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Abstract. Bulletproofs (Bünz et al. IEEE S&P 2018) are a celebrated
ZK proof system that allows for short and efficient proofs, and have been
implemented and deployed in several real-world systems.

In practice, they are most often implemented in their non-interactive
version obtained using the Fiat-Shamir transform, despite the lack of a
formal proof of security for this setting.

Prior to this work, there was no evidence that malleability attacks
were not possible against Fiat-Shamir Bulletproofs. Malleability attacks
can lead to very severe vulnerabilities, as they allow an adversary to
forge proofs re-using or modifying parts of the proofs provided by the
honest parties.

In this paper, we show for the first time that Bulletproofs (or any
other similar multi-round proof system satisfying some form of weak
unique response property) achieve simulation-extractability in the alge-
braic group model.

This implies that Fiat-Shamir Bulletproofs are non-malleable.

Keywords: Non-interactive zero-knowledge ·
Simulation-extractability · Fiat-Shamir

1 Introduction

Zero-knowledge (ZK) proof systems [24] are one of the most fascinating ideas in
modern cryptography, as they allow a prover to persuade a verifier that some
statement is true without revealing any other information. In recent years we
have observed a new renaissance for ZK proofs, motivated in large part by their
applications to advanced Blockchain applications. This has led, among other
things, to a standardization effort for ZK proofs.1.
1 https://zkproof.org.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 397–426, 2022.
https://doi.org/10.1007/978-3-031-07085-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_14&domain=pdf
http://orcid.org/0000-0002-2909-9177
http://orcid.org/0000-0003-4992-0249
http://orcid.org/0000-0001-8556-3053
http://orcid.org/0000-0001-6188-1049
https://zkproof.org
https://doi.org/10.1007/978-3-031-07085-3_14


398 C. Ganesh et al.

A celebrated modern ZK proof system is Bulletproofs [6]. Bulletproofs offer
transparent setup, short proofs and efficient verification (and it is therefore a
zero-knowledge succinct argument of knowledge or zkSNARK) using only very
well established computational assumptions, namely the hardness of discrete
logarithms. At the heart of Bulletproofs lies an “inner product” component.
This can be used then for general purpose proofs (i.e., where the statement
is described as an arithmetic circuit) or for specific purpose proofs (i.e., range
proofs, which are the most common use case in practice). Bulletproofs have
been implemented in real world systems, especially for confidential transaction
systems, like Monero, Mimblewimble, MobileCoin, Interstellar, etc.

Most practical applications of Bulletproofs utilize their non-interactive vari-
ant which, since Bulletproofs is a public-coin proof system, can be obtained using
the Fiat-Shamir heuristic [17] e.g., the interaction with the verifier (who is only
supposed to send uniformly random challenges) is replaced by interacting with a
public hash function. Under the assumption that the hash function is a random
oracle, one can hope that the prover has no easier time producing proofs for false
statements (or for statements for which they do not know a witness) than when
interacting with an actual verifier.

While the Fiat-Shamir heuristic has been around for decades, its formal anal-
ysis has only been performed much later. It is first in [16] that it was formally
proven that the Fiat-Shamir heuristic is indeed sound. However, this proof only
applies to classic Σ-protocols [11], which are a special class of ZK protocols with
only 3 moves. Therefore this analysis does not cover the case of Bulletproofs,
which is a multi-round protocol.

For the case of Bulletproofs, it was first in [22], that it was shown that Fiat-
Shamir Bulletproofs are indeed arguments of knowledge e.g., it is not possible
for the prover to produce a valid proof without knowing a witness for the state-
ment (a similar result, but with less tight bounds, appeared concurrently also
in [8]). However, the results in [22] only consider a malicious prover “in isola-
tion”, whereas in most practical applications of Bulletproofs, several provers are
producing and exchanging proofs at the same time (e.g., on a Blockchain).

The notion of non-malleability in cryptography was introduced in [14], and
the notion of non-malleability for zero-knowledge proofs was introduced in [33].
In a nutshell, a malleability attack is one in which the adversary gets to see proofs
from honest parties, and then modifies or re-uses parts of the proofs output by
the honest parties to forge a proof on some statement for which they do not
know a witness. Malleability attacks can have very serious consequences, such
as the famous MtGox attack of 2014 [13].

Therefore, it is worrisome that Fiat-Shamir Bulletproofs have been imple-
mented in the wild without any solid evidence that malleability attacks are not
possible against them.

Luckily, in this paper we are able to show that Fiat-Shamir Bulletproofs
satisfy a strong notion of simulation-extractability which in particular implies
non-malleability. We do so in the algebraic group model (AGM) which is a model
that only considers restricted classes of adversaries that, in a nutshell, output a
group element z ∈ G together with its representations [z] w.r.t. all elements they
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have seen so far. This is a limitation that our result shares with previous results
in this area [8,22] that studied concrete knowledge-soundness of Fiat–Shamir
Bulletproofs.

1.1 Technical Overview

As already argued, in applications where proof systems are deployed, an adver-
sary who tries to break the system has access to proofs provided by other parties
using the same scheme. Thus, any reasonable security notion must require that
a ZK proof system be secure against adversaries that potentially see and utilise
proofs generated by different parties. Simulation-soundness (SIM-SND) and
simulation-extractability (SIM-EXT) are the notions that guarantee soundness
(the prover cannot prove false statements) or the stronger property knowledge-
soundness (the prover cannot prove statements without knowing a witness) to
hold against adversaries who may see many (simulated) proofs.

Our starting point is the work of [22], that proves that the Fiat-Shamir
transform of Bulletproofs (henceforth BP) is knowledge-sound in the AGM and
random oracle (RO) model. They do this by first proving that the interactive
version of BP satisfies a stronger property of state-restoration witness extended
emulation (SR-WEE), where the prover is allowed to rewind the verifier a poly-
nomial number of times (hence the name since the prover can “restore” the state
of the verifier). They then turn this into a result for Fiat-Shamir BP by showing
that for any adversary who breaks the knowledge-soundness of Fiat-Shamir BP,
there exists an adversary for the SR-WEE property of the interactive BP.

The natural question is then, can their proof be easily extend to the case of
SIM-EXT (where the result needs to hold even when the simulator has to provide
the adversary with simulated proofs on statements of their choice)? To see why
this is not straightforward, consider the following natural approach: just answer
the proof queries of the adversary by running the honest verifier zero-knowledge
simulator of BP, and then program the RO with the challenges returned by
the simulator. The RO queries, on the other hand, are simply forwarded to the
state-restoration oracle as before. This simple approach works if the underlying
protocol satisfies “unique response”, which informally means that the adver-
sary cannot generate two distinct accepting transcripts that share a common
prefix. (This notion has already been used to prove simulation-extractability of
Σ-protocols [16], multi-round public coin interactive protocols [15,30], and Sonic
and Plonk [30]). However, BP does not have unique response under their def-
inition: this is simple to see since randomized commitments are sent from the
prover during the third round. Therefore, if the forged proof returned by the
adversary has a matching prefix as one of the simulated proofs, this forged proof
cannot be used to break SR-WEE. 2

2 In a nutshell, this is because the forged proof may not be an accepting transcript
in the SR-WEE game since the shared prefix is a partial transcript that has not
been queried to the oracle before. Hence, the oracle has no knowledge of the simu-
lated proofs and therefore any partial transcript that has a matching prefix with a
simulated proof.
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The next natural attempt might then be to “de-randomize” later rounds of
BP e.g., by letting the prover choose and commit all their random coins in the
first round, and then prove consistency of all future rounds with these coins. This
of course introduces new challenges, since these additional consistency proofs
must themselves not use any additional randomness in rounds other than the first
one. While these technical challenges could be overcome using the right tools,
the final solution would be all but satisfactory. First of all, the new protocol
would be less efficient than the original BP. And perhaps more importantly, all
real-world implementations of BP would have to decide whether to switch to the
new protocol without any evidence that the original BP is insecure.

Instead, we present a new approach here that allows us to prove that Fiat-
Shamir BP as is satisfies SIM-EXT, which has wide-reaching impact for systems
based on BP that are already in use. The diagram in the full version [21] summa-
rizes our modular security analysis towards simulation-extractability of multi-
round Fiat–Shamir NIZK. We discuss our new security notions and a chain of
implications below.

Unique Response. We introduce two new definitions: state-restoration unique
response (SR-UR), and weak unique response (FS-WUR), which are the interac-
tive, and non-interactive definitions for showing unique response of protocols.
We show that these two notions are tightly related, i.e., FS-WUR tightly reduces
to SR-UR of the interactive protocol (Lemma 1). Both notions require that it
should be hard for the adversary, on input a simulated proof, to output a proof
which shares a prefix with it. This is opposed to the previous notion of unique
response that requires it should be infeasible for the adversary to come up with
two different proofs that share a prefix. As an analogy, our notion is akin to sec-
ond preimage resistance for hash functions, while the previous notion is akin to
collision resistance. Clearly, it is easier to show that an existing protocol satisfies
the weaker definition. But it is in turn harder to show that the weaker definition
is enough to achieve the overall goal. However, note that the weaker variant of
the definition is also somewhat closer to the intuitive goal of non-malleability:
we do not want the adversary to be able to reuse parts of proofs generated by
other parties to forge new proofs.

Simultation-extractability of Multi-round Fiat–Shamir. Once we have
FS-EXT (i.e., extractability), FS-WUR, and NIZK for a non-interactive protocol,
we are able to show its online simulation-extractability (Lemma 2). Putting
together, we prove a general theorem showing that:

Theorem 1 (General Theorem (Informal)). If a multi-round public-coin
interactive protocol satisfies: (1) adaptive state-restoration witness extended emu-
lation (aSR-WEE), (2) perfect HVZK with an algebraic simulator, and (3) state-
restoration unique responses (SR-UR), then the non-interactive version of the
protocol achieved via the Fiat-Shamir transform, is online simulation-extractable
(FS-SIM-EXT) in the algebraic group model and the random oracle model.
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While our framework has been built with Bulletproofs as its main use case,
we believe that it is general enough and could be used to show simulation-
extractability for other public-coin protocols in the literature.

Non-malleable Bulletproofs. We use our definitional foundation to show
that Fiat-Shamir BP is non-malleable and give concrete security bounds for it.
The main technical contribution here is to show that BP satisfies our (weaker)
definition of unique response, namely SR-UR. For the other assumptions in the
theorem, we rely on existing knowledge with some adjustments: BP is already
known to satisfy SR-WEE (from [22]), however in our theorem we require a
stronger (adaptive) version of the definition, namely aSR-WEE, but it turns out
that the proof of SR-WEE in [22] can be used to show the stronger definition as
well. Finally, BP is already known to admit a perfect HVZK simulator, which we
have to extend to the algebraic setting. Thus, using the general theorem, we get
our result. We do this for two versions of BP, namely Bulletproofs for arithmetic
circuits (in Sect. 4) and range-proofs Bulletproofs (cf. full version [21]).

1.2 Related Work

Goldwasser and Kalai [23] show that the Fiat-Shamir heuristic is not sound in
general, by showing explicit – and somewhat contrived – counterexamples that
cannot be proven secure for any hash function. However, there is no evidence
that any natural construction using the Fiat-Shamir heuristic is insecure.

Faust et al. [16] are the first to analyze SIM-SND and SIM-EXT of Fiat–
Shamir NIZK from Σ-protocols. Kohlweiss and Zaj ↪ac [30] extend their result to
multi-round protocols with (n1, . . . , nr)-special soundness where all-but-one ni’s
are equal to 1, which is the case for some modern zkSNARKs (cf. [20,31]), but
is not the case for Bulletproofs-style recursive protocols.

Don et al. [15] study multi-round Fiat–Shamir in the quantum random oracle
model, but their generic claim (Corollary 15) incurs at least a multiplicative fac-
tor O(qr)3. in the loss in soundness due to Fiat–Shamir, even if the result is down-
graded to the classical setting. Hence their result leads to a super-polynomial
loss when the number of rounds r depends on the security parameter as in
Bulletproofs. They also showed SIM-EXT of multi-round Fiat–Shamir proofs in
the QROM assuming the unique response property of the underlying interac-
tive protocols. As we shall see later, Bulletproofs do not meet their definition of
unique responses and we are thus motivated to explore alternative paths towards
SIM-EXT, but in the classical ROM and the AGM.

There are a limited number of works that analyze the concrete soundness loss
incurred by Fiat–Shamir when applied to non-constant round protocols. Ben-
Sasson et al. [5] show that if the underlying interactive oracle proof protocol
satisfies state-restoration soundness (SR-SND) (a stronger variant of soundness
where the prover is allowed to rewind the verifier states) then Fiat–Shamir only
introduces 3(q2 + 1)2−λ of additive loss both in soundness (SND) and proof
3 Here and below q is the number of queries to the random oracle, r is the number of

rounds, and λ is the security parameter.
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of knowledge (EXT). Canetti et al. [9,10] propose the closely related notion of
round-by-round soundness (RBR-SND) which is sufficient to achieve soundness,
even without round oracles. Following these works, Holmgren [29] shows SR-SND
and RBR-SND are equivalent.

The latest works on this line of research are due to Ghoshal and Tessaro [22]
and Bünz et al. [8]. They both provide a detailed analysis of non-interactive
Bulletproofs in the algebraic group model (AGM) [19] and, in particular, the
former shows state-restoration witness extended emulation (SR-WEE) of interac-
tive Bulletproofs in the AGM and uses it to argue that EXT of non-interactive
Bulletproofs results in (q + 1)/2sLen(λ) in additive loss, where sLen(λ) is the bit
length of the shortest challenge. However, none of these works explore SIM-SND
or SIM-EXT of non-constant round Fiat–Shamir.

There are also other zkSNARKs that satisfy simulation-extractability such
as e.g., [27] and [26,30]. However, these constructions are very different than
Bulletproofs since they rely on a structured reference string which comes with
a trapdoor, the knowledge of which compromises the soundness. [3] show tech-
niques to make [26] black-box weakly SIM-EXT NIZK using verifiable encryption.
A generic framework to turn existing zkSNARKs into SIM-EXT zkSNARKs was
presented in [2], but Bulletproofs is not covered by their result since their trans-
form only works for schemes with trusted setup.

2 Preliminaries

Due to space constraints, some standard preliminaries are deferred to the full
version [21].

The Algebraic Group Model. The algebraic group model was introduced
in [19]. An adversary Aalg is called algebraic if every group element output by
Aalg is accompanied by a representation of that group element in terms of all
the group elements that Aalg has seen so far (input and output). Let y1, . . . , yk

be all the group elements previously input and output by Aalg. Then, every
group element y output by Aalg, is accompanied by its representation (x1, . . . , xk)
such that y =

∏k
i=1 yxi

i . Following [19], we write [y] to denote a group element
enhanced with its representation; [y] = (y, x1, . . . , xk).

Adaptive State-restoration Witness Extended Emulation. Here we
define an adaptive variant of state-restoration witness extended emulation (
aSR-WEE) defined in [22]. Intuitively, state-restoration witness extended emu-
lation says that having resettable access to the verifier (or “restoring its state”,
hence the name) should not help a malicious prover in producing a valid proof
without knowing a witness for the statement. Formally, the definition consists of
two games denoted as aWEE-1Palg,D

Π and aWEE-0E,Palg,D
Π,R described in Fig. 1. The

former captures the real game, lets the prover Palg interact with an oracle O1
ext,

which additionally stores all queried transcripts tr. The latter is finally given
to a distinguisher D which outputs a decision bit. In contrast, the ideal game
delegates the role of answering Palg’s oracle queries to a (stateful) extractor E .
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The extractor, at the end of the execution, also outputs a witness candidate w.
Due to the adaptive nature of our variant, we also need to redefine the predicate
Acc() so that it accepts a pair (x∗, T ∗) output by the adversary at the end if and
only if the pair exists in the execution paths and it gets accepted by the verifier.
Formally, Acc(tr, x∗, T ∗) now outputs 1 if (x∗, T ∗) ∈ tr and V(pp, x∗, T ∗) = 1,
and outputs 0 otherwise. For an interactive proof Π = (Setup,P,V) and an
associated relation R, non-uniform algebraic prover Palg, a distinguisher D, and
an extractor E we define:

AdvaSR-WEE
Π,R (E , Palg, D, λ) :=

∣
∣
∣Pr

[

aWEE-1
Palg,D
Π (λ)

]

− Pr
[

aWEE-0
E,Palg,D
Π,R (λ)

]∣
∣
∣ . (1)

Definition 1 (aSR-WEE security). An interactive proof Π = (Setup,P,V)
is online aSR-WEE secure if there exists an efficient E such that for any (non-
uniform algebraic) Palg and for any distinguisher D, AdvaSR-WEE

Π,R (E ,Palg,D, λ)
is negligible in λ.

The main difference with the original definition in [22] is that we allow the
adversary to change the statement associated with a transcript in every query,
whereas [22] forces the adversary to commit to the fixed statement x in advance.
We remark that their results about Bulletproofs still hold under this variant,
because nowhere in the proof do they actually exploit the fact that the statement
is fixed. Hence, the following is immediate from [22]. We provide more details
on this in the full version [21].

Theorem 2 (Adapted from Theorem 6 of [22]). The protocol BP is
aSR-WEE secure.

NIZK and Simulation Oracles. We define zero-knowledge for non-interactive
arguments in the explicitly programmable random oracle model where the sim-
ulator can program the random oracle. The formalization below can be seen as
that of [16] adapted to multi-round protocols. The zero-knowledge simulator SFS

is defined as a stateful algorithm that operates in two modes. In the first mode,
(ci, st

′) ← SFS(1, st, t, i) takes care of random oracle calls to Hi on input t. In
the second mode, (T̃ , st′) ← SFS(2, st, x) simulates the actual argument. For
convenience we define three “wrapper” oracles. These oracles are stateful and
share state.

– S1(t, i) to denote the oracle that returns the first output of SFS(1, st, t, i);
– S2(x,w) that returns the first output of SFS(2, st, x) if (pp, x, w) ∈ R and ⊥

otherwise;
– S ′

2(x) that returns the first output of SFS(2, st, x).

Since NIZK is a security property that is only guaranteed for valid statements
in the language, the definition below makes use of S2 as a proof simulation oracle.
As we shall see later, simulation-extractability on the other hand is defined with
respect to an oracle similar to S ′

2 following [16].
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Definition 2 (Non-interactive Zero Knowledge). A non-interactive argu-
ment ΠFS = (Setup,PH

FS,VH
FS) for relation R is unbounded non-interactive zero

knowledge (NIZK) in the random oracle model, if there exist a PPT simulator
SFS with wrapper oracles S1 and S2 such that for all PPT distinguisher D there
exist a negligible function μ(λ) it holds that

| Pr
[
DH,PH

FS(1λ) = 1
]

− Pr
[
DS1,S2(1λ)

]
| ≤ μ(λ)

where both PH
FS(pp, x, w) and S2 return ⊥ if (pp, x, w) �∈ R.

Given a perfect HVZK simulator S for Π, we immediately obtain the following
canonical NIZK simulator SFS for ΠFS by defining responses of each mode as
follows.

– To answer query (t, i) with mode 1, SFS(1, st, t, i) lazily samples a lookup table
Q1,i kept in state st. It checks whether Q1,i[t] is already defined. If this is the
case, it returns the previously assigned value; otherwise it returns and sets a
fresh random value ci sampled from Chi.

– To answer query x with mode 2, SFS(2, st, x) calls the perfect HVZK simulator
S of Π to obtain a simulated proof π = (a1, c1, . . . , ar, cr, ar+1). Then, it
programs the tables such that Q1,1[x, a1] := c1, . . . ,Q1,r[x, a1, c1, . . . , ar] :=
cr. If any of the table entries has been already defined SFS aborts, which
should happen with negligible probability assuming high min-entropy of a1.

Online Extractability in the AGM. We introduce the definition of (adap-
tive) online extractability (FS-EXT) in the AGM. Unlike the usual online extrac-
tion scenario (e.g., [18,32,34]), where an extractor is only given x∗, T ∗ and the
random oracle query history as inputs and asked to extract the witness, our defi-
nition below requires the extractor to intercept/program the queries/answers to
the RO for Palg. We do so because some proofs in [22] (such as Theorem 2 and
3) relating state-restoration witness-extended emulation for Π and argument
of knowledge for ΠFS do appear to exploit this extra power of the extractor,
which to the best of our understanding appears necessary for their proofs to go
through.

This modification in turn requires the existence of an extractor (E0, E1) where
E1 takes care of simulating the RO responses for Palg and then E0 produces a
valid witness given an adversarial forgery. Our formalization therefore follows
variants of extractability in the literature that explicitly introduce a distinguisher
to guarantee the validity of simulation conducted by E1, e.g., [35, Def. 11] for
Fiat–Shamir NIZK or [25] for CRS-based NIZK. On the other hand, we do not
grant the extractor an oracle access to Palg to explicitly capture the “online”
nature of extraction, i.e., no rewinding step is required.

Note also that the roles of (E0, E1) and D below are also analogous to those
of the extractor and the distinguisher in aSR-WEE. Thus, our definition allows
smooth transition from aSR-WEE to FS-EXT.
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Fig. 1. Online aSR-WEE Security (adapted from [22], with differences highlighted in
orange). (Color figure online)

Fig. 2. Extractability games. Note that in the EXT-1 experiment, calling the verifi-
cation algorithm VFS has an impact on the RO query set Q1. In particular, omitting
this, there might be trivial distinguishing attacks due to the differences in Q1 between
EXT-1 and EXT-0.
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Definition 3 (FS-EXT security). Let ΠFS = (Setup,PFS,VFS) be a NIZK
scheme for language L. Let H be a random oracle. ΠFS is online extractable
(FS-EXT) in the AGM and the ROM if there exists an efficient extractor
E = (E0, E1) such that for every PPT algebraic adversary Palg and every dis-
tinguisher D, the following probability is negligible in λ:

AdvFS-EXTΠFS,R (H, E ,Palg,D, λ) :=
∣
∣
∣Pr[EXT-1H,Palg,D

ΠFS
(λ)] − Pr[EXT-0E,Palg,D

ΠFS,R (λ)]
∣
∣
∣ .

In Fig. 2, each of Q1 = {Q1,i}i∈[1,r] is a set of query response pairs corresponding
to queries to H or E1 with random oracle index i.

We recall a relation between aSR-WEE and FS-EXT, because one of our claims
(Lemma 2) uses FS-EXT as an assumption. Although Theorem 2 of [22] is for
non-adaptive variants of these notions, the proof for the following theorem is
almost identical except that we do not ask P∗

alg to submit the statement x in the
beginning, just like in Theorem 2.

Theorem 3. Let R be a relation. Let Π be a r-challenge public coin interactive
protocol for the relation R where the ith challenge is sampled from Chi for i ∈
[1, r]. Let E be an aSR-WEE extractor for Π. There exists an FS-EXT extractor
E∗ = (E∗

0 , E∗
1 ) for ΠFS such that for every non-uniform algebraic prover P∗

alg

against ΠFS that makes q random oracle queries, and for every distinguisher
D∗, there exists a non-uniform algebraic prover Palg and a distinguisher D such
that for all λ ∈ N

+,

AdvFS-EXTΠFS,R (H, E∗,P∗
alg,D∗, λ) ≤ AdvaSR-WEE

Π,R (E ,Palg,D, λ) + (q + 1)/|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 . Moreover,
Palg makes at most q queries to its oracle and is nearly as efficient as P∗

alg. The
extractor E∗ is nearly as efficient as E.

A proof sketch is found in the full version [21].

3 Simulation-Extractability from State-Restoration
Unique Response

Our results make use of the concrete security proof of extractability for Bullet-
proofs given by [22] in the algebraic group model. Thus, the first step towards
proving simulation-extractability for Bulletproofs is to provide a formal defini-
tion of simulation-extractability in the algebraic group model, which has not
previously appeared in the literature.

3.1 Simulation-Extractability in the AGM

On a high-level, the simulation-extractability (SIM-EXT) property ensures that
extractability holds even if the cheating adversary sees simulated proofs. Defin-
ing SIM-EXT in the AGM is a non-trivial task: because the algebraic adversary
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outputs group representation with respect to all the group elements they have
observed so far, the format of representation gets complex as the adversary
receives more simulated proofs, whose representation might not be w.r.t. gener-
ators present in pp. To make our analysis simpler, we introduce the notion of
algebraic simulator.

Definition 4 (Algebraic simulator). Consider a perfectly HVZK argument of
knowledge (Setup,P,V) with a PPT simulator S. The simulator S is algebraic
if on receiving a statement x and its group representation [x] as input, it out-
puts a proof T̃ and its group representation [T̃ ] with respect to generators in pp
and generators used for representing x. For an algebraic simulator S, we denote
[T̃ ] ← S([x]).

Definition 5 (Algebraic simulator for NIZK). Consider a non-interactive
argument of knowledge (Setup,PFS,VFS) with NIZK simulator SFS. The simula-
tor SFS is algebraic if on receiving a statement x and its group representation
[x] as input, its second mode outputs proofs T̃ , their group representations [T̃ ]
with respect to generators in pp and generators used for representing x. For an
algebraic simulator SFS, we denote ([T̃ ], st′) ← SFS(2, st, [x]).

Remark 1. Our use of algebraic is similar in spirit to composability results in the
AGM [1] where the environment is required to be algebraic as well, in addition
to the adversary; in particular they require the simulator for proving security
to be algebraic. Restricting the simulator to be algebraic does not seem to limit
the class of protocols that we can analyze, since typical simulators for discrete-
log-based protocols are already algebraic. Consider the simulator for the Schnorr
protocol: given a statement x ∈ G and random challenge ρ the simulator outputs
(gzx−ρ, ρ, z) where z is uniformly sampled from Zq. In the next section, we show
that the simulator for Bulletproofs is also algebraic.

Remark 2. By construction, if we have an algebraic HVZK simulator S for Π,
then the corresponding canonical NIZK simulator SFS for ΠFS (see the paragraph
after Definition 2) fixed by S is also algebraic, since SFS internally invokes S to
obtain a proof.

We now extend the definition of FS-EXT to simulation-extractability, by
equipping the cheating algebraic prover with access to proof simulation oracles
in addition to the random oracle. Formally, we define simulation-extractability
with respect to a specific NIZK simulator SFS and the corresponding wrapper ora-
cles (S1,S ′

2) (see Sect. 2). That is, S1 on input (t, i) returns the first output of
SFS(1, st, t, i) (i.e., corresponding the random oracle H in FS-EXT) and S ′

2 on an
input statement x returns the first output of SFS(2, st, x), respectively.

Following FS-EXT, we define a simulator-extractor E = (E0, E1, E2), where E1

receives a random oracle query of the form (t, i) (similar to the wrapper oracle
S1) and returns a challenge from Chi; E2 receives a statement query x and returns
a simulated proof (similar to the wrapper oracle S ′

2); E0 extracts a witness at
the end. The differences with Definition 3 are highlighted in orange.
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Fig. 3. Simulation extractability games. Like in Fig. 2, in the SIM-EXT-1 experiment,
calling the verification algorithm VFS has an impact on the RO query set Q1.

At a high-level, the security requirement of FS-SIM-EXT is two-fold: (1)
(E1, E2) in the game SIM-EXT-0 correctly simulates the adversary’s view in
SIM-EXT-1 (indicated by a bit b̃), and (2) the extractor E0 outputs a valid wit-
ness as long as an adversarial forgery (x∗, T ∗) is accepting and non-trivial, i.e.,
not identical to what’s obtained by querying a proof simulation oracle (indicated
by a bit b).

Definition 6 (FS-SIM-EXT security). Consider a NIZK scheme ΠFS =
(Setup,PFS,VFS) for language L with an NIZK simulator SFS. Let (S1,S ′

2) be
wrapper oracles for SFS as defined in Sect. 2. ΠFS is online simulation-extractable
(FS-SIM-EXT) with respect to SFS in the AGM and ROM, if there exists an
efficient simulator-extractor E = (E0, E1, E2) such that for every PPT algebraic
adversary Palg and every distinguisher D, the following probability is negligible
in λ:

AdvFS-SIM-EXT
ΠFS,R (SFS, E ,Palg,D, λ)

:=
∣
∣
∣Pr[SIM-EXT-1S1,S′

2,Palg,D
ΠFS

(λ)] − Pr[SIM-EXT-0E,Palg,D
ΠFS,R (λ)]

∣
∣
∣ .

In Fig. 3, each of Q1 = {Q1,i}i∈[1,r] is a set of query response pairs corresponding
to queries to S1 or E1 with random oracle index i. Q2 is a set of statement-
transcript pairs (x, T̃ ), where x is a statement queried to the proof simulation
oracle S ′

2 or E2 by Palg, and T̃ is the corresponding simulated proof, respectively.

Comparison with Previous SIM-EXT Definitions. Although we borrow the
formalization of wrapper oracles (S1,S ′

2) from [16], our definition of FS-SIM-EXT
is different from their “weak” (Definition 6, an extractor requires rewinding
access to the adversary) and “full” (Definition 7, an extractor is tasked with
extracting a witness by only looking at an adversarial statement-proof pair)
SIM-EXT. Indeed, neither of these is suitable in our setting. The former is too
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weak because we aim for an “online” way of extraction; the latter is too strong
since the extractor used for showing reduction from FS-EXT to aSR-WEE (The-
orem 3) already needs additional control over RO queries. To the best of our
knowledge, there has been no previous work analyzing Fiat–Shamir NIZK under
the latter notion even in the AGM.

Another difference with previous FS-SIM-EXT definitions is that ours explic-
itly handles indistinguishability of two games. This wasn’t the case in [16]
because their proof of weak SIM-EXT invokes the general forking lemma [4]
that implicitly takes care of perfect indistinguishability of two runs. Our defini-
tion can essentially be seen as Definition 11 of Unruh [35] extended with a proof
simulation oracle, which however was considered “too strong” in that work as
its focus is security in the QROM. In contrast, our main focus is analysis in
the CROM and online extraction enabled by the AGM (following the previous
FS-EXT analysis conducted by [22]). Thus, we believe ours is most suitable for
formally analyzing SIM-EXT of Bulletproofs based on the state-of-the-art.

There also exist several SIM-EXT definitions for CRS-NIZK (e.g., [2,3,12,25,
28,33]) but the way they are formulated is naturally different since the plain
extractability already varies and simulators for CRS-NIZK behave in a different
fashion. Perhaps a variant of Groth [25] is somewhat close to ours: the first part of
the extractor handles simulation of CRS (so that it generates a trapdoor without
the adversary noticing) and the second part takes care of witness extraction.

Remark 3. In the AGM, the representation submitted by the adversary is w.r.t.
the group elements present in pp and all the simulated proofs they have seen
so far. However, once we assume an algebraic simulator, it is always possible
for E to convert such representation to the one w.r.t. pp and previously queried
statements. As we shall see later, this will greatly simplify our security proof in
the AGM because it will allow us to reuse the existing extractor analysis (where
there is no simulation oracle).

State-restoration Unique Response. Our first definition considers the game
SR-UR

Aalg,S
Π (λ) in Fig. 4. As the name indicates it has a flavor of aSR-WEE and it

is therefore – compared to the the usual UR definition for interactive protocols
– both stronger (in the sense that an adversary can rewind the verifier) and
weaker (in the sense that an adversary is forced to use the simulated transcript
to find a forgery).

Concretely, the prover initially generates an instance x on which it attempts
to break the unique response property. Similar to aSR-WEE, we capture the
power of the prover to rewind the verifier with an oracle Oext. Roughly, the oracle
allows the prover to build an execution tree, which is extended with each query
to it by the prover. The prover succeeds if it comes up with another accepting
transcript T that is part of the execution tree and have a prefix in common with
the simulated transcript T̃ . Let T = (a1, c1, . . . , ar, cr, ar+1) denote a transcript.
We write T |i to denote a partial transcript consisting of the first 2i messages of
T , i.e., T |i = (a1, c1, . . . , ai, ci).
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Fig. 4. State-restoration Unique Response.

We also remark that, unlike aSR-WEE, our SR-UR is deliberately made non-
adaptive to prove subsequent lemmas with a weaker assumption. Indeed, the
reductions we present later will go through even though the resulting simulation-
extractability claim has an adaptive flavor.

Definition 7 (SR-UR). Consider a (2r + 1)-round public-coin interactive proof
system Π = (Setup,P,V) that has perfect HVZK simulator S. Π is said
to have state-restoration unique response (SR-UR) with respect to a simula-
tor S, if for all PPT algebraic adversaries Aalg = (A1,A2), the advantage

AdvSR-URΠ (Aalg,S) := Pr[SR-URAalg,S
Π (λ)] is negl(λ).

Weak Unique Response We now present our weak unique response definition
tailored to non-interactive protocols. While typical unique response properties
in the literature are defined for interactive protocols, [30, Definition 7] is in the
non-interactive setting. Our definition below is strictly weaker than theirs, as
we only need to guarantee the hardness of finding another accepting transcript
forked from simulated (honest) one.

Definition 8 (FS-WUR). Consider a (2r+1)-round public-coin interactive proof
system Π = (Setup,P,V) and the resulting NIZK ΠFS = (Setup,PFS,VFS) via
Fiat-Shamir transform. Let SFS be a perfect NIZK simulator for ΠFS (Definition
2) with wrapper oracles (S1,S ′

2) as defined in Section 2. ΠFS is said to have
weak unique responses (FS-WUR) with respect to SFS if given a transcript T̃ =
(ã1, c̃1, . . . , ãr, c̃r, ãr+1) simulated by SFS, it is hard to find another accepting
transcript T = (a1, c1, . . . , ar, cr, ar+1) that both have a common prefix up to
the ith challenge for an instance x. That is, for all PPT algebraic adversaries
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Aalg = (A1,A2) the advantage AdvFS-WUR
ΠFS

(Aalg,SFS) defined as the following
probability is negl(λ):

Pr

⎡

⎢
⎢
⎣

VS1
FS (pp, x, T ) = 1

∧
(
∃j ∈ [1, r] : T |j = T̃ |j
∧ aj+1 �= ãj+1

)

∣
∣
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ);
([x], st) ← AS1

1 (pp);
T̃ ← S ′

2(x);
[T ] ← AS1

2 (T̃ , st);

⎤

⎥
⎥
⎦.

We now show that FS-WUR of ΠFS reduces to SR-UR of the interactive proof
system Π in the AGM. Informally, the lemma below guarantees that one can
construct an adversary breaking unique response in the interactive setting, given
an adversary breaking unique response in the non-interactive setting, as long as
it makes RO queries for the accepting transcript in right order. As mentioned
earlier, the reduction below does not crucially depend on the AGM: if a given
protocol meets SR-UR without the AGM the proof holds almost verbatim with-
out the AGM as well. Proof is rather straightforward and thus is deferred to the
full version [21].

Lemma 1. Consider a (2r + 1)-round public-coin interactive proof system Π =
(Setup,P,V) and the resulting NIZK ΠFS = (Setup,PFS,VFS) via Fiat-Shamir
transform. Let S be a perfect algebraic HVZK simulator for Π and SFS be the
corresponding canonical NIZK simulator for ΠFS. If Π has SR-UR with respect to
S, then ΠFS has FS-WUR with respect to SFS. That is, for every PPT adversary A
against FS-WUR of ΠFS that makes q queries to S1, there exists a PPT adversary
B against SR-UR of Π such that,

AdvFS-WUR
ΠFS

(A,SFS) ≤ AdvSR-URΠ (B,S) +
q + 1
|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 . Moreover, B
makes at most q queries to its oracle and is nearly as efficient as A.

3.2 From Weak Unique Response to Simulation-extractability

We now prove the simulation-extractability of a non-interactive protocol ΠFS

assuming it comes with an algebraic NIZK simulator SFS, it is extractable and
has weak unique responses with respect to SFS. On a high-level the proof works
by constructing another adversary Palg that forwards the RO queries made by a
FS-SIM-EXT adversary P∗

alg to the FS-EXT game, except for the ones that have
prefix in common with any of the simulated transcripts. This will allow us to
invoke the extractor E that is only guaranteed to work in the FS-EXT setting.
On the other hand, thanks to the FS-WUR property we can argue that a cheating
prover also has a hard time finding another transcript by reusing any prefix of
a simulated transcript.

We stress that, as long as FS-WUR and FS-EXT are satisfied without the
AGM the proof below holds almost verbatim without the AGM as well. Inter-
estingly, proof in the AGM requires additional care about representation sub-
mitted by Palg: whenever Palg forwards group elements with representation to
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external entities (i.e., H, E1, and E0), it must always convert representation to
the one only with respect to generators in pp. This is made possible thanks to an
algebraic simulator SFS; by probing how SFS simulates a transcript with respect
to the generators in pp, Palg can translate the group representation submitted
by P∗

alg even if it depends on previously simulated transcripts. This is crucial
for invoking the extractor from FS-EXT, since a cheating prover against FS-EXT
is only allowed to use the generators present in pp. We also remark that the
additive security loss due to failure of RO programming by S ′

2 is not present in
the bound since we use a canonical NIZK simulator as an assumption and such
a loss already appears when showing NIZK from HVZK.

Lemma 2. Consider a NIZK argument system ΠFS with an algebraic NIZK sim-
ulator SFS. If ΠFS is FS-WUR with respect to SFS and online FS-EXT, then it is
online FS-SIM-EXT with respect to SFS.

Concretely, let E = (E0, E1) be an FS-EXT extractor for ΠFS. There exists
an efficient FS-SIM-EXT simulator-extractor E∗ = (E∗

0 , E∗
1 , E∗

2 ) for ΠFS such that
for every algebraic prover P∗

alg against ΠFS that makes q1 random oracle queries
(i.e., queries to S1 or E∗

1 ), and q2 simulation queries (i.e., queries to S ′
2 or

E∗
2 ), and for every distinguisher D∗, there exists another algebraic prover Palg,

a distinguisher D, and an FS-WUR adversary Aalg, such that for all λ ∈ N
+,

Adv
FS-SIM-EXT
ΠFS,R (SFS, E∗

, P∗
alg, D∗

) ≤ Adv
FS-EXT
ΠFS,R (H, E, Palg, D) + q2 · Adv

FS-WUR
ΠFS,R (Aalg, SFS).

Moreover, Palg and Aalg make at most q1 queries to their oracle and is nearly as
efficient as P∗

alg. The extractor E∗ is nearly as efficient as E.

Proof. Without loss of generality we assume P∗
alg does not repeat the same RO

queries. We first construct a cheating prover Palg against FS-EXT that internally
uses the FS-SIM-EXT adversary P∗

alg and simulates its view in FS-SIM-EXT.
We now describe the following simple hybrids.

G0 This game is identical to SIM-EXT-1
S1,S′

2,P∗
alg,D∗

ΠFS
(λ). We have

Pr[G0(P∗
alg,D∗)] = Pr[SIM-EXT-1

S1,S′
2,P∗

alg,D∗

ΠFS
(λ)].

G1 This game is identical to G0 except that it aborts if d = 1 (i.e., (x∗, T ∗) is
accepting) and (x∗, T ∗) /∈ Q2, while there exists some (x∗, T̃ ) ∈ Q2 that has
prefix in common with T ∗ but differs at the response right after that prefix,
i.e., for some j ≤ r it holds that T ∗|j = T̃ |j and a∗

j+1 �= ãj+1. The abort event
implies that there exists an efficient FS-WUR adversary Aalg that internally uses
P∗
alg. That is,

∣
∣Pr[G0(P∗

alg,D∗)] − Pr[G1(P∗
alg,D∗)]

∣
∣ ≤ Pr[G1(P∗

alg,D∗)aborts]

≤ q2 · AdvFS-WUR
ΠFS,R (Aalg,SFS).

(2)

We defer the reduction deriving (2) to later.
Constructing Palg and D for FS-EXT. We now construct a FS-EXT adversary
Palg and a distinguisher D. Palg plays an FS-EXT game while internally simulating
the view of P∗

alg in the game G1 as follows.
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– On receiving pp from Setup(1λ), Palg forwards pp to P∗
alg.

– Whenever P∗
alg makes a simulation query with input [x], Palg internally invokes

SFS(2, st, [x]) to obtain ([T̃ ], st′) and records a statement-proof pair (x, T̃ )
in the set Q2. Palg also separately keeps track of representation of every
entry in Q2. Then it programs the RO tables Q1 for every challenge in T̃ as
SFS(2, st, [x]) would do.

– Whenever P∗
alg (or VFS at the end) makes a random oracle query with input

((pp, [x], [T ], [ai]), i), where T = (a1, c1, . . . , ai−1, ci−1), Palg checks whether
there exists some (x, T̃ ) ∈ Q2 that has prefix in common with T , i.e., for
some j ≤ i − 1 it holds that T |j = T̃ |j . If that is the case, it lazily samples
ci from Chi and updates Q1,i accordingly, as SFS(1, st, (pp, [x], [T ], [ai]), i)
would do. Otherwise, it forwards the query ((pp, x, T , ai), i) to a FS-EXT
game with converted group representation, receives ci ∈ Chi, and updates
Q1,i accordingly.

– When P∗
alg outputs a forgery ([x∗], [T ∗]), Palg first checks whether it causes

aborts in the game G1. If that is the case, Palg also aborts because it implies
that the challenge values in T ∗ are not obtained by forwarding the corre-
sponding queries to a FS-EXT game and therefore (x∗, T ∗) is not accepting
in the FS-EXT game.

– Otherwise, Palg outputs (x∗, T ∗, stPalg
) to a FS-EXT game with converted

group representation, where stPalg
= (Q1,Q2).

A FS-EXT distinguisher D internally invokes D∗ on input (stPalg
, x∗, T ∗,Q1,Q2)

and outputs whatever D∗ returns. By construction, we have

Pr[G1(P∗
alg,D∗)] = Pr[EXT-1H,Palg,D

ΠFS
(λ)].

Constructing E∗ for FS-SIM-EXT. We define a simulator-extractor E∗ =
(E∗

0 , E∗
1 , E∗

2 ) using a FS-EXT extractor E = (E0, E1). E∗
1 answers the random oracle

queries made by P∗
alg as Palg would, by using the responses from E1. E∗

2 answers
the simulation queries made by P∗

alg as Palg would, by internally invoking SFS.
E∗
0 outputs whatever E0 returns on input (stE , [x∗], [T ∗]). Note that, if Palg does

not abort, T ∗ has no prefix in common with any of the previously simulated
transcripts. In that case, thanks to the random oracle simulation conducted by
Palg as above, for every i ∈ [1, r], c∗

i has been obtained by querying the random
oracle in a FS-EXT game with input ((pp, x∗, T ∗|i−1, a

∗
i ), i). Therefore, (x∗, T ∗)

gets accepted by VE1
FS whenever it gets accepted by VE∗

1
FS , (x∗, T ∗) /∈ Q2, and Palg

does not abort. By construction, E∗ succeeds in extraction if and only if E does
so in the game EXT-0E,Palg,D

ΠFS,R (λ). Thus we have

Pr[SIM-EXT-0
E∗,P∗

alg,D∗

ΠFS,R (λ)] = Pr[EXT-0E,Palg,D
ΠFS,R (λ)].

Reduction to FS-WUR. We now bound the probability that the game G1 aborts.
We argue that, if there exists (P∗

alg,D∗) that causes G1(P∗
alg,D∗) to abort (or in
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other words, that causes Palg to abort), one can use P∗
alg to construct another

adversary Aalg = (A1,A2) that breaks FS-WUR with respect to SFS. The reduc-
tion goes as follows. The differences with Palg are highlighted in orange.

– A1 first picks a query index k ∈ [1, q2] uniformly at random.
– On receiving pp from Setup(1λ), A1 forwards pp to P∗

alg.
– Whenever P∗

alg makes a simulation query with input [x], if this is the kth
simulation query then it forwards x to S ′

2 in the FS-WUR game with con-
verted group representation. We denote the statement-transcript pair of the
kth query by (xk, T̃ k).4 Otherwise, A1 internally invokes SFS(2, st, [x]) to
obtain ([T̃ ], st′). It records a statement-proof pair (x, T̃ ) in the set Q2. A
also separately keeps track of representation of every entry in Q2. Then it
programs the RO tables Q1 for every challenge in T̃ as SFS(2, st, [x]) would
do. A2 also responds to simulation queries in the same way, except that it
never forwards a statement to the FS-WUR game.

– Whenever P∗
alg (or VFS at the end) makes a random oracle query with input

((pp, [x], [T ], [ai]), i), where T = (a1, c1, . . . , ai−1, ci−1), A2 checks whether
(xk, T̃ k) has prefix in common with T , i.e., for some j ≤ i − 1 it holds that
T |j = T̃ k|j . If that is the case, it forwards the query ((pp, x, T , ai), i) to S1

in the FS-WUR game with converted group representation, receives ci ∈ Chi,
and updates Q1,i accordingly. Otherwise, it lazily samples ci from Chi and
updates Q1,i accordingly, as SFS(1, st, (pp, [x], [T ], [ai]), i) would do. A1 also
responds to random oracle queries in the same way, except that it never
forwards queries to the FS-WUR game.

– When P∗
alg outputs a forgery ([x∗], [T ∗]), Aalg first checks whether it causes

aborts in the game G1. If that is the case, A2 forwards T ∗ to the FS-WUR
game as a forgery with converted group representation.

The above procedure perfectly simulates P∗
alg’s view in the game G1. By

construction Aalg breaks FS-WUR with respect to SFS if G1 aborts and (x∗ =
xk∧T ∗ has some prefix in common with T̃ k), because then it is guaranteed that
for every i ∈ [1, r], c∗

i has been obtained by querying the oracles (S1,S ′
2) in the

FS-WUR game. Therefore, T ∗ does qualify as a valid forgery in the FS-WUR
game. Conditioned on the event that G1 aborts, the probability that Aalg wins
is at least 1/q2. Therefore, we have

1
q2

· Pr[G1(P∗
alg,D∗)aborts] ≤ AdvFS-WUR

ΠFS,R (Aalg,SFS)

which derives (2). Putting together, we obtain

4 We note that Aalg does not get to know the representation of T̃ k unlike other sim-
ulated transcripts, as that particular one comes from the FS-WUR game and its
representation is not disclosed to the adversary. Therefore, all the subsequent out-
puts from P∗

alg are with respect to pp and T̃ k. This, however, does not prevent us

from showing reduction because outputting representation w.r.t. pp and T̃ k is indeed
allowed in the FS-WUR game.
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∣
∣
∣Pr[SIM-EXT-1

S1,S′
2,P∗

alg,D∗

ΠFS
(λ)] − Pr[SIM-EXT-0

E∗,P∗
alg,D∗

ΠFS,R (λ)]
∣
∣
∣

≤
∣
∣
∣Pr[EXT-1H,Palg,D

ΠFS
(λ)] − Pr[EXT-0E,Palg,D

ΠFS,R (λ)]
∣
∣
∣ + q2 · AdvFS-WUR

ΠFS,R (Aalg,SFS)

≤AdvFS-EXTΠFS,R (H, E ,Palg,D) + q2 · AdvFS-WUR
ΠFS,R (Aalg,SFS).

	


3.3 Generic Result on Simulation-Extractability

Theorem 4. Let R be a relation. Let Π be a r-challenge public coin interac-
tive protocol for the relation R where the ith challenge is sampled from Chi for
i ∈ [1, r]. Suppose Π satisfies: aSR-WEE, perfect HVZK with algebraic simulator
S, and SR-UR with respect to S. Let SFS be the corresponding canonical NIZK
simulator for SFS fixed by S. Then ΠFS is FS-SIM-EXT with respect to SFS.

Concretely, let E be an aSR-WEE extractor for Π. There exists an efficient
FS-SIM-EXT simulator-extractor E∗ for ΠFS such that for every non-uniform
algebraic prover P∗

alg against ΠFS that makes q1 random oracle queries, and q2
simulation queries, and for every distinguisher D∗, there exists a non-uniform
algebraic prover Palg, an SR-UR adversary Aalg, and a distinguisher D such that
for all λ ∈ N

+,

AdvFS-SIM-EXT
ΠFS,R (SFS, E∗,P∗

alg,D∗, λ)

≤AdvaSR-WEE
Π,R (E ,Palg,D, λ) + q2 · AdvSR-URΠ,R (Aalg,S, λ) +

(q2 + 1)(q1 + 1)
|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 .

Proof. From Theorem 3, aSR-WEE of Π implies FS-EXT security of ΠFS. From
Lemma 1, SR-UR and HVZK of Π implies FS-WUR security of ΠFS. Finally, from
Lemma 2, FS-EXT and FS-WUR imply FS-SIM-EXT security of ΠFS. Putting
together all the concrete bounds, we obtain the result. 	


4 Non-Malleability of Bulletproofs – Arithmetic Circuits

The protocol for arithmetic circuit satisfiability as it appears in Bulletproofs
(henceforth referred as BP) [7] is formally described in Protocol 1 of the full ver-
sion [21] and proceeds as follows: In the first round, the prover commits to values
on the wire of the circuit (i.e. aL,aR and aO), and the blinding vectors (sL, sR).
It receives challenges y, z from the verifier. Based on these challenges, the prover
defines three polynomials, l, r and t, where t(X) = 〈l(X), r(X)〉, and commits
to the coefficients of the polynomial t in the third round, i.e. commitments
T1, T3, T4, T5, and, T6

5. On receiving a challenge x from the verifier, the prover
5 The degree two term is independent of the witness and can be computed by the

verifier, therefore there is no T2 commitment.
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evaluates polynomials l, r on this challenge point, computes t̂ = 〈l(x), r(x)〉, and
values βx, μ, and sends βx, μ, t̂, l = l(x) and r = r(x) in the fifth round. The
verifier accepts if: the commitments {Ti}i=S (for S = {1, 3, 4, 5, 6}) are to the
correct polynomial t and if t̂ = 〈l, r〉. To get logarithmic proof size, the prover
and verifier define an instance of the inner dot product for checking the condition
t̂ = 〈l, r〉, instead of sending vectors l, r in clear.

The inner product subroutine is presented in the full version [21].

Simulator 1: SBP

The algebraic simulator SBP is given as input:

pp = (n,Q, g, h, u,g,h), x = (WL,WR,WO , c)

The transcript is simulated as follows where the difference with the original
simulator is marked in orange:

1. x, y, w, z
$←− Zp

2. βx, μ
$←− Zp

3. l, r $←− Z
n
p

4. t̂ = 〈l, r〉
5. ρI , ρO, t3, t4, t5, t6, β3, β4, β5, β6

$←− Zp

6. AI = gρI , AO = uρO

7. Ti = gtihβi for i ∈ {3, 4, 5, 6}
8. h′ = hy−n

, u′ = uw

9. WL = h′zQ+1
[1:] ·WL , WR = gy−n◦(zQ+1

[1:] ·WR)
, WO = hy−n◦(zQ+1

[1:] ·WO)

10. S =
(
Ax

I · Ax2

O · g−l · (h′)−yn−r · W x
L · W x

R · WO · h−μ
)−x−3

11. T1 =
(
h−βx · g

x2·(δ(y,z)+〈zQ+1
[1:] ,c〉)−t̂ ·

∏6
i=3 T xi

i

)−x−1

12. T = (S,AI , AO; y, z; {Ti}i∈S ;x; t̂, βx, μ;w; l, r)
13. Output [T ]

4.1 Algebraic Simulation

In Simulator 1 we define an algebraic simulator SBP for BP which is going to
be used in both the proof of HVZK and SR-UR. The simulator SBP essentially
works as the simulator from [6], except that, since it needs to explicitly output
group representation for each simulated element, it will generate AI , AO as well
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as the Ti’s by learning their discrete logarithm in bases g, h, u instead of generi-
cally sampling random group elements like in the original proof. This makes no
difference for the ZK claim and makes the proof of SR-UR simpler. Note that,
since the simulator picks all the challenges at random in the first step, the sim-
ulator can easily be changed to satisfy the stronger special HVZK. However, by
defining the simulator like this we can reuse it in both of the following claims.
Note also that while the output of the simulator does not explicitly contain the
group representation (t1, β1) of T1 w.r.t base (g, h), it is possible to compute
these values from the output of the simulator.

Remark 4. The simulator for the recursive version of Bulletproof e.g., the one
that calls InPrd instead of sending l, r directly, can easily be constructed from the
simulator above by running the InPrd protocol on l, r. The algebraic simulator
also outputs the representation for the elements Li, Ri generated during this
protocol and this representation will be used explicitly in the proof later.

Claim 1. The protocol BP (Protocol 1 of the full version [21]) is perfect HVZK
with algebraic simulator SBP (Simulator 1) .

Proof. The claim follows directly from the proof of HVZK in [6] by observing that
the way AI , AO, T3, T4, T5, T6 are generated in our and their simulator produces
the exact same distribution (in their case they are sampled as random elements
from the group; in ours, we generate them by raising generators to random
exponents, and those are not re-used anywhere else).

4.2 State-Restoration Unique Responses

The following claim is crucial for invoking our generic result from Theorem 4. We
remind the reader that proving uniqueness of the randomized commitments Ti’s
is made possible thanks to our relaxed definition: if the adversary was allowed
to control both transcripts, it would be trivial to break the (strong) unique
response by honestly executing the prover algorithm twice with known witness
and by committing to ti using distinct randomnesses βi and β′

i. Our proof below
on the other hand argues that a cheating prover in SR-UR has a hard time
forging Ti once one of the transcripts has been fixed by a simulator. In other
words, they cannot reuse parts of simulated proofs without knowing how the
simulated messages were generated. This is true even for true statements where
the prover might know the witness.

Claim 2. Protocol BP (Protocol 1 of the full version [21]) satisfies state-
restoration unique response (SR-UR) with respect to SBP (Simulator 1) in the
AGM, under the assumption that solving the discrete-log relation is hard. That
is, for every PPT adversary Aur against SR-UR of BP that makes q queries to
Oext (Fig. 4), there exists a PPT adversary A against DL-REL such that,

AdvSR-URBP (Aur,SBP) ≤ AdvDL-REL(Gλ,Aλ) +
(14n + 8)q

(p − 1)
.
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Proof. Given an algebraic adversary for SR-UR-game Aur = (A1,A2) for pro-
tocol BP (Fig. 4), we construct an adversary, A, who breaks the discrete-log
relation.

A, upon receiving a discrete-log relation challenge interacts with Aur as fol-
lows: It first runs A1(pp) (where pp includes all the generators from the discrete-
log relation assumption) to receive an instance [x] and st. A then invokes the
simulator SBP on [x] to receive a transcript T̃ . A then runs A2 on T̃ and st.
Queries to the SR-UR-oracle Oext are handled by A locally as in the SR-UR
game, by sampling random challenges and forwarding to A2. A locally records
the tree of transcripts. Note that when Aur queries Oext, it also submits the
group representation in terms of all groups elements seen so far. Moreover, the
simulator SBP is algebraic, and therefore A can efficiently recover all representa-
tion for elements in T and T̃ into an equivalent representation purely in terms
of g,h, g, h, u which will be used to break the discrete-logarithm assumption.

Since Aur wins the SR-UR game [T ] is an accepting transcript for statement
[x] which is different from [T̃ ], but has a common prefix. Therefore, at least the
first two messages must be equal. In particular, SBP outputs transcript of the
form

T̃ =
(
ÃI , ÃO, S̃; ỹ, z̃; (T̃i)i∈S ; x̃, β̃x, μ̃, ˜̂t, w̃, L̃1, R̃1, x̃1, . . . , L̃m, R̃m, x̃m, ã, b̃

)

and Aur outputs transcripts of the form

T = (ÃI , ÃO, S̃; ỹ, z̃; (Ti)i∈S ;x, βx, μ, t̂, w, L1, R1, x1, . . . , Lm, Rm, xm, a, b)

where we denote m = log(n).
We now proceed with a case by case analysis based on the first message in

T which is different from T̃ .
If T̃i �= Ti for some i ∈ S, then the verification equation satisfied by T is

(g(m))a(h(m))b(u′)ab

=

(
m∏

i=1

L
x2

i
i

)

·
(

m∏

i=1

R
x−2

i
i

)

· h−μ · Ãx
I · Ãx2

O · (h̃′)−ỹn

· W̃ x
L · W̃ x

R · W̃O · S̃x3 · (u′)t̂.

(The values W̃(·) and h̃′ are also marked as (̃·) to remind the reader that they
are the same in both T and T̃ . Remember that g(m),h(m) are different in the
two transcripts and they are generated as part of the InPrd). Dividing it by the
verification equation for the simulated transcript, we get

(g(m))a(h(m))b(u′)ab · (g̃(m))−ã(h̃(m))−b̃(ũ′)−ãb̃ (3)

=

(
m∏

i=1

L
x2

i
i

) (
m∏

i=1

L̃
−x̃2

i
i

) (
m∏

i=1

R
x−2

i
i

) (
m∏

i=1

R̃
−x̃−2

i
i

)

· h−(μ−μ̃) · Ãx−x̃
I · Ãx2−x̃2

O · W̃ x−x̃
L · W̃ x−x̃

R · S̃x3−x̃3 · (u′)t̂ · (ũ′)−t̂. (4)
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We rearrange the exponents w.r.t. the generators (g, h,g,h, u). Let us focus
on the exponent of g. The only elements with a non-zero component for g are: the
simulated ÃI and S̃ that have ρI and −ρI x̃

−2 in the exponents of g, respectively;
and Li (resp. Ri) with g-component li,g (resp. ri,g) submitted by the adversary
during the oracle queries. Then the exponent of g in (4) is

m∑

i=1

li,gx
2
i +

m∑

i=1

ri,gx
−2
i − ρI x̃

−2x3 + ρIx. (5)

If (5) is non-zero then we find a non-trivial DL solution since the left-hand side
of 4 has g-component 0. Now we argue that (5) vanishes with negligible probabil-
ity. Since the state-restoration adversary makes queries to Oext in order (e.g., it
cannot query a transcript whose prefix has not been queried yet), the challenges
x, x1, . . . , xm are also assigned in order. Suppose the first m variables are fixed
to x, x1, . . . , xm−1 and regard (5) as a univariate polynomial with indeterminate
Xm. Define

e(m)
g (Xm) = lm,gX

2
m + rm,gX

−2
m +

m−1∑

i=1

li,gx
2
i +

m−1∑

i=1

ri,gx
−2
i − ρI x̃

−2x3 + ρIx.

Then, by the Schwartz–Zippel Lemma, if the polynomial e
(m)
g (Xm) is non-

zero, e
(m)
g (xm) vanishes with probability at most 4/(p − 1) over the random

choice of xm ∈ Zp; if it is a zero-polynomial, it must be that the constant term
of e

(m)
g is 0. Hence, if the polynomial

e(m−1)
g (Xm−1) = lm−1,gX

2
m−1 + rm−1,gX

−2
m−1 +

m−2∑

i=1

li,gx
2
i

+
m−2∑

i=1

ri,gx
−2
i − ρI x̃

−2x3 + ρIx

is non-zero, e
(m−1)
g (xm−1) vanishes with probability at most 4/(p − 1) over the

random choice of xm−1 ∈ Zp. Iterating the same argument, we are eventually
tasked with showing e

(0)
g (x) = −ρI x̃

−2x3 + ρIx = 0 with negligible probability.
This only happens if (1) ρI = 0, i.e., e

(0)
g (X) is a zero-polynomial, or (2) e

(0)
g (x) =

0 over the random choice of x ∈ Zp. The former happens with probability 1/(p−
1) because ρI are uniformly chosen by the simulator; the latter happens with
probability at most 3/(p − 1).
If βx �= β̃x or t̂ �= ˜̂t, then we have another transcript

TBP = (ÃI , ÃO, S̃; ỹ, z̃; (T̃i)i∈S ; x̃, βx, μ, t̂, w, L1, R1, x1, . . . , Lm, Rm, xm, a, b).

Since both simulated and adversarial transcripts satisfy the verification equation
w.r.t. the same R, we have

gt̂hβx = R = g
˜̂thβ̃x
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which leads to a non-trivial DL relation.
If μ �= μ̃, the analysis is similar to the case where T̃i �= Ti. The verification
equation satisfied by TBP is

(g(m))a(h(m))b(u′)ab

=

(
m∏

i=1

L
x2

i
i

)

·
(

m∏

i=1

R
x−2

i
i

)

· h−μ · Ãx̃
I · Ãx̃2

O · (h̃′)−ỹn

· W̃ x̃
L · W̃ x̃

R · W̃O · S̃x̃3 · (u′)t̂.

Dividing it by the verification equation for the simulated transcript, we get

(g(m))a(h(m))b(u′)ab · (g̃(m))−ã(h̃(m))−b̃(ũ′)−ãb̃

=

(
m∏

i=1

L
x2

i
i

) (
m∏

i=1

L̃
−x̃2

i
i

) (
m∏

i=1

R
x−2

i
i

) (
m∏

i=1

R̃
−x̃−2

i
i

)

· h−(μ−μ̃) · (u′)t̂ · (ũ′)−t̂. (6)

We rearrange the exponents w.r.t. the generators (g, h,g,h, u). Let us focus
on the exponent of h. Then the exponent of h in (6) is

m∑

i=1

li,gx
2
i +

m∑

i=1

ri,gx
−2
i − (μ − μ̃) (7)

where li,h (resp. ri,h) is the exponent of h available as group representation of Li

(resp. Ri) submitted by the adversary. Using the same argument as before, since
the h-component in the left-hand side of 6 is 0, if μ �= μ̃ we obtain non-trivial
DL relation except with negligible probability.
If Li �= L̃i or Ri �= R̃i This part of the proof uses similar techniques as the
ones for Lemma 8 in [22], with the main difference that we explicitly show
the equalities and constraints that must hold for all exponents of parameters
g,h, g, h, u. For instance, we introduce polynomials �g and �h which are essential
for the full analysis, but were absent from proof in [22].

Let the representations output by the adversary for Li, Ri be

Li =
n∏

j=1

(
g

ligj

j h
lihj

j

)
glghlhulu and Ri =

n∏

j=1

(
g

rigj

j h
rihj

j

)
grghrhuru

and let P ′ =
∏n

j=1

(

g
p′

gj

j h
p′

hj

j

)

gp′
ghp′

hup′
u be the representation of P ′ which is

same in both the transcript of the simulator and the one of the adversary. In what
follows we prove that the exponents of Li (resp. Ri) match those of L̃i (resp.
R̃i) for i = 1, . . . , m except with negligible probability and otherwise one can
find non-trivial discrete-log relation. Let bit(k, i, t) be the function that return
the bit ki where (k1, · · · , kt) is the t-bit representation of k.
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Since T is accepting, the outcome of InPrd.V should be 1, and therefore, the
following must hold:

(g(m))a(h(m))b(u′)ab =

(
m∏

i=1

L
x2

i
i

)

P ′
(

m∏

i=1

R
x−2

i
i

)

, (8)

where g(m),h(m) are parameters for the last round, and a, b are the last round
messages. All terms in this equality can be expressed in terms of g,h, g, h, u and
we can compute the tuple

(e(2)g , e
(2)
h , e(2)g , e

(2)
h , e(2)u )

such that ge(2)
g he

(2)
h ge(2)

g he(2)
g ue(2)

u = 1. We compute e
(2)
g , e

(2)
h , e

(2)
g , e

(2)
h , e

(2)
u as in

Eqs. 9 to 13. Note that if T is accepting, (e(2)g , e
(2)
h , e

(2)
g , e

(2)
h , e

(2)
u ) = (0,0, 0, 0, 0),

otherwise we get a non-trivial discrete-log relation.
For k=0 to n − 1:

e(2)gk+1
= 0

=

(
m∑

i=1

(lig1+k
x2

i + rig1+k
x−2

i ) + p′
g1+k

)

− a ·
(

m∏

i=1

x
(−1)1−bit(k,i,m)

i

)
(9)

e
(2)
hk+1

= 0

=

(
m∑

i=1

(lih1+k
x2

i + rih1+k
x−2

i ) + p′
h1+k

)

− by(−(k)) ·
(

m∏

i=1

x
(−1)bit(k,i,m)

i

)
(10)

e(2)u = 0 =

(
m∑

i=1

(liux2
i + riux−2

i ) + p′
u

)

− w · ab (11)

e(2)g = 0 =

(
m∑

i=1

(ligx2
i + rigx

−2
i ) + p′

g

)

(12)

e
(2)
h = 0 =

(
m∑

i=1

(lihx2
i + rihx−2

i ) + p′
h

)

(13)

In order to derive relation between values ligj
, rigj

, lihj
, rihj

, ui, and the group
representation of statement P ′, we will invoke Schwartz-Zippel lemma in a recur-
sive way. It is convenient to define the following polynomials to invoke the lemma
recursively. For all t ∈ {1, . . . , m}, for all j ∈ {0, . . . , n − 1},

fg
t,j(X) = lt,g1+j

X2 + rt,g1+j
X−2 + p′

g1+j
+

k−1∑

i=1

(
li,g1+j

x2
i + ri,g1+j

x−2
i

)
,

fh
t,j(X) = lt,h1+j

X2 + rt,h1+j
X−2 + p′

h1+j
+

k−1∑

i=1

(
li,h1+j

x2
i + ri,h1+j

x−2
i

)
,
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and

fu
t (X) = lt,uX2 + rt,uX−2 + p′

u +
t−1∑

i=1

(
li,ux2

i + ri,ux−2
i

)
.

Combining different polynomials, one can eliminate a (and b) from Eq. (9)
(and similarly from (10)) and rewrite the resultant equation in terms of polyno-
mial fg

t,j (similarly, fh
t,j) to get: For t ∈ {1, . . . , m}, j ∈ {0, . . . , n/2t − 1},

fg
t,j(xt) · x2

t − fg
t,j+n/2t(xt) = 0 (14)

and

fu
log(n)(xlog(n)) − w · fg

log(n),j(xlog(n)) · fh
log(n),j(xlog(n)) = 0. (15)

Since all the challenges are in order, we rewrite (14) as a univariate polynomial
in terms of variable Xt:

fg
t,j(Xt) · X2

t − fg
t,j+n/2t(Xt) = 0. (16)

(16) vanishes with probability at most 6/(p − 1), and otherwise it is a zero
polynomial. Equating each coefficient term to 0, we get

rt,g1+j
= fg

t−1,j+n/2t(xt−1), lt,g1+j
= 0, rt,gj+n/2t = 0, (17)

lt,gj+n/2t = p′
g1+j

+
t−1∑

i=1

(li,g1+j
x2

i + ri,g1+j
x−2

i ) = �gt−1,j(xt−1) (18)

where the last term in (18) can be rewritten as a univariate polynomial:

�gt−1,j(X) = lt−1,g1+j
X2 + rt−1,g1+j

X−2 + p′
g1+j

+
t−2∑

i=1

(lig1+j
x2

i + rig1+j
x−2

i ).

Iterating a similar argument for all rounds, for t = 1 we get, r1,g1+j
= p′

g1+j+n/2

and l1,gj+n/2 = p′
g1+j

. Similarly, arguing for polynomial fh
k,j , we get the condition:

fh
t−1,j(Xt) · X−2

t − fh
t,j+n/2t(Xt) = 0. (19)

Analogous to polynomial �gt,j , we define �ht,j(X) = lt−1,h1+j
X2 + rt−1,h1+j

X−2 +
p′

h1+j
+

∑t−2
i=1(lih1+j

x2
i + rih1+j

x−2
i ). Equalities 16, 19 gives following constraints:

For all t ∈ {2, . . . , m}, for all j ∈ {0, . . . , n/2 − 1}:

rtg1+j
= fg

t−1,j+n/2t(xt−1), ltg1+j
= 0, rt,gj+n/2t = 0,

lt,gj+n/2t = �gt,j(xt−1), rth1+j
= 0, lth1+j

= fh
t−1,j+n/2t(xt−1) · yn/2t

,

lt,h1+j+n/2t = 0, rt,h1+j+n/2t = �ht,j(xt−1)

(20)
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For t = 1, for all j ∈ {0, . . . , n/2 − 1}:

r1g1+j
= p′

g1+n/2
, l1g1+j

= 0, r1,gj+n/2 = 0,

l1,gj+n/2 = p′
g1+j

, r1h1+j
= 0, l1h1+j

= p′
h1+j+n/2

· yn/2,

l1,h1+j+n/2 = 0, r1,h1+j+n/2 = p′
h1+j

· yn/2

(21)

Note that the output of polynomials fg
k,j , f

h
k,j , �

g
k,j , �

h
k,j are deterministic given

challenges (x1, . . . , xk). Also note, values p′
g, . . . , p′

u are fixed as they are equal
to the representation output by the simulator. Hence, values for ri,g1+j

, ri,h1+j
,

li,g1+j
and li,h1+j

(in Eq. 21) are fixed given previous round challenges.
Now, consider exponents for generators g, h and u. Since Eqs. (11, 12, 13)

hold, using Schwartz-Zippel lemma recursively, it can be shown that li,u, ri,u =
0, li,g, ri,g, li,h = ri,h = 0.

Note that, for a honest execution of InPrd, the exponents for Li, Ri are derived
using constraints in (21). Thus, Li, Ri cannot differ from L̃i, R̃i.

Concrete Advantage of the Adversary. This analysis comes directly from
the Bad Challenge analysis for ACSPf in [22]. For the case Ti �= T̃i, the adversary
succeeds in forging if any one of the polynomials e

(0)
g , . . . , e

(m)
g vanishes. Using

union bound, this happens with probability 4(m + 1)/(p − 1). Similarly, for the
case μ �= μ̃, we break discrete-log relation except with probability: 4m+1/(p−1).
Now, consider the case, Li �= L̃i. The adversary succeeds in forging a proof for
a false statement if they were lucky enough to get a challenge xi such that Eqs.
15, 16 and 19 vanish at xi. This means, for round t ∈ {1, . . . , m = log(n)}, if
any of the

∑t−1
i=1 2n/2t polynomials of degree at most 4, 2n/2t polynomials of

degree at most 6, and one polynomial of degree at most 8, vanish, i.e., adversary
succeeding in forging a proof, which turns out to be at most (14n + 8)/(p − 1).
Note that the adversary can query Oext for SR-UR q times. It is enough to take
max of all case-by-case probabilities to get an upper bound for the probability
of the adversary succeeding in forging a proof. This is because all the cases
are sequential and the adversary succeeds in forging unless we break discrete-
log relation for the very first case that the adversary exploits. Thus, adversary
succeeds in forging a proof with probability at most (14n + 8)q/(p − 1).

	


Combining the results from Theorem 4 and Claim 2, we get the following
corollary.

Corollary 1. Fiat-Shamir transform of BP satisfies FS-SIM-EXT with respect
to a canonical simulator SFS-BP corresponding to the algebraic simulator SBP.
Concretely, there exists an efficient FS-SIM-EXT extractor E∗ for FS-BP such
that for every non-uniform algebraic prover P∗

alg against FS-BP that makes q1
random oracle queries and q2 simulation queries, and for every distinguisher D∗,
there exists a non-uniform adversary A against DL-REL with the property that
for all λ ∈ N

+,
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AdvFS-SIM-EXT
FS-BP,R (SFS-BP, E∗, P∗

alg, D∗, λ) ≤
(

AdvDL-REL(Gλ, Aλ) +
(14n + 8)q1

(p − 1)

)

+q2 ·
(

AdvDL-REL(Gλ, Aλ) +
(14n + 8)q2

(p − 1)

)

+
(q2 + 1)(q1 + 1)

|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 .
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