounced during interictal GSW (Yang et al. 2012). However, 
the studies on functional connectivity in patients with absence seizure are contradic-
tory. For example, an interictal functional connectivity study in adult patients with 
different types of IGE did not show pathological connectivity in areas that are 
known to interact during GSW (Moeller et al. 2011).

EEG-fMRI studies with simultaneous testing during absences suggest that 
absences that are associated with a stronger cognitive impairment are associated 
with more widespread BOLD signal changes than absences with no or mild 
cognitive impairment (Berman et al. 2010). However, in a case report in a girl 
with long- lasting GSW paroxysms without concomitant cognitive impairment, 
the same networks were activated as in absences with clinical manifestation 
(Moeller et al. 2010b). More recently, it was shown that impaired consciousness 
in absence seizures seems to be related to the intensity of physiological changes 
in GSW associated networks of the brain. Increased EEG and fMRI amplitude 
at the onset of seizures are associated with behavioural impairment. These find-
ings suggest that a vulnerable state may exist at the initiation of some seizures 
leading to greater physiological changes and altered consciousness (Guo 
et al. 2016).

It is of note that the same thalamocortical network is associated with primary and 
secondary GSW paroxysms, with ictal and interictal generalized discharges inde-
pendent of age and antiepileptic medication. However, not all GSW seem to be 
associated with this network. Photoparoxysmal response (PPR) is an electroenceph-
alographic trait characterized by the occurrence of epileptiform discharges in 
response to visual stimulation. An EEG-fMRI study in children with PPR showed 
an involvement of the parietal and frontal cortex but not the thalamus in most of the 
subjects during generalized PPR (Moeller et al. 2009a). It seems likely that PPR 
mainly a cortical phenomenon. However, in a patient in whom photic stimulation 
evoked a generalized tonic-clonic seizure, an excessive increase in BOLD signal in 
the visual cortex together with the involvement of the thalamus in the network was 
detected (Moeller et al. 2009b).

In summary, EEG-fMRI represents a valuable method to study pathogenetic 
mechanisms of ictal and interictal GSW. EEG-fMRI was able to describe a specific 
fingerprints of activation associated with GSW. Furthermore, the method could to 
investigate the temporal dynamics of paroxysms providing a deep insight into epi-
leptogenesis in the IGE and also shed some light on the link between absences and 
impaired awareness.
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19.3.4  Epileptic Encephalopathies

Epileptic encephalopathies (EE) refer to a group of severe epileptic disorders char-
acterized by spontaneous, recurrent seizures that result in cognitive and behavioural 
disturbances. In most cases, EE represent challenging, difficult to treat conditions 
and are associated with unfavourable outcome. Despite of great impact of EE on the 
development, very little is known about pathogenetic mechanisms and, in particular, 
about neuronal networks underlying EE. One important feature of most EE is that 
different etiological factors (e.g. genetic background, lesions, malformations, neu-
rometabolic abnormalities) result in a similar clinical expression (similar type of 
seizures, similar interictal abnormalities). This may indicate that different aetiolo-
gies, depending on the developmental stage, engage encephalopathy-specific patho-
genetic pathways that constitute specific neuronal networks responsible for each 
particular EE. Based on this suggestion, different EEG-fMRI studies have tried to 
specify fingerprints of EE on the network level which would explain clinical simi-
larity despite of etiological heterogeneity.

West syndrome is a prototype of severe epileptic encephalopathy of infancy con-
sisting of tonic spasms, psychomotor developmental delay and the characteristic 
EEG pattern of hypsarrhythmia—a low structured mix of a multifocal spike and 
sharp wave activity and high voltage slow waves (Dulac 2001; Hrachovy and Frost 
2003). Early PET studies have revealed a hypsarrhythmia underlying network 
which has included brain areas of focal cortical hypometabolism and subcortical 
hypermetabolism in putamen and brainstem (Chugani et  al. 1992; Chiron et  al. 
1993; Metsähonkala et al. 2002). It was unclear, however, whether this network is 
associated with epileptiform discharges or high amplitude slow activity, as both 
pathological phenomena may be epileptogenic in West syndrome. In an EEG-fMRI 
study, Siniatchkin et  al. (2007b) investigated infants with West syndrome and 
showed that the epileptiform discharges cause positive BOLD signal changes in 
the cerebral cortex (especially in the occipital areas), whereas the high-amplitude 
slow wave activity in hypsarrhythmia is commonly associated with BOLD signal 
changes in brainstem, putamen and thalamus (Figs. 19.5 and 19.6). There were no 
negative BOLD signal changes in relation to hypsarrhythmia, especially no deacti-
vations in the DMN. Moreover, the activation pattern seems to be specific for West 
syndrome as it was not observed in infants with focal epilepsies. Interesting is that 
the subsequent source analysis which was performed in the same sample of sub-
jects for high amplitude slow activity revealed similar electrical sources in the 
occipital cortex, putamen and brainstem as shown by fMRI and even described the 
functional hierarchy between the sources: activity in the brainstem seems to influ-
ence other sources and represent the key pathogenetic feature of West syndrome 
(Japaridze et  al. 2013). The brainstem pathology is the best to explain both the 
clinical seizures which might result from intermittent interference of descending 
brainstem pathways controlling spinal reflex activity and characteristic EEG fea-
tures of hypsarrhythmia which might be related to the activity in the ascending 
pathways from the same brainstem areas that project widely to the cerebral cortex 
(Frost and Hrachovy 2005).

19 EEG-fMRI in Children with Epilepsy



500

Fig. 19.6 Results of group analysis in children with West syndrome. (From Siniatchkin et  al. 
2007b with permission). High-voltage slow wave activity within the hypsarrhythmia was associ-
ated with BOLD signal increase in brain voxels representing putamen and brain stem

And it seems likely that the activity in the brainstem represents the common 
pathogenetic pathway in West and Lennox-Gastaut syndrome (LGS). West syn-
drome often evolves into LGS, an epileptic encephalopathy characterized by differ-
ent types of seizures (tonic, tonic-clonic and atonic seizures as well as atypical 
absences), typical EEG changes (slow spike wave complexes ranging from 1 to 
2.5/s, runs of rapid spikes and polyspikes) and accompanying developmental delay 
(Arzimanoglou et al. 2009). An EEG-fMRI study in children with both lesional and 
non-lesional cases of LGS revealed activation of brainstem and thalamus associated 
with epileptiform discharges (Siniatchkin et al. 2011; Fig. 19.5). Because the brain-
stem exerts control over the gating function of the thalamus through its influence on 
the reticular thalamic nucleus, activity in brainstem (reticular formation and raphe 
serotoninergic pathways) and thalamus may lead to diffuse changes of cortical 
excitability which predispose the neocortex to multifocal epileptic activity 
(Hrachovy and Frost 2003). Surprisingly, a recently published study described an 
increased functional connectivity between brain areas belonging to the DMN in 
children with multifocal epileptic activity including young patients with the LGS 
(Siniatchkin et al. 2018). This increased functional connectivity shows that the brain 
of LGS patients is prone for increased synchrony predisposing them to multifocal 
epileptic activity. Additionally, the study of Siniatchkin et al. (2011) demonstrated 
that especially the centromedian and anterior part of the thalamus constitute the 
LGs specific network. A significant role of thalamocortical pathways in LGS was 
demonstrated previously: centromedian thalamic nucleus stimulation in patients 
with refractory LGS have been an effective treatment strategy (Velasco et al. 2006). 
The anterior thalamus has been frequently and successfully used as a target for deep 
brain stimulation in patients with multifocal and secondary generalized epileptic 
activity (Samadani and Baltuch 2007). Increased connectivity of specific thalamo-
cortical circuits could potentially be a target for thalamic deep brain stimulation 
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(Warren et al. 2017). However, while brainstem and thalamus seems to be a key 
players in LGS, Warren et al. could demonstrate that generalised paroxysmal fast 
activity is most likely driven by the prefrontal cortex, with propagation occurring 
first to the brainstem and then from brainstem to thalamus (Warren et  al. 2019). 
These therapeutic options underline the significance of the thalamus in the patho-
genesis of LGS and multifocal IEDs.

When analysing different EEG patterns, Pillay and colleagues demonstrated that 
paroxysmal fast activity is associated with coactivation of the default mode and 
attention network as well as subcortical structures (brainstem, thalamus and basal 
ganglia). By comparison, the slow spike wave complexes showed predominantly 
deactivations in cortical and subcortical areas which often show a non-canonical 
hemodynamic response (Pillay et al. 2013; Archer et al. 2014). Functional connec-
tivity studies demonstrate abnormal cognitive network interactions which the author 
proposed to lead to epileptic encephalopathy (Warren et al. 2016).

Epileptic encephalopathy with continuous spikes and waves during slow sleep 
(CSWS) is an age-related disorder characterized by acquired variable neuropsycho-
logical impairment, epilepsy with heterogeneous seizure types and the presence of 
the interictal electroencephalographic (EEG) findings of intense subcontinuous 
spike wave complexes that usually occupy more than 85% of non-REM sleep 
(Tassinari et al. 2005). CSWS can be attributed to different aetiologies (symptom-
atic cases with various structural brain lesions and MRI-negative cases with proba-
ble genetic background, for example, in the form of Landau-Kleffner syndrome 
LKS or atypical benign partial epilepsy of childhood) and in the majority of cases is 
associated with manifold acquired psychomotor and cognitive deficits and even 
regressions. The first EEG-fMRI study on CSWS was published by De Tiege et al. 
(2007a, b). The authors investigated a 9-year-old girl suffering from partial seizures 
and who developed CSWS and neuropsychological deficits. Epileptiform activity 
was associated with focal activations in the right superior frontal, postcentral and 
superior temporal cortex as well as deactivations in the lateral and medial frontopa-
rietal cortices, posterior cingulate gyrus and cerebellum. In concordance with this 
study, Siniatchkin et  al. (2010) investigated 12 children with CSWS of different 
aetiologies using simultaneous recordings of EEG and fMRI. The study revealed a 
typical network of brain activation in patients: positive BOLD signal changes 
involved bilateral perisylvian regions (well corresponding with PET and MEG/EEG 
studies), cingulate gyrus as well as bilateral frontal and parietal cortex and thalamus 
(Fig. 19.5). Electrical source analysis demonstrated a similar involvement of the 
perisylvian brain regions, independent of aetiology and area of spike generation. 
Moreover, source reconstruction provided evidence that the typical pattern of brain 
activation is more likely to be related to a specific pattern of propagation of epileptic 
activity during CSWS. Negative BOLD signal changes were found in precuneus, 
lateral parietal cortex and medial frontal cortex. These structures are usually 
involved in a pattern of deactivation that occurs during the initiation of task-related 
activity and represent the DMN which is active in the resting brain with a high 
degree of functional connectivity (Raichle et al. 2001). The authors hypothesized 
that one of the possible mechanisms how epileptic activity in patients with CSWS 
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causes cognitive deficits, is interruption of the activity and connectivity within the 
DMN. Note that areas of hypometabolism revealed by PET studies resemble those 
of deactivation in EEG-fMRI studies representing remote inhibition of the default 
mode network (Ligot et al. 2014). It is an elegant hypothesis explaining cognitive 
deficits by inhibition/deactivation in the DMN. However, this hypothesis still has to 
be proven by correlating neuropsychological and neuroimaging data.

The Dravet syndrome or severe myoclonic epilepsy of infancy (SMEI) is an 
intractable epileptic encephalopathy of early childhood which is caused by a muta-
tion in the SCN1A gene in 80% of patients. In an EEG-fMRI study, 10 carriers of 
mutations in the SCN1A gene were investigated (Moehring et al. 2013). However, 
despite the common aetiology, the study revealed different individual neuronal net-
works underlying interictal epileptiform discharges. The only common feature of 
brain activation consisted of positive BOLD signal changes in the DMN areas found 
seven patients. But even these activations were inconsistent and were note detected 
in the group analysis. Although the attempt to describe a common syndrome- specific 
network for SMEI patients was not successful, the results correspond with other 
neuroimaging studies which have demonstrated pathogenetic heterogeneity in 
SMEI patients (Ferrie et al. 1997; Korinthenberg et al. 2004).

Myoclonic astatic epilepsy (MAE) of early childhood, first described by Doose 
and colleagues, is a difficult to treat generalized electroclinical syndrome character-
ized by age of onset mostly between 2 and 6 years, myoclonic, astatic, drop attacks, 
generalized tonic-clonic seizure and short absences. Simultaneous EEG-fMRI 
recordings were performed in 13 children with MAE (Moeller et al. 2014). Activation 
was detected in the thalamus (all patients), premotor cortex (6 patients) and putamen 
(6 patients). Deactivation was found in the default mode network areas (7 patients). 
The group analysis confirmed activations in the thalamus, premotor cortex, putamen 
and cerebellum and deactivations in the DMN.  In addition to the thalamocortical 
network which is commonly found in idiopathic generalized epilepsies, GSW in 
MAE patients are characterized by BOLD signal changes in brain structures associ-
ated with motor function. The involvement of these structures might predispose to 
the typical seizure semiology of myoclonic jerks observed in MAE.

19.4  Summary and Future Perspectives

EEG-fMRI in paediatric epilepsies is a promising tool for the investigation of neu-
ronal networks involved in the generation of interictal epileptiform discharges 
absence seizures. This technique is successfully applied in awake, sleeping or 
sedated children with focal and generalised epilepsies and in all age groups. It is of 
note that similar results were obtained in subjects with focal epilepsies and primary 
as well as secondary generalized epilepsies both during wakefulness and sleep, in 
medicated and non-medicated children and with or without sedation, albeit in small 
groups up to now. Several studies in the paediatric epilepsy population have demon-
strated the capability of EEG-fMRI to provide new information on the neuronal 
networks involved in different types of epileptiform activity.
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The combination of EEG and fMRI should help to study brain function in a vari-
ety of epileptic syndromes, providing more insight into state of the brain during 
epileptic activity. Finally, the clinical value of EEG-fMRI has to be validated. EEG-
fMRI maps must be compared with data from established investigations including 
intracranial EEG recordings, other methods of functional neuroimaging (PET, 
SPECT), and EEG source analysis. A major problem is to determine whether BOLD 
signal changes represent areas of the initial epileptic activity or areas of propaga-
tion. Ultimately, informative results will come from comparisons with epilepsy sur-
gery outcome studies.
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20EEG-fMRI in Psychiatry

Gebhard Sammer and Christoph Mulert

20.1  Introduction

Our understanding of the brain and brain disorders is substantially related to the 
methods that are available for investigating the brain and both fMRI and EEG have 
substantially contributed and continue to contribute to current concepts of normal 
and disturbed brain function. Accordingly, an important question is which current 
issues or specific research questions in psychiatry can be better addressed and really 
benefit from using simultaneous EEG-fMRI in comparison to using these methods 
alone or in separate. What reasons justify the additional effort for the implementa-
tion of safe recordings, the achievement of high-quality EEG and fMRI data and the 
additional effort for the solution of specific artefact problems and analysis prob-
lems? Research approaches that justify simultaneous EEG-fMRI in psychiatry gen-
erally go beyond the research insights of “where does it happen in the brain?”. They 
encompass aspects of the underlying neural mechanisms that, for instance, could 
include a relevant role of neuronal oscillations or brain rhythms that can be addressed 
with the EEG, but not only with fMRI. For example, it is highly relevant to distin-
guish between the phasic activity of dopaminergic neurons related to reward (in the 
frequency range from 15 to 30 Hz) and the tonic activity of dopaminergic neurons 
(in the frequency range from 2 to 10 Hz). To illustrate this, drug addiction is related 
to the rapid, spike-like effects of certain dopaminergic drugs that mimic the 
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Fig. 20.1 Simultaneous EEG-fMRI for analyzing reward-related beta−/ and loss-related theta 
frequency range activity (a) conventional fMRI analysis: brain areas showing greater BOLD 
response for gain vs loss feedback (single-voxel P < 0.001, P(FDR) < 0.05 at the cluster level). (b) 
EEG–fMRI fusion analysis results (single-voxel P < 0.005, k = 100): Areas showing high-beta- 
band-associated activations for the contrast gain > loss feedback including the ventral striatum / 
Ncl. Accumbens (top row) and theta-band-associated activations for the contrast loss > gain (bot-
tom row) including the anterior cingulate cortex. The opposite contrasts did not yield significant 
results in any of the above cases. BOLD blood-oxygen-level dependent, EEG electroencephalog-
raphy, FDR false discovery rate, fMRI functional magnetic resonance imaging. (Reprinted from 
Andreou, C., H. Frielinghaus, J. Rauh, M. Mussmann, S. Vauth, P. Braun, G. Leicht and C. Mulert 
(2017). “Theta and high-beta networks for feedback processing: a simultaneous EEG-fMRI study 
in healthy male subjects.” Transl Psychiatry,7(1), e1016; https://doi.org/10.1038/tp.2016.287, 
Copyright (2017), with permission from Springer Nature. Open access article under the CC BY 
license (https://creativecommons.org/licenses/by/4.0/))

physiological phasic activity of dopaminergic neurons, while the risk of drug addic-
tion is lower with drugs that mimic the tonic activity of dopaminergic neurons. 
Using EEG, phasic beta activity after reward can be distinguished from theta activ-
ity after loss, and disturbances in psychiatric conditions have been described 
(Andreou et al. 2015) to be related to psychopathological aspects like impulsivity. 
At the same time, prominent subcortical structures in the dopaminergic reward sys-
tem cannot be assessed directly with the EEG, and changes in these regions have 
been identified in various psychiatric disorders using fMRI (Deserno et al. 2016; 
Clark et al. 2019). Accordingly, the simultaneous EEG-fMRI offers the possibility 
to search for more comprehensive findings, for example, to investigate the phasic 
activity in the beta frequency range for reward in subcortical structures such as the 
ventral striatum and the nucleus accumbens (Andreou et al. 2017) under different 
psychiatric conditions (see Fig. 20.1). Similar approaches are addressed below.

20.2  Anxiety Disorder

Understanding fear is important for treating phobia. It is of particular interest 
whether different types of fear produce different or similar physiological activa-
tion patterns. Michałowski et  al. (2017) compared spider, blood/injection and 
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social anxiety in the same study. FMRI, EEG and ECG were recorded simultane-
ously as physiological parameters. The technical equipment consisted of a 
Siemens 3 T Trio MRI scanner and 64-channel BrainAmps. Subjects were tested 
for social anxiety, mutilation and spider phobia using scales. The task was a pic-
ture presentation paradigm using fear-related material from different picture col-
lections. The P1 component and the late positive potential (LPP) were calculated 
for the EEG. FMRI-GLM analysis was calculated for regions of interest associ-
ated with the processing of anxiety stimuli. The main results showed an increased 
P1 amplitude in anxious subjects, which means increased vigilance. Images of 
spiders and angry faces were associated with larger LPPs than neutral images. 
This effect was more pronounced in the spider and social fear groups. The FMRI 
analysis showed that the increased responses to anxiety-related stimuli are 
mainly due to certain anxieties and not to general anxiety. However, no joint 
EEG-fMRI analysis was reported. The advantage of simultaneously recorded 
signals in this study is evident in the advantage of the close temporal relationship 
of the results.

Drug abuse or addiction are often associated with psychiatric disorders. The 
impact of such comorbidity on the underlying disease or brain function is of great 
interest for both diagnosis and treatment. Karch et al. (2008) examined the influence 
of trait anxiety (STAI) on performance monitoring in healthy subjects and in 
alcohol- dependent patients using an auditory go/no-go task. Evoked potentials 
(P300 component) were recorded during the EPI acquisition using a 62-channel 
BrainAmp in a 1.5 Tesla Siemens Sonata MR scanner. Here too, the data from fMRI 
and EEG were analysed separately. The main results showed differences in haemo-
dynamic activation patterns between the high and low anxiety groups in frontal 
brain regions related to inhibition of the go/no-go task response. No results were 
found for the P300 ERPs.

20.3  Attention Deficit Hyperactivity Disorder (ADHD)

There is broad agreement that the behaviour of people with Attention Deficit 
Hyperactivity Disorder (ADHD) is characterized by increased variability in many 
aspects of their behaviour (Killeen 2019). Selective attention and sustained atten-
tion are as much a focus of research as impulsive behaviour. Although many bio-
logical changes from molecular to behavioural levels have been reported, the 
pathophysiology of ADHD is far from clear. Probably due to a changed attention 
function, the oscillations in the lower theta and alpha frequency band are increased, 
the activity in the higher alpha frequency band is reduced (Lenartowicz et al. 2016). 
A simultaneous EEG-fMRI study of EEG alpha frequency band activity was per-
formed to investigate whether fronto-parieto-occipital connectivity is impaired in 
ADHD. Male teenagers with ADHD were compared to healthy controls. They had 
to do a spatial working memory task. The EEG was recorded with a high-resistance 
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HydroCel with 256 channels from Electrical Geodesics in a 3 T Siemens Trio MR 
scanner. An alpha event-related desynchronization (ERD) was calculated from the 
EEG data. EEG-fMRI analysis was calculated as a psychophysiological interaction 
analysis (PPI) as implemented in FSL for alpha-ERD activity, and connectivity was 
estimated for either the right lateral occipital cortex, the right upper occipital cortex 
and the right frontal eye fields. Alpha-ERD was associated with fronto-parieto- 
occipital connectivity in participants with ADHD, which is likely indicative of a 
compensatory attention response.

Karch et  al. (2014) emphasized the importance of executive dysfunction in 
patients with ADHD. A small sample of adults with ADHD and healthy controls 
participated in the study. The MR scanner was a 1.5 T Siemens Sonata. The EEG 
was recorded with a 62-channel BrainAmp. The subjects performed a voluntary 
selection task using an auditory go/no-go paradigm during the recording. The joint 
EEG-fMRI analysis was performed by trial-by-trial coupling of EEG and fMRI for 
N2 amplitude at Fz and P3 amplitude at FCz. While no results were found for P3, 
reduced N2-related BOLD responses were found in the ADHD group. In a previous 
study with the same design and the same technical equipment, but without EEG- 
based analysis, the results showed increased frontal and parietal activity during the 
voluntary selection task. Frontal activation was less in ADHD patients during free 
reactions (Karch et al. 2010).

20.4  Depression, Posttraumatic Stress Disorder (PTSD) 
and Neurofeedback

Neurofeedback is assumed to offer a great possibility to enhance the treatment of 
neurological or psychiatric diseases, particularly epilepsy, major depression, 
posttraumatic stress disorder or the attention deficit hyperactive disorder. For 
example, EEG-neurofeedback is the first attempt of neurofeedback dating about 
four decades ago, being used in epilepsy, attention deficit hyperactivity disorder 
and for cognitive enhancement. Subjects “see” or “hear” their own brain activity 
in “real time” by being usually presented a low pass filtered representation of the 
brain signal of interest. The task of the subjects is to shape their brain waves in 
the intended way. More recently, neurofeedback using BOLD signals is emer-
gently studied for therapeutically use, preferably in depression but also in the 
context of diseases related to altered amygdala functioning and the processing of 
salient stimuli, as, for instance, in phobia, obsessive compulsive disorder or 
addiction.

After trying the neurofeedback method in healthy volunteers (Zotev et  al. 
2014), a similar method was examined in a smaller group (N = 13) of patients 
diagnosed with major depression (Zotev et al. 2016). The participants were able 
to successfully acquire the neurofeedback of the left amygdala. Self-regulated 
haemodynamic amygdala activation was associated with simultaneously recorded 
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surface EEG patterns. Upper alpha band asymmetry correlated with severity of 
major depression and amygdala-BOLD laterality. Zotev et al. (2018) expanded 
their approach to real- time fMRI neurofeedback (rtfMRI-nf) to train top-down 
modulation of amygdala activity in veterans with combat-related PTSD.  The 
technical environment was a 3 T General Electric MR750 MRI scanner, a stan-
dard 8-channel receive-only head coil array in combination with a 32-channel 
BrainAmp. Here too, the participants had to learn to control the left amygdala 
BOLD signal. The feedback signal consisted of two bars, one representing 
changes in the left amygdala BOLD signal and the other calculated as relative 
EEG power asymmetry for F3 and F4 in the high beta band. As required in neu-
rofeedback studies, the experimental group was compared to a group that received 
sham feedback instead. The results showed improved functional connectivity 
between the left amygdala and DLPFC during training, which corresponded to a 
simultaneously recorded left-lateralized improvement in the coherence in the 
upper EEG alpha frequency. These findings correlated with a decrease in clinical 
PTSD values, but there was no significant difference from the control group 
receiving sham neurofeedback. Successful self-regulation of the amygdala was 
also described by Keynan et  al. (2016). They derived an “electrical amygdala 
fingerprint” from the simultaneous EEG-fMRI recorded during amygdala neuro-
feedback sessions. This parameter, inspired by fMRI, has been found to predict 
the haemodynamic activity of the amygdala so that it can even be used to self- 
regulate the amygdala at the bedside. Zotev et al. (2020) expanded their approach 
to real-time fMRI neurofeedback and combined it with EEG neurofeedback 
(rtfMRI- EEG- nf). This should allow participants to regulate their haemodynamic 
(BOLD fMRI) and electrophysiological (EEG) regional brain activities. This 
method was applied to self-regulation training for emotions in a small sample of 
patients with major depression (MDD). Eight patients received neurofeedback 
during a happy emotion induction task and were asked to simultaneously regu-
late the left amygdala, left rostral anterior cingulate cortex and frontal EEG 
asymmetries in the alpha and high beta bands. Another eight patients received 
sham neurofeedback. In the neurofeedback group, the participants were able to 
successfully regulate their brain activity and reported an improvement in 
their mood.

Using an approach to pharmacological fMRI, McMillan et al. (2020) recorded 
EEG-fMRI after ketamine infusion in patients with major depression. The study 
was carried out using a randomized, double-blind, active, placebo-controlled 
crossover design. The EEG was recorded in a 3 T Siemens Skyra MR scanner, the 
64-channel EEG was recorded using BrainCap MR and BrainAmp MR Plus 
amplifiers (Brain Products, Germany) during a resting state and a breath hold 
task. The advantage of the EEG-informed pharmacological MRI analysis was that 
it showed different time courses of the ketamine-induced neuronal activity 
(Fig. 20.2).
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a

b

Fig. 20.2 Group statistical Z maps of modelled ketamine BOLD response for time courses of 
band-limited virtual sensor EEG power for (a) the low beta frequency band and (b) the high 
gamma frequency band, showing significant effects of ketamine (Z ≥ 3.1, p < 0.05, FWE cluster 
corrected). Physiological noise and motion regressors were included in the model. A grey matter 
mask was applied to all maps. (Reprinted from McMillan R, Sumner R, Forsyth A, Campbell D, 
Malpas G, Maxwell E, Deng C, Hay J, Ponton R, Sundram F, Muthukumaraswamy S. (2020) 
“Simultaneous EEG/fMRI recorded during ketamine infusion in patients with major depressive 
disorder.” Prog Neuropsychopharmacol Biol Psychiatry. pp. 8, Apr 20;99:109838. doi: 10.1016/j.
pnpbp.2019.109838, Copyright (2019) with permission from Elsevier Inc.)

20.5  Schizophrenia

There were two papers that tested the hypothesis of altered brain networking char-
acteristics in patients with schizophrenia using simultaneous EEG-fMRI. There is 
evidence that schizophrenia is a neurodevelopmental disorder characterized by a 
variant migration of neurons. The examination of neural networks in schizophrenia 
compared to HC tests such a model. One method for examining brain networks is 
based on EEG oscillations. Assuming that neural oscillations, or more precisely the 
oscillatory activity resulting from the neural mass activity, indicate the formation of 
transient brain networks that connect or integrate distributed brain regions, simulta-
neous EEG-fMRI recordings make it possible to link this oscillation activity with 
spatial haemodynamic activation patterns.
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Baenninger et al. (2016, 2017) investigated whether psychotic patients (includ-
ing patients diagnosed with schizophrenia, schizoaffective disorder and brief psy-
chotic disorder) showed differences in brain regions that are involved in integrative 
mechanisms, as indicated by EEG oscillations. The study was carried out at two 
research sites, where different technical devices, different scanning and analysis 
software and parameter settings for the preprocessing of the data were involved. 
EEG-fMRI was collected at resting. The data were adapted for the main analysis, 
which was based on the EEG global field synchronization measure (calculated for 
several frequency bands), which represents the common-phase synchronization 
across electrodes. Global field synchronization parameters were used as parametric 
modulators for the first-level fMRI analysis to identify EEG-fMRI coupled clusters. 
The results showed that the associations between BOLD and global field synchroni-
zation in EEG-delta, alpha1 and beta were different in patients compared to HC. This 
has been found for extrastriate visual areas, for alpha1 oscillations and areas associ-
ated with the default mode network areas for the delta and beta frequency bands. 
Within the same theoretical framework it is known that the auditory gamma response 
is reduced in schizophrenia. Leicht et al. (2016) examined an EEG-gamma-mediated 
brain network using an EEG-informed fMRI analysis in subjects prone to psychosis 
and compared them to HC. The subjects performed an auditory selective attention 
task during the EEG-fMRI recording. The technical equipment consisted of a 
64-channel BrainAmp and a 3 T Siemens Trio MR scanner. Based on time series 
representing the auditory evoked gamma response, regressors for the EEG-informed 
fMRI-GLM analysis were calculated for each subject before analysis at the group 
level. Reduced activity was observed in subjects at high risk of psychosis compared 
to HC in a network associated with gamma oscillation activity. The gamma-related 
network comprised bilaterally the auditory cortex, the thalamus, the anterior cingu-
late cortex and the dorsolateral prefrontal cortex.

Among other things, schizophrenia is associated with a change in perception 
and hallucinations. The event-related EEG potential has proven to be an excellent 
tool for examining the perception of all modalities. Modulations of ERPs by 
schizophrenia have been studied intensively. Ford et al. (2016) were interested in 
haemodynamic correlates of auditory event-related potential (AEP). They com-
pared N100 and P200 components of the AEP between a group of patients with 
schizophrenia or schizoaffective disorder and an HC group. AEPs were recorded 
while listening to 1000 Hz tones. When using an fMRI block design, the blocks 
either consisted of the listening task or belonged to a resting condition. The MR 
scanner was a 3 T Siemens Skyra, EEG was recorded with a 32-channel BrainAmp. 
The joint analysis of ERP and BOLD data was carried out using a joint indepen-
dent component analysis. As a result, joint independent components in both groups 
showed a bilateral relationship of N100 to activation of the auditory cortex. For 
P200, joint-independent components positively correlated with haemodynamic 
activation in the superior and mid temporal gyrus in the frontal and parietal regions. 
A negative correlation of P200 was found with the medial prefrontal cortex, the 
precuneus and the visual cortex. A group difference was only found for P200-
linked components (Fig. 20.3).
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Fig. 20.3 Results from the fMRI/ERP joint ICA analysis at electrode Fz, showing the “P200” 
joint independent component (JIC). On the left are shown average ERP waveforms for healthy 
controls (HC) (black solid line) and participants with schizophrenia (SZ) (black dotted line) over-
laid onto the temporal aspect of the “P200” JIC for HC (red) and SZ (blue). On the right, regions 
depicted in red reflect areas where the “P200” JIC is positively correlated with BOLD activation, 
and those in cyan reflect areas where there is negative covariation between P200 amplitude and 
BOLD activation. (Reprinted from Ford JM, Roach BJ, Palzes VA, Mathalon DH (2016) Using 
concurrent EEG and fMRI to probe the state of the brain in schizophrenia. Neuroimage Clin. 
pp. 434, Aug 10;12:429–41. doi: 10.1016/j.nicl.2016.08.009, Copyright (2016) with permission 
from Elsevier Inc. Open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by- nc- nd/4.0/))

Another study on auditory processing in schizophrenia was carried out by Kirino 
et al. (2019). Kirino et al. (2019) summarize that mismatch negativity (MMN), an 
event-related potential generated by hearing stimuli that deviate from standard audi-
tory stimuli, is reduced in patients with schizophrenia and might serve as a biologi-
cal candidate marker for schizophrenia. They recorded EEGs during event-related 
fMRI and compared the data between 12 patients with schizophrenia and 15 healthy 
volunteers. The MMN was triggered by stimulus omission. A Philips Achieva 3.0 
Tesla MRI scanner was used together with a BrainAmp and Easycap. The upper 
temporal gyrus in the right hemisphere correlated positively with the MMN ampli-
tude at Fz in patients with schizophrenia. Apart from many other results in the indi-
vidual modalities of this study, no further correlations with MMN were reported.

Another prominent theory of schizophrenia concerns dopamine. Altered dopa-
mine transmission is associated with psychiatric disorders such as schizophrenia, 
depression or ADHD. In particular, the corticostriatal and meso-striatal dopamine 
systems, the former being involved in working memory including executive func-
tion and the latter mediating reward processing, seem to play a crucial role in these 
diseases. It is therefore of interest whether there are any effects of COMT polymor-
phism on brain function during reward processing. This question was asked by 
Boecker-Schlier et al. (2016). They investigated the effects of the COMT Val158Met 
genetic polymorphism, the variation in environmental conditions and the associa-
tion with neuronal reward correlates, focusing on adversity in childhood. Healthy 
participants performed a monetary incentive delay task. The simultaneous EEG- 
fMRI was recorded in a 3 T Siemens Trio MR scanner using a 64-channel BrainAmp. 
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Although EEG-fMRI was recorded at the same time, EEG and fMRI were analyzed 
separately and no analysis was carried out together. Activation in the reward system 
during win trials revealed a gene x environment interaction. Higher childhood fam-
ily adversity is related to increased reward sensitivity and reduced efficiency in 
reward processing particularly in genetically at-risk individuals. A similar study by 
the same research group (Boecker et al. 2014) examined the effects of adversity in 
early life on the processing of neuronal rewards later in life, including ADHD symp-
toms, in a larger sample (N = 162) of healthy young adults. As in the previous study, 
the subjects performed an incentive delay task. The technical environment for scan-
ners and EEG was the same as in the study above. The contingent negative variation 
(CNV) was calculated for the EEG; for the fMRI, a GLM region of interest approach 
was carried out for the regions that are assigned to the reward system. Correlations 
between ROI measurements, CNV, adversity and lifelong ADHD symptoms were 
found. The authors proposed a different long-term impact of adversity in early life 
on reward processing, which implies hypo-responsiveness during reward anticipa-
tion and hyper-responsiveness when receiving a reward. In this context, another 
current EEG-fMRI study is of interest. Sperl et  al. (2019) wanted to investigate 
whether fronto-medial oscillations in the EEG theta frequency band can support a 
fronto-medial to amygdala brain network. These networks have been suggested to 
play an important role in learning fear reactions. Simultaneous recordings were 
made 24 h after fear conditioning and fear extinction. 21 healthy subjects took part 
in a 2-day paradigm of fear conditioning and extinction. The measurements were 
recorded in a 3 T Siemens Prisma MR scanner using a 32-channel BrainAmp. Using 
an EEG-informed analysis approach, frontal midline theta and values indicating 
human fear and extinction recall were included in the fMRI-GLM analysis. This 
analysis revealed a relationship between the theta EEG, fear extinction recall and 
the right amygdala, suggesting that a high recall of the conditioned and extinguished 
fear as indicated by EEG theta power was related to a high fear extinction recall as 
indicated by fMRI amygdala activation. An inverse relationship has been reported 
for theta-EEG and vmPFC, which is likely to correlate with a putative inhibitory 
role of vmPFC in anxiety during early recall of extinction.

The fMRI or EEG at rest seems to reflect the basic requirements for undisturbed 
brain function. Studies have shown changes in resting state networks in various 
diseases, including schizophrenia. While a consistent spatial-temporal coupling 
between neuronal oscillations and resting state networks is strongly associated with 
successful cognitive processing in healthy controls, Razavi et al. (2013) tested the 
hypothesis that this coupling is changed in schizophrenia. BrainAmps, consisting of 
92 channels, were used in a 3 T Siemens Magnetom Trio MR scanner. Covariance 
maps between the EEG frequency bands and the resting state networks were calcu-
lated for the patient and the control group. A topographical analysis of variance was 
carried out for group comparisons. It was concluded that the results showed an 
altered coupling between resting state networks and the simultaneous oscillation 
activity in patients with a schizophrenia spectrum disorder.

There is a lot of discussion about the effects of nicotine on cognitive brain func-
tion, especially in the context of the dopamine model of schizophrenia. Mobascher 
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et al. (2012) investigated the influence of 1 mg nasal nicotine on the P300 obtained 
during an odd ball-type visual task. The EEG-FMRI was measured in a 3 T Siemens 
Trio MR scanner using 32-channel EEG BrainAmps. The EEG-informed analysis 
was calculated as an fMRI-GLM analysis, with individual experimental P300 
amplitudes added as information about the BOLD amplitudes. As a main result, an 
effect of the drug on the task-induced activity of the anterior cingulate cortex was 
reported. The benefit of using EEG-fMRI was justified by the lack of effects in sepa-
rately analyzed EEG and fMRI measurements with nicotine. In addition, no effect 
of the group was found at all.

The anaesthetic ketamine is known to cause psychotic symptoms and also change 
cognitive processing (Uno and Coyle 2019). Ketamine is a non-competitive NMDA 
receptor antagonist, thus modulates glutamatergic neurotransmission. EEG studies 
have shown that ketamine attenuates P300 amplitude and mismatch negativity 
(MMN) in healthy volunteers (see Uno and Coyle 2019 for an overview). As a 
result, ketamine has been repeatedly discussed in connection with schizophrenic 
diseases. Forsyth et  al. (2018) investigated the modulation of neural activity by 
ketamine and midazolam, the latter being a short-acting benzodiazepine that targets 
GABAA receptors. A group of 30 male volunteers participated in 3 sessions. 
Ketamine, midazolam and placebo were administered in a three-way, placebo- 
controlled, crossover design. 64-channel BrainAmps and a 3 T Siemens Skyra MR 
scanner were used for data recording. The so-called fractional amplitude of low- 
frequency fluctuations (fALFF) was taken into account for the fMRI analysis. 
fALFF measures the portion of low-frequency fluctuations within a certain fre-
quency band in the entire recorded frequency range. The EEG-informed analysis 
used performance estimates from several EEG frequency bands, which were derived 
from occipital and frontal bipolar recordings. These average power values for each 
frequency of interest were introduced into the regression model. With ketamine, a 
widespread reduction in fALFF and various effects on the EEG frequency bands 
could be shown. The relationship between EEG parameters and haemodynamic 
activation was also different, but the authors emphasized the explanatory nature of 
the study. In the same study, a second paper was published that focuses exclusively 
on ketamine and implements a different analytical approach (McMillan et al. 2019). 
For the EEG-informed fMRI analysis, ketamine-induced changes for several EEG 
frequency bands were identified. The time series of power values for each frequency 
band of interest were included in the respective GLM model. In summary, the 
authors concluded that the EEG-informed fMRI analysis can increase confidence 
that MR imaging of the pharmacological intervention is directly related to the 
underlying neuronal activity. Similarly, Zacharias et al. (2020) investigated whether 
a prefrontal decrease in functional connectivity induced by ketamine was associated 
with reduced vigilance indicated by EEG. In a proof-of-concept study with suban-
aesthetic S-ketamine in healthy volunteers, fMRI and EEG were simultaneously 
recorded during rest using a 3 T Siemens Trio scanner, BrainAmp amplifiers and an 
EasyCap. The results showed a relationship between EEG activity and network con-
nectivity in standard mode, which is consistent with the hypothesis of a reduced 
alertness state induced by ketamine.
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20.6  Obsessive-Compulsive Disorder (OCD)

Intrusive thoughts are characteristic in obsessive-compulsive disorder (OCD). 
Compulsions are executed to avoid expected negative implications. Ritualized 
behaviours are established to reduce anxiety and distress related to the obsessions. 
The frontostriatal model of OCD suggests that increased frontal activity directs 
attention to potential threats that lead to compulsions. Therefore, in patients with 
OCD pronounced error related activity, as is represented by the error related nega-
tivity (ERN), can be found. Such error-related activity is primarily associated with 
the anterior cingulate cortex. Grützmann et al. (2016) aimed to examine the neural 
correlates of performance monitoring, which are indicated by improved ERN in 
obsessive-compulsive disorder. Patients with OCD were compared to healthy vol-
unteers. The subjects performed a version of the flanker interference task using 
arrows. The EEG was recorded with a 32-channel BrainAmp in a 1.5 T Siemens 
Sonata MR scanner. ERN amplitudes of single trials were estimated using an ICA- 
based method described in this article. These parameters were used to calculate 
intra-individual correlations between ERN and local BOLD responses for correct 
and incorrect attempts. Group analyses revealed increased ERN amplitudes, an 
increased activation of the anterior cingulate cortex and the right amygdala in 
response to erroneous responses in the OCD group, as well as an increased intra-
individual correlation of the activation, which is represented by the ERN and the 
pre-supplementary motor area (pre-SMA). Another study on conflict monitoring 
and error processing using informed EEG-fMRI analysis (3  T Philips Achieva, 
64-channel BrainAmps) in healthy subjects only, using a flanker task, showed also 
that stronger ERN amplitudes were related to activation in the anterior cingulate 
cortex and the pre-SMA (cluster-level tests). Latter was associated with conjoint 
activation of ERN and N2 (Iannaccone et al. 2015). For EEG-informed fMRI analy-
sis, GLM conflict condition regressor was modulated by single trial ERP amplitudes.

20.7  Dementia

Dementia and Alzheimer’s in particular are widespread and are therefore being inten-
sively investigated in many ways. Cognitive decline is a primary symptom of patho-
logical aging. As a result, there are numerous studies on the underlying pathomechanism, 
prevention strategies and treatments to slow down cognitive decline. Two studies with 
EEG-fMRI examined the influence of pharmacological interventions on brain func-
tion with donepezil in healthy volunteers. Donepezil is an acetyl-cholinesterase inhib-
itor that increases the availability of the acetylcholine neurotransmitter, which is 
known to be an important neurotransmitter for cognitive processing. The acetyl-cho-
linesterase inhibitors donepezil as well as rivastigmine and galantamine are currently 
approved drugs in the pharmacotherapy of Alzheimer’s disease. Balsters et al. (2011) 
examined the effects of AChEI (donepezil) on perception in healthy older participants. 
A peculiarity of this study is that it was probably the first simultaneous EEG / fMRI 
study to examine the effects of a pharmacological agent. A smaller sample of 14 
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participants aged between 55 and 76 years was examined, comparing baseline, done-
pezil and placebo in separate test sessions within the same subjects. The technical 
equipment consisted of a 32-channel BrainAmp and a Philips 3 T Achieva MR scan-
ner. Cognitive testing was performed using a paired associates learning task. Main 
analysis was performed using EEG power measures for the usually used EEG fre-
quency bands in an EEG-informed GLM-fMRI analysis approach. An age regressor 
was included in the GLM model. It was reported that donepezil affected paired asso-
ciation learning, resting alpha, beta, and delta band power. EEG-informed fMRI anal-
ysis suggested that oscillatory alteration in the delta band was associated with 
hippocampal activity, effects on the alpha band were related to frontal-parietal net-
work, and beta was associated with default-mode activation. A more recent study on 
donepezil aimed to investigate the effects of donepezil, memantine, and modafinil 
before and after sleep deprivation (Wirsich et al. 2018). Sleep deprivation was imple-
mented as a model of cognitive impairment. Eleven healthy subjects participated in 
five sessions. EEG was recorded using 64-channel BrainAmps within a Siemens 3 T 
Magnetom Verio. A functional connectome was constructed from fMRI data, which 
was based on correlations of the wavelet time series between the regions defined by 
an anatomical atlas. An expert identified sleep stages using the EEG. The sleep stage 
categories were assigned to the fMRI volumes, while the duration information was 
retained by being introduced as covariates in the network-based statistical approach of 
the connectome. A change in network connectivity was only seen with donepezil, 
separate from the changes caused by sleep deprivation or sleep.

The first EEG-fMRI study in Alzheimer’s patients—and these are still rare—
examined the relationship between the performance of the alpha band power and the 
haemodynamic default mode network (Brueggen et  al. 2017). Fourteen patients 
with AD were compared to 14 matching healthy controls. EEG (32-channel 
BrainAmp) and fMRI (3 T Siemens MR scanner) were recorded simultaneously. An 
EEG-informed fMRI analysis was calculated by inserting a regressor into the GLM 
model that contained the alpha band performance information derived only from the 
occipital electrodes. Group comparisons of alpha activity were not statistically sig-
nificant. A reduced positive association between alpha and haemodynamic activity 
in multiple brain regions in AD patients was reported for the default mode network 
and the thalamus. However, it should be noted that the statistical threshold was set 
to p < 0.01 without statistical correction for multiple comparisons.

From above, it can be seen that progress has been made in using the simultaneous 
EEG-fMRI measurement in the past 10 years. The method has been applied to a 
wider range of psychiatric disorders and has treated more subtle changes in the 
brain. Progress has also been made in the development and reliability of methods 
that bring EEG and fMRI together. However, the large number of methods and 
implementations could also prove to be a disadvantage in terms of the replicability 
crisis. Another point is that comprehensive models for psychiatric disorders are still 
lacking, and therefore the ability to identify reliable and specific biomarkers for 
psychiatric disorders is reduced. With the progress made so far and still to be 
expected in the EEG-fMRI method, a better understanding and better diagnosis of 
psychiatric disorders can certainly be expected.
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21Combining Electroencephalography 
and Functional Magnetic Resonance 
Imaging in Pain Research

G. D. Iannetti and A. Mouraux

21.1  Introduction

In 1976, Carmon et al. showed, for the first time, that radiant heat pulses generated 
by a CO2 laser stimulator could, when directed to the skin, elicit brain potentials in 
the ongoing human electroencephalogram (EEG). Such laser pulses have been later 
demonstrated to activate Aδ and C skin nociceptors in a selective and synchronous 
fashion (see Plaghki and Mouraux 2003, for a review). Since this first report, numer-
ous studies have relied on laser-evoked brain potentials (LEPs) to assess the func-
tion of nociceptive somatosensory pathways, with the objective to gain insight into 
the neural processes that underlie the perception of pain. In the late 80s, a number 
of studies have used multi-channel EEG recordings to examine the topographical 
distribution of LEPs (e.g. Treede et  al. 1988) and model their underlying neural 
sources, thus starting to identify the different brain areas activated by nociceptive 
somatosensory input (Bromm and Chen 1995; Tarkka and Treede 1993). A consis-
tent finding across these studies is that LEPs are well explained by the combination 
of a midline source (usually assigned to the anterior part of the cingulate cortex, 
ACC) and a pair of bilateral opercular sources (usually assigned to secondary 
somatosensory (SII) and/or insular cortex). In several subsequent studies (Tarkka 
and Treede 1993; Valentini et al. 2012), an additional parietal source was added to 
the model, and assigned to the primary somatosensory cortex (SI) contralateral to 
the stimulated side (see Garcia-Larrea et al. 2003, for a review).
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These early findings have been later corroborated by a large number of studies 
using magnetoencephalography (MEG, e.g. Ploner et al. 2002), direct intracerebral 
recording of local field potentials (e.g. Frot and Mauguiere 2003), and neuroimag-
ing methods that sample neural activity indirectly by measuring stimulus-evoked 
changes in regional cerebral blood flow (PET and functional magnetic resonance 
imaging (fMRI); Davis et al. 1998; Peyron et al. 1999). Several meta analyses have 
reviewed the existing data on EEG, MEG, PET, and fMRI responses to nociceptive 
stimulation (Apkarian et al. 2005; Garcia-Larrea et al. 2003; Peyron et al. 1999) and 
have confirmed the existence of a common set of brain regions responding to noci-
ceptive stimuli, including bilateral thalamus, bilateral SII, bilateral insula, anterior 
cingulate cortex, prefrontal cortex, and, less consistently, contralateral SI cortex. A 
number of investigators have hypothesized that this network of brain areas, some-
times referred to as the “pain matrix” (Melzack 1999), reflects brain activities that 
are specifically involved in the processing of nociceptive input, and therefore may 
constitute a “cerebral signature for pain” (e.g. Tracey and Mantyh 2007).

However, the actual functional significance of brain responses elicited by noci-
ceptive stimuli remains, to date, a matter of debate (Iannetti and Mouraux 2010; 
Mouraux and Iannetti 2018). Clear experimental evidence in support of the notion 
that these brain responses reflect truly nociceptive-specific brain processes is lack-
ing. On the contrary, there is an accumulating evidence suggesting that these 
responses are very indirectly related to pain perception. For example, when noci-
ceptive laser stimuli are presented at short and constant inter-stimulus intervals 
(thus increasing the temporal expectancy of the stimulus, and hence reducing its 
surprise content), a clear dissociation between the magnitude of LEPs and the mag-
nitude of perceived pain can be observed, both using scalp EEG (Iannetti et  al. 
2008) and intracerebral EEG within the insular cortex (Liberati et  al. 2018). 
Similarly, when brain responses to nociceptive stimuli are compared directly with 
those elicited by stimuli belonging to other sensory modalities (Kunde and Treede 
1993; Somervail et al. 2021, 2022; Liberati et al. 2016; Lui et al. 2008; Mouraux 
and Iannetti 2009), results show that the two responses are strikingly similar, and 
therefore, that the greater part of the brain responses to nociceptive stimuli may 
actually reflect supramodal brain processes (i.e. brain processes that are elicited by 
sudden sensory stimuli regardless of sensory modality).

One reason for the poor understanding of the functional significance of 
nociceptive- related EEG and fMRI brain responses is the limited spatial resolution 
of EEG and the limited temporal resolution of fMRI. These intrinsic limitations 
make it difficult to tease out physiologically distinct brain activities contributing to 
the measured responses, as these appear lumped in space when sampled with EEG 
and lumped in time when sampled with fMRI. Therefore, because EEG signals 
contain the temporal information that is missing in fMRI signals, and because 
fMRI signals contain the spatial resolution that is missing in EEG signals (i.e. both 
methods provide complementary spatial–temporal information), the scientific 
community has shown an interest in the simultaneous recording of EEG and fMRI 
responses (Iannetti and Wise 2007). Here, we will show that combining EEG and 
fMRI is not sufficient to sample neural activity with the temporal resolution of 
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EEG and the spatial resolution of fMRI. Nevertheless, we will also show that when 
methods are used to analyze the recorded signals at the level of single trials, com-
bining these two neuroimaging methods to perform EEG-informed BOLD fMRI 
modelling can provide novel physiological information about the cortical process-
ing of nociceptive input.

In the following sections we will (1) examine the general issues related to the 
simultaneous collection of EEG and fMRI responses to nociceptive stimuli, (2) 
examine the practical issues related to the simultaneous collection of EEG and 
fMRI responses to nociceptive stimuli, (3) review the studies that have attempted to 
combine such recordings, and (4) illustrate, with some recent results, how single- 
trial estimation of EEG data can drive the analysis of fMRI data and thus provide 
novel physiological information.

21.2  Combining EEG and fMRI in Pain Research: 
General Issues

The spatial and temporal resolution of a given functional neuroimaging technique is 
defined as its ability to distinguish two distinct events in space and time, respectively.

Scalp EEG detects changes in scalp potential that are generated mainly by the 
summation of post-synaptic activity occurring in regularly oriented cortical neu-
rons, thus providing a direct measure of spontaneous and stimulus-evoked neuronal 
activity on a millisecond time scale (Speckmann and Elger 1999). Since the skin, 
skull, and meningeal layers interposed between the brain and the recording elec-
trodes distort and exert a spatial low-pass filtering on neuronal currents, the recorded 
signals have a spatial resolution in the order of centimetres, thus preventing the 
discrimination between distinct but spatially neighbouring neural sources of activity 
(Nunez and Srinivasan 2006). This issue is particularly relevant when considering 
the large EEG responses evoked by transient nociceptive stimuli, as these are 
thought to originate mostly from non-superficial brain structures like the operculo-
insular cortex and the cingulate cortex, thus making the recorded signal particularly 
affected by volume conduction.

In contrast, blood oxygen level-dependent (BOLD) fMRI samples neural activity 
indirectly, by detecting changes in blood oxygenation that are linked, but not equiv-
alent, to changes in neuronal activity (Kwong et al. 1992; Ogawa et al. 1992). It is 
often stated that fMRI, unlike EEG, has an excellent spatial resolution, in the order 
of millimetres. However, it is important to mention that the actual spatial resolution 
of BOLD-fMRI is compromised by the fact that the hemodynamic response to neu-
ral activity is not necessarily restricted to the locus of this neural activity, a notion 
that has been described previously as “watering the entire garden for the sake of one 
thirsty flower” (Malonek and Grinvald 1996). Furthermore, when performing analy-
ses at the group level, inter-subject spatial registration requires the warping of single 
subject data, a procedure that can lead to distortions and even displacements of 
activity between neighbouring cerebral lobes (Ozcan et  al. 2005). The temporal 
resolution of fMRI is limited by the variable delay between the onset of neural 
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activity and the subsequent hemodynamic response, as well as by the long-lasting 
nature of this hemodynamic response (both in the order of several seconds; Menon 
and Goodyear 2001). Furthermore, the temporal profile of the hemodynamic 
response may vary across subjects and brain regions (Lee et al. 1995; Robson et al. 
1998). Consequently, the temporal resolution of BOLD-fMRI is very low, making it 
extremely difficult to unravel neural processes separated in time by less than a few 
seconds.

When considering these physiological properties, it becomes apparent that 
achieving optimal spatial–temporal resolution by exploiting the higher temporal 
resolution of EEG and the higher spatial resolution of BOLD-fMRI is not obvious, 
because EEG and fMRI do not necessarily sample the same neural activity.

The lack of correspondence between neural activity sampled by EEG and fMRI 
is particularly striking when comparing EEG and fMRI responses elicited by sen-
sory stimuli. Sensory event-related potentials (ERPs) are short-lasting EEG 
responses, mainly related to transient changes in the peripheral sensory input. 
Sensory ERPs only reflect the fraction of stimulus-triggered brain activity that is 
(1) synchronous enough to summate into a measurable scalp potential, (2) spa-
tially organized into an “open-field” configuration, and (3) time-locked and phase-
locked to the onset of the stimulus (Regan 1989). For example, (1) the neural 
activity triggered by a slowly rising thermal stimulus will not yield a measurable 
ERP because the neural activity it elicits is not synchronous enough; (2) the neural 
activity originating from a “closed field” structure such as a subcortical nucleus 
will not yield a measurable ERP because the electrical fields generated by each 
neuron cancel each other; and (3) the neural activity consisting of stimulus-trig-
gered modulations of the magnitude of ongoing EEG oscillations (i.e. event-
related synchronization (ERS) and desynchronization (ERD)) will not yield a 
measurable ERP because these oscillations are not phase-locked to the onset of 
the stimulus. In contrast, the BOLD- fMRI signal is relatively independent of the 
synchronicity of the afferent volley, the spatial configuration of the underlying 
source, and most importantly, it integrates stimulus-triggered neural activity over 
a much longer time scale.

This mismatch between the neural activity sampled by ERPs and the fMRI can 
mislead the interpretation of combined ERP and fMRI recordings, even when data 
are not collected in the same experimental session. For example, a commonly 
used approach to combine ERP and fMRI data is to exploit the spatial resolution 
of fMRI in order to define better the neural generators of scalp ERPs (Christmann 
et al. 2002; Mulert et al. 2004). Indeed, the problem of estimating the location and 
extent of electrical sources contributing to a given scalp ERP signal (i.e. the EEG 
“inverse problem”; Nunez and Srinivasan 2006) is fundamentally ill-posed since 
the scalp ERP can be explained by an infinite number of source configurations. 
Therefore, to obtain a unique solution, constraints must be imposed on the model 
(Michel et al. 2004). With this aim, a number of investigators have used the loca-
tion of stimulus-induced BOLD-fMRI responses as a “functional constraint” (i.e. 
fMRI- constrained ERP source localization). However, it is important to take into 
account that only a fraction of the stimulus-triggered neural activity contributes to 
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the scalp ERP, and that this fraction probably constitutes only a subset of the neu-
ral activities reflected in the BOLD-fMRI response. Therefore, although fMRI-
constrained ERP source localization can certainly be a means to improve the 
solution of the EEG inverse problem by constraining the placement of dipolar 
sources in brain areas that are metabolically active, it can still produce false-pos-
itive results by allowing the misplacement of dipolar sources in brain regions that 
are metabolically active, but that do not contribute to the ERP response.

When considering nociceptive somatosensory input, the fact that the BOLD- 
fMRI signal integrates neural activity over a long time scale is likely to generate a 
significant mismatch between nociceptive-related neural activity that is sampled by 
EEG and fMRI. The perceptual correlate of a single strong nociceptive stimulus is 
long-lasting and multi-dimensional. Besides its sensory-discriminative dimension, 
it also encompasses motivational and emotional dimensions. Because ERPs almost 
exclusively reflect transient changes in neural activity, they capture only the initial 
part of the long-lasting neural response related to the perception of pain. In contrast, 
since fMRI data integrates neural responses over a longer time scale, they might 
reflect more closely the neural activity related to the perception as a whole.

The contribution of different populations of peripheral nociceptive afferents to 
the recorded brain response is likely to increase further the mismatch between the 
neural activity sampled by EEG and fMRI. This is due to the fact that nociceptive 
stimuli activate two different classes of peripheral nociceptors: small myelinated Aδ 
nociceptors and unmyelinated C nociceptors. While the activation of Aδ nocicep-
tors results in sharp, short-lasting “pricking” sensations, the activation of C nocicep-
tors conveys dull, long-lasting “burning” or “aching” sensations that spread well 
beyond the spatial limits of the stimulus. For this reason, brief and intense laser 
stimuli elicit a typical dual sensation of “first” (Aδ-related) and “second” (C-related) 
pain (Lewis and Ponchin 1937). Yet, for reasons that remain poorly understood, co- 
activation of Aδ- and C-nociceptors using laser stimulation predominantly elicits 
LEPs related to the activation of Aδ nociceptors (Mouraux et al. 2004; but see Hu et 
al. 2014). This leads to the possibility of an important mismatch between the brain 
activity underlying LEPs (which is strictly related to the activation of Aδ nocicep-
tors and thus, to the perception of “first pain”) and the brain activity underlying the 
BOLD-fMRI response (which could reflect a combination of brain activity related 
to the activation of both Aδ and C nociceptors).

For all these reasons, before addressing the problem of how EEG and fMRI 
responses to nociceptive stimulation can be concomitantly recorded, it is thus cru-
cial to discuss why this should be done, and in which instances it may yield physi-
ological information unobtainable using data collected in separate experimental 
sessions. Sampling EEG and fMRI data in a truly simultaneous fashion is techni-
cally challenging. The experimental setup is complex, and issues related to subject 
safety and quality of collected data must be addressed using dedicated EEG hard-
ware (Lemieux et  al. 1997). Magnetic susceptibility effects and radiofrequency 
interaction associated with EEG electrodes and wires cause signal dropouts and 
geometric distortions on MR images (Bonmassar et  al. 2001). Degradation of 
image signal-to-noise ratio due to electromagnetic noise emitted by the EEG 
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recording headbox has also been described (Krakow et  al. 2000). Most impor-
tantly, the collected EEG data is contaminated by severe MR-induced artifacts. 
These consist mainly of “pulse” artifacts caused by cardiac pulse-related move-
ments and blood flow effects within the scanner static magnetic field, and “imag-
ing” artifacts caused by radio-frequency and gradient switching during image 
acquisition. Pulse artifacts are regular, have relatively low amplitude, and occur 
even when MR images are not being acquired. In contrast, imaging artifacts are 
large and obscure the EEG completely (Allen et al. 2000). The removal of these 
artifacts, although feasible, is a complex and time-demanding procedure (Niazy 
et al. 2005). In addition, the increased subject discomfort related to combining the 
EEG setup with the constraints of the MR environment reduces the possible dura-
tion of the experimental session, and thus limits the complexity of the experimental 
design. For all these reasons, repeating the same experimental paradigm in two 
separate experimental sessions, is, in most cases, a more rewarding strategy 
(Iannetti et al. 2005a).

Nevertheless, as detailed more extensively in other sections of this book, the 
simultaneous recording of EEG and fMRI unleashes its potential in two particular 
circumstances: (1) when the neural activity under investigation displays a certain 
level of unpredictability, and (2) when the experimental design introduces impor-
tant time-dependent effects such as habituation, learning, or between-session vari-
ability in the effect of a given pharmacological compound.

Outside the field of pain research, typical examples of such circumstances are 
studies examining ictal and interictal activities in epileptic patients (Hamandi et al. 
2008), sleep stages (Wehrle et al. 2007), and spontaneous fluctuations of ongoing 
EEG rhythms (Laufs et al. 2003). Also, combining EEG and fMRI within a single 
recording session may be useful when examining the time-dependent effect of drugs 
on the processing of sensory input and, in particular, the effect of anaesthetic agents 
on the processing of nociceptive input (e.g. Rogers et al. 2004). Finally, when stud-
ies focus on brain responses that are strongly dependent of cognitive variables such 
as the focus of selective attention or the general level of arousal, the peculiar atten-
tional context and the additional sensory stimulation inherent to a working MR 
scanner can introduce important, non-task-related differences when comparing data 
collected in separate sessions.

In the field of pain research (see also Sect. 21.5), the intrinsic variability of the 
brain responses to nociceptive stimulation can actually be exploited using simulta-
neous and continuous (i.e. not interleaved) acquisition of EEG and fMRI data to 
assess physiologically meaningful between-trial variations of EEG and BOLD-
fMRI brain responses, and examine their relationship with behavioural measures 
(e.g. intensity of pain perception, reaction-time latency). In addition, simultaneous 
(but not necessarily continuous) acquisition of EEG and fMRI data can be impor-
tant in the evaluation of drug effects, when a significant within-subject, between-
session variation in the response to the drug (e.g. the potential development of 
tolerance to opioids) is expected.
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21.3  Combining EEG and fMRI in Pain Research: 
Practical Issues

21.3.1  Selectivity of the Nociceptive Input in EEG-fMRI Studies

Noxious heat stimulation of the skin is most frequently used in EEG and fMRI studies 
of nociception, because they selectively activate nociceptive-specific transduction 
mechanisms in heat-sensitive free nerve endings located in the superficial layers of the 
skin (Julius and Basbaum 2001). If the temperature of the skin is raised above the 
thermal activation threshold of Aδ- and C-fiber nociceptors (Treede et al. 1995), the 
stimulus will be transduced into a nociceptive afferent volley. Noxious heat can be 
delivered using either thermal conduction (contact thermodes) or thermal radiation 
(infrared lasers). Alternative methods to activate Aδ- and C-fiber free nerve endings 
include mechanical pinprick stimulation to activate mechano- sensitive nociceptors 
(Iannetti et al. 2013) (Slugg et al. 2004), contact cold stimulation (De Keyser et al. 
2018), and intraepidermal electrical stimulation (Inui et al. 2002; Mouraux et al. 2010).

Whatever the techniques used to sample neural activity, it is important to ascer-
tain that the brain responses elicited by the nociceptive stimulus are truly related to 
the processing of nociceptive input (and not to the processing of another type of 
sensory input). For this reason, heat nociceptive stimulation is preferred to electrical 
or mechanical noxious stimulation, as the latter concomitantly activate low- 
threshold mechano-receptors and corresponding Aβ fibers (for a discussion on this 
topic see Baumgartner et al. 2005 and Plaghki and Mouraux 2003).For the same 
reason, radiant heat stimulation is preferred to contact heat stimulation, as contact 
thermodes unavoidably activate non-nociceptive Aβ-fiber afferents: the contact of 
the thermode with the skin results in the activation of slowly-adapting non- 
nociceptive mechanoreceptors, and changing the location of the thermode from trial 
to trial results in additional phasic tactile input (Greffrath et al. 2007). Because the 
activation of Aβ-fiber afferents induced by contact thermodes is not strictly syn-
chronous with the onset of the thermal stimulus, and because the averaging proce-
dures used to reveal ERPs cancels out signal changes that are not strictly time-locked 
to the stimulus onset, its contribution to contact-heat evoked potentials may be con-
sidered as negligible (CHEPs; Chen et  al. 2001).In contrast, when contact ther-
modes are used to elicit BOLD-fMRI brain responses, the contribution of both tonic 
and phasic non-nociceptive Aβ-fiber input could become significant, because the 
BOLD signal integrates neural activity over a much longer time scale (see also Sect. 
21.2), and it has been shown that even long-lasting tonic stimuli may elicit a signifi-
cant “sustained” BOLD response (Bandettini et al. 1997).

Another advantage of radiant over conductive heat is that infrared laser stimulators 
heat the skin much faster (up to 10,000 °C/s; Plaghki and Mouraux 2003) than contact 
thermodes (currently up to 70 °C/s for thermodes specifically designed for the record-
ing of CHEPs; Baumgartner et al. 2005). Therefore, because nociceptors are activated 
much more synchronously by fast-rising laser stimuli than by slow- rising contact heat 
stimuli, laser stimuli currently elicit ERPs much more reliably than contact thermodes 
(Baumgartner et al. 2005; Iannetti et al. 2006; see also Sect. 21.2).
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21.3.2  Delivery of Nociceptive Stimuli in EEG/fMRI Environment

When performing pain-related EEG/fMRI studies, an important issue to consider is 
that the equipment involved in the delivery of the nociceptive stimulus must be com-
patible with the strong magnetic field of the MR scanner. Short-wavelength laser 
pulses (e.g. Nd:YAP lasers: λ = 1.34 μm) can be easily transmitted through inexpen-
sive optic fibers. Recently, optic fibers capable of transmitting longer- wavelength 
CO2 pulses (λ = 10.6 μm) have been made available, but are comparatively much 
more expensive (Plaghki and Mouraux 2003). Using such fibers, laser stimuli can be 
delivered inside the scanner room, while keeping the laser source outside. A number 
of contact thermodes have been developed to deliver noxious heat within the MR 
environment (e.g. Wise et  al. 2002). Furthermore, both transcutaneous and intra-
epidermal electrical stimuli are easily delivered in the MR scanner room, provided 
that safety measures related to the presence of electric currents are considered. 
Finally, several laboratories (e.g. Lui et al. 2008) have built custom pneumatically 
driven devices to deliver noxious mechanical stimuli inside the MR scanner room.

Taking these different factors into consideration, it appears that noxious heat 
pulses generated by infrared laser stimulators constitute, at present, the preferred 
method of producing nociceptive sensory input for the concurrent recording of EEG 
and fMRI because they (1) are entirely selective for nociceptors, (2) elicit a nocicep-
tive afferent volley that is synchronous enough to elicit reliable ERPs, and (3) can 
be delivered safely inside the scanner using optic fibers.

21.3.3  Experimental Design

Interleaved vs. continuous EEG-fMRI acquisition. The main source of contamination 
of the EEG by MR-related artifacts is represented by the radio-frequency and gradient 
switching that occurs during image acquisition. For this reason, several studies aiming 
at recording ERPs and fMRI within the same experimental session rely on an inter-
leaved experimental design. In such a design, the introduction of short pauses in the 
acquisition of MR images (e.g. 3 s of image acquisition alternated with 3 s without 
image acquisition) allows the recording of EEG data unaffected by the dynamic imag-
ing artifact. However, interleaving EEG and fMRI acquisition has important practical 
and theoretical limitations, mainly represented by an inefficient sampling of the neural 
activity and the consequent hemodynamic response, and by a reduction in the flexibil-
ity of the stimulus presentation paradigm (Garreffa et al. 2004; Nebel et al. 2005).The 
alternative is to acquire EEG and fMRI data simultaneously and continuously using an 
event-related experimental design, and then rely on offline signal-processing methods 
to remove the contaminating artifacts (Niazy et al. 2005).

Inter-stimulus interval. The rate of stimulus presentation can affect very signifi-
cantly not only the magnitude, but also the functional significance of the EEG 
responses elicited by nociceptive stimuli. When the inter-stimulus interval (ISI) is 
kept constant across trials, it has been shown that the shorter the ISI, the smaller the 
recorded EEG response (Raij et al. 2003; Truini et al. 2004). For this reason some 
investigators have recommended the use of ISIs larger than 4 s (Raij et al. 2003). 
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However, it has also been shown that when the ISI is randomized across trials, thus 
making the occurrence of the nociceptive stimulus unpredictable, the magnitude of 
the EEG response is unaffected by stimulus repetition even at ISIs as short as 280 ms 
(Mouraux et al. 2004; Mouraux and Iannetti 2008). Consequently, if fMRI and EEG 
responses to nociceptive stimulation are sampled in an interleaved manner, it is 
crucial to present the nociceptive stimuli using the same ISI and stimulation para-
digm, or else the functional significance of the brain responses sampled using EEG 
and fMRI may be very different.

Number of stimuli. Another practical issue to consider when designing the exper-
iment is the number of nociceptive stimuli required to elicit reliable EEG and fMRI 
responses. Most studies recording ERPs elicited by nociceptive stimulation average 
a total of 20–40 stimuli (Treede et al. 2003). When using an event-related design, a 
similar number of stimuli is usually used to assess fMRI responses to nociceptive 
stimulation. The magnitude of EEG responses to nociceptive stimuli can vary 
greatly as a function of the parameters of the nociceptive stimulus and the stimu-
lated body district. For example, fast-rising nociceptive stimuli yield a more syn-
chronous afferent volley, thus providing a stronger spatial–temporal summation at 
central synapses that enhances intensity of perceived pain and increases the magni-
tude of measured brain responses (Iannetti et al. 2004). Similarly, and because of 
the shorter conduction distance and the higher density of skin nociceptors, nocicep-
tive stimuli delivered to a proximal body district (e.g. the trigeminal territory) yield 
brain responses of significantly shorter latency and larger amplitude than nocicep-
tive stimuli delivered to a distal body district (e.g. the foot; Truini et al. 2005; see for 
example Fig. 21.1 in Valentini et al. 2012).

Displacement of the stimulus. To avoid nociceptor fatigue or sensitization, and to 
allow passive cooling of the skin, the laser beam must be moved slightly after each 
stimulus (Treede et al. 2003). This is usually achieved by having an experimenter 
who manually displaces the laser beam inside the scanner room. However, although 
common in fMRI studies, this approach is far from being optimal because (1) it is 
necessary to provide the experimenter with some form of cue about when the beam 
has to be displaced, thus making the procedure prone to mistakes, and (2) it makes 
it difficult to define the exact location of stimulated spots. For these reasons, the 
development of computer-controlled MR-compatible devices to displace automati-
cally the laser beam would be desirable, particularly when the time interval between 
two consecutive stimuli is short (Lee et al. 2008).

21.4  Studies Combining EEG and fMRI in Pain Research

This section will focus on four studies that have collected simultaneously EEG and 
BOLD-fMRI responses to nociceptive stimulation (Christmann et al. 2007; Iannetti 
et al. 2005a; Mayhew et al. 2013; Mobascher et al. 2009).

Iannetti et al. (2005a) demonstrated for the first time the feasibility of recording 
reliable laser-evoked EEG and fMRI responses in a truly simultaneous and continuous 
fashion (i.e. using a single and continuous acquisition of EEG and fMRI data). They 
showed that the latency, the amplitude, and the scalp distribution of LEPs recorded 
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during fMRI acquisition are not significantly different from the latency, the amplitude, 
and the scalp distribution of LEPs recorded outside the MR scanner (Fig. 21.1). This 
finding has two important implications. First, because of the observed similarities, it 
indicates that in most experimental designs, multi-modal integration of LEP and fMRI 
results can be carried out using data collected in separate, single-modality experi-
ments. Second, because it shows that reliable LEPs can be recorded during a truly 
simultaneous collection of fMRI data, it demonstrates the possibility of performing 
EEG-driven analysis of fMRI data in pain research (see Sect. 21.5).

Christmann et al. (2007) recorded EEG and fMRI responses elicited by the electri-
cal transcutaneous stimulation of the right thumb, and observed a good concordance 

during fMRI

during fMRI

N2-210 ms

P2-340 ms

N2-205 ms

P2-330 ms

control

N1N2 P2 N1N2 P2

Tc-AVG

Cz-AVG

Cz-AVG

EOG

8uV

-200 0 200 400 600
Time (ms)

-15

9.3

4.6

0

-4.6

-9.3

7.7

3.9

0

-3.9

-7.7

7.7

3.9

0

-3.9

-7.7

8.1

4

0

-4

-8.1

-10

-5

0

5

10

-400 -200 0 200 400

Time (ms)

V
ol

ta
ge

 (
uV

)

600 800 1000

800 -200 0 200 400 600
Time (ms)

800

−
+

Tc-AVG

Cz-AVG

EOG

8uV
−
+

control

Fig. 21.1 Comparison between the grand-average waveforms (data from seven subjects) and 
scalp topographies of LEPs recorded during simultaneous and continuous fMRI at 3 T (left panel) 
and LEPs recorded in a control session outside the scanner room (right panel). The same recording 
equipment and experimental paradigm were used in both sessions. LEPs were elicited by stimula-
tion (Nd:YAP laser) of the right-hand dorsum. Negativity is plotted upwards. Recordings from the 
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indicate early N1 and late N2–P2 components. Scalp topographies are shown at N2 and P2 peak 
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between the strength and the location of the fMRI response and the modelled sources 
contributing to the ERP. However, for the reasons outlined in Sect. 21.3, the signifi-
cance of this study is beset by two important limitations related to stimulus selectivity 
and experimental design. The first is due to the fact that the authors employed high-
intensity electrical stimuli. Because non-nociceptive afferent fibers have a lower elec-
trical activation threshold than nociceptive afferent fibers, these stimuli activated the 
full spectrum of peripheral fibers and were thus not selective for nociceptive afferents. 
The second is due to the fact that the authors, to avoid the contamination of EEG by 
MR-imaging artifacts, collected EEG and fMRI data in an interleaved manner. 
Therefore, both neuroimaging modalities did not sample the same neural activity, thus 
making the direct comparison of both responses less meaningful.

In summary, neither the study of Iannetti et al. (2005a) nor the study of Christmann 
et al. (2007) provide novel physiological information that could not have been obtained 
by recording EEG and fMRI brain responses in two separate experimental sessions.

Mobascher et  al. (2009) simultaneously recorded EEG and fMRI-BOLD 
responses to painful laser stimuli in a group of 20 participants. Interestingly, they 
exploited the trial-by-trial variability in the elicited EEG responses to assess how 
different components of the laser-evoked EEG response may relate to stimulus- 
evoked changes in fMRI-BOLD activity. They found that variations in the ampli-
tude of the laser-evoked P2 potential was related to variations in BOLD signal 
mainly in the ACC, as well as in deep structures such as the amygdala and thalamus. 
Mayhew et al. (2013) used a similar EEG-driven analysis of fMRI-BOLD signals, 
as well as an fMRI-driven analysis of EEG responses, exploiting natural trial-by-
trial variability to characterize the relationship between fluctuations in pain ratings, 
fluctuations in pain-evoked EEG responses, and fluctuations in fMRI- BOLD sig-
nals. They showed that variability in pain-evoked fMRI responses is correlated with 
pain-evoked EEG responses. They also showed that pre-stimulus resting-state fMRI 
activity predicts the subsequent magnitude of stimulus-evoked pain ratings and 
EEG responses. Additionally, the power of the ongoing EEG alpha- band oscillation 
was related to this resting-state fMRI activity. The approaches developed in these 
two studies will be further discussed in Sect. 21.5.

21.5  Future Directions: EEG-Driven Analysis of fMRI-BOLD 
Responses to Nociceptive Stimulation

Whatever the neuroimaging modality, the magnitude of the activity elicited by the 
selective stimulation of nociceptive afferents displays a significant amount of trial- 
to- trial variability (Iannetti et al. 2005b; Purves and Boyd 1993). Most often, since 
this variability cannot be explained by identified experimental factors, it is discarded 
as physiologically meaningless noise. However, both the peripheral and central 
sources of this variability are likely to contain information that is physiologically 
relevant. Two peripheral factors contribute particularly to the variability of brain 
responses to nociceptive stimuli, namely the different number of afferents stimu-
lated from trial to trial, and the significant variance in the conduction velocity of 
primary nociceptive afferents (Treede et  al. 1998). Furthermore, an increasing 

21 Combining Electroencephalography and Functional Magnetic Resonance…



536

number of studies have shown that a great part of the variability of any given brain 
response results from dynamic fluctuations of the ongoing cortical activity (Arieli 
et  al. 1996), possibly related to fluctuations of vigilance, expectation, and atten-
tional focus, or changes in task strategy. Therefore, exploring the trial-to-trial vari-
ability of EEG and fMRI brain responses, as well as exploring its relationship with 
behavioural variables (e.g. intensity of perception, reaction-time latency), might 
provide important insights into the functional significance of the different processes 
that underlie these brain responses.

In the following section, we will show how the trial-to-trial variability of EEG 
responses can be used to drive the analysis of simultaneously recorded fMRI responses, 
and thereby establish relationships between temporally distinct peaks of the EEG 
response and spatially distinct clusters of the fMRI-BOLD response (Fig.  21.2). 
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Fig. 21.2 Single-trial EEG-driven analysis of BOLD-fMRI brain responses to nociceptive stimu-
lation. EEG and BOLD-fMRI data are recorded simultaneously and continuously. The peri- 
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We will (1) examine different methods to estimate the magnitude of stimulus-evoked 
EEG responses at the level of single trials, and (2) show how these different methods 
have been used recently to drive the analysis of simultaneously acquired fMRI data.

21.5.1  Single-Trial Estimation of the Magnitude 
of Stimulus- Evoked EEG Responses

A simple way to obtain a single-trial estimate of the magnitude of stimulus-
evoked EEG responses consists of visually identifying and measuring a defined 
peak of activity within each single EEG epoch. This approach has been shown 
to be reasonably effective for nociceptive ERPs, as these are particularly of 
large amplitude (Iannetti et al. 2005b; Purves and Boyd 1993). However, this 
method has three important limitations: (1) it is prone to the introduction of 
involuntary biases by the observer, (2) it leads to an overestimation of response 
magnitude, since some single- trial estimates are likely to reflect the spurious 
detection of uncorrelated noise resembling the searched-for visual template, and 
(3) the obtained results are difficult to replicate, as they are 
observer-dependent.

Recently, Mayhew et al. (2006) showed that a multiple linear regression approach 
can be used to obtain an unbiased and accurate estimate of the latency and ampli-
tude of single-trial nociceptive ERPs. In this method, a basis set of regressors and 
their temporal derivatives are obtained from the average ERP waveform. This basis 
set is then regressed against each single EEG epoch, thus providing a quantitative 
measure of latency and amplitude of the different peaks of the ERP waveform (Hu 
et al. 2010, 2011) (Fig. 21.3b). This methods has been subsequently refined by a 
preliminary wavelet filtering (Hu et al. 2010) and additional regressors to also 
model single-trial shape variability (Hu et al. 2011).

However, ERPs reflect only a fraction of the EEG response to a given stimu-
lus. Indeed, the stimulus also triggers transient increases (ERS) and decreases 
(ERD) of the power of ongoing EEG oscillations. Identifying ERS and ERD 
requires to estimate the average time-varying power of EEG oscillations. This 
can be obtained by performing a joint time–frequency decomposition of EEG 
epochs using, for example, the continuous wavelet transform (see Fig.  21.4). 
ERS and ERD are subsequently identified by averaging time–frequency maps 
across trials. To estimate the magnitude of ERS and ERD at the level of single 
trials, approaches similar to those used to obtain single-trial estimates of the 
amplitude and latency of ERPs have been developed (Hu et al. 2015). Importantly, 
this approach has the potential to identify nociceptive-related EEG responses 
that correlate more closely with fMRI responses, because a number of studies 
have suggested that the BOLD-fMRI signal could, at least in other sensory 
modalities, be more tightly related with the occurrence of longer-lasting ERD 
and ERS.
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Fig. 21.3 Correlation between the trial-to-trial variability of LEPs and the simultaneously 
recorded BOLD-fMRI signal. EEG and fMRI responses to nociceptive laser stimuli were recorded 
simultaneously and continuously in five subjects. For each subject, 60 laser stimuli were applied to 
the left-hand dorsum, and 60 laser stimuli to the right-hand dorsum. Panel a shows the LEP wave-
form obtained by averaging peri-stimulus EEG epochs across trials (electrode Cz vs. nose refer-
ence, data from one representative subject). The response is characterized by a negative deflection 
(N2) followed by a positive deflection (P2). The average LEP waveform was used to create a set of 
four regressors formed by the N2 waveform, the P2 waveform, and their temporal derivatives 
(Mayhew et al. 2006). A multiple linear regression of the basis set of the four regressors against 
each single EEG epoch was used to model each single-trial ERP, and thus obtain an estimate of the 
amplitude and latency of N2 and P2 peaks in each single trial (panel b). The black waveform cor-
responds to a single representative EEG epoch. The red and green waveforms correspond to the 
automated fittings of the N2 and P2 deflections. The single-trial estimates of N2 and P2 amplitudes 
were subsequently used to create regressors and thereby investigate the correlation between the 
trial-to-trial variability of the N2 and P2 EEG peaks and the simultaneously and continuously 
recorded BOLD signal, using two separate single-subject analyses (one for each peak). For each 
analysis, two regressors were used (panel c). The first (EV1) represented the average amplitude of 
the peak of interest. The second (EV2) represented the trial-to-trial variability of the peak of inter-
est. Panel d shows the results obtained at group level (the hemisphere ipsilateral to the stimulated 
side is shown on the left). Voxels whose BOLD signal time course was significantly correlated with 
the trial-to-trial variability of the N2 EEG peak are shown in red, while voxels whose time course 
was significantly correlated with the trial-to-trial variability of the P2 EEG peak are shown in 
green. Analysis was done using a mixed effects analysis and cluster-based thresholding (z > 2.3, 
p < 0.05). Note how the variability of the N2 peak correlates with the BOLD signal time course of 
voxels located in the ipsilateral and contralateral posterior insula. Also note how the variability of 
both the N2 and P2 peaks correlate with the BOLD signal time course of voxels located in the 
vicinity of the hand area of the contralateral primary somatosensory cortex
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Fig. 21.4 Correlation between the trial-to-trial variability of laser-evoked EEG responses identi-
fied in the time–frequency domain and the simultaneously recorded BOLD-fMRI signal. EEG and 
BOLD-fMRI responses to nociceptive laser stimuli were recorded simultaneously and continu-
ously in five subjects. For each subject, 60 laser stimuli were applied to the left-hand dorsum, and 
60 laser stimuli to the right-hand dorsum. A time–frequency decomposition of each single EEG 
epoch (electrode Cz vs. nose reference) was performed using the continuous wavelet transform to 
generate a map of EEG oscillation power as a function of time and frequency. The maps are 
expressed as the percentage of change (ER%) relative to a pre-stimulus reference interval (−400 to 
−100 ms). Across-trial averaging of these maps (panel a) reveals both phase-locked LEPs and 
nonphase-locked laser-induced modulations of the power of ongoing EEG oscillations (ERS and 
ERD). Three time–frequency regions of interest (ROIs) were defined, centred around the locations 
of the three main foci of activity. (ROI-LEP: 150–450 ms and 1–5 Hz, ROI-ERS: 150–300 ms and 
8–17 Hz; ROI-ERD: 500–800 ms and 8–12 Hz). Within each ROI, the mean of the 10% of pixels 
displaying the greatest increase (ROI-LEP and ROI-ERS) or decrease (ROI-ERD) in amplitude 
was calculated for each single EEG epoch (panel b). Single-trial estimates of LEP, ERS, and ERD 
magnitude were subsequently used to create regressors and thereby investigate the correlation 
between the trial-to-trial variability of each of the three laser-evoked EEG responses and the simul-
taneously recorded BOLD signal, using three separate single-subject analyses. For each analysis, 
two regressors were used (panel c). The first (EV1) represented the average amplitude of the EEG 
response. The second (EV2) represented the trial-to-trial variability of the EEG response. Panel d 
shows the results obtained at the group level (the hemisphere ipsilateral to the stimulated side is 
shown on the left). Voxels whose BOLD signal time course was significantly correlated with the 
trial-to-trial variability of ROI-LEP, ROI-ERS, and ROI-ERD are shown respectively in green, red, 
and blue. Analysis was done using a mixed effects analysis and cluster-based thresholding (z > 2.3, 
p < 0.05)

21.5.2  Correlation Between EEG and fMRI Responses at 
Single-Trial Level

The analysis steps required to extract physiologically relevant information embed-
ded in the trial-to-trial variability of simultaneously acquired EEG and fMRI brain 
responses to nociceptive stimulation are outlined in Fig. 21.2. After the removal of 
the pulse and imaging artifact (Niazy et  al. 2005), EEG signals are filtered and 
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segmented into peri-stimulus epochs. A continuous wavelet transform can be used 
to build a time–frequency matrix, expressing single-trial signal amplitude as a func-
tion of time and frequency. A single-trial estimate of EEG response magnitude is 
then obtained either from the original signal in the time domain (e.g. the amplitude 
of the N2 and P2 peaks at the vertex, estimated using a multiple linear regression 
approach; see Fig. 21.3b) or in the time–frequency domain (e.g. the percent increase 
or decrease of oscillation amplitude corresponding to a focus of ERS or ERD, esti-
mated within a defined time–frequency region of interest; see Fig. 21.4b). These 
single-trial estimates of the magnitude of the EEG response are used to build a func-
tion of the predicted hemodynamic response, which is finally included as an addi-
tional column in the design matrix of the general linear model used to analyze the 
fMRI timeseries. This method allows identifying voxels whose variations in BOLD 
signal time course is predicted by the trial-to-trial variability of the measured EEG 
response. The same approach could be used to correlate the trial-to-trial variability 
of laser-evoked EEG responses with the fMRI-BOLD signal decomposed into a set 
of spatially independent maps and time courses using a spatial Probabilistic 
Independent Component Analysis (PICA; Beckmann and Smith 2004). PICA 
decomposes the fMRI data into a linear combination of independent spatio- temporal 
components (ICs), each hypothesized to reflect independent physical or physiologi-
cal sources of BOLD signal change (Fig. 21.5). The approach has the advantage of 
allowing to correlate single-trial variability of EEG responses to physiologically 
relevant independent patterns of BOLD-fMRI activity (see also Bagshaw and 
Warbrick 2007). Finally, the same approach can be applied to the exploration of 
single-trial information that is not derived from the EEG, such as the energy of the 
eliciting sensory stimulus or the intensity of the perceived sensation (Niazy 2006). 
Such EEG-informed BOLD modelling approaches were recently exploited success-
fully in two EEG/fMRI studies on pain perception (Mayhew et al. 2013; Mobascher 
et al. 2009). Mobascher et al. (2009) delivered brief painful laser stimuli to the left- 
hand dorsum of 20 participants while simultaneously recording EEG and BOLD- 
fMRI. They then constructed two BOLD predictors using single-trial estimates of 
the N2 and P2 components of LEPs. The N2 regressor did not explain additional 
variance in BOLD signals throughout the brain. However, the regressor derived 
from the single-trial estimates of P2 amplitude did explain variance in set of brain 
regions including the ACC, the precuneus, the right operculo-insular region, the 
thalamus, and the right amygdala (Fig. 21.6). By showing that the P2 wave is related 
to activity originating from these specific brain structures, these findings provide 
new insight into the functional significance of the different components of nocicep-
tive ERPs and, more generally, on how nociceptive input is processed in the human 
brain. Mayhew et al. (2013) recorded simultaneously EEG/fMRI data in 16 patients, 
while they were receiving brief contact heat stimuli, to investigate the relationship 
between single-trial BOLD responses, EEG responses, pre-stimulus amplitude of 
alpha-band EEG oscillations, pre-stimulus resting-state BOLD activity, and pain 
perception. They observed that pre- and peri-stimulus BOLD signals in the so- 
called default mode network (DMN) was related to the magnitude of the pain- 
evoked brain response sampled using fMRI and EEG, as well as subjective pain 
ratings. Pre-stimulus amplitude of alpha-band EEG oscillations was correlated with 
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Fig. 21.5 Correlation between the trial-to-trial variability of laser-evoked EEG responses and the 
BOLD-fMRI signal decomposed into a set of spatially independent maps and time courses using a 
spatial Probabilistic Independent Component Analysis (PICA; Beckmann and Smith 2004). EEG 
and BOLD-fMRI responses to nociceptive laser stimuli were recorded simultaneously and con-
tinuously in five subjects. For each subject, 60 laser stimuli were applied to the left-hand dorsum, 
and 60 laser stimuli to the right-hand dorsum. PICA was used to decompose the fMRI data into a 
linear combination of independent spatio-temporal components (ICs), each reflecting an indepen-
dent physical or physiological source of BOLD signal change (panel a). A time–frequency decom-
position of EEG epochs (electrode Cz vs. nose reference) was used to obtain single-trial estimates 
of phase-locked (LEP) and non-phase-locked (ERS and ERD) EEG responses (see Fig. 21.4 for 
details). These single-trial estimates were subsequently used to create regressors and thereby 
investigate the correlation between the trial-to-trial variability of each of these three laser-evoked 
EEG responses and the time course of each IC. Panel b shows the results obtained in one represen-
tative subject. The spatial maps of ICs whose time courses were significantly (p < 0.01) correlated 
with the trial-to-trial variability of the LEP response, the ERS response, and the ERD response are 
shown in the upper, middle, and lower row, respectively. Note how the variability of the LEP 
response (panel b, top row) correlates with the temporal profile of ICs located in the contralateral 
insular cortex (purple), secondary somatosensory cortex (blue), and in the hand area of the primary 
somatosensory cortex (red), while the ERS response (panel b, middle row) correlates with the 
temporal profile of ICs located in the deep insular cortex bilaterally. In contrast, the variability of 
the ERD response (panel b, bottom row) correlates with the temporal profile of ICs located in 
posterior brain regions (red)
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Fig. 21.6 EEG-informed modelling of pain-evoked BOLD-fMRI brain responses. Simultaneous 
EEG and fMRI data were collected in 20 participants exposed to transient laser heat stimuli deliv-
ered to the left-hand dorsum. (a) LEPs sampled using EEG. The left graph shows the group-level 
average response recorded at electrode Cz. The right graph shows single-trial EEG responses 
recorded in a single participant. Note the trial-by-trial variability in magnitude and latency of the 
negative N2 wave (blue response approximately 200 ms after stimulus onset) and the positive P2 
wave (red response approximately 300–400 ms after stimulus onset). (b) Whole-brain analysis of 
the fMRI-BOLD response to laser stimulation. (c) Whole-brain analysis of the fMRI-BOLD signal 
variance explained by the trial-to-trial variations in P2 amplitude. Note that there is only partial 
overlap between the cortical and subcortical regions shown in b and c, indicating that the P2 wave 
could be related to a subset of the brain regions typically activated by painful stimuli. (Adapted 
from Mobascher et al. (2009))

the amplitude of both the DMN-related BOLD signals, and stimulus-evoked EEG 
responses. Taken together, these results provide new insight into the dynamics of 
ongoing brain activity and how these may influence the processing of nociceptive 
input and pain perception.

G. D. Iannetti and A. Mouraux



543

Acknowledgments G.D. Iannetti is supported by the European Research Council (Consolidator 
Grant PAINSTRAT) and the Wellcome Trust (COLL JLARAXR). 

References

Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous 
EEG recorded during functional MRI. Neuroimage 12:230–239

Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain 
perception and regulation in health and disease. Eur J Pain 9:463–484

Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of 
the large variability in evoked cortical responses. Science 273:1868–1871

Bagshaw AP, Warbrick T (2007) Single trial variability of EEG and fMRI responses to visual 
stimuli. Neuroimage 38:280–292

Bandettini PA, Kwong KK, Davis TL, Tootell RB, Wong EC, Fox PT, Belliveau JW, Weisskoff 
RM, Rosen BR (1997) Characterization of cerebral blood oxygenation and flow changes dur-
ing prolonged brain activation. Hum Brain Mapp 5:93–109

Baumgartner U, Cruccu G, Iannetti GD, Treede RD (2005) Laser guns and hot plates. Pain 116:1–3
Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional 

magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152
Bonmassar G, Hadjikhani N, Ives JR, Hinton D, Belliveau JW (2001) Influence of EEG electrodes 

on the BOLD fMRI signal. Hum Brain Mapp 14:108–115
Bromm B, Chen AC (1995) Brain electrical source analysis of laser evoked potentials in response 

to painful trigeminal nerve stimulation. Electroencephalogr Clin Neurophysiol 95:14–26
Carmon A, Mor J, Goldberg J (1976) Evoked cerebral responses to noxious thermal stimuli in 

humans. Exp Brain Res 25:103–107
Chen AC, Niddam DM, Arendt-Nielsen L (2001) Contact heat evoked potentials as a valid means 

to study nociceptive pathways in human subjects. Neurosci Lett 316:79–82
Christmann C, Ruf M, Braus DF, Flor H (2002) Simultaneous electroencephalography and func-

tional magnetic resonance imaging of primary and secondary somatosensory cortex in humans 
after electrical stimulation. Neurosci Lett 333:69–73

Christmann C, Koeppe C, Braus DF, Ruf M, Flor H (2007) A simultaneous EEG-fMRI study of 
painful electric stimulation. Neuroimage 34:1428–1437

Davis KD, Kwan CL, Crawley AP, Mikulis DJ (1998) Event-related fMRI of pain: entering a new 
era in imaging pain. Neuroreport 9:3019–3023

De Keyser R, van den Broeke EN, Courtin A, Dufour A, Mouraux A (2018) Event-related brain 
potentials elicited by high-speed cooling of the skin: a robust and non-painful method to assess 
the spinothalamic system in humans. Clin Neurophysiol 129:1011–1019

Frot M, Mauguiere F (2003) Dual representation of pain in the operculo-insular cortex in humans. 
Brain 126:438–450

Garcia-Larrea L, Frot M, Valeriani M (2003) Brain generators of laser-evoked potentials: from 
dipoles to functional significance. Neurophysiol Clin 33:279–292

Garreffa G, Bianciardi M, Hagberg GE, Macaluso E, Marciani MG, Maraviglia B, Abbafati M, 
Carni M, Bruni I, Bianchi L (2004) Simultaneous EEG-fMRI acquisition: how far is it from 
being a standardized technique? Magn Reson Imaging 22:1445–1455

Greffrath W, Baumgartner U, Treede RD (2007) Peripheral and central components of habituation 
of heat pain perception and evoked potentials in humans. Pain 132:301–311

Hamandi K, Laufs H, Noth U, Carmichael DW, Duncan JS, Lemieux L (2008) BOLD and perfu-
sion changes during epileptic generalised spike wave activity. Neuroimage 39:608–618

Hu L, Mouraux A, Hu Y, Iannetti GD (2010) A novel approach for enhancing the signal-to-noise 
ratio and detecting automatically event-related potentials (ERPs) in single trials. NeuroImage 
50(1):99–111. S105381190901297X. https://doi.org/10.1016/j.neuroimage.2009.12.010

Hu L, Liang M, Mouraux A, Wise RG, Hu Y, Iannetti GD (2011) Taking into account latency 
amplitude and morphology: improved estimation of single-trial ERPs by wavelet filtering 

21 Combining Electroencephalography and Functional Magnetic Resonance…

https://doi.org/10.1016/j.neuroimage.2009.12.010


544

and multiple linear regression. J Neurophysiol 106(6):3216–3229. https://doi.org/10.1152/
jn.00220.2011

Hu L, Cai MM, Xiao P, Luo F, Iannetti GD (2014) Human brain responses to concomitant stimula-
tion of Aδ and C nociceptors. J Neurosci 34(34):11439–11451. https://pubmed.ncbi.nlm.nih.
gov/25143623/

Hu L, Zhang ZG, Mouraux A, Iannetti GD (2015) Multiple linear regression to estimate time- 
frequency electrophysiological responses in single trials. Neuroimage 111:442–453

Iannetti GD, Mouraux A (2010) From the neuromatrix to the pain matrix (and back). Exp Brain 
Res 205:1–12

Iannetti GD, Leandri M, Truini A, Zambreanu L, Cruccu G, Tracey I (2004) Adelta nociceptor 
response to laser stimuli: selective effect of stimulus duration on skin temperature, brain poten-
tials and pain perception. Clin Neurophysiol 115:2629–2637

Iannetti GD, Niazy RK, Wise RG, Jezzard P, Brooks JC, Zambreanu L, Vennart W, Matthews 
PM, Tracey I (2005a) Simultaneous recording of laser-evoked brain potentials and continuous, 
high-field functional magnetic resonance imaging in humans. Neuroimage 28:708–719. https://
pubmed.ncbi.nlm.nih.gov/16112589/

Iannetti GD, Zambreanu L, Cruccu G, Tracey I (2005b) Operculoinsular cortex encodes pain 
intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked 
potentials in humans. Neuroscience 131:199–208

Iannetti GD, Zambreanu L, Tracey I (2006) Similar nociceptive afferents mediate psychophysical 
and electrophysiological responses to heat stimulation of glabrous and hairy skin in humans. J 
Physiol 577:235–248

Iannetti GD, Wise RG (2007) BOLD functional MRI in disease and pharmacological studies: 
room for improvement? Magn Reson Imaging 25(6):978–988. https://pubmed.ncbi.nlm.nih.
gov/17499469/

Iannetti G, Hughes NP, Lee MC, Mouraux A (2008) The determinants of laser-evoked EEG 
responses: pain perception or stimulus saliency? J Neurophysiol 100:815–828

Iannetti GD, Baumgartner U, Tracey I, Treede RD, Magerl W (2013) Pinprick-evoked brain 
potentials: a novel tool to assess central sensitization of nociceptive pathways in humans. J 
Neurophysiol 110:1107–1116

Inui K, Tran TD, Hoshiyama M, Kakigi R (2002) Preferential stimulation of Adelta fibers by intra- 
epidermal needle electrode in humans. Pain 96:247–252

Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210
Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR (2000) EEG recording during 

fMRI experiments: image quality. Hum Brain Mapp 10:10–15
Kunde V, Treede RD (1993) Topography of middle-latency somatosensory evoked potentials 

following painful laser stimuli and non-painful electrical stimuli. Electroencephalogr Clin 
Neurophysiol 88:280–289

Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, 
Hoppel BE, Cohen MS, Turner R et al (1992) Dynamic magnetic resonance imaging of human 
brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003) 
Electroencephalographic signatures of attentional and cognitive default modes in spontaneous 
brain activity fluctuations at rest. Proc Natl Acad Sci U S A 100:11053–11058

Lee AT, Glover GH, Meyer CH (1995) Discrimination of large venous vessels in time-course spi-
ral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging. Magn Reson 
Med 33:745–754

Lee MC, Mouraux A, Iannetti GD (2008) Characterizing the cortical activity related to the emer-
gence of a conscious painful experience. In: 6th FENS Forum of European Neuroscience, 
Geneva, Switzerland

Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR (1997) Recording of EEG during fMRI 
experiments: patient safety. Magn Reson Med 38:943–952

Lewis T, Ponchin EE (1937) The double pain response of the human skin to a single stimulus. Clin 
Sci 3:67–76

Liberati G, Klocker A, Safronova MM, Ferrao Santos S, Ribeiro Vaz JG, Raftopoulos C, Mouraux 
A (2016) Nociceptive local field potentials recorded from the human insula are not specific for 
nociception. PLoS Biol 14:e1002345

G. D. Iannetti and A. Mouraux

https://doi.org/10.1152/jn.00220.2011
https://doi.org/10.1152/jn.00220.2011
https://pubmed.ncbi.nlm.nih.gov/25143623/
https://pubmed.ncbi.nlm.nih.gov/25143623/
https://pubmed.ncbi.nlm.nih.gov/16112589/
https://pubmed.ncbi.nlm.nih.gov/16112589/
https://pubmed.ncbi.nlm.nih.gov/17499469/
https://pubmed.ncbi.nlm.nih.gov/17499469/


545

Liberati G, Algoet M, Klocker A, Ferrao Santos S, Ribeiro-Vaz JG, Raftopoulos C, Mouraux 
A (2018) Habituation of phase-locked local field potentials and gamma-band oscillations 
recorded from the human insula. Sci Rep 8:8265

Lui F, Duzzi D, Corradini M, Serafini M, Baraldi P, Porro CA (2008) Touch or pain? Spatio- 
temporal patterns of cortical fMRI activity following brief mechanical stimuli. Pain 138:362

Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcircula-
tion revealed by imaging spectroscopy: implications for functional brain mapping. Science 
272:551–554

Mayhew SD, Iannetti GD, Woolrich MW, Wise RG (2006) Automated single-trial measurement of 
amplitude and latency of laser-evoked potentials (LEPs) using multiple linear regression. Clin 
Neurophysiol 117:1331–1344

Mayhew SD, Hylands-White N, Porcaro C, Derbyshire SWG, Bagshaw AP (2013) Intrinsic vari-
ability in the human response to pain is assembled from multiple, dynamic brain processes. 
Neuroimage 75:68–78

Melzack R (1999) From the gate to the neuromatrix. Pain Suppl 6:S121–S126
Menon RS, Goodyear BG (2001) Spatial and temporal resolution in fMRI. In: Jezzard P, Matthews 

PM, Smith SM (eds) Functional MRI an introduction to methods. Oxford University Press, 
Oxford, pp 145–158

Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave De Peralta R (2004) EEG source 
imaging. Clin Neurophysiol 115:2195–2222

Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Saleh A, Schnitzler A, Winterer G 
(2009) Laser-evoked potential P2 single-trial amplitudes covary with the fMRI BOLD response 
in the medial pain system and interconnected subcortical structures. Neuroimage 45:917–926

Mouraux A, Iannetti G (2009) Laser-evoked potentials do not reflect nociceptive-specific brain 
activity. In: 6th FENS Forum of European Neuroscience, July 12–16, Geneva, Switzerland. 
https://pubmed.ncbi.nlm.nih.gov/19339457/

Mouraux A, Iannetti GD (2008) A review of the evidence against the “first come first served” 
hypothesis. Comment on Truini et al. [Pain 2007;131:43-7]. Pain 136:219–221. author reply 
222-213. https://pubmed.ncbi.nlm.nih.gov/19339457/

Mouraux A, Iannetti GD (2018) The search for pain biomarkers in the human brain. Brain 
141:3290–3307

Mouraux A, Guerit JM, Plaghki L (2004) Refractoriness cannot explain why C-fiber laser-evoked 
brain potentials are recorded only if concomitant Adelta-fiber activation is avoided. Pain 
112:16–26

Mouraux A, Iannetti GD, Plaghki L (2010) Low intensity intra-epidermal electrical stimulation 
can activate Aδ-nociceptors selectively. Pain 150:199–207

Mulert C, Jäger L, Schmitt R, Bussfeld P, Pogarell O, Möller HJ, Juckel G, Hegerl U (2004) 
Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of local-
ization and time-course of brain activity in target detection. Neuroimage 22:83–94

Nebel K, Stude P, Wiese H, Muller B, de Greiff A, Forsting M, Diener HC, Keidel M (2005) Sparse 
imaging and continuous event-related fMRI in the visual domain: a systematic comparison. 
Hum Brain Mapp 24:130–143

Niazy RK (2006) Simultaneous electroencephalography and functional MRI: methods and appli-
cations. Doctoral Dissertation. Univeristy of Oxford, Oxford

Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM (2005) Removal of FMRI environ-
ment artifacts from EEG data using optimal basis sets. Neuroimage 28:720–737

Nunez PL, Srinivasan R (2006) Electric fields of the brain. In: The Neurophysics of EEG, 2nd edn. 
Oxford University Press, New York

Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic 
signal changes accompanying sensory stimulation: functional brain mapping with magnetic 
resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

Ozcan M, Baumgartner U, Vucurevic G, Stoeter P, Treede RD (2005) Spatial resolution of fMRI 
in the human parasylvian cortex: comparison of somatosensory and auditory activation. 
Neuroimage 25:877–887

Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F, Mauguiere F, Michel 
D, Laurent B (1999) Haemodynamic brain responses to acute pain in humans: sensory and 
attentional networks. Brain 122(Pt 9):1765–1780

21 Combining Electroencephalography and Functional Magnetic Resonance…

https://pubmed.ncbi.nlm.nih.gov/19339457/
https://pubmed.ncbi.nlm.nih.gov/19339457/


546

Plaghki L, Mouraux A (2003) How do we selectively activate skin nociceptors with a high power 
infrared laser? Physiology and biophysics of laser stimulation. Neurophysiol Clin 33:269–277

Ploner M, Gross J, Timmermann L, Schnitzler A (2002) Cortical representation of first and second 
pain sensation in humans. Proc Natl Acad Sci U S A 99:12444–12448

Purves AM, Boyd SG (1993) Time-shifted averaging for laser evoked potentials. 
Electroencephalogr Clin Neurophysiol 88:118–122

Raij TT, Vartiainen NV, Jousmaki V, Hari R (2003) Effects of interstimulus interval on cortical 
responses to painful laser stimulation. J Clin Neurophysiol 20:73–79

Regan D (1989) Human brain electrophysiology. In: Evoked potentials and evoked magnetic fields 
in science and medicine. Elsevier, New York

Robson MD, Dorosz JL, Gore JC (1998) Measurements of the temporal fMRI response of the 
human auditory cortex to trains of tones. Neuroimage 7:185–198

Rogers R, Wise RG, Painter DJ, Longe SE, Tracey I (2004) An investigation to dissociate the 
analgesic and anesthetic properties of ketamine using functional magnetic resonance imaging. 
Anesthesiology 100:292–301

Slugg RM, Campbell JN, Meyer RA (2004) The population response of A- and C-fiber nociceptors 
in monkey encodes high-intensity mechanical stimuli. J Neurosci 24:4649–4656

Somervail R, Zhang F, Novembre G, Bufacchi RJ, Guo Y, Crepaldi M, Hu L, Iannetti GD 
(2021) Waves of change: brain sensitivity to differential not absolute stimulus intensity is 
conserved across humans and rats. Cerebral Cortex 31(2):949–960. https://doi.org/10.1093/
cercor/bhaa267

Somervail R, Bufacchi RJ, Salvatori C, Neary-Zajiczek L, Guo Y, Novembre G, Iannetti GD 
(2022) Brain responses to surprising stimulus offsets: phenomenology and functional signifi-
cance. Cerebral Cortex 32(10):2231–2244. https://doi.org/10.1093/cercor/bhab352

Speckmann E, Elger C (1999) Introduction to the neurophysiological basis of the EEG and DC 
potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic prin-
ciples, clinical applications, and related fields. Lippincott Williams & Wilkins, Baltimore, 
pp 15–27

Tarkka IM, Treede RD (1993) Equivalent electrical source analysis of pain-related somatosensory 
evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10:513–519

Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. 
Neuron 55:377–391

Treede RD, Kief S, Holzer T, Bromm B (1988) Late somatosensory evoked cerebral potentials in 
response to cutaneous heat stimuli. Electroencephalogr Clin Neurophysiol 70:429–441

Treede RD, Meyer RA, Raja SN, Campbell JN (1995) Evidence for two different heat transduc-
tion mechanisms in nociceptive primary afferents innervating monkey skin. J Physiol 483(Pt 
3):747–758

Treede RD, Meyer RA, Campbell JN (1998) Myelinated mechanically insensitive afferents from 
monkey hairy skin: heat-response properties. J Neurophysiol 80:1082–1093

Treede RD, Lorenz J, Baumgartner U (2003) Clinical usefulness of laser-evoked potentials. 
Neurophysiol Clin 33:303–314

Truini A, Rossi P, Galeotti F, Romaniello A, Virtuoso M, De Lena C, Leandri M, Cruccu G (2004) 
Excitability of the Adelta nociceptive pathways as assessed by the recovery cycle of laser 
evoked potentials in humans. Exp Brain Res 155:120–123

Truini A, Galeotti F, Romaniello A, Virtuoso M, Iannetti GD, Cruccu G (2005) Laser-evoked 
potentials: normative values. Clin Neurophysiol 116:821–826

Valentini E, Hu L, Chakrabarti B, Hu Y, Aglioti SM, Iannetti GD (2012) The primary somatosen-
sory cortex largely contributes to the early part of the cortical response elicited by nociceptive 
stimuli. Neuroimage 59:1571–1581

Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Auer DP, Pollmacher T, Czisch M (2007) 
Functional microstates within human REM sleep: first evidence from fMRI of a thalamocorti-
cal network specific for phasic REM periods. Eur J Neurosci 25:863–871

Wise RG, Rogers R, Painter D, Bantick S, Ploghaus A, Williams P, Rapeport G, Tracey I (2002) 
Combining fMRI with a pharmacokinetic model to determine which brain areas activated by 
painful stimulation are specifically modulated by remifentanil. Neuroimage 16:999–1014

G. D. Iannetti and A. Mouraux

https://doi.org/10.1093/cercor/bhaa267
https://doi.org/10.1093/cercor/bhaa267
https://doi.org/10.1093/cercor/bhab352


547

22Simultaneous Electroencephalography 
and Functional Magnetic Resonance 
Imaging of the Human Auditory System

Johannes Vosskuhl, Christoph S. Herrmann, 
André Brechmann, and Henning Scheich

22.1  Introduction

When trying to examine the physiological correlates of cognitive functions, human 
neuroscience is restricted to non-invasive measures when dealing with healthy sub-
jects. Correlates of cognitive brain processes are present in electromagnetic fields 
and hemodynamic responses which can be recorded with electroencephalography 
(EEG) and functional magnetic resonance imaging (fMRI), respectively. While 
EEG offers a temporal resolution on the millisecond time scale, intracranial sources 
of activity must be inferred from extracranial recordings—a phenomenon referred 
to as the inverse problem. FMRI offers a spatial resolution on the millimeter scale 
but suffers from a suboptimal temporal resolution, since the blood oxygen depen-
dent (BOLD) signal is an indirect hemodynamic consequence of electrical brain 
activity.

Combining EEG and fMRI promises to integrate the good temporal resolution of 
EEG with the good spatial resolution of fMRI (for reviews, see Debener et al. 2006; 
Herrmann and Debener 2008; Huster et  al. 2012; Menon and Crottaz-Herbette 
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2005). However, it has to be noted that some authors have questioned the implicit 
assumption that both measures pick up more or less the same neural activity. A 
number of studies have demonstrated that EEG and BOLD responses do not reflect 
identical neural activity, which has resulted in the notion of “EEG signals without 
fMRI correlates” and vice versa (Huster et al. 2012; Ritter and Villringer 2006). 
Such a case could occur when two sources of an EEG signal merely synchronize at 
no metabolic cost. Then, a change in the EEG signal would be measured without a 
BOLD signal change. The opposite case can happen if two neural sources change 
their activity, which would result in a detectable BOLD signal, but their electrical 
trace on the scalp cancels out.

EEG and fMRI setups are both complicated technical environments requiring 
sophisticated hard- and software as well as skilled personnel for operation. Thus, 
even slight disturbances such as a nearby electromechanical device in EEG or metal 
parts inside the MR scanner may result in severe artifacts and corrupted signal qual-
ity. Therefore, the recording of EEG signals inside the MR scanner certainly com-
promises EEG signal quality (e.g., Warbrick and Bagshaw 2008) and can also affect 
the quality of MR images (e.g., Mullinger et al. 2008).

Two types of artifacts obscure EEG data when recording inside an MR scanner. 
The first is the so-called cardioballistic artifact. It is related to the cardiac cycle and 
scales in amplitude proportionally to the magnetic field strength (Debener et  al. 
2008). It is commonly agreed that the cardioballistic artifact is related to the pulsa-
tile movement of the head and/or the pulsatile movement of EEG electrodes. It is, 
therefore, also referred to as the pulse artifact. EEG electrodes and EEG leads are 
conductive, and the movement of conductive material in a static magnetic field 
induces a current which is picked up by the EEG. Numerous articles deal with this 
artifact and meanwhile offer effective mechanisms to correct for it (see e.g. 
Bonmassar et  al. 2002; Debener et  al. 2007; Ellingson et  al. 2004; Niazy et  al. 
2005). Two fundamentally different approaches have been established for the cor-
rection of the cardioballistic, artifact: First, the subtraction of an artifact template 
separately for each channel, second, separating the source of the cardioballistic arti-
fact from internal (EEG) sources using for example independent component analy-
sis (ICA). A comparison of these two major approaches revealed that both are 
successful in correcting the artifact but the first cluster of methods appeared to be 
more convenient to use, especially for unexperienced users (see Vanderperren et al. 
2010 for more details). Currently, a technical approach to the problem has been sug-
gested where additional carbon wire loops are used as additional sensors to track 
and correct these artifacts (van der Meer et al. 2016).

The second type of artifact is caused by the MRI gradient switching and radio 
frequency (RF) pulses and is referred to as gradient artifact (GA). This artifact is 
limited to the time required to acquire these images. For many purposes, the GA can 
be avoided by recording EEG and fMRI data interleaved with each other (see 
“sparse sampling” below). However, even in the case of temporally overlapping 
EEG recording and acquisition of MR slices, the artifact can be corrected by ade-
quate software algorithms (see e.g. Allen et al. 2000; Felblinger et al. 1999; Ritter 
et al. 2007; Sijbersa et al. 2000).
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A different category of artifacts has meanwhile been described, which is related 
to specific scanner hardware such as the helium pump (Rothlübbers et al. 2014) or 
the ventilation system (Nierhaus et al. 2013). Both of which are less well investi-
gated and thus correction methods are less well developed (See Rothlübbers et al. 
(2014) and van der Meer et al. (2016) for methods to correct the helium pump arti-
fact). Generally, if possible, ventilation inside the scanner bore and the helium pump 
should be switched off during EEG-fMRI measurements.

Using the above-mentioned techniques has become fairly convenient as some of 
them have been implemented in widely available software packages. Despite the 
feasibility and elegance of simultaneously recording EEG and BOLD responses and 
the potential insights to be gained with this method, it should be noted that many 
research questions do not require such a technically challenging approach. Whenever 
it is sufficient to have subjects perform a task twice, it is much more convenient to 
have them do the two types of recordings separately. In many cases, even one of the 
two measurements may suffice to answer relevant research questions.

22.2  Specifics of Auditory Recordings

The scanner environment is especially unsuitable for auditory experiments requir-
ing a number of special hardware and software solutions. At least the following 
three problems are specific to auditory experiments and shall be addressed in 
the sequel:

• The static magnetic field interferes with auditory equipment.
• The transient magnetic fields generate noise, which interferes with auditory per-

ception and in turn with cognitive processing.
• The scanner noise generates a BOLD response which needs to be differentiated 

from the auditory response to the acoustic stimuli.

Further details of problems with auditory experiments inside MR scanners are 
discussed in valuable review articles (McJury and Shellock 2000; Moelker and 
Pattynama 2003; Palmer et al. 2006; Peelle 2014).

22.2.1  Interference of the Static Magnetic Field

To begin with, there is a strong magnetic field, which precludes the use of standard 
auditory equipment such as headphones. The static magnetic fields of commercially 
available scanners currently range from 1 to 7 Tesla. No ferromagnetic devices can 
be brought into the scanner, since they would be attracted by the magnet and could 
potentially result in accidents. Thus, standard headphones with metallic leads can-
not be operated inside a scanner. In addition, the transient magnetic fields used for 
slice selection and readout would induce currents in metallic leads, which in turn 
would produce undesired sounds in the headphones. A preliminary but suboptimal 
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solution has been the design of air-pressure devices as they are also used in magne-
toencephalography. Unfortunately, these devices sometimes show problems such as 
asymmetric levels.

Today, a number of special sound delivery devices have been designed and made 
commercially available, which can cope with the hostile conditions and are suffi-
ciently precise for auditory experiments (Baumgart et al. 1998; Palmer et al. 1998; 
Norman-Haignere and McDermott 2016). These devices use non-magnetic copper 
wires and piezoelectric or electrostatic earphones, thus overcoming the problems of 
air-pressure headphones.

22.2.2  Interference of Transient Magnetic Fields

More importantly, the sound which is created by the scanner interferes with the 
perception of auditory stimuli. The flow of electric current induces a magnetic field 
surrounding the conductor. If the conductor lies within a magnetic field, a force acts 
upon the conductor, which is the so-called Lorentz force. This is the case for the 
gradient coil of an MR scanner which generates the transient magnetic fields for 
slice selection and readout. This Lorentz force deforms the gradient coils. That 
deformation propagates to the surrounding air, generating a noise similar to the case 
when the membrane of a loudspeaker is being moved (Mansfield et al. 1998). This 
scanner noise scales with the field strength of the scanner (Price et al. 2001) and 
usually exceeds 100 dB sound pressure level requiring a shielding from the sub-
jects’ ears by earplugs and/or appropriate headphones to avoid damage to the hear-
ing system. Note, however, that hearing protection, even if perfect at the outer ear, 
does not prevent bone conduction of the scanner noise.

Thus, even with significant suppression by hearing protection, the remaining 
noise still interferes with auditory perception in different ways. Scanner noise may 
physically mask experimental stimuli if presented simultaneously, thus preventing 
subjects from perceiving stimuli when presented during fMRI measurement. 
Additionally, more cognitive effort must be engaged to process the presented stim-
uli as can be seen from research on speech in noise (Scott and McGettigan 2013). In 
their review, Scott and McGettigan illustrate how speech-in-noise stimuli recruit 
additional prefrontal and parietal areas when compared with unmasked speech stim-
uli. A scenario that seems directly transferrable to auditory experiments in noisy 
environments such as an MRI-scanner. Furthermore, it has been suggested that con-
tinuous echo planar imaging (EPI) noise when compared with sparse imaging may 
reduce left lateralized activity in the superior temporal gyrus during word process-
ing (Gaab et  al. 2007). However, this interpretation could not be confirmed in a 
sound intensity categorization task that was shown to be left lateralized independent 
of the used fMRI sequence, i.e. continuous EPI vs. low-noise FLASH sequence 
(Angenstein et al. 2016).

Scanner noise not only affects cognitive performance but also physiological sig-
nals from the brain. It has been demonstrated that the noise of the MR scanner’s EPI 
sequences results in significant changes of subjects’ auditory MEG responses 
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during an auditory experiment (Herrmann et  al. 2000) and similar findings have 
been obtained for ERPs (Novitski et al. 2001, 2003). Thus, specific experimental 
paradigms suited for recording inside an MR scanner have to be designed. A few 
studies offering solutions to these problems will be reviewed below.

22.2.3  BOLD Response to Scanner Noise

A further problem for auditory fMRI experiments is the fact that the scanner noise 
itself results in a BOLD response. Bandettini et al. (1998) contrasted images that 
were taken after a scanning period with others that were preceded by silence. The 
results showed an activation of primary auditory cortex due to the scanner noise. 
Subsequently, it was shown for an auditory discrimination task that the percentage 
of time during which MR scanner noise was present due to slice acquisition modu-
lates the BOLD response in auditory cortex (Shah et al. 1999). By investigating the 
time course of scanner noise activating auditory cortices, Hall et al. (2000) were 
able to demonstrate that primary and secondary auditory cortex showed peaks at 
4–5 s after stimulus onset, which decayed after a further 5–8 s. This time course 
indicates that noise contamination in auditory designs can be substantially reduced 
by using long repetition times of about 9–13 s.

The additional BOLD response induced by scanner noise results in a higher level 
of baseline activation in auditory cortices. The BOLD response induced by experi-
mental stimuli is then added onto a higher baseline which may result in relatively 
weaker responses (e.g. in % signal change), or even ceiling effects.

It should be noted that the scanner noise poses a problem also for non-auditory 
experiments. For example, BOLD responses in visual cortex have been reported to 
decrease by 50% during the presence of scanner noise (Cho et al. 1998).

The manifold effects of scanner noise on the outcome of auditory experiments in 
the MRI, as well as different ideas to solve and circumvent the problem can be 
found in Peelle (2014). Here, we will describe the most common approaches and 
review their success.

22.2.4  Sparse Sampling

A potential solution to the problem of scanner noise exists in presenting stimuli dur-
ing silent periods of the scanning protocol, as suggested by Hall et al. (2000). The 
scanner noise is only audible when the scanner actually scans a volume of the brain. 
However, the scanning procedure need not be continuous but can be performed 
intermittently in order to leave silent periods for stimulation. Since the BOLD 
response lags the electrical brain response by about 6 s (Fig. 22.1a), this offers the 
possibility to present an auditory stimulus in silence. The lagging BOLD response 
of the same trial is then recorded subsequently generating the described noise. This 
approach was initially developed for auditory fMRI acquisition. However, it also 
offers to record the EEG response during silence and thus in the absence of gradient 
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Fig. 22.1 Overview of different MRI acquisition techniques. Panel a shows two trials of an audi-
tory experiment (Stimulus in top row) and the respective schematic neural responses in the EEG 
(ERP in blue, middle row) and the BOLD response (blue, bottom row). The original responses are 
copied into panels b-d, which represent different paradigms of fMRI. b illustrates continuous EPI 
scanning with volumes measured consecutively. The ERP is masked by gradient artifacts in the 
EEG (black comb-shaped) throughout the measurement. The BOLD response to the stimulus is 
potentially obscured by BOLD responses to the scanner noise (black). c shows a sparse sampling 
method where one volume is measured around the peak of the expected BOLD response. Here 
both the ERP and the stimulus-related BOLD response are mainly untouched by gradient artifact 
or scanner noise-related BOLD responses. Part d represents clustered sampling with two volumes

artifacts. This procedure is illustrated in Fig. 22.1c and has been called as sparse 
sampling (Hall et al. 1999) or clustered acquisition (Edmister et al. 1999). Note that 
“clustered” acquisition is sometimes used interchangeably with “sparse sampling”. 
We will refer to sparse sampling every time where only one volume is measured 
between two silent periods and “clustered” whenever more than one volume is mea-
sured between two silent periods (Fig. 22.1d).

A historical perspective on the development of sparse sampling fMRI is given in 
Talavage and Hall (2012).

Sparse sampling has become a widely used solution to the problem of scanner 
noise interference in auditory experiments revealing numerous phenomena of audi-
tory cortex (Behler and Uppenkamp 2016; Gaab et al. 2003; Li et al. 2017; Müller 
et al. 2003; Tae et al. 2014; Tanaka et al. 2000).
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The parameter space for sparse sampling fMRI is considerably big. Thus, finding 
the optimal parameters is dependent of the research question at hand. Nevertheless, 
it has been suggested to use medium repetition times between 2 and 6 s (Liem et al. 
2012; Perrachione and Ghosh 2013) to optimize statistical power, even though 
acoustic contamination by the scanner noise is not fully avoided at this rate.

One of the major caveats of the traditional sparse sampling method is that the 
volume is measured at always the same time-point relative to the stimulus onset. 
Assuming a stable hemodynamic response to the stimuli, sparse sampling thus pro-
hibits insights into the shape and response latency of the hemodynamic response 
and can even lead to a significant underestimation of the effects, if the measured 
volume does not coincide with the peak hemodynamic response (Peelle 2014). 
Jittering the onset times of the measured volume has been suggested to circumvent 
this problem (Belin et al. 1999). With a sufficiently high number of trials, a reliable 
temporal profile of the hemodynamic response can be estimated.

Further developments of the sparse sampling method include the measurement 
of not only one but several volumes before a silent period (Fig. 22.1d). This clus-
tered image acquisition technique increases statistical power in comparison to the 
standard sparse sampling account with only one volume measured per repetition 
(Zaehle et  al. 2007) and allows for insights into dynamics of the hemodynamic 
response. The implementation, as proposed by Zaehle et al. (2007) suffers from a 
decay of T1-magnetization over the number of volumes measured before the silent 
period. This in turn poses problems to analysis and interpretation of these data.

This problem is overcome in a more sophisticated variant of sparse sampling, the 
so-called interleaved silent steady-state imaging (Schwarzbauer et  al. 2006) by 
keeping the T1 magnetization constant using silent excitation pulses in the silent 
periods.

The described innovative approaches, even though overcoming some problems 
for auditory fMRI, do not overcome the problems of EEG recordings during audi-
tory fMRI experiments. Only the traditional sparse sampling method with just one 
measured volume allows for EEG measurements free of the gradient artifact 
between volumes. Pulse artifacts, however, will still be measured and have to be 
corrected for.

22.2.5  Silent fMRI Acquisition

A different solution to the problem of scanner noise interfering with auditory exper-
iment lies in suppressing the noise in the first place. As described above, the noise 
results from the transient magnetic fields—the so-called gradients—and is louder 
when the transient is stronger (Moelker et al. 2003). On the one hand, this poses a 
problem due to the constantly increasing field strengths of MR scanners. On the 
other hand, it offers a handle on how to tackle the problem. The noise is generated 
by the Lorentz forces due to gradient currents. Hennel et al. (1999) used this knowl-
edge to suggest an approach for the reduction of scanner noise. Instead of rectangu-
lar gradient slopes, they used sinusoidal, reducing the number of harmonics in the 
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spectrum and a longer gradient duration which reduced the steepness of the gradi-
ent. This resulted in a reduction of scanner noise by 40  dBA for spin-echo and 
gradient- echo pulse sequences whose harmonics are audible (the fundamental gra-
dient frequencies below 100 Hz are hardly audible). However, it was not as success-
ful for faster EPI or FLASH (fast low angle shot) sequences whose fundamental 
gradient frequency is already in the audible range and suppression of the harmonics 
is not as effective. Another approach is to use simultaneous multislice excitation 
(SIMEX) sequences which acquire multiple slices with one multifrequency RF 
pulse, resulting in fewer pulses per scan (Loenneker et al. 2001). While the SIMEX 
sequences were applied as block design, Yang et al. (2000) carried out an event- 
related silent sequence revealing 54% signal increase when compared with a con-
ventional technique and suggesting tonotopic maps within Heschl’s gyrus. Amaro 
et al. (2002) compared conventional and silent acquisition protocols as well as a 
block design and an event-related design, demonstrating that the silent event-related 
design yielded maximal BOLD responses to a single auditory cue. Low-noise 
FLASH sequences were applied to demonstrate central functions of the auditory 
system, such as sound-level dependence (Brechmann et al. 2002) and sound inten-
sity categorization (Angenstein et al. 2016).

Current methodological developments include further manipulations in the EPI 
sequence (Peelle et al. 2010; Schmitter et al. 2008) but also the design of new tech-
niques for acquiring T2 weighted images to show the BOLD signal (Solana et al. 
2016). This method uses the rotating ultra-fast imaging sequence (Madio and Lowe 
1995) for image-acquisition and reduces the noise level by ~40 dBA relative to a 
standard EPI sequence at almost no costs on data quality (Solana et al. 2016). At the 
same time, the method is considered promising for concurrent EEG measurements 
(Solana et al. 2016).

22.2.6  Adjusting Auditory Stimulus Frequencies

The sound that is produced by the scanner resembles a complex tone (cf. Fig. 22.2). 
A typical EPI sequence has a spectral peak at the switching periodicity of the mag-
netic transients plus harmonics and sub-harmonics, which lie within the frequency 
range of 500–5000  Hz (Counter et  al. 2000; Hedeen and Edelstein 1997). 
Unfortunately, this is also the frequency range of human speech and of many audi-
tory stimuli. Thus, the scanner noise could selectively influence those stimuli 
which fall into the same frequency range by a process called masking (Brosch et al. 
1999). Novitski et al. (2006) were able to demonstrate this effect recording MEG 
in a pitch change detection task comparing a silent background with simulated 
scanner noise. The authors were able to demonstrate that the amplitude of the mis-
match negativity (MMN), which reflects the automatic detection of the pitch 
change, is only affected by scanner noise when it spectrally overlaps with the audi-
tory stimulus. This is a potential explanation of findings by Le et al. (2001) who 
discovered that the perception of sine tones was reduced when they spectrally over-
lapped with scanner noise.
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Fig. 22.2 Time courses (left column) and frequency spectra (right column) of three different 
scanning protocols. Echo planar imaging (EPI) has a sharp peak in the audible frequency range. 
MDEFT (modified driven equilibrium Fourier tomography) has a lower cut-off frequency and 
reduced power. Low-noise FLASH is the most silent of the three sequences

Importantly, these results offer another approach to auditory fMRI experiments. 
Either, MR sequences could be designed such as not to overlap with the auditory 
stimuli in an experiment. However, this approach is probably only feasible in 
research environments where MR physicists are capable of programming their own 
sequences. In clinical sites, another approach is promising. The scanner noise of the 
available scanning sequences can easily be recorded on a digital sound recorder 
(See Fig. 22.2 for such recordings). Note that caution has to be applied not to bring 
ferromagnetic devices too close to the scanner! A Fourier transform can yield the 
frequency spectrum of the scanner noise, and stimuli can be designed to lie outside 
the main peaks of the spectrum.

This approach seems especially appropriate when the design of the experiment 
excludes the possibility to apply sparse sampling. This would, for example, be the 
case when trying to implement n-back working memory tasks with fixed latencies 
(see e.g. Brechmann et al. 2007) or when investigating auditory streaming which 
requires a certain amount of time to build up (see e.g. Micheyl et al. 2007).

22.2.7  Active Noise Cancellation

Another approach to reduce the influence of the scanner noise on fMRI experiments 
is to manipulate the noise, so it is perceived less by the subject. The principle 
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includes the cancellation of scanner noise by measuring the acoustic characteristics 
and designing a “destructive” sound signal that is played to the subject in the scan-
ner. The destructive signal must be designed so that it cancels out scanner noise at 
the subject, thus reducing the perceived scanner noise by approximately 20–35 dB 
(Hall et al. 2009; Li et al. 2011). Challenges for the technique are the MR-compatible 
measurement of sounds close to the subject inside of the scanner, and playing the 
destructive sound at a high temporal precision (Peelle 2014).

22.3  Simultaneous EEG and fMRI in Auditory Experiments

In order to avoid the abovementioned obstacles of recording EEG inside an MRI 
scanner, a number of early studies have recorded EEG and BOLD responses from 
the same subjects in two separate EEG and fMRI recording sessions.

Menon and Crottaz-Herbette (2005) analyzed the P3, an event-related potential 
(ERP), in response to rare target stimuli in order to investigate processes of auditory 
target detection. They were able to demonstrate that the dipole locations of the 
inverse solution for the P3 coincided with the maximum BOLD activations within 
the temporo-parietal cortex. Subsequently, a second group analyzed the P3a, an 
ERP response to novel auditory stimuli, and found foci in the superior temporal 
gyrus (Opitz et al. 1999). Later in the same year, a third group analyzed the P3 in 
response to auditory as well as visual targets and was able to describe a whole net-
work of brain regions involved in target processing (Linden 1999). This research 
has led to the method of “fMRI-constrained source modeling” for EEG as well as 
MEG (Fujimaki et al. 2002). Numerous studies have applied similar approaches in 
auditory experiments (e.g. Opitz et al. 1999; Doeller et al. 2003; Crottaz-Herbette 
and Menon 2006).

A further important approach is to carry out parametric studies separately in 
EEG and fMRI and to correlate the EEG and BOLD responses in order to find out 
which of them covary with respect to the same parameter. This approach has been 
applied by Horovitz et al. (2002) in an auditory oddball paradigm, revealing that the 
BOLD response in some brain regions (e.g. supramarginal gyrus and right medial 
frontal gyrus) covary with P3 amplitude, while others (ACC) are activated by targets 
but do not show this covariation. Using a combination of EEG, fMRI, and diffusion- 
weighted images, Coffey et al. (2017) integrated knowledge about the frequency 
following response, a mechanism of sound encoding in the brain, from different 
modalities in previous research. The authors correlated the frequency following 
responses in the EEG, with BOLD activity measured in a separate session using 
identical experimental procedures. Their data confirm a hypothesized cortical con-
tribution to this lower level process of sound encoding in the human brain, which 
was mostly investigated in the brainstem.

One of the criticisms of separate recording protocols results from the fact that it 
seems impossible to control whether a subject performs in the same manner in both 
experiments (Debener et al. 2006). For separate recordings, it seems necessary to test 
for the order of session effects. In numerous psychophysiological studies, these tests 
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have revealed significant differences depending on whether subjects performed an 
experiment for the first time or repeated a known experimental paradigm in a second 
session. This is easily conceivable for paradigms explicitly investigating learning and 
memory processes. One should note that the most basic perceptual and cognitive 
operations may also show adaptation over time, such that temporal aspects of sessions 
or order of trials should be taken into account. A further criticism is that even minor 
changes of an experimental setup can result in significant changes of subjects’ behav-
ioral and physiological responses. For example, changing a subject from a seated 
upright position, as common in EEG recordings, into a supine position, as necessary 
for fMRI scanners, may influence physiological responses and overt behavior.

In order to overcome the problems of separate recordings, EEG and BOLD 
responses have been recorded simultaneously. The first such study in the auditory 
system applied the above-mentioned approach of correlating the parametric variation 
of an ERP component with the BOLD response in a simultaneous recording 
(Liebenthal et al. 2003). The authors were able to identify brain regions in which the 
BOLD response covaried with the strength of the MMN. Subsequently, another group 
set out to investigate the P3 during target processing, revealing an enhancement for 
targets concurrent with increased BOLD activity in the temporoparietal junction, 
frontal areas, and the insulae (Mulert et al. 2004). Scarff et al. (2004) have used simul-
taneous recording of EEG and BOLD responses in order to compare the anatomical 
locations of the N1 generators. Source reconstruction of ERP data revealed dipole 
locations in the superior temporal gyrus which coincided with the center of gravity of 
the BOLD responses. However, the authors also reported some differences between 
ERP dipoles and BOLD activity in terms of asymmetry and the inferior-superior axis 
of the brain. Otzenberger et al. (2005) further extended previous findings by showing 
that different P3 components such as the target-P3 and novelty-P3 could be discrimi-
nated in a simultaneous recording, a finding that has been replicated by Strobel et al. 
(2008). Combined ERP-BOLD analyses of the N1 and P3 components were also 
established in a sample of children (Rusiniak et al. 2013).

Another study has investigated the influence of task difficulty on MMN ampli-
tude and fMRI activation (Sabri et al. 2006). The authors were able to show that the 
superior temporal gyrus and sulcus were more strongly activated in the difficult 
auditory task. By combining a current source density reconstruction of ERP data 
and simultaneously recorded BOLD responses, Mulert et al. (2005) were able to 
demonstrate that both measures revealed the dependence upon the sound level of 
auditory stimuli. Debener et  al. (2007) showed how three different methods for 
artifact removal in simultaneous recordings differentially affect auditory N1 ampli-
tude and signal-to-noise ratio (SNR).

In addition to data aggregation, the analysis of single-trial data is another success-
ful approach in EEG-fMRI analysis. Due to the parallel acquisition of EEG and 
BOLD responses, parameters of the two measurements can be correlated across single 
trials potentially leading to a better understanding of the coupling of the two (Debener 
et al. 2006). It has been convincingly demonstrated that the amplitude of ERP compo-
nents varies systematically over time reflecting cognitive processes and that this varia-
tion can be used to identify those brain regions where the BOLD contrast shows the 

22 Simultaneous Electroencephalography and Functional Magnetic Resonance…



558

same variation (Eichele et al. 2005). In a similar vein, Bénar et al. (2007) were able to 
demonstrate that the amplitude of P3 correlated positively with BOLD activity in the 
ACC which is believed to reflect attentional processes. In addition, a negative correla-
tion of P3 latency with BOLD activity in medial frontal regions probably reflects 
processes of action planning or performance monitoring, since P3 latency was at the 
same time negatively correlated with subjects’ reaction times.

The spatio-temporal dynamics of pure time processing has been investigated 
using single-trial EEG-fMRI analysis (Li et al. 2017). The authors were able to map 
pure-tone processing in three temporal stages, characterized by ERP components, in 
areas from the midbrain, auditory, and motor cortex. The BOLD activity of these 
areas correlates with the amplitude of specific ERP components.

The previous studies mostly used relatively simple approaches to EEG-MRI data 
analysis, which typically do not make use of the full amount of data measured. 
These methods either use the fMRI data to more precisely map reconstructed 
sources of EEG activity or they integrate EEG findings into the fMRI analysis by 
means of e.g. a correlation between ERPs and the BOLD signal (Horovitz et al. 
2002; Liebenthal et al. 2003; Rusiniak et al. 2013).

With the increase in computational power, new, more sophisticated methods 
have been established in the field, which make use of the full spectrum of multivari-
ate data in multimodal measurements. For the approach of the so-called joint ICA 
(Calhoun et al. 2005, 2009), data from different modalities are combined in one ICA 
in order to identify hidden factors in the combined data. This data-driven method 
does not assume a model of the relationship between factors (such as a HRF) and is 
thus able to uncover non-linear relationships between experimental conditions 
(Calhoun et al. 2009). Further details about the different ways of EEG-fMRI data 
analysis can be found, for example, in the intelligible review by Huster et al. (2012).

Using joint ICA on EEG-fMRI data from an auditory oddball task, Calhoun et al. 
(2005) associated the N1 ERP component with primary and secondary auditory regions 
in the temporal lobe as well as multiple motor regions related to motor planning. N2 is 
related to more widespread temporal activity and motor regions responsible for move-
ment execution including cerebellar activity. The P3 peak then is accompanied by addi-
tional activation of somatosensory and brain stem activation. The authors especially 
highlight the finding of brain stem activation related to the P3 peak because it is very 
hard to detect in a unimodal ERP analysis of the data due to its small size and remote-
ness to the EEG electrodes. In this context, it might be worth mentioning that Calhoun 
et al. (2005) used only one EEG-electrode (Cz) in their joint ICA. Their results might 
have been even more detailed if more EEG data had been incorporated.

22.4  Evaluation Methods of Concurrent Auditory EEG-fMRI

In comparison to the correction of the MR-related artifacts in EEG-data, which can 
now be achieved with an acceptable accuracy, the influence of scanner noise seems 
to be a much bigger problem for the experimental outcomes of an auditory EEG- 
fMRI experiment. MR-scanning, unlike other techniques, is an inherently noisy 
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method, and even though ambitions were taken to reduce the level of scanner noise, 
it seems unlikely that MR-experimentation will become completely silent in the 
near future. Therefore, it appears useful to test the current approaches to auditory 
EEG-fMRI for their effectiveness and to assess their quality. We will now review 
three studies comparing different auditory (EEG-)fMRI procedures by replicating 
established findings from auditory experiments.

A classic finding about the amplitude of the N1 component is its increase in 
amplitude with higher stimulus intensities (Beagley and Knight 1967; Rapin et al. 
1966). If that relationship could be replicated in concurrent EEG-fMRI measure-
ments, this would give a rough guideline about the influence of scanner noise on the 
EEG-response to auditory stimulation. Using a standard EPI-sequence, this rela-
tionship was not found in EEG-fMRI (Mulert et al. 2005) even though in the same 
article this relationship could be replicated using the same paradigm outside the 
scanner (Mulert et al. 2005). One explanation for this result is the scanner noise. 
Since stimuli were presented in scanner noise, the physical parameters of the acous-
tic stimulation were dramatically different: first, the relative loudness difference 
between the stimuli is reduced; second, the inter-stimulus intervals are reduced, 
assuming that the pulse-like noise of an EPI-sequence is considered a stimulus. A 
solution to both problems was suggested by Thaerig et al. (2008) who measured the 
BOLD response with a silent (~ 54  dB sound pressure level) FLASH sequence 
which produces a relatively continuous noise. The authors presented frequency- 
modulated tones at two intensity levels and found an increased N1 amplitude for the 
louder sound (Fig. 22.3, upper panel). In addition, they also reported a BOLD acti-
vation pattern typical for frequency-modulated sounds, which was descriptively 
more pronounced for the louder sounds (One exemplary subject is shown in 
Fig. 22.3, lower panel). Their experiment provides evidence that silent fMRI with a 
continuous noise pattern allows for concurrent measurements of auditory EEG and 
fMRI without major dropouts in signal quality in both domains.

A different, well-established finding in auditory neuroscience is the tonotopic 
mapping in the auditory cortices. In an attempt to map the influence of scanner noise 
on tonotopic mapping, Langers et al. (2014) used frequency-sweep stimuli which 
were presented during continuous, traditional EPI, sparse sampling EPI, and a clus-
tered EPI with 2 volumes measured between two silent periods. Overall, they report 
highly similar tonotopic maps for all three types of measurement. Yet, they also 
found a reduction in signal intensity in those parts of the tonotopic maps, which 
overlap in frequency with the scanner noise. This effect was strongest in the con-
tinuous and clustered EPI measurements. Since all standard EPI sequences show 
similar frequency spectra, this effect of masking was to be expected. These results 
support the idea that sparse EPI techniques, even though in principal they do not 
differ from standard EPI with respect to their peak sound intensity, are suitable to 
measure BOLD signals in primary auditory cortex.

One study has compared standard, sparse sampling and quiet EPI methods with 
each other as well as one continuous EPI sequence which was matched in frequency 
of the readout gradient to the sparse sampling EPI sequence (Peelle et al. 2010). To 
compare the signal quality between methods, the authors used speech stimuli and, 
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Fig. 22.3 The upper panel shows the auditory event-related potentials from the EEG-fMRI exper-
iment from Thaerig et al. (2008). The central plot depicts the ERP from stimuli presented at 60 dB 
(blue) and 80 dB (red). The N1 component shows the typical dependence upon sound level, i.e. 
larger amplitudes for higher sound pressure. Topographic maps (left and right upper plots) reveal 
the good resemblance of ERPs recorded outside the scanner. The lower panel shows the BOLD 
response from the same experiment from one exemplary subject. The number of activated voxels 
is increased for stimuli presented at 80 dB when compared to 60 dB, as can be seen from the bar 
plots in the lower central bar plot. (Adapted from Thaerig et al. 2008)

as a baseline, noise, which was matched in frequency band and amplitude envelope 
to the speech stimuli. When they compared sequences on the baseline condition, it 
turned out that quiet EPI yields the largest responses in primary auditory cortex. 
When analyzing the contrast speech > baseline, i.e. high-level auditory processing, 
they found comparable results for all four tested sequences with a decrease in BOLD 
sensitivity in the quiet EPI sequence. Further, the authors note that the standard EPI 
sequence requires higher listening effort when compared with the quiet sequence 
most probably due to the higher level of masking scanner noise.

22.5  Conclusion

Overall, sparse sampling of standard EPI sequences provides a good option for 
EEG-fMRI of higher level auditory processing. During silent periods, stimuli can be 
presented in relative silence, and EEG can be recorded without gradient artifacts. 
Sparse sampling, however, comes at the cost of reduced statistical power because of 
a reduced number of measurement points, and pulse artifacts in EEG still occur. For 
experiments of higher order processes, such as language comprehension or learn-
ing, continuous measurements using either quiet EPI, or other quiet sequences sen-
sitive to the BOLD signal, seem to be more appropriate. Even though scanner 

J. Vosskuhl et al.



561

artifacts in the EEG-data are more severe in this case, this caveat seems acceptable 
for a better time resolution of the hemodynamic effects, as well as higher statistical 
power in the fMRI.
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23Visual System

Robert Becker, Stephen Mayhew, Petra Ritter, 
and Arno Villringer

23.1  Simultaneous EEG-fMRI of the Visual System: 
Signal Quality

Combining both EEG and fMRI is still a challenging task. A large number of studies 
on the feasibility of EEG-fMRI for the visual system have been performed because 
it is an accessible and well-described system.

A general question while performing EEG-fMRI experiments is whether typical 
neural patterns of the visual system as measured by EEG, such as alpha oscillation 
or visual evoked potentials (VEPs), are modified by the strong static magnetic field 
inside the MR environment. Despite two studies reporting changed evoked 
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potentials during exposure to the strong magnetic field of the MR environment 
(Bunkrad et al. 1989; Sammer et al. 2005), most other studies have reported typical 
evoked potentials (EPs) within the magnetic field, although without systematic 
comparison to non-MR EPs. Typical configurations have been shown for VEPs 
(Bonmassar et al. 1999; Kruggel et al. 2000; Muri et al. 1998; Negishi et al. 2004; 
Comi et  al. 2005; Becker et  al. 2005, Assecondi et  al. 2010; Vanderperren et  al. 
2010, see also Fig. 23.1) and for visual oddball P300 potentials (Otzenberger et al. 
2005; Negishi et al. 2004). The recording of VEPs at high MR B0 fields (4.7 T) was 
demonstrated for monkeys (Schmid et al. 2006). EEG source localization was also 
shown to be feasible for EEG data from inside the MR tomograph by Bonmassar 
et al. (2001) and Im et al. (2006). Depending on whether EPs were recorded in an 
interleaved manner (i.e. during non-acquisition intervals of the MR sequence) or 
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Fig. 23.1 The effect of MR gradient artifact removal on the average VEP for one subject (bottom 
right). Accompanying slices (top row and bottom left) show the corresponding fMRI activations. 
(From Becker et al. 2005)
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continuously, the data had to be corrected for either the ballistocardiogram (BCG) 
or for both BCG and MR imaging artifacts.

Another question is whether the imaging of metabolic responses is impaired by 
the EEG equipment inside the MR environment. Lazeyras et al. (2001) found that 
functional imaging during visual stimulation yielded similar activations for fMRI 
with simultaneous EEG acquisition and for fMRI acquisition alone.

In general, it can be stated that average VEPs can be recorded reliably in the 
scanner using conventional artifact removal techniques. Depending on the magnetic 
field strength, single-trial analysis or the analysis of non-averaged data may be ham-
pered by BCG residuals. Because it is a complex signal that varies in both time and 
space, it may not always be completely removable (Debener et al. 2008). The signal 
quality of such VEPs can be enhanced by application of further preprocessing such 
as by using independent component analyses (ICA) based procedures (Porcaro et al. 
2010; Scheeringa et al. 2011a) or beamforming (Brookes et al. 2008).

23.2  fMRI-Informed EEG of the Visual System

With the aid of EEG it is possible to analyze temporally highly resolved dynamics 
of evoked responses during visual stimulation. However, due to the inverse prob-
lem, an exact and unconstrained localization of these evoked responses is not pos-
sible (Helmholtz 1853). Since the visual areas in humans are densely clustered at 
the occipital pole, and an increasing number of generators may be concurrently 
active with subsequent stages of processing, the differentiation of neural sources by 
EEG source localization in the visual system is additionally intricate (Vanni et al. 
2004). Thus, the motivation for using EEG-fMRI for this purpose is to benefit from 
the high spatial resolution of fMRI and improve the localization of visual evoked 
responses in the visual system. In this section, we focus on EEG-fMRI that per-
forms source localization constrained by or compared to fMRI. Strictly evaluated, 
unconstrained EEG dipole modelling with fMRI does not fall into this category of 
fMRI-informed EEG, but it is included to maintain topical integrity.

23.2.1  Localising VEPs

In a typical pattern-onset stimulation, the first component (called C1, with a peak 
latency of around 60–100 ms) is commonly believed to be generated by striate cor-
tex. However, the origin of the following component, P1 (peaking around 
100–130 ms), is more uncertain, and possibly reflects extrastriate generators as well 
as generators within primary visual areas (Di Russo et al. 2002). Thus, one motiva-
tion for fMRI-informed EEG is to shed more light on the question of generator sites 
for EP components. The idea behind fMRI-informed EEG is to constrain the loca-
tion of the dipole by identifying regions that exhibit significantly increased BOLD 
activity (e.g. caused by visual stimulation) while keeping the orientation and 
strength of the dipole flexible for further dipole fitting (also called “seeding”). An 
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unconstrained EEG-fMRI study by Di Russo et al. (2002) showed a promising sub-
stantial overlap between activated fMRI sites and EEG dipoles. Also, Bonmassar 
et al. (2001), who performed unconstrained and fMRI-constrained source localiza-
tion over the entire EP window during a checkerboard pattern reversal task, found 
that the sources were consistently located in the calcarine sulcus with a more focal 
distribution in the fMRI-constrained localization approach, along with a slightly 
lower dipole power than in the unconstrained analysis.

An EEG-fMRI study by Di Russo et al. (2002) used unconstrained EEG dipole 
modelling to localise sources of early visual evoked components, tracing the path-
way from the primary visual cortex (earliest component, C1) via extrastriate areas 
(P1/posterior N1 component) to higher-cognitive areas, such as in the parietal lobe 
(anterior N1). Dipoles were fitted sequentially, according to the peak latencies of 
observed components. The comparison with fMRI activations for the same experi-
mental setup yielded generally good agreement between activated fMRI sites and 
EEG dipoles. However, they also stated that localising generators for components 
later than C1/P1 becomes an increasingly difficult task, because the number of puta-
tive temporally and spatially overlapping generators accumulates in subsequent 
processing stages.

In an fMRI-constrained manner, Di Russo et al. (2007) localized generators of 
steady-state visual evoked potentials (SSVEPS), and reported that the visual areas 
V1 (primary visual cortex) and V5/MT (middle temporal) were the two major gen-
erators that contributed to SSVEPS. Interestingly, two out of the four fMRI activa-
tion sites were shown to only marginally contribute to the explained variance of the 
dipole model when seeded, and were thus discarded. The resulting two-dipole 
seeded model corresponded well to the unseeded two-dipole model although it 
explained slightly less variance.

In contrast to the seeding approach used in the aforementioned studies, Vanni 
et  al. (2004) also integrated the orientation of the fMRI-activated cortical areas 
(using 3D anatomical information from high-resolution structural MRI). The 
authors noted that high spatial concordance of anatomical and functional MR scans 
is crucial to this approach because dipole position and orientation may otherwise be 
distorted, leading to incorrect initial forward models. Orientation is especially sus-
ceptible to any misalignment. The goal was to identify the hierarchical cortical pro-
cessing of visual stimulation. While it was possible to separate visual areas V1, V2 
and V3 spatially by fMRI, the fMRI-constrained dipole modelling did not always 
succeed in assigning each of these areas a distinct dipole. For example, V2 sources 
were often collapsed together with either V1 or V3 sources.

A tacit assumption that is normally accepted when seeding fMRI-constrained 
dipoles is that the fMRI activation sites used to constrain the dipole solution are 
regions that show positive BOLD responses. The rationale for doing so was ques-
tioned by Whittingstall et  al. (2007), who first performed fMRI-unconstrained 
source localization for visual checkerboard stimulation. When comparing results to 
BOLD fMRI activations they found that the early N75 component dipole localiza-
tion reflected the peak positive BOLD response in or near V1, while, in contrast to 
Di Russo et al. (2002), the P100 (or P1) localization result yielded a region that also 
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exhibited significant voxels with negative BOLD responses (NBR). The authors 
argued that this negative response, especially when interpreted as an inhibitory pro-
cess and not mere vascular stealing, may also play an important role in the process-
ing of visual stimuli. However, it is not clear whether the P100 can be regarded as 
originating from inhibitory processes. Studies in monkeys indicate that, depending 
on the exact type of stimulation (i.e. flash stimulation or pattern reversal), the simian 
homologue of the P100 may reflect either at least partially inhibitory processes (i.e. 
net hyperpolarisation from stellate cells in primary visual cortex) or excitatory pro-
cesses (i.e. net depolarisation of pyramidal neurons) (Schroeder et al. 1991).

23.2.2  Visual Attention and Other Cognitive Processes

Localising EP components that reflect attention or other cognitive processes such as 
target detection with the help of EEG or fMRI is attractive because the underlying 
neuroanatomy is less well known than it is for processing in primary visual areas. A 
seminal study on direct neuronal and vascular-metabolic activity associated with 
attentional effects in the visual system was performed not with EEG-fMRI but with 
EEG-PET by Heinze et al. (1994). By using separate PET and EEG sessions, they 
studied the effect of visual selective attention with PET-constrained dipole model-
ling. They found a close correspondence between unconstrained and PET- 
constrained EEG dipoles reflecting the effect of visual attention in the P1 EP 
component. Both the PET activation and the EEG dipole were located in the fusi-
form gyrus. These results were confirmed by an EEG-fMRI study performed by 
Mangun et  al. (1998) without dipole modelling, which showed that there was a 
comparable visual spatial attention-related increase in BOLD activity in the poste-
rior fusiform and middle occipital gyri accompanied by a modulated P1 component 
of the EPs. There was no BOLD modulation of the calcarine sulcus (i.e. in primary 
visual area V1).

However, there is debate over whether primary visual areas like V1 can also be 
modulated by top-down mediated attention. Martinez et al. (1999) examined this 
question with EEG-fMRI and found a divergence between fMRI and EP results. 
The fMRI results did show a modulation of primary visual cortex activity by atten-
tion, whereas the attentional effect in the EP occurred 70 ms after stimulus onset, 
and corresponding fMRI-unconstrained dipoles indicated that extrastriate region V3 
was the putative generator site. In a follow-up study, Di Russo et al. (2003) tried to 
answer the question of whether the attentional effect in V1, as found by fMRI, could 
possibly be explained by re-entrant modulatory activity from higher visual areas 
like V3. They showed that the effect of visual attention did not involve modulation 
of the early visual evoked component (i.e. C1 around 70 ms, which was shown to be 
localized in V1). However, they found responses later than the N1 component 
(150–225  ms range) that were also localized to V1. Since this component also 
behaved similarly to the early C1 component in terms of reversing polarity upon 
changing between upper and lower visual field stimulation, the authors argued that 
there was evidence of an attention-dependent modulation of V1. This would point 
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in a similar direction to the findings of Martinez et al. (1999), with the twist here 
that the influence of attention in primary visual cortex was paralleled by both the 
fMRI activations and the late time window EP-dipole sources. Di Russo et al. (2003) 
used an fMRI “semiconstrained” dipole analysis, which in contrast to a fully seeded 
model also allowed changes in the initial positions of dipoles, which were defined 
by significant fMRI activation sites.

Another example of a well-examined cognitive process is the detection of an 
infrequent target during a (visual) oddball task that elicits the so-called P3 compo-
nent arising roughly 300–600 ms after the target stimulus. Attempts have been made 
to localise it via EEG dipole modelling studies, but with inconsistent results 
(Bledowski et  al. 2004). Sometimes this component is divided into P3a and P3b 
components. While P3a is said to mainly reflect the processing of distractor events, 
P3b is what is classically referred to as P3 and reflects the detection of novel, infre-
quent events in general. fMRI studies have shown the involvement of regions like the 
anterior cingulate cortex (ACC) and the supramarginal gyrus (SMG) (Ardekani et al. 
2002). Similar regions were also reported by Linden et al. (1999) for uninformed 
EEG-fMRI during a visual and auditory oddball task. Bledowski et al. (2004) were 
interested in separating the P3a and P3b responses. They performed a separate-ses-
sion three-stimulus visual oddball task (frequent, infrequent distractor and infrequent 
target) with fMRI-informed source localization of P3a and P3b responses, and found 
that a broadly distributed network of sources accounted for the respective P3a and 
P3b responses. Their approach was to start from a common set of six pairs of fMRI 
seeds for both target and distractor conditions. Analysis of the time courses of result-
ing dipole moments indicated that the insula and the precentral sulcus seemed to be 
contributing more to the P3a component than to the P3b. Crottaz-Herbette and 
Menon (2006) used a different fMRI-informed EEG localization approach. By per-
forming a two-stimulus (frequent standard and infrequent target) auditory and visual 
oddball task, each resulting in a modality-dependent set of fMRI seeds for dipole 
fitting, they identified the ACC as being the main contributor to the N2b–P3a effect 
in both sensory modalities. For the visual oddball P3b component, they noted the 
involvement of inferior parietal areas (this was also reported by Bledowski et al. 2004).

Concerning the different results for generators of the P3 component, it should be 
said that, with an increasing number of assumed dipoles, dipole fitting often yields 
highly satisfactory results in terms of explaining the variance of EP waveforms. 
However, equally efficient solutions may exhibit quite different positions of dipoles. 
Thus, fMRI constraints are used to constrain the solution space. If the fMRI con-
straints differ prior to dipole fitting, the positions of the dipoles should also differ.

Apart from the visual oddball studies addressed above, there are also studies 
focusing on other higher-cognitive processes, like the processing of perceptual illu-
sions or transitions, figure-ground separation, or the construction of objects from 
incomplete information. An innovative electrophysiological paradigm was used by 
Appelbaum et al. (2006), who separated the neuronal processes for the figure and 
background regions of a visual stimulus by “tagging” them with distinct spectral 
properties; in other words, they were textures characterized by different temporal 
frequencies. The resulting separate time courses of the figure and background 
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components were subjected to cortical current density (CCD) analysis constrained 
by fMRI activations. These source reconstructions suggested that the figure region 
information was routed to the lateral occipital cortex (LOC), but that this was not 
the case for the processing of background region information.

Schoth et al. (2007) used the rotating Necker cube as a visual stimulus, which, in 
contrast to other illusionary multistable stimuli, has a predictable transition point 
between its different modes of perception. In this study, fMRI activations of the 
rotating Necker cube were used as constraints for current density reconstruction of 
the VEP related to the arising perceptual transition. It revealed initial processing in 
Brodmann area 18 and subsequent spreading along the visual dorsal stream.

Concerning the topic of higher-cognitive perceptual processes, Sehatpour et al. 
(2006) employed EEG-fMRI to identify neural networks that are active during “per-
ceptual closure”, which means the filling in of required information for a partially 
fragmented or distorted visual image in order to actively construct a recognisable 
object again. The major contributor to perceptual closure, as found by fMRI, was 
LOC. Without using a priori information from fMRI activations, EEG source analy-
sis of the accompanying Ncl (“negativity related to closure”) EP component yielded 
similar regions within the LOC to those found by fMRI.

Croize et al. (2004) used a combined MEG, EEG and fMRI approach together 
with unconstrained source localization to examine visuospatial short-term memory 
processing. While there was largely good agreement between localized EEG current 
densities and MEG dipoles with fMRI activation sites, only the MEG covered a 
memory-encoding component in a late time window (around 400 ms) correspond-
ing to right premotor areas. as observed by fMRI. The authors argued that this may 
be due to the well-known differential sensitivities of EEG and MEG to either radial 
or tangential sources, respectively.

Summarising the above studies, it can be said that complementing the EEG 
dipole models with the associated changes in fMRI activity largely confirmed the 
results of unconstrained dipole fitting in EEG studies. Also, the use of fMRI-guided 
dipoles seemed to lead to efficient models in terms of low residual variance. 
However, a direct comparison of the unconstrained vs. the constrained model 
approach was not always provided. When it was, the constrained model tended to 
explain slightly less variance. Some fMRI seeds also had to be discarded due to 
their inefficiency at explaining the variance of the EP waveform. In our view, find-
ings of non-overlapping activity are as interesting as findings of overlapping activ-
ity, which however appear to be emphasized in published studies.

23.3  EEG-Informed fMRI of the Visual System

In contrast to the previously described approach of fMRI-informed EEG, the approach 
of EEG-informed fMRI implies deriving information from the EEG that can be used 
to identify regions that exhibit BOLD responses co-varying with the selected param-
eter. There are many candidate EEG response features including the: amplitude and 
latency of VEPs; magnitude of event-related synchronization/desynchronization 
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(ERS/ERD) of oscillatory power and spontaneous fluctuations in oscillatory power. 
There are also many analytic options for data integration, for a review of approaches 
see (Abreu et al. 2018), but the common goal is that instead of constraining a dipole 
solution, to create a new model of predicted BOLD activity, which can then be tested.

23.3.1  Spontaneous EEG Oscillations

The posterior alpha oscillation (8–13 Hz) and its relationship to the activity of the 
visual system is long established (Berger 1929). However, although alpha is the 
most prominent spontaneous neural oscillation, a clear localization of its generators 
has not been achieved. Long neglected as merely a marker of cortical idling, it is 
now hypothesized that alpha provides a mechanism for gating and regulating the 
flow of information both within and between brain networks by selectively inhibit-
ing task-irrelevant pathways (Jensen and Mazaheri 2010). Alpha provides a useful 
measure of arousal and cortical excitability (Romei et al. 2008; Olbrich et al. 2009). 
A number of studies have investigated the functional importance of alpha by study-
ing the association of within and between subject variations in alpha with variation 
of subsequent behavioral and brain responses. Findings suggest that pre-stimulus 
alpha power modulates the detection of visual targets and amplitude of VEPs 
(Hanslmayr et  al. 2007; Linkenkaer-Hansen et  al. 2004; Becker et  al. 2008). 
Therefore, examining pre-stimulus and spontaneous alpha activity is important for 
achieving a full understanding of event-related processes.

Across many EEG-fMRI studies, a close relationship between posterior alpha 
oscillation and fMRI-BOLD signal changes has been reported (Goldman et  al. 
2002; Laufs et al. 2003a, b, 2006; Moosmann et al. 2003; Goncalves et al. 2006; 
Feige et al. 2005; de Munck et al. 2007; Wu et al. 2010; Liu et al. 2010; Zhan et al. 
2014; Mayhew and Bagshaw 2017). In those EEG-informed fMRI studies, the EEG 
parameter of interest was the amplitude of the alpha oscillation. Typically, the enve-
lope of the oscillatory alpha power was calculated over each fMRI TR period, con-
volved with the hemodynamic response function (HRF) and used as a predictor for 
each BOLD signal time point. Despite the similar approaches used, the results were 
not completely consistent with marked inter-subject variability in size and extent of 
alpha-BOLD correlations. However, a negative correlation between alpha power 
and the BOLD signal in occipital and parietal areas is widely observed (Goldman 
et al. 2002; Moosmann et al. 2003; Feige et al. 2005; de Munck et al. 2007; Wu et al. 
2010; Liu et  al. 2010; Zhan et  al. 2014; Mayhew and Bagshaw 2017). Positive, 
alpha-BOLD correlations in the thalamus are also observed (Goldman et al. 2002; 
Moosmann et al. 2003; de Munck et al. 2007; Liu et al. 2010; Mayhew and Bagshaw 
2017, see Fig. 23.2); however, a recent study found negative correlations within the 
visual thalamus and pulvinar as well as positive correlations in the anterior and 
medial dorsal nuclei (Liu et al. 2010). Another study found that the phase of pre-
stimulus oscillations at 7 Hz predicted task-related changes in functional connectiv-
ity between higher and lower level visual areas, as measured by fMRI (Hanslmayr 
et al. 2013). These results support the concept of the alpha oscillation acting as a 
gating mechanism for input to the visual system.

R. Becker et al.



573

Fig. 23.2 Results from a correlation analysis between alpha amplitude and BOLD signal. 
(Modified from Moosmann et al. 2003). Group analysis of six subjects, p < 0.05, corrected for 
multiple comparisons. Yellow: Significantly negative correlations. Blue: Significantly positive 
correlations

In contrast, some studies (Laufs et al. 2003a, b, 2006; Goncalves et al. 2006) have 
also reported frontoparietal negative correlations for some subjects, which is consis-
tent with recent reports of a more global, and modality-independent role of alpha 
oscillation in vigilance and alertness (Matsuda et  al. 2002; Henning et  al. 2006; 
Sadaghiani et al. 2010). Mayhew and Bagshaw (2017) used 16 s sliding window anal-
ysis, rather than static correlations over the entire scan duration, to reveal substantial 
spatiotemporal variability of resting-state alpha-BOLD relationships within-subjects. 
Alpha-BOLD correlations passed through many different configurations such that the 
static network was fully represented in only ~10% of 16 s epochs, showing that the 
static network loses its coherence such that its different regional components correlate 
with alpha during different periods of time (Mayhew and Bagshaw 2017).

de Munck et al. (2007) were specifically interested in whether the time course of 
the metabolic correlate of the alpha oscillation follows the temporal assumptions of 
the HRF. The correlations between the BOLD signal and the alpha power in the 
occipital and parietal regions showed similar temporal lags as previously supposed 
when using the canonical HRF, while the correlation in the thalamus was less 
delayed (by several seconds).

In these types of studies, simultaneous EEG-fMRI acquisition is crucial to relate 
spontaneously fluctuating EEG activity to concurrent BOLD signals.

Recent extensions to this work have begun to elucidate how measures of sponta-
neous alpha oscillations, extracted from pre-stimulus data, modulate subsequent 
fMRI responses (Scheeringa et al. 2011b; Becker et al. 2011; Mayhew et al. 2013; 
Mayhew and Bagshaw 2017). Scheeringa et  al. found that the amplitude of the 
BOLD response to visual checkerboard stimuli presented at the trough of alpha 
cycle was larger than the response to stimuli at the peak of the cycle (Scheeringa 
et al. 2011b). Becker et al. (2011) and Mayhew et al. (2013) found that the ampli-
tude of the BOLD response to visual stimuli was also correlated with the magnitude 
of pre-stimulus alpha power, to the extent that variations in alpha activity explained 
variability in both positive and negative BOLD amplitudes (Becker et  al. 2011; 
Mayhew et  al. 2013). Specifically, trials preceded by high levels of alpha power 
were observed to show smaller positive BOLD responses than trials of low alpha 
power. These latter two studies also evidence subtle differences in the alpha-BOLD 
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relationship between task and rest but are consistent with the concept of posterior 
alpha representing a marker of the excitability and responsiveness of the visual cor-
tex. In interpreting such studies one must always bear in mind that scalp EEG mea-
sures the summed activity of all nearby synchronous post-synaptic potentials, and 
therefore the concept of the existence of a single posterior alpha oscillation may be 
an over simplification and that different alpha sources may predominate depending 
on particular behavioral circumstances (see Shaw 2003; Sokoliuk et  al. 2018). 
Further clarification and classification of spontaneous oscillations will be required 
to better understand the patterns of dynamic behavior that alpha exhibits and how 
this is influenced by brain state and experimental context.

Another approach to investigating spontaneous activity with EEG-fMRI was 
pursued by Mantini et al. (2007), who decomposed BOLD activity into independent 
clusters, reflecting so-called resting-state networks (RSNs). They then temporally 
correlated the BOLD signal in these networks with the EEG spectral activity as 
averaged across all electrodes and found distinct spectral-correlation patterns for 
each RSN. An extension of this approach preserves distinct and topographically 
specific EEG oscillations and examine their relationship to RSN BOLD activity. 
Results from such an approach are shown in Fig. 23.3. This shows the topography 
and time courses of two different RSNs (a visual network and the default mode 

Fig. 23.3 Correlation between two different BOLD RSNs (default mode network at the top and 
visual component at the bottom) and the EEG-ICA components for a single subject. (Modified 
from Ritter et al. 2008)
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network; Raichle et al. 2001) and those of two distinct spontaneous EEG compo-
nents (as identified via ICA) that correlate maximally with the RSNs. This result 
demonstrates that spatially and spectrally neighboring EEG components can exhibit 
different relationships with different RSNs (Ritter et al. 2008). More recent work 
used Hidden Markov Modelling, a data driven method to identify fast (<1 s) tran-
sient network dynamics in EEG data. They found that the fMRI correlates of these 
transient networks showed highly reproducible spatial patterns with strong similar-
ity to established configurations of intrinsic connectivity networks (Hunyadi 
et al. 2019).

23.3.2  Task-Related EEG Activity

Concerning EEG-informed fMRI studies of task-related activity, a number of stud-
ies have correlated and/or integrated single-trial visually evoked EEG activity with 
BOLD responses, extending work in other sensory and cognitive systems (Debener 
et al. 2005; Benar et al. 2007; Eichele et al. 2005; Mayhew et al. 2010a). Initial stud-
ies used separate session recordings and by measuring the variability in average 
ERP and BOLD amplitudes were able to investigate between-subject correlations in 
EEG and fMRI responses (Horovitz et al. 2004; Knyazeva et al. 2006a, b; Yeşilyurt 
et  al. 2010). Due to the developments in both EEG hardware and preprocessing 
techniques, more recent studies have been able to collect simultaneous EEG-fMRI 
recordings of many aspects of visual processing. This approach enables single-trial 
analysis where parametric measures of EEG response variability are used to inform 
the fMRI analysis at the within-subject level (Mayhew et al. 2010b; Novitskiy et al. 
2011; Walz et al. 2014; Warbrick et al. 2014).

For example, Horovitz et  al. (2004) parametrically varied the noise level in a 
picture and correlated the resulting effect on the N170 peak EP amplitude with 
fMRI activations, and identified a highly significant correlation with the fusiform 
gyrus. The authors concluded that this supports the idea of the fusiform gyrus, con-
tributing to the generation of the N170 EP component, since both entities show 
corresponding effects of experimental manipulation of the noise level. Another 
approach was employed by Philiastides and Sajda (2007), who used parameters 
estimated from a previous EEG study to model the BOLD response during different 
stages of a perceptual decision task in an fMRI experiment, which allowed them to 
identify distinct cortical networks for each stage.

Bagshaw and Warbrick (2007) analyzed EEG and fMRI single-trial data from 
separate sessions and reported a robust correlation between the experimentally 
manipulated latency variabilities of EEG and BOLD single trials, which hints that 
the observed variability may share a common neural origin. Further, simultaneous 
single-trial studies were required to obtain more direct evidence for that assump-
tion, as discussed below.

Other studies used EEG parameters for correlation analyses across subjects to 
identify the relationship between inter-hemispheric coherence and involved visual 
areas. Knyazeva et al. (2006a) showed that visual area V4 was more active during 
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stimulation with iso-oriented gratings than during stimulation with orthogonally 
oriented gratings. EEG analysis showed that stimulation with iso-oriented gratings 
was also accompanied by increased inter-hemispheric coherence of occipital elec-
trodes in the beta band. Additionally, there was a significant correlation of inter- 
hemispheric coherence across subjects with visual area V4. The results were taken 
as evidence for the involvement of this extrastriate site in early perceptual grouping, 
since iso-oriented gratings obey the Gestalt principles (in this case collinearity and 
common fate). In another study, Knyazeva et al. (2006b) used different spatial fre-
quencies of stimulation and a similar analysis and experimental approach as that 
used in the aforementioned study. They showed that independent of spatial fre-
quency, inter-hemispheric lower beta-band synchronization was highly correlated 
with the activation of ventral extrastriate areas, while synchronization of the higher 
beta band corresponded to more dorsal extrastriate areas.

Yeşilyurt et al. (2010) used ultra-short stimuli (0.1-5 ms) to minimize non-linear 
effects in the BOLD data and used separate session recordings to study whether 
VEP and BOLD responses were similarly modulated by stimulus intensity and 
duration. They found that the mean N1 peak amplitude linearly covaried with BOLD 
across subjects, but the P1 did not (Yeşilyurt et al. 2010).

The N1 and P1 components have been the subject of many other EEG-fMRI 
studies of the processing of visual stimuli. Novitskiy et al. (2011) separately exam-
ined the BOLD correlates of the P1 (50–150 ms) and P1 (150–250 ms) components 
of single-trial VEPs using the integration by prediction approach (Novitskiy et al. 
2011). This study required subjects to respond to 150 ms checkerboard wedges 
presented to different quadrants of the visual field, separate by 1–2.5 s. They used 
a GLM to model the BOLD correlates of the difference between the N1 and P1 
amplitudes in the hemispheres, both contralateral and ipsilateral to the stimuli. 
They found that N1 and P1 correlated with BOLD in similar regions of the 
temporal- parietal junction and the dorsal stream. These correlations were spatially 
distant from the visual cortex activations seen to the main effect, constant ampli-
tude GLM regressors, therefore suggesting that VEP amplitude did not explain 
additional variance in the primary visual response. Mayhew et al. (2010b) reported 
a similar finding, whereby VEPs were measured from a 4 Hz stimulus in a 30 s 
block design were found to correlate with BOLD amplitudes only in peripheral 
areas of the activation, away from the most significant BOLD response in the 
calcarine.

Warbrick et al. (2014) used integration by prediction of single-trial VEP ampli-
tudes to show that the BOLD correlations with P1 and N1 components were sensi-
tive to task manipulations and were informative about different attentional and 
response components of the task. Their paradigm featured separate conditions of 
passively viewing, silently counting, or actively responding to a visual oddball para-
digm. They reported that the regions of BOLD correlation with P1 mostly reflected 
sensory encoding of stimulus features for passive and counting conditions. The 
BOLD correlates of N1 were more informative for the respond condition, suggest-
ing that its activity reflected the discrimination between stimulus types, and pro-
cesses involved in integrating sensory information with response selection.
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Whittingstall et al. (2008) compared the spatial co-localization of EEG and fMRI 
sources rather than studying covariations of response amplitudes. Using a 2 Hz par-
tial field visual checkerboard stimuli they evoked positive BOLD responses that 
were co-localized with the VEP N75 dipole source and NBR that were spatially 
congruent with the P100 dipole. This suggests that different biophysical relation-
ships could exist between different neural and hemodynamic response parameters.

Much work has been performed developing pre-processing techniques and estab-
lishing the quality of VEPs acquired in the hostile scanner environment in the pres-
ence of ballistocardiogram and gradient artifacts (Assecondi et  al. 2010; 
Vanderperren et al. 2010). Further work has focused on improving extraction and 
measurement of parameters of visually evoked activity and the separation of signal 
from the large amounts of noise during simultaneous fMRI recordings. One 
approach uses an adaptation of ICA called functional source separation to extract 
evoked EEG activity by exploiting a-priori knowledge of the signal of interest, e.g. 
the peak latency of the VEP P100 component (Porcaro et al. 2010). Other approaches 
have moved beyond using simple EEG amplitudes as response features and instead 
used a sliding window linear classification of VEP data to discriminate standard vs. 
oddball VEP responses and used these data as GLM regressors to reveal the tempo-
ral sequence of fMRI correlations in the early (<275 ms), middle (275–500 ms), and 
late (>500 ms) phases of the response (Walz et al. 2014). A similar method was used 
to separate early and late temporal components of the neural response to visual pat-
tern perception during a learning task (Mayhew et al. 2012). Further work applied 
information theory to combine EEG and fMRI time-domain features by quantifying 
the information in their joint probability distribution (Ostwald et al. 2010), allowing 
a differentiation to be made between signal features which were informative about 
the external stimulus and those which are informative about other signal features. 
This multitude of approaches highlight that the field is yet to reach a consensus 
concerning the most appropriate way to combine EEG and fMRI data and few 
approaches offer truly integrated analysis. One possibility in this regard is the joint- 
ICA approach which allows fusion of EEG and fMRI information in common data 
space and a single spatiotemporal solution (Moosmann et al. 2008). Dynamic causal 
modelling (DCM) has also been applied to fuse EEG-fMRI data during a face per-
ception task (Nguyen et al. 2014). Here the model space of the DCM construction 
was constrained to visual regions shown by a GLM analysis to be recruited by the 
task, and single-trial N170 amplitudes were found to act as modulators of the effec-
tive connectivity between the fusiform face area and other visual areas. They also 
report that model evidence for the DCMs including the N170 information was more 
than those models without it (Nguyen et al. 2014).

23.4  Uninformed EEG–fMRI and Other Approaches

Aside from fMRI-informed EEG and EEG-informed fMRI, combined EEG–fMRI 
studies can also be performed in a mutually “uninformed” way, where each modal-
ity is analyzed separately. These studies will be discussed in the following section, 
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with the exception of EEG-fMRI studies with unconstrained source localization, 
which are actually uninformed but have been already described in the section on 
fMRI-informed EEG.

23.4.1  Event-Related Oscillations (EROs)

Foucher et  al. (2003) related EPs and event-related gamma band activity to the 
BOLD signal and postulated a closer correspondence between BOLD and gamma 
than between BOLD and the EP response, arguing that non-phase-locked EEG 
responses should be considered when modelling the hemodynamic response. During 
a visual oddball task, a weaker P3 component was produced during target than dur-
ing novel detection, while BOLD activity increased. This was paralleled by a stron-
ger spectral response in the gamma range (32–38 Hz) in EEG.

Another study by Fiebach et al. (2005) also examined effects of event-related 
gamma band activity during a different task. Using a visual lexical decision task, 
parallel behavior between gamma and BOLD was observed: upon the presentation 
of pseudo-words, BOLD activity in defined areas, gamma band response and phase 
synchrony between electrodes increased, while these effects were inverted but still 
parallel upon the presentation of words. Of course, this experimental task differs 
fundamentally from that above; however, it is still worthwhile discussing such 
diverging results in the context of a universal relationship between oscillatory activ-
ity and BOLD responses.

23.4.2  Visual Attention and Other Cognitive Processes

Gazzaley et al. (2005) reported top-down modulated magnitude and speed of neural 
activity as measured with EEG and fMRI. Amplitudes of evoked responses in both 
EEG and fMRI (neural activity) were modulated by an attentional paradigm show-
ing faces and scenes, respectively. For fMRI, there was higher activity in the para-
hippocampal place area for the remember scenes vs. the ignore scenes condition, 
and higher activity in the fusiform face area for the remember faces vs. the ignore 
faces condition. Concerning the EEG results, the EP difference waveform for this 
contrast also yielded a significant amplitude as well as latency effect for the face- 
selective N170 component, which had not been reported before. Mangun et  al. 
(1998) showed that there was a visual spatial attention-related increase in BOLD 
activity in the posterior fusiform and middle occipital gyri accompanied by a modu-
lated P1 component of the ERPs. They did not report on later effects of attention, 
and in contrast to the aforementioned studies they found no consistent activa-
tion of V1.

Muller et al. (2005) used a multistable visual motion paradigm where subjects 
responded to spontaneous transitions of the perceptual mode of the stimulus. 
Transitions between different modes were marked by alpha and beta activity 
decreases and delta increases in the EEG before transition. Regions of increased 
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BOLD activity included right anterior insula, MT, and supplementary motor area, 
while thalamus and right superior temporal gyrus showed decreases in BOLD 
activity.

The neural mechanisms of visual spatial attention have been investigated by a 
number of recent EEG-fMRI studies employing single-trial analyses (Zumer 
et al. 2014; Liu et al. 2016; Green et al. 2017). In these studies, the response of 
interest was oscillatory EEG power measured during a pre-stimulus cue period. 
During this cue, subjects were instructed to covertly allocate their spatial atten-
tion (e.g. to the left or right visual field) in order to report a subsequent visual 
stimulus target presented there. Liu et  al. (2016) found that single-trial atten-
tional modulations of alpha power were inversely correlated with BOLD in pari-
etal and medial frontal regions that also showed activation on average to the 
attentional task. They also observed positive alpha-BOLD correlates in regions 
of the default mode network, suggesting that attentional fluctuations in alpha 
track the response pattern of the task-positive and task-negative networks (Liu 
et al. 2016).

Zumer et al. (2014) used a working memory paradigm where subjects processed 
hemifield faces and ignored landscapes and vice versa. They also found that single- 
trial alpha power correlated with attention network BOLD signal, and furthermore 
that alpha contralateral to the attended object predicted the BOLD signal represent-
ing that object in ventral object-selective regions. They also report an inverse alpha- 
BOLD correlation in unattended ipsilateral visual cortex. This provides further 
evidence that alpha reflects gating processes between the visual cortex and the ven-
tral stream. Green et al. (2017) extended these works by studying attentional modu-
lations in gamma power, as well as alpha, and also subcortical EEG-BOLD 
correlates. They also found an inverse alpha-BOLD correlation in visual regions 
ipsilateral to the cued location, interpreted as a suppression of task-irrelevant cortex. 
Positive gamma-BOLD correlations were seen in contralateral visual cortex regions 
representing the attended visual field. Importantly they found that both alpha and 
gamma correlated with BOLD in the pulvinar nucleus (Green et al. 2017), demon-
strating that subcortical activity can be studied via correlations between BOLD and 
scalp EEG.

23.5  Investigating Neurovascular Coupling in the Visual 
System by EEG–fMRI

Investigating the coupling relationship between neural activity and BOLD signal 
has occupied investigators since the beginning of fMRI-based research and much of 
this work has taken place in the visual modality. Simultaneous EEG-fMRI is a pow-
erful tool for investigating a wide range of neurovascular coupling questions as it 
not only allows relation of BOLD response amplitudes to parameters of EEG activ-
ity (e.g. EPs or EROs) but also enables examination of which response parameters 
(e.g. EP amplitude at different latencies, or different frequency EROs) are most 
correlated with BOLD.
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In a pioneering study, Logothetis et al. (2001) found a higher correspondence 
between local field potentials (LFPs) and the BOLD signal than between multiunit 
activity (MUA) and BOLD. This seminal work has been supported by many other 
studies (Viswanathan and Freeman 2007; Rauch et al. 2008; Magri et al. 2012) lead-
ing to conclusions that both EEG and BOLD primary reflect synaptic population 
inputs, since EEG reflects synchronized extracellular dendritic currents rather than 
action potentials. This is a promising result for EEG-fMRI analysis which com-
monly assume a linear coupling between neural activity and BOLD. Some studies 
support a mostly linear relationship (Singh et al. 2003) but others suggest a more 
complex coupling can occur (Liu et al. 2010), as we will explain below with exem-
plary studies on the visual system.

Huettel et  al. (2004) attempted to link intracranially recorded human visual 
event-related local field potentials (ER LFPs) and BOLD fMRI in separate sessions 
by experimentally manipulating stimulus duration. They found a divergence 
between consistently (non-linearly) increasing BOLD activity in calcarine and fusi-
form cortex for longer stimulation, and differing EP responses from these two 
regions (i.e. an onset-sustained response that was partially dependent on stimulus 
duration as well as a pure onset response that was independent of stimulus dura-
tion). This supports the notion that the BOLD signal integrates information on a 
longer timescale, which complicates the estimation of the direct neural basis from 
BOLD measurements. Janz et al. (2001) showed that the adaptation effect for repet-
itive stimulation from a checkerboard reversal, as seen in the BOLD signal, is not 
plainly mirrored and cannot be accounted for completely by adaptation effects as 
observed in the accompanying VEP. This would speak against a straightforward 
inference from BOLD to EEG and vice versa, thus demanding adjusted approaches 
in order to model the hemodynamic response as a consequence of electrophysiolog-
ical properties.

Wan et  al. (2006) also examined the non-linearity of the visual event-related 
BOLD and EP responses with concurrent EEG–fMRI by modulating stimulus fre-
quency and contrast. Interestingly, when estimating neuronal efficacy from BOLD 
rather than using this parameter directly, a comparison of it to mean power of elec-
trical activity (which is non-linear by nature) resulted in a linear correlation between 
both indices of neural activity, indicating that the observed non-linearity may have 
a neural basis.

Guy et al. (1999) studied EEG and fMRI responses to periodic stimulation. A 
new measure created by correlating the EEG with the VEP template was created 
(VEPEG) and compared with the fMRI BOLD signal. Both measures mirrored the 
fundamental frequency of the stimulus presentation and both of them exhibited a 
post-stimulus negativation, which may point to similar neural processes after stimu-
lus offset. Singh et al. (2003) examined the effect of changing the frequency of a 
checkerboard flash stimulation on BOLD and EP responses, and found a robust 
correlation between strength of SSVEPs (amplitudes) and BOLD response 
activations.

Henning et al. (2005) found a divergence between EEG and fMRI effects when 
applying different types of visual stimulation, such as pattern reversal, motion onset 
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and motion reversal of a starfield stimulus. While EPs (especially N2 components) 
were the most enhanced by motion onset, fMRI activation (with its maximum in 
visual area MT) was largest for motion reversal. They argue that this may be due to 
both modalities reflecting different processes. In the light of a more complete 
description of neural activity, it would have been of interest to investigate whether 
non-phase-locked EEG responses could explain the divergent effects.

Coupling between neural activity and BOLD have often been reported to be 
strongest in the gamma-frequency band (Logothetis et al. 2001) but given that inter-
actions between oscillatory frequency bands are well known (Canolty et al. 2006; 
Osipova et al. 2008) and BOLD represents the integral of all underlying metabolic 
demand, the nuanced link between BOLD and broadband activity is of great interest.

Although not capable of simultaneous recordings, studies comparing between 
subject variability in mean MEG and BOLD responses have greatly contributed to 
understanding of neurovascular coupling. Although close spatial correspondence 
between sources of oscillatory ERD/ERS and BOLD responses is consistently 
reported (Brookes et al. 2005; Muthukumaraswamy and Singh 2008), several stud-
ies report differential modulation of MEG and BOLD responses with changes in 
visual stimulus parameters (Muthukumaraswamy and Singh 2008, 2009; 
Swettenham et al. 2013). For instance, no changes in BOLD amplitude with the 
spatial frequency of visual gratings were observed despite a 300% increase in 
gamma ERS (Muthukumaraswamy and Singh 2009). Such studies illustrate the 
complexity of this issue, that neurovascular coupling may not be consistent and 
generalizable and instead vary with stimulus parameters.

EEG-fMRI has been used to consolidate our understanding of neurovascular 
coupling by providing replications of Logothetis’ original work non-invasively in 
humans. Scheeringa et al. (2011a) measured BOLD and broadband range of oscil-
latory EEG responses to a contracting visual grating stimuli and reported: positive 
correlations between gamma ERS and BOLD; and negative correlations between 
BOLD and both alpha and beta ERD. In addition they found these correlations were 
independent and that gamma was the strongest predictor of BOLD (Scheeringa 
et al. 2011a). More recent work using electrocorticography (ECoG) presented con-
trasting and intriguing results that BOLD was most closely related to asynchronous 
visual responses in the gamma range, called broadband gamma (Winawer et  al. 
2013), rather than oscillatory narrowband gamma that has been more commonly 
studied, e.g. by Scheeringa et al. (2011a) and Muthukumaraswamy and Singh (2009).

EEG-fMRI has also been applied for interrogation of BOLD response origins by 
the addition of concurrent arterial spin labelling for the measurement of cerebral 
blood flow (Mullinger et al. 2013, 2014). This provides deeper neurophysiological 
insight by allowing study of more of the underlying biophysical components that 
make up the complex BOLD signal and allows investigation the origin of less well 
known and relatively poorly understood components, such as NBR and post- 
stimulus undershoots (PSU). PSUs occur on cessation of stimulation where the 
BOLD signal falls below baseline amplitude before returning to resting levels. 
PSUs were originally thought to reflect purely vascular effects such as slow recov-
ery of cerebral blood volume (Buxton et al. 1998) but recent work has shown that 
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the amplitude of BOLD and cerebral blood flow PSUs correlate with alpha power in 
the post-stimulus response period (Mullinger et al. 2017) and are associated with 
decreased oxygen metabolism. This suggests an inhibitory neural origin of PSUs 
and is concordant with recent MEG work that suggests that this response period 
may have a functional purpose (Hunt et al. 2019).

In general, more complex biophysical models of the relationship between EEG 
and fMRI activity are needed to clarify the origins of different BOLD response 
components and reported divergent relationships across different stimulus parame-
ters. One step in this direction is the forward model of Sotero and Trujillo-Barreto 
(2008), which was able to reproduce VEPs and concurrent BOLD patterns as well 
as the spontaneous alpha oscillation with its accompanying typical BOLD activity. 
A biophysical model that could actually produce the overlaps as well as the observed 
divergences between EEG and fMRI would be of great value, since this would con-
tribute to a better understanding of the nature of both modalities and enable better 
integration of their complementary information.

23.6  Outlook

The following section attempts to sum up what has been achieved so far and at the 
same time discuss what is still missing. First, we critically examine whether the 
frequently stated expectation of EEG-fMRI, that of providing both high spatial and 
temporal resolution of brain activity, has been met with respect to studies of the 
visual system.

Without restricting ourselves to the visual system, EEG-fMRI experiments yield 
two kinds of measures: one highly temporally resolved measure from the EEG and 
another spatially highly resolved signal from the fMRI measurement. What we ulti-
mately desire to obtain is one merged, composite signal that has both high spatial and 
temporal resolution. However, what we normally obtain is a temporal correlation 
between BOLD activity and an HRF-convolved EEG time course (EEG- informed 
fMRI) or a spatial co-localization between a BOLD cluster and an EEG source (fMRI-
informed EEG). These types of temporal or spatial overlaps hint at relevant connec-
tions between the two modalities but do not necessarily represent causal relations.

The use of fMRI constraints for EEG source modelling suffers from the problem 
that fMRI clusters do not always reflect neural activity that contributes to EEG scalp 
potentials. Thus, it is prone to errors caused by inappropriate modelling of assumed 
sources of brain activity. Of course, substantial overlap between unconstrained EEG 
dipoles and fMRI activations has been shown. If we use an appropriate model, we 
can attribute the temporal dynamics of an EEG dipole to an fMRI cluster.

In EEG-informed fMRI, regions are identified that show a correlation between 
BOLD activity and a certain EEG parameter. Here, relationships between EEG 
parameters and BOLD activity other than linear correlations should also be consid-
ered. Also, the critical assumption that the chosen EEG parameter indexes neuronal 
activity may not always be justified (e.g. in the case of BCG contamination of EEG 
parameters).
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Concerning examinations of neurovascular coupling, depending on the exam-
ined EEG parameter—EP amplitudes, single-trial activity, spontaneous, or event- 
related oscillatory activity—the characterization of the EEG-BOLD relationship 
will vary, which is also reflected in the results of the studies on neurovascular cou-
pling in the visual system discussed above. Even a complete description of all con-
ceivable EEG parameters may not appropriately reflect the neural processes of a 
certain region, leading to suboptimal modelling of BOLD responses.

Given the option of directly measuring neuronal activity with the help of MRI 
(sometimes termed “direct” (f)MRI), the concurrent use of EEG would be finally 
made obsolete, since the MR signal would then provide high temporal and spatial 
resolution for one and the same measure. The visual system has already been 
used several times as a starting point for such attempts, but contradictory conclu-
sions have been drawn about its feasibility, since either favorable but indirect 
results (Bianciardi et al. 2004; Konn et al. 2004) or rather discouraging results 
have been obtained when using concurrent EEG for validation (Mandelkow 
et al. 2007).

Having summarized the results of EEG-fMRI studies in the visual system, in our 
opinion, the great strength of EEG-fMRI lies in its ability to dissect the composite 
metabolic response of the BOLD signal and tease apart components most related to 
different periods of temporal activity, contributions of different frequency bands, or 
modulations of network functional connectivity. Although yet to be fully and con-
sistently exploited it has the potential to actually merge both modalities in order to 
obtain one single measure, as in direct fMRI. In addition, by using simultaneous 
EEG-fMRI, we are able to observe interactions between the two complementary 
measures of brain activity, which can reveal new insights into fundamental ques-
tions of brain function, such as how spontaneous oscillations affect the way that 
events are processed.
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24Cognition

Susanne Karch and Christoph Mulert

24.1  Advantages and Disadvantages of Simultaneous EEG–
fMRI Recordings of Cognitive Functions

In cognitive neuroscience, there has been growing interest in simultaneous and com-
bined EEG–fMRI recordings in cognitive paradigms in order to obtain datasets with 
high spatial and temporal resolution (Benar et al. 2007). There are several reasons 
why simultaneous EEG–fMRI acquisition seems to make sense in the investigation 
of cognition: mental processes don’t need to be identical even if an identical cogni-
tive paradigm is conducted several times. Differences in the participant’s mood, vigi-
lance, and familiarity with the task, for example, have proved to be important for 
cognitive processes as well as for the underlying brain activity (Debener et al. 2006; 
Matsuda et al. 2002; Menon and Crottaz-Herbette 2005). Often, the same stimuli 
cannot be used twice, for example, stimuli used in learning and memory experiments 
or planning tasks. Simultaneous EEG–fMRI recordings have the advantage of an 
identical environment, the same conditions of stimulation, and subject state, for 
example, time of the day, time spent on the task, and level of arousal. In addition, this 
method appears to be advantageous for distinct samples, for example, children or 
aged people, in order to avoid multiple sessions involving extended periods of time 
(Menon and Crottaz-Herbette 2005). Multiple session might not be feasible, reliable, 
or practical in clinical studies, for example, focusing on the effect of medication on 
cognitive processes (Menon and Crottaz-Herbette 2005). Additionally, various pro-
cessing stages of cognitive tasks, for example, stimulus encoding and evaluation, 
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memory, selection of action, and guiding decisions, can be decomposed (“mental 
chronometry”; Linden 2007; Posner 1978) using EEG and fMRI. In tasks focusing 
on higher cognitive functions (e.g., executive functions, memory), both nonspecific 
processes (e.g., attention, arousal) and specific abilities (e.g., planning, cognitive 
flexibility, encoding) are required for successful task execution. EEG–fMRI data 
may be useful to distinguish neural correlates of specific and nonspecific aspects of 
cognitive functioning. Furthermore, EEG–fMRI studies allow for combining local-
ization of cognition-related brain structures with neurophysiological mechanisms, 
for example, functional coherence of brain regions.

24.2  Attention

Attention is the cognitive process of maintaining the mental focus on one or several 
aspects of the environment while ignoring other things in order to deal effectively 
with the information in the attentional focus. Diverse aspects of cognitive function-
ing are part of this concept, for example, the ability to maintain a consistent behav-
ioral response during continuous and repetitive activity (sustained attention) and in 
the face of distraction or competing stimuli, respectively (selective attention). This 
concept also refers to the capacity of mental flexibility allowing individuals to shift 
their focus of attention and to alter between tasks with different cognitive require-
ments (alternating attention) and to respond simultaneously to multiple task 
demands (divided attention) (Sohlberg and Mateer 1989).

The examination of neural responses is crucial for the evaluation of the func-
tional efficiency of brain functions. In electroencephalographic investigations, 
attention frequently has been examined by using the so-called oddball paradigm as 
well as mismatch-associated paradigms. One of the most important aspects of elec-
trophysiological responses is the so-called P300 component, a positive component 
about 300–600 ms after the presentation of a stimulus. The P300 has proved to be 
abnormal in many clinical conditions including aging, schizophrenia, depression, 
Alzheimer’s disease, and psychopathy (Ford et  al. 1994; Kawasaki et  al. 2004; 
McCarley et al. 1991; Polich and Corey-Bloom 2005; Polich and Herbst 2000; van 
der Stelt et al. 2004). For that reason, neural generators of ERPs have attracted con-
siderable interest (Bledowski et al. 2004a).

24.2.1  Oddball Paradigm

The oddball paradigm has been associated with attention and information process-
ing capacity. During this task, participants detect and respond to infrequent target 
events embedded in a series of repetitive events (Sutton et al. 1965). The detection 
of novel, salient information is crucial in order to facilitate the adaptation to a rap-
idly changing environment (Sokolov 1963). The oddball paradigm entails top-down 
regulated attention on a stimulus. Sometimes novel stimuli which do not require a 
behavioral response (deviants) are presented additionally in this task. The presenta-
tion of deviants enables a breaking of ongoing focused attention and the attraction 
of attention (Bledowski et al. 2004a).
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Aberrant electrophysiological responses associated with rare, task-relevant stim-
uli have been reported about 300–500 ms after the presentation of the task, espe-
cially in frontocentral and parietal brain regions (P3/P300). This event-related 
potential (ERP) is thought to reflect the mental processes underlying the allocation 
of attentional resources to an incoming stimulus and its evaluation, as well as deci-
sion-making and memory updating (Calhoun et al. 2006). There are two compo-
nents of the P300: P3a and P3b. The P3a has a more frontal distribution and is 
thought to be associated with an orienting response (Friedman et al. 2001). Variations 
related to the P3b appear a little later and primarily have a parietal distribution. The 
P3b is associated with context updating, context disclosure, event categorization, 
and processing capacity (Donchin and Coles 1988; Kok 2001).

Intracranial recordings for the identification P3-related neural generators sup-
ported the view that the P3a is primarily related to paralimbic areas as well as fron-
tal, parietal, and cingulate brain regions (Halgren et al. 1998). The integration of 
context information (P3b) engaged frontotemporal cortices, association cortices, 
and the hippocampus. Brain responses to oddball tasks have been extensively stud-
ied using fMRI (e.g., Halgren et al. 1998; Horovitz et al. 2002; Kiehl et al. 2005b; 
Linden et al. 1999; McCarthy et al. 1997; Menon et al. 1997). It is assumed that 
oddball paradigms elicit activations in a widespread cortical network including the 
anterior temporal gyrus, the inferior and superior parietal lobe, the anterior and 
posterior cingulate cortex, the thalamus, and lateral frontal brain regions. Some 
studies found a rightward lateralization in frontal, temporal, and parietal regions 
(Kiehl et al. 2005a; Stevens et al. 2005).

It has been demonstrated that the electrophysiological results of the oddball par-
adigm that has been performed in the MRI scanner are not directly comparable to 
those that were acquired in studies outside the MRI. Chun et al. (2016) revealed a 
delay N1, P300 latency, and RT inside the MRI scanner (Chun et al. 2016). These 
variations should be considered in the evaluation of these results.

In order to improve the understanding of target-associated brain activity, a pre-
cise localization of the generators of the P3 was aimed for in several studies. The 
comparison of fMRI findings with those of an independent localization of event- 
related potentials using low resolution electromagnetic tomography (LORETA) 
(Mulert et al. 2004) revealed highly concordant responses in the temporoparietal 
junction, the supplementary motor area (SMA)/anterior cingulate cortex (ACC), the 
insula, and the middle frontal gyrus. BOLD activations of the motor cortex were not 
represented in the P300 potential. Concerning the time course of brain responses, 
the activation seemed to start in the temporal lobe and the temporoparietal junction 
and the latest activity in the frontal cortex and SMA (Mulert et al. 2004).

Bledowski et al. intended to distinguish neuroanatomical correlates related to gen-
erators of the P3a component, which is mainly evoked by distractor events, from those 
of the P3b, which has been associated with the detection of rare events in general (tar-
gets and distractors) using EEG and fMRI acquired in separate sessions. Results of a 
visual oddball paradigm with three different conditions (frequent, rare, and distractor) 
revealed that targets elicited a posterior P3b; distractor stimuli were followed by a 
frontocentral P3a ERP. Both conditions produced BOLD responses in the temporopa-
rietal junction and the right prefrontal gyrus. Furthermore, target processing led to 
bilateral presylvian responses, whereas the frontal eye fields, bilateral superior parietal 
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cortices, and left prefrontal cortex contributed to distractor processing (Bledowski et al. 
2004b). An fMRI-based EEG model was designed to directly relate the datasets: fMRI-
constrained seeding points were located in the prefrontal cortex, precentral sulcus, infe-
rior parietal lobe, posterior parietal cortex, inferior temporal cortex, anterior insula, 
right superior temporal sulcus, as well as cingulate gyrus. The results revealed that all 
sources had contributed to the target and distractor condition: frontal areas and the 
insula contributed mainly to the P3a which was compatible to a more anterior distribu-
tion on the scalp. By contrast, the P3b was mainly produced by higher visual and supra-
modal association areas (e.g., parietal and inferior temporal areas) (Bledowski et al. 
2004b). Altogether, the results confirmed previous reports about a supramodal target 
detection system. Beyond this, some task-specific subsystems associated to P3a and 
P3b components seemed to exist (Bledowski et al. 2004a, b) (Fig. 24.1).

Fig. 24.1 Combined EEG and fMRI study using a novelty paradigm; dipoles were seated into 
BOLD clusters. Source activity in target and distractor condition. (a) A surface of a standard head 
(MNI template) with standard 81 electrode configuration. (b) Position of the regional sources on a 
surface reconstruction of the MNI template brain. (c) Source activity waves and topographical 
maps of scalp voltage of the main current flow direction of each regional source for the target and 
distractor conditions (abbreviations: * indicates significant differences between regional source 
peak amplitude in the target and distractor conditions; PFC prefrontal cortex, INS anterior insula, 
PrCS precentral sulcus, IPL inferior parietal lobe, GC cingulate gyrus, PPC posterior parietal 
cortex; IT inferior temporal sulcus, STS superior temporal sulcus) (Bledowski et  al. 2004a; 
Copyright (2004) Society for Neuroscience)
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The study of Crottaz-Herbette and Menon (2006) was especially concerned 
about the influence of the ACC in attentional control. A simple auditory and visual 
oddball task was used to examine whether, and to which extent, early attentional 
effects were influenced by top-down processes from the ACC. The importance of 
the ACC in attentional control has been demonstrated before, for example, in tasks 
requiring selective attention or the inhibition of prepotent responses (Botvinick 
et al. 2001; Bush et al. 2000; Milham and Banich 2005). As expected, the presenta-
tion of infrequent stimuli led to significantly greater responses in the ACC as well 
as an enhanced contribution of the SMA, inferior parietal cortex, basal ganglia, 
cerebellum, and left premotor cortex. Modality-specific variations were produced 
especially in the primary sensory cortices. Although attention-related activation of 
the ACC was similar in both modalities, its connectivity was remarkably specific: 
the auditory task produced an enhanced effective connectivity between the ACC and 
the Heschl gyrus, left middle and superior temporal gyri, the left and right precen-
tral and postcentral gyri, the supramarginal gyrus, the caudate, the thalamus, and the 
cerebellum. During the visual oddball task, the ACC showed an increased connec-
tivity with the striate cortex, the precuneus/cuneus, and the posterior cingulate 
gyrus. ERP recordings confirmed that oddball tasks elicit prominent frontocentral 
and central N2 and P3a signals. The fMRI-constrained dipole modeling showed that 
the ACC is the major generator of the N2b–P3a components of the ERP. Summarized, 
a top-down attentional modulation of early sensory processing by the ACC is sug-
gested. These results provide evidence for a model of attentional control based on 
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dynamic bottom-up and top-down interactions between the ACC and primary sen-
sory regions (Crottaz-Herbette and Menon 2006).

Calhoun et al. performed a spatial independent component analysis (ICA) of the 
hemodynamic change data and a temporal ICA of the ERPs to derive a spatiotem-
poral decomposition. The results provided evidence for initial auditory processing 
and corresponding preparatory motor activity. These initial activations were fol-
lowed by N2-related activations in association areas and motor execution regions. 
The early P3a was associated with enhanced neural responses of thalamic regions 
and posterior superior parietal lobe areas, as well as decreases in orbitofrontal brain 
regions. The late P3b showed associations with posterior temporal and temporopa-
rietal lobe regions in addition to lateral prefrontal areas (Calhoun et al. 2006).

Walz et al. (2013) demonstrated that the ACC is strongly associated with early 
and late EEG components. Late components are also related to brainstem, right 
middle frontal gyrus, and right orbitofrontal cortex. Variability in insula and tempo-
roparietal junction is reflected in reaction time variability. In addition, the authors 
demonstrated some evidence for reciprocal effective connections between the brain-
stem and cortical regions (Walz et al. 2013).

The analysis of fluctuations in the brain regions involved in a simple visual odd-
ball task demonstrated a temporal cascade of transient activations: right frontal 
regions and lateral occipital cortex were involved post stimulus and early in the trial. 
These brain regions have been linked, for example, to attentional orienting and deci-
sion certainty. The behavioral responses were followed by responses in brain areas 
that have often been associated to default-mode network and introspection (e.g., 
precuneus, posterior cingulate cortex) (Walz et al. 2014). These results may indicate 
that both task-dependent and default-mode networks are transiently engaged with a 
specific temporal ordering (Walz et al. 2014).

Warbrick et al. (2014) demonstrated that task demands influenced BOLD corre-
lates during a visual oddball paradigm: the P1 component reflected changes in the 
sensory encoding of stimulus features and seemed to be more relevant for the pas-
sive and count condition. The N1 was more informative for the respond condition 
and seemed to be relevant for processes involved in the integration of sensory infor-
mation with response selection (Warbrick et al. 2014).

The effect of trial-by-trial variability on neurofunctional parameters, for instance, 
due to variations in arousal, has been explored in several studies (Benar et al. 2007; 
Debener et al. 2007; Eichele et al. 2005): information about changes in event-related 
EEG activity of each trial was used as a parameter for fMRI analysis. Eichele et al. 
(2005) separated three independent stages during oddball processing: the main 
sources of early ERP components (P2; ~170 ms) were located in temporal and fron-
tal lobes and is assumed to indicate matching processes between sensory input and 
a neuronal representation of stimuli selected for further processing. Later, electro-
physiological responses (N2) were related to the anterior frontomedian cortex and 
parahippocampal regions and appeared to be linked with the detection of a mis-
match and memory processes, rather than attentional processes (Eichele et al. 2005). 
As expected, the most extensive BOLD responses were related to the P300 about 
320 ms after stimulus presentation in frontal, temporal, and parietal brain regions, 
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especially in the right hemisphere. Similar changes have been associated with a 
mechanism elicited when a memory representation of the recent stimulus context is 
updated as opposed to the detection of deviancy (Eichele et al. 2005) (Fig. 24.2).

Furthermore, there was some evidence for a relation of P3 latency, cognitive 
functions, and BOLD responses: single-trial P3 latency correlated clearly with the 
reaction time. Significant fMRI activations for the modulation by P300 amplitude 
and latency were obtained both at the single subject level and the group level: P300 
parameters seemed to be associated with fMRI activations in the anterior medial 
frontal region, the parietal–occipital junction, and the anterior medial frontal region. 
However, a large variability in the patterns of activations across subjects was 
observed. Whether the modulation of the ERP reflected a modulation of neural 
activity visible in the fMRI, or both EEG and fMRI signals were jointly modulated 
by the same factors, for example, the level of attention was not clear (Benar 
et al. 2007).

Walz et al. (2015) examined the effect of alpha activity before the presentation of 
stimuli on the neuronal responses during an oddball task. A higher alpha power state 
before the stimulus presentation was related to stronger decision-related BOLD 
responses in brain regions that seem to be related to the late processing stream. 

Fig. 24.2 Simultaneous EEG–fMRI experiment using an oddball paradigm. Amplitude modula-
tion (AM)-correlated fMRI results. Render views and maximum-intensity projections of the gen-
eral target-related activation and positive (red) and negative (blue) correlations with the respective 
AM. Each correlation may show for each voxel the maximum t value from the four electrodes (Fz, 
FC1, FC2, Cz). To the left of each rendering of the AM-correlated fMRI, the average AM (empty 
circles ± SEM) and the fitted sigmoid curves are shown. Top row, target-related activation, P < 0.05 
(FWE), cluster size >10; second row, P2 (170 ms); third row, N2 (200 ms); and fourth row, P3 (320 
ms). All AM-related activations were thresholded at P < 0.001 (uncorrected), cluster extent thresh-
old P < 0.01 (Eichele et al. 2005; Copyright (2005) National Academy of Sciences, USA)

24 Cognition



598

Primary sensory regions have not been affected by this alpha activity. Phase analysis 
provided support for a thalamocortical loop in attentional modulations. This may 
indicate that cortical alpha rhythms modulate task-associated responses very early 
in the processing stream (Walz et al. 2015).

Warbrick et al. (2012) applied EEG–fMRI methods for pharmacoimaging. Their 
results showed that EEG-informed fMRI data can help to examine the effect of 
nicotine on attention-related brain responses in more detail than conventional analy-
ses (Warbrick et al. 2012). A clinical application of EEG–fMRI–based pharmaco-
imaging in patients with schizophrenia used a double-blind, placebo-controlled 
crossover design to compare the results of patients and controls after the application 
of 1 mg nasal nicotine and with those without the application of nicotine. Nicotine 
application was related to increased P300-informed brain responses in patients and 
controls especially in the anterior cingulate and medial frontal brain regions. 
Nicotine-related brain responses of patients and healthy subjects were comparable 
(Mobascher et al. 2012).

In summary, the feasibility of tracking single-trial variations of both ampli-
tude and latency of an EEG wave during fMRI scanning was proved. The use of 
simultaneous EEG–fMRI can be seen as a bridge between the well-established 
field of evoked cognitive potentials and the fast growing field of fMRI studies; 
the study contributes to this goal by linking the fluctuations of the features of a 
well-known ERP component to the fMRI signal. It also permits the extraction of 
new information from evoked activity with a very high spatial resolution (Benar 
et al. 2007).

24.2.2  Mismatch Negativity

The mismatch negativity reflects the registration of differences between an actual 
presented stimulus and the representation of stimuli in memory (Näätänen and 
Winkler 1999). The mismatch detection has been associated with preattentive 
change detection and is considered to be more or less automatic. Mismatch- 
generating processes have often been associated with the initiation of an involuntary 
switch to information outside the focus of attention (Giard et al. 1990; Schroger and 
Wolff 1996). In a sequence of frequently repeated standard stimuli, infrequent audi-
tory stimuli are rarely interspersed during mismatch experiments. In contrast to 
oddball paradigms, no behavioral response is required. The mismatch negativity is 
linked to the mismatch between sensory input from a deviant stimulus and neural 
correlates of sensory information, representing the features of a repeatedly pre-
sented standard stimuli (Näätänen and Winkler 1999).

Electrophysiologically, mismatch leads to a negative deflection, the so-called 
mismatch negativity (MMN), peaking roughly between 100 and 250 ms after devi-
ance onset (Näätänen et al. 1978). The MMN is commonly calculated by subtract-
ing the ERP elicited from the standard information from the ERP produced by the 
deviant stimulus. The MMN is often followed by a P3a component announcing a 
voluntary or involuntary switch of attention to salient or novel events. It is elicited 
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when a certain threshold of difference between characteristic of the stimulus and the 
memory trace to the preceding stimuli is exceeded (Katayama and Polich 1998). 
Imaging studies (Mathiak et  al. 2002; Opitz et  al. 1999) as well as intracranial 
recordings (Javitt et al. 1992; Kropotov et al. 1995) provided evidence that the main 
MMN generators are located in the transverse temporal gyrus and the STG. In addi-
tion, frontal brain regions are thought to be involved as well, for example, the infe-
rior frontal gyrus (IFG) (Downar et al. 2002; Opitz et al. 2002). Frontal brain regions 
seemed to be activated at a later stage than temporal regions and contributed to the 
switch of attention (Rinne et al. 2000). Downar et al. (2002) assumed that the IFG 
could be relevant for the evaluation of the potential importance of the stimuli 
presented.

Using EEG and fMRI responses, Opitz et al. (2002) examined the influence of 
the degree of variation of deviants from standard stimuli on neural parameters. 
Significant BOLD activations were observed during the presentation of medium and 
large deviants in the STG and in the opercular part of the right IFG. Temporal lobe 
activations were more pronounced for large than for medium deviants, whereas the 
reverse was true for the IFG. Small deviants failed to produce any reliable response 
during fMRI: they could only be detected during silence. Hemodynamic changes of 
the STG correlated with the change-related ERP signal between 90 and 120 ms 
(early MMN), while the IFG response correlated with the MMN in a late time win-
dow (140–170 ms). The authors concluded that the right fronto-opercular cortex is 
part of the neural network generating the MMN and could be attributed to an invol-
untary amplification or contrast enhancement mechanism (Opitz et al. 2002). The 
prefrontal cortex might be associated with change detection (Opitz et  al. 2002; 
Rinne et al. 2000).

An EEG–fMRI experiment of Liebenthal et  al. (2003) revealed MMN 
recorded in both large and small deviant conditions, especially in frontal sites. 
An increased negativity in Fz was linked with enhanced BOLD responses in the 
right STG bordering the superior temporal sulcus and on the right posterior 
superior temporal plane. Smaller peaks were found in the right posterior STG, 
the Heschl gyri, the left planum temporale, and the left STG. Altogether, the 
results of MMN generators on the superior temporal plane were consistent with 
dipole analysis and magnetoencephalographic recordings (Giard et  al. 1990; 
Opitz et al. 2002). In addition, generators in each temporal region were hypoth-
esized: one generator near the primary auditory areas on the superior temporal 
plane is thought to be the first to respond, probably corresponding to the N1 
component. The later generator is meant to be located more anteriorly and later-
ally and seems to be associated with the MMN (Liebenthal et  al. 2003). The 
results of the study support the idea that frequency deviancy detection is linked 
with generators in the right lateral part of the STG. However, a confident dif-
ferentiation of N1- and MMN-associated brain responses and P3a-related 
responses was not possible.

Doeller et  al. (2003) used a dipole analysis constrained by fMRI: The dipole 
analysis revealed an early MMN amplitude and activity of the STG that increased 
with pitch deviance. However, the right IFG and the late MMN amplitude showed 
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an inverted u-shape like pattern. The right prefrontal cortex seemed to be relevant 
for the auditory pitch discrimination, especially, when the differentiability of pitch 
deviants and standards are low. The authors concluded that these prefrontal mecha-
nisms are probably associated with a top-down modulation of the deviance detec-
tion system in the STG (Doeller et al. 2003).

Apart from the magnitude of deviance, the modulation of attention might also 
matter for mismatch detection. Sabri et al. (2006) accomplished a simultaneous 
EEG–fMRI experiment in which the difficulty of the primary task was modu-
lated. The results demonstrated an enhanced deviant-induced MMN in the easy 
task compared to the difficult task, whereas the N1 and P3a components were 
smaller. The frontocentral negativity varied across conditions regarding the tem-
poral dimension: in the difficult task, the negativity was observed 60–110 ms 
after the stimulus presentation, indicating a link to the N1 component. In addi-
tion, a strong positivity was observed 210–340 ms after the stimulus. In the easy 
task, the significant negativity rather seemed to be associated with the MMN and 
was observed 110–170 ms after stimulus presentation. So, the underlying elec-
trophysiological processes might be discriminative. Apart from frontal regions, 
passive deviancy detection, as reflected by the MMN, was connected with activa-
tions in the dorsal part of the STG, and involuntary shifting of attention, as 
reflected by the P3a, was observed in the dorsal and ventral parts of the superior 
temporal cortex, respectively. The authors suggested that the dorsal STG regions 
were primarily affected by the passive detection of mismatch between the mem-
ory influenced by standard tones and the incoming deviant, whereas the ventral 
region appeared to be modulated by involuntary shifts of attention to task-irrele-
vant auditory features (Sabri et al. 2006).

Presumably, mismatch detection can be associated with hemodynamic responses 
of superior temporal as well as frontal brain regions. EEG–fMRI studies have pro-
vided evidence for a functional dissociation of these regions and have given further 
insight into the chronology of brain responses. Another factor to possibly have an 
influence on mismatch detection is the focus of attention; this was investigated in a 
further study.

24.2.3  Preparatory Attention

Most of the classic studies of preparatory attention are based on the contingent 
negative variation (CNV). This negative potential is generated in the interval pre-
ceding and stimulus that needs further processing (Gomez et  al. 2006). CNV is 
suggested to be an index of cortical arousal during anticipatory attention, prepara-
tion, motivation, and information processing (Nagai et  al. 2004; Tecce 1972). 
Neurophysiological theories suggest that the CNV reflects a subthreshold activation 
of the cortex, preparing the cortex for processing the next stimulus and response 
(Rockstroh et  al. 1982), as well as integrating cognitive and motor components 
(Nagai et al. 2004). The CNV can be induced when a warning stimulus is presented 
before the target stimulus during a reaction time task. There are several dissociable 
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components of the CNV: the early phase of the CNV, maximal at midline elec-
trodes, encompasses an orienting response. Later variations of the CNV, maximal at 
the vertex, rather reflect motor preparation. Neuroimaging studies have shown a 
contribution of primary motor cortex, ACC, SMA, frontoparietal regions, and sub-
cortical centers (Gomez et al. 2003; Ioannides et al. 1994).

In an EEG–fMRI study, increased BOLD responses in the thalamus, somatomo-
tor cortex, midcingulate, SMA, and insular cortices during the period of CNV gen-
eration were demonstrated (Nagai et  al. 2004). Additionally, single-trial analysis 
indicated that the thalamic, anterior cingulate and supplementary motor activity was 
modulated by the amplitude of the CNV. Thus, thalamocortical interactions appeared 
to regulate the CNV amplitude (Nagai et al. 2004) (Fig. 24.3).

Fig. 24.3 Brain regions modulated by CNV amplitude. In five subjects, CNV was recorded 
simultaneously with acquisition of fMRI data. A fixed-effect analysis was used to determine across 
these subjects’ regional brain activity correlating with trial-by-trial changes in measured CNV 
amplitude (derived from the integral over 3.5 s of baseline-corrected EEG data). F tests of regions 
were activity-related significant (P < 0.05, corrected) and highlighted bilateral thalamus, ACC/
SMA, pons, and cerebellum. The distribution of this activity is plotted on orthogonal sections of a 
template brain, illustrating the location of thalamic involvement extending into basal ganglia 
(Reprint from Nagai et al. 2004; Copyright (2004) with permission from Elsevier)
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24.3  Executive functions

Executive functioning describes a set of cognitive abilities that control and regulate 
other abilities and behaviors necessary for goal-directed behavior. Various abilities 
are included, for example, the ability to initiate and stop actions, to monitor and 
evaluate performance in relation to goals, to flexibly change and revise plans and 
behavior as needed, and to solve problems (Ylvisaker and DeBonis 2000). They are 
necessary for appropriate, socially responsible and effectively self-serving behavior 
(Lezak 1983).

Neuroimaging research proved that executive functioning is mediated by the pre-
frontal lobes of the cerebral cortex. Even though, different executive functions are 
associated with different regions of the frontal lobe (Braver et  al. 2001; Carlson 
et al. 1998; D’Esposito et al. 1998; Stuss and Levine 2002; Watanabe et al. 2002). 
Apart from that, a wide cerebral network including temporal, parietal and subcorti-
cal structures and thalamic pathways is activated (e.g., Lewis et al. 2004; Watanabe 
et  al. 2002). Along with the broad heterogeneity of executive functions, various 
experimental paradigms and tests have been used to acquire these processes.

24.3.1  Cognitive Flexibility

Cognitive flexibility comprises the ability to shift the attention from one perceptual 
parameter to another. The ability to flexibly adapt mental activity and behavior 
according to upcoming environmental requirements is crucial for successful behav-
ior. Flexible responses can be investigated, for example, when using the Wisconsin 
Card Sorting Test (WCST) (Grant and Berg 1948). This test comprises a fairly easy 
task (rearranging of cards with simple symbols according to various criteria, e.g., 
color). However, no instructions are given on how to complete the task. Feedback 
provided after each match enables the subject to acquire the correct rule of 
classification.

ERP studies revealed a posterior P3b wave along with the performance in 
WCST- like tasks (Barcelo et al. 2000). Stimulus presentation elicited an enhanced 
synchronization between prefrontal, temporal, and posterior association cortex 
comprising different frequency ranges (Gonzalez-Hernandez et  al. 2002). 
Functional neuroimaging studies verified the influence of frontal lobes (e.g., 
Konishi et al. 2002; Lie et al. 2006), as well as temporal and parietal regions (Lie 
et al. 2006) during the performance of the WCST. Up to now, there have been no 
combined or simultaneous EEG–fMRI studies addressing cognitive flexibility and 
set-shifting abilities. Still, a functional segregation of neural responses related to 
task components like set-shifting, working memory, inhibitory control, or feed-
back was attempted in several fMRI studies (e.g., Konishi et al. 1999; Lie et al. 
2006; Monchi et  al. 2001): rule changing in WCST-like tests seemed to be fol-
lowed by responses in the inferior prefrontal area (Konishi et al. 1999), whereas 
positive and negative feedback led to an increased activation in the dorsolateral 
prefrontal cortex (DLPFC) (Monchi et al. 2001). Beyond that, negative feedback 
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indicating the need for a mental shift produced an enhanced contribution of a corti-
cal basal ganglia loop (ventrolateral prefrontal cortex, caudate nucleus, thalamus) 
(Monchi et al. 2001).

24.3.2  Performance Monitoring

Important aspects of performance monitoring are controlling and dynamic adjust-
ment of behavior within changing environmental requirements. Performance moni-
toring involves the detection of errors as well as the subsequent adjustment of 
behavior reinforcing adaptive behavior (Holroyd et al. 2002).

Erroneous actions, in particular, are highly informative for the adjustments of 
future behavior (Ridderinkhof et al. 2004). Erroneous responses are associated with 
negativity at frontocentral midline sites peaking about 100 ms after an error was 
made, the so-called negativity associated with errors (Ne)/error-related negativity 
(ERN) (Falkenstein et  al. 1991; Gehring et  al. 1993). Initially, the ERN/Ne was 
interpreted in context of the error-monitoring system: the ERN/Ne was meant to 
reflect the detection of errors or an attempt to inhibit errors (Gehring et al. 1993; 
Scheffers and Coles 2000; Scheffers et  al. 1996). Then again, the ERN/Ne was 
interpreted in the context of the conflict monitoring system being essential for the 
detection of a high degree of response competition and the recruitment of top-down 
control from the DLPFC, which again is important in order to improve task perfor-
mance and to reduce conflict (Botvinick et al. 1999, 2001; Carter et al. 1998; Cohen 
et al. 2000).

Imaging studies revealed a contribution of the ACC in error processing and 
response conflict (Braver et al. 2001; Carter et al. 1998; Ullsperger and von Cramon 
2001). Disagreement exists about the precise location within the ACC: some studies 
reported a contribution of the caudal ACC during response conflict and the activa-
tion of the rostral ACC along with error processing (Braver et al. 2001; Kiehl et al. 
2000). Other studies suggested conflict and error-related brain activations in the 
caudal ACC (Carter et al. 1998; Menon et al. 2001). Frontomedian areas appear to 
be associated with error-induced behavioral changes (e.g., posterior slowing) 
(Garavan et al. 2002). In addition, the DLPFC, the (pre-)SMA, (Kiehl et al. 2000; 
Menon et al. 2001), and the basal ganglia (Holroyd and Coles 2002) contributed to 
the modulation of the ERN/Ne.

Combined EEG–fMRI analyses of a Go/NoGo paradigm were used to further 
distinguish error and conflict-related brain responses (Mathalon et al. 2003). The 
results showed the expected ERN/Ne during error trials, especially at Cz as well as 
a nogo-related N2. Rostral, caudal, and motor ACC were activated during both con-
ditions: these responses were more pronounced during the nogo trials compared to 
error trials, and a tight coupling between inhibition- and error-related brain responses 
could be demonstrated. The correlation of EEG and fMRI data revealed that error 
and conflict monitoring, at least partially, recruit the same brain regions, for exam-
ple, caudal ACC. These results were consistent with the idea of medial frontal lobe 
monitoring in error and conflict monitoring. In addition, both processes engage 
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some distinct neural circuitry: error-specific responses were shown in the rostral 
ACC, the BA 10, and posterior cingulate. Conflict monitoring also recruited the 
DLPFC and inferior parietal lobule. Thus, error and conflict monitoring may be dis-
sociable, subserved by overlapping and distinct ACC regions (Mathalon et al. 2003) 
(Fig. 24.4).

Another study used a speeded flanker task to analyze neural correlates of ERN 
and post-error slowing (Debener et al. 2005). During this task, participants were 
instructed to respond according to the direction of an arrow that was presented on 
a screen. The arrow was flanked by further arrows directing in the same (compat-
ible trials) or the opposite direction (incompatible trials). A profound ERN was 
shown in frontocentral sites, especially for the incongruent error trials. Further 
analysis showed an association between high single-trial amplitudes and short 
reaction times for the incompatible errors, whereas incompatible correct trials 
were related to a small negativity. In addition, the ERN was systematically associ-
ated with ensuing behavioral adjustment: higher ERN amplitudes were related to 
longer reaction times in post-error trials. Single-trial amplitudes also covaried 
with enhanced BOLD responses in the rostral cingulate zone. Therefore, these 
results supported the view that the rostral cingulate zone is one source of the ERN 
and seems to be involved in controlling subsequent adjustment (Debener et  al. 
2005; Holroyd et  al. 2004; Ridderinkhof et  al. 2004; Ullsperger and von 
Cramon 2004).

A study using a modified flanker task demonstrated that higher ERN amplitudes 
are related to increased responses in the ACC, rostral cingulate zone (RCZ), and 
pre-SMA; whereas N2 amplitudes were linked to responses of the pre-SMA 
(Iannaccone et  al. 2015). Conjunction analysis of EEG-informed fMRI revealed 
common activation of ERN and N2 in the pre-SMA that provided some evidence for 
shared conflict-related processes of the ERN and N2 (Iannaccone et al. 2015). By 
contrast, a spatial dissociation of conflict- and error-related responses along the 
medial frontal wall was shown (Iannaccone et al. 2015).

Performance monitoring also includes the anticipation and inhibition of behav-
ioral responses. Response anticipation was assessed by comparing responses after a 
cue was given to prepare versus a cue indicating relax; response conflict was exam-
ined by comparing incongruent and congruent trials (Fan et al. 2007). As expected, 
response anticipation facilitated response execution: the responses were faster when 
a warning signal was presented before the actual target. In addition, response antici-
pation was associated with altered electrophysiological responses, especially in 
midline electrodes (CNV), as well as enhanced cue-associated fMRI activations 
encompassing a distributed right lateralized thalamo-cortico-striatal network and 
brain area regions significant for executive control. In addition, a greater anticipation- 
related gamma power and decreased responses in theta-, alpha-, and beta-bands, 
especially in frontal brain regions and the superior parietal lobe has been demon-
strated. The authors assumed that the increased gamma band activity and decreased 
alpha band activity in regions associated with attention, sensory processing, and 
motor preparation support the assumption that the PFC exerts top-down control of 
task-relevant brain regions in response anticipation. Response conflict during 
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Fig. 24.4 (a) fMRI, ERP and fMRI–ERP correlations for correct rejections (NoGo)—hits (Go) 
comparisons. Three-planar view for fMRI (P < 0.001, uncorrected; upper left), ERPs overlaid cor-
rect rejections and hits from Cz (upper right), fMRI and ERP correlations (P < 0.05, uncorrected) 
focusing on the ACC (lower left), scatter plot showing that subjects with larger age-adjusted N2 
scores have greater caudal ACC activation. (b) fMRI, ERP, and fMRI–ERP correlations for false 
alarms (NoGo)—hits (Go) comparisons. Three-planar view for fMRI (P < 0.05, uncorrected; 
upper left), ERPs overlaid false alarms and hits from Cz (upper right), fMRI, and ERP correlations 
(P < 0.05, uncorrected) focusing on the ACC (lower left), scatter plot showing that subjects with 
larger age-adjusted N2 scores have greater rostral ACC activation (Reprint from Mathalon et al. 
2003; Copyright (2003) with permission from Elsevier)
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uncued trials also led to an enhanced contribution of brain regions linked to execu-
tive control. Neural responses were enhanced compared to the response anticipation 
task (cued trials). In summary, common regions of a dorsal frontoparietal network 
and the ACC seemed to be engaged in the flexible control of a wide range of execu-
tive processes. Response anticipation modulated overall activity in the executive 
control network but did not interact with response conflict processing (Fan et al. 
2007) (Fig. 24.5).
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Fig. 24.5 Power change difference diagrams for the ready minus relax cue contrast as a function 
of time–frequency and the dipoles of ERP data. The center panel shows the dipole locations. The 
small balls and bars represent the locations and orientations of the dipoles, respectively. The right 
superior frontal gyrus shows greater gamma (>30 Hz) power maintained over the cue-target inter-
val, whereas the right superior occipital gyrus shows a power decrease in theta (4–8 Hz), alpha 
(8–12 Hz), and beta (12–30 Hz) bands. The cue onset is at 0 ms, and the target onset is at 2500 ms 
(Fan et al. 2007; Copyright (2007) Society for Neuroscience)
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24.3.3  Decision-Making

The influence of mental effort on decision-making processes was examined in a 
simultaneous EEG–fMRI experiment of with a forced choice reaction task: the sub-
jects were instructed to accomplish this task under both high and low effort condi-
tions (Mulert et al. 2008). Mental effort significantly affected the N1 potential but 
did not show any influence on the P300 potential. In the high-effort condition, 
single- trial coupling of EEG with fMRI demonstrated N1-related BOLD activity in 
the ACC and auditory cortex (Mulert et al. 2008). Comparing the N1-specific activ-
ity of the high-effort condition and the control condition (passive listening), signifi-
cant activation was found only in the ACC. Hence, early ACC activation is suggested 
to be important for effort-related decision-making (Mulert et al. 2008). The applica-
tion of this paradigm in subjects with high-risk state of psychosis revealed that 
neuronal responses in a network of brain regions (e.g., auditory cortices, thalamus, 
frontal brain regions including ACC, DLPFC) associated with the evoked gamma- 
band response were significantly lower in high-risk subjects compared to healthy 
controls, and the task performance was decreased (Leicht et al. 2016). Given the 
fact that a disturbed evoked gamma band response has shown to be altered in 
patients with schizophrenia, these results may indicate a potential applicability for 
the prediction of transition of high-risk subjects to schizophrenia (Leicht et al. 2016).

An EEG-informed fMRI study of emotional decisions were examined using a 
gambling paradigm. The results of the study indicated that during win versus loss, 
stimuli activations in the caudate, the ventral striatum, the orbitofrontal cortex, and 
the cingulate were shown (Guo et al. 2017). The integration of EEG and fMRI data 
revealed wide activation areas including the posterior cingulate and the orbitofron-
tal cortex. In addition, activation in the ventral striatum and medial prefrontal cortex 
was related to EEG power features especially theta (Guo et al. 2017).

24.3.4  Behavioral Inhibition

The ability to inhibit responses that are inappropriate in the current context is cru-
cial for interactions in the social context (Logan et  al. 1984; Shallice 1988). 
Inhibition capacity can be assessed, for example, with Go/NoGo tasks: these tasks 
require the subjects to respond to one type of stimulus and to withhold a response to 
another stimulus.

Electrophysiologically, the response inhibition process seems to be associated 
with a negative deflection that reaches a frontocentral maximum about 200 ms after 
the presentation of the respective stimuli (N2) (Falkenstein et  al. 1999). More 
recently, it has been speculated that N2 reflects response conflict rather than inhibi-
tory control (Donkers and van Boxtel 2004; Nieuwenhuis et al. 2003). The nogo-P3, 
a positive-going peak observed approx. 300–600 ms after stimulus, is assumed to be 
related to response inhibition (Kamarajan et al. 2005). Inhibition-related hemody-
namic responses included the ACC (Braver et al. 2001; Casey et al. 1997; Durston 
et al. 2002; Liddle et al. 2001), the middle and inferior cingulate cortex, anterior 
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insula (Braver et al. 2001; Watanabe et al. 2002), the (pre-) SMA (Garavan et al. 
2002; Ullsperger and von Cramon 2001), and parietal brain regions (Garavan et al. 
2002; Watanabe et  al. 2002). BOLD reactivity was usually stronger in the right 
hemisphere than in the left hemisphere (Garavan et al. 1999; Kelly et al. 2004).

Deficits in response inhibition capacities in schizophrenic patients were associ-
ated with increased go-related activations and decreased nogo-associated varia-
tions compared to controls (Ford et  al. 2004). Enhanced inhibition-related 
hemodynamic responses were shown in controls compared to schizophrenic 
patients in a network of brain regions including medial and lateral frontal regions, 
the precuneus, the inferior parietal lobe, the gyrus postcentralis, the STG, and the 
insula. Altogether, these results indicated that go responses were more arduous and 
deliberate for patients with schizophrenia than for healthy subjects, whereas 
response inhibition was easier. The combined evaluation of ERPs and BOLD 
responses revealed a positive association of P300 amplitudes with BOLD responses 
in the ACC, DLPFC, inferior parietal lobe, and caudate nucleus in healthy subjects. 
In patients, there was a modest correlation between parietocentral nogo-P3 and 
ACC activations. Overall, the results indicated that healthy subjects set up prepo-
tent response biases during go trials. The effort expended to overcome this ten-
dency during inhibition is reflected in the nogo-P3 amplitude and the recruitment 
of neural structures associated with executive control. Patients with schizophrenia, 
however, did not show strong response biases. In addition, the DLPFC, the inferior 
parietal lobe, and the striatum did not contribute significantly to task execution in 
patients (Ford et al. 2004).

The combination of EEG and fMRI helped to generate a hypothesis about differ-
ent cognitive strategies of psychiatric populations, and neural structures recruited to 
implement them (Ford et al. 2004).

The examination of response inhibition capacity in alcohol-dependent patients 
showed that self-rated anxiety considerably influenced cognitive functions and their 
neural correlates: patients with high self-rated anxiety showed significantly elevated 
activations during response inhibition, especially in the middle/superior frontal 
gyrus, and the right IFG compared to patients with low ratings on these scales. In 
addition, enhanced activations were shown in temporoparietal brain regions. The 
integration of EEG and fMRI data produced a positive correlation between P300 
amplitudes at frontocentral locations and medial frontal, insular as well as right 
temporoparietal BOLD responses in healthy subjects. In patients, associations 
between ERPs and hemodynamic responses were less clear: patients with small 
anxiety ratings showed positive relations between the insula and frontocentral P300 
amplitudes. Contrary to the control subjects, there was no association with medial 
frontal and temporoparietal regions. Patients with increased anxiety scores, how-
ever, revealed correlations between enhanced P300 latencies in FCz and right fron-
tal and inferior parietal activations. Altogether, these results provided evidence that 
alcohol-dependent patients and healthy subjects recruit different brain regions dur-
ing behavioral inhibition. In addition, comorbid symptoms of trait anxiety consider-
ably influenced the pattern of brain functions related to cognitive functions in 
alcohol-dependent subjects (Karch et al. 2007).
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Ko et al. (2016) examined the inhibitory control capacity in a realistic stop-signal 
task. For that purpose, the results of a scenario with visual symbols (1) and a battle-
field scenario with the task instruction to shoot at terrorists (2) were compared. 
During the battlefield scenario, the stop signal led to higher BOLD responses and 
synchronization of the theta–alpha activities in the right temporoparietal junction 
(rTPJ). The authors assumed that the higher activation of rTPJ in the battlefield 
scenario may be related to morality judgments or attentional reorienting (Ko 
et al. 2016).

Data-Driven Analysis
Most of the EEG–fMRI studies focus on measuring known ERP components in 
single trials and correlate the resulting time series with the fMRI–BOLD signal. 
Data-driven analyses provide the opportunity to select automatically task-specific 
electrophysiological independent components in order to examine the relationship 
between trial by trial variability and BOLD responses (Schmuser et al. 2014). Aim 
of this method is to show that the variability of the chosen ERP component is spe-
cific for the targeted neurophysiological process. Positive correlations of fMRI–
BOLD signal with EEG-derived regressors in frontostriatal regions which were 
more pronounced in an early phase compared to a late phase of task execution were 
demonstrated in a visual Go/NoGo task. The authors concluded that different phases 
of task execution can be distinguished with this method (Schmuser et al. 2014).

Differences regarding the interindividual variability of response inhibition may 
also constitute a key to pathological processes underlying impulse control disorders 
(Schmuser et al. 2016). A data-driven classification in two groups according neuro-
physiological responses to the Nogo stimuli revealed differences on questionnaires 
regarding attention deficit/hyperactivity disorder, differences regarding reaction 
time and intraindividual RT variability, variations regarding the activations in the 
left inferior frontal cortex/insula, left putamen as well as regarding the P3 ampli-
tudes (Schmuser et al. 2016). The authors concluded that the interindividual differ-
ence in an electrophysiological correlate of response inhibition is correlated with 
distinct, potentially compensatory neural activity. It was assumed that these results 
may indicate the existence of dissociable phenotypes of response inhibition that 
possibly provides protection against impulsivity-related dysfunction (Schmuser 
et al. 2016).

24.3.5  Working Memory

Working memory (WM) refers to processes used for temporal storing and manipu-
lating information (Baddeley 1992). Baddeley and Hitch (1974) proposed a WM 
model based on the assumption of three basic components. Information is stored by 
silently rehearsing sounds or words in a continuous loop (phonological loop). The 
visuospatial sketchpad is engaged when performing visual or spatial tasks. The cen-
tral executive is responsible for the supervision of information integration and for 
coordinating both systems (Baddeley and Hitch 1974). Later on, the concept was 
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extended by adding the episodic buffer, that is meant to contain images integrating 
phonological, visual and spatial information, and possibly information not covered 
in other systems (Baddeley 1992).

The DLPFC, the IFG, the ACC, and temporoparietal brain regions are suggested 
to account for WM processes (D’Esposito et al. 2000; Veltman et al. 2003). The 
phonological store is thought to be constituted by left parietal activations, whereas 
the rehearsal process is constituted by left prefrontal activations (Paulesu et al. 1993).

Bledowski et al. (2006) conducted a WM task to further analyze the mental chro-
nometry of WM retrieval on the basis of an fMRI-constrained source analysis in 
order to distinguish various subprocesses of WM abilities. The results indicated 
early BOLD activations within the inferior temporal cortex associated with the elec-
trophysiological N1 and P3a component, which were followed by responses of the 
posterior parietal cortex. Late responses were also observed in the ventrolateral pre-
frontal cortex as well as the medial frontal and premotor areas. The authors pro-
posed that these neural responses might reflect various cognitive stages during task 
processing, for example, perceptual evaluation (inferotemporal), storage buffer 
operations (posterior parietal cortex), active retrieval (ventrolateral prefrontal cor-
tex), and action selection (medial frontal and premotor cortex) (Bledowski 
et al. 2006).

Michels et al. (2010) used EEG-constrained fMRI analysis by introducing power 
value of an oscillation into the general linear model (GLM) as a covariate and iden-
tified the distribution patterns corresponding to theta and alpha activities under dif-
ferent loads (see Fig.  24.6). For theta power, these brain areas were mainly the 
medial prefrontal cortex and posterior parietal cortex (PPC). For alpha power, they 
were the DLPFC, PPC, and some other brain regions (Michels et al. 2010). In addi-
tion, the results indicate that low as well as high oscillatory activity are linked to 
neuronal activity during cognitive demanding processes (Michels et al. 2010).

An influence of memory load on the intensity and time course of EEG oscilla-
tions on WM was also demonstrated by a joint independent component analysis of 
EEG oscillations and fMRI activation (Zhao et al. 2017): time-locked activity of 
theta and beta were modulated by memory load in the early stimuli evaluation stage, 
corresponding to the enhanced activation in the frontal and parietal lobe, which 
were involved in stimulus discrimination, information encoding and delay-period 
activity (Zhao et al. 2017). During response selection, load-dependent changes in 
alpha and gamma activity are related to enhanced BOLD responses in frontal, tem-
poral, and parietal lobes, which played important roles in attention, information 
extraction, and memory retention (Zhao et al. 2017).

Executive dysfunction and deficits in working memory are common in various 
psychiatric diseases, for example, schizophrenia (Catafau et  al. 1994; Goldman- 
Rakic 1994). Functional MRI studies focusing on WM tasks in schizophrenic 
patients found abnormal activations especially in the PFC (Johnson et  al. 2006; 
Manoach et al. 2000; Tan et al. 2005). A combined EEG–fMRI study was designed 
to distinguish the effect of early perceptual stages from later, memory-related opera-
tions on WM capacities of schizophrenic patients (Haenschel et al. 2007). Perceptual 
and cognitive stages of WM performance were separated using ERP analysis. The 
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Fig. 24.6 EEG source localization (sLORETA) activation maps for the contrast of a cognitive 
more demanding task (five consonants) vs. an easier task (two consonants). (a) Theta (5–7 Hz) 
band power increased (p < 0.1) with load at the border of the MPFC and the ACC. (b) Alpha1 
(8–10 Hz) showed decreased (blue) activity (p < 0.05, corrected for multiple comparisons) at the 
border of the precuneus and the PCC with an increase of load. (c) Alpha2 (10–13 Hz) showed posi-
tive load modulations (p < 0.05, corrected for multiple comparisons) in the right middle occipital 
gyrus (cuneus, BA 18). The t values are plotted onto an MRI template (Michels et al. 2010)

results suggested that early aspects, indicated by the P1 amplitude, and late aspects 
of encoding and retrieval, represented by P370 amplitude, were reduced in patients 
compared to healthy controls. Furthermore, unlike healthy subjects, patients did not 
show a gradual increment of P1 along with increasing task demands. In patients, the 
P1 reduction was mirrored by reduced activation of visual areas. Altogether, the 
findings showed the relevance of early sensory deficits for higher level cognitive 
dysfunctions in schizophrenia (Haenschel et al. 2007).

The application of EEG–fMRI in boys with ADHD using a spatial WM scenario 
demonstrated that alpha ERD during encoding was associated with occipital acti-
vation and fronto-parieto-occipital functional connectivity (Lenartowicz et  al. 
2016; see Fig. 24.7). The authors concluded that this may indicate that the alpha 
ERD involves and perhaps arises as a result of top-down network interactions 
(Lenartowicz et al. 2016). Participants with primarily inattentive type ADHD dem-
onstrated weaker occipital activations whereas their fronto-parieto-occipital 
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connectivity was stronger. This may indicate a compensatory response of the atten-
tional system in modulating activity within occipital cortex. These results are inter-
preted as a unique, encoding-related ADHD deficit in fronto-parieto-occipital 
connectivity (Lenartowicz et al. 2016).

Several aspects of executive functioning, for example, verbal fluency and cogni-
tive flexibility, have not been addressed in EEG–fMRI studies so far. Functional 
dissociations of brain regions connected with flexible responses to task demands 
have been examined in functional MRI studies independent of EEG recordings. 
Regarding behavioral inhibition and decision-making, EEG–fMRI studies were 
conducted to further distinguish neural correlates of different aspects of cognition, 
for example, conflict-related and error-related tasks as well as response anticipation 
and response conflict. In addition, various processing stages of WM retrieval were 
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was observed in both ADHD and typical developing (TD) participants, was distributed spatially 
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was greater for higher load and in TD participants. A comparison of peak alpha power during pre- 
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est for alpha ERD analyses. Alpha ERD was also weaker in ADHD than in TD participants during 
preparatory practice, (d) pre-scanning and was significantly correlated with alpha ERD during 
scanning (e), indicating that between-subject variability was preserved in the concurrent EEG–
fMRI recordings. TD typically developing, ADHD attention-deficit hyperactivity disorder, ERD 
event-related desynchronization (Lenartowicz et al. 2016)
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decomposed (mental chronometry) using combined EEG–fMRI measurements. 
Furthermore, the brain activity of healthy subjects was compared to those associ-
ated with deficient executive processes in psychiatric patients: these studies pro-
vided evidence for distinct patterns of neural responses.

24.4  Memory

There are three main stages in the formation and retrieval of memory:

 1. encoding: processing and combining of received information
 2. storing of encoded information
 3. retrieval: calling back stored information

Irrespective of these criteria, memory processes can be classified according to 
the amount of information being processed, the duration of storage, and the kind of 
information being stored. The sensory memory stores impressions of sensory infor-
mation for the initial 200–500 ms after its presentation. Some of the information is 
transferred to the short-term memory and can be recalled for several seconds up to 
1  min. In the long-term memory, much larger quantities of information can be 
stored, and the information is potentially stored for an unlimited time period. In 
contrast to the sensory and the short-term memory, the information in the long-term 
memory is stored semantically. Long-term memory can be divided into the declara-
tive and the procedural memory (Anderson 1976). The declarative memory contains 
information that is explicitly stored and retrieved, for example, contact-independent 
facts (semantic memory) or personal memories such as emotions and personal asso-
ciations (episodic memory). The procedural memory, however, primarily contains 
cognitive und motor skills which have been formed primarily via repetition and 
without explicit learning.

Medial temporal lobes are assumed to reliably contribute to memory processes 
(Cabeza and Nyberg 2000; Yancey and Phelps 2001). Neurobiological responses 
during effective encoding and the formation of new declarative memories have been 
observed in medial temporal lobe structures, including the hippocampus and sur-
rounding parahippocampal cortices (Brewer et  al. 1998; Ofen et  al. 2007; Otten 
et al. 2002). The storage of information appeared to be related to a network of corti-
cal brain regions, for example, association cortices. Retrieval processes seemed to 
be associated with enhanced responses of the prefrontal cortex and temporal regions 
(Cabeza and Nyberg 2000; de Zubicaray et  al. 2007; Habib and Nyberg 2007; 
Henson 2005), intraparietal sulcus and precuneus (Henson et al. 2005), as well as 
the parietal cortex (de Zubicaray et al. 2007; Heun et al. 2004).

Iidaka et al. (2006) aimed at disentangling the conscious recollection of informa-
tion from familiarity-based judgments using fMRI and ERP. For this purpose, an 
old/new recognition task was designed. In addition, the level of processing was 
modulated in order to test whether retrieval activity in the cortical and subcortical 
structures was affected by the depth of processing during memory encoding. During 
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the encoding phase of the experiment, pictures were presented; in the deep- encoding 
condition, the subjects judged whether the picture was man-made or a natural 
object; in the shallow-encoding condition, the subjects judged whether the object 
was presented on the left or right side of the screen. The findings of the study were 
consistent with those of former studies supposing a frontoparietal involvement dur-
ing retrieval success. In addition, parietal activity associated with retrieval success 
produced by deeply encoded items was greater than that produced by the shallowly 
encoded item. In addition, the study provided some evidence that the left prefrontal 
cortex activation is primarily associated with the conscious and successful recogni-
tion of old items. In contrast, the right inferior parietal area was more likely to be 
related to familiarity-based judgment than to recollection-based judgment. The 
retrieval success was modulated by the functional connectivity in the left hemi-
sphere (Iidaka et al. 2006).

It has been demonstrated that recognition memory is underlied by two indepen-
dent processes: (1) recollection: a conscious retrieval of contextual information that 
is related to the late parietal old new effect; (2) familiarity: a contextual feeling of 
knowing that is associated with early mid-frontal old/new effect. An EEG-informed 
fMRI analysis demonstrated that activation in the right DLPFC and the right intra-
parietal sulcus was associated with the early frontal old/new effect. By contrast, 
activation in the right posterior hippocampus, parahippocampal cortex, and retro-
splenial cortex was associated with the amplitude of the late parietal old new effect 
(Hoppstadter et al. 2015).

An EEG-informed fMRI analysis during a face recognition task enabled a spa-
tiotemporal characterization of the complete cognitive process of face recognition. 
These results were improved in comparison with EEG and/or fMRI-only analyses 
(Wirsich et al. 2014).

Altogether, these studies demonstrated the possibility to distinguish BOLD 
responses associated with different aspects of task execution and related to a dif-
ferential temporal architecture using the integration of EEG–fMRI.

24.5  Limitations and Outlook

Present EEG–fMRI studies focusing on cognitive processes provided further infor-
mation, for example, about the localization of various aspects of cognitive process-
ing and ERP components. Therefore, variable methods were used, for example, the 
comparison of BOLD responses and localization of ERPs based on LORETA analy-
sis (Mulert et al. 2004), fMRI-constrained dipole models (Bledowski et al. 2004b; 
Crottaz-Herbette and Menon 2006), and single-trial analysis (Debener et al. 2006; 
Eichele et al. 2005). Single-trial analysis, additionally, enabled examinations about 
how aspects like habituation influenced task execution. Determining the influence 
of arousal and the default mode on cognitive functioning might belong to important 
aspects of further EEG–fMRI assessments, for instance, the question if and to what 
extent the default mode of brain activity, as represented by BOLD–fMRI, does 
account for event-related trial-by-trial fluctuations (Debener et al. 2006).
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Working memory studies revealed a chronological dissociation of prefrontal 
and parietal brain regions suggesting parallel as well as serial retrieval processes 
(Bledowski et al. 2006). In addition, a functional dissociation of various aspects 
of cognitive functioning was attempted in several studies: partial overlapping 
and distinct brain regions were related to error processing and conflict monitor-
ing (Mathalon et al. 2003) as well as response conflict and response anticipation 
(Fan et al. 2007). Furthermore, associations of BOLD responses and oscillations 
in various frequency bands were assessed (Meltzer et  al. 2007; Sammer 
et al. 2007).

So far, the number of simultaneous EEG–fMRI studies focusing on the examina-
tion of cognitive processes is limited: combined evaluations of electrophysiological 
and hemodynamic information, sometimes acquired through diverse samples, are 
still the majority. Conclusions to be possibly drawn from these studies, are limited 
because some of the main advantages of simultaneous studies are not achieved, for 
example, both parameters are not acquired under the same conditions probably 
resulting in differences regarding factors potentially influencing cognitive abilities 
like motivation, learning, habituation, and arousal.

Most of the existing simultaneous and combined EEG–fMRI studies investigat-
ing cognitive abilities focus on attention processes. Investigations dealing with 
other aspects of cognitive functioning such as executive functions and memory pro-
cesses are rare. One reason for this might be the fact that neurobiological aspects of 
attention take center stage in electrophysiological studies. These attention-related 
electrophysiological studies formed the basis for many EEG–fMRI measurements. 
Methodological difficulties might be the reason why some cognitive functions have 
rarely been analyzed: memory processes, for example, fundamentally rely on sub-
cortical brain functions, for example, the hippocampus. By contrast, the EEG is 
particular sensitive to post-synaptic potentials which are generated in superficial 
layers of the cortex. Electrical activity of deep structures contributes far less to the 
EEG signal. Thus, memory-related functional changes in deep brain structures can-
not be recorded reliably with electroencephalography. Another reason for the lim-
ited number of studies focusing on cognitive functions other than attention might be 
that executive functions, for example, comprise a number of different components; 
various tasks are used to acquire these processes. Functional results often vary 
clearly between tasks; small variations between task demands may already produce 
clear functional differences. Another problem arises through the examination of 
planning processes and the management of new problems: problems cease to be 
novel after the first administration of the test; therefore, they cannot be determined 
reliably using methods which depend on the iterative presentation of similar tasks 
(e.g., functional MRI, ERPs) (Burgess 1997; Denckla 1996). Lezak (1983) assumed 
that the examination of goal setting, structuring, and decision-making is difficult in 
the highly structured context of studies. In addition, due to the high complexity of 
executive tasks, basic nonexecutive processes like attention, memory, and motor 
skills might be triggered during task execution (Burgess 1997), various subpro-
cesses are likely, and similar behaviors can have quite different causes (Jurado and 
Rosselli 2007).
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Due to the limited number of studies regarding cognitive functions other than 
attention, this overview is one-sided. Various aspects of cognitive functioning were 
not accounted for according to their significance in cognitive psychology and 
research, respectively. The text was strongly determined by the number of EEG–
fMRI studies presented in literature so far. Often, only some aspects of a cognitive 
domain were accounted for during these studies.

Despite several difficulties to be considered in the evaluation of executive func-
tions, the examination of these processes might be particularly interesting: interac-
tions between primary sensory areas, unimodal and multimodal association cortices 
and prefrontal regions, as well as between various parts of the prefrontal cortex are 
assumed to be of some importance in executive functioning. EEG–fMRI could con-
tribute to the functional dissociation of these processes and their underlying brain 
responses. The assignment of subprocesses of cognitive functioning to various brain 
regions can be investigated using temporal information (“mental chronometry”). In 
addition, interactions between various sensoric and cognitive subprocesses, for 
example, encoding, comparison of new information with those stored in memory, 
and response preparation could be explored.

Another promising approach is the implementation of EEG–fMRI studies in 
the evaluation of neuropsychiatric diseases. Apart from structural deficits, a func-
tional disintegration of various brain structures and functions is thought to belong 
to the main neurobiological basis of these diseases. These deficits in brain func-
tions and functional interactions might be evaluated using EEG–fMRI studies and 
could contribute considerably to a further understanding of neurobiological 
aspects of these diseases. However, the examination of neurologic and psychiatric 
patients as well as children reveals limitations: EEG–fMRI investigations tend to 
be more stressful than single EEG and functional MRI recordings. Furthermore, 
the recordings are more time consuming, for example, the time required is signifi-
cantly influenced by the number of electrodes. Due to the extraordinary technical 
complexity, at present, the practicability in the daily clinical routine is limited. As 
a consequence, only three studies with psychiatric patients have been published so 
far. The relevance of this approach, however, was demonstrated, for example, in a 
study of Haenschel et  al. (2007). Their results indicated that working memory 
deficits of schizophrenic patients were not solely the consequence of dysfunction 
in prefrontal brain regions. More likely, early visual deficits contributed to these 
deficits.
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25Neuronal Models for EEG–fMRI 
Integration

Dora Hermes and Jeroen C. W. Siero

25.1  From Correlating Measurements to Models of Neuronal 
Population Activity

Imagine studying a machine that produces packages. This machine requires sup-
plies to make the packages and energy to fuel the machine. The mechanisms of the 
machine can be studied by counting the number of packages that it has produced, by 
counting the supplies needed or by calculating the energy that it has consumed. In 
general, these three measures will be correlated, since more packages will require 
more energy and supplies. However, the machine will use energy when it is turned 
on and measurements of energy usage will not give an accurate indication of when 
a package is produced. Also, the number of supplied may not always match the 
packages produced, since some supplies may last a longer time compared to others.

Similarly, there are many different ways to study the human brain with each 
measurement providing a complementary view of brain function. Integrating differ-
ent measurements can thus provide additional information about brain function. 
Two of the most common measurements of human brain function are field poten-
tials and the blood oxygen–level-dependent (BOLD) response. Field potentials can 
be measured at varying scales with electroencephalography (EEG), magnetoen-
cephalography (MEG), electrocorticography (ECoG), stereo EEG (sEEG), or extra-
cellularly placed electrodes (local field potential, LFP). Field potentials measure the 
electrical activity of neuronal populations and have a timescale of milliseconds. The 
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Fig. 25.1 From correlating signals to modeling underlying neuronal activity. Many methods can 
be used to measure brain signals, such as fMRI, ECoG, MEG, Utah Array, and EEG. Approach 1: 
these signals can be correlated. Approach 2: each of these signals is generated, either directly or 
indirectly, by a neuronal (or vascular) population

BOLD response, on the other hand, is most commonly measured in humans with 
functional MRI (fMRI). The BOLD response is driven by blood flow, blood volume, 
and oxygen metabolism and evolves over seconds. EEG and fMRI thus measure 
brain function in fundamentally different ways: EEG measuring the potentials gen-
erated by millions of neurons with millisecond accuracy and fMRI measuring slow 
hemodynamic changes with precision of a few millimeters.

To better understand these techniques, many studies have directly correlated the 
measured signals (Fig. 25.1, left). These direct comparisons have established impor-
tant common patterns of how signals correlate but have also revealed many discrep-
ancies. To better understand these various findings, this chapter considers the fact 
that these signals are population signals that integrate activity of thousands of neu-
rons (Fig. 25.1, right). An empirically driven modeling framework is provided and 
discussed, with simplified abstractions that establish an understanding of how sig-
nals pool over large neuronal populations in different measurements and spatiotem-
poral scales.

25.2  Direct Correlations Between Field Potentials and BOLD

Many studies have correlated the fMRI signal with neurophysiology measurements, 
including firing rates and field potentials. Firing rates sometimes correlate well with 
the BOLD signal (Murphy et  al. 2018), and measurements in visual cortex have 
shown that BOLD and firing rates have a similar contrast response function (Heeger 
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et al. 2000; Lima et al. 2014). However, firing is unlikely to be the main drive of the 
BOLD signal: simultaneous measurements of cerebral blood flow and firing rates in 
the cerebellum of the rat have shown that BOLD signals continue even when neuro-
nal firing is inhibited (Mathiesen et al. 1998). In addition, Logothetis et al., simulta-
neously measured fMRI, firing rates, and LFPs in macaque visual cortex using an 
in-house build MRI scanner (Logothetis et al. 2001). They found that during visual 
stimulation of different durations only the high-frequency power changes in the 
LFP (ranging from 40 to 130 Hz) correlated with the BOLD signal, whereas firing 
rates did not. Since the LFP is largely driven by synaptic inputs, this study con-
cluded that synaptic inputs are the main neurophysiological basis driving the BOLD 
response and firing rates (neuronal output) are not.

Many studies have since replicated the finding that high-frequency power 
changes correlate positively with the BOLD signal. Correlations between BOLD 
and high-frequency power changes have been found in visual cortex, motor cortex, 
language areas, or auditory cortex in both humans and nonhuman primates (Hermes 
et  al. 2011, 2014, 2017; Mukamel et  al. 2005; Ojemann et  al. 2013; Siero et  al. 
2014). However, these studies have also noted exceptions. First, power changes 
from 40 to 130  Hz do not always correlate with BOLD; the BOLD signal can 
increase without concurrent field potential changes (Sirotin and Das 2009) or 
MEG–measured gamma band signals can increase in power without matching 
BOLD changes (Muthukumaraswamy and Singh 2008). Second, power changes 
from 40 to 130 Hz are not the only correlate of the BOLD signal; low-frequency 
power changes (<24 Hz) also correlate with BOLD and explain variance in addition 
to high frequencies (Hermes et al. 2011; Magri et al. 2012; Scheeringa et al. 2011; 
Murta et al. 2017). Thirdly, to make things more complicated, high-frequency power 
changes from 40 to 130  Hz include different signals, such as broadband power 
changes and narrowband (oscillatory gamma) power changes (Hermes et al. 2015; 
Ray and Maunsell 2011). Therefore, even though high-frequency power changes 
often correlate with BOLD, it is too simple to consider the BOLD signal simply as 
the low-pass filtered signal of one signal measured in the field potential.

25.3  Neuronal Population Activity and the BOLD Signal

The BOLD signal is driven by changes in the amount of deoxyhemoglobin in the 
blood (Ogawa et al. 1990). This amount is influenced by changes in blood flow 
and blood volume but also by changes in the metabolic rate of oxygen. A widely 
used framework that combines the aforementioned hemodynamics and oxygen 
metabolism into a predicted BOLD response is the “balloon” model (Buxton and 
Frank 1997; Buxton et al. 2004; Mandeville et al. 1999). The complex cascade of 
how neuronal activity results in these hemodynamic changes is the realm of neu-
rovascular coupling, which is an area of ongoing investigation and has been 
described elsewhere (Attwell et al. 2010; Hillman 2014; Iadecola 2017). It should 
be noted that not only neurovascular coupling mechanisms drive the BOLD 
response; the physiological baseline state (such as resting blood flow) and the 
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organization of the cerebral vasculature also modulate the BOLD response. 
These “passive” modulators will likely impact the BOLD response more domi-
nantly with increased spatiotemporal fMRI resolution. Rather than going into 
these details, this chapter is meant to provide a simplified modeling framework 
that provides intuition into how the EEG and BOLD signals integrate neuronal 
population activity.

As stated above, the BOLD response correlates better with synaptic activity 
compared to firing rates and several models have therefore modeled the BOLD 
response as a function of synaptic activity. Some of these previous models have 
captured nonlinear components in terms of scaling and amplitude to relate synaptic 
activity and the BOLD response (Friston et al. 2000). However, a simple rescaling 
of positive inputs to capture BOLD changes is not sufficient because both depolar-
ization and hyperpolarization of cells can result in increases in the BOLD signal 
(Mathiesen et al. 1998; Caesar et al. 2003; Uhlirova et al. 2016). Adding a nonlin-
earity that captures this aspect, such as the power of the membrane fluctuations 
(with zero indicating rest), is therefore necessary. Therefore, we have made the 
assumption that the power is (linearly) summed across a neuronal population of n 
neurons (Hermes et al. 2017), which responds to a stimulus or task during a brief 
epoch (time 0 to T):

 

BOLD d∝ ⋅ ( )( )
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n T

iI t t
0

2

 
(25.1)

Each neuron produces a time-varying transmembrane current, denoted as Ii(t) for 
the ith neuron, resulting from the transmembrane potential.

Assuming this, relation between transmembrane currents and the BOLD signal 
has two consequences. Firstly, subthreshold membrane fluctuations can have a 
large effect on the BOLD signal while not resulting in changes in neuronal firing 
(Saalmann and Kastner 2009). Secondly, inhibitory inputs that reduce the mem-
brane potential either can increase the BOLD signal, if they hyperpolarize the 
membrane potential, or they can decrease the BOLD signal in case they decrease 
the depolarization of the membrane potential, bringing it closer to the resting 
potential.

25.4  Neuronal Population Activity and Field 
Potential Measurements

Field potentials can be measured at different scales with penetrating electrodes 
measuring the LFP, to sEEG, ECoG, MEG, or EEG. The electrical fields generated 
by groups of neurons influence these signals: LFPs measured with penetrating elec-
trodes integrate within ~250 μM of the electrode (Katzner et al. 2009) while ECoG 
electrodes typically have a size of ~2.4 mm in diameter, and EEG/MEG integrates 
even larger areas of cortex (Dale and Halgren 2001). While the number of neurons 
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measured with each and the sources of noise thus differ, these measures have in 
common that they arise largely from the electrical fields generated by synaptic 
transmembrane currents (Buzsáki et al. 2012).

If we assume that transmembrane currents form the most important contribu-
tion to field potential measurements, the contribution for each neuron to the field 
potential can be approximated by αi × Ii(t), with I(t) the transmembrane current 
as in Eq. (25.1) (Hermes et al. 2017). The term αi depends on the distance and 
orientation of the neuron with respect to the electrode as well as an electrode’s 
impedance. If we then assume, for simplicity, that each neuron is equidistant 
from the electrode and has the same orientation, like pyramidal neurons perpen-
dicular to the cortical surface; therefore, its contribution to the electrode mea-
surement is scaled by the same constant, α, and these neurons act together like a 
single, equivalent circuit; hence the LFP time series will sum the contribution 
from each neuron.

 
LFP t I t
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n

i( ) = ⋅ ( )∑α
 

(25.2)

Field potential recordings are often summarized in the power spectrum. When 
the power spectrum is summarized over a small time window T, it can be summa-
rized as:
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With T a time segment and n the number of neurons and α a constant (a factor 1/T 
could be added to get the average power). Interestingly, the power of the sum is 
mathematically equivalent to the sum of the power, plus the cross power:
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Therefore, if we approximate the LFP power by the power of the sum of the 
membrane currents, the LFP is highly sensitive to both the absolute power (any 
changes from baseline) and the coherence (cross power) between neuronal mem-
brane fluctuations. Any inputs that are synchronous across neurons will thus have a 
large influence on the LFP.

25.5  Theoretical Predictions for BOLD and Field 
Potential Measurements

The described modeling framework makes several predictions. Let’s consider LFP 
and fMRI signals from one neuronal population and look back at Eqs. (25.1) and 
(25.3). In Eq. (25.1), the BOLD signal was proportional to the sum of the power, 
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whereas in Eq. (25.3) the field potential power is proportional to the power of the 
sum of the membrane currents. There is a specific mathematical relation between 
the power of the sum and the sum of the power: the power of the sum is equal to the 
sum of the power plus the cross power. Applying this theorem to our models of the 
LFP and BOLD signal gives:

 

LFPpower BOLD d= ⋅ + ⋅ ( ) ⋅ ( )( )









≠
∑ ∫α

β α
i j

n T

i jI t I t t
0  

(25.5)

which predicts that if the cross power is large, BOLD and LFPs will not be tightly 
correlated (Hermes et al. 2017; Butler et al. 2017; Murta et al. 2016).

To be able to make predictions using this framework, we have to consider 
the membrane currents to simulate. Previous studies correlating BOLD and 
field potential measurement have reported that high-frequency broadband sig-
nals often correlate with BOLD, narrowband gamma oscillations sometimes 
correlate with BOLD and sometimes do not, and that alpha power decreases are 
often negatively correlated with BOLD. In order to test what kind of predic-
tions Eqs. (25.1), (25.3), and (25.5) make for the BOLD signal and LFP, we 
thus need to simulate membrane currents that generate high-frequency broad-
band signals, narrowband gamma oscillations, and low-frequency alpha power 
changes. We thus consider the theory behind these particular spectral 
components.

25.6  Theories About Field Potential Components

25.6.1  Broadband Power Changes

A neuronal population receives many inputs: each neuron has about 4 × 103 syn-
apses, and neurons in 1 mm (Lima et al. 2014) have about 5 × 108 synapses. The 
temporal properties of the excitatory and inhibitory inputs to a neuronal population 
will influence the properties of the measured field potential. The incoming presyn-
aptic action potentials occur most randomly with arrival times that follow a Poisson 
distribution. These arriving spikes are filtered with a postsynaptic potential with 
exponential decay (Fig. 25.2), followed by integration across 6000 synapses. Charge 
accumulates over time and is lost, ohmically, across the dendritic membrane 
(Fig. 25.2) and is integrated across neurons. This will result in a random walk pro-
cess with a power spectrum that has a shape of 1/fn (Fig. 25.2) (Miller et al. 2009, 
2010). In this model, increases in the arriving spiking rate will then result in broad-
band increases across all frequencies, as has been observed with intracranial 
measurements.
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Fig. 25.2 A simulation of ECoG broadband field potentials. Left: Step 1: The model of the ECoG 
signal adapted from (Miller et al. 2009, 2010) uses Poisson-distributed action potential (AP) times 
drawn from a random distribution, we model 6000 of these. Step 2: We model the postsynaptic 

current with a time dependence of τ2 = 40 ms with a shape of t e t s13 1× − /τ  as in (Miller et al. 2009, 
2010). Step 3: Inputs from the synapses are summed at each point in time, resulting in time course 

W(t). Step 4: The time course of the broadband potential B(t) of a single neuron is generated by 

temporal integration with ohmic leakage according to 
d

d
B t
t

B t W t( )
= − ( ) + ( )α , with timescale 

α−1 = 200 ms. Step 5: The modeling was performed for the summation of six model neurons. Right: 
The PSD from this simulation in a double logarithmic plot. The black line indicates the simulation 
using an input rate of 10 spikes/s, and the red line indicates the simulation using an input rate of 
40 spikes/s. Evident in this simulation is that LFP broadband power increases when the input spike 
rate increases. (Adapted from Miller et al. 2009; Miller et al. 2010)

25.6.2  Peaks in the Field Potential Power Spectrum in the Range 
from 30 to 80 Hz

Field potentials sometimes show a peak in the power spectrum at frequencies 
between 30 and 80 Hz. Peaks in the power spectrum can be evoked by regular per-
ceptual inputs, such as light flashing at 30 Hz resulting in regular synaptic inputs in 
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visual cortex, which evoke a peak in the power spectrum at the stimulation fre-
quency. Even when cortex is not stimulated in rhythmic fashion, peaks in the power 
spectrum between 30 and 80 Hz are commonly observed. Gamma oscillations were 
first observed in hippocampus (Buzsáki et al. 1983), and when high-contrast grating 
patterns are presented, visual cortex typically shows large narrowband gamma 
oscillations at frequencies ranging from 30 to 80 Hz (Hermes et al. 2015; Ray and 
Maunsell 2011; Jia et al. 2013; Bartoli et al. 2019).

Gamma oscillations are thought to be generated by loops between excitatory and 
inhibitory neurons (Buzsáki et al. 2012; Buzsáki and Wang 2012). Recordings from 
mouse visual cortex have shown that membrane potentials of pyramidal and 
parvalbumin- positive interneurons can oscillate in these ranges (Perrenoud et  al. 
2016), and models of such an E/I circuit can generate gamma oscillations that match 
those observed in macaque visual cortex (Jia et al. 2013; Kang et al. 2010). These 
gamma oscillations are often coherent between neurons and indicate a level of neu-
ronal synchrony at the population level. Note that following Eq. (25.4), synchro-
nous activity will have a large contribution to the LFP, as it contributed to the cross 
power between neurons. However, Eq. (25.1) predicts that it will have little effect on 
the BOLD signal.

25.6.3  Low Frequency Alpha Oscillations

Peaks in the power spectrum of field potentials can also occur at lower frequen-
cies, around 5, 10, or 20 Hz. Oscillations around 10 Hz measured with EEG on 
occipital areas were already observed in the 1930s by Berger when subjects closed 
their eyes (Berger 1931). While frequency ranges are typically characterized with 
theta (3–8 Hz), alpha (9–12 Hz), and beta (12–24 Hz) ranges, it is important to 
consider that a peak at 10 Hz in one brain area, such as visual cortex, probably has 
different underlying mechanism as a 10-Hz peak in motor cortex, and even alpha 
oscillations in visual cortex can already have various underlying sources 
(Bollimunta et  al. 2008). While such variability makes it extremely difficult to 
make general observations about the roles and neuronal substrates of these oscil-
lations, we consider one recent idea that can be used to explain why low frequen-
cies often correlate negatively with the BOLD signal: oscillations may show 
asymmetry (Cole and Voytek 2017; Jensen and Mazaheri 2010; Schalk 2015; 
Schalk et al. 2017).

Asymmetric oscillations do not oscillate around zero but push the signal up or 
down. Several previous studies have proposed that asymmetric low-frequency 
oscillations may be related to rhythmic, inhibitory inputs (Jensen and Mazaheri 
2010; Schalk 2015). In this case, inhibitory synaptic inputs arrive at regular inter-
vals, for example, around 10 Hz, at pyramidal neurons. This pulsed inhibition can 
push the membrane potential down in a rhythmic fashion (Fig. 25.3), making it 
more difficult to generate action potentials. This may explain why at the same time 
cortex is more inhibited (at certain phases of the oscillation) when oscillatory 
power is increased.
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Fig. 25.3 Asymmetric oscillations are hypothesized to 
change excitability. A schematic of an oscillation in the 
membrane potential of a neuron that is asymmetric. Because 
the oscillation is asymmetric, an increase in power results in 
either repolarization or hyperpolarization of the membrane 
potential, decreasing excitability. Conversely, decreases in 
power result in a more depolarized membrane potential, 
increasing excitability. (Figure adapted from Schalk 2015)

25.6.4  Measured Field Potential Data Will Be a Summation Across 
All Underlying Processes

Field potential data reflect the activity of large populations of neurons that receive 
hundreds and thousands of inputs. As a result, different processes will be reflected 
in the observed power spectrum. It is thus possible to simultaneously observe broad-
band, narrowband gamma and low-frequency power changes (Hermes et al. 2017). 
Interpreting each frequency band individually becomes a problem in this case (Cole 
and Voytek 2017) as different processes can overlap in the power spectrum. When 
relating the different frequency bands of field potential data to the evoked BOLD 
responses, it is thus necessary to find a paradigm in which frequency band-specific 
processes are independently driven, as different predictive variables cannot be dis-
tinguished when they are correlated.

25.7  Predicting Empirical Data with This 
Modeling Framework

In previous work testing this modeling framework, we measured ECoG data in 
which visual stimuli drove broadband, gamma and alpha power changes in different 
manner (Hermes et  al. 2017, 2015). The underlying activity driving broadband, 
gamma and alpha power changes were modeled according to the theories: broad-
band signals were driven by random membrane currents, uncorrelated across neu-
rons, gamma oscillations were driven by changes in synchrony across neurons and 
alpha power changes were driven by asymmetric oscillations with fixed coherence 
across neurons and varying amplitude pushing the membrane potential from a small 
offset to zero (with zero indicating the resting potential; Fig. 25.4). These random 
broadband, gamma and alpha inputs were summed in each neuron followed by a 
leaky integration. Then, a summation across neurons resulted in a simulated field 
potential with a certain amplitude of broadband, gamma and alpha.

It is impossible to know whether the measured field potentials were driven 
exactly by these inputs. Infinite source resolutions are possible, but intracellular and 
laminar recordings can provide valuable insight into neurophysiology driving the 
measured field potential signals at the mesoscale.

Simulated field potentials can be fit to ECoG data, for example, to recordings in 
human visual cortex (Hermes et al. 2017). The simulated ECoG and BOLD outputs 
explained why the data show strong correlations between broadband and BOLD, no 
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a b c

Fig. 25.4 Simulated local field potential (LFP). (a) Three different inputs to each neuron were 
simulated: a broadband, random input with a small positive offset (C1), an oscillatory input with a 
timescale of 40–60 Hz (C2), and a negative input with a timescale of 10 Hz (C3). (b) The three 
inputs (C1, C2, C3) were summed in each neuron to produce the total input to the neuron. (c) The 
total input was passed through a leaky integrator to produce the dendritic dipole current (Ii). The 
LFP was simulated by summing the dendritic currents. (Adapted from Hermes et al. 2017)
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Fig. 25.5 The correlation between ECoG and BOLD signals for measured and simulated V1 and 
V2 sites. The locations of a sample electrode in V1 and V2 are indicated by the enlarged white 
discs on the cortical surface. (a) In a foveal V1 site, the broadband ECoG amplitude accurately 
predicts the BOLD signal across several stimuli (left). Error bars show 68% confidence intervals 
across bootstraps. Narrowband gamma power (center) and alpha power (right) were uncorrelated 
with BOLD. (b) In a V2 site, the broadband ECoG was weakly correlated with BOLD (left). 
Narrowband gamma did not predict BOLD (middle). Alpha was negatively correlated with BOLD 
(right). (c, d) The same as (a) and (b) but for simulated neuronal population data fit to the V1 and 
V2 ECoG data. The trend lines are least square fits to the eight stimulus conditions plotted. The R2 
values are the coefficients of determination computed by cross-validation. The black outlines indi-
cate the reliable predictors of the BOLD signal: broadband in V1, broadband and alpha in V2/V3. 
(Adapted from Hermes et al. 2017)

correlation between gamma and BOLD, and negative correlation between alpha and 
BOLD in some of the electrodes located on V2 and V3, but generally not on V1 
(Fig. 25.5). These findings match previous observations that broadband and BOLD 

D. Hermes and J. C. W. Siero



635

are generally correlated, BOLD and gamma sometimes correlate, and low- frequency 
alpha decreases explain additional variance in BOLD increase.

25.8  Discussion

In order to integrate field potential and fMRI data, it is necessary to make assump-
tions about the neuronal activity driving the field potential signals. Understanding 
whether mesoscale signals are paired with neuronal synchrony or hyperpolarization 
or depolarization of the membrane has a large effect on the field potential or on the 
energy demand.

In the example in visual cortex, we made assumptions about broadband, gamma 
and alpha signals in visual cortex. The level of broadband was driven entirely by 
activity and not by synchrony, whereas the opposite was true for gamma. When we 
changed these assumptions, for example, broadband being entirely driven by syn-
chrony rather than amplitude, the model predictions did not explain the data as well 
(Hermes et al. 2017). These assumptions were based on previous studies measuring 
at smaller scales, and understanding the sources of population (mesoscale) signals 
throughout the human brain is a large challenge.

The modeling framework of how BOLD and field potential signals integrate 
across neuronal populations provides an intuition for why certain correlations and 
differences can be observed. Modeling neuronal synchrony is important to explain 
why some studies have reported strong correlations between gamma oscillations 
and BOLD and while others have not: BOLD will only correlate with a synchronous 
signal when synchrony is also paired with the level of activity. Other studies have 
similarly shown that synchrony differently drives BOLD and EEG signals (Butler 
et al. 2017). This is an important consideration in applications for epilepsy, where 
synchrony can have large effects on the measured field potential (Murta et al. 2016).

Modeling asymmetric oscillations and assuming a nonlinearity in which positive 
and negative deflections from the resting potential result in BOLD increases could 
explain negative correlations between BOLD and alpha oscillations. Many previous 
studies have found negative correlations between BOLD and various low-frequency 
power (Hermes et al. 2011, 2014; Scheeringa et al. 2011; Murta et al. 2017; Maier 
et al. 2008; Conner et al. 2011). Whether the asymmetries assumed in the current 
simulation extend to other brain regions and task conditions is an open question.

Model predictions can be empirically tested and further modified. For example, 
can this modeling framework explain measured relations between slow cortical 
potentials and BOLD (He and Raichle 2009)? Extending this framework and testing 
its limitations can help better understand the signals measured in the human brain.

25.9  Conclusion

Measuring a machine with many tools can help assess its function (or dysfunction). 
Each measurement of human brain function similarly reflects a different aspect of a 
system, and fMRI, EEG, MEG, ECoG, LFPs will all inform in a different way about 
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the underlying system. For example, field potentials are highly sensitive to neuronal 
synchrony, while the fMRI signal is not. When combining measurements, and mak-
ing models to integrate EEG and fMRI, it is necessary to take a step back to take 
into account how each measurement pools neuronal population activity.
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26BOLD-Response and EEG Gamma 
Oscillations

Gregor Leicht, Christoph S. Herrmann, 
and Christoph Mulert

26.1  Introduction

While techniques like Positron Emission Tomography (PET) or functional Magnetic 
Resonance Imaging (fMRI) allowing us to investigate brain activity with high spa-
tial resolution are indirect measurements of brain activity, loosing most or all of the 
temporal resolution of neuronal activity, some conclusions are possible about how 
brain regions interact (Friston 2002). However, detailed questions about how infor-
mation is processed by the brain and how brain regions cooperate can only be 
answered sufficiently if the real temporal dynamics of brain activity is considered 
(Engel and Singer 2001). In this context, much effort has been made to explore the 
role of high-frequency oscillations in the gamma band.

The integration of the high temporal resolution of EEG with the high spatial 
resolution of fMRI provides the possibility to look for correlations between human 
EEG gamma band responses and BOLD response in combined experiments. In this 
chapter, we discuss recent developments and findings in this field and present some 
data from EEG and fMRI recordings.
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The rhythmic activities in the resting or “spontaneous” EEG are usually divided 
into several frequency bands (delta: <4 Hz; theta: 4–8 Hz; alpha: 8–12 Hz; beta: 
12–30 Hz; and gamma: 30–70 Hz or higher, centered at 40 Hz) which are associ-
ated with different behavioral states, ranging from sleep to relaxation, heightened 
alertness, and mental concentration (Lindsley 1952; Niedermeyer and Lopes Da 
Silva 2004; Nunez 1995). High-frequency EEG oscillations such as gamma oscil-
lations can be measured on the scalp with relatively small amplitudes due to the 
fact that scalp EEG recording sensors are physically separated from intracranial 
activities by the resistive skull tissue acting as a low-pass filter. Since the ampli-
tudes of the EEG oscillations decrease with increasing frequencies, the impor-
tance of high-frequency EEG oscillations like gamma oscillations with respect to 
cognitive functions and disorders is often underestimated, compared to slower 
oscillations. However, in recent years, special interest for oscillations in the 
gamma frequency range has emerged in neuroscience because there is a lot of 
evidence for a close correlation of gamma activity and cognitive functions (Engel 
and Singer 2001).

Evidence from neuropsychological and physiological studies suggests that 
consciousness and its different aspects, like sensory awareness for example, has 
to be understood as a cooperating system of several different brain regions, such 
as structures responsible for sensory perception, memory functions, executive 
control, or manipulation of emotion and motivation (Delacour 1997; Young and 
Pigott 1999). Theories about the neural correlates of consciousness must explain 
how multiple component processes can be integrated and which mechanisms 
underlie the dynamic selection of specific components of neuronal responses 
gaining access to consciousness from all available information. For both aspects, 
so called “neuronal binding” seems to play an important role (Crick and Koch 
1990; Engel and Singer 2001). The concept of dynamic binding by synchroniza-
tion of neuronal discharges has been developed mainly in the context of percep-
tual processing and was first introduced in the context of feature integration (Gray 
et  al. 1989; Treisman 1996) and perceptual segmentation (von der Malsburg 
1994). The synchronization of activity in neuronal assemblies appears to support 
specific processes during neural communication, whereas the behavioral specific-
ity of synchronization phenomena suggests a functional role of synchronized 
activity for neural information processing (Fries 2005). Meanwhile, the concept 
of binding has been applied to many different domains and is now employed in 
theories on object recognition (Hummel and Biederman 1992), arousal (Struber 
et  al. 2000), attention (Fell et  al. 2003; Niebur et  al. 1993; Pantev et  al. 1991; 
Tiitinen et  al. 1993), memory formation and recall (Damasio 1990; Herrmann 
et  al. 2004), motor control (Murthy and Fetz 1992), sensorimotor integration 
(Roelfsema et al. 1997), and language processing (Eulitz et al. 1996; Pulvermuller 
1999; Pulvermuller et al. 1995).

In the context of the theory of neuronal binding, the synchronous firing of neu-
rons in the gamma band was proposed to represent an important integration 
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mechanism of the brain (Gray et al. 1989). The gamma frequency range is defined 
substantially different across various studies. Whereas some human studies have 
mostly focused on activity around 40 Hz (Eckhorn et al. 1988; Tallon-Baudry et al. 
1996), others explicitly investigated activity in higher frequency ranges (Crone 
et al. 2001; Lachaux et al. 2005; Muller and Keil 2004). Animal data have even 
considered gamma activity in still higher frequency ranges above 100 Hz (Bragin 
et al. 1995; Neuenschwander and Singer 1996).

26.2  Methodical Issues

Different methods have been suggested in order to investigate the relationship 
between fMRI and special oscillatory EEG components. Compared to the analysis 
of EEG components with slower frequencies, the investigation of high-frequency 
oscillations such as gamma oscillations produces additional difficulties. Since the 
skull tissue acts as a low-pass filter, high-frequency EEG oscillations can be mea-
sured on the scalp with relatively small amplitudes. Therefore, signal-to-noise ratio 
for these subtle EEG rhythms is usually low, especially in the MRI environment 
with high artifact contamination. Moreover, the clear separation of high-frequency 
activity from other frequency components is difficult, as it is often masked by more 
prominent, slower oscillatory EEG components. Statistical methods like principal 
component analysis (PCA) or independent component analysis (ICA) seem to pres-
ent possible solutions for this problem. Additionally, functional modulation of indi-
vidual rhythm strength, for example, by experimental tasks, should facilitate the 
identification of subtle EEG rhythms as an individual component (Ritter and 
Villringer 2006).

Concerning technical problems, a sufficient analysis of EEG gamma activity 
recorded during simultaneous EEG/fMRI measurement is hampered by EEG arti-
facts caused by the MRI environment. Namely, high frequency ranges of the EEG 
data are corrupted by the gradient artifact produced by the magnetic field gradient 
switching needed for imaging.

In order to improve the quality of EEG data in simultaneous EEG–MRI experi-
ments, especially regarding high-frequency EEG components, Anami et al. intro-
duced the so called “stepping stone sampling” method (Anami et  al. 2003). By 
modifying a blip-type echo planar sequence, EEG sampling at a digitization rate of 
1000 Hz is exclusively done in a period in which the gradient artifact resides around 
the baseline level. This method was able to substantially attenuate the amplitude of 
the imaging artifact. Here, periodically artifact-free interspaces emerged (“sparse 
fMRI sequence”) that allowed EEG sampling with a high signal-to-artifact ratio. 
Analyses with Fast Fourier transform showed, apart from successful retrieval of 
physiological α-activity, that the high-frequency EEG during scanning had very 
similar power distributions compared to data recorded outside the MRI scanner 
(Anami et al. 2003).
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Sparse fMRI sequences result in some limitations in the temporal sampling or 
spatial coverage of the fMRI data acquired, which are due to long TRs and/or a 
small number of slices in sparse sequences. In order to overcome these limita-
tions, multiband fMRI can be used in order to shorten TRs and acquisition time 
and increase brain coverage for a given TR, which would lengthen the gradient-
free time window in which EEG data can be collected (Uji et al. 2018). Using 
this approach, Uji et al. demonstrated a positive correlation between gamma and 
BOLD responses in motor regions in response to index finger abduction (Uji 
et al. 2018).

Mandelkow et al. reported an improved EEG quality increasing the usable band-
width of the EEG signal to higher frequencies after synchronization of the MRI 
sequence with the sampling pattern of the EEG (Mandelkow et al. 2006). This was 
done by synchronizing the internal clocks of both the MRI and the EEG acquisition 
system and setting the TR of the MRI sequence a multiple of the EEG sampling 
interval. This way, the variability of the notorious MRI artifact was reduced and its 
removal by means of the established method of averaged artifact subtraction was 
facilitated. A direct comparison of EEG spectra from recordings done with and 
without synchronization showed that the usable bandwidth of the EEG signal was 
increased to about 150  Hz, thus covering the full gamma frequency range 
(Mandelkow et al. 2006).

Freyer et al. demonstrated, that even ultrafast EEG oscillations above 100 Hz can 
be continuously monitored during fMRI, if the acquisition of EEG–fMRI data is 
optimized regarding the invariantly sampling of gradient artifacts (necessary for 
optimal averaged artifact subtraction), and the artifact correction is extended by 
methods coping with sources of gradient artifact variations such as subject move-
ments and by an elimination of residual artifacts by means of principal component 
analysis (Freyer et al. 2009). Moreover, EEG source reconstruction methods have 
been shown to be helpful regarding the management of the gradient artifact, which 
even more applies to high channel density EEG setups. The use of a source recon-
struction approach using the beamforming method was reported to facilitate the 
recording of effects in the gamma frequency range even at magnetic field strength 
of 7 T (Brookes et al. 2009).

Another example of EEG artifacts in the gamma frequency range originating 
from the MRI environment is artifact in the range between 30 and 60 Hz generated 
by the helium pump of the MRI scanner. Switching this pump off for some time 
during the simultaneous EEG/fMRI recording can solve this problem (Mulert et al. 
2007) (see Fig. 26.1). A recursive approach for removing the helium-pump artifact 
by means of EEG-segment-based principal component analysis has been proposed 
by Kim et al. (2015). Another systematic artifact in the gamma frequency range of 
the EEG signal may be induced by vibrations due to the internal ventilation system 
of certain MR scanners (Nierhaus et al. 2013).
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a

b c

Fig. 26.1 EEG in the MRI environment. Effects of artifacts caused by the fMRI scanners helium 
pump to the EEG frequency spectrum shown in a FFT analysis. (a) Left side: Helium pump 
switched ON, right side: Helium pump switched OFF. (b) FFT analysis with pump artifacts which 
can clearly be recognized in the frequency range between 40 and 60 Hz. (c) FFT analysis without 
pump artifacts. Data were recorded on a Siemens Sonata 1.5 T MRI scanner (Mulert et al. 2007)

26.3  Gamma activity and BOLD Response

26.3.1  Covariation of High Frequency Oscillations 
and BOLD Signal

In a seminal study, Logothetis et al. simultaneously recorded the BOLD signal and 
intracranial recordings of single-unit activity, multiunit activity, and local field 
potentials (LFPs) in monkeys (Logothetis 2002; Logothetis et  al. 2001). They 
reported that the time course of LFPs correlated best with that of the BOLD signal 
for rotating checkerboard stimuli of variable durations. Such LFPs typically show 
discharges at frequencies in the gamma frequency range (approx. 30–80  Hz). 
Subsequently, recordings in cats and monkeys revealed that correlations between 
LFPs and BOLD signal are especially high in the gamma band frequency range 
(Niessing et al. 2005; Hutchison et al. 2015).

Similar results were found in studies combining fMRI and intracranial EEG 
recordings in human epilepsy patients, for example, by correlating intra-cortical 
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a b

c d

Fig. 26.2 Correlation maps between the fMRI BOLD signal and different EEG frequency com-
ponents. (a) The correlation of the different local field potential (LFP) predictors of one patient 
with the average fMRI BOLD signal in Heschl’s gyrus (orange trace) and with the spike predictor 
calculated from the sum of auditory responses of 20 single neurons convolved with a standard 
hemodynamic response function (cyan trace) as a function of frequency bands. Note the strong 
negative correlations between the BOLD activation and the low-frequency LFPs (5–15 Hz) and the 
strong positive correlation with the high-frequency LFPs (40–130 Hz). (b–d) Multisubject random 
effect GLM map correlating the BOLD signal of six participants with the low-frequency (5–15 Hz) 
LFP predictor (b), the high-frequency (40–130 Hz) LFP predictor (c), and the spike predictor (d). 
LS, lateral sulcus; STS, superior temporal sulcus; HG, Heschl’s gyrus; RH and LH, right and left 
hemisphere, respectively. Arrowheads point to regions of highly significant correlation in Heschl’s 
gyrus. (From: Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., and Malach, R. Coupling 
between neuronal firing, field potentials, and FMRI in human auditory cortex. Science (2005) 
309(5736):951–4. Reprinted with permission from AAAS)

electrophysiological recordings in the auditory cortex of two neurosurgical patients 
and BOLD responses from 11 healthy subjects during presentation of an identical 
movie segment (Mukamel et al. 2005). A predicted fMRI signal derived from the 
spiking activity of single neurons of the patients and the measured fMRI signal from 
the auditory cortex of the healthy subjects showed a highly significant correlation, 
especially for high-frequency local field potentials (see Fig. 26.2).

By investigating three patients with epilepsy in separate measurements of intra-
cranial EEG recordings and fMRI, Lachaux et al. found spatially congruent patterns 
of BOLD responses and gamma activations in a visual cognitive task trying to answer 
the question whether fMRI has any predictive value about the anatomical location of 
cross-condition gamma band modulations (Lachaux et al. 2007) (see Fig. 26.3).

In intracranial EEG recordings of a single patient with epilepsy, Brovelli et al. 
found that it was possible to differentiate ERPs as well as beta frequency (15–30 Hz) 
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Fig. 26.3 Intracranial EEG sites with a stronger gamma energy increase in a contrast between two 
experimental conditions were significantly closer than the other sites to fMRI activation clusters 
revealed in the same contrast. 15 intracranial EEG sites for which the maximal duration of signifi-
cant gamma (40–150 Hz) energy difference between the two experimental conditions is longer 
than 100 ms (= strong gamma energy increase). For each site, this value corresponds to the dura-
tion of the longest time window, across all frequencies in the gamma band, during which the 
p-value for the Mann–Whitney comparison between the two conditions stays lower than 1 × 104. 
The markers’ shapes indicate which of the three patients was recorded. Sites closer than 10 mm 
(resp. 15 mm) away from the fMRI activation cluster (i.e., sets of contiguous voxels above the 
significance threshold) in the same contrast between the two conditions are shown in green (resp. 
blue). By contrast, the three “distant” EEG sites (shown in red, >15 mm away from an fMRI activa-
tion cluster) showed a later inversion of the earlier gamma energy increase causing the total gamma 
energy during the whole response window to be equivalent in the two conditions. This analysis 
revealed that 12 of these 15 (80%) sites with significant gamma energy increase were located 
<15 mm away from an fMRI activation cluster documenting an increase of BOLD-response. In 
comparison, only 35 of the 74 (47%) non-gamma sites (not displayed here) were <15 mm away 
from the fMRI activation cluster. (From: Hum Brain Mapp Vol. 28, No. 12, 2007, 1368–75. 
Copyright 2007 Wiley-Liss, Inc. Reprinted with permission of Wiley-Liss, Inc., a subsidiary of 
John Wiley & Sons, Inc.)

and gamma frequency (60–200 Hz) activity during processes of spatial attention 
and memory in contrast to motor intention processes. However, concerning the 
localization of intracranial electrodes, ERPs and beta frequency activity showed 
weak or no spatial relation with the BOLD response measured in a fMRI study in 
the same conditional visuomotor task, whereas the high gamma frequency activity 
did co-localize with fMRI regions of interest (Brovelli et al. 2005).

Foucher et al. tried to find an answer to the question why the auditory evoked P300 
and fMRI activations differ in response to the presentation of two kinds of rare events 
(i.e., Target and Novel stimulus in an oddball task). It was reported that the auditory 
evoked P300 is of lower amplitude when a Target has to be detected than when a 
Novel is presented, which is unrelated to the task. On the other hand, there are fMRI 
studies in which no Novel-related activation was reported although there were activa-
tions elicited by Targets (Clark et al. 2001; Kirino et al. 2000). These findings of dif-
ferential reactivity of event-related potentials (ERPs) and BOLD signal were replicated 
by Foucher et al. using combined measurement of EEG and fMRI. Additionally, in 
accordance with fMRI results, Target-related gamma oscillations were more intense 
than their Novel-related counterparts (Foucher et al. 2003) (see Fig. 26.4). The authors 
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Fig. 26.4 FMRI results, evoked potentials (ERPs, P300) and event-related oscillations (EROs, 
gamma activity) calculated over all subjects (n = 5). The upper part presents three different views 
of the average electrode position relative to the areas with BOLD activation (threshold p ≤ 0.001, 
100 voxels; Target-related activation—red; Target-related deactivation—green; Novel-related (rare 
distractor) activation—blue). The lower part displays ERPs and EROs for each electrode (Targets—
red and “X” marks; Novels—blue and “no-smoking” symbol; frequent distractor—gray). On the 
one hand, for C3, Cz, C4 and Pz Novels (blue) yielded larger ERPs than Targets (red). On the other 
hand, for all the electrodes the EROs showed significantly more oscillations in the gamma fre-
quency range around 300–400 ms for Targets (red) in comparison to Novels (blue) which was in 
line with stronger fMRI BOLD response in the Target condition. (Reprinted from: Foucher, J. R., 
Otzenberger, H., and Gounot, D. The BOLD response and the gamma oscillations respond differ-
ently than evoked potentials: an interleaved EEG-fMRI study. BMC Neurosci (2003) 4:22)
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propounded a physiological hypothesis suggesting that the discrepancy shown 
between ERPs on the one hand and fMRI signal and gamma oscillation on the other 
hand support evidence demonstrating that the BOLD signal is better correlated with 
high- than with low-frequency oscillations. In search of reasons for this observation, 
the authors discuss the fact that, as opposed to ERPs reflecting synchronous activity 
of synapses within milliseconds (Baillet et  al. 2001; Speckmann and Elger 1999), 
event related gamma oscillations do not require to be time-locked to the stimulus that 
precisely and, therefore, are less dependent on the small jitter of the neuronal response 
relative to a stimulus (Tallon-Baudry and Bertrand 1999), like BOLD signal is. 
Furthermore, the authors mention the fact that ERPs reflect the synaptic input function 
of pyramidal cells only (Baillet et al. 2001; Speckmann and Elger 1999), whereas 
fMRI reflects the synaptic activity of all neural cells including inhibitory interneurons 
(Logothetis et al. 2001; Mathiesen et al. 2000; Matsuura and Kanno 2001) which are 
involved in the synchronization of gamma oscillations (Traub et al. 1996) too. A third 
possible reason could be related to the assumption that ERPs might correspond to the 
simple phase resetting of ongoing cerebral activity (Makeig et al. 2002) which should 
not consume much energy (Foucher et al. 2003).

Beyond the power of high frequency EEG bands the strength of the coupling 
between the phase of low-frequency and the amplitude of high-frequency EEG 
activity seems to play a crucial role in brain function. Simultaneously recorded 
intracranial EEG and fMRI in seven patients with epilepsy undergoing invasive 
EEG monitoring revealed, that the beta-gamma-phase-amplitude coupling explained 
variance of the amplitude of the BOLD signal, which was not explained by a com-
bination of single EEG band powers. Thus, including the strength of the phase–
amplitude coupling in the BOLD signal model in addition to the power of EEG 
frequency bands may increase the sensitivity of EEG-informed fMRI studies (Murta 
et al. 2017).

26.3.2  Gamma Activity and BOLD Response: Variation 
Across Subjects

In a combined experiment, Herrmann et al. set out to test the hypothesis that human 
EEG gamma band responses correlate with the BOLD responses. Since oscillatory 
activity in the gamma band range is of very low amplitude (a fraction of a micro-
volt) and within the frequency range of the MR gradient switching which results in 
EEG artifacts, it was chosen to carry out EEG and fMRI measurements separately.

Both gamma band responses as well as BOLD responses have been repeatedly 
shown to vary across subjects. For example, oscillatory gamma responses show 
interindividual variations both in frequency and amplitude (Busch et al. 2004). One 
source for this variation lies in the different polymorphisms of the subjects. Demiralp 
et al. demonstrated that the more effective variant of the DRD4 receptor results in 
enhanced gamma responses (Demiralp et al. 2007). At the same time, such varia-
tions correlate with differences in cognitive processes. Strüber et al. showed that 
subjects with high-amplitude gamma oscillations switch more often between two 
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alternative percepts of an ambiguous figure (Struber et al. 2000). Also, the BOLD 
response shows variance across subjects. For example, spatial variations of BOLD 
activity can stem from anatomical variations since even monozygotic twins have a 
slightly different brain anatomy (Lohmann et al. 1999). Recent findings have shown 
that already early sensory cortices underlie inter-individual variations (Amunts 
et al. 2000). For these reasons, atlases of the human brain are no longer based on a 
single brain such as the one by Talairach and Tournoux (1988). Instead, anatomical 
variations are taken into regard in newer atlases (Rademacher et al. 2001).

Herrmann et al. separately recorded EEG and fMRI in 18 subjects (mean age 
23.9 years, 8 male). They had to view circular moving gratings that either moved 
outward (p = 0.75) or inward (p = 0.25). Gratings had a spatial frequency of 0.67 
cycles per degree visual angle and were presented for 600 ms. During these 600 ms, 
one full cycle of movement occurred. The direction of movement had to be indi-
cated by a button press (inward = right). In run1, a static grating remained visible 
during the inter-stimulus-interval (ISI). Thus, at the onset of a stimulus, only a 
motion onset was visible. In run2, a gray screen was presented during the ISI. Thus, 
at stimulus onset, both the stimulus and the motion set on. The fMRI recording was 
carried out as rapid event-related fMRI design. The identical timing was used for 
EEG recording. Based on the amplitude of their evoked gamma band response, 
subjects were assigned to either a low- or a high-gamma group.

Comparing run1 and run2 revealed that gamma responses were significantly 
stronger in run2 where motion onset was preceded by a blank screen (t = 5.042, 
p  <  0.001). This contrast also yielded more activated voxels in posterior brain 
regions (t  =  6.668, p  <  0.001) and a higher percent signal change (t  =  4.744, 
p < 0.001) (see Fig. 26.5).

Comparing the groups of the low-gamma and the high-gamma subjects for run2 
yielded no differences in BOLD response, neither for the number of activated vox-
els (t < 1, p > 0.3) nor for percent signal change (t < 1, p > 0.6). Of course, the 
gamma responses were significantly stronger in the high-gamma group (t = 5.190, 
p < 0.001), since this was the criterion for assigning subjects to the groups (see 
Fig. 26.6).

The results from comparing different runs, are in line with the notion that BOLD 
and gamma band responses covary (Logothetis et al. 2001; Mukamel et al. 2005; 
Niessing et  al. 2005). However, comparing subjects either showing high or low 
gamma responses in their EEG yielded no differences in their BOLD responses. The 
latter result was unexpected and one can only offer a speculative explanation. It was 
demonstrated that the BOLD response shows interindividual variations (Aguirre 
et al. 1998). Sources of variation have been identified in genetic polymorphisms 
(Goldberg and Weinberger 2004). At the same time, gamma band responses are 
influenced by a number of parameters that vary interindividually, such as age 
(Bottger et  al. 2002), dopamine polymorphisms (Demiralp et  al. 2007), and the 
individual rate at which the two percepts of bistable figures switch (Struber et al. 
2000). Interestingly, dopamine polymorphisms modulate gamma and BOLD 
responses. However, while the VNTR polymorphisms of DRD4 modulates gamma 
band responses, the Val158Met polymorphism of COMT does not (Demiralp et al. 
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2007). By contrast, the COMT polymorphism does modulate the BOLD response 
(Winterer et al. 2006). One difference between the two is the locus of effect. While 
the COMT polymorphism influences the amount of dopamine in the synaptic cleft, 
the DRD4 polymorphism affects the dopamine receptor but not the amount of dopa-
mine. Thus, it seems plausible to assume that the amount of extra-cellular dopamine 
affects the BOLD but not the gamma band response but the dopaminergic activation 
of neurons affects the gamma band response but not the BOLD response.

26.3.3  Gamma Activity and BOLD Response: Further Reports

Performing simultaneous measurement of EEG and fMRI, Giraud et  al. showed 
functional brain asymmetries in speech processing to be at the bottom of different 
intrinsic sampling properties in each auditory cortex. Time courses of power from 
certain EEG bands calculated with short-time Fourier transform were convolved 
with hemodynamic response function and used as regressors in a general linear 
model. As a result of this investigation, the authors report that, in line with the 
Asymmetric Sampling in Time theory (Poeppel 2003), spontaneous power fluctua-
tions of 3–6 and 28–40 Hz intrinsic oscillations (which are tuned to major acoustic 
temporal characteristics of speech) are paralleled by specific modulations of neural 
activity in auditory/temporal cortices. The auditory activity in regions overlapping 
Heschl’s gyrus is more prominently associated with the 3- to 6-Hz band in the right 
hemisphere and the 28- to 40-Hz band in the left hemisphere. Moreover, ventral 
premotor cortex activity is correlated with spontaneous neural oscillations at the 
syllabic rate of natural speech (Giraud et al. 2007).

Research in the field of resting state networks raised the question if the analysis 
of the modulation of the whole EEG frequency spectrum could help to find electro-
physiological signatures of such networks. In the EEG of the resting human brain, 
spontaneous rhythms are detectable showing different oscillatory signatures and 
being unrelated to any external or internal event. For the investigation of hemody-
namic correlates of these phenomena, simultaneous measurement of EEG and fMRI 
is necessary because fusing the data after separate recordings of electrical and 
hemodynamic measures is not possible (Ritter and Villringer 2006). Mantini et al. 
used a data-driven approach to investigate the relationship between neuronal oscil-
latory processes in different EEG frequency bands and coherent fMRI fluctuations. 
BOLD signal time course corresponding to each of the independent components, 
identified by using independent component analysis (ICA), was correlated with the 
EEG reference waveforms of power time series of the various frequency bands. In 
general, more than one rhythm was associated with the same network, whereas, 
resting-state networks could be separated on the basis of their specific EEG power 
profile. Regarding observations about gamma activity, the authors report a strong 
weighting of EEG power spectra associated with the ventromedial prefrontal cortex 
(resting state network 6) toward gamma power (see Fig. 26.7), whereas the rest of 
the default network (resting state network 1) was more strongly associated with 
alpha and beta power (Mantini et al. 2007).
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Fig. 26.7 Association between EEG rhythms and fMRI resting state network (RSN) 6. Left: sag-
ittal, coronal, and axial spatial map of the RSN 6. Right: bar plots of the average correlations 
between the brain oscillatory activity in the delta, theta, alpha, beta, and gamma band, and the RSN 
6 time course. In general, more than one rhythm was associated with the same network, confirming 
that neurons oscillating at different frequencies may contribute to the same functional system. 
RSNs 1 (default) and 2 (dorsal attention) had stronger relationships with alpha and beta rhythms, 
RSN 3 (visual) with all rhythms except gamma rhythm, RSN 4 (auditory) with delta, theta, and 
beta rhythms and RSN 5 (somato-motor) with beta rhythm. The RSN 6 shown here [including the 
medial-ventral prefrontal cortex, the pregenual anterior cingulate, the hypothalamus and the cere-
bellum, putatively related to self-referential mental activity (D’Argembeau et  al. 2005)] was 
mainly associated with gamma rhythm. (From Mantini, D., Perrucci, M.  G., Del Gratta, C., 
Romani, G. L., and Corbetta, M. Electrophysiological sig-natures of resting state networks in the 
human brain. Proc Natl Acad Sci U S A (2007) 104(32):13170–5. Copyright (2007) National 
Academy of Sciences, USA)

Recently, Huang et al. introduced a new method of obtaining the EEG global 
signal and investigated the relationship between resting-state EEG and fMRI global 
signal by means of simultaneously recorded EEG and fMRI. The authors report a 
positive correlation between the global signal of resting state fMRI and power fluc-
tuations of the EEG global signal in the gamma band (Huang et al. 2019). High- 
frequency electrical substrates of fMRI-based resting state networks have been 
observed using simultaneously recorded multiband fMRI and EEG and parallel 
independent component analysis, which does not require the down sampling of 
EEG to fMRI temporal resolution (Kyathanahally et al. 2017). The examination of 
five healthy subjects with MEG and fMRI using a simple visual task, supplied evi-
dence of event-related synchronization in the gamma band which covaried spatio-
temporally with the BOLD effect in the occipital cortex (Brookes et al. 2005) (see 
Fig. 26.8). Castelhano et al. reported a functional topography for distinct gamma 
sub-bands. In a simultaneous EEG–fMRI study, a low gamma sub-band activity 
(near 40 Hz) was tightly related to the decision-making network, whereas a high 
gamma sub-band was found to be linked to early visual processing regions 
(Castelhano et al. 2014). In a cued visual spatial attention task, the fMRI activity in 
visual cortical regions representing attended locations in space covaried positively 
with gamma-band activity recorded from occipital EEG electrodes (Green et  al. 
2017). Moreover, in this study, the pulvinar nucleus of the thalamus covaried with 
this spatially specific, attention-related oscillatory phenomenon. These results illu-
minate dynamical interactions of cortical and subcortical processes underlying spa-
tial visual attention and highlight the potential of simultaneous recordings of EEG 
and fMRI in uncovering dynamical interactions between brain regions including 
subcortical regions, which are unlikely to be direct generators of scalp-recorded EEG.
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Fig. 26.8 Spatial distribution of the MEG sustained field, alpha-band power change, gamma-band 
power change, and BOLD signals for a single subject. Left: MEG-sustained field. Inside left: 
event-related desynchronization (ERD) in the alpha band (8–13 Hz). Inside right: event-related 
synchronization (ERS) in the gamma band (55–70 Hz). Right: fMRI BOLD signal (p < 0.05, cor-
rected for multiple testing). Functional images are overlaid onto axial and sagittal slices of a high- 
resolution anatomical MRI. For the alpha and gamma-band images (probability maps, p < 0.001, 
uncorrected), the red overlay represents an increase in power, whereas the blue overlay represents 
a decrease. The sustained field image represents the spatial distribution of a significant sustained 
response. (Reprinted from Neuroimage, 26(1), Brookes, M. J., Gibson, A. M., Hall, S. D., Furlong, 
P. L., Barnes, G. R., Hillebrand, A., Singh, K. D., Holliday, I. E., Francis, S. T., and Morris, P. G., 
GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co- 
localisation with fMRI BOLD response in visual cortex, p. 302–8 (2005), with permission from 
Elsevier)

A possible link between induced gamma activity and hemodynamic response 
was found in a work investigating spatiotemporal correlates of repetition priming in 
cortical word recognition networks and their modulation by stimulus familiarity. 
The repetition of familiar stimuli (real words) led to reduced activation for repeated 
words in occipitotemporal cortical regions and significant reduction of induced 
gamma band responses and phase synchrony between electrode positions. By con-
trast, the repetition of unfamiliar stimuli (pseudowords) results in activation increase 
for repeated pseudowords in the same areas, to increased GBRs, and to an increased 
phase coupling (Fiebach et al. 2005).

Load-dependent modulations in the EEG gamma frequency band during pro-
cesses of working memory have been described in EEG studies (e.g., Haenschel 
et al. 2009). Moreover, positive correlations between gamma activity and BOLD 
signal within dorsolateral and medial prefrontal cortex as well as temporal and pari-
etal brain regions during the retention period of working memory tasks have been 
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described (Michels et al. 2010; Zhao et al. 2017). A simultaneous EEG–fMRI visual 
working memory study revealed an association of the modulation of fast EEG oscil-
latory power with cortical activity within the visual cortex, while these fast oscilla-
tions showed a phase–amplitude coupling to slow oscillations associated with 
activity within mnemonic circuit brain regions. Thus, EEG–fMRI might help 
uncovering the processes of communication between mnemonic and sensory cir-
cuits (Mizuhara et al. 2015).

26.3.4  Single-Trial Coupling of Auditory Evoked Gamma Band 
Response and BOLD Signal

With regard to the findings that BOLD and gamma band responses covary 
(Logothetis et al. 2001; Niessing et al. 2005; Mukamel et al. 2005), the direct fusion 
of information about the power of gamma activity and BOLD response following 
external stimulation in simultaneous measurements by single-trial coupling seems 
to be promising. Regarding evoked gamma activity, both in terms of phase and 
latency strictly triggered to stimulus onset, several authors have described its role in 
the context of attentional processes (Fell et al. 2003; Gurtubay et al. 2004; Senkowski 
et al. 2007). One example of early evoked gamma activity is the “transient” gamma- 
band response (GBR) to auditory stimulation (between 25 and 100 ms after stimu-
lus presentation) which is known to be closely related to selective attention (Debener 
et al. 2003; Tiitinen et al. 1993). In preparation for a study simultaneously measur-
ing EEG gamma activity and BOLD response investigating a possible ACC genera-
tor of the early auditory evoked GBR (aeGBR) and its functional role in auditory 
information processing, Mulert et al. showed a significant influence of the task dif-
ficulty on the aeGBR and the auditory-evoked N1-component (Mulert et al. 2007) 
(see Fig.  26.9a–e). Generators of the aeGBR were found in the auditory cortex 
(primary and secondary auditory cortex) and in the dorsal anterior cingulate cortex 
(ACC) as well as medial frontal gyrus in the whole-head LORETA analysis (Mulert 
et  al. 2007; Polomac et  al. 2015). Mulert et  al. suggested that the aeGBR might 
represent an early synchronization of sensory and supervisory or monitoring brain 
areas in terms of a process of early top-down influence on information processing in 
the sensory area (Busch et al. 2006; Herrmann et al. 2004).

In order to gain more precision concerning localization and the possibility of 
investigating subcortical structures (e.g., the thalamus), these findings were trans-
ferred to a study simultaneously measuring EEG and fMRI. Mulert et al. explored 
the specific BOLD-response corresponding to the aeGBR using single-trial cou-
pling of EEG and fMRI after matrix decomposition of the specific GBR information 
using Schmidt-Gram orthogonalization. Distinct “aeGBR-specific” activations 
were found within the auditory cortex, the ACC, and the thalamus (Mulert et al. 
2010) (see Fig. 26.9f). Patients with schizophrenia show a reduction of the aeGBR 
and a reduced activity of its generators within auditory cortex and ACC across all 
stages of the disease accompanied by cognitive symptoms, for which reason it has 
been interpreted as an intermediate phenotype of the disease (Leicht et al. 2010, 
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Fig. 26.9 Dependency on cognitive demands and generators of the auditory-evoked gamma band 
response as shown by means of EEG and simultaneous EEG and fMRI. Time frequency analyses for 
the timeframe 0–200 ms after stimulus presentation averaged over all subjects in task 1 (a, control 
condition, lowest difficulty comparing the 6 presented auditory choice reaction tasks of different dif-
ficulty) and 5 (b, highest difficulty comparing the 6 presented auditory choice reaction tasks of differ-
ent difficulty) and the difference between task 5 and task 1 (c). Scaling was uniform for (a–c). As 
indicated (black arrows) the evoked GBR can be seen as an increased activity at about 50 ms in the 
frequency range around 40 Hz. (d) GBR displayed as the result of the wavelet analysis (complex 
Morlet wavelet) focused on 40 Hz for task 1 (black) and task 5 (red). (e) N1 amplitude for task 1 
(black) and task 5 (red). (f) Single-trial coupling of the GBR-amplitude and the corresponding BOLD 
signal (random effects analysis, n = 10, p < 0.0005): GBR-related activations can be seen in the ACC, 
left auditory cortex and thalamus. (a–e: Reprinted from Neuropsychologia 45(10), Mulert, C., Leicht, 
G., Pogarell, O., Mergl, R., Karch, S., Juckel, G., Moller, H. J., and Hegerl, U., Auditory cortex and 
anterior cingulate cortex sources of the early evoked gamma band response: relationship to task diffi-
culty and mental effort, p. 2294–306 (2007), with permission from Elsevier)
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2011, 2015, 2016). Simultaneous recordings of EEG and fMRI revealed a reduced 
activation of an aeGBR-specific network in subjects at high risk of developing 
schizophrenia, which might be applicable as a marker for the prediction of transi-
tion of subjects at risk into full-blown schizophrenia (Leicht et al. 2016).

26.4  Conclusions

We discussed problems, recent developments, and research findings regarding the 
relation of EEG gamma activity and fMRI BOLD signal and possible applications 
of the integration of EEG and fMRI in this field. According to several investigations, 
there seems to be a stronger correlation between the high-frequency components of 
the EEG signal, for example, the gamma band, and the BOLD response compared 
to lower frequency bands (Brovelli et al. 2005; Foucher et al. 2003; Hutchison et al. 
2015; Lachaux et al. 2007; Logothetis et al. 2001; Logothetis 2002; Mukamel et al. 
2005; Murta et al. 2017; Niessing et al. 2005). Some problems emerge in the simul-
taneous recordings of fMRI and gamma activity since the amplitudes of high fre-
quency EEG fractions are small and the artifact handicap carries more weight. 
Statistical methods like principal component analysis (PCA) or independent com-
ponent analysis (ICA), as well as various innovations in EEG- and fMRI-recording 
techniques may be possible solutions for some of these technical challenges. The 
information of fMRI analyses with time courses of EEG gamma activity has been 
applied for uncovering processes of communication in the brain, for example, dur-
ing the resting state, processes of visual spatial attention or working memory and 
cognitively demanding auditory information processing.
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27EEG–fMRI in Animal Models

Abhijeet Gummadavelli, Basavaraju G. Sanganahalli, 
Peter Herman, Famheed Hyder, and Hal Blumenfeld

27.1  Introduction

Neuroscientists have long sought techniques for investigating the neuronal mecha-
nisms of normal behavior and disease. The uniquely enigmatic nature of the brain and 
the difficulties inherent to its study limited early physiological investigations of brain 
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function. For example, although able to provide great insight into the localization of 
brain function, lesion studies are inherently destructive, and thus reveal limited infor-
mation about brain functioning in situ. Techniques for the noninvasive monitoring of 
brain function were needed. The advent of recording electrical brain activity via elec-
troencephalography (EEG) opened new avenues for the noninvasive study of brain 
activity (Berger 1929). For many decades, neuroimaging lagged behind electrophysi-
ological techniques; the MR revolution began in the 1970s (Lauterbur 1973) and soon 
applied to human pathology (Damadian 1971). Early studies of cerebral hemody-
namic responses showed that brain function could be related to measurements of 
blood flow. Seizures occurring during neurosurgery have long been known to produce 
a focal blood flow increase in the cerebral cortex (Horsley 1892; Penfield 1933), and 
early measurements using intracarotid sensors likewise demonstrated increased cere-
bral blood flow during seizures (Gibbs et al. 1934). Advancements in electrical record-
ing and functional imaging technology in recent decades have now made it possible to 
noninvasively study the brain at sufficiently high temporal and spatial resolutions to 
reveal fundamental neuronal processes in detail.

EEG measures extracellular electrical field potentials generated by populations 
of cortical neurons and can capture brain electrical activity with millisecond tempo-
ral resolution. Although EEG provides high temporal resolution, it is limited in its 
spatial sampling and cannot completely characterize neuronal activity throughout 
the entire brain. High-density electrode placement can improve spatial resolution, 
however remain limited to measuring electrical fields from a portion of the cortex. 
The electrical signal recorded in the EEG reflects a spatial summation of the under-
lying cortical electrical activity and does not sample subcortical areas; thus EEG 
with scalp electrodes may not detect deeply originating discharges (Gloor 1985).

Neuroimaging techniques offer a noninvasive comprehensive spatial sampling of 
the brain and can look deep into subcortical structures. Functional magnetic reso-
nance imaging (fMRI) with blood oxygenation level-dependent (BOLD) contrast is 
an important tool for mapping brain activity. Because fMRI has good spatiotempo-
ral resolution and allows noninvasive imaging of almost the entire brain, it has great 
translational possibilities (Matthews et  al. 2006). The BOLD signal, however, 
reports indirectly on neural activity because it measures the hyperemic response 
(Menon et al. 1993). BOLD–fMRI signals depend on blood oxygenation and cere-
bral blood flow and oxidative metabolism, the specific implications of which we 
will discuss, and can therefore provide useful surrogate information about neuronal 
activity (Ogawa et al. 1990, 1993, 1998).

There has been enormous interest in utilizing fMRI to study normal and abnor-
mal brain function in humans. Simultaneous EEG–fMRI is an ideal method to study 
the interdependent neuronal, neuroenergetic, and hemodynamic changes that occur 
during brain activity. However, human fMRI studies of pathological brain processes 
have been limited. As fMRI techniques are highly sensitive to motion, many human 
studies are limited to the study of neuronal processes with limited movement, such 
as the spike-wave seizures associated with absence epilepsy, the interictal (between 
seizures) period of other epilepsy syndromes, the intrinsic mental state (resting 
state), or purely cognitive tasks. Secondly, human studies are inherently less well 
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controlled than animal models due to intersubject variability, while in animal mod-
els consistent experimental methods and invasive techniques can be used.

Animal models offer the opportunity to fully utilize the power of EEG–fMRI 
methods to noninvasively record normal and abnormal activity across brain net-
works. The ictal (during seizure) activity of multiple seizure types can be investi-
gated using animal models, and these studies are not limited by movement as 
animals can be studied under anesthetized, paralyzed, and ventilated conditions. 
Variables affecting brain activity can be better controlled in animals, such as the 
onset and type of seizure, and the induction and type of anesthesia. Furthermore, 
invasive studies of electrical, hemodynamic, and histological properties can be per-
formed in animals to relate fMRI signals to underlying neuronal activity. Thus, 
simultaneous EEG–fMRI studies of animal models can provide an important contri-
bution to the understanding of many types of neuronal activity, including epilepsy, 
sleep, and sensory–motor processing. Additionally, studies of animal models can 
contribute to our knowledge of fMRI interpretation, thereby informing our under-
standing of neuroimaging studies in humans and the neuronal basis of human 
pathology. Human studies of simultaneous EEG–fMRI including those of epilepsy, 
sleep, evoked activity, behavior, and cognition have recently been reviewed else-
where (Salek-Haddadi et al. 2002; Ritter and Villringer 2006).

Many animal MRI studies are highly relevant for investigating changes in func-
tional and structural anatomy and exploring physiology (Blumenfeld 2007; Grohn 
and Pitkanen 2007; Hiremath and Najm 2007). In this chapter we will focus on 
studies that employed simultaneous EEG–fMRI methods in the same preparation.

27.2  Advantages of EEG–fMRI in Animal Models

Animal models offer a number of distinct advantages, compared to human subjects, 
in utilizing simultaneous EEG–fMRI to study neuronal function. Animal models 
allow the investigator to exert greater control over the timing and conditions of neu-
rological events, including seizures, sleep, and sensory–motor processing. Animal 
models also allow for the invasive monitoring and control of anesthesia and physi-
ological parameters that may influence neuronal activity and fMRI signal changes. 
Small animal models allow for the use of higher magnetic field strengths up to 
16.4  T, where the hemodynamic response to neural activity is more sensitive to 
BOLD contrast mechanisms (Menon et  al. 1993; Turner et  al. 1993; Yang et  al. 
1999). Additionally, the use of paralyzed animals allows for the near elimination of 
movement artifact, important for all fMRI studies and particularly so for studying 
events associated with excessive muscle activity, such as partial or generalized 
motor seizures. Finally, balistocardiogram artifact (i.e., strong electrical signals 
from the heart), a common problem in human fMRI, is comparatively minimal in 
small animals (Sijbers et al. 2000).

Animals also provide an excellent model for studying the relationship between 
neuronal activity and cerebral hemodynamic and metabolic responses. These funda-
mental relationships can be studied with invasive electrophysiological 
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measurements and multiple imaging techniques (Logothetis et al. 2001; Schwartz 
and Bonhoeffer 2001; Smith et al. 2002; Hyder and Blumenfeld 2004; Nersesyan 
et  al. 2004a, b; Shmuel et  al. 2006; Maandag et  al. 2007; Schridde et  al. 2007; 
Sanganahalli et al. 2016). Simultaneous EEG–fMRI investigations can guide in vivo 
bench studies to specific brain regions of interest and contribute to elucidating 
molecular/cellular mechanisms related to seizure susceptibility or other disorders. 
Finally, animal models with genetic variants can be studied with simultaneous 
EEG–fMRI to examine the neurophysiological changes associated with these genes.

27.3  Limitations and Technical Challenges of EEG–fMRI 
in Animal Models

Animal models are only an approximation of human disease and need to be inter-
preted with appropriate caution. There are also several technical challenges to simul-
taneous EEG–fMRI studies of animals related to their size and the spatial constraints 
due to using relatively high magnetic fields (Blumenfeld 2007; Mirsattari et al. 2007).

Although desirable for many investigations, recording simultaneous EEG–fMRI 
in animals presents a number of challenges. Anesthesia must be carefully consid-
ered; as we will discuss, many anesthetic agents can alter the cerebral hemodynamic 
response and may alter the neurophysiological behavior under investigation. 
Guaranteeing the quality of the MR image can be a formidable challenge, as the 
imaging signals are sensitive to small degrees of movement, and to magnetic sus-
ceptibility differences, especially at air–tissue interfaces, that can introduce 
unwanted image distortions. Animal movement in the scanner must be restricted, 
either by chemical muscular blockade (curarization) or through habituation to a 
restraining device in awake experiments. Electrodes must be carefully chosen to 
avoid unwanted interactions with magnetic fields and with the tissue (e.g., scalp, 
subdermal, brain) they contact. Lastly, animal physiology must be carefully moni-
tored during experiments utilizing anesthesia (Mirsattari et al. 2005a, b).

Investigations of particular brain processes will present their own unique chal-
lenges. For example, animal studies of epilepsy often encounter additional compli-
cations as seizure activity is prone to alteration by commonly used anesthetic agents, 
seizures may be difficult to induce in anesthetized animals, and motion artifact can 
occur during seizures (Blumenfeld 2007).

27.4  Anesthesia

Choosing an appropriate anesthetic agent is crucial in simultaneous EEG–fMRI 
studies; considerations of the agent’s effects on the EEG data, fMRI signal intensity, 
long-term physiology, and on the neurological event being studied must all be care-
fully considered. Furthermore, anesthetic agents are known to induce changes in the 
EEG data (Winters 1976; Sloan 1998; Hudetz 2002), and different experimental 
designs are best served by different combination of anesthetic agents.
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Anesthetic agents that are inhaled may be ideal for some designs because of the 
swiftness with which the depth of anesthesia can be adjusted (Makiranta et al. 2005; 
Mirsattari et  al. 2005a, b). However, these agents can alter the hemodynamic 
response. Isoflurane has been found to greatly diminish the BOLD signal changes 
seen in the gamma-butyrolactone (GBL)-induced spike-and-wave discharge (SWD) 
rat model (Tenney et al. 2003). Conversely, the use of both fentanyl and haloperidol 
does not block the occurrence of SWDs in two rat genetic models of absence epi-
lepsy (Pinault et al. 1998; Nersesyan et al. 2004a, b). Furthermore, haloperidol can 
actually increase the frequency of SWDs (Coenen and Van Luijtelaar 1987; 
Midzianovskaia et  al. 2001). Fentanyl in combination with haloperidol has also 
been used successfully to produce anesthesia without blocking tonic-clonic seizures 
in a rat model (Nersesyan et al. 2004a, b; Schridde et al. 2007).

A change in the strength of the BOLD–fMRI signal compared to the awake state 
can be seen with anesthetic agents such as alpha-chloralose (Shulman et al. 1999; 
Peeters et al. 2001; Hyder et al. 2002a, b; Smith et al. 2002) propofol (Lahti et al. 
1999) and halothane (Maandag et al. 2007). In a porcine model, sudden deepening 
of thiopental anesthesia in nonepileptic animals produced significant signal changes 
in the fMRI response (Makiranta et al. 2002). High-dose morphine and the sedating 
antihistamine acepromazine was found to provide adequate anesthesia in a sheep 
model of penicillin-induced focal epilepsy with minimal EEG suppression (Opdam 
et  al. 2002). Alpha-chloralose with urethane has been successfully used in a rat 
model of pentylenetetrazol-induced seizures (Keogh et  al. 2005). Ketamine and 
xylazine produce adequate anesthesia without blocking limbic seizures studied by 
fMRI (Englot et al. 2008).

In a rat model, halothane was found to have no effect on the BOLD response at 
doses that showed a clear reduction in the baseline neuronal activity on EEG, while 
a transition from halothane to alpha-chloralose showed an immediate reduction in 
the spatial extent of the BOLD response without a change in the peak signal change, 
which evolved over several hours to an increase in both the spatial extent and peak 
signal change of the BOLD signal (Austin et  al. 2005; Maandag et  al. 2007). 
Halothane has been successfully used to induce temporary anesthesia in rodent 
models during subject preparation, with data acquired from paralyzed non- 
anesthetized animals treated with mivacurium (Van Camp et  al. 2003), however, 
special training is needed for non-anesthetized preparations as discussed shortly. 
Halothane is commonly used as an induction agent to allow rapid anesthesia of an 
animal for placement of intravascular lines, tracheostomy, electrodes, and place-
ment in a holding apparatus for positioning of the surface coil (Nersesyan et  al. 
2004a, b, Schridde et al. 2007). A 1-h period has been used to allow complete wash-
out of the halothane (Keogh et al. 2005).

Limiting the use of general anesthesia to the period of preparing the animal with 
reversal of the anesthesia during simultaneous EEG–fMRI acquisition has also been 
accomplished with the combination of the anesthetic medetomidine (alpha 
2- adrenoreceptor agonist) and the reversal agent atipamezole (alpha 2-adrenergic 
antagonist) in rats (Tenney et al. 2003), or with ketamine and medetomidine reversed 
with atipamezole in rats (Tenney et al. 2004a, b; Brevard et al. 2006), or with the 
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combination of medetomidine, ketamine, and isoflurane reversed with atipamezole 
in marmoset monkeys (Tenney et al. 2004a, b).

In situations where significant movement does not occur, such as during spike- 
wave seizures or during the resting state, the study of unanesthetized animals may 
be feasible (Tenney et al. 2003; Van Camp et al. 2003; Scholvinck et al. 2010). This 
raises additional technical challenges, as lengthy training of animals is necessary to 
habituate them to the recording procedures (Khubchandani et  al. 2003; Sachdev 
et al. 2003). Recording from awake animals can further be facilitated by the use of 
a topical anesthetic (e.g., lidocaine gel) at any pressure points from restraint devices 
or needle electrodes (Tenney et al. 2004a, b). Performing simultaneous EEG–fMRI 
studies in awake animals is an important technical challenge to overcome as these 
studies more closely resemble human studies of conscious subjects.

The anesthetic approaches discussed show great promise in expanding the utility 
of EEG–fMRI studies in animal models and in contributing to our understanding of 
human studies. The wide variety of successful protocols illustrates the importance 
of tailoring the experimental design to the specific animal model and research ques-
tion being investigated.

27.5  Movement: Curarization and Habituation

As in human studies, subject movement must be addressed in studies with animal 
models to limit the creation of artifact in the MR images. As previously discussed, 
anesthetic agents must be carefully considered for possible interference with the 
neurological event being studied and for possibly altering the hemodynamic 
response. Lightly anesthetized preparations or unanesthetized preparations are 
advantageous for preserving the normal electrophysiology and neurovascular 
response but will increase the likelihood of movement by the subject. This has been 
overcome by curarization with non-depolarizing neuromuscular blockers, such as 
mivacurium (Van Camp et al. 2003), pancuronium (Opdam et al. 2002; Makiranta 
et al. 2005), d-tubocurarine (Nersesyan et al. 2004a, b; Schridde et al. 2007; Englot 
et al. 2008), or vacuronium (Mirsattari et al. 2006). Curarization requires the animal 
be ventilated (e.g., tracheotomy or tracheal intubation) and their physiology moni-
tored throughout the experiment.

Habituation to the restraint device and noise of the MRI scanner is required for 
the study of awake and conscious animals. This has been accomplished through the 
use of habituation to a custom designed restraint devices in rats (Khubchandani 
et al. 2003; Sachdev et al. 2003) and monkeys (Scholvinck et al. 2010). Habituation 
to a restraint device may be facilitated by positive reinforcement (e.g., chocolate 
milk) combined with diazepam administrated 1 h prior to data acquisition to mini-
mize stress (Sachdev et al. 2003).

An important problem can arise in high-field magnet even with well-habituated 
and carefully head-fixed animals, especially with rodents. The shimming (homog-
enizing the B0 field in the studied volume) is important in MRI experiments because 
it is the base of identification of voxel location, that is, the three dimensional 

A. Gummadavelli et al.



669

position of every independently measured data point is coded by frequency shift 
regarding the B0 field. Since a small movement (e.g., licking, chewing, whisking) of 
the animal inside or outside just below the shimmed brain volume can change the B0 
field, the voxel locations apparently change in the recording since the reference 
point of the frequency code changed. Moreover, the signal origin of the voxels can 
be very distant from the location of the voxel.

It is critical to review data carefully after acquisition for movement artifact using 
methods such as cine review, center of mass analysis (Nersesyan et al. 2004a, b) and 
to reject data in which significant movement or B0 field-related apparent movement 
occurs, since even miniscule movements can produce large false fMRI signal 
changes on difference calculations. Movement artifact can further be corrected with 
multichannel post-processing algorithms, such as reference layer artifact subtrac-
tion, Moiré phase tracking, and wire loop motion sensors.

27.6  Physiology

Physiological stability is crucial in the study of animals during simultaneous EEG–
fMRI. Animal models are commonly studied using inhaled anesthetic agents, which 
require that the animals undergo a tracheostomy and be ventilated. Animals require 
physiological stabilization for the duration of the experiment (Wood et al. 2001). 
Monitoring of heart rate, blood pressure, temperature, and ventilation rate can be 
done continuously (Nersesyan et al. 2004a, b; Schridde et al. 2007). Arterial blood 
gas measurements of pH, pCO2, and pO2 can be performed to monitor the physio-
logical state of the animal, as these parameters will affect the hemodynamic response 
and may affect neuronal function (Jones et  al. 2005; Mirsattari et  al. 2005a, b). 
Mechanical ventilation may be required for some anesthesia regiments or when 
muscle paralysis is used (Nersesyan et al. 2004a, b; Tenney et al. 2004a, b; Schridde 
et  al. 2007). Mechanical ventilation, blood pressure monitoring, and anesthesia 
delivery machinery should be kept far from the imaging field to avoid disturbances 
in the images.

Hypercapnia can alter the cerebral hemodynamic response, causing vasodilata-
tion of veins and microcapillaries in rat cortex at even mild levels (Nakahata et al. 
2003). Hypercapnia has also been shown to reduce blood flow and volume changes 
during whisker stimulation and may also affect changes in the BOLD–fMRI signal 
(Jones et  al. 2005). Furthermore, hypercapnia can alter neuronal activity in rats 
(Kida et al. 2007) possibly by inducing periods of cortical desynchronization that 
may be associated with changes in oxidative metabolism (Martin et al. 2006).

27.7  MRI Compatible Electrodes

MRI-compatible electrodes and EEG recording equipment has been developed and 
utilized in multiple studies using simultaneous EEG–fMRI (Mirsattari et al. 2007). 
EEG electrodes commonly contain metals that are affected by an external magnetic 
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field; silver–silver chloride (Ag/AgCl), gold-plated silver, platinum, stainless steel, 
and tin. Silver and copper electrodes are theoretically compatible with MRI but are 
not appropriate for invasive recording that may involve direct contact of the elec-
trode to brain tissue due to possible toxicity (Babb and Kupfer 1984). Gold and 
platinum electrodes have been found to be nontoxic to living tissue (Tallgren et al. 
2005). Custom-made gold electrodes were found to be superior compared to both 
custom-made carbon and commercial platinum–iridium alloy electrodes in size and 
effect on image quality (Jupp et al. 2006). However, gold and platinum may cause 
artifacts in MR images due to differences between their magnetic susceptibly and 
that of brain tissue (Mirsattari et al. 2007). Choosing appropriate MRI compatible 
EEG recording equipment will depend on whether the goal is for scalp, subdermal, 
or intracranial recordings.

Scalp and subdermal electrodes have the advantage of leaving the brain intact 
and theoretically will introduce the least amount of artifact in the MR images. 
Carbon fiber electrodes are the most widely used material for EEG with simultane-
ous MRI, for scalp (Van Audekerkea et  al. 2000) and subdermal recordings 
(Nersesyan et al. 2004a, b; Makiranta et al. 2005; Schridde et al. 2007), and directly 
overlying the cortex via insertion through burr holes (Mirsattari et al. 2006). Carbon 
fiber electrodes can also be used for intracranial recordings (Opdam et al. 2002; 
Mirsattari et al. 2005a, b; Motelow et al. 2015). Teflon-coated silver–silver chloride 
(Ag/AgCl) electrodes can be used alone or in combination with carbon fiber elec-
trodes (Mirsattari et al. 2005a, b; Young et al. 2006). fMRI-compatible electrodes 
designed for human use, such as conductive plastic cups and gold-plated silver disc 
electrodes attached to copper wires can be used in larger animal studies (Mirsattari 
et al. 2007).

Intracranial EEG recordings with simultaneous fMRI has the advantage of 
recording neuronal activity from specific areas of the brain, such as the occipital 
cortex (Logothetis et al. 2001; Shmuel et al. 2006), or from the site of seizure induc-
tion in animal models of focal epilepsy (Opdam et al. 2002; Englot et al. 2008). 
However, intracranial electrode placement increases the risk of damaging the cere-
bral cortex and may cause artifact in the MR images if there is bleeding under the 
burr holes or at the craniotomy site (Mirsattari et al. 2007). Burr holes should be 
made with a drill that is compatible with MRI, for example, one coated by titanium 
or made of diamond to avoid artifacts from any metallic particles the drill may leave 
(Mirsattari et al. 2007).

Intracranial electrodes may also be used for stimulating brain regions during 
fMRI experiments. Electrical stimulation has been accomplished in the rat; includ-
ing in the motor cortex with carbon fiber electrodes (Austin et  al. 2003), in the 
amygdale kindling model with custom-made carbon and gold electrodes, and com-
mercial platinum–iridium electrodes (Jupp et al. 2006), in rat medial thalamus with 
glass-coated carbon fiber microelectrode (Shyu et al. 2004), and in perforant path-
way (Angenstein et al. 2007) and dorsal hippocampus using bipolar tungsten elec-
trodes (Englot et al. 2008). Precise electrical stimulation of the Macaque monkey 
visual cortex using custom glass-coated iridium microelectrodes during fMRI sig-
nal acquisition has also been done (Tolias et  al. 2005). Recently, optogenetic 
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stimulation (using specifically emitted wavelengths to activate genetically inserted 
light-sensitive channels) with simultaneous fMRI has been achieved with carbon 
fiber optrodes (Duffy et al. 2015; Chuapoco et al. 2019).

27.8  fMRI Signal Generation

The BOLD–fMRI signal (S) is indirectly related to neuronal activity. Animal mod-
els provide an excellent opportunity to more precisely investigate this relationship. 
Neuronal activity consumes energy, which is repleted through increased delivery 
of oxygen and nutrients via neurovascular and neurometabolic coupling. 
Measurement of S depends on levels of oxygenated versus deoxygenated hemoglo-
bin (Ogawa et al. 1998), and therefore on the balance between oxygen delivery and 
consumption. During neuronal activity, there is an increase in cerebral blood flow 
(CBF) and oxygen delivery through neurovascular coupling, but there is also an 
increase in the cerebral metabolic rate of oxygen consumption (CMRO2) (Ogawa 
et al. 1998; Hyder et al. 2001). Increased oxygen delivery normally exceeds oxy-
gen consumption, so that S usually increases in response to increased neuronal 
activity. However, as we will discuss below, exceptions can occur, especially dur-
ing the intense neuronal activity accompanying tonic-clonic seizures. The complex 
relationship between changes in BOLD signal compared to baseline (ΔS/S) and 
physiology is given in Eq. (27.1) (Kennan et al. 1994; Weisskoff et al. 1994; Ogawa 
et al. 1998).
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where α links CBV to CBF by a power law relationship (0 < α < 0.4) originally 
described by PET scans in primates (Grubb et al. 1974), β links CMRO2 to CBF by 
a power law relationship (1 < β < 2) measured both in human and rat brain (Hyder 
et  al. 2000), M is an echo time-dependent constant that incorporates the resting 
hemodynamic and metabolic values (Hoge et al. 1999; Hyder et al. 2001), and the 
parameters with and without subscripted “0” represent the basal and activated val-
ues, respectively. To quantify CMRO2 with Eq. (27.1), parameters like M, α, and β 
are needed in conjunction with independent measurements of BOLD, CBV, and 
CBF (Hoge et al. 1999; Hyder et al. 2001). All of these parameters can be measured 
in animals (Kida et al. 2007; Shu et al. 2016a, b) and in principle they can be mea-
sured in humans as well. Although CBV is not directly measured in human studies, 
it can be measured in animal studies with exogenous superparamagnetic MRI con-
trast agents that primarily reside in the intravascular space (for recent reviews, see 
Hoge 2012; Hyder and Rothman 2012). Because the majority of neuronal energy is 
ultimately produced through oxidative metabolism (Shulman et al. 2004) measuring 
changes in the CMRO2 offers the most direct neuroimaging measure of neuronal 
activity. We will discuss further the complex relationship between various cerebral 
blood flow parameters, neuronal activity, and the BOLD signal, as exemplified with 
somatosensory cortical (Sanganahalli et  al. 2009; Herman et  al. 2013) and 
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Fig. 27.1 Multimodal sensory-induced responses. (a) Sensory-induced dynamics of spike rate 
and relative MUA changes in S1FL (red) and VPL (blue) during forepaw stimulation (i.e., 30 s 
black horizontal lines). The data represent mean ± SD of many trials from six rats (each trial: 30 s 
rest, 30  s stimulation, 30  s rest). The spike rate change is shown from the basal firing in each 
region. The MUA data are shown as 1-Hz root mean square (RMS) time courses, with a binned 
RMS approach. The MUA responses (both spike rate change and MUARMS) were not signifi-
cantly different between S1FL and VPL. The mean wavelet response of LFPs (LFPMWL) were 
calculated. LFPMWL responses between S1FL and VPL are significantly different. The evoked 
LFP at VPL are significantly smaller than S1FL. The LFP data are shown as maximum wavelet 
coefficient responses (see Methods). (b) Sensory-induced dynamics of hemodynamic (ΔBOLD, 
ΔCBV, and ΔCBF) and metabolic (ΔCMRO2) responses from the contralateral S1FL (red) and 
VPL (blue) during forepaw stimulation (i.e., 30 s black horizontal lines). All signals were repre-
sented as the fractional change from the pre-stimulus baseline. These data represent the mean ± SD 
of many trials in each case across different subjects. The measured time courses of BOLD, CBV, 
and CBF were localized to the middle layers of S1FL and VPL, and they were used to calculate the 
respective CMRO2 responses by calibrated fMRI. The stimulus presentation is indicated by hori-
zontal black bar. (Reproduced with permission from Sanganahalli et al. 2016)

subcortical (Sanganahalli et  al. 2016) activation with forepaw stimulation in a 
rodent (Fig. 27.1) (Sanganahalli et al. 2016).

27.8.1  Measurement of CMRO2 by MR Spectroscopy

fMRI signals originate with changes in energy consumption and blood flow. 
Neuronal activity is dependent on neurotransmission, the stoichiometry of gluta-
mate and GABA neurotransmission, and the energy consumption supplied by 
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glucose oxidation, as has been established in vivo by 13C magnetic resonance spec-
troscopy (MRS) (Rothman et al. 1999). The relationship between neuronal activity 
and energy consumption provides insight into brain function and the interpretation 
of the neuroimaging signal obtained in fMRI experiments (Shulman et  al. 2001, 
2002). Early 13C MRS experiments in animals and humans used glucose labeled at 
the C1 carbon atom (Behar et al. 1986; Gruetter et al. 1994). Infused glucose-C1 
enters the TCA cycle via pyruvate dehydrogenase activity and labels glutamate-
C4 in the first turn of the neuronal TCA cycle. The C3 and C2 carbon atoms are 
labeled in the following turn of the cycle. Thus, the time course of 13C turnover of 
glutamate-C4 can be converted into a measure of the neuronal TCA cycle flux 
(Mason et al. 1992, 1995; Gruetter et al. 1998).

27.8.2  Estimation of CMRO2 by Calibrated BOLD

Equation (27.1) can be rearranged and approximate CMRO2 maps can be obtained 
where ΔCMRO2/CMRO2 can be calculated by using the data from separate mea-
surements of ΔCBF/CBF, ΔS/S, and ΔCBV/CBV in the same experiment (Kida 
et al. 2000; Hyder 2004). This technique is referred to as “calibrated BOLD” and 
has been validated by showing agreement with CMRO2 measurements made using 
MRS during somatosensory stimulation over a wide range of conditions (Hyder 
et al. 2002a, b, 2010; Sanganahalli et al. 2009, 2016; Herman et al. 2013). Changes 
in spiking frequency have been directly linked to calibrated fMRI measurements of 
energetics in rat somatosensory cortex (Smith et al. 2002; Maandag et al. 2007). 
Calibrated BOLD allows CMRO2 maps to be obtained at the same spatial and tem-
poral resolution as fMRI, which is much higher than in MRS experiments. Although 
CMRO2 can be measured by neuroimaging methods, the BOLD–fMRI signal is a 
more convenient, although indirect, method of mapping neuronal activity.

27.8.3  CBV

CBV-weighted fMRI, using long half-life and plasma-borne intravascular contrast 
agents, has become an attractive alternative to BOLD-weighted fMRI in animal 
models. As the earliest fMRI maps of human brain function with CBV contrast 
using repeated bolus injections of a paramagnetic contrast agent that has a relatively 
short half-life in blood circulation (Belliveau et al. 1991), intravascular paramag-
netic contrast agents that maintain a steady blood concentration over several hours 
have allowed CBV measurements in animals with much better spatiotemporal reso-
lution (Kennan et al. 1998). Because these MRI contrast agents are solely plasma 
borne (Mandeville et al. 1998), concerns remain about whether these signals reflect 
changes in total CBV.

The relative changes in CBV from baseline can be measured by the administra-
tion of a high susceptibility MRI contrast agent to enhance the blood volume- 
induced changes (Hyder et  al. 2002a, b). An ultrasmall iron oxide nano-colloid 
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particles (AMI-227, Combidex; 15 mg/kg; AMAG) agent can be used to measure 
CBV contrast, and the agent remains in the intravascular space for several hours 
(Kennan et al. 1994).

27.8.4  CBF

Absolute CBF maps can be obtained by using spin echo slice selective and non-
slice selective inversion recovery-weighted EPI data (Hyder et al. 2001). Arterial 
spin labeling (ASL) MRI utilizes endogenous water as a magnetic contrast agent. 
Arterial blood water flowing into the brain is saturated in the neck region with a 
slice- selective saturation imaging sequence, creating an endogenous tracer in the 
form of saturated or inverted spins. As this RF-labeled arterial water enters the 
brain, it mixes with unlabeled tissue water in the brain. The perfusion level is com-
mensurate with level of signal change in brain. This technique allows regional 
perfusion maps to be measured noninvasively (Detre et al. 1992; Detre and Wang 
2002). Optical imaging techniques like laser Doppler flowmetry (LDF) can mea-
sure CBF, although these methods differ in the underlying physical mechanisms 
from ASL-MRI (He et al. 2007). LDF values for CBF have proven useful in calcu-
lating CMRO2 and are comparable to CBF measurements acquired using ASL-
MRI (Mandeville et  al. 1999; He et  al. 2007; Schridde et  al. 2007; Herman 
et al. 2009).

27.9  Signal Artifact and Artifact Removal

Signal artifact presents an additional problem as fMRI equipment can cause artifact 
in the EEG recording in general, and particularly during image acquisition (Ives 
et  al. 1993), EEG equipment can cause significant artifact in the fMRI images 
(Krakow et al. 2000). Gradient coil-induced magnetic field variations and radiofre-
quency pulses associated with image acquisition can cause high voltages in the EEG 
recording electrodes that obscure EEG signals. Revealing the full EEG signal may 
require removal of the MRI artifact through offline digital filtering, including sim-
ple low-pass frequency filtering (Fig. 27.2) (Nersesyan et al. 2004a, b), or using 
methods such as temporal principle component analysis (Negishi et al. 2004). Care 
must be taken in placing the EEG electrodes and stabilizing screws on the animal 
skull in such a way as to minimize unwanted magnetic field inhomogeneity and 
image distortion (Nersesyan et al. 2004a, b).

Movement-related artifact has already been discussed, and any runs containing 
significant movement should be rejected from the analysis. Low frequency drift can 
also occur, especially during prolonged fMRI acquisitions, which may be related to 
a number of physiological or technical factors. It is important to be aware of these 
slow signals, and to take them into consideration when planning data analysis, or to 
prevent them at the source when appropriate. Although low frequency drift in some 
situations can be related to physiology, in other cases it can be shown to occur due 

A. Gummadavelli et al.



675

MRI artifacts

SWD

GTCSGTCS

100 µV

100 µV

15 s

5 s

Bic

Im #

Im #

Block 1 (Im #6 - #20) Block 2 (Im #22 - #36)

 ...10 11 12 13 14 15 16 17 18 19 ...

a

b

c

Fig. 27.2 EEG recordings from simultaneous EEG–fMRI experiment of spike-wave discharges 
(SWD) and generalized tonic clonic seizures (GTCS) in the rat. (a) EEG acquired from WAG/Rij 
rat showing intermittent episodes of SWD. Large high-frequency artifacts produced by the MRI 
gradient coils appear every 5 s during the MRI data acquisitions, partially obscuring the EEG. (b) 
Digital low-pass filter with 30-Hz cutoff eliminates most of the MRI-related artifacts. Image acqui-
sition numbers (Im #) for this data run are seen below the EEG tracing. To analyze SWD images 
versus baseline, t-maps were constructed comparing pairs of consecutive images, each consisting 
of a quiet baseline image just before a given SWD, followed immediately by an image acquired 
during or within 2 s after the same SWD. In the example shown here, pairs of consecutive baseline 
and SWD images, respectively, would include images, #11 and 12; 14 and 15; 18 and 19; and other 
similar pairs from this data run. Baseline images Bi (images 11, 14, 18, etc.) were then contrasted 
with SWD images Ai (images 12, 15, 19, etc.) to construct t-maps. Scale bar in (b) applies to EEG 
traces in both (a) and (b). (c) EEG acquired during a bicuculline-induced GTCS. The seizure onset 
is predictable and occurred approximately 5 s after the bolus injection of 0.2 mg intravenous bicu-
culline (Bic, arrow). Average BOLD signal changes can be calculated by comparing two blocks of 
images (n = 15 per block) corresponding to baseline (Block 1) and the initial portion of the seizure 
(Block 2) on the EEG. Baseline images Bi (images 6–20 in the example) were contrasted with 
seizure images Ai (images 22–36 in the example) to construct the t-map. (Reproduced with per-
mission from Nersesyan et al. 2004a, b)
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to purely technical factors and not physiology (e.g., by demonstrating similar drift 
when scanning a phantom or a nonliving perfused brain).

27.10  Data Analysis

Data analysis of simultaneous EEG–fMRI experiments allows for pairing of fMRI 
acquisitions with neuronal signal. Prior knowledge of the time course of CBF 
changes during the neuronal function being studied will direct the analysis of the 
fMRI signal. For example, in analyzing fMRI signals during rodent spike-wave 
discharges (SWD), prior measurements using LDF showed that CBF peaked 3–4 s 
after SWD onset began on EEG, and then decreased back to baseline after 3–4 s 
(Nersesyan et al. 2004a, b). Pixel-based measurements of the BOLD signal response 
showed a similar time course (Nersesyan et al. 2004a, b). Therefore, in constructing 
functional maps of BOLD signal changes during SWD compared to baseline, it was 
first assumed that each BOLD image acquisition should be related mainly to SWD 
occurring in the preceding 5-s EEG interval. Pairs of consecutive images and asso-
ciated pairs of consecutive EEG intervals were selected where the first EEG interval 
contained quiet EEG baseline, and the second contained SWD (Fig.  27.2a, b) 
(Nersesyan et al. 2004a, b). Statistical t-maps can also be constructed by be com-
bined with region of interest (ROI) analysis to evaluate differences in BOLD signal 
change and time course limited to specific brain regions (Fig. 27.3) (Tenney et al. 
2003, 2004a, b; Schridde et al. 2007; Mishra et al. 2011).

Alternatively, the time course of generalized tonic-clonic seizures (GTCS) 
begins with an abrupt onset of sustained, high-frequency neuronal firing during the 
tonic phase, followed by rhythmic high-frequency firing in the clonic phase with a 
total duration of several minutes (Matsumoto and Marsan 1964; Avoli et al. 1990). 
Therefore, analysis of more prolonged events such as tonic-clonic seizures requires 
a different approach to analysis. Comparison of bicuculline induced tonic-clonic 
seizures to baseline activity has been done by comparing a set of baseline images 
before bicuculline injection to a set of images after seizure onset (Fig.  27.2c) 
(Nersesyan et al. 2004a, b; Schridde et al. 2007). t-maps can then be constructed by 
comparing the set of baseline images to the set of images during the beginning of 
seizure activity (Fig. 27.4) (Nersesyan et al. 2004a, b, Schridde et al. 2007).

Hierarchical clustering algorithms can also be used to identify voxels of interest 
in the fMRI data (Keogh et al. 2005). The clustering analysis utilizes a t test applied 
independently to each voxel, comparing a chosen baseline period to a period of 
signal activity; voxels without significant changes are discarded. Voxels that are act-
ing similarly to another portion of brain can be chosen by applying a further test 
requiring that each voxel have a correlation with two other voxels.

Changes in CMRO2 can be estimated for individual brain regions using the 
known general relationship between oxygen consumption and BOLD, CBV, and 
CBF data at steady state (Eq. 27.1) (Kida et al. 2007; Schridde et al. 2007). This can 
be done using CBF values obtained from ASL-MRI or from LDF, together with 
separate measurements of BOLD and CBV (Fig. 27.5) (Schridde et al. 2007).
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Fig. 27.3 BOLD fMRI and CBV increase in S1BF and thalamus (Thal) but decrease in CPu dur-
ing SWDs. Time course of signals is displayed as percentage change relative to pre-seizure base-
line data. (a) Example of BOLD fMRI changes 2–4  s after SWD onset in a WAG/Rij rat at 
9.4  T.  S1BF and thalamus (Thal) show prominent increases in BOLD signal during SWDs. 
Prominent BOLD decreases are present in the CPu. No changes are seen in V1M or hippocampus 
(Hc). Smaller changes are seen in other areas. Simultaneous EEG acquired during fMRI was used 
to identify images obtained 2–4 s after SWD onset for comparison with baseline images obtained 
immediately before start of SWDs. Results are displayed as t maps of BOLD–fMRI signal super-
imposed on high-resolution anatomical images. t values were generated using a paired t test in 
which pairs consisted of one seizure acquisition taken 2–4 s after seizure onset and the baseline 
images acquired just preceding SWD onset (n = 26 SWD episodes). Slices are shown from anterior 
to posterior, with approximate coordinates relative to bregma (Paxinos and Watson 1998). Color 
bars indicate t values for increases (warm colors) and decreases (cold colors). Threshold value 
t > 2. (b) BOLD signals changes (n = 22 animals; data are from 1856 SWDs total). (c) CBV signal 
changes (n = 5 animals; data are from 418 SWD total). Time courses are displayed as mean ± SEM, 
with 2-s time bins. Vertical line at time = 0 marks SWD onset. Hc, Hippocampus. (Reproduced 
with permission from Mishra et al. 2011)
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a

b

Fig. 27.4 BOLD–fMRI increases and decreases at 9.4 T during bicuculline-induced generalized 
tonic clonic seizure (GTCS) in Wistar rats. (a) BOLD–fMRI signals during the beginning of the 
seizure show not only a mixed pattern of widespread increases across the whole brain, including 
cortex (ctx) and thalamus (thal) but also prominent focal decreases, especially in hippocampus 
(hc). (b) Toward the end of the seizure, BOLD increases became less prevalent, though still promi-
nent, whereas decreases became more widespread throughout the brain. In (a) and (b), t-maps are 
shown for 30 s of data (ten consecutive fMRI images acquired every 3 s) during seizure compared 
with 30  s baseline. Maps are superimposed on high-resolution anatomical images. Slices are 
shown from anterior to posterior, with approximate coordinates relative to bregma (Paxinos and 
Watson 1998). Color bars indicate t values for increases (warm colors) and decreases (cool colors). 
(Reproduced with permission Schridde et al. 2007)
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Fig. 27.5 Average time courses of percent signal change of the BOLD–fMRI response, cerebral 
blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) over time during 
bicuculline-induced tonic-clonic seizures. The changes show that blood supply exceeds oxygen 
consumption in the barrel field cortex but not the hippocampus. In all graphs, the straight vertical 
line at time = 0 marks seizure onset. (a, b) Time courses of mean signal change in CMRO2 over 
time, calculated for three different values of the BOLD calibration parameter A′ (0.4, 0.5, and 0.6) 
(see Eq. 27.1), for the barrel field cortex (S1BF) (a) and hippocampus (b). In all cases CMRO2 
showed a pronounced increase in both structures during seizures but was higher in hippocampus 
compared with cortex, independent of (a). (c, d) Relationship between the mean percent signal 
changes for BOLD, CBF, and estimated CMRO2 (A′ = 0.6) for cortex (SIBF) (c) and hippocampus 
(d). In the cortex, the increase in CBF during seizures was nearly double compared with the 
increase in CMRO2, accompanied by an increase in the BOLD signal. In the hippocampus, how-
ever, increases of CBF and CMRO2 during seizures nearly matched, and no signal changes were 
observed in the BOLD signal on average, despite strong neuronal activity in both structures. 
(Reproduced with permission from Schridde et al. 2007)

27.11  Sequential EEG–fMRI Studies in Animals

Experimental designs where the timing of the hemodynamic response is relatively 
controlled may circumvent the technical challenges inherent to simultaneous EEG–
fMRI studies by using sequential EEG–fMRI. These studies record the EEG–fMRI 
under the same conditions and where the time course is relatively consistent allow-
ing for investigation of both neuronal electrical data and cerebral hemodynamic 
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responses. Sequential EEG–fMRI has been employed to study epilepsy in the rat 
model of pentylenetetrazol-induced seizures (Keogh et  al. 2005; Brevard et  al. 
2006). Sequential electrical recording and BOLD–fMRI has also been used to 
investigate visual processing in the cat (Kayser et al. 2004).

Sequential investigations are limited in the accuracy with which fMRI signals 
can be correlated to EEG activity. Therefore, sequential measurements are not ideal 
for the study of animal models where the neuronal function under investigation is 
variable, and where the variability is an important aspect of the phenomenon being 
studied.

27.12  Applications of Simultaneous EEG–fMRI in Animals

Simultaneous EEG–fMRI investigations of animal models have distinct advantages, 
as previously mentioned, in the correlating of brain electrical, hemodynamic, and neu-
rometabolic responses. Simultaneous EEG recording with MRI was first performed in 
a rat cortical spreading depression model in 1995 (Busch et al. 1995). Subsequent 
EEG–fMRI studies in animal models have mainly focused on epilepsy. Here, we will 
review EEG–fMRI animal studies of epilepsy, including generalized and partial sei-
zures, sleep, and studies where electrical stimulation was applied during signal acqui-
sition. We will also discuss animal studies where the primary aim was to investigate 
the relationship between neuronal activity and the BOLD signal response.

27.13  Epilepsy

The first animal model studies of epilepsy with simultaneous EEG–fMRI were per-
formed in the 2000s (Van Audekerkea et al. 2000). As we have mentioned, animal 
models allow the full power of fMRI methods to be employed to noninvasively map 
epileptic networks throughout the brain. Animal models provide a means to study the 
ictal activity of all seizure types and are not limited by movement artifact as animals 
can be studied under anesthetized, paralyzed, and ventilated conditions. The onset 
and type of seizure can be controlled in animal models, and invasive studies can be 
done to relate fMRI signals to underlying neuronal activity (Blumenfeld 2007).

Simultaneous EEG–fMRI in epilepsy can be used to accomplish several goals, 
including the accurate localization of seizure onset, the evolving physiology of sei-
zures in focal regions or distributed networks, and to relate fMRI signals to underly-
ing physiology. Interpretation of human studies will be improved by a better 
understanding of the relationship between neuronal activity and the fMRI signal in 
animal models. A better understanding of the local and remote networks and brain 
regions involved in specific seizure disorders may help design improved focal resec-
tive surgery and could provide targets for deep brain stimulation, medication, or 
even gene therapy. Animal studies may also improve our understanding of func-
tional brain impairment and cognitive dysfunction (Blumenfeld and Taylor 2003; 
Blumenfeld 2005a, b, 2012).
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27.14  Absence Seizure Models

Human studies of spike-wave discharges (SWD) in absence epilepsy patients 
(Archer et al. 2003; Salek-Haddadi et al. 2003; Aghakhani et al. 2004) have revealed 
a great deal regarding the neural networks involved in SWD formation and propaga-
tion. However, additional information is needed to correctly interpret fMRI signal 
increases and decreases in this disorder. Animal models can be used to study in 
depth the relationship of fMRI signal changes to underlying neuronal activity, and 
molecular mechanisms during SWDs (Blumenfeld 2005a, b). The Wistar Albino 
Glaxo rats of Rijswijk (WAG/Rij) have spontaneous spike-and-wave discharges and 
are an established model of human absence epilepsy (Coenen and Van Luijtelaar 
2003). fMRI studies in this model have shown BOLD signal increases in focal bilat-
eral regions of the cortex and thalamus (Nersesyan et al. 2004a, b). Interestingly, 
although considered a generalized seizure disorder, focal anterior regions of the 
brain are most intensely involved both in fMRI and electrical recordings of SWD, 
while other brain regions are relatively spared (Meeren et al. 2002; Nersesyan et al. 
2004a, b). Although human fMRI studies of SWD have shown both increase and 
decreases in the cortex (Archer et al. 2003; Salek-Haddadi et al. 2003; Gotman et al. 
2005; Labate et al. 2005; Aghakhani et al. 2006; Hamandi et al. 2006; Laufs et al. 
2006), studies in WAG/Rij rats have so far shown mainly increases in the cortex 
(Nersesyan et al. 2004a, b; Tenney et al. 2004a, b). However, studies have shown 
that the basal ganglia show prominent fMRI signal decreases during SWD in rodent 
models (Fig. 27.3) (Guillemain et al. 2007; Mishra et al. 2007, 2011).

Gamma-butyrolactone (GBL) is a precursor of gamma-hydroxybutyrate and pro-
duces robust SWD in rats, resembling petit mal status epilepticus (Snead et al. 1999; 
Tenney et al. 2003). A simultaneous EEG–fMRI study, using epidural electrodes, of 
SWD in rats treated with GBL showed thalamic increases and mixed cortical 
increases and decreases in fMRI signals (Tenney et al. 2003). However, a similar 
study in marmoset monkeys given GBL showed only fMRI increases during SWD 
(Tenney et al. 2004a, b). Simultaneous fMRI–EEG in an anesthetized ferret model 
of 3- to 4-Hz SWD with bicuculline administration also demonstrated cortical 
increases in BOLD signal associated with various forms of SWDs (Youngblood 
et  al. 2015). Recent investigations in a sequential fMRI and EEG rat model of 
genetic absence epilepsy suggest that the fMRI cortical BOLD increases may have 
been anesthesia related; future experiments should carefully examine the neurovas-
cular and metabolic effects of anesthetics as separate from pathophysiology.

27.15  Generalized Tonic-Clonic Seizure Models

Generalized tonic-clonic seizures (GTCS) in animal models can be induced by 
pharmacologic means, allowing the investigator control over the timing of seizures 
and thereby allowing for study with advanced imaging techniques. The first investi-
gation of GTCS using fMRI was performed early in the development of fMRI as a 
method (Ogawa and Lee 1992). Simultaneous EEG–fMRI studies of GTCS in 
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animals face the challenge of constraining movement in the scanner (Van Camp 
et al. 2003; Nersesyan et al. 2004a, b; Schridde et al. 2007).

The primary agents to chemically induce GTCS include kainic acid, pentylene-
tetrazol, and bicuculline. Kainic acid, a potent central nervous system stimulant, has 
been used to induce GTCS in animals (Ben-Ari et al. 1979). A distinct change in the 
BOLD–fMRI signal has been seen following injection of kainic acid (Ogawa and 
Lee 1992). Another pro-convulsive agent is pentylenetetrazol (PTZ) and acts as a 
GABA antagonist. PTZ has also been used to induce GTCS in rats (Van Camp et al. 
2003; Keogh et al. 2005; Brevard et al. 2006). Finally, bicuculline, another GABA 
receptor antagonist, has also been used to induce rat GTCSs, showing widespread 
cortical BOLD–fMRI increases (Fig.  27.4) (Nersesyan et  al. 2004a, b, Schridde 
et al. 2007).

Studies of bicuculline-induced GTCS using multiple techniques to investigate 
neuronal activity, CBF, CBV, CMRO2, and BOLD signal changes indicate that these 
parameters all increase in parallel in the cortex during bicuculline-induced GTCS. In 
contrast, some regions such as the hippocampus may show variable BOLD signal 
changes or even BOLD decreases even though direct recordings of neuronal activity 
from the hippocampus showed consistent large increases in neuronal activity during 
GTCS (Fig. 27.4) (Schridde et al. 2007; DeSalvo et al. 2010). Interestingly, the CBF 
increase exceeded the CMRO2 increase in the cortex, producing the expected con-
sistent increase in BOLD. However, in the hippocampus, CBF increases did not on 
average exceed CMRO2 so that mismatch between metabolism and CBF can lead to 
paradoxical BOLD decreases in some cases (Fig. 27.5) (Schridde et al. 2007).

27.16  Partial Seizure Models

Simultaneous EEG–fMRI in animal models of focal epilepsy necessitates addi-
tional operative techniques to induce localized seizure activity. Where genetic and 
systemic pharmacologic models allow the study of generalized seizure disorders, 
direct focal introduction of seizure-inducing drugs, commonly penicillin, or electri-
cal stimulation is required to cause focal seizures. One such early study used focal 
penicillin infusion into the prefrontal cortex of sheep (Opdam et al. 2002). Localized 
increases in the fMRI signal were identified in the sheep cortex during seizures 
(Opdam et al. 2002). Penicillin has also been applied to the somatosensory cortex in 
a porcine model, showing regional signal increases during interictal spikes 
(Makiranta et al. 2005), and to the occipital cortex in rats, showing regional signal 
increases during seizures (Mirsattari et al. 2006).

Electrical stimulation of the dorsal hippocampus has been performed during 
simultaneous depth electrode and fMRI studies in a rodent model that recapitulate 
clinically observed electrophysiological cortical slow waves (low-frequency high- 
amplitude) during temporal lobe focal seizures with impaired awareness (Blumenfeld 
et  al. 2004a, b). Following electrical stimulation, neuronal electrical activity and 
fMRI–BOLD increased intensely in the hippocampus, as expected during induced 
seizures, while electrophysiological cortical slow waves and BOLD decreases were 
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observed in cortical association cortices such as the lateral orbitofrontal cortex with 
a gradual return to baseline (Fig. 27.6) (Englot et al. 2008; Motelow et al. 2015). 
Similarly, BOLD signal increases were also observed in anterior hypothalamus and 
septal nuclei during induced focal seizures; interestingly, the intralaminar thalamus 
and brainstem arousal structures showed BOLD decreases (Fig.  27.6) (Motelow 

LO/VO Septum

+0.6 mm+1.6 mm+2.6 mm

Ant Hyp CL

+3.6 mm

-3.4 mm-2.4 mm

2 8t-values

HC MT

-1.4 mm-0.4 mm

-4.4 mm -5.4 mm

a

Fig. 27.6 BOLD region of interest (ROI) time courses reveal increases and decreases during focal 
temporal lobe seizures and eventual return to baseline. (a) T-map of ictal changes during partial 
seizures (from 30-s pre-seizure baseline) reveals complicated network of changes. Widespread 
cortical decreases are accompanied by mixed subcortical increases and decreases. Increases are 
seen in known areas of seizure propagation such as the hippocampus (HC) and lateral septum as 
well as in sleep-promoting regions such as the anterior hypothalamus (Ant Hyp). Decreases are 
seen in the cortex, most prominently in lateral and ventral orbital frontal cortex (LO/VO) and in 
medial regions including cingulate and retrosplenial cortex. Decreases are also seen in arousal 
promoting regions such as the thalamic intralaminar nuclei including centrolateral nucleus (CL), 
as well as in the midbrain tegmentum (MT). The arrowheads at AP −3.4 mm signify the hippocam-
pal electrode artifact. Warm colors represent fMRI increases, and cool colors decreases, superim-
posed on coronal anatomical images from the template animal. AP coordinates in millimeters 
relative to bregma (Paxinos and Watson 1998). Ten animals, with FDR-corrected threshold 
p < 0.05. (b) Mean ROI time courses (±SEM) for data 30 s prior to seizure onset, seizure time 
course scaled to mean seizure duration, and unscaled postictal time course aligned to seizure end. 
Ant Hyp, anterior hypothalamus; HC, hippocampus; LO, lateral orbital frontal cortex; CL, central 
lateral (intralaminar) thalamus; MT, midbrain tegmentum; Septum, lateral septal nuclei. 
(Reproduced with permission from Motelow et al. 2015)
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et al. 2015). These later two regions were confirmed to have decreased multiunit and 
single-unit firing rates with subsequent electrophysiological investigations (Motelow 
et al. 2015; Feng et al. 2017). Separate experiments also showed neuronal electrical 
activity increase in the GABAergic lateral septal nuclei, that were essential in the 
generation of cortical slow waves and in the reduction of cortical cholinergic trans-
mission (Li et al. 2015). In concert, simultaneous fMRI–EEG studies demonstrated 
the network by which focally induced temporal lobe seizures propagate to inhibitory 
structures such as the lateral septum to inhibit subcortical arousal structures. This 
leads to decreased neuromodulatory input to the intralaminar thalamus and basal 
forebrain. Consequently, widespread decreased cortical arousal manifests electro-
physiologically in cortical slow waves, hemodynamically with cortical BOLD 
decreases, and behaviorally with automatisms or behavioral arrest (Blumenfeld 2012).

27.17  Sleep

Simultaneous EEG–fMRI has also been used to investigate sleep in rodent models 
(Khubchandani et  al. 2005). Simultaneous EEG allows for the determination of 
sleep and wake cycles in the animal while scanning. fMRI signal increases were 
shown in the medial preoptic area during sleep, corroborating other work indicating 
the importance of this area in maintaining slow wave sleep (Khubchandani et al. 
2005). Simultaneous EEG–fMRI has been used primarily in epilepsy research, but 
potential exists for much additional work in other fields, including sleep.
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27.18  Sensory–Motor Stimulation Models

Simultaneous EEG–fMRI can be used to study the activation of specific brain 
regions during sensory–motor stimulation. Electrical forepaw stimulation has been 
used to compare cortex activation during fully conscious curarization compared to 
during alpha-chloralose anesthesia (Peeters et  al. 2001). Simultaneous acquired 
EEG data were used to identify the awake and anesthetized states, showing that the 
BOLD signal was smaller under alpha-chloralose anesthesia, compared to the 
awake state (Peeters et al. 2001). Simultaneous EEG–fMRI has also been used to 
study the interaction between simultaneous and sequential electrical forepaw stimu-
lations in the rat and the effects on the associated stimulation-evoked potentials and 
BOLD signal responses (Ogawa et al. 2000) showing fMRI signal modification in 
response to two stimuli directly following another, although on EEG the changes 
associate with the second stimulation was extinguished. Studies investigating fMRI 
changes during anesthesia with parallel electrophysiology recordings during fore-
paw stimulation have shown differences in the strength of fMRI changes under 
different types of anesthesia (Hyder et al. 2002a, b; Smith et al. 2002; Maandag 
et al. 2007). These sensory studies have often been a model system under which to 
study the neural underpinnings of the BOLD signal.

27.19  Relating fMRI Signals 
to Electrophysiological Recordings

One of the major goals of animal studies in this field is to relate neuroimaging sig-
nals to underlying electrical neuronal activity. Direct measurement of neuronal 
activity in these models is therefore essential. Simultaneous recordings of single 
neurons, local field potential (LFP), and BOLD–fMRI signals have been accom-
plished in anesthetized monkeys (Logothetis et al. 2001; Tolias et al. 2005; Shmuel 
et al. 2006), but this method remains a significant challenge technically.

The relationship between fMRI signals and electrophysiology can be success-
fully investigated by parallel benchtop electrophysiology and fMRI experiments 
performed under identical conditions (Hyder et  al. 2002a, b; Smith et  al. 2002). 
Studies designed to investigate both modalities in the same animal model have 
shown good correspondence between fMRI increases and physiological measure-
ments (Nersesyan et al. 2004a, b; Schridde et al. 2007; Sanganahalli et al. 2013). 
Specifically, anterior brain regions such as the somatosensory cortex where fMRI 
signals are increased during SWD show increased neuronal firing and CBF, while 
posterior areas such as visual cortex spared by fMRI signal changes show few 
changes in physiological measurements (Nersesyan et al. 2004a, b). Similarly, in 
the WAG/Rij model of SWD absence seizures, the caudate–putamen showed inverse 
hemodynamic measure (fMRI BOLD, CBV, and CBF) as compared to electrophysi-
ological measures (Fig.  27.1) (Mishra et  al. 2011). Direct physiologic measure-
ments during generalized tonic-clonic seizures, on the other hand, show increases in 
both anterior and posterior brain regions, in agreement with fMRI measurements in 
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the same areas (Nersesyan et al. 2004a, b). Interestingly, in the somatosensory cor-
tex, the magnitude of BOLD fMRI, neuronal firing, and CBF changes were greatest 
for generalized tonic-clonic seizures, less for normal whisker stimulation, and even 
less for SWD (Nersesyan et  al. 2004a, b). The degree to which fMRI–BOLD is 
coupled to neural metabolic activity is variable and brain region- dependent (Sloan 
et  al. 2010; Devonshire et  al. 2012). Recent studies assessing fMRI–BOLD and 
electrophysiology in deep (thalamus) and cortical structures during sensory- evoked 
responses with rat forepaw stimulation showed the effects of measured neural–
hemodynamic coupling of metabolic demand (Fig. 27.1) (Sanganahalli et al. 2016). 
Understanding the relationship between fMRI signal increases and decreases in 
other regions will be the subject of future investigations, as will understanding the 
neuroenergetic mechanisms of fMRI signal changes. The complexity of animal 
model-, brain region- (Shu et al. 2016a, b), and anesthesia-dependence (Maandag 
et al. 2007) makes one approach the interpretation of the BOLD signal with caution.

27.20  Future Directions

The use of fMRI as a research tool in animal models of epilepsy is still nascent in 
its development, and there is tremendous potential for additional future work in this 
field. Simultaneous EEG–fMRI is now a reality and has contributed greatly to our 
understanding of hemodynamic responses that precede, accompany, and follow epi-
leptiform discharges and to our understanding of hemodynamic and metabolic 
responses to neuronal activity. Additionally, the use of simultaneous EEG–fMRI 
will open many lines of investigation and will continuously refine our understand-
ing of the temporal and spatial characteristics of neuronal activity. BOLD signal 
acquisition is only one of many promising MRI modalities, and it will become 
increasingly feasible to fully investigate the neuroenergetic basis of activity changes 
in the brain using multimodal techniques. The integration of measurements of 
BOLD–fMRI, CBV, and CBF can be used to obtain estimates of the CMRO2, 
thereby allowing a full investigation into neuronal energetics (Davis et  al. 1998; 
Hyder et al. 2002a, b; Smith et al. 2002; Hyder and Blumenfeld 2004; Shulman and 
Rothman 2004; Stefanovic et al. 2004; Maandag et al. 2007).

Further technical advances in fMRI acquisition and analysis, combined with 
advances in combining the EEG data, will allow for a better signal-to-noise ratio, 
and improved spatial and temporal resolution. Future studies will be able to perform 
detailed investigations of the time course of the hemodynamic response to varying 
neuronal events and across brain networks. Intracranial electrical recording during 
fMRI is magnifying the resolution with which we can measure the activity of indi-
vidual brain regions. The increased cell-type specificity with insertion of light- 
sensitive channels in animal models and optode placement allow technically 
challenging but immensely controlled stimulation experiments (Bernal-Casas et al. 
2017; Lee et al. 2017). Additionally, intracranial electrical stimulation is opening 
new avenues of investigation with the development of models of partial seizures and 
into the fundamental relationship between neuronal activity and the cerebral 
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hemodynamic and metabolic response. Crucial questions regarding the fMRI 
changes during epileptiform events, and other neuronal processes, remain unan-
swered. Which region(s) are involved in seizure-generating network? Which regions 
of the brain are involved in sensory–motor processing? How do different regions of 
the brain vary in their hemodynamic and metabolic response regarding temporal 
and amplitude characteristics from varying stimuli or processes? How do these 
hemodynamic and metabolic responses relate to electrical activity before, during 
and after neuronal events? Answering these questions will contribute to our under-
standing of neuronal function and to the development of targeted investigations of 
molecular and genetic changes associated with abnormal brain function.

27.21  Conclusions

Simultaneous EEG–fMRI in animals is now a fully developed investigational tool. 
We have reviewed the technical challenges related to animal preparation, data anal-
ysis, signal acquisition, and study design, and the innovative solutions to these prob-
lems have been highlighted. EEG–fMRI studies in animals can contribute to our 
understanding of epilepsy, sensory–motor processing, and other neuronal events, 
and the relationship between fMRI signals their underlying neural underpinnings.

The animal model studies discussed here have yielded important data, eluci-
dating specific cortical and subcortical network changes during epileptiform 
events and will guide future studies of this disorder. More work is needed to map 
the anatomic distribution of the changes, and to fully investigate the physiology 
of brain responses using modalities that measure changes in CBV, CBF, and 
CMRO2, and electrical neuronal activity throughout the brain. These studies will 
enhance our ability to interpret human studies and will guide the design of new 
therapeutic targets for surgical treatment, neurostimulation, and other innovative 
therapies.
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28EEG–fMRI Information Fusion: 
Biophysics and Data Analysis

Nelson J. Trujillo-Barreto, Jean Daunizeau, Helmut Laufs, 
and Karl J. Friston

28.1  Introduction

Cerebral activity has many attributes: bioelectrical, metabolic, hemodynamic, hor-
monal, endogenous, exogenous, specialized, integrated, pathological, stable, 
dynamic, to mention but a few. It then seems obvious that moving from unimodal 
recordings to multimodal measurements will allow neuroscientists to better capture 
and understand the nature and structure of cerebral activity. However, the complex 
and diverse nature of the biological processes underlying the data recorded nonin-
vasively outside the brain means that fusing electrophysiological data and BOLD- 
related measurements is a challenging endeavor.

The realization of any cognitive, motor, or sensory process rests on cerebral 
dynamics and creates order in the bioelectric and hemodynamic signals measured 
with Electroencephalography (EEG) and functional Magnetic Resonance Imaging 
(fMRI), respectively. To detect and interpret the relevant features of these signals, 
one typically describes processes at their own temporal and spatial scales. The main 
sources of scalp EEG signals are postsynaptic cortical currents associated with large 
pyramidal neurons, which are oriented perpendicular to the cortical surface (Nunez 
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1981). However, the scalp topology of measured electrical potentials does not, with-
out additional (prior) information, uniquely specify the location of underlying bio-
electric activity. This issue is referred to as the ill-posed nature of the EEG inverse 
problem. Conversely, even though fMRI discloses complementary features of neu-
ronal activity (Mukamel 2005; Nunez and Silberstein 2000), it is only an indirect 
measure, through metabolism, oxygenation and blood flow, where these slow mech-
anisms provide temporally smoothed correlates of neuronal activity.

Standard unimodal EEG (fMRI) data analysis relies on the specificity of a given 
bioelectric (hemodynamic) feature of neuronal activity. The vast majority of exist-
ing EEG–fMRI integration strategies attempt to enhance the spatial or temporal 
resolution of the combined EEG–fMRI dataset. But can we exploit their comple-
mentary nature to infer the underlying neuronal activity and its dynamics? What 
specific aspects of the underlying neuronal dynamics can really benefit from such 
data integration and what aspects can’t? This chapter focuses on the alternative 
approaches to integrating EEG and fMRI information, from a biophysical modeling 
and signal analysis perspective. We have tried to represent state-of-the-art knowl-
edge and know-how in this important neuroimaging challenge. We will identify 
promising research directions in EEG–fMRI fusion and the sorts of scientific ques-
tions that this approach can address.

28.2  EEG–fMRI Information Fusion: Limitations

Observed mismatches between EEG and fMRI can be interpreted as: (a) a decou-
pling between the electrophysiological and the hemodynamic activity or (b) a signal 
detection failure (i.e., false-positive/negative results). This distinction is important, 
because decoupling itself might be very informative. For example, in clinical appli-
cations (neuroimaging investigations of epilepsy), evidence for a decoupling 
between electrophysiological and metabolic activity might be a feature of the 
pathology itself. Furthermore, factors such as age or medication may also alter both 
the vascular and the neural function (Tsvetanov et al. 2015), which adds to the con-
founding effects of changes in neurovascular coupling (NVC) when investigating 
neurocognitive functioning with EEG–fMRI. The question is whether one can reli-
ably distinguish between a neurovascular decoupling and a signal detection failure. 
In the following, we will try to list the potential physiological and experimental 
confounds that constitute the main limitations of any EEG–fMRI information fusion 
procedure.

28.2.1  Coupling of Electrophysiological 
and Hemodynamic Responses

The nature of the NVC is at the heart of any possible association between electro-
physiological and hemodynamic markers of neuronal activity. Despite the increas-
ing amount of literature in the field of NVC (Riera et al. 2006; Riera and Sumiyoshi 
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2010), none of the existing biophysical models specify precisely what is meant by 
“neural activity” that drives hemodynamic responses. Therefore, these models can-
not tell us what aspect of neural information processing is reflected in the BOLD 
signal. Neural information processing within a cortical unit can be described in 
many different ways, and its relationship to neurophysiological processes can be 
characterized on different scales; for example, local field potentials versus spiking 
activity, excitatory versus inhibitory postsynaptic potentials, or different types of 
receptor activation (Stephan et al. 2004).

Sophisticated animal studies that combine invasive multielectrode recordings 
with fMRI (Jones et  al. 2004; Logothetis et  al. 2001; Logothetis and Wandell 
2004; Patel et al. 2005, 2004; Puce et al. 1997; Shmuel et al. 2006; Ureshi et al. 
2004) or with optical imaging techniques (Martindale et al. 2003; Mathiesen et al. 
1998) have started to address these issues. These studies have shown a significant 
correlation between the time courses of hemodynamic and electrophysiological 
signals. These encouraging results, at the mesoscopic scale, have supported the 
assumption that hemodynamic signals underlying fMRI reflect metabolic demand 
generated by local neuronal activity, with equal increases in hemodynamic signal 
implying equal increases in the underlying neuronal activity (Heeger et al. 2000; 
Shulman et al. 2004). The later has also been suggested by noninvasive studies at 
the macroscopic scale mainly comparing locations of EEG and fMRI sources for 
a given subject and task. For example, these studies have shown a good concor-
dance for primary sensorimotor (Korvenoja et al. 1999) and visual (Mangun et al. 
1998) sources. Similar conclusions emerge when using more complex cognitive 
tasks; for example, the motor response to visual stimulation (Kawakami et  al. 
2002), decision-making tasks (Thees et al. 2003), and face perception (Horovitz 
et al. 2004).

However, a similar number of studies at both the mesoscopic and the macro-
scopic level have challenged the 1:1 match between imaging signals and local neu-
ronal activity. For example, Sirotin and Das (2009) used optical imaging and 
intracranial recordings to jointly measure cerebral blood volume, oxygenation, mul-
tiunitary activity (MUA), and Local Field Potentials (LFP) from V1, continuously, 
in alert behaving monkeys. The authors demonstrated a component of the hemody-
namic signal that was locked to trial onsets but was independent of visual stimula-
tion and could not be predicted from concurrent spiking or LFP.  The authors 
concluded that therefore, is that “hemodynamic signals in alert individuals engaged 
in a task are a complicated resultant of multiple neuronal processes that are likely 
not equivalent to each other on any common measure measured (e.g., energy con-
sumption)” (Das and Sirotin 2011). This conclusion has also been supported by 
noninvasive macroscopic recordings showing significant differences between the 
regions implicated by EEG and in fMRI. Gonzalez-Andino et al. (2001) list many 
of these case reports (mostly involving sensorimotor and auditory cortices) as well 
as ambiguous multimodal identifications of epileptogenic foci (see also Laufs et al. 
2008). Using a bilateral auditory stimulation with ten subjects, Stippich et al. (1998) 
found an average distance of 14 mm between the MEG dipole and the centre of the 
fMRI activation.
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Additionally, although standard fMRI analysis is usually based on the modula-
tion of the main positive peak of the BOLD response, several studies have suggested 
that other transients of the signal might be better correlated to the underlying neuro-
nal activity and/or the associated EEG signals. For example, using simultaneous 
fMRI and electrophysiological recording, Shmuel et al. (2006) demonstrated a neg-
ative BOLD response associated with local decreases in neuronal activity (LFP and 
MUA) below spontaneous activity, detected 7.15 ± 3.14 mm away from the closest 
positively responding region in V1. At the macroscopic level, Whittingstall et al. 
(2007) found that the source of the N75 component of the visual evoked potential 
(checkerboard stimulus) co-localized with a region of positive BOLD activation, 
while the P100 co-localized with a region of negative BOLD activation. These find-
ings highlight the importance of considering both neuronal and vascular transients 
for an accurate integration of EEG and fMRI.

In brief, the principal limitations on multimodal EEG–fMRI integration are 
imposed by physiology. One reason why EEG and fMRI sources may be dislocated 
is the distance between the neuronal population whose electrical activity is generat-
ing the EEG signal and the vascular tree, which provides the blood supply to these 
neurons, since BOLD signal changes are essentially hemodynamic (Beisteiner et al. 
1997). Similarly, in addition to pre- and postsynaptic electrochemical dynamics, a 
number of physiological processes require energetic support; for example, neu-
rotransmitter synthesis (Patel et al. 2004), glial cell metabolism (Lauritzen 2005), 
maintenance of the steady-state transmembrane potential (Kida et al. 2001), and so 
on. These phenomena may cause hemodynamic BOLD changes without EEG cor-
relates (Arthurs and Boniface 2003). This differential sensitivity to neuronal activity 
and energetics can also arise whenever hemodynamic activity is caused by unsyn-
chronised electrophysiological activity, or if the latter has a closed source configura-
tion that is invisible to EEG.  Conversely, if the electrophysiological activity is 
transient, it might not induce any significant (i.e., detectable) metabolic activity 
changes (Nunez and Silberstein 2000).

28.2.2  Experimental Limitations

Another important potential source of bias in EEG–fMRI fusion is experimental 
variability. In some situations, it might be necessary to acquire the EEG and fMRI 
data in separate sessions. In this case, habituation effects, variations in the stimula-
tion paradigm, or any other difference between sessions may lead to differential 
activity of neural networks (Gonzalez-Andino et al. 2001; Rosen et al. 1998; Wagner 
and Fuchs 2001).

Simultaneous EEG–fMRI acquisition techniques have been developed specifi-
cally to address these issues. This technical challenge was largely pioneered by 
neuroimaging groups focusing on pharmacoresistant epilepsy (Ives et  al. 1993; 
Lemieux et al. 2001; Warach et al. 1996) and later on used for the identification of 
intrinsic brain states reflecting cognitive default modes by assessing associations 
between spontaneous EEG oscillations and fluctuations of the fMRI resting-state 
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signal (see Tagliazucchi and Laufs 2015 for a review) as well as for answering basic 
research questions in the context of classical cognitive experiments (Ullsperger and 
Debener 2010). Nevertheless, and despite advances in simultaneous EEG–fMRI 
hardware and software, the signal-to-noise ratio (SNR) of these signals is still sig-
nificantly lower than the corresponding unimodal paradigms (but see Liston et al. 
2006). As MRI moves toward using ultrahigh magnetic fields in the quest for 
increased signal-to-noise, the question arises whether combined EEG–fMRI mea-
surements are feasible at magnetic fields of 7 T and higher (see Neuner et al. 2014 
for a recent review). This is mainly due to reciprocal electromagnetic perturbations 
(Krakow et al. 2000; Kruggel et al. 2000). For the EEG signal, this SNR degradation 
can be catastrophic: the most important artifacts in the raw data can completely 
mask the signal of interest. These are due to a complex combination of factors, 
including the MR field strength (and thus frequency) and the orientation/positioning 
of the EEG recording equipment relative to the RF coil and the MR gradients. All of 
these unavoidable artifacts manifest themselves as induced voltages that add lin-
early to the EEG signal and obscure the biological signal of interest; see the chap-
ters “EEG Instrumentation and Safety,” “EEG Quality: Origin and Reduction of the 
EEG Cardiac-Related Artefact,” and “EEG Quality: The Image Acquisition 
Artefact.” Although denoising algorithms have been reasonably successful in gradi-
ent artifact correction (Allen et  al. 2000; Garreffa et  al. 2003), the pulse-related 
artifact remains a challenge (Ellingson et  al. 2004; Nakamura et  al. 2006), as 
described in the chapter “EEG Quality: Origin and Reduction of the EEG Cardiac- 
Related Artefact.”

28.3  EEG–fMRI Information Fusion: Solutions

Despite its great promising potential, simultaneous EEG–fMRI does not necessarily 
yield both the spatial and the temporal resolution that might be desirable given the 
properties of each recording modality alone. Since the main limitations of EEG–
fMRI information fusion are well established, many data analysts have argued that 
dedicated modeling and signal processing tools should be used to combine the 
advantages of EEG and fMRI (Dale and Halgren 2001; Hallett 2002; Liu et  al. 
2006; Mulert et al. 2004; Trujillo-Barreto et al. 2001). Nevertheless, because the 
intrinsic features of the chosen analysis method strongly influence the putative out-
come, the choice of the method used for data integration is of crucial importance.

28.3.1  Information Fusion: Definition

Reconstructing the spatial deployment of current density from EEG measurements 
is an intrinsically ill-posed problem. On the other hand, estimating neuronal activity 
from the hemodynamic response is a difficult temporal deconvolution problem. 
Critically, the dual fitting of the bioelectric and hemodynamic responses does not 
necessarily circumvent the difficulties of the inverse problems that attend each 
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modality. So what exactly do we expect to gain from EEG–fMRI information 
fusion? What does “information fusion” mean? The Collins Concise Dictionary 
gives the following definitions: “information: knowledge acquired through experi-
ence or study” and “fusion: the act or process of fusion or melting together.” 
Although we may be able to reconcile these two notions, intuitions about informa-
tion fusion can be finessed using psychoacoustics and the link between “conso-
nance” and “auditory sensation of fusion.”

In music, a consonance (Latin consonare, “sounding together”) is a harmony, 
chord, or interval that is considered stable, as opposed to a dissonance, which is 
considered unstable. The strict definition of consonance may relate to sounds that 
are pleasant, while the more general definition includes any sounds that are used 
freely. An example of perfect consonance is the octave interval. The correlation 
between consonance and fusion has been known since the mid-nineteenth century: 
the more the interval is consonant, the more we tend to perceive only one sound; the 
more the interval is dissonant, the more we can tease apart the different sounds that 
comprise the chord.

This characteristic is an essential aspect of information fusion procedures, which 
rely on the coherence of information, in the context of uncertainty. In other words, 
optimal information fusion should be framed in information theoretic terms. 
Bayesian inference furnishes a probabilistic framework that allows one to formalize 
the propagation of both information and uncertainty from observations (the data) to 
unknown causes. This framework requires a so-called generative model (or forward 
model) that specifies the (possibly uncertain) relationships between the data and 
what caused them. In this context, data analysis entails specifying an appropriate 
model, with a set of unknown parameters, and then looking for parameter distribu-
tions that explain the data. This is called model inversion and involves extracting 
information from data by quantifying the uncertainty associated with a model of the 
system generating data. If the model can generate multimodal data, its inversion 
corresponds to a model-driven approach to data fusion.

However, the underlying generative model of the multimodal data may be too 
complicated or simply unknown. In the case of joint EEG and fMRI, generative 
models are rather complex, including nonlinear dependencies between the variables 
of the model and a high number of parameters. More importantly, these generative 
models critically rely on assumptions about the nature of the NVC, which, as we 
will discuss later, is still not sufficiently understood. Therefore, not all approaches 
to EEG–fMRI fusion rely on a multimodal generative model, but a good part of the 
literature has focused on the development of data-driven approaches. These 
approaches make the fewest assumptions and use the simplest models, both within 
and across modalities. Typical assumptions can include linear relationships between 
variables (avoiding model-dependent parameters) and/or use of model-independent 
priors such as sparsity, non-negativity, statistical independence, low rank, and 
smoothness, among others. A data-driven approach is therefore self-contained in the 
sense that it relies only on the observations and the assumed relationships in the 
data: it avoids external input. For this reason, data-driven methods are sometimes 
called “blind.” Because data fusion depends bilaterally on multimodal data, it is 
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inherently symmetric. However, there are other (asymmetric) approaches, where 
one modality is treated as a cause or predictor of the other. Given the wide variety 
of existent approaches, here we use an all-embracing definition of data fusion: it is 
the analysis of multiple datasets such that the different datasets can interact and 
inform each other. We now consider the distinction between symmetrical and asym-
metrical procedures.

28.3.2  Asymmetrical vs. Symmetrical Approaches

As noted above, the quantitative contribution of neurophysiological processes in 
“active” areas to electromagnetic and hemodynamic signals is largely unknown 
(Daunizeau et  al. 2005; Gonzalez-Andino et  al. 2001; Stephan et  al. 2004). 
Nevertheless, one can define “neuronal activity” operationally as the state of nodes 
in a network responding to specific events (e.g. cognitive, sensorimotor, or sponta-
neous changes in brain activity) (Friston 2005a). This allows one to consider event- 
related (ER) EEG and fMRI data as measures of “neuronal activity,” since the ER 
response is a reproducible EEG or fMRI signature that can be elicited systemati-
cally (Friston 2005b). However, electromagnetic and metabolic responses, as 
detected by EEG and fMRI, are not necessarily caused by the same underlying 
neuronal processes.

“Neuronal activity” Ω can be decomposed into two overlapping subspaces, ΩEEG 
and ΩfMRI, which correspond to the parts of Ω that contribute to EEG and fMRI 
signals, respectively (Pflieger and Greenblatt 2001). The intersection Ω1 (see 
Fig. 28.1a) defines a “common substrate” of neuronal activity. Conversely, Ω2 (Ω3) 
denotes the subspace of neuronal activity detected by EEG (fMRI) that does not 
contribute to fMRI (EEG) measurements. This decomposition formalizes the appar-
ent coupling–uncoupling between bioelectrical and hemodynamic responses.

What should we expect to learn about neuronal activity by combining EEG and 
fMRI? Since no information about Ω2 (Ω3) is available from the fMRI (EEG), no 
multimodal procedure will provide a better characterization of this activity sub-
space than a unimodal EEG (fMRI) analysis. However, a multimodal approach 
should benefit from the complementary nature of EEG and fMRI by providing dif-
ferent perspectives on the common subspace, Ω1.

During the past two decades, many reports have focused on analytical techniques 
devoted to EEG–fMRI integration. These techniques can be broadly divided into 
asymmetrical or symmetrical approaches (see Fig. 28.1). Asymmetrical approaches 
use information from one modality in order to predict or constrain the other modal-
ity and therefore can be further subdivided into (Fig. 28.1b (i)) asymmetrical EEG 
to fMRI approaches and (Fig. 28.1b (ii)) asymmetrical fMRI to EEG approaches. In 
general, these approaches only consider certain features of the recorded data and 
hence, important spatial information or temporal information measured from fMRI 
and EEG respectively may be overlooked. Additionally, prior knowledge of one 
modality is used to guide and improved the results in the other modality, which 
stablishes a degree bias (asymmetry) in favor of the guiding modality.
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Fig. 28.1 Formalization of the EEG–fMRI coupling–uncoupling (a) and EEG–fMRI fusion 
approaches (b). Any multimodal information fusion approach will be beneficial for inferring com-
mon neuronal states, Ω1. This means that asymmetrical EEG–fMRI approaches systematically bias 
their estimate of Ω1 by introducing information from ΩEEG ((i): EEG to fMRI approaches, i.e., 
integration through prediction) or ΩfMRI ((ii): fMRI to EEG approaches, i.e., integration through 
constraints). In contrast, symmetrical EEG–fMRI fusion approaches rely on a joint EEG–fMRI 
generative model, which allows the estimation of Ω1 to be derived from an optimal balance between 
EEG- and fMRI-derived information ((iii): integration through forward models). (Adapted from 
Daunizeau et al. 2007 and Kilner et al. 2005)

Symmetrical fusion approaches (Fig. 28.1b (iii)), on the other hand, incorporate 
both modalities into a joint analysis where they can mutually inform each other, 
allowing full spectrum exploration between the different data types. Importantly, 
symmetric approaches rely on a common generative model, offering a multimodal 
fusion where the two data sources are given the same weight. In the following we 
will review each of these techniques to EEG–fMRI integration.

28.3.3  EEG to fMRI Approaches

This type of EEG–fMRI integration is necessarily implemented within a simultane-
ous EEG–fMRI acquisition paradigm. These techniques consider covariations of 
changes over time between a given EEG-defined event or feature and region- specific 
fMRI signals at a within-subject level. The goal is to localize brain regions whose 
fMRI response is temporally correlated with a given EEG-defined event or feature. 
That is, temporal information from the EEG signal is used as a constraint or predic-
tor variable in the fMRI time series model. Here, EEG is typically preprocessed to 
a point where a specific EEG feature of interest over the time course of the record-
ing can be extracted. fMRI data then follow standard procedures up to the point of 
formulating the General Linear Model (GLM) for first-level statistics. At this point, 
hemodynamic responses are parameterized using the trial-wise extracted EEG fea-
ture. Typically, the regressors in the GLM are defined by convolving the EEG fea-
ture with a hemodynamic response function (HRF). The idea is that an enhanced 
amplitude in the EEG feature leads to an upscaling of the hemodynamic response 
function for a given event.
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The different methods used to implement this approach can be largely subdi-
vided into univariate and multivariate methods (see Abreu et al. 2018a for a recent 
review), depending on the number of EEG channels used to extract the feature of 
interest. In univariate methods, a limited number of EEG time courses (often a sin-
gle time course) representative of the phenomena of interest are selected, and tem-
poral or spectral features are then extracted and used to predict BOLD changes. 
Multivariate methods, in contrast, consider multiple EEG channels in the feature 
extraction step. The choice of method ultimately depends on the type of activity of 
interest.

The pioneering work in this direction has been pursued largely by functional 
imaging groups focusing on presurgical planning for pharmacoresistant epilepsy 
(Aghakhani et al. 2004; Al-Asmi et al. 2003; Archer et al. 2003; Boor et al. 2003; 
Grova et al. 2008; Krakow et al. 2000; Lemieux et al. 2001; Salek-Haddadi et al. 
2003; Warach et  al. 1996); see the chapter “EEG–fMRI in Adults with Focal 
Epilepsy” for an overview. In the simplest approach, after artifact correction, the 
epileptiform activity is identified by an expert on the EEG. These events are then 
convolved with a HRF and used as a regressor in standard GLM analysis (Bagshaw 
et al. 2005; Leal et al. 2016; Lemieux et al. 2001; LeVan and Gotman 2009); as 
described in the chapter “Experimental Design and Data Analysis Strategies.” The 
epileptic events can be further subdivided into a succession of stages (e.g., early 
ictal, clinical seizure onset, and late ictal) and model each stage separately (Thornton 
et al. 2010). Other features of the interictal epileptiform discharges (IED) as possi-
ble predictors of the epilepsy-related BOLD changes. These include the amplitude, 
energy, width, slope of the rising phase, and spatial extent of the IED to modulate 
the amplitude of the stick function modeling of the IED events in the GLM (Bénar 
et  al. 2002; LeVan et al. 2010; Murta et  al. 2016). In the context of task-related 
EEG–fMRI studies, temporal EEG features are typically extracted from the associ-
ated single trial ERPs and used to predict the trial-specific amplitude and response 
latency of the BOLD fluctuations (Bénar et al. 2007; Debener 2005; Debener et al. 
2006; Nguyen and Cunnington 2014; Wirsich et al. 2014).

The rich temporal and spectral information contained in the EEG has also moti-
vated using spectral features extracted from the time–frequency decomposition of 
the EEG signal, as predictors of the fMRI signal (Laufs et al. 2006; Moosmann et al. 
2003; Scheeringa et al. 2008). This method has been used to investigate the neuro-
nal correlates of spontaneous cerebral activity occurring when the subject is not 
exposed to any extrinsic stimulation or pathological activity. After simultaneous 
EEG–fMRI acquisition, spontaneous fluctuations of power in specific frequency 
bands are quantified in the EEG traces. Time-dependent power in each of these 
frequency bands is used to form a regressor in the GLM of fMRI (Goldman et al. 
2002). This can also be extended to include EEG power over multiple frequency 
bands as simultaneous repressors in a GLM analysis of the fMRI data, so that their 
individual contributions to the BOLD signal, as well as their interactions, can be 
investigated (de Munck et al. 2009; Mantini et al. 2007). Other spectral features 
used include (but are not restricted to) the total power (Wan et al. 2006), linear com-
bination of band-specific power values (Goense and Logothetis 2008), mean 
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frequency (Rosa et  al. 2010a, b), and root mean square frequency (Kilner et  al. 
2005; Rosa et al. 2010a, b). In the context of invasive recordings, the phase to ampli-
tude coupling of intracranial EEG recorded simultaneously with fMRI during a 
motor task has also been reported to be a good predictor of the BOLD response 
(Murta et al. 2017).

Other authors have proposed multivariate EEG to fMRI methods, which use 
multiple EEG channels for the feature extraction in order to capture spatial informa-
tion, which cannot be assessed by the univariate methods. The extraction of the 
features in this case can be based on: (1) the spatial correlation of EEG maps with 
reference spatial maps, such as spatial templates from separate EEG recordings 
(Grouiller et al. 2011) or EEG microstates’ maps (Britz et al. 2010; Schwab et al. 
2015; Yuan et al. 2012); (2) |functional connectivity measures across different EEG 
channels such as partial directed coherence (Biazoli et al. 2013) or phase synchro-
nization index (Abreu et al. 2018b; Mizuhara et al. 2005); and (3) multiway decom-
position methods (Marecek et al. 2016; Schwab et al. 2015), among others. After the 
feature extraction, the multivariate methods for asymmetrical integration approach 
follows more or less the same steps as in univariate methods by including the 
extracted feature or combination of features as predictors of the fMRI signal in a 
standard GLM analysis.

Until very recently, most EEG–fMRI approaches focused on predicting the 
BOLD signal at each voxel based on the EEG extracted feature. However, there is 
increasing effort in the development of similar approaches for the study of the tem-
poral fluctuations of BOLD signal correlations across the brain, the so-called 
dynamic functional connectivity (see (Tagliazucchi and Laufs 2015) for a recent 
review). Although this area of research is relatively recent, and the neurophysiologi-
cal meaning of these connectivity fluctuations is still not clear, including EEG infor-
mation in this type of analysis seems like a promising way forward, opening new 
opportunities for the development of novel EEG–fMRI methods.

There are several points that one has to bear in mind when interpreting the results 
obtained using EEG to fMRI approaches. These approaches assume that the neural 
properties contributing to the signals captured by both modalities partly overlap and 
exhibit a linear association. However, no specific assumption is made about the 
spatial organization of activation patterns. Therefore, effects can be obtained in 
brain structures or networks that are not necessarily the biophysical generators of, 
say, the ERP recorded at the scalp (Debener 2005; Minati et al. 2008). Additionally, 
single-trial EEG analyses have to rely on techniques that increase the signal-to- 
noise ratio of individual trials. When dealing with spectral signatures, considering 
narrow frequency bands of the EEG can be thought of as a filtering mechanism. 
Another commonly used method is to apply algorithms that allow unmixing of spa-
tiotemporally overlapping EEG signals before feature extraction, such as 
Independent Component Analysis (ICA) (James and Hesse 2005; Onton et  al. 
2006). But invariably, only a fraction of the ongoing brain activity can be used for 
an EEG to fMRI analysis. Critically, the selection of the feature of interest is usually 
determined by the research question addressed, and the obtained results should be 
interpreted with caution. For example, although both ERP amplitudes and latencies 
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have been shown to be correlated with hemodynamic responses, latencies are less 
likely to directly reflect activations of potential generators (Bénar et al. 2007).

28.3.4  fMRI to EEG Approaches

The aim of these techniques is to finesse the study of fast dynamics of neuronal 
activity as measured by EEG by using fMRI-derived spatial priors in the EEG 
source reconstruction problem. Again, this has been the subject of many reports in 
the past two decades. The conceptual framework that dominates in this field rests on 
functional integration or coupling among sources (Lin et al. 2004; Liu et al. 2006). 
Going beyond functional specialization (Friston et al. 1996), evoked responses are 
understood as arising in an interacting network of connected “nodes” (the localized 
regions); these interactions are referred to as “arcs” or “edges” in graph theory. 
Interactions are expressed in the temporal dynamics of neuronal activity, since they 
shape the influence of one neuronal population on another. It is thought that charac-
terizing these connections requires the use of EEG, since this is the only neuroimag-
ing modality whose temporal resolution is similar to that of the underlying neuronal 
processes (but see Friston et al. 2019 for a discussion about the possibility of using 
fMRI to estimate conduction delays in the millisecond range). However, the EEG 
spatial inverse problem induces uncertainty about the number and deployment of 
nodes in the network, which is why fMRI constraints are potentially useful.

This approach can be divided into two classes, associated with the EEG source 
model employed: (a) the equivalent current dipole (ECD) model (Kiebel et al. 2008) 
and (b) the distributed source model (Friston et al. 2008). Dipolar fMRI to EEG 
approaches simply associate each fMRI focus with an ECD, whose position lies a 
priori at the centre of the activation (Wagner and Fuchs 2001). This type of a priori 
constraint is hard, in the sense that the results of the fMRI analysis are not ques-
tioned (e.g., the number of active regions). In addition, since the ECD model does 
not accommodate the spatial extent of underlying active regions, it is difficult to 
assess the relevance of the fMRI constraint (Liu et al. 2006). For example, it has 
been shown that many ECDs are required to model spatially extended regions cor-
rectly (Shiraishi et al. 2005).

Distributed fMRI to EEG approaches rely on “weighted regularization tech-
niques” for source reconstruction, which can be reformulated in a Bayesian frame-
work where regularization terms or soft constraints are included in the form of prior 
distributions on the sources (Trujillo-Barreto et al. 2004). In this approach, fMRI 
data are used to bias the EEG inverse solution toward those locations deemed as 
statistically significant in the view of fMRI. In brief, fMRI activations are treated as 
empirical priors on the spatial profile of cortically distributed sources, such that 
their influence depends on the EEG data (Daunizeau et al. 2005). As a consequence, 
the Bayesian posterior estimates penalize sources whose fMRI-derived activation 
probability is low. Importantly, these estimates represent our updated posterior 
beliefs (with respect to the fMRI prior) about the spatial deployment of the sources, 
after having observed the EEG data. In doing so, potential biases due to spatial 
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decoupling between the two modalities can be alleviated. In practice, initial applica-
tions of this approach showed robust estimation of the position and extent of under-
lying sources whenever the fMRI-derived constraints were valid (Ahlfors and 
Simpson 2004). However, when some sort of decoupling occurred, the EEG source 
reconstruction incurred significant bias (Liu et al. 2006), which is why many vari-
ants of the fMRI penalty term have been proposed (Babiloni et al. 2003; Halchenko 
et al. 2005; Liu et al. 1998; Rosa et al. 2010a, b).

There are two possible reasons for the observed biases. First, in initial fMRI to 
EEG approaches, an fMRI-derived BOLD activation map was used to compute a 
single global spatial prior in the form of a fix form (usually diagonal) source covari-
ance matrix scaled by a single hyperparameter that controlled the balance between 
the effect of the prior and the information in the EEG data (Daunizeau et al. 2005; 
Liu et al. 2006). As a result, all fMRI-activated areas either valid or not are given the 
same importance in the source estimation. Therefore, depending on the reliability 
(level of noise) of EEG data, sources corresponding to invalid fMRI activations can 
be artificially boosted if the majority of fMRI activations are supported by the EEG 
data. In other words, supporting fMRI activations in one area will affect the infer-
ence in another area. Second, in standard approaches, the same static global spatial 
prior is usually applied simultaneously to all time points in the EEG data (Nguyen 
et al. 2016). The later means that biases can occur even if all the fMRI activations 
correspond to true EEG source activations, because they are not necessarily coupled 
in time (Whittingstall et al. 2007).

To overcome these problems, several developments of the Bayesian framework 
for fMRI to EEG integration have been proposed during the last two decades 
(Daunizeau et al. 2005; Henson et al. 2010; Nguyen et al. 2018, 2016). For example, 
Henson et al. (2010) capitalized on the use of multiple sparse priors (MSP) for EEG 
source reconstruction (Friston et al. 2008) and proposed to construct fMRI-derived 
priors where each suprathreshold fMRI cluster is treated as a separate covariance 
component, each weighted by its own scale hyperparameter (MSP-fMRI). This 
allowed for imposing multiple local spatial fMRI priors so that the individual effect 
of each fMRI cluster on the estimation of the sources can be assessed by estimating 
the corresponding hyperparameters from the data. In this way, fMRI clusters that do 
not receive support from the EEG data are automatically penalized in favor of those 
which do contribute. The authors compared using (1) multiple versus single, (2) 
valid versus invalid, (3) binary versus continuous, and (4) variance versus covari-
ance fMRI priors. Interestingly, they found that the MSP method benefited little 
from additional fMRI information and suggested that using MSP already provides a 
sufficiently flexible generative model.

However, in the above study, the MSP-fMRI was applied to the full time window 
of analysis, which did not allow for assessing the effect of the temporal uncoupling. 
In a related approach, Nguyen et al. (2018, 2016) proposed segmenting the EEG 
data first into nonoverlapping time windows and then applying the same MSP-fMRI 
on each window separately. The authors reported significant improvement of the 
results in an ERP study, when compared to the standard method of using a single 
fMRI global prior. Unfortunately, the difference between the proposed windowed 
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MSP-fMRI analysis and a common MSP-fMRI for the whole time window was not 
analyzed. Finally, given solutions constrained or unconstrained by fMRI, which 
should be chosen? In Daunizeau et al. (2005), a Bayesian model comparison method 
was proposed to decide whether one should use the fMRI constraint or not. This 
approach has been applied successfully to clinical epilepsy data (Grova et al. 2008).

One obvious advantage of the fMRI to EEG approach is that it can be applied to 
EEG and fMRI data acquired under comparable, but not necessarily identical exper-
imental conditions, as information derived from single trials is not taken into 
account. This allows for an individual optimization of experimental conditions for 
each modality, by avoiding the complications of joint EEG–fMRI recordings. One 
interesting possibility would be to apply the MSP-fMRI windowed approach 
described above at the single trial level. However, even with the most advanced 
methods, the optimality and validity of the fMRI to EEG approach strongly relies 
on the assumption of a tight coupling between electrophysiological and fMRI mark-
ers of neuronal activity.

28.3.5  Symmetrical EEG–fMRI Approaches

As noted above, divergences between the anatomical localization obtained by func-
tional techniques and those obtained from electrocortical stimulations are not infre-
quent. This has insidious consequences for asymmetrical EEG–fMRI approaches, 
since the relative importance of EEG and fMRI is not evaluated. For instance, in 
Dale et  al. (2000), the authors recognized that when fMRI was considered the 
“truth” for spatial information, serious biases could occur in fMRI-regularized EEG 
source reconstruction when the actual electrophysiological activity did not induce 
significant variations in the BOLD signal. Therefore, it has been observed that the 
“integration of functional modalities into the solution of the neuroelectromagnetic 
inverse problem should be cautiously considered until a tighter coupling between 
BOLD effects and electrophysiological measurements could be established” 
(Gonzalez-Andino et al. 2001). However, even if there is no one-to-one relationship 
between EEG and BOLD measurements, both modalities can still inform each 
other, if they provide complementary constraints on model parameters.

28.3.5.1  Model-Driven Approaches
It has been argued that “the search for the spectral (electrophysiological) correlates 
of hemodynamic responses is doomed to failure because electrophysiological 
responses do not cause hemodynamic responses and hemodynamic responses do 
not cause induced responses. Instead, both are caused by underlying neuronal activ-
ity”; and that “instead of trying to understand the relationship between EEG and 
BOLD measurements, it is more tenable to treat both as the observable conse-
quences of hidden neuronal activity, and try to understand how neuronal activity 
causes these (multimodal) measurements” (Friston et al. 2019).

As noted earlier, any generative model would have to rely on an accurate NVC 
model to effectively disentangle the neuronal and vascular parameters. Therefore, 
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an outstanding modeling effort has focused on designing forward models of NVC 
that are neurophysiologically grounded. This has been done for the healthy brain 
(Attwell and Iadecola 2002; Aubert and Costalat 2005; Babajani-Feremi and 
Soltanian-Zadeh 2010, 2006; Lauritzen 2005; Riera et  al. 2007, 2006; Shulman 
et al. 2001; Sotero and Trujillo-Barreto 2008, 2007) and in the context of neurologi-
cal pathology (see e.g., Iadecola 2004; Lu et al. 2004).

These advances have been limited due to the lack of a full understanding of the 
biophysical mechanisms underlying NVC. In a recent systematic review (Hosford 
and Gourine 2019) carried out a meta-analysis of published data reporting the 
effects of pharmacological or genetic blockade of all hypothesized signalling 
pathways of NVC (Fig. 28.2a). The outcome measure was the percent reduction 
of the NVC response assessed using in vivo animal models. The authors found 
that blockade of neuronal Nitric Oxide Synthase (nNOS) had the largest effect of 
inhibiting any individual target, reducing the neurovascular response by 64% 
(average of 11 studies). Moreover, inhibition of multiple targets in combination 
with nNOS blockade had no further effect (Fig. 28.2b). This study suggests the 
existence of an unknown signalling mechanism accounting for about one third of 
the NVC response.
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Fig. 28.2 Hypothesized signalling mechanisms of the NVC. (a) Schematic illustration of all 
hypothesized pathways mediating the NVC response, included in the meta-analysis of Hosford and 
Gourine (2019). (b) Summary plot illustrating the percentage means (with 95% confidence inter-
vals) of coupling (NVC) responses that remain in conditions of pharmacological or genetic block-
ade of hypothesized signalling pathways in vivo. Individual data points illustrate the magnitude of 
the effects of the 79 experimental treatments. “Multiple” category includes the results of combined 
neuronal Nitric Oxide Synthase (nNOS) inhibition with blockade of at least one other target. See 
the original publication for a detailed description of all the acronyms in the figure and references 
to all the studies included in the meta-analysis. (Reprinted from Figures 1 and 2 of Hosford and 
Gourine 2019)
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Despite the lack of established NVC models, the main link between electro-
physiological activity and energy consumption has been invariably modeled through 
glucose metabolism. This assumes a monotonic mapping between excitatory activ-
ity and energy budget, and thus the BOLD signal (through blood flow). The last part 
of this metabolic–hemodynamic cascade (i.e., the mesoscopic relationship between 
blood flow and measured BOLD signal) is relatively well established and forms the 
basis of the “balloon model” (Buxton et al. 1998) and its extensions (Buxton et al. 
2004; Friston et al. 2000; Havlicek et al. 2015; Sotero and Trujillo-Barreto 2007; 
Stephan et al. 2007, 2004) (see Buxton et al. 1998 for seminal work, and Friston 
et al. 2000 for its extension).

Despite these advances, four major issues regarding the NVC at the level of the 
mapping between energy budget and blood flow changes remain unresolved: (a) 
some authors emphasize the potentially important role of interplay between neuro-
nal and glial metabolisms in the NVC (Aubert and Costalat 2005; Pellerin and 
Magistretti 1994); (b) whether or not the energy consumption drives cerebral blood 
flow directly or is flow modulated by independent fast neurotransmitters (Attwell 
and Iadecola 2002; Riera et al. 2006); (c) so far, the quantitative contribution of 
inhibitory neuronal activity to energy consumption remains unclear (Chatton et al. 
2003; Kida et al. 2001; Sotero and Trujillo-Barreto 2007); (d) the contribution of 
physiological noise to the variability of induced electroencephalographic and hemo-
dynamic responses may have been overlooked (Buckner and Vincent 2007; 
Fukunaga et al. 2008; Krüger and Glover 2001).

Figure 28.3 summarises the key components of a neurophysiologically and bio-
physically grounded generative model of both EEG and fMRI data, considering 
modeling on both the anatomofunctional and the NVC. This model would ideally 
involve many levels of description, including (a) the macroscale, that is, the rela-
tionship among active brain regions, shaping the dynamics of local (mesoscale) 
neuronal populations (Friston et al. 2019, 2003); (b) the mesoscale, that is, the inter-
play of local excitatory and inhibitory neuronal populations (Kiebel et al. 2007); 
and (c) the microscale, where NVC is mediated through cellular mechanisms (Riera 
et al. 2006; Riera and Sumiyoshi 2010). The availability and reliable inversion of 
this kind of generative models would provide principled framework within which to 
combine different modalities. A first step toward such an integrated EEG–fMRI 
generative model was proposed by Sotero et  al. (2007) and Sotero and Trujillo- 
Barreto (2008). This biophysically informed model couples neuronal activity, cere-
bral metabolic rates of glucose and oxygen consumption, and finally cerebral blood 
flow in order to predict both electroencephalographic and BOLD responses. More 
recently, the Dynamical Causal Model (DCM) framework (Friston et al. 2003) was 
extended to include a common four population canonical microcircuit model under-
lying the generation of both the EEG and the fMRI responses (Friston et al. 2019). 
This extended DCM has the potential to reveal laminar specific contributions to the 
BOLD signal measured with high-resolution fMRI.

Inversion of these integrative DCMs for EEG and fMRI may provide us with the 
key insights into the genesis of neuronal activity and how it is mediated by intrin-
sic–extrinsic connections. Moreover, having a physiologically informed neuronal 
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Fig. 28.3 Components of a generative model for EEG–fMRI symmetrical fusion. In this sort of 
model, the EEG scalp data are assumed to be an instantaneous measure of the electrical potential 
generated by the activity of a subpopulation or neural mass (e.g., pyramidal cells), which has been 
propagated through the head tissues (Baillet et al. 2001). On the other hand, the fMRI data are 
modeled as a temporally smoothed response to mostly presynaptic neuronal activity (Logothetis 
et  al. 2001) that results from a slow cascade of metabolic–hemodynamic events (Aubert and 
Costalat 2005; Friston et al. 2000; Riera et al. 2006). Left: laminar specific canonical microcircuit 
(CMC) comprising four populations per brain region: (1) spiny stellate cells, (2) superficial pyra-
midal cells, (3) inhibitory interneurons and (4) deep pyramidal cells. Each CMC is linked through 
extrinsic (between region) forward and backward connections (extrinsic connections from other 
areas are omitted in the CMC for simplicity). Right: observed signals. Pre- or postsynaptic neuro-
nal signals are combined (at the level of the putative astrocytes), and this drives the hemodynamic 
part of the model. Blood flow is increased to the venous compartment (pictured), which is accom-
panied by changes of blood volume and the level of deoxyhemoglobin. Electrophysiological and 
fMRI measurements arise from the neuronal and hemodynamic parts of the model respectively, 
mediated by a spatial lead field model for EEG and a BOLD signal model for fMRI

and hemodynamic model would also allow, in principle, resolving outstanding 
questions about the nature of the BOLD response (Friston et al. 2019). Let’s take the 
above two model development as examples. Using simulations, Sotero and Trujillo- 
Barreto (2007) were able to reproduce experimental results confirming a tight link 
between negative BOLD responses and inhibitory activity (Shmuel et al. 2006). The 
model assumed that cerebral blood flow (CBF) is not directly controlled by energy 
usage, but it is only related to excitatory activity. In a further study the same authors 
used fMRI data recording during a motor task to test this hypothesis (Sotero et al. 
2009). The authors used a Bayesian model Comparison approach to adjudicate 
between three different models in which CBF was related to (1) inhibition only, (2) 
excitation only, and (3) both inhibition and excitation. The authors found significant 
evidence in favor of model (2) which supported their previous hypothesis. When 
extended to explain EEG–fMRI data fusion (Sotero and Trujillo-Barreto 2008), this 
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model could also reproduce phenomenological predictions such as a linear relation-
ship between the increase in BOLD signal and a shift in the EEG spectral profile to 
higher frequencies (Kilner et al. 2005). Moreover, the model was also able to repro-
duce the experimentally observed pattern of positive BOLD–EEG correlations in 
thalamus and negative BOLD–EEG correlations in the occipital cortex (Goldman 
et al. 2002; Laufs et al. 2003; Moosmann et al. 2003).

In another simulation results, using the four populations, extension of the DCM 
approach (Friston et  al. 2019) was also able to demonstrate decoupling between 
fMRI and EEG/LFP data features, despite having the same underlying neuronal 
sources. More recently, using realistic simulations, the same integrative DCM was 
used to evaluate whether integrating EEG and fMRI data offered a better character-
ization of functional brain architectures than either modality alone (Wei et al. 2020). 
In brief, the authors used a Bayesian fusion approach for inversion of the model, 
where empirical neuronal priors derived from DCM of the EEG data were used to 
inform subsequent DCM of the fMRI data. The authors found that multimodal data 
fusion provided a substantial improvement in model evidence, indicating a more 
efficient estimation of model parameters, compared to inverting fMRI data alone. 
Importantly, the results suggested that using information from EEG data can 
improve (due to increased information gain) estimates of hemodynamic parameters; 
providing a proof of principle that Bayesian fusion is necessary to resolve condi-
tional dependencies between neuronal and hemodynamic estimators.

The above results suggest that, even in the absence of a one-to-one relationship 
between EEG and BOLD measurements, both modalities can still inform each 
other, if they provide complementary constraints on model parameters (Friston 
et al. 2019). Until a multimodal generative model based on a more realistic NVC 
and its associated inversion is available, the objectives of any symmetric fusion of 
multimodal EEG–fMRI information should be twofold. First, the approach should 
be able to identify the parts of EEG and fMRI signals that convey complementary 
information about the common substrate underlying these signals (i.e., Ω1 in 
Fig. 28.1). Second, it should exploit such information to decrease uncertainty when 
inferring on this common subspace. As a consequence, a symmetrical fusion 
approach requires the explicit definition of the common neuronal states that engen-
ders both EEG and fMRI measurements. This entails building a model that encom-
passes our knowledge about the link between bioelectrical and hemodynamic 
activities and being able to invert that model, given the joint EEG–fMRI data. In 
practice, very few fusion approaches (i.e., data analysis techniques) have relied on 
realistic neurophysiological models (Riera et al. 2006). This is because the com-
plexity of real metabolic–hemodynamic cascades renders the estimation of their 
parameters an intractable problem (see discussion in Sotero and Trujillo-Barreto 
2008; Sotero and Trujillo-Barreto 2007).

Other researchers have relied on simplified variants of the NVC model by 
restricting its parameters to model some common properties exhibited by “active” 
areas contributing to both event-related EEG and fMRI measurements. For exam-
ple, Kilner et  al. (2005) applied dimensional analysis to relate hemodynamic 
changes (as monotonically mapped from rates of energy dissipation) to the spectral 
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profile of EEG activity. The analysis suggested that increases in BOLD signal 
should be associated with a shift in the EEG spectral profile to higher frequencies. 
The predictions of this phenomenological model have been partially experimentally 
verified in a single-subject case study (Laufs et al. 2006) and have also been repro-
duced by biophysically informed neurogenerative models of EEG–fMRI (Sotero 
and Trujillo-Barreto 2008) but have not been included in any symmetrical EEG–
fMRI fusion approach so far.

As another example, in Daunizeau et  al. (2007), a symmetrical multimodal 
EEG–fMRI information fusion was applied to the analysis of recordings from a 
patient with epilepsy in order to identify areas involved in the generation of epilep-
tic spikes formulated in a Bayesian framework, the authors restricted common 
parameters to the spatial profile (i.e., the position and extent) of the EEG and fMRI 
sources, which was introduced in the form of an unknown hierarchical prior on 
cerebral activity. In other words, the only parameters affecting both bioelectrical 
and hemodynamic responses were those defining the spatial support of the signal 
generators. The inversion of this model yields an estimate of the common spatial 
profile, which embodies a trade-off between information harvested from the EEG 
and fMRI data. The estimated cortical sources exhibited a similar temporal response 
to concurrently measured intracranial EEG. In contrast, the estimated hemodynamic 
responses did not conform to the same chronology. Since hemodynamic responses 
are driven partly by biophysical processes that are independent of the underlying 
neuronal activity (e.g., glial cell processes), one might be inclined to favor EEG- 
related analysis in any inference regarding causal relations within the active network.

Despite its somewhat heuristic aspect, this Bayesian fusion approach is not con-
founded by the lack of detailed information about NVC, since the spatial structure 
of the EEG–fMRI coupling–uncoupling is elucidated from the data. Other 
approaches have included the balloon model itself as a surrogate for the NVC 
(Deneux and Faugeras 2010, 2006; Trujillo-Barreto et al. 2001), but have not, so far, 
included any estimation of the hemodynamic parameters. In this sense, the recent 
extension of DCM (Friston et al. 2019) may be an appropriate framework for mod-
els of bioelectric and metabolic activity in neural populations, allowing for the esti-
mation of both neuronal and hemodynamic parameters. These techniques, any of 
which can be framed in Bayesian terms, represent the state-of-the-art in the attempts 
to bridge the gap between EEG and fMRI signals in a symmetrical, physiologically 
rigorous, and optimum way. No doubt, research efforts during the next decade will 
bring increasingly sophisticated models and inversion methods that will extend the 
validity and accuracy of EEG–fMRI information fusion.

However, any EEG–fMRI fusion procedure that is necessarily “model-based” 
will suffer from the usual limitation of modeling: refutability. Whether the assump-
tions of the model are satisfied or not in a given experimental context will remain a 
question in itself (Calhoun and Sui 2016). There is a subtle balance between the 
plausibility of the assumptions and the efficiency of any model to make precise 
inferences. The tighter the prior belief regarding the underlying causes of our obser-
vations, the more precise our interpretations of the data. However, these inferences 
become increasingly constrained by our priors and indeed the space of models 
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examined. Therefore, theoretical neurobiology, experimental evidence, and dedi-
cated statistical data analysis may have to make significant progress before any 
robust information fusion technique is adopted by the neuroimaging community 
(see (Hosford and Gourine 2019; Riera et al. 2006; Riera and Sumiyoshi 2010; Wan 
et al. 2006) for recent insights from complementary invasive recordings and sophis-
ticated metabolic modeling).

28.3.5.2  Data-Driven Approaches
Over the last few years, there has been an explosion in the application of machine 
learning algorithms to the analysis of joint EEG–fMRI data. These algorithms use 
the full spectrum of available information from the two modalities to jointly decom-
pose the two datasets into latent variables reflecting common patterns between the 
two modalities. Since they are not based on a generative model, these methods are 
considered to be data-driven and descriptive or exploratory (for a recent review see 
Sui et al. 2012). However, in the broader sense, data-driven methods can be classi-
fied as symmetric EEG–fMRI approaches since they capitalize on the strength of 
each modality in a joint analysis, rather than a separate analysis of each. Therefore, 
we have decided to review them here.

Relevant methods for EEG–fMRI data fusion are mainly based on algorithms 
such as ICA, Canonical Correlation Analysis (CCA) and Partial Least Squares 
(PLS) adapted to the analysis of multimodal data (Calhoun and Sui 2016; Sui et al. 
2012). Joint ICA (jICA) (Calhoun et al. 2010, 2006; Moosmann et al. 2008) is a 
second-level analysis method that maximizes the spatial and temporal indepen-
dence of the fMRI and EEG components, respectively. This is done under the 
assumption that EEG and fMRI are generated by similar neuronal processes and 
therefore, the EEG and fMRI features can share the same mixing matrix (Mijović 
et al. 2012a, b). In brief, jICA performs ICA on the horizontally concatenated EEG 
and fMRI features (along time points and voxels, respectively). It is a straightfor-
ward and effective method suitable for examining a common modulation across 
subjects among the two modalities. However, as we have discussed in this chapter, 
the underlying assumption about the strong link between the two modalities, is 
sometimes unrealistic and represents an important limitation of jICA. Additionally, 
jICA requires the two modalities to have similar sample size in order to avoid pro-
viding priority to the modality with the most samples (Correa et al. 2010b; Dahne 
et al. 2015).

Parallel ICA (pICA) (Liu et al. 2009; Liu and Calhoun 2007) relaxes the assump-
tion of jICA of a common mixing matrix for the two modalities, by assuming that 
the two datasets are mixed in a similar but not identical way. This is done by per-
forming a spatial ICA of fMRI data and a temporal ICA of EEG data. The two 
datasets are integrated by assuming that unmixing matrices are maximally corre-
lated (Eichele et al. 2008). Compared to jICA, pICA has been demonstrated to be 
more consistent and flexible, allowing the datasets to have different dimensions 
(Correa et al. 2010a). However, rigorously speaking, pICA does not provide a full 
data fusion because the two modalities do not share information during the decom-
position step (Mijović et al. 2012a, b). A related method called linked ICA (lICA) 
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aims at discovering common latent factors among the two datasets. This method is 
implemented based on a Bayesian framework that optimizes the weighting of each 
modality (Lei et al. 2012). Similar to pICA, lICA applies ICA separately to the two 
modalities but allows results from one modality to be used as priors for the other 
modality. Being Bayesian, lICA can handle datasets with different scaling and noise 
levels (Dahne et al. 2015).

Multimodal CCA (mCCA) (Correa et al. 2009, 2008) is a method rather comple-
mentary to jICA in that it assumes that each modality has a different mixing matrix 
and aims to identify a transformed coordinate system that maximises the intersub-
ject covariations between the two datasets (Michalopoulos et  al. 2013; Sui et  al. 
2012). mCCA provides a more flexible framework than ICA-based methods for the 
exploration of the relationship between the two datasets (Correa et  al. 2010b). 
However, mCCA produces component maps that may not be sparse enough, making 
the interpretation of the results difficult (Michalopoulos et al. 2013).

The complementary nature of mCCA and jICA has also been exploited by com-
bining them into a common framework (mCCA + jICA) in order to take advantage 
of the benefits of each individual method. mCCA + jICA assumes that the compo-
nents decomposed from each modality have some degree of correlation between 
their mixing profiles among subjects. mCCA makes the jICA job more reliable by 
providing a closer initial match via correlation; while jICA further decomposes the 
remaining mixtures in the associated maps and relaxes the requirement of suffi-
ciently distinct canonical correlation coefficients. By allowing both highly and 
weakly connected modulations as well as joint independent components, 
mCCA + jICA can achieve both flexible modal association and source separation. 
Although to our knowledge it hasn’t been applied to EEG–fMRI data fusion, 
(mCCA + jICA) has been used for fusion of other combination of modalities such 
as fMRI and DTI (Sui et al. 2011), providing superior performance without increas-
ing the computational cost.

The data-driven methods reported so far ignore the underlying multidimensional 
structure of the data in at least one of the modalities; and/or assume hard coupling 
(equality constraints) between the different modalities (e.g., sharing mixing matri-
ces in jICA). fMRI and EEG datasets are inherently multidimensional, including 
information in time, space (voxels or channels), subjects, trials and so on. The mul-
tiscale nature of EEG signals can also be represented by further expending in addi-
tional dimensions, for example, by including spectral features. This multidimensional 
structure suggests adopting a tensor (multiway) representation of the EEG and 
fMRI datasets and using tensor decomposition methods for data fusion. These 
methods assume that the process underlying the data can be decomposed into a rela-
tively small number of components or “atoms,” which are extracted while respect-
ing the multidimensional nature of datasets (Lahat et al. 2015). Most importantly, 
the factorization of tensors can be unique under mild conditions, as opposed to 
matrix factorizations such as ICA-based ones. During optimization, the “shared” 
factors are appropriately “coupled,” and thus a link between the two modalities is 
established. Various types of coupling have been proposed depending on the cou-
pled factors: (a) spatial factor coupling via the lead field, which summarizes the 
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volume conduction effects in the head (Karahan et al. 2015); (b) temporal factor 
coupling via convolution with an HRF (Martínez-Montes et al. 2004; Van Eyndhoven 
et al. 2017); and (c) subjects factor coupling, assuming that the same neural pro-
cesses are reflected in both modalities with the same covariation (Acar et al. 2017a, 
b; Hunyadi et al. 2016).

Most tensor-based methods so far have focused on Coupled Matrix and Tensor 
Factorizations (CMTF), where one of the datasets (usually fMRI) is assumed to be 
bidimensional (a matrix), rather than multidimensional. Additionally, in most of 
cases, the coupling is “hard,” meaning that the shared factors are equal in the two 
datasets. The hard coupling arises from the assumption that the neural sources affect 
both modalities identically, which as we have discussed is not realistic. A pioneer-
ing application of these techniques used multiway partial least square (N-PLS) for 
EEG and fMRI fusion (Martínez-Montes et al. 2004). N-PLS is a multiway gener-
alization of partial least square regression that aims to find a linear decomposition 
of fMRI data that maximally covaries with a time–frequency decomposition of the 
EEG. The downside of this method is that the data are first decomposed separately, 
and then the decompositions are correlated, so the optimal association between 
EEG and fMRI data may not be detected (Sui et al. 2012). Additionally, as in any 
regression model, there is an implicit asymmetry associated with fusion analysis, 
since one of the modalities is assumed to predict (EEG) the other one (fMRI). More 
recently, a tensor-based EEG and fMRI fusion method that allows both full tensor 
decomposition of the two datasets as well as soft coupling (assuming similarity 
rather than equality) between any of the factors was proposed (Chatzichristos et al. 
2018). Although more empirical studies are required in order to fully assess the 
advantages and limitations of this method, the authors reported performance gains 
compared to ICA methods as well as to the separate analyses of the datasets.

The data-driven methods reviewed here may also differ in the type of data used 
to feed the analysis. For example, while some methods (e.g., jICA) are typically 
applied to subject-level summary statistics such as fMRI statistical maps and ERP 
data, other methods (e.g., N-PLS and other tensor-based methods) extend the 
amount of data processed by additionally considering variations at the level of sin-
gle trials, thereby not relying on prior information from within-subject statistics or 
extraction of data features prior to the fusion analysis (Chatzichristos et al. 2018; 
Goldman et al. 2009; Martínez-Montes et al. 2004).

Although these data-driven methods lack the explanatory power of model-driven 
approaches, data-driven methods are easier to implement, and they are not based on 
assumptions about the complicated physiological relationship between the EEG and 
fMRI signals. Therefore, in the absence of a complete understanding of the neuro-
physiological processes linking EEG and fMRI, data-driven methods can be of high 
utility by providing unbiased and multivariate analysis schemes for simultaneous 
EEG–fMRI analysis. On the other hand, due to the variety of data-driven methods 
already available for EEG–fMRI fusion, the selection of a particular one for a spe-
cific research question might sometimes be difficult. Moreover, some of the current 
methods still rely on physiological presumptions, thereby not yet taking full advan-
tage of the full power of these algorithms.
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28.4  Conclusion

We have reviewed the advances and issues relating to EEG–fMRI information 
fusion. We have emphasized the importance of NVC for generative models, which 
are the key to any balanced fusion procedure. This issue underlies many of the chal-
lenges to fusion and has been a source of much debate: “it is far from trivial to sup-
pose, for instance, that a statistically significant Z-score in the left inferior frontal 
gyrus and a large left anterior negativity at 200 ms after stimulus presentation cor-
respond to the same thing” (Horwitz and Poeppel 2002). In this chapter, we tried to 
identify those features of cerebral activity that could form the basis of models of 
electromagnetic and hemodynamic markers of neuronal activity and are required 
for EEG–fMRI multimodal fusion. We have emphasized the importance of develop-
ing statistical methods for model inversion, given EEG and fMRI signals.

Finally, gathering the knowledge and know-how necessary for EEG–fMRI fusion 
has proven to be a challenging exercise for the neuroimaging community. However, 
very few rational criticisms have questioned the intrinsic motivation of EEG–fMRI 
fusion. In short: what is the type of scientific question (apart from established diag-
nostic applications, e.g., epilepsy) that really requires EEG–fMRI fusion? This 
potentially controversial question must be addressed before we can finesse our sci-
entific strategy in this challenging area.
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29Sparse and Data-Driven Methods 
for Concurrent EEG–fMRI

Pamela K. Douglas, Farzad V. Farahani, Ariana Anderson, 
and Jerome Gilles

29.1  Introduction

The extent to which bioelectric and hemodynamic phenomena are coupled has been 
studied extensively yet remains at least partially unknown, and likely varies across 
brain region and subject, and furthermore there are effects related to task (Daunizeau 
et al. 2009) and certain pathologic conditions such as epilepsy (Grova et al. 2008) 
and stroke (Bonakdarpour et al. 2007). Developing a principled method for EEG–
fMRI fusion is challenging for a number of reasons beyond overcoming the tempo-
ral and spatial signal detection limitations of fMRI and EEG, respectively. EEG is 
thought to arise primarily from synchronous neuronal spikes and other voltage 
potential fluctuations in the extracellular medium associated with neuronal compu-
tation (Buzsáki et al. 2012). The BOLD signal measures physiologically delayed 
and temporally smoothed changes in oxygenation level within the vasculature 
(Mark and Cohen 1997). Given that EEG and fMRI measure different variables, 
which are themselves in different dimensional spaces, determining information 
described mutually by each of these imaging modalities is nontrivial (Valdes-Sosa 
et al. 2009).
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Perhaps the most challenging aspect of quantifying EEG–fMRI couplings is the 
temporal variability of these measurements—even in response to the same stimuli. 
Habituation and repetition suppression are clear examples of varied response to 
repeated stimuli (Auksztulewicz et al. 2016). However, even with jittered experi-
mental paradigms, responses can vary considerably across time within an individual 
(Müller et al. 2008; Blankertz et al. 2006). Quantifying and predicting these nonsta-
tionarities is one of the most difficult problems that has impeded widespread adop-
tion of single-trial EEG decoding for the purpose of brain–computer interfaces 
(Wojcikiewicz et al. 2011; Douglas and Douglas 2019).

The nonstationary nature of EEG–fMRI data has motivated concurrent data col-
lection for reasons beyond localization of the generators of epileptic seizures and 
interictal events. Representational drift and subject habituation to stimuli may alter 
responses even in serially collected multimodal data. When the data are collected 
simultaneously, the temporal (and potentially spatial) response variability no longer 
contributes added complexity to disentangling mutual and distinct information in 
these measurements. However, analysis of EEG data collected in the MRI environ-
ment has proven quite challenging, given a number of artifacts introduced during 
concurrent recordings.

A number of recent studies suggest that neural systems use parsimonious func-
tional representations for information processing (Eavani et al. 2015), and that low- 
dimensional global brain signatures are evident across multiple tasks (Anderson 
et al. 2012; Shine et al. 2019). Sparse decomposition methods (e.g, ICA) have also 
been used effectively for encoding and decoding fMRI (Xie et al. 2016; Douglas 
et al. 2011; Colby et al. 2012; Anderson et al. 2014) and EEG (Douglas et al. 2013), 
as well as group membership classification (Colby et al. 2012; Rosa et al. 2015). In 
this chapter we review empirical techniques that leverage sparse representations for 
the following purposes:
• Determining optimal sampling times for fMRI;
• Artifact removal from EEG data collected in the MRI scanning environment;
• Data-driven techniques for EEG–fMRI fusion.

29.2  Sparse Sampling of the Hemodynamic 
Response Function

Even in the early days of fMRI, a number of investigators noted considerable vari-
ability in the hemodynamic response function (HRF), a mathematical function esti-
mated by fitting selected empirical data to a chosen basis set. For example, in 1995, 
Lee and colleagues reported HRF delay latencies ranging from 4 to 14 s (Lee et al. 
1995). The HRF varies both in its magnitude and response latency even within func-
tionally specialized regions in the healthy brain (e.g, visual cortex, for a review, see 
Handwerker et al. 2012), as well as in the aging brain (e.g, Anderson et al. 2020). 
Taking this variability into account also boosts fMRI decoding accuracy (Choupan 
et al. 2020). Despite this knowledge, many studies continue to convolve event time 
series with a single, the “canonical,” HRF kernel. This convenient simplification 
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allows one to answer questions “assuming that the HRF is canonical, what is the 
location?”

Analyses of large publicly available fMRI datasets including the Human 
Connectome data collected with rapid sampling rates, or repetition times (TRs), of 
600 ms have again called into question the appropriateness of using a canonical 
HRF function to analyze fMRI data (Wu et al. 2013). Using the Human Connectome 
data, Webb et al. (2013) noted that voxels that were spatially adjacent to arteries 
were found to be Granger Causal sources, and their downstream venous drainage 
counterparts were conversely found to be Granger sinks, effectively recapitulating 
the early HRF delay maps of Lee et al. (1995), demonstrating that there are charac-
teristic delays between the HRF peak in a voxel proximal to an artery verses the 
venous bed. Studies carried out at 7 T have only further complicated the issue. For 
example, HRF peak activation magnitude and time appear to vary across laminar 
layers in the brain (Harel et al. 2006; Koopmans et al. 2011).

Understanding HRF variability and effectively sampling, the subtle variations 
and nonlinearities in the HRF may prove to be an essential component of determin-
ing EEG–fMRI couplings. However, the sampling of fMRI is periodic and fixed at 
the repetition time (TR). Therefore, altering the timing of stimulus presentation is 
one method that enables varied sampling of the HRF. Effectively jittering the stimu-
lus timing in this manner in turn changes the relative point at which the response 
signal is measured.

Although varying the interstimulus interval (ISI) is a standard practice in psy-
chometric research, this is generally applied using simple randomization to reduce 
adaptation to repeated stimuli, or to improve subtraction results within a GLM 
framework (Glover 1999). Theoretically, randomized sampling over an infinite 
amount of time should enable reconstruction of any unknown signal (Donoho  
2006). However, within a given fMRI experiment, we are limited practically by the 
total number of observations that are feasible within a data collection session. 
Furthermore, we have a reasonable a priori estimate of the expected HRF signa-
ture itself.

Previous work has shown that the HRF can be modeled using a Volterra series 
formulation using only a few state variables (Friston et al. 2000). In sparse optimal 
sampling schedule (SOSS) designs, we seek to determine n time points at which 
measurements should be taken to achieve maximal accuracy in recovering parame-
ter estimates, p, with the minimum number of observations, y(t). The theoretical 
basis for many SOSS techniques make use of the Cramer-Rao inequality (DiStefano 
1982; Kalicka & Bochen 2005), which states that the covariance matrix Cov(p) of 
parameter estimates is bounded below by the inverse of the Fisher information 
matrix, M:
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The goal then is to find estimates of minimal covariance, which can be achieved 
by minimizing M−1, or equivalently by maximizing the det(M), since:
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After decomposing the double-gamma HRF signal into Jordan canonical form, 
and applying the Akaike information criterion, Douglas (2017) found that a 
12- parameter model, or equivalently that the sum of six exponentials, adequately 
described the HRF signal without extraneous parameters (Fig. 29.1, Table 29.1).

The results of applying this sparse optimal sampling schedule (SOSS) to detect 
HRF variability were demonstrated on simulated data (Fig. 29.2). The SOSS was 
found to be more effective at recovering the HRF parameter estimates after 10, 50, 
and 100 events. Interestingly, a fixed or periodic stimulus presentation yielded more 
robust estimates than a randomly jittered stimulus presentation after 50 and 100 
events (Fig. 29.2, lower left). However, presenting stimuli according to the SOSS 
design yielded more robust estimates of the HRF when the amount of added 
Gaussian noise varied (Fig. 29.2, lower right).

The SOSS schedule was then implemented into an fMRI data collection session 
whereby subjects viewed photic stimuli. A total of ten healthy individuals (aged 
23–30, 12 males) without history of neurological disease were recruited to partici-
pate in this study, which was approved by the UCLA Institutional Review Board.

Each individual provided written informed consent at the Staglin Center for 
Cognitive Neuroscience prior to participation in the study. The experiment con-
sisted of concurrent EEG–fMRI data collection, in a dimly lit MR scanner room 
while a subject passively viewed visual stimuli, presented via an MR projector 
screen. Stimuli consisted of Gabor element “flashes” presented radially against a 
black background. The general linear model (GLM) results at the group level are 
shown in Fig. 29.3, left. The mean recovered HRF time course with the standard 
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Fig. 29.1 (Left) The standard double gamma HRF kernel is shown in blue. Overlaid (in white) is 
the winning 12-parameter model fit to the HRF. The sum of squared error for this fit was less than 
0.001% of the variance. (Right) The sampling points along the HRF determined by the D-Optimal 
sparse sampling schedule design are overlaid onto the HRF. Green triangles indicate sampling 
points half as many times as those with yellow squares, and one third as many times as points 
indicated with a red diamond
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Fig. 29.2 (a–c) Comparison of fixed, random, and sparse optimal sampling schedule (SOSS) on 
simulated Data. (Top) Simulated fMRI Data was constructed using the SPM software and the clas-
sic double gamma hemodynamic response function (HRF). Data were simulated using either a 
fixed inter-stimulus interval (ISI) (light blue) a stimulus design jittered randomly with mean inter- 
stimulus interval (ISI) of 10 ± 3 s (green) or a D-Optimal SOSS also constructed with a mean ISI 
of 10 ± 3 s (dark blue). (Middle) Simulated data shown with added Gaussian Noise, with stimulus 
events that generated the response shown below with event markers. (Lower Left) Sum of Squared 
Error ± SEM for recovering HRF estimates for each sampling schedule after 10, 50, or 100 stimu-
lus presentation events, with 0.4% added noise. (Lower Right) Error of estimates at varying noise 
levels as a percentage of the maximum HRF magnitude after 10 stimulus events

Table 29.1 Sparse optimal sampling schedule parameter estimates

Parameter Value Parameter Value
A1 0.3172 λ1 5.0537

A2 6.8339 λ2 0.0296

A3 −4.578 λ3 4.2034

A4 −1.1125 λ4 0.0112

A5 2.4824 λ5 0.1342

A6 −7.7615 λ6 0.0657
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Fig. 29.3 Empirical results using a SOSS stimulus presentation schedule. Group Level Results. 
(Left) General Linear Model Contrast results z-thresholded from 2.3 to 10 for the photic stimula-
tion task. (Right) Average and standard deviation of the recovered hemodynamic response func-
tion, where the initial dip was observed in 53% of subjects

deviation across the group is shown in Fig. 29.3, right. After only 50 stimuli presen-
tations, the initial dip was recovered in 53% of subjects (Fig. 29.3).

29.3  Leveraging Sparsity for Artifact Removal

As discussed in Chap. 8, a number of artifacts are introduced into the EEG signal 
during simultaneous acquisition including the MR gradient-switching artifact, car-
diac pulsatile motion effects (Srivastava et al. 2005), and noise due to the magnetic 
cryo-pump in some MR systems. For a discussion of these artifacts at higher field, 
see Chap. 11. The issue of MR gradient artifact removal appears to be mostly solved 
via subtraction of an exponentially weighted moving average template (Goldman 
et  al. 2002). However, the presence of the remaining artifacts can dramatically 
change the spectral properties of the signal and obscure the ability to perform trial- 
by- trial analyses.

Many artifact removal techniques have been developed to address these issues 
including template-based methods (Allen 1998), adaptive noise cancelation (Allen 
2000), adaptive filtering methods (Masterton et al. 2007; Correa et al. 2008), maxi-
mum noise fraction (Sun et  al. 2009), principal components (Niazy et  al. 2010), 
independent component-based methods (Jung et  al. 2000; Zou et  al. 2012), and 
combined methods (Mantini et al. 2007; Debener et al. 2007; Calhoun & Adali 2012).

One method that appears to be highly effective at cardiac pulse artifact removal 
on both simulated and empirical data is low rank + sparse decomposition (LR + SD) 
(Gilles et al. 2014). Importantly, this method obviates the need for any reference or 
template artifact signal. As such, the combined effects of many types of artifacts can 
be removed in a single decomposition without the need for manual identification of 
artifact components in the data.
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In brief, the LR + SD method assumes that each recorded EEG channel f ki

Ü

( )  
is a linear combination of its cleaned version fi(k), and j different artifacts f kj

A
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within unknown mixing coefficients aij.
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The key to this method is to assume that true EEG events occur at specific times 
and only effect a limited number of electrodes. In this case, the matrix F is sparse, 
and thus the artifact removal problem is equivalent to performing a low-rank + sparse 
decomposition on the measurement matrix (see Gilles et  al. 2014). Figure  29.4 
shows group-level results of classic ICA-based removal and the LR + SD method on 
the data described above while subjects viewed Gabor flashes using the SOSS stim-
ulus presentation. These data are compared to EEG results obtained outside of the 
scanning environment on these subjects. The LR  +  SD method resulted in an 
improved signal-to-noise ratio. Results from a single subject are shown in Fig. 29.5.
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Fig. 29.4 Group Level Results comparing independent component analysis (ICA) and LR + SD 
based cleaning to EEG data collected outside of the MR scanner environment. (TOP PANEL) 
Normalized Alpha Power time courses derived from the ocular EEG channel averaged across all 
subjects plotted with mean ± SEM for ICA, LR + SD and Outside Scanner Results. Signal-to-
Noise ratios are shown in the lower left corner for each result with the stimulus occurring at time 
equal to zero. (LOWER PANEL) Group level alpha power results projected topographically for 
500 ms prior to stimulus onset (t1), 50 ms following stimulus onset (t2), and 500 ms following 
stimulus onset (t3)
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Fig. 29.5 Single-subject alpha band continuous wavelet transform (CWT) averaged over photic 
stimuli. Columns denote the raw MRI signal (top left), the ICA-cleaned signal (top centre), and 
LR + SD cleaned CWT (top right). The corresponding time series filtered in the alpha range of 
8–12 Hz is shown in the lower panel

29.4  Data Driven Methods for EEG–fMRI Integration

A variety of data-driven methods have been developed to study EEG–fMRI cou-
plings. As discussed in previous chapters, the most common approach is the asym-
metric approach, whereby information from one modality is used to inform analysis 
of the other (Valdes-Sosa et al. 2009). In EEG constrained fMRI analysis, temporal 
information from EEG recordings can be convolved with a classic HRF kernel to 
analyze fMRI data (e.g, Goldman et al. 2002; Campanella et al. 2013). However, 
given the time scale of EEG fluctuations and the blurred and variable latency of the 
HRF (e.g, Wu et al. 2013; Handwerker et al. 2012; Webb et al. 2013), it is unclear if 
these methods are advantageous over simply convolving the HRF with externally 
(i.e, experimentally) determined task timestamps. The exception to this is when the 
events occur at a priori unknown times, as is the case with epileptiform discharges 
on EEG (Thornton et al. 2011).

Asymmetric fMRI to EEG methods typically use fMRI spatial information in the 
form of a prior (Wagner et al. 2000; Lin et al. 2006) to help solve the unidentifiable 
problem of reconstructing EEG sources from voltage potentials measured at the 
scalp. The extent to EEG and fMRI measure activity from the same brain loci 
requires thoughtful consideration (Daunizeau et  al. 2005; Douglas and Douglas 
2019). However, EEG and fMRI data are both nonstationary. Therefore, the cou-
plings themselves can also vary in time. For this reason, a data-driven symmetric 
approach may be desirable. A variety of data-driven methods for blind source sepa-
ration (BSS) have been discussed in previous chapters. Here, we discuss tensor- 
based methods and methods that consider nonstationarities between instantaneous 
bioelectric–hemodynamic couplings.
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29.4.1  Tensor Factorization

Tensor decompositions are a generalization of matrix decompositions (e.g, singular 
value decomposition) to higher dimensions. Some work (e.g, Chatzichristos et al. 
2018) suggests that these decompositions may outperform ICA methods (e.g, 
Anderson et al. 2011) for EEG–fMRI fusion on both simulated and empirical data. 
Here, we discuss two common approaches to tensor factorization: canonical poly-
adic decomposition (CPD) and the Tucker decomposition. CPD is best used for the 
estimation of latent parameters, but Tucker decomposition applied for cases of sub-
space estimation, compression, and dimensionality reduction (Rabanser et al. 2017). 
Remarkably, a unique solution under mild conditions is achieved in tensor decom-
position techniques, making them well suited for blind source separation (BSS) 
problems.

29.4.2  Canonical Polyadic Decomposition (CPD)

Canonical polyadic decomposition (CPD) represents a tensor as the sum of a finite 
number of rank-one components (Kolda and Bader 2009). Given a tensor 
χ ∈ × ×

R
I I In1 1



, the n-way CPD case is formulated as follows:
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, , , , A(2) and A(n) are similarly 

defined as factor matrices and hold the combination of the vectors from the rank- 
one components as columns. The smallest R for which equality holds is known as 
the tensor rank. In this setting, λr acts as a weighting factor during normalization of 
the factor matrices’ columns. Different algorithms for CPD include alternating least 
squares (ALS), Jennrich’s algorithm, and tensor power (Rabanser et  al. 2017). 
Unlike more conventional BSS techniques, CPD provides a unique solution without 
the need to impose constraints such as orthogonality (e.g, principal component anal-
ysis) and statistical independence (e.g, independent component analysis). For 
example, the CPD of a three-way tensor is unique if two factor matrices have lin-
early independent columns and the third factor matrix has no collinear columns. 
However, one can impose these additional constraints if desired (Fig. 29.6).

One implementation of CPD is through the Parafac algorithm. In fMRI, the lin-
ear decomposition methods of group-ICA and Linear Tensor ICA have successfully 
established that, across scan sessions and subjects, consistent functional networks 
exist (8). Tensor Algebra can represent an observation, such as an image or an fMRI 
brain scan, by employing a linear decomposition, rank-R, or a multilinear decompo-
sition, rank-(R1, R2, …, RN). An optimal linear decomposition of an n-way array 
(“data tensor”) is computed via Parafac/CANDECOMP.  Tensor ICA (as imple-
mented in FSL) is a linear Parafac variant subject to statistical independence 
constraints.
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Fig. 29.6 Illustration of two common tensor decomposition techniques. (a) Canonical polyadic 
decomposition, and (b) Tucker decomposition

29.4.3  Tucker Decomposition

In the Tucker model (Kolda and Bader 2009), a tensor  ∈ × ×
R

I I In1 1
  is decomposed 

into a core tensor along with multiple factor matrices (similar to a higher order PCA):
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where R1 ≤ I1, R2 ≤ I2, Rn ≤ In, and the factor matrices A(1), A(2), and A(n) are generally 
referred to as the principal component along the respective tensor mode. The tensor 
 = gr r rn1 2



 is the core tensor, which adjusts the magnitude of interactions between 
the different components. Note that there is no requirement for the core tensor to 
have the same dimensions as  . CPD is considered a special case of constrained 
Tucker decomposition. Although the Tucker decomposition provides a good model 
fit due to the high degrees of freedom, its factors are typically not unique, unlike the 
CPD and matrix SVD (Kolda and Bader 2009; Zhou and Cichocki 2012). The nonu-
niqueness occurs because the core tensor   can be arbitrarily configured, permit-
ting multiple solutions to the same problem. Each component is allowed to interact 
with other components. Uniqueness can be enforced by introducing constraints. For 
example, the CPD can be expressed as a special case of the Tucker model with a 
superdiagonal core tensor. Finally, the higher order singular value decomposition 
(HOSVD) results in an all-orthogonal core and thus relies on yet another type of 
special core structure.
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29.4.4  Coupled Matrix–Tensor Factorization (CMTF)

Tensor-based approaches are useful for joint factorization of multiple tensors, which 
leverage higher order signal structures  (Cong et  al. 2015; Ferdowsi et  al. 2015). 
They can also circumvent the strong independence constraint in joint BSS through 
very mild uniqueness conditions. Similarly to the joint ICA, it is assumed that one 
mode of variability is shared among the tensors, for instance, time (Martínez- 
Montes et al. 2004) or participant (Acar et al. 2014; Hunyadi et al. 2017, 2016). 
Consider a set of m tensors  m I I Im Km m∈ × ×

R
1 2, ,



, m ∈ {1, ⋯, M}, with different orders 
Km and different sizes IK mm , , except for the first mode I1, which is common among 
all tensors. Then, we can formalize the coupled CPD of this set of tensors as follows:

 
 m

r
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r r
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( ) ( ) ( )∑
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Notably, the uniqueness conditions in this case are even more relaxed than single 
tensor decomposition (Sørensen and De Lathauwer 2015). One particular case, 
namely coupled matrix–tensor factorization (CMTF) has been studied considerably 
in EEG–fMRI analysis and beyond (Acar et  al. 2014). Reconsider the previous 
example of patients with epilepsy. Suppose we have a matrix XfMRI ∈ RM × L and a 
third-order tensor 

EEG M J K∈ × ×
 , sharing the same patient-by-patient variability 

(M, L, J, and K denote the number of patients, voxels, channels, and time samples, 
respectively). Their coupled decomposition is formulated as the minimization of the 
following objective function:
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where ar
1( ) , ar

2,fMRI( ) , ar
EEG2,( ) , and ar

EEG3,( )  denote the rth column of the matrices A(1), 
A(2, fMRI), A(2, EEG), and A(3, EEG). The same mild conditions hold for the uniqueness of 
the factors A(1), A(2, EEG) and A(3, EEG), similar to the CPD. The uniqueness of A(2, fMRI) 
is also guaranteed in case the common factor A(1) has full column rank (Fig. 29.7) 
(Sørensen and De Lathauwer 2015).

However, this model rests on the assumption that the factors in the shared dimen-
sion are the same, which may limit its applications to the extent that the neural 
substrates drive each measurement are distinct. To address this limitation, Acar 
et al. (2014) developed a more relaxed version of CMTF, named advanced CMTF, 
that permits the existence of both shared and non-shared factors. Common factors 
may instead be constrained to be similar as opposed to equivalent, as done in relaxed 
ACMTF (Rivet et  al. 2015), soft coupling (Seichepine et  al. 2014), approximate 
coupling (Cabral Farias et al. 2016), and multiway partial least squares (Martínez- 
Montes et al. 2004). Finally, Jonmohamadi et al. (2019) proposed a soft approach 
based on the use of coupled tensor–tensor decomposition (CTTD) of a fourth-order 
EEG tensor and third-order fMRI tensor, coupled partially in time and participant.
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Fig. 29.7 Coupled matrix-tensor factorization (CMTF) for EEG-fMRI recordings, shown with a 
matrix of fMRI and a third order EEG tensor for a particular participant (magenta)

29.5  Canonical Correlation Analysis

Traditionalcanonical correlation analysis (CCA) is a statistical tool that finds an 
instantaneous linear relationship between variables by maximizing the correlation 
between projected variates that have undergone a linear transformation (Hotelling 
1936). CCA, and variations on it, have been used to discover multimodal relationships 
between fMRI and EEG data (Correa et al. 2010, 2008). The resulting filters effec-
tively reveal which features maximally give rise to data couplings. When the number 
of dimensions exceeds the number of data samples, as is the case for fMRI, perform-
ing these operations on covariance matrices is likely to become both numerically 
unstable and computationally intractable. Kernel CCA (kCCA) is well suited for this 
task, since a “kernel trick” can be applied to make computations more tractable 
(Akaho 2001; Bach and Jordan 2003). A linear kernel is commonly used in practice.

When the coupling between two signals is delayed, the temporal dynamics may 
be best revealed when correlations are computed on time shifted versions. Temporal 
kernel CCA recursively computes maximally correlated projections over time 
revealing non-instantaneous dynamic couplings (Bießmann et al. 2009). By com-
parison to time-shifted kCCA, and to multiway kCCA, tkCCA was found to be both 
faster and more accurate when operating on simulated data, and has been applied 
successfully to calculate couplings between nonhuman primate depth electrode 
recordings and fMRI data (Logothetis et  al. 1999, 2002; Bießmann et  al. 2009; 
Biessmann et al. 2011).

In considering the dynamic coupling between EEG and fMRI, nonstationarity or 
signal temporal dependency must be also considered. Temporal kernel CCA 
(tkCCA) recursively computes maximally correlated projections over time reveal-
ing non-instantaneous dynamic couplings (Bießmann et al. 2009). tkCCA, in effect, 
calculates a temporal filter that describes the relationship between variables. Similar 
to convolution methods, only one signal is shifted with respect to the other. In many 
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applications, it is useful to compute the maximal correlation between two variates 
x ∈ RM and y ∈ RN, which is defined typically as:

 

ρ x y x y
C

x y
xy

, corr ,( ) = ( ) =
( ) ( )

max

var var
/ /1 2 1 2

 

where Cxy is the covariance between two variables. It may be useful to discuss CCA 
in relation to principal component analysis (PCA), which has been applied widely to 
neuroimaging data. Whereas PCA maximizes variance projections of a single vari-
able, CCA works by maximizing correlations between sets of variable projections. 
PCA diagonalizes the covariance matrix with the goal of finding a linear transforma-
tion of components that are uncorrelated. By contrast, CCA is concerned with find-
ing maximal correlations between components, where each dataset nominates a 
component for a given pairwise comparison. Traditional CCA calculates two nor-
malized linear filters, wx ∈ RM and wy ∈ RN called canonical variates that maximize 
the correlation between projected variables, U w xa x= T  and U w yb y= T , as follows:

 

ρ x y w x w y
w C w

w C w w w
x y

x xy y

x xx x y y

, corr ,
T T

T

T T

( ) = ( ) =
( ) ( )

max

var
/1 2 1//2

 

 
α β, corr ,

T T( ) = ( )argmax w x w yx y  
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In this case, a canonical correlogram is used to reflect couplings between signals. 
Figure 29.8 shows an example of these extracted filters and couplings while subjects 
viewed Gabor flashes in the data described above. In some sense, this suggests that 

Fig. 29.8 Temporal kernel canonical correlation (tkCCA) applied to concurrently collected EEG- 
fMRI data while subjects viewed Gabor light “flashes”. The correlogram combined with the vari-
ates reveal bioelectric-hemodynamic couplings. The correlogram (left) computed across 100 trials, 
reaches its peak at a time-lag of approximately 6 seconds, similar to the canonical hemodynamic 
response function. The variate w¬¬x shows the EEG-fMRI couplings across frequency bands, 
while the w¬¬y variate shows the spatial couplings mapped onto a region of interest in the visual 
cortex which was selected for tkCCA analysis. Couplings appeared most prominently between 
fMRI and the alpha and delta EEG frequency bands (Douglas, unpublished data)
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convolving EEG temporal events with a canonical HRF function to perform asym-
metric EEG-fMRI fusion may be a reasonable approx-imation. However, the major-
ity of evoked and induced EEG signatures that have been mapped to cognitive tasks 
take place during the first few hundred milliseconds following a stimulus. Thus, 
convolving the HRF with temporal signatures that vary on the order of milliseconds 
is unlikely to produce significantly different results in a classic univariate fMRI 
analysis, given that the HRF is delayed and temporally smoothed. Other algorithms 
such as multimodal source power correlation analysis (mSPoC) are also well suited 
for examining nonstationary and multimodal data to include simultaneous EEG- 
fMRI data.

29.6  Conclusion

EEG signals evolve rapidly on the millisecond scale, and EEG sources resolve to 
relatively course spatial regions. It is generally thought that scalp EEG reflects neu- 
ral activity in superficial regions of cortical gray matter. However, recent evidence 
suggests that neural activity in white matter, and the gray-white matter boundary 
may also contribute to scalp EEG measurements. In contrast, the fMRI BOLD sig-
nals can be resolved to more precise spatial loci and can be used as a proxy for 
neural activity in deep brain regions, yet the signal evolves slowly due to the physi-
ologic time scale of the hemodynamic response. Here, we discussed a number of 
data-driven approaches to remove artifact from EEG signals collected concurrently 
in the MRI scanning environment. Improving artifact removal and data analysis 
techniques for multimodal EEG-fMRI remains an active area of research. Concurrent 
EEG-fMRI maybe of vital importance for patients with epilepsy by providing a 
“where” and a “when” for seizure activity. Sparse and data-driven approaches to 
studying these data may help improve our understanding of the non-linear and non- 
stationary couplings between EEG and fMRI recordings.
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30Integrating EEG–fMRI Through Brain 
Simulation

Michael Schirner and Petra Ritter

30.1  Introduction

Several approaches for multimodal information fusion have been proposed and 
categorized (see Valdes-Sosa et al. 2009; Rosa et al. 2010; Huster et al. 2012; Jorge 
et al. 2014 for reviews). Brain simulation can be called, as the name suggests, a 
model-based integration approach. Model-based approaches rely on increasingly 
realistic, biophysically oriented, neuronal models. In contrast, data-driven 
approaches rely on signal processing, thereby avoiding the need for computation-
ally expensive simulation of neuronal and neurovascular coupling dynamics. 
Model-based approaches are typically recognized as symmetrical, meaning that 
the underlying assumption is that EEG and fMRI measure distinct, only partially 
overlapping aspects of neuronal activity. Asymmetrical approaches, on the other 
hand, use information from one modality to guide the analysis of the other, for 
example, fMRI-informed EEG analysis and EEG-informed fMRI analysis. For 
example, fMRI was used to guide EEG source imaging by using statistical maps of 
the fMRI result to confine the putative source space (Dale et al. 2000; Ou et al. 
2010). The basic idea underlying such methods is to use fMRI to estimate the loca-
tion of a neural event, while EEG is used to retrieve the time course of that event. 
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The opposite direction is also possible—using EEG to inform fMRI analyses. For 
example, BOLD responses were predicted by convolving EEG measures—like the 
amplitude of an ERP component or the power of a frequency band—with a hemo-
dynamic response function, yielding so-called EEG regressors (e.g., Debener et al. 
2006). Asymmetrical approaches are often criticized for relying on the assumption 
that the fMRI signal at a certain location contains information about electric activ-
ity at that location. Or, vice versa, that the neural generators of scalp potentials 
generate a hemodynamic response that can be detected in the fMRI signal. While 
there is clearly a biological motivation for these assumptions, one can also easily 
construct scenarios where they might not hold true, for example, by considering 
regions that do not contribute to scalp EEG due to their geometry and orientation; 
or neural processes that come at no additional metabolic cost, which might be the 
case when the mean firing rate of the population does not change, but still impor-
tant computations are performed by means of other neural codes. Summarizing, 
multimodal data fusion is a considerable challenge that has been the source of 
much debate, but also of promising avenues to better understand brain function 
than with each method alone. Clearly, the spatiotemporal co-occurrence of, say, a 
statistically significant activation in fMRI, and an EEG ERP after stimulus presen-
tation, is not sufficient for concluding that they both are different manifestations of 
the same neural event. Or, more generally, correlations in EEG and fMRI data that 
occur time locked at the same location are not necessarily caused by the same 
neural event. We simply do not know enough about the underlying neurophysio-
logical processes to arrive at far-reaching conclusions from the mere observation 
of correlated signal patterns.

Brain simulation-based approaches for the integration of multimodal data are 
based on a generative computational model of the underlying physiological activity 
that is thought to give rise to observed signals in the measured modalities. In the 
case of EEG–fMRI, such brain models can be divided into two parts. The first part 
simulates the activity and interaction of neurons or neural populations, like the fluc-
tuation of firing rates, neurotransmitter concentrations, or postsynaptic potentials. 
The second part provides a mapping between neural activity (e.g., fluctuating post-
synaptic potentials) and the representation of this activity as a signal in a given 
modality (e.g., fluctuating voltage in an EEG channel). Here, we call this second 
part of the model forward model to designate its direction from source to data, in 
contrast to inverse models, which seek a mapping from data to source (note that 
often the entirety of the two parts is called “forward model”). For model-based 
EEG–fMRI integration we need two forward models, one for EEG, to describe the 
propagation of electrical activity from neural sources to EEG sensors, and one for 
fMRI, to describe the coupling between neural activity, changes in cerebral blood 
flow and blood oxygenation. As generative models specify a forward relationship, 
from model to data, multimodal data integration often seeks model inversion, that is, 
finding a model that adequately explains the multimodal dataset, which for an exist-
ing model corresponds to finding parameter distributions that lead to optimal pre-
dictions of the data. In practice, model inversion is rendered difficult due to the 
complexity of realistic neuronal-metabolic-hemodynamic cascades (Rosa et  al. 
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2010). Clearly, the performance of brain simulation-based approaches depends not 
only on assumptions about the neuronal model, but also about the mapping between 
the simulated neural state variables and measured electrophysiological or hemody-
namic signals, which is far from being established (e.g., neurovascular coupling; 
Logothetis et al. 2001; Raichle and Mintun 2006).

In this chapter we discuss EEG–fMRI integration work that is based on the simu-
lation of the evolution of neuronal states in the entire brain, or at least the entire 
neocortex. That is, we consider it a brain simulation if there exists an anatomical 
interpretation, or one-to-one mapping, between the nodes of a brain network model 
and a regional brain parcellation that covers large parts of the brain. Furthermore, 
we require the state variables of the model to have a biophysical interpretation (like 
firing rates, electric potentials, neurotransmitter concentrations) and that the state 
variables are part of a dynamical system, that is, coupled differential equations, that 
model their biophysical interaction. Importantly, with BNMs we require the system 
to explicitly simulate the coupling and interaction between different neural state 
variables, like the effects that excitatory and inhibitory current flows, or the average 
rate of spikes emitted by a population of neurons, have on other populations. This 
approach is motivated by the idea to use such models to learn something about 
unobservable (hidden) neural activity and information processing that underlies 
observable signals. Because full-brain simulation on a microscopic scale is infeasi-
ble for practical simulations (meaning: it is possible (Izhikevich and Edelman 
2008), but impractical as it consumes many resources and is weakly constrained by 
empirical data), it involves abstracting from detailed simulations of neurons on a 
microscopic (e.g., multicompartment neuron) level, or from a mesoscopic scale 
(local connectivity), to a macroscopic scale, in which the average ensemble activity 
is simulated on the basis of a mean-field theory, the basic idea of which is that indi-
vidual neuron models can be lumped together and represented by an approximation 
of their mean activity.

30.2  Brain Network Models

Brain network models rest on the basic assumption that for understanding brain 
activity, it is crucial to take the dynamic interaction of neurons, or neural popula-
tions, along their anatomical connectivity into account (Fig. 30.1). To generate a 
mathematical model, this involves the application of dynamical systems theory in 
order to describe coupled neural activity using coupled differential equations (see 
Breakspear 2017 for a current review). For example, a system of first-order ordinary 
differential equations has the form

 

d
d
x
t

f x= ( )  

where x(t) ∈ Rd is a vector of dependent variables, f : Rd → Rd is a vector field, and 
dx/dt is the time derivative, which we may regard as describing the evolution of the 
d-dimensional state variable x(t).
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Fig. 30.1 From spiking networks to neural mass models to brain network models. (a) Brain net-
work model construction starts by considering networks of spiking neurons that interact via recur-
rent and feedforward excitatory (AMPA, NMDA) and inhibitory (GABA) connections. (b) 
Neurons can be organized into populations defined by shared characteristics like similar inputs, 
outputs, and connectivity. To form neural mass models, average population dynamics, like the 
evolution of the population’s mean membrane potential or mean firing rate, are described by sim-
plified models that only capture the main modes of these dynamics, while ignoring the details of 
individual neuron dynamics. (c) Brain network models are constructed by coupling several neural 
mass models to form a global network (red arrows) of local networks (black arrows). The global 
network is structured by structural connectivity that specifies the coupling of large-scale brain 
areas by white-matter fiber bundles; for human BNMs, it is often obtained by diffusion-weighted 
MRI tractography. (Adapted with permission from Deco et al. 2011)
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The underlying idea is to use such a mathematical system of interacting (cou-
pled) differential equations in order to express the temporal dynamics and interac-
tion of interesting quantities of the physical system (state variables). In the brain, 
quantities of interest are usually the dynamics of physiological processes or entities 
like membrane potentials, firing rates, sequences of spike times, or synaptic cur-
rents. The goal of such modeling approaches is often to express the way these quan-
tities are connected in the real system in terms of physical laws. However, attempts 
to fully reduce neural activity to more fundamental physical laws within a single 
model would lead to impractical complexity of the model and might miss the level 
of emergence at which the relevant explanatory mechanisms actually take place. 
Therefore, one often seeks a parsimonious model that accomplishes a desired level 
of explanation or prediction with as few predictor variables as possible.

In order to determine the future state of the system at time t, the system needs to 
be solved analytically or numerically. Solving the system leads to a trajectory or 
orbit in the phase space of the system that starts from the used initial conditions. 
The phase space can be interpreted as a geometric equivalent of the algebraic form 
of the system, as its differential equations describe a flow in this space, that is, the 
temporal change of the system for each possible point in its phase space. Nonlinear 
evolution equations are, except for rare special cases, not explicitly solvable, and 
even apparently simple equations can produce complicated behavior such as chaos, 
which is why the focus is often set on understanding the qualitative behavior of the 
solutions. Trajectories in the phase space often converge toward so-called attractors, 
which include fixed-points (the system’s state does not change at this point) or limit 
cycles (a closed trajectory). For example, the regular, periodic spiking of a single 
neuron, or the oscillation of brain rhythms, like the alpha rhythm (8–12 Hz), can be 
described by limit cycle attractors.

Often, terms of the ordinary differential equations that make up the model are 
replaced by stochastic processes, which corresponds to adding small random pertur-
bations to the orbits at each time step. Noise lends interesting properties to such 
stochastic differential equations, like the ability to spontaneously switch between 
different attractors (e.g., see the study by Freyer et  al. 2011, discussed below), 
which may be identified as a principle underlying neuronal computation. 
Representing parts of the system by stochastic processes can be used to simplify the 
model. With these neural ensemble approaches, we assume that for a description of 
the collective behavior of a large number of neurons, the state of individual neurons 
is irrelevant, and, furthermore, that the evolution of neuronal states is uncorrelated. 
Using the central limit theorem, this allows us to express the state of a large number 
of neurons by a Gaussian probability distribution, regardless of the individual distri-
butions of states. Hence, the uncorrelated spiking of a large number of neurons can 
be reduced to the mean and variance of the average population firing rate, which 
reflects the response of a population to its total synaptic input. The dynamics of our 
assumed ensemble can then be described by a so-called Fokker–Planck equation 
that can be analytically derived from dynamic neuron models and captures the 
ensemble’s drift of the mean and its diffusion—its change in variance. In summary, 
such diffusion approximation provides a parsimonious way to reduce the enormous 
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degrees of freedom of direct simulation, by capturing mean and variance of ensem-
ble activity, based on the assumption that the statistics of local ensembles are 
Gaussian and uncorrelated. Assuming strong coherence between neurons, we can 
further drop the diffusion of the variance term from the model and describe collec-
tive neural behavior by its mean only. The resulting models are called neural mass 
models (NMMs), and they build the basis for many brain simulation endeavors 
(Breakspear 2017; Deco et al. 2011, 2008). Problematically, converging evidence 
from neuronal recordings suggests that neural population activity is heavy-tailed 
(the tail corresponding to bursts of activity) and not Gaussian (Roberts et al. 2015), 
and that synaptic currents have nonzero time-lagged autocorrelation (Haider et al. 
2016; Okun et al. 2010). The accommodation of non-Gaussian distributions with 
FPEs is an active area of research that can be expected to further drive development 
of improved ensemble models.

NMMs are used to simulate the mean activity of local groups of neurons that 
show coherent behavior, such as pyramidal neurons or inhibitory interneurons. 
That is, with NMMs, cortical areas are understood as ensembles of strongly inter-
acting excitatory and inhibitory neurons that are clustered into the respective sub- 
populations. Examples of popular neural mass models are the model developed by 
Jansen and Rit (1995) and the model developed by Wong and Wang (2006). The 
evolution of population dynamics is then often decomposed into two parts. One 
part simulates the steady-state response of a neural population to an input in terms 
of average postsynaptic membrane potential or firing rates. A second part then 
transforms the model state into an output, like an ongoing firing rate, which is 
often assumed to be instantaneous and following a sigmoid function. While bio-
logical neurons interact via many individual synapses, in the neural ensemble 
approach synaptic interaction is, similarly to population activity, understood as 
the combined effect of many individual synaptic connections. To bridge the scale 
from a small patch of cortex to the entire brain, ensembles of NMMs are coupled 
to form mesoscopic circuits (e.g., cortical columns), or macroscopic large-scale 
brain networks, or both. One node of a large-scale brain network is often formed 
by one excitatory NMM and one inhibitory NMM that are mutually and recur-
rently coupled. In addition, these nodes are then globally coupled to form brain 
network models consisting of one global network that connects several local excit-
atory/inhibitory networks. In contrast to NMMs, which treat the cortex as a dis-
crete network of nodes coupled by the connectome, neural field models treat the 
cortex as a continuous sheet, which additionally involves modeling the change of 
neural activity along space.

Problematically, even small network models involve a large number of free 
parameters to specify their long-range connectivity, that is, the mutual coupling 
strengths between each pair of nodes. As direct measurements of the so-called 
effective connectivity, the causal influence between ensembles, is scarce for 
humans, these parameters are often informed by either generic considerations 
about the potential distribution of such connections, or estimations that are based 
on analyses of diffusion-weighted magnetic resonance (dwMRI) imaging data. 
dwMRI tractography is a model-based technique to reconstruct the trajectories of 
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white-matter long-range axon bundles connecting brain regions, which is called 
structural connectivity. Metrics like the relative volume or the relative diameter of 
such structural connections are then used as a proxy for effective connectivity. 
While tractography is widely used, one can show that tractography-based connec-
tivity strength estimation gives higher weights to short and straight connections, 
while underestimating the impact of long-range and especially interhemispheric 
connections (Maier-Hein et al. 2017). Apart from that, other problems are associ-
ated with this technique; for example, it does not allow determining the direction 
of the reconstructed axon bundles and the relative proportion of excitatory and 
inhibitory neurons that are targeted by long-range axons. As a remedy, structural 
connectivity obtained from dwMRI is often further constrained by aggregated 
results from invasive animal tract tracing studies, like the CoCoMac database 
(Stephan et al. 2001) for monkey data or the Allen Mouse Brain Connectivity Atlas 
(Oh et al. 2014) for rodents. Having constrained connectivity with relative weights 
obtained from tractography, these relative weights are normalized by a free param-
eter that is often obtained by fitting the model to empirical data. Likewise, a second 
conduction velocity parameter is often used to compute conduction delays from 
connection lengths.

Applying BNMs to the analysis of brain data is an active area of research that 
yielded important insights into the neurophysiological mechanisms underlying 
healthy and pathological brain signals (Bansal et  al. 2018; Breakspear 2017). 
The basic brain simulation approach is didactically illustrated in Bojak et  al. 
(2011) and Ritter et al. (2013). Open source, freely available software packages 
like the Python neuroinformatics platform the Virtual Brain (Sanz-Leon et  al. 
2013) and the MATLAB/C++ software package NFTsim (Sanz-Leon et al. 2018) 
enable simulation, post-processing, and analysis of BNMs. (Semi-)automatic 
preprocessing pipelines allow convenient construction of individualized BNMs 
on the basis of multimodal data like dwMRI, structural MRI, fMRI, MEG, and 
EEG (Proix et al. 2016; Schirner et al. 2015). Given empirical multimodal data, 
a brain network model, and EEG/fMRI forward models, underlying neural activ-
ity is then estimated by so-called inverse modeling, which means that the param-
eters of the involved models are optimized until a good fit between simulated and 
empirical activity is found (Triebkorn et al. 2018). Straightforwardly, this can be 
realized by brute-force simulation, that is, testing parameter combinations and 
estimating the fit. While model inversion is an appealing concept, its application 
involves considerable difficulties in practice, because the inverse problem is ill-
posed for complex models like brain models, which involve cascades of dynami-
cal systems with large numbers of free parameters. First, there may be no unique 
solution, as can be seen from the underdetermination of the source reconstruc-
tion problem, which involves a large number of unknowns (current sources), but 
only a small number of observations (EEG channels). Second, the solution may 
be unstable with respect to small perturbations in the data, which can be expected 
from the convoluted and highly nonstationary nature of brain dynamics. This 
means, in practice, we often have heuristic approaches as our only option for 
full-brain simulation.
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Despite the involved challenges, brain simulation found broad success in model-
ing epilepsy (Proix et al. 2018; Taylor et al. 2013), Alzheimer’s (Stefanovski et al. 
2018; Zimmermann et  al. 2018), brain tumor patients (Aerts et  al. 2018), stroke 
(Adhikari et al. 2015; Falcon et al. 2016), structural disconnection (Cabral et al. 
2012), lesions (Alstott et al. 2009), and plasticity effects (Roy et al. 2014), to cite 
some examples. Examples of brain simulation to model evoked potentials, resting- 
state activity, and the alpha rhythm in the context of EEG–fMRI integration are 
discussed in more detail below.

30.3  EEG and fMRI Forward Models

EEG-forward models simulate the propagation of electromagnetic waves from 
sources to EEG sensors (Hallez et al. 2007). To estimate electromagnetic propaga-
tion, usually a multicompartment volume conductor head model is constructed 
using tessellations of cortical, skull, and scalp surfaces from structural MRI data; 
T1-weighted MRI protocols provide adequate contrast to differentiate between the 
involved tissue types. After specifying a forward model on the basis of a realistic 
model of head geometry and the spatial arrangement of neural populations, an 
aggregated mapping can be computed that provides a linear transformation from 
source to sensor space called lead field. Source activity is assumed to be well 
approximated by the fluctuation of equivalent current dipoles generated by excit-
atory neurons located in the cortical sheet, which in turn is assumed to be propor-
tional to membrane potential or input current fluctuation. For further simplification, 
one often constrains the dipolar orientation of electric sources at each location to 
be normal to the cortical surface, reasoning that pyramidal neurons in cortex are 
mainly organized in columns that are roughly perpendicular to the cortical surface, 
which consequently represents source activity as a dipole layer parallel to the corti-
cal surface. Inhibitory neurons are sparse (~15%), and their dendrites fan out 
spherically; hence, their contributions to the EEG signal are thought to be negli-
gible. As the main contributor to the EEG signal, the ensemble of postsynaptic 
potentials of a neural population at a given location is then used as input to the lead 
field mapping.

BOLD–fMRI forward models simulate neurovascular coupling, that is, the rela-
tionship between neural activity and associated changes in cerebral blood flow, 
blood volume, and deoxyhemoglobin content. The mechanistic details of this rela-
tionship remain unclear (Iadecola 2017). Empirical data related to neurovascular 
coupling come from invasive animal studies that combine metabolic/vascular mea-
surements (e.g., using fMRI or optical imaging) with multiunit recordings; such 
studies revealed significant correlations between hemodynamic and electrophysio-
logical signals, identifying input or sub-threshold synaptic activity, rather than out-
put spiking or energy demand, as the primary driver for the local vascular response 
(see Rosa et al. 2010 for an overview and discussion). Neurovascular coupling is 
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conceptualized by the idea of a “neurovascular unit”: a tightly interacting com-
pound of neurons, astrocytes, and several other cells and also chemicals, that detect 
and respond to the needs of neuronal supply (see Iadecola (2017) for a recent and 
comprehensive review). This conceptual understanding is currently undergoing a 
shift from a unidimensional process, that only involves neuronal-astrocytic signal-
ing, to a multidimensional one in which chemical signals engage in multiple path-
ways and effector systems in a highly orchestrated manner. The basic principle 
underlying neurovascular coupling in this model is that increasing neuronal activity 
uses increasing amounts of energy, in the form of oxygen and glucose, and that 
cerebral blood flow varies in proportion to the amount of utilized energy in a given 
brain region. These considerations indicate a feedback model, where already 
 existing metabolic needs increase blood flow post hoc. Measurements, however, 
show that the increase in CBF is larger than the need for oxygen, resulting in excess 
delivery of O2 (Raichle and Mintun 2006), and that increases in CBF even occur 
under conditions of excess oxygen and glucose (Attwell and Iadecola 2002). In light 
of this evidence, a feedforward model was proposed, which suggests that CBF 
delivery is regulated by signaling pathways that are initiated by the activation of 
postsynaptic glutamate receptors that drive the release of vasoactive by-products 
like K+, nitric oxide, and prostanoids. Both views may be reconciled by a model that 
proposes that an initial (potentially) exaggerated feedforward flow response to neu-
ral activity is accompanied by a secondary feedback component, driven by reduced 
tissue O2, to adjust CBF to better match the actual metabolic needs of the tissue 
(Iadecola 2017). Another far-reaching assumption underlying functional brain 
imaging is that the spatiotemporal correspondence between neural activity and 
hemodynamic response is sufficiently precise. However, in some regions, CBF 
exceeds the area of activation (e.g., auditory, visual, and cerebellar cortices), which 
is likely due to nonoverlapping neural and vascular topologies and retrograde vaso-
dilation (see Iadecola 2017 for an overview of related studies), and therefore, such 
effects become increasingly relevant as fMRI resolution increases. Mirroring our 
lack of understanding of the exact nature of neurovascular coupling, different stud-
ies often use different forward models; different inputs to BOLD forward models, 
typically involving state variables as diverse as the number of incoming spikes to a 
neuronal population, the postsynaptic membrane potential or the synaptic gating 
amplitude; and different considerations regarding the exclusive inclusion of input 
signals in contrast to using a combination of input and output signals—output is 
often not taken into account following empirical observations (Logothetis 
et al. 2001).

A straightforward approach to simulate local BOLD signals often used in litera-
ture is based on the (linear) convolution of cortical current density with a kernel 
function that approximates the canonical shape of a hemodynamic response: a brief, 
time-delayed, and intense positive signal change that peaks approximately after 
4–6 s, followed by an undershoot that peaks after 6–10 s, and slow recovery to base-
line. More elaborate approaches, like the Balloon-Windkessel model (Buxton et al. 
1998; Friston et al. 2000), explicitly simulate the relationship between blood flow 
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and measured BOLD signal using a dynamical system description that couples 
blood flow and blood volume dynamics and relates them to BOLD contrast:
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This part of the metabolic–hemodynamic cascade is based on the long-lasting 
idea that an increase in neuronal activity zi causes an increase in a vasodilatory sig-
nal si, which increases inflow of blood fi and concomitant changes in blood volume 
vi and, accompanied by that, changes in deoxyhemoglobin content qi and ultimately 
the BOLD signal Bi. A list of parameters is provided in Table 30.1. A consequence 
of this forward model is that its parameters can be varied without affecting the tem-
poral dynamics of electric scalp potentials, which means that the fusion of fMRI 
with EEG for model inversion cannot inform parameters better than fMRI alone. 
The reverse is, however, not true: changing the parameters of the neural mass model 
will affect EEG and fMRI predictions. Sotero and Trujillo-Barreto (2008) propose 
a variation of the model from Friston et al. (2000) that postulates, in addition to the 
direct effect that excitatory activity has on CBF (and consequently CBV), a second 
effect, namely, that excitatory, as well as inhibitory, neuronal activity modulate glu-
cose and oxygen consumption, which is supposed to have further (in addition to the 
glutamate–CBF cascade) downstream effects on CBV.  The authors note in their 
article that this model has the interesting property to reconcile observations on the 
effect of insulin: while BOLD responses were significantly lower, insulin had no 
effect on visual evoked potentials (Seaquist et al. 2007), which could be explained 

Table 30.1 Balloon-Windkessel model parameters

Parameter Physiological interpretation

ρ Resting oxygen extraction fraction

V0 Baseline blood volume
k1 Weight for deoxyhemoglobin change
k2 Weight for the relative change of deoxyhemoglobin to 

volume
k3 Weight for blood volume change

τi Balloon transit time

γi Rate of flow-dependent elimination

κi Rate of signal decay
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by considering an effect of insulin on glucose and CBF-related parameters, which 
can, under this model, be achieved without affecting the EEG signal (Sotero and 
Trujillo-Barreto 2008).

It should be stressed, again, that many aspects of the coupling between neuro-
physiology and EEG, respectively fMRI, are not yet fully understood, and forward 
models are based on simplifying assumptions, for example, regarding equivalent 
current dipoles, the exact nature of neurovascular coupling or the dependence of the 
hemodynamic response on brain state and anatomical location. Improving forward 
models is an active area of research. For example, recent approaches aim to retrieve 
the onset and shape of hemodynamic responses by fitting models to voxel-wise 
fMRI time series and then use shape parameters as pathophysiological indicator 
(Wu and Marinazzo 2016). To summarize, the combination of BNMs with forward 
models attempt to provide mechanistic interpretations of large-scale neural dynam-
ics over a wide range of temporal scales and for different modalities on the basis of 
neural dynamics models that can be derived from simplifying spiking-network 
models. In the following we review some work that applied brain simulation to 
analyze EEG–fMRI data.

30.4  Evoked Potentials

Sotero and Trujillo-Barreto (2008) were among the first to perform full-brain simu-
lations for integrating EEG–fMRI and also positron emission tomography. Their 
model is based on an extension of the neural mass model developed by Jansen and 
Rit (1995) and Zetterberg et al. (1978), which includes recurrent excitatory connec-
tions, to better simulate pyramidal-to-pyramidal connections within a cortical col-
umn. The NMM was coupled with a metabolic–hemodynamic forward model that 
relates excitatory/inhibitory neuronal activity with glucose consumption, subse-
quent oxygen consumption, and cerebral blood flow (CBF); output is fed into a 
Balloon model (Buxton et al. 2004, 1998) to simulate a BOLD signal. In addition, a 
lead field matrix was used to project the average membrane potentials of pyramidal 
cells into EEG channel space. This local model, intended to characterize the dynam-
ics in one cortical voxel, was then coupled with other local models, belonging to the 
same cortical area, via excitatory and inhibitory short-range connections, in order to 
simulate one cortical region. Short-range connectivity was modeled by exponential 
functions that reduce coupling weight with coupling distance. Thalamus was simu-
lated by two populations, one to model excitatory thalamocortical relay neurons and 
one to model thalamic inhibitory reticular neurons. Furthermore, excitatory long- 
range connectivity, constrained by dwMRI tractography results, was implemented 
to globally connect regions to form a large-scale brain network. In total, the model 
consisted of 12 random differential equations (RDE) for the thalamus and a system 
of 16 RDE for each simulated cortical voxel. Sotero and Trujillo-Barreto (2008) 
compared their model with empirical activity in several ways. First, they showed 
that their model had reproduced realistic visual evoked potentials (VEP) in O1 and 
O2 electrodes and corresponding BOLD signal changes. Visual stimulation was 
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simulated by adding a brief transient on top of the Gaussian random input to drive 
thalamocortical excitatory relay neurons in ten VEP-related regions. Interestingly, 
the authors observed that the excitation–inhibition ratio of a local population has a 
modulating effect on the initial dip, the peak of the BOLD signal, and its under-
shoot. This is important as it indicates that the shape of the hemodynamic response 
can be determined by factors that are independent of metabolic–hemodynamic cou-
pling, but can be explained by neuronal activity alone, and should therefore be con-
sidered in studies that aim to infer the shape of local hemodynamic response, in 
addition to purported changes of glucose and CBF-related parameter in the current 
models. In addition to VEPs, Sotero and Trujillo-Barreto (2008) reproduced resting- 
state alpha activity with the model, which is further described below.

30.5  Resting-State

Resting-state is characterized by the absence of a task. In fMRI, resting-state typi-
cally goes along with strong, coherent fluctuations of BOLD in a frequency range 
below 0.1 Hz. When brain activity at different locations shows correlated activity, 
the regions are said to form resting-state networks (RSNs), with the default mode 
network as, arguably, the most prominent example (Raichle et al. 2001). The brain 
regions partaking in a given network are said to entertain functional connectivity, 
which involves coherent activity in wide-spread cortical and subcortical areas cov-
ering the entire brain. When it comes to electric activity, like EEG, resting-state 
networks are often linked with a specific composition of oscillatory band powers, 
most prominently, the alpha rhythm. For example, the default-mode network is 
characterized by increased alpha and beta activity, while prefrontal networks can be 
associated with high gamma (~30 to 80 Hz) power (Mantini et al. 2007). Importantly, 
RSNs strongly overlap with sensory–motor, visual, auditory, attention, language, 
and default networks that appear during active behavioral tasks; atypical resting 
state activity was linked with atypical brain function (e.g., Rombouts et al. 2005; 
Seeley et al. 2009).

To better understand the functional role of resting-state activity, it would be help-
ful to characterize the underlying neurophysiological processes. It therefore may 
come as a surprise that even after almost a century since its discovery, and a consid-
erable amount of findings on its behavioral correlates, the origin of alpha rhythms is 
still incompletely understood. Different hypotheses have been proposed that typi-
cally fall into two categories: (1) rhythms are endogenously produced by thalamic 
or cortical “pacemaker” cells, that function like clocks that entrain other cells; and 
(2) rhythms arise as an emergent property from the interaction of networks of cells, 
where not a single neuron or population is responsible for the rhythm; for example, 
by means of limit cycle attractors in the networks state space, or through filtering 
properties of the network that filter white noise network input (Buzsaki 2006).

The works of Robinson et al. (2002), Honey et al. (2007), Ghosh et al. (2008), 
Deco et al. (2009), Valdes-Sosa et al. (2009), and Freyer et al. (2011) are examples 
of the pioneering application of BNMs to study the network mechanisms that give 
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rise to the emergence of resting-state-like activity in fMRI, electric activity, or both 
(see Deco et al. 2011 for a review). The general takeaway from such studies is that 
coupling parameters that replicate realistic conductance enable neural masses to 
spontaneously engage into complex activity patterns, characteristic of neural time 
series, which includes intermittency, phase synchrony, multistability, and spontane-
ous switching between synchronized cell assembly formation and desynchronizing 
bursts. The notion of multistability refers to a property of many dynamical systems 
to have multiple stable attractors in its phase space that are surrounded by basins of 
attraction and separated by unstable equilibria, which, in neural models, often sepa-
rate a high-activity from a low-activity state. BNM dynamics suggest a resting-state 
mechanism where noise or bifurcation enables the system to switch between mul-
tiple stable states that are spawned by the basins of attraction of fixed point or limit- 
cycle attractors. In such a multistable phase space, the state of the system can show 
different kinds of behavior, like steady-state equilibrium or chaotic oscillations, 
depending on the initial state and the geometry of the phase space. States can switch 
between different attractors driven by perturbations that move the state over the 
boundaries of different basins of attraction. That is, noise or stimuli enable the 
exploration of the state space in the vicinity of multiple stable equilibria, which 
offers a geometric explanation for seemingly chaotic time series behavior. In addi-
tion to the intrinsic dynamics of NMMs, structural coupling may give rise to the 
oscillatory entrainment of the populations’ state variables, which can lead to the 
emergence of coherent oscillations over a wide range of frequencies, from <0.1 Hz 
up to 100 Hz, that in turn shape functional network topology. The aforementioned 
modeling studies show that, with BNMs, realistic functional connectivity in the 
slow band of resting-state activity can be easily produced on the basis of coupled 
oscillating population models. Importantly, it was shown that the electric population 
activity, which serves as input for the BOLD and EEG forward models, likewise 
resembles empirical data. For example, Valdes-Sosa et  al. (2009) simulated a 
16,138-regions large-scale model for a full-cortex and thalamus parcellation to pro-
duce resting-state EEG–fMRI. Nodes were simulated by the classical Jansen and 
Rit neural mass model (Jansen and Rit 1995) and coupled by structural connectivity 
estimates computed by dwMRI tractography. Gaussian white noise with mean 20 
and variance 2 pulses/s was used to drive excitatory relay populations of the poste-
rior right thalamus. Changing levels of thalamic stimulation were simulated by 
increasing the input to a mean of 100 pulses/s for a duration of 2 s. In addition to 
fMRI time series, ongoing alpha band power fluctuation of simulated local field 
potentials was computed and convolved with a hemodynamic response function to 
yield an alpha-regressor for BOLD, that is, a prediction of BOLD based on alpha- 
band power fluctuation, which is a common technique in empirical EEG–fMRI. For 
each node of the network, its alpha-regressor was correlated with its fMRI predic-
tion, which was also done in initial EEG–fMRI analytic studies (Goldman et  al. 
2002; Laufs et al. 2003a, b; Moosmann et al. 2003). The resulting correlation coef-
ficients were spatially mapped to cortex and thalamus surfaces and the resulting 
pattern was compared with the pattern obtained by performing the same analysis 
with empirical EEG–fMRI data. Strikingly, Valdes-Sosa and colleagues found the 

30 Integrating EEG–fMRI Through Brain Simulation



758

same general pattern of electric–hemodynamic correlation—positive correlations in 
frontal cortices and thalamus and negative correlations in occipital regions—for 
simulated data as for their empirical data.

To fit BNMs to empirical data one often varies free parameters that, that is, rep-
resent global transmission speed, global scaling of connection weights, or the level 
of noise at each region. Such global parameters control the qualitative behavior of 
the system, that is, the geometry of its phase space, and determine the relative loca-
tion and stability of equilibria and their attraction domains. Global parameter explo-
ration elucidated that the optimal fit between empirical and simulated data is near 
the brink of a bifurcation, where the system’s behavior undergoes a qualitative 
change (Ghosh et al. 2008). At the edge of such a critical instability, the spatial cor-
relations of the noisy excursions are mainly shaped by SC, while the system retains 
maximal sensitivity to external stimulation and is able to efficiently and quickly 
respond even to weak inputs that push the system into a different state (Deco et al. 
2013). In addition to global parameters, the specific topology of the models’ struc-
tural connectivity, that is, the heterogeneous region-to-region coupling weights and 
time delays, have an effect on the specific network dynamics and the topology of 
emerging functional connectivity. Important in this regard is that empirical func-
tional connectivity is not static, but network connections gain and loose functional 
connections in an ongoing manner, which is called functional connectivity dynam-
ics (FCD) or “switching” between functional networks (Allen et al. 2014). Honey 
et al. (2007) showed with BNM simulations that in the electrical activity underlying 
simulated BOLD, network switching was reflected by alternating periods of ele-
vated or decreased information flow (as measured by transfer entropy) on multiple 
time scales. At the slowest time scale (several minutes), functional coupling was 
relatively static and a good indicator of the presence of a structural link, while at 
intermediate time scales (~0.1 Hz), functional couplings fluctuated and gave rise to 
different functional networks. At the fast time scale of alpha oscillations (~10 Hz), 
this network switching was then linked to intermittent synchronization and desyn-
chronization between brain regions. That is, resting-state fMRI oscillations and 
FCD were reflected by the time-varying fast synchronization and desynchronization 
of population dynamics, which emerged despite the absence of time-varying inputs 
or variation of connection strengths. Importantly, SC topology had a decisive effect 
on the emergence of FCD: corrupting SC topology by degree-preserving random-
ization considerably reduced the fluctuation of inter-regional information flow and 
consequently FCD. This simulation outcome thereby addresses important open 
questions regarding the relationships between resting-state activity on different time 
scales, because not only slow BOLD fluctuations but also fast electric rhythms, as 
well as their ongoing power modulation, can be explained by noise-driven multi-
stable switching between different attractors.

The ongoing, seemingly chaotic, “waxing and waning” of the alpha rhythm 
power attracted the curiosity of researchers for many decades, but a biophysical 
explanation, that is, a theory based on the activity of neurons or neuronal popula-
tions, has not been established until recently. In contrast to earlier accounts that 
interpreted neural activity as chaotic, robust analysis of resting-state EEG suggests 
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that cortical activity operates in a multistable regime that can be described as jump-
ing between a high-amplitude 10-Hz oscillation and low-amplitude filtered “noise.” 
Hence, the histogram of empirical alpha’s power fluctuations is not unimodal but 
composed of two distinct modes (Freyer et al. 2009). Here, again, dynamical sys-
tems theory gave rise to novel impulses for the interpretation of the alpha rhythm’s 
“erratic” switching between different states. Using a corticothalamic neural field 
model with realistic parameters, Freyer et  al. (2011) were able to reproduce the 
bimodal distribution of alpha rhythm power fluctuation with a strikingly close 
match. Specifically, variation of the excitatory corticothalamic coupling parameter 
controlled a subcritical Hopf bifurcation, that enables the coexistence of damped 
equilibrium behavior with unstable periodic oscillations over a range of physiologi-
cally plausible values. In the vicinity of this bifurcation, spontaneous switching 
between low- and high-amplitude activity was triggered by noise that drove the 
specific thalamic nucleus.

30.6  EEG–fMRI (Anti)Correlation

Depending on the settings of excitatory and inhibitory kinetic parameters and the 
strength of input currents, the Jansen–Rit neural mass model is able to produce 
10-Hz oscillations that resemble cortical alpha rhythms. Underlying is a Hopf bifur-
cation that renders the system’s stable equilibrium point unstable and gives rise to a 
stable limit cycle with a frequency close to 10 Hz, when input exceeds a certain 
threshold.

With other settings also oscillatory activity in delta, theta, beta, and gamma 
bands can be produced (Fig. 30.2). Sotero and Trujillo-Barreto (2008) simulated 
alpha activity, computed ongoing alpha band power fluctuation time courses, and 
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convolved them with a hemodynamic response function. In line with similar work, 
the resulting negative and positive correlation patterns were in agreement with 
experimental results (Goldman et al. 2002; Laufs et al. 2003a, b; Moosmann et al. 
2003) in occipital, temporal, and frontal regions; interestingly, the simulation result 
additionally predicted positive EEG–fMRI correlations in several cortical areas that 
have not been found by earlier experimental work but were only discovered later 
(Gonçalves et al. 2006). Sotero and Trujillo-Barreto (2008) studied EEG–fMRI cor-
relations for power-modulated alpha, by stimulating thalamus with 2-s pulse trains 
consisting of 104 action potentials per second and 20-s intervals between pulse 
trains. This time, positive BOLD–alpha correlations were found in the thalamus and 
the cuneus, whereas negative correlations have been obtained for all the other areas. 
Next, the authors studied alpha desynchronization by delivering an excitatory 2-s 
pulse of 106 action potentials to the thalamus to represent visual stimulation. The 
effect of this stimulation was a shift in the EEG power spectrum from alpha band 
toward higher frequencies, accompanied by an increase of CBF and BOLD ampli-
tudes, which the authors interpret as consistent with the finding that eye-opening 
increases CBF in the visual cortex (Raichle et al. 2001). To summarize, stimulation 
with a lower frequency (104 AP/s) caused a mere shift of the alpha peak, while 
stimulation with a higher frequency (106 AP/s) lead to alpha desynchronization, 
indicating that increased neural activity is associated with decreased alpha power. 
The idea that neural activation causes a shift in the EEG spectrum toward higher 
frequencies accompanied by an increased BOLD amplitude is consistent with a 
hypothesis formulated by Kilner et al. (2005) that is based on a simple heuristic 
starting from dimensional analysis of electric and hemodynamic data. To test this 
hypothesis with explicit simulation, Sotero and Trujillo-Barreto (2008) increased 
input frequencies in steps from 105 to 106 AP/s and found an almost linear relation-
ship between EEG spectral mass and the maximum BOLD amplitude. Finding that 
increased neural activity increased BOLD, but decreased alpha, the authors went on 
to study two scenarios for creating a dip in the BOLD signal. In their first experi-
ment they delivered a 2-s pulse to thalamocortical excitatory relay neurons and 
doubled the value of the connection strength from these neurons onto cortical inhib-
itory neurons. As may be expected, high levels of inhibitory activity resulted from 
this coupling parameter change, while excitatory activity was consequently reduced, 
which caused a decrease in the BOLD signal. While a changing level of excitation 
versus inhibition surely is a candidate explanation for BOLD signal fluctuation, 
synaptic scaling by 100% over a short-time scale of a few seconds seems unlikely 
(Zenke et  al. 2017). In their second experiment, thalamocortical excitatory relay 
cells were inhibited and cortical inhibitory interneurons were excited and the result 
was studied at the left and right occipital poles. As a result of this stimulation, 
inhibitory activity increased and excitatory activity decreased below baseline levels, 
accompanied by a decrease of BOLD amplitude. While these results are in agree-
ment with experimental data, indicating that a substantial component of the negative 
BOLD response originates from decreased neuronal activity, it remains unclear 
what exactly causes this increase in inhibition relative to excitation (apart from 
implausible connection weight changes or selective stimulation) and how it is 
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related to the alpha rhythm. That is, how can the decrease of fMRI signals be recon-
ciled with increased alpha rhythm power? Or more precisely: how would a large 
alpha rhythm inhibit cortical activity?

30.7  From EEG–fMRI to Neural Activity

The observation that increasing EEG alpha power is often spatially co-localized 
with decreasing fMRI amplitudes (Goldman et  al. 2002; Laufs et  al. 2003a, b; 
Moosmann et al. 2003) seems counterintuitive. Why should stronger or more syn-
chronous fluctuation of input currents and postsynaptic potentials be less metaboli-
cally demanding? Adding to the puzzle are multiunit recordings in monkeys that 
show that not only alpha power but also alpha phase was negatively correlated with 
neural firing and task performance (Haegens et al. 2011). That is, firing of neurons 
was at its maximum despite input currents and membrane potentials in their vicinity 
were at their minimum. Of course, these findings are not entirely surprising when 
looked at from the “historical” perspective of alpha as an “idling rhythm” or from 
the perspective of more recent hypotheses termed “gating by inhibition” and “pulsed 
inhibition” (Jensen and Mazaheri 2010; Klimesch et  al. 2007). These theories 
ascribe to alpha important functional roles related to information processing, atten-
tion, perceptual awareness, and cognitive performance, because all of these cogni-
tive phenomena appear to be rhythmically modulated by it (Busch et  al. 2009; 
Klimesch 1999; Mathewson et al. 2009).

Two findings seem to prevail: First, alpha power decreases or shifts to higher 
frequencies, during task performance in regions related to task–execution; second, 
stronger alpha decreases at the moment of task–execution correlate with better task 
performance. In other words, alpha desynchronization correlates with brain activa-
tion, while alpha synchronization correlates with inhibition of brain areas that are 
not relevant for the task at hand at that particular time (Jensen and Mazaheri 2010; 
Klimesch 1999). Regardless of its functional interpretation, the anticorrelation 
between neural firing and alpha, as well as the anticorrelation between BOLD and 
alpha, trigger the conclusion that alpha rhythms have the ability to decrease neural 
activity. The question is: how would this process be neurophysiologically imple-
mented? To better understand the involved neurophysiological processes, Becker 
et  al. (2015) used a BNM consisting of Stefanescu-Jirsa 3D NMM populations 
(Stefanescu and Jirsa 2008) to simulate neural firing, LFP and BOLD of cortex, 
reticular nucleus, and thalamus. Tuning global coupling strength yielded band- 
limited oscillations in the alpha range and its band-power time course showed 
alpha-typical fluctuations (“waxing-and-waning”). Comparisons showed that both, 
neural firing and fMRI had an inverse relationship with the alpha power time course, 
reproducing aforementioned empirical observations. Furthermore, and in line with 
invasive recordings (Haegens et  al. 2011), firing was inversely related to alpha 
phase. Importantly, this result from Becker et al. (2015) shows that firing and fMRI 
are negatively correlated with alpha even without any change of coupling strengths, 
which was the proposed mechanism in Sotero and Trujillo-Barreto (2008). 
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Nevertheless, variation of network coupling strengths clearly shows an effect on 
alpha: the negative correlation between firing, fMRI, and alpha vanished for uncou-
pled neural masses, which indicates that the presumed inhibitory effect of alpha is 
brought about as a network effect by several connected populations. Also in line 
with the previously mentioned work, an increase of excitatory long-range coupling 
strengths led to decreased alpha power, accompanied by a shift of oscillatory power 
toward higher frequencies, which is compatible with the idea that neural activation 
is indexed by a loss of power in lower frequencies in favor of higher frequencies 
(Kilner et al. 2005).

In summary, the reviewed studies support the ideas that (1) the inverse relation-
ship between alpha and firing may be caused by alpha; (2) alpha’s inhibitory 
effect on neural activity depends on network interaction; and (3) a change of cou-
pling strengths is not required to bring about the inhibitory effect. Firing inhibi-
tion without the necessity of changing connection strengths allows for a functional 
interpretation of alpha as a mechanism for temporally inhibiting or dynamically 
uncoupling regions from neural processing as formulated in “gating by inhibi-
tion” hypotheses. It is, however, still unclear how such an inhibitory effect can be 
brought about.

30.8  From EEG–fMRI to Neural Mechanisms

A possible explanation for the mutual (anti)correlations between neural firing, 
fMRI, and the alpha rhythm was recently proposed in a study that uses a novel form 
of brain simulation based on injecting BNMs with empirical EEG source activity to 
predict simultaneously measured fMRI (Schirner et al. 2018). The advantage of this 
“hybrid” modeling approach is that not only model structure but also model dynam-
ics are constrained by empirical data.

Upon injecting the BNMs of 15 subjects with their resting-state EEG source 
activity, the hybrid model was able to predict each subject’s individual whole-brain, 
large-scale fMRI time series (Fig. 30.3). By fitting BNMs to fMRI time series, that 
is, to dynamical, instead of static features of neural activity (like FC or power spec-
tra), this approach allows the study of neural population dynamics, like firing rate or 
synaptic activity, that are usually hidden from direct observation. That is, because 
the forward modeling of BNM activity produced signals that closely correlate with 
the subjects’ moment-to-moment EEG–fMRI activity, model activity may enable 
the study of the neurocomputational processes underlying the measured EEG–fMRI 
signals. The approach therefore provides a natural way for the integration of EEG–
fMRI with the benefit of providing an explanation of the observed EEG–fMRI 
dynamics in terms of neurophysiological activity.

In contrast to “regular” BNMs, which are typically driven by noise, in hybrid 
models noise terms are replaced by EEG source activity. While this additional com-
ponent corrupts the autonomy of the model—it is no longer an independent descrip-
tion of brain activity, but requires supply of empirical data—hybrid modeling has 
important advantages. Specifically, the approach maintains a low model complexity, 
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Fig. 30.3 Example time series of hybrid BNM simulation results. Upper trace: Hybrid BNMs 
predict resting-state fMRI time series on the basis of injected EEG source activity. The fMRI pre-
diction is related to the anticorrelation of ongoing alpha power fluctuation of the injected EEG with 
fMRI (second trace from above), but hybrid model simulation yielded significantly better fits with 
observed fMRI than alpha-based regressors alone. Importantly, the intrinsic activity of fitted mod-
els, like firing rates or synaptic gating variables, may reveal neurodynamic processes that are hid-
den from direct observation with noninvasive techniques like EEG and fMRI. Models that are 
injected with randomly permuted activity (third trace from above) or regular, noise-driven BNMs 
(lowest trace) cannot recapture the specific ongoing dynamics of fMRI activity. (Reproduced from 
Schirner et al. 2018)

while enabling to simulate realistic dynamics with exceptional temporal detail. 
Injected currents are intended to serve as an approximation of those aspects of the 
brain that are not captured by the model, for example, due to the simplification 
inherent in mean field techniques. Thereby, the approach allows the systematic test-
ing of neural theory as captured by BNMs in light of biologically plausible network 
activity. In the following we will review the findings obtained from the very first 
application of this novel approach.

Using resting-state EEG–fMRI data, the model predicted several independent 
empirical phenomena from different modalities and temporal scales (Fig. 30.4): (1) 
the spatial topologies and temporal dynamics of fMRI RSNs, (2) excitation–inhibi-
tion balance of synaptic input currents, (3) the inverse relationship between alpha- 
oscillation phase and spike-firing on short time scales, (4) the inverse relationship 
between alpha-band power and fMRI, respectively firing, on long time scales, (5) 
and fMRI power-law scaling. Importantly, subsequent analyses of the produced 
activity revealed neurophysiological mechanisms that could explain how brain net-
works produce all of these signal patterns and how they are interrelated in terms of 
neural population activity.

Upon finding that the hybrid BNMs predict subject-specific ongoing fMRI time 
series, Schirner et al. (2018) analyzed population activity and found that the ongo-
ing alpha power fluctuation of the injected EEG was the main driver behind the 
emergence of the predicted fMRI oscillations. As may be expected from the work 
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reviewed in this chapter, excitatory population firing rates and synaptic gating 
decreased, when alpha power increased, and vice versa. Strikingly, the underlying 
mechanism seemed to be related to the activity of the inhibitory populations, 
because these showed the exact opposite effect: when alpha power increased, their 
activity likewise increased, leading to increased inhibition, and vice versa. Indeed, 
when looking at the excitatory and inhibitory postsynaptic currents (EPSCs and 
IPSCs, respectively), the authors found that the modulation of the input currents 
relevant for producing slow fMRI oscillations was largely due to the effect of 
inhibitory populations and long-range network input (Fig. 30.5). Due to the inter-
action of excitatory and inhibitory populations, the power modulation of injected 
alpha activity was transformed into an amplitude fluctuation of firing rates, synap-
tic activity, and consequently fMRI activity on the slow time scale of fMRI resting-
state oscillations. To identify how alpha increased inhibition on slow time scales 
(<0.1 Hz), the authors looked at the activity at the fast time scale of individual 
alpha cycles (Fig. 30.6). Therein, it was found that for increasing alpha power the 
positive half- cycle of an alpha wave led to increasingly higher levels of inhibitory 
population firing rates, which dampened excitatory population activity, while the 
negative deflections of the alpha cycle simply silenced the inhibitory population. 
As alpha power was increasing, the increasingly large positive half-cycles of the 
alpha wave led to an increasingly large inhibitory effect. By contrast, the increas-
ingly large negative half-cycles of the alpha wave had no compensatory effect for 
larger amplitudes, because firing rates cannot be smaller than 0 Hz. As a conse-
quence of the declining capability of inhibitory populations to balance oscillatory 
input current peaks, and resulting inhibition bursts, excitatory populations’ firing 
rates became increasingly lower for increasing alpha power (see Fig. 30.6 for a 
visual explanation).

Upon identifying a mechanism that explains the inhibitory effect of alpha 
activity, the study took a closer look at the role of the long-range network, 
because parameter space exploration showed that when global coupling was 
turned off, the prediction of fMRI was considerably decreased. Interestingly, 
along with the decreased predictability of empirical fMRI, analyses showed a 
strong reduction of the “scale-freeness” of the time series produced by simula-
tions with disabled long- range coupling. Compared to empirical fMRI, disabled 
long-range coupling led to a decreased power-law exponent. That is, the power 
spectrum of fMRI was less steep. Power-law scaling means that the decrease of 
power of frequencies in a signal’s power spectrum follows a power-law P ∝ fβ, 
with power P, frequency f, and power-law exponent β. Power-law scaling was 
found to be ubiquitous in nature, for example, occurring in sandpiles, earth-
quakes, foraging patterns of various species, frequencies of family names, sizes 
of craters on the moon, and neural activity, to name a few. Importantly, power-
laws were found to emerge near the critical point of phase transitions and can be 
associated with the spontaneous acquisition of structure and complex behavior, 
and is therefore an appealing concept as it could point toward a general theory of 
self-organization in biological systems. Schirner et  al. (2018) therefore asked 
how the previous findings on the emergence of fMRI oscillations from alpha 
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power fluctuation could be integrated with long-range network interaction and 
the emergence of power-law scaling.

To explain the underlying cause, it helps to express power-law scaling with the 
formula “slower oscillations go along with stronger signal modulation than faster 
oscillations.” This effect can be nicely observed when comparing Figs. 30.5 and 30.7. 
When alpha power oscillation was very slow, the resulting fMRI amplitude peaks 
were large, while fast alpha power oscillations produced smaller fMRI amplitude 
peaks (Fig. 30.5). Intriguingly, this effect vanished when long-range coupling was 
turned off: then all amplitude peaks had roughly the same height (Fig. 30.7). In 
other words, network coupling translated the duration of an alpha power oscillation 
into the height of the fMRI amplitude’s peak during that oscillation. This effect can 
be explained (1) by recurrent excitation through the large-scale network, which fur-
ther amplified the effect of alpha-band power oscillations on neural firing, and (2) 
the relatively slow time scale of NMDA excitatory synaptic gating (100 ms), which 
enabled recurrent long-range excitation to accumulate for the time duration during 
which high alpha power inhibited neural firing. During the troughs of slow alpha 
power oscillations, recurrent excitation had more time to build up, which resulted in 
larger amplitudes compared to slower alpha oscillations. Accordingly, the power of 
slower oscillations increased in fMRI relative to faster oscillations, leading to 
steeper power-law slopes. This observation, therefore, addresses open questions in 
neuroscience on the origin of power-law behavior, and whether power-laws in neu-
ral networks originate from cellular-level or global network- level processes (Beggs 
and Timme 2012). Furthermore, these results explicitly account for structured input 
activity, while in vitro and in silico studies have so far focused on systems without 
or considerably decreased input (Hesse and Gross 2014). Lastly, the co-emergence 
of spatial long-range correlations and power- law scaling may point to a unifying 
explanation of resting-state activity within the framework of self-organized critical-
ity, which offers a general mechanism for the emergence of correlations and com-
plex dynamics in stochastic multiunit systems (Linkenkaer-Hansen et al. 2001).

A recent study challenged the widely held view that alpha–BOLD anticorrela-
tion originates from alpha power fluctuation, instead proposing that both originate 
from high- and low-frequency components of the same underlying cortical activ-
ity, and that the inverse correlation arises from variations in the strengths of corti-
cothalamic and intrathalamic feedback (Pang and Robinson 2018). The arguing is 
that the high-pass filtering of EEG, commonly done in empirical studies to 
improve signal quality, discards slow-frequency fluctuations that may drive 
BOLD. The study used a corticothalamic neural field model that was successively 
fitted to power spectra of 4-s epochs of EEG data using 1-s steps with the goal to 
track assumed temporal changes in gain parameters. The resulting model activity 
then reproduced the evolution of empirical EEG power spectra on the basis of 
second-by-second fluctuations of six fitted corticothalamic gain parameters that 
correspond to the responses of the simulated populations to input. This theory 
should be easily testable by empirical EEG–fMRI data. Instead, the authors ana-
lyzed EEG-only data, using the low- frequency component of EEG as a proxy for 
BOLD data, arguing that both are slow signals and correlations between them 
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have been reported in literature. Upon finding negative correlations between low-
frequency EEG power and alpha EEG power, the authors conclude that this analy-
sis reproduced the BOLD–alpha anticorrelation widely reported in literature. 
Problematically, using slow EEG as a proxy for BOLD in order to show that slow 
EEG and BOLD are correlated (respectively, the implied idea that BOLD origi-
nates from slow electric fluctuations) is circular reasoning. To restate, the result 
from Pang and Robinson (2018) indicates that slow EEG oscillations, slow power 
modulation of alpha activity as well as fMRI oscillations all originate from 
moment-to-moment oscillatory gain modulation of corticothalamic interaction. 
The results from Schirner et al. (2018), on the other hand, indicate that the low-
frequency oscillation assumed to underlie BOLD oscillations emerges from local 
and global interaction of excitatory and inhibitory neural populations, which 
transforms slow alpha-power oscillation into a low-frequency amplitude oscilla-
tion of neural activity. Importantly, the latter mechanism does not require any 
change of parameters like the former, but explains the emergence of slow fre-
quency oscillations just by means of a neurophysiological mechanism that is cap-
tured by the model itself. That is, even if the reasoning in Pang and Robinson 
(2018) was not circular, the theory does not explain the data in terms of a neuro-
physiological mechanism that emerges from model dynamics, but merely shifts 
the correlational reasoning from EEG–fMRI data comparison to a proposed ongo-
ing fluctuation of cortical gains that was obtained from moment-to-moment fits of 
the model to the data, which is in itself problematic as by the very same approach 
presumably every kind of moment-to-moment signal change can be explained. In 
any case, the two theoretical results are nice examples how brain simulation-based 
integration helps formulating novel theories and testable predictions that may 
help explain the underlying processes that lead to the observation of EEG–fMRI 
signals.

Summarizing, the reviewed results may help explaining several observations 
from EEG–fMRI research in terms of neurophysiological mechanisms. Because 
respiration, cardiac pulsation, subject movement and other processes are corre-
lated with resting-state fMRI oscillations, it is hard to differentiate which part of 
the signal is of neural origin and which part of the signal is noise. Importantly, it 
is unclear how exactly hemodynamic oscillations and networks relate to neural 
activity (e.g., Murphy et al. 2013; Yuan et al. 2013). Problematically, fluctuations 
of cardiac and respiratory rates are often used to form regressors that are then used 
to “clean” the fMRI data, although it is known that neural activity may well be 
temporally correlated with these physiological signals (de Munck et  al. 2008; 
Yuan et al. 2013) and therefore erroneously removed (Birn 2012). Brain simula-
tion-based EEG–fMRI integration may therefore be an approach to differentiate 
between neural and nonneural origins of fMRI variance. For example, the predic-
tion of fMRI from EEG via hybrid BNMs suggests an explicit mechanism that 
relates fMRI to electric activity via a chain of neural-metabolic-hemodynamic 
interactions, which can then be used to distinguish neural and nonneural signal 
components. It is important to note that although most of the reviewed results 
revolved around the alpha rhythm, the alpha rhythm, though prominent, is 
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certainly not superior to other rhythms with respect to neural computation and 
can, at best, be thought of as one of several modes of brain operation. None of the 
mentioned simulation approaches are confined to the alpha rhythm—conventional 
as well as hybrid BNMs accommodate other rhythms as well.

30.9  Outlook: Diagnosis and Therapy

Brain simulation was able to reproduce and explain a variety of phenomena 
observed with EEG–fMRI.  Models that make conflicting predictions directly 
point to the limits of our current understanding and help us design new experi-
ments that may test the theories associated with the models. Despite their suc-
cess, models are, per definition, abstractions from reality and trying to make 
them more detailed, or realistic, often makes them overly complex, which then 
may interfere with their ability to provide concise explanations of phenomena. 
Increasing model complexity may come with an increased ability to explain a 
specific observation, but also a potentially decreased ability to generalize to a 
class of observations (e.g., due to overfitting). For example, the so-called “vas-
cular steal” phenomenon describes an effect where an increase of local CBF 
leads to a decrease in neighboring regions, due to the need to divert blood flow 
toward the active tissue (Raichle 1998). In many of the reviewed models, nega-
tive BOLD signals were obtained by increasing inhibition, be it due to fluctua-
tions in coupling or due to an emerging network mechanism, but “vascular 
steal” again provides a viable alternative explanation. Does this mean we need 
to resign in front of the possibility that there always might be an alternative 
explanation? We would argue, no: To decide between alternative explanations, 
their consequences and predictions must be developed and compared, and this 
is exactly what brain simulation is supposed to do. Future brain models will 
simultaneously incorporate multiple scales—where necessary individual neu-
rons and synaptic connections will be simulated with high precision, while other 
locations are described by simplifying NMMs. This will enable us to study sin-
gle-neuron and neuron- population activity in light of realistic full-brain net-
work activity, which will lead to better understanding of the whole and its parts. 
Brain simulation-based EEG–fMRI integration provides promising avenues for 
the better understanding of pathologies. For example, Sotero and Trujillo-
Barreto (2008) related the EEG–fMRI simulations with Alzheimer’s disease 
(AD). Based on the observation of AD patients showing a progressive cortical 
disconnection syndrome due to the loss of large pyramidal neurons in cortical 
layers III and V, the authors simulated AD by reducing all long- range connec-
tion weights by 50% and recurrent excitation by 67%. Resulting EEG showed a 
marked reduction of alpha activity accompanied by an increase in delta and 
theta bands; resulting BOLD showed reduced amplitudes. In a second experi-
ment, the effect of external stimulation was studied by delivering a 2-s pulse of 
106 action potentials to excitatory thalamocortical relay neurons, which was 
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also done previously to simulate alpha rhythm desynchronization (but there 
without reducing connectivity parameters). Compared to their simulation with 
standard parameter values, BOLD signal fluctuation decreased, which the 
authors found in agreement with empirical studies, concluding that cortical dis-
connection may contribute to the shift of the EEG spectrum toward lower fre-
quencies and decreased BOLD amplitudes. In another study, Stefanovski et al. 
(2019) used PET data to heterogeneously set the excitation–inhibition ratios of 
NMM parameters to simulate individual amyloid beta burdens in Alzheimer’s 
patients’ models, which yielded insights that may lead to an explanation for the 
slowing of EEG in Alzheimer’s and points to its potential reversibility mediated 
by NMDA receptor antagonists.

An emerging picture in clinically relevant FC literature is that it is often not the 
whole-brain network pattern that differentiates patients and healthy controls, but 
rather the form and frequency of dynamical transitions between brain states (Cohen 
2017). For example, Schizophrenia patients spent significantly more time in a dis-
connected brain state and transitioned less often to integrated brain states than 
controls (Damaraju et al. 2014). Similar examples of atypical temporal FC dynam-
ics from attention deficit hyperactivity disorder (Tomasi and Volkow 2012) and 
autism (Falahpour et al. 2016; Rashid et al. 2018). To exploit such observations and 
bring it to use in clinics, a critical next step would be to investigate the neural 
mechanisms underlying the formation and dissolution of functional connections to 
move beyond mere descriptive measures. So far, however, experimental approaches 
to probe how topological features of brain networks relate to pathophysiological 
processing had limited success. By contrast, brain simulation-based EEG–fMRI 
integration showed its potential to uncover the dynamic principles underlying 
observable signals. Not much work has been devoted so far to relate FCD signa-
tures in EEG and fMRI with brain network model dynamics, but precisely this 
avenue may help us gain understanding in the processes that lead to aberrant net-
work dynamics by enabling the direct probing of the effect of structural and 
dynamic perturbations in silico; for example, atypical FCD might be reproduced 
and the underlying mechanisms studied by using EEG data of patients as a con-
straint for electric activity in a hybrid brain simulation approach to simulate fMRI 
(Schirner et al. 2018). We do not know what the future of brain simulation-based 
EEG–fMRI integration holds, but given the recent advances in brain simulation 
and brain stimulation (Berényi et al. 2012; Ngo et al. 2013), it seems likely that 
joining forces between the two separate research streams (e.g., model-based closed 
loop stimulation) will improve the quality of life of many patients suffering from 
various disorders.

M. Schirner and P. Ritter



773

Acknowledgements 

Funding

Funder Grant reference number Author
Horizon 2020 683049 ERC Consolidator Petra Ritter

650003 Human Brain Project
826421 VirtualBrainCloud
Research and Innovation Action Grant Human 
Brain Project SGA2 785907
Research and Innovation Action Grant Human 
Brain Project SGA3 945539
Research and Innovation Action Grant Interactive 
Computing E-Infrastructure for the Human Brain 
Project ICEI 800858
Research and Innovation Action Grant EOSC 
VirtualBrainCloud 826421
Research and Innovation Action Grant AISN 
101057655
Research Infrastructures Grant EBRAINS-PREP 
101079717
European Innovation Council PHRASE 101058240
Research Infrastructures Grant EBRAIN-Health 
101058516
European Research Council Grant ERC 
BrainModes 683049

Stiftung Charité/Private 
Exzel-lenzinitiative 
Johanna Quandt and 
Berlin Institute of Health

RI 2073/6-1 Petra Ritter

German Research 
Foundation

SFB 1315/1 Petra Ritter
SFB 1436 (project ID 425899996)
SFB 1315 (project ID 327654276)
SFB 936 (project ID 178316478)
SFB-TRR 295 (project ID 424778381)
SPP Computational Connectomics RI 2073/6-1
SPP Computational Connectomics RI 2073/10-2
SPP Computational Connectomics RI 2073/9-1
JPND ERA PerMed PatternCog 2522FSB904

References

Adhikari MH, Beharelle AR, Griffa A, Hagmann P, Solodkin A, McIntosh AR, Small SL, Deco G 
(2015) Computational modeling of resting-state activity demonstrates markers of normalcy in 
children with prenatal or perinatal stroke. J Neurosci 35(23):8914–8924

Aerts H, Schirner M, Jeurissen B, Van Roost D, Achten E, Ritter P, Marinazzo D (2018) Modeling 
brain dynamics in brain tumor patients using the virtual brain. eNeuro 5:ENEURO.0083-18.2018

Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain 
connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676

Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O (2009) Modeling the impact of 
lesions in the human brain. PLoS Comput Biol 5(6):e1000408

Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 
25(12):621–625

30 Integrating EEG–fMRI Through Brain Simulation



774

Bansal K, Nakuci J, Muldoon SF (2018) Personalized brain network models for assessing struc-
ture–function relationships. Curr Opin Neurobiol 52:42–47

Becker R, Knock S, Ritter P, Jirsa V (2015) Relating alpha power and phase to population firing 
and hemodynamic activity using a thalamo-cortical neural mass model. PLoS Comput Biol 
11(9):e1004352

Beggs JM, Timme N (2012) Being critical of criticality in the brain. Front Physiol 3:163
Berényi A, Belluscio M, Mao D, Buzsáki G (2012) Closed-loop control of epilepsy by transcranial 

electrical stimulation. Science 337(6095):735–737
Birn RM (2012) The role of physiological noise in resting-state functional connectivity. 

NeuroImage 62(2):864–870
Bojak I, Oostendorp TF, Reid AT, Kötter R (2011) Towards a model-based integration of co- 

registered electroencephalography/functional magnetic resonance imaging data with realistic 
neural population meshes. Phil Trans R Soc Lond A Math Phys Eng Sci 369(1952):3785–3801

Breakspear M (2017) Dynamic models of large-scale brain activity. Nat Neurosci 20(3):340
Busch NA, Dubois J, VanRullen R (2009) The phase of ongoing EEG oscillations predicts visual 

perception. J Neurosci 29(24):7869–7876
Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during 

brain activation: the balloon model. Magn Reson Med 39(6):855–864
Buxton RB, Uludağ K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain 

activation. NeuroImage 23:S220–S233
Buzsaki G (2006) Rhythms of the brain. Oxford University Press, Oxford
Cabral J, Hugues E, Kringelbach ML, Deco G (2012) Modeling the outcome of structural discon-

nection on resting-state functional connectivity. NeuroImage 62(3):1342–1353
Cohen JR (2017) The behavioral and cognitive relevance of time-varying, dynamic changes in 

functional connectivity. NeuroImage 180:515
Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic 

statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cor-
tical activity. Neuron 26(1):55–67

Damaraju E, Allen EA, Belger A, Ford J, McEwen S, Mathalon D, Mueller B, Pearlson G, Potkin 
S, Preda A (2014) Dynamic functional connectivity analysis reveals transient states of dyscon-
nectivity in schizophrenia. NeuroImage Clin 5:298–308

David O, Friston KJ (2003) A neural mass model for MEG/EEG:: coupling and neuronal dynam-
ics. NeuroImage 20(3):1743–1755

Debener S, Ullsperger M, Siegel M, Engel AK (2006) Single-trial EEG–fMRI reveals the dynam-
ics of cognitive function. Trends Cogn Sci 10(12):558–563

Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking 
neurons to neural masses and cortical fields. PLoS Comput Biol 4(8):e1000092

Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R (2009) Key role of coupling, delay, and noise 
in resting brain fluctuations. Proc Natl Acad Sci U S A 106:10302

Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of 
resting-state activity in the brain. Nat Rev Neurosci 12(1):43

Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M (2013) Resting-state 
functional connectivity emerges from structurally and dynamically shaped slow linear fluctua-
tions. J Neurosci 33(27):11239–11252

Falahpour M, Thompson WK, Abbott AE, Jahedi A, Mulvey ME, Datko M, Liu TT, Müller R-A 
(2016) Underconnected, but not broken? Dynamic functional connectivity MRI shows under-
connectivity in autism is linked to increased intra-individual variability across time. Brain 
Connect 6(5):403–414

Falcon MI, Riley JD, Jirsa V, McIntosh AR, Chen EE, Solodkin A (2016) Functional 
mechanisms of recovery after chronic stroke: modeling with the virtual brain. eNeuro 
3(2):ENEURO. 0158-0115.2016

Freyer F, Aquino K, Robinson PA, Ritter P, Breakspear M (2009) Bistability and non-Gaussian 
fluctuations in spontaneous cortical activity. J Neurosci 29(26):8512–8524

Freyer F, Roberts JA, Becker R, Robinson PA, Ritter P, Breakspear M (2011) Biophysical mecha-
nisms of multistability in resting-state cortical rhythms. J Neurosci 31(17):6353–6361

M. Schirner and P. Ritter



775

Friston KJ, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in fMRI: the Balloon 
model, Volterra kernels, and other hemodynamics. NeuroImage 12(4):466–477

Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK (2008) Noise during rest enables the explora-
tion of the brain’s dynamic repertoire. PLoS Comput Biol 4(10):e1000196

Goldman RI, Stern JM, Engel J Jr, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha 
rhythm. Neuroreport 13(18):2487

Gonçalves SI, De Munck JC, Pouwels P, Schoonhoven R, Kuijer J, Maurits N, Hoogduin J, Van 
Someren E, Heethaar R, Da Silva FL (2006) Correlating the alpha rhythm to BOLD using 
simultaneous EEG/fMRI: inter-subject variability. NeuroImage 30(1):203–213

Haegens S, Nácher V, Luna R, Romo R, Jensen O (2011) α-Oscillations in the monkey sensorimo-
tor network influence discrimination performance by rhythmical inhibition of neuronal spik-
ing. Proc Natl Acad Sci 108(48):19377–19382

Haider B, Schulz DP, Häusser M, Carandini M (2016) Millisecond coupling of local field poten-
tials to synaptic currents in the awake visual cortex. Neuron 90(1):35–42

Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D’Asseler Y, Camilleri KP, 
Fabri SG, Van Huffel S (2007) Review on solving the forward problem in EEG source analysis. 
J Neuroeng Rehabil 4(1):46

Hesse J, Gross T (2014) Self-organized criticality as a fundamental property of neural systems. 
Front Syst Neurosci 8:166

Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes 
functional connectivity on multiple time scales. Proc Natl Acad Sci 104(24):10240–10245

Huster RJ, Debener S, Eichele T, Herrmann CS (2012) Methods for simultaneous EEG-fMRI: an 
introductory review. J Neurosci 32(18):6053–6060

Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular cou-
pling in health and disease. Neuron 96(1):17–42

Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. 
Proc Natl Acad Sci 105(9):3593–3598

Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a 
mathematical model of coupled cortical columns. Biol Cybern 73(4):357–366

Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating 
by inhibition. Front Hum Neurosci 4:185

Jorge J, Van der Zwaag W, Figueiredo P (2014) EEG–fMRI integration for the study of human 
brain function. NeuroImage 102:24–34

Kilner JM, Mattout J, Henson R, Friston K (2005) Hemodynamic correlates of EEG: a heuristic. 
NeuroImage 28(1):280–286

Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: 
a review and analysis. Brain Res Rev 29(2):169–195

Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition–timing 
hypothesis. Brain Res Rev 53(1):63–88

Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003a) 
EEG-correlated fMRI of human alpha activity. NeuroImage 19(4):1463–1476

Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003b) 
Electroencephalographic signatures of attentional and cognitive default modes in spontaneous 
brain activity fluctuations at rest. Proc Natl Acad Sci 100(19):11053–11058

Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001) Long-range temporal cor-
relations and scaling behavior in human brain oscillations. J Neurosci 21(4):1370–1377

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investiga-
tion of the basis of the fMRI signal. Nature 412(6843):150

Maier-Hein KH, Neher PF, Houde J-C, Côté M-A, Garyfallidis E, Zhong J, Chamberland M, Yeh 
F-C, Lin Y-C, Ji Q (2017) The challenge of mapping the human connectome based on diffusion 
tractography. Nat Commun 8(1):1349

Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological sig-
natures of resting state networks in the human brain. Proc Natl Acad Sci 104(32):13170–13175

Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T (2009) To see or not to see: prestimulus α 
phase predicts visual awareness. J Neurosci 29(9):2725–2732

30 Integrating EEG–fMRI Through Brain Simulation



776

Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer 
A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infra-
red spectroscopy. NeuroImage 20(1):145–158

de Munck JC, Gonçalves SI, Faes TJ, Kuijer JP, Pouwels PJ, Heethaar RM, da Silva FL (2008) A 
study of the brain’s resting state based on alpha band power, heart rate and fMRI. NeuroImage 
42(1):112–121

Murphy K, Birn RM, Bandettini PA (2013) Resting-state fMRI confounds and cleanup. 
NeuroImage 80:349–359

Ngo H-VV, Martinetz T, Born J, Mölle M (2013) Auditory closed-loop stimulation of the sleep 
slow oscillation enhances memory. Neuron 78(3):545–553

Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM 
(2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207

Okun M, Naim A, Lampl I (2010) The subthreshold relation between cortical local field 
potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci 
30(12):4440–4448

Ou W, Nummenmaa A, Ahveninen J, Belliveau JW, Hämäläinen MS, Golland P (2010) Multimodal 
functional imaging using fMRI-informed regional EEG/MEG source estimation. NeuroImage 
52(1):97–108

Pang J, Robinson P (2018) Neural mechanisms of the EEG alpha-BOLD anticorrelation. 
NeuroImage 181:461–470

Proix T, Spiegler A, Schirner M, Rothmeier S, Ritter P, Jirsa VK (2016) How do parcellation 
size and short-range connectivity affect dynamics in large-scale brain network models? 
NeuroImage 142:135

Proix T, Jirsa VK, Bartolomei F, Guye M, Truccolo W (2018) Predicting the spatiotemporal diver-
sity of seizure propagation and termination in human focal epilepsy. Nat Commun 9(1):1088

Raichle ME (1998) Behind the scenes of functional brain imaging: a historical and physiological 
perspective. Proc Natl Acad Sci 95(3):765–772

Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default 

mode of brain function. Proc Natl Acad Sci 98(2):676–682
Rashid B, Blanken LM, Muetzel RL, Miller R, Damaraju E, Arbabshirani MR, Erhardt EB, 

Verhulst FC, van der Lugt A, Jaddoe VW (2018) Connectivity dynamics in typical development 
and its relationship to autistic traits and autism spectrum disorder. Hum Brain Mapp 39:3127

Ritter P, Schirner M, McIntosh AR, Jirsa VK (2013) The virtual brain integrates computational 
modeling and multimodal neuroimaging. Brain Connect 3(2):121–145

Roberts JA, Boonstra TW, Breakspear M (2015) The heavy tail of the human brain. Curr Opin 
Neurobiol 31:164–172

Robinson P, Rennie C, Rowe D (2002) Dynamics of large-scale brain activity in normal arousal 
states and epileptic seizures. Phys Rev E 65(4):041924

Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P (2005) Altered resting state networks 
in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 
26(4):231–239

Rosa M, Daunizeau J, Friston KJ (2010) EEG-fMRI integration: a critical review of biophysical 
modeling and data analysis approaches. J Integr Neurosci 9(4):453–476

Roy D, Sigala R, Breakspear M, McIntosh AR, Jirsa VK, Deco G, Ritter P (2014) Using the virtual 
brain to reveal the role of oscillations and plasticity in shaping brain’s dynamical landscape. 
Brain Connect 4(10):791–811

Sanz-Leon P, Knock SA, Woodman MM, Domide L, Mersmann J, McIntosh AR, Jirsa V (2013) 
The Virtual Brain: a simulator of primate brain network dynamics. Front Neuroinform 7:10

Sanz-Leon P, Robinson PA, Knock SA, Drysdale PM, Abeysuriya RG, Fung FK, Rennie CJ, Zhao 
X (2018) NFTsim: theory and simulation of multiscale neural field dynamics. PLoS Comput 
Biol 14(8):e1006387

Schirner M, Rothmeier S, Jirsa VK, McIntosh AR, Ritter P (2015) An automated pipeline for 
constructing personalized virtual brains from multimodal neuroimaging data. NeuroImage 
117:343–357

Schirner M, McIntosh AR, Jirsa V, Deco G, Ritter P (2018) Inferring multi-scale neural mecha-
nisms with brain network modelling. elife 7:e28927

M. Schirner and P. Ritter



777

Seaquist ER, Chen W, Benedict LE, Ugurbil K, Kwag J-H, Zhu X-H, Nelson CA (2007) Insulin 
reduces the BOLD response but is without effect on the VEP during presentation of a visual 
task in humans. J Cereb Blood Flow Metab 27(1):154–160

Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases 
target large-scale human brain networks. Neuron 62(1):42–52

Sotero RC, Trujillo-Barreto NJ (2008) Biophysical model for integrating neuronal activity, EEG, 
fMRI and metabolism. NeuroImage 39(1):290–309

Stefanescu RA, Jirsa VK (2008) A low dimensional description of globally coupled heterogeneous 
neural networks of excitatory and inhibitory neurons. PLoS Comput Biol 4(11):e1000219

Stefanovski L, Triebkorn P, Spiegler A, Mohajerani M, Solodkin A, Jirsa V, McIntosh A, Ritter P 
(2018) The neurodegenerative virtual brain. SfN

Stefanovski L, Triebkorn P, Spiegler A, Diaz-Cortes MA, Solodkin A, Jirsa VK, McIntosh AR, 
Ritter P (2019) Linking molecular pathways and large-scale computational modeling to assess 
candidate disease mechanisms and pharmacodynamics in Alzheimer’s disease. Front Comput 
Neurosci 13:54

Stephan KE, Kamper L, Bozkurt A, Burns GA, Young MP, Kötter R (2001) Advanced database 
methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Phil 
Trans R Soc Lond B Biol Sci 356(1412):1159–1186

Taylor PN, Goodfellow M, Wang Y, Baier G (2013) Towards a large-scale model of patient-specific 
epileptic spike-wave discharges. Biol Cybern 107(1):83–94

Tomasi D, Volkow ND (2012) Abnormal functional connectivity in children with attention-deficit/
hyperactivity disorder. Biol Psychiatry 71(5):443–450

Triebkorn P, Zimmermann J, Stefanovski L, Dipanjan R, Solodkin A, Jirsa V, Deco G, Breakspear 
M, McIntosh A, Ritter P (2018) Identifying optimal working points of individual virtual brains: 
a large-scale brain network modelling study. SfN

Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-Gomez Y, Bosch- 
Bayard J, Carbonell F, Ozaki T (2009) Model driven EEG/fMRI fusion of brain oscillations. 
Hum Brain Mapp 30(9):2701–2721

Wong K-F, Wang X-J (2006) A recurrent network mechanism of time integration in perceptual 
decisions. J Neurosci 26(4):1314–1328

Wu G-R, Marinazzo D (2016) Sensitivity of the resting-state haemodynamic response function 
estimation to autonomic nervous system fluctuations. Phil Trans R Soc A 374(2067):20150190

Yuan H, Zotev V, Phillips R, Bodurka J (2013) Correlated slow fluctuations in respiration, EEG, 
and BOLD fMRI. NeuroImage 79:81–93

Zenke F, Gerstner W, Ganguli S (2017) The temporal paradox of Hebbian learning and homeo-
static plasticity. Curr Opin Neurobiol 43:166–176

Zetterberg L, Kristiansson L, Mossberg K (1978) Performance of a model for a local neuron popu-
lation. Biol Cybern 31(1):15–26

Zimmermann J, Perry A, Breakspear M, Schirner M, Sachdev P, Wen W, Kochan NA, Mapstone 
M, Ritter P, McIntosh AR (2018) Differentiation of Alzheimer’s disease based on local and 
global parameters in personalized Virtual Brain models. NeuroImage Clin 19:240–251

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter's Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

30 Integrating EEG–fMRI Through Brain Simulation

http://creativecommons.org/licenses/by/4.0/


779

A
Absence seizure (AS), 480, 681
Acetyl-cholinesterase inhibitors, 519
Acoustic stimulation, 416, 417
Active noise cancellation, 555, 556
Adaptive noise cancellation (ANC), 202
Agranular cortex, 84
Alpha-chloralose, 667
Alpha event-related desynchronization 

(ERD), 512
Alpha rhythm, 336
Alzheimer’s disease (AD), 519, 771
Amygdala, 324–332
Amygdale kindling model, 670
Amyotrophic lateral sclerosis (ALS), 35
Anesthesia, 666–668
Animal models

absence seizure models, 681
acquisition, 686
advantages, 665, 666
anesthesia, 666–668
BOLD-fMRI signals, 664
brain activity, 664
cerebral hemodynamic and metabolic 

response, 686–687
curarization and habituation, 

 668, 669
data analysis, 675–677, 679
electrophysiological recordings, 672, 

685, 686
epilepsy, 680
fMRI signal generation

CBF, 671, 674
CBV, 671, 673, 674
estimation of CMRO2, 673
measurement of CMRO2, 672, 673
neuronal activity, 671

GTCS, 678, 681, 682
high-density electrode placement, 664

history, 663, 664
human pathology, 665
ictal activity, 665
limitations and technical challenges, 666
MRI compatible electrodes, 669–671
partial seizure models, 682–684
physiology, 669
research, 686
sensory–motor stimulation models, 685
sequential EEG–fMRI studies, 679, 680
signal artifact and artifact removal, 

674, 676
simultaneous EEG–fMRI 

investigations, 680
sleep, 684

Anterior cingulated cortex (ACC), 128, 409
Anxiety disorder, 510, 511
Artefact template subtraction, 202, 203
Arterial spin labelling (ASL) method

CASL, 65
label and control signals, 64
PASL, 65
pCASL, 65
quantification problem, 65, 66

Artifact reduction methods, 176
evaluation, 183, 184
sensor-based methods, 182, 183
spatiotemporal pattern-based 

methods, 179–181
temporal waveform-based 

methods, 176–179
Artifact removal techniques, 732, 733
Attention deficit hyperactivity disorder 

(ADHD), 511, 512
Atypical benign partial epilepsy (ABPE), 491
Auditory brainstem responses (ABR), 260
Auditory cortex, 551
Auditory event-related potential (AEP), 515
Auditory evoked GBR (aeGBR), 655–657

Index

© Springer Nature Switzerland AG 2022
C. Mulert, L. Lemieux (eds.), EEG - fMRI, 
https://doi.org/10.1007/978-3-031-07121-8

https://doi.org/10.1007/978-3-031-07121-8


780

Auditory steady state response  
(ASSR), 260, 261

Average artifact subtraction (AAS)  
algorithm, 176, 178, 202

B
Ballistocardiogram (BCG), 168, 255
Balloon model, 70
Behavioral inhibition, 607–609
Benign epilepsy with centrotemporal spikes 

(BECTS), 490, 491
Bicuculline, 682
Biophysics and data analysis

asymmetrical vs. symmetrical  
approaches, 701, 702

bioelectric and hemodynamic signals, 695
cerebral activity, 695
clinical applications, 696
EEG to fMRI approaches, 702–705
electrophysiological and hemodynamic 

responses, 696–698
experimental limitations, 698, 699
fMRI to EEG approaches, 705–707
information fusion, 699–701
symmetrical EEG–fMRI approaches, 707

data-driven approaches, 713–715
model-driven approaches, 707–713

unimodal EEG, 696
Blood oxygenation level dependent (BOLD) 

signal, 57, 69–73
epilepsy, children, 489
extracellular neurophysiological 

signals, 80–85
fMRI

brain–glucose metabolism, 90
CBF, 90, 91
laser Doppler flow, 90
LFPs, 89, 90, 92, 93
matching stimuli, 89
neuronal activity and, 85, 86
neurophysiological signals and, 86–88
oxygen consumption, 88, 89
pre-synaptic and post-synaptic 

neurons, 89
neuronal correlates of

NBR, 93–95
spontaneous fluctuations, 95–98

neurophysiological activity, 98, 99
overview, 79

BOLD-response and EEG gamma oscillations
aeGBR, 655–657

brain activity, 641
high frequency oscillations, 645–649
methodical issues, 643–645
neuronal binding, 642
neuropsychological and physiological 

studies, 642
perceptual processing, 642
reports, 652–655
resting, 642
variation, 649–652

Boundary element method (BEM), 41
Brain imaging

BOLD signal, 359, 360
functionally relevant, 361–363
implementation, 357–359
local and remote network response, 

360, 361
multimodal approach, 353, 354

after brain stimulation, 356
before brain stimulation, 354–356

possibilities and limitations, 349, 350
probe intracerebral connectivity, 357
technical challenges, 357–359
temporal synchronisation, 357

Brain network models (BNM), 747–752
Brain networks, 357, 364, 365
Brain rhythms

in resting state (see Resting state fMRI)
overview, 377, 378

Brain simulation
asymmetrical approaches, 745
biophysical interpretation, 747
BOLD-fMRI-forward models, 752–755
BOLD signal, 359, 360
brain network models, 747–752
closed-loop neuroscience, 363, 364
cognitive neuroscience, 364, 365
definition, 745
diagnosis and therapy, 771, 772
EEG–fMRI (anti)correlation, 759–761
EEG–fMRI to neural activity, 761, 762
EEG-fMRI to neural mechanisms, 762–771
EEG-forward models, 752
evoked potentials, 755, 756
functionally relevant, 361–363
generative computational model, 746
hemodynamic response, 746
implementation, 357–359
local and remote network response, 

360, 361
mean-field theory, 747
model inversion, 746

Index



781

multimodal data fusion, 746
overview, 350
probe intracerebral connectivity, 357
resting-state, 756–759
technical challenges, 357–359
temporal dynamics and rhythmic 

oscillations, 364
temporal synchronisation, 357
TMS

clinical applications, 352, 353
physiology, 350, 351
stimulation protocols, 351, 352

whole-brain network changes, 364
Brain-Computer Interfaces (BCI), 35
BURST method, 414

C
Canonical correlation analysis (CCA), 126, 

738, 739
Canonical polyadic decomposition (CPD), 735
Cardioballistic artefact, 548
Cerebral blood flow (CBF), 90, 91, 674

ASL, 64–66
definition, 62, 63

Cerebral blood volume (CBV)
contrast agent-free method

dynamic imaging, 67, 68
steady-state imaging, 68, 69

definition, 66
VASO, 69

Cerebral metabolic rate of oxygen 
consumption (CMRO2), 70, 
71, 671–673

CoCoMac database, 751
Cognition

advantages and disadvantages, 591, 592
attention

diverse aspects, 592
mismatch negativity, 598–600
oddball-paradigm, 592–598
P300 component, 592
preparatory attention, 600, 601

executive functions
behavioral inhibition, 607–609
cognitive flexibility, 602, 603
decision making, 607
goal-directed behavior, 602
neuroimaging research, 602
performance monitoring, 603–606
working memory, 609–612

limitations, 614–616

memory, 613, 614
Cognitive flexibility, 602, 603
Contingent negative variation  

(CNV), 106, 517
Continuous arterial spin labelling (CASL), 65
Continuous spikes and waves during slow 

sleep (CSWS), 491, 501, 502
Contrast agent-free method

dynamic imaging, 67, 68
steady-state imaging, 68, 69

Coupled matrix-tensor factorization (CMTF), 
715, 737

Coupling, 125, 126, 131, 133–135
Curarization, 668, 669
Current-source density (CSD) analysis, 83

D
Data acquisition, 175, 176, 214, 223
Data-driven analysis, 609
Data-driven methods, 713–715

CCA, 738, 739
CMTF, 737
CPD, 735
HRF, 734
tensor factorization, 735
Tucker decomposition, 736

Data integration strategies, 124–126
Data processing, 200, 202–206, 218, 224
Deep brain stimulation (DBS), 158, 159
Default mode network (DMN), 426–429, 

479–481, 495
Dementia, 519, 520
Deoxyhaemoglobin, 70
Depression, 328–330, 332, 341, 512–514
Desynchronization, 28
Diffusion tensor magnetic resonance imaging 

(DT-MRI), 41
Dipole model, 42
Donezepil, 519, 520
Dorsolateral prefrontal cortex (DLPFC), 602
Dravet syndrome, 502
Dynamic causal modelling (DCM), 577
Dynamic contrast enhanced (DCE) MRI, 63

E
Echo planar imaging (EPI), 58, 59, 414, 550
Echo time (TE), 55–57, 216, 217
Effective transverse relaxation time 

(T2*), 55–57
Electrical amygdala fingerprint, 513

Index



782

Electroencephalography (EEG), 9, 11, 14
artifact correction, 182, 183
cellular sources, 24–27
data quality (see Image acquisition 

artefact)
distributed inverse models, 134
electrodes

lead arrangement, 143, 144
lead movement, 144, 145
materials, 143

electrophysiology, 23, 24
generators, 39–42
intra-cranial EEG, 135
limitations, 133
miscellaneous factors, 151
recording system

filters, 146–148
imaging artefact, 146
pulse artefact, 145, 146
sampling rate, 148
signal range, 148, 149
signal resolution, 149

RF emissions, 149–151
rhythmical activities

alpha rhythms, 30–34
beta/gamma activity, 34–38
direct current (DC) and ultra-slow 

potentials, 38, 39
neurophysiology of sleep 

phenomena, 27–29
theta activity, 29, 30

safety
eddy current, 153, 154
gradient field, 153
implanted electrodes, 158, 159
limits, 152
RF field, 154–158
static field, 152, 153

source analysis, 133, 134
source estimation, 39–42
spatial domain

cortex source space, 128–130
direct integration, 131, 132
stimulus evoked brain activity, 128

spontaneous oscillation, 42, 43
temporal domain, 126–128, 132
volume conduction, 39–42
volume conduction effects, 135

Electroencephalography-correlated fMRI 
(EEG–fMRI)

data sets
data integration strategies, 124–126
integrated source space, 121–124

focal epilepsy (see Focal epilepsy, adults)

generalised epilepsies (see Generalised 
epilepsies)

paediatric epilepsy (see Epilepsy, in 
children)

psychiatry (see Psychiatry)
Electromagnetic induction, 170
Electrophysiological recordings, 411, 672, 

685, 686
Epilepsy, 390

animal model, 680
Epilepsy, in children

BOLD changes, 489
clinical manifestations, 487
epileptic encephalopathies

CSWS, 501, 502
development, 499
Dravet syndrome, 502
feature, 499
LGS, 500, 501
MAE, 502
West syndrome, 499

IGE, 495–498
patient selection and scanning, 488
self-limited focal epilepsies, 490, 491
symptomatic and cryptogenic focal 

epilepsies, 492, 494
West syndrome and severe myoclonic 

epilepsy, 488
Epileptic encephalopathies (EE)

CSWS, 501, 502
development, 499
Dravet syndrome, 502
feature, 499
LGS, 500, 501
MAE, 502
West syndrome, 499

Equivalent current dipole (ECD) model, 
123, 705

Error related negativity (ERN), 519
Event-related alpha desynchronization 

(ERD), 34
Event-related desynchronization (ERD), 

37, 38, 572
Event-related oscillations (EROs), 578
Event-related potentials (ERPs), 183, 556, 560

components, 106
EEG, 108–110
fMRI, 110–112
history, 105
localization, 107, 108
P300potential, 105, 106
serial processing vs. parallel and reciprocal 

network activity, 112, 113
subcortical processing, 113

Index



783

Event-related synchronization (ERS), 
37, 38, 572

Excitatory synaptic potentials (EPSPs), 80
Experimental design and data analysis 

strategies
applications, 268
artefacts, 269
challenging environment, 268
continuous scanning, 272
EEG

concurrent fMRI recordings, 293, 294
epilepsy, 280–283
fMRI functional connectivity, 291–293
parametric design and single 

trial, 284–286
preprocessing, 301–303
spectrum, 287–289

fMRI data analysis, 301
GLM and statistical inference

BOLD changes, 279, 280
definition, 276
F test, 279
goal of, 278
ordinary least squares, 278
regressors, 277, 278

haemodynamic changes, 275
HRF, 299, 300
modes of integration, 294–298
multivariate analysis, 289, 290
neuronal activity, EEG and fMRI signals, 

298, 299
paradigm-driven fMRI, 300, 301
preprocessing, 276
spontaneous brain activity, 272, 273
stimulus-driven paradigms, 273, 274
technical issues, 268
triggered and sparse scanning, 269–271

F
Fast, low-angle shot (FLASH) technique, 68
Finite difference time domain (FDTD) 

method, 249
Finite element method (FEM), 41
Finite impulse response (FIR) filter, 203
fMRI artefact slice template removal 

(FASTR), 204
Focal epilepsy, adults

approaches, 440
ictal EEG–fMRI

definition, 454
detection of ictal activity, 455, 457
haemodynamic changes, 457, 458
localisation, 459–461

mechanism of, 459, 462–464
seizure-related motion, 455, 456
unpredictable nature of seizures, 

454, 455
IED, 439, 440
interictal EEG–fMRI

BOLD changes, 448, 449
clinical utility, 449–452
data acquisition, 444
data analysis, 444–448
influence of lesions, 452, 453
interictal spike, 441, 442
presurgical assessment, 442–444
simultaneous intracranial, 453, 454

surgical evaluation, 440
Focal spikes, 489
Fokker–Planck equation, 749
Fourier transform, 51
Fractional amplitude of low-frequency 

fluctuations (fALFF), 518
Frequency analysis, 51
Frequency domain, 205, 206
Frequency encoding, 51, 52
Frontal alpha EEG asymmetry (FAA), 

328–330, 332
Fronto-parietal clusters, 428
Functional connectivity dynamics (FCD), 758
Functional magnetic resonance imaging 

(fMRI), 9, 11, 14, 69–73
brain–glucose metabolism, 90
CBF, 90, 91
laser Doppler flow, 90
LFPs, 89, 90, 92, 93
matching stimuli, 89
neuronal activity and, 85, 86
neurophysiological signals and, 86–88
oxygen consumption, 88, 89
pre-synaptic and post-synaptic neurons, 89
sleep (see Sleep)
source analysis, 133, 134
spatial domain

cortex source space, 128–130
direct integration, 131, 132
stimulus evoked brain activity, 128

spontaneous fluctuations, 95–98
temporal domain, 126–128, 132

Fusiform face area (FFA), 578

G
Gamma-aminobutyric acid (GABA), 475
Gamma band response (GBR), 655–657
Gamma-butyrolactone (GBL), 667, 681
Gamma frequency range, 643

Index



784

Gated recurrent units (GRUs), 196
General linear model (GLM),  

226, 385, 445, 610, 730
definition, 276
ordinary least squares, 278
regressors, 277, 278

Generalised cortico-reticular theory, 476
Generalised epilepsies

GGE
comorbidity, 475
definition and classification,  

473, 474
diagnosis, 474

GSW
connectivity analysis, 483
cortex, 476, 477
cortical and sub-cortical generators, 

475, 476
DMN, 479–481
LGS, 481–483
thalamus, 476–479

Generalised spike and wave discharge  
(GSW)

connectivity analysis, 483
cortex, 476, 477
cortical and sub-cortical generators, 

475, 476
DMN, 479–481
epilepsy, children, 495–498
LGS, 481–483
thalamus, 476–479

Generalized tonic-clonic seizures (GTCS), 
678, 681, 682

Generative model, 700
Genetic generalised epilepsies (GGE)

comorbidity, 475
definition and classification, 

 473, 474
diagnosis, 474

Ghosting artefact, 359
Glial cells, 24
Global field power (GFP), 168, 169
Gold and platinum electrodes, 670
Gradient artifact (GA), 548
Gradient axis, 51
Gradient echo, 56, 57
Gradient echo EPI (GE-EPI)

Cartesian k-space trajectory, 215–217
geometric distortion, 218–221
image blurring, 217, 218
image ghosting, 224
RF interference, 224, 225
signal dropout, 221–223

Gradient/imaging artifact, 168
Graph theoretical analysis, 427
Graphoelements, 421–423

H
Habituation, 668, 669
Habituation and repetition suppression, 728
Haemodynamic response, 70
Haemodynamic response function (HRF), 

489, 572
data-driven methods, 734
sparse, 728–730, 732

Hall effects, 172, 173
Halothane, 667
Helium cooling pump artefact, 195, 196
High frequency oscillations (HFOs), 27
High-threshold (HT) bursting cells, 34
Human auditory system

auditory experiments, 556–558
auditory recordings

active noise cancellation, 555, 556
auditory stimulus frequencies, 554, 555
BOLD response, 551
silent fMRI acquisition, 553, 554
sparse sampling, 551–553
static magnetic field, 549, 550
transient magnetic field, 550, 551

cardioballistic artefact, 548
cognitive brain processes, 547
evaluation methods, 558–560
gradient artefact, 548
helium pump, 549
implicit assumption, 548

Human Connectome data, 729
Hybrid neurofeedback platform, 340
Hypercapnia, 669

I
Idiopathic generalised epilepsies (IGE)

comorbidity, 475
definition and classification, 473, 474
diagnosis, 474
epilepsy, children, 495–498

Image acquisition artefact
artefact template subtraction, 202, 203
characteristics, 190–193
cooling pump artefact

characterization, 194, 195
prevention, 195
removal, 195, 196

EEG–fMRI protocols, 197
evaluation of correction methods, 206–208
frequency domain, 205, 206
ICA, 204, 205
prospective motion correction 

techniques, 206
reduction at source

data acquisition synchronisation, 201
effects, 198

Index



785

movement, 197
stepping-stone sampling, 198, 199
twisted dual leads, 197

temporal PCA, 204
timing errors, 200, 203, 204

Image quality
bulk head motion, 225–227
fMRI pulse sequence, 213, 214, 216
GE-EPI

Cartesian k-space trajectory, 215–217
geometric distortion, 218–221
image blurring, 217, 218
image ghosting, 224
RF interference, 224, 225
signal dropout, 221–223

impact on SNR, 233
physiological noise, 228
quality assurance

coherent noise testing, 238
examples, 234
SNR, 235, 236
subject data procedure, 238
Weisskoff test, 236

static magnetic field (B0) effects, 229, 
230, 232

transverse rotational magnetic field (B1) 
effects, 231, 232, 237, 239

ultra-high field, 259, 260
Imaging-artefact reduction (IAR), 203, 205
Independent component analysis (ICA), 126, 

176, 204, 205
Information fusion, 699–701
Interictal epileptiform discharges (IEDs), 

439, 440
Interictal spike, 441, 442
Inter-stimulus interval (ISI), 729
Intra-cranial EEG (iEEG), 131, 132
Intracranial electrodes, 670, 671
Inversion time (TI), 68

J
Joint ICA (jICA), 713

K
Kainic acid, 682
K-complex, 28

L
Landau-Kleffner syndrome (LKS), 501
Larmor frequency of the system, 224
Laser-evoked brain potentials (LEPs), 525
Late positive potential (LPP), 511
Least mean square (LMS) algorithm, 202

Lennox-Gastaut syndrome (LGS), 481–483, 
500, 501

Linked IC (lICA), 713
Local field potential (LFP), 

 81–85, 89, 90, 92, 93, 627–630, 
632, 634

Local template averaging approach, 196
Longitudinal relaxation time (T1), 54, 55
Lorentz force, 550
Low-frequency alpha oscillations, 632, 633

M
Magnetic resonance (MR) effect, 50, 51
Magnetic resonance imaging (MRI),  

32, 144, 145
BOLD, 69–73
CBF (see Cerebral blood flow)
CBV (see Cerebral blood volume)
EPI, 58, 59
frequency encoding, 51, 52
functional MR imaging, 69–73
k-space, 57, 58
magnetic resonance effect, 50, 51
phase encoding, 52, 53
relaxation times, 54–57
SAR, 61
slice selection, 53, 54
spin echoes, 59–61
spins, 49, 50

Magnetization transfer (MT) effects, 65
Magnetoencephalography (MEG), 8

cellular sources, 24–27
generators, 39–42
rhythmical activities

alpha rhythms, 30–34
beta/gamma activity, 34–38
direct current (DC) and ultra-slow 

potentials, 38, 39
theta activity, 29, 30

source estimation, 39–42
spontaneous oscillation, 42, 43
volume conduction, 39–42

Mechanical ventilation, 669
Memory, 613, 614
Mental chronometry, 610
Mesencephalic reticular formation  

(MRF), 35
Mismatch negativity (MMN), 516, 598–600
Model-driven approaches, 707–713
Model inversion, 700
Motion induced artefacts, 257–259
Multi-modal, 120
Multimodal CCA (mCCA), 714
Multimodal graphical user interface (mGUI) 

software, 338–339

Index



786

Multimodal imaging
asymmetric integration, 10–13
data acquisition, 8, 9
imaging techniques, 4–6
modes of data integration, 7, 8
overview, 4
physiological parameters, 4, 6–7
spatial coregistration, 9, 10
symmetrical data fusion, 13, 14

Multimodal real-time control system,  
338, 339

Multiple sparse priors (MSP), 706
Multi-unit activity (MUA), 83, 94, 96
Myoclonic astatic epilepsy (MAE), 502

N
Negative BOLD response (NBR),  

93–95, 581
Neural mass models (NMMs), 750
Neurofeedback, 512–514
Neuromodulation, 323, 332
Neuronal models

asymmetric oscillations, 635
BOLD and field potential measurements

broadband power changes, 630, 631
LFP, 629, 630
low frequency alpha oscillations, 

632, 633
power spectrum frequencies, 30-80 Hz, 

631, 632
summation, 633

empirical data, 633, 634
field potentials vs. BOLD, 626, 627
population activity

BOLD signal, 627, 628
measurements, 625, 626, 628, 629

synchrony, 635
visual cortex, 635

Neuronavigation systems, 354, 355
Neurovascular coupling (NVC), 88, 

90, 696–698
Nodular heterotopia, 462
Nonsimultaneous multimodal  

acquisitions, 8
NREM sleep

acoustic stimulation, 416, 417
olfactory stimulation, 418
stages, 406, 407
visual stimulation, 417, 418

O
Obsessive-compulsive disorder (OCD), 519
Oddball-paradigm, 592–598

Olfactory stimulation, 418
Optical imaging, 4
Optimal basis set (OBS), 178
Oxyhaemoglobin, 70

P
Pain research

electrical transcutaneous stimulation, 534
fMRI-BOLD responses, 535–543
general issues, 527–530
history, 525
LEPs, 525
limitations, 526
meta analyses, 526
nociceptive stimuli, 526
practical issues

delivery of nociceptive stimuli, 532
displacement of stimulus, 533
interleaved vs continuous EEG-fMRI 

acquisition, 532
inter-stimulus interval, 532, 533
nociceptive input, 531
number of stimuli, 533

scalp distribution of LEPs, 533, 534
single-trial estimation, 537, 540, 542
trial-to-trial variability, 535–537, 539, 541

Parafac algorithm, 735
Parahippocampal place area (PPA), 578
Parallel ICA (pICA), 713, 714
Parsimonious functional representations, 728
Partial directed coherence, 134
Partial seizure models, 682–684
Pentylenetetrazol (PTZ), 682
Pharmacoresistant epilepsy, 698
Phase encoding (PE) gradient, 52, 53
Photoparoxysmal response (PPR), 498
Polymicrogyria, 452
Porcine model, 667
Positron emission tomography (PET), 4, 11
Post-stimulus undershoots (PSU), 581
Post-synaptic input potentials, 80
Posttraumatic stress disorder (PTSD), 

337, 512–514
Prefrontal cortex (PFC), 409
Preparatory attention, 600, 601
Pre-synaptic axonal terminals, 80
Principal component analysis (PCA), 178, 

196, 739
Principal components (PCs), 178
Projectile effect, 152
Pseudo-continuous arterial spin labelling 

(pCASL), 65
Pseudo-Lennox syndrome, 491
Psychiatry

Index



787

ADHD, 511, 512
anxiety disorder, 510, 511
dementia, 519, 520
depression, PTSD and 

neurofeedback, 512–514
normal and disturbed brain function, 509
OCD, 519
phasic beta activity, 510
schizophrenia

AEP, 515
auditory gamma response, 515
BrainAmps, 517
characteristics, 514
CNV, 517
COMT, 516
dopamine, 516
fALFF, 518
fear conditioning and extinction, 517
ketamine, 518
long-term impact, 517
MMN, 516
nicotine, 517, 518
oscillations, 514, 515
P200, 515, 516
reward system, 517
spatial-temporal coupling, 517
synchronization parameters, 515
technical equipment, 515

Psychophysiological interaction (PPI) 
analysis, 330, 331, 512

Pulse artifact (PA), 145, 146
artifact reduction methods, 176

evaluation, 183, 184
sensor-based methods, 182, 183
spatiotemporal pattern-based 

methods, 179–181
temporal waveform-based 

methods, 176–179
data acquisition, 175, 176
experimental evidence, 173–175
GFP, 168, 169
hypothesized sources, 170–173

Pulse artifact noise removal, 255, 256
Pulse diagram, 51
Pulsed arterial spin labelling (PASL), 65

Q
Quality assurance (QA)

coherent noise testing, 238
examples, 234
SNR, 235, 236
subject data procedure, 238
Weisskoff test, 236

R
Radius of decorrelation (RDC), 236
Rapid eye movement (REM), 406, 418–420, 

423, 424
lucid, 424, 425

Read gradient, 51, 52
Real-time fMRI neurofeedback, 513

advantage of, 324
alpha rhythm, 332–337
amygdala, 325
amygdala regulation, 326–332
FAA, 328–330, 332
hemodynamic and electrophysiological 

process, 325
implementation, 324
real-time independent component 

analysis, 341–343
simultaneous regulation, 338–341
thalamus, 332–337

Real-time independent component analysis 
(ICA), 341–343

Region of interest (ROI), 235
Relaxation, 54–57
Repetition time (TR), 68
Respiratory waves in arterial pressure, 173
Response anticipation, 604
Resting state fMRI

analysis, 379
brain oscillations

alpha rhythm, 383–385
data-driven approaches, 383
during sleep, 389, 390
epilepsy, 390
networks, 385–388

connectivity, 388, 389
direct and indirect measurement, 382, 383
electrophysiology, 381, 382
endogenous changes, 379, 380
externally manipulating (independent 

variable), 378
informative measurements (dependent 

variable), 378
intrinsic fluctuations, 379
patterns of correlations, 380, 381
results, 397
task setting

conditions and stages, 391
covariations, 391
examples, 392–394
eye-blinks and MRI related 

artifacts, 391
haemodynamic changes, 394–396
parametric and task regressors, 392
unimodal sessions, 392

Index



788

Resting-state, 756–759
Resting-state networks (RSNs), 426, 428, 

429, 756
RF emissions, 149–151
RF receive (Rx) coil model, 250
RF transmit (Tx) coil model, 250
Rolandic epilepsy, 490

S
Scalp and subdermal electrodes, 670
Scalp dilation, 174
Schizophrenia

AEP, 515
auditory gamma response, 515
BrainAmps, 517
characteristics, 514
CNV, 517
COMT, 516
dopamine, 516
fALFF, 518
fear conditioning and extinction, 517
ketamine, 518
long-term impact, 517
MMN, 516
nicotine, 517, 518
oscillations, 514, 515
P200, 515, 516
reward system, 517
spatial-temporal coupling, 517
synchronization parameters, 515
technical equipment, 515

SCN1A gene, 502
Seizure-related motion, 455, 456
Self-limited focal epilepsies, 490, 491
Sensor-based methods, 182, 183
Sensory processing

NREM
acoustic stimulation, 416, 417
olfactory stimulation, 418
visual stimulation, 417, 418

REM, 418–420
Sensory-motor stimulation models, 685
7T scanning, 256–261
Severe myoclonic epilepsy of infancy 

(SMEI), 502
Signal-to-noise ratio (SNR), 85–86

impact on, 233
quantification of, 235, 236
temporal SNR, 235, 236

Silver–silver chloride (Ag/AgCl) 
electrodes, 670

Singular value decomposition (SVD), 124
Sleep

animal data, 429, 430
animal model, 684
definition, 406
deprivation, 414
environmental stimuli, 408
falling asleep, 420, 421
graphoelements–spindles, K-complexes, 

slow oscillations, 421–423
habituation, 414
imaging, 408, 409
lucid REM, 424, 425
movements, 412
network analysis, 426–429
paradoxical sleep, 406
participant effect, 412
recording

electrophysiological recording, 411
extended time, 411, 412
multimodality, 410, 411
referentiation of, 411
techniques, 414, 415

regional-specific patterns, 407
REM, 423, 424
research, 409, 410
sensory processing

NREM, 416–418
REM, 418–420

stages, 406, 407
study protocols

drop-out rate, 412
fluctuation of microstates, 414
no control over sleep state, 414
no whole-night recordings, 414
REM-suppression, 413
selection bias, 413

timing and amount of, 407
vigilance, 406

Sleep/sigma spindles, 28, 29
Slice gradient/slice selective gradient, 53, 54
Slow oscillation, 28
Somatomotor cortex, 35
Sparse decomposition methods

artifact removal, 732, 733
HRF, 728–730, 732

Sparse optimal sampling schedule (SOSS) 
designs, 729, 730

Sparse sampling, 551–553
Spatiotemporal pattern-based 

methods, 179–181
Specific absorption rate (SAR), 61
Spike-wave discharges (SWD), 667, 681
Spin echo, 59–61
Spindle-coupled reactivation, 422
Spindles, 421–423

Index



789

Spin-lattice relaxation, 54
Spin-spin relaxation, 54
Static magnetic field, 549, 550
Statistical inference, 278, 279
Statistical parametric maps (SPMs), 279, 445
Steady-state visual evoked potentials 

(SSVEPS), 568
Stepping-stone sampling, 198, 199
Structural connectivity, 751
Superior temporal gyrus, 550, 556, 557
Symptomatic and cryptogenic focal epilepsies, 

492, 494

T
Template drift compensation (TDC), 203
Temporal kernel CCA (tkCCA), 738
Temporal SNR (TSNR), 224, 235, 236
Temporal waveform-based methods, 176–179
Tensor factorization, 735
Tensor rank, 735
Territorial ASL (T-ASL), 65
Thalamocortical (TC) neurons, 34
Thalamocortical relay neurons (TCR), 28
Thalamus, 332–337
3d Deconvolve method, 261
Transcranial alternating current stimulation 

(tACS), 363
Transcranial magnetic stimulation (TMS), 4

clinical applications, 352, 353
physiology, 350, 351
stimulation protocols, 351, 352

Transient magnetic field, 550, 551
Transverse relaxation time (T2), 54, 55
Tuberous sclerosis complex (TSC), 492
Tucker decomposition, 736

U
Ultra-high field

ASSR, 260, 261
EEG recording quality, 255–259
image quality, 259, 260
safety

at high fields, 249–253
guidelines, 248
physical principles, 248, 249
with high-density systems, 253–255

V
Vascular space occupancy measurement 

(VASO), 69
Vascular steal, 771
Vectorcardiogram (VCG), 176
Vision analyzer algorithm, 202
Visual evoked potentials (VEP), 565–569, 755
Visual stimulation, 417, 418
Visual system

EEG-informed fMRI
ERS/ERD, 571
spontaneous EEG oscillations, 572–575
task-related EEG activity, 575–577

fMRI-informed EEG
localisation, 567
visual attention and cognitive 

processes, 569–571
visual evoked potentials, 567–569

neurovascular coupling, 579–582
signal quality, 565–567
uninformed EEG–fMRI

EROs, 578
visual attention and cognitive 

processes, 578, 579
Visuo-spatial sketchpad, 609

W
Wakefulness, 29
Weighted minimum norm (WMN) 

solution, 124
Weighted regularization techniques, 705
West syndrome, 499
Wisconsin Card Sorting Test (WCST), 602
Wistar Albino Glaxo rats of Rijswijk (WAG/

Rij), 675, 681, 685
Working memory (WM), 609–612

Index


	Preface to the Second Edition
	Reference

	Contents
	Part I: Background
	1: Principles of Multimodal Functional Imaging and Data Integration
	1.1	 Introduction
	1.2	 Modes of Data Integration
	1.3	 Multimodal Data Acquisition Strategies: Degree of Synchrony
	1.4	 Multimodal Data Integration Strategies
	1.4.1	 Spatial Coregistration
	1.4.2	 Asymmetric Integration
	1.4.3	 Symmetrical Data Fusion

	1.5	 Summary
	References

	2: EEG: Origin and Measurement
	2.1	 Introduction to the Electrophysiology of the Brain
	2.2	 Origin of EEG and MEG: Cellular Sources
	2.3	 Main Types of Rhythmical EEG/MEG Activities: Phenomenology and Functional Significance
	2.3.1	 Sleep EEG Phenomena
	2.3.2	 Theta Rhythms
	2.3.3	 Alpha Rhythms of Neocortex and Thalamus
	2.3.4	 Beta and Gamma Activity of the Neocortex
	2.3.5	 DC and Ultraslow Potentials

	2.4	 Origin of the EEG/MEG II: Generators, Volume Conduction and Source Estimation
	2.5	 Localisation Methods Applied to Spontaneous Oscillatory Activities: Alpha, Mu and Sleep Spindles
	2.6	 Conclusions
	References

	3: The Basics of Functional Magnetic Resonance Imaging
	3.1	 The Basics of MR Imaging
	3.1.1	 Spins in an External Magnetic Field
	3.1.2	 The Magnetic Resonance Effect
	3.1.3	 Spatial Encoding in MR Imaging
	3.1.3.1	 Frequency Encoding
	3.1.3.2	 Phase Encoding
	3.1.3.3	 Slice Selection

	3.1.4	 Relaxation Times T1 and T2
	3.1.5	 The Relaxation Time T2* and Gradient Echoes
	3.1.6	 k-Space
	3.1.7	 Echo Planar Imaging (EPI)
	3.1.8	 Spin Echoes
	3.1.9	 The Specific Absorption Rate (SAR)

	3.2	 The Cerebral Blood Flow (CBF)
	3.2.1	 Definition, Order of Magnitude and Measurement
	3.2.2	 Arterial Spin Labelling Measurements
	3.2.3	 Labelling Methods
	3.2.4	 Quantification Problems in ASL

	3.3	 The Cerebral Blood Volume (CBV)
	3.3.1	 Definition, Order of Magnitude and Measurement
	3.3.2	 Contrast Agent-Based Methods
	3.3.2.1	 Dynamic Imaging
	3.3.2.2	 Steady-State Imaging

	3.3.3	 Contrast Agent-Free Method: Vascular Space Occupancy Measurement

	3.4	 The BOLD Effect and Functional MRI
	References

	4: Locally Measured Neuronal Correlates of Functional MRI Signals
	4.1	 Blood Oxygenation Level-Dependent (BOLD) Signals
	4.2	 Extracellular Neurophysiological Signals
	4.3	 Relationship Between Neuronal Activity and fMRI Signals
	4.4	 Correlations Between Neurophysiological Signals and fMRI Responses
	4.5	 What Is the Neural Origin of fMRI Responses?
	4.6	 Neuronal Correlates of Negative BOLD Responses
	4.7	 Neuronal Correlates of Spontaneous Fluctuations in fMRI Signals
	4.8	 Dissociations Between BOLD Responses and Neurophysiological Activity
	References

	5: What Can fMRI Add to the ERP Story?
	5.1	 Introduction
	5.2	 ERP Generator Localization
	5.3	 The Inverse Problem of EEG
	5.4	 Does fMRI Help to Solve the Inverse Problem?
	5.5	 Further Aspects
	5.6	 Serial Processing vs. Parallel and Reciprocal Network Activity
	5.7	 Subcortical Processing
	5.8	 Conclusions
	References

	6: The Added Value of EEG-fMRI in Imaging Neuroscience
	6.1	 Introduction
	6.2	 The EEG-fMRI Integrated Source Space
	6.3	 Data Integration Strategies for EEG-fMRI Studies
	6.4	 Illustration of the Integration of fMRI and EEG in the Temporal Domain
	6.5	 Illustration of the Integration of fMRI and EEG in the Spatial Domain
	6.6	 Direct Integration of fMRI and Intra-cranial EEG in the Spatial Domain
	6.7	 Discussion
	References


	Part II: Technical and Methodological Aspects of Combined EEG-fMRI Experiments
	7: EEG Instrumentation and Safety in the MRI Environment
	7.1	 Introduction
	7.2	 EEG Instrumentation
	7.2.1	 Electrodes
	7.2.1.1	 Electrode Materials
	7.2.1.2	 Electrode Lead Arrangement
	7.2.1.3	 Electrode Lead Movement

	7.2.2	 EEG Recording System
	7.2.2.1	 Filters
	7.2.2.2	 Sampling Rate
	7.2.2.3	 Signal Range
	7.2.2.4	 Signal Resolution

	7.2.3	 RF Emissions
	7.2.4	 Miscellaneous Factors
	7.2.5	 Summary

	7.3	 Safety
	7.3.1	 Safety Limits
	7.3.2	 Static Field
	7.3.3	 Gradient Fields
	7.3.4	 Eddy Currents
	7.3.5	 RF Fields
	7.3.6	 Implanted Electrodes
	7.3.7	 Summary

	References

	8: EEG Quality: The Pulse Artifact
	8.1	 Introduction
	8.2	 Biophysical Mechanisms
	8.2.1	 Hypothesized Sources
	8.2.2	 Experimental Evidence

	8.3	 Data Acquisition Considerations
	8.4	 Artifact Reduction Methods
	8.4.1	 Temporal Waveform-Based Methods
	8.4.2	 Spatiotemporal Pattern-Based Methods
	8.4.3	 Sensor-Based Methods
	8.4.4	 Artifact Reduction Evaluation

	8.5	 Conclusion
	References

	9: EEG Quality: The Image Acquisition Artefact
	9.1	 Origin of the Image Acquisition Artefact
	9.2	 Characteristics of the Image Acquisition Artefact
	9.2.1	 Characterisation of the Cooling Pump Artefact
	9.2.1.1	 Cooling Pump Artefact Prevention
	9.2.1.2	 Cooling Pump Artefact Removal


	9.3	 Avoiding Image Acquisition Artefacts: Interleaved EEG–fMRI Protocols
	9.4	 Reduction of Image Acquisition Artefacts
	9.4.1	 Reduction at the Source
	9.4.1.1	 Stepping-Stone Sampling

	9.4.2	 Synchronisation of EEG and fMRI Data Acquisitions

	9.5	 Correction of the Image Acquisition Artefact Using EEG Post-Processing
	9.5.1	 Artefact Template Subtraction
	9.5.2	 Computing and Correcting Timing Errors
	9.5.3	 Temporal Principal Component Analysis
	9.5.4	 Independent Component Analysis
	9.5.5	 Filtering in the Frequency Domain
	9.5.6	 Between Prevention and Correction: Prospective Motion Correction and EEG Artefacts

	9.6	 Evaluation of Correction Methods
	References

	10: Image Quality Issues
	10.1	 fMRI Pulse Sequences
	10.2	 GE-EPI
	10.2.1	 Image Blurring
	10.2.2	 Geometric Distortion
	10.2.3	 Signal Dropout
	10.2.4	 Image Ghosting
	10.2.5	 RF Interference

	10.3	 Other Sources of Image Artefact in fMRI
	10.3.1	 Bulk Head Motion
	10.3.2	 Physiological Noise

	10.4	 The Impact of EEG Recording on MR Image Quality
	10.4.1	 Main Static Magnetic Field (B0) Effects
	10.4.2	 Transverse Rotational Magnetic Field (B1) Effects
	10.4.3	 Impact on SNR

	10.5	 fMRI Quality Assurance (QA)
	10.5.1	 Quantification of SNR and Temporal SNR
	10.5.2	 The Weisskoff Test
	10.5.3	 Coherent Noise Testing

	10.6	 Summary and Conclusions
	References

	11: EEG-fMRI at Ultrahigh Magnetic Fields: B0 ≥ 3 Tesla
	11.1	 Introduction
	11.2	 Safety Considerations
	11.2.1	 Physical Principles and Relevant Safety Guidelines
	11.2.2	 Safety Studies at High Fields
	11.2.3	 Safe Imaging with High-Density EEG Nets

	11.3	 EEG Recording and Quality
	11.3.1	 Pulse-Related Artefact
	11.3.2	 Other Noise Sources at High Field
	11.3.3	 EEG Noise Removal Strategies at High Field

	11.4	 Image Quality
	11.5	 Example of an Application of EEG-fMRI at 7 T: Auditory Steady-State Response (ASSR)
	11.6	 Conclusions
	References

	12: Experimental Design and Data Analysis Strategies
	12.1	 Introduction
	12.2	 Data Acquisition and Experimental Design
	12.2.1	 Interleaved EEG and fMRI Acquisitions: Triggered and Sparse Scanning
	12.2.2	 Simultaneous EEG and fMRI Acquisitions: Continuous Scanning
	12.2.3	 Experimental Protocol
	12.2.3.1	 Resting-State EEG–fMRI: Spontaneous Brain Activity
	12.2.3.2	 Stimulus-Driven Paradigms


	12.3	 Analysis of Simultaneously Acquired EEG–fMRI Data
	12.3.1	 Model-Based Analysis of fMRI Time-Series Data
	12.3.1.1	 Preprocessing
	12.3.1.2	 The General Linear Model (GLM) and Statistical Inference

	12.3.2	 EEG-Derived GLM: Use of Event on sets and Illustration in Epilepsy
	12.3.3	 EEG-Derived GLM: Parametric Design and Single Trial
	12.3.4	 EEG-Derived GLM: EEG Spectrum
	12.3.5	 Multivariate Analysis
	12.3.6	 EEG-informed fMRI Functional Connectivity
	12.3.7	 Use of intracerebral EEG in the context of concurrent fMRI recordings

	12.4	 EEG and fMRI Localization: Modes of Integration
	12.4.1	 Comparison of Independently Derived Results
	12.4.2	 fMRI as a Spatial Constraint for EEG Source Reconstruction
	12.4.3	 Towards Symmetrical Models of EEG and fMRI Fusion

	12.5	 Unresolved Problems and Caveats
	12.5.1	 Relationship Between Neuronal Activity, EEG and fMRI Signals
	12.5.2	 Specific Issues Related to Spontaneous Brain Activity
	12.5.2.1	 HRF
	12.5.2.2	 Experimental Efficiency of Paradigm-less fMRI

	12.5.3	 The Impact of Data Acquisition and Processing Artefacts on fMRI Data Analysis
	12.5.3.1	 Artefacts in the Signals
	12.5.3.2	 Artefacts Introduced by EEG Preprocessing


	12.6	 Summary and Outlook
	References

	13: Real-Time fMRI Neurofeedback with Simultaneous EEG
	13.1	 Introduction
	13.2	 Regulation of Amygdala BOLD Activity and Frontal EEG Asymmetry
	13.3	 Regulation of Thalamic BOLD Activity and Alpha EEG Rhythm
	13.4	 Simultaneous Real-Time fMRI and EEG Neurofeedback
	13.5	 Real-Time Independent Component Analysis for EEG-fMRI
	13.6	 Conclusions
	References

	14: Non-invasive Brain Stimulation with Multimodal Acquisitions
	14.1	 Brain Imaging: Possibilities and Limitations
	14.2	 Invasive and Non-invasive Brain Stimulation
	14.2.1	 The Physics and Physiology of Single-Pulse Transcranial Magnetic Stimulation (TMS)
	14.2.2	 From Single-Pulse to Repetitive TMS: Stimulation Protocols
	14.2.3	 Clinical Applications of TMS

	14.3	 The Multimodal Approach: Combinations of Brain Stimulation and Brain Imaging
	14.3.1	 Brain Imaging Before Brain Stimulation
	14.3.2	 Brain Imaging After Brain Stimulation
	14.3.3	 Simultaneous Brain Stimulation and Brain Imaging
	14.3.3.1	 Technical Challenges and Practical Implementation
	14.3.3.2	 TMS Affects Networks, Not Just a Local Region
	14.3.3.3	 TMS Network Effects Depend on Brain State
	14.3.3.4	 TMS Network Effects Are Functionally Relevant


	14.4	 New Developments
	14.4.1	 Closed-Loop Neuroscience
	14.4.2	 Simultaneous TMS-fMRI-EEG

	14.5	 Conclusions
	References


	Part III: Applications of EEG-fMRI
	15: Brain Rhythms
	15.1	 Multimodal Studies of Brain Rhythms
	15.1.1	 Considerations for the Study of Rest
	15.1.2	 From Unimodal to Multimodal Approaches to the Resting State
	15.1.3	 Unimodal Approaches to Resting State
	15.1.3.1	 Resting State in fMRI
	15.1.3.2	 Spontaneous Neural Activity in Electrophysiology

	15.1.4	 Multimodal Studies of Rest
	15.1.4.1	 Direct and Indirect Measurement of Neural Activity by (f)MRI
	15.1.4.2	 Functional Imaging Studies of “Brain Oscillations”
	15.1.4.3	 Endogenous Brain Oscillations in Healthy Subjects
	15.1.4.4	 Similar Electrical Oscillations, Different fMRI Networks
	15.1.4.5	 Similar fMRI Networks, Different Electrical Oscillations
	15.1.4.6	 Brain Rhythms and Connectivity
	15.1.4.7	 Brain Oscillations and Networks During Sleep
	15.1.4.8	 Endogenous Brain Oscillations in Patients with Epilepsy


	15.2	 Multimodal Approaches in a Task Setting
	15.2.1	 General Considerations
	15.2.2	 Multimodal Measurements in a Task Context: Examples
	15.2.3	 Linking Neuronal Oscillations to Haemodynamic Changes

	15.3	 Conclusions
	References

	16: Sleep
	16.1	 FMRI in Sleep Research
	16.1.1	 Sleep
	16.1.2	 Imaging Sleep
	16.1.3	 EEG and fMRI in Sleep Research

	16.2	 fMRI During Sleep: Technical Challenges
	16.2.1	 Sleep Recording
	16.2.1.1	 Multimodality of Sleep Recording
	16.2.1.2	 Referentiation of Recordings
	16.2.1.3	 Extended Recording Time: Electrophysiological Recordings

	16.2.2	 MR Imaging
	16.2.2.1	 Extended Recording Time: fMRI Recordings
	16.2.2.2	 Movement

	16.2.3	 Effect on Participant
	16.2.3.1	 Participant Not Falling or Staying Asleep
	16.2.3.2	 Extended Recording Time: Subjective Discomfort

	16.2.4	 Effect on Study Protocols
	16.2.4.1	 Drop-Out Rate
	16.2.4.2	 Specific Suppression of Sleep Stages
	16.2.4.3	 Selection Bias
	16.2.4.4	 No Control Over Sleep State
	16.2.4.5	 No Whole-Night Recordings
	16.2.4.6	 Fluctuation of Microstates

	16.2.5	 Possible Solutions
	16.2.5.1	 Habituation
	16.2.5.2	 Sleep Deprivation
	16.2.5.3	 MR Recording Techniques


	16.3	 FMRI in Sleep: Results
	16.3.1	 Sensory Processing During Sleep
	16.3.1.1	 NREM Sleep
	Acoustic Stimulation
	Visual Stimulation
	Olfactory Stimulation

	16.3.1.2	 REM Sleep

	16.3.2	 EEG-Informed fMRI
	16.3.2.1	 Falling Asleep
	16.3.2.2	 Graphoelements: Spindles, K-Complexes, and Slow Oscillations
	16.3.2.3	 REM Sleep
	16.3.2.4	 Lucid REM Sleep

	16.3.3	 Network Analysis
	16.3.4	 Animal Data

	16.4	 Summary and Outlook
	References

	17: EEG–fMRI in Adults with Focal Epilepsy
	17.1	 Introduction
	17.2	 Interictal EEG–fMRI
	17.2.1	 What Is an Interictal Spike?
	17.2.2	 Interictal Epileptiform Activity in Presurgical Assessment
	17.2.3	 Methodology
	17.2.3.1	 Data Acquisition
	17.2.3.2	 Data Analysis

	17.2.4	 Relevance of the Observed BOLD Changes
	17.2.5	 Clinical Utility
	17.2.6	 The Influence of Lesions
	17.2.7	 Simultaneous intracranial EEG-fMRI

	17.3	 Ictal EEG–fMRI
	17.3.1	 Limitations of Ictal EEG–fMRI
	17.3.1.1	 Unpredictable Nature of Seizures
	17.3.1.2	 Seizure-Related Motion

	17.3.2	 Detection of Ictal Activity
	17.3.3	 Statistical Analysis of Ictal Haemodynamic Changes
	17.3.4	 Application of Ictal EEG–fMRI
	17.3.4.1	 Localisation Potential of Ictal EEG–fMRI
	17.3.4.2	 Mechanism of Epilepsy


	17.4	 Conclusions
	References

	18: EEG-fMRI in Generalised Epilepsy: Adults
	18.1	 Idiopathic Generalised Epilepsy
	18.1.1	 Definition and Classification of Generalised Epilepsy Syndromes
	18.1.2	 Diagnosing IGE
	18.1.3	 IGE Comorbidity

	18.2	 Cortical and Subcortical Generators of Generalised Spike and Wave Activity
	18.3	 What EEG fMRI Has to Tell Us About Generators of Generalised Spike and Wave in Adults
	18.3.1	 EEG-fMRI Provides a Topographic Map of Structures Involved in the Generation of GSW
	18.3.1.1	 The Thalamus and Cortex in GSW
	18.3.1.2	 The Thalamus
	Non-Thalamic Subcortical Contributions

	18.3.1.3	 Cortical BOLD: The Importance of the Default Mode Network
	Cortical Change in Adults Beyond the DMN

	18.3.1.4	 Cortical Change in Lennox-Gastaut Syndrome
	18.3.1.5	 Connectivity Analysis Insights into the Mechanisms of GSW


	18.4	 Conclusions
	References

	19: EEG-fMRI in Children with Epilepsy
	19.1	 EEG-fMRI in Children with Epilepsy
	19.2	 Methodological Issues Specific to Paediatric EEG-fMRI Studies
	19.2.1	 Patient Selection and Scanning
	19.2.2	 Modelling IED-Related BOLD Changes in Children: Variability and Developmental Changes

	19.3	 Results of EEG-fMRI Studies in Paediatric Epilepsy
	19.3.1	 Self-Limited Focal Epilepsies
	19.3.2	 Symptomatic and Cryptogenic Focal Epilepsies
	19.3.3	 Idiopathic Generalized Epilepsies
	19.3.4	 Epileptic Encephalopathies

	19.4	 Summary and Future Perspectives
	References

	20: EEG-fMRI in Psychiatry
	20.1	 Introduction
	20.2	 Anxiety Disorder
	20.3	 Attention Deficit Hyperactivity Disorder (ADHD)
	20.4	 Depression, Posttraumatic Stress Disorder (PTSD) and Neurofeedback
	20.5	 Schizophrenia
	20.6	 Obsessive-Compulsive Disorder (OCD)
	20.7	 Dementia
	References

	21: Combining Electroencephalography and Functional Magnetic Resonance Imaging in Pain Research
	21.1	 Introduction
	21.2	 Combining EEG and fMRI in Pain Research: General Issues
	21.3	 Combining EEG and fMRI in Pain Research: Practical Issues
	21.3.1	 Selectivity of the Nociceptive Input in EEG-fMRI Studies
	21.3.2	 Delivery of Nociceptive Stimuli in EEG/fMRI Environment
	21.3.3	 Experimental Design

	21.4	 Studies Combining EEG and fMRI in Pain Research
	21.5	 Future Directions: EEG-Driven Analysis of fMRI-BOLD Responses to Nociceptive Stimulation
	21.5.1	 Single-Trial Estimation of the Magnitude of Stimulus-Evoked EEG Responses
	21.5.2	 Correlation Between EEG and fMRI Responses at Single-Trial Level

	References

	22: Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging of the Human Auditory System
	22.1	 Introduction
	22.2	 Specifics of Auditory Recordings
	22.2.1	 Interference of the Static Magnetic Field
	22.2.2	 Interference of Transient Magnetic Fields
	22.2.3	 BOLD Response to Scanner Noise
	22.2.4	 Sparse Sampling
	22.2.5	 Silent fMRI Acquisition
	22.2.6	 Adjusting Auditory Stimulus Frequencies
	22.2.7	 Active Noise Cancellation

	22.3	 Simultaneous EEG and fMRI in Auditory Experiments
	22.4	 Evaluation Methods of Concurrent Auditory EEG-fMRI
	22.5	 Conclusion
	References

	23: Visual System
	23.1	 Simultaneous EEG-fMRI of the Visual System: Signal Quality
	23.2	 fMRI-Informed EEG of the Visual System
	23.2.1	 Localising VEPs
	23.2.2	 Visual Attention and Other Cognitive Processes

	23.3	 EEG-Informed fMRI of the Visual System
	23.3.1	 Spontaneous EEG Oscillations
	23.3.2	 Task-Related EEG Activity

	23.4	 Uninformed EEG–fMRI and Other Approaches
	23.4.1	 Event-Related Oscillations (EROs)
	23.4.2	 Visual Attention and Other Cognitive Processes

	23.5	 Investigating Neurovascular Coupling in the Visual System by EEG–fMRI
	23.6	 Outlook
	References

	24: Cognition
	24.1	 Advantages and Disadvantages of Simultaneous EEG–fMRI Recordings of Cognitive Functions
	24.2	 Attention
	24.2.1	 Oddball Paradigm
	24.2.2	 Mismatch Negativity
	24.2.3	 Preparatory Attention

	24.3	 Executive functions
	24.3.1	 Cognitive Flexibility
	24.3.2	 Performance Monitoring
	24.3.3	 Decision-Making
	24.3.4	 Behavioral Inhibition
	24.3.5	 Working Memory

	24.4	 Memory
	24.5	 Limitations and Outlook
	References

	25: Neuronal Models for EEG–fMRI Integration
	25.1	 From Correlating Measurements to Models of Neuronal Population Activity
	25.2	 Direct Correlations Between Field Potentials and BOLD
	25.3	 Neuronal Population Activity and the BOLD Signal
	25.4	 Neuronal Population Activity and Field Potential Measurements
	25.5	 Theoretical Predictions for BOLD and Field Potential Measurements
	25.6	 Theories About Field Potential Components
	25.6.1	 Broadband Power Changes
	25.6.2	 Peaks in the Field Potential Power Spectrum in the Range from 30 to 80 Hz
	25.6.3	 Low Frequency Alpha Oscillations
	25.6.4	 Measured Field Potential Data Will Be a Summation Across All Underlying Processes

	25.7	 Predicting Empirical Data with This Modeling Framework
	25.8	 Discussion
	25.9	 Conclusion
	References


	Part IV: Modelling
	26: BOLD-Response and EEG Gamma Oscillations
	26.1	 Introduction
	26.2	 Methodical Issues
	26.3	 Gamma activity and BOLD Response
	26.3.1	 Covariation of High Frequency Oscillations and BOLD Signal
	26.3.2	 Gamma Activity and BOLD Response: Variation Across Subjects
	26.3.3	 Gamma Activity and BOLD Response: Further Reports
	26.3.4	 Single-Trial Coupling of Auditory Evoked Gamma Band Response and BOLD Signal

	26.4	 Conclusions
	References

	27: EEG–fMRI in Animal Models
	27.1	 Introduction
	27.2	 Advantages of EEG–fMRI in Animal Models
	27.3	 Limitations and Technical Challenges of EEG–fMRI in Animal Models
	27.4	 Anesthesia
	27.5	 Movement: Curarization and Habituation
	27.6	 Physiology
	27.7	 MRI Compatible Electrodes
	27.8	 fMRI Signal Generation
	27.8.1	 Measurement of CMRO2 by MR Spectroscopy
	27.8.2	 Estimation of CMRO2 by Calibrated BOLD
	27.8.3	 CBV
	27.8.4	 CBF

	27.9	 Signal Artifact and Artifact Removal
	27.10	 Data Analysis
	27.11	 Sequential EEG–fMRI Studies in Animals
	27.12	 Applications of Simultaneous EEG–fMRI in Animals
	27.13	 Epilepsy
	27.14	 Absence Seizure Models
	27.15	 Generalized Tonic-Clonic Seizure Models
	27.16	 Partial Seizure Models
	27.17	 Sleep
	27.18	 Sensory–Motor Stimulation Models
	27.19	 Relating fMRI Signals to Electrophysiological Recordings
	27.20	 Future Directions
	27.21	 Conclusions
	References

	28: EEG–fMRI Information Fusion: Biophysics and Data Analysis
	28.1	 Introduction
	28.2	 EEG–fMRI Information Fusion: Limitations
	28.2.1	 Coupling of Electrophysiological and Hemodynamic Responses
	28.2.2	 Experimental Limitations

	28.3	 EEG–fMRI Information Fusion: Solutions
	28.3.1	 Information Fusion: Definition
	28.3.2	 Asymmetrical vs. Symmetrical Approaches
	28.3.3	 EEG to fMRI Approaches
	28.3.4	 fMRI to EEG Approaches
	28.3.5	 Symmetrical EEG–fMRI Approaches
	28.3.5.1	 Model-Driven Approaches
	28.3.5.2	 Data-Driven Approaches


	28.4	 Conclusion
	References

	29: Sparse and Data-Driven Methods for Concurrent EEG–fMRI
	29.1	 Introduction
	29.2	 Sparse Sampling of the Hemodynamic Response Function
	29.3	 Leveraging Sparsity for Artifact Removal
	29.4	 Data Driven Methods for EEG–fMRI Integration
	29.4.1	 Tensor Factorization
	29.4.2	 Canonical Polyadic Decomposition (CPD)
	29.4.3	 Tucker Decomposition
	29.4.4	 Coupled Matrix–Tensor Factorization (CMTF)

	29.5	 Canonical Correlation Analysis
	29.6	 Conclusion
	References

	30: Integrating EEG–fMRI Through Brain Simulation
	30.1	 Introduction
	30.2	 Brain Network Models
	30.3	 EEG and fMRI Forward Models
	30.4	 Evoked Potentials
	30.5	 Resting-State
	30.6	 EEG–fMRI (Anti)Correlation
	30.7	 From EEG–fMRI to Neural Activity
	30.8	 From EEG–fMRI to Neural Mechanisms
	30.9	 Outlook: Diagnosis and Therapy
	References


	Index

