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Abstract. The standard model security of the Fiat-Shamir transform
has been an active research area for many years. In breakthrough results,
Canetti et al. (STOC’19) and Peikert-Shiehian (Crypto’19) showed that,
under the Learning-With-Errors (LWE) assumption, it provides sound-
ness by applying correlation-intractable (CI) hash functions to so-called
trapdoor Σ-protocols. In order to be compatible with CI hash functions
based on standard LWE assumptions with polynomial approximation fac-
tors, all known such protocols have been obtained via parallel repetitions
of a basic protocol with binary challenges. In this paper, we consider lan-
guages related to Paillier’s composite residuosity assumption (DCR) for
which we give the first trapdoor Σ-protocols providing soundness in one
shot, via exponentially large challenge spaces. This improvement is anal-
ogous to the one enabled by Schnorr over the original Fiat-Shamir pro-
tocol in the random oracle model. Using the correlation-intractable hash
function paradigm, we then obtain simulation-sound NIZK arguments
showing that an element of Z∗

N2 is a composite residue, which opens the
door to space-efficient applications in the standard model. As a concrete
example, we build logarithmic-size ring signatures (assuming a common
reference string) with the shortest signature length among schemes based
on standard assumptions in the standard model. We prove security under
the DCR and LWE assumptions, while keeping the signature size compa-
rable with that of random-oracle-based schemes.
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1 Introduction

The Fiat-Shamir transform [40] is a famous technique that collapses interactive
protocols into non-interactive proof systems by computing the verifier’s chal-
lenges as hash values of the transcript so far. Since its introduction, it enabled
a wide range of applications in the random oracle model (ROM) although it
may fail to preserve soundness in general [43]. In the standard model, it was not
known to be safely instantiable under standard assumptions until recently. The
beautiful work of Canetti et al. [15] and Peikert and Shiehian [66] changed this
state-of-affairs by showing the existence of Fiat-Shamir-based non-interactive
zero-knowledge (NIZK) proofs for all NP languages under the Learning-With-
Errors (LWE) assumption [67]. Their results followed the methodology of cor-
relation intractable (CI) hash functions [17], which can sometimes emulate the
properties of random oracles in the standard model.

In short, correlation intractability for a relation R requires the infeasibility of
finding x such that (x,Hk(x)) ∈ R given a random hashing key k. This property
provides soundness because, with high probability, it prevents a cheating prover’s
first message from being hashed into a challenge admitting a valid response.
Canetti et al. [18] formalized this intuition by observing that it suffices to build
CI hash functions for efficiently searchable relations as long as Fiat-Shamir is
applied to trapdoor Σ-protocols. These are like standard Σ-protocols with two
differences. First, they assume a common reference string (CRS). Second, there
exists an efficiently computable function BadChallenge that inputs a trapdoor τΣ

together with a false statement x �∈ L and a first prover message a in order to
compute the only challenge Chall such that an accepting transcript (a,Chall, z)
exists for some response z. If BadChallenge is efficiently computable, soundness
can be achieved using CI hash functions for any efficiently computable relation,
which covers the case of the relation R such that (x, y) ∈ R if and only if
y = BadChallenge(τΣ , x, a).

While the results of [15,66] resolve the long-standing problem of realizing
NIZK proofs for all NP under standard lattice assumptions, they raise the nat-
ural open question of whether LWE-based correlation-intractable hash functions
can lead to compact proofs/arguments for specific languages like subgroup mem-
bership. In this paper, we consider this problem for Paillier’s composite residu-
osity assumption [64] for which we obtain NIZK arguments that are roughly as
short as those obtained from the Fiat-Shamir heuristic in the ROM. In particu-
lar, we aim at trapdoor Σ-protocols that ensure soundness in one shot, without
going through Θ(λ) parallel repetitions to achieve negligible soundness error.
Our Contribution. We provide space-efficient NIZK arguments showing that
an element is a composite residue in the group Z

∗
N2 , for an RSA modulus N = pq.

In particular, we can argue that Paillier [64] or Damg̊ard-Jurik [34] ciphertexts
decrypt to 0. These arguments extend to handle multiplicative relations between
Paillier ciphertexts. We achieve this by showing that several natural Σ-protocols
for Paillier-related languages can be extended into trapdoor Σ-protocols with an
exponentially large challenge space, which achieve negligible soundness error in
a single protocol execution. To our knowledge, we thus obtain the first trapdoor
Σ-protocols that guarantee soundness without parallel repetitions.
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Our constructions provide multi-theorem statistical NIZK and their sound-
ness can be proved under the Learning-With-Errors (LWE) assumption. In addi-
tion, we show how to upgrade them into unbounded simulation-sound NIZK
arguments based on the LWE and DCR assumptions. In their single-theorem
version, our arguments of composite residuosity are as short as their random-
oracle-based counterpart obtained from the Fiat-Shamir heuristic. Their multi-
theorem and simulation-sound extensions are only longer by a small constant
factor. In particular, we can turn any trapdoor Σ-protocol into an unbounded
simulation-sound NIZK argument for the same language while only lengthening
the transcript by the size of a Paillier ciphertext and its randomness.

As a main application, we obtain logarithmic-size ring signatures with con-
cretely efficient signature length in the standard model. Recall that ring sig-
natures allow a signer to sign messages while hiding in an ad hoc set of users
called a ring. To this end, the signer only needs to know the public keys of all
ring members and its own secret key. So far, the only known logarithmic-size
realizations in the standard model under standard assumptions [3,24] incur very
large signatures due to the use of witness indistinguishable proofs for NP. In con-
trast, we obtain fairly short signatures comprised of a small number of Paillier
ciphertexts while retaining security under well-studied assumptions. For rings of
R = 2r users, each signature fits within the equivalent of 15r + 7 RSA moduli,
which is only 3 times as large as in a Fiat-Shamir-like construction in the ran-
dom oracle model under the DCR assumption. The unforgeability of our scheme
is proved under the DCR and LWE assumptions while its anonymity holds for
unbounded adversaries.

To our knowledge, our NIZK arguments for DCR-related languages give the
first examples where, under standard assumptions, Fiat-Shamir-based arguments
in the standard model can be almost as short as those in the random oracle
model. We believe they can find many other applications than ring signatures.
For example, they easily extend to prove multiplicative relations among Paillier
ciphertexts, which is a common task in MPC [30] or voting protocols [34]. The
trapdoor Σ-protocol of our DCR-based ring signature can also be used in other
applications of compact 1-out-of-R proofs [45,46].

Technical Overview. Ciampi et al. [27] recently showed that any Σ-protocol
can be turned into a trapdoor Σ-protocol with small (i.e., binary) challenge
space, which requires many repetitions to achieve negligible soundness error. In
order to obtain an exponentially large challenge space in one shot, we rely on
earlier an observation by Chaidos and Groth [21] who noticed that a certain
family of encryption schemes with linearly homomorphic properties over their
message and randomness spaces admit a trapdoor Σ-protocol for the language
L0 = {x | ∃w ∈ R : x = Epk(0;w)} of encryptions of 0. At a high level, if the
prover’s first message is an encryption a = Epk(0; r) of 0 and the verifier sends
a challenge Chall, the response z = r + Chall · w satisfies a · xChall = Epk(0; z).
If x �∈ L0, the special soundness property ensures that, for any given a, there
is at most one Chall such that a · xChall = Epk(0; z) for some z ∈ R. Moreover,
the secret key sk can serve as a trapdoor τΣ to compute BadChallenge(τΣ , x, a)
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for any element a of the ciphertext space. Indeed, if Chall lives a polynomial-size
set (say {0, 1}log λ), the bad challenge is efficiently computable by outputting
the first Chall ∈ {0, 1}log λ for which Dsk(a · xChall) = 0. The above construction
thus decreases the number of parallel repetitions by a factor O(log λ). Using
the Okamoto-Uchiyama cryptosystem [63], Chaidos and Groth [21] apply the
above technique to identify bad challenges within an exponentially large chal-
lenge space. A follow-up work by Lipmaa [58] shows that, although the plaintext
space of Paillier’s cryptosystem [64] has non-prime order N = pq, bad chal-
lenges are still computable using the factorization of N as long as the challenge
space is contained in {0, . . . ,min(p, q) − 1}. We actually identify a gap in [58],
which adapts the Chaidos-Groth technique [21] to build designated verifier NIZK
proofs that an Elgamal-Paillier ciphertext [13] encrypts 0. The proof of sound-
ness of [58, Theorem 2] implicitly constructs a trapdoor Σ-protocol showing
that (C0, C1) = (gr mod N2, (1 + N)b · hr mod N2) encrypts b = 0. We actually
show that, for false statements, the extractor may fail to extract the bad chal-
lenge when a maliciously generated first prover message is outside the range of
the encryption algorithm. Our trapdoor Σ-protocol for DCR proceeds like the
extractor of [58, Theorem 2] but avoids this problem as it only relies on the Pail-
lier/Damg̊ard-Jurik encryption scheme, which has the property that all elements
of the ciphertext space encrypt something.

In order to obtain a multi-theorem NIZK argument of composite residuos-
ity, we can then apply the construction of [55, Appendix B], which compiles
any trapdoor Σ-protocol into a NIZK argument for the same language using
a lossy encryption scheme with equivocable lossy mode. As considered [4,72],
lossy encryption is a primitive where ciphertexts encrypted under lossy public
keys – which are computationally indistinguishable from injective ones – statisti-
cally hide the underlying plaintexts. Moreover, the equivocation property (a.k.a.
“efficient opening” [4]) makes it possible to trapdoor open any lossy ciphertext
exactly as in a trapdoor commitment. It is known [47] that Paillier’s cryptosys-
tem [64] provides these properties under the DCR assumption.

However, in the context of the signature-of-knowledge paradigm [23], we need
NIZK arguments with unbounded simulation-soundness [35]. Libert et al. [55]
showed that any trapdoor Σ-protocol can be turned into an USS argument for
the same language using a generalization of the R-lossy encryption primitive
introduced by Boyle et al. [9]. In [55], they introduced two distinct equivocation
properties and gave a candidate based on the LWE assumption. In order to opti-
mize the signature length, we give an efficient equivocable R-lossy encryption
candidate under the DCR assumption. This task is non-trivial since injective keys
have to be indistinguishable from lossy keys, even when one of the equivocation
trapdoors is given. Yet, our candidate only uses the DCR assumption while [55]
used fairly powerful tools (i.e., lattice trapdoors [41]) to equivocate lossy cipher-
texts. Although our DCR-based realization satisfies slightly weaker properties
than those of [55], we prove it sufficient to obtain simulation-soundness. It thus
allows compiling trapdoor Σ-protocols into unbounded simulation-sound NIZK
arguments without using lattice trapdoors.
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Armed with a DCR-based construction of USS arguments, we then build a
simulation-sound NIZK argument that one-out-of-many elements of Z

∗
N2 is a

composite residue. To this end, we provide a DCR-based variant of the Groth-
Kohlweiss (GK) [46] Σ-protocol, which allows proving that one out of R commit-
ments contains 0 with communication cost O(log R). The reason why DCR is the
most promising assumption towards trapdooring [46] is that, in its original ver-
sion, the GK protocol cannot immediately be turned into a trapdoor Σ-protocol
by applying the transformation of Ciampi et al. [27]. The main difficulty is that
it only yields (r + 1)-special-soundness for r = O(log R), so that up to r bad
challenges may exist for a false statement and a given first prover message. Even
if BadChallenge can identify them all for a given protocol iteration, over κ rep-
etitions, we end up with up to rκ combinations, which are not enumerable in
polynomial time for non-constant κ and r.1 In order to apply the LWE-based
CI hash function of [66], we construct a variant of GK with an exponentially
large challenge space and where BadChallenge can efficiently enumerate all bad
challenges after a single protocol iteration. We achieve this by extending our
trapdoor Σ-protocol showing composite residuosity, using a BadChallenge func-
tion that computes the roots of a degree-r (instead of a degree-1) polynomial.

Adapting [46] to Paillier-based commitments raises several difficulties if we
want to apply it in the context of ring signatures. In our security proofs, we need
the Σ-protocol to be statistically honest-verifier zero-knowledge. In the protocol
of [46] and our DCR-based variant, this requires that users’ public keys be com-
puted as statistically hiding commitments to 0. A first idea is to apply Paillier,
where ciphertexts C = gm · rN mod N2 are perfectly hiding commitments when
g is an N -th residue (and extractable commitments when N divides the order of
g). Unfortunately, as shown in [57, Section 2.6], using a statistically hiding com-
mitment is not sufficient to ensure statistical anonymity when the adversary can
introduce maliciously generated public keys in the ring. In the case of Paillier,
when g is an N -th residue, so is any honestly generated commitment. However,
in the anonymity game, the adversary can choose a ring containing malformed
public keys that are not N -th residues in Z

∗
N2 . This affects the statistical ZK

property since the simulator cannot fully randomize commitments by multiply-
ing them with a random commitment to 0. To address this issue, we need a
statistically hiding commitment which is “dense” in that commitments to 0 are
uniformly distributed over Z∗

N2 . In order to obtain trapdoor Σ-protocols, we also
need the commitment to be dual-mode as the BadChallenge function should be
able to efficiently extract committed messages in the perfectly binding setting.
We thus use commitments (suggested in [20] for their online/offline property)
of the form C = (1 + N)m · hy · wN mod N2, for randomness (y, w), which are
perfectly binding if h is an N -th residue and perfectly hiding if N divides the

1 Holmgren et al. [50] recently gave a technique allowing to address the combinatorial
explosion of bad challenges induced by parallel repetitions. In the full version of the
paper [56], we discuss the applicability of their approach to our setting. Although
it allows instantiations under the DDH assumption, these are considerably more
expensive that our DCR-based candidate.
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order of h. Moreover, the latter configuration provides dense statistically hiding
commitments since commitments to 0 are uniformly distributed over Z

∗
N2 .

A second difficulty arises when we adapt the proof of unforgeability of the
Groth-Kohlweiss ring signature, which relies on the extractability property of
their Σ-protocol. They apply the forking lemma to extract an opening of a per-
fectly hiding commitment by replaying the adversary O(r) times. In the stan-
dard model, our reduction does not have the degree of freedom of replaying the
adversary with a different random oracle. Instead, we proceed with a sequence of
hybrid games that exploits the dual-mode property of our DCR-based commit-
ment and moves to a setting where the signer’s identity is only computationally
hidden. In one game, the commitment is switched to its extractable mode so
as to extract the committed bits ��

1 . . . ��
r ∈ {0, 1}r of the signer’s position ��

in the ring. In the next game, the reduction guesses which honestly generated
public key vk(i�) will be in the ring position �� and fails if this guess is incorrect.
Finally, we modify the key generation oracle and replace the expected target
user’s public key vk(i�) by a random element of Z∗

N2 in order to force the forgery
to prove a false statement. In the last game transition, the problem is that we
cannot immediately rely on the DCR assumption to change the distribution of
vk(i�) while using the factorization of N to extract ��

1 . . . ��
r . We thus involve two

distinct moduli in our DCR-based adaptation of GK. The use of distinct moduli
N and N̄ requires to adjust our Σ-protocol and force some equality to hold over
the integers (and thus modulo both N and N̄) between values a, � ∈ ZN̄ that
our BadChallenge function extracts from the commitments in the first prover
message. We enforce this condition by imposing an unusual range restriction to
some component of the response z = a + Chall · � ∈ Z: Instead of only checking
an upper bound for z, the verifier also checks a lower bound to ensure that no
implicit modular reduction occurs when homomorphically computing a+Chall ·�
over commitments sent by a malicious prover.

Using the above ideas, the proof of unforgeability requires reliable erasures.
The reason is that the security proof appeals to the NIZK simulator to answer
all signing queries. Hence, if the adversary corrupts some user i after a signing
query involving sk(i), the challenger has to pretend that the random coins of user
i’s past signatures have been erased as it cannot efficiently compute randomness
that explain the simulated NIZK arguments as real arguments. In a second step,
we modify the scheme to get rid of the erasure assumption.

A first idea to avoid erasures is to adapt the proof of unforgeability in such
a way that the NIZK simulator is only used to simulate signatures on behalf
of the expected target user (whose index i� is guessed upfront), while all other
users’ signatures are faithfully generated. If the guess is correct, user i� is never
corrupted and the reduction never gets stuck when it comes to explaining the
generation of signatures created by adaptively corrupted users. However, this
strategy raises a major difficulty since decoding the signer’s position �� in the
ring is only possible when the bits ��

1 . . . ��
r ∈ {0, 1}r of �� are committed using

extractable commitments {L�
i }r

i=1. At the same time, our security proof requires
the guessed index i� to be statistically independent of the adversary’s view until
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the forgery stage. In turn, this requires to simulate user i�’s signatures via statis-
tical NIZK arguments. Indeed, computational NIZK proofs would information-
theoretically leak the index i� of the only user for which the NIZK simulator is
used in signing queries. Unfortunately, perfectly binding commitments are not
compatible with statistical ZK in our setting. To resolve this tension, we need a
commitment which is perfectly hiding in all signing queries and extractable in
the forgery. Moreover, for anonymity purposes, the perfectly hiding mode should
make it possible to perfectly randomize adversarially-chosen commitments when
we multiply them with commitments to 0. We instantiate this commitment using
a variant (called “dense R-lossy PKE” hereafter) of our DCR-based R-lossy PKE
scheme. Like our original R-lossy PKE system, it can be programmed to be
statistically hiding in all signing queries and extractable in the forgery, but it
features different properties: It does not have to be equivocable, but we need its
lossy mode to be dense in Z

∗
N2 (a property not met by our equivocable R-lossy

PKE) in order to use it in a statistically HVZK Σ-protocol.

Related Work. The negative results (e.g., [17,43]) on the standard-model
soundness of Fiat-Shamir did not rule out the existence of secure instantia-
tions when specific protocols are compiled using concrete hash functions. A large
body of work [10,14,16,26,29,49,52,59,71] investigated the circumstances under
which CI hash functions [17] lead to secure standard model instantiations of the
paradigm. Canetti et al. [15] showed that correlation intractability for efficiently
searchable relations suffices to remove interaction from any trapdoor Σ-protocol.
This includes their variant of [39] for the language of Hamiltonian graphs, which
enables Fiat-Shamir-based proofs for all NP. They also gave candidates assuming
the existence of fully homomorphic encryption (FHE) with circular security [18].
Peikert and Shiehian [66] subsequently achieved the same result under the stan-
dard LWE assumption [67].

Canetti et al. [15,18] gave trapdoor Σ-protocols for the languages of Hamil-
tonian graphs and quadratic residues in Z

∗
N [42]. Like the generic trapdoor Σ-

protocol of [27], they proceed with parallel repetitions of a Σ-protocol with
challenge space {0, 1}. CI hash functions were also used to compress protocols
with multiple interaction rounds [14,26,52,59] and larger challenges. Lombardi
and Vaikuntanathan [59] notably extended the CI paradigm beyond the class
of protocols where the BadChallenge function is efficiently computable. In this
case, however, evaluating the hash function in polynomial time requires a fairly
strong LWE assumption to ensure correlation intractability. Brakerski et al. [10]
considered a stronger notion of correlation intractability which allows handling
relations where the BadChallenge function can only be approximated by a distri-
bution over constant-degree polynomials. They thus obtained Fiat-Shamir-based
NIZK arguments from standard assumptions that are not known to imply FHE.

In the following, we consider 3-message protocols where bad challenges are
efficiently (and exactly) computable – and thus enable the use of polynomial-
time-computable CI hash functions based on standard lattice assumptions – in
an exponentially large set after a single protocol run.

Ring signatures were coined by Rivest, Shamir and Tauman [68]. They enable
unconditional anonymity and involve no registration phase nor any tracing
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authority. Whoever has a public key can be appointed as a ring member without
being asked for his consent or even being aware of it. The original motivation of
ring signatures was to enable the anonymous leakage of secrets, by concealing
the identity of a source (e.g., a whistleblower in a political scandal) while simul-
taneously providing reliability guarantees. Recently, the primitive also found
applications in the context of cryptocurrencies [62].

After the work of Rivest, Shamir and Tauman [68], a number of solutions
were given under various assumptions [1,2,11,12,46,65,70]. Bender et al. [6] gave
stronger definitions and constructions from general assumptions. In the standard
model, more efficient schemes were given [8,70] in groups with a bilinear map.
Brakerski and Tauman [11] gave the first constructions from lattice assumptions.

In early realizations [8,12,68,70], the size of signatures was linear in the num-
ber of ring members. Dodis et al. [36] suggested constant-size ring signatures in
the random oracle model. Chase and Lysyanskaya [23] took a similar approach
while using simulation-extractable NIZK proofs in the standard model. However,
it is not clear how to adapt their approach without using generic NIZK. Assum-
ing a common reference string, constructions with sub-linear-size signatures in
the standard model were given in [22,28,44]. Malavolta and Schröder [60] used
SNARKs (and thus non-falsifiable assumptions) to obtain constant-size signa-
tures. In the random oracle model, Groth and Kohlweiss [46] obtained an elegant
construction with logarithmic-size ring signatures under the discrete logarithm
assumption. Lattice-based analogues of [46] were given in [37,38].

The log-size signatures of [46,54,57] are obtained by applying Fiat-Shamir to
Σ-protocols that are not immediately compatible with the BadChallenge func-
tion paradigm. In their settings, it would require to iterate a basic Σ-protocol
(with small challenge space) a super-constant number of times, thus leading to a
combinatorial explosion in the total number of bad challenges as each iteration
would tolerate more than one bad challenge. Backes et al. [3] and Chatterjee et
al. [24] eliminated the need for a CRS while retaining logarithmic signature size.
However, they did not provide concrete signature sizes and, due to the use of
general NIWI/ZAPs techniques, their constructions would require much longer
signatures than ours for any realistic ring cardinality. For instance, even for very
small rings, the construction of [24] would incur signatures comprised several
hundreds of Megabytes to represent O(λ3) FHE ciphertexts. In stark contrast
with earlier solutions, our signatures would still fit within ≈ 1.5Mb (using 3072-
bit RSA moduli) for rings as large as the number of atoms in the universe.

While our construction relies on a common reference string, it features (to
our knowledge) the first logarithmic-size signatures with concretely efficient sig-
nature length and security under standard assumptions in the standard model.

2 Background and Definitions

For any t ≥ 2, we denote by Zt the ring of integers with addition and multi-
plication modulo t. For a finite set S, U(S) stands for the uniform distribution
over S. If X and Y are distributions over the same domain, Δ(X,Y ) denotes
their statistical distance. For a distribution D, x ∼ D means that x is distributed
according to D, while x ←↩ D denotes the explicit action of sampling x from D.
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2.1 Hardness Assumptions

We first recall the Learning-With-Errors (LWE) assumption.

Definition 2.1 ([67]). Let m ≥ n ≥ 1, q ≥ 2 be functions of a security parame-
ter λ and let a distribution χ over Z. The LWE problem consists in distinguishing
between the distributions (A,As+e) and U(Zm×n

q ×Z
m
q ), where A ∼ U(Zm×n

q ),
s ∼ U(Zn

q ) and e ∼ χm.

When χ is the discrete Gaussian distribution DZm,αq with standard deviation αq
for some α ∈ (0, 1), this problem is as hard as worst-case instances of well-studied
lattice problems. We now recall the Composite Residuosity assumption.

Definition 2.2 ([34,64]). Let integers N = pq and ζ > 1 for primes p, q. The
ζ-Decision Composite Residuosity (ζ-DCR) assumption states that the dis-
tributions {x = wNζ

mod N ζ+1 | w ← U(Z�
N )} and {x | x ← U(Z�

Nζ+1)} are
computationally indistinguishable.

It is known [34] that the ζ-DCR assumption is equivalent to 1-DCR for any ζ > 1.

2.2 Correlation Intractable Hash Functions

We consider efficiently enumerable [15] relations R ⊆ X × Y where, for each
x ∈ X , there is a polynomial number of elements y ∈ Y satisfying R(x, y) = 1.
Moreover, these are efficiently enumerable.

Definition 2.3. A relation R ⊆ X ×Y is enumerable in time T if there exists
a function fR : X → 2Y computable in time T such that, for each x ∈ X ,
fR(x) = {yx ∈ Y | (x, yx) ∈ R}. If maxx∈X |fR(x)| ≤ 1, it is called searchable.

Let λ ∈ N a security parameter. A hash family with input length n(λ) and
output length λ is a collection H = {hλ : {0, 1}s(λ) × {0, 1}n(λ) → {0, 1}λ}
of keyed functions induced by efficient algorithms (Gen,Hash), where Gen(1λ)
outputs a key k ∈ {0, 1}s(λ) and Hash(k, x) computes hλ(k, x) ∈ {0, 1}λ.

Definition 2.4. For a relation ensemble {Rλ ⊆ {0, 1}n(λ) × {0, 1}λ}, a hash
function family H = {hλ : {0, 1}s(λ)×{0, 1}n(λ) → {0, 1}m(λ)} is R-correlation
intractable if, for any probabilistic polynomial time (PPT) adversary A, we
have Pr

[
k ← Gen(1λ)), x ← A(k) : (x, hλ(k, x)) ∈ R

]
= negl(λ).

Peikert and Shiehian [66] described a CI hash family for any searchable rela-
tion defined by functions f of bounded depth. Their construction relies on the
standard LWE assumption with polynomial approximation factors. Their proof
was given for efficiently searchable relations. However, it also implies correlation
intractability for efficiently enumerable relations, as observed in [18,52].

2.3 Admissible Hash Functions

Admissible hash functions were introduced in [7] as a combinatorial tool for
partitioning-based security proofs.
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Definition 2.5 ([7]). Let �(λ), L(λ) ∈ N be functions of λ ∈ N. Let an effi-
ciently computable function AHF : {0, 1}� → {0, 1}L. For each K ∈ {0, 1,⊥}L,
let the partitioning function FADH(K, ·) : {0, 1}� → {0, 1} such that

FADH(K,X) :=
{

0 if ∀i ∈ [L] (AHF(X)i = Ki) ∨ (Ki =⊥)
1 otherwise

We say that AHF is an admissible hash function if there exists an effi-
cient algorithm AdmSmp(1λ, Q, δ) that takes as input Q ∈ poly(λ) and a non-
negligible δ(λ) ∈ (0, 1] and outputs a key K ∈ {0, 1,⊥}L such that, for all
X(1), . . . , X(Q),X� ∈ {0, 1}� such that X� �∈ {X(1), . . . , X(Q)}, we have

Pr
K

[
FADH(K, X(1)) = · · · = FADH(K, X(Q)) = 1 ∧ FADH(K, X�) = 0

]
≥ δ(Q(λ)) .

It is known that admissible hash functions exist for �, L = Θ(λ).

Theorem 2.6 ([51, Theorem 1]). Let (C�)�∈N
be a family of codes C� :

{0, 1}� → {0, 1}L with minimal distance cL for some constant c ∈ (0, 1/2). Then,
(C�)�∈N

is a family of admissible hash functions. Furthermore, AdmSmp(1λ, Q, δ)
outputs a key K ∈ {0, 1,⊥}L for which η = O(log λ) components are not ⊥ and
δ(Q(λ)) is a non-negligible function of λ.

2.4 Trapdoor Σ-protocols

Canetti et al. [18] defined a trapdoor variant of the notion of Σ-protocols [31].

Definition 2.7 (Adapted from [18]). Let a language L associated with an NP
relations R. A 3-move interactive proof system Π = (Genpar,GenL,P,V) in the
common reference string model is a Σ-protocol for L if it satisfies the following:

– 3-Move Form: P and V both input crs = (par, crsL), with par ← Genpar(1λ)
and crsL ← GenL(par,L), and a statement x. They proceed as follows: (i)
P inputs w ∈ R(x), computes (a, st) ← P(crs, x, w) and sends a to V; (ii)
V sends back a random challenge Chall; (iii) P finally sends a response z =
P(crs, x, w,a,Chall, st) to V; (iv) On input of (a,Chall, z), V outputs 1 or 0.

– Completeness: If (x,w) ∈ R and P honestly computes (a, z) for a challenge
Chall, then V(crs, x, (a,Chall, z)) outputs 1 with probability 1 − negl(λ).

– Special zero-knowledge: There is a PPT simulator ZKSim that inputs crs,
x ∈ L and a challenge Chall ∈ C. It outputs (a, z) ← ZKSim(crs, x,Chall) such
that (a,Chall, z) is indistinguishable from a real transcript (for w ∈ R(x))
with challenge Chall.

– (r+1)-Special soundness: For any CRS crs = (par, crsL) obtained as par ←
Genpar(1λ), crsL ← GenL(par,L), any x �∈ L, and any first message a sent by
P, the set of challenges BADC = f(crs, x,a) for which an accepting transcript
(crs, x,a,Chall, z) exists for some third message z has cardinality |BADC| ≤ r.
The function f is called the “bad challenge function” of Π. That is, if x �∈ L
and Chall �∈ BADC, the verifier never accepts.
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Canetti et al. [18] define trapdoor Σ-protocols as Σ-protocols where the bad
challenge function is efficiently computable using a trapdoor. They also define
instance-dependent trapdoor Σ-protocol where the trapdoor τΣ should be gen-
erated as a function of some instance x �∈ L. Here, we use a definition where x
need not be known in advance and the trapdoor does not depend on a specific x.
However, the CRS and the trapdoor may depend on the language in our setting.
The CRS crs = (par, crsL) consists of a fixed part par and a language-dependent
part crsL which is generated as a function of par and a language description L.

Definition 2.8 (Adapted from [18]). A Σ-protocol Π = (Genpar,GenL,P,V)
with bad challenge function f for a trapdoor language L is a trapdoor Σ-
protocol if it satisfies the properties of Definition 2.7 and there exist PPT
algorithms (TrapGen,BadChallenge) with the following properties.

• Genpar inputs λ ∈ N and outputs public parameters par ← Genpar(1λ).
• GenL is a randomized algorithm that, on input of public parameters par, out-

puts the language-dependent part crsL ← GenL(par,L) of crs = (par, crsL).
• TrapGen(par,L, τL) inputs public parameters par and (optionally) a trapdoor

τL allowing to test membership of L. It outputs crsL and a trapdoor τΣ.
• BadChallenge(τΣ , crs, x,a) takes in a trapdoor τΣ, a CRS crs = (par, crsL), an

instance x, and a first prover message a. It outputs a set BADC.

In addition, the following properties are required.

• CRS indistinguishability: For any par ← Genpar(1λ), and any trapdoor τL
for the language L, an honestly generated crsL is computationally indistin-
guishable from a CRS produced by TrapGen(par,L, τL). Namely, for any aux
and any PPT distinguisher A, we have

Advindist-Σ
A (λ) := |Pr[crsL ← GenL(par,L) : A(par, crsL) = 1]
−Pr[(crsL, τΣ) ← TrapGen(par,L, τL) : A(par, crsL) = 1]| ≤ negl(λ).

• Correctness: There exists a language-specific trapdoor τL such that, for
any instance x �∈ L and all pairs (crsL, τΣ) ← TrapGen(par,L, τL), we have
BadChallenge(τΣ , crs, x,a) = f(crs, x,a) .

Note that the TrapGen algorithm does not take a specific statement x as input,
but only a trapdoor τL allowing to recognize elements of L.

2.5 R-Lossy Public-Key Encryption with Equivocation

In [55], Libert et al. considered a generalization of the notion of R-lossy encryp-
tion introduced by Boyle et al. [9]. The primitive is a flavor of tag-based encryp-
tion [53] where the tag space T is partitioned into injective and lossy tags. When
ciphertexts are generated for an injective tag, the decryption algorithm recovers
the plaintext. On lossy tags, ciphertexts statistically hide the plaintexts. In R-
lossy PKE schemes, the tag space is partitioned according to a binary relation
R ⊆ K × T . The key generation algorithm inputs an initialization value K ∈ K
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and partitions T in such a way that injective tags t ∈ T are those for which
(K, t) ∈ R (i.e., all tags t for which (K, t) �∈ R are lossy).

The definition of [55] requires the existence of a lossy key generation algo-
rithm LKeygen that outputs public keys for which all tags t are lossy (in contrast
with injective keys where the only lossy tags are those for which (K, t) �∈ R).
In addition, [55] also asks that a trapdoor allows equivocating lossy ciphertexts
(a property called efficient opening [4]) using an algorithm called Opener. The
application to simulation-soundness [55] involves two opening algorithms Opener
and LOpener. The former operates over injective public keys for lossy tags while
the latter can equivocate ciphertexts encrypted under lossy keys for any tag.

Definition 2.9. Let R ⊆ Kλ × Tλ be a binary relation. An equivocable R-lossy
PKE scheme is a 7-uple of PPT algorithms (Par-Gen,Keygen, LKeygen,Encrypt,
Decrypt,Opener, LOpener) such that:

Parameter generation: Given a security parameter λ, a tag length L ∈ poly(λ)
and a message length B ∈ poly(λ), Par-Gen(1λ, 1L, 1B) outputs public param-
eters Γ that specify a tag space T , a space of initialization values K, a public
key space PK, a secret key space SK and a trapdoor space T K.

Key generation: For an initialization value K ∈ K and public parameters Γ ,
algorithm Keygen(Γ,K) outputs an injective public key pk ∈ PK, a decryption
key sk ∈ SK and a trapdoor key tk ∈ T K. The public key specifies a ciphertext
space CtSp and a randomness space RLPKE.

Lossy Key generation: Given an initialization value K ∈ K and public param-
eters Γ , the lossy key generation algorithm LKeygen(Γ,K) outputs a lossy
public key pk ∈ PK, a lossy secret key sk ∈ SK and a trapdoor key tk ∈ T K.

Decryption on injective tags: For any Γ ← Par-Gen(1λ, 1L, 1B), any K ∈ K,
any tag t ∈ T such that (K, t) ∈ R, and any message Msg ∈ MsgSp, we
have Pr

[
∃r ∈ RLPKE : Decrypt

(
sk, t,Encrypt(pk, t,Msg; r)

)
�= Msg

]
< ν(λ), for

some negligible function ν(λ), where (pk, sk, tk) ← Keygen(Γ,K) and the
probability is taken over the randomness of Keygen.

Indistinguishability: For any Γ ← Par-Gen(1λ, 1L, 1B), the key generation
algorithms LKeygen and Keygen satisfy the following:

(i) For any K ∈ K, the distributions Dinj = {(pk, tk) | (pk, sk, tk) ←
Keygen(Γ,K)} and Dloss = {(pk, tk) | (pk, sk, tk) ← LKeygen(Γ,K)} are
computationally indistinguishable. For any PPT adversary A, the follow-
ing advantage function Advindist-LPKE

A (λ) is negligible:

|Pr[(pk, tk) ←↩ Dinj : A(pk, tk) = 1] − Pr[(pk, tk) ←↩ Dloss : A(pk, tk) = 1]| .

(ii) For any initialization values K,K ′ ∈ K, the two distributions {pk |
(pk, sk, tk) ← LKeygen(Γ,K)} and {pk | (pk, sk, tk) ← LKeygen(Γ,K ′)}
are 2−Ω(λ)-close in terms of statistical distance.

Lossiness: For any Γ ← Par-Gen(1λ, 1L, 1B), any initialization value K ∈ K
and tag t ∈ T such that (K, t) �∈ R, any (pk, sk, tk) ← Keygen(Γ,K), and
any Msg0,Msg1 ∈ MsgSp, the following distributions are statistically close:
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{C | C ← Encrypt(pk, t,Msg0)} ≈s {C | C ← Encrypt(pk, t,Msg1)}. For
any (pk, sk, tk) ← LKeygen(Γ,K), the above holds for any tag t.

Equivocation under lossy tags: For any Γ ← Par-Gen(1λ, 1L, 1B), any K ∈
K, any keys (pk, sk, tk) ← Keygen(Γ,K), let DR the distribution, defined over
RLPKE, from which the random coins of Encrypt are sampled. For any message
Msg ∈ MsgSp and ciphertext C, let Dpk,Msg,C,t denote the distribution on
RLPKE with support Spk,Msg,C,t = {r ∈ RLPKE | Encrypt(pk, t,Msg, r) = C}
and such that, for each r ∈ SPK,Msg,C,t, we have

Dpk,Msg,C,t(r) = Pr
r′←↩DR

[r′ = r | Encrypt(pk, t,Msg, r′) = C] . (1)

For any random coins r ←↩ DR, any tag t ∈ Tλ such that (K, t) �∈ R,
and any messages Msg0,Msg1 ∈ MsgSp, algorithm Opener takes as inputs
pk, C = Encrypt(pk, t,Msg0, r), r t, and tk. It outputs a sample r from a
distribution statistically close to Dpk,Msg1,C,t.

Equivocation under lossy keys: For any K ∈ K, any keys (pk, sk, tk) ←
LKeygen(Γ,K), any randomness r ←↩ DR, any tag t ∈ Tλ, and any messages
Msg0,Msg1 ∈ MsgSp, algorithm LOpener inputs C = Encrypt(pk, t,Msg0, r),
r, t and sk. It outputs r ∈ RLPKE such that C = Encrypt(pk, t,Msg1, r̄).
We require that, for any tag t ∈ Tλ such that (K, t) �∈ R, the distribution
{r̄ ← LOpener(pk, sk, t, ct,Msg0,Msg1, r) | r ←↩ DR} is statistically close to
{r̄ ← Opener(pk, tk, t, ct,Msg0,Msg1, r) | r ←↩ DR}.

The above definition is slightly weaker than the one of [55] in the property
of equivocation under lossy keys. Here, we do not require that the output of
LOpener be statistically close to Dpk,Msg1,C,t as defined in (1): We only require
that, on lossy keys and lossy tags, Opener and LOpener sample random coins
from statistically close distributions. Our definition turns out to be sufficient for
the purpose of simulation-sound arguments (as shown in the full version [56] of
the paper) and will allow us to obtain a construction from the DCR assumption.

Definition 2.9 also differs from [55, Definition 2.10] in that the equivocation
algorithms (Opener, LOpener) can use the original random coins r ∈ RLPKE of
the encryption algorithm. Again, this relaxation will suffice in our setting.

In our ring signature system, we also use a variant of the above R-lossy
encryption primitive to instantiate a tag-based commitment scheme.

Definition 2.10. A dense R-lossy PKE scheme is a tuple (Par-Gen,Keygen,
LKeygen,Encrypt,Decrypt) of efficient algorithms that proceed identically to Def-
inition 2.9, except that the lossy mode is dense and the indistinguishability prop-
erty is relaxed as below. Moreover, no equivocation property is required.

Weak Indistinguishability: For any Γ ← Par-Gen(1λ, 1L, 1B), the key gener-
ation algorithms LKeygen and Keygen satisfy the following:

(i) For any K ∈ K, Dinj = {pk | (pk, sk, tk) ← Keygen(Γ,K)} is indistin-
guishable from Dloss = {pk | (pk, sk, tk) ← LKeygen(Γ,K)}. For any PPT
adversary A, the advantage function Advweak-indist-LPKE

A (λ), defined as the
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distance |Pr[pk ←↩ Dinj : A(pk) = 1] − Pr[pk ←↩ Dloss : A(pk) = 1]|, is
negligible as a function of the security parameter.

(ii) For any initialization values K,K ′ ∈ K, the two distributions {pk |
(pk, sk, tk) ← LKeygen(Γ,K)} and {pk | (pk, sk, tk) ← LKeygen(Γ,K ′)}
are 2−Ω(λ)-close in terms of statistical distance.

Density of Lossy Mode: For any Γ ← Par-Gen(1λ, 1L, 1B), any initialization
value K ∈ K, any (pk, sk, tk) ← LKeygen(Γ,K) and Msg ∈ MsgSp, the dis-
tribution of {Encrypt(pk,Msg, r)|r ←↩ DR} is statistically close to U(CtSp).

2.6 Ring Signatures

A ring signature [68] scheme consists of the following efficient algorithms:

CRSGen(1λ): Generates a common reference string ρ.
Keygen(ρ): Generates a public key vk and the corresponding secret key sk.
Sign(ρ, sk,M,R): Outputs a signature Σ on the message M ∈ {0, 1}∗ with

respect to the ring R = {vk0, . . . , vkR−1} as long as (vk, sk) is a valid key
pair produced by Keygen(ρ) and vk ∈ R (otherwise, it outputs ⊥).

Verify(ρ,M,Σ,R): Given a signature Σ on a message M w.r.t. the ring of public
keys R, this algorithm outputs 1 if Σ is deemed valid and 0 otherwise.

Correctness requires that users can always sign any message on behalf of a ring
they belong to. The standard security requirements for ring signatures are called
unforgeability and anonymity. We use the strong definitions of [6,22], which are
recalled in the full version of the paper. In particular, we consider unforgeability
with respect to insider corruption and statistical anonymity.

3 R-Lossy Encryption Schemes from DCR

Libert et al. [55] gave a method that directly compiles any trapdoor Σ-protocol
for a trapdoor language into an unbounded simulation-sound NIZK argument for
the same language. As a building block, their construction uses an LWE-based
equivocable R-lossy PKE scheme for the bit-matching relation.

The construction of [55] is recalled in the full version [56] of the paper, where
we show that it applies to trapdoor Σ-protocols with (r+1)-special-soundness for
r > 1 as long as we have a CI hash function for efficiently enumerable relations.

Definition 3.1. Let K = {0, 1,⊥}L and T = {0, 1}L, for some L ∈ poly(λ).
The bit-matching relation RBM : K×T → {0, 1} is defined as RBM(K, t) = 1
if and only if K = K1 . . . KL and t = t1 . . . tL satisfy

∧L
i=1(Ki =⊥) ∨ (Ki = ti).

In [55], the authors described an RBM-lossy PKE under the LWE assumption. In
order to instantiate their construction with a better efficiency, we now describe
a more efficient RBM-lossy PKE scheme based on the DCR assumption.
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3.1 An Equivocable RBM-Lossy PKE Scheme from DCR

Par-Gen(1λ, 1L, 1B): Define the spaces T = {0, 1}L, K = {0, 1,⊥}L and the
public parameters as Γ = (1λ, 1B ,K, T ).

Keygen(Γ,K): Given public parameters Γ and an initialization value K ∈ K,
generate a key pair as follows.

1. Choose an RSA modulus N = pq such that p, q > 2l(λ), for some polyno-
mial l : N → N such that l(λ) > L(λ) for any sufficiently large λ, and an
integer ζ ∈ poly(λ) such that Nζ > 2B .

2. Choose g ←↩ U(Z∗
Nζ+1) and αi,0, αi,1 ←↩ U(Z∗

N ) for each i ∈ [L]. Then,
for each i ∈ [L] and b ∈ {0, 1}, compute vi,b = gδb,1−Ki · αNζ

i,b mod N ζ+1 if

Ki �=⊥ and vi,b = αNζ

i,b mod N ζ+1 if Ki =⊥.

Define RLPKE = Z
∗
N × ZNζ and output sk = (p, q,K) as well as

pk :=
(
N, ζ, g, {vi,b}i∈[L],b∈{0,1}

)
, tk =

(
{αi,b}i∈[L],b∈{0,1},K

)
.

LKeygen(Γ,K): is identical to Keygen except that step 2 generates g by choosing
g0 ←↩ U(Z∗

N ) and computing g = gNζ

0 mod N ζ+1. The algorithm defines

RLPKE = Z
∗
N × ZNζ and outputs the lossy secret key sk = (g0, tk) together

with pk :=
(
N, ζ, g, {vi,b}i∈[L],b∈{0,1}

)
, tk =

(
{αi,b}i∈[L],b∈{0,1},K

)
.

Encrypt(pk, t,Msg): To encrypt Msg ∈ ZNζ for the tag t = t1 . . . tL ∈ {0, 1}L,
choose r ←↩ U(Z∗

N ), s ←↩ U(ZNζ ) and compute

ct = gMsg ·
( L∏

i=1

vi,ti

)s

· rNζ

mod N ζ+1 . (2)

Decrypt(sk, t, ct): Given sk = (p, q,K) and t = t1 . . . tL ∈ {0, 1}L, return ⊥ if

RBM(K, t) = 0. Otherwise,
∏L

i=1 vi,ti
≡

(∏L
i=1 αi,ti

)Nζ

(mod N ζ+1).

1. Compute βg = (gλ(N) mod Nζ+1)−1
N , where λ(N) = lcm(p − 1, q − 1) and

return ⊥ if βg = 0 or gcd(βg, N
ζ) > 1.

2. Otherwise, compute Msg = (ctλ(N) mod Nζ+1)−1
N · β−1

g mod N ζ , where the
division is computed over Z, and output Msg ∈ ZNζ .

Opener
(
pk, tk, t, ct,Msg0,Msg1, (r, s)

)
: Given tk = ({αi,b}i,b,K), t ∈ {0, 1}L,

plaintexts Msg0,Msg1 ∈ ZNs and random coins (r, s) ∈ RLPKE such that
ct = Encrypt(pk, t,Msg0; (r, s)), return ⊥ if RBM(K, t) = 1. Otherwise, define

vt �
L∏

i=1

vi,ti
mod N ζ+1 = gdt ·

( L∏

i=1

αi,ti

)Nζ

mod N ζ+1, (3)
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where dt ∈ {1, . . . , L} is the number of non-⊥ entries of K such that Ki �= ti.
Note that gcd(dt, N

ζ) = 1 since p, q > L. Then, compute and output

s̄ = s + (d−1
t mod N ζ) · (Msg0 − Msg1) mod N ζ (4)

r̄ = r ·
L∏

i=1

αs−s̄
i,ti

· g(Msg0−Msg1+dt·(s−s̄))/Nζ

mod N,

where the division in the exponent above g can be computed over Z since we
have Msg0 + dt · s ≡ Msg1 + dt · s̄ (mod N ζ). Note that (r̄, s̄) satisfy

gMsg1 ·vs̄
t · r̄Nζ ≡ gMsg1 ·

(
gdt ·

L∏

i=1

αNζ

i,ti

)s̄

· r̄Nζ

.

≡ gMsg1 ·
(
gdt ·

L∏

i=1

αNζ

i,ti

)s̄

· rNζ ·
L∏

i=1

α
(s−s̄)·Nζ

i,ti
· g(Msg0−Msg1+dt·(s−s̄))

≡ gMsg0 ·
(
gdt ·

L∏

i=1

αNζ

i,ti

)s

· rNζ ≡ gMsg0 · vs
t · rNζ

(mod N ζ+1)

LOpener
(
pk, sk, t, ct,Msg0,Msg1, (r, s)

)
: Given sk =

(
g0, tk = ({αi,b}i,b,K)

)
, an

arbitrary tag t ∈ {0, 1}L, plaintexts Msg0,Msg1 ∈ ZNζ and randomness
(r, s) ∈ RLPKE such that ct = Encrypt(pk, t,Msg0; (r, s)), let dt ∈ {0, . . . , L}
the number of non-⊥ entries such that Ki �= ti. If dt �= 0, compute s̄ as per
(4). Otherwise, choose s̄ ←↩ U(ZNζ ). In both cases, output the pair (r̄, s̄),
where r̄ = r ·

∏L
i=1 αs−s̄

i,ti
· g

Msg0−Msg1+dt·(s−s̄)
0 mod N.

Theorem 3.2. The above scheme is an equivocable RBM-lossy PKE scheme
under the DCR assumption. (The proof is given in the full version of the paper.)

By plugging the above system in the construction described in the full version
of the paper, we obtain USS arguments from the DCR and LWE assumptions.
A difference with [55] is that LWE is only used in the correlation intractable
hash function and lattice trapdoors are not needed anywhere. This DCR-based
scheme drastically reduces the signature length of our construction. If we were
to use the LWE-based R-Lossy PKE scheme from [55], a single ciphertext would
already be roughly 20 larger than an entire ring signature, as discussed in the
full version of the paper.

3.2 A Dense RBM-Lossy PKE Scheme from DCR

In order to construct a ring signature without relying on erasures, we will also
use a “downgraded” version of the scheme in Sect. 3.1, where we do not need
equivocation properties. However, we will rely on the property that its lossy
mode induces dense commitments that are uniformly distributed in Z

∗
Nζ+1 . The

scheme of Sect. 3.1 does not have this density property as its lossy mode induces
commitments that live in the subgroup of Nζ-th residues.
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Par-Gen(1λ, 1L, 1B): Define the spaces T = {0, 1}L, K = {0, 1,⊥}L and the
public parameters as Γ = (1λ, 1B ,K, T ).

Keygen(Γ,K): Given public parameters Γ and an initialization value K ∈ K,
generate a key pair as follows.
1. Choose an RSA modulus N = pq such that p, q > 2l(λ), for some polyno-

mial l : N → N such that l(λ) > L(λ) − λ for any sufficiently large λ, and
an integer ζ ∈ poly(λ) such that Nζ > 2B .

2. Choose αi,0, αi,1 ←↩ U(Z∗
N ) for each i ∈ [L]. Then, for each i ∈ [L] and

b ∈ {0, 1}, compute vi,b = (1 + N)δb,1−Ki · αNζ

i,b mod N ζ+1 if Ki �=⊥ and

vi,b = αNζ

i,b mod N ζ+1 if Ki =⊥.
Define RLPKE = Z

∗
N × ZNζ and output the secret key sk = (p, q,K) together

with pk :=
(
N, ζ, {vi,b}i∈[L],b∈{0,1}

)
and tk =⊥ .

LKeygen(Γ,K): proceeds identically to Keygen with the difference that step 2
chooses {vi,b}i,b at random. For each i ∈ [L], b ∈ {0, 1}, the algorithm chooses
vi,b ←↩ U(Z∗

Nζ+1). It defines RLPKE = Z
∗
N × ZNζ and outputs sk =⊥ as well

as pk :=
(
N, ζ, {vi,b}i∈[L],b∈{0,1}

)
, and tk =⊥ .

Encrypt(pk, t,Msg): To encrypt Msg ∈ ZNζ for the tag t = t1 . . . tL ∈ {0, 1}L,
choose random coins r ←↩ U(Z∗

N ), s ←↩ U(ZNζ ) and compute the ciphertext

ct = (1 + N)Msg ·
(∏L

i=1 vi,ti

)s

· rNζ

mod N ζ+1.

Decrypt(sk, t, ct): Given the secret key sk = (p, q,K) and the tag t ∈
{0, 1}L, return ⊥ if RBM(K, t) = 0. Otherwise, compute Msg =
(ctλ(N) mod Nζ+1)−1

N mod N ζ , where the division is computed over Z, and out-
put Msg ∈ ZNζ .

Theorem 3.3. The above system is a dense RBM-lossy PKE scheme under the
DCR assumption. Moreover, the lossy mode is dense in Z

∗
Nζ+1 . (The proof is

given in the full version of the paper.)

4 Trapdoor Σ-Protocols for DCR-Related Languages

Ciampi et al. [27] showed that any Σ-protocol with binary challenges can be
turned into a trapdoor Σ-protocol by having the prover encrypt the two pos-
sible responses and send them along with its first message. While elegant, this
approach requires Θ(λ) repetitions to achieve negligible soundness error. In this
section, we give communication-efficient protocols requiring no repetitions.

In the full version of the paper, we show that the standard Σ-protocol that
allows proving composite residuosity readily extends into a trapdoor Σ-protocol.
By exploiting earlier observations from [46,58], we show that, for a single pro-
tocol iteration, the factorization of N allows computing bad challenges within
an exponentially large challenge space. In this section, we describe trapdoor
Σ-protocols that will serve as building blocks for our ring signature.
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4.1 Trapdoor Σ-Protocol Showing that a Paillier
Ciphertext/Commitment Contains 0 or 1

We give a trapdoor Σ-protocol allowing to prove that a (lossy) Paillier cipher-
text encrypts 0 or 1. This protocol is a DCR-based adaptation of a Σ-protocol
proposed in [21,46] for Elgamal-like encryption schemes. The original protocol of
[21,46] assumes additively homomorphic properties in the plaintext and random-
ness spaces. Here, we adapt it to the DCR setting where the randomness space
is a multiplicative group. We also describe a BadChallenge function to obtain a
trapdoor Σ-protocol with a large challenge space.

The BadChallenge function uses observation from Lipmaa [58] showing that
bad challenges are also computable when the message space has composite order
N = pq (instead of prime order as in [21]). We actually point out an issue
in [58]. Lipmaa aims to identify bad challenges in a Σ-protocol showing that
an Elgamal-Paillier ciphertext [13] encrypts 0 or 1. However, in the Elgamal-
Paillier scheme, not all elements of Z∗

N2 ×Z
∗
N2 are in the range of the encryption

algorithm. In the full version of the paper, we show that a cheating prover can
send maliciously generated first prover messages for which bad challenges are
not efficiently computable although they may exist for false statements.

Here, to avoid this issue, we need a DCR-based dual-mode commitment where
the binding mode has the property that any element of Z∗

N2 is in the range of the
commitment algorithm. Moreover, even the hiding mode should be dense, mean-
ing that honestly generated commitments to 0 should be uniformly distributed
over Z∗

N2 . We thus use commitments of the form C = (1+N)Msg ·hy ·wN mod N2,
where the distribution of h determines if the commitment is perfectly hiding or
perfectly binding. If h is an N -th residue (resp. h ∼ U(Z∗

N2)), it is perfectly
binding (resp. perfectly hiding). Moreover, the density property of the hiding
mode will be crucial to prove the special ZK property of the Σ-protocol.

Let an RSA modulus N = pq and let a random element h ∈ Z
∗
N2 . We give a

trapdoor Σ-protocol for the following language, which is parametrized by h:

L0-1(h) =
{
C ∈ Z

∗
N2 | ∃b ∈ {0, 1}(y, w) ∈ ZN × Z

�
N :

C = (1 + N)b · hy · wN mod N2
}
.

We include h as a language parameter because we allow the CRS to depend
on N , but not on h. We note that, if N divides the order of h, the language
L0-1(h) is trivial since all elements of Z∗

N2 can be explained as a commitment
to a bit. However, the language becomes non-trivial when h is an N -th residue
since C = (1 + N)b hy wN mod N2 is then a perfectly binding commitment to b.

While a trapdoor Σ-protocol for L0-1(h) can be obtained from [31], the one
below is useful to show that one out of many ciphertexts encrypts 0 [46]. A
difference with the Σ-protocols in [21, Figure 2] and [58, Section 3.2] is that,
in order to use it in Sect. 4.2, we need the verifier to perform a non-standard
interval check for the response over the integers.

Genpar(1λ) : Given the security parameter λ, define par = {λ}.
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GenL(par,L0-1) : Given public parameters par and the description of a language
L0-1, consisting of an RSA modulus N = pq with p and q prime satisfying
p, q > 2l(λ), for some polynomial l : N → N such that l(λ) > 2λ, define the
language-dependent crsL = {N}. The global CRS is crs = ({λ}, crsL).

TrapGen(par,L0-1, τL) : Given par, a language description L0-1 that specifies an
RSA modulus N = pq, and the membership-testing trapdoor τL = (p, q),
output crs = ({λ}, crsL) as in GenL and the trapdoor τΣ = (p, q).

P
(
crs, �x, �w

)
↔ V(crs, �x) : Given crs, a statement �x = “C ∈ L0-1(h)”, for some

h ∈ Z
∗
N2 , P (who has �w = (b, y, w)) and V interact as follows:

1. P chooses a ←↩ U({2λ, . . . , 22λ − 1}), d, e ←↩ U(ZN ), u, v ←↩ U(Z∗
N ) and

sends V the following:

A1 = (1 + N)a hd uN mod N2, A2 = (1 + N)−a·b he vN mod N2.

2. V sends a random challenge Chall ←↩ U({0, . . . 2λ − 1}).
3. P sends V the response (z, zd, ze, zu, zv) ∈ Z × (ZN )2 × (Z∗

N )2, where

z = a + Chall · b, z1 = d + Chall · y, z2 = e + (z − Chall) · y,

zd = z1 mod N, zu = u · wChall · h�z1/N� mod N,

ze = z2 mod N, zv = v · wz−Chall · h�z2/N� mod N.

4. V returns 1 if and only if 2λ ≤ z < 22λ+1 and

A1 = C−Chall · (1 + N)z · hzd · zN
u mod N2, (5)

A2 = CChall−z · hze · zN
v mod N2.

BadChallenge
(
par, τΣ , crs, �x,�a

)
: Given a statement �x = “C ∈ L0-1(h)”, a trap-

door τΣ = (p, q) and �a = (A1, A2) ∈ (Z∗
N2)2, return ⊥ if h is not an N -th

residue. Otherwise, decrypt C and (A1, A2) to obtain b = DτΣ
(C) ∈ ZN and

ai = DτΣ
(Ai) ∈ ZN for each i ∈ {1, 2}. If �x is false, we have b �∈ {0, 1}.

Consider the following linear system with the unknowns (Chall, z) ∈ Z
2
N :

z − b · Chall ≡ a1 (mod N),
b · (Chall − z) ≡ a2 (mod N).

(6)

1. If b(b − 1) ≡ 0 (mod N), assume that b ≡ 0 (mod p) and b ≡ 1 (mod q).
Compute z′ = a1 mod p and Chall′ = z′ − a1 mod q. Then, return ⊥ if
Chall′ − z′ �≡ a2 (mod q) or a2 �≡ 0 (mod p).

2. If b(b − 1) �≡ 0 (mod N), define db = gcd(b(b − 1), N), so that we have
gcd(b(b − 1), N/db) = 1. Any solution of (6) also satisfies the system

z − b · Chall ≡ a1 (mod N/db)
b · z − b · Chall ≡ −a2 (mod N/db),

which has a unique solution (Chall′, z′) ∈ (ZN/db
)2.
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In both cases, if 2λ ≤ z′ < 22λ+1 and 0 ≤ Chall′ < 2λ, return Chall = Chall′.
Otherwise, return ⊥.

Any honest protocol execution always returns a valid transcript since we have
2λ ≤ a + b · Chall ≤ 22λ + 2λ − 2 < 22λ+1 and

(1 + N)z · hzd · zN
u

≡ (1 + N)a+Chall·b · uN · wN ·Chall · hzd · h(d+Chall·y)−(d+Chall·y mod N)

≡ (1 + N)a+Chall·b · uN · wN ·Chall · hd+Chall·y

≡ (1 + N)a · uN · hd ·
(
(1 + N)b · wN · hy

)Chall ≡ A1 · CChall (mod N2)

CChall−z ·hze · zN
v ≡

(
(1 + N)b · wN · hy

)Chall−z · vN · w(z−Chall)N · he+(z−Chall)·y

≡ (1 + N)b(Chall−z) · vN · he ≡ (1 + N)b(−a+(1−b)·Chall) · vN · he

≡ (1 + N)−ab · vN · he ≡ A2 (mod N2)

The correctness of BadChallenge follows from the fact that 0 ≤ Chall < 2λ (so
that Chall = Chall mod p = Chall mod q) and the observation that the verifier
never accepts when z ≥ min(p, q). This ensures that a valid response exists for
at most one z ∈ Z such that z = z mod p = z mod q.

Remark 4.1. When h is a composite residue, the condition b ∈ {0, 1} implies
that, over Z, we have either z = a + b · Chall or z = a + b · Chall − N , where
a = DτΣ

(A1) and b = DτΣ
(C) (recall that (5) implies z = a + b · Chall mod N).

The latter case can only occur if b = 1 and N − 2λ ≤ a ≤ N − 1. However, this
would imply Chall−2λ ≤ a+Chall−N ≤ Chall−1, which is not compatible with
the lower bound of the verification test 2λ ≤ z < 22λ+1. As a result, the equation
z = a+ b ·Chall holds over Z, and not only modulo N . While this property is not
necessary to ensure the soundness of the above Σ-protocol, it will be crucial for
the BadChallenge function of the trapdoor Σ-protocol in Sect. 4.2.2 In order to
ensure perfect completeness, the prover chooses a in a somewhat unusual interval
that does not start with 0. However, we still have statistical completeness and
statistical HVZK if a is sampled from U({0, . . . , 22λ − 1}).

4.2 Trapdoor Σ-Protocol Showing that One Out of Many
Ciphertexts/Commitments Contains 0

We now present a DCR-based variant of the Σ-protocol of Groth and Kohlweiss
[46], which allows proving that one commitment out of R = 2r contains 0.

Intuition. The Σ-protocol of [46] relies on a protocol, like the one of Sect. 4.1,
showing that a committed b is a bit using a response of the form z = a+b ·Chall.
To prove that some commitment C� ∈ {Ci}R−1

i=0 opens to 0 without revealing

2 In contrast, the upper bound for z is crucial here in the first step of BadChallenge.
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the index � ∈ {0, . . . , R − 1}, the bits �1 . . . �r ∈ {0, 1}r of � are committed and,
for each of them, the prover provides evidence that �j ∈ {0, 1}. The response
zj = aj + �jChall is seen as a degree-1 polynomial in Chall and used to define
polynomials fj,1[X] = aj + �jX and ff,0[X] = X − fj , which in turn define

Pi[X] =
r∏

j=1

fj,ij
[X] = δi,� · Xr +

r−1∑

k=0

pi,k · Xk ∀i ∈ {0, . . . , R − 1},

where Pi[X] has degree r if i = � and degree ≤ r − 1 otherwise. In order to
prove that one of the {Pi[X]}R−1

i=0 has degree r, Groth and Kohlweiss homo-
morphically compute

∏R−1
i=0 C

Pi(Chall)
i and multiply it with

∏r−1
k=0 C−Challk

dk
, for

auxiliary commitments {Cdk
=

∏R−1
i=0 C

pi,k

i }r−1
k=0, in order to cancel out the

terms of degree 0 to r − 1 in the exponent. Then, they prove that the prod-
uct

∏R−1
i=0 C

Pi(Chall)
i ·

∏r−1
k=0 C−Challk

dk
is indeed a commitment to 0.

Let N = pq and N̄ = p̄q̄ denote two RSA moduli. Let also h ∈ Z
∗
N2 and

h̄ ∈ Z
∗̄
N2 . We give a trapdoor Σ-protocol for the language

L1-R
∨ (h, h̄) :=

{(
(C0, . . . , CR−1)(L1, . . . , Lr)

)
∈ (Z∗

N2)R × (Z∗̄
N2)r | (7)

∃y ∈ ZN , w ∈ Z
∗
N , ∃r

j=1(�j , sj , tj) ∈ {0, 1} × ZN̄ × Z
∗̄
N :

∧r
j=1 Lj = (1 + N̄)�j h̄sj tN̄j mod N̄2 ∧ C� = hywN mod N2

}

where R = 2r and � =
∑r

j=1 �j · 2j−1. In (7), h ∈ Z
∗
N2 and h̄ ∈ Z

∗̄
N2 are used as

language parameters since we allow the CRS to depend on N and N̄ , but not on
h nor h̄. The reason is that, in our construction of Sect. 5, we need to generate
the CRS before h̄ is chosen.

We note that L1-R
∨ (h, h̄) is a trivial language (i.e., it is (Z∗

N2)R × (Z∗̄
N2)r)

when N and N̄ divide the order of h and h̄, respectively. However, the security
proof of our ring signature will switch to a setting where h and h̄ are composite
residues, which turns C� = hy ·wN mod N2 into a perfectly binding commitment
to 0 (since C = (1+N)Msg ·hy ·wN mod N2 uniquely determines the underlying
Msg ∈ ZN ) and Lj into a perfectly binding commitment to �j .

Description. Our Paillier-based adaptation Π1-R
∨ = (Genpar,GenL,P,V) of the

Σ-protocol of [46] is described as follows.

Genpar(1λ) : Given the security parameter λ, define par = {λ}.
GenL(par,L1-R

∨ ) : Given par and the description of a language L1-R
∨ , consisting of

RSA moduli N = pq, N̄ = p̄q̄ with primes p, q, p̄, q̄ satisfying p, q, p̄, q̄ > 2l(λ),
where l : N → N is a polynomial such that l(λ) > 2λ, define the language-
dependent crsL = {N, N̄} and the global CRS crs = ({λ}, crsL).

TrapGen(par,L1-R
∨ , τL) : Given par, the description of a language L1-R

∨ and a
language trapdoor τL, it proceeds identically to GenL except that it also
outputs the trapdoor τΣ = (p, q, p̄, q̄).
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P
(
crs, �x, �w

)
↔ V(crs, x) : P has the witness �w = (y, w, {(�j , sj , tj)}r

j=1) to the
statement �x = “

(
(C0, . . . , CR−1), (L1, . . . , Lr)

)
∈ L1-R

∨ (h, h̄)” and interacts
with the verifier V in the following way:

1. For each j ∈ [r], P chooses āj ←↩ U({2λ, . . . , 22λ − 1}), d̄j , ēj ,←↩ U(ZN̄ ),
ūj , v̄j ←↩ U(Z∗̄

N
) and computes
{

Āj = (1 + N̄)āj · h̄d̄j · ūN̄
j mod N̄2,

B̄j = (1 + N̄)−āj ·�j · h̄ēj · v̄N̄
j mod N̄2.

(8)

It then defines degree-1 polynomials Fj,1[X] = āj + �jX ∈ ZN [X],
Fj,0[X] = X − Fj,1[X] ∈ ZN [X]. For each index i ∈ {0, . . . , R − 1} of
binary expansion i1 . . . ir ∈ {0, 1}r, it computes the polynomial

Pi[X] =
r∏

j=1

Fj,ij
[X] = δi,� · Xr +

r−1∑

k=0

pi,k · Xk ∈ ZN [X], (9)

which has degree ≤ r − 1 if i �= � and degree r if i = �. Then, using the
coefficients pi,0, . . . , pi,r−1 ∈ ZN of (9), P computes commitments

Cdk
=

R−1∏

i=0

C
pi,k

i · hμk · ρN
k mod N2 0 ≤ k ≤ r − 1, (10)

where μ0, . . . , μr−1 ←↩ U(ZN ), ρ0, . . . , ρr−1 ←↩ U(Z∗
N ). Finally, P sends

V the message �a =
(
{(Āj , B̄j)}r

j=1, {Cdk
}r−1

k=0

)
.

2. V sends a random challenge Chall ←↩ U({0, . . . , 2λ − 1}).
3. P sends the response

(
zy, zw, {(z̄j , z̄d,j , z̄e,j , z̄u,j , z̄v,j)}r

j=1

)
, where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z̄d,j = d̄j + Chall · sj mod N̄ z̄j = āj + Chall · �j

z̄e,j = ēj + (āj + Chall · (�j − 1)) · sj mod N̄

z̄u,j = ūj · t̄Challj · h̄�(d̄j+Chall·sj)/N̄� mod N̄

z̄v,j = v̄j · t̄āj+Chall·(�j−1)
j · h̄�(ēj+(āj+Chall·(�j−1))·sj)/N̄� mod N̄

(11)

and, letting P ′[X] = y · Xr −
∑r−1

k=1 μk · Xk ∈ Z[X],

zy = y · Challr −
r−1∑

k=0

μk · Challk mod N = P ′(Chall) mod N,

zw = wChallr
r−1∏

k=0

ρ−Challk

k

R−1∏

i=0

C
−�Pi(Chall)/N�
i · h�P ′(Chall)/N� mod N,

(12)

where Pi(Chall) and P ′(Chall) are evaluated over Z in the exponent.
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4. V defines fj,1 = z̄j and fj,0 = Chall − z̄j mod N for each j ∈ [r]. Then, it
accepts if and only if 2λ ≤ z̄j < 22λ+1 for all j ∈ [r],

∀j ∈ [r] :

{
Āj = L−Chall

j · (1 + N̄)z̄j · h̄z̄d,j · z̄N̄
u,j mod N̄2

B̄j = L
Chall−z̄j

j · h̄z̄e,j · z̄N̄
v,j mod N̄2

(13)

and, parsing each i ∈ {0, . . . , R − 1} into bits i1 . . . ir ∈ {0, 1}r,

r−1∏

k=0

C−Challk

dk
·

R−1∏

i=0

C
(
∏r

j=1 fj,ij
mod N)

i ≡ hzy · zN
w (mod N2). (14)

BadChallenge
(
par, τΣ , crs, �x,�a

)
: On input of a trapdoor τΣ = (p, q, p̄, q̄), a

statement �x = “((C0, . . . , CR−1), (L1, . . . , Lr)) ∈ L1-R
∨ (h, h̄)” and a first

prover message �a =
(
{(Āj , B̄j)}r

j=1, {Cdk
}r−1

k=0

)
, return ⊥ if h is not an

N -th residue in Z
∗
N2 or h̄ is not an N̄ -th residue in Z

∗̄
N2 . Otherwise, compute

�j = DτΣ
(Lj) ∈ ZN̄ and decrypt �a so as to obtain āj = DτΣ

(Āj) ∈ ZN̄ ,
b̄j = DτΣ

(B̄j) ∈ ZN̄ , for each j ∈ [r], and cdk
= DτΣ

(Cdk
) ∈ ZN for each

k. Let also ci = DτΣ
(Ci) ∈ ZN for each i = 0 to R − 1. Since �x is false, we

have either: (i) �j �∈ {0, 1}, for some j ∈ [r]; or (ii) ∀j ∈ [r] : �j ∈ {0, 1} but
c� �= 0 mod N , where � =

∑r
j=1 �j · 2j−1. We consider two cases:

1. If there exists j ∈ [r] such that �j �∈ {0, 1}, then run the BadChallenge0-1

function of Sect. 4.1 on input of elements
(
par, (p̄, q̄), {N̄}, Lj , (Āj , B̄j)

)

and return whatever it outputs.
2. Otherwise, we have �j ∈ {0, 1} for all j ∈ [r]. Define degree-1 polynomi-

als Fj,1[X] = āj + �jX, Fj,0[X] = X − Fj,1[X] ∈ ZN [X] and compute
{Pi[X]}R−1

i=0 as per (9). For each i ∈ {0, . . . , R − 1}, parse the polyno-
mial Pi[X] ∈ ZN [X] as Pi[X] = δi,� · Xr +

∑r−1
k=0 pi,k · Xk for some

pi,0, . . . , pi,r−1 ∈ ZN . Define the polynomial

Q[X] � c� · Xr +
r−1∑

k=0

(
( R−1∑

i=0

ci · pi,k

)
− cdk

)

· Xk ∈ ZN [X],

which has degree r since c� �= 0 mod N . Define Qp[X] � Q[X] mod p

and Qq[X] � Q[X] mod q over Zp[X] and Zq[X], respectively. Since at
least one of them has degree r, we assume w.l.o.g. that deg(Qp[X]) = r.
Then, compute the roots3 Challp,1, . . . ,Challp,r of Qp[X] over Zp[X] in
lexicographical order (if it has less than r roots, the non-existing roots
are replaced by Challp,i =⊥). For each i ∈ [r], do the following:
a. If Challp,i �∈ {0, . . . , 2λ − 1}, set Challi =⊥.
b. If Challp,i ∈ {0, . . . , 2λ − 1} and Qq(Challp,i) ≡ 0 (mod q), then set

Challi = Challp,i. Otherwise, set Challi =⊥.

3 This can be efficiently achieved using the Cantor-Zassenhaus algorithm [19], which is
a probabilistic algorithm with small failure probability. The CI hash function of [66]
is compatible with BadChallenge functions failing with negligible probability.
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Correctness. To see that honestly generated proofs are always accepted by
the verifier, we first note that 2λ ≤ āj ≤ z̄j = āj + Chall · �j ≤ 22λ + 2λ < 22λ+1,
for all j ∈ [r], and that the Eqs. (13) are satisfied for the same reasons as in
Sect. 4.1. As for Eq. (14), we observe that, if the witnesses y ∈ ZN and w ∈ Z

∗
N

satisfy C� = hy · wN mod N2, we have

hzy · zN
w ·

R−1∏

i=0

C
−(

∏r
j=1 fj,ij

mod N)

i ≡ hzy · zN
w ·

R−1∏

i=0

C
−Pi(Chall) mod N
i

≡ hzy · wChallr·N ·
r−1∏

k=0

ρ−Challk·N
k ·

R−1∏

i=0

C
−Pi(Chall)+(Pi(Chall) mod N)
i

· hP ′(Chall)−zy ·
R−1∏

i=0

C
−Pi(Chall) mod N
i

≡ hP ′(Chall) · wChallr·N ·
r−1∏

k=0

ρ−Challk·N
k ·

R−1∏

i=0

C
−Pi(Chall)
i

≡ hChallr·y · wChallr·N ·
r−1∏

k=0

(h−Challkμk · ρ−Challk·N
k )

·
R−1∏

i=0

C
−δi,�·Challr−∑r−1

k=0 pi,k·Challk
i

≡ (hy · wN )Chall
r ·

r−1∏

k=0

(hμk · ρN
k )−Challk · C−Challr

� ·
R−1∏

i=0

C
− ∑r−1

k=0 pi,k·Challk
i

≡
r−1∏

k=0

(hμk · ρN
k )−Challk ·

r−1∏

k=0

R−1∏

i=0

C
−pi,k·Challk
i ≡

r−1∏

k=0

C−Challk

dk
(mod N2).

Lemma 4.2. The above construction is a trapdoor Σ-protocol for L1-R
∨ . (The

proof is available in the full version of the paper.)

Following [46] and standard Σ-protocols over the integers, the above Σ-
Protocol Π1-R

∨ = (Genpar,GenL,P,V) is statistically special honest-verifier zero-
knowledge. Although the adversary can choose Paillier commitments {Ci}R−1

i=0

of its own (which may be N -th residues or not), we can rely on the fact that
h has a component of order N to perfectly randomize commitments {Cdk

}r−1
k=0

over the full group Z
∗
N2 even if some of the {Ci}R−1

i=0 are maliciously generated.

Lemma 4.3. For any language L1-R
∨ (h, h̄) such that N divides the order of h ∈

Z
∗
N2 and N̄ divides the order of h̄ ∈ Z

∗̄
N2 , Π1-R

∨ (h, h̄) is statistically special honest-
verifier zero-knowledge. (The proof is given in the full version of the paper.)
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5 Logarithmic-Size Ring Signatures in the Standard
Model from DCR and LWE

The proof of unforgeability departs from [46] in that we cannot replay the adver-
sary with a different random oracle. Instead, we use Paillier as a dual-mode
commitment, which is made extractable at some step to enable the extraction of
bits ��

1 . . . ��
r ∈ {0, 1}r from the commitments {L�

j}r
j=1 contained in the forgery

�Σ� = ((L�
1, . . . , L

�
r), �π

�). The next step is to have the reduction guess which hon-
estly generated public key vk(i�) will belong to the signer identified by decoding
the forgery. Then, vk(i�) is replaced by a random element of Z∗

N2 in order to force
the adversary to break the simulation-soundness of Πuss by arguing that vk(i�)

is a commitment to 0, which it is not. The use of two distinct moduli allows us
to decode ��

1, . . . , �
�
r ∈ {0, 1}r from {L�

j}r
j=1 (which is necessary to check that

�� = ��
1 . . . ��

r still identifies the expected verification key vk(i�)) even when we
rely on the DCR assumption to modify the distribution of vk(i�).

The security proof of our simplified scheme relies on erasures because the
NIZK simulator is used in all signing queries. If the adversary makes a corruption
query Corrupt(i) after a signing query involving sk(i), the challenger’s loophole
is to claim that it erased the signer’s randomness in signing queries of the form
(i, ·, ·).

To avoid erasures, we adapt the security proof in such a way that the NIZK
simulator only simulates signatures on behalf of the expected target user i�.
All other users’ signatures are faithfully generated, thus allowing the challenger
to reveal consistent randomness explaining their generation. Since user i� is
not corrupted with noticeable probability, the challenger never has to explain
the generation of a simulated signature. This strategy raises a major difficulty
since decoding ��

1 . . . ��
r from {L�

j}r
j=1 is only possible when these are extractable

commitments. Unfortunately, the NIZK simulator cannot answer signing queries
(i�, ·, ·) by computing {Lj}r

j=1 as perfectly binding commitments as this would
not preserve the statistical ZK property of the Σ-protocol of Sect. 4.2. Moreover,
relying on computational ZK does not work because we need the guessed index
i� to be statistically independent of the adversary’s view until the forgery stage.
If we were to simulate signatures using computational NIZK proofs, they would
information-theoretically leak the index i� of the only user for which the NIZK
simulator is used in signing queries (i�, ·, ·). To resolve this problem, we use a
tag-based commitment scheme which is perfectly hiding in all signing queries
and extractable in the forgery (with noticeable probability).

We thus commit to the string � ∈ {0, 1}r using the dense RBM-lossy PKE
scheme of Sect. 3.2. We use the property that, depending on which tag is used
to generate a commitment, it either behaves as perfectly hiding or extractable
commitment. In the perfectly hiding mode, we also exploit its density property
to ensure the statistical ZK property.
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The construction uses the trapdoor Σ-protocol of Sect. 4.2 to prove member-
ship of the parametrized language

L1-R
∨ (h, h̄VK) :=

{(
(C0, . . . , CR−1)(L1, . . . , Lr)

)
∈ (Z∗

N2)R × (Z∗̄
N2)r | (15)

∃y ∈ ZN , w ∈ Z
∗
N , s1, . . . , sr ∈ ZN̄ , t1, . . . , tr ∈ Z

∗̄
N ,

(�1, . . . , �r) ∈ {0, 1}r : C� = hy · wN mod N2

∧ Lj = (1 + N̄)�j · h̄
sj

VK · tN̄j mod N̄2 ∀j ∈ [r]
}
,

with R = 2r and � =
∑r

j=1 �j · 2j−1, where h̄VK changes in each signature.
The construction relies on the following ingredients:

– A trapdoor Σ-protocol Π′ = (Gen′
par,Gen′

L,P′,V′) for the parametrized lan-
guage L1-R

∨ defined in (15).
– A strongly unforgeable one-time signature scheme OTS = (G,S,V) with ver-

ification keys of length �v ∈ poly(λ).
– An admissible hash function AHF : {0, 1}�v → {0, 1}L, for some L ∈ poly(λ).
– A dense R-lossy PKE scheme R-LPKE =(Par-Gen,Keygen, LKeygen, Encrypt,

Decrypt) for RBM : K × T → {0, 1}, where K = {0, 1,⊥}L and T = {0, 1}L.

Our erasure-free ring signature goes as follows.

CRSGen(1λ) : Given a security parameter λ, conduct the following steps.
1. Generate par ← Genpar(1λ) for the trapdoor Σ-protocol of Sect. 4.2.
2. Generate an RSA modulus N = pq and choose an element h ←↩ U(Z∗

N2),
which has order divisible by N w.h.p.

3. Choose an admissible hash function AHF : {0, 1}�v → {0, 1}L. Generate
public parameters Γ ←↩ Par-Gen(1λ, 1L, 1|N |) for the dense RBM-lossy
PKE scheme of Sect. 3.2 with ζ = 1, which is associated with the bit-
matching relation RBM : K × T → {0, 1}. Choose a random initialization
value K ←↩ U(K) and generate lossy keys (pk, sk, tk) ← LKeygen(Γ,K).
Parse pk as pk :=

(
N̄ , {v̄i,b}i∈[L],b∈{0,1}

)
, for an RSA modulus N̄ = p̄q̄,

where v̄i,b ∼ U(Z∗̄
N2) for each i ∈ [L], b ∈ {0, 1}.

4. Generate a pair (crs, τzk) ← GenL(par,L1-R
∨ ) comprised of the CRS crs

of an USS argument Πuss (recalled in the full version of the paper) for
the language L1-R

∨ defined in (15) with a simulation trapdoor τzk. The
common reference string crs contains crs′

L = {N, N̄}, which is part of a
CRS crs′ = ({λ}, crs′

L) for the Σ-protocol of Sect. 4.2.
Output the common reference string ρ = (crs, h,AHF, pk, Γ,OTS), where OTS
is the specification of a one-time signature scheme.

Keygen(ρ) : Pick w ←↩ U(Z∗
N ), y ←↩ U(ZN ) and compute C = hy · wN mod N2.

Output (sk, vk), where sk = (w, y) and vk = C.
Sign(ρ, sk,M,R) : Given a ring R = {vk0, . . . , vkR−1} (we assume that R = 2r

for some r ∈ N), a message M and a secret key sk = (w, y) ∈ Z
∗
N × ZN , let

� ∈ {0, . . . , R − 1} the index such that vk� = hy · wN mod N2.
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1. Generate a one-time signature key pair (VK,SK) ← OTS.G(1λ) and let
VK′ = AHF(VK) ∈ {0, 1}L. Compute h̄VK =

∏L
j=1 v̄j,VK′[j] mod N̄2.

2. For each j ∈ [r], choose sj ←↩ U(ZN̄ ), tj ←↩ U(Z∗̄
N

) and compute a
commitment Lj = (1 + N̄)�j · h̄

sj

VK · tN̄j mod N̄2.

3. Define lbl = VK and compute a NIZK argument �π ← P
(
crs, �x, �w, lbl

)

that �x � ((vk0, . . . , vkR−1), (L1, . . . , Lr)) ∈ L1-R
∨ (h, h̄VK) by running

the prover P with the Σ-protocol of Sect. 4.2 using the witness �w =
((�1, . . . , �r), w, (s1, . . . , sr), (t1, . . . , tr)).

4. Generate a one-time signature sig ← OTS.S(SK, (�x,M,R, �π))).
Output the signature �Σ = (VK, (L1, . . . , Lr), �π, sig).

Verify(ρ,M, �Σ,R) : Given a signature �Σ = (VK, (L1, . . . , Lr), �π, sig), a message
M and a ring R = {vk0, . . . , vkR−1}, return 0 if these do not parse properly.
Otherwise, let lbl = VK and return 0 if OTS.V(VK, (�x,M,R, �π), sig) = 0.
Otherwise, run V(crs, �x, �π, lbl) which outputs 1 iff �π is a valid argument that(
(vk0, . . . , vkR−1), (L1, . . . , Lr)

)
∈ L1-R

∨ (h, h̄VK).

In the full version of the paper, we provide concrete efficiency estimations
showing that, in terms of signature length, the above realization competes with
its random-oracle-model counterpart. We now state our main security results.

Theorem 5.1. The above ring signature provides unforgeability if: (i) The one-
time signature OTS is strongly unforgeable; (ii) The scheme of Sect. 3.2 is a
secure dense RBM-lossy PKE scheme; (iii) The DCR assumption holds; (iv) Πuss

is an unbounded simulation-sound NIZK argument for the parametrized language
L1-R

∨ . (The proof is in the full version of the paper.)

The proof of anonymity follows from the fact that all commitments are per-
fectly hiding when the CRS ρ is configured as in the real scheme. The proof of
Theorem 5.2 is given in the full version of the paper.

Theorem 5.2. The above construction instantiated with the trapdoor Σ-protocol
of Sect. 4.2 provides full anonymity under key exposure provided Πuss is a statis-
tical NIZK argument for the language L1-R

∨ (h, h̄VK) of (15) when the order of h
is a multiple of N and the order of h̄VK is a multiple of N̄ .
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