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Abstract

Gully erosion (GE) is a major environmental
problem that causes land degradation world-
wide especially in arid and semi-arid regions.
A crucial step to reduce and possibly reclaim
areas degraded by GE is to predict potential
susceptible areas using highly accurate predic-
tive methods. This chapter demonstrates the
suitability of a data-driven model (logistic
regression) to this aim. The model was applied
in South Gombe State, Nigeria, where land
development is restricted by intense GE
because of the semi-arid climate and physio-
graphic conditions. A GE inventory was pre-
pared from a total of 260 gully and non-gully
locations compiled from interpretation of
Google Earth images and field investigations.
Besides, local environmental conditions and a
20 m DEM allowed the selection of soil
texture, geology, land use, rainfall, and some
topographical factors influencing GE suscepti-
bility. Subsequently, the inventory data was
randomly split into two datasets; 182% or 70%

training, and 78% or 30% validation, while
influencing factors independence was assessed
via multicollinearity scrutiny. Results of for-
ward stepwise regression for the relationship
between GE and selected factors indicated that
distance from road is key to gully formation.
After running the logit function, the resultant
susceptibility map revealed that 3.1% of the
study area was relatively safe, 50.1% less,
23.3% moderate, 19.2% high, and 4.3%
extremely susceptible. Validation assessment
using area under receiver operating character-
istic curve provided 92.3% prediction accuracy.
This study further confirmed logistic regression
as an excellent and accurate data-driven
method for spatial analysis and prediction of
GE susceptibility. The method can be applied
elsewhere with similar physiographic
characteristics.
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3.1 Introduction

Gully erosion (GE) is the “erosion process
whereby runoff water accumulates and often
recurs in narrow channels and, over short peri-
ods, removes the soil from this narrow area to
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considerable depths” (Poesen et al. 2003). The
channel formed from this erosion process is
generally classified as a “gully”. Because it is a
geographically widespread phenomenon, it is
also known by a variety of native names like
Ravine, Uvrag, Wadi, Nuallah or ‘Cho, Hakisan
Gaung, Carcava or Arroyo, Donga, and Kwari
(in Hausa language) in France, Russia, Arabic,
India, Malaysia (Malay), Spain, South Africa,
and Northern Nigeria, respectively, (Castillo and
Gómez 2016; Maria and Nicolae 2017).

Gullies are commonly classified as “per-
manent” and “ephemeral” gullies. A per-
manent gully is a wide and deep channel
eroded by concentrated flow removing the
upland soil and parent materials, which
cannot be eliminated through conventional
tillage operations. Whereas ephemeral
gullies are formed by a concentrated
overland flow which can be remediated by
conventional tillage operations (Garosi
et al., 2019). Ephemeral gullies are smaller
than permanent gullies but larger than rill
systems. Unlike rills, ephemeral gullies are
formed in the same location each season.

GE is a threshold phenomenon that is con-
trolled by numerous factors. Thus, gullies occur
only after a threshold of runoff erosivity and soil
erodibility has been crossed. In addition to rain-
fall, runoff erosive power depends on topography
that controls the discharge, concentration, and
velocity of overland flow (Conoscenti et al.,
2013). Morphology, density, and development of
gullies in a particular area are also substantially
regulated by the underlying bedrock (Poesen
2011). The incidence of a gully is also governed
by soil resistance, which is dictated by soil
properties such as texture, bulk density, moisture
conditions, and organic matter content (Poesen
et al. 2003). GE is also related to the type and
stage of crop production, as well as tillage
direction and conservation practices (Li et al.
2016). Also, several studies have reported

triggering of gullies or increasing of GE rates as
being caused by land use changes, intensification
of farming activities, and overgrazing (Con-
oscenti and Rotigliano 2020).

Once formed, gullies become major sediment
sources and often cause environmental problems
within their reach (on-site effects) and down-
stream (off-site effects). Generally, GE results in
different consequences: (i) significant land
degradation and loss of productive capacity,
(ii) high sediment yields and sediment discharge,
which can transport both nutrients and pollutants,
and (iii) sedimentation of reservoirs (reducing the
water capacity of the reservoirs) and damage to
the infrastructure and transport routes. Ecologi-
cally, GE can cause associated ecological prob-
lems such as eutrophication and acceleration of
desertification processes. Therefore, the predic-
tion of gully erosion susceptibility is the first and
most important step in averting the undesired
effects of gullies and achieving sustainable
development (Rahmati et al. 2017b).

According to Domínguez-Cuesta (2013),
susceptibility reflects the condition of becoming
weak or easily influenced. In natural hazards
terms, susceptibility is related to the spatial
dimensions of hazards. It refers to the tendency
of a region to experience the consequences of
certain dangerous activity (e.g., floods, earth-
quakes, erosion, etc.) without considering either
the moment of occurrence or possible casualties
and financial impacts. Thus, GES may be defined
as the probability of spatial occurrence of GE
based on the relationships between the distribu-
tion of gullies in the past and factors that influ-
enced their occurrence.

The prediction of GES involves several
qualitative (Knowledge-driven) and quantitative
(data-driven) methods. The knowledge-driven
methods depend on expert opinions. The most
common types of these methods simply use GE
inventories to characterize sites of similar geo-
graphical properties that are susceptible to GE.
Certain knowledge-driven approaches, however,
incorporate the idea of ranking and weighting
and may evolve to be semi data-driven in nature.
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Examples are the use of the analytic hierarchy
process (AHP) of Saaty and Vargas (2012) by
Arabameri et al. (2019b) and weighted linear
combination (WLC) by (Sujatha and Sridhar
2019). AHP involves building a hierarchy of
decision elements (factors) and then making
comparisons between possible pairs in a matrix to
give a weight for each element and also a con-
sistency ratio. It is sustained by three principles:
decomposition, comparative judgment, and syn-
thesis of priorities. WLC is a concept to combine
maps of GE influencing factors by assigning a
standardized score (primary-level weight) to each
class of a particular parameter and a factor weight
(secondary-level weight) to the parameters them-
selves. Being partly subjective, the results of these
approaches vary depending on the knowledge of
experts (Arabameri et al. 2019c).

Data-driven approaches rely on statistical
description of the relationship between GE and
influencing factors. They statistically assess the
combination of the influencing factors that are
more closely related to the spatial distribution of
existing gullies. Therefore, according to the
prevailing terrain conditions (e.g., slope angle,
slope shape, lithology, land cover) it is possible
to quantitatively predict the likelihood of future
gully occurrence even in non-gully affected
areas. In this process, data from past and present
gullies are used to evaluate the relative impor-
tance of the influencing factors and respective
classes. Data-driven GES models are sustained
by three major assumptions: (i) gullies can be
recognized, classified, and mapped; (ii) GE
influencing factors can be identified, registered,
and used to build GE predictive models; and
(iii) future GE occurrence can be spatially pre-
dicted (Arabameri et al. 2019c; Zêzere et al.
2017). In other words, following the Uniformi-
tarianism principle, the past and the present are
considered keys to the future, hence it is assumed
that future gullies are more likely to occur under
the same geologic and geomorphologic condi-
tions that led to past gullies.

Data-driven methods can be grouped in
bivariate statistical analysis (BSA) and multi-
variate statistical analysis (MSA) (Lucà et al.

2011). The BSA compares independently each
influencing factor with the GE distribution.
Weights of the GE influencing factors are
assigned based on gully density using different
methods such as information value, weights of
evidence, among others. Bivariate statistical
models do not consider the interdependence of
predictive variables, and this is a major drawback
of the method (Arabameri et al. 2019c; Zêzere
et al. 2017). The MSA evaluates the combined
relationship between the dependent variable and
a set of independent variables.

Numerous MSA methods exist, but those
commonly used to predict GES include linear
and quadratic discriminant analyses and logistic
regression. Linear and quadratic discriminant
analyses have been used by Arabameri and
Pourghasemi (2019) to predict GES in Iran. The
method was also reported to be significant to
define GES classes in the Pathro River Basin of
India (Gayen et al. 2019). Logistic regression has
been applied for susceptibility mapping by vari-
ous researchers including Lucà et al. (2011),
Conoscenti et al. (2014), Reza and Ronak (2015),
Arabameri et al. (2018), Razavi-Termeh et al.
(2020), and Arabameri et al. (2020c). However,
the logistic regression model is the most widely
used among the MSA approach. Compared with
other MSA methods, its independent variables do
not need to be linearly related or normally dis-
tributed, and can be categorical, continuous, or
their mixture. In addition to this, the logistic
regression model can effectively combine with
other statistical analysis methods and/or
knowledge-driven methods to improve GES
prediction. Hence, the main objective of this
study is to extend the application of logistic
regression as a technique within data-driven
methods. The method was applied in South
Gombe State, Nigeria, where land development
is restricted by intense GE because of semi-arid
climate and physiographic conditions. Also, a
thorough literature review to date shows that
despite the high sensitivity of this area to GE, no
comprehensive studies have been carried out to
identify areas that are particularly susceptible to
GE at all.
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3.2 Materials and Methodology

3.2.1 The Case Study—Southe
Gombe State (SGS),
Nigeria

SGS occupies about 8023 km2 and is located
within Gombe State, Nigeria. It is bounded by
latitude 9°30′ and 10°20′ N and longitude 10°40′
and 11°50′ E (Fig. 3.1). SGS is characterized by a
semi-arid type of climate marked by two distinct
seasons: a rainy season from April to October and
a dry season from November to March. The
average annual temperature is 27 °C, while the
average annual rainfall is about 835 mm with
much of it falling between June and September.
The rains come in the form of intensive, violent
showers of short duration, especially at the
beginning and end of the rainy season. The early

rains of April which come just after the dry season
are very effective in the gullying process. The low
relative humidity, characteristic of the dry season,
leaves the surface of the soil dry and cracked at
various points. These cracks and other human
features like footpaths, are rapidly exploited by
the runoff from storms of the early rains and
greatly favor the inception and subsequent evo-
lution of gullies. Rain in the area may fall con-
tinuously for two, three, or more hours—although
most of it comes during the first 40 min of the
period of fall. They are the type of rainfall that
causes so much damage in a relatively short time,
especially in places where the soil is bare or is
partially covered by vegetation which is incapable
of protecting it from the erosive impact of the rain.

The geology of the area comprises of the
crystalline basement and Cretaceous sedimentary
Formations (Ikusemoran et al., 2018) (Table 3.1).

Fig. 3.1 Location of the study area and gully landforms distribution
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The soils correlate with the underlying geology,
and are mostly sandy, low in organic matter, and
are characterized by low water-holding capacity.
The only exception to this observation is the
wetland (fadama) soils that are fine-textured with
higher organic matter content and relatively
higher water-holding capacity (Ikusemoran et al.,
2016). Geomorphologically, the SGS is charac-
terized by complex terrain and dominated by
rugged hills of granite and sandstone, volcanic
plugs, a sedimentary and volcanic plateau, and
low, swampy plains; with elevation ranging from
200 m (a.s.l.) in the central parts to about
1170 m (a.s.l.) in the southern section. Land use
in the area is characterized by livestock grazing,
rain-fed farming, and dry season fadama (market
gardening) cultivation.

3.2.2 Methodology

3.2.2.1 Spatial Data Used for the Study
The data used in this study was collected by
integrating field data, remote sensing (RS) data,
and geographic information system (GIS) appli-
cations. GIS data processing and computing can
produce GE maps with low costs and acceptable
accuracy. Also, GIS allows fast and easy repre-
sentation and analysis of spatial data and can
generally incorporate information layers from
diverse sources (Arabameri et al. 2020d). Thus,

the basic maps used in this study were satellite
imageries archived by Google Earth, Landsat 8
images (spatial resolution 30 m), soil and geo-
logical maps (scale 1:100,000), and a Digital
Elevation Model (DEM) with a spatial resolution
of 20 m. Table 3.2 presents a summary of the
data types used in the present study.

3.2.2.2 Spatial Analytical Process
Figure 3.2 displays the flowchart of the approach
followed in this study and consists of the fol-
lowing steps: Spatial data collection which
involves identification and extraction of perma-
nent GE features (gully inventory data) and
assembly of GEIFs; spatial data analysis com-
prising independence scrutiny (multicollinearity)
among GEIFs, and random partitioning of the
gully inventory data; susceptibility spatial pre-
diction which involves a determination of the
spatial relationship between GE and GEIFs, and
estimation of the probability of gully occurrence
and generation of GE susceptibility map; and
Validation of results.

3.2.2.3 Spatial Data Collection
As described above, the assumption of suscepti-
bility to GE is that past and/or present gullies are
important for understanding the occurrence of
future gullies, therefore, the acquisition and con-
struction of GE inventory is considered an impor-
tant step in geomorphological analyses and

Table 3.1 Geologic formations, lithological characteristics, and age of rock materials

Geologic formation Lithologic units Age

Alluvium Alluvium Holocene

Basalt Basalt Cretaceous

Kerikeri Sandstone, shale, and clay Palaeocene

Gombe Sandstone, siltstone, shale, coal, and ironstone Maastrichtian

Pindiga Shale, limestone, and sandstone Turonian

Yolde Shale, limestone, and sandstone Cenomanian

Bima Sandstone, siltstone, and shale Albian

Basement Complex Porphyritic granite/coarse porphyritic biotite and biotite hornblende
granite

Pre Cambrian

Coarse, porphyritic hornblende granite

Undifferentiated granite, migmatite and granite gneiss
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stochastic modeling like the present study. In this
study, gully landforms (Fig. 3.3) were identified
through the interpretation of Google Earth image
taken in 2018, and comprehensive field surveys
conducted in early 2019 using a global positioning
system (GPS) to record coordinates of gullies. The
gullies were mapped as polygons but later con-
verted to points by considering the locations of the
head-cut portion of each gully. An equal number of
non-gully point locations were randomly selected
and later combined with the gully locations.

As previously mentioned, GES is regulated by
a variety of factors. However, it is difficult to use
all factors at once (Arabameri et al. 2019a, b, c)
and thus it is important to pick key factors that
could theoretically affect GE in a specific area.
Although, there is no standardized guiding the-
ory for the selection of factors (Arabameri
et al. 2018), comprehensive literature review,
local environmental conditions in the study area,
and multicollinearity checks were utilized to
select 14 factors: rainfall, aspect, slope angle
(SA), length of slope (LS), elevation, plan cur-
vature (PC), topographic wetness index (TWI),
stream power index (SPI), drainage density
(DD), distance from stream (DS), distance from
road (DR), geology, soil texture (ST), and land
use (LU). After selecting and analysis of the
GEIFs, it is essential to classify their numerical
values for effective modeling, and when

representing them on a map so that, visually, they
can be as clearly understood as possible. For this
reason, existing GISs are equipped with several
methods for automatically performing the clas-
sification of susceptibility values. The commonly
used ones include the quantile, equal interval,
Jenks natural breaks, and geometrical interval
classifications (Osaragi 2019). Those suitable for
data used in this study have been applied.

3.2.2.4 Spatial Data Analysis

Partitioning of GE Inventory Data
Before its implementation, the logistic regression
model must be trained and tested with two sep-
arate samples of data. But practice in early
research on the implementation of logistic
regression showed that for the percentage of
training and testing samples, there is no clear rule
of thumb. Nevertheless, it is suggested that the
percentage for testing should be inversely pro-
portional to the square root of the number of free
adjustable parameters (Abdulkadir et al. 2020).
Consequently, by using the unsupervised filter-
ing procedures to avoid replications, the GE
inventory data was divided into 70% training and
30% testing samples. This is consistent with the
percentage of samples considered in related
studies (Abdulkadir et al. 2020; Arabameri et al.
2020a; Rahmati et al. 2017a).

Table 3.2 Summary of data used for the study

Data type Sources Uses

Gully
inventory

Field surveys, Google Earth imagery, and
NEWMAP

For identifying actual gully erosion locations in
the study area

Rainfall Gombe State University weather station, and
the Nigeria Meteorological Agency (NiMet)

For classifying the amount of rainfall of the
study area

Soil Federal Department of Agricultural Land
Resources (FDALR) Abuja, Nigeria

The base map for extraction of soil texture map
of the study area

Geology Nigeria Geological Survey Agency (NGSA) The base map for extraction of the Geology
map of SGS

Land use Landsat 8 images with 30 m resolution—
United State Geographical Survey (USGS)

For classifying and mapping land uses of the
study area

Digital
elevation
model (DEM)

Developed from topographic maps
(1:50,000) of the study area

For extraction of topographical factors related
to the gully erosion formation in the study area
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Fig. 3.2 Flow chart of data and procedures followed for the study
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Extraction of GEIFs
Table 3.3 presents the methods of extraction and
classification of GEIFs selected for the study.
A Digital Elevation Model (DEM) with a spatial
resolution of 20 m was produced from 1:50,000-
scale topographic contour maps, and used for
extraction of topographical factors: elevation,
SA, LS, SPI, TWI, DD, DS, DR, aspect, and PC.

Elevation plays a significant role in deter-
mining vegetation cover type and to a large
extend, precipitation characteristics (Gómez-
Gutiérrez et al. 2015). Consequently, GE may
occur in different elevations, depending on the
initiating and developing mechanisms. SA plays
a significant role in the dynamics of the processes
controlling landscape development; it primarily
affects surface runoff, DD, soil erosion, etc., (van
der Meij et al. 2017). According to Conforti et al.
(2010), steep SA facilitates high runoff velocity
and consequent initiation of rill and gully. Hence,
the SA is crucial for the prediction of GES. LS is
the amalgamation of slope length (L) and steep-
ness (S) of which L controls sediment detach-
ment and generation, and S controls the
movement of these sediments in response to

intense rainfall and related runoff (Pradeep et al.,
2014). It is a key variable used in GES assess-
ment. Theoretically, areas with high LS values
are prone to GE activity (Conoscenti et al. 2014;
Lucà et al. 2011).

Stream power is an important factor consid-
ered in the assessment of GES. It is the potential
for flowing water to perform geomorphic work
and is used to measure the erosive power of
water flow based on the assumption that dis-
charge is proportionate to the catchment area.
The index SPI is one of the main factors con-
trolling slope erosion processes since the erosive
power of running water directly influences slope
toe erosion and river incision (Conforti et al.
2010). It is also indicative of the potential energy
available to entrain sediment so that areas with
high SPI have a great potential for erosion.

TWI relates local topographic slope to the
upslope contributing area at any given location
within a watershed. It is commonly employed as
a proxy for the potential for surface and subsur-
face water accumulation due to runoff and lateral
transmissivity (Raduła et al., 2018). Since the
dynamics, location, and size of saturated source

Fig. 3.3 Example of some identified gullies and their effects on (ai & ii) agricultural land (bi & ii), and on
infrastructure in the study area
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areas are controlled by subsurface hydraulic
characteristics and watershed topography, TWI is
frequently used to model GES. Technically,
areas with larger upslope drainage areas and
shallower slopes will produce larger TWI values,
indicating a higher propensity for GE.

DD, also known as stream density, is the ratio
of the total length of streams or channels in
kilometer (km) to the size in km2 of the area
being studied. The measurement of DD is a
useful numerical measure of landscape dissection
and runoff potential. Hypothetically, a high DD

Table 3.3 GEIFs and methods used for their extraction and classification

Factor Extraction method/source Classification
method

Classes

Rainfall Ordinary kriging interpolation Natural break < 950, 951–1000, 1001–1050,
and >1050 mm (Fig. 4a)

Geology Digitized from NGSA map (1:50,000) Geologic
units

Alluvium, Basalt flow, Bima, Gombe,
Kerikeri, Basement, Pindiga, and Yolde
(Fig. 4l)

ST Digitized from soil characteristics map
prepared by FDALR

Supervised
classification

silt clay loam, silt clay, sandy, sandy
loam, sandy clay loam, and loam sand
(Fig. 4m)

LU Extracted from Landsat 8 imagery Supervised
classification

bare surface, farmland, forest, built-up
area, shrubland, waterbody, wetland, and
woodland (Fig. 4n)

Elevation Extracted from DEM using ArcGIS
software with spatial analyst tool

Natural break <300, 300–500, 501–700, and >700 m
(Fig. 4b)

PC Extracted from DEM Natural break flat, Concave, and Convex (Fig. 4k)

SA Extracted from DEM Natural break <5°, 5–10°, 11–30°, 31–60°, and >60°
(Fig. 4c)

Aspect Extracted from DEM Equal interval flat, north, northeast, east, southeast,
south, southwest, west, and northwest
(Fig. 4j)

LS Extracted from DEM using Moore and
Burch, (1986) formula
faXcellsize

22:13

� � faXcellsize
22:13

� �
0:4� sina

0:0896
sina

0:0896

� �1:3
…

(1)
fa = flow accumulation; a = slope angle

Natural break <3, 3–5, 6–10, 11–50, and >50 m
(Fig. 4d)

SPI Extracted from DEM using
ASxtana…(2)
AS = catchment area; a = slope angle

Natural break <30, 30–50, 51–100, 101–200 and >200
(Fig. 4e)

TWI Extracted from DEM using Moore et al.
(1991) formula: ln As

tana
As
tana

� �
...(3)

AS = cumulative upslope area; a is slope
angle

Natural break <10, 10–12, 13–15, 16–18, and >18
(Fig. 4f)

DD L=A…(4)
L = Total length of streams
A = size of catchment (Line Density Tool
in ArcGIS)

Natural break <0.5, 0.5–1.0, 1.1–1.5, and >1.5 km/km2

(Fig. 4g)

DS Euclidean distance tools in ArcGIS Natural break <50, 51–100, 101–300, 301–500
and >500 m (Fig. 4h)

DR Euclidean distance and line density tools in
ArcGIS

Natural break <500, 501–1000, 1001–3000, 3001–5000
and >5000 m (Fig. 4i)
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reflects a highly dissected drainage basin with a
relatively rapid hydrological response to rainfall
events, while a low DD entails a poorly drained

basin with a slow hydrologic response (Chari-
zopoulos et al. 2019). However, the critical value
of DD per square km that may cause soil erosion

Fig. 3.4 GEIF Maps. a rainfall, b elevation, c SA, d LS, e SPI, f TWI, g DD, h DS, i DR, j Aspect, k PC, l geology,
m ST, n LU
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by water is 0.90 km per square km of area (Surjit
et al. 2015).

Gullies are generally connected to the stream
network of an area, enabling the removal of the
materials eroded from upland areas (Conoscenti
et al. 2014). Joshi et al. (2019) observed that
first- and second-order streams behave like gul-
lies and accelerate soil erosion mechanism.
These streams are normally located on greater
elevations with steeper slopes and, thus, get
conducive conditions for soil erosion. Further
channel incision in those streams leads to their
expansion and initiation of gullies in the nearby
non-incised surface. For this reason, DS is rec-
ognized as a factor of gully development, with
the assumption that the areas closer to existing
first- and second-order streams are more sus-
ceptible to GE (Dube et al. 2014; Zakerinejad
and Maerker 2015).

Roads play are important in rural and urban
development; however, they have a significant
impact on gully occurrence and distribution
(Pourghasemi et al. 2017). Roads induce con-
centration of surface runoff, divert concentrated
runoff to other catchments, and increase catch-
ment size, which eventually leads to gully
development (Conoscenti et al. 2014). Conse-
quently, the spatial distribution of road networks
was examined.

Aspect is a topographical attribute that is
considered crucial in GES assessment. It is
commonly referred to as the direction to which
the slope face. Aspect is expressed in degrees
from north and clockwise, ranging from 0 to 360.
The value of negative one (−1) is used to indicate
flat surfaces such as flood plains and fluvial ter-
races. According to Conoscenti et al. (2014) and
Rahmati et al. (2016), aspect indirectly influences
GE processes given its relationship with the
duration of sunlight exposure, evapotranspira-
tion, moisture retention, vegetation cover type,
and distribution on slopes.

PC is described as the curvature of a contour
line formed by intersecting a horizontal plane
with the surface. The use of the word curvature
technically defines the rate of change of SA or
aspect, usually in a particular direction (Conforti

et al. 2010). The influence of PC on slope erosion
processes is the convergence or divergence of
water during downslope flow. While assessing
PC, positive values describe convexity, while
negative values characterized the concavity of
slope curvature. The values of the PC around
zero indicate that the surface is flat.

Rainfall is a central factor that drives soil
erosion and gully development through its
potential ability (erosivity) to disintegrate soil
aggregates and transport them downslope
(Nearing et al. 2017). Rainfall erosivity is a
function of the physical characteristics of rainfall
(intensity and long duration). These aspects, in
addition to those related to amount, drop size
distribution, terminal velocity, and extraneous
factors such as wind velocity and slope angle,
determine rainfall erosivity (Rutebuka et al.
2020). Rainfall erosivity using annual rainfall
distribution data from weather stations in SGS
was analyzed.

Geological features and the weathering prop-
erties of material exposed or close to the earth's
surface affect GE. Both soft and hard rocks are
scourged by degradation through fluvial erosion,
mass wasting, soil creeps, and landslides. Soft
rocks are generally more susceptible to soil ero-
sion than hard rocks. The extent of effectiveness
of degradation is a function of the degree of
consolidation or cementation among the different
sedimentary types. GE in the areas underlain by
rocks of the Basement Complex, including
younger and older granites, usually occurs along
modern and ancient water channels. These water
channels have earlier been covered by alluvial
deposits. Small scale gullies produced by fluvial
action are generally associated with Basement
Complex areas. Weathered zones of Basement
Complex terrain are strewn with incipient and
minor gullies running down slopes and generally
oriented in all directions.

The Susceptibility of soil to GE is inclined to
its characteristics which are closely associated
with geologic settings and contribute expres-
sively to soil infiltration, runoff rate, soil resis-
tance to erosion, and gully occurrence (Rahmati
et al. 2016). ST, organic content, structure, and
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permeability have been shown to influence soil
erodibility. Predominantly, ST has a strong cor-
relation with soil erosion as it controls the
erodibility and cohesiveness of the soil (Pal
2015). Thus, ST was assessed for the present
study.

LUs are among the major environmental fac-
tors regulating hydrological and geomorpholog-
ical processes by controlling overland flow,
runoff generation, and sediment dynamics. Nat-
urally, barren lands and sparse rangeland are
more susceptible to erosion than pastures and
forests with dense cover, where the vegetation
cover greatly cuts the erosive action of surface
runoff. In fact, there is a negative association
between the rate of erosion and the density of
vegetation (Hayas et al. 2017). Figure 3.4 shows
the 14 selected factors used for the study.

Multicollinearity Scrutiny
Multicollinearity is a statistical phenomenon that
describes interdependency conditions among
multiple independent variables. In other words, it
is the lack of independence which is indicated by
high intercorrelations among a set of variables.
In GES assessment, numerous methods have
been used to test for multicollinearity. However,
the variance inflation factor (VIF) and tolerance
(TOL) are frequently used for this purpose
(Cama et al. 2017). Hence, the VIF and TOL are
used in this study. A VIF � 10 or TOL � 0.1
indicates serious multicollinearity (Guo-Liang
et al. 2017).

3.2.3 Susceptibility Spatial Modeling
Using MLR

3.2.3.1 Determination of Spatial
Relation Between GE
and GEIFs

GEIFs have been assessed and their indepen-
dence confirmed. However, there is the need to
determine the relationship between the GEIFs
and GE to identify the most influential factors,
and successfully predict GES. To achieve this,
the forward stepwise logistic regression was
employed. Usually, stepwise logistic regression

is most often used in situations where the
important independent variables are not known,
and their associations with the outcome are not
well understood. It involves estimating the model
with each variable entered in turn and looking at
the change in the logarithm of likelihood when
each variable is added. If the observed signifi-
cance level (Wald test) is less than the probability
for remaining in the model (0.05 in this study),
the variable is entered into the model and the
model statistics are recalculated to see if any
other variables are eligible for entry. Finally, it
becomes a model excluding all insignificant
independent variables, and coefficients are allo-
cated to the independent variable classes, corre-
lated with the gully training data set. If a
coefficient is positive, its transformed log value
will be greater than one, meaning that the event
is more likely to occur. If a coefficient is nega-
tive, the latter will be less than one, and the odds
of the event occurring decreases.

3.2.3.2 Estimation of Probability
of Gully Occurrence

The principle of logistic regression rests on the
analysis of a problem, in which a result measured
with dichotomous variables such as 0 and 1 or
true and false, is determined from one to more
independent factors. In the case of gully erosion
susceptibility mapping, the goal of logistic
regression is to find the best fitting model to
describe the relationship between the presence or
absence of gullies (dependent variable) and a set
of independent parameters. Logistic regression
generates the model statistics and coefficients of
a formula useful to predict a logit transformation
of the probability that the dependent variable is 1
(probability of occurrence of a gully event).
Thus, in this study, binary Logistic regression
estimates the probability (P) of the occurrence of
a gully through the formula:

P ¼ 1
1þ e�z

1
1þ e�z

ð3:5Þ

where P is the probability of a gully occurring.
Z is a value from − ∞ to + ∞, defined by the
following equation;
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Z ¼ b0 þ b1X1 þ b2X2 þ � � � bnXn ð3:6Þ

where b0 is the intercept (constant) of the logistic
regression model, n is the number of independent
variables, and b1, b2, …, bn are coefficients,
which measure the influence or contribution of
independent variables (X1, X2,…, Xn). In addition
to the model statistics and coefficients, the out-
come of the logistic regression process was
obtained in ArcGIS as a predicted map of prob-
ability defined by numbers that are confined
between 0 and 1. The predicted probability val-
ues were subsequently reclassified into five sus-
ceptibility classes using the Jenks natural
classification method to produce the final gully
erosion susceptibility map.

3.3 Validation of the GESM

Validation is the task of demonstrating that the
model is a suitable representation of the actual
system: that it reproduces system behavior with
enough reliability to satisfy analysis objectives
(Rahmati et al. 2017b). Without validation, the
prediction model and image are ineffective and
lack scientific significance. As a result, the final
users would not be sure of the model outputs and
are unlikely to use them for planning and
decision-making. Normally, the validation of
predictions is based on the comparison between
the prediction results and the unknown target
pattern, the areas affected by future gully erosion.
The unknown target pattern is usually repre-
sented by a part of the known gully pattern.
Usually, the comparison of the model results and
observed data is represented through a confusion
matrix (Table 3.4).

According to Table 3.4, TP (true positive) and
TN (true negative) also known as sensitivity are
the numbers of gullies that are correctly

classified, whereas FN (false negative) and FP
(false positive) referred to as specificity are the
numbers of gullies that are incorrectly classified.
Several approaches such as Efficiency, Kappa
coefficient, Seed Cell Area Index (SCAI), Area
Under Receiver Operating Characteristics
(AUROC) among others have been used for
validating GESMs. In this study, the AUROC is
a graphical plot that illustrates the analytical
ability of a model as its discrimination threshold
is varied (Vakhshoori and Zare 2018). It is cre-
ated by plotting sensitivity on the y-axis against
specificity on the x-axis. The two parameters are
derived as

Sensitivity ¼ TP
TPþ FN

TP
TPþ FN

ð3:7Þ

Specificity ¼ TN
TNþ FP

TN
TNþ FP

ð3:8Þ

The shape of the AUROC curve indicates the
predictive performance of the model, where the
predictive performance of the model is higher
when the AUROC curve is closer to the upper
left corner. The highest possible AUROC = 1
represents 100% specificity and 100% sensitiv-
ity. Furthermore, AUROC values of <0.6 indi-
cate a poor, 0.6–0.7 a moderate, 0.7–0.8 a good,
0.8–0.9 a very good, and >0.9 an excellent
model performance (Jiang 2020; Vakhshoori and
Zare 2018).

3.4 Results and Discussion

3.4.1 Gully Erosion Inventory

The results of the interpretation of Google Earth
imageries and field investigations confirmed that
the study area is indeed affected by the GE
phenomenon. A total of 130 critical gully

Table 3.4 Confusion
matrix used for the
evaluation of models

Observed Predicted

Non-gully (−) Gully (+)

Non-gully (−) (−|−) True negative (TN) (+|−) False-positive (FP)

Gully (+) (−|+) False-negative (FN) (+|+) True positive (TP)
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eroding sites, covering 34,499.2 or 4.3% of the
study area were identified and classified based on
their position on the landscape and morphologi-
cal hydraulic and geometry characteristic into
three (3) main types of permanent gullies: con-
tinuous (35%), discontinuous (55%), and bank
(10%). Generally, the gullies are characterized by
incisions having near-vertical banks and are
mostly large. Gully depth ranges from 0.9 to
12.2 m, less frequently up to 20 m and excep-
tionally even greater. The length reaches a
maximum of 10,857 m on continuous, 497.2 m
on discontinuous, and 1092.3 m on the bank
gullies. Cross sections of the gullies are mostly
U-shaped even though V-shaped gullies are also
found. Spatially, it was observed in the northern
parts of the study area, where Gombe and
Kerikeri geologic formations are massively
exposed that gully channels are mostly wide, U-
shaped, and lack vegetation cover on the side
slopes signifying active gullying stage. While in
the mountainous southern part, narrow and V-
shaped gullies are common with some vegetation
growing on slopes indicating stabilization.
However, the presence of falls on some of the
channels indicated gully rejuvenation. Table 3.5
presents the morphometric characteristics of the
identified permanent gullies in the study area.

3.4.2 Multicollinearity Scrutiny

The results of multicollinearity scrutiny as shown
in Table 3.6 indicate that the highest value of
VIF is 4.854 and the lowest coefficient of toler-
ance is 0.206, respectively. Therefore, there is no
collinearity between these factors, and this

allows the inclusion of all the factors in the final
gully erosion susceptibility modeling process.

3.4.3 Susceptibility Spatial Prediction

3.4.3.1 Spatial Relationships
Between GE and GEIFs

The results of the spatial relationship between
GE and each GEIF obtained from the forward
stepwise logistic regression are displayed in
Fig. 3.5.

According to Fig. 3.5a, for all the rainfall
classes, there is a positive relationship with GE
occurrence since all the coefficient (b) values
assigned to each class are positive. However, the
rainfall classes 1001–1050 and >1100 with b
values 2.261 and 1.183 exhibited a strong posi-
tive relationship when compared with the first
two classes which were assigned weak positive
association. The results suggest that the propen-
sity of GE occurrence in the study area increases
with an increase in rainfall amount. The result is
in harmony with the findings obtained by Con-
forti et al. (2010) in the Turbolo catchment, Italy;
Rahmati et al. (2016) in the Chavar region, Iran;
and Makaya et al. (2019) in the upper uMgeni
catchment in KwaZulu Natal, South Africa, who
also showed that GE development generally
occurs in regions with high rainfall amount.

Regarding elevation, regression analysis
indicated that elevation has a positive but weak
relationship with GE activity. From Fig. 3.5b it
can be observed that an increase in elevation
causes a corresponding increase in the probabil-
ity of GE occurrence. This holds to the elevation
class 300–500 m (b = 0.369) from which the

Table 3.5 Morphometric characteristics of the identified permanent gullies

Gully
type

Length (m) Width (m) Depth (m) Gullied area
(ha)

Gully area
(%)Min Max Mean Min Max Mean Min Max Mean

Cont 2097 10,857 5550.7 6.4 68 31.4 1.4 20 12.2 21,950.1 64

Bank 777 1370 1092.3 4 43.1 6 0.9 13.4 1.8 8624.8 25

Discount 99.2 915 494.2 3.1 10.1 15.4 0.9 3.2 4.9 3924.3 11

Total 34,499.2 100
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relationship reverses and eventually becomes
negative at the class >700 m (−0.299). This
result agrees with the findings of numerous
studies (Alireza et al. 2019; Arabameri et al.
2020d, 2019a; Rahmati et al. 2017b) who agreed
that lower elevations are most susceptible to GE.

In the case of SA, a positive spatial correlation
exists between gully formation and areas with
SA below 30°. This is confirmed by the positive
b values 1.387, 0.872, and 0.454 assigned to <5,
5–10, and 11–30 classes, respectively (Fig. 3.5
c). Conversely, for SA classes above 30°, b
values were negative, indicating weak relation-
ships and low probability of gully occurrence.
This result is in agreement with Lazarus (2012);
Adediji et al. (2013); Rahmati et al. (2016),
(2017a); Debanshi and Pal (2018), and Araba-
meri et al. (2020d) who found most gullies
occurring on lower slopes. According to these
studies, the reason for this could be because
lower SAs have greater soil depth, intensive
rainfall impaction and greater runoff from
upslope will decrease soil strength resulting in
the development and extension of the gully
channels.

The influence of LS on GE as shown in
Fig. 3.5d revealed that the probability of gully
occurrence increased with increasing LS. The
highest probability was found where LS was 6–
10 m (b = 1.262). However, immediately after
this maximum level, the probability to host a
gully abruptly decreased. The reason for this
sudden decline was unclear, but it might relate to
land use, vegetation, and other factors in the area.

The result in this study confirms the findings of
Bagio et al. (2017) and Zabihi et al. (2018) that a
direct relationship exists between the LS and GE.
Their result also implied that the higher the LS,
the higher the probability of GE occurrence due
to increased runoff velocity and a decreasing
detachment and transport threshold of soil
particles.

Concerning SPI, a significant positive asso-
ciation exists with GE. As shown in Fig. 3.5e a
strong positive correlation was found in the class
51–100 (b = 3.456) and class 101–200
(b = 1.356). The remaining three classes had a
low positive influence on GE. However, the
results indicate that the probability to host a gully
due to SPI increases with an increase in SPI. The
outcome of this analysis is supported by the
works of Shit et al. (2015); Rahmati et al.
(2017a); Amiri et al. (2019); and Domazetović
et al. (2019) who also observed that higher SPI
values have higher erosion potential and often
coincide with the appearance of soil removal and
GE occurrence.

The bond between TWI and GE occurrence
portrays an ascending pattern with the lowest
class (<10) assigned the minimum b value
(0.070) while the highest class (>18) got the
maximum b value (3.112) (Fig. 3.5f). Thus, the
result suggests that the probability of GE sus-
ceptibility intensifies with an increase in TWI.
This result is similar to the study of Arabameri
et al. (2020b) in the Chah Mousi watershed in
Semnan province, Iran, that gully formation in
the watershed is particularly favored in areas

Table 3.6 Multicollinearity test results for the relationship among factors

Factor Multicollinearity test Factor Multicollinearity test

Tol. VIF Tol. VIF

Geology 0.578 1.730 Plan curvature 0.748 1.336

Soil texture 0.312 3.205 SPI 0.579 1.727

Land use 0.502 1.992 TWI 0.787 1.271

Aspect 0.906 1.104 Drain_density 0.206 4.854

Elevation 0.819 1.221 Dist_stream 0.872 1.147

Slope 0.613 1.631 Dist_road 0.287 3.484

LS 0.724 1.381
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with high TWI values representing zones of
saturation with high surface soil water along
drainage paths. These saturated areas favor gully
formation since the surface soils lose their
strength as they become wet. Also, Zabihi et al.

(2018) reported in their study in the Mazandaran
province of Iran that, the greater the TWI factor,
the greater is the potential for gully occurrence.
High values of TWI increase the filtration rate
and provide the conditions for piping and roof

Fig. 3.5 Spatial relationships between GE and each class of GEIF a rainfall, b elevation, c SA, d LS, e SPI, f TWI,
g DD, h DS, i DR, j Aspect, k PC, l geology, m ST, n LU
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collapse, resulting in the development of gully
tunnels and, eventually, the appearance of gullies
on the surface.

Considering DD, the link with GE portrays an
ascending pattern similar to the situation between
TWI and GE. Positive relationships are observed
in <1.5 (b = 4.612), 1.1–1.5 (b = 1.759), and
0.5–1.0 (b = 0.096) classes, while the class >0.5
(b = −0.025) exhibited a negative relationship
(Fig. 3.5g). This means that susceptibility to GE
due to DD increases with an increase in DD.
Conoscenti et al. (2014); Dewitte et al. (2015);
Rahmati et al. (2017a); Azareh et al. (2019); and
Arabameri et al. (2020b) reported similar results.

The analysis concerning the association
between DS and GE showed that GE increases as
the DS decreases (Fig. 3.5h). In other words,

locations at distances less than 500 m from a
stream were more susceptible to GE. This finding
conforms with reports by Dube et al. (2014), and
Conoscenti et al. (2014) that close distances are
more prone to gully development than on areas
far from the stream. Like the case in DS, the
relationship between GE and DR showed that the
nearer the site to a road, the higher the potential
for GE. Distances of less than 500 m from a road
were positively correlated to gully locations
(Fig. 3.5i), which highlights the importance of
the roles of road development and disturbance of
ground surfaces in promoting landscape degra-
dation. This result is in consonant with findings
of previous works ((Nyssen et al. 2002; Rahmati
et al. 2017a; Seutloali et al. 2016) in that, when
the distance from road increases, the probability

Fig. 3.5 (continued)
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of GE occurrence decreases. For aspect, positive
correlation exists between east (b = 2.737),
southeast (b = 0.811), northeast (b = 0.644),
south (b = 0.418), north (b = 0.225), and
southwest (b = 0.087) facing slopes. While west,
northwest, and flat facing aspects exhibited
negative relationships (Fig. 3.5j). This result
implies that slopes facing north to southwest
predominate and have a greater propensity to
host gullies than slope aspect facing west. This is
in agreement with Zabihi et al. (2018), who
reported that eastward aspects in the Mazandaran
province of Northern Iran are more susceptible to
GE. This is so because the eastward facing slope
aspects get more solar radiation in the northern
hemisphere and, as a result, they experience
more evaporation, higher soil porosity (total pore
space), lower soil strength, and lower vegetation
density.

The interpretation of the b values linking GE
and PC classes revealed an all positive relation-
ship (Fig. 3.5k). However, the concave class
exhibited the strongest relationship with a b
value of 0.287, followed by flat class (0.083),
and convex class (0.021). There is a consensus
between this result and the findings reported by
Conforti et al. (2010) in the Turbolo catchment,
Italy, and Rahmati et al. (2016) in the Chavar
region, Iran, who also confirmed flat and concave
curvatures are more prone to GE. About the
connection between GE and geologic Forma-
tions, Fig. 3.5l showed that all Formations have a
weak positive relationship with GE except Basalt
Formation which had a negative relationship
with the phenomenon. The positive relationship
ranges from b = 0.053 on the Basement Com-
plex to b = 0.615 on the Gombe sandstone. This
confirms the study by Lazarus (2012) who con-
cluded that the sandstones and shales that dom-
inate Gombe States geology are more susceptible
to GE than other geologic Formations in the area.

ST and GE revealed a significant relation-
ship. However, among the six ST types
(Fig. 3.5m), the sandy class had the highest
positive b value (0.524), indicating the highest
GE susceptibility, followed by sandy clay loam
(b = 0.467), Sandy loam (b = 0.214), and
Loamy sand (b = 0.103) accordingly. Contrarily,

Silt clay loam and Silt clay obtained negative b
values, showing the negative influence on GE
incidence. A close look at the results also
revealed that areas dominated by sandy loam and
sandy clay loam hosted more gullies due to high
sand contents that render them easily detachable.
Similar work by Abdulfatai et al. (2014) and
Igwe and Egbueri (2018) stated that the domi-
nance of sand proportion in soils accelerates GE,
while Silt clay loam and silt clay classes, due to
sufficient and high clay content are resistant to
soil erosion and gully development. Regard-
ing LU (Fig. 3.5n), regression analyses estab-
lished that bare surface, shrubland, farmland,
built-up areas, and woodland have positive b
values. The highest b value (1.197) was found on
bare surfaces, followed by shrubland, which had
a b value of 0.762. A negative relationship
between LU and GE occurred in the wetland and
waterbody classes, with waterbody having the
lowest b value (−7.534). The finding is in har-
mony with previous studies (Amiri et al. 2019;
Devátý et al. 2019; Shellberg et al. 2016), who
concluded that protected locations like forest and
rangelands experience less GE in comparison
with bare surface regions.

3.4.3.2 The Relative Importance
of the GEIFs

Following the stepwise regression allocation of b
values to classes in all factors which confirmed
their relationship with GES, the relative impor-
tance of each factor was determined based on the
highest b value within the factor. The higher the
b value, the stronger the effect of the given factor
on GE occurrence. As shown in Table 3.7 and
Fig. 3.6 DR, DD, DS, SPI, TWI, aspect, and
rainfall had the strongest values and significantly
contributed to GES whereas SA, LS, and LU
exhibited moderate importance. In contrast,
geology, ST, elevation, and PC were the least
important and showed less impact in the gully
occurrence in the study area, respectively.
Therefore, this result suggests that among all the
fourteen factors entered into the analysis, the DS
factor by its highly significant b value is the most
important single factor affecting GES in the study
area.
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3.4.3.3 GE Probability Mapping
After the influence of each factor class was
determined, GES was predicted by computing
the probability of gully occurrence in the study
area. This was attained by executing Eq. 3.5 and
3.6. The value of z (Eq. 3.6) was computed by
substituting b with the b values of the most
important factors earlier determined. Because the
highest positive significant coefficient in the

analysis (b = 5.175) belongs to the DR factor
class < 500, DR was introduced as the most
significant determining factor for GE occurrence,
thus assuming the rest of the factors are constant,
for a unit change in DR, the probability of GE
occurrence will be e5.175 or 176.796 times.
Hence, the b values of the most significant fac-
tors were inputted in the equation to compute z as

Table 3.7 Relative importance and ranking of GEIFs

GEIF b Rank

DR 5.175 1

DD 4.612 2

DS 3.831 3

SPI 3.456 4

TWI 3.112 5

Aspect 2.737 6

Rainfall 2.261 7

SA 1.387 8

LS 1.262 9

LU 1.197 10

Geology 0.615 11

ST 0.524 12

Elevation 0.369 13

PC 0.287 14

Constant −9.327

Fig. 3.6 Relative importance of GEIFs
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z ¼ �9:327þ 5:175 � DRðClass1Þþ 1:811
� DRðClass2Þþ 4:612
� DDðClass1Þþ 1:759
� DDðClass2Þþ 3:831
� DSðClass1Þþ 1:413 � DSðClass2Þþ 3:456
� SPIðClass3Þþ 1:356
� SPIðClass4Þþ 3:112
� TWIðClass5Þþ 1:122
� TWIðClass4Þþ 2:737
� AspectðeastÞþ 2:261
� rainfallðClass4Þþ 1:183
� rainfallðClass3Þþ 1:387
� SAðClass1Þþ 1:262 � LSðClass3Þþ 1:105
� LSðClass2Þþ 1:197 � LUðbaresurfaceÞ

ð3:9Þ

Once the value of z was obtained, it was inserted
into Eq. 3.10 and the probability of GE occur-
rence was calculated as

PðprobabilityofgullyoccurrenceÞ
¼ 1

1þ e�9:327þ 5:175�DR Class1ð Þ
þ 1:811�DR Class2ð Þþ 4:612�DD Class1ð Þþ 1:759�DD Class2ð Þ
þ 3:831�DSðClass1Þþ 1:413�DSðClass2Þþ 3:456�SPIðClass3Þ

þ 1:356�SPIðClass4Þþ 3:112�TWIðClass5Þþ 1:122�TWIðClass4Þ
þ 2:737�AspectðeastÞþ 2:261�rainfallðClass4Þ

þ 1:183�rainfallðClass3Þþ 1:387�SAðClass1Þþ 1:262�LSðClass3Þ
þ 1:105�LSðClass2Þþ 1:197�LUðbaresurfaceÞ

ð3:10Þ

The output of the above computation was sub-
sequently transferred into the ArcGIS and the
GESM with the probability (p) ranging from 0 to
1 was prepared. The produced map was then
partitioned into 20 classes using a threshold of
0.05 equal probability intervals. After overlap-
ping with the GE inventory map, a histogram
representing the incidence of gullies and non-
gully occurrence against the probability classes
was plotted. Lastly, based on the histogram, the
probability range was reclassified using the nat-
ural breaks classification method into five clas-
ses: 0–0.076, 0.076–0.494, 0.494–0.733, 0.733–
0.898, and 0.898–1.00, representing relatively
safe, less susceptible, moderately susceptible,
highly susceptible, and extremely susceptible,
respectively. Table 3.8 and Fig. 3.7 present the
characteristics of the five susceptibility classes
and the final GESM.

From a visual analysis of the final GESM
(Fig. 3.7), it can be observed that most parts of
the study area particularly the eastern and
southwestern parts fall in the less and moderately
susceptible classes, while the northwest and
central parts fall in the highly and extremely
susceptible classes. It was also observed from
field observation that the areas within the high
and extreme susceptibilities are mostly located
near roads. This underscores the results of the
relationship between GE and GEIFs of which DR

Table 3.8 Characteristics of the five GES classes

Susceptibility class Susceptibility
index

Surface area
(ha)

Surface area
(%)

No. gullies %
gullies

Relatively Safe 0–0.076 24,872 3.1 0 0

Less Susceptible 0.076–0.494 401,962 50.1 02 2.20

Moderately
Susceptible

0.494–0.733 186,941 23.3 07 7.69

Highly Susceptible 0.733–0.898 154,045 19.2 16 17.58

Extremely Susceptible 0.898–1.00 34,500 4.3 66 72.53

Total 802,320 100 91 100
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(<500 m) is the most important single factor
determining GE susceptibility in the study area

3.5 Validation

The predictive performance of the MLR model was
evaluated using the validation data set (78). This
was performed by calculating the values of sensi-
tivity and specificity and then drawing the AUROC
curve. As earlier indicated, sensitivity was com-
puted using Eq. 3.7 as the fraction of locations

hosting gullies that were correctly classified as
susceptible, while specificity is derived from the
fraction of areas free of gullies that were correctly
classified as not susceptible using Eq. 3.8.
Table 3.9 and Fig. 3.8 present the validation results
and the AUROC curve. From Table 3.9 it can be
seen that the model correctly classified 37 gully
locations and 35 non-gully locations, representing
94.87% and 89.74%, respectively. Also, the overall
predictive performance of the model as given by
the value of AUROC (0.923% or 92.3%) indicates
excellent performance.

Table 3.9 Confusion matrix that presents results of the validation

Observed Predicted

Gully (1) Non-gully (0) Total % correct

Gully (1) 37 (TP) 02 (FN) 39 94.87

Non-gully (0) 04 (FP) 35 (TN) 39 89.74

Total 41 37 78 92.31

Fig. 3.7 Predictive GESM derived using the logistic regression model
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3.6 Conclusion

GE is the water erosion process that cuts soils
and forms permanent gullies on the landscape
that cannot be eliminated through conventional
tillage operations. The formation and develop-
ment of gullies is an important environmental
threat throughout the world since it is responsible
for land degradation, increase in sediment
delivery, and reduction of water quality. It is also
responsible for a decreased water travel time to
rivers (and hence increased flooding probabili-
ties), for the filling up of ponds and reservoirs,
and for the destruction of infrastructure (build-
ings and roads). Therefore, the prediction of
areas susceptible to GE is a crucial issue for
environmental scientists, land managers, and
decision-makers. To tackle this problem,
researchers usually employ Knowledge-driven
and Data-driven predictive methods. This study
demonstrated the ability of data-driven logistic
regression to accurately predict GES in SGS,
Nigeria.

A GE inventory was prepared from a total of
260 gully and non-gully locations compiled from
the interpretation of Google Earth images and
field investigations. Besides, local environmental
conditions and a 20 m DEM allowed the

selection of soil texture, geology, land use, rain-
fall, and some topographical factors influencing
GE susceptibility. Subsequently, the inventory
data was randomly split into two datasets; 182 or
70% for training the logistic regression model, and
78 or 30% validation for validation of prediction
results, while influencing factors independence
was assessed using multicollinearity scrutiny.
Results of forward stepwise regression for the
relationship between GE and selected factors
indicated that distance from road is key to gully
formation. After running the logit function, the
resultant susceptibility map revealed that 3.1% of
the study area was relatively safe, 50.1% less,
23.3% moderate, 19.2% high, and 4.3% extremely
susceptible. Validation assessment using area
under the receiver operating characteristic curve
provided 92.3% prediction accuracy. This study
further confirmed logistic regression as an excel-
lent and accurate data-driven method for spatial
analysis and prediction of GE susceptibility. The
method can be applied elsewhere with similar
physiographic characteristics.
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