
Orr Dunkelman
Stefan Dziembowski (Eds.)

LN
CS

 1
32

76

41st Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Trondheim, Norway, May 30 – June 3, 2022, Proceedings, Part II

Advances in Cryptology –
EUROCRYPT 2022

Lecture Notes in Computer Science 13276

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Orr Dunkelman · Stefan Dziembowski (Eds.)

Advances in Cryptology –
EUROCRYPT 2022
41st Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Trondheim, Norway, May 30 – June 3, 2022
Proceedings, Part II

Editors
Orr Dunkelman
University of Haifa
Haifa, Haifa, Israel

Stefan Dziembowski
University of Warsaw
Warsaw, Poland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-07084-6 ISBN 978-3-031-07085-3 (eBook)
https://doi.org/10.1007/978-3-031-07085-3

© International Association for Cryptologic Research 2022, corrected publication 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5799-2635
https://orcid.org/0000-0002-6914-6425
https://doi.org/10.1007/978-3-031-07085-3

Preface

The 41st Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Eurocrypt 2022, was held in Trondheim, Norway. Breaking tradi-
tion, the conference started on the evening of Monday, May 30, and ended at noon on
Friday, June 3, 2022. Eurocrypt is one of the three flagship conferences of the Interna-
tional Association for Cryptologic Research (IACR), which sponsors the event. Colin
Boyd (NTNU, Norway) was the general chair of Eurocrypt 2022 who took care of all
the local arrangements.

The 372 anonymous submissionswe received in the IACRHotCRP systemwere each
reviewed by at least three of the 70 Program Committee members (who were allowed
at most two submissions). We used a rebuttal round for all submissions. After a lengthy
and thorough review process, 85 submissions were selected for publication. The revised
versions of these submissions can be found in these three-volume proceedings.

In addition to these papers, the committee selected the “EpiGRAM: Practical Gar-
bled RAM” by David Heath, Vladimir Kolesnikov, and Rafail Ostrovsky for the best
paper award. Two more papers— “On Building Fine-Grained One-Way Functions from
Strong Average-Case Hardness” and “Quantum Algorithms for Variants of Average-
Case Lattice Problems via Filtering” received an invitation to the Journal of Cryptology.
Together with presentions of the 85 accepted papers, the program included two invited
talks: The IACR distinguished lecture, carried by Ingrid Verbauwhede, on “Hardware:
an essential partner to cryptography”, and “Symmetric Cryptography for Long Term
Security” by María Naya-Plasancia.

We would like to take this opportunity to thank numerous people. First of all, the
authors of all submitted papers, whether they were accepted or rejected. The Program
Committee members who read, commented, and debated the papers generating more
than 4,500 comments(!) in addition to a large volume of email communications. The
review process also relied on 368 subreviewers (some of which submitted more than one
subreivew). We cannot thank you all enough for your hard work.

A few individuals were extremely helpful in running the review process. First and
foremost, Kevin McCurley, who configured, solved, answered, re-answered, supported,
and did all in his (great) power to help with the IACR system. Wkdqn Brx! We are
also extremely grateful to Gaëtan Leurent for offering his wonderful tool to make paper
assignment an easy task. The wisdom and experience dispensed by Anne Canteaut,
Itai Dinur, Bart Preneel, and François-Xavier Standaert are also noteworthy and helped
usher the conference into a safe haven. Finally, we wish to thank the area chairs—Sonia
Belaïd, Carmit Hazay, Thomas Peyrin, Nigel Smart, and Martijn Stam. You made our
work manageable.

Finally, we thank all the peoplewhowere involved in the program of Eurocrypt 2022:
the rump session chairs, the session chairs, the speakers, and all the technical support
staff in Trondheim. We would also like to mention the various sponsors and thank them

vi Preface

for the generous support. We wish to thank the continuous support of the Cryptography
Research Fund for supporting student speakers.

May 2022 Orr Dunkelman
Stefan Dziembowski

Organization

The 41st Annual International Conference on the Theory
and Applications of Cryptographic Techniques (Eurocrypt 2022)

Sponsored by the International Association for Cryptologic Research
Trondheim, Norway

May 30 – June 3, 2022

General Chair

Colin Boyd NTNU, Norway

Program Chairs

Orr Dunkelman University of Haifa, Israel
Stefan Dziembowski University of Warsaw, Poland

Program Committee

Masayuki Abe NTT Laboratories, Japan
Shashank Agrawal Western Digital Research, USA
Joël Alwen AWS Wickr, Austria
Marshall Ball New York University, USA
Gustavo Banegas Inria and Institut Polytechnique de Paris, France
Paulo Barreto University of Washington Tacoma, USA
Sonia Belaïd CryptoExperts, France
Jean-François Biasse University of South Florida, USA
Begül Bilgin Rambus Cryptography Research, The Netherlands
Alex Biryukov University of Luxembourg, Luxembourg
Olivier Blazy Ecole Polytechnique, France
Billy Bob Brumley Tampere University, Finland
Chitchanok Chuengsatiansup University of Adelaide, Australia
Michele Ciampi University of Edinburgh, UK
Ran Cohen IDC Herzliya, Israel
Henry Corrigan-Gibbs Massachusetts Institute of Technology, USA
Cas Cremers CISPA Helmholtz Center for Information

Security, Germany
Dana Dachman-Soled University of Maryland, USA
Jean Paul Degabriele TU Darmstadt, Germany
Itai Dinur Ben-Gurion University, Israel

viii Organization

Rafael Dowsley Monash University, Australia
Antonio Faonio EURECOM, France
Pooya Farshim Durham University, UK
Sebastian Faust TU Darmstadt, Germany
Ben Fuller University of Connecticut, USA
Pierrick Gaudry Loria, France
Esha Ghosh Microsoft Research, Redmond, USA
Paul Grubbs University of Michigan, USA
Divya Gupta Microsoft Research India, India
Felix Günther ETH Zurich, Switzerland
Iftach Haitner Tel Aviv University, Israel
Shai Halevi Algorand Foundation, USA
Carmit Hazay Bar-Ilan University, Israel
Pavel Hubáček Charles University, Czech Republic
Tibor Jager University of Wuppertal, Germany
Dmitry Khovratovich Ethereum Foundation, Luxembourg
Gregor Leander Ruhr University Bochum, Germany
Gaëtan Leurent Inria, France
Helger Lipmaa Simula UiB, Norway
Shengli Liu Shanghai Jiao Tong University, China
Alex Lombardi Massachusetts Institute of Technology, USA
Hemanta K. Maji Purdue University, USA
Giulio Malavolta Max Planck Institute for Security and Privacy,

Germany
Peihan Miao University of Illinois at Chicago, USA
Pratyay Mukherjee Visa Research, USA
David Naccache ENS Paris, France
Svetla Nikova KU Leuven, Belgium
Miyako Ohkubo National Institute of Information and

Communications, Japan
Arpita Patra Indian Institute of Science, India
Alice Pellet-Mary CNRS and University of Bordeaux, France
Thomas Peyrin Nanyang Technological University, Singapore
Josef Pieprzyk CSIRO Data61, Australia, and Institute of

Computer Science, PAS, Poland
Bertram Poettering IBM Research Europe - Zurich, Switzerland
Peter Rindal Visa Research, USA
Carla Ràfols Universitat Pompeu Fabra, Spain
Amin Sakzad Monash University, Australia
Alessandra Scafuro North Carolina State University, USA
Nigel Smart KU Leuven, Belgium
Martijn Stam Simula UiB, Norway

Organization ix

Meltem Sönmez Turan National Institute of Standards and Technology,
USA

Daniele Venturi Sapienza University of Rome, Italy
Ivan Visconti University of Salerno, Italy
Gaoli Wang East China Normal University, China
Stefan Wolf University of Italian Switzerland, Switzerland
Sophia Yakoubov Aarhus University, Denmark
Avishay Yanai VMware Research, Israel
Bo-Yin Yang Academia Sinica, Taiwan
Arkady Yerukhimovich George Washington University, USA
Yu Yu Shanghai Jiao Tong University, China
Mark Zhandry NTT Research and Princeton University, USA

Subreviewers

Behzad Abdolmaleki
Ittai Abraham
Damiano Abram
Anasuya Acharya
Alexandre Adomnicai
Amit Agarwal
Shweta Agrawal
Thomas Agrikola
Akshima
Navid Alamati
Alejandro Cabrera Aldaya
Bar Alon
Miguel Ambrona
Hiroaki Anada
Diego F. Aranha
Victor Arribas
Tomer Ashur
Gennaro Avitabile
Matilda Backendal
Saikrishna Badrinarayanan
Shi Bai
Ero Balsa
Augustin Bariant
James Bartusek
Balthazar Bauer
Carsten Baum
Ämin Baumeler
Arthur Beckers
Charles Bédard

Christof Beierle
Pascal Bemmann
Fabrice Benhamouda
Francesco Berti
Tim Beyne
Rishabh Bhadauria
Adithya Bhat
Sai Lakshmi Bhavana Obbattu
Alexander Bienstock
Erica Blum
Jan Bobolz
Xavier Bonnetain
Cecilia Boschini
Raphael Bost
Vincenzo Botta
Katharina Boudgoust
Christina Boura
Zvika Brakerski
Luís Brandão
Lennart Braun
Jacqueline Brendel
Gianluca Brian
Anne Broadbent
Marek Broll
Christopher Brzuska
Chloe Cachet
Matteo Campanelli
Federico Canale
Anne Canteaut

x Organization

Ignacio Cascudo
Andre Chailloux
Nishanth Chandran
Donghoon Chang
Binyi Chen
Shan Chen
Weikeng Chen
Yilei Chen
Jung Hee Cheon
Jesus-Javier Chi-Dominguez
Seung Geol Choi
Wutichai Chongchitmate
Arka Rai Choudhuri
Sherman S. M. Chow
Jeremy Clark
Xavier Coiteux-Roy
Andrea Coladangelo
Nan Cui
Benjamin R. Curtis
Jan Czajkowski
Jan-Pieter D’Anvers
Hila Dahari
Thinh Dang
Quang Dao
Poulami Das
Pratish Datta
Bernardo David
Gareth T. Davies
Hannah Davis
Lauren De Meyer
Gabrielle De Micheli
Elke De Mulder
Luke Demarest
Julien Devevey
Siemen Dhooghe
Denis Diemert
Jintai Ding
Jack Doerner
Xiaoyang Dong
Nico Döttling
Benjamin Dowling
Yang Du
Leo Ducas
Julien Duman
Betul Durak

Oğuzhan Ersoy
Andreas Erwig
Daniel Escudero
Muhammed F. Esgin
Saba Eskandarian
Prastudy Fauzi
Patrick Felke
Thibauld Feneuil
Peter Fenteany
Diodato Ferraioli
Marc Fischlin
Nils Fleischhacker
Cody Freitag
Daniele Friolo
Tommaso Gagliardoni
Steven D. Galbraith
Pierre Galissant
Chaya Ganesh
Cesar Pereida García
Romain Gay
Kai Gellert
Craig Gentry
Marilyn George
Hossein Ghodosi
Satrajit Ghosh
Jan Gilcher
Aarushi Goel
Eli Goldin
Junqing Gong
Dov Gordon
Jérôme Govinden
Lorenzo Grassi
Johann Großschädl
Jiaxin Guan
Daniel Guenther
Milos Gujic
Qian Guo
Cyril Guyot
Mohammad Hajiabadi
Ariel Hamlin
Shuai Han
Abida Haque
Patrick Harasser
Dominik Hartmann
Phil Hebborn

Organization xi

Alexandra Henzinger
Javier Herranz
Julia Hesse
Justin Holmgren
Akinori Hosoyamada
Kai Hu
Andreas Hülsing
Shih-Han Hung
Vincenzo Iovino
Joseph Jaeger
Aayush Jain
Christian Janson
Samuel Jaques
Stanislaw Jarecki
Corentin Jeudy
Zhengzhong Jin
Daniel Jost
Saqib Kakvi
Vukašin Karadžić
Angshuman Karmakar
Shuichi Katsumata
Jonathan Katz
Mahimna Kelkar
Nathan Keller
John Kelsey
Mustafa Khairallah
Hamidreza Amini Khorasgani
Dongwoo Kim
Miran Kim
Elena Kirshanova
Fuyuki Kitagawa
Michael Klooß
Sebastian Kolby
Lukas Kölsch
Yashvanth Kondi
David Kretzler
Veronika Kuchta
Marie-Sarah Lacharité
Yi-Fu Lai
Baptiste Lambin
Mario Larangeira
Rio LaVigne
Quoc-Huy Le
Jooyoung Lee
Julia Len

Antonin Leroux
Hanjun Li
Jianwei Li
Yiming Li
Xiao Liang
Damien Ligier
Chengyu Lin
Dongxi Liu
Jiahui Liu
Linsheng Liu
Qipeng Liu
Xiangyu Liu
Chen-Da Liu Zhang
Julian Loss
Vadim Lyubashevsky
Lin Lyu
You Lyu
Fermi Ma
Varun Madathil
Akash Madhusudan
Bernardo Magri
Monosij Maitra
Nikolaos Makriyannis
Mary Maller
Giorgia Marson
Christian Matt
Noam Mazor
Nikolas Melissaris
Bart Mennink
Antonis Michalas
Brice Minaud
Kazuhiko Minematsu
Alberto Montina
Amir Moradi
Marta Mularczyk
Varun Narayanan
Jade Nardi
Patrick Neumann
Ruth Ng
Hai H. Nguyen
Kirill Nikitin
Ryo Nishimaki
Anca Nitulescu
Ariel Nof
Julian Nowakowski

xii Organization

Adam O’Neill
Maciej Obremski
Eran Omri
Maximilian Orlt
Bijeeta Pal
Jiaxin Pan
Omer Paneth
Lorenz Panny
Dimitrios Papadopoulos
Jeongeun Park
Anat Paskin-Cherniavsky
Sikhar Patranabis
Marcin Pawłowski
Hilder Pereira
Ray Perlner
Clara Pernot
Léo Perrin
Giuseppe Persiano
Edoardo Persichetti
Albrecht Petzoldt
Duong Hieu Phan
Krzysztof Pietrzak
Jeroen Pijnenburg
Rachel Player
Antigoni Polychroniadou
Willy Quach
Anaïs Querol
Srinivasan Raghuraman
Adrián Ranea
Simon Rastikian
Divya Ravi
Francesco Regazzoni
Maryam Rezapour
Mir Ali Rezazadeh Baee
Siavash Riahi
Joao Ribeiro
Vincent Rijmen
Bhaskar Roberts
Francisco Rodriguez-Henríquez
Paul Rösler
Arnab Roy
Iftekhar Salam
Paolo Santini
Roozbeh Sarenche
Yu Sasaki

Matteo Scarlata
Tobias Schmalz
Mahdi Sedaghat
Vladimir Sedlacek
Nicolas Sendrier
Jae Hong Seo
Srinath Setty
Yaobin Shen
Sina Shiehian
Omri Shmueli
Janno Siim
Jad Silbak
Leonie Simpson
Rohit Sinha
Daniel Slamanig
Fang Song
Yongsoo Song
Damien Stehle
Ron Steinfeld
Noah Stephens-Davidowitz
Christoph Striecks
Fatih Sulak
Chao Sun
Ling Sun
Siwei Sun
Koutarou Suzuki
Katsuyuki Takashima
Hervé Tale Kalachi
Quan Quan Tan
Yi Tang
Je Sen Teh
Cihangir Tezcan
Aishwarya Thiruvengadam
Orfeas Thyfronitis
Mehdi Tibouchi
Ni Trieu
Yiannis Tselekounis
Michael Tunstall
Nicola Tuveri
Nirvan Tyagi
Sohaib ul Hassan
Wessel van Woerden
Kerem Varc
Prashant Vasudevan
Damien Vergnaud

Organization xiii

Jorge L. Villar
Giuseppe Vitto
Sameer Wagh
Hendrik Waldner
Alexandre Wallet
Ming Wan
Xiao Wang
Yuyu Wang
Zhedong Wang
Hoeteck Wee
Mor Weiss
Weiqiang Wen
Daniel Wichs
Mathias Wolf
Lennert Wouters
Michał Wroński
David Wu
Yusai Wu
Keita Xagawa
Yu Xia

Zejun Xiang
Tiancheng Xie
Shota Yamada
Takashi Yamakawa
Lisa Yang
Kevin Yeo
Eylon Yogev
Kazuki Yoneyama
Yusuke Yoshida
William Youmans
Alexandros Zacharakis
Michał Zając
Arantxa Zapico
Greg Zaverucha
Shang Zehua
Tina Zhang
Wentao Zhang
Yinuo Zhang
Yu Zhou
Cong Zuo

Contents – Part II

Cryptographic Protocols

Single-Server Private Information Retrieval with Sublinear Amortized Time . . . 3
Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan

Anamorphic Encryption: Private Communication Against a Dictator 34
Giuseppe Persiano, Duong Hieu Phan, and Moti Yung

A PCP Theorem for Interactive Proofs and Applications . 64
Gal Arnon, Alessandro Chiesa, and Eylon Yogev

Group Signatures and More from Isogenies and Lattices: Generic, Simple,
and Efficient . 95
Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai,
and Federico Pintore

Asymmetric PAKE with Low Computation and communication 127
Bruno Freitas Dos Santos, Yanqi Gu, Stanislaw Jarecki,
and Hugo Krawczyk

Batch-OT with Optimal Rate . 157
Zvika Brakerski, Pedro Branco, Nico Döttling, and Sihang Pu

Adaptively Secure Computation for RAM Programs . 187
Laasya Bangalore, Rafail Ostrovsky, Oxana Poburinnaya,
and Muthuramakrishnan Venkitasubramaniam

Optimal Broadcast Encryption and CP-ABE from Evasive Lattice
Assumptions . 217
Hoeteck Wee

Embedding the UC Model into the IITM Model . 242
Daniel Rausch, Ralf Küsters, and Céline Chevalier

Zero-Knowledge Proofs

Zero-Knowledge IOPs with Linear-Time Prover and Polylogarithmic-Time
Verifier . 275
Jonathan Bootle, Alessandro Chiesa, and Siqi Liu

xvi Contents – Part II

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 305
Yuyu Wang and Jiaxin Pan

On Succinct Non-interactive Arguments in Relativized Worlds 336
Megan Chen, Alessandro Chiesa, and Nicholas Spooner

Families of SNARK-Friendly 2-Chains of Elliptic Curves 367
Youssef El Housni and Aurore Guillevic

Fiat–Shamir Bulletproofs are Non-Malleable (in the Algebraic Group
Model) . 397
Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi,
and Daniel Tschudi

Gemini: Elastic SNARKs for Diverse Environments . 427
Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrú

Stacking Sigmas: A Framework to Compose Σ-Protocols for Disjunctions 458
Aarushi Goel, Matthew Green, Mathias Hall-Andersen,
and Gabriel Kaptchuk

One-Shot Fiat-Shamir-Based NIZK Arguments of Composite Residuosity
and Logarithmic-Size Ring Signatures in the Standard Model 488
Benoît Libert, Khoa Nguyen, Thomas Peters, and Moti Yung

SNARGs for P from Sub-exponential DDH and QR . 520
James Hulett, Ruta Jawale, Dakshita Khurana,
and Akshayaram Srinivasan

Cryptographic Primitives

Optimal Tightness for Chain-Based Unique Signatures . 553
Fuchun Guo and Willy Susilo

On Building Fine-Grained One-Way Functions from Strong Average-Case
Hardness . 584
Chris Brzuska and Geoffroy Couteau

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 614
Jeremiah Blocki and Seunghoon Lee

Multi-Designated Receiver Signed Public Key Encryption 644
Ueli Maurer, Christopher Portmann, and Guilherme Rito

Contents – Part II xvii

A Fast and Simple Partially Oblivious PRF, with Applications 674
Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick Sullivan,
Stefano Tessaro, and Christopher A. Wood

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming . . . 706
Ashrujit Ghoshal, Riddhi Ghosal, Joseph Jaeger, and Stefano Tessaro

Dynamic Collusion Bounded Functional Encryption from Identity-Based
Encryption . 736
Rachit Garg, Rishab Goyal, George Lu, and Brent Waters

Property-Preserving Hash Functions for Hamming Distance from Standard
Assumptions . 764
Nils Fleischhacker, Kasper Green Larsen, and Mark Simkin

Short Pairing-Free Blind Signatures with Exponential Security 782
Stefano Tessaro and Chenzhi Zhu

Real-World Systems

CoCoA: Concurrent Continuous Group Key Agreement . 815
Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein,
Guillermo Pascual-Perez, Krzyzstof Pietrzak, and Michael Walter

Efficient Schemes for Committing Authenticated Encryption 845
Mihir Bellare and Viet Tung Hoang

On the Concrete Security of TLS 1.3 PSK Mode . 876
Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

Correction to: Non-Interactive Zero-Knowledge Proofs with Fine-Grained
Security . C1
Yuyu Wang and Jiaxin Pan

Author Index . 907

Cryptographic Protocols

Single-Server Private Information
Retrieval with Sublinear Amortized Time

Henry Corrigan-Gibbs1, Alexandra Henzinger1(B), and Dmitry Kogan2

1 MIT, Cambridge, MA, USA
{henrycg,ahenz}@csail.mit.edu

2 Fordefi, Tel Aviv, Israel
dkogan@cs.stanford.edu

Abstract. We construct new private-information-retrieval protocols in
the single-server setting. Our schemes allow a client to privately fetch
a sequence of database records from a server, while the server answers
each query in average time sublinear in the database size. Specifically,
we introduce the first single-server private-information-retrieval schemes
that have sublinear amortized server time, require sublinear additional
storage, and allow the client to make her queries adaptively. Our pro-
tocols rely only on standard cryptographic assumptions (decision Diffie-
Hellman, quadratic residuosity, learning with errors, etc.). They work by
having the client first fetch a small “hint” about the database contents
from the server. Generating this hint requires server time linear in the
database size. Thereafter, the client can use the hint to make a bounded
number of adaptive queries to the server, which the server answers in
sublinear time—yielding sublinear amortized cost. Finally, we give lower
bounds proving that our most efficient scheme is optimal with respect to
the trade-off it achieves between server online time and client storage.

1 Introduction

A private-information-retrieval protocol [34,35] allows a client to fetch a record
from a database server without revealing which record she has fetched. In
the simplest setting of private information retrieval, the server holds an n-bit
database, the client holds an index i ∈ {1, . . . , n}, and the client’s goal is to
recover the i-th database bit while hiding her index i from the server.

Fast protocols for private information retrieval (PIR) would have an array of
applications. Using PIR, a student could fetch a book from a digital library with-
out revealing to the library which book she fetched. Or, she could stream a movie
without revealing which movie she streamed. Or, she could read an online news
article without revealing which article she read. More broadly, PIR is at the heart
of a number of systems for metadata-hiding messaging [7,32], privacy-preserving
advertising [8,60,70,88], private file-sharing [40], private e-commerce [66], pri-
vate media-consumption [62], and privacy-friendly web browsing [72].

Unfortunately, the computational cost of private information retrieval is a
barrier to its use in practice. In particular, to respond to each client’s query,
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 3–33, 2022.
https://doi.org/10.1007/978-3-031-07085-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_1

4 H. Corrigan-Gibbs et al.

Beimel, Ishai, and Malkin [14] showed that the running time of a PIR server
must be at least linear in the size of the database. This linear-server-time lower
bound holds even if the client communicates with many non-colluding database
replicas. So, for a client to privately fetch a single book from a digital library,
the library’s servers would have to do work proportional to the total length of
all of the books in the library, which is costly both in theory and in practice.

Towards reducing the server-side cost of PIR, a number of prior works [7,39,
64,68,79] observe that clients in many applications of PIR will make a sequence
of queries to the same database. For example, a student may browse many books
in a library; a web browser makes many domain name system (DNS) queries on
each page load [80]; a mail client may check all incoming URLs against a database
of known phishing websites [16,72]; or, an antivirus software may check the
hashes of executed files against known malware [72]. The lower bound of Beimel,
Ishai, and Malkin [14] only implies that a PIR server will take linear time to
respond to the client’s very first PIR query. This leaves open the possibility
of reducing the server-side cost for subsequent queries. In other words, in the
multi-query setting, we can hope for the amortized server-side time per query to
be sublinear in the database size.

Indeed, there exist an array of techniques for constructing PIR schemes with
sublinear amortized server-side cost. Yet, prior PIR schemes achieving sublinear
amortized time come with limitations that make them cumbersome to use in
practice. Schemes that require multiple non-colluding servers [39,72,89] demand
careful coordination between many business entities, which is a major practical
annoyance [4,15,81,90]. In addition, the security of these schemes is relatively
brittle, since it relies on an adversary not being able to compromise multi-
ple servers, rather than on cryptographic hardness. Recent offline/online PIR
schemes [39,72,89] require, in the single-server setting, the server to perform a
linear-time preprocessing step for each query. Thus, these schemes cannot have
sublinear amortized time. Batch-PIR schemes [7,64,68,79], which require the
client to make all of her queries at once, in a single non-adaptive batch, do not
apply to many natural applications (e.g., digital library, web browsing), in which
the client decides over time which elements she wants to query.

The world of private-information-retrieval is thus in an undesirable state:
the practical applications are compelling, but existing schemes cannot satisfy
the deployment demands (single server, adaptive queries, small storage, based
on implementable primitives) while avoiding very large server-side costs.

1.1 Our Results

This paper aims to advance the state of the art in private information retrieval by
introducing the first PIR schemes that simultaneously offer a number of impor-
tant properties for use in practice: they require only a single database server, they
have sublinear amortized server time, they allow the client to issue its database
queries adaptively, and they require extra storage sublinear in the database size
(Fig. 1). Our schemes further rely only on standard cryptographic primitives and
incur no additional server-side (per client) storage, making them attractive even

Single-Server Private Information Retrieval with Sublinear Amortized Time 5

Fig. 1. Comparison of single-server PIR models, on database size n.

when many clients query a single database. One limitation of our schemes is
that they require more client-side storage and computation than standard PIR
schemes, though we give lower bounds showing that some of these costs are
inherent to achieving sublinear amortized server time. While the schemes in this
paper may not yet be concretely efficient enough to use in practice, they demon-
strate that sublinear-amortized-time single-server PIR is theoretically feasible.
We hope that future work pushes PIR even closer to practice.

Specifically, in this paper we construct two new families of PIR schemes:

Single-Server PIR with Sublinear Amortized Time from Linearly Homomorphic
Encryption. First, we show in Theorem 16 that any one of a variety of standard
assumptions—including quadratic residuosity, decision Diffie-Hellman, decision
composite residuosity, and learning with errors—suffices to construct single-
server PIR schemes with sublinear amortized time. In particular, on database
size n, if the client makes at least n1/4 adaptive queries, our schemes have: amor-
tized server time n3/4, amortized communication complexity n1/2, client storage
n3/4, and amortized client time n1/2. (When describing protocol costs in this
section, we hide both log n factors and polynomials in the security parameter.)
More generally, the existence of linearly homomorphic encryption with suffi-
ciently compact ciphertexts and standard single-server PIR with polylogarithmic
communication together imply the existence of our PIR schemes. Our client-side
costs are much larger than those required for standard stateless PIR—which
needs no client storage and requires client time polylogarithmic in the database
size. Our schemes thus reduce server-side costs at some expense to the client.

Single-Server PIR with Sublinear Amortized Time and an Optimal Storage/
Online-Time Trade-Off from Fully Homomorphic Encryption. Next, we show in
Theorem 19 that under the stronger assumption that fully homomorphic encryp-
tion exists, we can construct PIR schemes with even lower amortized server time
and client storage. In particular, we construct a PIR scheme that on database
size n, and as long as the client makes at least n1/2 queries, has amortized server
time n1/2, amortized communication complexity n1/2, client storage n1/2, and
amortized client time n1/2. (In contrast, from linearly homomorphic encryption,
we get schemes with larger server time and client storage n3/4.)

Lower Bounds on Multi-query PIR. Finally, we give new lower bounds on PIR
schemes in the amortized (i.e., multi-query) setting. We give one lower bound

6 H. Corrigan-Gibbs et al.

against PIR schemes that allow the client to make its queries adaptively, and
another against schemes that require the client to make its queries in a non-
adaptive batch. In the adaptive setting, we show in Theorem 21 that any multi-
query PIR scheme on database size n in which: the client stores S bits between
queries, the server stores the database in its original form, and the server runs
in amortized online time T , it must be that ST ≥ n. This lower bound implies
that our fully-homomorphic-encryption-based PIR scheme achieves the optimal
trade-off (up to log n factors and polynomials in the security parameter) between
online server time and client storage, when the servers store the database in
unmodified form.

In Theorem 23, we show that a similar lower bound holds, even if the client
makes all of its queries in a single batch and if the client is able to store some
precomputed information about the database contents. In particular, if the client
stores at most S bits of information, the client makes a batch of Q non-adaptive
queries, the server stores the database in its original form, and the server runs
in amortized time T per query, it must hold that ST +QT ≥ n. This generalizes
the bound of Beimel, Ishai, and Malkin [13], who prove this result for the case
S = 0. Our bound implies that when:

– S < Q, existing batch PIR schemes [68] achieve optimal amortized time even
in the setting in which the client can obtain some preprocessed advice about
the database contents, and

– S > Q, our new fully-homomorphic-encryption-based PIR scheme achieves
optimal amortized time,

up to log n factors and polynomials in the security parameter.

1.2 Overview of Techniques

We construct our new PIR schemes in two steps. First, we construct a new sort of
two-server PIR scheme. Second, we use cryptographic assumptions to “compile”
the two-server scheme into a single-server scheme.

Step 1: Two-server offline/online PIR with a single-server online
phase. In the first step (Sect. 3), we design a new type of two-server offline/online
PIR scheme [39]. The communication pattern of the two-server schemes we con-
struct is as follows:

1. Offline phase. In a setup phase, the client sends a setup request to the first
server (the “offline server”). The offline server runs in time at least linear in
the database size and returns to the client a “hint” about the database state.
The hint has size sublinear in the length of the database.

2. Online phases (runs once for each of Q queries). Whenever the client wants
to make a PIR query, it uses its hint to issue a query to the second server
(the “online server”). The online server produces an answer to the query in
time sublinear in the database size and returns its answer to the client. The
total communication in this step is sublinear in the database size.

Single-Server Private Information Retrieval with Sublinear Amortized Time 7

The client can run the online phase Q times—for some parameter Q deter-
mined by the PIR scheme—using the same hint and without communicating
with the offline server. After Q queries, the client discards its hint and reruns
the offline setup phase from scratch.

Prior offline/online PIR schemes [39] require the client to communicate with
both servers in the online phases, whenever the client makes multiple queries
with the same hint. (If the client only ever makes a single query, the client can
communicate with only one server in the online phase, but then the scheme
cannot achieve sublinear amortized time.) In contrast, our schemes crucially
allow the client to only communicate with a single server (the online server) in
the online phase. Unlike schemes for private stateful information retrieval [83],
the online phase in our scheme runs in sublinear time.

To build our two-server offline/online PIR scheme, we give a generic tech-
nique for “compiling” a two-server PIR scheme that supports a single query
with sublinear online time into one that supports multiple queries with sublin-
ear online time. Plugging the existing single-query offline/online PIR schemes
with sublinear online time [39,89] into this compiler completes the two-server
construction.

Provided that the offline server time is ˜O(n) and the number of supported
queries is at least nε, for constant ε > 0, this two-server scheme already allows
adaptive queries and has sublinear total amortized time and sublinear client
storage. The only limitation is that it requires two non-colluding servers.

Step 2: Converting a two-server scheme to a one-server scheme. The
last step (Sects. 4 and 5) is to convert the two-server PIR scheme into a one-
server scheme. Following Corrigan-Gibbs and Kogan [39], we have the client
encrypt the hint request that she sends to the offline server using a fully homo-
morphic encryption scheme. (As we discuss in Sect. 4, Aiello, Bhatt, Ostrovsky,
and Rajagopalan [2] proposed a similar technique for converting multi-prover
proof systems to single-prover proof systems, formalizing the approach of Biehl,
Meyer, and Wetzel [18].) The offline server can then homomorphically answer
the client’s hint request in the offline phase while learning nothing about it. At
this point, the client can execute both the offline and online phases with the
same server, which completes the construction.

To construct the PIR schemes from weaker assumptions (linearly homo-
morphic encryption), we exploit the linearity of the underlying two-server PIR
scheme. In particular, we show that the hint that the client downloads from
the offline server corresponds to a client-specified linear function applied to the
database. With a careful balancing of parameters and application of linearly
homomorphic encryption and standard single-server PIR, we show that the client
can obtain this linear function without revealing it to the database server.

The construction of our most asymptotically efficient PIR scheme, which
appears in Sect. 5, implicitly follows essentially the same two-step strategy. The
only difference is that achieving the improved efficiency requires us to design a
new two-server offline/online PIR scheme for multiple queries from scratch. The
offline phase of this scheme requires the server to compute non-linear functions

8 H. Corrigan-Gibbs et al.

of the client query—and thus requires fully homomorphic encryption—but the
online time of the scheme is lower, which is the source of efficiency improvements.

Lower Bounds. Our first lower bound (Theorem 21) relates the number S of bits
of information the client stores between queries and the amortized online time
T of the PIR server, for PIR schemes in which the server stores the database in
unmodified form. In particular, we show that ST = ˜Ω(n). To prove this lower
bound, we show that if there is a single-server PIR scheme with client storage S
and amortized online T , there exists a two-server offline/online PIR scheme for
a single query with hint size S and online time T . Then, applying existing lower
bounds on such schemes [39] completes the proof.

Our second lower bound (Theorem 23) considers the setting in which the
client makes a batch of queries at once. We prove this result using an incom-
pressibility argument [3,41–43,50,95], showing that the existence of a better-
than-expected PIR scheme would yield a better-than-possible compression algo-
rithm. (As we discuss in the full version [38], it is not clear whether it is possible
to derive the same bound from the elegant and more modern “presampling”
method [36,37,92]).

1.3 Related Work

Multi-server PIR. Chor, Goldreich, Kushilevitz, and Sudan [35] introduced
private information retrieval and gave the first protocols, which were in the
multi-server information-theoretic setting and achieved communication O(n1/3).
A sequence of works [5,11,12,21,22,33,46,49,55,96] then improved the commu-
nication complexity of PIR, and today’s PIR schemes can achieve sub-polynomial
communication complexity in the information-theoretic setting [46] and logarith-
mic communication complexity in the computational setting [22]. Multi-server
PIR schemes are more efficient, both in terms of communication and computa-
tion, than single-server schemes. However, the security of multi-server PIR relies
on non-collusion between the servers, which can be hard to guarantee in practice.

Single-Server PIR. Kushilevitz and Ostrovsky [74] presented the first single-
server PIR schemes, based on linearly homomorphic encryption. A sequence of
works then improved the communication complexity of single-server PIR, and
showed how to construct PIR schemes with polylogarithmic communication from
a wide range of public-key assumptions, such as the φ-hiding assumption [28,53],
the decisional composite-residuosity assumption [30,77], the decisional Diffie-
Hellman assumption [45], and the quadratic-residuosity assumption [45].

Recent works [1,4,6,52,81] have used lattice-based encryption schemes to
improve the concrete efficiency of single-server PIR, in terms of both communi-
cation and computation. The goal is to get the most efficient single-server PIR
schemes subject to the linear-server-time lower bound. These techniques are
complementary to ours, and applying lattice-based optimizations to our setting
could improve the concrete efficiency of our protocols.

Computational Overhead of PIR. All early PIR protocols required the
servers to perform work linear in the database size when responding to a query.

Single-Server Private Information Retrieval with Sublinear Amortized Time 9

Table 1. A comparison of single-server, many-query PIR schemes. We present the
per-query, asymptotic costs of each scheme, on a database of size n, where each of m
clients makes many PIR queries and at most m̂ clients may be corrupted. We omit
poly-logarithmic factors in n and m, along with polynomial factors in the security
parameter. For lower bounds, we denote the extra client storage by S. We use ε as an
arbitrarily small, positive constant. We amortize the costs over the number of queries
that minimizes the per-query costs. For each scheme, the table indicates:
– the additional cryptographic assumptions made beyond single-server PIR with poly-
logarithmic communication,
– the number of queries (per client) over which we amortize,
– whether the client makes her queries adaptively or as a batch,
– the amortized number of bits communicated per query,
– the amortized client and server time per query, and
– the additional number of bits stored by the client and the server between queries.
For schemes in the offline/online model, the communication and computation costs are
taken to be the sum of the offline costs, amortized over the number of queries supported
by a single offline phase, and the online costs. The extra server storage does not include
the n-bit database, stored by the server. The extra client storage does not include the
indices queried, even if these indices are queried as a batch.

Per-query time Extra storage

Scheme (extra assumptions) P
er

-c
lie

nt
qu

er
ie

s

A
da

pt
iv

e?
P
er

-q
ue

ry
co

m
m

.

Client Server Client Server

Batch PIR [68,64,6] Q × 1 1 n
Q

0 0
Stateful PIR [83] n1/2 � n1/2 n n † n1/2 0
Single-query single-server PIR

Standard [74,28] 1 � 1 1 n 0 0
Offline/online [39] (LHE) 1 � n2/3 n2/3 n n2/3 0
Offline/online [39] (FHE) 1 � n1/2 n1/2 n n1/2 0

Download entire DB n1−ε � nε nε nε n 0
Doubly-efficient PIR

Secret key (OLDC) [29,25] n1−ε � nε nε nε 1 mn
Public key (OLDC+VBB) [25] 1 ∗ � nε nε nε 0 n

Private anonymous data access
Read-only [63] (FHE) 1 ∗ � m̂ m̂ m̂ m̂ m̂n1+ε

This work
Theorem 16 (LHE) n1/4 � n1/2 n1/2 n3/4 n3/4 0
Theorem 19 (FHE) n1/2 � n1/2 n1/2 n1/2 n1/2 0

Lower bounds, for Q queries, on schemes storing the database in its original form
Standard PIR [14] Q × – – ≥ n

Q
– –

This work (Theorem 21) Q � – – ≥ n
S

S 0
This work (Theorem 23) Q × – – ≥ n

S+Q
S 0

† The number of public-key operations is n1/2.
∗ This number of per-client queries assumes that the total number of clients, m, grows sufficently

large.

10 H. Corrigan-Gibbs et al.

Beimel, Ishai, and Malkin [14] showed that this is inherent, giving an Ω(n) lower
bound on the server time. Their lower bound applies to both multi-server and
single-server schemes with either information-theoretic or computational secu-
rity.

Many lines of work have sought to construct PIR schemes with lower com-
putational costs, which circumvent the above linear lower bound (Table 1):

– PIR with preprocessing denotes a class of schemes in which the server(s)
store the database in encoded form [13,14,94], which allows them to respond
to queries in time sublinear in the database size. The first such schemes tar-
geted the multi-server setting. Recent work [25,29] applies oblivious locally
decodable codes [19,23,24] to construct single-server PIR schemes with sub-
linear server time, after a one-time database preprocessing step. However,
these schemes require extra server-side storage per client that is linear in the
database size. While an idealized form of program obfuscation [9] can be used
to drastically reduce this storage [25], the lack of concretely efficient candi-
date constructions for program obfuscation rules out the use of these schemes
for the time being. In contrast, the single-server schemes in this paper require
only standard assumptions.
“Offline/online PIR” schemes use a different type of preprocessing: the client
and server run a one-time linear-complexity offline setup process, during
which the client downloads and stores information about the database. After
that, the client can make queries to the database, and the server can respond
in sublinear time. Previous works [39,72,89] mostly focus on the two-server
setting, where they achieve sublinear amortized time. In the single-server set-
ting, previous offline/online PIR schemes [39] allow for only a single online
query after each execution of the offline phase. As a result, in the single-server
setting, the cost of each query is still linear in the database size.
Finally, Lipmaa [78] constructs single-server PIR with slighly sublinear time
by encoding the database as a branching program that is obliviously eval-
uated in O(n

log n) operations. The schemes in this work achieve significantly
lower amortized time, yet require the client to make multiple queries.

– Make queries in a non-adaptive batch: When the client knows the entire
sequence of database queries she will make in advance, the client and server
can use “batch PIR” schemes [6,7,31,61,64,65,68] to achieve sublinear amor-
tized server time. The multi-server scheme of Lueks and Goldberg [79] allows
the servers to simultaneously process a batch of queries from different clients,
and achieves sublinear per-query time. Our schemes require only one server
and achieve sublinear amortized time, even given a single client making her
queries in an adaptive sequence.

– Download and store the entire database: If the client has enough storage space,
she can keep a local copy of the entire database. The server pays a linear
cost to ship the database to the client, but the client can answer subsequent
database queries on her own with no server work. In contrast, the schemes in
this paper avoid having to store the entire database at the client.

Single-Server Private Information Retrieval with Sublinear Amortized Time 11

– Settle on a sublinear number of public-key operations: Private stateful infor-
mation retrieval [83] schemes improve the concrete efficiency of single-server
PIR by having the server do a sublinear number of public-key operations for
each query. Such schemes [81,83] still require a linear number of symmetric
key and plaintext operations for each query. In contrast, the schemes in this
paper require sublinear amortized work of any kind, per query.

Communication Lower Bounds on PIR. A series of works give bounds
on the communication required for multi-server PIR [56,93]. Single-server PIR
constructions match the trivial log n lower bound (up to polylogarithmic factors).

Lower Bounds for PIR with Preprocessing. Beimel, Ishai, and Malkin [13]
proved that if a server can store an S-bit hint and run in amortized time T , then
it must hold that ST ≥ n. Persiano and Yeo [84] recently improved this lower
bound to ST ≥ n log n in the single-server case. In this paper, we are interested
in offline/online PIR schemes, in which the client stores a hint and the server
stores the database in unmodified form.

Lower Bounds on Oblivious RAM. Recent work proves strong limits on the
performance of oblivious-RAM [58] schemes [26,69,73,75,76]. These schemes
allow the server to maintain per-client state; in our setting of PIR, the server is
stateless. The PIR setting thus requires different lower-bound approaches [13].

2 Background

Notation. We write the set of positive integers as N. For an integer n ∈ N,
we write [n] = {1, . . . , n} and we write the empty set as ∅. We ignore issues of
integrality, and treat numbers such as n1/2 and n/k as integers. We use poly(·) to
denote a fixed polynomial in its argument. We use the standard Landau notation
O(·) and Ω(·) for asymptotics. When the big-O contains multiple variables, such
as f(n) = O(n/S), all variables other than n are implicit functions of n (which
is the database size when it is not made explicit). The notation ˜O(f(n)) hides
polylogarithmic factors in the parameter n, and ˜Oλ(·) hides poly(log n, λ) factors.
For a finite set X , x ←R X denotes an independent and uniformly random draw
from X . When unspecified, we take all logarithms base two.

We work in the RAM model, with word size logarithmic in the input length
(i.e., database size n) and polynomial in the security parameter λ. We give
running times up to poly(log n, λ) factors, which makes our results relatively
independent of the specifics of the computational model. An “efficient algorithm”
is one that runs in probabilistic polynomial time in its inputs and in λ.

2.1 Standard Definitions

We begin by defining the standard cryptographic primitives that this work uses.

Pseudorandom Permutations. We use the standard notion of pseudorandom
permutations [57]. On security parameter λ ∈ N, a domain size n ∈ N, and a key
space Kλ, we denote a pseudorandom permutation by PRP : Kλ × [n] → [n].

12 H. Corrigan-Gibbs et al.

Definition 1 (Linearly homomorphic encryption). Let (Gen,Enc,Dec) be
a public-key encryption scheme. The scheme is linearly homomorphic if, for every
keypair (sk, pk) that Gen outputs,

– the message space is a group (Mpk,+),
– the ciphertext space is a group (Cpk, ·), and
– for every pair of messages m0,m1 ∈ Mpk, it holds that

Dec(sk,Enc(pk,m0) · Enc(pk,m1) ∈ Cpk) = Dec(sk,Enc(pk,m0 + m1 ∈ Mpk)).

Definition 2 (Gate-by-gate fully homomorphic encryption). We use
(FHE.Gen, FHE.Enc, FHE.Dec, FHE.Eval) to denote a symmetric-key fully homo-
morphic encryption scheme [51]. We say a scheme is a gate-by-gate fully homo-
morphic encryption scheme if the homomorphic evaluation routine FHE.Eval on
a circuit of size |C| and security parameter λ runs in time |C| · poly(log |C| , λ).
Standard fully homomorphic encryption schemes are gate-by-gate [27,51,54].

2.2 Definition of Offline/Online PIR

Throughout, we present our new single-server PIR schemes in an offline/online
model [39,83]. That is, the client first interacts with the server in an offline phase
to obtain a succinct “hint” about the database contents. This hint allows the
client to make many queries in a subsequent online phase. Provided that the
server-side cost is low enough in both phases, the server’s total amortized time
(including the cost of both phases) will be sublinear in the database size.

We now give definitions for one- and two-server offline/online PIR schemes
that support many adaptive queries. Our definition of offline/online PIR differs
from that of prior work in one important way [39,72]. In our definition, in the
two-server setting, the client may only communicate with a single server in the
online phase. Prior two-server offline/online PIR schemes [39,72] allow the client
to communicate with both servers in the online phase.

Definition 3 (Offline/online PIR for adaptive queries). An offline/
online PIR scheme for adaptive queries is a tuple of polynomial-time algorithms:

– HintQuery(1λ, n) → (ck, q), a randomized algorithm that takes in a security
parameter λ and a database length n ∈ N, and outputs a client key ck and a
hint request q,

– HintAnswer(D, q) → a, a deterministic algorithm that takes in a database
D ∈ {0, 1}n and a hint request q, and outputs a hint answer a,

– HintReconstruct(ck, a) → h, a deterministic algorithm that takes in a client
key ck and a hint answer a, and outputs a hint h,

– Query(ck, i) → (ck′, st, q), a randomized algorithm that takes in a client key
ck and an index i ∈ [n], and outputs an updated client key ck′, a client query
state st, and a query q,

– AnswerD(q) → a, a deterministic algorithm that takes in a query q, and gets
access to an oracle that:

Single-Server Private Information Retrieval with Sublinear Amortized Time 13

Experiment 4 (Correctness).
Parameterized by a PIR scheme Π,
security parameter λ ∈ N, number of
queries Q ∈ N, database size n ∈ N,
database D ∈ {0, 1}n, and query
sequence (i1, . . . , iQ) ∈ [n]Q.

– Compute:

(ck, q) ← Π.HintQuery(1λ, n)

a ← Π.HintAnswer(D, q)

h ← Π.HintReconstruct(ck, a)

– For t = 1, . . . , Q, compute:

(ck, st, q) ← Π.Query(ck, it)

a ← Π.AnswerD(q)

(h, vi) ← Π.Reconstruct(st, h, a)

– Output “1” if vt = Dit for all
t ∈ [Q]. Output “0” otherwise.

Experiment 5 (Security). Param-
eterized by an adversary A, PIR
scheme Π, number of servers k ∈
{1, 2}, security parameter λ ∈ N, num-
ber of queries Q ∈ N, database size n ∈
N, and bit b ∈ {0, 1}.

– Compute:

(ck, q) ← Π.HintQuery(1λ, n)

If k = 1: // Single-server security

st ← A(1λ, q)

Else: // Two-server security

st ← A(1λ)

– For t = 1, . . . , Q, compute:

(st, i0, i1) ← A(st)

(ck, , q) ← Π.Query(ck, ib)

st ← A(st, q)

– Output b′ ← A(st).

• takes as input an index j ∈ [n], and
• returns the j-th bit of the database Dj ∈ {0, 1},

and outputs an answer string a, and
– Reconstruct(st, h, a) → (h′,Di), a deterministic algorithm that takes in a

query state st, a hint h, and an answer string a, and outputs an updated
hint h′ and a database bit Di.

In a deployment, (HintQuery,HintAnswer,HintReconstruct) are executed in the
offline phase, while (Query,Answer,Reconstruct) are executed in each online
phase. Furthermore, we say that the PIR scheme supports Q adaptive queries if
it satisfies the following notions of (1) correctness and (2) security for Q queries:

Correctness for Q Queries. We require that if a client and a server cor-
rectly execute the protocol, the client can recover any Q database records of its
choosing, even if the client chooses these records adaptively. Formally, a multi-
query offline/online PIR scheme Π satisfies correctness for Q queries if for every
λ, n ∈ N, D ∈ {0, 1}n, and every (i1, . . . , iQ) ∈ [n]Q, Experiment 4 outputs “1”
with probability 1 − negl(λ).

Security for Q Queries. We require that an adversarial (malicious) server
“learns nothing” about which sequence of database records the client is fetch-
ing, even if the adversary can adaptively choose these indices. In the single-server
setting, where the same server runs both the offline and online phase, the adver-
sary is first given the hint request. In the two-server setting, where a separate

14 H. Corrigan-Gibbs et al.

server runs the offline phase, the adversary only sees the online queries. (This
is sufficient, as an adversarial offline server trivially learns nothing about the
client’s queries since the hint request does not depend on these queries.)

Formally, for an adversary A, multi-query offline/online PIR scheme Π, num-
ber of servers k ∈ {1, 2}, security parameter λ ∈ N, database size n ∈ N, and
bit b ∈ {0, 1}, let WA,k,λ,Q,n,b be the event that Experiment 5 outputs “1” when
parameterized with these values. We define the Q-query PIR advantage of A:

PIRAdvk[A,Π](λ, n) := |Pr[WA,k,λ,Q,n,0] − Pr[WA,k,λ,Q,n,1]| .
We say that a multi-query offline/online PIR scheme Π is k-server secure if,
for all efficient algorithms A, all polynomially bounded functions n(λ), and all
λ ∈ N, PIRAdvk[A,Π](λ, n(λ)) ≤ negl(λ).

Definition 6 (Sublinear amortized time). We say that an offline/online
PIR scheme has sublinear amortized time if there exists a number of queries.
Q ∈ N such that the total server time required to run the offline and online
phases for Q queries on a database of size n is o(Qn). More formally, for every
choice of the security parameter λ ∈ N, database size n ∈ N, and query sequence
(i1, . . . , iQ) ∈ [n]Q, the total running time of HintAnswer (executed once) and
Answer (executed Q times) in Experiment 4 must be o(Qn).

Remark 7 (Handling an unbounded number of queries). A scheme with sublinear
amortized time for some number of queries Q ∈ N immediately implies a scheme
with sublinear amortized time for any larger number of queries, including a
number that is a-priori unbounded. One can obtain such a scheme by “restarting”
the scheme every Q queries and rerunning the offline phase from scratch. The
amortized costs remain the same.

Remark 8 (Malicious security). In our definition (Definition 3), following prior
work [39], the client’s queries do not depend on the server’s answers to prior
queries. In this way, our PIR schemes naturally protect client privacy against
a malicious server—the server learns the same information about the client’s
queries whether or not the server executes the protocol faithfully.

Remark 9 (Correctness failures). Our definition does not require that correct-
ness holds if the client makes a sequence of queries that is correlated with the
randomness it used to generate the hint request. A stronger correctness definition
would guarantee correctness in all cases (i.e., with probability one). Strengthen-
ing our PIR schemes to provide this form of correctness represents an interesting
challenge for future work.

Remark 10 (Handling database changes). In many natural applications of pri-
vate information retrieval, the database contents change often. Näıvely, when-
ever the database contents change, the client and server would need to rerun
the costly hint-generation process. In the limit—when the entire contents of the
database changes between a client’s queries—rerunning the hint-generation step
is inherently required. When the database changes more slowly, prior work on

Single-Server Private Information Retrieval with Sublinear Amortized Time 15

offline/online PIR [72], building on much earlier work in dynamic data struc-
tures [17], shows how to update the client’s hint at modest cost. In particular,
when a constant number of database rows change between each pair of client
queries, the scheme’s costs do not change, up to factors in the security parameter
and logarithmic in the database size. These techniques from prior work apply
directly to our setting, so we do not discuss them further.

3 Two-Server PIR with a Single-Server Online Phase
and Sublinear Amortized Time

In this section, we give a generic construction that converts a two-server
offline/online PIR scheme that supports a single query into a two-server
offline/online PIR scheme that supports any number of adaptive queries. The
transformation has three useful properties:

1. If the original PIR scheme has linear offline server time, then the resulting
multi-query scheme has linear offline server time as well.

2. If the original PIR scheme has sublinear online server time, then the resulting
multi-query scheme has sublinear online server time as well.

3. During the online phase—when the client is making its sequence of adaptive
queries—the client only communicates with one of the servers. (In contrast,
prior two-server PIR schemes with sublinear amortized time [39,72] require
the client to communicate with both servers in the online phase.)

After presenting the generic transformation (Lemma 11) in this section, we
instantiate this transformation in Sect. 4 and use it to construct single-server
PIR schemes with sublinear amortized time.

Lemma 11 (The Compiler Lemma). Let Π be a two-server offline/online
PIR scheme that supports a single query. Then, for any database size n ∈ N,
security parameter λ ∈ N, and number of queries Q < n, Construction 15,
when instantiated with a secure pseudorandom permutation, is a two-server
offline/online PIR scheme that supports Q adaptive queries and whose offline
and online phases have communication, computation, and client storage costs
dominated by running O(λQ) instances of Π, each on a database of size n/Q.

To prove the lemma, we must show that the scheme of Construction 15
satisfies the claimed efficiency properties, along with correctness and security.
Efficiency follows by construction. We give the full correctness and security argu-
ments in the full version of this paper [38].

Remark 12. In the PIR scheme implied by Lemma 11, the online-phase upload
communication (from the client to server) is in fact only as large as the upload
communication required for running a single instance of the underlying PIR
scheme Π on a database of size n/Q.

Before giving the construction that proves Lemma 11, we describe the idea
behind our approach. We take inspiration from the work of Ishai, Kushilevitz,

16 H. Corrigan-Gibbs et al.

Ostrovsky, and Sahai [68], who construct “batch” PIR schemes, in which the
client can issue a batch of Q queries at once, and the server can respond to all Q
queries in time ˜O(n). (In contrast, answering Q queries using a non-batch PIR
scheme requires server time Ω(Qn).) The crucial difference between our PIR
schemes and prior work on batch PIR is that our schemes allow the client to
make its Q queries adaptively, rather than in a single batch all at once.

Our idea is to first permute the database according to a pseudorandom per-
mutation and then partition the n database records into Q chunks, each of size
n/Q. The key observation is that, if the client makes Q adaptive queries, it is
extremely unlikely that the client will ever need to query any chunk more than λ
times. In particular, by a balls-in-bins argument, the probability, taken over the
random key of the pseudorandom permutation, that any chunk receives more
than λ queries is negligible in λ.

Then, given a two-server offline/online PIR scheme Π for a single query, we
construct a two-server offline/online PIR scheme for many queries as follows:

– Offline phase. The client and the offline server run the offline phase of Π on
each of the Q database chunks λ times. For each of the Q database chunks,
the client then holds λ client keys and hints.

– Online phase. Whenever the client wants to make a database query, it iden-
tifies the chunk in which its desired database record falls. The client finds
an unused client key for that chunk and runs the online phase of Π for that
chunk to produce a query. The client sends the query to the online server,
who answers that query with respect to each of the Q database chunks. Using
the online server’s answers, the client can reconstruct its database record of
interest. Crucially, the client’s query does not reveal to the server the chunk
in which its desired database record falls. Finally, the client then deletes the
client key and hint that it used for this query.

The formal description of our protocol appears in Construction 15.

Remark 13. Construction 15 uses a pseudorandom permutation (PRP) to per-
mute and partition the database. The client then reveals the PRP key it used for
this partitioning to the server. Crucially, the security of our construction does
not rely on the pseudorandomness of the PRP. The PRP security property only
appears in the correctness argument of our scheme (which we give in the full
version of this paper [38]). So, revealing the PRP key to the server in this way
has no effect on the security of the scheme.

Remark 14 (Reducing online download). In the online phase of Construction
15, the online server’s answer to the client consists of a vector of Q answers
a = ((a)1, . . . , (a)Q). The client uses only one of these answers (a)j∗ . To reduce
download cost, the client and server can run a single-server PIR protocol, where
the server’s input is the database a of Q answers and the client’s input is the
index j∗ ∈ [Q] of it’s desired answer. This reduces the client’s online download
cost by a factor of Q, at the cost of requiring the server to perform Oλ(Q)
public-key operations in the online phase.

Single-Server Private Information Retrieval with Sublinear Amortized Time 17

Construction 15 (Two-server offline/online PIR for Q adaptive queries with a
single-server online phase). The scheme uses a single-query two-server offline/online
PIR scheme Π and a pseudorandom permutation PRP : Kλ × [n] → [n]. The scheme is
parameterized by a maximum number of queries Q = Q(n) < n.

I. Offline phase.

HintQuery(1λ, n) → (ck, q).

1. For j ∈ [Q] and � ∈ [λ]: ((ĉk)j�, (q̂)j�) ← Π.HintQuery(1λ, n/Q).

2. Sample k ←R Kλ, set ck ← (k, ĉk, ∅), and set q ← (k, q̂).
3. Return (ck, q).

HintAnswer(D, q) → a.

1. Parse (k, q̂) ← q.
2. // Permute the database according to PRP(k, ·) and divide it into Q chunks.

For j ∈ [Q]: Cj ← (DPRP(k,(j−1)(n/Q)+1)‖ . . . ‖DPRP(k,(j+1)(n/Q))) ∈ {0, 1}n/Q.
3. For j ∈ [Q] and � ∈ [λ]: (a)j� ← Π.HintAnswer(Cj , (q̂)j�).
4. Return a.

HintReconstruct(ck, a) → h.

1. Parse (k, ĉk, queried) ← ck.
2. For j ∈ [Q] and � ∈ [λ]: (ĥ)j� ← Π.HintReconstruct((ĉk)j�, (a)j�).
3. Set cache ← {}. // An empty map (associative array) data structure.
4. Return h = (ĥ, cache).

II. Online phase.

Query(ck, i) → (ck′, st, q).

1. Parse (k, ĉk, queried) ← ck.
2. Find (the unique) i∗ ∈ [n/Q] and j∗ ∈ [Q] so that PRP(k, i) = (j∗ − 1)(n/Q) + i∗.
3. Find �∗ ∈ [λ] such that (ck)j∗�∗ �= ⊥.

– If no such �∗ exists or i ∈ queried, sample i∗ ←R [n/Q] and choose a random
j∗ ∈ [Q] and �∗ ∈ [λ] out of those for which (ck)j∗�∗ �= ⊥.

4. Let (, st′, q′) ← Π.Query((ĉk)j∗�∗ , i∗).

5. Let (ĉk)j∗�∗ ← ⊥, let st ← (st′, i, j∗, �∗), let q ← (k, q′), and let ck′ ←
(k, ĉk, queried ∪ {i}).

6. Return (ck′, st, q).

AnswerD(q) → a.

1. Parse (k, q′) ← q.
2. For j ∈ [Q]: (a)j ← Π.AnswerOj (q′), where Oj(x) := DPRP(k,(j−1)(n/Q)+x).
3. Return a.

Reconstruct(st, h, a) → (h′, Di).

1. Parse (st′, i, j∗, �∗) ← st and parse (ĥ, cache) ← h.
2. If cache[i] is not set, let cache[i] ← Π.Reconstruct(st′, (ĥ)j∗�∗ , (a)j∗).

3. Set Di ← cache[i]. Set h′ ← (ĥ, cache).
4. Return (h′, Di).

18 H. Corrigan-Gibbs et al.

4 Single-Server PIR with Sublinear Amortized Time
from DCR, QR, DDH, or LWE

In this section, we use the general transformation of Sect. 3 to construct the first
single-server PIR schemes with sublinear amortized total time and sublinear
extra storage, allowing the client to make her queries adaptively.

These constructions work in two steps:

– First, we use the Compiler Lemma (Lemma 11) to convert a two-server
offline/online PIR scheme for a single query into a two-server offline/online
PIR scheme for multiple adaptive queries, in which the client only communi-
cates with a single server in the online phase.

– Next, we use linearly homomorphic encryption and single-server PIR to allow
the client and server to run the offline phase of the two-server scheme without
leaking any information to the server. At this point, we can execute the
functionality of both servers in the two-server scheme using just a single
server. In other words, we have constructed a single-server offline/online PIR
scheme that supports multiple adaptive queries.

The idea of using homomorphic encryption to run a two-server protocol on a
single server arose first, to our knowledge, in the domain of multi-prover interac-
tive proofs. Aiello, Bhatt, Ostrovsky, and Rajagopalan [2] formalized this general
approach, which was initially proposed by Biehl, Meyer, and Wetzel [18]. Subse-
quent work demonstrated that compiling multi-prover proof systems to single-
prover systems requires care [44,47,48,71,91] (in particular it requires the under-
lying proof system to be sound against “no-signaling” provers [91]). Corrigan-
Gibbs and Kogan [39] used homomorphic encryption to convert a two-server
PIR scheme to a single-server offline/online PIR scheme that supports a single
query in sublinear online time. Our contribution is to construct a single-server
PIR scheme that supports multiple, adaptive queries and that thus achieves
sublinear amortized total time.

We now show that any one of a variety of cryptographic assumptions—the
Decision Composite Residuosity assumption [77,82], the Quadratic Residuosity
assumption [59], the Decision Diffie-Hellman assumption [20], or the Learning
with Errors assumption [87]—suffices for constructing single-server PIR with
sublinear amortized time:

Theorem 16 (Single-server PIR with sublinear amortized time). Under
the DCR, LWE, QR, or DDH assumptions, there exists a single-server
offline/online PIR scheme that, on database size n, security parameter λ, and
as long as the client makes at least n1/4 adaptive queries, has

– amortized communication ˜Oλ(n1/2),
– amortized server time ˜Oλ(n3/4),
– amortized client time ˜Oλ(n1/2), and
– client storage ˜Oλ(n3/4).

Single-Server Private Information Retrieval with Sublinear Amortized Time 19

The proof of Theorem 16 will make use of the following two-server
offline/online PIR scheme which is implicit in prior work.

Lemma 17 (Implicit in Theorem 20 of CK20 [39]). There is a two-server
offline/online PIR scheme (with information-theoretic security) that supports a
single query on database size n such that, in the offline phase:

– the client uploads a vector q ∈ {0, 1}n to the offline server,
– the offline server computes the inner product of the database with all n cyclic

shifts of the query vector q (in ˜O(n) time using a fast Fourier transform),
– the client downloads ˜O(

√
n) bits of the resulting matrix-vector product

and, in the online phase:

– the client uploads ˜O(
√

n) bits to the online server,
– the online server runs in time ˜O(

√
n), and

– the client downloads one bit.

Proof of Theorem 16. The proof works in two main steps. First, we use Lemma
11 to “compile” the single-query two-server PIR scheme of Lemma 17 into
a multi-query two-server PIR scheme. Second, we use linearly homomorphic
encryption—following the work of Corrigan-Gibbs and Kogan [39] in the single-
query setting—to allow a single server to implement the role of both servers.

Step 1: A stepping-stone two-server scheme. We first construct a two-
server offline/online PIR scheme that: (a) supports multiple queries, (b) has
sublinear online time, and (c) requires only one server in the online phase. To
do so, we use the Compiler Lemma (Lemma 11) to convert the two-server PIR
scheme of Lemma 17 into a two-server PIR scheme satisfying these three goals.

In particular, Lemma 11 and Lemma 17 together imply a two-server
offline/online PIR scheme that supports any number of queries Q < n, and
whose offline and online phases consist of running O(λQ) instances of the PIR
scheme of Lemma 17 on databases of size n/Q. The resulting scheme then has
the following structure in the offline phase:

– the client uploads ˜Oλ(Q) bit vectors to the offline server, each of size n/Q,
– the offline server applies a length-preserving linear function to each vector (in

quasi-linear time, as in the Lemma 17 scheme),
– the client downloads a total of ˜Oλ(

√
Qn) bits from the vectors that the server

computes.

And in the online phase,

– the client uploads ˜Oλ(
√

Qn) bits to the online server,
– the online server runs in time ˜Oλ(

√
Qn), and

– the client downloads ˜Oλ(Q) bits.

20 H. Corrigan-Gibbs et al.

This scheme requires the existence of one-way functions.
As desired, this scheme supports multiple queries, has sublinear online time

(whenever Q 	 n), and requires only one server in the online phase. The offline
upload cost and the client time of the scheme are ˜Ωλ(n)—linear in the database
size, but we remove this limitation later on.

Step 2: Using homomorphic encryption to run the two-server scheme
on one server. Next, we show that the client can fetch the information it
needs to complete the offline phase of the Step-1 scheme without revealing any
information to the server. In the Step-1 scheme, the offline server’s work con-
sists of evaluating a client-supplied linear function over the database and can
thus be performed under linearly homomorphic encryption. For this step, we
will need a linearly homomorphic encryption scheme with ciphertexts of size
˜Oλ(1), along with a single-server PIR scheme with communication cost and
client time ˜Oλ(1). The existence of both primitives follows from the Decision
Composite Residue (DCR) assumptions [77,82] and the Learning with Errors
(LWE) assumption [87]. Recent work of Döttling, Garg, Ishai, Malavolta, Mour,
and Ostrovsky [45] shows that the Quadratic Residuosity (QR) assumption [59]
and decision Diffie-Hellman (DDH) assumption [20] also imply these primitives.

In particular, the client first samples a random encryption key for a linearly
homomorphic encryption scheme. Then the client executes the offline phase as
follows:

– The client encrypts each component of its ˜Oλ(Q) bit vectors using the linearly
homomorphic encryption scheme. The client sends these vectors to the server.

– Under encryption, the server applies the length-preserving linear function to
each encrypted vector. As in the Step-1 scheme, this computation takes ˜Oλ(n)
time using an FFT on the encrypted values.

– The client uses a single-server PIR scheme [74], to fetch a total of ˜Oλ(
√

Qn)
components of the ciphertext vectors that the server has computed. Since
modern single-server PIR schemes have communication cost ˜Oλ(1), this step
requires communication and client time ˜Oλ(

√
Qn). Using batch PIR [7,64,68],

the server can answer this set of queries in time ˜Oλ(n).

Finally, the client decrypts the resulting ciphertexts to recover exactly the
same information that it obtained at the end of the offline phase of the two-
server scheme. At this point, the offline phase has upload ˜Oλ(n), server time
˜Oλ(n), client time ˜Oλ(n), and download ˜Oλ(

√
Qn). The online phase has upload

˜Oλ(
√

Qn) bits, server time ˜O(
√

Qn), client time ˜Oλ(
√

Qn + Q), and download
˜Oλ(Q).

Final Rebalancing. We complete the proof by reducing the offline upload cost
using the standard rebalancing idea [34, Section 4.3]. In particular, we divide the
database into k chunks, of size n′ = n/k, for a parameter k chosen later.

Now, the offline phase has upload ˜Oλ(n/k), server time ˜Oλ(n), client time
˜Oλ(n/k+

√
Qnk), and download k · ˜Oλ(

√

Qn/k) and the online phase has upload
˜Oλ(

√

Qn/k) bits, server time k · ˜O(
√

Qn/k), client time ˜Oλ(
√

Qn/k + Qk) and

Single-Server Private Information Retrieval with Sublinear Amortized Time 21

download k · ˜Oλ(Q). We choose Q and k to balance the following costs, ignoring
poly(λ, log n) factors:

– the amortized offline time: n/Q, and
– the online server time:

√
kQn.

To do so, we choose k = n
Q3 and Q ≤ n1/3. This yields a PIR scheme with

amortized server time ˜Oλ(n/Q), amortized client time ˜Oλ(Q2 + n/Q2) and
amortized communication ˜Oλ(Q2 + n/Q2). The client storage is equal to the
(non-amortized) offline download cost, which is ˜Oλ(n/Q).

Finally, to construct the scheme of Theorem 16, we chose Q = n1/4 to min-
imize the offline upload. This causes the amortized server time and the client
storage to become ˜Oλ(n3/4), while the amortized client time and the amortized
communication are both ˜Oλ(n1/2).

Efficiency. The efficiency claims follow immediately from the construction.

Security. The security argument closely follows that of prior work on single-server
offline/online PIR [39]. More formally, the server’s view in an interaction with a
client consists of (1) the client’s encrypted bit vectors sent in the offline phase,
(2) the client’s standard single-server PIR queries sent in the offline phase, (3)
the messages that the client sends in the online phase. To prove security, we can
construct a sequence of hybrid distributions that move from the world in which
the client queries a sequence of database indexes I0 = (i0,1, i0,1, . . . , i0,Q) to the
world in which the client queries a different sequence I1 = (i1,1, i1,1, . . . , i1,Q).
The steps of the argument are:

– replace the encrypted bit vectors with encryptions of zeros, using the semantic
security of the encryption scheme,

– replace the client’s standard single-server PIR query with a query to a fixed
database row, using the security of the underlying single-server PIR scheme,

– swap query sequence I0 with query sequence I1, using the security of the
underlying two-server offline/online PIR scheme,

– swap the client’s standard single-server PIR query and encrypted bit vectors
back again, using the security of these primitives.
�

Remark 18 (Single-server PIR with ˜Oλ(n2/3) amortized time and communica-
tion). With an alternate rebalancing (taking Q to be n1/3), we can build a
single-server offline/online PIR scheme that, as long as the client makes at least
n1/3 adaptive queries, has amortized communication ˜Oλ(n2/3), amortized server
time ˜Oλ(n2/3), amortized client time ˜Oλ(n2/3), and client storage ˜Oλ(n2/3). This
PIR scheme has better amortized server time than that of Theorem 16, at the
cost of requiring a client upload linear in n in the offline phase. (However, the
amortized communication of this scheme is still sublinear in n.)

22 H. Corrigan-Gibbs et al.

5 Single-Server PIR with Optimal Amortized Time
and Storage from Fully Homomorphic Encryption

In this section, we construct a single-server many-query offline/online PIR
scheme directly, rather than through a generic transformation. Assuming fully
homomorphic encryption (Definition 2), our scheme achieves the optimal tradeoff
between amortized server time and client storage, up to polylogarithmic factors.
This fills a gap left open by the protocols of Sect. 4 and demonstrates that the
lower bound we give in Sect. 6 is tight. We prove the following result:

Theorem 19 (Single-server PIR with optimal amortized time and
storage from fully homomorphic encryption). Assuming gate-by-gate
fully homomorphic encryption (Definition 2), there exists a single-server
offline/online PIR scheme that, on security parameter λ ∈ N, database size
n ∈ N, and maximum number of queries Q < n, supports Q adaptive queries
with:

– amortized server time Õλ(n/Q),
– client-side storage Õλ(Q),
– amortized communication Õλ(n/Q), and
– amortized client time Õλ(Q + n/Q).

This new scheme achieves amortized server time better than we could expect
from any protocol derived from the generic compiler of Sect. 3, given current
state-of-the-art offline/online PIR protocols. To answer each query, that compiler
executes the online phase of a PIR scheme on Q database chunks, each of size
n/Q. Similar to the compiler of Sect. 3, the PIR scheme here works by splitting
the database into random chunks, so that the client’s distinct adaptive queries
fall into distinct chunks with high probability. However, the new PIR scheme in
this section keeps the mapping of database rows to chunks secret from the server.
(In contrast, in the scheme of Sect. 3, the client reveals to the server the mapping
of database rows to chunks.) By keeping the mapping of database rows to chunks
secret, in the online phase of this scheme, the server only has to compute over
the contents a single chunk. In this way, we achieve lower computation than the
schemes of Sect. 4, which execute an online phase for each database chunk.

In this section, we sketch the ideas behind the PIR scheme that proves The-
orem 19; a complete proof appears in the full version of this paper [38].

Proof idea for Theorem 19. At a very high level, the PIR scheme that we con-
struct works as follows:

1. In an offline phase, the client chooses small, random subsets S1, . . . , Sm ⊆ [n].
For each subset, the client privately fetches from the server the parity of the
database bits indexed by the set.

2. When the client wants to fetch database record i in the online phase, it
finds a subset S ∈ {S1, . . . , Sm} such that i ∈ S. Then, the client usually
asks the server for the parity of the database bits indexed by S �{i}. The
parity of the database bits indexed by S and S�{i} give the client enough

Single-Server Private Information Retrieval with Sublinear Amortized Time 23

information to recover the value of the ith database record, Di. Then, the
client re-randomizes the set S it just used.

In more detail, our PIR scheme operates as follows: in the offline phase, the
client samples (λ+1) ·Q random subsets of [n], each of size n/Q. We refer to the
first λQ sets as the “primary” sets and to the remaining Q sets as the “backup”
sets. For each set S, the client retrieves the parity of the database bits the set
indexes, i.e.,

∑

j∈S Dj mod 2, from the server, while keeping the set contents
hidden using encryption. For each backup set S, the client additionally chooses a
random member of the set S and privately retrieves the database value indexed
by that element, via a batch PIR protocol [7,64,68].

With high probability over the client’s random choice of sets, whenever the
client wants to fetch the i-th database record, the client holds a primary set that
contains i. Again with good probability, the client then asks the server for the
parity of the database bits indexed by the punctured set S�{i}, with which she
can reconstruct the desired database value Di. Finally, the client must refresh
her state, as using the same S to query for another index i′ could leak (i, i′)
to the server and thus break security. To achieve this, the client discards S and
promotes the next available backup set, Sb, to become a new primary set. If
Sb does not already contain i, the client modifies Sb by deleting the set element
whose database value she knows and inserting i; the client recomputes the parity
of this new set using the value of Di she has just retrieved. With this mechanism,
the distribution of the client’s primary sets remains random, ensuring that her
online queries are independent.

There are two failure events in this scheme: it is possible that (a) none of
the primary sets contain the index queried, i, or that (b) the client sends the
server a set other than S�{i}, as decided by a coin flip (to avoid always sending
a query set that does not contain i). We drive down the probability of either
failure event to negl(λ), by repeating the offline and online phases λ times. Then,
by construction, this scheme satisfies correctness for Q queries. Intuitively, the
scheme is secure because (a) the use of encryption and batch PIR in the offline
phase prevents the server from learning the contents of the presampled sets,
and (b) the client’s online queries are indistinguishable from uniformly random
subsets of [n] of size n/Q − 1, as proved in the full version of this paper [38].

We now discuss the PIR scheme’s efficiency.

Communication and Storage. The client can succinctly represent her pre-
sampled sets with only logarithmic-size keys by leveraging pseudorandomness.
Then, in the offline phase, she exchanges only ˜Oλ(Q) bits with the server to
communicate the (encrypted) descriptions and parities of Oλ(Q) randomly sam-
pled sets. The client additionally retrieves the database values of Q indices—one
from each backup set—in ˜Oλ(Q) communication with batch PIR. The client
stores her presampled sets and her state between queries in ˜Oλ(Q) bits. In each
online phase, the client must however hide whether she inserted an index into
her query set (and, if so, which index she inserted). Therefore, the client explic-
itly lists all elements in the punctured set she is querying for (instead of using
pseudorandomness) and thus exchanges ˜Oλ(n/Q) bits with the server.

24 H. Corrigan-Gibbs et al.

Computation. In the offline phase, the client retrieves the encrypted parities of
the database bits indexed by each of Oλ(Q) encrypted sets of size n/Q. In the full
version of this paper [38], we present a Boolean circuit that computes the parities
of the database bits of s subsets of [n], each of size �, in ˜O(s · � + n) gates. Our
circuit is inspired by circuits for private set intersection [67,85,86] and makes use
of sorting networks [10]. The server can execute the offline phase in Õλ(n) time
by running the above circuit under a gate-by-fate fully homomorphic encryption
scheme. Further, the offline server can respond to the client’s batch PIR query in
˜Oλ(n) time. In each online phase, the server must complete Oλ(n/Q) work per
query, as it computes the parity of a punctured set containing n/Q−1 elements.
Thus, each query requires ˜Oλ(n/Q) amortized total server time.

As for the client, in the offline phase, she generates Oλ(Q) random sets. Using
pseudorandomness to represent each set, the time to generate these sets without
expanding them is ˜Oλ(Q). Also in the offline phase, the client runs a batch PIR
protocol with the server to recover Q database values, requiring at most ˜Oλ(Q)
client time. In the online phase, the client first has to find a primary set that
contains the index i ∈ [n] she wants to read. By generating each set using a
pseudorandom permutation, she can efficiently test whether each set contains
i by inverting the permutation in time ˜Oλ(1). Testing all Oλ(Q) primary sets
takes the client time ˜Oλ(Q). When she finds a succinctly-represented primary
set that contains i, the client expands the set in time ˜Oλ(n/Q) to build her
online query. Finally, promoting a backup set to become a new primary set and,
if necessary, replacing a set element by i takes time ˜Oλ(1). We conclude that the
client’s amortized, per-query time is ˜Oλ(Q + n/Q).

6 Lower Bounds

In this section, we present lower bounds for multi-query offline/online PIR
schemes in which the server stores the database in its original form—that is, the
server does not preprocess or encode the database. (If preprocessing is allowed,
candidate single-server PIR schemes using program obfuscation can circumvent
our lower bounds [25].)

Remark 20 (Generalization to multi-server PIR). While we present and prove
these lower bounds in the single-server setting, both lower bounds hold for pro-
tocols with any constant number of servers. With multiple servers, T bounds the
database bits probed per query by any online server.

6.1 Lower Bound for Adaptive Schemes

First, we give a new lower bound on the product of the (a) client storage and (b)
online time of any single-server, offline/online PIR scheme for many adaptive
queries. Specifically, we show that in any adaptive, multi-query, offline/online
PIR scheme, where the client stores S bits between queries and the server
responds to each query in amortized time T , it must hold that ST = ˜Ω(n).

Single-Server Private Information Retrieval with Sublinear Amortized Time 25

This new lower bound matches the best adaptive multi-query scheme in the
two-server setting [39, Section 4] and it matches our new scheme (Sect. 5) in the
single-server setting, up to polylogarithmic factors.

In the following, we say that a single-server PIR scheme for Q adaptive
queries probes T database bits per query on average if, for every sequence of Q
indices and every choice of the client’s randomness, the server makes at most
QT total probes to the database in the process of answering all Q queries.

Theorem 21 (Lower bound for adaptive schemes). Consider a computa-
tionally secure, single-server PIR scheme for many adaptive queries, such that,
on security parameter λ ∈ N and database size n ∈ N,

– the server stores the database in its original form,
– the client stores at most S bits between consecutive queries, and
– the server probes T database bits per query on average.

Then, for polynomially bounded n = n(λ) and large enough λ, it holds that
(S + 1) · (T + 1) ≥ ˜Ω(n).

We give a complete proof of Theorem 21 in the full version of this paper [38].
Our proof invokes the following lower bound from prior work, which shows that
for any single-query offline/online PIR scheme, either the offline communication
or the online server time must be large:

Theorem 22 ([39, Section 6]). Consider a computationally secure, single-
query, offline/online PIR scheme such that, on security parameter λ ∈ N and
database size n ∈ N,

– the server stores the database in its original form,
– the client downloads C bits in the offline phase,
– the server probes T bits of the database to process each online query, and
– the client recovers its index of interest with probability at least ε ≥ 1/2+Ω(1).

Then, for polynomially bounded n = n(λ), it holds that (C +1) · (T +1) ≥ ˜Ω(n).

Proof idea for Theorem 21. We show that any multi-query PIR scheme with
small client storage implies a single-query offline/online PIR scheme with small
offline communication. In more detail, the reduction works as follows:

1. First, we show that, for any many-query PIR scheme Π as in the theorem
statement, there must exist a query sequence that satisfies the following con-
dition: if the client makes PIR queries to each of the indices in this sequence
one at a time, and then makes any subsequent PIR query, the server answers
this last query with at most T database probes in expectation. We call such
a query sequence a good query sequence.

2. Then, we build a single-query PIR scheme using Π and any fixed, good query
sequence for Π. In an offline phase, we first let the PIR server run Π’s offline
phase, and then run as many iterations of Π’s online phase as needed to query

26 H. Corrigan-Gibbs et al.

for each index in the good query sequence. At this point, the server sends its
intermediate state from running Π to the client. In an online phase, the client
then runs one iteration of Π’s online phase, using the intermediate state it
received from the server, to query for its index of interest.
By construction, this single-query scheme requires S bits of offline download,
and at most T database probes in expectation in the online phase. Correctness
and security follow from the correctness and security of Π.

3. Finally, we modify the above single-query scheme to make O(T) online
database probes in the worst case, rather than in expectation.

Applying Theorem 22 to this single-query scheme then gives the bound on the
client storage S and the running time T of the PIR scheme.
�

6.2 Lower Bound for Batch PIR with Advice

The lower bound of section Sect. 6.1 rules out PIR schemes with small client
storage and small amortized server online time in the adaptive setting. In this
section, we ask whether it is possible to do better if the client makes all of its
queries in a single non-adaptive batch. In particular, we consider schemes for
“batch PIR with advice,” in which a client obtains—via out-of-band means or
via an offline phase—S bits of preprocessed advice about the database contents
(before she knows which indices she wants to query). Then, the client makes a
batch of Q non-adaptive queries, and the server makes at most T database probes
per query (i.e., at most QT probes per batch). We show that ST + QT = ˜Ω(n).

For simplicity, we state the theorem in terms of batch PIR with advice, which
we formally define in the full version of this paper [38]. This PIR model is in
fact identical to single-server, multi-query, offline/online PIR, in which the client
makes its queries non-adaptively, up to some syntactic differences.

Theorem 23 (Lower bound for batch PIR with advice). Consider a com-
putationally secure, single-server batch-PIR-with-advice scheme such that, on
security parameter λ ∈ N, database size n ∈ N, and batch size Q ∈ [n],

– the server stores the database in its original form,
– the client downloads S bits of advice, and
– the server probes at most QT database bits to answer a batch of Q queries.

Then, for polynomially bounded n = n(λ) and large enough λ, it holds that
ST + QT ≥ Ω̃(n).

Theorem 23 shows that it is impossible to get additional speedups from PIR
schemes that both (a) have the client store information, as in the offline/online
PIR model, and (b) jointly process a batch of queries, as in the batch PIR model.
An alternative interpretation of Theorem 23 suggests that adaptivity can “come
for free” in the single-server setting: it requires no more online server time than
standard batch PIR, as long as the client has at least O(Q) storage.

We formally prove Theorem 23 in the full version of this paper [38].

Single-Server Private Information Retrieval with Sublinear Amortized Time 27

Proof idea for Theorem 23. We prove this theorem via an incompressibility argu-
ment [3,41–43,50,95], by demonstrating that any batch PIR with advice scheme
that defies this lower bound could be used to compress the database it is run
on—thus, such a PIR scheme cannot exist. We make this argument in steps:

1. First, we define the multi-query Box Problem, an extension of Yao’s Box
Problem [95] in which the players iteratively open many boxes. Informally,
the multi-query Box Problem encodes a game involving two players and an
n-bit string D = (D1, . . . , Dn):

– Initially, the first player examines D and produces an S-bit advice string
to be passed to the second player.

– Then, the second player is given the S-bit advice string and a set of
Q indices {i1, . . . , iQ}. The player’s goal is to output (Di1 , . . . , DiQ) ∈
{0, 1}Q. To solve this task, the second player may read at most QT bits
of D. When the player reads a bit of D whose index lies in the challenge
set {i1, . . . , iQ}, we say that the player’s query is a “violation” and we
require that the player make at most V violations.

The two players win the game if the second player recovers (Di1 , . . . , DiQ).
We say that a strategy ε-solves the multi-query Box Problem if it allows the
players to win with probability at least ε.

2. With an incompressibility argument, we prove that any strategy that ε-solves
the multi-query Box Problem with a large enough Q and a small enough V
must satisfy that ST + QT = Ω̃(εn).

3. We show that an efficient batch-PIR-with-advice scheme for Q queries, with
advice length S and per-query online time T , gives a good solution to the
multi-query Box Problem. More specifically, given any such PIR scheme, we
devise the following strategy for the multi-query Box Problem:

– Both players treat the n-bit input string D as a database, that the first
player examines and that the second player must recover at Q points.

– Initially, the first player computes and outputs the S-bit advice string that
the batch-PIR-with-advice scheme would have produced on this database.

– Then, the second player takes in the S-bit advice string and Q database
indices to retrieve. The second player retrieves these Q database values
by executing the batch PIR scheme with the advice—probing at most QT
database indices in total, across all Q queries.

In this construction, the second player probes each index in the challenge set
with low probability. (Otherwise, the PIR scheme would leak which values the
player is reading from what indices are probed.) We show that this strategy
(1/2 − negl(λ))-solves the multi-query Box Problem with at most 2Q2T/n
violations. The bounds on any algorithm that solves the multi-query Box
Problem must also apply to the PIR scheme, giving that ST + QT = Ω̃(n).
�

7 Conclusion

We construct new single-server PIR schemes that have sublinear amortized total
server time. A number of related problems remain open:

28 H. Corrigan-Gibbs et al.

– Is it possible to match the performance of our PIR scheme based on fully
homomorphic encryption (Sect. 5) while using simpler assumptions?

– Can we construct single-server PIR schemes for many adaptive queries that
achieve optimal ˜Oλ(1) communication, ˜Oλ(n1/2) amortized server time, and
˜Oλ(n1/2) client storage? Our scheme from Sect. 5 has larger communica-
tion ˜Oλ(n1/2). One approach would be to design puncturable pseudorandom
sets [39,89] with short descriptions that support both insertions and deletions.

– Our lower bounds in Sect. 6 only apply to PIR schemes in which the server
stores the database in unencoded form. Can we beat these bounds by having
the server store the database in some encoded form [14]?

Acknowledgements. We thank David Wu and Yuval Ishai for reading an early draft
of this work and for their helpful suggestions on how to improve it. We thank Yevgeniy
Dodis, Siyao Guo, and Sandro Coretti for answering questions about presampling.
We deeply appreciate the support and technical advice that Dan Boneh gave on this
project from the very start. Part of this work was done when the third author was
a student at Stanford University. This work was supported in part by the National
Science Foundation (Award CNS-2054869), a gift from Google, a Facebook Research
Award, and the Fintech@CSAIL Initiative, as well as the National Science Foundation
Graduate Research Fellowship under Grant No. 1745302 and an EECS Great Educators
Fellowship.

References

1. Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: XPIR: private infor-
mation retrieval for everyone. PoPETs 2, 155–174 (2016)

2. Aiello, W., Bhatt, S., Ostrovsky, R., Rajagopalan, S.R.: Fast verification of any
remote procedure call: short witness-indistinguishable one-round proofs for NP. In:
Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
463–474. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X 39

3. Akshima, Cash, D., Drucker, A., Wee, H.: Time-space tradeoffs and short colli-
sions in Merkle-Damg̊ard hash functions. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12170, pp. 157–186. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-56784-2 6

4. Ali, A., et al.: Communication–computation trade-offs in PIR. In: USENIX Secu-
rity, pp. 1811–1828. USENIX Association (2021)

5. Ambainis, A.: Upper bound on the communication complexity of private informa-
tion retrieval. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP
1997. LNCS, vol. 1256, pp. 401–407. Springer, Heidelberg (1997). https://doi.org/
10.1007/3-540-63165-8 196

6. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and
amortized query processing. In: S&P (2018)

7. Angel, S., Setty, S.: Unobservable communication over fully untrusted infrastruc-
ture. In: SOSP, pp. 551–569 (2016)

8. Backes, M., Kate, A., Maffei, M., Pecina, K.: ObliviAd: provably secure and prac-
tical online behavioral advertising. In: S&P (2012)

9. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

https://doi.org/10.1007/3-540-45022-X_39
https://doi.org/10.1007/978-3-030-56784-2_6
https://doi.org/10.1007/3-540-63165-8_196
https://doi.org/10.1007/3-540-63165-8_196
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1

Single-Server Private Information Retrieval with Sublinear Amortized Time 29

10. Batcher, K.E.: Sorting networks and their applications. In: AFIPS, p. 307–314.
Association for Computing Machinery (1968)

11. Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: a unified
construction. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001.
LNCS, vol. 2076, pp. 912–926. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-48224-5 74

12. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.: Breaking the O(n1/(2k−1))
barrier for information-theoretic private information retrieval. In: FOCS, pp. 261–
270. IEEE Computer Society (2002)

13. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private
information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 55–73. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-44598-6 4

14. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers’ computation in private
information retrieval: PIR with preprocessing. J. Cryptol. 17, 125–151 (2004)

15. Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-
server aggregation with (poly) logarithmic overhead. In: CCS (2020)

16. Bell, S., Komisarczuk, P.: An analysis of phishing blacklists: Google Safe Browsing,
OpenPhish, and PhishTank. In: ACSW (2020)

17. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I: static-to-dynamic
transformation. J. Algorithms 1, 301–358 (1980)

18. Biehl, I., Meyer, B., Wetzel, S.: Ensuring the integrity of agent-based computations
by short proofs. In: Rothermel, K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp.
183–194. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0057658

19. Blackwell, K., Wootters, M.: A note on the permuted puzzles toy conjecture. arXiv
preprint arXiv:2108.07885 (2021)

20. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054851

21. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

22. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: CCS, pp. 1292–1303. ACM (2016)

23. Boyle, E., Holmgren, J., Ma, F., Weiss, M.: On the security of doubly efficient PIR.
Cryptology ePrint Archive, Report 2021/1113 (2021)

24. Boyle, E., Holmgren, J., Weiss, M.: Permuted puzzles and cryptographic hardness.
In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 465–493.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 18

25. Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both locally
and privately? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp.
662–693. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 22

26. Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: ITCS (2016)
27. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE

and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

28. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

https://doi.org/10.1007/3-540-48224-5_74
https://doi.org/10.1007/3-540-48224-5_74
https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/BFb0057658
http://arxiv.org/abs/2108.07885
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-030-36033-7_18
https://doi.org/10.1007/978-3-319-70503-3_22
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28

30 H. Corrigan-Gibbs et al.

29. Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private informa-
tion retrieval. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp.
694–726. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 23

30. Chang, Y.-C.: Single database private information retrieval with logarithmic com-
munication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004.
LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27800-9 5

31. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: CCS, pp. 1223–1237 (2018)

32. Cheng, R., et al.: Talek: private group messaging with hidden access patterns. In:
ACSAC, pp. 84–99. ACM (2020)

33. Chor, B., Gilboa, N.: Computationally private information retrieval (extended
abstract). In: STOC, pp. 304–313. ACM (1997)

34. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: FOCS, pp. 41–50. IEEE Computer Society (1995)

35. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
J. ACM 45, 965–981 (1998)

36. Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 693–721. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 23

37. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 9

38. Corrigan-Gibbs, H., Henzinger, A., Kogan, D.: Single-server private informa-
tion retrieval with sublinear amortized time. Cryptology ePrint Archive, Report
2022/081 (2022)

39. Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear online
time. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp.
44–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 3

40. Dauterman, E., Feng, E., Luo, E., Popa, R.A., Stoica, I.: DORY: an encrypted
search system with distributed trust. In: OSDI, pp. 1101–1119. USENIX Associa-
tion (2020)

41. De, A., Trevisan, L., Tulsiani, M.: Time space tradeoffs for attacks against one-
way functions and PRGs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
649–665. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-
7 35

42. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles with
auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 16

43. Dodis, Y., Haitner, I., Tentes, A.: On the instantiability of hash-and-sign RSA
signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 112–132. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 7

44. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–
122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 4

45. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26954-8 1

https://doi.org/10.1007/978-3-319-70503-3_23
https://doi.org/10.1007/978-3-540-27800-9_5
https://doi.org/10.1007/978-3-540-27800-9_5
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-642-28914-9_7
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-26954-8_1

Single-Server Private Information Retrieval with Sublinear Amortized Time 31

46. Dvir, Z., Gopi, S.: 2-server PIR with subpolynomial communication. J. ACM 63,
1–15 (2016)

47. Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct proofs for
NP and Spooky interactions (2004)

48. Dwork, C., Naor, M., Rothblum, G.N.: Spooky interaction and its discontents:
compilers for succinct two-message argument systems. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 123–145. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 5

49. Efremenko, K.: 3-query locally decodable codes of subexponential length. SIAM J.
Comput. 41, 1694–1703 (2012)

50. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: FOCS, pp. 305–313 (2000)

51. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

52. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz,
D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 438–464. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36033-7 17

53. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 65

54. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

55. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 35

56. Goldreich, O., Karloff, H., Schulman, L., Trevisan, L.: Lower bounds for linear
locally decodable codes and private information retrieval. In: CCC (2002)

57. Goldreich, O.: Foundations of Cryptography. Cambridge University Press, Cam-
bridge (2001)

58. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43, 431–473 (1996)

59. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28, 270–
299 (1984)

60. Green, M., Ladd, W., Miers, I.: A protocol for privately reporting ad impressions
at scale. In: CCS, pp. 1591–1601. ACM (2016)

61. Groth, J., Kiayias, A., Lipmaa, H.: Multi-query computationally-private informa-
tion retrieval with constant communication rate. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7 7

62. Gupta, T., Crooks, N., Mulhern, W., Setty, S., Alvisi, L., Walfish, M.: Scalable
and private media consumption with Popcorn. In: NSDI, pp. 91–107 (2016)

63. Hamlin, A., Ostrovsky, R., Weiss, M., Wichs, D.: Private anonymous data access.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 244–273.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 9

64. Henry, R.: Polynomial batch codes for efficient IT-PIR. PoPETs (2016)
65. Henry, R., Huang, Y., Goldberg, I.: One (block) size fits all: PIR and SPIR with

variable-length records via multi-block queries. In: NDSS. The Internet Society
(2013)

https://doi.org/10.1007/978-3-662-53015-3_5
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1007/11523468_65
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-13013-7_7
https://doi.org/10.1007/978-3-030-17656-3_9

32 H. Corrigan-Gibbs et al.

66. Henry, R., Olumofin, F.G., Goldberg, I.: Practical PIR for electronic commerce.
In: CCS, pp. 677–690. ACM (2011)

67. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS. The Internet Society (2012)

68. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applica-
tions. In: STOC, pp. 262–271. ACM (2004)

69. Jacob, R., Larsen, K.G., Nielsen, J.B.: Lower bounds for oblivious data structures.
In: SODA, pp. 2439–2447. SIAM (2019)

70. Juels, A.: Targeted advertising ... and privacy too. In: Naccache, D. (ed.) CT-RSA
2001. LNCS, vol. 2020, pp. 408–424. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45353-9 30

71. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power
of no-signaling proofs. In: STOC, pp. 485–494 (2014)

72. Kogan, D., Corrigan-Gibbs, H.: Private blocklist lookups with Checklist. In:
USENIX Security (2021)

73. Komargodski, I., Lin, W.-K.: A logarithmic lower bound for oblivious RAM (for
all parameters). In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol.
12828, pp. 579–609. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84259-8 20

74. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS, pp. 364–373. IEEE (1997)

75. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound! In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 523–
542. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 18

76. Larsen, K.G., Simkin, M., Yeo, K.: Lower bounds for multi-server oblivious RAMs.
In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 486–503.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1 17

77. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992 23

78. Lipmaa, H.: First CPIR protocol with data-dependent computation. In: Lee, D.,
Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14423-3 14

79. Lueks, W., Goldberg, I.: Sublinear scaling for multi-client private information
retrieval. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 168–
186. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 10

80. Mockapetris, P.: Domain names - concepts and facilities. RFC 1034 (1987). http://
www.rfc-editor.org/rfc/rfc1034.txt

81. Mughees, M.H., Chen, H., Ren, L.: OnionPIR: response efficient single-server PIR.
In: CCS (2021)

82. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

83. Patel, S., Persiano, G., Yeo, K.: Private stateful information retrieval. In: CCS, pp.
1002–1019 (2018)

84. Persiano, G., Yeo, K.: Limits of preprocessing for single-server PIR. In: SODA
(2022)

85. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX Security, pp. 797–812. USENIX Association, San Diego
(2014)

https://doi.org/10.1007/3-540-45353-9_30
https://doi.org/10.1007/3-540-45353-9_30
https://doi.org/10.1007/978-3-030-84259-8_20
https://doi.org/10.1007/978-3-030-84259-8_20
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-030-64375-1_17
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/978-3-642-14423-3_14
https://doi.org/10.1007/978-3-662-47854-7_10
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
https://doi.org/10.1007/3-540-48910-X_16

Single-Server Private Information Retrieval with Sublinear Amortized Time 33

86. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur. 21, 1–35 (2018)

87. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56, 1–40 (2009)

88. Servan-Schreiber, S., Hogan, K., Devadas, S.: AdVeil: a private targeted-advertising
ecosystem. Cryptology ePrint Archive, Report 2021/1032 (2021)

89. Shi, E., Aqeel, W., Chandrasekaran, B., Maggs, B.: Puncturable pseudorandom
sets and private information retrieval with near-optimal online bandwidth and
time. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp.
641–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 22

90. Stark, E.M.: Splitting up trust, 14 September 2021. https://emilymstark.com/
2021/09/14/splitting-up-trust.html

91. Tauman Kalai, Y., Raz, R., Rothblum, R.D.: Delegation for bounded space. In:
STOC, pp. 565–574 (2013)

92. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5 12

93. Wehner, S., de Wolf, R.: Improved lower bounds for locally decodable codes and pri-
vate information retrieval. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1424–1436. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11523468 115

94. Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic private
information retrieval. In: CCC. IEEE (2005)

95. Yao, A.: Coherent functions and program checkers. In: STOC (1990)
96. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.

J. ACM 55, 1–16 (2008)

https://doi.org/10.1007/978-3-030-84259-8_22
https://emilymstark.com/2021/09/14/splitting-up-trust.html
https://emilymstark.com/2021/09/14/splitting-up-trust.html
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/11523468_115

Anamorphic Encryption: Private
Communication Against a Dictator

Giuseppe Persiano1, Duong Hieu Phan2, and Moti Yung3,4(B)

1 Università di Salerno, Salerno, Italy
giuper@gmail.com

2 Telecom Paris, Institut Polytechnique de Paris, Paris, France
hieu.phan@telecom-paris.fr

3 Google LLC, New York, NY, USA
motiyung@gmail.com

4 Columbia University, New York City, USA

Abstract. Cryptosystems have been developed over the years under the
typical prevalent setting which assumes that the receiver’s key is kept
secure from the adversary, and that the choice of the message to be sent
is freely performed by the sender and is kept secure from the adversary as
well. Under these fundamental and basic operational assumptions, mod-
ern Cryptography has flourished over the last half a century or so, with
amazing achievements: New systems (including public-key Cryptogra-
phy), beautiful and useful models (including security definitions such as
semantic security), and new primitives (such as zero-knowledge proofs)
have been developed. Furthermore, these fundamental achievements have
been translated into actual working systems, and span many of the daily
human activities over the Internet.

However, in recent years, there is an overgrowing pressure from many
governments to allow the government itself access to keys and messages
of encryption systems (under various names: escrow encryption, emer-
gency access, communication decency acts, etc.). Numerous non-direct
arguments against such policies have been raised, such as “the bad guys
can utilize other encryption system” so all other cryptosystems have to be
declared illegal, or that “allowing the government access is an ill-advised
policy since it creates a natural weak systems security point, which may
attract others (to masquerade as the government).” It has remained a fun-
damental open issue, though, to show directly that the above mentioned
efforts by a government (called here “a dictator” for brevity) which man-
date breaking of the basic operational assumption (and disallowing other
cryptosystems), is, in fact, a futile exercise. This is a direct technical point
which needs to be made and has not been made to date.

In this work, as a technical demonstration of the futility of the dicta-
tor’s demands, we invent the notion of “Anamorphic Encryption” which
shows that even if the dictator gets the keys and the messages used in
the system (before anything is sent) and no other system is allowed,
there is a covert way within the context of well established public-
key cryptosystems for an entity to immediately (with no latency) send
piggybacked secure messages which are, in spite of the stringent dictator

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 34–63, 2022.
https://doi.org/10.1007/978-3-031-07085-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_2

Anamorphic Encryption: Private Communication Against a Dictator 35

conditions, hidden from the dictator itself! We feel that this may be an
important direct technical argument against the nature of governments’
attempts to police the use of strong cryptographic systems, and we hope
to stimulate further works in this direction.

1 Introduction

Cryptography, like most scientific fields, has a profound impact on our Society,
and even more so as it touches upon one of the most basic human rights, the right
to privacy. The threats to privacy posed by the increased reliance on electronic
forms of communication has been very well identified (see, for example, [DL])
and there has been a very vigorous debate between technologists and politicians
about the ways of limiting the power of encryption as a safeguard to privacy
(see the discussion on escrow systems below). One of the beneficial effects of the
debate has been the increased awareness of the need to protect our privacy; this
is witnessed by the growing use of end to end encryption (E2E encryption) in,
for example, messaging apps [MP16,Wha20].

Cryptography “rearranges power” [Rog15] and it obviously attracts the
attention of the institutions and individuals that hold the same power that
Cryptography threatens to rearrange. Among these power holding institutions,
our main concerns involve the institutions that have the power to undermine
the two assumptions on which Cryptography relies. As we argue below these
assumptions, which have long gone overlooked (or implicit), are rather different
in nature from the usual cryptographic assumptions (e.g., about the computing
power of parties). More precisely, the security guarantees offered by Cryptogra-
phy even for its most basic and classic setting, two-party private communication
[Sha49], rely on two implicit and fundamental assumptions, one regarding the
sender and one regarding the receiver, that can be challenged by exactly those
parties whose power Cryptography threatens to limit. When these assumptions
are challenged, all privacy guarantees are void (this holds for symmetric [Fei73]
as well as for public key [DH76,RSA78,GM84] systems).

Concretely, it is assumed that the encryption and the decryption processes are
conducted freely and privately by the sender and the receiver, respectively. Specif-
ically, on the receiver’s side, a message, once encrypted, is considered private based
on the assumption that the receiver’s (Bob’s) private key (regardless of where it
resides) is not compromised. In fact, relying solely on the key not being compro-
mised and not on other obscurities is known as the Kerckhoffs principle and was
already formulated in 1883 [Ker83]. On the sender’s side, in turn, it is concretely
assumed that the sender (Alice) is free to pick the message to be sent.

Indeed, if Alice is not free to pick the message to be sent, we can hardly talk
of communication “from Alice to Bob.” Similarly, if Bob’s secret key is compro-
mised (and the key is the only source of secrecy), we cannot consider the com-
munication to be private. In other words, Cryptography currently implements
private communication assuming that encryption takes as input a message freely
chosen by Alice and that, among all other parties, only Bob has access to the
key necessary for decryption. We call these two assumptions the sender-freedom
assumption and the receiver-privacy assumption, respectively.

36 G. Persiano et al.

Both assumptions are realistic for normal settings, and thus, it is not a big
surprise that the majority of symmetric and asymmetric encryption systems
have been developed under them, and it is so natural that these are implicit
in the modeling. Yet, these assumptions fail to exist in a dictator-led country
where law enforcement agencies have the (legal) power to get the private key of
citizens to be surrendered upon request (thus undermining the receiver-privacy
assumption). Furthermore, in a dictatorship, individuals can be forced by the
authorities to encrypt and send some adversary selected (e.g., wrong) statements
(thus undermining the sender-freedom assumption). Note that while we charac-
terize the above as a dictator-led country, it is quite prevalent around the world
today for governments (of all types) to ask for at least some of the above powers
when discussing encryption!

Let us now discuss the two assumptions more in depth.

The Receiver-Privacy Assumption. Achieving security without having to rely on
this assumption asks us to consider the classical cryptographic problem of two
parties that wish to privately communicate in the presence of an adversary that
has the ability to eavesdrop on all communication between the two parties and the
power to request the receiver’s secret key1. At first sight, achieving privacy against
such an adversary seems like an impossible task since, by definition, the secret
key allows for the decryption of any ciphertext and, once an adversary has gained
access to the secret key, nothing can stop it from decrypting the ciphertexts.

Before giving an intuitive idea of how we plan to approach this seemingly
impossible problem, we want to elaborate on the security threat that we address
and how it puts further constraints on the solution space. As mentioned before,
this setting models adversaries of the scale of a nation state whose government
has the “legal” power to force citizens to reveal their secret keys. In such a set-
ting, it is expected that a citizen would abide by the request as any refusal could
be considered as evidence that the communication was unlawful (or be considered
such in the eyes of the adversary/government); in fact, the citizens may wish (as
an advantage in an hostile environment) to be able to prove the benign nature of
their messages. As we shall see, addressing the needs of privacy in the presence of
such a powerful adversary in an effective way cannot be achieved by introducing
new constructions that would immediately be ruled as illegal, but rather by show-
ing that existing constructions can be adapted to support the new need. Indeed,
for its own nature, the deployment itself of countermeasures must be hidden from
the adversary as a government has the legal means and the power to make it illegal.

The Sender-Freedom Assumption. This assumption posits that the sender Alice
is free to choose which message to encrypt; without this assumption, the mean-
ing of communication originating from Alice is lost. It is not difficult to imagine
a setting in which someone is under duress to send a ciphertext with a fake
message. Specifically, the sender might be forced to produce a ciphertext ct for
a given message m, the forced message, with respect to a given public key fPK,

1 This is masterly described in xkcd comic 538 (see https://xkcd.com/538).

https://xkcd.com/538

Anamorphic Encryption: Private Communication Against a Dictator 37

the forced public key. In addition the adversary will want to see the coin tosses R
used to produce ct so as to be able to check that ct = Enc(fPK,m;R). Is there a
way for the sender to satisfy the adversary but still send a message other than m
to some other party? Clearly, if the adversary has the power to pick the message
m and the randomness to be used, then the sender has no maneuvering space.
This would be equivalent to the adversary holding Alice’s cellphone and using
it to send messages on Alice’s behalf; clearly (with no freedom to choose any-
thing) nothing can be done to prevent this (which is a, de facto, impersonation
of Alice). Instead, we do not consider impersonation, but rather consider the
setting in which the more remote adversary does select the message to be sent,
lets Alice compute the ciphertext ct and later on Alice is required to exhibit the
coin tosses used to compute ct; i.e., the adversary does not completely control
the cryptographic device as in an impersonation attack, it allows strong cryp-
tography as well, but forces a valid explanation for the ciphertext for messages
it chooses, including possibly some one-way hash post-processing of truly ran-
dom bits to produce the random bits used in encryption, to prevent, e.g., some
meaningful message being part of the randomness used for systems that encrypt
over a message and randomness, and issues of this sort.

Again, in authoritarian regimes, under threats, dissidents are often forced to
send false statements to public and international newspapers. In this situation,
an international human rights organization (HR) that is not under the control of
the dictator can release its public key. When dissidents in a country ruled by a
dictator are forced by the authority to send false statements to an international
newspaper, say AP News under the public key of AP News, dissidents can obey
that request while being able to add hidden messages to HR, for example saying
that what they are saying is false, as an additional protection.

Normative Prescriptions. One may ask: most of Cryptography is based on com-
putational assumptions and this has not slowed down its deployment in real-
world applications; why should we be worried by two extra assumptions? Let us
pause and ask ourselves why we believe in the assumptions we use to design cryp-
tographic schemes. The assumed hardness of computational problems reflects our
current intuition about and understanding of Nature (and thus, its representa-
tion within mathematical models): randomness, one-way functions, and trapdoor
functions do exist in our current understanding of Nature. On the other hand,
let us look at the receiver-privacy assumption. Why do we believe that users will
not be forced to reveal their private key? Essentially because there is a norma-
tive prescription2 by which forcing someone to do something against its will is a
punishable crime. In other words, society attaches a punishment to anybody who
violates the receiver-privacy assumption. The same holds for the sender-freedom
assumption. However normative prescriptions are not laws of Nature (not inher-
ent to the way things are!) and they can be modified by a new social/normative
re-order. And this is exactly what a dictator will do. On the other hand, quite

2 We do not use the term “law” to mark the conceptual difference from “law of
Nature.”

38 G. Persiano et al.

obviously, no dictator will ever be able to make a one-way function efficiently
invertible or will be able to predict a random bit3.

Indeed Cryptography can be seen as an effort to replace assumptions based on
normative prescriptions with milder assumptions leveraging our understanding
of Nature and, more specifically, of Computational Complexity (combined with
Information Theory) and/or of Computing Architectures. A primary example of
this effort is the concept of Secure Multiparty Computation (aka Private Function
Evaluation). If we accept assumptions based on normative prescriptions, then we
can identify some individual to act as a trusted third party (TTP); that is, the
TTP receives the private inputs and returns the value of the function to be com-
puted. A law (a normative prescription) will describe the expected behavior of the
TTP and identify the penalties for not following the prescription. On the other
hand, the field of Secure multi-party computation [Yao86,GMW87] has shown
how to achieve the same without relying on normative prescriptions regarding the
TTP (replacing it with reliance on computational complexity assumptions and/or
architectural separation and isolation of computing elements).

2 Related Works

Having presented the crux of our notion, let us examine related works and notions
dealing with other aspects of violations of the two implicit normative assump-
tions above.

Key-Escrow. The availability and proliferation of E2E encryption for smart-
phone messaging applications (see [MP16,ACD19,Wha20] for two of the most
widely used applications and for some of the formal treatment of the Cryptogra-
phy on which they are based) has renewed the debate between law enforcement
and government security agencies, and technologists. Actually, the debate goes
back to at almost 30 years ago when the Internet became mainstream (early
1990s). The following quote is from [Dak96]:

Presently, anyone can obtain encryption devices for voice or data transmis-
sions. Unfortunately, this group may include criminals, terrorists and drug deal-
ers. Law enforcement groups believe this could soon create a devastating problem
because these authorities commonly rely on electronic surveillance, also known as
“wiretapping”, as a tool for fighting crime. That is, if criminals can use advanced
encryption technology in their transmissions, electronic surveillance techniques
could be rendered useless because of law enforcement’s inability to decode the
message.

Much research in Cryptography has focused on methods to make the strong
privacy guarantees offered by encryption ineffective under very specific and well
identified situations. An early prototypical and pioneering example of this kind
of work is the concept of a Fair Cryptosystem by Micali [Mic] that was one of
the first to consider the possibility of targeted revocation of the privacy offered
3 In “The Game-Players of Titan”, a novel by Philip K. Dick, randomness is the only

weapon humans can use against silicon-based telepath aliens from Titan, called vugs.

Anamorphic Encryption: Private Communication Against a Dictator 39

by encryption. Roughly speaking, this was achieved by sharing the secret key
among a number of parties (the majority of which is assumed to be honest, say)
and each would reveal its share, so as to allow reconstruction, only if a court
order to that effect would be produced. In 1993 (essentially at the same time of
Fair Cryptosystems), the US government put forth The Clipper proposal [Cli]
by which all strong encryption systems had to retain a copy of keys necessary to
decrypt information with a trusted third party who would turn over keys to law
enforcement upon proper legal authorization. The Clipper chip was attempting
to bind the ability to identify the key of the sender to facilitate government
access and the ability to decrypt. The proposal had a flaws involving a too small
authentication field [Bla94] and, actually, the binding was shown to be broken
so as to bypass the mechanism [FY93]. All the above systems employed either
trusted hardware or other trusted elements (trustees) added to the Public-Key
Infrastructure setting. An open question at the time was to construct a “software
only” escrow, employing the existing trusted point of the certification authority
within the existing public key infrastructure as a handle (see [YY98]).

Given general security concerns, the report by Abelson et al. [AAB+97] (see
also [AAB+15]) identifies the major threats of such a key-escrow system (pri-
marily, the availability of an access method to the user’s encrypted data which is
not under the user own responsibility). The possibility that a key-escrow system
could be abused by law-enforcement agency to violate the privacy of the users
and to conduct large scale surveillance, which is our main concern in this paper,
and was identified in the first report [AAB+97] that looked into the privacy
issues arising from the Clipper chip and from other key-escrow mechanisms. We
note that, obviously, the same concerns and more hold if weak Cryptography,
which can be broken with enough feasible resources, is mandated in our mod-
ern time and with available public computational resources, such Cryptography
simply does not work.

The main approach taken by cryptographers to address the above important
point regarding escrow has been to construct systems relying on cryptographic
tools (mathematical assumptions) that will make it impossible for governments
to infringe on the privacy of the individuals and the guarantees made relying
on a combination of normative assumptions as well as on cryptographic prim-
itives. For example, the guarantee offered by a Fair Cryptosystem rely on the
cryptographic strength of the secret-sharing primitives and on the normative
prescription that the majority of shareholders will only act upon a request from
the recognized authority, which, in turn, relies on the assumption that share
holder are honest and uncoercible. From our point of view it is natural to ask:
What if the authority is a dictator, and thus normative prescriptions have no
effect?

Along these lines, the very recent work of Green et al. [GKVL] offers the
most complete approach by formally defining the desired properties for a law
enforcement access system and putting forth the notion of an abuse-resistant
law enforcement access system (ARLEAS). In addition, they gave a feasibil-
ity result using standard cryptographic techniques. Most systems, including

40 G. Persiano et al.

ARLEAS [GKVL], consider three types of parties: users, that employ encryption
to exchange messages; law enforcement, that need to access encrypted messages
produced by users; judiciary, that grants or denies authorizations to the access
requests of the law enforcement. Note that such a system does not offer any pro-
tection against dictatorial states. First of all, in most dictatorships the judiciary
is not an independent power thus making the abuse-resistant property nothing
more than a wish. Actually, a key-escrow system makes it even easier for a dic-
tator to violate the privacy of the users as it is enough to nominate themselves,
as dictators tend to do, to be the judiciary and law enforcement. Even more
importantly, note that all such systems still rely on the receiver-privacy and
sender-freedom assumptions.

The main technical objective of our work is to show that one can achieve pri-
vacy in communication using existing cryptographic systems even in the presence
of a dictator without relying on any normative prescription.

Deniable Encryption. The concept of Deniable Encryption, put forth by Canetti
et al. [CDNO97], might seem to be relevant to our setting. A deniable encryption
scheme allows the sender to generate fake coin tosses that make the ciphertext
looks like an encryption of another, innocent, cleartext. So whenever the sender
is requested to open a ciphertext by surrendering the coin tosses, he can just
generate fake coin tosses and thus effectively conceal the real plaintext. However,
an assumption in deniable encryption is that the adversary has the power to
approach the sender after the ciphertext was transmitted. It was mentioned in
[CDNO97] that deniability is impossible in the context of direct physical access,
where “Eve [the adversary] approaches Alice [the sender] before the transmission
and requires Alice [the sender] to send specific messages”. It was clearly stated
in the original paper [CDNO97] that “Certainly, if Alice [the sender] must hand
Eve [the adversary] the real cleartext and random bits then no protection is
possible”. Hence, while deniability is an important property, it does not solve
the issue of facing a dictator.

Kleptography. The concept of having a cryptosystem inside another cryptosys-
tem was used in Kleptography [YYa,YY97,YYb]. However, the goal in Kleptog-
raphy is to attack the cryptosystem owner by using inside an implementation (or
a specification) a method to leak exclusively to an adversary. This goal is in fact,
not to help against an adversary, but to covertly introduce an adversary, and is
a tool to help a dictator!. In some sense it can be used as an implicit key escrow,
and in some formal sense it negated the US government plan to distribute cryp-
tography in black-box hardware devices. Due to Snowden revelations, in fact, an
Elliptic Curve variant of the repeated DH kleptogram in the above works was
deployed in the Dual-EC pseudorandom generator standard, as was verified in
[CNE+14]. As a response, nowadays, the cryptographic community is working
on systems and architectures which can mitigate such system subversion attacks
(see [BPR,RTYZ,RTYZ17]).

Anamorphic Encryption: Private Communication Against a Dictator 41

Steganography and “Chaffing and Winnowing”. The other tool to send secret
messages with is steganography, where a message is concealed within another
message (exploiting some redundancy in the message structure and style). This
is always possible, but systems of this nature are hard to deploy widely and
systematically as part of an established large scale computing base in a situation
it is not allowed (by the dictator).

In a response to the US government possibly restricting encryption systems
while allowing authentication method as part of its cryptographic export control,
Rivest proposed in 1998 the “chaffing and winnowing” system [Riv]. This system
shows how sharing a MAC key for authentication is turned into a method for
sending concealed message (in some steganographic sense). This clearly demon-
strated that the separation of cryptography for authentication and cryptography
for confidentiality, proposed by the possible export regulation, is quite artificial,
and gave a way to bypass key escrow using authentication keys which were not
proposed to be part of escrow encryption schemes at the time. Note that in our
scenario of the dictator, the dictator can certainly ask for a MAC (authentica-
tion) key as well and get the concealed message itself.

PublicKey Steganography and Subvertable Backdoored Encryption. von Ahn
and Hopper [vAH04] were the first to study steganographic public key and
key exchange. Their constructions rely on the existence of a public random
string that cannot be tampered or chosen by the dictator. The work of Horel
et al. [HPRV19] removes this assumptions by showing that steganographic key
exchange can be achieved without resorting to public information. The key
exchange is used then in conjunction with the rejection sampling technique (see
Sect. 5.1).

Comparing our model with the one of [HPRV19], we note that our model
assumes the parties have originally shared (private and thus un-tampered by
dictator) information. This, importantly, allows for zero-latency communica-
tion hidden from the dictator. In Sect. 5.3 nevertheless, we show how to com-
bine [HPRV19] with our construction thus sacrificing zero-latency and dispensing
with the need of shared information. Comparing, in turn, one of our main solu-
tions (see Sect. 5.3) with the one of Horel et al. [HPRV19] we note that, for a
ciphertext carrying λ bits, rejection sampling allows to transmit O(log λ) extra
bits whereas our construction carries λ thus achieving bandwidth rate of 1 (as
opposed to (log λ)/λ). Such a bandwidth rate is rare in steganographic systems
in general. Our second result in Sect. 6 also achieves zero latency, and does not
need the parties to share a private key.

3 Our Approach

In this section, we would like to give a taste of our approach, and present a generic
but limited solution that shows its feasibility. For concreteness, we consider the
receiver’s side.

As we have already observed, there is no hope for preventing an adversary
that is in possession of the secret key from decrypting a ciphertext. In turn,

42 G. Persiano et al.

one might think of ciphertexts that carry two messages and a different key is
needed for each of them. When asked for the secret key, the receiver might
release only one of the two keys, thus protecting one of the messages. But then,
if the adversary knows that there are two keys, why should he be happy to
receive just one key? Because we will make sure that the adversary believes that
there is no second key! Roughly speaking, we would like to have an encryption
scheme for which it is possible to generate a public key with one secret key or,
alternatively, to generate a public key that has two associated secret keys. More
precisely, the technical core of our proposed solution consists of the concept of
an Anamorphic Encryption scheme, a special encryption scheme whose public
keys can be generated in one of two possible modes: normal or anamorphic.

– A Normal public key is associated with a Normal secret key and it can be used
for the normal encryption functionality: the sender encrypts the message m
using the public key, and the receiver decrypts the ciphertext using the secret
key. An adversarial authority (i.e., the dictator) that is in possession of a
ciphertext can (legally) force the receiver to surrender the secret key and
thus gain access to the message.

– An Anamorphic4 public key instead is associated with two secret keys: a
normal secret key and a double secret key. A ciphertext ct produced with
an anamorphic public key carries two messages: the normal message m0,
that can be obtained by decrypting ct using the normal secret key; and the
anamorphic message m1, only visible to parties that have the double secret
key. When requested to surrender his secret key to allow inspection of the
ciphertexts, the owner of an anamorphic public key will pretend that the key
is normal and reveal the normal secret key. Thus, the dictator will gain access
only to the normal message m0 and the special message m1 is kept private.

Normal public keys can be used by receivers who do not expect their secret keys
to be requested by the adversarial authority. Actually, these users need not even
know about anamorphic public keys and their operations will not be affected
in any way. Anamorphic public keys could instead be generated by someone
who has reasons to believe that the dictator will want to get the information he
has received; for example, an investigative reporter or an opposition leader. As
an example, consider an investigative reporter Bob who wants to communicate
in a private way with his informant, Alice. Bob sets up his public key as an
anamorphic key and gives Alice the double secret key. Note that Bob publishes
his anamorphic public key for everybody to use. However, when Alice has some
sensitive information for Bob, she uses the double key obtained from Bob to
produce an anamorphic ciphertext carrying two messages: m0 is set equal to
some innocent looking message (for example, a general question about the work
of the reporter; recall that in a dictatorship Alice does not even have a free choice

4 The adjective Anamorphic is used to denote a drawing with a distorted projection
that appears normal when viewed from a particular point or with a suitable mirror
or lens. Similarly, an anamorphic ciphertext will reveal a different plaintext when
decrypted with a suitable key.

Anamorphic Encryption: Private Communication Against a Dictator 43

of this message), and message m1 will instead contain the sensitive information
that Alice wishes to communicate to Bob. Should Bob be requested to surrender
his secret key, he will pretend that his public key is just a normal public key and
will reveal the normal secret key. In this way the adversary will be able to read
message m0 (the innocent message containing no sensitive information) and will
gain no access to the potentially incriminating message m1.

Clearly, for this to work the following conditions must be satisfied:

– a pair of anamorphic public and secret keys must be indistinguishable from
a normal corresponding pair; and

– the ciphertexts produced using an anamorphic public key must be indistin-
guishable from those produced by a normal public key.

In addition, we are interested in performance parameters: We would like the
system to have zero-latency in the sense that the anamorphic system is ready
to be used whenever the normal system is ready. Additionally, we are interested
in system where the anamorphic bandwidth rate (i.e., number of anomorphic bit
transmitted divided by the number of normal bits transmitted) is high (whenever
and as much as possible).

A Simple Solution that Does Not Work. At first, one might think that construct-
ing an Anamorphic Encryption scheme is not difficult and indeed it is possible
to turn any encryption scheme E into a Anamorphic Encryption AME in the
following rather straightforward way by adding redundancy to the ciphertext.
The normal encryption process of AME consists of computing a ciphertext ct
according to E and then outputting (ct, R), where R is a randomly selected
string. During the decryption process of AME with the normal secret key, the
random string R is ignored and the message is obtained by decrypting ct accord-
ing to E . Thus, a normal pair of public and secret key for AME is simply a pair of
keys from E . An anamorphic public key instead is associated also with the secret
key K of a symmetric encryption scheme E ′ with pseudorandom ciphertexts (e.g.,
it is a pseudorandom permutation). During the anamorphic encryption process,
ciphertext ct is an encryption of m0 according to E and the random string R
that is appended to ct is an encryption of m1 with respect to E ′ computed using
key K that, thus, plays the role of the double key. Note that the public keys
are identical and, by the pseudorandomness properties of the ciphertexts of E ′,
a normal ciphertext, in which R is truly random, is indistinguishable from an
anamorphic ciphertext in which R is a ciphertext of E ′.

So, the question is: do we have a satisfactory solutions? Hardly so! The mere
fact of using a standard encryption scheme and augmenting each ciphertext with
a random string is suspicious and, moreover, a user not interested in sending
hidden messages has no incentive to append a random string to the ciphertext
just to attract the attention of the dictator. Rather we are interested in showing
that existing encryption schemes can be used, in the form in which they have been
originally designed, to provide a second channel that is secure also with respect
to an adversary that has access to the secret key of the receiver. In practice,
this will not raise any suspicion since all ciphertexts will be from a standard

44 G. Persiano et al.

encryption scheme or will be indistinguishable from them. In addition, no extra
action (like generating and appending a random string to each ciphertext) is
required from the normal users who can actually be completely unaware of the
special mode of operation.

In other words the question we ask is not
Can we construct an Anamorphic Encryption scheme?

but rather:
Is any of the existing encryption schemes also Anamorphic?
A positive answer to this question will constitute technical evidence of the

futility of the efforts of governments around the world (dictatorships and democ-
racies) to control encryption.

Our Main Technical Contributions. The rest of this paper consists of identi-
fying encryption schemes that appear in the literature which address the two
limitations we identified above.

– Receiver’s side. We show that the Naor-Yung paradigm for CCA secure
encryption from CPA secure encryption gives receiver-Anamorphic Encryp-
tion schemes (see Definition 1) with a bandwidth rate of 1. That is, each
ciphertext for λ plaintext bits carries λ additional bits that are hidden from
the dictator. Moreover, as in the public key model, communication hidden
from the dictator can start with zero latency.

– Sender’s side. We show that a lattice based cryptosystems from the liter-
ature [Reg05,GPV08] are sender-Anamorphic Encryption (see Definition 3)
and they also achieve hidden communication with zero latency. In addition,
they do not require the sender and receiver to share any secret (just that there
is an additional receiver in the system), thus, enhancing their practicality.

Given these, one can conclude that the “Crypto Wars” which consists of
attacks on the free use of strong cryptography (involving requirements to give
keys of such cryptographic schemes to the dictator) are possibly futile. One may
then conclude that dictators should mandate only weak cryptography! But, due to
earlier battles, we are already know that disallowing strong Cryptography is totally
unhelpful to and imposes limits on the development of advanced information
technology systems, implying dire consequences to the economy and to society.

Roadmap. In Sect. 4, we put forth the concept of a Receiver-Anamorphic Encryp-
tion and give a formal notion of security. In Sect. 5.3, we show that the Naor-Yung
paradigm [NY90] gives Receiver-Anamorphic Encryption with zero latency and
bandwidth rate 1. In Sect. 6, we define the concept of an Sender-Anamorphic
Encryption that can be used to obtain private communication when the sender-
freedom assumption does not hold. We show that lattice-based cryptosystems
have this property (and give some evidence that other public key cryptosystems
are not Sender-Anamorphic Encryption). The scheme is zero-latency as well.

Anamorphic Encryption: Private Communication Against a Dictator 45

4 Receiver-Anamorphic Encryption

In this section we present the concept of a Receiver-Anamorphic Encryption
scheme that provides private communication without relying on the receiver-
privacy assumption (while in Sect. 6 we will present the concept of a Sender-
Anamorphic Encryption scheme).

A Receiver-Anamorphic Encryption scheme (a Receiver-AM scheme) consists
of two encryption schemes: the normal scheme (KG,Enc,Dec) and the anamor-
phic scheme (aKG, aEnc, aDec). It can be deployed as normal scheme in which
case Bob runs the (real) key generation algorithm KG to obtain a pair of keys
(PK, SK) and, as usual, publishes PK. When Alice wishes to send message m,
she produces ciphertext ct by running the (real) encryption algorithm Enc by
using PK and m. When ct is received by Bob, it is decrypted by running the
(real) decryption algorithm Dec and using SK. Thus, when deployed as normal a
Receiver-AM is just a regular public-key encryption scheme. If the dictator comes
for the secret key, Bob surrenders SK. We are interested in Receiver-AM schemes
in which the normal scheme is an established and already used cryptosystem.

Bob deploys the scheme as anamorphic when he wants to protect the confi-
dentiality of the communication with Alice even in the event that he is forced
to surrender his secret decryption key to the dictator. In this case, Bob runs the
anamorphic key generation algorithm aKG that returns a pair of anamorphic
public-secret keys (aPK, aSK) along with a special key, dkey, called the double
key. As usual, Bob publishes aPK and keeps aSK private but dkey is shared with
Alice. If asked, Bob will surrender aSK to the dictator. The pair (aPK, aSK) is a
fully functional pair of keys: if a message m is encrypted by using Enc and aPK,
it can be decrypted by Dec on input aSK. Key dkey is instead used by Alice to
send Bob messages that remain confidential even if aSK is compromised. Specifi-
cally, whenever Alice has a message m1 that must remain confidential, she picks
an innocent looking message m0 and encrypts (m0,m1) using the anamorphic
encryption algorithm aEnc with dkey. The ciphertext ct produced by aEnc has
the property that it returns m0 when decrypted with the normal decryption
algorithm Dec and with key aSK; whereas it returns m1 when decrypted by run-
ning the anamorphic decryption algorithm aDec on input the double key dkey.
In other words, the authority will obtain m0 and Bob will obtain m1. Clearly,
the ciphertext produced by Alice must indistinguishable from a ciphertext of m1

produced using Enc even to an adversary that has access to aSK.
We stress again that Alice and Bob share a key, dkey, in order to achieve

privacy without having to rely on the secret-key assumption.

4.1 Syntax

In this section we formally define the concept of a Receiver-Anamorphic Encryp-
tion scheme. Then in Sect. 4.3 we will present the corresponding security notion.

Definition 1. An encryption scheme AME = (AME.KG,AME.Enc,AME.Dec) is
a Receiver-Anamorphic Encryption (or, simply, a Receiver-AM) if there exists

46 G. Persiano et al.

an anamorphic triplet aAME = (AME.aKG,AME.aEnc,AME.aDec) with the fol-
lowing syntax

– AME.aKG takes as input the security parameter 1λ and returns an anamorphic
public key aPK, an anamorphic secret key aSK and a double key dkey.

– AME.aEnc takes as input the double key dkey and two messages m0 and m1
and returns an anamorphic ciphertext act.

– AME.aDec takes as input the double key dkey and an anamorphic ciphertext
act, computed by running AME.aEnc on input dkey and messages m0 and m1,
and returns message m1.

As we have seen previously, a Receiver-AM scheme can be deployed as normal
or as anamorphic. When Bob deploys the Receiver-AM scheme as anamorphic,
Alice (or any other user that has received dkey from Bob) can use aEnc to
produce ciphertexts. However, Bob cannot instruct all users to use aEnc as that
would be like admitting that he has deployed the scheme as anamorphic; in other
words users that are unaware that the scheme has been deployed as anamorphic
will use Enc. It is thus crucial that the encryption-decryption functionality does
not break for these users, despite using the normal encryption algorithm with
an anamorphic public key. Indeed, the fact that ciphertexts generated by the
normal encryption algorithm cannot be decrypted could be a strong evidence, if
not a proof, that the public key is anamorphic.

Next, we formally identify the four different modes of operations that arise
from mixing normal, and anamorphic algorithms and keys and then in Sect. 4.3
we present our security notion.

4.2 Modes of Operation

A Receiver-AM scheme AME naturally defines the following four modes of oper-
ation, each corresponding to a different scenario. Of these four modes, one uses
the normal keys and three use anamorphic keys. The security definition (see
Definition 4) will require that, roughly speaking, the the normal and the fully
anamorphic mode be indistinguishable. This is sufficient to prove that all of
them are indeed pairwise indistinguishable.

1. The fully anamorphic encryption mode is used when Bob deploys the scheme
as anamorphic and Alice uses dkey to send Bob a private message. This
mode is associated with the triplet of algorithms fAMEm̂ = (AME.aKG3,
AME.aEnc1,m̂,AME.aDec) where, for every message m̂,

– AME.aKG3(1λ) is the algorithm that runs AME.aKG(1λ) obtaining (aPK,
aSK, dkey) and returns dkey. Note that the index in aKG3 denotes the
components of the triplet generated by aKG that is selected to appear in
the output.

– AME.aEnc1,m̂(aPK,m) is the algorithm that returns AME.aEnc(aPK,
m̂,m). Note that index 1 in AME.aEnc1,m̂ denotes that message m̂ will
be passed as first message to algorithm aEnc.

Note that fAMEm̂ is, for every m̂, a symmetric encryption scheme (Fig. 1).

Anamorphic Encryption: Private Communication Against a Dictator 47

Key Gen. Encryption Decryption
Fully Anamorphic aKG aEnc aDec
Anamorphic with Normal Dec aKG aEnc Dec
Anamorphic with Normal Enc aKG Enc Dec
Normal KG Enc Dec

Fig. 1. The four modes of operation of an anamorphic encryption scheme. The fully
anamorphic mode is used by Bob to communicate privately with Alice. The anamorphic
mode with normal decryption is used by Bob when the dictator requests the decryption
of an anamorphic ciphertext sent by Alice. The anamorphic mode with normal encryp-
tion is used by Charlie, unaware that Bob has an anamorphic key, to send a message
to Bob. The normal mode is used by Charlie that sets up his key in normal mode
to receive messages from other users. The normal mode offers no privacy guarantee
against the dictator.

2. The anamorphic with normal decryption mode is used when Bob deploys the
scheme as anamorphic (and thus the public key is generated using algorithm
AME.aKG), the ciphertext ct is produced by Alice by running the anamor-
phic encryption algorithm AME.aEnc on input (m0,m1) and the double key
dkey, and the ciphertext is decrypted by the dictator by running the normal
encryption algorithm AME.Dec on input aSK.
More formally, the mode is associated with the triplet andAMEm̂ = (aKG1,2,
aEnc2,m̂,Dec), where, for every m̂,

– andAME.aEnc2,m̂(aPK,m) is the algorithm that returns AME.aEnc(aPK,
m, m̂). Note that the index 2 in AME.aEnc2,m̂ denotes that message m̂
will be passed as second message to algorithm aEnc.

3. The anamorphic with normal encryption mode is used when Bob deploys
the scheme as anamorphic (and thus the anamorphic public key aPK is used
as public key) and a sender encrypts messages using the normal encryption
algorithm AME.Enc. The ciphertexts produced in this way can be read by
the dictator that has the secret key aSK associated with aPK by running the
normal decryption algorithm AME.Dec.
More formally, the mode is associated with the triplet aneAME = (aKG1,2,
Enc,Dec), where

– aKG1,2(1λ) is the algorithm that runs AME.aKG(1λ), obtaining (aPK, aSK,
dkey), and returns the pair (aPK, aSK). Note that the indices in aKG1,2

denote the components of the triplet generated by aKG that are selected
to appear in the output.

4. The normal mode of operation is associated to the triple of algorithms
nAME = (AME.KG,AME.Enc,AME.Dec) and it corresponds to the scenario
in which the scheme is deployed and used in normal mode; that is, the keys
are generated by running KG, the ciphertexts are constructed by running Enc
and decrypted by running Dec.

48 G. Persiano et al.

4.3 Security Notion

We are now ready to define the notion of a Secure Receiver-AM scheme. As we
shall see, the security notion posits that no PPT dictator can distinguish whether
the Receiver-AM scheme is in normal mode or in fully anamorphic mode. In other
words, it is indistinguishable whether nAME or fAMEm̂, for message m̂, is being
used. We first make two interesting remarks:

– No explicit security requirement is made for the security of the fully anamor-
phic mode; in other words, it is not explicitly required that Alice’s secret
message m1 is actually secret.

– No explicit security and functional requirement regarding the partial anamor-
phic modes of operation, anamorphic with normal encryption and anamorphic
with normal decryption, is made.

The requirements in both bullets above are clearly desirable: first, we would like
Alice’s secret message to be kept secure from the authorities; and we do not
want the authority to be able to distinguish whether the normal mode or one of
the other anamorphic modes is being used. As we shall see, the security notion
of Definition 2 is sufficient for the requirements in the two bullets above. Let
us now proceed more formally and define the following two games involving a
dictator D.

NormalGameAME,D(λ)

1. Set (PK, SK) ← AME.KG(1λ) and send (PK, SK) to D.
2. For i = 1, . . . , poly(λ):

– D issues query (mi
0,m

i
1) and receives ct = AME.Enc(PK,mi

0).
3. Return D’s output.

FullyAGameAME,D(λ)

1. Set (aPK, aSK, dkey) ← AME.aKG(1λ) and send (aPK, aSK) to D.
2. For i = 1, . . . , poly(λ):

– D issues query (mi
0,m

i
1) and receives ct =

AME.aEnc(dkey,mi
0,m

i
1).

3. Return D’s output.

Note that in NormalGame the key is normal (that is, output by KG) and the
i-th ciphertext is an encryption of mi

0 computed using Enc. In other words, D
interacts with the scheme in normal mode. On the other hand, in FullyAGame
the key is output by aKG and the i-th ciphertext carries both messages mi

0 and
mi

1. In other words, D with the scheme in fully anamorphic mode. Note that in
both cases, D is given the public key and the associated secret key.

More formally, we denote by pNormalGame
AME,D (λ) (respectively, pFullyAGame

AME,D (λ)) the
probability that NormalGameAME,D(λ) (respectively, FullyAGameAME,D(λ)) out-
puts 1 and we introduce the following definition.

Anamorphic Encryption: Private Communication Against a Dictator 49

Definition 2. A Receiver-AM scheme AME = (KG,Enc,Dec) with anamorphic
triplet (aKG, aEnc, aDec) is a Secure Receiver-AM scheme if

1. AME is an IND-CPA scheme;
2. for every message m̂, fAMEm̂ is a symmetric encryption scheme;
3. for all PPT dictators D,

∣
∣
∣pNormalGame

AME,D (λ) − pFullyAGame
AME,D (λ)

∣
∣
∣ ≤ negl(λ).

In the rest of this section, we prove that the fully anamorphic mode (used
by Alice and Bob to communicate privately) is an IND-CPA private key encryp-
tion scheme, thus addressing the observation in the first bullet above. We start in
Sect. 4.4 by proving that the anamorphic modes with normal encryption is indis-
tinguishable from the fully anamorphic mode and from the normal mode. We then
build on this to prove the security of the fully anamorphic mode in Sect. 4.5. We
will address the observation in the second bullet in the final version of the paper.

4.4 Properties of the Anamorphic Mode with Normal Encryption

We start by defining game aneGameAME,A, for a Secure Receiver-AM AME and
a PPT adversary A. As usual, we denote by paneGame

AME,A (λ) the probability that
aneGameAME,A(λ) outputs 1. Game aneGame describes the Anamorphic Mode
with Normal Encryption.

aneGameAME,A(λ)

1. Set (aPK, aSK, dkey) ← AME.aKG(1λ) and send (aPK, aSK) to A.
2. For i = 1, . . . , poly(λ):

– A issues query (mi
0,m

i
1) and receives ct = AME.Enc(aPK,mi

0).
3. Return A’s output.

We note that A issues encryption queries (mi
0,m

i
1) and that, clearly, A can also

use the keys in its possession to encrypt and decrypt ciphertexts of its choice.
The next lemma proves that aneGame is indistinguishable from NormalGame thus
yielding that the Normal Mode is indistinguishable from the Anamorphic Mode
with Normal Encryption.

Lemma 1. Let AME be a Secure Receiver-AM scheme. Then for all PPT adver-
saries A, we have

∣
∣pNormalGame

AME,A (λ) − paneGame
AME,A (λ)

∣
∣ ≤ negl(λ).

Proof. Suppose that there exists an adversary A that distinguishes aneGame
from NormalGame. We will use A to construct a dictator D that distinguishes
NormalGame from FullyAGame, thus violating the security of AME. D receives
the challenge pair of keys (PK�, SK�) and runs A on input (PK�, SK�). For each
query (mi

0,m
i
1) issued by A, D replies by returning Enc(PK�,mi

0). When A stops

50 G. Persiano et al.

and returns b, D outputs b. This terminates the description of D. Note that D
issues no encryption query.

Now observe that if D is playing FullyAGame then (PK�, SK�) are output
by aKG and thus D is simulating aneGame for A. On the other hand, if D is
playing NormalGame then (PK�, SK�) are output by KG and thus D is simulating
NormalGame for A. This concludes the proof. ��

Transitivity of indistinguishability gives the following lemma.

Lemma 2. Let AME be a Secure Receiver-AM scheme. Then for all PPT adver-
saries A, we have

∣
∣
∣p

FullyAGame
AME,A (λ) − paneGame

AME,A (λ)
∣
∣
∣ ≤ negl(λ).

4.5 Security of the Fully Anamorphic Mode

We are now ready to prove that the fully anamorphic mode of a Secure Receiver-
AM scheme is IND-CPA even for an adversary that has access to (aPK, aSK) but
not to dkey.

Let us start by formally defining the notion of IND-CPA security of the fully
anamorphic mode of a Secure Receiver-AM scheme. For η = 0, 1, message m̂,
and stateful PPT adversary A, we define game IndCPAη

AME,A,m̂ as follows.

IndCPAη
AME,A,m̂(λ)

1. Set (aPK, aSK, dkey) ← AME.aKG(1λ).
2. (m0

1,m
1
1) ← AaEnc(dkey,m̂,·)(aPK, aSK).

3. Compute ct ← aEnc(dkey, m̂,mη
1).

4. b ← AaEnc(dkey,m̂,·)(ct).

We denote by pcpaη
AME,A,m̂ the probability that, in game IndCPAη

AME,A,m̂, adver-
sary A outputs 1 . We will prove the following theorem.

Theorem 1. If AME is a Secure Receiver-AM scheme, then, for every message
m̂, fAMEm̂ is IND-CPA secure. That is, for all PPT adversaries A and every m̂

∣
∣pcpa0AME,A,m̂(1λ) − pcpa1AME,A,m̂(1λ)

∣
∣ ≤ negl(λ).

To prove the theorem above, we consider, for η = 0, 1, the hybrid game
Hη

AME,A,m̂, in which all A’s oracle calls to aEnc(dkey, m̂, ·) in IndCPAη are
replaced with calls to Enc(aPK, m̂) and the challenge ciphertext ct at Line 3
of IndCPAη is computed as ct ← Enc(aPK, m̂). We denote by hcpaη

AME,A,m̂(1λ)
the probability that A outputs 1 in Hη

AME,A,m̂ with security parameter λ.
We have the following lemma whose proof relies on Lemma 2 above.

Lemma 3. If AME is a Secure Receiver-AM then, for η = 0, 1, we have
∣
∣
∣pcpa

η
AME,A,m̂(1λ) − hcpaη

AME,A,m̂(1λ)
∣
∣
∣ ≤ negl(λ).

Anamorphic Encryption: Private Communication Against a Dictator 51

Proof. For the sake of contradiction, assume there exists an adversary A that
violates the lemma. We then construct an efficient dictator D that distinguishes
aneGame and FullyAGame thus contradicting Lemma 2.

D receives the pair (aPK, aSK) computed by aKG and has access to an encryp-
tion oracle O(·, ·). D runs A on input (aPK, aSK) and when A issues a query for
m, D returns O(m̂,m). Similarly, when A outputs the pair of messages (m0

1,m
1
1),

D returns O(m̂,mη
1). At the end, D returns A’s output.

If D is playing game aneGame then O(m̂,m) returns Enc(aPK, m̂). Therefore
ct is computed as ct ← Enc(aPK, m̂). This implies that D simulates Hη

A,AME,m̂

for A. On the other hand, if D is playing FullyAGame then O(m̂,m) returns
aEnc(dkey, m̂,m). Therefore ct is computed as ct ← Enc(aPK, m̂,mη

1) and D
simulates IndCPAη

A,AME,m̂(1λ) for A. This concludes the proof of the lemma. ��
We are now ready to prove Theorem 1.

Proof of Theorem 1. The theorem follows from Lemma 3 and from the observation
that game Hη

A,AME,m̂ is independent from η and thus

hcpa0A,AME,m̂(1λ) = hcpa1A,AME,m̂(1λ).

��

5 Constructions

In this section we present two constructions of AM schemes. We first review the
simple construction for a (log λ)-bit AM scheme discussed in the Introduction
and then, in Sect. 5.2, we present a construction for poly(λ) bits.

5.1 Rejection Sampling

In this section we present our first construction 1bit, a simple cryptosys-
tem that gives guarantees even if the secret-key assumption and the sender-
freedom assumption do not hold. It is based on the rejection sampling technique
inspired by the biased-ciphertext attack of [BPR] and it is used also by Horel
et al. [HPRV19]. We review it here just to give a first example of a Receiver-
Anamorphic Encryption. We note that the objective of the biased-ciphertext
attack is to subvert an encryption scheme so that the private key can be leaked
without the legitimate owner noticing any abnormal behaviour and it is interest-
ing to note that this technique can be used to setup a dictator setting, as shown
in [BPR], as well as for the opposite of objective, as we show below.

The normal triplet of 1bit is any IND-CPA secure encryption scheme E =
(KG,Enc,Dec) and the anamorphic triplet is defined as follows:

– 1bit.aKG, on input the security parameter 1λ, runs the key generation algo-
rithm KG of E obtaining (PK, SK) and random seed K for PRF F . The anamor-
phic public key is aPK = PK, the anamorphic secret key is aSK = SK and the
double key dkey = (PK,K).

52 G. Persiano et al.

– 1bit.aEnc takes as input the double key dkey = (PK,K) and two messages
m0 and m1 ∈ {0, 1}. Algorithm 1bit.aEnc samples ciphertexts ctEnc(PK,m0)
and the anamorphic ciphertext act is set equal to the first ct such that
F (K, ct) = m1.

– 1bit.aDec takes as input act and dkey and returns m1 = F (K, act).

Note that 1bit can be extended to l-bit of hidden plaintexts at the cost of push-
ing the expect encryption time to O(2l). Therefore l = O(log λ) hidden bits
per ciphertext will keep encryption polynomial and it gives a bandwidth rate of
O((log λ)/λ). To prove that 1bit is a Secure Anamorphic Encryption we observe
that the anamorphic keys have the same distribution as the normal keys. In addi-
tion the only difference between the normal ciphertext ct and the anamorphic
ciphertext act is that the former is randomly distributed over the set of cipher-
texts for PK and m0 whereas act is randomly chosen over the set of ciphertexts
for aPK = PK and m0 such that F (K, act) = m1. From the pseudorandomness
of F and the fact that K is randomly chosen and hidden from the adversary A,
we can conclude that 1bit is secure.

Theorem 2. If F is a PRF and E is an IND-CPA Encryption scheme then 1bit
is a Secure Anamorphic Encryption.

We also observe that the sender of 1bit, should she be forced to encrypt a
given message m and reveal the coin tosses used, can still send a secret bit of
her choice to Bob. In other words, the security of 1bit does not rely on the
sender-freedom assumption. In Sect. 6, we will show that this can be achieved by
encryption schemes based on lattice hardness assumptions without the sender
and receiver having to share a key beforehand.

5.2 The Naor-Yung Transform

In this section we describe the Naor-Yung transform [NY90] (see also [Sah99])
that, when applied to an IND-CPA public-key cryptosystem E and a simulation
sound NIZK Π for a specific polynomial-time relation EqMsgE , gives a CCA
public-key cryptosystem NYE. The formal definitions of the concepts used in
the construction (IND-CPA, simulation sound NIK) are omitted in this version
and can be found in the extended version.

The polynomial time relation EqMsgE is defined by setting the witness for
instance ((PK0, ct0), (PK1, ct1)) to be the triplet (r0, r1,m) of two coin tosses and
one message m such that

ct0 = Enc(PK0,m; r0) and ct1 = Enc(PK0,m; r1).

The key generation algorithm NYE.KG constructs the public key NYE.PK =
(PK0, PK1, Σ) as consisting of two random and independently chosen public keys
PK0 and PK1 of E and of a random string Σ. The secret key NYE.SK = (SK0)
associated with NYE.PK consists solely of the secret key SK0 associated with PK0.

To encrypt message m, the encryption algorithm NYE.Enc first computes
ciphertexts ct0 = Enc(PK0,m; r0) and ct1 = Enc(PK1,m; r1), using random and

Anamorphic Encryption: Private Communication Against a Dictator 53

independent coin tosses r0 and r1. Then, it runs the prover’s algorithm of Π to
produce a proof π that ct0 and ct1 encrypt the same message. More precisely,
the prover’s algorithm of Π is run on input instance ((PK0, ct0), (PK1, ct1)) and
witness (r0, r1,m) using Σ found in NYE.PK as reference string. The ciphertext
PK is finally set to (ct0, ct1, π).

The decryption algorithm NYE.Dec, on input ciphertext ct = (ct0, ct1, π),
runs the verifier algorithm of Π to check π and, if successful, outputs m obtained
by decrypting ct0 using SK0.

5.3 The NY Transform Gives Receive-AM Encryption

In this section we describe Receiver − AM scheme NY with bandwidth rate
1 that is derived from NYE. The normal triplet of NY consists of the triple
(NYE.KG,NYE.Enc,NYE.Dec) described in the previous section. Next we define
the anamorphic triplet (NYE.aKG,NYE.aEnc,NYE.aDec).

– The anamorphic key generation algorithm NYE.aKG constructs the anamor-
phic public key NYE.aPK = (PK0, PK1, Σ) as consisting of two random and
independently chosen public keys PK0 and PK1 of E ; the string Σ instead is
obtained by running simulator S0(1λ) that returns the pair (Σ, aux). The
secret key aSK = (SK0) is set equal to the secret key associated with PK0
whereas the double key is set equal to dkey = (PK0, PK1, SK1, aux).

– The anamorphic encryption algorithm NYE.aEnc takes as input the dkey and
two messages m0 and m1 and starts constructing the anamorphic cipher-
text by computing ct0 = Enc(PK0,m0) and ct1 = Enc(PK1,m1). The proof
π is constructed by running the simulator S1 on input instance ((PK0, ct0),
(PK1, ct1)) and auxiliary information aux. Note that m0 and m1 are two mes-
sages of the same length and thus the construction has a bandwidth rate of 1

– The anamorphic decryption algorithm NYE.aDec takes an anamorphic cipher-
text act = (ct0, ct1, π) and uses SK1 found in dkey to decrypt ct1 to
obtain m1.

We next prove that the anamorphic encryption scheme NY is secure accord-
ing to Definition 4; that is, that games NormalGame and FullyAGame are indis-
tinguishable. To do so, we consider the hybrid game aneG and will show that
aneG and NormalGame are indistinguishable by the security properties of the
NIZK and that aneG and FullyAGame are indistinguishable by the security of the
encryption scheme E . This implies that that NormalGame and FullyAGame are
indistinguishable thus satisfying Definition 4. Let us now proceed more formally
by instantiating game NormalGameNY. We remind the reader that pNormalGame

NY,A (λ)
denote the probability that adversary A outputs 1 in game NormalGameNY,A.
Next we define game aneGNY that differs from NormalGameNY in the way in
which the public key and ciphertexts cti, replies to A’s queries, are computed.
Specifically, the reference string Σ, that is part of the public key, and the
proof πi, that is part of the i-th ciphertext cti, are computed by running the

54 G. Persiano et al.

simulator. We define paneGNY,A(λ) to be the probability that adversary A outputs 1
in game aneGNY,A.

NormalGameNY,A(λ)

1. Set (PK0, SK0), (PK1, SK1) ← E .KG(1λ).
2. Set Σ ← {0, 1}λ.
3. Send PK = (PK0, PK1, Σ) and SK = (SK0) to A.
4. For i = 1, . . . , poly(λ):

A issues query (mi
0,m

i
1) and receives cti computed as follows:

– Set cti
0 = Enc(PK0,mi

0; r
i
0).

– Set cti
1 = Enc(PK1,mi

0; r
i
1).

– Set πi ← Prover(((PK0, cti
0), (PK1, ct

i
1)), (r

i
0, r

i
1), Σ).

– Set cti = (cti
0, ct

i
1, π

i).
5. A outputs b ∈ {0, 1}.

aneGNY,A(λ)

1. Set (PK0, SK0), (PK1, SK1) ← E .KG(1λ).
2. Set (Σ, aux) ← S0(1λ) and dkey = (PK0, PK1, SK1, aux).
3. Send PK = (PK0, PK1, Σ) and SK = (SK0) to A.
4. For i = 1, . . . , poly(λ):

A issues query (mi
0,m

i
1) and receives cti computed as follows:

– Set cti
0 = Enc(PK0,mi

0; r
i
0).

– Set cti
1 = Enc(PK1,mi

0; r
i
1).

– Set πi ← S1(((PK0, cti
0), (PK1, ct

i
1)), aux).

– Set cti = (cti
0, ct

i
1, π

i).
5. A outputs b ∈ {0, 1}.

Lemma 4. If Π = (Prover,Verifier) is a NIZK then for all PPT adversaries A
∣
∣paneGNY,A(λ) − pNormalGame

NY,A (λ)
∣
∣ < negl(λ).

Proof. Suppose, for the sake of contradiction, that there exists a PPT A for
which

∣
∣paneGNY,A(λ) − pNormalGame

NY,A (λ)
∣
∣ ≥ 1/poly(λ).

Then we construct an adversary B that receives a string Σ and has access to an
oracle O that returns proofs and that breaks the zero-knowledge property of Π.

1. B(Σ) sets (PK0, SK0), (PK1, SK1) ← E .KG(1λ).
2. B receives Σ and starts A on input PK = (PK0, PK1, Σ) and SK = (SK0).
3. For i = 1, . . . , poly(λ)

(a) B receives query (mi
0,m

i
1) from A.

(b) B sets cti
0 = Enc(PK0,mi

0; r
i
0).

(c) B sets cti
1 = Enc(PK1,mi

0; r
i
1).

Anamorphic Encryption: Private Communication Against a Dictator 55

(d) B invokes the oracle O on input instance ((PK0, cti
0), (PK1, ct

i
1)) and wit-

ness (ri
0, r

)
1 and receives proof πi.

(e) B returns cti = (cti
0, ct

i
1, π

i) to A.
4. B returns A’s output.

Now observe that if B is playing experiment RealZK, then Σ is randomly
chosen from {0, 1}λ and O = Prover and therefore A’s view is the same as in
NormalGame. On the other hand, if B is playing experiment IdealZK then Σ is
output by S0 and O = Oracle and therefore A’s view is the same as in aneG.
Since we assumed that A distinguishes between NormalGame and aneG then we
can conclude that B breaks the Zero-Knowledge property of Π. ��

Next we instantiate the anamorphic security game FullyAGameNY. We remind
the reader that pFullyAGame

NY,A (λ) denote the probability that adversary A outputs 1
in game FullyAGameNY,A.

FullyAGameNY,A(λ)

1. Set (PK0, SK0), (PK1, SK1) ← E .KG(1λ).
2. Set (Σ, aux) ← S0(1λ) and dkey = (PK0, PK1, SK1, aux).
3. Send PK = (PK0, PK1, Σ) and SK = (SK0) to A.
4. For i = 1, . . . , poly(λ):

A issues query (mi
0,m

i
1) and receives cti computed as follows:

– Set cti
0 = Enc(PK0,mi

0; r
i
0).

– Set cti
1 = Enc(PK1,mi

1; r
i
1).

– Set πi ← S1(((PK0, cti
0), (PK1, ct

i
1)), aux).

– Set cti = (cti
0, ct

i
1, π

i).
5. A outputs b ∈ {0, 1}.

We have the following lemma.

Lemma 5. If E is an IND-CPA secure encryption scheme then for all PPT
adversaries A ∣

∣
∣paneGNY,A(λ) − pFullyAGame

NY,A (λ)
∣
∣
∣ < negl(λ).

Proof. Suppose, for the sake of contradiction, that there exists a PPT A for
which ∣

∣
∣paneGNY,A(λ) − pFullyAGame

NY,A (λ)
∣
∣
∣ ≥ 1/poly(λ).

Then we construct an adversary B that receives a public key PK and has an
encryption oracle O(PK, ·, ·) that returns a ciphertext.

1. B(PK) sets (PK0, SK0) and PK1 = PK.
2. B sets (Σ, aux) ← S0(1λ) and runs A on input PK = (PK0, PK1, Σ) and SK =

(SK0).
3. For i = 1, . . . , poly(λ):

A issues query (mi
0,m

i
1) and receives cti computed as follows:

– B sets cti
0 = Enc(PK0,mi

0; r
i
0);

56 G. Persiano et al.

– B sets ct11 = O(PK,mi
0,m

i
1);

– B sets πi ← S1(((PK0, cti
0), (PK1, ct

i
1)), aux).

– B sets cti = (cti
0, ct

i
1, π

i).
4. B returns A’s output.

Now observe that if B is playing the IndCPA0
E game then O(PK,m0,m1) =

Oracle0(PK,m0,m1) returns an encryption of m0 and therefore A’s view is exactly
as in aneGNY. On the other hand, if B is playing the IndCPA0

E game then
O(PK,m0,m1) = Oracle1(PK,m0,m1) returns an encryption of m1 and therefore
A’s view is exactly as in FullyAGameNY. Since we assumed that A distinguishes
between aneGNY and FullyAGameNY, we can conclude that B breaks the IND-CPA
security of E . ��
Bootstrapping the NY Construction. In the description of the anamorphic triplet
for the NY construction we have assumed that the sender and the receiver have a
safe way to exchange dkey. This is a reasonable assumption for most applications
as it is expected that the dictator is able to monitor online communication but
it will be difficult to monitor a physical exchange. We next briefly note how to
use the bootstrap technique of Horel et al. [HPRV19] in combination with the
NY construction. Note that the result scheme does not enjoy the zero-latency
property. Observe that dkey consists of (PK0, PK1, SK1, aux). However PK0 and
PK1 are public and SK1 is not used by the sender and it is only used by the
receiver to decrypt the message. Therefore, it is enough for the two parties to
share the random string used by simulator S0 to generate aux and this can be
achieved by using the two-step bootstrap procedure of Horel et al. [HPRV19].

6 Sender-Anamorphic Encryption

In this section we address the sender-freedom assumption. In the introduction,
and more formally in Sect. 5.1, we presented a simple cryptosystem whose secu-
rity does not rely on the sender-freedom assumption. Specifically, Alice, fearing
that she might be forced by the authorities to send a fake message, sets up a
private shared key K with Bob that allows to produce, for every adversarially
chosen message m0, a ciphertext ct carrying m0 and the coin tosses used to pro-
duce ct such that, when decrypted with K, ct gives a one-bit message m1 for
Bob to receive privately. The main drawback of this setting is that Alice and
Bob must interact in advance to share the key K and this is not always possible:
Alice might not know of Bob when she first sets up her public key or might not
have a way of securely sending K to Bob.

Next, we show that prior communication between Alice and Bob is not nec-
essary and formalize the concept of a Sender-Anamorphic Encryption in this
context. It seems again impossible (seems like decryption is not well defined?).
However, the existence of other receivers and public channels save the day!

Specifically, when Alice is forced by the authorities to send the forced message
m0 to Carol using Carol’s public key fPK as the forced receiving public key, Alice
might decide to embed a duplicate message m1 in the ciphertext that is revealed

Anamorphic Encryption: Private Communication Against a Dictator 57

when the ciphertext is decrypted with Bob’s key; that is, the secret key associated
with the duplicate public key dPK. We stress again that dPK, Bob’s public key, is
generated by Bob without even knowing that one day he might receive a message
from Alice and no secret is shared between Alice and Bob. To do so, we equip
Alice with a special coin-toss faking algorithm fRandom that on input the forced
public key fPK, the duplicate public key dPK, the forced message m0, and the
duplicate message m1 outputs coin tosses to produce a ciphertext ct that gives
m0 or m1 depending on whether it is decrypted with the secret key associated
with the forced public key or with the secret key associated with the duplicate
public key.

We next present formal definition for Sender-Anamorphic Encryption. Our
definition is tailored for the no-shared secret setting that we have described.
Similarly to the receiver side, it could be possible to define the notion of Sender-
Anamorphic Encryption also for the case in which sender and receiver share a
secret.

Definition 3. We say that a public-key encryption scheme E = (KG,Enc,Dec)
is a Sender-Anamorphic Encryption scheme (Sender-AM) if there exists a coin-
toss faking algorithm fRandom that, on input the forced public key fPK, and the
forced message m0, and the duplicate public key dPK and the duplicate message
m1, outputs the faking coin tosses R� = fRandom(fPK, m0, dPK, m1) such that

– Let ct = Enc(fPK, m0;R�) be the ciphertext computed using the faking coin
tosses; then Dec(dSK, ct) = m1, except with negligible probability. The prob-
ability is taken over the coin tosses of fRandom and the coin tosses used to
generate fPK and dPK.

To define the concept of a Secure Sender-Anamorphic Encryption we intro-
duce two experiments. In both experiments, the adversary receives one public
key fPK and gives polynomially many pairs of forced and duplicate message and
for each pair receives as a reply a ciphertext for the first message and the ran-
dom coin tosses used to produce it. In the real experiment, the ciphertext is
produced by Alice that uses random coin tosses output by fRandom with respect
to randomly chosen duplicate key. We require the real experiment to be indis-
tinguishable from the ideal experiment in which there is only one public key and
the forced message is encrypted by using truly random coin tosses.

IdealE,A(λ)

1. Set (fPK, fSK) ← KG(1λ) and send fPK to A.
2. For i = 1, . . . , poly(λ):

– A issues query (mi
0, m

i
1) and receives ct = Enc(fPK, mi

0;R
i), where

Ri are randomly chosen coin tosses.
3. A outputs b ∈ {0, 1}.

58 G. Persiano et al.

RealfRandomE,A (λ)

1. Set (fPK, fSK) ← KG(1λ) and send fPK to A.
2. Set (dPK, dSK) ← KG(1λ).
3. For i = 1, . . . , poly(λ):

– A issues query (mi
0, m

i
1) and receives ct = Enc(fPK, mi

0;R
i), where

Ri = fRandom(fPK, mi
0, dPK, m

i
1).

4. A outputs b ∈ {0, 1}.

We denote by pIdealE,A (λ) (respectively, pRealE,A(λ)) the probability that IdealE,A
(respectively, RealE,A) outputs 1 and present the following definition.

Definition 4. A Sender-AM scheme E = (KG,Enc,Dec) with coin-toss faking
algorithm fRandom is a SSender-AM scheme if

1. E is an IND-CPA scheme;
2. for all PPT adversaries A,

∣
∣pIdealE,A (λ) − pRealE,A(λ)

∣
∣ ≤ negl(λ).

Difficulties in Achieving Sender-AM with No Shared Key. Not every standard
encryption can be used as AM with no shared key. In order to embed a secret
message in a ciphertext for public key fPK a valid ciphertext for Bob’s public
key PK, it must be the case that the ciphertext is a valid ciphertext for both
keys. From this point of view, the schemes with redundancy (in particular, with
validity check in the decryption) seem difficult to employ because a ciphertext for
Bob should probably be an invalid ciphertext to Carlos. Almost all known CCA
encryption with redundancy (like the one based on the Naor-Yung transform)
cannot be used in this context.

But the lack of redundancy is not sufficient for a scheme to be used as AM
with no shared key. For the schemes that do not have the property of common
randomness, we do not know how to add secret messages to ciphertexts. For
example, in Goldwasser-Micali cryptosystem [GM84], the very first semantically
secure encryption, two users generate two independent moduli N0 and N1 and
the secret key of one system is independent of the other one. Therefore, given a
ciphertext ct for N0, without the knowledge of the factorization of N1, it is hard
to decide whether this ciphertext is a quadratic residue modulo N1. As a result,
Alice does not know the underlying plaintext for the ciphertext ct with respect
to Bob’s key. Consequently, this gives evidence that it seems impossible for Alice,
in the no-shared-key model, to embed a secret message to a ciphertext in the
Goldwasser-Micali cryptosystem. We next identify a set of sufficient conditions
for AM with no shared key and then we describe some encryption schemes from
the literature that satisfy the conditions.

6.1 Sufficient Conditions for Sender-AM with No Shared Key

In this section, we introduce three sufficient conditions for a one-bit cryptosystem
E = (KG,Enc,Dec) to be Sender-AM with no shared key.

Anamorphic Encryption: Private Communication Against a Dictator 59

1. Common randomness property. Public key encryption scheme E satisfies the
common randomness property if:
for every two public keys PK0 and PK1 output by KG and for every ciphertext
ct produced using public key PK0 and coin tosses R there exists a message m
such that ct = Enc(PK1,m;R); that is, ct is a ciphertext also for public key
PK1 with the same coin tosses R.
For example, the Elgamal encryption-s over a public group satisfies this com-
mon randomness property.

2. Message recovery from randomness. A public key encryption scheme E satis-
fies the common randomness property if:
it is possible to recover the plaintext carried by a ciphertext ct from the
randomness R used to produce it and the public key PK.

3. Equal Distribution of Plaintexts. A one-bit public key encryption scheme sat-
isfies the property of equal distribution of plaintexts if the following properties
are verified:

– all public keys share the same ciphertext space;
– for a ciphertext ct in the common ciphertext space and for a random

key pair (PK, SK) as sampled by the key generation algorithm, ct is the
ciphertext of the bit 0 with a probability 1

2 .

We now show that, if a one-bit public key encryption satisfies the above three
properties, it is a Sender-AM with no shared key.

Theorem 3. If an IND-CPA secure one-bit public key encryption scheme sat-
isfies the three properties of common randomness, message recovery from ran-
domness, and equal distribution of plaintexts, then it is a Sender-AM scheme
with no shared key.

Proof. Let E = (KG,Enc,Dec) be an IND-CPA secure scheme and define
fRandom(fPK,m0, dPK,m1) as follows:

1. Randomly choose coin tosses R;
2. Compute ct = Enc(fPK,m0;R);
3. By the property of common randomness, ct is also a ciphertext according to

dPK and it is computed using the same coin tosses R.
4. By the property of message recovery from randomness, message m′ carried

by ct w.r.t. to dPK can be computed; that is Enc(dPK,m′;R) is equal to ct.
5. If m′ = m1 then return (ct, R) and halt; otherwise, go back to Step 1.

The fRandom defined above satisfies Definition 3. Indeed, the correctness is
directly verified. Now observe that the coin tosses R selected at step 1 of fRandom
have probability 1/2 of being the output in the last step, over the choices of ran-
dom dPK, by the equal distribution of plaintexts. As dPK is uniformly distributed
(and unknown) to the adversary, the adversary cannot distinguish the outputted
coin tosses with a real randomness. ��

60 G. Persiano et al.

6.2 Constructions Based on LWE Encryption Schemes

Theorem 4. The LWE Encryption and the Dual LWE Encryption are each a
Sender-AM scheme with no shared key.

Proof. A detailed exposition of LWE Encryption, Dual LWE Encryption can be
found in [Reg05,GPV08]. We recall here a quick description of these schemes
and their properties assuring that they are AM schemes with no shared key.

We first recall the LWE encryption [Reg05] in Fig. 2. It is parameterized by
some r ≤ ω(

√
log m)), which specifies the discrete Gaussian distribution DZm,r

over the integer lattice Z
m from which the secret keys are chosen.

Setup: The system is characterized by m, q and a probability distribution
χ on Z

n
q . All users share a common matrix A ∈ Z

nm
q chosen uniformly

at random, which is the index of the function fA(e) = Ae mod q.
Key Generation:

– Choose s ∈ Z
n
q uniformly at random. The private key is s.

– Choose error vector e ← DZm,r.The public key consists of (A,b =
fA(s) + e)

Encryption: The encryption of a bit x ∈ {0, 1} is done by choosing
a random subset S of [m] and then defining the ciphertext of x as
(i∈S ai, x q

2 + i∈S bi)
Decryption: The decryption of (a, b) is 0 if b a, s is closer to 0 than to

q
2 modulo q, and 1 otherwise.

Fig. 2. LWE public-key encryption

– From the ciphertext (a, b), we see that, for any user, the implicit random
input is the same. This satisfies the property of common randomness.

– From the random input and the public-key, one can get the plaintext. This
satisfies the property of message recovery from randomness.

– For a ciphertext (a, b), with a public key that is returned from the key gen-
eration, the vector b is indistinguishable from a randomly chosen vector in
Z

n
q , the underlying plaintext is thus 0 with probability 1

2 . This satisfies the
property of equal distribution of plaintexts.

We now recall the Dual LWE encryption [GPV08] in Fig. 3. It is parameter-
ized by two integers m, q and a probability distribution χ on Zq. We show that
it supports AM in the similar way as in the case of the LWE encryption:

– From the ciphertext (p, c), we see that, for any user, the implicit random
input is the same. This gives the property of common randomness.

– From the random input and the public-key, one can get the plaintext. This
satisfies the property of message recovery from randomness.

Anamorphic Encryption: Private Communication Against a Dictator 61

– For a ciphertext (p, c), with a public key that is returned from the key gen-
eration, the vector uT s is indistinguishable from a randomly chosen vector in
Zq, the underlying plaintext is thus 0 with probability 1

2 . This satisfies the
property of equal distribution of plaintexts. ��

Setup: all users share a common matrix A ∈ Z
nm
q chosen uniformly at

random, which is the index of the function fA(e) = Ae mod q.
Key Generation:

– Choose an error vector e ← DZm,r which is the secret key.
– The public key is the syndrome u = fA(e).

Encryption: to encrypt a bit b ∈ {0, 1}, choose s ∈ Z
n
q uniformly and

p = AT s + x ∈ Z
m
q , where x ∈ χm. Output the ciphertext (p; c =

uT s+ x + b q
2) ∈ Z

m
q × Zq, where x ← χ.

Decryption: Compute z = c − eTp ∈ Zq. Output 0 if z is closer to 0 than
to q

2 mod q, otherwise output 1.

Fig. 3. Dual LWE public-key encryption

7 Conclusion

This is the first and most likely not the last work on Anamorphic Encryption as
our framework does not cover all the schemes. In this first work, we have shown
the anamorphic property for some standard encryptions with specific properties.
This does not mean that it is impossible for schemes without these properties.
It is also reasonable to wonder what would happen if the dictator can ban these
schemes from being used. However, in this way, the dictator will always need to
run after our research and this will force the dictator to assure that his children
will get a PhD in Cryptography.

Of course, we leave it to others to determine, based on policy, law, and other
societal aspects beyond pure technology, whether our results are aiming toward
being the final nail in the coffin of governments control of the use of strong
cryptographic systems. Our meta-conjecture (and induced policy implication)
is that for any standard scheme, there is a technical demonstration (perhaps
employing Anamorphism+stego+klepto) of the futility of the dictator’s demands.

Acknowledgments. We thank all anonymous reviewers for insightful feedback.
Duong Hieu Phan was partially supported by the ANR ALAMBIC (ANR16-CE39-
0006). Part of this work was done while Giuseppe Persiano was visiting Google NY.

References

[AAB+97] Abelson, H., et al.: The risks of key recovery, key escrow, and trusted third-
party encryption (1997). https://doi.org/10.7916/D8GM8F2W

https://doi.org/10.7916/D8GM8F2W

62 G. Persiano et al.

[AAB+15] Abelson, H., et al.: Keys under doormats: mandating insecurity by requiring
government access to all data and communications (2015). https://doi.org/
10.7916/D8H41R9K

[ACD19] Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions,
proofs, and modularization for the signal protocol. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 5

[Bla94] Blaze, M.: Protocol failure in the escrowed encryption standard. In: CCS
1994, pp. 59–67 (1994)

[BPR] Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption
against mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44371-2 1

[CDNO97] Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052229

[Cli] Statement by the Press Secretary, The White House, 16 April 1993.
Reprinted in David Banisar (ed.) Cryptography and Privacy Sourcebook
(1994)

[CNE+14] Checkoway, S., et al.: On the practical exploitability of dual EC in TLS
implementations. In: USENIX Security Symposium, pp. 319–335 (2014)

[Dak96] Dakoff, H.S.: The clipper chip proposal: deciphering the unfounded fears
that are wrongfully derailing its implementation. J. Marshall L. Rev. 29,
475 (1996)

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22, 644–654 (1976)

[DL] Diffie, W., Landau, S.: Privacy on the Line. The Politics of Wiretapping
and Encryption

[Fei73] Feistel, H.: Cryptography and computer privacy. Sci. Am. 228(5), 15–23
(1973)

[FY93] Frankel, Y., Yung, M.: Escrow encryption systems visited: attacks, analysis
and designs. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963,
pp. 222–235. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 18

[GKVL] Green, M., Kaptchuk, G., Van Laer, G.: Abuse resistant law enforcement
access systems. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12698, pp. 553–583. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77883-5 19

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
2, 270–299 (1984)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: STOC 1987, pp. 218–229 (1987)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

[HPRV19] Horel, T., Park, S., Richelson, S., Vaikuntanathan, V.: How to subvert
backdoored encryption: Security against adversaries that decrypt all cipher-
texts. In: 10th ITCS, pp. 1–20 (2019)

[Ker83] Kerckhoffs, A.: La Cryptographie Militaire. Journal des sciences militaires
(1883)

https://doi.org/10.7916/D8H41R9K
https://doi.org/10.7916/D8H41R9K
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/3-540-44750-4_18
https://doi.org/10.1007/3-540-44750-4_18
https://doi.org/10.1007/978-3-030-77883-5_19
https://doi.org/10.1007/978-3-030-77883-5_19

Anamorphic Encryption: Private Communication Against a Dictator 63

[Mic] Micali, S.: Fair public-key cryptosystems. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 113–138. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 9

[MP16] Marlinspike, M., Perrin, T.: The double ratchet algorithm, Novem-
ber 2016. https://whispersystems.org/docs/specifications/doubleratchet/
doubleratchet.pdf

[NY90] Naor, M., Yung, M.: Public-key cryptosystems provably secure against cho-
sen ciphertext attacks. In: STOC 1990, pp. 427–437 (1990)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: STOC 2005, pp. 84–93 (2005)

[Riv] Rivest, R.L.: Chaffing and Winnowing: Confidentiality without Encryption.
MIT Lab for Computer Science, 18 March 1998. http://people.csail.mit.
edu/rivest/chaffing-980701.txt. Accessed 1 July 1998

[Rog15] Rogaway, P.: The Moral Character of Cryptographic Work. ePrint
2015/1162 (2015). https://ia.cr/2015/1162

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21 (1978)

[RTYZ] Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the
power of kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 2

[RTYZ17] Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Generic semantic security
against a kleptographic adversary. In: CCS 2017, pp. 907–922 (2017)

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: FOCS 1999, p. 543 (1999)

[Sha49] Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech.
J. 28(4), 656–715 (1949)

[vAH04] von Ahn, L., Hopper, N.J.: Public-key steganography. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 323–341.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3 20

[Wha20] WhatsApp. WhatsApp Encryption Overview, October 2020
[Yao86] Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS 1986, pp.

162–167 (1986)
[YYa] Young, A., Yung, M.: The dark side of “Black-Box” cryptography or: should

we trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 89–103. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
68697-5 8

[YYb] Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-
log based cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol.
1294, pp. 264–276. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0052241

[YY97] Young, A., Yung, M.: Kleptography: using cryptography against cryptog-
raphy. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

[YY98] Young, A., Yung, M.: Auto-recoverable auto-certifiable cryptosystems. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 17–31. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054114

https://doi.org/10.1007/3-540-48071-4_9
https://doi.org/10.1007/3-540-48071-4_9
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
http://people.csail.mit.edu/rivest/chaffing-980701.txt
http://people.csail.mit.edu/rivest/chaffing-980701.txt
https://ia.cr/2015/1162
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-540-24676-3_20
https://doi.org/10.1007/978-3-540-24676-3_20
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/BFb0052241
https://doi.org/10.1007/BFb0052241
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/BFb0054114

A PCP Theorem for Interactive Proofs
and Applications

Gal Arnon1(B), Alessandro Chiesa2, and Eylon Yogev3

1 Weizmann Institute, Rehovot, Israel
gal.arnon@weizmann.ac.il

2 EPFL, Lausanne, Switzerland
alessandro.chiesa@epfl.ch

3 Bar-Ilan University, Ramat Gan, Israel

eylon.yogev@biu.ac.il

Abstract. The celebrated PCP Theorem states that any language in
NP can be decided via a verifier that reads O(1) bits from a polynomi-
ally long proof. Interactive oracle proofs (IOP), a generalization of PCPs,
allow the verifier to interact with the prover for multiple rounds while
reading a small number of bits from each prover message. While PCPs
are relatively well understood, the power captured by IOPs (beyond NP)
has yet to be fully explored.

We present a generalization of the PCP theorem for interactive lan-
guages. We show that any language decidable by a k(n)-round IP has
a k(n)-round public-coin IOP, where the verifier makes its decision by
reading only O(1) bits from each (polynomially long) prover message and
O(1) bits from each of its own (random) messages to the prover.

Our result and the underlying techniques have several applications.
We get a new hardness of approximation result for a stochastic satis-
fiability problem, we show IOP-to-IOP transformations that previously
were known to hold only for IPs, and we formulate a new notion of PCPs
(index-decodable PCPs) that enables us to obtain a commit-and-prove
SNARK in the random oracle model for nondeterministic computations.

Keywords: Interactive proofs · Probabilistically checkable proofs ·
Interactive oracle proofs

G. Arnon—Supported in part by a grant from the Israel Science Foundation (no.
2686/20) and by the Simons Foundation Collaboration on the Theory of Algorithmic
Fairness.
A. Chiesa—Funded by the Ethereum Foundation.
E. Yogev—Part of this project was performed when Eylon Yogev was in Tel Aviv
University where he was funded by the ISF grants 484/18, 1789/19, Len Blavatnik and
the Blavatnik Foundation, and The Blavatnik Interdisciplinary Cyber Research Center
at Tel Aviv University.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 64–94, 2022.
https://doi.org/10.1007/978-3-031-07085-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_3

A PCP Theorem for Interactive Proofs and Applications 65

1 Introduction

Probabilistic proofs play a central role in complexity theory and cryptography.
In the past decades, probabilistic proofs have become powerful and versatile
tools in these fields, leading to breakthroughs in zero-knowledge, delegation of
computation, hardness of approximation, and other areas.

As an example, interactive proofs (IPs) [40] allow proof-verification to be
randomized and interactive, which seemingly confers them much more power
than their deterministic (and non-interactive) counterparts. In a k-round IP, a
probabilistic polynomial-time verifier exchanges k messages with an all-powerful
prover and then accepts or rejects; IP[k] is the class of languages decidable
via a k-round interactive proof. Seminal results characterize the power of IPs
(IP[poly(n)] = PSPACE) [48,54] and also achieve zero-knowledge [38,40].

The development of IPs, in turn, led to probabilistically checkable proofs
(PCPs) [4,36], where a probabilistic polynomial-time verifier has query access
to a proof string. Here PCP[r, q] denotes the class of languages decidable by a
PCP verifier that uses at most r bits of randomness and queries at most q bits
of the proof string. A line of works culminated in the PCP Theorem [1,2], which
can be stated as NP = PCP[O(log n), O(1)]; that is, every language in NP can
be decided, with constant soundness error, by probabilistically examining only
a constant number of bits in a polynomially long proof.

These advances in probabilistic proofs have reshaped theoretical computer
science.

Interactive Oracle Proofs. More recently, researchers formulated interactive ora-
cle proofs (IOPs) [12,52], a model of probabilistic proof that combines aspects
of the IP and PCP models. A k-round IOP is a k-round IP where the verifier
has PCP-like access to each prover message: the prover and verifier interact for
k rounds, and after the interaction the verifier probabilistically reads a small
number of bits from each prover message and decides to accept or reject based
on the examined locations. The randomness used in the final phase is called
decision randomness (which we distinguish from the random messages that the
verifier sends to the prover during the interaction).

Recent work has constructed highly-efficient IOPs [7–11,13,18–21,26,53].
While the shortest PCPs known to date have quasi-linear length [16,30], IOPs
can achieve linear proof length and fast provers. These developments are at the
heart of recent constructions of non-interactive succinct arguments (SNARGs),
and have facilitated their deployment in numerous real-world systems. IOPs are
also used to construct IPs for delegating computation [52].

IOPs Beyond NP? Most research regarding IOPs has focused on understanding
IOPs for languages in NP (and more generally various forms of non-deterministic
computations) while using the additional rounds of interaction to achieve better
efficiency compared to PCPs for those languages.

However, the power of IOPs for languages beyond NP is not well understood.
We do know that IPs can express all languages in PSPACE for sufficiently large
round complexity [48,54]; moreover more rounds lead to more languages because,

66 G. Arnon et al.

under plausible complexity assumptions, it holds that IP[k] �⊆ IP[o(k)] (while
restricting to polynomial communication complexity) [39]. But what can we say
about the power of IOPs with small query complexity (over the binary alphabet)?1

Not much is known about the power of general k-round IOPs, which leads us to
ask:

What languages have a k-round IOP where the verifier decides by reading
O(1) bits from each prover message and from each verifier message?

1.1 Main Results

We answer the above question by showing that (informally) the power of IOPs
with k rounds where the verifier reads O(1) bits from each communication round
(both prover and verifier messages) is the same as if the verifier reads the entire
protocol transcript (as in an IP). This can be seen as extending the PCP Theorem
to interactive proofs, interpreted as “you can be convinced by a conversation while
barely listening (even to yourself)”.

To achieve this, our main result is a transformation from IPs to IOPs: we
transform any IP into a corresponding IOP where the verifier reads O(1) bits
from each communication round and uses a total of O(log n) bits of decision
randomness.2 The round complexity is preserved, and other parameters are pre-
served up to polynomial factors. (A round is a verifier message followed by a
prover message; after the interaction, the verifier’s decision is probabilistic).

Theorem 1 (IP → IOP). Let L be a language with a public-coin IP with k
rounds and constant soundness error. Then L has an IOP with k rounds, constant
soundness error, where the verifier decides by using O(log n) bits of decision
randomness and reading O(1) bits from each prover message and each verifier
message. All other parameters are polynomially related.

Prior Work on IOPs Beyond NP. The PCP Theorem can be viewed as a “half-
round” IOP with query complexity O(1) and decision randomness O(log n) for
NP. For languages above NP, prior works imply certain facts about k-round
IOPs for extreme settings of k.

– For languages that have a public-coin IP with k = 1 round (a verifier message
followed by a prover message), Drucker [33] proves a hardness of approxima-
tion result in the terminology of CSPs. His result can be re-interpreted showing
that these languages have a one-round IOP where the verifier reads O(1) bits
from each message and decides (using O(log n) bits of decision randomness).
However, Drucker’s result does not extend to arbitrary many rounds.3

1 An IP is an IOP where the verifier has large query complexity over the binary
alphabet.

2 After the interaction, the verifier uses O(log n) random bits to decide which locations
to read from all k rounds.

3 Round reduction [5] can reduce the number of rounds from any k to 1 with a blow-up in
communication that is exponential in k. This does not work when k is super constant;
see Sect. 2.2 for further discussion.

A PCP Theorem for Interactive Proofs and Applications 67

– When k can be polynomially large, we observe that constant-query IOPs for
PSPACE can be obtained from [27,28],4 which in turn provides such an IOP
for every language having an IP. Other analogues of PCP have been given
(e.g., [43] applies to the polynomial hierarchy, [32] is also for PSPACE) but
they do not seem to translate to IOPs.

– For general k, one can use the fact that AM[k] ⊆ NEXP, and obtain a PCP
where the prover sends a single exponentially-long message from which the
(polynomial-time) verifier reads O(1) bits. However, this does not help if we
require the prover to send messages of polynomial length.

See Fig. 1 for a table summarizing these results and ours.

Fig. 1. Classes captured by different types of probabilistic proofs (in the regime of
constant soundness error). Here, x denotes the instance whose membership in the
language the verifier is deciding. Here, AM stands for two-message public-coin protocols
(a verifier random message followed by a prover message), and AM[k] is a k-round
public-coin protocol.

Hardness of Approximation for Stochastic Satisfiability. We use Theo-
rem 1 to prove the hardness of approximating the value of an instance of the
stochastic satisfiability (SSAT) problem, which we now informally define.

SSAT is a variant of TQBF (true quantified boolean formulas) where the
formula is in 3CNF and the variables are quantified by alternating existential
quantifiers and random quantifiers (the value of the quantified variable is chosen
uniformly at random). A formula φ is in the language SSAT if the probability
that there is a setting of the existential variables that cause φ to be satisfied
is greater than 1/2. The value of an SSAT instance φ is the expected number
of satisfied clauses in φ if the existential variables are chosen to maximize the

4 Their result shows that PSPACE has what is known as a probabilistically checkable
debate system. In their system, one prover plays a uniform random strategy. Thus
one can naturally translate the debate system into an IOP.

68 G. Arnon et al.

number of satisfied clauses in φ. We denote by k-SSAT the SSAT problem when
there are k alternations between existential and random quantifiers.

SSAT can be viewed as a restricted “game against nature” [51] where all
parties are binary, and “nature’s” moves are made uniformly at random. Varia-
tions of SSAT are related to areas of research in artificial intelligence, specifically
planning and reasoning under uncertainty [47]. Previous research on SSAT has
studied complexity-theoretical aspects [28,33,34] and SAT-solvers for it (e.g.,
[45,47,49]).

Our result on the hardness of approximation for k-SSAT is as follows.

Theorem 2. For every k, it is AM[k]-complete to distinguish whether a k-SSAT
instance has value 1 or value at most 1 − 1

O(k) .

We compare Theorem 2 with prior ones about k-SSAT. For k = 1, our result
matches that of [33] who showed that the value of 1-SSAT is AM[1]-hard to
approximate up to a constant factor. Condon, Feigenbaum, Lund, and Shor
[28] show that there exists a constant c > 1 such that for every language L in
IP = PSPACE, one can reduce an instance x to a poly(|x|)-SSAT instance φ
such that if x ∈ L then the value of φ is 1, and otherwise the value of φ is 1/c.
The approaches used in both prior works do not seem to extend to other values
of k.

This state of affairs motives the following natural question:

How hard is it to approximate the value of k-SSAT to a constant factor
independent of k?

While PCPs have well-known applications to the hardness of approximation
of numerous NP problems, no similar connection between IOPs and hardness
of approximation was known. (Indeed, this possibility was raised as an open
problem in prior work.) The works of Drucker [33] and Condon et al. [28] can
be reinterpreted as giving such results for stochastic satisfiability problems. In
this paper we make this connection explicit and extend their results.

Transformations for IOPs. We obtain IOP analogues of classical IP theo-
rems, as a corollary of Theorem 1. We show IOP-to-IOP transformations, with
small query complexity, and achieve classical results that were known for IPs,
including: a private-coin to public-coin transformation (in the style of [41]); a
round reduction technique (in the style of [5]); and a method to obtain per-
fect completeness (in the style of [37]). A graphic of this corollary is displayed
in Fig. 2.

Corollary 1. Let L be a language with a k-round IOP with polynomial proof
length over a binary alphabet. Then the following holds:

1. private-coins to public-coins: L has a O(k)-round public-coin IOP;
2. round reduction: for every constant c ≤ k, L has a k/c-round IOP;
3. perfect completeness: L has a perfectly complete k-round IOP.

A PCP Theorem for Interactive Proofs and Applications 69

All resulting IOPs have polynomial proof length and O(1) per-round query com-
plexity over a binary alphabet; all other parameters are polynomially related to
the original IOP.

Similar to the case with IPs, one can combine these transformations to get all
properties at once. In particular, one can transform any IOP to be public-coin
and have perfect completeness while preserving the round complexity.

Fig. 2. Corollary 1 provides IOP analogues of classical IP theorems.

1.2 A Cryptographic Application to SNARKs

A building block that underlies Theorem 1 is a new notion of PCP that we call
index-decodable PCPs. We informally describe this object in Sect. 1.2 below (and
postpone the definition and a comparison with other PCP notions to Sect. 2.3).
Moreover, we prove that index-decodable PCPs are a useful tool beyond the
aforementioned application to Theorem 1, by establishing a generic transfor-
mation from index-decodable PCPs to commit-and-prove SNARKs. We discuss
these SNARKs and our result in Sect. 1.2 below (and postpone further discussion
to Sect. 2.6).

Index-Decodable PCPs. An index-decodable PCP can be seen as a PCP
on maliciously encoded data. The prover wishes to convince the verifier about
a statement that involves k data segments i[1], . . . , i[k] and an instance x, for
example, that it knows a witness w such that (i[1], . . . , i[k],x,w) ∈ R for some
relation R. The prover outputs a PCP string Π for this statement. The verifier
receives as input only the instance x, and is given query access to an encoding of
each data segment i[i] and query access to the PCP string Π. This means that
the verifier has query access to a total of k + 1 oracles.

70 G. Arnon et al.

The definition of an index-decodable PCP, to be useful, needs to take into
account several delicate points (which, in fact, are crucial for our proof of
Theorem 1).

First, the encoding of each data segment must be computed independently
of other data segments and even the instance. (Though the PCP string Π can
depend on all data segments and the instance).

Second, the verifier is not guaranteed that the k data oracles are valid encod-
ings, in the sense that “security” is required to hold even against malicious
provers that have full control of all k + 1 oracles (not just the PCP string ora-
cle). In other words, we wish to formulate a security notion that is meaningful
even for data that has been maliciously encoded.

The security notion that we use is decodability. Informally, we require that if
the verifier accepts with high-enough probability a given set of (possibly mali-
cious) data oracles and PCP string, then each data oracle can be individually
decoded into a data segment and the PCP string can be decoded into a wit-
ness such that, collectively, all the data segments, the instance, and the witness
form a true statement. We stress that the decoder algorithms must run on each
data oracle separately from other data oracles and the instance (similarly as the
encoder).

Commit-and-Prove SNARKs. A commit-and-prove SNARK (CaP-
SNARK) is a SNARK that enables proving statements about previously com-
mitted data, and commitments can be reused across different statements. CaP-
SNARKs have been studied in a line of work [17,22,29,35,46], where construc-
tions have been achieved assuming specific computational assumptions (e.g.,
knowledge of exponent assumptions) and usually with the added property of
zero-knowledge.

We show how to use index-decodable PCPs to unconditionally achieve CaP-
SNARKs in the random oracle model (ROM);5 in more detail we need the index-
decodable PCP to have efficient indexing/decoding and certain proximity prop-
erties. Our transformation can be seen as an index-decodable PCP analogue of
the Micali construction of SNARKs in the ROM from PCPs [50].

Theorem 3. There is a transformation that takes as input an index-decodable
PCP (that has an efficient indexer and decoder and satisfies certain proximity
properties) for a relation R with proof length l and query complexity q, and
outputs a CaP-SNARK in the ROM for R with argument size Oλ(q · log l). (Here
λ is the output size of the random oracle.)

We obtain a concrete construction of a CaP-SNARK in the ROM (for non-
deterministic computations) by applying the above theorem to our construction
of an index-decodable PCP system.

We conclude by noting that the ROM supports several well-known construc-
tions of succinct arguments that can be heuristically instantiated via lightweight
5 In this model, all parties (honest and malicious) receive query access to the same

random function.

A PCP Theorem for Interactive Proofs and Applications 71

cryptographic hash functions, are plausibly post-quantum secure [25], and have
led to realizations that are useful in practice. It is plausible that our construc-
tion can be shown to have these benefits as well—we leave this, and constructing
zero-knowledge CaP-SNARKs in the ROM, to future work.

2 Techniques

We summarize the main ideas underlying our results.
We begin by discussing the question of transforming IPs to IOPs. In Sect. 2.1,

we describe a solution in [33] that works for a single round and explain why it is
challenging to extend it for multiple rounds. Then, we describe our transforma-
tion for many rounds in two steps. First, in Sect. 2.2, we describe how to make
a verifier query each of its random messages at few locations. Next, in Sect. 2.3,
we define our new notion of index-decodable PCPs and, in Sect. 2.4, describe
how to use these to make the verifier query each prover message at few loca-
tions (without affecting the first step). In Sect. 2.5, we explain how to construct
index-decodable PCPs with good parameters.

We conclude by describing applications of our results and constructions:
(i) in Sect. 2.6, we construct commit-and-prove SNARKs in the random oracle
model from index-decodable PCPs; and (ii) in Sect. 2.7, we show that Theorem 1
has implications on the hardness of approximating the value of certain stochastic
problems.

Throughout, we call interaction randomness (or verifier random messages)
the randomness sent by the verifier to the prover during the interaction, and
decision randomness the randomness used by the verifier in the post-interaction
decision stage.

2.1 Towards Transforming IPs to IOPs

We discuss the problem of transforming IPs into IOPs. We begin by describing
a solution in [33] that transforms a single-round IP into a single-round IOP.
Following that, we describe the challenges of extending this approach to work
for multi-round IPs.

The Case of a Single-Round IP. The case of a single-round was settled by
Drucker [33], whose work implies a transformation from a public-coin single-
round IP to a single-round IOP where the verifier reads O(1) bits from the
communication transcript (here consisting of the prover message and the veri-
fier message). His construction uses as building blocks the randomness-efficient
amplification technique of [6] and PCPs of proximity (PCPPs) [15,31].6 We give
a high-level overview of his construction.
6 A PCPP is a PCP system where the verifier has oracle access to its input in addition

to the prover’s proof; the soundness guarantee is that if the input is far (in Ham-
ming distance) from any input in the language, then the verifier accepts with small
probability.

72 G. Arnon et al.

In a public-coin single-round IP, given a common input instance x, the verifier
VIP sends randomness ρ, the prover PIP sends a message a, and the verifier VIP

decides whether to accept by applying a predicate to (x, ρ, a). Consider the non-
deterministic machine M such that M(x, ρ) = 1 if and only if there exists a such
that VIP accepts (x, ρ, a). The constructed IOP works as follows:

1. the IOP verifier sends VIP’s randomness ρ;
2. the IOP prover computes PIP’s message a and produces a PCPP string Π for

the claim “M(x, ρ) = 1”;
3. the IOP verifier checks Π using the PCPP verifier with explicit inputs M and

x and implicit input ρ.

This IOP is sound if the underlying IP is “randomness-robust”, which means
that if x is not in the language then with high probability over ρ it holds that
ρ is far from any accepting input for M(x, ·). Drucker achieves this property
by using an amplification technique in [6] that achieves soundness error 2−|ρ|

while using O(|ρ|) random bits (standard amplification would, when starting
with a constant-soundness protocol, result in ω(|ρ|) random bits). Thus, with
high probability, ρ is not only a “good” random string (which holds for any
single-round IP) but also is δ-far from any “bad” random string, for some small
constant δ > 0. This follows since the ball of radius δ around any bad random
string has size 2δ′|ρ|, for some small constant δ′ that depends only on δ.

Challenges of Extending the Single-Round Approach to Multi-round
IPs. We wish to obtain a similarly efficient transformation for a public-coin
k-round IP where k = poly(n).

One possible approach would be to reduce the number of rounds of the given
IP from k to 1 and then apply the transformation for single-round IPs. The
round reduction of Babai and Moran [5] shows that any public-coin k-round IP
can be transformed into a one-round IP where efficiency parameters grow by
nO(k). This transformation, however, is not efficient for super-constant values of
k. Moreover, it is undesirable even when k is constant because the transformation
overhead is not a fixed polynomial (the exponent depends on k rather than being
a fixed constant).

Therefore, we seek an approach that directly applies to amulti-round IP.Unfor-
tunately, Drucker’s approach for one-round IPs does not generalize to multiple-
round IPs for several reasons. First, the corresponding machine M(x, ρ1, . . . , ρk)
(which accepts if and only if there exist prover messages a1, . . . , ak such that VIP

accepts (x, ρ1, a1, . . . , ρk, ak)) does not capture the soundness of the interactive
proof because it fails to capture interaction (a protocol may be sound accord-
ing to the IP definition and, yet, for every x and ρ1, . . . , ρk it could be that
M(x, ρ1, . . . , ρk) = 1). Moreover, it is not clear how to perform a randomness-
efficient amplification for multiple rounds that makes the protocol sufficiently
“randomness robust” for the use of a PCPP. The main reason is that to get sound-
ness error 2−m (as in [33]), the techniques of [6] add O(m) bits per round, which
is too much when the protocol has many rounds (see Sect. 2.2 for a more detailed
discussion on why this approach fails for many rounds).

A PCP Theorem for Interactive Proofs and Applications 73

We give a different solution that circumvents this step and works for any
number of rounds. Our transformation from k-round IP to an IOP in two stages.
In the first stage, we transform the IP into one in which the verifier reads only
O(1) bits from each random message it sends. In the second stage, we transform
the IP into an IOP with O(1) per-round query complexity, simultaneously for
each prover message and each verifier message. We achieve this via a new notion
of PCPs that we call index-decodable PCPs, and we describe in Sect. 2.3. First,
we explain how to achieve the property that the verifier reads O(1) bits from
each of its random messages to the prover.

2.2 Local Access to Randomness

We transform a public-coin IP (PIP,VIP) into an IP (P′
IP,V

′
IP) whose verifier (i)

reads O(1) bits from each of its random messages to the prover, and (ii) has
logarithmic decision randomness (the randomness used by the verifier in the
post-interaction decision stage). For now, the verifier reads in full every message
received from the prover, and only later we discuss how to reduce the query
complexity to prover messages while preserving the query complexity to the
verifier random messages.

One-Round Public-Coin Proofs. In order to describe our ideas we begin with
the simple case of one-round public-coin interactive proofs. Recall from Sect. 2.1
that this case is solved in [33], but we nevertheless first describe our alternative
approach for this case and after that we will discuss the multiple-round case.

A Strawman Protocol. Recall that in a one-round public-coin IP the verifier
sends a uniformly random message, the prover replies with some answer, and
the verifier uses both of these messages to decide whether to accept. An idea
to allow the verifier to not read in full its own random message would be for
the prover to send the received random message back to the verifier, and the
verifier to use this latter and test consistency with its own randomness. Given
an instance x: V′

IP sends VIP’s random message ρ ∈ {0, 1}r; P′
IP replies with

ρ′ := ρ and the message a := PIP(x, ρ); and V′
IP checks that ρ and ρ′ agree on a

random location and that VIP(x, ρ′, a) = 1.
This new IP is complete, and its verifier queries its random message at one

location to conduct the consistency test. However, the protocol might not be
sound, as we explain. Suppose that x /∈ L. Let r be the length of ρ, let β be
the soundness error of the original IP, and let νr be the volume of the Hamming
sphere of radius r/3 in {0, 1}r. A choice of verifier message ρ is bad if there exists
a such that VIP(x, ρ, a) = 1. By the soundness guarantee of VIP, the fraction of
bad choices of random verifier messages is at most β. A choice of verifier message
ρ is ball-bad if there exist a bad ρ′ that is 1/3-close to ρ. By the union bound,
the fraction of ball-bad coins is at most γ = β · νr.

Let E be the event over the choice of ρ that the prover sends ρ′ that is 1/3-far
from ρ.

74 G. Arnon et al.

– Conditioned on E occurring, V′
IP rejects with probability at least 1/3 (when-

ever V′
IP chooses a location on which ρ and ρ′ disagree).

– Conditioned on E not occurring, P′
IP cannot send any ρ′ and a such that

VIP(x, ρ′, a) = 1 unless ρ is ball-bad, and so V′
IP rejects with probability at

least 1 − γ.

Therefore, for the new IP to be sound, we need γ = β · νr to be small. Notice
that νr = 2c·r (for some constant 0 < c < 1) depends on r but not on β. Thus we
need to achieve log 1/β > c · r. As in Drucker’s transformation, this can be done
using the randomness-efficient soundness amplification of [6], but we deliberately
take a different approach that will generalize for multiple rounds.

Shrinking γ Using Extractors. Let Ext be an extractor with output length r, seed
length O(log 1/β), and error β;7 such extractors are constructed in [42]. Suppose
that the prover and verifier have access to a sample z from a source D with high
min-entropy. Consider the following IP: V′

IP sends s; P′
IP replies with s′ := s and

a := PIP(x,Ext(z, s′)); V′
IP checks that s and s′ agree on a random location and

that VIP(x,Ext(z, s′), a) = 1.
At most a 2β-fraction of the seeds s are such that there exists a such that

VIP(x,Ext(z, s), a) = 1, because Ext is an extractor with error β and D is a
distribution with high min-entropy. By an identical argument to the one done
previously, either P′

IP sends s′ that is far from s and so V′
IP rejects with constant

probability, or V′
IP rejects with probability at least γ = 2β · νr′ where r′ = |s| =

O(log 1/β). Thus we have that γ = 2 ·β1−c, which is a constant fraction for small
enough values of β (which can be achieved with standard parallel repetition).

Generating a Source of High Min-Entropy. We describe how the prover and
verifier can agree on a sample from a high-entropy source by leveraging the
following observation: if z is a uniformly random string and z′ is an arbitrary
string that is close in Hamming distance to z, then z′ has high min-entropy.
Thus we can sample via similar ideas as above: V′

IP samples and sends z; P′
IP

replies with z′ := z; and V′
IP checks that z and z′ agree on a random location.

(So V′
IP reads one bit of its random message z.) If, with constant probability

over z, P′
IP sends z′ that is far from z, then V′

IP rejects with constant probability.
Otherwise, we show that z′ has high min-entropy because with high probability
it agrees with z on most of its locations.

Putting it All Together. Let (PIP,VIP) be a public-coin single-round IP with
soundness error β and randomness complexity r, and let Ext be an extractor
with output length r, seed length O(log 1/β), and error β. The new IP (P′

IP,V
′
IP)

is as follows.

– Sample high min-entropy source: V′
IP sends z and P′

IP replies with z′ := z.
– Sample extractor seed: V′

IP sends s and P′
IP replies with s′ := s.

7 A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if, for every random
variable X over {0, 1}n with min-entropy at least k, the statistical distance between
Ext(X, Ud) and Um is at most ε.

A PCP Theorem for Interactive Proofs and Applications 75

– Prover message: P′
IP sends a := PIP(x,Ext(z′, s′)).

– Verification: V′
IP checks that z and z′ agree on a random location, s and s′

agree on a random location, and VIP(x,Ext(z′, s′), a) = 1.

Extending to Multiple Rounds. In order to extend the previously described
protocol to multiple rounds, we leverage the notion of round-by-round soundness.
An IP for a language L has round-by-round soundness error βrbr if there exists a
“state” function such that: (i) for x /∈ L, the starting state is “doomed”; (ii) for
every doomed state and next message that a malicious prover might send, with
probability βrbr over the verifier’s next message, the protocol state will remain
doomed; (iii) if at the end of interaction the state is doomed then the verifier rejects.

In the analysis of the one-round case there was an event (called bad) over the
IP verifier’s random message ρ such that if this event does not occur then the
prover has no accepting strategy. This event can be replaced, in the round-by-
round case, by the event that, in a given round, the verifier chooses randomness
where the transcript remains doomed. This idea leads to a natural extension of
the one-round protocol described in Sect. 2.2 to the multi-round case, which is
our final protocol.

Let (PIP,VIP) be a public-coin k-round IP with round-by-round soundness
error βrbr and randomness complexity r, and Ext an extractor with output length
r, seed length O(log 1/βrbr), and error βrbr.

– For each round j ∈ [k] of the original IP:
1. Sample high min-entropy source: V′

IP sends zj and P′
IP replies with z′

j := zj .
2. Sample extractor seed: V′

IP sends sj and P′
IP replies with s′

j := sj .
3. Prover message: P′

IP sends aj := PIP(x, ρ1, . . . , ρj) where ρi := Ext(zi, si).
– V′

IP accepts if and only if the following tests pass:
1. Choose a random location and, for every j ∈ [k], test that zj and z′

j agree
on this location.

2. Choose a random location and, for every j ∈ [k], test that sj and s′
j agree

on this location.
3. For every j ∈ [k], compute ρj := Ext(z′

j , s
′
j). Check that VIP(x, ρ1,

a1, . . . , ρk, ak) = 1.

The soundness analysis of this protocol is similar to the one-round case.
Suppose that x /∈ L. Then the empty transcript is “doomed”. By an analysis
similar to the one-round case, except where we set “bad” verifier messages to be
ones where the transcript state switches from doomed to not doomed, if a round
begins with a doomed transcript then except with probability γ = 2 · β1−c

rbr (for
some constant c) the transcript in the next round is also doomed. Thus, by a
union bound, the probability that the transcript ends up doomed, and as a result
the verifier rejects, is at least 1 − 2 · k · β1−c

rbr . As shown in [23] round-by-round
soundness error can be reduced via parallel repetition, albeit at a lower rate
than regular soundness error. Thus, by doing enough parallel repetition before
applying our transformation, the round-by-round soundness error βrbr can be
reduced enough so that the verifier rejects with constant probability.

76 G. Arnon et al.

The above protocol has 2kIP rounds. The verifier reads 1 bit from each of
its random messages, and has O(log |x|) bits of decision randomness (to sample
random locations for testing consistency between each z′

j and zj and between
each s′

j and sj). To achieve kIP rounds, we first apply the round reduction of [5]
on the original IP to reduce to kIP/2 rounds, and then apply our transformation.

Why Randomness-Efficient Soundness Amplification is Insufficient.
We briefly sketch why applying randomness-efficient soundness amplification in
the style of [6] is insufficient in the multi-round case, even if we were to consider
round-by-round soundness. Recall that we wish for βrbr ·2Θ(r) to be small, where
βrbr is the round-by-round soundness of the protocol and r is the number of
random bits sent by the verifier in a single round. Bellare, Goldreich and Gold-
wasser [6] show that, starting with constant soundness and randomness r, one
can achieve soundness error 2−m using r′ = O(r + m) random bits; they do this
via m parallel repetitions where the randomness between repetitions is shared
in a clever way. Using parallel repetition, achieving round-by-round soundness
error 2−m requires m/k repetitions (see [23]). Thus, even if we were to show that
the transformation of [6] reduces round-by-round soundness error at the same
rate as standard parallel repetition (as it does for standard soundness), in order
to get round-by-round soundness error 2−m, we would need r′ = O(r + m · k)
bits of randomness. This would achieve βrbr · 2Θ(r′) = 2−m · 2Θ(r+mk), which, for
super-constant values of k, is greater than 1 regardless of r.

2.3 Index-Decodable PCPs

We introduce index-decodable PCPs, a notion of PCP that works on multi-
indexed relations. A multi-indexed relation R is a set of tuples (i[1], . . . , i[k],x,w)
where (i[1], . . . , i[k]) is the index vector, x the instance, and w the witness. As
seen in the following definition, an index-decodable PCP treats the index vector
(i[1], . . . , i[k]) and the instance x differently, which is why they are not “merged”
into an instance x′ = (i[1], . . . , i[k],x) (and why we do not consider standard
relations).

Definition 1. An index-decodable PCP for a multi-indexed relation R =
{ (i[1], . . . , i[k],x,w) } is a tuple of algorithms (IPCP,PPCP,VPCP, iDPCP,wDPCP),
where IPCP is the (honest) indexer, PPCP the (honest) prover, VPCP the verifier,
iDPCP the index decoder, and wDPCP the witness decoder. The system has (perfect
completeness and) decodability bound κPCP if the following conditions hold.

– Completeness. For every (i[1], . . . , i[k],x,w) ∈ R,

Pr
ρ

⎡
⎢⎢⎢⎣ Vπ1,...,πk,Π

PCP (x; ρ) = 1

π1 ← IPCP(i[1])
...

πk ← IPCP(i[k])
Π ← PPCP(i[1], . . . , i[k],x,w)

⎤
⎥⎥⎥⎦ = 1.

A PCP Theorem for Interactive Proofs and Applications 77

– Decodability. For every x, indexer proofs π̃1, . . . , π̃k, and malicious prover
proof Π̃, if

Pr
ρ

[
Vπ̃1,...,π̃k,Π̃

PCP (x; ρ) = 1
]

> κPCP(|x|)

then
(
iDPCP(π̃1), . . . , iDPCP(π̃k),x,wDPCP(Π̃)

) ∈ R.

The indexer IPCP separately encodes each index, independent of indices and
the instance, to obtain a corresponding indexer proof. The prover PPCP gets all
the data as input (index vector, instance, and witness) and outputs a prover
proof. The verifier VPCP gets the instance as input and has query access to k+ 1
oracles (k indexer proofs and 1 prover proof), and outputs a bit.

The decodability condition warrants some discussion. The usual soundness
condition of a PCP for a standard relation R has the following form: “if VΠ̃

PCP(x)
accepts with high-enough probability then there exists a witness w such that
(x,w) ∈ R”. For a multi-indexed relation it could be that for any given instance
x there exist indexes i[1], . . . , i[k] and a witness w such that (i[1], . . . , i[k],x,w) ∈
R. Since we do not trust the indexer’s outputs, a soundness condition is not
meaningful.

Instead, the decodability condition that we consider has the following form:
“if Vπ̃1,...,π̃k,Π̃

PCP (x) accepts with high-enough probability then (i[1], . . . , i[k],x,
w) ∈ R where i[1], . . . , i[k] and w are the decoded indices and witness respec-
tively found in π̃1, . . . , π̃k and Π̃”. It is crucial that the index decoder receives
as input the relevant indexer proof but not also the instance, or else the decod-
ability condition would be trivially satisfied (the index decoder could output the
relevant index of the lexicographically first index vector putting the instance in
the relation). This ensures that the proofs collectively convince the verifier not
only that there exists an index vector and witness that place the instance in the
relation, but that the prover encoded a witness that, along with index vector
obtainable from the index oracles via the index decoder, places the instance in
the relation.

We do not require the indexer or the decoders to be efficient. However, in some
applications, it is useful to have an efficient indexer and decoders, and indeed
we construct an index-decodable PCP with an efficient indexer and decoders.

Remark 1 (comparison with holography). We compare index-decodable PCPs
and holographic PCPs, which also work for indexed relations (see [24] and ref-
erences therein). In both cases, an indexer produces an encoding of the index
(independent of the instance). However, there are key differences between the
two: (i) in an index-decodable PCP the indexer works separately on each entry
of the index vector, while in a holographic PCP there is a single index; more-
over, (ii) in a holographic PCP the indexer is trusted in the sense that security is
required to hold only when the verifier has oracle access to the honest indexer’s
output, but in an index-decodable PCP, the indexer is not trusted in the sense
that the malicious prover can choose encodings for all of the indices. Both dif-
ferences are essential properties for our transformation of IPs into IOPs.

78 G. Arnon et al.

We construct a binary index-decodable PCPs with O(1) query complexity
per oracle.

Theorem 4. Any multi-indexed relation R = {(i[1], . . . , i[k],x,w)} to which
membership can be verified in nondeterministic time T has a non-adaptive index-
decodable PCP with the following parameters:

Index-Decodable PCP for (i[1], . . . , i[k],x,w) ∈ R

Indexer proof length (per proof) O(|i[i]|)
Prover proof length poly(T)

Alphabet size 2

Queries per oracle O(1)

Randomness O(log |x|)
Decodability bound O(1)

Indexer running time Õ(|i[i]|)
Prover running time poly(T)

Verifier running time poly(|x|, k, log T)

Index decoding running Õ(|i[i]|)
Witness decoding time poly(T)

Our construction achieves optimal parameters similar to the PCP theorem:
it has O(1) query complexity (per oracle) over a binary alphabet, and the ran-
domness complexity is logarithmic, independent of the number of indexes k.
Achieving small randomness complexity is challenging and useful. First, it facili-
tates proof composition (where a prover writes a proof for every possible random
string), which is common when constructing zero-knowledge PCPs (e.g., [44]).
Second, small randomness complexity is necessary for our hardness of approxi-
mation results (see Sect. 2.7).

A similar notion is (implicitly) considered in [1] but their construction does
not achieve the parameters we obtain in Theorem 4 (most crucially, they do not
achieve small randomness).

2.4 Local Access to Prover Messages

We show how to transform an IP into an IOP by eliminating the need of the
verifier to read more than a few bits of each prover message. This transforma-
tion preserves the number of bits read by the verifier to its own interaction
randomness. Thus, combining it with the transformation described in Sect. 2.2,
this completes the proof (overview) of Theorem 1.

We transform any public-coin IP into an IOP by using an index-decodable
PCP. In a public-coin k-round IP, the prover PIP and verifier VIP receive as input
an instance x and then, in each round i, the verifier VIP sends randomness ρi and
the prover replies with a message ai ← PIP(x, ρ1, . . . , ρi); after the interaction,

A PCP Theorem for Interactive Proofs and Applications 79

the verifier VIP runs an efficient probabilistic algorithm with decision randomness
ρdc on the transcript (x, ρ1, a1, . . . , ρk, ak) to decide whether to accept or reject.

The IP verifier VIP defines a multi-indexed relation R(VIP) consisting of tuples
(
i[1], . . . , i[k],x′,w

)
=

(
a1, . . . , ak, (x, ρ1, . . . , ρk, ρdc),⊥

)

such that the IP verifier VIP accepts the instance x, transcript (ρ1, a1, . . . , ρk, ak),
and decision randomness ρdc. (Here we do not rely on witnesses although the
definition of index-decodable PCPs supports this.)

From IP to IOP. Let (IPCP,PPCP,VPCP, iDPCP,wDPCP) be an index-decodable PCP
for the relation R(VIP). We construct the IOP as follows. The IOP prover and
IOP verifier receive an instance x. In round i ∈ [k], the IOP verifier sends
randomness ρi (just like the IP verifier VIP) and the (honest) IOP prover
sends the indexer proof πi := IPCP(ai) where ai ← PIP(x, ρ1, . . . , ρi). In a final
additional message (which can be sent at the same time as the last indexer
proof πk), the IOP prover sends Π := {Πρdc

}ρdc
where, for every possible

choice of decision randomness ρdc, Πρdc
is an index-decodable PCP prover proof

to the fact that
(
a1, . . . , ak, (x, ρ1, . . . , ρk, ρdc),⊥

) ∈ R(VIP). After the inter-
action, the IOP verifier samples IP decision randomness ρdc and checks that

V
π̃1,...,π̃k,Π̃ρdc
PCP

(
x, ρ1, . . . , ρk, ρdc

)
= 1.

Proof Sketch. Completeness follows straightforwardly from the construction. We
now sketch a proof of soundness. Letting L be the language decided by (PIP,VIP),
fix an instance x /∈ L and a malicious IOP prover P̃IOP. Given interaction random-
ness ρ1, . . . , ρk, consider the messages π̃1, . . . , π̃k output by P̃IOP in the relevant
rounds (π̃i depends on ρ1, . . . , ρi) and the message Π̃ = {Π̃ρdc

}ρdc
output by P̃IOP

in the last round (this message depends on ρ1, . . . , ρk). We consider two comple-
mentary options of events over the IOP verifier’s randomness (ρ1, . . . , ρk, ρdc).

1. With high probability the proofs π̃1, . . . , π̃k and Π̃ρdc
generated while inter-

acting with P̃IOP using randomness ρ1, . . . , ρk and ρdc are such that
(
iDPCP(π̃1), . . . , iDPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥

)
/∈ R(VIP).

If this is true, then, by the decodability property of the index-decodable
PCP, the IOP verifier must reject with high probability over the choice of
randomness for VPCP.

2. With high probability the proofs π̃1, . . . , π̃k and Π̃ρdc
generated while inter-

acting with P̃IOP using randomness ρ1, . . . , ρk and ρdc are such that
(
iDPCP(π̃1), . . . , iDPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥

)
∈ R(VIP).

We prove that this case cannot occur by showing that it contradicts the
soundness of the original IP. Suppose towards contradiction that the above is
true. We use P̃IOP and the index decoder of the index-decodable PCP, iDPCP,
to construct a malicious IP prover for the original IP as follows.

80 G. Arnon et al.

In round i, the transcript (ρ1, a1, . . . , ρi−1, ai−1) has already been set during
previous interaction. The IP verifier sends randomness ρi. The IP prover sends
ai := iDPCP(π̃i) to the IP verifier, where π̃i := P̃IOP(ρ1, . . . , ρi). Recall that(
DPCP(π̃1), . . . ,DPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥

) ∈ R(VIP) if and only if the IP
verifier accepts given instance x, randomness (ρ1, . . . , ρk, ρdc), and prover mes-
sages DPCP(π̃1), . . . ,DPCP(π̃k), which is precisely what the IP prover supplies
it with. Since the event that

(
DPCP(π̃1), . . . ,DPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥

) ∈
R(VIP) happens with high probability, this implies that with high probability
the IP verifier will accept, contradicting soundness of the original IP. Here we
crucially used the fact that the decoder DPCP does not depend on the instance
of the index-decodable PCP (which consists of x and all of the IP verifier’s
randomness ρ1, . . . , ρk, ρdc) or on the other indexer messages.

The resulting IOP has k rounds, exactly as in the original IP. The IOP verifier
uses as much randomness as the original IP verifier with the addition of the
randomness used by the index-decodable PCP. The query complexity is that
of the underlying verifier of the index-decodable PCP. The proof length and
alphabet are the same as those of the index-decodable PCP.

Preserving Local Access to Randomness. The transformation described above
can be modified to preserve the query complexity of the verifier to its own
interaction randomness if the verifier is non-adaptive with respect to its queries
to its random messages (i.e., the choice of bits that it reads depends only on x
and ρdc). We can redefine the multi-indexed relation R(VIP) to have as explicit
inputs the instance x, decision randomness ρdc, and the bits of ρ1, . . . , ρk that
the verifier needs to read to decide whether to accept or reject (rather than the
entire interaction randomness strings). In more detail, suppose that the verifier
reads q bits from its own interaction randomness. Then the new multi-indexed
relation consists of tuples:(

i[1], . . . , i[k],x′,w
)

=
(
a1, . . . , ak, (x, b1, . . . , bq, ρdc),⊥

)

such that given decision randomness ρdc the IP verifier VIP accepts given instance
x, decision randomness ρdc, prover messages (a1, . . . , ak), and (b1, . . . , bq) as
answers to its q queries to ρ1, . . . , ρk.

Given a multi-indexed PCP for this relation, the IP to IOP transformation is
identical to the one described above, except that after the interaction, the IOP
verifier samples IP decision randomness, queries its own interaction randomness
to get answers b1, . . . , bq, and these replace ρ1, . . . , ρk as explicit inputs to the
index-decodable PCP verifier VPCP.

2.5 Constructing Index-Decodable PCPs

We describe how to construct index-decodable PCPs: in Sect. 2.5 we outline a
randomness-efficient index-decodable PCP that makes O(1) queries to each of
its oracles, where the indexer proofs are over the binary alphabet and the prover
proof is over a large alphabet; then in Sect. 2.5 we use proof composition to
reduce the alphabet size of the latter.

A PCP Theorem for Interactive Proofs and Applications 81

Basic Construction from PCPPs. We outline a construction of an index-
decodable PCP with O(1) query complexity to each indexer proof and to the
prover proof, and where the prover proof is over a large alphabet (of size 2k).
For a later proof composition while preserving polynomial proof length, here we
additionally require that the verifier has logarithmic randomness complexity.

Building Blocks. In our construction we rely on variants of PCPPs. Recall that
a PCPP is a PCP system where the verifier has oracle access to its input in
addition to the prover’s proof; the soundness guarantee is that if the input is far
(in Hamming distance) from any input in the language, then the verifier accepts
with small probability.

We use PCPPs that are multi-input and oblivious. We explain each of these
properties.

– A PCPP is multi-input if the verifier has oracle access to multiple (oracle)
inputs. The soundness guarantee is that, for every vector of inputs that satisfy
the machine in question, if at least one input oracle is far from the respective
satisfying input, then the verifier accepts with small probability.

– A (non-adaptive) PCPP is oblivious for a family of nondeterministic machines
M = {Mi}i∈[k] if the queries made by the verifier to its oracles depend only on
M and its randomness. In particular they do not depend on i. This property
will be used later to facilitate bundling queries. We will have k PCPs, each
with a different Mi, but the verifier will use the same randomness in each
test. Since the PCPPs are oblivious, this means that the verifier makes the
same queries for every test. Thus we can group together the k proofs into a
single proof with larger alphabet and maintain good query complexity on this
proof. This property is important in order to achieve our final parameters.

See the full version of this paper for formal definitions for the above notions, and
how to obtain them from standard PCPPs. Henceforth, all PCPPs that we use
will be over the binary alphabet and have constant proximity, constant soundness
error, constant query complexity, and logarithmic randomness complexity.

The Construction. We construct an index-decodable PCP for a multi-indexed
relation R = {(i[1], . . . , i[k],x,w)} whose membership can be verified efficiently.

The indexer encodes each index via an error-correcting code with (constant)
relative distance greater than the (constant) proximity parameter of the PCPP
used later. The prover uses PCPPs to prove that there exist indexes and a witness
that put the given instance in the relation and adds consistency checks to prove
that the indices are consistent with those encoded by the indexer. The verifier
checks each of these claims. The index decoder decodes the indexer proofs using
the same code.

In slightly more detail, the index-decodable PCP is as follows.

– IPCP(i[i]): Encode the index i[i] as πi using an error-correcting code.
– PPCP(i[1], . . . , i[k],x,w):

82 G. Arnon et al.

1. Encoding the indexes. Compute Π∗, an encoding of the string
(i[1], . . . , i[k],w).

2. Membership of encoding. Compute a PCPP string Πmem for the claim that
M∗(x,Π∗) = 1 where M∗ checks that Π∗ is a valid encoding of indexes
and a witness that put x in R.

3. Consistency of encoding. For every j ∈ [k], compute a PCPP string Πj

for the claim that Mj(πj ,Π∗) = 1 where Mj checks that πj and Π∗ are
valid encodings and that the string i[j] encoded within πj is equal to the
matching string encoded within Π∗.

4. Output (Π∗,Πmem,Πi) where Πi are the proofs Π1, . . . , Πk “bundled”
together into symbols of k bits such that Πi[q] = (Π1[q], . . . , Πk[q]).

– Vπ̃1,...,π̃k,(Π̃∗,Π̃mem,Π̃i)
PCP (x): Check that all the tests below pass.

1. Membership. Run the PCPP verifier on the claim that M∗(x, Π̃∗) = 1
using proof oracle Π̃mem.

2. Consistency. For every j ∈ [k], run the PCPP verifier on the claim that
Mj(π̃j , Π̃∗) = 1 using proof oracle Π̃j . These k tests are run with the same
randomness. Since the PCPP is oblivious and randomness is shared, the
queries made by the PCPP verifier in each test are identical, and so each
query can be made by reading the appropriate k-bit symbols from Π̃i.

– iDPCP(π̃j): output the codeword closest to π̃j in the error-correcting code.
– wDPCP(Π̃∗, Π̃mem, Π̃i): Let (̃i[1], . . . , ĩ[k], w̃) be the codeword closest to Π̃∗ in

the error-correcting code and output w̃.

Completeness follows straightforwardly from the construction. We now sketch
decodability.

Decodability. Fix an instance x, indexer proofs π̃1, . . . , π̃k, and prover proof
(Π̃∗, Π̃mem, Π̃i). Suppose that the verifier accepts with high-enough probabil-
ity. We argue that this implies that there exists w such that

(
iDPCP(π̃1), . . . ,

iDPCP(π̃k),x,wDPCP(Π̃)
) ∈ R. Specifically, we argue that Π̃∗ encodes indices

ĩ[1], . . . , ĩ[k] and witness w̃ that place x in R and, additionally, each π̃j is an
encoding of ĩ[j]. This completes the proof of decodability because iDPCP decodes
each π̃j to ĩ[j], and these strings together with w̃ put x in the multi-indexed
relation R.

Let δPCPP be the PCPP’s proximity and δECC the code’s (relative) distance;
recall that δPCPP ≤ δECC.

– Membership: We claim that there exist strings ĩ[1], . . . , ĩ[k] and w̃ that place
x in R and whose encoding has Hamming distance at most δPCPP from Π̃∗;
since δPCPP ≤ δECC, this implies that Π̃∗ decodes to (̃i[1], . . . , ĩ[k], w̃). Sup-
pose towards contradiction that there are no such strings. In other words, for
every codeword Π̂∗ that is close in Hamming distance to Π̃∗ we have that
M∗,x(x, Π̂∗) = 0. As a result the PCPP verifier must reject with high prob-
ability, which contradicts our assumption that VPCP (which runs the PCPP
verifier) accepts with high probability.

A PCP Theorem for Interactive Proofs and Applications 83

– Consistency : We claim that there exist strings ĩ[1], . . . , ĩ[k] and w̃ such that
their collective encoding is close to Π̃∗ and that, for every j ∈ [k], π̃j is close to
the encoding of ĩ[j]. As before, since the proximity parameter of the PCPP
is smaller than the distance of the code, this implies that Π̃∗ decodes to
(̃i[1], . . . , ĩ[k], w̃) and that π̃j decodes to ĩ[j]. Suppose towards contradiction
that for some j ∈ [k] the above condition does not hold: for every π̂j and Π̂

such that π̂j is close to π̃j and Π̂∗ is close to Π̃∗ it holds that Mj(π̂j , Π̂∗) = 0.
By the soundness of the (multi-input) PCPP, the PCPP verifier must reject
with high probability, which contradicts our assumption that VPCP (which
runs the PCPP verifier) accepts with high probability.

Complexity Measures. The above construction is an index-decodable PCP with
polynomial-length proofs andwhere the verifiermakesO(1) queries to each indexer
proof and makes O(1) queries to the prover proof. Moreover, the prover proof has
alphabet size 2k since the prover bundles the PCPP consistency test proofs into
k-bit symbols; this bundling is possible because the verifier shares randomness
between all of the (oblivious) PCPPs in the consistency test. Since the PCPPs are
oblivious to the index i, and they share randomness, they all must make the same
queries to their oracles. The verifier uses O(log |x|) bits of randomness: O(log |x|)
for the membership test, and O(log |x|) for all k consistency tests combined.

Achieving Constant Query Complexity over a Binary Alphabet. We
describe how to achieve an index-decodable PCP with constant query complexity
per proof over the binary alphabet. The main tool is proof composition. In order
to apply proof composition, we define and construct a robust variant of index-
decodable PCPs.

Proof Composition. Proof composition is a technique to lower the query com-
plexity of PCPs [2] and IOPs [9]. In proof composition, an “inner” PCP is used
to prove that a random execution of the “outer” PCP would have accepted. The
inner PCP needs to be a PCPP, which is a PCP system where the verifier has
oracle access to its input in addition to the prover’s proof, and the soundness
guarantee is that if the input is far from any input in the language, then the veri-
fier accepts with small probability. To match this, the outer PCP must be robust,
which means that the soundness guarantee ensures that when the instance is not
in the language then not only is a random local view of the verifier rejecting but
it is also far (in Hamming distance) from any accepting local view.

Typically the robust outer PCP has small proof length but large query com-
plexity, while the inner PCPP has small query complexity but possibly a large
proof length. Composition yields a PCP with small query complexity and small
proof length.

We observe that proof composition preserves decodability : if the outer PCP in
the composition is index-decodable, then the composed PCP is index-decodable.
This is because the composition operation does not change the outer PCP proof
and only adds a verification layer to show that the outer verifier accepts.

84 G. Arnon et al.

We thus apply proof composition as follows: the outer PCP is a robust variant
of the index-decodable PCP from Sect. 2.5; and the inner PCP is a standard
PCPP with polynomial proof length. This will complete the proof sketch of
Theorem 4.

Defining Robust Index-Decodable PCPs. Our goal is to perform proof com-
position where the outer PCP is index-decodable. As mentioned above, this
requires the PCP to be robust. Our starting point is the index-decodable PCP
from Sect. 2.5. This PCP does have large query complexity over the binary alpha-
bet (O(k) queries to the prover proof). However, the fact that its queries to the
prover proof are already bundled into a constant number of locations over an
alphabet of size 2k implies that we do not have to worry about a “generic” query
bundling step and instead only have to perform a (tailored) robustification step
prior to composition. Accordingly, the robustness definition below focuses on the
prover proof, and so is the corresponding construction described after.

Definition 2. A non-adaptive8 index-decodable PCP (IPCP,PPCP, (Vqry
PCP,V

dc
PCP),

iDPCP,wDPCP) for a multi-indexed relation R is prover-robustly index-
decodable with decodability bound κPCP and robustness σPCP if for every x and
proofs Π̃i = (π̃1, . . . , π̃k) and Π̃ if

Pr
ρ

[
∃ A

′
s.t. V

dc
PCP(x , ρ, Π̃i[Qi], A

′
) = 1 ∧ Δ(A

′
, A) ≤ σPCP(|x |) (Qi, Q∗) ← V

qry
PCP

(x , ρ)

A := { Π̃[q] | q ∈ Q∗ }

]
> κPCP(|x |)

then
(
iDPCP(π̃1), . . . , iDPCP(π̃k),x,wDPCP(Π̃)

) ∈ R. Above Qi and Q∗ are the
queries made to the indexer proofs the prover proof respectively and Δ(A′, A)
is the relative distance between A′ and A.

In other words, if
(
iDPCP(π̃1), . . . , iDPCP(π̃k),x,wDPCP(Π̃)

)
/∈ R then with high

probability not only will the verifier reject but also any set of answers from the
prover proof that are close in Hamming distance to the real set of answers will
also be rejecting.

Robustification. We outline how we transform the index-decodable PCP con-
structed in Sect. 2.5 into a robust index-decodable PCP. The techniques follow
the robustification step in [15]. The transformation preserves the verifier’s ran-
domness complexity O(log |x|), which facilitates using this modified PCP as the
outer PCP in proof composition.

We apply an error-correcting code separately to each symbol of the prover
proof. When the verifier wants to read a symbol from this proof, it reads the
codeword encoding the symbol, decodes it, and then continues. It reads the
indexer proofs as in the original PCP. This makes the PCP robust because if
a few bits of the codeword representing a symbol are corrupted, then it will
still be decoded to the same value. The robustness, however, degrades with the

8 A PCP verifier is non-adaptive if it can be split into two algorithms: Vqry
PCP chooses

which locations to query without accessing its oracles; and Vdc
PCP receives the results

of the queries and decides whether to accept or reject.

A PCP Theorem for Interactive Proofs and Applications 85

number of queries. If the relative distance of the error-correcting code is δ and
the original verifier reads q symbols from the prover proof, then the resulting
PCP will have robustness O(δ/q).

Indeed, let c1, . . . , cq be the codewords read by the new PCP verifier from the
prover proof, and let a1, . . . , aq be such that ai is the decoding of ci. In order to
change the decoding into some other set of strings a′

1, . . . , a
′
q that, when received

by the verifier, may induce a different decision than a1, . . . , aq, it suffices (in the
worst case) to change a single codeword to decode to a different value. Since
the relative distance of the code is δ, to do this, one must change at least a
δ-fraction of the bits of a single codeword, ci. A δ-fraction of a single codeword
is a δ/q-fraction of the whole string of q codewords, c1, . . . , cq.

In sum, to achieve constant robustness, we need to begin with an index-
decodable PCP with a small number of queries to the prover proof, but possi-
bly with a large alphabet. It is for this reason that we required this property
in Sect. 2.5.

2.6 Commit-and Prove SNARKs from Index-Decodable PCPs

We outline the proof of Theorem 3 by showing how to generically transform an
index-decodable PCP into a commit-and-prove SNARK. First, we review the
Micali transformation from PCPs to SNARGs. Then, we define commit-and-
prove SNARKs and explain the challenges in constructing them. Finally, we
outline how we overcome these challenges in our construction.

Review: The Micali Construction. The SNARG prover uses the random oracle
to Merkle hash the (long) PCP string into a (short) Merkle root that acts as
a commitment; then, the SNARG prover uses the random oracle to derive ran-
domness for the PCP verifier’s queries; finally, the SNARG prover outputs an
argument string that includes the Merkle root, answers to the PCP verifier’s
queries, and Merkle authentication paths for each of those answers (acting as
local openings to the commitment). The SNARG verifier re-derives the PCP ver-
ifier’s queries from the Merkle root and runs the PCP verifier with the provided
answers, ensuring that each answer is authenticated.

The security analysis roughly works as follows. Fix a malicious prover that
makes at most t queries to the random oracle and convinces the SNARG verifier
to accept with probability δ. First, one argues that the malicious prover does not
find any collisions or inversions for the random oracle except with probability
μ := O(t2

2λ). Next, one argues that there is an algorithm that, given the malicious
prover, finds a PCP string that makes the PCP verifier accept with probability
at least 1

t ·(δ−μ). This enables to establish soundness of the SNARG (if the PCP
has soundness error βPCP then for instances not in the language it must be that
1
t · (δ −μ) ≤ βPCP and thus that the SNARG has soundness error t ·βPCP +μ) and
also to establish knowledge soundness of the SNARG (if the PCP has knowledge
error κPCP then the PCP extractor works provided that 1

t · (δ − μ) ≥ κPCP and
thus the SNARG is a SNARK with knowledge error t · κPCP + μ).

86 G. Arnon et al.

The aforementioned algorithm that finds the PCP string is known as Valiant’s
extractor (it was used implicitly in [55] and formally defined and analyzed
in [12]). Given the query/answer transcript of the malicious prover to the ran-
dom oracle, Valiant’s extractor finds the partial PCP string that the malicious
prover “had in mind” when producing the SNARG: any location that the mali-
cious prover could open is part of the partial PCP string (and has a unique value
as we conditioned on the prover finding no collisions); conversely, any location
that is not part of the partial PCP string is one for which the malicious prover
could not generate a valid local opening. Crucially, the malicious prover, in order
to cause the SNARG verifier to accept, must generate randomness by applying
the random oracle to the Merkle root, and answering the corresponding PCP
queries with authenticated answers. Hence the partial PCP string output by
Valiant’s extractor causes the PCP verifier to accept with the same probability
as the malicious prover, up to (i) the additive loss μ due to conditioning on no
inversions and collisions, and (ii) the multiplicative loss of t due to the fact that
the malicious prover can generate up to t different options of randomness for the
PCP verifier and then choose among them which to use for the output SNARG.
Overall, while Valiant’s extractor cannot generate an entire PCP string, it finds
“enough” of a PCP string to mimic the malicious prover, and so the PCP string’s
undefined locations can be set arbitrarily.

Commit-and-Prove SNARK. A CaP-SNARK (in the ROM) for an indexed rela-
tion R = {(i,x,w)} is a tuple ARG = (C,P,V) of deterministic polynomial-time
oracle machines, where C = (Com,Check) is a succinct commitment scheme,9

that works as follows. The committer sends a short commitment cm := C.Com(i)
to the verifier. Subsequently, the prover sends a short proof pf := P(i,x,w)
attesting that it knows a witness w such that (i,x,w) ∈ R and i is the index
committed in cm. The verifier V receives (cm,x, pf) and decides whether to
accept the prover’s claim. Completeness states that, if all parties act honestly,
the verifier always accepts.

The security requirement of a CaP-SNARK is (straight-line) knowledge
soundness. Informally, knowledge soundness says that if a query-bounded mali-
cious prover convinces the verifier to accept the tuple (cm,x, pf) with large
enough probability, then the prover “knows” an index i opening cm and a wit-
ness w such that (i,x,w) ∈ R. In more detail, we say that ARG = (C,P,V)
has knowledge error ε if there exists a deterministic polynomial-time machine
E (the extractor) such that for every λ ∈ N, n ∈ N, and deterministic t-query
(malicious) prover P̃,

Pr

⎡
⎣ Vζ(cm,x, pf) = 1 ∧ |x| = n ∧(

(i,x,w) /∈ R ∨ C.Checkζ(cm, i, op) = 0
) ζ ← U(λ)

(cm,x, pf; tr) := P̃ζ

(i, op,w) := E(cm,x, pf, tr)

⎤
⎦ ≤ ε(λ, n, t),

9 A pair of algorithms C = (Com,Check) is a succinct commitment scheme if: (1) it
is hard for every query-bounded adversary to find two different messages that pass
verification for the same commitment string; and (2) the commitment of a message
of length n with security parameter λ has length poly(λ, log n).

A PCP Theorem for Interactive Proofs and Applications 87

where U(λ) is the uniform distribution over functions ζ : {0, 1}∗ → {0, 1}λ and
tr := (j1, a1, . . . , jt, at) are the query/answer pairs made by P̃ to its oracle.

First Construction Attempt. At first glance, constructing CaP-SNARKs using
index-decodable PCPs seems like a straightforward variation of Micali’s con-
struction of SNARGs from PCPs.

– C.Com: Apply the ID-PCP indexer IPCP to the index i and output the Merkle
root rti of its output.

– C.Check: Given a Merkle root rti and index i, check that C.Com(i) = rti.
– P: Compute the ID-PCP prover proof and a corresponding Merkle root; then

use the random oracle to derive randomness for the ID-PCP verifier’s queries;
finally, output an argument string pf that includes the Merkle root, answers
to the verifier’s queries, and authentication paths for each answer relative to
the appropriate Merkle root (for the indexer proof or for the prover proof).

– V: Re-derive the ID-PCP verifier’s queries from the Merkle root and run
the ID-PCP verifier with the provided answers, ensuring that each answer is
authenticated.

The main issue with this strawman construction is that we need to handle mali-
cious provers that have a partial tree in their query trace. Consider a malicious
prover that, for some (i,x,w) ∈ R, computes honestly the indexer proof for i
as π := IPCP(i) and then generates as its “commitment” a Merkle tree root rti
obtained by computing a partial Merkle tree that ignores a small number of
locations of π (i.e., for a small number of locations it begins deriving the tree
from a level other than the leaves). While this malicious prover cannot open this
small number of locations of π, it can still open all other locations of π. Next, the
malicious prover generates honestly an argument string pf, opening the required
locations of π from rti. This malicious prover makes the argument verifier accept
(w.h.p.) since the ID-PCP verifier queries the small subset of locations that the
prover cannot open with small probability.

However, the only way to find a string π′ that (honestly) hashes to rt is to find
inversions in the random oracle, which is infeasible. Thus, there is no efficient
extractor that, given rt and all of the queries that the prover made, outputs i′

whose indexer proof hashes to rt.

Solving the Problem via Proximity. We solve the above difficulty by modifying
the commitment scheme C = (Com,Check) and requiring more properties from
the underlying index-decodable PCP.

– C.Com: Compute π := IPCP(i) (apply the ID-PCP indexer to the index i)
and output the commitment cm := rti that equals the Merkle hash of π and
output the opening information op that consists of the list of authentication
paths for each entry in π.

– C.Check: Given a commitment cm = rti, index i, and opening information
op, check that op is a list of valid authentication paths for a number of entries
that is above a certain threshold, and that the partial string specified by them
decodes into i (when setting the unspecified values arbitrarily).

88 G. Arnon et al.

Now C.Check allows partial specification of the string under the Merkle root,
so to preserve the binding property of the commitment scheme we require that
(IPCP, iDPCP) is an error correcting code. The threshold of the number of authen-
tication paths required is related to the distance of this code.

In the security analysis, Valiant’s extractor finds a partial PCP string that
makes the ID-PCP verifier accept with probability related to the SNARG
prover’s convincing probability, as well as authentication paths for each entry
of that partial PCP string. To ensure that the number of authenticated entries
is large enough to pass the threshold in C.Check, we add another requirement:
if π̃ and Π̃ make the ID-PCP verifier accept an instance x with probability
larger than the decodability bound then π̃ is close to a codeword of the code
(IPCP, iDPCP) (in addition to the fact that the decodings of π̃ and Π̃ put x in the
relation as is the case in the definition considered so far).

Our construction of index-decodable PCP supports these new requirements.

From an Index-Decodable PCP to a CaP-SNARK. Let (IPCP,PPCP,VPCP, iDPCP,
wDPCP) be an index-decodable PCP system where (IPCP, iDPCP) is an error cor-
recting code with relative distance δ and where indexer proofs are guaranteed
to be δ/8-close to valid codewords (when VPCP accepts above the decodability
bound). We construct a CaP-SNARK ARG = (C,P,V) as follows.

– C.Com: Given as input an index i, compute the indexer proof π := IPCP(i),
compute the Merkle root rti of a Merkle tree on π (using the random oracle
as the hash function), and output the commitment cm := rti and the opening
op containing all authentication paths.

– C.Check: Given as input a commitment cm := rti, an index i, and an opening
op containing authentication paths, do the following:

• check that op contains a list of authenticated entries relative to the Merkle
root rti;

• check that op represents at least a (1 − δ
8)-fraction of all possible entries

for a string under rti;
• let π be the string induced by the authenticated entries in op, setting

arbitrarily other entries;
• check that IPCP(i) is δ/4-close to π.

– P: Given as input (i,x,w), do the following:
• compute the commitment rti to the index i as the committer does;
• compute the PCP string Π := PPCP(i,x,w);
• compute the Merkle root rtw of a Merkle tree on Π;
• apply the random oracle to the string (rti||x||rtw) to derive randomness

for the index-decodable PCP verifier VPCP, and compute the answers to
the verifier’s queries to both π and Π;

• collect authentication paths from the Merkle trees for each answer; and
• output a proof pf containing rtw, query answers for π and Π and their

authentication paths.
– V: Check the authentication paths, re-derive randomness, and run the index-

decodable PCP verifier with this randomness and given these answers.

A PCP Theorem for Interactive Proofs and Applications 89

The tuple C = (Com,Check) is a binding commitment scheme, as we now
explain. Consider an attacker that outputs cm := rt, two distinct messages m,m′,
and two openings op := S and op′ := S′ such that C.Checkζ(c̃m,m, op) = 1 and
C.Checkζ(c̃m,m′, op′) = 1. Condition on the attacker not finding collisions or
inversions of the random oracle ζ (as this is true with high probability). Since
S and S′ each pass the checks in C.Check, each set covers at least (1 − δ/8) of
the possible openings for a string. Therefore, their intersection covers at least
(1 − δ/4) of the possible openings. Since there are no collisions or inversions, S
and S′ agree on all of these locations. Thus, letting π and π′ be the strings defined
using S and S′ respectively (as computed by C.Check), we have that Δ(π, π′) ≤
δ/4. Additionally, we have that that Δ(IPCP(m), π) ≤ δ/4 and Δ(IPCP(m′), π′) ≤
δ/4 since C.Check accepts the commitments to m and m′, and this is one of the
checks it does. Putting all of this together, we have that Δ(IPCP(m), IPCP(m′)) ≤
δ/2 which implies that m = m′ since δ/2 is the unique decoding distance.

Completeness of the CaP-SNARK is straightforward. Below we outline the
extractor E, which receives as input a commitment cm := rti, an argument
string pf (containing the commitment rtw, query answers for π and Π, and
corresponding authentication paths with respect to rti and rtw), and the list tr
of query/answer pairs made by the malicious prover P̃ to the random oracle.

Use Valiant’s extractor to compute the set Si of all valid local openings of
rti that the prover could generate and similarly extract Sw from rtw. Let π̃
be the string whose entries are defined by the local openings generated of
rti (and whose undefined entries are set arbitrarily to 0). Let Π̃ be defined
similarly from the openings of rtw. Compute the index i := iDPCP(π̃) and
the witness w := wDPCP(Π̃), and set op := Si. Output (i, op,w).

We show the following lemma. See the full version of this paper for a proof.

Lemma 1. Let κPCP be the decodability bound of the index-decodable PCP, t ∈ N

be a bound on the number of queries made by a malicious prover P̃, and λ ∈ N

be a security parameter. Then the knowledge extractor E above has knowledge
error t · κPCP + O(t2

2λ).

2.7 Hardness of Approximation

We outline our proof of Theorem 2 (it is AM[k]-complete to decide if an instance
of k-SSAT has value 1 or at most 1 − 1

O(k)). See Sect. 1.1 for definitions.
First we explain how an AM[k] protocol can distinguish whether a k-SSAT

instance has value 1 or value 1− 1
O(k) . On input a k-SSAT instance φ, the prover

and verifier take turns giving values to the variables: the verifier sends ran-
dom bits ρ1,1, . . . , ρ1,	, the prover answers with a1,1, . . . , a1,	, the verifier sends
ρ2,1, . . . , ρ2,	, and so on until all of the variables of φ are given values. The verifier
then accepts if and only if all of the clauses of φ are satisfied. For completeness, if
φ has value 1, then for any choice of verifier messages there exists some strategy
for the prover that will make the verifier accept. For soundness, when the value

90 G. Arnon et al.

of φ is at most 1− 1
O(k) , no matter what strategy the prover uses, the probability

that the verifier accepts is at most 1 − 1
O(k) (which can be made constant using

parallel repetition).
Next we show that, for every language L ∈ AM[k], a given instance x can be

reduced in deterministic polynomial time to a k-SSAT formula φ such that:

– if x ∈ L then the value of φ is 1;
– if x /∈ L then the value of φ is at most 1 − 1

O(k) .

By Theorem 1, L has a k-round public-coin IOP with a non-adaptive verifier,
polynomial proof length, and logarithmic decision randomness where the IOP
verifier reads q = O(k) bits of its interaction with the IOP prover. We stress
that in the following proof it is crucial that Theorem 1 achieves an IOP with
both logarithmic decision randomness complexity and small query complexity
to both the prover and verifier messages.

Let Vρdc
be the circuit that computes the decision bit of the verifier given as

input the q answers to the q queries made by the IOP verifier, for the instance x
and decision randomness ρdc. By carefully following the proof of Theorem 1, we
know that the IOP verifier’s decision is the conjunction of O(k) computations,
each of which takes O(1) bits as input. Therefore d := |Vρdc

| = O(k).
Via the Cook–Levin theorem we efficiently transform Vρdc

into a 3CNF for-
mula φρdc

: {0, 1}q+O(d) → {0, 1} of size O(d) the satisfies the following for every
b1, . . . , bq ∈ {0, 1}:

– if Vρdc
(b1, . . . , bq) = 1 then ∃ z1, . . . , zO(d) ∈ {0, 1} φρdc

(b1, . . . , bq, z1, . . . ,
zO(d)) = 1;

– if Vρdc
(b1, . . . , bq) = 0 then ∀ z1, . . . , zO(d) ∈ {0, 1} φρdc

(b1, . . . , bq, z1, . . . ,
zO(d)) = 0.

Next we describe the k-SSAT instance φ. The variables of φ correspond
to messages in the IOP as follows. For each i ∈ [k], the random variables
ρi,1, . . . , ρi,r represent the verifier’s message in round i and the existential vari-
ables ai,1, . . . , ai,l represent the prover’s message in round i. To the final set
of existential variables we add additional variables zρdc,1 . . . , zρdc,O(d) for every
ρdc ∈ {0, 1}O(log |x|), matching the additional variables added when reducing the
boolean circuit Vρdc

to the boolean formula φρdc
. The k-SSAT instance φ is the

conjunction of the formulas φρdc
for every ρdc ∈ {0, 1}O(log |x|) where each φρdc

has
as its variables the variables matching the locations in the IOP transcript that
the IOP verifier queries given x and ρdc, and additionally the variables added by
converting Vρdc

into a formula, zρdc,1 . . . , zρdc,O(d).
By perfect completeness of the IOP, if x ∈ L then there is a prover strategy

such that, no matter what randomness is chosen by the verifier, every Vρdc
is

simultaneously satisfied, and hence so are the formulas φρdc
, implying that the

value of φ is 1.
By soundness of the IOP, if x /∈ L then (in expectation) at most a constant

fraction of the circuits {Vρdc
}ρdc∈{0,1}O(log |x|) are simultaneously satisfiable, and

thus this is also true for the formulas {φρdc
}ρdc∈{0,1}O(log |x|) . Every formula φρdc

A PCP Theorem for Interactive Proofs and Applications 91

that is not satisfied has at least one of its O(d) clauses not satisfied. Thus, the
value of φ is at most 1 − 1

O(d) = 1 − 1
O(k) .

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

2. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998). Preliminary version in FOCS 1992

3. Babai, L.: Trading group theory for randomness. In: Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 421–429
(1985)

4. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, STOC 1991, pp. 21–32 (1991)

5. Babai, L., Moran, S.: Arthur-merlin games: a randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

6. Bellare, M., Goldreich, O., Goldwasser, S.: Randomness in interactive proofs. In:
Proceedings of the 31st Annual Symposium on Foundations of Computer Science,
FOCS 1990, pp. 563–572 (1990)

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon interactive
oracle proofs of proximity. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming, ICALP 2018, pp. 14:1–14:17 (2018)

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 23

9. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive
oracle proofs with constant rate and query complexity. In: Proceedings of the 44th
International Colloquium on Automata, Languages and Programming, ICALP
2017, pp. 40:1–40:15 (2017)

10. Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.:
Linear-size constant-query IOPs for delegating computation. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 494–521. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36033-7 19

11. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

12. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

13. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside
the box improves soundness. In: Proceedings of the 11th Innovations in Theoretical
Computer Science Conference, ITCS 2020, pp. 5:1–5:32 (2020)

14. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short PCPs
verifiable in polylogarithmic time. In: Proceedings of the 20th Annual IEEE Con-
ference on Computational Complexity, CCC 2005, pp. 120–134 (2005)

https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-36033-7_19
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2

92 G. Arnon et al.

15. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs
of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4),
889–974 (2006)

16. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J.
Comput. 38(2), 551–607 (2008)

17. Benarroch, D., et al.: Proposal: commit-and-prove zero-knowledge proof sys-
tems and extensions (2021). https://docs.zkproof.org/pages/standards/accepted-
workshop4/proposal-commit.pdf

18. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 12

19. Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification
from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551,
pp. 19–46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 2

20. Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge IOPs with linear-time prover and
polylogarithmic-time verifier. Cryptology ePrint Archive, Report 2020/1527 (2020)

21. Bordage, S., Nardi, J.: Interactive oracle proofs of proximity to algebraic geometry
codes. arXiv cs/2011.04295 (2021)

22. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composi-
tion of succinct zero-knowledge proofs. In: Proceedings of the 26th Conference on
Computer and Communications Security, CCS 2019, pp. 2075–2092 (2019)

23. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive, Report
2018/1004 (2018)

24. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

25. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random
oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp.
1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 1

26. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 27

27. Condon, A., Feigenbaum, J., Lund, C., Shor, P.W.: Probabilistically checkable
debate systems and nonapproximability of PSPACE-hard functions. Chicago J.
Theor. Comput. Sci. 1995 (1995)

28. Condon, A., Feigenbaum, J., Lund, C., Shor, P.W.: Random debaters and the
hardness of approximating stochastic functions. SIAM J. Comput. 26(2), 369–400
(1997)

29. Costello, C., et al.: Geppetto: versatile verifiable computation. In: Proceedings of
the 36th IEEE Symposium on Security and Privacy, S&P 2015, pp. 250–273 (2015)

30. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)
31. Dinur, I., Reingold, O.: Assignment testers: towards a combinatorial proof of the

PCP theorem. In: Proceedings of the 45th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2004, pp. 155–164 (2004)

https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-commit.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-commit.pdf
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27

A PCP Theorem for Interactive Proofs and Applications 93

32. Drucker, A.: Efficient probabilistically checkable debates. In: Goldberg, L.A.,
Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM-2011. LNCS, vol.
6845, pp. 519–529. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22935-0 44

33. Drucker, A.: A PCP characterization of AM. In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 581–592. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22006-7 49

34. Drucker, A.: An improved exponential-time approximation algorithm for fully-
alternating games against nature. In: Proceedings of the 61st Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2020, pp. 1081–1090 (2020)

35. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 36

36. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and
the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996). Preliminary
version in FOCS 1991

37. Fürer, M., Goldreich, O., Mansour, Y., Sipser, M., Zachos, S.: On completeness
and soundness in interactive proof systems. Adv. Comput. Res. 5, 429–442 (1989)

38. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991). Preliminary version appeared in FOCS 1986

39. Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a laconic
prover. Comput. Complex. 11(1/2), 1–53 (2002)

40. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). Preliminary version
appeared in STOC 1985

41. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. In: Proceedings of the 18th Annual ACM Symposium on Theory of Com-
puting, STOC 1986, pp. 59–68 (1986)

42. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. J. ACM 56(4), 20:1–20:34 (2009)

43. Haviv, I., Regev, O., Ta-Shma, A.: On the hardness of satisfiability with bounded
occurrences in the polynomial-time hierarchy. Theory Comput. 3(1), 45–60 (2007)

44. Ishai, Y., Weiss, M.: Probabilistically checkable proofs of proximity with zero-
knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 121–145. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 6

45. Lee, N., Wang, Y., Jiang, J.R.: Solving stochastic Boolean satisfiability under
random-exist quantification. In: Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, pp. 688–694 (2017)

46. Lipmaa, H.: Prover-efficient commit-and-prove zero-knowledge SNARKs. Int. J.
Appl. Cryptogr. 3(4), 344–362 (2017)

47. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean satisfiability. J.
Autom. Reason. 27(3), 251–296 (2001)

48. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

49. Majercik, S.M.: APPSSAT: approximate probabilistic planning using stochastic
satisfiability. Int. J. Approximate Reasoning 45(2), 402–419 (2007)

50. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). Preliminary version appeared in FOCS 1994

51. Papadimitriou, C.H.: Games against nature (extended abstract). In: 24th Annual
ACM Symposium on Theory of Computing, STOC 1983, pp. 446–450 (1983)

https://doi.org/10.1007/978-3-642-22935-0_44
https://doi.org/10.1007/978-3-642-22935-0_44
https://doi.org/10.1007/978-3-642-22006-7_49
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54242-8_6

94 G. Arnon et al.

52. Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive proofs for
delegating computation. In: Proceedings of the 48th ACM Symposium on the The-
ory of Computing, STOC 2016, pp. 49–62 (2016)

53. Ron-Zewi, N., Rothblum, R.: Local proofs approaching the witness length. In:
Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2020, pp. 846–857 (2020)

54. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)
55. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply

time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

https://doi.org/10.1007/978-3-540-78524-8_1

Group Signatures and More
from Isogenies and Lattices: Generic,

Simple, and Efficient

Ward Beullens1,2 , Samuel Dobson3 , Shuichi Katsumata4(B) ,
Yi-Fu Lai3 , and Federico Pintore5

1 imec-COSIC, KU Leuven, Leuven, Belgium
2 IBM Research, Zurich, Switzerland

wbe@zurich.ibm.com
3 University of Auckland, Auckland, New Zealand

ylai276@aucklanduni.ac.nz
4 National Institute of Advanced Industrial Science and Technology (AIST),

Tokyo, Japan
shuichi.katsumata@aist.go.jp

5 Department of Mathematics, University of Bari, Bari, Italy
federico.pintore@uniba.it

Abstract. We construct an efficient dynamic group signature (or more
generally an accountable ring signature) from isogeny and lattice assump-
tions. Our group signature is based on a simple generic construction that
can be instantiated by cryptographically hard group actions such as the
CSIDH group action or an MLWE-based group action. The signature is
of size O(log N), where N is the number of users in the group. Our idea
builds on the recent efficient OR-proof by Beullens, Katsumata, and Pin-
tore (Asiacrypt’20), where we efficiently add a proof of valid ciphertext
to their OR-proof and further show that the resulting non-interactive
zero-knowledge proof system is online extractable.

Our group signatures satisfy more ideal security properties com-
pared to previously known constructions, while simultaneously having
an attractive signature size. The signature size of our isogeny-based con-
struction is an order of magnitude smaller than all previously known
post-quantum group signatures (e.g., 6.6 KB for 64 members). In com-
parison, our lattice-based construction has a larger signature size (e.g.,
either 126 KB or 89 KB for 64 members depending on the satisfied
security property). However, since the O(·)-notation hides a very small
constant factor, it remains small even for very large group sizes, say 220.

1 Introduction

Group signature schemes, introduced by Chaum and van Heyst [22], allow autho-
rized members of a group to individually sign on behalf of the group while the
specific identity of the signer remains anonymous. However, should the need

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 95–126, 2022.
https://doi.org/10.1007/978-3-031-07085-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_4&domain=pdf
http://orcid.org/0000-0003-0888-283X
http://orcid.org/0000-0003-0775-4019
http://orcid.org/0000-0002-8496-0476
http://orcid.org/0000-0002-1346-9372
http://orcid.org/0000-0002-7985-3131
https://doi.org/10.1007/978-3-031-07085-3_4

96 W. Beullens et al.

arise, a special entity called the group manager (or sometimes the tracing author-
ity) can trace the signature to the signer, thus holding the group members
accountable for their signatures. Group signatures have been an active area
of academic research for the past three decades, and have also been gathering
practical attention due to the recent real-world deployment of variants of group
signatures such as directed anonymous attestation (DAA) [15] and enhanced
privacy ID (EPID) [16].

Currently, there are versatile constructions of efficient group signatures from
classical assumptions, e.g., [3,9,10,23,26,27,38,40,48,49]. In this work, when we
argue the efficiency of a group signature, we focus on one of the quintessential
metrics: the signature size. We require it to be smaller than c·log N bits, where N
is the group size and c is some explicit small polynomial in the security param-
eter. In their seminal work, Bellare, Micciancio, and Warinschi [4] provided a
generic construction of a group signature with signature size O(1) from any sig-
nature scheme, public-key encryption scheme, and general non-interactive zero-
knowledge (NIZK) proof system. Unfortunately, this only provides an asymptotic
feasibility result, and thus one of the main focuses of subsequent works, including
ours, has been to construct a concretely efficient group signature.

In contrast to the classical setting, constructing efficient group signatures from
any post-quantum assumptions has been elusive. Since the first lattice-based con-
struction by Gordon, Katz, and Vaikuntanathan [39], there has been a rich line of
subsequent works on lattice-based (and one code-based) group signatures, includ-
ing but not limited to [33,41,45,47,50]. However, these results remained purely
asymptotic. It was not until recently that efficient lattice-based group signatures
appeared [14,25,31,32]. In [31], Esgin et al. report a signature size of 12KB and
19KB for a group size of N = 26 and 210, respectively—several orders of magni-
tude better than prior constructions.1 These rapid improvements in efficiency for
lattices originate in the recent progress of lattice-based NIZK proof systems for
useful languages [2,13,29,30,51,52,58], most of which rely heavily on the prop-
erties of special structured lattices. Thus, it seems impossible to import similar
techniques to other post-quantum assumptions or to standard non-structured lat-
tices. For instance, constructing efficient group signatures from isogenies—one of
the promising alternative post-quantum tools to lattices—still seems out of reach
using current techniques. This brings us to the main question of this work:

Can we construct an efficient group signature secure from isogenies? More-
over, can we have a generic construction that can be instantiated from
versatile assumptions, including those based on less structured lattices?

In addition, as we discuss in more detail later, we notice that all works
regarding efficient post-quantum group signatures [14,25,31,32,42] do not satisfy
the ideal security properties (which are by now considered standard) formalized
by Bootle et al. [11]. Thus, we are also interested in the following question:

1 We note that their signature size grows by logt N for a small constant t > 1 rather
than simply by log N . .

Group Signatures and More from Isogenies and Lattices 97

Can we construct efficient post-quantum group signatures satisfying the
ideal security properties formalized by Bootle et al. [11]?

To address these questions, in this work we focus on accountable ring sig-
natures [57]. An accountable ring signature offers the flexibility of choosing the
group of users when creating a signature (like a ring signature [55]), while also
enforcing accountability by including one of the openers in the group (like a
group signature). Although research on accountable ring signatures is still lim-
ited [12,32,44,46,57], we advocate that they are as relevant and interesting as
group and ring signatures. As shown by Bootle et al. [12], accountable ring sig-
natures imply group and ring signatures by naturally limiting or downgrading
their functionality. Thus, an efficient post-quantum solution to an accountable
ring signature implies solutions for both secure (dynamic) group signatures [5]
and ring signatures, making it an attractive target to focus on.

Finally, as an independent interest, we are also concerned with tightly-secure
constructions. To the best of our knowledge, all prior efficient post-quantum
secure group and ring signatures are in the random oracle model and have a very
loose reduction loss. In typical security proofs, given an adversary with advan-
tage ε that breaks some security property of the group signature, we can only
construct an adversary with advantage at most (N2Q)−1 · ε2 against the under-
lying hard problem, where Q is the number of random oracle queries and N is
the number of users in the system. If we aim for 128-bit security (i.e., ε = 2−128),
and set for example (N,Q) = (210, 250), then we need at least 326-bits of secu-
rity for the hard problem. When aiming for a provably-secure construction, the
parameters must be set much larger to compensate for this significant reduction
loss, which then leads to a less efficient scheme. This is especially unattractive
in the isogeny setting since only the smallest among the CSIDH parameters [20]
enjoys properties suitable to achieve concrete efficiency [8].

1.1 Our Contribution

In this work, we construct an efficient accountable ring signature based on iso-
genies and lattices. This in particular implies the first efficient isogeny-based
group signature. Our generic construction departs from known general feasibility
results such as [4] and builds on primitives that can be efficiently instantiated.
Unlike previous efficient post-quantum group signatures, our scheme satisfies
all the desired properties provided by Bootle et al. [11] including dynamicity
and fully (CCA) anonymity : the former states that the group members can be
added and revoked dynamically and are not fixed on setup; the later states that
anonymity holds even in the presence of an adversary that sees the signing keys
of all honest users, who is additionally granted access to an opening oracle. We
also satisfy the ideal variant of non-frameability and traceability [11], where the
former is captured by unforgeability in the context of accountable ring signa-
ture. Roughly, this ensures that arbitrary collusion among members, even with
the help of a corrupted group manager, cannot falsely open a signature to an
honest user.

98 W. Beullens et al.

Our accountable ring signature schemes are realized in three steps. We first
provide a generic construction of an accountable ring signature from simple cryp-
tographic primitives such as a public-key encryption (PKE) scheme and an accom-
panying NIZK for a specific language. We then show an efficient instantiation of
these primitives based on a group action that satisfies certain cryptographic prop-
erties. Finally, we instantiate the group action by either the CSIDH group action
or the MLWE-based group action. Our generic construction builds on the recent
efficient OR-proofs for isogeny and lattice-based hard languages by Beullens, Kat-
sumata, and Pintore [7], which were used to construct ring signatures. The most
technical part of this work is to efficiently add a proof of valid ciphertext to their
OR-proof and proving full anonymity, which done naively would incur an exponen-
tial security loss. At the core of our construction is an efficient online-extractable
OR-proof that allows to also prove validity of a ciphertext.

Moreover, thanks to the online extractability, our construction achieves a
much tighter reduction loss compared to prior accountable ring signatures (and
also group and ring signatures). It suffices to assume that the underlying post-
quantum hard problem cannot be solved with advantage more than N−1 · ε
rather than (N2Q)−1 · ε2 as in prior works whose proofs rely on the forking
lemma [34,54]. Working with the above example, we only lose 10-bits rather
than 198-bits of security. We further show how to remove N−1 using the Katz-
Wang technique [43] along with some techniques unique to our NIZK. As a side
product, we obtain a tightly-secure and efficient isogeny and lattice-based ring
signatures, improving upon those by Beullens et al. [7] which have a loose security
reduction.

Comparison to Prior Work. To the best of our knowledge, Esgin et al. [31,32] are
the only other work that (implicitly) provide an efficient post-quantum account-
able ring signature.2 Since the efficiency of an accountable ring signature is
equivalent to those of the group signature obtained through limiting the func-
tionality of the accountable ring signature, we chose to compare the efficiency of
our scheme with other state-of-the-art post-quantum group signatures. Table 1
includes a comparison of the signature size and the different notions of security
it satisfies. The first two schemes satisfy all the desired security properties of a
dynamic group signature formalized by Bootle et al. [11]. Our scheme is the only
one to achieve full CCA anonymity. Esgin et al. [31] achieves full CPA anonymity,
where anonymity is broken once an adversary is given access to an opening ora-
cle; in practice, this means that if a specific signature is once opened to some
user, then any signature ever signed by that particular user will lose anonymity.
Here, “full” means that the signing key of all the users may be exposed to the
adversary. In contrast, Katz, Kolesnikov, and Wang [42] satisfies selfless CCA
anonymity. While their scheme supports opening oracles, anonymity no longer
holds if the signing key used to sign the signature is exposed to the adversary.
Moreover, our scheme is the only one that also achieves the ideal variant of non-
frameability and traceability [5,11] (illustrated in the “Manager Accountability”
2 To be precise, they consider a weaker variant of standard accountable ring signature

where no Judge algorithm is considered.

Group Signatures and More from Isogenies and Lattices 99

Table 1. Comparison of the signature size (KB) of some concretely efficient post-
quantum group signature schemes. The first three rows are our scheme. Manager
accountability states whether the (possibly malicious) group manager is accountable
when opening a signature to some user. Namely, it is “Yes” when even a malicious
group manager cannot falsely accuse an honest user of signing a signature that it
hasn’t signed.

N Hardness Security Anonymity Manager

2 25 26 210 221 Assumption Level Accountable

Isogeny 3.6 6.0 6.6 9.0 15.5 CSIDH-512 ∗ CCA Yes

Lattice 124 126 126 129 134 MSIS/MLWE NIST 2 CCA Yes

Lattice 86 88 89 91 96 MSIS/MLWE NIST 2 CCA No

ESZ [31] / 12 / 19 / MSIS/MLWE NIST 2 CPA No

KKW [42] / / 280 418 / LowMC NIST 5 selfless-CCA No
∗128 bits of classical security and 60 bits of quantum security [53].

column). The two schemes [31,42] assume the group manager honestly executes
the opening algorithm and that everyone trusts the output. Put differently, a
malicious group manager can frame any honest members in the group by simply
replacing the output of the opening algorithm. In contrast, our scheme remains
secure even against malicious group managers since the validity of the output
of the opening algorithm is verifiable. That is, even the group manager is held
accountable in our group signature.

Not only our group signatures satisfy more ideal security properties compared
to previous constructions, Table 1 shows that our signature size remains compet-
itive. Our isogeny-based group signature based on CSIDH provides the smallest
signature size among all post-quantum group signatures, which is 0.6 log2(N)+3
KB. In contrast, our lattice signature is larger; the scheme in the second (resp.
third) row has signature size 0.5 log2(N) + 123.5 KB (resp. 0.5 log2(N) + 85.9
KB). It is smaller compared to [42], while larger compared to [31]. Compared to
the two constructions, our signature size grows much slower with the group size
N (see also Footnote 1) and also satisfies stronger security. We thus leave it as
an interesting open problem to lower the constants in our construction.

1.2 Technical Overview

An accountable ring signature is like a standard ring signature where the ring R
also includes an arbitrary opener public key opk of the signer’s choice when creat-
ing a signature σ. The signature σ remains anonymous for anybody who does not
know the corresponding opener secret key osk, while the designated opener can
use osk to trace the user who created σ. A ring signature can be thought of as an
accountable ring signature where opk = ⊥, while a group signature can be thought
as an accountable ring signature where there is only a single opener.

General Approach. Our generic construction of an accountable ring signature fol-
lows the well-known template of the encrypt-then-prove approach to construct

100 W. Beullens et al.

a group signature [17]. The high-level idea is simple. The signer encrypts its
verification key vk (or another unique identifier) using the opener’s public key
opk for a PKE scheme and provides a NIZK proof for the following three facts:
the ciphertext ct encrypts vk via opk; vk is included in the ring R; and that it
knows a secret key sk corresponding to vk. To trace the signer, the opener simply
decrypts ct to recover vk. Notice that the NIZK proof implicitly defines a veri-
fiable encryption scheme [18,19] since it is proving that ct is a valid encryption
for some message vk in R. Below, although our construction can be based on any
cryptographically-hard group action, we mainly focus on isogenies for simplicity.

One of the difficulties in instantiating this template using isogeny-based cryp-
tography is that we do not have an efficient verifiable encryption scheme for an
appropriate PKE scheme. To achieve full anonymity, most of the efficient group
signatures, e.g., [25,26,38,40,48,49], use an IND-CCA secure PKE as a building
block and construct an efficient NIZK that proves validity of the ciphertext. Full
anonymity stipulates that an adversary cannot de-anonymize a signature even if
it is provided with an opening oracle, which traces the signatures submitted by
the adversary. Roughly, by using an IND-CCA secure PKE as a building block,
the reduction can simulate the opening oracle by using the decapsulation oracle
provided by the IND-CCA game, rather than the opener’s secret key. In the clas-
sical setting, constructing such an efficient IND-CCA secure verifiable encryption
scheme is possible using the Cramer-Shoup PKE [24] that offers a rich alge-
braic structure. Unfortunately, in the isogeny setting, although we know how
to construct an IND-CCA secure PKE based on the Fujisaki-Okamoto transform
[37], it seems quite difficult to provide an accompanying verifiable encryption
scheme as the construction internally uses a hash function modeled as a ran-
dom oracle. Another approach is to rely on the weaker IND-CPA secure PKE but
to use a stronger NIZK satisfying online-extractability [35]. At a high level, the
reduction can use the online-extractor to extract the witness in the ciphertext
ct instead of relying on the decapsulation oracle.3 However, it turns out that
even this approach is still non-trivial since we do not have any efficient verifiable
encryption scheme for existing isogeny-based PKEs, let alone an accompanying
online-extractable NIZK. For instance, most isogeny-based IND-CPA secure PKEs
are based on the hashed version of ElGamal, and to the best of our knowledge,
there are no efficient verifiable encryption schemes for hashed ElGamal.

Verifiable Encryption Scheme for a Limited Class of PKE. In this work, we
observe that in the context of accountable ring signatures and group signatures,
we do not require the full decryption capability of a standard PKE. Observe
that decryption is only used by the opener and that it knows the ciphertext
ct must be an encryption of one of the verification keys included in the ring
(or group) R. Therefore, given a ciphertext ct, we only require a mechanism to
check if ct encrypts a particular message M, rather than being able to decrypt
an arbitrary unknown message. Specifically, the opener can simply run through

3 Note that extractability via rewinding is insufficient for full anonymity as it will cause
an exponential reduction loss when trying to extract the witness from adaptively
chosen signatures [6].

Group Signatures and More from Isogenies and Lattices 101

all the verification keys vk ∈ R to figure out which vk was encrypted in ct. This
allows us to use a simple IND-CPA secure PKE with limited decryption capa-
bility based on the CSIDH group action: Let E0 ∈ E��p(O, π) be a fixed and
public elliptic curve. The public key is pk = (E0, E := s � E0), where sk = s is
sampled uniformly at random from the class group C�(O). To encrypt a message
M ∈ C�(O), we sample r ← C�(O) and set ct = (ct0 := r �E0, ct1 := M� (r �E)).
To check if ct decrypts to M′, we check whether ct1 is equal to M′ � (sk � ct0).
Note that in general we cannot decrypt when M is unknown since we cannot
cancel out sk � ct0 from ct1. Now, observe that proving ct encrypts M ∈ C�(O) is
easy since there is a simple sigma protocol for the Diffie-Hellman-like statement
(ct0, (−M)� ct1) = (r �E0, r �E), where r is the witness, e.g., [28]. Although this
comes closer to what we want, this simple sigma protocol is not yet sufficient
since the prover must reveal the message M to run it. Specifically, it proves that
ct is an encryption of M, while what we want to prove is that ct is an encryption
of some M ∈ R. In the context of accountable ring signature and group signature,
this amounts to the signer being able to hide its verification key vk ∈ R.

Constructing NIZK for Accountable Ring Signature. Let us move forward to the
intermediate goal of constructing a (non-online-extractable) NIZK proof system
for the following three facts: the ciphertext ct encrypts vk via pk; vk is included in
the ringR; and that the prover knows a secret key sk corresponding to vk. Recently,
Beullens, Katsumata, and Pintore [7] proposed an efficient sigma protocol (and a
non-online-extractable NIZK via the Fiat-Shamir transform) for proving the last
two facts, which in particular constitutes an efficient OR-proof. We show how to
glue the above “weak” verifiable encryption scheme with their OR-proof.

We first review a variant of the OR-sigma protocol in [7] with proof size
O(N), where N is the size of the ring. Assume each user i ∈ [N] in the ring
holds vki = (E0, Ei := si � E0) ∈ E��p(O, π)2 and ski = si ∈ C�(O). To prove
vkI ∈ R and that it knows skI , the prover first sample s′ ← C�(O) and sets Ri =
s′ � Ei for i ∈ [N]. It also samples randomness randi and creates commitments
(Ci = Com(Ri, randi))i∈[N], where this commitment is simply instantiated by a
random oracle. It finally samples a random permutation φ over [N] and sends
a permuted tuple (Cφ(i) = Com(Ri, randi))i∈[N]. The verifier samples a random
bit b ∈ {0, 1}. If b = 0, the prover returns all the randomness (s′, (randi)i∈[N], φ)
used to create the first message. The verifier then checks if the first message sent
by the prover is consistent with this randomness. Otherwise, if b = 1, the prover
returns (I ′′, rand′′, s′′) := (φ(I), randI , s

′ + sI). The verifier then checks if CI′′ =
Com(s′′�E0, rand

′′) holds. Notice that if the prover is honest, then s′′�E0 = s′�EI

as desired. It is easy to check it is honest-verifier zero-knowledge. The transcript
when b = 0 is independent of the witness, while the transcript when b = 1 can be
simulated if the commitment scheme is hiding. Moreover, special soundness can
be checked by noticing that given s′′ and s′, we can extract some (i∗, s∗) such that
(E0, Ei∗ = s∗ � E0) ∈ R. A full-fledged OR-sigma protocol with proof size O(N)
is then obtained by running this protocol λ-times in parallel, where λ denotes
the security parameter. [7] showed several simple optimization techniques to
compress the proof size from O(N) to O(log N), but we first explain our main
idea below.

102 W. Beullens et al.

We add our “weakly decryptable” PKE to this OR-sigma protocol. Since our
PKE only handles messages in C�(O), the prover with vkI ∈ R encrypts the index
I ∈ [N] rather than vkI , where we assume the verification keys in the ring R
are ordered lexicographically.4 The statement now consists of the ring R and the
ciphertext ct = (ct0 := r � E0, ct1 = I � (r � E)), where (E0, E) is the opener’s
public key opk. Recall the opener can decrypt ct with knowledge of the ring R
by brute-force searching for an i ∈ [N] such that ct1 = i � (osk � ct0). Now, to
prove vkI is an entry in R and that it knows skI , the prover samples s′ ← C�(O)
and sets Ri = s′ � Ei for i ∈ [N] as before. It then further samples r′ ← C�(O)
and prepares ct′i = (r′ � ct0, (−i) � (r′ � ct1)) for all i ∈ [N]. Observe that ct′i
is an encryption of the message (I − i) using randomness (r′ + r). Specifically,
ct′I is of the form ((r′ + r) � E0, (r′ + r) � E), which admits a natural sigma
protocol as explained above. Finally, the prover samples randomness randi and a
random permutation φ over [N], and sends the randomly permuted commitments
(Cφ(i) = Com(Ri‖ct′i, randi))i∈[N]. The verifier samples a random bit b ∈ {0, 1}. If
b = 0, then similarly to the above OR-sigma protocol, the prover simply returns
all the randomness and the verifier checks the consistency of the first message.
Otherwise, if b = 1, the prover returns (I ′′, rand′′, s′′, r′′) := (φ(I), randI , s

′ +
sI , r

′+r). The verifier checks if CI′′ = Com(s′′�E0‖(r′′�E0, r
′′�E), rand′′) holds.

Correctness and honest-verifier zero-knowledge holds essentially for the same
reason as the above OR-sigma protocol. More importantly, special soundness
holds as well. Intuitively, since the opening to b = 0 forces the cheating prover
to commit to the proper (vki, i)-pair, a cheating prover cannot encrypt an index
I ′ and prove that it has skI corresponding to vkI for a different I �= I ′.

To compile our sigma protocol into an NIZK, we apply the Fiat-Shamir trans-
form. Moreover, we apply similar optimization techniques used in [7] to compress
the proof size from O(N) to O(log N). Roughly, the prover additionally uses a
pseudorandom generator to generate the randomness (i.e., s′, r′, φ, (randi)i∈[N]).
Then, in case b = 0, the prover needs to reply only with the seed of size O(1).
The prover also uses a Merkle tree to accumulate (Cφ(i))i∈[N] and sends the root
value in the first message. It then only opens to the path necessary for verifi-
cation when b = 1. This has a positive side-effect that we no longer require a
permutation φ since the path hides the index if we use a slightly tweaked variant
of the standard Merkle tree. Finally, we take advantage of the asymmetry in
the prover’s response size for b = 0 and b = 1, which are O(1) and O(log N),
respectively. Namely, we imbalance the challenge space so that the prover opens
to more 0 than 1, while still maintaining negligible soundness error.

Adding Online-Extractability. To build an accountable ring signature or group
signature, we require the above NIZK to be (multi-proof) online-extractable. This
is a strengthening of standard proof of knowledge (PoK) that roughly states
that the knowledge extractor, who can see what the adversary queries to the
random oracle, is able to directly extract witnesses from the proofs output by

4 The choice of what to encrypt is rather arbitrary. The same idea works if for instance
we hash vk into C�(O) and view the digest as the message.

Group Signatures and More from Isogenies and Lattices 103

the adversary. The OR-proof by [7], which our NIZK builds on, was only shown
to satisfy the standard PoK, which bases on a rewinding extractor.

One simple way to add online-extractability to our NIZK is to apply the
Unruh transform [56]. Namely, we can modify the prover to add two more
commitments h0 = Com(s′‖r′, rand0) and h1 = Com(s′′‖r′′, rand1) in the first
message, where Com is instantiated by the random oracle. Then, if b = 0
(resp. b = 1), the prover further opens to h0 (resp. h1). Recall that if the
reduction obtains both (s′, r′) and (s′′, r′′), then it can invoke the extractor
provided by the underlying sigma protocol to extract some (i∗, s∗) such that
(E0, Ei∗ = s∗ � E0) ∈ R. Therefore, for the cheating adversary to fool the reduc-
tion, it must guess the bit b and create hb correctly while creating h1−b arbitrary.
Intuitively, if we have λ-repetition of the sigma protocol, then the cheating prover
cannot possibly guess all the challenge bits correctly. Therefore, there must be
some challenge where it created h0 and h1 honestly. For that challenge bit, the
reduction algorithm can then retrieve the corresponding inputs (s′‖r′, rand0)
and (s′′‖r′′, rand1) from simply observing the random oracle, and then, run the
extractor to obtain the witness.

This idea works but it comes with an extra two hashes per one execution
of the binary-challenge sigma protocol. Although it may sound insignificant in
an asymptotic sense, these hashes add up when we execute the sigma protocol
many times, and it makes it difficult to apply some of the optimization tricks.
Concretely, when we apply this change to the isogeny-based ring signature by
Beullen et al. [7], the signature grows by roughly a factor of 2 to 3.

In this work, we show that we can in fact prove online-extractability with-
out making any modification to the aforementioned NIZK. Our main observa-
tions are the following: if the prover uses a seed to generate the randomness used
in the first message via a random oracle, then the online extractor can observe
(s′, r′, φ, (randi)i∈[N]); and the prover must respond to some execution of the
binary-challenge sigma protocol where the challenge bit is 1. The first implies that
the seed implicitly acts as a type of commitment to (s′, r′). The second implies the
prover returns a response that includes (s′′, r′′). Specifically, our online extractor
only looks at all the responses for the rounds where the challenge bit was 1, and
checks the random oracle for any seed that leads to the commitment provided in
the first message of the sigma protocol. If such seed is found, then it succeeds in
extracting a witness. The intuition is simple but it turns out that the formal proof
is technically more complicated due to the several optimizations performed on the
basic sigma protocol to achieve proof size O(log N).

Generalizing with Group Actions. Although we have been explaining our generic
construction using the CSIDH group action, it is not unique to them. It works
equally well for any group action that naturally induces a PKE. Specifically,
we instantiate the above idea also by the MLWE group action defined roughly
as � : Rn+m

q × Rm
q : (s, e) � t → A � s + e + t, where Rq = Zq[X]/(Xd +

1). Since CSIDH and MLWE induce a PKE with slightly different algebraic
structures, we introduce a group-action-based PKE defined by two group actions
to formally capture both instances. This abstraction may be of an independent

104 W. Beullens et al.

interest since at first glance, isogeny-based and lattice-based PKEs seem to rely
on different algebraic structures. Finally, one interesting feature unique to our
generic construction is that since our sigma protocol is rather combinatorial in
nature, we can for instance use CSIDH for the user’s public key vk and mix it
with an MLWE-based PKE for the opener’ public key opk. The practical impact of
such mixture is that we can achieve stronger bit-security for anonymity (due to
MLWE) while keeping the user’s public key and signature small (due to CSIDH).

Achieving Tight Reduction. Since the proofs do not rely on the forking lemma [34,
54] to extract witnesses from the forged proofs, our construction achieves a tighter
reduction compared to prior works on efficient group signatures. However, we still
lose a factor 1/N in the proof of unforgeability, which may vary from 1/2 to 1/220.5

Recall N is the size of the group in group signatures but it is the size of all the users
enrolled in the system for accountable ring signatures, which may be far larger than
the size of the ring. The main reason for this loss was because the reduction needs
to guess one user’s verification key used by the adversary to create its forgery and
to embed the hard problem into it.

A well known technique to obtain a tight proof is to rely on the Katz-Wang
technique [43] along with the generic OR-composition of sigma protocols, and
rely on a multi-instance version of the hard problem (which are believed to be
as difficult as the single-instance version for specific hard problems). Namely,
we modify the scheme to assign two verification keys (vk(1), vk(2)) to each user.
The users will only hold one signing key sk(b) for b ∈ {1, 2} corresponding to
the verification key vk(b). The user can honestly run the aforementioned sigma
protocol where the statement includes vk(b), and a simulated sigma protocol
using the ZK-simulator where the statement includes vk(3−b). We can then use
the sequential OR-proof technique as presented in [1,36] to bridge these two
sigma protocols so that it hides the b.6

While this generic transform works, it unfortunately doubles the signature
size, which may outweigh the motivation for having a tight reduction. In this
work, we present a novel and far cheaper technique tailored to our sigma pro-
tocol. The signature size overhead is a mere 512B for our concrete lattice-based
instantiation. The key observation is that we can view the set of all users’ veri-
fication key (vk(1), vk(2)) as a ring of size 2N , rather than a ring of size N where
each ring element consists of two verification keys. This observation itself is not
yet sufficient since recall that we typically must encrypt some information bound
to the signer for traceability, e.g., encrypt the position/index of vk in R, and it is
no longer clear what to encrypt when we have two verification keys in the ring.
Luckily, it turns out that our sigma protocol can be easily modified with no loss
in efficiency to overcome this apparent issue. Details are provided in Sect. 5.3.
5 We note that we also have some independent looseness in the anonymity proof since

we rely on the “multi-challenge” IND-CPA security from our PKE. This is handled in a
standard way, and this is also why we only achieve a truly tight group signature from
lattices and not from isogenies.

6 We note that it seems difficult to use the parallel OR-proof for our sigma protocol
since the challenge space is structured.

Group Signatures and More from Isogenies and Lattices 105

2 Preliminaries

Due to page limitation, the notation we use is defined in the full version of
the paper, as are the standard primitives such as relaxed sigma protocol in the
random oracle model and PKE. We instantiate several standard cryptographic
primitives, such as pseudorandom number generators (i.e., Expand) and commit-
ment schemes, by hash functions modeled as a random oracle O. With abuse
of notation, we may occasionally write for example O(Expand ‖ ·) instead of
Expand(·) to make the usage of the random oracle explicit. Finally, we denote
by AO an algorithm A that has black-box access to O, and we may occasionally
omit the superscript O for simplicity when the meaning is clear from context.

2.1 Non-interactive Zero-Knowledge Proofs of Knowledge
in the ROM

We consider non-interactive zero-knowledge proof of knowledge protocols (or
simply NIZK (proof system)) in the ROM. Below, we define a variant where the
proof is generated with respect to a label. Although syntactically different, such
NIZK is analogous to the notion of signature of knowledge [21].

Definition 1 (NIZK Proof System). Let L denote a label space, where check-
ing membership can be done efficiently. A non-interactive zero-knowledge (NIZK)
proof system ΠNIZK for the relations R and R̃ such that R ⊆ R̃ (which are implic-
itly parameterized by λ) consists of oracle-calling PPT algorithms (Prove,Verify)
defined as follows:

ProveO(lbl,X,W) → π/⊥ : On input a label lbl ∈ L, a statement and witness pair
(X,W) ∈ R, it outputs a proof π or a special symbol ⊥ denoting abort.

VerifyO(lbl,X, π) → 	/⊥ : On input a label lbl ∈ L, a statement X, and a proof
π, it outputs either 	 (accept) or ⊥ (reject).

We omit the standard notions of correctness, zero-knowledge, and statistical
soundness to the full version of the paper. Below, we define one of the core
property we require from NIZK to construct our ARS.

Definition 2 (Multi-Proof Online Extractability). A NIZK proof sys-
tem ΠNIZK is (multi-proof) online extractable if there exists a PPT extractor
OnlineExtract such that for any (possibly computationally-unbounded) adversary
A making at most polynomially-many queries has at most a negligible advantage
in the following game played against a challenger (with access to a random oracle
O).

(i) The challenger prepares empty lists LO and LP , and sets flag to 0.
(ii) A can make random-oracle, prove, and extract queries an arbitrary polyno-

mial number of times:

106 W. Beullens et al.

• (hash, x): The challenger updates LO ← LO∪{x,O(x)} and returns O(x).
We assume below that A runs the verification algorithm after receiving a
proof from the prover oracle and before submitting a proof to the extract
oracle.7

• (prove, lbl,X,W): The challenger returns ⊥ if lbl �∈ L or (X,W) �∈ R.
Otherwise, it returns π ← ProveO(lbl,X,W) and updates LP ← LP ∪
{lbl,X, π}.

• (extract, lbl,X, π): The challenger checks if VerifyO(lbl,X, π) = 	 and
(lbl,X, π) �∈ LP , and returns ⊥ if not. Otherwise, it runs
W ← OnlineExtractO(lbl,X, π, LO) and checks if (X,W) �∈ R̃, and returns
⊥ if yes and sets flag = 1. Otherwise, if all checks pass, it returns W.

(iii) At some point A outputs 1 to indicate that it is finished with the game. We
say A wins if flag = 1. The advantage of A is defined as AdvOE

ΠNIZK
(A) =

Pr[A wins] where the probability is also taken over the randomness used by
the random oracle.

Note, importantly, that OnlineExtract is not given access to the queries ProveO

makes directly to O. Thus, OnlineExtract is not guaranteed to return a valid
witness W when called with any output of the Prove oracle. The requirement
that (lbl,X, π) /∈ LP ensures that this does not allow the adversary to trivially
win the game, and in particular by extension ensures that modifying the label
lbl should invalidate any proof obtained from the Prove oracle. When L = {⊥},
then it is a standard NIZK.

2.2 Accountable Ring Signatures

We provide the definition of accountable ring signatures (ARSs), following the
formalization introduced by Bootle et al. [12].

Definition 3 (Accountable Ring Signature). An accountable ring signa-
ture ΠARS consists of PPT algorithms (Setup,OKGen,UKGen,Sign,Verify,Open,
Judge) defined as follows:

Setup(1λ) → pp : On input a security parameter 1λ, it returns a public parameter
pp (sometimes implicitly) used by the scheme. We assume pp defines open-
ers’ public-key space Kopk and users’ verification-key space Kvk, with efficient
algorithms to decide membership.

OKGen(pp) → (opk, osk) : On input a public parameter pp, it outputs a pair of
public and secret keys (opk, osk) for an opener.

UKGen(pp) → (vk, sk) : On input a public parameter pp, it outputs a pair of
verification and signing keys (vk, sk) for a user.

Sign(opk, sk,R,M) → σ : On input an opener’s public key opk, a signing key sk,
a list of verification keys, i.e., a ring, R = {vk1, . . . , vkN}, and a message M,
it outputs a signature σ.

7 This is w.l.o.g., and guarantees that the list LO is updated with the input/output
required to verify the proof A receives or sends.

Group Signatures and More from Isogenies and Lattices 107

Verify(opk,R,M, σ) → 	/⊥ : On input an opener’s public key opk, a ring R =
{vk1, . . . , vkN}, a message M, and a signature σ, it (deterministically) outputs
either 	 (accept) or ⊥ (reject).

Open(osk,R,M, σ) → (vk, π)/⊥ : On input an opener’s secret key osk, a ring
R = {vk1, . . . , vkN}, a message M, a signature σ, it (deterministically) outputs
either a pair of verification key vk and a proof π that the owner of vk produced
the signature, or ⊥.

Judge(opk,R, vk,M, σ, π) → 	/⊥ : On input an opener’s public key opk, a ring
R = {vk1, . . . , vkN}, a verification key vk, a message M, a signature σ, and
a proof π, it (deterministically) outputs either 	 (accept) or ⊥ (reject). We
assume without loss of generality that Judge(opk,R, vk,M, σ, π) outputs ⊥ if
Verify(opk,R,M, σ) outputs ⊥.

An accountable ring signature is required to satisfy the following properties:
correctness, anonymity, traceability, unforgeability, and tracing soundness.

First, we require correctness to hold even if the ring contains maliciously-
generated user keys or the signature has been produced for a maliciously-
generated opener key. Note that the correctness guarantee for the open and
judge algorithms are defined implicitly in the subsequent security definitions.

Definition 4 (Correctness). An accountable ring signature ΠARS is correct
if, for all λ ∈ N, any PPT adversary A has at most a negligible advantage in λ
in the following game played against a challenger.

(i) The challenger runs pp ← Setup(1λ) and generates a user key (vk, sk) ←
UKGen(pp). It then provides (pp, vk, sk) to A.

(ii) A outputs an opener’s public key, a ring, and a message tuple (opk,R,M)
to the challenger.

(iii) The challenger runs σ ← Sign(opk, sk,R,M). We say A wins if
• opk ∈ Kopk, R ⊆ Kvk, and vk ∈ R,
• Verify(opk,R,M, σ) = ⊥.

The advantage of A is defined as AdvCorrectΠARS
(A) = Pr[A wins].

Anonymity requires that a signature does not leak any information on who
signed it. We consider the standard type of anonymity notion where the adver-
sary gets to choose the signing key used to generate the signature. Moreover,
we allow the adversary to make (non-trivial) opening queries that reveal who
signed the messages. This notion is often called full (CCA) anonymity [4,11] to
differentiate between weaker notions of anonymity such as selfless anonymity
that restricts the adversary from exposing the signing key used to sign the sig-
nature or CPA anonymity where the adversary is restricted from querying the
open oracle.

Definition 5 (Anonymity). An accountable ring signature ΠARS is (CCA)
anonymous (against full key exposure) if, for all λ ∈ N, any PPT adversary
A has at most a negligible advantage in the following game played against a
challenger.

108 W. Beullens et al.

(i) The challenger runs pp ← Setup(1λ) and generates an opener key
(opk, osk) ← OKGen(pp). It also prepares an empty list Qsign and samples
a random bit b ← {0, 1}.

(ii) The challenger provides (pp, opk) to A.
(iii) A can make signing and opening queries an arbitrary polynomial number of

times:
• (sign,R,M, sk0, sk1): The challenger runs σi ← Sign(opk, ski,R,M) for

i ∈ {0, 1} and returns ⊥ if Verify(opk,R,M, σi) = ⊥ for either of i ∈
{0, 1}. Otherwise, it updates Qsign ← Qsign ∪{(R,M, σb)} and returns σb.

• (open,R,M, σ): The challenger returns ⊥ if (R,M, σ) ∈ Qsign. Otherwise,
it returns
Open(osk,R,M, σ).

(iv) A outputs a guess b∗. We say A wins if b∗ = b.

The advantage of A is defined as AdvAnonΠARS
(A) = |Pr[A wins] − 1/2|.

Unforgeability considers two types of forgeries. The first captures the nat-
ural notion of unforgeability where an adversary cannot forge a signature for
a ring of honest users, i.e., a ring of users for which it does not know any of
the corresponding secret keys. The second captures the fact that an adversary
cannot accuse an honest user of producing a signature even if the ring contains
malicious users and the opener is malicious.

Definition 6 (Unforgeability). An accountable ring signature scheme ΠARS

is unforgeable (with respect to insider corruption) if, for all λ ∈ N, any PPT
adversary A has at most negligible advantage in the following game played
against a challenger.

(i) The challenger runs pp ← Setup(1λ) and initializes an empty keyed dic-
tionary DUKey[·] and three empty sets QUKey, Qsign and Qcor. It provides pp
to A.

(ii) A can make user key generation, signing, and corruption queries an arbi-
trary polynomial number of times:
• (ukeygen): The challenger runs (vk, sk) ← UKGen(pp). If DUKey[vk] �= ⊥,

then it returns ⊥. Otherwise, it updates DUKey[vk] = sk and QUKey ←
QUKey ∪ {vk}, and returns vk.

• (sign, opk, vk,R,M): The challenger returns ⊥ if vk �∈ QUKey ∩ R. Oth-
erwise, it runs σ ← Sign(opk,DUKey[vk],R,M). The challenger updates
Qsign ← Qsign ∪ {(opk, vk,R,M, σ)} and returns σ.

• (corrupt, vk): The challenger returns ⊥ if vk �∈ QUKey. Otherwise, it
updates Qcor ← Qcor ∪ {vk} and returns DUKey[vk].

(iv) A outputs (opk, vk,R,M, σ, π). We say A wins if
• (opk, ∗,R,M, σ) �∈ Qsign, R ⊆ QUKey\Qcor,
• Verify(opk,R,M, σ) = 	,
or
• (opk, vk,R,M, σ) �∈ Qsign, vk ∈ QUKey\Qcor,
• Judge(opk,R, vk,M, σ, π) = 	.

Group Signatures and More from Isogenies and Lattices 109

The advantage of A is defined as AdvUnfΠARS
(A) = Pr[A wins].

Traceability requires that any opener key pair (opk, osk) in the range of the
opener key-generation algorithm can open a valid signature σ to some user vk
along with a proof valid π. This ensures that any opener can trace the user
and produce a proof for its decision. Below, rather than assuming an efficient
algorithm that checks set membership (opk, osk) ∈ OKGen(pp), we simply ask the
adversary to output the randomness used to generate (opk, osk). Note that this
definition contains the prior definitions where opk was assumed to be uniquely
defined and efficiently computable from osk [12].

Definition 7 (Traceability). An accountable ring signature scheme ΠARS is
traceable if, for all λ ∈ N, any PPT adversary A has at most negligible advantage
in the following game played against a challenger.

(i) The challenger runs pp ← Setup(1λ) and provides pp to A.
(ii) A returns a randomness, a ring, a message, and a signature tuple (rr,R,M,

σ). We say A wins if
• Verify(opk,R,M, σ) = 	, where (opk, osk) ← OKGen(pp; rr), and
• Judge(opk,R, vk,M, σ, π) = ⊥, where (vk, π) ← Open(osk,R,M, σ).

The advantage of A is defined as AdvTraΠARS
(A) = Pr[A wins].

Finally, tracing soundness requires that a signature cannot trace to two dif-
ferent users in the ring. This must hold even if all the users in the ring and the
opener are corrupt.

Definition 8 (Tracing Soundness). An accountable ring signature scheme
ΠARS is traceable sound if, for all λ ∈ N, any PPT adversary A has at most
negligible advantage in the following game played against a challenger.

(i) The challenger runs pp ← Setup(1λ) and provides pp to A.
(ii) A returns an opener’s public key, a ring, a message, a signature, and two ver-

ification keys and proofs (opk,R,M, σ, {(vkb, πb)}b∈{0,1}). We say A wins if
• vk0 �= vk1,
• Judge(opk,R, vk0,M, σ, π0) = 	,
• Judge(opk,R, vk1,M, σ, π1) = 	.

The advantage of A is defined as AdvTraSΠARS
(A) = Pr[A wins].

3 Generic Construction of Accountable Ring Signature
and Dynamic Group Signature

In this section, we present novel generic frameworks for accountable ring sig-
nature, dynamic group signature, and their tightly secure variants. Firstly, we
introduce a generic construction of an accountable ring signature in Sect. 3.1.
Constructing a dynamic group signature immediately follows by limiting the
functionality of accountable ring signature. Our construction achieves a tighter
reduction compared to prior works on efficient group signatures as it does not
rely on the forking lemma [34,54]. However, since we still lose a factor of 1/N in
the reduction, we finally show how to modify our construction to be truly tight
using the Katz-Wang technique [43] in Sect. 3.3.

110 W. Beullens et al.

3.1 Generic Construction of Accountable Ring Signature

In this subsection, we present our generic construction of an accountable ring
signature scheme. Before diving in the details we give a brief overview of our
generic construction. The setup is as follows. The opening authorities generate a
PKE key-pair, denoted as (opk, osk) to indicate that they are the opener’s keys,
and publish the opening public key opk. The users generate an element (x,w)
in a hard relation R, and publish the statement x as verification key, and keep
the witness w as secret signing key. A signature for our ARS scheme for a ring
R = {x1, . . . , xN} consists of a ciphertext ct, and a NIZK proof that: 1) The
ciphertext is an encryption of an index I ∈ [N] under an opener public key opk,
and 2) that the signer knows a witness w corresponding to the I-th statement
xI in the ring R. The second property ensures that the signature is unforgeable,
and the first property ensures that the opener (who has the secret key opk) can
decrypt the ciphertext to find out who the real signer is. To convince others
that a signature was produced by the I-th member of the ring, the opener uses
a second NIZK proof to prove that he knows an opener secret key osk that is
consistent with opk, and such that Dec(osk, ct) = I. If the opener could find a
second secret key osk′, consistent with opk and such that ct decrypts to I ′ �= I
under osk′, then the opener could frame I ′ for signing a signature, which breaks
the tracing soundness of the signature scheme. To prevent this we require the
PKE to satisfy a strong correctness property, which says that an encryption of
I will always decrypt to I, even if the encryption randomness and decryption
key are invalid (in some specific, controlled way). More formally we define the
following special correctness notion for a PKE scheme.

Definition 9 ((R′,KR′)-correctness). Consider a public-key encryption
scheme ΠPKE = (Setup,KeyGen,Enc,Dec), with R the set containing all possible
randomness used by Enc and KR the binary relation that contains all the key
pairs (pk, sk) that can be generated by running KeyGen. Let R′ be a set contain-
ing R, and KR′ a relation containing KR. Then we say that ΠPKE is (R′,KR′)-
correct if, for all λ ∈ N, and for all but a negligible fraction of pp ∈ Setup(1λ),
we have for all (pk, sk) ∈ KR′, for all messages m in the plaintext space M, and
all r ∈ R′ that Dec(sk,Enc(pk,m; r)) = m.

Our generic construction of an accountable ring signature scheme ΠARS =
(ARS.Setup, ARS.OKGen, ARS.UKGen, ARS.Sign, ARS.Verify, ARS.Open, ARS.
Judge), provide in Fig. 1, is based on the following building blocks:

– A hard-instance generator contains a setup algorithm RelSetup that, on input
a security parameter λ, outputs a description pp of a pair of binary relations
Rpp ⊆ R̃pp, and an instance generator IGen for those pairs of relations. That
is, RelSetup and IGen are PPT algorithms such that Pr[(x,w) ∈ Rpp | pp ←
RelSetup(1λ); (x,w) ← IGen(pp)] = 1, and such that if we define the advantage
of an adversary A against (RelSetup, IGen) as

Group Signatures and More from Isogenies and Lattices 111

AdvHardRelSetup,IGen(A) = Pr

⎡
⎣(x,w′) ∈ R̃pp

∣∣∣∣∣∣
pp ← RelSetup(1λ)
(x,w) ← IGen(pp)
w′ ← A(pp, x)

⎤
⎦ ,

then AdvHardRelSetup,IGen(A) is a negligible function of λ for every PPT adver-
sary A.

– A public-key encryption scheme ΠPKE = (PKE.Setup,KeyGen,Enc,Dec) with
multi-challenge IND-CPA security, and with (R′,KR′)-correctness for some
relaxed randomness set R′ and some relaxed key relation KR′. The message
space of the encryption scheme contains a set of indices [N] for any polyno-
mially large N ∈ N.

– A multi-proof online extractable NIZK proof system with labels ΠNIZK,lbl =
(NIZK.Setuplbl,NIZK.Provelbl, NIZK.Verifylbl) for the relations

Rsig =
{(

({xi}i∈[N], pk, ct), (I,w, r)
) ∣∣ (xI ,w) ∈ Rpp ∧ ct = Enc(pk, I; r)

}

R̃sig =
{(

({xi}i∈[N], pk, ct), (I,w, r)
) ∣∣ (xI ,w) ∈ R̃pp ∧ ct = Enc(pk, I; r)

}
.

To be precise, we need to also include the public parameters output by
RelSetup and PKE.Setup in the statement. We omit them for better read-
ability.

– A statistically sound NIZK proof system (without labels) ΠNIZK =
(NIZK.Setup,NIZK.Prove,NIZK.Verify) for the relations

Ropen = {((pk, ct, I), sk) | (pk, sk) ∈ KR ∧ Dec(sk, ct) = I}
R̃open =

{
((pk, ct, I), sk)

∣∣ (pk, sk) ∈ KR′ ∧ Dec(sk, ct) = I
}

.

Similarly to above, we omit the public parameter output by PKE.Setup in the
statement. We emphasize that ΠNIZK does not need to be online extractable.

Due to page limitation, we refer to the full version of this paper for the
correctness and security of our accountable ring signature scheme ΠARS.

3.2 Accountable Ring Signature to Dynamic Group Signature

Accountable ring signatures are known to trivially imply dynamic group signa-
tures [11,12]. A formal treatment is provided by Bootle et al. [11]. We remark
that the transformation provided in [11] retains the same level of security pro-
vided by the underlying accountable ring signature. That is, all reductions
between unforgeability, full-anonymity and traceability are tight. For complete-
ness, we provide more details on group signatures and the transform in the full
version of this paper.

112 W. Beullens et al.

Fig. 1. Generic construction of an accountable ring signature ΠARS obtained
from a hard instance generator (RelSetup, IGen), a public-key encryption algorithm
(PKE.Setup,KeyGen,Enc,Dec) satisfying some suitable security and correctness prop-
erties, a NIZK with labels ΠNIZK,lbl for Rsig, and a NIZK without labels ΠNIZK for Ropen.
The public parameter pp is provided to all algorithms where we may omit them for
readability.

3.3 Tightly Secure Variant

Observe the only source of loose reduction in the previous section was in the
unforgeability proof (see the full version of this paper), where we assume each
building blocks, i.e., NIZK and PKE, are tightly reduced to concrete hardness
assumptions. In this subsection, we present a modification of the construction in
Fig. 1 to obtain a tight reduction in the unforgeability proof by using the Katz-
Wang method [43]. The main difference is that we rely on a multi-proof online
extractable NIZK proof system with labels for the following family of relations:

RTight
sig =

⎧
⎨
⎩

(
(pp, {x(j)i }(i,j)∈[N]×[2], pk, ct), (I, b,w, r)

)
∣∣∣∣∣∣

(I, r) ∈ [N] × R∧
(x(b)I ,w) ∈ Rpp ∧
ct = Enc(pk, I; r)

⎫
⎬
⎭

R̃Tight
sig =

⎧
⎨
⎩

(
(pp, {x(j)i }(i,j)∈[N]×[2], pk, ct), (I, b,w, r)

)
∣∣∣∣∣∣

(I, r) ∈ [N] × R′ ∧
(x(b)I ,w) ∈ R̃pp ∧
ct = Enc(pk, I; r)

⎫
⎬
⎭ .

Group Signatures and More from Isogenies and Lattices 113

We show in Sect. 5.3 that we can obtain such a NIZK efficiently by slightly
tweaking our NIZK for Rsig. The high level idea of how to use the Katz-Wang
technique along with our NIZK for RTight

sig is provided in the technical overview.
Due to page limitation, we provide the full detail in the full version of this paper.

4 Group-Action-Based Hard Instance Generators
and PKEs

In this section, we introduce group-action-based hard instance generators (HIGs)
and group-action-based PKEs. These are classes of HIGs and PKEs, that derive
their security from cryptographic group actions, and which have some specific
internal structure. We define these concepts because, as we will see in Sects. 5
and 6, if we instantiate our generic accountable ring signature construction with
a group-action-based HIG and a group-action-based PKE, then we can construct
a very efficient multi-proof online extractable NIZK for the Rsig relation. We pro-
vide concrete instantiations of group-action-based HIGs and PKEs from lattices
and isogenies in Sect. 7.

4.1 Group-Action-Based Hard Instance Generator

We consider a special class of hard instance generators naturally induced by
cryptographic hard actions.

Definition 10 (Group-Action-based Hard Instance Generator). A
group-action-based hard instance generator, GA-HIG in short, is a pair of effi-
cient algorithms (RelSetup, IGen) with the following properties:

– On input a security parameter λ, RelSetup outputs pp = (G,S1, S2, δ,X0,X , �)
such that: G is an additive group whose elements can be represented uniquely,
S1 ⊆ S2 are symmetric subsets of G, such that membership in S1 and S2 can
be decided efficiently, and such that the group law can be computed efficiently
for elements in S1 ∪ S2. Moreover, the intersection S3 = ∩g∈S1g + S2 has
cardinality δ |S2| and membership of S3 can be decided efficiently. � is an
action � : G × X → X of G on a set X that contains the element X0. � can
be evaluated efficiently on elements of S1 ∪ S2. These parameters describe an
NP-relation Rpp = {(X, s) | s ∈ S1 : s � X0 = X} , and a relaxed NP-relation
R̃pp = {(X, s) | s ∈ S2 + S3 : s � X0 = X} .

– On input pp, IGen samples an element s from S1 and outputs (s�X0, s) ∈ Rpp.
– (RelSetup, IGen) is a hard instance generator as defined in Sect. 3.

4.2 Group-Action-Based PKE

We also consider group actions provided with a corresponding public-key encryp-
tion scheme, as specified in the following definition.

114 W. Beullens et al.

Definition 11 (Group-action-based PKE). A group-action-based public-
key encryption scheme, GA-PKE in short, is a public-key encryption scheme
ΠGA-PKE = (Setup,KeyGen,Enc,Dec) with the following properties:

Setup(1λ) → pp : On input a security parameter 1λ, it returns the public param-
eter pp = (G,GM,X , S1, S2, δ,DX , �M,M) (sometimes implicitly) used by the
scheme. Here, G,GM are additive groups, S1, S2 two symmetric subsets of G,
X a finite set, δ a real number in [0, 1], DX a distribution over a set of group
actions �pk : G × X → X and elements in X , �M : GM × X → X a group
action, M ⊆ GM a message space. For any polynomially large N ∈ N, we
assume that there exists a feasible and invertible embedding τ from the set of
index [N] into the message space M. For simplicity, we will write τ(i)�M X,
Enc(pk, τ(i)) as i �M X, Enc(pk, i) respectively without causing confusion.

KeyGen(pp) → (pk, sk) : On input a public parameter pp, it returns a public key
pk and a secret key sk. We assume pk = (�pk,Xpk) to be drawn from DX ,
where �pk : G × X → X is a group action and Xpk ∈ X , and sk ∈ G. We also
assume pk includes pp w.l.o.g.

Enc(pk,M; r) → ct : On input a public key pk = (�pk,Xpk) and a message M ∈
M, it returns a ciphertext ct. We assume ct is generated as M�M (r�pkXpk) ∈
X , where the encryption randomness is sampled as r

$← S1.
Dec(sk, ct) → M : On input a secret key sk and a ciphertext ct, it (deterministi-

cally) returns a message M ∈ M.

In addition, we assume the following properties hold for the group actions
defined by pp.

1. There exists a positive-valued polynomial T such that for all λ ∈ N, pp ∈
Setup(1λ), and (pk, sk) ∈ KeyGen(pp), one can efficiently compute g �pk X for
all g ∈ S1 ∪ S2 and all X ∈ X in time at most T (λ), sample uniformly from
S1 and S2, and represent elements of G and X uniquely. It is also efficient
to compute the action �M for every possible input.

2. The intersection S3 of the sets S2 + g, with g varying in S1, is such that its
cardinality is equal to δ |S2|. Furthermore, it is efficient to check whether an
element g ∈ G belongs to S3.

We further require a group-action-based PKE to satisfy standard correctness
and decryption efficiency.

Definition 12 (Correctness and Decryption Efficiency). We say a group-
action-based PKE ΠGA-PKE is correct if for all λ ∈ N, and for all but a negligible
fraction of pp ∈ Setup(1λ), we have Dec(sk,Enc(pk,M)) = M for all (pk, sk) ∈
KeyGen(pp) and M ∈ M. Moreover, we require Dec to run in poly(λ) for a fixed
polynomial function poly and for all possible inputs.

As we show in Sect. 3.1, in order to construct an accountable ring signature, a
group-action-based PKE is also required to be (multi-challenge) IND-CPA secure
and (R′,KR′)-correct for some relaxed randomness set R′ and some relaxed key
relation KR′ (Definition 9).

Group Signatures and More from Isogenies and Lattices 115

5 Sigma Protocol for a “Traceable” OR Relation

In this section, we present an efficient sigma protocol for the relation Rsig intro-
duced in Sect. 3.1, using group-action-based HIG and a group-action-based PKE
from the previous section. Recall this relation was used to define the multi-proof
online extractable NIZK with labels ΠNIZK, which allowed an OR proof along with
a proof of opening to a ciphertext. Looking ahead, in Sect. 6, we show that our
sigma protocol can be turned into a multi-proof online extractable NIZK using
the Fiat-Shamir transform. This is in contrast to the common application of Fiat-
Shamir transform that only provides a proof of knowledge via the rewinding argu-
ment [34,54]. We note that we do not focus on the otherNIZK for the relation Ropen

in Sect. 3.1 since they can be obtained easily from prior works.
We call the sigma protocol we present in this section as a traceable OR

sigma protocol since it allows to trace the prover. This section is structured
as follows. Firstly, we introduce a base traceable OR sigma protocol Πbase

Σ for
the relation Rsig with proof size O(log N) but with a binary challenge space.
Secondly, we amplify the soundness of the sigma protocol by performing parallel
repetitions. Here, instead of applying λ-parallel repetitions naively, we optimize
it using three approaches developed in [7] to obtain our main traceable OR sigma
protocol Π tOR

Σ . Finally, we show a sigma protocol for the “tight” relation RTight
sig

introduced in Sect. 3.3.

5.1 From a Group-Action-Based HIG and PKE to Base Traceable
or Sigma Protocol

In this section, we present a base OR sigma protocol for the relation Rsig with a
binary challenge space from which the main OR sigma protocol will be deduced.

Parameters and Binary Relation. The sigma protocol is based on a group-
action-based HIG and PKE. Let pp1 = (G,X , S1, S2, δx, �,X0) and pp2 = (G,GT,
Y, S1, S2, δy,DY , �M,M) be public parameters in the image of RelSetup and
PKE.Setup, respectively. Moreover, let (pk, sk) ∈ KeyGen(pp2). The relation Rsig

in Sect. 3.1 can be equivalently rewritten as follows:

Rsig =
{(

({Xi}i∈[N], pk, ct), (I, s, r)
) ∣∣∣∣

(I, s, r) ∈ [N] × S1 × S1∧
XI = s � X0 ∧ ct = Enc(pk, I; r)

}
.

Recall that by definition of GA-PKE (Definition 11), the ciphertext ct is restricted
to the simple form I �M (r �pk Ypk) ∈ Y, where r ∈ S1 ⊆ G.

Sigma Protocol for Rsig. We now sketch the base traceable OR sigma protocol
Πbase

Σ . A prover with witness (I, s, r) ∈ [N] × S1 × S1 first samples (s′, r′) $←
S2 × S2, and ({bitsi}i∈[N]) ← {0, 1}λN . Then, it computes commitments

Ci = O(Com ‖ s′ � Xi ‖ r′ �pk (−i �M ct) ‖ bitsi) ∀i ∈ [N],

and builds a Merkle tree with (C1, . . . ,CN) as its leaves, obtaining root. Here,
notice r′ �pk (−i �M ct) = r′ �pk (−i + I) �M (r �pk Ypk) is simply (r′ + r) �pk Ypk

116 W. Beullens et al.

when i = I. Then, the prover sends com = root to the verifier as the commitment
of the sigma protocol. The verifier, in turn, responds with a uniform challenge
chall ∈ {0, 1}.

If the challenge bit chall is 0, then the prover sends (s′, r′) and the commit-
ment randomness {bitsi}i∈[N]. That is, all the randomness it generated in the
first round. The verifier then can reconstruct the Merkle tree and verify that the
root of the obtained tree is equal to root.

If the challenge bit chall is equal to 1, then the prover computes s′′ = s′ + s,
r′′ = r′ + r. The prover aborts the protocol if s′′ �∈ S3 or r′′ �∈ S3. The first event
will occur with probability (1−δx) and, similarly, the second event will occur with
probability (1− δy). Otherwise, the prover sends (r′′, s′′) together with the path
connecting CI to root in the Merkle tree, and the corresponding commitment
randomness bitsI to the verifier. The verifier computes C̃I = O(Com ‖ s′′ � X0

‖ r′′ �pk Ypk ‖ bitsI) and uses the received path to reconstruct r̃oot of the Merkle
tree. The verifier checks whether r̃oot = root.

To reduce the communication cost, a pseudorandom number generator
(PRG) Expand can be run over a uniform seed seed ∈ {0, 1}λ to produce the
group elements s′, r′ and all commitment randomness values bits1, . . . , bitsN
(part of the response for chall = 0). As a consequence, if the challenge bit is
0, the prover responds with seed so that the verifier can generate (s′, r′, bits1,
· · · , bitsN) with the PRG Expand. The response corresponding to the challenge
bit chall = 1 remains unchanged. We instantiate the PRG by a random oracle
O(Expand ‖ ·). Looking ahead, using a PRG not only provides efficiency, but it
proves to be essential when proving multi-proof online extractability when com-
piled into a NIZK. Roughly, the seed binds the cheating prover from using arbi-
trary (s′, r′, bits1, · · · , bitsN) and the random oracle allows for efficient extrac-
tion. Finally, we instantiate the collision-resistant hash function HColl(·) used in
our Merkle tree by a random oracle O(Coll ‖ ·).

A formal description of Πbase
Σ is provided in Fig. 2. The full detail on its

correctness and security is provided in the full version of this paper.

5.2 From Base to Main Traceable or Sigma Protocol

In this section, we expand the challenge space of Πbase
Σ to make the sound-

ness error negligibly small. Such expansion is straightforward if we run the OR
sigma protocol in parallel λ-times. However, we show how to do much better by
incorporating the three optimizations developed in [7] explained in the technical
overview. As the way we apply these optimizations follows [7] closely, we leave
the details of our main traceable OR sigma protocol, denoted by Π tOR

Σ , to the
full version of this paper.

5.3 Base Sigma Protocol for the “Tight” Relation RTight
sig

In this section, we show how to slightly tweak our base sigma protocol for the rela-
tion Rsig to obtain a sigma protocol for the “tight” relation RTight

sig (see Sect. 3.3).

Group Signatures and More from Isogenies and Lattices 117

Fig. 2. Construction of the base traceable OR sigma protocol Πbase
Σ = (P ′ =

(P ′
1, P

′
2), V

′ = (V ′
1 , V ′

2)) for the relation Rsig. Informally, O(Expand‖·) and O(Com‖·)
are a PRG and a commitment scheme instantiated by the random oracle, respectively.

This can then be used to construct the desired NIZK for RTight
sig required for our

tightly secure accountable ring signature construction (see the full version of this
paper).

As explained in the technical overview, we can use the sigma protocol for
Rsig along with the sequential OR-proof [36] to construct a sigma protocol for
the “tight” relation RTight

sig . Unfortunately, this approach requires to double the
proof size. Instead, we present a small tweak to our sigma protocol for Rsig to
directly support statements in RTight

sig . Concretely, we use the same Merkle tree

to commit to the 2N instances {X
(j)
i }(i,j)∈[N]×[2] and for each X

(1)
i and X

(2)
i , we

encrypt the same index i. The main observation is that when the prover opens
to the challenge bit 1 (which is the only case that depends on the witness), the
path does no leak which X

(1)
i and X

(2)
i it opened to, and hence hides b ∈ [2].

Notice the only increase in the size of the response is due to the path. Since
the accumulated commitment only grows from N to 2N , the overhead in the size

118 W. Beullens et al.

of the path is merely 2λ bits. By using the unbalanced challenge space CM,K for
the optimized parallel repetition, which consists of M -bit strings of Hamming
weight K, the additional cost is only 2Kλ where we typically set K to be a
small constant (e.g., K ≤ 20 for our concrete instantiation). This is much more
efficient than the generic approach that doubles the proof size. More details are
provided in the full version of this paper.

6 Multi-proof Online Extractable NIZK from Sigma
Protocol Π tOR

Σ

In this section, we show that applying the Fiat-Shamir transform to our traceable
OR sigma protocol Π tOR

Σ from the previous section results in a multi-proof online
extractable NIZK with labels ΠNIZK,lbl. The construction of our ΠNIZK,lbl for the
relation Rsig is provide in Fig. 3.8 We assume the output of O(FS‖ ·) is an M -bit
string of Hamming weight K, i.e., the image is the challenge set CM,K .

Fig. 3. A multi-proof online extractable NIZK with labels ΠNIZK,lbl for the relation Rsig

obtained by applying the Fiat-Shamir transform to the traceable OR sigma protocol
Π tOR

Σ = (P = (P1, P2), V = (V1, V2)) defined in the full version of this paper.

Correctness of ΠNIZK,lbl for the relation Rsig follows directly from the cor-
rectness of the underlying traceable OR sigma protocol Π tOR

Σ . We show in the
full version of this paper hat ΠNIZK,lbl is multi-proof online extractable and zero-
knowledge. We highlight that while we show special soundness for Π tOR

Σ with
8 An astute reader may notice that the prover is only expected polynomial time. We

can always assign an upper bound on the runtime of the prover, but did not do so
for better readability. In practice, for concrete choices of the parameter, the number
of repetition never exceeds, say 10.

Group Signatures and More from Isogenies and Lattices 119

respect to the relaxed relation R̃′
sig (see the full version), ΠNIZK,lbl is multi-proof

online extractable with respect to the relaxed relation R̃sig originally considered
in Sect. 3.1 for the generic construction of accountable ring signature. At a high
level, we upper bound the probability that a cheating prover finds a collision in
the random oracle, which was the only difference between R̃sig and R̃′

sig. This
subtle difference makes the resulting NIZK more handy to use as a building block,
since we can ignore the edge case where the extractor accidentally extracts a col-
lision in the random oracle. Due to page limitation, the proof of zero-knowledge
is provided in the full version of the paper. Below, we provide the proof of the
multi-proof online extractability. Formally, we have the following.

Theorem 13. The NIZK with labels ΠNIZK,lbl in Fig. 3 is multi-proof online
extractable for the family of relations Rsig and R̃sig considered in Sect. 3.1, where
Rsig was formally redefined using notations related to group actions in Sect. 5.1
and R̃sig is formally redefined as follows:

R̃sig =
{

(({Xi}i∈[N], pk, ct),W)
∣∣∣∣
W = (I, s, r) ∈ [N] × (S2 + S3) × (S2 + S3)

∧ XI = s � X0 ∧ ct = Enc(pk, I; r)

}
.

More precisely, for any (possibly computationally-unbounded) adversary A mak-
ing at most Q queries to the random oracle and T queries to the extract oracle,
we have

AdvOE
ΠNIZK,lbl

(A) ≤ T · (Q2/22λ−2 + (M · Q)/2λ + 1/ |CM,K |),

where CM,K is the challenge space (or equivalently the output space of O(FS‖·)).
Proof. We begin the proof by providing the description of the online extractor
OnlineExtract. Below, it is given as input (lbl,X, π, LO), where π is guaranteed
to be valid by definition.

1. It parses ({Xi}i∈[N], pk, ct) ← X, (com, chall, resp) ← π, ((salt, com1, · · · ,

comM), c = (c1, · · · , cM)) ← (com, chall), (seedsinternal, {respj}j s.t. cj=1) ←
resp, and rootj ← comj for j ∈ [M].9

2. For j ∈ [M] such that cj = 1, it proceeds as follows:
(a) It parses (s′′

j , r′′
j , pathj) ← respj .

(b) For every
(
(salt ‖ j ‖ Expand ‖ seed), (s′, r′, bits1, · · · , bitsN)

) ∈ LO, where
salt ‖ j ‖ Expand is fixed, it proceeds as follows:
i. It sets (s, r) = (s′′

j −s′, r′′
j −r′) and checks if (s, r) ∈ (S2 +S3)× (S2 +

S3).
ii. It then checks if there exists I ∈ [N] such that XI = s � X0 and

ct = Enc(pk, I; r).
iii. If all the check above passes, it returns W = (I, s, r).

3. If it finds no witness W of the above form, then it returns W = ⊥.
9 Throughout the proof, we use overlines for (com, chall, resp) to indicate that it is a

transcript of of Π tOR
Σ . We use respi without overlines to indicate elements of resp.

120 W. Beullens et al.

We analyze the probability of A winning the multi-proof online extractability
game with the above online extractor OnlineExtract. Below, P ′ and V ′ are the
prover and verifier of the base traceable OR sigma protocol Πbase

Σ in Fig. 2.

– We say a tuple inputbase = (X, salt, j, com, chall, resp) is valid if the following
properties hold:

• chall = 1;
• V

′O(salt‖j‖·)
2 (com, chall, resp) outputs accept (i.e., it is a valid transcript for

Πbase
Σ with challenge 1);

• there exists (seed, s′, r′, bits1, · · · , bitsN) such that
(
(salt ‖ j ‖ Expand ‖

seed), (s′, r′, bits1, · · · , bitsN)
) ∈ LO, and if we execute P

′O(salt‖j‖·)
1 with

randomness seed, it produces com. Here, we use the fact that P
′O(salt‖j‖·)
1

can be executed without the witness. By correctness of Πbase
Σ , this implies

that (com, 0, seed) is a valid transcript.
– We say a tuple inputbase = (X, salt, j, com, chall, resp) is invalid if chall = 1,

V
′O(salt‖j‖·)
2 (com, chall, resp) outputs accept, but it is not valid.

Observe that if inputbase is valid, then the online extractor can recover a valid
transcript (com, 0, seed) from inputbase. Then, it can (informally) extract a wit-
ness by combining it with (com, 1, resp) and using the extractor from Πbase

Σ con-
structed in the full version of this paper. In contrast, if inputbase is invalid, then
intuitively, no adversary would be able to prepare a valid response resp = seed
for the challenge chall = 0 since LO (i.e., the random oracle query the adversary
makes) does not contain a valid response. However, to make this claim formal, we
need to also take into account the fact that the adversary may learn non-trivial
information about resp = seed via the proof output by the prove query. That is,
when the challenger runs PO, the adversary may learn non-trivial input/output
pairs without directly querying the random oracle itself. In this case, even though
no useful information is stored in LO, the adversary may still be able to forge a
proof.

We formally show in Lemma 14 below that if an adversary A submits an
extract query on a valid input (lbl,X, π), then a valid inputbase must be included
in π (i.e., it cannot consist of inputbase that are all invalid). This allows us to
argue that the online extractor will be able to recover two valid transcripts
with overwhelming probability, which then further allows the online extractor
to extract the witness by running the extractor for the special soundness of the
base traceable OR sigma protocol Πbase

Σ . Due to page limitation, the proof is
provide in the full version of this paper.

Lemma 14. Assume an adversary A submits a total of T extract queries of
the form {(lblk,Xk, πk)}k∈[T], where every πk is a valid proof including the same
salt and satisfies (lblk,Xk, πk) �∈ LP . Let {(comk,j , challk,j , respk,j)}j∈[M] be the
transcript of the base traceable OR sigma protocol Πbase

Σ that the verification
algorithm reconstructs when verifying πk (see the full version of the paper). Then,
with probability at least 1−T · (Qsalt/22λ−1 +(M ·Qsalt)/2λ +1/ |CM,K |), for all
k ∈ T there exists at least one j ∈ [M] such that inputbase = (Xk, salt, j, comk,j ,
challk,j = 1, respk,j) is valid.

Group Signatures and More from Isogenies and Lattices 121

We are now prepared to analyze the probability that A wins the multi-
proof online extractability game with the aforementioned online extractor
OnlineExtract. By Lemma 14, if A makes at most T extract queries, then by
a simple union bound and using the inequality

∑
i Qsalti ≤ Q, with probability

at least 1 − T · (
(2Q)/22λ + (M · Q)/2λ + 1/ |CM,K |), all the inputbase included

in the queried proof are valid. Then, by the definition of valid and the descrip-
tion of OnlineExtract, OnlineExtract is able to extract two valid transcripts for all
T proofs queried by A. As shown in the full version of the paper, OnlineExtract
either succeeds in extracting a witness W = (I, s, r) ∈ [N]×(S2+S3)×(S2+S3)
or a witness that consists of a collision in O(salt‖j ‖Coll‖·) or O(salt‖j ‖Com‖·)
for some j ∈ [M]. Hence, with all but probability Q2/22λ, OnlineExtract succeeds
in extracting a witness W = (I, s, r) as desired, conditioned on all the inputbase
included in the queried proof are valid. Collecting the bounds, we arrive at our
statement.

7 Instantiations

We instantiate the building blocks required for our generic construction of an
accountable ring signature scheme presented in Sect. 3 via isogenies based on
CSIDH group action and lattices. Specifically, we instantiate a group-action-
based HIG and PKE, and the corresponding NIZKs for the relations Rsig and
Ropen from the CSIDH group action and the MLWE group action. We use well-
known PKEs based on isogenies and lattices as the basis for the group-action-
based PKE. Due to page limitation, the details are provided in the full version
of this paper.

We finish by providing details on how we arrive at the concrete parameters
presented in Table 1. For our isogeny based instantiation, we chose an HIG and a
PKE based on the CSIDH-512 group action. The structure of this class group has
been computed, which allows for more efficient proofs. We chose the challenge
space as string of length M = 855 with Hamming weight K = 19. Most of the
signature is independent of N , and contains a fixed number of curves and class
group elements as well as some overhead from the generic construction such as
a hash value, the internal nodes in the seed tree, and commitment randomness
to open the commitments. The only reason the signature size increases with N
is that the signature contains a fixed amount of paths in a Merkle tree of depth
log2 N . This makes for a very mild dependence on N .

For the lattice based instantiations, we use M = 1749,K = 16. Our HIG
is based on the NIST security level 2 parameter set from the (Round 3) NIST
submission Dilithium. Our PKE uses the Lindner-Peikert framework, where we
are forced to use MLWE parameters with a large modulus (q ≈ 249) to achieve
the (R′,KR′)-correctness requirement. For the instantiation without manager
accountability, we only need (R′,KR)-correctness which allows us to use smaller
parameters (q ≈ 230). We use an optimization due to Bai and Galbraith to reduce
the size of the proofs (and therefore the size of the signature). Similar to the
isogeny instantiation, the signature size depends very mildly on N because N

122 W. Beullens et al.

only affects the length of some paths in the signature. For precise parameters
we refer to the full version of this paper. Finally, we can use Sect. 5.3 to obtain
a tightly secure scheme. Since K = 16, the overhead compared to the non-tight
scheme is a mere 512B.

Acknowledgements. Yi-Fu Lai was supported by the Ministry for Business, Inno-
vation and Employment in New Zealand. Shuichi Katsumata was supported by JST
CREST Grant Number JPMJCR19F6, Japan. This work was supported by CyberSecu-
rity Research Flanders with reference number VR20192203, and in part by the Research
Council KU Leuven grant C14/18/067 on Cryptanalysis of post-quantum cryptogra-
phy. Ward Beullens is funded by FWO Junior Postdoc- toral Fellowship 1S95620N.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

2. Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice com-
mitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12171, pp. 470–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56880-1 17

3. Backes, M., Hanzlik, L., Schneider-Bensch, J.: Membership privacy for fully
dynamic group signatures. In: ACM CCS 2019, pp. 2181–2198 (2019)

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

6. Bernhard, D., Fischlin, M., Warinschi, B.: Adaptive proofs of knowledge in the
random oracle model. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 629–649.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 28

7. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

8. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

9. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15317-4 24

10. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-662-46447-2_28
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3

Group Signatures and More from Isogenies and Lattices 123

11. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

12. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

13. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 7

14. Boschini, C., Camenisch, J., Neven, G.: Floppy-sized group signatures from lattices.
In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 163–182.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 9

15. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
CCS 2004, pp. 132–145 (2004)

16. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. In: Proceedings of the 2007 ACM Workshop
on Privacy in Electronic Society, pp. 21–30 (2007)

17. Camenisch, J.: Efficient and generalized group signatures. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-69053-0 32

18. Camenisch, J., Damg̊ard, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 25

19. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 8

20. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

21. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

22. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

23. Clarisse, R., Sanders, O.: Group signature without random oracles from randomiz-
able signatures. In: Nguyen, K., Wu, W., Lam, K.Y., Wang, H. (eds.) ProvSec 2020.
LNCS, vol. 12505, pp. 3–23. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-62576-4 1

24. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

25. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and
zero-knowledge proofs of automorphism stability. In: ACM CCS 2018, pp. 574–591
(2018)

https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-319-93387-0_9
https://doi.org/10.1007/3-540-69053-0_32
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-030-62576-4_1
https://doi.org/10.1007/978-3-030-62576-4_1
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717

124 W. Beullens et al.

26. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006). https://doi.org/10.1007/11958239 13

27. Derler, D., Slamanig, D.: Highly-efficient fully-anonymous dynamic group signa-
tures. In: ASIACCS 2018, pp. 551–565 (2018)

28. El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: efficient signature
scheme with tight reduction to decisional CSIDH-512. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 157–186.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 6

29. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new
techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64834-3 9

30. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

31. Esgin, M.F., Steinfeld, R., Zhao, R.K.: Matrict+: more efficient post-quantum
private blockchain payments. Cryptology ePrint Archive, Report 2021/545

32. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient,
scalable and post-quantum blockchain confidential transactions protocol. In: ACM
CCS 2019, pp. 567–584 (2019)

33. Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: A provably secure group
signature scheme from code-based assumptions. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 260–285. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 12

34. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

35. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 10

36. Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-OR proofs. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 212–244.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 8

37. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

38. Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89(5), 1328–1338 (2006)

39. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 23

40. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-76900-2 10

41. Katsumata, S., Yamada, S.: Group signatures without NIZK: from lattices in the
standard model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 312–344. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 11

https://doi.org/10.1007/11958239_13
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-662-48797-6_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-030-45727-3_8
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-030-17659-4_11
https://doi.org/10.1007/978-3-030-17659-4_11

Group Signatures and More from Isogenies and Lattices 125

42. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: ACM CCS 2018, pp. 525–537 (2018)

43. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: ACM CCS 2003, pp. 155–164 (2003)

44. Kumawat, S., Paul, S.: A new constant-size accountable ring signature scheme
without random oracles. In: Chen, X., Lin, D., Yung, M. (eds.) Inscrypt 2017.
LNCS, vol. 10726, pp. 157–179. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-75160-3 11

45. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 3

46. Lai, R.W.F., Zhang, T., Chow, S.S.M., Schröder, D.: Efficient sanitizable signatures
without random oracles. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows,
C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 363–380. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45744-4 18

47. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

48. Libert, B., Mouhartem, F., Peters, T., Yung, M.: Practical “signatures with efficient
protocols” from simple assumptions. In: ASIACCS 2016, pp. 511–522 (2016)

49. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving
signatures: standard model security from simple assumptions. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48000-7 15

50. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lat-
tices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 58–88.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 3

51. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Practical lattice-based zero-knowledge
proofs for integer relations. In: ACM CCS 2020, pp. 1051–1070 (2020)

52. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: SMILE: set membership from ideal lat-
tices with applications to ring signatures and confidential transactions. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 611–640. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84245-1 21

53. Peikert, C.: He gives C-Sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 16

54. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

55. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

56. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

https://doi.org/10.1007/978-3-319-75160-3_11
https://doi.org/10.1007/978-3-319-75160-3_11
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-319-45744-4_18
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/978-3-319-76581-5_3
https://doi.org/10.1007/978-3-030-84245-1_21
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25

126 W. Beullens et al.

57. Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In:
Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) CARDIS
2004. IIFIP, vol. 153, pp. 271–286. Springer, Boston (2004). https://doi.org/10.
1007/1-4020-8147-2 18

58. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/1-4020-8147-2_18
https://doi.org/10.1007/1-4020-8147-2_18
https://doi.org/10.1007/978-3-030-26948-7_6

Asymmetric PAKE with Low
Computation and communication

Bruno Freitas Dos Santos1, Yanqi Gu1, Stanislaw Jarecki1(B),
and Hugo Krawczyk2

1 University of California, Irvine, USA
{brunof,yanqig1,sjarecki}@uci.edu

2 Algorand Foundation, New York, USA

Abstract. In Crypto’21 Gu, Jarecki, and Krawczyk [25] showed an
asymmetric password authenticated key exchange protocol (aPAKE)
whose computational cost matches (symmetric) password authenticated
key exchange (PAKE) and plain (i.e. unauthenticated) key exchange
(KE). However, this minimal-cost aPAKE did not match prior aPAKE’s
in round complexity, using 4 rounds assuming the client initiates com-
pared to 2 rounds in an aPAKE of Bradley et al. [13].

In this paper we show two aPAKE protocols (but not strong aPAKEs
like [13,30]), which achieve optimal computational cost and optimal
round complexity. Our protocols can be seen as variants of the Encrypted
Key Exchange (EKE) compiler of Bellovin and Merritt [7], which cre-
ates password-authenticated key exchange by password-encrypting mes-
sages in a key exchange protocol. Whereas Bellovin and Merritt used
this method to construct a PAKE by applying password-encryption to
KE messages, we construct an aPAKE by password-encrypting messages
of a unilaterally authenticated Key Exchange (ua-KE). We present two
versions of this compiler. The first uses salted password hash and takes
2 rounds if the server initiates. The second uses unsalted password hash
and takes a single simultaneous flow, thus simultaneously matching the
minimal computational cost and the minimal round complexity of PAKE
and KE.

We analyze our aPAKE protocols assuming an Ideal Cipher (IC) on a
group, and we analyze them as modular constructions from ua-KE real-
ized via a universally composable Authenticated Key Exchange where
the server uses one-time keys (otk-AKE). We also show that one-pass
variants of 3DH and HMQV securely realize otk-AKE in the ROM. Inter-
estingly, the two resulting concrete aPAKE’s use the exact same protocol
messages as variants of EKE, and the only difference between the sym-
metric PAKE (EKE) and asymmetric PAKE (our protocols) is in the
key derivation equation.

1 Introduction

Password authenticated key exchange (PAKE) lets two parties establish a secure
shared session key if and only if they hold the same (possibly low-entropy) pass-
word. The asymmetric password authenticated key exchange protocols (aPAKE)
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 127–156, 2022.
https://doi.org/10.1007/978-3-031-07085-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_5

128 B. F. Dos Santos et al.

is a client-server variant of such protocol where the input to the server party is
a one-way function of the password, a.k.a., a password hash, and the protocol
establishes a shared key iff the client’s input is a preimage of the server’s input.
Both PAKE’s and aPAKE’s have been extensively studied in the crypto lit-
erature, starting from respectively [7] and [29], but recently there has been a
renewed interest in aPAKE’s due to the weaknesses of current password authen-
tication methods and to the ongoing PAKE standardization effort of the Internet
Engineering Task Force [39]. Perhaps the most striking vulnerabilities of the cur-
rent PKI-based “password-over-TLS” authentication practice, where the client
sends its password over a TLS connection to the server, are that it enables
phishing attacks against clients who establish a TLS connection with the wrong
party, and that it discloses password cleartexts on the server, exposing them to
server-side attacks. (To see why the latter might be a problem consider that even
security-conscious companies were known to accidentally store large quantities
of plaintext passwords [1,2]).

The recent work of Gu, Jarecki, and Krawczyk [25] considered minimal-cost
aPAKE’s, and they showed an aPAKE protocol KHAPE which nearly matches
the computational cost of unauthenticated key exchange (KE), namely Diffie-
Hellman (uDH), which is 1fb+1vb exp per party (i.e., 1 fixed-base and 1 variable-
base exponentiation). The KE cost is a lower-bound for both PAKE and aPAKE
because aPAKE ⇒ PAKE ⇒ KE. However, the minimal-cost aPAKE proto-
col of [25] is not close to KE in round complexity. Indeed, the aPAKE of [25]
takes 3 rounds assuming the server initiates the protocol, while uDH takes a
single simultaneous flow, where each party sends a single protocol message with-
out waiting for the counterparty. Note that this minimal round complexity is
achieved by minimal-cost universally composable (UC) PAKE’s, including EKE
[6,7,37], SPAKE2 [3,4], and TBPEKE [3,38].1

Our Contributions. We show that cost-optimal aPAKE does not have to
come at the expense of round complexity. We do so with two new aPAKE
constructions, called OKAPE and aEKE, which are generic compilers that con-
struct aPAKE’s from any key-hiding one-time-key Authenticated Key Exchange
(otkAKE). Both constructions use the Random Oracle Model (ROM) and an
Ideal Cipher (IC) on message spaces formed by otkAKE public keys, and in the
case of aEKE also on the space(s) of otkAKE protocol messages. We define the
notion of key-hiding otkAKE as a relaxation of the UC key-hiding AKE of [25],
and we show that it is realized by “one-pass” variants of 3DH and HMQV which
were shown as UC key-hiding AKEs in [25].

The two compilers instantiated with one-pass HMQV produce two concrete
aPAKE schemes which we call OKAPE-HMQV and aEKE-HMQV. Both protocols
have close to optimal computational cost of 1fb+1vb exp for the client and
1fb+1mvb exp for the server, where mvb stands for multi-exponentiation with
two bases. Moreover, protocol aEKE-HMQV needs only a single simultaneous flow

1 Abdalla et al. [3] show that SPAKE2 [4] and TBPEKE [38] realize a relaxed version
of the UC PAKE functionality of Canetti et al. [15].

Asymmetric PAKE with Low Computation and Communication 129

of communication, hence aEKE-HMQV matches the lowest cost KE and PAKE
protocols in both computation and round complexity.

Protocol OKAPE requires 2 communication rounds if the server initiates the
protocol, and 3 if the client does. However, protocol aEKE uses unsalted password
hashes, whereas OKAPE supports (publicly) salted password hashes, which have
several security and operational benefits over unsalted ones (see Note 1 below).
Note that every aPAKE can be generically transformed to support a publicly
salted hash if the server first sends the salt to the client and the two parties
run aPAKE on the password appended by the salt. However, among prior UC
aPAKE’s that use unsalted password hashes [24,28,32,41], only the aPAKE of
Jutla and Roy [32] and Hwang et al. [28] match the round complexity of OKAPE-
HMQV after this transformation, but they do not match its computational cost:
The PAKE-to-aPAKE compiler of [28] instantiatied with a minimal-cost PAKE
has a total computational cost of 3fb+3vb exps, i.e. 50% more than uDH, while
the aPAKE of [32] is significantly more expensive, in particular because it uses
bilinear maps. This generic transformation can also be applied to aEKE-HMQV,
and the resulting protocol would match both the rounds and exponentiation
count of OKAPE-HMQV, but OKAPE-HMQV uses only one ideal cipher operation
per party whereas aEKE-HMQV uses two, hence the latter is preferable if the
cost of IC on a group is not negligible.

The only prior UC aPAKE’s that natively support salted hashes with 3 or
fewer communication rounds is the 3-round protocol OPAQUE of Jarecki et
al. [30,31] and the 2-round CKEM-based protocol of Bradley et al. [13]. Both
of these protocols have at least 2 times higher computational costs than uDH.
However, both [30] and [13] provide strong aPAKEs (saPAKE), where the salt
in the password hash is private, whereas OKAPE supports publicly salted hash
and aEKE supports only unsalted hash, see Note 1 below.

In Table 1 we compare efficiency and security properties of prior UC aPAKE’s
and the concrete protocols we propose. Note that all schemes which achieve
explicit authentication for only one party can also achieve it for the other using
one additional key confirmation flow. Note also that any single-flow aPAKE can
be transformed so it achieves explicit authentication for both parties in 3 flows,
regardless of which party starts. In the table we do not include aPAKE schemes
which were not proven in UC models so far, including VPAKE [8] or PAK-X
[12], but both schemes are slightly costlier than e.g. KC-SPAKE2+ [41], see e.g.
[13] for exact cost comparisons.

Main Idea: Encrypted Key Exchange Paradigm for aPAKE. Our pro-
tocols are compilers which build aPAKE’s from any key-hiding otkAKE, i.e. an
AKE where one party uses a one-time key. In both protocols server S picks a
one-time public key pair (b,B) and sends the public key B encrypted under a
password hash h to client C, who decrypts it under a hash of its password pw .
C also has a long-term private key a derived as a password hash as well, i.e.
(h, a) = H(pw), and S holds the corresponding public key A together with h in
the password file for this client. The two parties then run a key-hiding otkAKE
on respective inputs (a,B) and (b,A), but here the two compilers diverge: In

130 B. F. Dos Santos et al.

Table 1. Comparison of UC aPAKE schemes, with our schemes marked [∗]:
(1) f, v denote resp. fixed-base and variable-base exponentiation, two-base multi-
exponentiation is counted as 1.2v, O(1) stands for significantly larger costs including
bilinear maps; (2) x(C) and x(S) denote x rounds if respectively client starts or server
starts, while “1” denotes a single-flow protocol; (3) EA column lists the parties that
explicitly authenticate their counterparty at protocol termination. OPAQUE-HMQV
appeared in [30], but above we give optimized performances characteristics due to [31].

scheme client(1) server(1) rounds(2) salting EA(3) assump. model

aEKE-HMQV [∗] 1f+1.2v 1f+1.2v 1 none none gapDH RO/IC

Jutla-Roy [32] O(1) O(1) 1 none none XDH RO

KC-SPAKE2+ [41] 2f+2v 2f+2v 3(C) none C+S CDH RO

OKAPE-HMQV [∗] 1f+1.2v 1f+1.2v 2(S) public S gapDH RO/IC

Hwang [28] +EKE [7] 2f+1v 1f+2.2v 2(S) public S CDH RO/IC

KHAPE-HMQV [25] 1f+1.2v 1f+1.2v 3(S) public C+S gapDH RO/IC

CKEM-saPAKE [13] 10f+1v 2f+2v 2(C) private C sDH, DDH RO

OPAQUE-HMQV [31] 2f+2.2v 1f+2.2v 3(C) private C+S OM-DH RO

OKAPE the otkAKE subprotocol is executed in a black-box way, and it is fol-
lowed by explicit key confirmation message from C to S, whereas in aEKE each
otkAKE subprotocol message is encrypted under the password hash by its sender
and decrypted under the password hash by its receiver, and no key confirmation
message is needed for security. The protocols are shown secure if password-
encryption is implemented with an Ideal Cipher on the appropriate message
domain, which consists of one-time public keys and/or protocol messages of the
underlying otkAKE. Finally, the aEKE compiler requires the key-hiding otkAKE
to satisfy a random transcript property, i.e. that protocol messages are indistin-
guishable from uniform over their message spaces.

Note that in both protocols S and C start on resp. inputs A and a and run
the following subprotocol: (1) S picks a one-time key pair (b,B) and sends B
to C, and (2) the two run otkAKE on resp. (a,B) and (b,A). This subprotocol
forms an Authenticated Key Exchange with unilateral authentication (ua-KE),
where C is authenticated to S but not vice versa. Viewed in this way, protocol
aEKE can be seen as an application of the same paradigm as the Encrypted
Key Exchange (EKE) of Bellovin and Merritt [7]. EKE is a compiler which
constructs a (symmetric) PAKE from any random-transcript KE: Each party
runs the underlying KE but encrypts protocol messages using a password as a
key. This creates a UC PAKE if the encryption is an IC on the KE protocol
message space [6,37]. Protocol aEKE utilizes the exact same methodology of IC-
encryption of KE protocol messages with a password (or its hash), but applied
to ua-KE instead of KE, and we show that this creates a UC asymmetric PAKE.

If an EKE is applied to a single simultaneous flow, i.e. 1-round, KE like uDH,
it creates 1-round PAKE. In the same way our aEKE compiler creates 1-round
aPAKE given a 1-round ua-KE. On the other hand, if EKE instantiated with
uDH is executed sequentially then the responder party can send its DH message
without IC-encrypting it under the password if it attaches a key confirmation

Asymmetric PAKE with Low Computation and Communication 131

message the response [6,7]. The same trade-off is done by OKAPE compared to
aEKE: OKAPE forgoes on IC-encryption of C’s ua-KE message but requires C to
send a key confirmation message instead.

C(pw) S(pw)
h ← H(pw) h ← H(pw)

IC.Eh(gx) IC.Eh(gb)

k = gxb

(a) EKE.v1: simultaneous flow

C(pw) S(h,A)
(h, a) ← H(pw) [A = ga]

IC.Eh(gx) IC.Eh(gb)

k = g(x+d·a)b for d = H (trans)

(b) aEKE-HMQV

C(pw) S(pw)
h ← H(pw) h ← H(pw)

IC.Eh(gb)
gx, prf(k , 1)

k = gxb

(c) EKE.v2: sequential, with initiator S

C(pw) S(h,A)
(h, a) ← H(pw) [A = ga]

IC.Eh(gb)
gx, prf(k , 1)

k = g(x+d·a)b for d = H (trans)

(d) OKAPE-HMQV

Fig. 1. Symmetric PAKE: EKE (a, c) vs. our asymmetric PAKE’s (b, d) (Color figure
online)

These parallels are easy to see if the one-pass HMQV instantiations of aEKE
and OKAPE are put side-by-side the two variants of EKE instantiated with
uDH as KE, see Fig. 1.2 Since both EKE and our protocols are compilers, resp.
from KE and ua-KE, we highlight the underlying uDH instantiation of KE and
the one-pass HMQV instantiation of ua-KE in these figures in blue. The choice
of variable names gx and gb in the Diffie-Hellman key agreement comes from
one-pass HMQV, where ga and gb are resp. the permanent public key of C
and the one-time public key of S, while gx is the Diffie-Hellman contribution of
C. Intuitively, a corresponding gy contribution of S is not needed because the
ephemeral key gb already plays this role.

The security of our aPAKEs holds for essentially the same reasons as the
security of EKE: (1) security against passive attackers holds regardless of pw by
the passive security of the underlying (ua-)KE; (2) if encryption is an ideal cipher
then any ciphertext sent by an attacker to C decrypts to a random group element
B ′ = gb

′
on all passwords except the one used by an attacker in encryption, so

an attack on such sessions would be an attack on a passively observed otkAKE
instance; (3) the attacker can encrypt a chosen gb value under a single password,
but in the IC model the simulator can observe this and extract a unique password
2 Actual protocols diverge from Fig. 1 in some technicalities, e.g. session key deriva-

tion uses a hash of k , but crucially H inputs include a salt in OKAPE-HMQV and
server/user identifiers in aEKE-HMQV: We come back to this last point below.

132 B. F. Dos Santos et al.

guess which the attacker tests in such protocol instance; (4) same arguments work
regarding attacks on S in aEKE, while in OKAPE the client’s key confirmation
message commits the attacker to a session key, which implies a single input pair
(a,B) for which this session key is correct, which in turn commits to a single
password from which (a,B) are derived.

Although our protocols can be seen as applications of EKE compiler to
ua-KE, we analyze them as compilers from otkAKE for several reasons: First,
otkAKE is a simpler notion which can be realized with a single protocol flow;
Second, otkAKE yields ua-KE (see above) while the converse is not clear; Third,
setting the boundary around otkAKE lets us treat it as a black box in OKAPE
compiler, because S’s one time key gb , which is the only part that OKAPE wraps
using IC encryption is an input to otkAKE, and not its protocol message. In
aEKE the otkAKE subprotocol is not used as a black-box, because its protocol
messages are IC-encrypted, and this compiler is secure only if otkAKE has a
random-transcript property. We prove aEKE secure only for otkAKE realized
with a single-flow protocol, which includes both our otkAKE instantiations, i.e.
one-pass 3DH and HMQV. Although we believe that this compiler works for
multi-round protocols as well, we show it only for single-round otkAKE to limit
the complexities in the security argument, which arise from the non-black-box
use of otkAKE in this compiler.

Similarities to OPAQUE and KHAPE. Our protocols are also closely
related to saPAKE protocol OPAQUE [30] and aPAKE protocol KHAPE [25].
Both of these protocols were compilers from AKE (the OPAQUE protocol in
addition uses an Oblivious PRF), where passwords are used to encrypt the
client’s private key a and the server’s public key B , the corresponding keys
A and b are held in a password file held by S for this client C, and the key
establishment comes from AKE run on these inputs. Protocol KHAPE can be
seen as a variant of OPAQUE without the Oblivious PRF. In that case security
degrades from saPAKE to aPAKE, but the resulting aPAKE can have minimal
cost (i.e. ≈ KE) if C’s AKE inputs (a,B) are delivered from S to C in an enve-
lope, IC-encrypted under the password, and if the AKE protocol is key-hiding,
i.e. even an active attacker cannot tell what keys (skP, pkCP) an attacked party
P assumes except if the attacker knows the corresponding pair (pkP, skCP). The
reason the KHAPE compiler needs the key-hiding property of AKE is to avoid
off-line attacks, because if each password decrypts the envelope sent to the client
into some pair (a ′,B ′), there must be no way to test which pair corresponds to
either the client or the server keys unless via an active attack which tests at
most one of these choices.

Our compilers OKAPE and aEKE are refinements of the KHAPE compiler:
First, instead of permanent envelope in the password file that encrypts (and
authenticates) a permanent server public key gb , we ask the server to create one-
time key per each execution, and IC-encrypt it under a password hash stored in
the password file. Replacing key-hiding AKE with key-hiding one-time-key AKE
reduces complexity because it can be instantiated with a single C-to-S message.
In addition, the IC encryption with subsequent otkAKE together implement

Asymmetric PAKE with Low Computation and Communication 133

implicit S-to-C authentication: If the attacker does not encrypt B = gb under
C’s password then C will decrypt it into a random key B ′ = gb

′
, for which

the attacker cannot compute the corresponding session key because it does not
know b′. This lets us eliminate the S-to-C key confirmation message in KHAPE
and leads to OKAPE. If in addition C’s AKE message is IC-encrypted under a
password hash then we eliminate also the C-to-S key confirmation message in
KHAPE and we get the aEKE protocol, an aPAKE which is non-interactive and
has optimal computation cost.

Note 1: Salted and Unsalted Password Hashes vs. Round Complexity.
The UC aPAKE model of Gentry et al. [24] does not enforce salting of pass-
word hashes, which allows their precomputation and an immediate look-up once
the server storage is breached. By contrast, Jarecki et al. [30] proposed a UC
strong aPAKE model (saPAKE), where each password file includes a random
and private salt value s, and the password hash involves this salt and cannot be
precomputed without it. Our protocols aEKE and OKAPE are just aPAKEs, not
saPAKEs, but they can support public salting of the password hash, which has
security advantages over unsalted hash. Looking more closely, the aPAKE model
of [24] enforces that a single real-world offline dictionary attack test corresponds
not only to a single password guess pw∗ but also a single tuple (S, uid) where S is
an identifier of a server S and uid is a userID with which S associates a password
file. (This can be seen in command (OfflineTestPwd,S, uid, pw∗) to the aPAKE
functionality of [24], included in Fig. 9 in Sect. A.) This means that a password
hash in UC aPAKE, at least as defined by [24], cannot be implemented e.g.
simply as h = H(pw) but in the very least as h = H(S, uid, pw), so that a single
H computation corresponds to a single password guess pw and a single account
(S, uid). This is indeed how we implement the RO hash in protocol aEKE, see
Sect. 4.

However, such implementation has some negative implications, stemming
from the fact that C has to know values (S, uid) in the protocol. (This is reflected
in the aPAKE functionality realized by protocol aEKE, see Appendix A.) Tying
such application-layer values in a cryptographic protocol can be problematic. For
example, in some applications it might be fine to equate S with e.g. the server’s
domain name, but it would be then impossible to modify it, since all users
would have to reinitialize and recompute their password hashes. An alternative
generic implementation is to use (semi) public salts as follows: S can associate
each uid account with a random salt s, set the password hash as h = H(pw |s),
attach s in the first S-to-C aPAKE message, and the two parties can then run an
unsalted aPAKE on a modified password pw ′ = pw |s. Since each s is associated
with a unique (S, uid) pair, each H computation still corresponds to a unique
(S, uid, pw) tuple, but C does not need values (S, uid) within the aPAKE protocol,
and password hashes do not have to change with changes to identifiers S or uid.
Moreover, if the aPAKE protocol runs over a TLS connection then an adversary
can find s only via an online interaction with S, and it needs to know the user
ID string uid for S to retrieve the uid-indexed password file and send s out. Even

134 B. F. Dos Santos et al.

better, if clients update the (s, h) values at each login, then value s the adversary
compromises for some user will be obsolete after that user authenticates to S.

However, this implementation requires interaction. Since S sends the first
message in OKAPE, attaching s to S’s message does not influence the round
complexity of OKAPE, and this is indeed how we implement password hashes in
that protocol, see Sect. 3. Every unsalted aPAKE can be transformed to publicly
salted in this way, but for many aPAKEs, including aEKE, this would imply
additional communication rounds.

Note 2: Implicit and Explicit Authentication vs. Round Complexity.
Note that our round-minimal aPAKE protocol aEKE does not have explicit entity
authentication, i.e. each party computes a key and the security implies that only
a party with proper credentials can compute that key as well, but they do not
get a confirmation that their counterparty can compute the same key and thus
is indeed the party they meant to establish a connection with. Key confirmation
can be added to any KE protocol, but it adds a round of communication. Like-
wise, our three-round (if C initializes) aPAKE protocol OKAPE has only C-to-S
entity authentication, and adding S-to-C entity authentication would make it a
four-round protocol. Therefore the round-reduction advantage of OKAPE over
protocol KHAPE of [25] will benefit only those applications where C can use the
session key without waiting for S’s key confirmation message.

Note 3: Current Costs of Ideal Cipher on Groups. Just like EKE [6,7],
our protocols rely on an ideal cipher on group elements. Implementing an ideal
cipher on elliptic curve groups, which are of most interest for current aPAKE
proposals, is non-trivial and current techniques for implementing them incur
non-negligible costs in computation and sometimes in bandwidth expansion as
well. We discuss several implementation options for group IC in Sect. 6, but to
give an example, using the Elligator2 method [9] each IC operation can cost
≈10–15% of 1vb exp and it requires resampling of the encrypted random group
element with probability 1/2. Thus we can estimate the total computational
cost of OKAPE-HMQV with this IC implementation as (expected) 2fb+1.15vb
for S and 1fb+1.15vb for C, and of aEKE-HMQV as 2fb+1.30vb per each party.
However, the overhead of IC might be significantly smaller in the case of other
settings of interest, like lattice cryptosystems.

Organization. In Sect. 2, we define key-hiding one-time-key AKE as a UC
notion, and we show that 2DH and one-pass HMQV both securely realize this
notion under the Gap DH assumption in ROM. In Sect. 3 and Sect. 4, we show
our two compilers from otkAKE to asymmetric PAKE, namely OKAPE and
aEKE. In Sect. 5 we describe two concrete aPAKE protocol proposals, OKAPE-
HMQV and aEKE-HMQV, which instantiate OKAPE and aEKE with one-pass
HMQV as the otkAKE. In Sect. 6 we discuss possible implementation choices of
an ideal cipher encryption on elliptic curve groups. Finally, in Appendix A we
include our definition(s) of the UC aPAKE model, and in Appendix B we include
the overview of the security proof for protocol OKAPE. For space constraint

Asymmetric PAKE with Low Computation and Communication 135

reasons we defer all security proofs to the full version [23], including an extension
which instantiates otkAKE based on SKEME [34], which allows for aPAKE
construction based solely on KEM.

2 Key-Hiding One-Time-Key AKE

We define key-hiding one-time-key Authenticated Key Exchange (otkAKE), as
an asymmetric variant of the universally composable key-hiding AKE defined in
[25]. We denote the otkAKE functionality FotkAKE and we include it in Fig. 2. An
AKE functionality allows parties to generate public key pairs (this is modeled
by environment query Init to the functionality). These keys can be compromised,
modeled by adversarial query Compromise. However, this is the key difference
between our (key-hiding) otkAKE functionality and the (key-hiding) AKE func-
tionality of [25], here we distinguish two types of keys, the long-term keys which
can be compromised by the adversary, and the ephemeral keys which cannot. We
arbitrarily call the first type “client keys” and the second “server keys” because
this is how we will use an otkAKE protocol in the context of our otkAKE-to-
aPAKE compilers in Sect. 3 and 4, i.e. clients will use long-term keys and servers
will use ephemeral keys in both of these applications of otkAKE.

As in [25], any party P holding a key pair indexed by the public key pkP,
whether a long-term one or an ephemeral one, can start a session using such
key, and using also some key pkCP as the public key of the counterparty that
P expends on this session. This is modeled by the environment’s command
(NewSession, sid,CP, role, pkP, pkCP) to P, where sid is the unique session identi-
fier, CP is the supposed identifier of the counterparty, and role is either cl or sr,
defining if P is supposed to run the long-term-key party or the ephemeral-key
party. (As we can see below, the protocols realizing this functionality can be
asymmetric, so parties act differently based on that role bit). As in [25], the
functionality marks this session as initially fresh, creates an appropriate session
record and picks a random function Rsid

P (whose meaning we will explain shortly).
Crucially the functionality only sends (NewSession, sid,P,CP, role) to the adver-
sary, i.e. the adversary only learns which party P wants to authenticate, which
party CP they intend to communicate with, what session identifier sid they use,
and whether they play the client and the server role, but the adversary does
not learn the keys this party uses, neither their own key pkP nor the key pkCP

this party expects of its counterparty. This, exactly as in [25], models the key-
hiding property of the AKE’s which are required in our AKE-to-aPAKE compiler
constructions.

Next, if an adversary actively attacks session Psid, as opposed to passively
observing its interaction with some other session CPsid, this is modeled by
the adversarial query Interfere, and its effect is that session Psid is marked as
interfered. The consequence of this marking comes in when the session termi-
nates (i.e. if the adversary delivers all messages this party expects) and outputs

136 B. F. Dos Santos et al.

PK stores all public keys created in Init; CPK stores all compromised keys;
PK cl

P stores P’s permanent public keys; PK sr
P stores P’s ephemeral public keys;

Keys: Initialization and Attacks

On (Init, role) from P:

If role ∈ {cl, sr} send (Init, P, role) to A, let A specify pk s.t. pk PK , add pk to
PK and PK role

P , and output (Init, pk) to P. If P is corrupt then add pk to CPK .

On (Compromise, P, pk) from A: [this query must be approved by the environment]

If pk ∈ PK cl
P then add pk to CPK .

Login Sessions: Initialization and Attacks

On (NewSession, sid, CP, role, pkP, pkCP) from P:

If pkP ∈ PK role
P and there is no prior session record sid, P, ·, ·, ·, ·, then:

– create session record sid, P, CP, pkP, pkCP, role, marked fresh;
– if role = cl and pkCP PK sr

CP then re-label this record as interfered;
– initialize random function Rsid

P : {0, 1}3 → {0, 1}κ;
– send (NewSession, sid, P, CP, role) to A.

On (Interfere, sid, P) from A:

If there is session sid, P, ·, ·, ·, ·, marked fresh then change it to interfered.

Login Sessions: Key Establishment

On (NewKey, sid, P, α) from A:

If ∃ session record rec = sid, P, CP, pkP, pkCP, role, then:

– if rec is marked fresh: If ∃ record sid, CP, P, pkCP, pkP, role , k marked fresh
s.t. role = role and k = ⊥ then set k ← k , else pick k ←R {0, 1}κ;

– if rec is marked interfered then set k ← Rsid
P (pkP, pkCP, α);

– update rec to sid, P, CP, pkP, pkCP, role, k and output (NewKey, sid, k) to P.

Session-Key Query

On (SessionKey, sid, P, pk , pk , α) from A:

If ∃ record sid, P, ·, ·, ·, ·, and pk (PK \CPK) then send Rsid
P (pk , pk , α) to A.

Fig. 2. FotkAKE: functionality for key-hiding one-time key AKE

a key, which is modeled by adversarial query NewKey. Namely, if a session is
fresh, i.e. it was not actively attacked, then the functionality picks its output
session key k as a random string. In other words, this key is secure because
there is no interface which allows the adversary to get any information about it.
If the adversary passively connects two sessions, e.g. Psid and CPsid, by honestly
exchanging their messages, then FotkAKE will notice at the NewKey processing
that there are two sessions (P, sid,CP, pkP, pkCP, role) (CP, sid,P, pk ′

P, pk ′
CP, role′)

that run on matching keys, i.e. pkCP = pk ′
P and pk ′

CP = pkP, and complementary

Asymmetric PAKE with Low Computation and Communication 137

roles, i.e. role �= role′, then FotkAKE sets the key of the session that terminates
last as a copy of the one that terminated first. This is indeed as it should be:
If two parties run AKE on matching inputs and keys and their messages are
delivered without interference they should output the same key.

However, if session Psid has been actively attacked, hence it is marked
interfered, the session key k output by Psid is determined by the random func-
tion Rsid

P . Specifically, the key will be assigned as the value of Rsid
P on a tuple

of three inputs: (1) P’s own key pkP, (2) the counterparty’s key pkCP which P
assumes, and (3) the protocol transcript α which w.l.o.g. is determined by the
adversary on this session. This is a non-standard way of modeling KE func-
tionalities, but it suffices for our applications and it allows for inexpensive and
communication-minimal implementations as we exhibit with protocols 2DH and
one-pass HMQV below. The intuition is that this assures that for any protocol
transcript the adversary chooses, each key pair (pkP, pkCP) which P can use cor-
responds to an independent session key output of P. Some of these keys can be
computed by the adversary via interface SessionKey: The adversary can use it
to compute the key P would output on a given transcript α and a given pair
(pkP, pkCP) = (pk , pk ′) but only if pk ′ is either compromised or it is an adversar-
ial key, hence w.l.o.g. we assume the adversary knows the corresponding secret
key.

Here is also where our key-hiding one-time-key AKE diverges from the key-
hiding AKE notion of [25]: If session Psid runs with a client-role then its session
key output is guaranteed secure if their assumed counterparty’s key pkCP is
indeed an ephemeral key of the intended counterparty. Since such keys cannot
be compromised, a SessionKey query with pk ′ = pkCP will fail the criterion that
pk ′ is compromised or adversarial, hence the adversary has no interface to learn
P’s output session key. However, if the environment (i.e. the higher-level appli-
cation, like either of our compilers, which utilizes the otkAKE subprotocol) asks
Psid to run on pkCP which is not an ephemeral key of the intended counter-
party then FotkAKE treats such session as automatically attacked, and marks it
interfered. Such session’s output key will be computed as k ← Rsid

P (pkP, pkCP, α),
and whether or not the adversary can recompute this key via the SessionKey
interface depends on whether this (potentially non-ephemeral) key pkCP is com-
promised or adversarial.

The security of our otkAKE protocols, 2DH and one-pass HMQV, are based
on hardness of Gap CDH problem. Recall that Gap CDH is defined as follows: Let
g generates a cyclic group G of prime order p. The Computational Diffie-Hellman
(CDH) assumption on G states that given (X,Y) = (gx, gy) for (x, y) ←R (Zp)2

it’s hard to find cdhg(X,Y) = gxy. The Gap CDH assumption states that CDH
is hard even if adversary has access to a Decisional Diffie-Hellman oracle ddhg,
which on input (A,B,C) returns 1 if C = cdhg(A,B) and 0 otherwise.

138 B. F. Dos Santos et al.

2.1 2DH as Key-Hiding One-Time-Key AKE

We show that key-hiding one-time-key AKE can be instantiated with a “one-
pass” variant of the 3DH AKE protocol. 3DH is an implicitly authenticated key
exchange used as the basis of the X3DH protocol [36] that underlies the Signal
encrypted communication application. 3DH consists of a plain Diffie-Hellman
exchange which is authenticated by combining the ephemeral and long-term key
of both peers. Specifically, if (a,A) and (b,B) are the long-term key pairs of
two communicating parties C and S, and (x,X) and (y, Y) are their ephemeral
DH values, then 3DH computes the session key as a hash of the triple of Diffie-
Hellman values, (gxb , gay, gxy).

group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ

P1 on (Init, cl) P2 on (Init, sr)
a ←R Zp, A ← ga b ←R Zp , B ← gb

store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid, CP1, cl,A,B) P2 on (NewSession, sid, CP2, sr,B ,A)
retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x ←R Zp , X ← gx (abort if key B is not ephemeral)

X

σcl ← Bx Ba σsr ← Xb Ab

kcl ← H(sid, P1, CP1, X, σcl) ksr ← H(sid, CP2, P2, X, σsr)
output kcl output ksr

Fig. 3. otkAKE protocol 2DH

This protocol was shown to realize the key-hiding AKE functionality in [25],
and here we show that a one-pass version of this protocol, which we call 2DH,
realizes the key-hiding one-time-key AKE functionality FotkAKE defined above.
In this modified setting key (b,B) is a one-time key of party S, and hence it
can play a double-role as S authenticator and its ephemeral DH contribution.
Therefore the only additional ephemeral key needed is the (x,X) value provided
by C, and 2DH will compute the session key as a (hash of) the pair of DH values,
(gxb , gab). See Fig. 3 were we describe the 2DH protocol in more detail. In that
figure we assume that both C’s key (a,A) and S’s key (b,B) were created prior to
protocol execution, but we note that S’s key must be a one-time, i.e. ephemeral,
key, so in practice it should be created just before the protocol starts and erased
once the protocol executes.

We capture the security property of 2DH in the following theorem:

Asymmetric PAKE with Low Computation and Communication 139

Theorem 1. Protocol 2DH shown in Fig. 3 realizes functionality FotkAKE,
assuming that the Gap CDH assumption holds on group G and H is a random
oracle.

The proof of the above theorem is a close variant of the proof given in [25]
that 3DH realizes the key-hiding AKE functionality (where both parties use
permanent keys). For the reason of space constraints we include this proof in
the full version of the paper [23].

2.2 One-Pass HMQV as Key-Hiding One-Time-Key AKE

Similiarly to the case of 3DH, we show that a one-pass version of the HMQV pro-
tocol [26,35] realizes functionality FotkAKE under the same Gap CDH assumption
in ROM. HMQV is a significantly more efficient AKE protocol compared to 3DH
because it replaces 3 variable-base exponentiations with 1 multi-exponentiation
with two bases. Just like 3DH, HMQV involves both the ephemeral sessions
secrets (x, y) and the long-term keys (a, b), and computes session key using a
DH-like formula g(x+da)·(y+eb) where d and e are derived via an RO hash of the
ephemeral DH contributions, resp. X = gx and Y = gy.

group G of prime order p with generator g
hash functions H : {0, 1}∗ → {0, 1}κ, H : {0, 1}∗ → Zp

P1 on Init, cl P2 on Init, sr
a ←R Zp, A ← ga b ←R Zp , B ← gb

store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid, CP1, cl,A,B) P2 on (NewSession, sid, CP2, sr,B ,A)
retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x ←R Zp , X ← gx (abort if key B is not ephemeral)

X

dcl ← H (sid, P1, CP1, X) dsr ← H (sid, CP2, P2, X)
σcl ← Bx+dcl·a σsr ← (X · Adsr)b

kcl ← H(sid, P1, CP1, X, σcl) ksr ← H(sid, CP2, P2, X, σsr)
output kcl output ksr

Fig. 4. otkAKE protocol One-Pass HMQV

Gu et al. [25] showed that HMQV realizes the same key-hiding AKE function-
ality as 3DH, and here we show that a one-pass HMQV realizes the key-hiding
one-time-key AKE functionality FotkAKE. Just like in 2DH, in one-pass HMQV
pair (b,B) is a one-time key of party S, which effectively plays the role of both
server’s public key and its ephemeral DH contribution. Hence just as 2DH, the

140 B. F. Dos Santos et al.

only ephemeral DH contribution needed is pair (x,X) provided by C, and the
session key can be derived as g(x+a)·b . The full protocol is shown in Fig. 4. As
in 2DH we assume that the client and server keys are created before protocol
execution, but that the server’s key must be a one-time key which is used once
and erased afterwards.

We capture the security of one-pass HMQV in the following theorem:

Theorem 2. Protocol One-Pass HMQV shown in Fig 4 realizes FotkAKE if the
Gap CDH assumption holds on group G and H is a random oracle.

The proof of theorem 2 follows the template of the proof for the corresponding
theorem on 2DH security, i.e. Theorem 1. It is also a variant of the similar proof
shown in [25] which showed that the full HMQV realizes the permanent-key
variant of the key-hiding functionality FotkAKE defined therein. Because of space
constraints, we defer this proof to the full version of the paper [23].

3 Protocol OKAPE: Asymmetric PAKE Construction #1

In this section we show how any UC key-hiding one-time-key AKE protocol can
be converted into a UC aPAKE, with very small communication and computa-
tional overhead. We call this otkAKE-to-aPAKE compiler OKAPE, which stands
for One-time-Key Asymetric PakE, and we present it in Fig. 5. As we discussed
in the introduction, protocol OKAPE is similar to protocol KHAPE of [25] which
is a compiler that creates an aPAKE from any UC key-hiding AKE where both
parties use permanent keys. As in KHAPE, the password file which the server
S stores and the password which the client C enters into the protocol, allow
them to derive AKE inputs (a,B) for C and (b,A) for S, where (a,A) is effec-
tively a client’s password-authenticated public key pair and (b,B) is a server’s
password-authenticated public key pair, and the authenticated key agreement
then consists of executing a key-hiding AKE on the above inputs. (The AKE
must be key-hiding or otherwise an attacker could link the keys used by either
party to a password they used to derive them).

Protocol otkAKE follows the same general strategy but it differs from KHAPE
in (1) how these keys are derived from the client’s password and the server’s
password file, (2) in the type of key-hiding AKE it requires, and (3) whether or
not the AKE must be followed by key confirmation messages sent be both parties.
In KHAPE the server-side AKE inputs (b,A) were part of the server’s password
file, and the client-side AKE inputs (a,B) were password-encrypted using an
ideal cipher in an envelope e = IC.Epw (a,B) stored in the password file and sent
from S to C in each protocol instance. Finally, since both public keys were long-
term keys, the protocol required each party to send a key-confirmation message
and C needed to send its confirmation before S did or otherwise the protocol
would be subject to an offline dictionary attack. The first modification made
by OKAPE is that the client’s private key a is derived directly as a password
hash, and does not need to be encrypted in envelope e. Secondly, there is no
permanent server’s key (b,B). Instead S generates a one-time key pair (b,B) at

Asymmetric PAKE with Low Computation and Communication 141

Building blocks: (1) one-time-key Authenticated Key Exchange otkAKE; (2) ideal
cipher (IC∗.E, IC∗.D) on space PK of otkAKE public keys; (3) RO hash function
H : {0, 1}∗ → {0, 1}κ × {0, 1}κ; (4) pseudorandom function prf.

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S picks s ←R {0, 1}κ, sets (h, a) ← H(pw , s), S generates otkAKE public key A
corresponding to a, stores file[uid, S] ← (A, h, s), and discards all other values

C on (CltSession, sid, S, pw) S on (SvrSession, sid, C, uid)
(A, h, s) ← file[uid, S]

(h, a) ← H(pw , s) e = IC∗.E(h,B), s (b,B) ← Key.Gen
B ← IC∗.D(h, e)

(sid, S, cl, a,B) (sid, C, sr, b,A)

otkAKE
kcl ksr

τ ← prf(kcl, 1)
τ

Ksr ← ⊥ if τ = prf(ksr, 1)
Kcl ← prf(kcl, 0) else Ksr ← prf(ksr, 0)
output Kcl output Ksr

Fig. 5. Protocol OKAPE: compiler from key-hiding otkAKE to aPAKE

each protocol instance, and authenticates-and-encrypts its public key B under
a password by sending to C an envelope e = IC.Eh(B) where h is a password
hash stored in the password file. Since B is now a one-time key, we can replace
key-hiding AKE used in KHAPE with a key-hiding one-time-key AKE, which
as we saw in Sect. 2 can be realized with cheaper subprotocols.

More importantly, the IC-encryption of the one-time key B followed by com-
puting the otkAKE session key output by C given input B , implies implicit
password-authentication under a unique password: By the properties of the ideal
cipher a ciphertext e commits the sender to a single choice of key h (and hence
password pw from which h is derived) used to create this ciphertext on a plain-
text B chosen by the sender. Hence there can be at most one key h (and thus at
most one password pw) s.t. envelope e decrypts to a key B for which the sender
knows the corresponding secret key b, and thus can complete the otkAKE pro-
tocol ran by C on the key B it decrypts from e. Whereas the protocol still
requires a key confirmation by C (otherwise a malicious C could stage an offline
dictionary attack once it learned S’s session key), the fact that the envelope
already implicitly authenticates S implies that it no longer needs a subsequent
key confirmation by S.

The main appeal of OKAPE compared to the KHAPE construction in [25]
comes from the last implication, i.e. from the fact that we achieve security with-
out the explicit key confirmation from S. If the OKAPE subprotocol is instanti-

142 B. F. Dos Santos et al.

ated with either of the two key-hiding otkAKE protocols of Sect. 2, the result is a
2-round aPAKE protocol if S is an initiator and a 3-round protocol if C is an ini-
tiator (such concrete instantiation is shown in Fig. 7 in Sect. 5). Lastly, because
S starts the protocol, protocol OKAPE can use (publicly) salted password hash
at no extra cost to such instantiations: A random salt value s can be part of
the password file, the password hash can be defined as H(pw , s), and s can be
delivered from S to C in S’s first protocol message, together with envelope e.

This round-complexity improvement is “purchased” at the cost of two trade-
offs. First, in OKAPE server S is only implicitly authenticated to C, and if C
requires an explicit authentication of S before C uses its session key then the
round reduction no longer applies. Secondly, OKAPE can be slightly more com-
putationally expensive than KHAPE because S needs to generate envelope e
on-line, which adds an ideal cipher encryption operation to the protocol cost,
and current ideal cipher implementations for e.g. elliptic curve group elements
have small but non-negligible costs (see Sect. 6).

One additional caveat in protocol OKAPE is that because we want C to derive
its AKE private key a from a password hash, we must assume that OKAPE
generates private keys from uniformly random bitstrings. This is true about
any public key generator if that bitstring is treated as the randomness of the key
generator algorithm. For some public key cryptosystems, e.g. RSA, this would be
a rather impractical representation of the private key, but in the cryptosystems
based on Diffie-Hellman in prime-order groups this randomness can be simply
equated with the private key.

Theorem 3. Protocol OKAPE realizes the UC aPAKE functionality FaPAKE-cEA

if the AKE protocol realizes functionality FotkAKE, assuming that prf is a secure
PRF and IC∗ is an ideal cipher over the space of otkAKE ephemeral public keys.

Functionality FaPAKE-cEA is a standard UC aPAKE functionality extended
by client-to-server entity authentication. The functionality FaPAKE-cEA we use is
a modification of the UC aPAKE functionality given by [24], but with some
refinements we adopt from [25]. We include this functionality in Appendix A.
We provide an abridged version of the proof of Theorem 3 in Appendix B.
It describes our simulation strategy and contains the formal definition of our
two-part simulator. For a full version, including the intermediary games and
(negligible) bounds between the real and ideal-world interaction, we refer the
reader to the full proof in the Appendix of [23].

4 Protocol aEKE: Asymmetric PAKE Construction #2

In Fig. 6 we present an asymmetric PAKE protocol that we name asymmetric
encrypted key exchange (aEKE). It is a close variant of the otkAKE-to-aPAKE
compiler OKAPE described in Fig. 5 in Sect. 3. The password file stored by the
server also contains client’s public key A and a password hash h (which are now
split into two values h0, h1), the server again picks a one-time-key B and sends
it over to the client IC-encrypted under the partial password hash h0, the client

Asymmetric PAKE with Low Computation and Communication 143

Building blocks: (1) one-time-key Authenticated Key Exchange otkAKE, with
a single message flow; (2) ideal cipher (IC∗.E, IC∗.D) on the space X0 = PK of
otkAKE public keys; (3) RO hash function H : {0, 1}∗ → ({0, 1}κ)3; (4) ideal
cipher IC1 on the space X1 = M of otkAKE messages

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S sets (h0, h1, a) ← H(S, uid, pw), generates AKE public key A corresponding to
a, stores file[uid, S] ← (A, h0, h1), and discards all other values

C on (CltSession, sid, S, uid, pw) S on (SvrSession, sid, C, uid)

(h0, h1, a) ← H(S, uid, pw () A, h0, h1) ← file[uid, S]

B ← IC∗.D(h0, e)
e = IC∗.E(h0,B) (b,B) ← Key.Gen

(h1, (sid, S, cl, a,B)) (h1, (sid, C, sr, b,A))

ICEIC1(otkAKE)
kcl ksr

output kcl output ksr

Fig. 6. Protocol aEKE: EKE-style compiler from key-hiding otkAKE to aPAKE

derives its private key a via a password hash as well, and the client and server
perform otkAKE on the same respective inputs (a,B) and (b,A).

However, the two compilers differ in three important aspects: First, subpro-
tocol otkAKE is not executed as a black box, but it is “IC-encrypted” using the
second part h1 of the password hash as the key. We describe what IC-encrypted
protocol is more formally below, but intuitively an IC-encrypted protocol Π
means that the two parties execute the protocol Π but they use the ideal cipher
to encrypt each outgoing message and decrypt each incoming message. The sec-
ond difference is that the protocol no longer needs C-to-S key confirmation for its
security, as was required by protocol OKAPE, which allows for further reduction
of round complexity in concrete instantiations.

Lastly, we eliminate the salt value s from the input of the password hash.
This last change is done chiefly so that our concrete instantiation of this compiler
produces a protocol which requires only a single simultaneous flow between the
two parties. This will be true as long as the otkAKE subprotocol involves only
one message, from C to S, and moreover this message can be generated prior to
client learning input B which C derives from the envelope received from S. Note
that this is true for our two otkAKE instantiations, namely one-pass HMQV and
2DH. Note that the protocol can be salted in a generic way, i.e. by S storing a
salt and sending it to C before the protocol starts, but this would add a S-to-C
round of interaction to the protocol (in particular C will need the salt value to

144 B. F. Dos Santos et al.

generate h1 and encrypt its protocol message under it), at which point aEKE
would loose its round-complexity advantage over OKAPE.

In Fig. 6, and in the security analysis of protocol aEKE, we assume a restricted
case of a single-flow (C-to-S) realization of subprotocol otkAKE. We believe that
the compiler works for multi-round otkAKE subprotocols as well, but dropping
this restriction would make the security argument significantly more complex
since our security argument cannot treat the otkAKE subprotocol entirely as a
black box, and must explicitly process ideal cipher encryption and decryption of
each message in the underlying otkAKE subprotocol.

We stress that, as described in the introduction, even though we drop salting
in aEKE our functionality requires that offline password tests correspond to a
unique choice of pair (S, uid), and we enforce this by setting the password hash
as H(S, uid, pw).

The Ideal-Cipher-Encrypted Protocol Compiler. The IC-encrypted proto-
col compiler, denoted ICE, takes an ideal cipher IC and any two-party protocol
Π and creates a new protocol Π ′ = ICEIC(Π), which proceeds by running the
original protocol Π and encrypting each of its outgoing messages using the ideal
cipher IC and decrypting any incoming messages using the same cipher. More
specifically, the input of P to protocol Π ′ is x′ = (k, x) where k is a key of an
ideal cipher IC and x is P’s input in protocol Π. P then runs protocol Π on
x, and whenever Π creates an outgoing message msgout then P encrypts it as
ciphout ← IC.E(k,msgout) and sends out ciphertext ciphout instead of the original
message msgout. Because P’s counterparty is assumed to follow the same proto-
col, party P parses its incoming message as a ciphertext ciphin, decrypts it as
msgin ← IC.D(k, ciphin), and passes msgin as an incoming message to protocol Π.
Whenever Π terminates with some output this is also the output of protocol Π ′.

Observe that the ICE compiler generalizes the Encrypted Key Exchange
(EKE) construction of Bellovin and Meritt [7]. The EKE protocol can be seen
as protocol EKE = ICEIC(KE), where KE is an unauthenticated Key Exchange,
and the password (or its hash) is used as the ideal cipher key. Protocol aEKE is
created using exactly the same compiler but applied to otkAKE instead of KE,
and it results in asymmetric PAKE instead of symmetric PAKE.

Below we define random-transcript property for single-flow protocol Π.
Clearly both 2DH and one-pass HMQV satisfy this property.

Definition 1 [random transcript single-flow protocol]. Let M be the mes-
sage space of a single-flow protocol Π. We say that protocol Π has a random
transcript property if for any input x of Π, the message m which Π generates
on x is indistinguishable from a message uniformly sampled from M, i.e. for any
PPT adversary A and any x, there is a negligible function negl such that:

|Pr[A(m0 ← Π(x)) = 1] − Pr[A(m1 ←R M) = 1]| ≤ negl(κ)

Asymmetric PAKE with Low Computation and Communication 145

Theorem 4. Protocol aEKE realizes the UC aPAKE functionality FaPAKE if the
otkAKE protocol realizes functionality FotkAKE and (1) otkAKE protocol uses a
single client-to-server message, (2) otkAKE protocol has the random-transcript
property, (3) IC∗ is an ideal cipher over message space of otkAKE public keys,
(4) IC1 is an ideal cipher over message space M of the single-flow otkAKE.

Because of space constraints the proof of Theorem 4 is deferred to the full version
of the paper [23].

5 Concrete aPAKE Protocol Instantiations

We include two concrete aPAKE protocols we call OKAPE-HMQV and aEKE-
HMQV. Protocol OKAPE-HMQV, shown in Fig. 7, is an instantiation of protocol
OKAPE from Sect. 3 with one-pass-HMQV as the key-hiding otkAKE (shown in
Sect. 2.2). Protocol aEKE-HMQV, shown in Fig. 8, is an instantiation of aEKE
from Sect. 4 with the same one-pass-HMQV. Both of these protocols were shown
in a simplified form in Fig. 1 in the introduction, but here we show both protocols
with all details.

Building blocks: (1) group G of prime order p with generator g; (2) ideal cipher
(IC∗.E, IC∗.D) on space of G; (3) RO hash functions H, H , H with ranges resp.
{0, 1}κ × Zp , Zp , and {0, 1}κ; (4) pseudorandom function prf.

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S picks s ←R {0, 1}κ, sets (h, a) ← H(pw , s), S generates AKE public key A ← ga ,
stores file[uid, S] ← (A, h, s), and discards all other values

C on (CltSession, sid, S, pw) S on (SvrSession, sid, C, uid)

x ←R Zp , X ← gx (A, h, s) ← file[uid, S]

(h, a) ← H(pw , s) e = IC∗.E(h,B), s
b ←R Zp, B ← gb

B ← IC∗.D(h, e)

dC ← H (sid, C, S, X) X dS ← H (sid, C, S, X)

σC ← Bx+dC·a σS ← (X · AdS)b

kcl ← H (sid, C, S, X, σC) ksr ← H (sid, C, S, X, σS)

τ ← prf(kcl, 1)
τ

Ksr ← ⊥ if τ = prf(ksr, 1)

Kcl ← prf(kcl, 0) else Ksr ← prf(ksr, 0)

output Kcl output Ksr

Fig. 7. OKAPE with one-pass-HMQV: concrete aPAKE protocol OKAPE-HMQV

Protocol OKAPE-HMQV has 2 flows if the server initiates (and 3 if the
client does), while protocol aEKE-HMQV is non-interactive, i.e. each party can

146 B. F. Dos Santos et al.

Building blocks: (1) group G of prime order p with generator g; (2) ideal cipher
(IC∗.E, IC∗.D) on space of G; (3) RO hash functions H, H , H with ranges resp.
({0, 1}κ)3, Zp , and {0, 1}κ

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S sets (h1, h2, a) ← H(S, uid, pw), S generates AKE public key A ← ga , stores
file[uid, S] ← (A, h1, h2), and discards all other values

C on (CltSession, sid, S, uid, pw) S on (SvrSession, sid, C, uid)

(h1, h2, a) ← H(S, uid, pw () A, h1, h2) ← file[uid, S]

x ←R Zp , X ← gx b ←R Zp,B ← gb

f = IC∗.E(h2, X) e = IC∗.E(h1,B)

B ← IC∗.D(h1, e) X ← IC∗.D(h2, f)

dC ← H (sid, C, S, X) dS ← H (sid, C, S, X)

σC ← Bx+dC·a σS ← (X · AdS)b

kcl ← H (sid, C, S, X, σC) ksr ← H (sid, C, S, X, σS)

output kcl output ksr

Fig. 8. aEKE with one-pass-HMQV: concrete aPAKE protocol aEKE-HMQV

send its message without waiting for the counterparty. Note that in both pro-
tocols each party uses only 1 fixed-base exponentiation plus 1 variable-base
(multi)exponentiation. In OKAPE-HMQV each party performs one ideal cipher
operation: S performs encryption and C decryption, while in protocol aEKE-
HMQV each party performs 1 encryption and 1 decryption.

The communication costs are as in Diffie-Hellman key exchange, with one-
sided key confirmation and a κ-bit salt value in the case of protocol OKAPE-
HMQV. (Recall that OKAPE is a salted aPAKE while aEKE is an unsalted
aPAKE.) Depending on the implementation of an Ideal Cipher encryption on
group G, the ciphertext e encrypting B , and in the case of aEKE-HMQV also
ciphertext f encrypting X, can introduce additional bandwidth overhead of Ω(κ)
bits, and they may also impose non-trivial computational costs on operations
IC∗.E and IC∗.D as well, see Sect. 6.

6 Curve Encodings and Ideal Cipher

Quasi Bijections. Protocols OKAPE and aEKE use an Ideal Cipher (IC) on
values related to a key-hiding otkAKE subprotocol with which these compiler
constructions are instantiated. These values are the server’s otkAKE one-time
public key B , and in the case of aEKE these are also otkAKE protocol messages.
However, since in Sect. 4 we restrict our claims about aEKE only to the case when

Asymmetric PAKE with Low Computation and Communication 147

subprotocol otkAKE is a single-flow protocol, the IC encryption will be applied
only to the client’s single otkAKE message. In both instantiations of otkAKE we
exhibit, i.e. 2DH and one-pass HMQV shown in Sects. 2.1 and 2.2, the server’s
public key B is a group element and so is the client’ single protocol message X.
Hence we need the ideal cipher on a message space which is group G used in
these otkAKE instantiations.

We use the same methodology for implementing an ideal cipher on a group
as in [25]. We briefly summarize it here and we refer for more details to [25].
We assume that we have an ideal cipher IC = (IC.E, IC.D) which works over
fixed-length bitstrings, i.e. space {0, 1}n for some n.3 Then, an ideal cipher on
G can be implemented by encoding plaintext m ∈ G as a bitstring of length
n, and then apply the ideal cipher IC to the resulting bitstring. The encoding
map : G → {0, 1}n must be injective, i.e. 1-1, so that there exists an (efficient)
inverse map map−1 : {0, 1}n → G. The encoding must also be surjective (or
close) so that every bitstring decodes into a group element, so that e.g. if e is an
encryption of g ∈ G under key k, the decryption of e under key k′ �= k returns
another element in G. If G is an elliptic curve then we only know examples
of randomized encodings which satisfy these properties. Formally we define a
randomized encoding which is close to a bijection as in [25]:

Definition 2 [25]. A randomized ε-quasi bijection map with domain A, ran-
domness space R = {0, 1}ρ and range B consists of two efficient algorithms
map : A × R → B and map−1 : B → A with the following properties:

1. map−1 is deterministic and for all a ∈ A, r ∈ R,map−1(map(a, r)) = a;
2. map maps the uniform distribution on A × R to a distribution on B that is

(statistically) ε-close to uniform.

We say that map is a quasi bijection without specifying ε when it is an ε-quasi
bijection for negligible ε. Given such encoding a (randomized) ideal cipher IC∗ =
(IC∗.E, IC∗.D) on G can be implemented as IC∗.E(k,m) = IC.E(k,map(m; r))
for random r and IC∗.D(k, c) = map−1(IC.D(k, c)). However, rather than define
a new notion of randomized ideal cipher, in protocols OKAPE and aEKE we
assume that the ideal cipher on G is implemented using the above construction
IC∗ and we argue directly based on the properties of quasi-bijective encoding
map and the bitstring ideal cipher IC.

Elliptic Curve Encodings. There are many well-studied quasi-bijective encod-
ings for elliptic curves in the literature (cf. [9,14,22,40,42]). We briefly introduce
two representative examples and refer to [25] for more details. The Elligator-
squared method [33,42] applies to most elliptic curves and implements quasi
bijection for the whole group G of prime order q. It encodes curve points m ∈ G

as pair of field elements (u, v) ∈ Z
2
q using a deterministic function f : Zq → G

s.t. map−1(u, v) = m iff m = f(u) + f(v). Since u, v are field elements, a further
3 For n = 128 one can assume that e.g. AES is an ideal cipher, while for larger values

one has to use domain-extension techniques, e.g. [16,17,20,27] or direct construc-
tions, e.g. [5,10,11,18,19,21].

148 B. F. Dos Santos et al.

quasi bijection is needed to represent such pair as a bitstring unless q is close
to a power of 2. The performance of map−1 used in IC∗.D depends on function
f whose cost is typically dominated by 1 base-field exponentiation, which costs
≈10–15% of a scalar multiplication (a.k.a. a “variable-base exponentiation” in
G). The randomized map map used in IC∗.E can cost e.g. 3 base-field expo-
nentiations on some curves [42]. The Elligator2 method [9] is more restrictive,
and defines an injective mapping from half of the domain G to integer range
[0, (q − 1)/2]. The advantages of Ellligator2 is that it uses a single field ele-
ment to represent a group element (thus reducing bandwidth), and that both
directions of the map are very efficient, each costing about 1 base-field expo-
nentiation. The disadvantage is that message m ∈ G (i.e. S’s message B or C’s
message X) has to be resampled until it lies in the Elligator2 domain.4 Finally, in
a recent work of McQuoid et al. [37] show a “one-time” variant of a randomized
ideal cipher on a group, called Programmable Once Public Function (POPF)
therein, which utilizes a single RO-indistinguishable hash onto group G in both
encryption and decryption directions, and as McQuoid et al. show suffices as a
replacement for an ideal cipher in the proof that EKE realizes UC PAKE func-
tionality [37]. Because of the similarities between our aPAKE’s and EKE, the
same POPF notion could suffice in the context of our aPAKEs as well, leading to
another method for instantiating the group ideal cipher IC∗, but we leave formal
verification that this is the case to future work.

A Universally Composable Asymmetric PAKE Model

We include for reference the UC aPAKE definition in the form of a functionality
FaPAKE, shown in Fig. 9. This functionality is largely as it was originally defined
by Gentry, Mackenzie, and Ramzan [24], but it adopts few notational modifica-
tions introduced by Gu et al. [25]. These include naming what amounts to user
accounts explicitly as uid instead of generic-sounding sid, using sid instead of ssid
as a session-identifier for on-line authentication attempts, and using only pairs
(S, uid) to identify server password files and not (S,U, uid) tuples as in [24].

Because in this paper we differentiate between unsalted and (publicly) salted
aPAKE’s, an explicit support for unsalted aPAKE’s is reflected in aPAKE func-
tionality FaPAKE by introducing a slight modification in the functionality of [25].
These modifications are highlighted in Fig. 9, and they all concern a client-side
usage of the user account field uid. As we mention in the introduction, the round-
minimal protocol aEKE is unsalted, and to enforce the aPAKE contract defined
by [24], which is that a single real-world offline dictionary attack operation must
correspond not only to a single password guess but also to a unique user pass-
word file, identified by a unique pair (S, uid), the client must get as environ-
ment’s inputs both the server identifier S and the user account identifier uid.
4 We should note that a cost-saving implementation which walks through consecutive

values e.g. Xi = gx+i for i = 0, 1, ... to find Xi which is the Elligator2 domain, and
encrypts that Xi under a password, would leak information about the password if
the adversary learns the length of this walk from timing information.

Asymmetric PAKE with Low Computation and Communication 149

Password Registration

– On (StorePwdFile, uid, pw) from S create record file, S, uid, pw marked fresh.

Stealing Password Data [these queries must be approved by the environment]

– On (StealPwdFile, S, uid) from A, if there is no record file, S, uid, pw , return
“no password file”. Otherwise mark this record compromised, and if there is a
record offline, S, uid, pw then send pw to A.

– On (OfflineTestPwd, S, uid, pw∗) from A, then do:
• If ∃ record file, S, uid, pw marked compromised, do the following:

If pw∗ = pw then return “correct guess” to A else return “wrong guess.”
• Else record offline, S, uid, pw∗

Password Authentication

– On (CltSession, sid, S, uid , pw) from C, if there is no record sid, C, ... then
save sid, C, S, uid , pw , cl marked fresh, send (CltSession, sid, C, S, uid) to A.

– On (SvrSession, sid, C, uid) from S, if there is no record sid, S, ... then retrieve
record file, S,uid, pw , and if it exists then save sid, S,C, uid , pw , sr marked
fresh and send (SvrSession, sid, S, C, uid) to A.

Active Session Attacks

– On (TestPwd, sid, P, uid , pw∗) from A, if ∃ record sid, P, P , uid , pw , role
marked fresh, then do: If pw∗ = pw then mark it compromised and return
“correct guess” to A; else mark it interrupted and return “wrong guess.”

– On (Impersonate, sid, C, S, uid) from A, if ∃ record rec = sid, C, S, uid , pw , cl
marked fresh, then do: If ∃ record file, S,uid, pw marked compromised then
mark rec compromised and return “correct guess” to A; else mark it interrupted
and return “wrong guess.”

Key Generation and Authentication

– On (NewKey, sid, P,K ∗) from A, if ∃ record rec = sid, P, P , uid , pw , role not
marked completed, then do:
1. If rec is marked compromised set K ← K ∗;
2. Else if rec is fresh and there is record sid, P , P, uid , pw , role for role =

role and FaPAKE sent (sid,K) to P when this record was fresh, set K ← K ;
3. Else set K ←R {0, 1} .

Finally, mark rec as completed and send output (sid,K) to P.

Note: Modifications from FaPAKE defined in [25] are marked like this . They
consist of assumping input uid in CltSession and TestPwd and enforcing uid-
equality between client and server sessions in NewKey processing.

Fig. 9. FaPAKE: asymmetric PAKE functionality adapted from [25]

150 B. F. Dos Santos et al.

Queries StorePwdFile from S, StealPwdFile or OfflineTestPwd from A, CltSession
from C, SvrSession from S, and TestPwd or Impersonate from A, functionality
FaPAKE-cEA acts as FaPAKE of Figure 9, except it omits all parts marked uid (i.e. it
does not require uid input for C and does not enforce uid-equality for C and S).

Below we mark like this parts of NewKey processing which differ from FaPAKE.

Key Generation and Authentication

– On (NewKey, sid, P,K ∗) from A, if there is a record rec = sid, P, P , pw , role
not marked completed, then do:
1. If rec is marked compromised set K ← K ∗;
2. Else if rec is fresh , role = sr, and there is record sid, P , P, pw , cl s.t.

FaPAKE-cEA sent (sid,K) to P when this record was fresh, set K ← K ;
3. Else if role = cl set K ←R {0, 1} , and if role = sr set K ← ⊥ .

Finally, mark rec as completed and send output (sid,K) to P.

Fig. 10. FaPAKE-cEA: asymmetric PAKE with explicit C-to-S authentication

This is reflected in including uid in the inputs to CltSession command in Fig. 9.
However, since the client now performs computation on a fixed uid, honest client
and server sessions will not agree on the same output key unless they run not
only on the same password pw but also on the same uid. Hence the NewKey pro-
cessing now includes uid-equality enforcement. Finally, for the same reason, an
online password test TestPwd must specify the uid field in addition to password
guess pw∗.

Functionality FaPAKE currently allows both the server and the client sessions
to leak the account identifier uid input to the adversary. The server-side leakage
of this information was inherent (although not immediate to observe) in the
original aPAKE functionality of [24], and it was adopted by subsequent works,
including e.g. [25,30]. Now, however, we also introduce client-side leakage of the
same information. The uid has to be transmitted from the client to the server
before the protocol starts, but it is not clear that the cryptographic protocol
should leak it. We leave plugging this leakage and/or verifying whether it is
necessary in known aPAKEs, including ours, to future work.

Client-to-Server Entity Authentication. Since our protocol OKAPE shown
includes client-to-server authentication (it is not optional, and the protocol is
insecure without it), it realizes an aPAKE functionality amended by client-to-
server entity authentication. We use FaPAKE-cEA to denote the variant of aPAKE
functionality with uni-directional client-to-server entity authentication, and we
include it in Fig. 10. Since protocol OKAPE is a salted aPAKE, it does not need
the uid input on the client side, so the FaPAKE-cEA functionality in Fig. 10 incor-
porates all the code of functionality FaPAKE but without the uid-related modifica-
tions. To simplify NewKey processing functionality FaPAKE-cEA in Fig. 10 assumes
that the client party terminates first, so if two honest parties are connected then
the client party computes its session key output first, and it is always the server

Asymmetric PAKE with Low Computation and Communication 151

party which can potentially get the same key copied by the functionality. One
could define it more generally but we expect that in most aPAKE protocols
with unilateral client-to-server explicit authentication the server will indeed be
the last party to terminate.

B Simulator for Proof of Theorem 3

Because of space constraints, we refer the reader to [23] for a complete proof
of Theorem 3, and provide here an abridged version containing only the overall
proof strategy and the description of the simulator.

To prove the theorem we need to construct a simulator, denoted SIM, such
that the environment’s view of the real-world security game, i.e. an interaction
between the adversary A (whom we consider as a subprocedure of the environ-
ment Z) and honest parties following protocol OKAPE, is indistinguishable from
the environment’s view in the ideal-world interaction between A, SIM, and the
functionality FaPAKE-cEA.

Z C/S

A OKAPE

IC, H

(e,s)

otkAKE

Z C̄/S̄

FaPAKE-cEA

A SIM pt.2

SIM pt.1 SIMAKE

(e,s)

FotkAKE
otkAKE

IC,H

Fig. 11. Real-world (left) vs. simulation (right) for protocol OKAPE

Simulator Construction. We show an overview of our simulation strategy in
Fig 11, which gives the top-level view of the real world execution compared to
the ideal world execution which involves the simulator SIM shown in Figs. 12 and
13 as well as the simulator SIMAKE for the otkAKE subprotocol. The description
of simulator SIM is split into two parts as follows: Fig. 12 contains the SIM pt.1
part of the diagram in Fig 11, i.e. it deals with adversary’s ideal cipher and hash
queries, and in addition with the compromise of password files. Figure 13 contains
the SIM pt.2 part of the diagram in Fig 11 dealing with on-line aPAKE sessions.
We rely on the fact that protocol otkAKE realizes functionality FotkAKE, so we can
assume that there exists a simulator SIMAKE which exhibits this UC-security of

152 B. F. Dos Santos et al.

otkAKE. Our simulator SIM uses simulator SIMAKE as a sub-procedure. Namely,
SIM hands over to SIMAKE the simulation of all C-side and S-side AKE instances
where parties run on either honestly generated or adversarial AKE keys. SIM
employs SIMAKE to generate such keys - in H queries, password file compromise
and in IC decryption queries - see Fig. 12, and then it hands off to SIMAKE the
handling of all AKE instances that run on such keys, see Fig. 13.

Initialization
Initialize simulator SIMAKE, empty tables TIC and TH, empty lists PK ,CPK
Notation: Th

IC.X = {x | ∃y (h, x , y) ∈ TIC}, Th
IC.Y = {y | ∃x (h, x , y) ∈ TIC}.

Convention: First call to SvrSession or StealPwdFile for (S,uid) sets suidS ←R {0, 1}κ.

On query (pw , s) to random oracle H
send back (h, a) if (pw , s), (h, a) TH, otherwise do:
1. If s = suidS for all (S, uid) then h ←R {0, 1}κ, init. key A via (Init, clts, cl) call

to SIMAKE, send (Compromise, A) to SIMAKE, define a as SIMAKE’s response,
add A to CPK

2. If s = suidS for some (S,uid) send (OfflineTestPwd, S, uid, pw) to FaPAKE-cEA and:
(a) if FaPAKE-cEA sends “correct guess” then set A ← Auid

S and h ← huid
S

(b) else inititalize key A via call (Init, clts, cl) to SIMAKE, add A to PK , pick
h ← {0, 1}κ

In either case send (Compromise, A) to SIMAKE, define a as SIMAKE’s response,
add A to CPK , set infouid

S (pw) ← (A,h)
In all cases add (pw , s), (h, a) to TH and send back (h, a)

Ideal Cipher IC queries
– On query (h, x) to IC.E, send back y if (h, x , y) ∈ TIC, otherwise pick y ←R

Y \ Th
IC.Y , add (h, x , y) to TIC, and send back y

– On query (h, y) to IC.D, send back x if (h, x , y) ∈ TIC. Otherwise if there
exists (S,uid) and (A,pw) such that y = esid

S,uid and infouid
S (pw) = (A,h) then

set id = S, else set id = null. Initialize key B via call (Init, id, sr) to SIMAKE

and add B to PK . Set x ←R map(B), add (h, x , y) to TIC and send back x

Stealing Password Data
On Z’s permission to do so send (StealPwdFile, S, uid) to FaPAKE-cEA. If FaPAKE-cEA

sends “no password file,” pass it to A, otherwise do the following:
1. if FaPAKE-cEA returns pw , set (A,h) ← infouid

S (pw)
2. else init. A via call (Init, clts, cl) to SIMAKE, add A to PK , pick h ← {0, 1}κ

Set (Auid
S , huid

S) ← (A,h), return file[uid, S] ← (Auid
S , huid

S , suidS) to A.

Fig. 12. Simulator SIM showing that protocol OKAPEFaPAKE-cEA: part 1

Asymmetric PAKE with Low Computation and Communication 153

Starting AKE sessions
On (SvrSession, sid, S, C, uid) from FaPAKE-cEA, initialize random function Rsid

S :
({0, 1}∗)3 → {0, 1}κ, pick esid

S,uid ←R Y , set flag(Ssid) ← hbc, send (esid
S,uid, s

uid
S) to

A as a message from Ssid, and send (NewSession, sid, S, C, sr) to SIMAKE

On (CltSession, sid, C, S) from FaPAKE-cEA and message (e , s) sent by A to Csid,
initialize random function Rsid

C : ({0, 1}∗)3 → {0, 1}κ, and:
1. If ∃ uid s.t. (e , s) = (esid

S,uid, s
uid
S), set flag(Csid)← hbcuidS , go to 5.

2. If ∃ x , uid s.t. s = suidS and e was output by IC.E on (huid
S , x), send

(Impersonate, sid, C, S,uid) to FaPAKE-cEA and:
(a) If FaPAKE-cEA returns “correct guess”, flag(Csid) ←(actuidS ,Auid

S , map−1(x))
(b) If it returns “wrong guess”, set flag(Csid) ← rnd.
Either case, go to 5.

3. If ∃ (x , h, a, pw) s.t. e was output by IC.E on (h, x) and (pw , s), (h, a) TH

(SIM aborts if tuple not unique), send (TestPwd, sid, C, pw) to FaPAKE-cEA and:
(a) If FaPAKE-cEA returns “correct guess”, flag(Csid) ←(actuidS , A,map−1(x))

where A is the public key generated from a.
(b) If it returns “wrong guess”, set flag(Csid) ← rnd.
Either case, go to 5.

4. In all other cases set flag(Csid) ← rnd, go to 5.
5. Send (NewSession, sid, C, S,cl) to SIMAKE

Responding to SIMAKE messages to FotkAKE emulated by SIM
SIM passes otkAKE protocol messages between SIMAKE and A, but when SIMAKE

outputs queries to (what SIMAKE thinks is) FotkAKE, SIM reacts as follows:

If SIMAKE outputs (Interfere, sid, S) set flag(Ssid) ← act

If SIMAKE outputs (Interfere, sid, C) and flag(Csid) = hbcuidS then set flag(Csid)← rnd

If SIMAKE outputs (NewKey, sid, C, α):
1. If flag(Csid) = (actuidS , A, B) then k ← Rsid

C (A, B,α), output τ ← prf(k , 1) and
send (NewKey, sid, C, prf(k , 0)) to FaPAKE-cEA

2. Else output τ ←R {0, 1}κ and send (NewKey, sid, C, ⊥) to FaPAKE-cEA

If SIMAKE outputs (NewKey, sid, S, α) and A sends τ to Ssid:
1. If flag(Ssid) = hbc and τ was generated by SIM for Csid s.t. flag(Csid) = hbcuidS ,

then send (NewKey, sid, S, ⊥) to FaPAKE-cEA

2. If flag(Ssid) = act and ∃ (pw , B) s.t. τ = prf(k ,1) for k = Rsid
S (B, A,α) where

(A, h) = infouid
S (pw) and (h, map(B), esid

S,uid) ∈ TIC (SIM aborts if tuple not
unique), send (TestPwd, sid, S, pw) and (NewKey, sid, S,prf(k , 0)) to FaPAKE-cEA

3. In any other case send (TestPwd, sid, S, ⊥) and (NewKey, sid, S,⊥) to FaPAKE-cEA

If SIMAKE outputs (SessionKey, sid, P, pk , pk , α):
If pk (PK \ CPK) send Rsid

P (pk , pk , α) to A

Fig. 13. Simulator SIM showing that protocol OKAPE realizes FaPAKE-cEA: part 2

154 B. F. Dos Santos et al.

References

1. Facebook stored hundreds of millions of passwords in plain text. https://
www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-
hundreds-millions-users

2. Google stored some passwords in plain text for fourteen years. https://www.
theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-
years

3. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally
composable relaxed password authenticated key exchange. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 278–307. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 10

4. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 14

5. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 29

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

7. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: IEEE Computer Society Symposium on
Research in Security and Privacy - S&P 1992, pp. 72–84. IEEE (1992)

8. Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated key
exchange: new models and constructions. IACR Cryptology ePrint Archive
2013:833 (2013)

9. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: ACM Conference on
Computer and Communications Security - CCS 2013 (2013)

10. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. Cryptology ePrint
Archive, Report 2017/630 (2017). http://eprint.iacr.org/2017/630

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

12. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

13. Bradley, T., Jarecki, S., Xu, J.: Strong asymmetric PAKE based on trapdoor
CKEM. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 798–825. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-
8 26

14. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7 13

https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-642-40041-4_29
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
http://eprint.iacr.org/2017/630
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/978-3-642-14623-7_13

Asymmetric PAKE with Low Computation and Communication 155

15. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

16. Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal
cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 17

17. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel is indifferen-
tiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 23

18. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and
Xoofff. 2018, 1–38 (2018)

19. Dai, Y., Seurin, Y., Steinberger, J., Thiruvengadam, A.: Indifferentiability of iter-
ated Even-Mansour ciphers with non-idealized key-schedules: five rounds are nec-
essary and sufficient. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10403, pp. 524–555. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 18

20. Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 4

21. Dodis, Y., Stam, M., Steinberger, J., Liu, T.: Indifferentiability of confusion-
diffusion networks. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 679–704. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 24

22. Fouque, P.-A., Joux, A., Tibouchi, M.: Injective encodings to elliptic curves. In:
Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 203–218. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39059-3 14

23. Freitas Dos Santos, B., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE
with low computation and communication. IACR Cryptology ePrint Archive, 2022
(2022). https://ia.cr/2022

24. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 9

25. Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: asymmetric PAKE from key-hiding key
exchange. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp.
701–730. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 24,
https://ia.cr/2021/873

26. Halevi, S., Krawczyk, H.: One-pass HMQV and asymmetric key-wrapping. In:
Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 317–334. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19379-8 20

27. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: STOC 2011 (2011)

28. Hwang, J.Y., Jarecki, S., Kwon, T., Lee, J., Shin, J.S., Xu, J.: Round-reduced mod-
ular construction of asymmetric password-authenticated key exchange. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 485–504. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 26

https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-642-11799-2_17
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-642-39059-3_14
https://ia.cr/2022
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/978-3-030-84259-8_24
https://ia.cr/2021/873
https://doi.org/10.1007/978-3-642-19379-8_20
https://doi.org/10.1007/978-3-642-19379-8_20
https://doi.org/10.1007/978-3-319-98113-0_26

156 B. F. Dos Santos et al.

29. Jablon, D.P.: Extended password key exchange protocols immune to dictionary
attacks. In: 6th IEEE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE 1997), pp. 248–255, Cambridge,
MA, USA, 18–20 June 1997. IEEE Computer Society (1997)

30. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

31. Jarecki, S., Krawczyk, H., Xu, J.: On the (in)security of the Diffie-Hellman oblivi-
ous PRF with multiplicative blinding. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol.
12711, pp. 380–409. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75248-4 14

32. Jutla, C.S., Roy, A.: Smooth NIZK arguments. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 235–262. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03807-6 9

33. Kim, T., Tibouchi, M.: Invalid curve attacks in a GLS setting. In: Tanaka, K.,
Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp. 41–55. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22425-1 3

34. Krawczyk, H.: SKEME: a versatile secure key exchange mechanism for internet.
In: 1996 Internet Society Symposium on Network and Distributed System Security
(NDSS), pp. 114–127 (1996)

35. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

36. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol (2016). https://
signal.org/docs/specifications/x3dh/

37. McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-n OT
from programmable-once public functions. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) CCS 2020: 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security, Virtual Event, USA, 9–13 November 2020. https://eprint.iacr.
org/2020/1043

38. Pointcheval, D., Wang, G.: VTBPEKE: verifier-based two-basis password expo-
nential key exchange. In: ASIACCS 2017, pp. 301–312. ACM Press (2017)

39. Schmidt, J.: Requirements for password-authenticated key agreement (PAKE)
schemes, April 2017. https://tools.ietf.org/html/rfc8125

40. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006.
LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006). https://doi.org/10.
1007/11792086 36

41. Shoup, V.: Security analysis of SPAKE2+. IACR Cryptol. ePrint Arch. 2020, 313
(2020)

42. Tibouchi, M.: Elligator squared: uniform points on elliptic curves of prime order as
uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 139–156. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45472-5 10

https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-030-75248-4_14
https://doi.org/10.1007/978-3-030-75248-4_14
https://doi.org/10.1007/978-3-030-03807-6_9
https://doi.org/10.1007/978-3-030-03807-6_9
https://doi.org/10.1007/978-3-319-22425-1_3
https://doi.org/10.1007/11535218_33
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://eprint.iacr.org/2020/1043
https://eprint.iacr.org/2020/1043
https://tools.ietf.org/html/rfc8125
https://doi.org/10.1007/11792086_36
https://doi.org/10.1007/11792086_36
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-662-45472-5_10

Batch-OT with Optimal Rate

Zvika Brakerski1, Pedro Branco2(B), Nico Döttling3, and Sihang Pu3(B)

1 Weizmann Institute of Science, Rehovot, Israel
2 IT, IST - University of Lisbon, Lisbon, Portugal

pedrodemelobranco@gmail.com
3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

sihang.pu@gmail.com

Abstract. We show that it is possible to perform n independent copies
of 1-out-of-2 oblivious transfer in two messages, where the communica-
tion complexity of the receiver and sender (each) is n(1 + o(1)) for suf-
ficiently large n. Note that this matches the information-theoretic lower
bound. Prior to this work, this was only achievable by using the heavy
machinery of rate-1 fully homomorphic encryption (Rate-1 FHE, Brak-
erski et al., TCC 2019).

To achieve rate-1 both on the receiver’s and sender’s end, we use the
LPN assumption, with slightly sub-constant noise rate 1/mε for any ε > 0
together with either the DDH, QR or LWE assumptions. In terms of effi-
ciency, our protocols only rely on linear homomorphism, as opposed to the
FHE-based solution which inherently requires an expensive “bootstrap-
ping” operation. We believe that in terms of efficiency we compare favor-
ably to existing batch-OT protocols, while achieving superior communica-
tion complexity. We show similar results for Oblivious Linear Evaluation
(OLE).

For our DDH-based solution we develop a new technique that may
be of independent interest. We show that it is possible to “emulate”
the binary group Z2 (or any other small-order group) inside a prime-
order group Zp in a function-private manner. That is, Z2 operations are
mapped to Zp operations such that the outcome of the latter do not reveal
additional information beyond the Z2 outcome. Our encoding technique
uses the discrete Gaussian distribution, which to our knowledge was not
done before in the context of DDH.

1 Introduction

Oblivious Transfer (OT) [20,34] is one of the most basic cryptographic primi-
tives. In the simple 1-out-of-2 OT, a receiver holds a bit b ∈ {0, 1} and a sender
holds two bits x0, x1. In the end of the protocol, the receiver should learn xb,
but nothing about x1−b, and the sender should learn nothing about the value of
b. In most applications, one OT is not enough and one is required to perform
many OT operations in parallel. We let n denote the number of parallel execu-
tions. Various techniques have been developed to address this task of batch-OT
[5,6,29]. For the most part, they involve a preprocessing “offline” phase where
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 157–186, 2022.
https://doi.org/10.1007/978-3-031-07085-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_6

158 Z. Brakerski et al.

the parties generate random OT correlations.1 Given such correlations, executing
the OT protocol in the so-called “online phase” is computationally very simple.
This approach is very useful for purposes of computational efficiency, since the
offline phase can be carried out even before the actual inputs of the computation
are known. However, in terms of communication complexity, there is an inher-
ent cost, even just in the online phase, of n receiver bits and 2n sender bits. In
contrast, the insecure implementation only requires n bits to be sent from each
party in a two-message protocol: the receiver sends its input, and the sender
returns all of the appropriate xb values. As always in cryptography, we wish to
understand what is the “cost of privacy”, namely can we approach the informa-
tion theoretic minimum without losing privacy. Note that we can only hope to
achieve this for a sufficiently large n, due to the security parameter overhead.2

In prior work, Döttling et al. [19] showed that if the same receiver bit is used for
multipleOT instances, then the sender’s response can be compressed to n(1+o(1)),
achieving an optimal amortized rate. This was shown under a variety of compu-
tational assumptions: Decisional Diffie-Hellman (DDH), Quadratic Residuosity
(QR), or LearningwithErrors (LWE). Itwas also shownbyBrakerski et al. [10] and
by Gentry and Halevi [23] that fully homomorphic encryption (FHE) can achieve
optimal communication complexity, which in particular implies that under the
LWE assumption, optimal rate batch-OT is achievable. However, the FHE-based
protocol inherently requires the use of a computationally exorbitant “bootstrap-
ping” mechanism in order to compress the receiver’s message.

1.1 Our Contribution

We show that optimal-rate3 batch-OT can be achieved from various computa-
tional assumptions, and without giving up on computational efficiency. In partic-
ular, we require the LPN assumption with a small-inverse-polynomial noise4, in
addition to one of the assumptions DDH, QR or LWE. In terms of computational
cost, our protocol does not require heavy operations such as bootstrapping and
relies on linear homomorphism only. We believe that in terms of overall cost it
compares favorably even with random-OT based methods. All of our results are
in the semi-honest (honest-but-curious) setting.

We further extend our results to the task of Oblivious Linear Evaluation
(OLE) [12,14,24,30], where the sender holds a linear function over a ring and

1 That is, a protocol in which the receiver obtains b, xb and the sender obtains x0, x1,
where b, x0, x1 are all (pseudo-)randomly sampled.

2 In more detail, since 2-message OT implies a public-key encryption scheme, the
messages must have length that relates to the security parameter of the underlying
computation assumption. This is the case even for single-bit OT.

3 Achieving optimal rate (or any rate above 1/2) seems to involve a “phase-transition”
and should be viewed as more than a “constant factor” improvement. For example,
OT beyond this threshold implies the existence of lossy trapdoor functions (see
discussion in [19], Sect. 6.3). Therefore one could expect such a protocol to inherently
be heavier on public-key operations.

4 This is still a regime where LPN alone is not known to imply public-key encryption.

Batch-OT with Optimal Rate 159

the receiver holds an input for the function, and we wish for the receiver to
learn the output on its input and nothing more, and the sender learns nothing
as usual. OLE has been shown to be useful in various settings [14,27].

Our techniques rely mostly on linear homomorphism, namely on the ability to
evaluate linear functions on encrypted data (see Sect. 2 below). Notably, we require
a linearly homomorphic scheme over Z2 (more generally Zq for OLE) where the
evaluation is function-private. Namely, the output ciphertext should not reveal
any information about the linear function that was evaluated. This was not known
to be achievable from DDH prior to this work, and we introduce a new technique
that we believe may be of independent interest. The reason for this is that DDH
works “natively” over the group Zp where p is a super-polynomially large prime.
Furthermore, we only have access to the Zp elements in the exponent of a group
generator g. Indeed, one can encode 0 → g0, 1 → g1, and linearZ2 homomorphism
will follow in the sense that after applying a linear function in the exponent, we
obtain gx, where x (mod 2) is the desired Z2 output. This creates two obstacles:
first we need to be able to efficiently map gx → x, which means that x must come
from a polynomially-bounded domain, and second that recovering x reveals more
information than just x (mod 2). We develop a new method to resolve this issue
using discrete Gaussian variables. A technique that was used in the context of the
LWE assumption but to the best of our knowledge not for DDH. We view this as
an additional contribution of this work, which may find additional applications.
In particular we show that it can be used to enhance the key-dependent-message
security properties of the well-known encryption scheme [3].

For more details on all of our contributions, see the technical overview in
Sect. 2.

1.2 Related Work

The communication complexity of OT has been extensively studied throughout
the decades. Here we present a brief overlook of previous works.

OT from Pseudorandom Correlations. A recent line of research studies the fea-
sibility of efficiently extending OTs in a silent manner [5,6]. In these works, a
setup phase is performed to distributed some shares between the parties. These
shares can later be expanded into random OT correlations. In the most efficient
scheme [5] the setup phase can be performed in just two rounds assuming just
a pseudorandom generator and an OT scheme. Using this scheme for perform-
ing the setup together with the standard transformations form random OT to
chosen-input OT, [5] shows that n independent instances of OT for s-bit strings
can be performed with communication complexity (2s+1)n+ o(n). For bit OT,
this yields a communication complexity 3n + o(n) bits.

Download Rate-1 OT. We say that an OT protocol has download rate 1 if the rate
of the sender’s message is asymptotically close to 1. OT protocols with download
rate 1 were presented in [15,19,21]. However, these protocols do not achieve upload
rate 1, that is, the rate of the receiver’s message is far from being 1. Moreover, it
is not clear how we can extend these protocols to achieve upload rate 1.

160 Z. Brakerski et al.

Using Rate-1 FHE. As mentioned before, optimal-rate OT can be achieved using
the recent scheme for rate-1 fully homomorphic encryption (FHE) of [10,23]
together with (semi-honest) circuit-privacy techniques for FHE (e.g. [4]). How-
ever this can only be instantiated using LWE.

Laconic OT. Laconic OT [1,16,28,33] is a flavor of two-round OT where the first
message sent by the receiver is sublinear (ideally polylogarithmically) in the size
of its input. However, by a simple information-theoretical argument, the sender’s
message has size at least as large as the size of the sender’s input. Note that,
if this is not the case, then we would have an OT protocol with asymptotically
better communication than an insecure OT protocol.

2 Technical Overview

2.1 Oblivious Transfer from Homomorphic Encryption

Our starting point is a textbook construction of oblivous transfer from simple
homomorphic encryption schemes, such as ElGamal. For a cryptographic group
G = 〈g〉 of prime order p, recall that an ElGamal public key is of the form

pk = (g, h = gx) ∈ G
2, where x

$←− Zp is the secret key. Ciphertexts are of the

form c = (c1, c2) = (gr, hr ·gb), where r
$←− Zp is uniformly random and b ∈ {0, 1}

is the encrypted message. Given such a ciphertext c, the public key pk and two
bits m0,m1 ∈ {0, 1}, anyone can homomorphically compute a new ciphertext c′

which is distributed identically to a fresh encryption of mb, by homomorphically
evaluating the linear function f(x) = (1 − x) · m0 + x · m1 = (m1 − m0) · x + m0

on the ciphertext c and rerandomizing the resulting ciphertext. Note that if
b ∈ {0, 1} is a bit, then it holds that f(b) = mb. This homomorphic evaluation
can be achieved by computing

c′
1 ← gr∗ · cm1−m0

1

c′
2 ← hr∗ · cm1−m0

2 · gm0 ,

where r∗ $←− Zp is chosen uniformly random. Note that it holds that

c′
1 = gr∗+r·(m1−m0)

c′
2 = hr∗+r·(m1−m0) · g(m1−m0)·b+m0 = hr∗+r·(m1−m0) · gmb .

Since r∗ $←− Zp is chosen uniformly random, it holds that r′ = r∗ + r · (m1 −
m0) is distributed uniformly random and we can conclude that c′ = (c′

1, c
′
2) is

distributed identical to a fresh encryption of mb. Since c′ does not reveal more
than the function value f(b) = mb, we call the above homomorphic evaluation
procedure function private.

Batch-OT with Optimal Rate 161

This immediately implies an OT protocol: An OT-receiver holding a choice-
bit b ∈ {0, 1} generates a pair (pk, sk) of ElGamal public and secret keys, encrypts
the bit b under pk and sends the resulting ciphertext to the OT-sender. The
OT-sender, holding messages m0,m1, homomorphically computes a ciphertext c′

encrypting mb and sends c′ back to the OT-receiver, who decrypts c′ to mb. Secu-
rity against semi-honest senders follows from the IND-CPA security of ElGamal,
whereas security against semi-honest receivers follows from the function privacy
property established above.

2.2 Download-Rate Optimal String OT

While the above OT protocol is simple and efficient, it suffers from a very poor
communication rate. While the receiver’s message encrypts just a single bit, he
needs to send 4 group elements, whereas the sender sends 2 group elements, each
of size poly(λ).

Döttling et al. [19] proposed a compression technique for batched ElGamal
ciphertexts based on the share-conversion technique of [7]. A batched ElGamal
ciphertext is of the form c = (c0, c1, . . . , c�) = (gr, hr

1 · gb1 , . . . , hr
� · gb�), where

pk = (g, h1, . . . , h�) is the corresponding public key and sk = (s1, . . . , s�) with
hi = gsi is the secret key. The compression technique of [19] keeps c0 compresses
each of the c1, . . . , c� into just a single bit. The idea is instead of sending each ci ∈
G (for i ≥ 1) in full, to first compute the distance d to the next pseudorandom
break-point in G, and then only send its parity d mod 2. The break points
P ⊆ G are the set of all points h ∈ G satisfying PRFK(h) = 0t, where PRF :
G → {0, 1}t is a pseudorandom function with a range of size 2t = poly(λ).
Thus, the distance d = d(ci) of a group element ci to the nearest break point
is the smallest non-negative d such that ci · gd ∈ P. Given that neither ci nor
ci · g−1 is a breakpoint, we can recover the bit bi from c0 = gr, β=d(ci) mod 2
and the secret key component si. It was shown in [9] that for a given ciphertext
c = (c0, c1, . . . , c�), the PRF-key K can be (efficiently) chosen such that all ci are
good, in the sense that neither ci nor ci ·g−1 is a breakpoint. This ensures that a
receiver can recover the b1, . . . , b� from c′ = (K, c0, β1, . . . , β�), where βi = d(ci)
mod 2. Since all the βi are bits, such a compressed ciphertext only has additive
size-overhead consisting of K, c0. For a sufficiently large �, this fixed overhead
becomes insignificant and the ciphertext rate approaches 1.

The compressed batched ElGamal we’ve outlined leads to a batch bit-
oblivious transfer protocol with download-rate 1 : The receiver generates a key-
pair pk, sk for batched ElGamal, and encrypts his choice-bits b1, . . . , b� into

c1 = Encpk(b1, 0, . . . , 0), . . . , c� = Encpk(0, . . . , 0, b�),

i.e. c(i) encrypts a vector which is bi in index i and 0 everywhere else. The
OT-receiver now sends pk, c1, . . . , c� to the OT-sender, whose input are mes-
sages (m1,0,m1,1), . . . , (m�,0,m�,1). Using circuit private homomorphic evalu-
ation, the sender computes ciphertexts c′

1, . . . , c
′
� encrypting (m1,b1 , 0, . . . , 0),

. . . , (0, . . . , 0,m�,b�
). Homomorphically computing the sum of the ciphertexts

162 Z. Brakerski et al.

c′
1, . . . , c

′
�, we obtain a ciphertext c′ encrypting (m1,b1 , . . . ,m�,b�

). Finally, com-
pressing c′ with the compression technique outlined above we obtain a com-
pressed ciphertext c̄ = (K, c0, β1, . . . , β�) which the OT-sender sends back to the
OT-receiver, who can decrypt (m1,b1 , . . . ,m�,b�

).
Note that the size of the sender’s message c̄ in this batch OT-protocol is

poly(λ) + �, which means that the amortized communication cost per bit-OT
approaches 1 bit, and is therefore asymptotically optimal. Even in terms of
concrete complexity this seems hard to beat, as the only additional information
sent by the sender are the PRF key K and the ciphertext header c0.

However, in terms of the upload rate, i.e. in terms of the size of the receiver’s
message, this protocol performs poorly. Specifically, to encrypt � bits b1, . . . , b�,
the receiver needs to send ciphertexts c1, . . . , c� of total size �2 · poly(λ), which
has a worse dependence on � than just repeating the simple protocol from the
last paragraph � times.

Clearly, we need a mechanism to compress the receiver’s message. Applying
the same ElGamal compression technique as for the sender’s message quickly
runs into problems: Once an ElGamal ciphertext is compressed, the scheme loses
its homomorphic capabilities, i.e. we cannot perform any further homomorphic
operations on compressed ciphertexts and currently we don’t know if it is possible
to publicly decompress such ciphertexts into “regular” ElGamal ciphertexts.

2.3 Our Approach: Recrypting the Receiver’s Message

Instead, our approach will be to encrypt the receiver’s message under a different
encryption scheme, specifically one which achieves ciphertext rate approach-
ing 1 but at the same time can be decrypted by the homomorphic capabilities
of batched ElGamal. Specifically, the decryption procedure of this encryption
scheme should be a linear function in the secret key. We can get an encryption
scheme which almost fulfills these requirements from the Learning Parity with
Noise (LPN) assumption. The LPN assumption states that for a random m × n

matrix A $←− Z
m×n
2 , a random vector s $←− Z

n
2 and a ρ-Bernoulli distributed5

e ∈ Z
m
2 , it holds that

(A,As + e) ≈c (A,u),

where u $←− Z
m
2 is chosen uniformly at random. This gives rise to the following

simple symmetric-key encryption scheme with approximate correctness: Assume
that A is a fixed public parameter, the secret key is a uniformly random s $←− Z

n
2 .

To encrypt a message m ∈ Z
m
2 , we compute a ciphertext d ← As+e+m, where

e ∈ Z
m
2 is chosen via a ρ-Bernoulli distribution. To decrypt such a ciphertext,

we compute m′ ← d − A · s.
Note that this scheme is only approximately correct in the sense that it holds

that m′ = m + e, i.e. in most coordinates m′ is identical to m, but only in few

5 i.e. every component of ei of e is independently 0 with probability 1 − ρ and 1 with
probability ρ.

Batch-OT with Optimal Rate 163

coordinates m′ and m differ. Furthermore, one-time security of this encryption
scheme follows from the LPN assumption.

The high level strategy to use this symmetric key encryption scheme is now
as follows: Assume the matrix A ∈ Z

m×n
2 is known to both the sender and the

receiver. In the actual protocol this matrix will be chosen by the receiver, and the
communication cost of sending A will be amortized by reusing A many times.

The OT-receiver chooses a symmetric key s $←− Z
n
2 uniformly at random and

encrypts his vector of choice bits b = (b1, . . . , b�) to d = As + e + b (where
again, e ∈ Z

�
2 is ρ-Bernoulli distributed). Furthermore, the receiver will encrypt

the LPN secret under ElGamal, i.e. he encrypts s to c = Enc(pk, s). For the
moment, assume that s is encrypted bit-wise with standard ElGamal rather
than batched ElGamal. The OT-receiver now sends the ElGamal public key pk
and the ciphertexts c and d to the OT-sender.

Now, given these values, the sender can homomorphically decrypt the d
into ElGamal, effectively key-switching from the ciphertext d into an ElGamal
ciphertext. Concretely: The sender homomorphically evaluates the linear func-
tion f(x) = d−Ax on the ElGamal ciphertext c = Enc(pk, s). This produces an
ElGamal encryption c′ encrypting f(s) = d − As = b + e = b′. In other words,
the OT-sender has now obtained an ElGamal encryption of a vector b′ which
agrees with b in most locations.

The high-level idea is now to let the OT-sender use this ciphertext c′ as
the encryption of the receiver’s choice bits and proceed as in the ElGamal-
based OT-protocol above. If we were to naively use c′ in this way, the receiver
would obtain the correct output mi,bi

in locations where b and b′ agree, but
would get the wrong output mi,1−bi

in locations where b and b′ disagree. While
there certainly are applications in which a small amount of faulty locations are
tolerable, in general this leads to insecure protocols.

There is, however, another issue with this approach. In this paragraph we
have implicitly assumed that ElGamal is homomorphic for linear functions mod-
ulo 2. However, since the group we implement ElGamal over is of large prime
order p, when we evaluate linear functions such as f(x) = d−Ax over a cipher-
text encrypting a s ∈ {0, 1}n, the result of this evaluation is not reduced modulo
2, and the resulting ciphertext in fact encrypts f(s) as an integer. This does not
cause major problems in terms of correctness, as this integer will still be small
(at most of size m), and hence decryption will still be efficient.

However, this does cause major problems in terms of sender-privacy, as we
can only guarantee sender privacy for receiver messages that are guaranteed to
encrypt a bit b ∈ {0, 1}.

For now, we will bypass this problem by relying on a homomorphic encryption
scheme which is in fact homomorphic over Z2 (rather than Zp), offers function
privacy for linear functions modulo 2 and is compatible with ciphertext com-
pression. Such an encryption can in fact be constructed from the Quadratic
Residuosity assumption [19].

Another small issue we haven’t addressed here is that the compression mech-
anisms for the sender and the receiver are somewhat orthogonal, in the sense that

164 Z. Brakerski et al.

the sender’s message is compressed by compressing a batched ElGamal cipher-
text (which generally does not allow homomorphic evaluation across different
components), whereas the receiver’s compression strategy requires the homo-
morphic evaluation of linear functions with multiple (i.e. vector-valued) inputs.
In the main body (Sect. 7) we will show a tradeoff which allows to reconcile these
requirements, leading to a batch OT protocol with overall rate 1.

We will first discuss how to deal with the issue of errors in the key-switched
ciphertext, and then return to the issue of implementing our approach with
ElGamal instead of QR-based encryption.

2.4 Dealing with LPN Errors

To deal with the LPN errors in the key-switched ciphertext c′, we will pursue the
following high-level strategy: The sender will introduce an additional masking
on the receiver’s output, which can only be removed in error-free locations.
This masking effectively erases the receiver’s output in locations in which the
receiver’s output is corrupted.

To communicate the correct outputs in the locations with errors, the parties
will rely on an additional protocol which is run in parallel. Given that the number
of errors is sufficiently small, the communication cost of this additional protocol
will be insubstantial and not affect the overall asymptotic rate.

We will first address the problem of erasing the receiver’s output in corrupted
locations. First observe that the receiver knows the locations with errors (i.e. the
support of the error vector e). Assume that the LPN error vector e has a fixed
hamming weight t ≈ ρm, and note that hardness of fixed-weight LPN follows
routinely from the hardness of Bernoulli LPN6. A t-puncturable pseudorandom
function [6,8] is a pseudorandom function [25] which supports punctured keys.
That is, given a PRF key K and t inputs x1, . . . , xt, we can efficiently compute
a punctured key K ′ of size t · poly(λ) which allows to evaluate the PRF on all
inputs except x1, . . . , xt. Furthermore, the key K ′ does not reveal the function
values at x1, . . . , xt, i.e. PRF(K,x1), . . . ,PRF(K,xt) are pseudorandom given the
punctured key K ′.

The approach to erase the receiver’s outputs in erroneous locations is now
as follows. The sender chooses a PRF key K and masks both mi,0 and mi,1

with PRF(K, i), i.e. instead of using (mi,0,mi,1) as OT-inputs, he uses m′
i,0 =

mi,0 ⊕ PRF(K, i) and m′
i,1 = mi,1 ⊕ PRF(K, i). Assuming that the sender can

somehow communicate a punctured key K ′ which is punctured at the locations
i1, . . . , it of the errors (i.e. eij

= 1 and e is 0 everywhere else), the receiver
will be able to remove the mask from error-free locations by computing mi,bi

=
m′

i,bi
⊕ PRF(K ′, i). In the erroneous locations however, mi,1−bi

will be hidden
from the view of the receiver as PRF(K, i) is pseudorandom even given the
punctured key K ′.

How can we communicate the punctured key K ′ to the receiver with small
communication cost in such a way that the sender does not learn the error-

6 See e.g. [6,18].

Batch-OT with Optimal Rate 165

locations i1, . . . , it? This could be achieved generically by relying on the punc-
tured PRF construction of [8] and transferring keys using a sublinear private
information retrieval (PIR) scheme [17,19]. However, recently [6] provided a pro-
tocol to achieve this task very efficiently via a two round protocol communicating
only tpoly(λ) bits. In the main body (Sect. 6), we will refer to this primitive as co-
PIR, since effectively it allows to communicate a large pseudorandom database
to a receiver except in a few locations chosen by the receiver.

Finally, to communicate the correct outputs to the receiver in the locations
with errors, we will in fact rely on a two-message PIR scheme with polyloga-
rithmic communication. Such schemes are known e.g. from LWE [11] and were
recently constructed from a wide variety of assumptions [19], such as DDH and
QR. The idea is as follows: For each error location ij the receiver sends an addi-
tional OT message OT1(bij

) using an off-the-shelf low-rate OT protocol (e.g.
the basic ElGamal based protocol sketched above), as well as a PIR message
PIR1(ij). The sender speculatively completes this OT protocol for each index
i (since the index ij is not known to the sender), collects his OT responses in a
database of size �, runs the PIR sender algorithm on this database, and sends
the response back to the receiver. The receiver will now be able to recover the
correct OT2 message via PIR, complete the OT and recover mij ,bij

. We remark
that for this protocol to be secure against semi-honest senders, we need a PIR
protocol with sender privacy. However, e.g. the protocols provided in [19] readily
have this feature.

Carefully putting all these components together, we obtain a batch bit-OT
protocol with rate-1, for both the sender and the receiver.

2.5 Emulating Small Subgroups

We now return to the issue that ElGamal does not provide function privacy for
linear functions modulo 2. Recall that the issue essentially boils down to the fact
that the plaintext space of ElGamal is natively Zp, and when we encode messages
in the least significant bits, i.e. encoding a bit b as gb, then for all practical
purposes homomorphic evaluations of linear functions with {0, 1} coefficients are
over Z2, i.e. the resulting ciphertext encodes the result of the function evaluation
without reduction modulo 2.

From an algebraic perspective, this problem is rooted in the fact that since
p is prime, Zp has no non-trivial subgroup, i.e. it just does not support modular
reductions with respect to anything else than p.

To approach this problem, we will take inspiration from the domain of lattice
cryptography [35]. There, messages are typically encoded in the high order bits
of group elements, i.e. to encode b in Zp, we would like to encoded it as b · p

2 .
However, since p is odd, first have to round p

2 to the nearest integer in order to
get a proper Zp element, i.e. we encode b via b · ⌈p2

⌉
. If we could encode b with

respect to p
2 /∈ Zp, we would get a subgroup of order 2, i.e. for bits b, b′ ∈ {0, 1}

it holds that (
b · p

2
+ b′ · p

2

)
mod p = (b + b′ mod 2) · p

2
.

166 Z. Brakerski et al.

However, once we round p
2 to the next integer, we get essentially the same prob-

lem as before: If we perform group operations on b
⌈

p
2

⌉
and b′ ⌈p

2

⌉
, then the

rounding errors start to accumulate information about b and b′ which is cannot
be obtained from b + b′ mod 2. Specifically

b
⌈p
2

⌉
+ b′
⌈p
2

⌉
mod p = b

(
p

2
+

1
2

)
+ b′
(

p

2
+

1
2

)
mod p

= (b + b′ mod 2)
p

2
+ (b + b′)

1
2

mod p.

Thus, now the least significant bit of b
⌈

p
2

⌉
+b′ ⌈p

2

⌉
mod p e.g. leaks if b = b′ = 1,

something which cannot be learned from b + b′ mod 2.
Consequently, at first glance the idea of encoding a bit b in the “high-order”

bits of a Zp element seems ineffective. However, the lattice toolkit still has more
to offer. In particular, in the context of sampling discrete gaussians from lattices,
Peikert [32] considered a technique called randomized rounding. The basic idea
is, given a a real number r ∈ R to not always round to the same value e.g. �r�,
but to sample a an integer z close to r. In [32], this distribution is a discrete
gaussian Z on Z centered at r, i.e. the expectation of Z is r. Such a discrete
gaussian is parametrized by a gaussian parameter σ, which essentially controlls
the standard deviation of the discrete gaussian. We denote Z by �rσ.

Now, given any two r, r′ ∈ R and σ1, σ2 > ω(
√

log(λ)) (more generally the
smoothing parameter of Z), Peikert [32] shows that

�rσ1 + �r′σ2 ≈s �r + r′√
σ2
1+σ2

2
.

In other words, while �rσ1 + �r′σ2 and �r + r′√
σ2
1+σ2

2
are note the same,

they are statistically close. This means that anything that can be learned from
�rσ1 + �r′σ2 could have as well been learned from �r + r′√

σ2
1+σ2

2
! While this

comes at the expense of an increase “error” term with parameter
√

σ2
1 + σ2

2 , this
additive error is very small (of size approx σ) controlling the growth of this error
term can be handled by standard techniques.

Returning to our goal of emulating small subgroups in Zp, our approach
follows almost instantly: Instead of encoding a bit b ∈ Z2 as b · ⌈p2

⌉
, we will

encode it as
⌈
b · p

2

⌋
σ

(for a σ > ω(
√

log(λ))). For b, b′ ∈ {0, 1} this ensures that
⌈
b · p

2

⌋

σ
+
⌈
b′ · p

2

⌋

σ
mod p ≈s

⌈
(b + b′ mod 2) · p

2

⌋
√
2σ

mod p.

Thus, we have ensured that
⌈
b · p

2

⌋
σ

+
⌈
b′ · p

2

⌋
σ

mod p does not leak more infor-
mation than b + b′ mod 2.

Function-Private Evaluation for ElGamal. We will now briefly discuss how this
idea leads to a modulo 2 function private homomorphic evaluation procedure
for ElGamal. Say we have two ElGamal ciphertexts c1 = (gr1 , hr1 · gb1) and
c2 = (gr2 , hr2 ·gb2) for a public key pk = (g, h) and we want to homomorphically

Batch-OT with Optimal Rate 167

evaluate the function f(x1, x2) = a1x1 + a2x2 mod 2 (for a1, a2 ∈ {0, 1}) on
this pair of ciphertexts. In the first step, we randomly encode the function f as

f ′(x1, x2) = x1 ·
⌈
a1

p

2

⌋

σ
+ (1 − x1) · �0σ + x2 ·

⌈
a2

p

2

⌋

σ
+ (1 − x2) · �0σ ,

noting that this is still a linear function (chosen from a distribution). Homomor-
phically evaluating f ′ on the ciphertexts c,c2 we obtain a ciphertext c′ encrypting

f ′(b1, b1) = b1 ·
⌈
a1

p

2

⌋

σ
+ (1 − b1) · �0σ + b1 ·

⌈
a2

p

2

⌋

σ
+ (1 − b1) · �0σ

=
⌈
b1a1

p

2

⌋

σ
+
⌈
b1a2

p

2

⌋

σ

≈s

⌈
(b1a1 + b1a2 mod 2)

p

2

⌋
√
2σ

.

In other words, this ciphertext could have been simulated knowing only the
function result f(b1, b1) = b1a1+b1a2 mod 2, establishing that this homomorphic
evaluation procedure is function private.

One aspect to note is that while the messages b1, b1 are encoded in c1, c2 in
the “low-order-bits” via gb1 and gb2 , the function result f(b1, b2) encrypted in c′

is encoded in the high order bits, i.e. it is encoded as ≈ gf(b1,b2)
p
2 . This makes

it necessary to change the decryption procedure: Let c′ = (c′
1, c

′
2) and s be the

secret key. To decrypt c′ we compute f = c′
2 · (c′

1)
−s ≈s g�f(s1,s2)· p

2 �, we test if
f is close to g0 = 1 or g�p/2�. This recovers f(s1, s2), as the error introduced
by the rounding operation is of size at most poly(λ) via standard gaussian tail
bounds.

Finally, we remark this this “high-order-bit” encoding is still compatible with
ElGamal ciphertext compression, i.e. we can still compress homomorphically
evaluated batch ElGamal ciphertexts down asymptotically optimal size, using a
slightly different compression mechanism. This mechanism is discussed in Sect. 5.
We expect this technique to have additional applications. As one immediate
application, it allows to upgrade the key-dependent message secure encryption
scheme of Boneh et al. [3] to support arbitrary linear functions modulo 2.

3 Preliminaries

The acronym PPT denotes “probabilistic polynomial time”. Throughout this
work, λ denotes the security parameter. By negl(λ), we denote a negligible func-
tion in λ, that is, a function that vanishes faster than any inverse polynomial
in λ. Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we
denote by y ← A(x) the output y after running A on input x. If S is a (finite)
set, we denote by x ←$S the experiment of sampling uniformly at random an
element x from S. If D is a distribution over S, we denote by x ←$D the ele-
ment x sampled from S according to D. We denote by S[i] the i-th element of
S (where the elements are ordered by ascending order except when explicitly
stated otherwise).

168 Z. Brakerski et al.

For two probability distributions X,Y , we use the notation X ≈s Y to state
that the distributions are statistically indistinguishable.

For two vectors u,v ∈ F
n over a finite field F, we denote by u � v their

component-wise multiplication. We denote by Supp(u) the support of u, that is,
the set of indices where u is different from 0.7 For S ⊆ [n], uS denotes the vector
(ui)i∈S . Finally, uT denotes the transpose of u and hw(u) denotes the hamming
weight of u (that is, the number of coordinates of u different from 0).

3.1 Lattices and Gaussians

We now review some basic notions of lattices and gaussian distributions.
Let B ∈ R

k×n be a matrix. We denote the lattice generated by B by Λ =
Λ(B) = {xB : x ∈ Z

k}.8 The dual lattice Λ∗ of a lattice Λ is defined by
Λ∗ = {x ∈ R

n : ∀y ∈ Λ,x · y ∈ Z}. It holds that (Λ∗)∗ = Λ. The orthogonal
lattice Λ⊥

q is defined by {y ∈ Z
n
q : AyT = 0 mod q}.

Let ρs(x) be probability distribution of the Gaussian distribution over R
n

with parameter s and centered in 0. We define the discrete Gaussian distribution
DS,s over S and with parameter s by the probability distribution ρs(x)/ρ(S) for
all x ∈ S (where ρs(S) =

∑
x∈S ρs(x)).

For ε > 0, the smoothing parameter ηε(Λ) of a lattice Λ is the least real
σ > 0 such that ρ1/σ(Λ∗\{0}) ≤ ε [31].

Lemma 1 ([2]). For all α ∈ R, ‖x‖ ≤ α
√

n for x ←$Dn
Z,α, except with negli-

gible probability in n.

We will make use of the following convolution property of discrete gaussians.

Lemma 2 ([22], Corollary 4.8). Let Λ1, Λ2 ⊆ R
n be lattices, let σ1, σ2 > 0

be such that 1/
√

1/σ2
1 + 1/σ2

2 > ηε(Λ1 ∩ Λ2) for some ε = negl(λ). Then
it holds for all a,b ∈ R

n that DΛ1+a,σ1 + DΛ2+b,σ2 is statistically close to
D

Λ1+Λ2+a+b,
√

σ2
1+σ2

2
.

We just need the following simple corollary of Lemma 2, which can be
obtained by setting Λ1 = Λ2 = Z.

Corollary 1. Let σ1, σ2, σ3 =
√

σ2
1 + σ2

2 be such that σ1σ2/σ3 > ηε(Z) for a
negligible ε and let a, b ∈ Z. Then DZ+a,σ1 + DZ+b,σ2 and DZ+a+b,σ3 are statis-
tically close.

3.2 Distributed GGM-PPRF Correlation

Let PPRFGGM = (KeyGen,Eval,Puncture,EvalPunct) be the GGM-PPRF scheme
based on [26]. The distributed GGM-PPRF correlation functionality [5] considers
two parties: A receiver with input α ∈ {0, 1}� and a sender with input β ∈ Fpr

and a GGM-PPRF key K. The functionality outputs a punctured key Kα and a
hardwired value β −PPRF.Eval(K, α) to the receiver. We now present the formal
definition of the functionality.
7 If there is only one index different from zero, Supp(u) denotes this index.
8 The matrix B is called a basis of Λ(B).

Batch-OT with Optimal Rate 169

Distributed GGM-PPRF Correlation Functionality. The functionality
FPPRF-GGM is parametrized by integers �, p, r ∈ N. Moreover, let PPRFGGM =
(KeyGen,Eval, Puncture,EvalPunct) be the GGM PPRF scheme with input space
{0, 1}� and output space Fpr . The functionality works as follows:

– Receiver phase. R sends α to FPPRF-GGM where α ∈ {0, 1}�.
– Sender phase. S sends (β,K) to FPPRF-GGM where β ∈ Fpr and K ←

PPRF.KeyGen(1λ). FPPRF-GGM sends Kα ← PPRF.Puncture(K, α) and γ ←
β − PPRF.Eval(K, α) to R.

4 Compression-Friendly Subgroup Emulation
via Gaussian Rounding

We will now provide our new subgroup emulation technique. We first define the
gaussian rounding functionality.

Definition 1. Let σ > 0. For any x ∈ R, the gaussian rounding �xσ is a
random variable supported on Z defined by

�xσ = x + DZ−x,σ.

In other words, �xσ is a discrete gaussian centered on x ∈ R but supported
on Z.

We will use the following convolution lemma which provides a simulation
property for gaussian rounding.

Lemma 3. Let ε > 0 be bounded by a sufficiently small constant and let σ1, σ2 ≥
ηε(Z). Then it holds for all x, y ∈ R that

�xσ1
+ �yσ2

≈s �x + y√
σ2
1+σ2

2
.

It immediately follows from Lemma 3 that it holds for every integer p ≥ 2 that

�xσ1
+ �yσ2

mod p ≈s �x + y√
σ2
1+σ2

2
mod p.

Please refer to Appendix B of the full version of this paper for the proofs of
lemmas in this section.

Lemma 4. Let p > q ≥ 2 be integers with q ≤ 2k, and let σ > ηε(Z) for a
negligible ε. Let f : Z

n
q → Zq be given by f(x1, . . . , xn) =

∑n
i=1 aixi + c for

a1, . . . , an, c ∈ Zq. Define the randomized function f̂ : {0, 1}nk → Z
n
p via

f̂(x1,1, . . . , xn,k) =
n∑

i=1

k∑

j=1

(
xi,j ·
⌈
2j · p

q
ai

⌋

σ

+ (1 − xi,j) �0σ

)
+
⌈

p

q
c

⌋

σ

.

Then it holds for all x1,1, . . . , xn,k ∈ {0, 1} that

f̂(x1,1, . . . , xn,k) ≈s

⎡

⎢
⎢
⎢

p

q
· f

⎛

⎝
k∑

j=1

x1,j2j , . . . ,

k∑

j=1

xn,j2j

⎞

⎠

⎥
⎥
⎥
⎦

√
2nk+1σ

.

170 Z. Brakerski et al.

5 Rate-1 Circuit-Private Linearly Homomorphic
Encryption

In this section we define circuit-private LHE and present constructions based on
LWE, DDH or QR9. All constructions achieve rate 1.

Definition 2. A (packed) linearly homomorphic encryption (LHE) scheme
LHE over a finite group G is composed by a tuple of algorithms
(Keygen,Enc,Eval,Shrink,DecShrink) such that:

– KeyGen(1λ, k) takes as input a security parameter λ and k ∈ N. It outputs a
pair of public and secret keys (pk, sk).

– Enc(pk,m = (m1, . . . ,mk)) takes as input a public key pk and a message
m = (m1, . . . ,mk) ∈ G

k. It outputs a ciphertext ct.
– Eval(pk, f, (ct1, . . . , ct�)) takes as input a public key pk, a linear function f :

(Gk)� → G
k and � ciphertexts (ct1, . . . , ct�). It outputs a new ciphertext c̃t.

– Shrink(pk, ct) takes as input a public key pk and a ciphertext ct. It outputs a
new shrunken ciphertext ct′.

– DecShrink(sk, ct) takes as input a secret key sk and a shrunken ciphertext ct.
It outputs a message m.

For simplicity, we define the algorithm Eval&Shrink(pk, f, (ct1 . . . , ct�)) which
outputs a ciphertext c̃t and is defined as

Eval&Shrink(pk, f, (ct1 . . . , ct�)) = Shrink(pk,Eval(pk, f, (ct1, . . . , ct�)))

for any linear function f .
We require the following properties from a (circuit-private) packed LHE:

Correctness, semantic security, compactness and circuit-privacy.

Definition 3 (Correctness). A packed LHE scheme LHE is said to be correct if
for any � ∈ N, any messages m1, . . . ,m� and any linear function f : (Gk)� → G

k

we have that

Pr

⎡

⎣m̃ ← DecShrink(sk, c̃t) :
(pk, sk) ← KeyGen(1λ, k)

cti ← Enc(pk,mi) for i ∈ [�]
c̃t ← Eval&Shrink(pk, , f, (ct1 . . . , ct�))

⎤

⎦ = 1

where m̃ ← f(m1, . . . ,m�).

Definition 4 (Semantic Security). A packed LHE scheme LHE is said to
be semantically secure if for all λ ∈ N, all k = poly(λ) and all adversaries
A = (A0,A1) we have that

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣b ← A1(st, ct) :

(pk, sk) ← KeyGen(1λ, k)
(m0,m1, st) ← A0(pk)

b ←$ {0, 1}
ct ← Enc(pk,mb)

⎤

⎥
⎥
⎦− 1

2

∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(λ).

9 Please refer to Appendix D.1 and D.2 of the full version paper for the construction
of LWE and QR.

Batch-OT with Optimal Rate 171

Definition 5 (Compactness). We require that a packed LHE scheme LHE has
the following compactness properties:

– For (pk, sk) ← KeyGen(1λ, k), the size of the public key |pk| is bounded by
k · poly(n).

– For any linear function f : (Gk)� → G
k and any (m1, . . . ,m�) ∈ (Gk)� we

have that

lim
λ→∞

inf
|f(m1, . . . ,m�)|

|Eval&Shrink(pk, , f, (ct1 . . . , ct�))| → 1

for sufficiently large k, where (pk, sk) ← KeyGen(1λ, k) and cti ← Enc(pk,mi)
for i ∈ [�]. In this case, we say that the scheme has rate 1.

We also need that the packed LHE scheme fulfills circuit privacy (in the
semi-honest case).

Definition 6 (Circuit Privacy). A packed LHE scheme LHE is said to be
circuit-private if for all messages (m1, . . . ,m�) ∈ (Gk)� and all linear functions
f : (Gk)� → G

k, there exists a simulator Sim such that for all adversaries A we
have that
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎣1 ← A(pk, sk, c̃t) :
(pk, sk) ← KeyGen(1λ, k)

cti ← Enc(pk,mi) for i ∈ [�]
c̃t ← Eval&Shrink(pk, , f, (ct1 . . . , ct�))

⎤

⎦−

Pr
[
1 ← A(pk, sk, c̃t) : (pk, sk) ← KeyGen(1λ, k)

c̃t ← Sim(pk, m̃)

]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(λ)

where m̃ ← f(m1, . . . ,m�).

In other words, since Sim does not use f to compute c̃t, no information about
it is leaked from c̃t (apart from what is trivially leaked by f).

Encryption of Matrices. Above, we defined LHE that supports encryption of
vectors m ∈ G

k. We can easily extend the definition to support encryption of
matrices M ∈ G

k×α for any α = poly(λ): Given a public key pk, an encryption
Enc(pk,M) of M is defined as

Enc(pk,M) =

⎛

⎝
| |

Enc
(
pk,m(1)

)
. . . Enc

(
pk,m(α)

)

| |

⎞

⎠

where m(i) is the i-th column of M.

5.1 Construction from DDH

In the following, let G be a (prime-order) group generator, that is, G is an algo-
rithm that takes as an input a security parameter 1λ and outputs (G, p, g), where
G is the description of a multiplicative cyclic group, p is the order of the group
which is always a prime number unless differently specified, and g is a generator
of the group. In the following we state the decisional version of the Diffie-Hellman
(DDH) assumption.

172 Z. Brakerski et al.

Definition 7 (Decisional Diffie-Hellman Assumption). Let (G, p, g) ←$G
(1λ). We say that the DDH assumption holds (with respect to G) if for any PPT
adversary A
∣
∣Pr[1 ← A((G, p, g), (ga, gb, gab))] − Pr[1 ← A((G, p, g), (ga, gb, gc))]

∣
∣ ≤ negl(λ)

where a, b, c ←$Zp.

Shrinking Ciphertexts. We first present how we can shrink DDH-based
ciphertexts to achieve rate 1. The shrinking mechanism presented below is a
modification of the one presented in [9] (which is itself based on previous works
[7,19]).

Let (G, p, g) ←$G(1λ) and k ∈ Z. Consider an El Gamal public key of the
form pk = (g, (h1, . . . , hk) = (g, (gx1 , . . . , gxk)) ∈ G

k+1 for x1, . . . , xk ←$Zp

(here, x = (x1, . . . , xk) is the secret key). Consider the following modified El
Gamal encryption algorithm where a ciphertext for m = (m1, . . . ,mk) ∈ {0, 1}k

is of the form ct = (c1, (c2,1, . . . , c2,k)) ∈ G
k+1 where c1 = gr and c2,i =

hr
i g

�mi(p/2)�σ .10 We now show how to compress ciphertexts of this form.
We will need the following ingredients: Let B, T ∈ poly(λ) and PRF =

(KeyGen,Eval) be a PRF that maps g ∈ G to {0, 1}τ for some τ ∈ Z. We
also define the function LEq< : G2 → {0, 1} which receives two group elements
g0, g1 and outputs 1 if g0 < g1 and 0 otherwise, for some order relation < (e.g.
the lexicographic order).

ShrinkDDH(pk, ct):
– Parse pk = (g, (h1, . . . , hk)) and ct = (c1, (c2,1, . . . , c2,k)). Let w = gp/2�.
– Sample a PRF key K ←$PRF.KeyGen(1λ) such that the following condi-

tions are simultaneously satisfied:
1. For every i ∈ [k] and j ∈ {−B, . . . , B} we have that

PRF.Eval(K, c2,i · gj) �= 0 and PRF.Eval(K, c2,i · w · gj) �= 0.

2. For all i ∈ [k] there exists � ∈ {B + 1, . . . , T} such that

PRF.Eval(K, c2,i · g�) = 0 and PRF.Eval(K, c2,i · w · g�) = 0.

– For every i ∈ [k], let δ0,i, δ1,i > 0 be the smallest integer such that

PRF.Eval(K, c2,i · gδ0,i) = 0 and PRF.Eval(K, c2,i · w · gδ1,i) = 0.

Let α0,i = c2,i · gδ0,i and α1,i = c2,i · w · gδ1,i . If LEq<(α0,i, α1,i) = 0, then
set bi = 0. Else, set bi = 1.

– Output c̄t = (c1,K, (b1, . . . , bk)).
DecShrinkDDH(sk, c̄t):

– Parse sk = x = (x1, . . . , xk) and c̄t = (c1,K, (b1, . . . bk)). Let w = gp/2�.
– For every i ∈ [k], compute β0,i = cxi

1 and β1,i = cxi
1 · w.

10 Note that �·�σ is defined in Sect. 4.

Batch-OT with Optimal Rate 173

– For every i ∈ [k], find the smallest integers γ0,i, γ1,i > 0 such that

PRF.Eval(K, β0,i · gγ0,i) = 0 and PRF.Eval(K, β1,i · gγ1,i) = 0.

Let ᾱ0,i = β0,i · gγ0,i and ᾱ1,i = β1,i · gγ1,i . If LEq<(ᾱ0,i, ᾱ1,i) = bi, set
mi = 0. Else, set mi = 1.

– Output m = (m1, . . . ,mk).

Lemma 5 (Correctness). Let B = poly(λ) be such that B > λσ + 1. Then
the shrinking procedure presented above is correct.

Please refer to Appendix C.1 of the full version paper for the proof.

Lemma 6 (Runtime). Let PRF be a PRF, τ = log(8Bk) and T =
2τλ loge(k)+B(1+4k). Then, the shrinking algorithm ShrinkDDH described above
terminates in polynomial time, except with negligible probability.

Please refer to Appendix C.2 of the full version paper for the proof.

Ciphertext Rate. After applying ShrinkDDH we obtain a ciphertext composed by
c̃t = (c1,K, (b1, . . . , bk)) ∈ G × K × {0, 1}k. Hence,

|c̃t|
|m| =

|c1| + |K| + |(b1, . . . , bk)|
k

=
2λ + k

k
= 1 +

2λ

k

which tends to 1 for large enough k.

Function-Private LHE from DDH. We now present our circuit-private LHE
over Z2 based on DDH.

KeyGen(1λ, k):
– (G, p, g) ←$G(1λ)
– Sample x1, . . . , xk ←$Zp. Compute hi = gxi .
– Output pk = (G, p, g, h1, . . . , hk) and sk = x = (x1, . . . , xk).

Enc(pk,m = (m1, . . . ,mk)):
– Parse pk as (G, p, g, h1, . . . , hk).
– Sample r ←$Zp. Compute c1 = gr and c2,i = hr

i g
mi for i ∈ [k].

– Output ct = (c1, (c2,1, . . . , c2,k)).
Eval(pk, f, (ct1, . . . , ct�))

– Parse pk as (G, p, g, h1, . . . , hk), f as f(x1, . . . ,x�) =
∑�

i=1 aixi + b for
a = (a1, . . . , a�) ∈ Z

�
2 and b ∈ Z

k
2 and cti as (c1,i, c2,i) where c2,i =

(c2,1,i, . . . , c2,k,i)) for i ∈ [�].
– Compute c̄t = (c̄1, (c̄2,1, . . . , c̄2,1)) where

c̄1 =
�∏

i=1

(
c
�ai

p
2 σ

1,i · (g · c−1
1,i)

�0�σ

)
· gt

174 Z. Brakerski et al.

and

c̄2 =

�⊙

i=1

(
c
�ai

p
2 �

σ
2,i � (g · c−1

2,i)
�0�σ

)
�

(
g�b1

p
2 �

σ , . . . , g�bk
p
2 �

σ

)
� (ht

1, . . . , h
t
k).

for t ←$Zp and where � denotes the component-wise multiplication.
– Output c̄t.

Shrink(pk, ct): Output c̄t ← ShrinkDDH(pk, ct).
DecShrink(sk, ct): Output m ← DecShrinkDDH(sk, c̄t).

Correctness and expected polynomial runtime of the LHE described above is
guaranteed by Lemma 5 and Lemma 6 by setting B > λ(σ(

√
2� + 1)). Semantic

security of the scheme can be established by a simple reduction to the DDH
assumption in a similar way as in many previous works (the reduction is similar
to the one that proves that El Gamal is semantically secure). It is also easy to
see that the scheme has rate-1 for large enough k.

We now show that the scheme is circuit private. Essentially, circuit privacy
can be established by resorting to Lemma 4.

Lemma 7 (Circuit-privacy). The scheme presented above is circuit private.

Please refer to Appendix C.3 of the full version paper for the proof.

Larger Plaintext Space. As in the LWE case, in the construction presented above,
the plaintext space is Zk

2 . Both the shrinking algorithm and the function-private
LHE schemes can be extended to support plaintext space Z

k
q where q = poly(λ)

and q = 2ν for some ν ∈ Z (the constrain of q being a power of 2 comes from
Lemma 4).

6 Co-private Information Retrieval

In this section, we present a new cryptographic primitive that we call co-PIR.
In a co-PIR scheme, a receiver (with input a set of indices S) and a sender (with
no input) interact such that, at the end, the sender obtains a string y ∈ Z

m
q and

receiver obtains y−S (all positions of y except for the indices in S).
In terms of security, we require that the sender learns nothing about S,

whereas the string yS looks pseudorandom to the receiver. In terms of effi-
ciency, we require that the total communication of the protocol scales only with
|S|poly(λ)polylog(m) (that is, it scales only poly-logarithmically with m). We
present a construction for Co-PIR from the distributed GGM-PPRF correlation
(as shown in [5]) in Appendix E.1 of the full version paper; We also present
another construction with black-box usage of PPRF and PIR in Appendix E.2
of the full version paper.

Batch-OT with Optimal Rate 175

6.1 Definition

We start by defining Co-PIR and present its security properties.

Definition 8 (Co-PIR). A (two-round) Co-PIR scheme CoPIR over Zq is
parametrized by an integer m where m = poly[λ], and is composed by a tuple
of algorithms (Query,Send,Retrieve) such that

– Query(1λ, S) takes as input a set of indices S ⊆ [m]. It outputs a message
copir1 and a private state st.

– Send(copir1) takes as input a first message copir1. It outputs a second message
copir2 and a string y ∈ Z

m
q .

– Dec(copir2, st) takes as input a second message copir2 and a state st. It outputs
a string ỹ ∈ Z

m
q .

Definition 9 (Correctness). A Co-PIR scheme CoPIR is said to be correct if
for any m = poly(λ) and S ⊆ [m] we have that

Pr

⎡

⎣y[m]\S = ỹ[m]\S :
(copir1, st) ← Query(1λ, S)
(copir2,y) ← Send(copir1)
ỹ ← Retrieve(copir2, st)

⎤

⎦ = 1.

In other words, the strings y and ỹ match for every coordinate i ∈ [m]\S.

In terms of security, we require two properties: receiver security and sender
security.

Definition 10 (Receiver security). A Co-PIR scheme CoPIR is said to be
receiver secure if for all m = poly(λ), any subsets S1, S2 ⊆ [m] we have that for
any adversary A

∣
∣
∣
∣
Pr
[
1 ← A(k, copir1) : (copir1, st) ← Query(1λ, S1)

]−
Pr
[
1 ← A(k, copir1) : (copir1, st) ← Query(1λ, S2)

]
∣
∣
∣
∣ ≤ negl(λ).

Definition 11 (Sender security). A Co-PIR scheme CoPIR is said to be
sender secure if for any m = poly(λ), any subset S ⊆ [m] we have that for
all adversaries A
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr
[
1 ← A(k, st, copir2,yS) : (copir1, st) ← Query(1λ, S)

(copir2,y) ← Send(copir1,x)

]
−

Pr

⎡

⎣1 ← A(k, st, copir2,y
′
S) :

(copir1, st) ← Query(1λ, S)
(copir2,y) ← Send(copir1,x)

y′
S ←$Z

|S|
q

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(λ).

Definition 12 (Compactness). A Co-PIR scheme CoPIR is said to be com-
pact if |copir1|, |copir2| = |S| · polylog(m) · poly(λ for any S ⊆ [m] where
(copir1, st) ← Query(1λ, S) and (copir2,y) ← Send(copir1). In other words, the
communication complexity depends only poly-logarithmically in m.

176 Z. Brakerski et al.

7 Oblivious Transfer with Overall Rate 1

We will now provide our construction of an oblivious transfer protocol with
overall rate 1.

Ingredients. We will make use of the following ingredients.

– A packed linearly homomorphic encryption scheme LHE = (KeyGen,Enc,
Eval,Shrink,DecShrink) with plaintext space {0, 1}� and a post homomor-
phism shrinking procedure Shrink which converts ciphertexts into a rate 1
representation.11

– The binary LPN(n,m, ρ) problem with dimension n = poly(n), m = n · � ·
poly(n) samples and slightly sub-constant noise-rate ρ = m1−ε.

– A 2-round PIR scheme PIR = (Query,Send,Retrieve) with poly-logarithmic
communication complexity and sender privacy.

– A 2-round Co-PIR scheme CoPIR = (Query,Send,Retrieve) over Z2

parametrized by m.

Additional Notation. Furthermore, to declutter notation we define the following
embedding functions.

RowMatrix(�, n,v1, . . . ,v�): Takes row-vectors v1, . . . ,v� ∈ {0, 1}n and outputs
a matrix

V =

⎛

⎜
⎝

— v1 —
...

— v� —

⎞

⎟
⎠ ,

i.e. for every i ∈ [�] the i-th row of V is the row-vector vi.
SingleRowMatrix(�, n, i,v): Takes a row-vector v ∈ {0, 1}n and outputs a matrix

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 . . . 0
...

...
0 . . . 0
— v —
0 . . . 0
...

...
0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

i.e. the i-th row of V is v, but V is 0 everywhere else.
Diag(n,v): Takes a vector v = (v1, . . . , vn) ∈ {0, 1}n and outputs a matrix

D =

⎛

⎜
⎝

v1 0
. . .

0 vn

⎞

⎟
⎠ ,

11 Recall that we use the notation Eval&Shrink to denote the composition of algorithms
Eval and Shrink.

Batch-OT with Optimal Rate 177

i.e. D ∈ {0, 1}n×n is a diagonal matrix with the components of v on its
diagonal.

We observe the following:

– For any v1, . . . ,v� ∈ {0, 1}n it holds that

RowMatrix(�, n,v1, . . . ,v�) =
�∑

i=1

SingleRowMatrix(�, n, i,vi).

– For x,y ∈ {0, 1}n it holds that

x · Diag(n,y) = x � y,

where � denotes component-wise multiplication.

7.1 The Protocol

The protocol OT = (OTR,OTS,OTD) is given as follows.

OTR(b ∈ {0, 1}m�):
– Parse b = (b1, . . . ,b�), where the bi ∈ {0, 1}m are blocks of size m.
– Choose A ←$ {0, 1}n×m uniformly at random and compute a pair of pub-

lic and secret key (pk, sk) ← LHE.KeyGen(1λ, �).
– For all i ∈ [�], choose si ←$ {0, 1}n, and ei ←$χm,t, compute ci ← siA +

ei + bi, and set Si ← SingleRowMatrix(�, n, i, si). Compute a matrix-
ciphertext cti ← LHE.Enc(pk,Si).

– For all i ∈ [�] set Ji = Supp(ei) to be the support of ei. Com-
pute (copir1,i, sti) ← CoPIR.Query(Ji). Additionally, for j ∈ [t] compute
(qi,j , ŝti,j) = PIR.Query(Ji[j]).

– Output ot1 =
(
pk,A, {cti, ci, copir1,i}i∈[�], {qi,j}i∈[�],j∈[t]

)
and st = (sk,

{sti, Ji}i∈[�], {ŝti,j}i∈[�],j∈[t]]).
OTS((m0,m1) ∈ ({0, 1}m�)2, ot1):

– Parse m0 = (m0,1, . . . ,m0,�) and m1 = (m1,1, . . . ,m1,�), where
each mb,i = (mb,i,1, . . . ,mb,i,m) ∈ {0, 1}m. Parse ot1 =
(pk,A, {cti, ci, copir1,i}i∈[�], {qi,j}i∈[�],j∈[t]).

– For i ∈ [�] (yi, copir2,i) ← CoPIR.Send(copir1,i) where yi =
(yi,1, . . . , yi,m). Set zi = m0,i + yi.

– Set Z = RowMatrix(�,m, z1, . . . , z�).
– For all i ∈ [�] set Ci = SingleRowMatrix(�,m, i, ci) and Di =

Diag(m,m1,i − m0,i).
– Define the Z2-linear function f : ({0, 1}�×n)� → {0, 1}�×m via

f(X1, . . . ,X�) =

(
�∑

i=1

(−XiA + Ci) · Di

)

+ Z.

– Compute c̃t ← LHE.Eval&Shrink(pk, f, ct1, . . . , ct�).

178 Z. Brakerski et al.

– For i ∈ [�] set DBi = (yi,1+(m1,i,1−m0,i,1), . . . , yi,m+(m1,i,m−m0,i,m)).
For all j ∈ [t] compute ri,j ← PIR.Send(DBi, qi,j).

– Output ot2 =
(
c̃t, {copir2,i}i∈[�], {ri,j}i∈[�],j∈[t]

)
.

OTD(ot2, st):
– Parse ot2 =

(
c̃t, {copir2,i}i∈[�], {ri,j}i∈[�],j∈[t]

)
and st = (sk, {sti, Ji}i∈[�],

{ŝti,j}i∈[�],j∈[t]]).
– For all i ∈ [�] compute ỹi = (ỹi,1, . . . , ỹi,m) ← CoPIR.Retrieve(copir2,i, sti).
– For i ∈ [�] and j ∈ [t] compute z̃i,j ← PIR.Retrieve(ri,j , ŝti,j).
– For i ∈ [�] set zi = (zi,1, . . . , zi,m) where

zi,l =

{
z̃i,j if l = Ji[j]
ỹi,� otherwise

.

– Set Z = RowMatrix(�,m, z1, . . . , z�).
– Compute W̃ ← LHE.DecShrink(sk, c̃t) and W = W̃ − Z.
– Let w1, . . . ,w� be the rows of W. Output w = (w1‖ . . . ‖w�) ∈ {0, 1}m�.

Correctness. We will first show that OT is correct, given that LHE, CoPIR and
PIR are correct.

Theorem 1. Assume that LHE, CoPIR and PIR are correct. Then the scheme
presented above is correct.

Proof. First note that by linear-homomorphic correctness of LHE it holds that

W̃ = LHE.DecShrink(sk, LHE.Eval&Shrink(pk, f, LHE.Enc(pk,S1), . . . , LHE.Enc(pk,S�))

= f(S1, . . . ,S�)

=

(
k∑

i=1

(−SiA+Ci) ·Di

)
+ Z

Let w̃i be the i-th row of W̃. It holds by definition Si, Ci and Zi that

w̃i = (−siA + ci)Di + zi

= (−siA + siAi + ei + bi)Di + m0,i + yi

= bi � (m1,i − m0,i) + m0,i + ei � (m1,i − m0,i) + yi.

where yi = (yi,1, . . . , yi,m) is part of the output of CoPIR.Send.
Let Ji be the support of ei and let ỹi = (ỹi,1, . . . , ỹi,m) ←

CoPIR.Retrieve(copir2,i, sti). By the correctness of the Co-PIR scheme CoPIR we
have that ỹi,j = yi,j for all j /∈ Ji. On the other hand, by the correctness of the
PIR scheme PIR it holds that

z̃i,j = yi,j + (m1,i,j − m0,i,j)

for all j ∈ Ji. Consequently, we have that

zi,j =

{
yi,j + (m1,i,j − m0,i,j) if l = Ji[j]
yi,j otherwise

.

Batch-OT with Optimal Rate 179

In other words, the term (m1,i,j − m0,i,j) only appears in the coordinates where
ei is equal to one. Then, it holds that

zi = ei � (m1,i − m0,i) + yi.

We conclude that

w = w̃i − zi = bi � (m1,i − m0,i) + m0,i.

Since w = (w1‖ . . . ‖w�) it follows that

w = b � (m1 − m0) + m0,

i.e. OT is correct.

Communication Complexity. We will now analyze the communication complex-
ity of OT and show which choice of parameters leads to an overall rate approach-
ing 1.

The bit-size of the message ot1 =
(
pk,A, {cti, ci, copir1,i}i∈[�], {qi,j}i∈[�],j∈[t]

)

can be bounded as follows.

– |pk| = � · poly(λ)
– |A| = n · m
– |{cti}i∈[�]| = �2 · n · poly(λ)
– |{ci}i∈[�]| = � · m
– |{copir1,i}i∈[�]| = � · t · polylog(m) · poly(λ)
– |{qi,j}i∈[�],j∈[t]| = � · t · polylog(m) · poly(λ).

Consequently, the overall upload-rate ρup can be bounded by

ρup =
|pk| + |A| + |(cti)i∈[�]| + |(ci)i∈[�]| + |{copir1,i}i∈[�]| + |(qi,j)i∈[�],j∈[t]|

�m

≤ 1 +
poly(λ)

m
+

n

�
+

� · n · poly(λ)
m

+
t · polylog(m) · poly(λ)

m

≤ 1 +
n

�
+

� · n · poly(λ)
m

+
t · polylog(m) · poly(λ)

m
.

We get an overall upload rate of ρup = 1 + O(1/λ) by choosing � = λ · n and
m = n2 ·poly(λ) for a sufficiently large poly(λ) depending on ε (where t = m1−ε).

The bit-size of the message ot2 =
(
c̃t, {copir2,i}i∈[�], {ri,j}i∈[�],j∈[t]

)
can be

bounded as follows.

– |c̃t| = �m(1 + ρLHE), where 1 + ρLHE is the ciphertext rate of LHE.
– |{copir2,i}i∈[�]| = � · t · polylog(m) · poly(λ)
– |{ri,j}i∈[�],j∈[t]| = � · t · polylog(m) · poly(λ)

Thus, the download-rate ρdown can be bounded by

ρdown =
|c̃t| + |{copir2,i}i∈[�]| + |{ri,j}i∈[�],j∈[t]|

�m

≤ 1 + ρLHE +
� · t · polylog(m) · poly(λ)

m
.

By the above choice of m this comes down to ρdown ≤ 1 + ρLHE + O(1/λ).

180 Z. Brakerski et al.

7.2 Security

Receiver Security We now focus on the security of the scheme. We start by
proving that the scheme is secure against semi-honest senders.

Theorem 2. Assume that LHE is a semantic secure LHE scheme, PIR is a
user-private PIR scheme, CoPIR is a receiver secure Co-PIR scheme and that
the LPN(n,m, ρ) assumption holds for ρ = m1−ε for ε > 0. Then the scheme
presented in Sect. 7.1 is receiver secure against semi-honest adversaries.

Recall that the receiver’s message is composed by LHE ciphertexts, LPN
samples, Co-PIR and PIR first messages. In a nutshell, receiver security follows
from the fact that the ciphertexts hide the LPN secret, the LPN samples hide the
receiver’s input b and finally the Co-PIR and PIR first messages hide the indices
Ji. We prove the above theorem in Appendix G.1 of the full version paper.

Sender Security

Theorem 3. Assume that LHE is a statistically function-private LHE scheme,
PIR is a sender-private PIR scheme and CoPIR is a sender-private Co-PIR
scheme. Then the scheme presented in Sect. 7.1 is sender secure.

In a nutshell, we can use the sender security of PIR and Co-PIR to remove any
information about the indices of DBi that are not in Supp(ei), and finally invoke
circuit-privacy of the LHE. We prove sender security in Appendix G.2 of the full
version paper.

Hardness assumptions for optimal-rate OT. When we instantiate the LHE with
one of the schemes from Sect. 5, the Co-PIR with the construction from Sect. 6
and the PIR with a known black-box construction based on LWE, DDH or QR
[19], we obtain the following corollary

Corollary 1. Assuming the LWE, DDH or QR assumptions together with the
LPN(n,m, ρ), there is a black-box construction for optimal-rate OT.

8 Oblivious Matrix-Vector Product and Oblivious Linear
Evaluation with Overall Rate 1

In this section we show how we can extend the techniques from the previous
section to build protocols for OMV and OLE that achieve optimal rate.

We start by presenting a secure protocol for oblivious matrix-vector product
(OMV). In an OMV functionality there is a sender, with input a matrix M ∈
Z

m×m
q and a vector v ∈ Z

m
q , and a receiver with input b ∈ Z

m
q . In the end, the

receiver gets the value bM + v but learns nothing about M and v whereas the
sender learns nothing about b. We start by defining the functionality:

Batch-OT with Optimal Rate 181

OMV Functionality. The functionality FOMV is parametrized by integers m =
poly(λ) and q and works as follows:

– Receiver phase. R sends b to FOMV where b ∈ Z
m
q .

– Sender phase. S sends (M,v) to FOMV where M ∈ Z
m×m
q and v ∈ {0, 1}m.

FOMV sends bM + v ∈ Z
m
q to R.

We describe the concrete OMV protocol in Appendix H of the full version
paper.

8.1 OLE Protocol

An oblivious linear evaluation (OLE) is a protocol between a sender, with input
an affine function f , and a receiver, with input a point b. It allows for the receiver
to obliviously learn f(b). We now show how we can obtain an OLE using the
OMV protocol presented in Appendix H of the full version paper.

We start by defining the functionality:

OLE Functionality. The functionality FOLE is parametrized by integers k =
poly(λ) and q and works as follows:

– Receiver phase. R sends b to FOLE where b ∈ Z
k
q .

– Sender phase. S sends (u0,u1) to FOLE where u0,u1 ∈ Z
k
q . FOLE sends

b � u0 + u1 ∈ Z
k
q to R.

Protocol for Small Fields. We briefly sketch how we can construct an OLE
scheme over Zq where q = poly(λ). The protocol follows as a particular case of
the protocol of Appendix H. We give a brief overview of the scheme below.

Using the notation of Appendix H, let b = (b1, . . . ,b�) ∈ Z
m�
q be the

receiver’s input and let (u0 = (u0,1, . . . ,u0,�),u1 = (u1,1, . . . ,u1,�)) ∈ (Zm�
q)2

be the sender’s input. To achieve OLE, the sender constructs the matrices
Di = Diag(m,u0,i) and sets vi = u1,i for all i ∈ [�]. Then they run the OMV
protocol where the receiver inputs b and the sender inputs D = (D1, . . . ,D�)
and v = (v1, . . . ,v�). It is easy to see that the output of the receiver is
y = (y1, . . . ,y�) where

yi = biDi + vi = bi � u0,i + u1,i

be the correctness of the OMV protocol.
Moreover, hw(Di) = 1 ≤ m1−ζ for some ζ > 0 such that ζ + ε > 1. Thus the

resulting protocol achieves overall rate 1. Finally, in terms of hardness assump-
tions, the OLE protocol inherits the same security.

Extending OLE to Larger Rings. Following [19], we briefly explain how we
can achieve OLE over larger rings (which can potentially have super-polynomial
size in λ).

182 Z. Brakerski et al.

OLE over ZN = Zq1 × · · · × Zqδ
. Let N =

∏δ
i=1 qi be an integer (which might

be superpolynomial in λ) such that for all i ∈ [δ] qi = poly(λ) are different
prime numbers. Then, via the Chinese Remainder Theorem, ZN is isomorphic
to Zq1 × · · · ×Zqδ

. Thus, performing an OLE over ZN boils down to performing
δ OLEs over each one of the smaller fields Zqi

. It is easy to see that, if each OLE
over Zqi

has overall rate 1, then the resulting OLE over ZN also achieves overall
rate 1.

OLE over Extension Fields. We now show how these techniques can be adapted
to perform OLE over an extension field Fqk of order qk for a prime q. Here,
we rely on the fact that multiplication over Fqk can be expressed as a linear
function over the field Zq. That is, suppose that an element x ∈ Fqk is of the
form x = x1 + x2α + · · · + xkαk−1 where each xi ∈ Zq and α is a symbol. Then,
for elements a,x ∈ Fqk the product

xa = f1,a(x) + f2,a(x)α + · · · + fk,a(x)αk−1

where each fi,a is a Zq-linear function which depends solely on a.
Given this, we briefly describe how we can perform several OLEs over Fqk

while preserving overall rate 1. The receiver has input b = (b1, . . . ,bt) ∈ F
t
qk

such that kt = m� and k|m (using the same notation as in Appendix H). It parses
each bi as a k-dimensional vectors b̄i ∈ Z

k
q . Then, it organizes all t vectors bi

in blocks ci ∈ Z
m
q of size m. It inputs c = (c1, . . . , c�) into the OMV protocol.

The sender, with input u,v ∈ Fqk rearranges u,v in the same way as the
receiver and obtains w = (w1, . . . ,w�), z = (z1, . . . , z�) respectively. Then, for
each wi = (wi,1, . . . ,wi,m/k), it computes the functions fj,wi,r

for each j ∈ [k],
i ∈ [�] and r ∈ [m/k]. Let fj,wi,r

be the vector composed by the coefficients of
fj,wi,r

. The sender computes the matrices

D̄i,r =

⎛

⎝
| |

f1,wi,r
. . . fk,wi,r

| |

⎞

⎠

and then sets

Di =

⎛

⎜
⎝

D̄i,1

. . .
D̄i,m/k

⎞

⎟
⎠ .

It inputs D = (D1, . . . ,D�) and z into the OMV protocol.
It is easy to see that the receiver’s output will be b�u+v where � denotes

component-wise multiplication over Fqk . Moreover, hw(Di) = k. By choosing k
such that k ≤ μ = m1−ζ we achieve a protocol with overall rate 1. In particular,
we can set the parameters such that k = λ and we achieve an OLE over the field
Fqλ of exponential size.

Batch-OT with Optimal Rate 183

Acknowledgment. Zvika Brakerski is supported by the Israel Science Founda-
tion (Grant No. 3426/21), and by the European Union Horizon 2020 Research
and Innovation Program via ERC Project REACT (Grant 756482) and via Project
PROMETHEUS (Grant 780701).

Pedro Branco thanks the support from DP-PMI and FCT (Portugal) through the
grant PD/BD/135181/2017. This work is supported by Security and Quantum Infor-
mation Group of Instituto de Telecomunicações, by the Fundação para a Ciência e
a Tecnologia (FCT) through national funds, by FEDER, COMPETE 2020, and by
Regional Operational Program of Lisbon, under UIDB/50008/2020.

Nico Döttling and Sihang Pu were supported by the Helmholtz Association within
the project “Trustworthy Federated Data Analytics” (TFDA) (funding number ZT-I-
OO1 4).

A Additional Preliminaries

A.1 UC Security

In terms of security, we work in the standard UC-framework [13]. Let F be a
functionality, π a protocol that implements F and E be a environment, an entity
that oversees the execution of the protocol in both the real and the ideal worlds.
Let IDEALF,Sim,E be a random variable that represents the output of E after
the execution of F with adversary Sim. Similarly, let REALπ,A,E be a random
variable that represents the output of E after the execution of π with adversary
A.

In this work, we only consider semi-honest adversaries.

Definition 13. A protocol π implements F if for every PPT adversary A there
is a PPT simulator Sim such that for all PPT environments E, the distributions
IDEALF,Sim,E and REALπ,A,E are computationally indistinguishable.

A.2 Learning Parity with Noise

The LPN assumption is closely related to the problem of decoding a random
linear code. Informally, it states that it is hard to find a solution for a noisy
system of linear equations over Z2.

Definition 14 (LPN assumption). Let n,m, t ∈ N such that n ∈ poly(λ) and
let χm,t be uniform distribution over the set of error vectors of size m and ham-
ming weight t. The Learning Parity with Noise (LPN) assumption LPN(n,m, ρ)
holds if for any PPT adversary A we have that

∣∣∣∣∣∣Pr

⎡
⎣1 ← A(A, sA + e) :

A ←$ {0, 1}n×m

s ←$ {0, 1}n

e ←$χm,t

⎤
⎦ − Pr

[
1 ← A(A,y) :

A ←$ {0, 1}n×m

y ←$ {0, 1}m

]∣∣∣∣∣∣ ≤ negl(λ)

where ρ = m/t (ρ is called the noise rate).

184 Z. Brakerski et al.

In this work, we assume that the noise rate ρ is m1−ε for any constant ε > 0.
The LPN assumption is believed to be hard for that noise rate (see e.g. [5] and
references therein).

For other missing preliminaries please refer to the full version paper.

References

1. Alamati, N., Branco, P., Döttling, N., Garg, S., Hajiabadi, M., Pu, S.: Laconic
private set intersection and applications. In: Nissim, K., Waters, B. (eds.) TCC
2021. LNCS, vol. 13044, pp. 94–125. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90456-2 4

2. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296(4), 625–636 (1993). http://eudml.org/doc/165105

3. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 7

4. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for free.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp.
62–89. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 3

5. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019: 26th Conference on Computer and Communications Security, pp. 291–308.
ACM Press, 11–15 November 2019

6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 16

7. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

8. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

9. Brakerski, Z., Branco, P., Döttling, N., Garg, S., Malavolta, G.: Constant
ciphertext-rate non-committing encryption from standard assumptions. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 58–87. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64375-1 3

10. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryp-
tion: rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 407–437. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 16

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd Annual Symposium on Foundations
of Computer Science, pp. 97–106. IEEE Computer Society Press, Palm Springs,
22–25 October 2011

12. Branco, P., Döttling, N., Mateus, P.: Two-round oblivious linear evaluation from
learning with errors. Cryptology ePrint Archive, Report 2020/635 (2020). https://
eprint.iacr.org/2020/635

https://doi.org/10.1007/978-3-030-90456-2_4
https://doi.org/10.1007/978-3-030-90456-2_4
http://eudml.org/doc/165105
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-662-53008-5_3
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-030-64375-1_3
https://doi.org/10.1007/978-3-030-36033-7_16
https://eprint.iacr.org/2020/635
https://eprint.iacr.org/2020/635

Batch-OT with Optimal Rate 185

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, pp.
136–145. IEEE Computer Society Press, Las Vegas, 14–17 October 2001

14. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 462–488.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 15

15. Chase, M., Garg, S., Hajiabadi, M., Li, J., Miao, P.: Amortizing rate-1 OT and
applications to PIR and PSI. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS,
vol. 13044, pp. 126–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-90456-2 5

16. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 2

17. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th Annual Symposium on Foundations of Computer Science, pp. 41–50. IEEE
Computer Society Press, Milwaukee, 23–25, October 1995

18. Döttling, N.: Low noise LPN: KDM secure public key encryption and sample ampli-
fication. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 604–626. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 27

19. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 1

20. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology -
CRYPTO 1982, pp. 205–210. Plenum Press, New York, Santa Barbara (1982)

21. Garg, S., Hajiabadi, M., Ostrovsky, R.: Efficient range-trapdoor functions and
applications: rate-1 OT and more. In: Pass, R., Pietrzak, K. (eds.) TCC 2020,
Part I. LNCS, vol. 12550, pp. 88–116. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64375-1 4

22. Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete gaussian
and subgaussian analysis for lattice cryptography. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 623–651.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 21

23. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz,
D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 438–464. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 17

24. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017, Part I. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 22

25. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of ran-
dom functions (extended abstract). In: Blakley, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 276–288. Springer, Heidelberg (1985). https://doi.org/
10.1007/3-540-39568-7 22

26. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986). https://doi.org/10.1145/6490.6503

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: Providing Sound

https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/978-3-030-90456-2_5
https://doi.org/10.1007/978-3-030-90456-2_5
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-662-46447-2_27
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-64375-1_4
https://doi.org/10.1007/978-3-030-64375-1_4
https://doi.org/10.1007/978-3-030-45374-9_21
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1145/6490.6503

186 Z. Brakerski et al.

Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pp. 307–328 (2019)

28. Goyal, R., Vusirikala, S., Waters, B.: New constructions of hinting PRGs, OWFs
with encryption, and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020, Part I. LNCS, vol. 12170, pp. 527–558. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-56784-2 18

29. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

30. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

31. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th Annual Symposium on Foundations of Computer Science, pp.
372–381. IEEE Computer Society Press, Rome, 17–19 October 2004

32. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

33. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
Thorup, M. (ed.) 59th Annual Symposium on Foundations of Computer Science,
pp. 859–870. IEEE Computer Society Press, Paris, 7–9 October 2018

34. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptol.
ePrint Arch. 2005(187) (2005)

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory
of Computing, pp. 84–93. ACM Press, Baltimore, 22–24 May 2005

https://doi.org/10.1007/978-3-030-56784-2_18
https://doi.org/10.1007/978-3-030-56784-2_18
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-14623-7_5

Adaptively Secure Computation for RAM
Programs

Laasya Bangalore1(B), Rafail Ostrovsky2, Oxana Poburinnaya3,
and Muthuramakrishnan Venkitasubramaniam1

1 Georgetown University, Washington, USA
{lb1264,mv783}@georgetown.edu

2 UCLA, Los Angeles, USA
rafail@cs.ucla.edu

3 Ligero, Inc., Rochester, USA
oxanapob@bu.edu

Abstract. In this work, we study the communication complexity of
secure multiparty computation under minimal assumptions in the pres-
ence of an adversary that can adaptively corrupt all parties eventually.
Specifically, we are interested in understanding the complexity when mod-
eling the underlying function as a RAM program. Under minimal assump-
tions, the work of Canetti et al. (STOC 2017) and Benhamouda et al. (TCC
2018) give protocols whose communication complexity grows quadrati-
cally in the circuit size when the computation is expressed as a Boolean
circuit. In this work, we obtain the first two-round two-party computation
protocol, which is secure against adaptive adversaries who can adaptively
corrupt all parties where the communication complexity is proportional to
the square of the RAM complexity of the function up to polylogarithmic
factors assuming the existence of non-committing encryption.

Keywords: Adaptive security · Garbled RAM · Secure computation ·
Oblivious RAM

1 Introduction

Introduced by Yao [31] and Goldreich, Micali, and Wigderson [21], secure multi-
party computation (MPC) allows a set of mutually distrustful agents to collab-
orate and accomplish a common goal while preserving each agent’s privacy to
a maximal extent. Secure computation enables anonymous electronic elections,
privacy-preserving electronic auctions (or contract biddings), privacy-preserving
data mining, fault-tolerant distributed computations, and more.

Typically, an adversary is modeled as a single computational entity that has
the capability of hacking, or corrupting, an arbitrary subset of the communicating
parties over a network and launching a coordinated attack. The classical and most
popular model assumes that the set of corrupted parties are compromised before
the target protocol begins. This is referred to as the static corruption model. The
adaptive corruption model, introduced by Canetti et al. [5], considers a stronger
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 187–216, 2022.
https://doi.org/10.1007/978-3-031-07085-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_7&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_7

188 L. Bangalore et al.

adversary that can hijack a host at any time during the course of the computa-
tion. Arguably, adaptive security provides more meaningful security. In particu-
lar, it captures “hacking” attacks where an external attacker breaks into parties’
machines in the midst of a protocol execution, and can choose its targets adap-
tively based on the currently available information. Furthermore, an interesting
side-effect of adaptive security is that in many cases it automatically guarantees
some form of resilience against leakage from side-channel attacks [3,4].

In this work we focus on full adaptive security, namely security against an
adversary who can (eventually) corrupt all participants. Achieving full adaptive
security offers strong protocol compositional features, namely, embedding a full
adaptive secure sub-protocol in a larger system enables arguing security of the
larger system in a modular way even when all participants in the sub-protocol are
corrupted. In the adaptive setting, the case when everybody can be corrupted is
usually the most difficult to deal with; this should be contrasted with the static
setting, where security in such a case comes for free1.

Canetti et al. [7] established the feasibility of fully adaptively secure protocol
where they designed an O(d)-round protocol to securely realize any functionality.
In the static setting, constant-round protocols were known [22,26] and the gap
in round complexity between what was feasible in the static and fully adaptive
regime remained an open problem. When assuming reliable erasures, a constant-
round protocol was given by Garg and Sahai [19]. The gap was closed simultane-
ously in the works of by [6,14,18] where they designed the first constant round
protocol. These protocol assumed the trusted generation of a common reference
string and relied on the strong assumption of existence of indistinguishability
obfuscation. Moreover, these construction required a common reference string
proportional to size of the circuit. More recently, Canetti et al. in [9] provided
the first constant-round fully adaptively secure protocol from standard (minimal)
assumptions. The question of the precise round complexity was finally resolved
in the work of [2], where they constructed a two-round fully adaptive protocol.
In essence, these works closed the gap in round complexity between static and
fully adaptively secure protocols.

In this work, we are interested in understanding the communication com-
plexity of fully adaptive protocols in the constant-round regime under minimal
assumptions. The works of [8,14,18] achieve essentially an optimal communica-
tion complexity where it is independent of the circuit size. However, as mentioned
above, they rely on strong assumptions and the trusted sampling of a common
reference string that is as large as the circuit being computed. Moreover, a bound
on the size of the circuit to be securely computed was required at the time of the
CRS generation. Another vein of works [8,11] show how the complexity can be
made proportional to the RAM complexity as opposed to the circuit complexity.
The protocol of Cohen, shelat and Wichs [12] improve these works to achieve
communication and the CRS size that is only proportional to the depth of the
circuit.

1 Indeed, in this case the static simulator obtains the inputs of all parties in the
protocol and thus can simulate the execution by simply running the protocol.

Adaptively Secure Computation for RAM Programs 189

Under minimal assumptions, we only have the work of Canetti et al. [9] and
Benhamouda et al. [2] and their communication complexity grows quadratically
in the circuit size when the circuit is expressed as a boolean circuit. The main
question that is left open is to understand the communication complexity under
minimial assumptions, namely:

What is the communication complexity of constant-round fully adaptive
MPC protocols?

In this work, we make progress in answering this question. Specifically, we
show how to obtain better complexity that [9] when the circuit is expressed as
a RAM computation.

In the static case, RAM-efficient protocols have been obtained in the plain
model via garbled RAM, a primitive introduced by Lu and Ostrovsky in 2013
[28]. This primitive allows to separately garble the memory, the input, and the
RAM program (without converting it into a circuit), such that the size and
runtime of the garbled RAM program is only proportional to the runtime of the
program, up to polylogarithmic factors. The original paper required a strong
circular-security assumption, but in sequence of follow-up works [16,17,20,28]
the assumption was improved to a black-box use of any one-way function while
maintaining poly-logarithmic overhead in all parameters. Equipped with garbled
RAM, several recent works have demonstrated constant round MPC protocols
with communication proportional to the RAM complexity in the static setting
[15,24].

However, the state of affairs in the adaptive setting leaves us with either
a construction proportional to the boolean circuit complexity under minimal
assumptions [9] or relying on strong assumptions with a huge CRS [6,8,12,14].

Therefore, the main question that we ask in this paper is this:

Can we construct constant-round secure computation for RAM programs
with only poly-logarithmic overhead that withstands (full) adaptive corrup-
tions in the plain model?

In this work, we make a significant step towards answering this question in
the affirmtive where we provide a construction whose communication complexity
is proportional to the square of the RAM complexity (upto polylogarithmic
factors). The question of whether we can reduce the quadratic overhead to linear
remains an intriguing one. We remark that even in the case of circuits the best
construction we have so far is quadratic in circuit size. To address the malicious
case, we additionally design the first RAM-efficient zero-knowledge proof system
that is adaptively secure [7,23,27]. Previously such constructions were known
only for circuits and required non-constant number of rounds [23].

1.1 Our Results

In this paper, we provide the first construction of a secure two-party computation
protocol for RAM programs that withstands adaptive corruption of both parties
by an active adversary.

190 L. Bangalore et al.

Our first result is an ORAM compiler that is adaptively secure. Informally,
we say that an ORAM compiler is adaptively secure if there exists algorithms
Sim1 and Sim2 such that Sim1 given memory size and running time as inputs
can provide the memory access sequence along with some state information, and
Sim2 given state and the actual input x as inputs can output the randomness
for the compiler that leads to the simulated memory access sequence. We have
the following theorem:

Theorem 1 (Informal). There exists an adaptively secure ORAM with
polylog(n) worst-case computational overhead and polylog(n) memory overhead,
where n is the memory size.

Next, we construct a functionally equivocal encryption scheme that is RAM-
efficient, which we combine with an adaptively-secure ORAM to obtain our main
theorem.

Theorem 2 (Informal). Assume existence of two-round oblivious transfer
secure against passive corruption of both parties by an adaptive adversary then
there exists:

– A minimum interaction (i.e., two-message) two-party general function evalu-
ation protocol for functionalities expressed via a RAM program Π that with-
stands passive corruption of both parties by an adaptive adversary. The pro-
tocol does not use data erasures.

– If Π’s running time is T , the sum of the input sizes of the parties is n and the
size of the memory accessed by Π is M , then our communication complexity
is ˜O((M + n + T)2). Here ˜O(·) ignores poly(log T, log n, κ) factors where κ is
the (computational) security parameter.

Noting that the required oblivious transfer protocol from the theorem can be
constructed based on any non-committing encryption scheme [5], we obtain the
first constant-round adaptively secure two-party computation for RAM programs
in the plain model based on standard assumptions.

Finally, we design a (RAM-efficient) adaptive zero-knowledge proof in the
UC-model whose communication complexity is ˜O((M +n+T)2) which we com-
bine with our semi-honest protocol to obtain an adaptively secure 2PC compu-
tation that secure against malicious adversaries.2 Formally, we have:

Theorem 3 (Informal). Assuming collision resistant hashing and dense cryp-
tosystems, there exists a constant-round UC-secure two-party general function
evaluation protocol in the common random string model, in face of active cor-
ruption of all parties by an adaptive adversary, where communication complexity
is ˜O((M + n + T)2) and the length of the common random string is independent
of the size of the function.

2 We remark that to obtain our result, it sufficient to obtain a circuit-efficient adaptive
zero-knowledge proof.

Adaptively Secure Computation for RAM Programs 191

1.2 Our Techniques

The Challenge of Adaptive Security. When considering adaptive secure compu-
tation, the best construction for circuits under minimal assumptions has commu-
nication complexity O(s2poly(κ)) for a circuit of s gates. As mentioned before,
a long line of research in MPC has focused on measuring the complexity of con-
structions w.r.t the RAM complexity of the underlying function and designed
protocols whose complexity are proportional to the RAM complexity as opposed
to the circuit complexity. We recall here that the transforming a RAM program
to a circuit is prohibitive where the best constructions that start from a T -time
program compile into a circuit of size O(T 3 log T) [13,29]. Hence, converting a
RAM program to a circuit and relying on the construction by [9] would result
in a construction of complexity O(T 6poly(log T, κ)). Following analogous works
in the static setting, our approach is to design a construction directly for RAM
programs.

In a nutshell, our approach extends the equivocal garbling scheme of [9] to
garbled RAM. As we describe next, this will not be a simple combination of
techniques and we need to overcome a few obstacles. Looking ahead, we will
not be able to extend any arbitrary Garbled RAM construction and make it
equivocal. This gives rise to three key obstacles.

Obstacle 1: Deterministic vs Randomized Functionality. All Garbled RAM con-
structions rely on a pre-processing step where the memory sequence is made
oblivious, typically by applying an Oblivious RAM (ORAM) compiler. This
means that even when the underlying function that we wish to securely evalu-
ate is deterministic, the effective functionality we garble will be randomized. In
the adaptive case, randomized functionalities are tricky and they are impossi-
ble in the general case [25] at least in the plain model. In the CRS model, we
do have constructions [6,8,12,14] based on indistinguishability obfuscation. We
resolve this by considering the specific randomization used in the construction
and show that it is “equivocable”. More precisely, we will need an Oblivious RAM
(ORAM) compiler to be adaptively secure. In other words, we need an ORAM
scheme where the simulator first provides a sequence of memory accesses before
knowing actual program inputs and, later, after learning the inputs, output ran-
domness for the ORAM compiler that maps the actual memory sequence to the
simulated one. As our first contribution, we provide the first construction of an
ORAM scheme with this adaptive property.

Obstacle 2: Equivocating Memory. Performing memory read and write opera-
tions is a challenging component of Garbled RAM constructions as the memory
locations to be read are only known during run time. In order to incorporate
data read from memory into the computation, the labels corresponding to the
data need to be provided as input to the garbled step circuits3. A common way
of doing this is to encrypt the labels under some key and provide a mechanism
3 In a RAM program, a step circuit performs CPU computations at a particular time

step.

192 L. Bangalore et al.

for determining these keys during the run-time, once the data location to be read
is known. Prior works [17,20] incorporate ways to efficiently generate these keys
needed to encrypt the labels for the next circuit. In [20], a master key is used to
generate keys corresponding to the memory location to be read and then this key
is used to encrypt the labels associated with the read bits. In [17], a tree-based
structure is used to pick the appropriate key to encrypt the labels associated with
the data. At a very high-level, their garbled memory has a tree-structure with
the encrypted memory at the leaf nodes. Their construction navigates through
the tree towards the data to be read and obtains the appropriate key to encrypt
the label (for the next step circuit). A common thread between these techniques
is that they obtain efficiency by compressing the keys, either by using a master
key to generate other keys or using a tree-structure of keys. But such a compres-
sion makes it hard for the simulator to “equivocate” the keys. Consequently, we
will not be able to rely on the Garbled RAM constructions of [17,20].

Obstacle 3: RAM-Efficient Equivocal Encryption. A crucial ingredient in [9] is
a Functionally Equivocal Encryption (FEE) scheme that allows a private-key
encryption scheme to be equivocated with a key size smaller than the message
length when the equivocation space can be expressed as the image of a function
over a smaller domain. Specifically, [9] provides an FEE scheme for functions
expressed as a circuit where the ciphertext size is proportional to the circuit size
and the keys are proportional to the input size of the function (rather than mes-
sage length being encrypted). As Garbled RAM construction employs sequence
of circuits that are typically garbled, one approach is to use an FEE scheme
to garble these circuits. The issue here is that the function f that defines the
message space is a RAM program and relying on the FEE scheme from [9] that
is constructed for circuits will be inefficient. The main challenge here is to con-
struct a variant of the equivocal encryption that is efficient for RAM programs.
Following the blueprint of [9], we can convert a Garbled RAM construction to an
encryption scheme where the key size is small, the main challenge however is to
ensure that one can equivocate the randomness consistent with the encryption
algorithm. We show how the Garbled RAM scheme of [17] can be converted to
a RAM-efficient equivocal scheme.

Obstacle 4: Obtaining Malicious Security. Extending our result to obtain mali-
cious security requires RAM-efficient adaptive zero-knowledge which was pre-
viously known only based on indistinguishability obfuscation [9,18]. We obtain
malicious security by combining our protocol with an adaptive zero-knowledge
proof [7,23,27] using the classic GMW compiler. In order to maintain the commu-
nication complexity we need a zero-knowledge proof whose complexity is linear in
the circuit size of the NP-relation. The work of [23] provides such a construction,
however, it requires a non-constant number of rounds. In fact, the round com-
plexity is proportional to circuit size and will not be sufficient to get our result.
We address this by designing a more efficient proof system. In fact, for any NP-
relation expressed as a RAM program we design an adaptive zero-knowledge
proof with polylogarithmic overhead.

Adaptively Secure Computation for RAM Programs 193

On Database Size. We remark that the database size influences the online com-
munication complexity (i.e. the size of the garbled input) of our equivocal garbled
RAM. For a database of size M , our equivocal garbled RAM has an online com-
munication complexity of ˜O((M +n) ·n). When we consider a scenario M >> T ,
as is typical in RAM applications, our garbling scheme’s online complexity will
not be efficient (in fact, it is bigger than the size of the computation). On the
other hand, if M << T (or even empty) then our garbled RAM scheme will
be online efficient. We emphasize here that our main goal is to design a secure
two-party computation protocol with a desired communication complexity and
the equivocal garbled RAM scheme is only a means to this goal. In other words,
even though the stand-alone primitive garbled RAM scheme is not efficient in
all regimes, in the context of our 2PC protocol it suffices to consider M << T .

Corruption-Adaptive vs. Input-Adaptive Garbling. We note that the term “adap-
tive” is also used in the literature [1] to denote a very different property which we
will call “input-adaptive security”, to distinguish it from “corruption-adaptive
security”. We only focus on achieving “corruption-adaptive security” which we
simply refer to as “adaptive security” in this paper. “Corruption-adaptive secu-
rity” says that the garbling should remain secure even if the adversary prefers to
corrupt the evaluator first and sees the communication (i.e. the garbled circuit
and garbled input), and later corrupt the garbler and see its internal state (i.e.
randomness used to garble the circuit). Whereas the “input-adaptive security”
guarantees security against adversaries that can adaptively choose the input to
the circuit even after seeing the garbled circuit. In their setting, the input to
the circuit may not be fixed when the circuit is being garbled. [1] considers the
garbling process to have two phases: the circuit garbling phase followed by the
input garbling phase. In particular:

– Input-adaptive garbled circuits remain secure when the input to the compu-
tation is chosen adaptively, but lose security properties if randomness of the
garbling is revealed to the adversary.

– Corruption-adaptive garbled circuits remain secure when the randomness is
revealed to the adversary, but lose security for adaptively chosen inputs.

Outline. For the lack of space, we defer the definitions to the full version; In
Sect. 2, we provide an equivocal ORAM compiler. Section 3 contains the descrip-
tion of RAM-efficient Equivocal Encryption. We give our constructions of Equiv-
ocal Garbling and adaptive ZK for RAM in Sects. 4 & 5 respectively.

2 Equivocal ORAM

In this section, we prove that the ORAM construction of [10] is adaptively secure.
We begin by providing an overview of the ORAM Compiler given by [10]. Con-
sider a client-server setting where a secure client runs a program P that accesses
memory D that belongs to an untrusted server. Informally, the ORAM compiler
ensures that the server does not learn anything about the client’s computation

194 L. Bangalore et al.

by examining the memory access pattern (Obliviousness) while still learning the
output of the execution of the RAM program (Correctness)4.

Data Representation. Let the server’s memory D, which is of size n, be divided
into n/α blocks where the size of each block is α (for some α > 0). For any
program P with memory of size n, we maintain two main data structures, one
at the client’s end and the other at the server’s end.

The server maintains a complete binary tree of depth d = �log(n
α)�. A block

is said to be associated with a leaf node if the block is stored in one of the nodes
on the path from the root to that leaf node. Each node can store at most k
tuples of the form (b, l, val), where b denotes the block number, l denotes the
leaf node and val denotes the content of block b. If any node has more than k
tuples, then we say an overflow has occurred.

The client maintains an array of size n/α, denoted by Pos. This array maps
blocks to leaf nodes. More specifically, the ith position of the array i.e. Pos[i],
corresponds to the ith block and stores the leaf node associated with this block.

Construction. Given a program P with memory D, the ORAM compiler C
outputs a program P ′ with memory D′. Suppose the execution PD(x) per-
forms m memory access operations. Let the ith operation be represented by
Op(i, addr, val) where addr ∈ [n] denotes the memory address and val denotes
the value at memory address addr. Also, let b := addr/n be the block that con-
tains the memory cell addr and r := addr mod(n) be the relative position of
the memory cell within the block b. After the ORAM compilation, the program
P ′ makes 2m memory accesses to D′, which are denoted by {l1, ..., l2m}5. The
compiler C replaces each memory access Op(i, addr, val) made by P with the
following three steps:

1. Fetch: If Pos[b] = ⊥, then set l2i to a randomly sampled leaf node; Otherwise
set l2i := Pos[b] i.e. the leaf node associated with block b. Next, traverse the
path from the root to the leaf node l2i, reading and writing back the contents
of each of the nodes on this path. If any of the nodes contains a tuple of the
form (b, l2i, v), then erase this tuple; otherwise set v = ⊥. Output the value
at position r in v.

2. Update: Choose a leaf node l� uniformly at random and set Pos[b] := l�.
If val = ⊥ (i.e. it’s a write operation), then update val to v. Add the tuple
(b, l�, val) to the root of the tree. Abort, if an overflow occurs.

3. Evict: Choose another leaf node r uniformly at random and set l2i+1 := r.
Traverse each node on the path from the root to leaf node l2i+1 such that:
every tuple (b′, l′, v′) is pushed down along the path towards l2i+1 as long as
it is still on the path associated with its leaf node l′. Abort, if an overflow
occurs at any of the nodes.

4 We adopt the definition of ORAM from [10].
5 Note that for simplicity we only specify the leaf nodes accessed by P ′D′

(x) instead
of specifying each node accessed along the path from the root to the leaf.

Adaptively Secure Computation for RAM Programs 195

Sim1(m, n)

1. Choose 2m leaf nodes randomly from [n/α]. Let lsim
i ← [n/α] for each

i ∈ [1, 2m]
2. Output {lsim

1 , ..., lsim
2m }

Fig. 1. Description of simulator Sim1, which outputs the memory access pattern of an
ORAM

Recursion. In the above construction, the client’s memory size is O(n) since
it needs to store the position map of size n/α. Instead of storing the position
map directly, it can be simulated using the ORAM compiler C. So, any read
or write operations to the position map will be performed as described in the
construction of C. Now, the client only needs to store a new position of size
n/α2. This reduction in the size of the position map can be done recursively
until the size is reduced to just O(k) i.e. constant.

Theorem 4 [10]. The ORAM compiler C described above is adaptively secure
and has worst-case computational complexity of O(n · polylog(n)) and memory
complexity of O(n · polylog(n)) where n is the size of the memory.

Proof. Correctness follows directly from the construction as P ′D′
(x) has the

same output as PD(x) for any deterministic function P , memory D and input
x, whenever overflow does not occur. Using the same argument as [10], it can be
shown that overflows occurs with negligible probability.

Obliviousness on the other hand follows trivially from our simulation Sim1

as it simply chooses two independent random leaf nodes to be traversed for each
memory access operation.

Adaptive security can be proved by showing that the adversary can first
see the sequence of memory accesses without knowing the input and later gain
access to the internal randomness that is consistent with the input (as well as
the memory accesses seen earlier). Assume that an overflow does not occur. We
first show that the sequence of memory accesses made by the program P ′ can be
generated without knowing the input x. This can be done using the algorithm
Sim1 which chooses a sequence of random memory locations given just the
memory size n and the number of memory accesses m (described in Fig. 1).
Next, given a fixed sequence of memory locations

−→
M , memory D and input x,

we need to show that there exists randomness that accesses memory locations−→
M . That is, we need a way of generating randomness req such that the memory
accesses made by P ′D′

(x) exactly correspond to
−→
M , described by algorithm Sim2

in Fig. 2. If an overflow occurs, Sim2 outputs overflow instead of outputting the
randomness req. This does not violate adaptive security as overflow occurs with
just negligible probability. The adaptive security hence follows from the existence
of algorithms Sim1 and Sim2.

196 L. Bangalore et al.

Sim2[
−→
M, P](D, x)

Parameters. P is the RAM that runs in T steps. Let
−→
M parsed as

{lsim
1 , ..., lsim

2T } denote the memory accesses made by the program after ORAM
compilationa.

1. If |−→M = 2T , then abort. Parse
−→
M as (lsim

0 , ..., lsim
2T−1) where (lsim

τ , lsim
τ+1)

are the two leaf nodes accessed in the τ th time step.

2. Compute the original memory addresses
−→
Morig accessed by program P

given input x and data D. Parse
−→
Morig as (addr1, ..., addrT)

3. For every memory access operation τ ∈ [T], rsim
τ is the randomness used to

update the leaf node associated with the fetched block (refer to theUpdate
procedure described in ORAM construction). The goal is to compute rsim

τ

for each time step τ given
−→
Morig and

−→
M .

4. If there exists a τ > τ such that addrτ = addrτ , then select the smallest
such τ and set rsim

τ ← lsim
2τ . Otherwise, set rsim

τ to a randomly chosen
leaf node. More specifically, the simulator computes rsim

τ as follows:

(a) Initialize the set A := {(τ, addrτ , lsim
2τ)}τ∈[T].

(b) Compute the list A using A such that all the tuples in A are sorted
based on (addrτ , τ) i.e. the elements in A are first sorted based on
addrτ and all the tuples with the same addrτ are sorted based on τ .
Let A [i] denote the ith tuple of A.

(c) Initialize R to empty list of size T . For each i ∈ [T], the R[i] is com-
puted as follows:

– Set (τ, addr, l) := A [i] and (τ , addr , l) := A [i + 1].
– If addr = addr , set R[i] = (τ, l); otherwise set R[i] := (τ, rand)

where rand is a randomly chosen leaf node.
(d) Lastly, sort R based on the first element in the tuple i.e. the time step

τ . Let the sorted list be req := {rsim
1 , ..., rsim

T }
5. Output req .

a We are assuming that the RAM program P accesses at memory every time
step; so the number of memory accesses m made by P is equal to T .

Fig. 2. Description of simulator Sim2, which outputs the randomness used to compute
the memory access pattern of a ORAM.

Cost Analysis of Sim2. The cost of Sim2 is O(T log T). This cost arises from
the sort operations in steps 4(b) and 4(d) in Fig. 2, which are used to compute
two consecutive memory accesses that access the same memory address.

3 RAM-Efficient Equivocal Encryption

In this section we define and construct RAM-efficient Equivocal Encryption
(REE) which is similar to Functionally Equivocal Encryption from [9]. As moti-

Adaptively Secure Computation for RAM Programs 197

vated in the introduction, an REE scheme, as opposed to an FEE, provides a
more efficient construction of an equivocal garbled RAM. Similar to an FEE,
an REE is an equivocal encryption, meaning that the simulator can generate a
dummy ciphertext (without knowing the plaintext m ∈ M) and later equivocate
it to some plaintext m′, by providing randomness rEnc and the key k consistent
with plaintext m′ and the dummy (or simulated) ciphertext. There are two main
differences between an REE and an FEE. Firstly, FEE equivocates with respect
to a function, an REE can equivocate with respect to a RAM program P . Sec-
ondly, FEE needs to equivocate based on the input of the function, whereas
REE equivocates based on the input as well as the database corresponding to
the RAM program. This implies that the key for an FEE comprises of just the
garbled input while the key for an REE comprises of the garbled input along
with a garbled database.

We begin with the description of the syntax of REE which comprises of the
following algorithms (Gen,Enc,Dec,SimTrap, SimEnc,Equiv,Adapt).

– Key generation. REE.Gen(1λ, 1n; rGen) takes as input security parameter
λ, equivocation parameter n, and randomness rGen of size poly(λ, n). It sets
the key k := rGen and outputs it.
Note that the key size only depends on equivocation parameter and security
parameter, but not on the plaintext size.

– Encryption. REE.Enck(params,msg; rEnc) takes as input params (which
comprises of the description size of the RAM program s and memory size
M) and plaintext msg. It outputs an encryption of m with respect to the
params using randomness rEnc and key k. Let c = (P̃ , D̃) be the encryption
of msg where P̃ and D̃ denote garbled RAM program and garbled memory
respectively.

– Decryption. REE.Deck(c) decrypts ciphertext c using key k and outputs
plaintext m = PD(x).

– Ciphertext simulation. Simulating a ciphertext comprises of two algo-
rithms (REE.SimTrap,REE.SimEnc). Algorithm REE.SimTrap takes as input
(1λ, 1n; rtd) and outputs the trapdoor td. Algorithm REE.SimEnc on input
(params, td; rSim) outputs a ciphertext ceq = (P̃ , D̃) with respect to params
(where params comprises of description of the RAM program P and memory
size M).

– Equivocation. REE.Equiv(x, td) uses the equivocation trapdoor td to gen-
erate a single fake key keq so that each simulated ciphertext ceq decrypts to
PD(x) under keq. Note that the ceq was generated with respect to some (P,D)
and trapdoor td.

– Randomness sampling. REE.Adapt(P,D, td, rSim, x) generates random-
ness req, such that REE.Enckeq(params, PD(x); req) = ceq where ceq :=
REE.SimEnc(P,D, td; rSim). In other words, the REE.Adapt algorithm comes
up with random coins such that the real garbled RAM program and gar-
bled memory i.e. (P̃ , D̃) look like they are simulated, which makes use of the
obliviousness property of Yao’s garbling scheme.

198 L. Bangalore et al.

Security. The honestly generated encryptions and the simulated encryptions
along with the messages, the random coins, and the key, are indistinguishable
where the message is the output of the execution of PD(x), x ∈ {0, 1}n is
the input, P is a RAM program from {0, 1}n → {0, 1}� and D is the memory
accessed by P . More formally, we need to show that for any PPT adversary A
the following two distributions are indistinguishable:

Dn
0 = {(P,D, x) ← A(1λ, 1n); td ← REE.SimTrap(1λ, 1n; rtd);

ceq := (P̃eq, D̃eq) ← REE.SimEnc(params, td, rSim);
keq ← REE.Equiv(td, x); req ← REE.Adapt(P,D, td, rSim, x) :

(keq, ceq, req)}

Dn
1 = {(P,D, x) ← A(1λ, 1n); k ← REE.Gen(1λ, 1n; rGen);

c := (P̃ , D̃) ← REE.Enck(params,m; rEnc) :
(k, c, rEnc))}

Overview of [17]. We give an overview of the garbled RAM construction of [17]
before presenting the REE. Refer to the full paper for a formal description.

Garbling the Data. Let m = |D| and d = log(m/κ). The garbled data is in the
form of a binary tree of keys of depth d. The plain version of this tree of keys
comprises of data elements (of size κ) at the leaf nodes and random κ-bit values
(which are used as PRF keys) at the non-leaf nodes. The encrypted version is
computed from the plain version as follows: each non-root node r ∈ {0, 1}κ is
encrypted using its parent s ∈ {0, 1}κ as the key: Fs(left/right, k, rk) (for leaf
nodes, data element Dk is encrypted instead of rk). The protocol GData(1κ,D)
outputs the encrypted version of the tree of keys D̃ and the key corresponding
to the root of the tree.

Garbling the Program. Let T be the running time of the program P . We need
to garble each of the T CPU steps, which perform a read and write to mem-
ory. A CPU step at time step τ is denoted as follows: CP

CPU (state, zread) =
(state’, L, zwrite) where L′ is the memory location to be read at the next time
step i.e. τ + 1, zwrite is the value to be written into the location L′ in the next
time step i.e. τ + 1 and zread is the value read from the memory location L,
where L is the memory location output by the previous time step τ − 1. Here, a
simplifying assumption is that the read and write is made to the same memory
location L. For further ease of exposition, the protocol is provided assuming
Unprotected Memory Access (UMA).

Without loss of generality, we focus on reading an element from location L
and then executing the ith CPU step. Reading an element from the database is
done by navigating through the tree of keys all the way to the leaf nodes where
the data is located (as described earlier). To traverse from the root to the leaf
node of the tree, a sequence of navigation circuits Cnav are used, one for each

Adaptively Secure Computation for RAM Programs 199

level. Cnav works as follows: it takes as input two sibling PRF keys and chooses
one of them (either the left or right PRF key) based on the location L to be read.
Then, Cnav uses this chosen key to decrypt and outputs the keys corresponding
to its children. These two child PRF keys are used as inputs to the next Cnav

in the sequence. After navigating through (d − 1) level of the tree using Cnav

circuits, the last level is processed using Cstep circuit, which does the following:

– Executes CPU computation for the current time step.
– Writes data element zwrite to location L′.
– Kick starts execution of the next time step by outputting the two PRF keys

corresponding to children of the root. This serves as the input to Cnav at the
start of the next time step.

The outputs of the navigation and step circuits consist of (write, translate,
aux) which we explain below.

1. aux: comprises of (state, L) where state denotes the state of the computation
and L is the memory location to be read. This value is the output of the CPU
computation step.

2. translate: enables reading of data. The goal is to generate the input label
for the next circuit corresponding to the value read from memory. Since the
memory location to be read is generated during runtime, translate can only
be determined during the runtime.

3. write: enables writing of data. If the key corresponding to any node needs to
be modified/written to a new key, it affects two nodes in the garbled memory:
(1) the current node re-encrypts the keys of its children under the new key
and (2) the parent of this node is update to store the encryption of the new
key.

To overcome the circularity issues of Lu-Ostrovsky’s construction, the PRF
keys are replaced with fresh ones each time they are used to read. More specif-
ically, the keys are replaced whenever they are used to compute translate. The
tree structure of the garbled database limits the number of PRF keys that need
to be replaced for each CPU step to be polylogarithmic in the memory size.
Finally, the protocol GProg(1κ, 1log m, 1t, P) outputs the set of garbled circuits
for each CPU step and the set of input keys sin.

Garbling the Input and Evaluation. Let s be the PRF key correspond-
ing to the root of the garbled database. The protocol for input garbling
GInput(1κ, x, sin, s) outputs translate to enable reading the PRF keys corre-
sponding to the children of root s. Also, it outputs the selection of the labels
corresponding to x in sin. The evaluation of each circuit is similar to evaluating
any garbled circuit. In addition, we need to obtain the input labels of a circuit
from the output labels of the previous circuit in the sequence, which is done
using translate. This is because the outputs of a circuit are passed as inputs to
another circuit.

200 L. Bangalore et al.

3.1 Our Construction

We now provide a formal description of the algorithms for our REE. Let
(GenCPA,EncCPA,DecCPA) be a private-key encryption scheme with the following
two properties: (1) has pseudorandom ciphertexts and (2) decrypting a random
string with the key outputs a pseudorandom plaintext6.

Key Generation: REE.Gen on input (1κ, 1n; rGen) computes key k as follows:
1. Sample lab

inp
= (lab

aux
, lab

read
) where |aux| independent labels lab

aux
=

(lab1, . . . , lab|aux|) and |read| = 2κ independent labels lab
read

=
(lab1, . . . , lab2κ) using GenCPA(1κ).

2. Set translateinp ← GenTranslate(0, 1, 0d, lab
read

) (GenTranslate is
described in Fig. 3).

3. Output k = (translateinp, lab
aux

)
Encryption: Enc with key lab

inp
= (lab

aux
, lab

read
) on input (P,D, y; rEnc),

where |y| = l, generates ciphertext c as follows:
1. Create a file BookKeeping to keep track of the nodes in the memory that

were traversed during the RAM computation.
2. Generate garbled program P̃ : Let Lτ ∈ [m] denote the location of

the memory access in time step τ .
For each step τ = t − 1 to 0:

For each level i = d − 1 to 0:
• Sample labels in lab

τ,i
= (lab

τ,i,aux
, lab

τ,i,read
) using

GenCPA(1κ).

Table 1. Inputs to GSim for different time steps τ and levels i.

τ i tag output

{t − 1} {d − 1} final write, aux = (y, Lt−1)

{t − 1, ..., 0} {d − 1} step write, translate, lab
τ+1,0,aux

{t − 1, ..., 0} {d − 2, ..., 0} nav write, translate, lab
τ,i+1,aux

• write ← GenWrite(τ, i, Lτ)
• translate ← GenTranslate(j, k, Lj , lab

j,k,read
) where j and k

are chosen as follows: If i = d − 1, set j = τ + 1, k = 0;
otherwise, set j = τ , k = i + 1. The descriptions of GenWrite
and GenTranslate are given in Fig. 3.

• If τ = 0, i = 0, then C̃τ,i ← GSim(1κ, Ctag, lab
inp

, output);
otherwise C̃τ,i ← GSim(1κ, Ctag, lab

τ,i
, output) where Ctag

and y are chosen based on τ and i as per Table 1.
3. Set P̃ := {Cτ,i for τ ∈ [t], i ∈ [d]}.

6 We note that the PRF-based scheme (r, Fk(r) ⊕ m) satisfies both the properties.

Adaptively Secure Computation for RAM Programs 201

Fig. 3. Subprotocols for REE.Enc

4. Generate garbled memory P̃ : For all i ∈ [d+1]−{0}, j ∈ [2i], k ∈ [κ],
find the smallest entry r̂i,j,k{τ} in BookKeeping such that τ > 0.

– If such an entry exists, set r̂i,j,k := r̂i,j,k{τ}; Else sample a uniformly
random r̂i,j,k ← {0, 1}κ.

– Set Dj,k := {r̂d,j,k for j ∈ [2d], k ∈ [κ]}.
5. Set D̃ := {r̂i,j,k for all i ∈ [d] − {0}, j ∈ [2i], k ∈ [κ], Dj,k for j ∈

[2d], k ∈ [κ]}.
6. Output ciphertext c = (P̃ , D̃).

Decryption. Given ciphertext c = (P̃ , D̃) and key k = (translateinp, lab
aux

),
evaluate the simulated garbled RAM program P̃ with the key k using
GRAM.EvalD̃(P̃ , k) and output the result.

Simulating ciphertexts. Let n = (|aux| + |read|). REE.SimTrap(1κ, 1n; rtd)

samples 2n keys using ̂lab
j,0

and ̂lab
j,1

for 1 ≤ j ≤ n using GenCPA(1κ) and

outputs td = (̂lab
aux

, ̂lab
read

) = (̂lab
1,0

, ̂lab
1,1

, . . . , ̂lab
n,0

, ̂lab
n,1

).
REE.SimEnc on input (P, td; rSim) computes ceq as follows:
1. Set (P̃ , root) ← GRAM.Prog(1κ, 1log m, 1t, P, td)
2. Set D̃ ← GRAM.Data(1κ,D)
3. Finally, output ceq = (P̃ , D̃).

202 L. Bangalore et al.

Equivocation. REE.Equiv on input (x, td) uses the trapdoor td =

(̂lab
aux

, ̂lab
read

) to compute the key keq = GRAM.Inp(1κ, x, td, root).
Randomness sampling. REE.Adapt on input (P,D, td, rSim, x) needs to gen-

erate a random string req so that REE.Enckeq(params, PD(x); req) = ceq =
(P̃ , D̃). To generate req, it proceeds as follows:

1. Let P̃ = (C̃1, . . . , C̃t) and (̂lab
1
, . . . , ̂lab

t
) denote the input labels which

are determined while generating the RAM program using GRAM.Prog.
Also, let (x1, . . . , xt) denote the inputs corresponding to the circuits and
are determined while evaluating PD(x).

2. rP = (oSamp(1κ, k1, x1), . . . , oSamp(1κ, kt, xt))
3. rD = {r̂i,j ∀i ∈ [d], j ∈ [2i]}
4. For each circuit C̃τ,i−1, let the translateτ,i−1 be:

{
Fri−1,�j/2�(left, k, 0) ⊕ lableft,k,0 Fri−1,�j/2�(right, k, 0) ⊕ labright,k,0

Fri−1,�j/2�(left, k, 1) ⊕ lableft,k,1 Fri−1,�j/2�(right, k, 1) ⊕ labright,k,1

}
k∈[κ]

The translate given above is used to read the labels for nodes
(ri,j,k, ri,j+1,k) and is revealed as:

rτ,i−1
translate =

{

rleft,k ⊕ lableft,k rright,k ⊕ labright,k

randleft,k randright,k

}

k∈[κ]

where rleft,k = Fri−1,�j/2�(left, k, ri,j,k) (corresponds to the active row)
and randleft,k = Fri−1,�j/2�(left, k, 1 ⊕ ri,j,k) ⊕ lableft,k,1. Similarly,
rright,k and randright,k are defined.

5. For each circuit Cτ,i, let the write be:

writeτ,i = (Fri−1,�j/2�(left, k, ri,j,k), Fri−1,�j/2�(right, k, ri,j+1,k))

be revealed as

rτ,i
write = (rleft,k, rright,k)

6. Let rtranslate = {rτ,i
translate | ∀τ ∈ [t], i ∈ [d]} and rwrite = {rτ,i

write | ∀τ ∈
[t], i ∈ [d]}

7. Output req = (rP , rD, rtranslate, rwrite).

Theorem 5. Assuming the encryption scheme is CPA-secure, REE compris-
ing of (Gen,Enc,Dec,SimTrap,SimEnc,Equiv,Adapt) is a RAM-efficient Equiv-
ocal Encryption scheme with Õ(T + M + n) decryption time complexity and
Õ(T + M + n) ciphertext size where T , M and n are the running time, memory
size and input size of the RAM program P respectively.

The proof of this theorem is similar to proof of security of the Garbled RAM
from [17] and is given in the full version of our paper.

Adaptively Secure Computation for RAM Programs 203

4 Equivocal Garbled RAM

In this section we discuss how to construct an equivocal garbled RAM by extend-
ing [9]’s framework to RAM programs. Roughly speaking, to equivocate RAM
programs, we use REE instead of FEE to encrypt the rows of the garbled gates.
The garbled RAM construction of [16] primarily involves “communicating” gar-
bled circuits. So the problem of obtaining an equivocal garbled RAM can be
reduced to adaptively garbling each of the sub-circuits. In this section, we focus
on how to garble the sub-circuits using REE with equivocation. We first define
an equivocal garbling scheme for RAM programs and then give an overview of
the [16] construction.

Definition 1 (Equivocal garbling scheme for RAM programs).We say
that GRAM comprising of (Data, Prog, Inp,Eval) is an equivocal garbling
scheme for RAM programs, if the following properties hold:

– Correctness: For any RAM program P , Data D and input to the RAM
program x we require the following to hold:

Pr[r ← {0, 1}|r| ; K ← Gen(1λ); ˜D, root ← GRAM.Data(1κ, D), ˜P ← GRAM.Prog

(1κ, K, P, root; r); {x̃} ← GRAM.Inp(1κ, K, x) :

GRAM.Eval(˜P , ˜D, x̃) = P D(x)] > 1 − negl(λ);

– Security: There exists a pair of PPT algorithm (Sim1,Sim2), such that any
PPT adversary A wins the following game with at most negligible advantage:
1. A gives a RAM program P , memory D and an input x to the challenger;
2. The challenger flips a bit b.

If b = 0:
• It chooses random garbling key K and randomness r;
• It sets (˜D, root ← GRAM.Data(1κ,D), ˜P ← GRAM.Prog(1κ,K, P,

root; r), {x̃} ← GRAM.Inp(1κ,K, x);
• It sends ˜P , ˜D, x̃,K, r to the adversary.

If b = 1:
• It sets y = PD(x);
• It runs the simulator (˜P , ˜D, x̃, state) ← Sim1(P,D, y)
• It runs the simulator (Keq, req) ← Sim2(state, x)
• It sends ˜P , ˜D, x̃,Keq, req to the adversary.

3. The adversary outputs a bit b′.
The adversary wins if b = b′.

Overview of [16]. Garg et al. [16] presented a black box approach to garble
RAM programs. Roughly, their construction represents the entire RAM program
(including the memory) as a set of circuits which are then garbled. Each circuit
communicate with the next circuit by outputting the input labels corresponding
to the next circuit. Looking ahead, the observation that all the garbled circuit

204 L. Bangalore et al.

just output labels corresponding to the input of other garbled circuits in [16] is
crucial to the construction of our Equivocal RAM construction.

The mechanism for enabling memory access in [16] is to maintain the garbled
data as a tree of garbled circuits, known as memory circuits, that can communi-
cate with the neighboring garbled circuits. This communication happens when
a garbled circuit outputs the appropriate input labels corresponding to the gar-
bled circuit it intends to communicate with. In order to read/write, the garbled
RAM program first passes the control to the root circuit of the garbled database.
Depending on the location to be read/written, control is passed through a path
of garbled circuits from the root to the leaf node that stores the data that needs
to read or written. The leaf garbled circuit, which stores the data, passes control
back to the RAM program along with labels corresponding to the data. Over the
course of the RAM computation, the control may be passed multiple times to
the root garbled circuit, once for each read/write. However, garbled circuits offer
no security if they are used more than once i.e., they are evaluated over multiple
inputs. So, the root garbled circuit must be refreshed to maintain security. This
refreshing of garbled circuits needs to be done with care as it should maintain
the property of each of the circuit to communicate with its neighboring circuit.
This results in the following two main challenges: (i) the used garbled circuits
must be replaced with fresh ones and (ii) the garbled circuit must know the
input labels of the circuit it communicates with.

The first issue involves replacing the entire path of garbled circuits from
the root to the leaf node with fresh garbled circuits for every memory access.
A simple approach of replacing garbled circuits is as follows. If there were T
memory accesses overall, then let each node of the garbled tree can have T
garbled circuits such that the ith garbled circuit in any node can communicate
with the ith garbled circuit at the left and right child nodes. This approach will
work but comes at a prohibitively high cost, namely the garbled data size will
be O(TM). [16] observed that in this solution most of the garbled circuits are
not used, especially at layers closer to the leaf nodes. All the T circuits at the
root node are used up because the root is accessed for each of the T steps. But
at the next layer there are 2T garbled circuit of which only T are used. If we
assume memory accesses form a uniform distribution, then each of the left and
right children in the first layer would use T/2 garbled circuits on average and
each node in the second layer would use T/4 garbled circuits on average and so
on. The reduction in the number of circuits in the subsequent number of layers
needs to be done carefully taking into consideration that the number of circuits
used can deviate from the expectation. By carefully bounding the number of
garbled circuits at each node in every level one can ensure that the probability
with which the circuits at these nodes will be over-consumed is negligible while
still being efficient. [16] shows that the number of garbled circuits reduces from
O(MT) to O(M).

The second issue is to allow a garbled circuits to communicate with “next”
garbled circuit within this tree structure of garbled data. In slightly more detail,
the garbled data is represented as a tree with each node comprising of a sequence

Adaptively Secure Computation for RAM Programs 205

of garbled circuits. A garbled circuit at any node can communicate with (i) its
successor i.e. the garbled circuit that is next in sequence at that node, and (ii)
its children (more specifically, a window of κ garbled circuits in each of the left
and right child nodes). Enabling this communication between garbled circuits is
one of the key aspects of the GRAM.Data algorithm. Suppose a garbled circuit
CA needs to communicate with another garbled circuit CB , then CA needs to
output the input labels for CB . CA can either have the input labels of CB

passed as input to it or hard-coded within it. The key aspect of the GRAM.Data
is to ensure that the garbled circuits have the appropriate labels to be able to
communicate with other circuits. Now we look at the two main types of circuits
present in the tree, one corresponding to the internal nodes and the other to the
leaf nodes of the tree, which we briefly describe below.

Internal Nodes. Each internal node of the tree is associated with a sequence of
circuits, each of which are denoted by Cnode. These circuits help in navigating
control from the root to the leaf node which ultimately enables reading from or
writing to memory. Any given circuit can pass control to (1) the next circuit
at the same node, (2) one of the circuits located in its left child node or (3) a
circuit located in its right child node. The circuits need to know the input labels
of the circuits to which control is passed. So, each Cnode circuit has input labels,
corresponding to the three types of circuits mentioned above, hardcoded within
it. This elaborate set of connections between the circuits is needed to refresh the
circuits as and when they are used up.

Leaf Nodes. The sub-circuits associated with the leaf nodes, say Cleaf , enable
reading and writing of data into memory. Each leaf node comprises of a sequence
of garbled circuits, similar to the internal nodes. The data is stored in these
circuits by continually receiving it as input from its predecessor. When the data
needs to be read, the Cleaf outputs the labels corresponding to data that are
later fed into the CPU step circuit. In addition to outputting the input labels
for CPU step circuit, it also passes on the data labels as input to the next Cleaf

sub-circuit in the sequence. To write data into memory, the labels corresponding
to the new data are passed as inputs to its successor.

Garbled Program. Garbling a RAM program P essentially involves garbling sub-
circuits that carry out CPU computations at every time step. Each of these
garbled step circuits outputs the labels for the new CPU state and the memory
access information. The new CPU state is fed as input to the next step circuit.
The memory access information comprises of labels of (1) the root circuit of the
garbled data, (2) the location to read/write and (3) the data to be written. The
labels for the root circuit enable passing control from the root to the leaf nodes
of the tree of circuits. The leaf nodes store the labels corresponding to the data
to be read, which is passed as input to the next step circuit. Thus, the next step
circuit receives the labels corresponding to the data as well as the CPU state,
which are enough to proceed to the next time step.

206 L. Bangalore et al.

Equivocating GRAM. At a high-level, we garble circuits output by the [16] con-
struction using the equivocal garbling scheme of [9] where the underlying encryp-
tion scheme is instantiated with an REE (as opposed to an FEE). We provide the
details of our construction and a proof sketch below.

4.1 Our Construction

We now present our equivocal garbled RAM construction.

Conventions. Consider a RAM program P with memory D and inputs x with
running time T . Let n = |x|. We denote the output of the RAM program by
PD(x). We use [16] construction to garble the RAM program and let the garbled
versions of these programs be denoted by P̃ , D̃, x̃. The garbled program and data
comprise of three main sub-circuits: Cstep, Cnode and Cleaf . For the rest of this
section, we show how to garble C which could potentially be any of the sub-
circuits. Let κ be the security parameter. For any wire w in gate g, let k0

w, k1
w

be the λ-bit labels associated with the wires where λ = nκ + 1 and bitw be the
actual bit assigned to w during PD(x). We consider some gate g with input wires
α, β and output wire γ. We also assume without loss of generality that all gates
are fan-in two gates.

Garbling Data and Program. GRAM.Data(1κ,m) outputs the garbled data
(D̃, root) and GRAM.Prog (1κ, 1log m, P, root) outputs (P̃, sin). At a high-level,
we follow the garbled RAM construction of [16] to generate P̃ and D̃ with two
key technical differences. First, we use an approach similar to equivocal garbling
[8] to garble the sub-circuits instead of Yao’s Garbling [30]. Secondly, the encryp-
tion scheme used to garble the gates is REE instead of FEE used [8] or regular
CPA-secure encryption scheme used in Yao’s construction.

Recall that the GRAM.Data and GRAM.Prog comprises of garbled circuits
communicating with other garbled circuits. So we show how to garble the sub-
circuits used in P̃ and D̃. Let C be some sub-circuit with n′-bit input string xsub.
We denote by m = n+gates(C) the total number of wires in C where gates with
fan-out more than 1 are counted only once.

We first generate two labels (k0
w, k1

w) for every wire w in C using REE.Gen
and then the garbler generates the following 4 pairs of ciphertexts for each
gate g:

c00g,left = REE.Enck0
α
(s00g,left), c00g,right = REE.Enck0

β
(s00g,right),

c01g,left = REE.Enck0
α
(s01g,left), c01g,right = REE.Enck1

β
(s01g,right),

c10g,left = REE.Enck1
α
(s10g,left), c10g,right = REE.Enck0

β
(s10g,right),

c11g,left = REE.Enck1
α
(s00g,left), c11g,right = REE.Enck1

β
(s11g,right),

Garbling Inputs. GRAM.Inp(1κ, x, sin, s) outputs x̃ which are the labels corre-
sponding to the input x.

Adaptively Secure Computation for RAM Programs 207

Garbled Evaluation. GRAM.Eval(P̃, D̃, x̃) evaluated the garbled program and out-
puts P̃D̃(x̃). This function is similar to [16] except that REE.Dec is used to decrypt
the garbled gates.

Simulation. The simulation has two main parts: (i) simulating the garbled pro-
gram P̃, garbled data D̃ and garbled inputs x̃ such that P̃ D̃(x) = PD(x) and (i)
simulating the internal randomness consistent with the revealed inputs.

Simulation of Garbled Program, Garbled Data and Garbled Input. The first step
of the simulator is to run ORAM .Sim1(T,m) and obtain the sequence of mem-
ory accesses

−→
M . Similar to the real garbling, it’s enough to focus on how to

simulate each of the garbled sub-circuits, say C, of P̃ and D̃. For each wire
w in C, the simulator chooses nκ-bit REE keys, random bit Λw and an REE
trapdoor tdw ← REE.SimTrap(1κ, n). The simulated garbled gate is computed
using REE.Enc and REE.SimEnc as shown in Table 2. Note that each RAM
program Pin used in REE.SimEnc has P,Ctype, g, kγ , tdγ , Λγ ,

−→
M, τ,m hardcoded

within its description, where γ is an output wire of g. The descriptions of the
RAM program Pin and the database Din used in the REE simulation are given
in Fig. 4.

The simulator orders 4 rows of each garbled gate as per (Λα, Λβ) and outputs
the 8 ciphertexts. Lastly, the garbled input comprising of the labels (k1, . . . , kn)
corresponding to the input x (which are the active labels) are output by the
simulator.

Simulation of the Internal State of the Garbler. To simulate the internal state
of the garbled, we need to present the two main components: (i) the inactive
keys ̂kw for each wire w and (ii) randomness used to generate P̃, D̃ and x̃ and is
consistent with the input. We start by focusing on obtaining the internal sate
for the garbled sub-circuits used with the P̃. This approach can be applied to all
the sub-circuits in order to obtain the internal state of the garbler.

Table 2. Garbled gate g generated by the simulator.

Row number Left ciphertext REE Right ciphertext REE

(Λα, Λβ) Enckα (s
Λα,Λβ
g,left) Enckβ

(s
Λα,Λβ
g,right)

(Λα, 1 ⊕ Λβ) Enckα (s
Λα,1⊕Λβ
g,left) SimEnc(P

Din
in [prms, s

Λα,1⊕Λβ
g,left])

(1 ⊕ Λα, Λβ) SimEnc(P
Din
in [prms, s

1⊕Λα,Λβ
g,right]) Enckβ

(s
1⊕Λα,Λβ
g,right)

(1 ⊕ Λα, 1 ⊕ Λβ) SimEnc(Const[prms, s
1⊕Λα,1⊕Λβ
g,left]) SimEnc(P

Din
in [prms, s

1⊕Λα,1⊕Λβ
g,left])

Given the input x and data D, the modified input for the program Pin is
x||D. The inactive keys are chosen as ̂kw for each wire w. It generates these keys
by running ̂kw ← REE.Equiv(tdw; x̂) for each wire w. Now the garbling of Pin

looks like the real garbling with keys kα,̂kα, kβ ,̂kβ where kα, kβ are active for
the computation PDin

in (x̂).

208 L. Bangalore et al.

Description of Program Pin[prms,mask] and Memory Din

Constants: P, kγ , tdγ , Λγ ,
−→
M, τ, m, prms = {τ, Ctype, g, bα ⊕ Λα, bβ ⊕ Λβ}

Input: xin

Description of Din. Initialize Din to be an empty database of size |D|.
Description of Pin. The description of Pin follows.

1. Modify the program P to first write the input x into memory Din and
then proceed with the logic of P .

2. Run ORAM.Sim2[
−→
M, P](D, xin) and write the output req onto the ran-

dom tape of the RAM program.
3. Run the compiler ORAM.Prog with input P and randomness req. Let the

resulting program be referred to as P .
4. For every time step τ ∈ T , the bit assignments bitα, bitβ of input wires α, β

of gate g are inferred depending on the type of circuit this gate belongs
to:
Cases Cleaf and Cstep: Evaluate the program P using memory Din

with some input to compute the bit assignments corresponding to
the inputs of Cleaf and Cstep circuits. Then the bit assignments of
the gate g within these circuits can be computed using the inputs.

Case Cnode: The bit assignments of all the inputs to Cnode have already
been computed and hence the bits corresponding to gate g can be
computed from the inputs without having to evaluate the program P
using memory Din with some input.

5. Generate kγ ← REE.Equiv(tdγ , x). If g(bitα, bitβ) = g(bα ⊕ bitα, bβ ⊕ bitβ)

then output kγ ⊕ mask. Else output kγ ⊕ mask.

Description of Program Const[const]

The program is padded to the size of programs Pin with memory Din and is
the RAM program that outputs the constant const.

Fig. 4. RAM programs and memory used in REE simulation

The second component of the internal state is to present the randomness
used in the garbling which is essentially the randomness used to encrypt the
ciphertexts in each of the garbled gates. The simulator presents all the random-
ness used for encryption, a pair of keys per gate as internal state of the garbler
and 8 secret shares ciphertexts per garbled gate.

Theorem 6. Assuming the existence of RAM-efficient equivocal encryption,
GRAM comprising of (Data, Prog, Inp,Eval) is a Equivocal Garbled RAM
scheme with a garbled database size of Õ((M +n+T) ·M), garbled input size of
Õ((M +n) ·n), garbled program size and evaluation time of Õ((M +n+T) ·T),
where T , M and n are the running time, memory size and input size of the RAM
program P respectively.

Adaptively Secure Computation for RAM Programs 209

Proof Sketch. The correctness of our Equivocal garbled RAM follows from the
correctness of the Garbled RAM construction of [16] along with the correctness
of the underlying REE. By induction, at each step, the evaluator gets the correct
key k

bitγ
γ and the correct pointer Λγ for the next gate’s row.

Description of Hybrids. We define a sequence of hybrids H0, Horam
0 , H1, ..., Ht,

Ht+1. The first hybrid H0 corresponds to the real execution and the hybrid Ht+1

to simulation. Further, we define m sub-hybrids between each Hi and Hi+1 where
i ∈ {1, ..., t − 1}: Hsubcirc

i,1 , ..., Hsubcirc
i,m where Hsubcirc

i,m switches the key k
bitm−i

m−i

from real to simulated. Here the wires are sorted according to the topological
order of the circuit, i.e. that output wires of each gate have larger index than
both input wires of that gate (note that our notation 1, . . . , n for input wires
and m for an output wire is consistent with topological order). The descriptions
of these hybrids are provided below.

Hybrid Horam
0 . In this hybrid we change how the permutation of ciphertexts

is generated, without changing the distribution of the hybrid. Instead of gen-
erating the memory access sequence by evaluating the program PD(x), we
generate it using the ORAM simulator Sim1 . The garbled P̃ , D̃, x̃ are gen-
erated as follows:
1. Generate the memory access

−→
M ← ORAM .Sim1(T,m).

2. Compute the randomness roram ← ORAM .Sim2(
−→
M)

3. Compute Poram ← ORAM .Prog(P, roram) and garbled data Doram ←
ORAM .Data(D)

4. Lastly, compute P̃ ← GRAM.Prog(Poram), D̃ ← GRAM.Data(Doram) and
x̃ ← GRAM.Inp(x)

The hybrid Horam
0 has a distribution similar to he real execution.

Hybrid Hi for i = 1, ..., t. Let the sequence of circuits evaluated during the
execution of GRAM .Eval(P̃ , D̃, x̃) be C1, ..., Ct. In hybrid Hi, the first i cir-
cuits are simulated and the rest are generated as per the real execution. More
specifically, this hybrid is computed as follows: simulate the first i circuits
in the reverse order i.e. Ci, ..., C1. This sequence of hybrids are identical to
the ones considered in [16]. The main observation from [16] is that in Hybrid
Hi, we can replace the real garbling of the ith circuit with a simulated one
as the input labels of the ith circuit have been decoupled from the rest of
the outputs. We will pursue the same approach with the exception that our
real and simulated garbling schemes are according to the equivocal garbling
procedure [9] with REE encryption. We consider a sequence of sub-hybrids
following [9] between the hybrids Hi and Hi+1 for i = 1, ..., t − 1. The indis-
tinguishability follows essentially as in [9], we present the hybrids explicitly
rather than defining an equivocal garbling scheme instantiated with the REE.
Sub-Hybrid Hsubcirc

i,j for j = 1, ...,m. In this hybrid, the aim is to replace
the wires in real garbled circuit Ci+1 with simulated garbled circuits iden-
tical to the hybrids defined in [8] with the difference that REE is used
instead of FEE. The real keys kj corresponding to the jth wire in circuit

210 L. Bangalore et al.

Ci+1 are replaced with simulated keys. The ciphertexts corresponding
to the simulated labels ̂Kj are also re simulating the ciphertext gener-
ated using these simulated keys. In this hybrid we convert the real labels
k
1⊕bitj
j to simulated labels. We essentially replace all the invocations to

FEE functions with that of REE function in the hybrids of [8]. The indistin-
guishability of sub-hybrids Hsubcirc

i,j and Hsubcirc
i,j+1 reduces to the security

of the underlying REE scheme which has already been shown to be secure.
Hybrid Ht+1. In the previous hybrids Ht only the circuits executed during

GRAM.Eval(P̃ , D̃, x̃) have been simulated so far. In this hybrid, those garbled
circuits that haven’t been evaluated will be considered. Note that some of
these garbled circuits that weren’t evaluated may contain labels to a (proper)
subset of the input wires (i.e. partial inputs). These circuits can be topological
ordered such that the outputs any circuit only goes as input to the subsequent
circuits in the ordering and simulated in the reverse topological ordering.

4.2 Putting It Together

We can essentially use an equivocal garbled RAM scheme in the standard Yao
protocol assuming the existence of an adaptively secure oblivious-transfer proto-
col. The only difference from the standard construction is that we need to rely on
the OT-functionality as a communication channel to transmit the garbled circuit
and garbled inputs (of the garbler). Another way of achieving this is to addi-
tionally assume a non-committing encryption (NCE) scheme and transmitting
the data using NCE. We obtain the following theorem.

Theorem 7. Let f be a two-party functionality expressed via a RAM program
π. Assume the existence of a bit-decomposable equivocal garbled RAM scheme
and the existence of a 2-round oblivious-transfer protocol secure against passive
corruption by an adaptive adversary. Then there exists a 2-round 2-party protocol
secure against passive corruption by an adaptive adversary where the communi-
cation complexity is Õ(T 2 + n) where n is the sum of the input size of the two
parties to f and T is the upper bound of the running time of π. Here Õ(·) ignores
poly(log T, log n, κ) factors where κ is the (computational) security parameter.

5 Adaptive Zero-Knowledge for RAM

In this section, we describe a simple construction of a UC zero-knowledge proof
system for relations expressed as RAM computation. We build it from UC com-
mitments and garbled RAM with a certain property which we call splitability
We note that our construction also naturally works for circuits. We show that
the GRAM construction of [17] is splitable in the full version.

Our proof system is RAM-efficient, meaning that its computation and com-
munication complexity is only proportional to ˜O(T). We then use the standard
transformations [7,21] to compile any protocol from active to passive security.
In particular, our protocol from Theorem 7 results in an active protocol with
computation and communication complexity ˜O(T 2).

Adaptively Secure Computation for RAM Programs 211

Theorem 8 (Adaptive ZK for RAM). Assume the existence of a UC-
secure commitment scheme secure against adaptive adversary, and the existence
of static splitable garbled RAM. Then there exists a zero-knowledge proof of
knowledge proof system secure against active corruption by an adaptive adver-
sary where the communication complexity is ˜O(T 2+n) where n is the sum of the
length of the statement and the witness, and T is the upper bound of the running
time of the relation Rx. Here ˜O(·) ignores poly(log T, log n, κ) factors where κ is
the (computational) security parameter.

Theorem 9 (Adaptive, active 2PC for RAM). Let f be a two-party
functionality expressed via a RAM program π. Assume the existence of a bit-
decomposable equivocal garbled RAM scheme, the existence of a UC-secure 2-
round oblivious-transfer protocol secure against active corruption by an adaptive
adversary, the existence of adaptive UC-secure commitment scheme, and the
existence of static splitable garbled RAM. Then there exists a 2-party protocol
secure against active corruption by an adaptive adversary where the communi-
cation complexity is ˜O(T 2 + n) where n is the sum of the input size of the two
parties to f and T is the upper bound of the running time of π. Here ˜O(·) ignores
poly(log T, log n, κ) factors where κ is the (computational) security parameter.

5.1 Splitable Garbling

The property of splitability can be defined both for garbled circuits and garbled
RAM. For simplicity, we first informally describe it for circuits, but later give a
formal definition for RAM programs (since this is what we use in the protocol);
the differences are only syntactic.

Let C, x be a circuit and its input. Intuitively, splitability says that the “gar-
bling information” G - i.e. garbled circuit and all labels - can be split into active
part Ga and inactive part Gi, with the property that Ga is enough to learn the
output C(x). Further, we require that the garbling can be generated in different
order: that is, one can either generate the full garbling information G and later,
given x, compute Ga; or, one can generate Ga, without knowing x (only C(x)),
and later complete it to full G, once w is given. We note that we require that
the latter method generates the correct distribution of G and Ga (not merely
an indistinguishable one). Next, we require verifiability: given G, it should be
possible to determine which circuit (or, RAM program) it evaluates. Finally, we
require input extractability: given G and Ga corresponding to input x, it should
be possible to extract x in polynomial time.

For ease of exposition of our protocol, we also require that G = Ga ∪ Gi

can be further split into {Ga
j} ,

{

Gi
j

}

, such that, when they are shuffled, they
jointly don’t leak any information about the computation of C on x.

Syntax of Splitable Garbled RAM. For simplicity we assume that the memory D
of the computation is empty (but there is still an input x). This will be sufficient
for our ZK protocol.

– G ← GRAM .Full(P ; rGen) computes the full garbling information G;

212 L. Bangalore et al.

– {Ga, I} ← GRAM .Project(G, x) computes an active part Ga for computa-
tion P (x), and a set of indices I such that Ga is a subset of G corresponding
to positions I, i.e. Ga = GI .

– {Ga, state, I} ← GRAM .Active(P, y) computes an active part Ga for pro-
gram P and its output y, together with positions I.

– {G, rGen} ← GRAM .Complete(Ga, x, state) computes the full garbling infor-
mation G and proper generation randomness rGen, such that Ga is consistent
with x.

– y ← GRAM .Eval(Ga) computes the output y (supposedly equal to P (x));
– {acc, rej} ← GRAM.V erify(G,P) verifies whether G is a garbled RAM for

the program P with empty memory;
– x ← GRAM .Extract(G,Ga) outputs x such that P (x) = GRAM .Eval(Ga).
– GRAM .Perm(G) outputs a permuted description of G, such that revealing

the location of Ga doesn’t leak any information beyond P (x).

Now we list the required properties:

– Correctness: For all P and x,

Pr[y �= P (x) : rGen ← {0, 1}|rGen| , G ← GRAM .Full(P ; rGen),

Ga ← GRAM .Project(G, x), y ← GRAM .Eval(Ga)] ≤ negl(κ)

– Alternative generation: For any x, P , and y = P (x), the following distri-
butions are the same:

{(G,Ga, rGen, I) : rGen ← {0, 1}|rGen| , G ← GRAM .Full(P ; rGen),

{Ga, I} ← GRAM .Project(G, x)} and

{(G,Ga, rGen, I) : {Ga, I, state} ← GRAM .Active(P, y),

{G, rGen} ← GRAM .Complete(Ga, x, state)}.

– Verifiability and Extractability: For any P , any x, any string G and
any substring Ga = GI (for some set I), if GRAM .Eval(Ga) = y �=
⊥, GRAM .V erify(G,P) = acc, and x′ ← GRAM .Extract(G,Ga), then
P (x′) = y.
Naturally, we require that GRAM .V erify(G,P) = acc for honestly gener-
ated G.

5.2 Our Adaptive UC ZK Protocol

Our protocol is described on Fig. 5. Completeness follows from correctness of the
garbled RAM and correctness of UC commitment. We now explain why proof
of knowledge and zero-knowledge properties hold.

Adaptively Secure Computation for RAM Programs 213

The adaptive UC zero-knowledge protocol

Prover’s input: statement x and the corresponding relation Rx; witness w.
Verifier’s input: statement x and the corresponding relation Rx.
The protocol:

1. The prover chooses random rGen ← {0, 1}|rGen| and computes the splitable
garbling of the relation Rx: G = GRAM.Full(Rx; rGen). Then it computes
Ga, I ← GRAM.Project(G, w) and sets Gi = G \ Ga.
The prover sends the verifier N UC commitments, where the committed
value in commitment j is Perm(G)j.

2. The verifier sends a random bit b to the prover.
3. If b = 0, the prover sends G together with decommitment information for

all commitments to the verifier. If b = 1, the prover sends Ga together
with decommitment information for indices j ∈ I (which correspond to
committed Ga) to the verifier.

4. If b = 0, the verifier accepts iff GRAM.V erify(G, Rx) accepts and all
decommitments verify. If b = 1, the verifier accepts iff GRAM.Eval(Ga) =
1 and the decommitments verify.

The simulation:

1. The simulator simulates N executions of the UC commitment.
2. If b = 0, the simulator generates G = GRAM.Full(Rx; rGen), computes

Perm(G), and equivocates each commitment j, j = 1, . . . , N , to Gj . It
sets G and all the decommitments to be the simulated message of the
prover. If b = 1, the simulator generates Ga, I ← GRAM.Active(Rx, 1),
equivocates commitments j ∈ I to Ga

j for each j, and sets Ga and the
decommitment information to be the simulated message of the prover.

3. Upon corruption of the prover, the simulator learns w such that
Rx(w) = 1. If b = 0, the simulator runs Ga, I ← GRAM.Project(G, w)
and sets Gi = G \ Ga. If b = 1, the simulator runs {G, rGen} ←
GRAM.Complete(Ga, w, state) It sets rGen, G

a, G, I, and the simulated
coins of the commitment schemes to be the simulated state of the prover.

Fig. 5. The adaptive UC zero-knowledge protocol

Proof Sketch. Intuitively, proof of knowledge (and soundness against unbounded
provers) follows from extractability of splitable garbling and binding property
of commitments. Let P be a prover which causes an honest verifier to accept
with non-negligible probability. Consider an extractor which runs P till the end
with verifier message 0, then rewinds P and runs it with verifier message 1. As a
result, the extractor obtains G,Ga, and the decommitment information for both
values, such that all decommitments verify, GRAM .V erify(G,Rx) = acc, and
GRAM .Eval(Ga) = 1.

The extractor computes w′ = GRAM .Extract(G,Ga). By the binding prop-
erty of commitments, it follows that Ga = GI for some set I. It then fol-

214 L. Bangalore et al.

lows from extractability and from the fact that GRAM .V erify(G,P) = acc,
GRAM .Eval(Ga) = 1, Rx(w′) = 1.

To prove adaptive security, we need to simulate the protocol for an adversary
which can adaptively corrupt potentially both parties (simulator described in
Fig. 5). Since the verifier is public-coin, it is enough to simulate the case where
the adversary first lets the protocol finish and then corrupts the prover. Note
that simulatability of this case immediately implies zero-knowledge, since the
simulator doesn’t have access to the witness when simulating the transcript.
We argue that the simulation is computationally indistinguishable from the real
execution.

– If b = 0, the simulator generates G and Ga honestly. The only difference
between simulation and the real execution is that commitments are simulated
and later equivocated to G. Indistinguishability follows immediately from the
hiding property of commitments.

– If b = 1, the simulator uses alternative generation to generate Ga and later
complete it to G. Recall that G,Ga, generated in this way, are required to be
distributed correctly. Thus, the only difference between simulation and the
real execution is that commitments are simulated and later equivocated to
G. Indistinguishability follows from the hiding property of commitments.

Acknowledgments. Work of Rafail Ostrovsky was supported by NSF award
#2001096, US-Israel BSF grant 2015782, a Google Faculty Award, a JP Morgan Fac-
ulty Award, an IBM Faculty Research Award, a Xerox Faculty Research Award, an
OKAWA Foundation Research Award, a B. John Garrick Foundation Award, a Tera-
data Research Award, a Lockheed-Martin Research Award, and the Sunday Group.

References

1. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 10

2. Benhamouda, F., Lin, H., Polychroniadou, A., Venkitasubramaniam, M.: Two-
round adaptively secure multiparty computation from standard assumptions. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 175–205.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 7

3. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28914-9 15

4. Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with
input-independent preprocessing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 146–163. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44381-1 9

5. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp.
639–648 (1996)

https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-030-03807-6_7
https://doi.org/10.1007/978-3-642-28914-9_15
https://doi.org/10.1007/978-3-662-44381-1_9
https://doi.org/10.1007/978-3-662-44381-1_9

Adaptively Secure Computation for RAM Programs 215

6. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7 22

7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC, pp. 494–503 (2002)

8. Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Better two-round adap-
tive multiparty computation. IACR Cryptology ePrint Archive 2016, 614 (2016).
http://eprint.iacr.org/2016/614

9. Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Equivocating Yao:
constant-round adaptively secure multiparty computation in the plain model. In:
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 497–509 (2017)

10. Chung, K.M., Pass, R.: A simple oram. Technical report, CORNELL UNIV
ITHACA NY (2013)

11. Cohen, R., Peikert, C.: On adaptively secure multiparty computation with a short
CRS. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 129–146.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9 7

12. Cohen, R., Shelat, A., Wichs, D.: Adaptively secure MPC with sublinear commu-
nication complexity. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part
II. LNCS, vol. 11693, pp. 30–60. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 2

13. Cook, S.A., Reckhow, R.A.: Time bounded random access machines. J. Comput.
Syst. Sci. 7(4), 354–375 (1973)

14. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively Secure, Universally Composable,
Multiparty Computation in Constant Rounds. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7 23

15. Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM computation
in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol.
9985, pp. 491–520. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53641-4 19

16. Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled ram. Cryptology ePrint Archive,
Report 2015/307 (2015). https://eprint.iacr.org/2015/307

17. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled ram from one-way functions.
Cryptology ePrint Archive, Report 2014/941 (2014). https://eprint.iacr.org/2014/
941

18. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 24

19. Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest
majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 105–123. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 8

20. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 23

https://doi.org/10.1007/978-3-662-46497-7_22
http://eprint.iacr.org/2016/614
https://doi.org/10.1007/978-3-319-44618-9_7
https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1007/978-3-662-46497-7_23
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-662-53641-4_19
https://eprint.iacr.org/2015/307
https://eprint.iacr.org/2014/941
https://eprint.iacr.org/2014/941
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1007/978-3-642-32009-5_8
https://doi.org/10.1007/978-3-642-32009-5_8
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23

216 L. Bangalore et al.

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

22. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
STOC (2011)

23. Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party compu-
tation. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
397–429. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 14

24. Hazay, C., Yanai, A.: Constant-round maliciously secure two-party computation
in the RAM model. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol.
9985, pp. 521–553. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53641-4 20

25. Ishai, Y., Kumarasubramanian, A., Orlandi, C., Sahai, A.: On invertible sampling
and adaptive security. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
466–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 27

26. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: STOC (2011)

27. Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure
oblivious transfer. J. Cryptol. 24(4), 761–799 (2011)

28. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38348-9 42

29. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM
(JACM) 26(2), 361–381 (1979)

30. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp.
160–164 (1982)

31. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-642-17373-8_27
https://doi.org/10.1007/978-3-642-17373-8_27
https://doi.org/10.1007/978-3-642-38348-9_42

Optimal Broadcast Encryption
and CP-ABE from Evasive Lattice

Assumptions

Hoeteck Wee(B)

NTT Research and ENS, Paris, France

wee@di.ens.fr

Abstract. We present a new, simple candidate broadcast encryption
scheme for N users with parameter size poly(log N). We prove security
of our scheme under a non-standard variant of the LWE assumption
where the distinguisher additionally receives short Gaussian pre-images
while avoiding zeroizing attacks. This yields the first candidate optimal
broadcast encryption that is plausibly post-quantum secure, and enjoys a
security reduction to a simple assumption. As a secondary contribution,
we present a candidate ciphertext-policy attribute-based encryption (CP-
ABE) scheme for circuits of a-priori bounded polynomial depth where
the parameter size is independent of the circuit size, and prove security
under an additional non-standard assumption.

1 Introduction

In this work, we study broadcast encryption [27] as well as attribute-based
encryption schemes [10,34,41]. In ciphertext-policy attribute-based encryption
(CP-ABE), ciphertexts ct are associated with a predicate f and a message m
and keys sk with an attribute x, and decryption returns m when x satisfies f .
Broadcast encryption is a special case of CP-ABE where the predicate is speci-
fied by a set S ⊆ [N], and decryption returns m when x ∈ S. In both cases, we
require security against unbounded collusions, so that an adversary that sees a
ciphertext along with secret keys for an arbitrary number of attributes x1, x2, . . .
learns nothing about m as long as none of these attributes satisfies f .

Broadcast encryption has been an active area of research since their introduc-
tion in the 1990s, where a major goal is to obtain schemes with short parameters,
that is, short ciphertexts ct, public keys mpk and secret keys sk. In a celebrated
work from 2005, Boneh, Gentry and Waters [13] presented the first broadcast
encryption scheme with sublinear-sized parameters from bilinear groups where
|ct|+ |mpk|+ |sk| = O(N1/2), [15,22,33], recently improved to O(N1/3) [43]. On
the other hand, in spite of the tremendous advances in lattice-based cryptogra-
phy over the past decade, we do not know a LWE-based broadcast encryption
scheme achieving |ct| = o(N).

A more recent line of works focuses on optimal broadcast encryption with
parameter size poly(log N), where the first feasibility results relied on either
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 217–241, 2022.
https://doi.org/10.1007/978-3-031-07085-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_8

218 H. Wee

multi-linear maps [16] or indistinguishability obfuscation [17].1. In a recent
remarkable break-through, Agrawal and Yamada [7] – along with a follow-up
with Wichs [5] – constructed an optimal broadcast encryption scheme from bilin-
ear groups and LWE. Independently, Brakerski and Vaikuntathan [20] presented
a candidate “lattice-inspired’ optimal broadcast encryption scheme that is plau-
sibly post-quantum secure, but they were unable to provide a reduction to LWE
or any simple lattice assumption.

Our Contributions. Our main contribution is a new, simple candidate opti-
mal broadcast encryption scheme with poly(log N)-sized parameters. We prove
selective security of our scheme assuming evasive LWE, a non-standard vari-
ant of the LWE assumption where the distinguisher additionally receives short
Gaussian pre-images while avoiding zeroizing attacks. This yields the first can-
didate optimal broadcast encryption that is plausibly post-quantum secure, and
enjoys a security reduction to a simple assumption. As a secondary contribu-
tion, we present a candidate CP-ABE scheme for circuits of a-priori bounded
polynomial depth where the parameter size is independent of the circuit size,
and prove security under an additional non-standard assumption. We refer to
Fig. 1 for a comparison with prior works, and proceed with a brief overview of
our constructions.

2 Technical Overview

Our optimal broadcast encryption scheme follows the Agrawal-Yamada-Wichs,
henceforth AYW, blue-print laid out in [5,7] (and partially in [20]): (i) we start
with a one-key secure CP-ABE for circuits based on LWE and randomize the
secret keys to achieve security against collusions, and (ii) we show that for an
appropriate family of circuits, our CP-ABE scheme implies optimal broadcast
encryption. The AYW schemes achieve randomization via exponentiation with
random scalars in a bilinear group. Security relies on LWE in addition to a
hardness assumption about the bilinear group, either the generic group model
(GGM) [7], or non-standard knowledge assumption (KOALA) [5,11]. We proceed
to sketch two new technical ideas in this work that allows us to eliminate the
use of bilinear maps, thereby achieving plausible post-quantum security.

Randomization via Tensors. We randomize secret keys by tensoring with
random Gaussian (row) vectors r ← Dm

Z,χ, which satisfies the following correct-
ness and security properties:

– Following prior ABE schemes based on LWE [12], given x ∈ {0, 1}�,A ∈
Z

n×�m
q , we can homomorphically evaluate a circuit f on A−x⊗G to obtain

1 For simplicity of exposition and due to the sheer complexity and impracticality
of the ensuing schemes, we ignore obfuscation-based broadcast in the rest of the
introduction, deferring a comparison to Sect. 2.3.

Optimal Broadcast Encryption and CP-ABE 219

Reference Assumption Post-Quantum CP-ABE

AY20 [7] LWE + bilinear GGM NC1, |ct| = poly(log s)

AWY20 [5] LWE + bilinear KOALA NC1, |ct| = poly(log s)

BV22 [20] × circuits, |ct| = poly(log s)

Section 5.3 evasive LWE NC1, |ct| = poly(2d, log s)

Section 5.4 evasive LWE + tensor LWE circuits, |ct| = poly(d, log s)

Fig. 1. Comparison with prior optimal broadcast encryption schemes (sans obfusca-
tion), all of which also yield CP-ABE schemes for either NC1 or circuits of (a-prior
bounded) polynomial depth d. Broadcast encryption for N users correspond to cir-
cuits of size O(N log N) and depth O(log log N). CP-ABE decryption time in AY20,
AMY20 grows with 2d, hence the limitation to NC1 circuits. As in [5], our broadcast
encryption schemes achieve selective security, and our CP-ABE schemes achieve very
selective security. BV22 only shows LWE-hardness against a subclass of attacks on
a specific component of their scheme and does not provide any reduction for their
full scheme. Both evasive LWE and bilinear KOALA are non-falsifiable assumptions.
Finally, bilinear GGM ⇒ bilinear KOALA.

a quantity of the form Af − f(x)G via right-multiplication by some low-
norm matrix HA,f,x. This property is preserved under tensoring with random
Gaussian vectors r: we can homomorphically evaluate f on (A−x⊗G) ⊗ r�

to obtain (Af −f(x)G)⊗r� via right multiplication by HA,f,x ⊗I. Note that
homomorphic evaluation is not possible if we replace tensor product with
vector multiplication (on the right).

– Tensoring “amplifies” a single LWE secret s into Q independent LWE secrets
s1, . . . , sQ. More formally, under the LWE assumption, we have

{
(s(In ⊗ r�

i) + ei , r�
i)

}
i∈[Q]

≈c

{
(si , r�

i)
}

i∈[Q]
(1)

where s ← Z
nm
q , si ← Z

n
q , ei ← Dn

Z,χ, ri ← Dm
Z,χ [14,21]. In our analysis, Q

corresponds to the number of key queries, and having Q independent secrets
enables a hybrid argument over the key queries.

An Evasive Lattice Assumption. We describe a simple variant of the evasive
LWE assumption we put forth in this work. Fix an efficiently samplable distri-
bution P over Zn×t

q . The evasive LWE assumption allows us to assert statements
of the form

(B, sB + e ,B−1(P)) ≈c (B, c ,B−1(P))

where B ← Z
n×m
q , c ∈ Z

m′
q are uniformly random, m = O(n log q) ≤ t (so that

P is wider than B). We have two distinguishing strategies in the literature:

– ignore B−1(P) and distinguish (B, sB + e) from (B, c) – this covers lattice
attacks on LWE;

220 H. Wee

– compute c∗ = (sB + e′) · B−1(P) ≈ sP and distinguish the latter from
uniform – this includes zeroizing attacks on multi-linear map and obfuscation
candidates [23,24,36,40].

The evasive LWE assumption essentially asserts that these are the only distin-
guishing attacks. Namely,

if (B,P, sB + e , sP + e′′) ≈c (B,P, c , c′′),

then (B, sB + e ,B−1(P)) ≈c (B, c ,B−1(P))

where e′′ is a fresh noise vector. Note that sP + e′′ ≈c c′′ implies that the
high-order bits of (sB + e′) · B−1(P) ≈ sP are pseudorandom, thereby defeat-
ing the second distinguishing strategy.2 Overall, we note that the statement of
evasive LWE is fairly simple and general, and does not refer to tensor products,
circuits, or structured distributions like A− x⊗G or Af . That is, the assump-
tion encapsulates a principled approach towards (conjectured) computational
hardness, rather than one that is tailored to our scheme.

Proof Strategy. Our security proof proceeds in two steps: first, we rely on
evasive LWE to reduce security of our scheme to a simpler statement with no
short Gaussians, and then we prove this latter statement from LWE, using (1)
along the way. For the second step, we need to modify the scheme to perform
homomorphic evaluation on A − x ⊗ I where A is a low-norm matrix, and we
replaced the gadget matrix G with the identity matrix I; in the security proof,
we will use the fact that if A − x ⊗ I is low-norm, then

s((A − x ⊗ I) ⊗ r�) ≈ s(I ⊗ r�) · (A − x ⊗ I)

upon which we can invoke (1) to replace s(I ⊗ r�) on the RHS with random.
Homomorphic evaluation on A − x ⊗ I works as before with G, except the

noise growth is now doubly (instead of singly) exponential in circuit depth.
This yields a CP-ABE scheme with |ct| = poly(2d, log s) for NC1 circuits of
multiplicative depth d and size s, and we show that this is sufficient for optimal
broadcast encryption. In particular, broadcast encryption for N users correspond
to circuits of multiplicative depth O(log log N) and size O(N log N). To obtain
a CP-ABE for a-prior bounded depth circuits with |ct| = poly(d, log s), we keep
A−x⊗G as before, and instead prove security based a new (falsifiable) “tensor
LWE” assumption in the second step.

2.1 Our CP-ABE Schemes

We describe our CP-ABE schemes in more detail. The schemes rely on the
following strengthening of our earlier statement of evasive LWE: we consider
2 Note that the error distribution e ·B−1(P) in c∗ is different from the fresh Gaussian

error e′′. Differences in error distributions can make or break a scheme if c∗ has
small norm, but we do not know attacks exploiting these differences when c∗ has
large norm, as is the case here.

Optimal Broadcast Encryption and CP-ABE 221

distributions over pairs of matrices (A′,P) together with auxiliary input aux
(instead of just P) and require that

if (A′,B,P, sA + e′ , sB + e , sP + e′′, aux) ≈c (A′,B,P, c′ , c , c′′ , aux),

(2)

then (A′,B, sA + e′ , sB + e ,B−1(P), aux) ≈c (A′,B, c′ , c ,B−1(P), aux)

(3)

In our applications, the auxiliary input includes the coin tosses used to sample
A′,P, which rules out obfuscation-based counter-examples.

A One-Key Secure CP-ABE. We consider CP-ABE for circuits f : {0, 1}� →
{0, 1} of depth d and size s. Following [7,20], we begin with a one-key secure
CP-ABE (where we use curly underlines in place of noise terms):

mpk := B1 ← Z
n×m
q ,A ← Z

n×�m
q ,u� ← Dm

Z,χ

ctf := sAfu� + μ · g, sB1, where s ← Z
n
q

skx := B−1
1 (A − x ⊗ G)

Note that the ciphertext size is independent of �. Decryption for f(x) = 0 uses
(A − x ⊗ G) · HA,f,x = Af − f(x)G, which implies sB1 · B−1

1 (A − x ⊗ G) ·
HA,f,x · u� ≈ sAfu�.

Next, we show that the scheme is one-key secure assuming LWE and evasive
LWE. Intuitively, evasive LWE says that we can replace the terms sB1,B−1

1 (A−
x ⊗ G) with their product s(A − x ⊗ G). Then, it suffices to show that μ is
hidden given

B1,A, sAfu� + μ · g, s(A − x ⊗ G)

Next, we can write sAfu� in terms of s(A − x ⊗ G) and f(x) · sGu� using
homomorphic computation. Since f(x) = 1, it suffices to show that μ is hidden
given

B1,A, sGu� + μ · g, s(A − x ⊗ G)

which follows quite readily from LWE.
Note that this scheme is insecure if the adversary is allowed to make

two key queries: given secret keys for 0� and 1�, an adversary can compute
sA, s(A − 1� ⊗ G), substract the two to obtain s(1� ⊗ G) and solve for s and
thus μ. To defeat this attack, we randomize the secret keys by tensoring with
random Gaussian vectors.

First Modification. We replace A − x ⊗ G in sk with (A − x ⊗ G) ⊗ r� and
sAfu� in ct with s(Afu� ⊗ I), so that

ctf := s(Afu� ⊗ I) + μ · g, sB1, where s ← Z
n
q

skx := B−1
1 ((A − x ⊗ G) ⊗ r�), r�

222 H. Wee

Decryption computes the following quantities:

(s(Af ⊗ I) + μ · g) · (I ⊗ r�) ≈ s(Af ⊗ r�) + μ · g · (I ⊗ r�)

sB1 · B−1
1 ((A − x ⊗ G) ⊗ r�) · (HA,f,x ⊗ I) ≈ s(Af ⊗ r�)

and subtracts the two to recover μ. The attacker from before now learns
s(A ⊗ r�

1), s((A − 1� ⊗ G) ⊗ r�
2 and since r1 	= r2 w.h.p., we can no longer carry

out the attack from before.
We do not know an attack on the preceding scheme. However, adapting the

security proof for the one-key setting to the many-key setting runs into two
difficulties. Upon applying evasive LWE as before, we want to argue that μ is
hidden given

B1,A, s(Afu� ⊗ I) + μ · g,
{
s((A − xi ⊗ G) ⊗ r�

i), r
�
i

}
i∈[Q]

– The first difficulty lies in handling s(Afu� ⊗I): using homomorphic computa-
tion as before allows us to write s(Afu� ⊗r�

i) in terms of s((A−xi ⊗G)⊗r�
i)

and f(xi) · s(Gu� ⊗ r�
i). We then need to bridge the gap between

{
s(Afu� ⊗

r�
i)

}
i∈[Q]

(what we know how to simulate) and s(Afu� ⊗ I) (what appears in
the ciphertext). The next modification addresses this difficulty while relying
only on the LWE assumption.

– This leaves us with arguing pseudorandomness of
{
s((A − xi ⊗ G) ⊗ r�

i),
r�

i

}
i∈[Q]

, for which we present two solutions. The first (and less satisfactory)
is to simply assert pseudorandomness via a new assumption, which we refer to
as tensor LWE. This assumption is qualitatively different from evasive LWE
in that there are no Gaussian pre-images. The second solution relies only on
the LWE assumption, but incurs a 2d blow-up, which is nonetheless sufficient
for optimal broadcast encryption.

Second Modification. We mask s(Af ⊗ I) in the cipertext with a fresh LWE
sample s0A0 + e0 and during decryption, compute

s(Af ⊗ r�) ≈ (

ct
︷ ︸︸ ︷

s(Af ⊗ Im) + s0A0 + e) · (1 ⊗
sk

︷︸︸︷

r�) −
ct

︷ ︸︸ ︷

(s0B0 + e0) ·
sk

︷ ︸︸ ︷

B−1
0 (A0r�) (4)

where s0B0 + e0 appears in ctf and B−1
0 (A0r�) in skx. This yields the following

CP-ABE scheme for bounded depth circuits:

mpk := A0,B0 ← Z
n×m
q , B1 ← Z

mn×m2

q , A ← Z
n×�m
q

ctf := s0B0, s(Af ⊗ Im) + s0A0 + μ · g, sB1, where s ← Z
mn
q , s0 ← Z

n
q

skx := B−1
0 (A0r�),B−1

1 ((A − x ⊗ G) ⊗ r�), r�, where r ← Dm
Z,χ

Decryption for f(x) = 0 computes (approximately)

μ · g · (1 ⊗ r�) ≈ (s(Af ⊗ Im) + s0A0 + μ · g) · (1 ⊗ r�) − s0B0 · B−1
0 (A0r�)

+ sB1 · B−1
1 ((A − x ⊗ G) ⊗ r�) · (HA,f,x ⊗ I)

Optimal Broadcast Encryption and CP-ABE 223

Again, via the evasive LWE assumption (upon additionally combining B0,B1

into a single matrix B), ABE security reduces to proving pseudorandomness of

A0,A,u�,

c′
︷ ︸︸ ︷
s(Afu� ⊗ I) + s0A0,

{
s((A − xi ⊗ G) ⊗ r�

i), s0A0r�
i , r

�
i

}
i∈[Q]

Observe that
s0A0r�

i ≈ c′ · r�
i − s(Afu� ⊗ r�

i)

We can then use the LWE assumption with secret s0 to replace c′ with random.
This leaves us with proving pseudorandomness of

A0,A,u�,
{
s((A − xi ⊗ G) ⊗ r�

i), s(Afu� ⊗ r�
i), r

�
i

}
i∈[Q]

At this point, we can apply homomorphic computation to s((A− xi ⊗G) ⊗ r�
i)

as before in the one-key scheme, upon which we are left with proving pseudo-
randomness of

A,u�,
{
s((A − xi ⊗ G) ⊗ r�

i), s(u
� ⊗ r�

i), r
�
i

}
i∈[Q]

(5)

The tensor LWE assumption essentially states that the above distribution is
pseudorandom.

Third Modification. The third and final modification allows us to handle
the second difficulty without introducing the additional tensor LWE assumption
but with a 2d blow-up. The idea is to replace G in skx with Im and sample
A ← Dm×�m

Z,χ so that A − x ⊗ Im has low-norm:

mpk := A0,B0 ← Z
n×m
q , B1 ← Z

m2×O(m2 log q)
q , A ← Dm×�m

Z,χ

ctf := s0B0, s(Af ⊗ Im) + s0A0 + μ · g, sB1, where s ← Z
m2

q , s0 ← Z
n
q

skx := B−1
0 (A0r�),B−1

1 ((A − x ⊗ I) ⊗ r�), r�, where r ← Dm
Z,χ

In the security proof, instead of (5), we need to prove pseudorandomness of

A,u�,
{
s((A − xi ⊗ Im) ⊗ r�

i), s(u
� ⊗ r�

i), r
�
i

}
i∈[Q]

Both A − xi ⊗ Im and u� have low-norm, so

s((A − xi ⊗ Im) ⊗ r�
i) ≈ s(I ⊗ r�

i) · (A − xi ⊗ I)

s(u� ⊗ r�
i) ≈ s(I ⊗ r�

i) · u�

We may then invoke (1) to replace s(I ⊗ r�
i) with si ← Z

m
q , upon which it suffices

to prove pseudorandomness of

A,u�,
{
si(A − xi ⊗ Im), siu� }

i∈[Q]

This in turn follows from LWE via a straight-forward hybrid argument over
i ∈ [Q].

224 H. Wee

2.2 On Evasive Lattice Assumptions

In the past decade, we have witnessed a large number of “lattice-inspired”
schemes, on which weaknesses and attacks were subsequently discovered. A par-
tial list includes:

– multi-linear maps and key exchange [28,32] and attacks in [24,25]
– obfuscation for branching programs [29,32,35] and attacks in [23]
– noisy inner product functional encryption [1] with attacks and fixes [4]
– obfuscation from circular security [18,19,31,44] with attacks on [31,44] in [36]

In fact, our evasive LWE assumption shares some structural similarities to the
GGH15-based multi-linear maps [32] corresponding to the first two items on the
list above. There is however a key conceptual distinction which we briefly alluded
to earlier and shall expand on next.

The Zeroizing Regime. All of the afore-mentioned attacks have one thing
in common: they pertain to the zeroizing regime where an attacker can easily
obtain sufficiently many equations in low-norm secret values—low-norm LWE
secrets, error vectors, or both—over the integers that information-theoretically
determine these secret values.3 These equations arise naturally from the interac-
tion of the correctness constraints and the security requirements. Such attacks
are referred to in the literature as zeroizing attacks. Prior zeroizing attacks basi-
cally proceed in two steps: (i) collect many of these equations, and (ii) using
these equations to recover some secret value and break security. The first step is
typically fairly straight-forward; most of the technical and creative work lies in
the second step, which varies from computing a linear-algebraic quantity (e.g.,
kernel [24] or rank [4,23]) of a carefully crafted matrix over the integers/reals,
to more sophisticated sum-of-squares attacks [8,39].

Our evasive LWE assumption falls outside of this zeroizing regime in that
we do not see any straight-forward way to collect even a single equation of the
underlying LWE error vectors over the integers. As explained earlier in the intro-
duction, the straight-forward adaptation of prior attacks would be to compute
c∗ = (sB + e0) · B−1(P) ≈ sP, but the pre-condition for evasive LWE implies
that c∗ has large norm and does not yield an equation over the integers. The
setting for our assumption is closer to that for prior witness encryption candi-
dates, specifically, the GGH15-based witness encryption candidate in [23], which
also fall outside the zeroizing regime. Indeed, there are no known attacks on any
witness encryption candidates in the literature, giving us additional confidence
in our evasive LWE assumption. For the crypt-analysts who believe that exist-
ing witness encryption candidates are broken but haven’t found an attack, our
evasive LWE assumption provides a much simpler target for crypt-analysis.

3 As a point of comparison, we have examples such as k-LWE [38] and inner prod-
uct functional encryption [3] based on LWE where it is easy to obtain a few such
equations, but the equations do not information-theoretically determine the secret
values.

Optimal Broadcast Encryption and CP-ABE 225

Perspective. To the best of our knowledge, our evasive LWE assumption is
the first simple lattice assumption that falls outside of the zeroizing regime. We
firmly believe that the study of such evasive lattice assumptions —hardness,
attacks, and constructions— constitutes an important and promising research
direction, as well as a rich source of open problems. More broadly, non-standard
variants of LWE and evasive lattice assumptions are conceptually similar to q-
type assumptions, knowledge assumptions, and generic/algebraic group model
assumptions that have played an essential role in our study of group and pairing-
based cryptography.4 This analogy provides additional impetus for the study of
evasive lattice assumptions.

Looking Ahead. Looking ahead, we see 4 possible scenarios, starting with the
most optimistic:

1. This work ultimately leads to optimal broadcast encryption based on LWE, as
has been the case for several lattice-based schemes where the initial candidates
were based on non-standard assumptions (outside the zeroizing regime), such
as fully homomorphic encryption and its multi-key variant and the Fiat-
Shamir heuristic.

2. The evasive LWE assumption surives cryptanalysis: this could enable other
advanced encryption primitives. Indeed, in a follow-up work with Vaikun-
tanathan and Wichs [42], we prove that the GGH15-based witness encryption
scheme in [23] is secure under a variant of evasive LWE.

3. The evasive LWE assumption is broken but the broadcast encryption scheme
is not. This would require new and valuable crypt-analytic advances beyond
the state-of-the-art zeroizing attacks. The current statement of evasive LWE
is fairly general, and an attack could guide us towards identify more secure
variants of the assumption that would suffice for our broadcast encryption
scheme.

4. Both the evasive LWE assumption and the broadcast encryption are bro-
ken. Could these new attacks be extended to current GGH15-based witness
encryption candidates?

We believe any of these scenarios would advance our current scientific under-
standing of lattice-based cryptography and assumptions (hardness and/or
attacks).

2.3 Additional Related Work

We describe additional related work.
4 Security based on evasive LWE can be viewed as ruling out restricted adversaries that

replaces sB+ e,B−1(P) with their product sP+ e′′ (with fresh noise) and ignoring
B−1(P) thereafter. Viewed this way, evasive LWE can be seen as a partial analogue
of the generic/algebraic group model used in group and pairing-based cryptography.
Several works studied analogues of the generic group model for multi-linear maps
[9,30], but they were in the zeroizing regime.

226 H. Wee

Relation to GGH15 Multi-linear Maps. Our work draws upon several
insights in the study of GGH15 multi-linear maps [21,32]. First, randomization
via tensors and the statement in (1) both appeared in [21], but in a different
context. Second, the intuition for evasive LWE in terms of an “optimal” distin-
guishing strategy also underlies earlier GGH15-based schemes, with the crucial
distinction that evasive LWE falls outside the zeroizing regime. Our evasive LWE
assumption also provides a concise statement of this intuition in a setting that
falls outside the zeroizing regime.

Obfuscation-Based Broadcast. We can obtain optimal broadcast encryp-
tion schemes by combining the obfuscation-based scheme in [17] with the
state-of-the-art obfuscaton schemes/candidates. The ensuing schemes would
be extremely complex and impractical, inherited from the current obfuscation
schemes/candidates, compounded with the use of non-black-box techniques.
Nonetheless, there is value in understanding the ensuing schemes from the per-
spective of assumptions. In particular, if we rely on the Jain-Lin-Sahai obfus-
cation scheme [37], we would require both bilinear groups and LWE similar to
the AYW schemes, and would not achieve post-quantum security. If we turn to
the post-quantum obfuscation candidates, e.g. [4,19,23,31,44], then we would
require hardness or assumptions in the zeroizing regime.

CP-ABE from LWE. The state of the art for CP-ABE from LWE is that
of Agrawal and Yamada [6] supporting circuits of depth d and size s over
{0, 1}� with |ct| = poly(d, s) and key generation running in time poly(�, d, log s);
this improves upon the “trivial” CP-ABE from LWE based on the KP-ABE
for circuits from LWE in [12], where key generation runs in time poly(d, s).
Both of these schemes achieve |sk| = poly(d, log s). We note that the recent
CP-ABE for NC1 from LWE in [26] achieves |ct|, |sk| = poly(s). In contrast,
the CP-ABE schemes described in Fig. 1 achieve |ct| = poly(�, d, log s) or
|ct| = poly(�, 2d, log s) (i.e., almost independent of circuit size s).

3 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. v) and boldface
upper case for matrices (e.g. V). For integral vectors and matrices (i.e., those
over Z), we use the notation |v|, |V| to denote the maximum absolute value over
all the entries. We use v ← D to denote a random sample from a distribution
D, as well as v ← S to denote a uniformly random sample from a set S. We
use ≈s and ≈c as the abbreviation for statistically close and computationally
indistinguishable.

Optimal Broadcast Encryption and CP-ABE 227

Tensor Product. The tensor product (Kronecker product) for matrices A =
(ai,j) ∈ Z

�×m, B ∈ Z
n×p is defined as

A ⊗ B =

⎡

⎣
a1,1B, . . . , a1,mB
. . . , . . . , . . .

a�,1B, . . . , a�,mB

⎤

⎦ ∈ Z
�n×mp.

The mixed-product property for tensor product says that

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

A useful corollary of the mixed-product property says that for any pair of row
vectors u,v ∈ Z

n,

u ⊗ v = (u ⊗ 1)(In ⊗ v) = (1 ⊗ v)(u ⊗ In)
= u(In ⊗ v) = v(u ⊗ In)

We adopt the convention that matrix multiplication takes precedence over tensor
product, so that we can write A ⊗ BC to mean A ⊗ (BC).

3.1 Lattices Background

We use DZ,χ to denote the discrete Gaussian distribution over Z with standard
deviation χ.

Learning with Errors (LWE). Given n,m, q, χ ∈ N, the LWEn,m,q,χ assump-
tion states that

(A, sA + e) ≈c (A, c)

where
A ← Z

n×m
q , s ← Z

n
q , e ← DZm,χ, c ← Z

m
q

Trapdoor and Preimage Sampling. Given any Z ∈ Z
n×n′
q , σ > 0, we use

B−1(Z, σ) to denote the distribution of a matrix Y sampled from D
Zm×n′ ,σ

conditioned on BY = Z (mod q). We sometimes suppress σ when the context
is clear.

There is a p.p.t. algorithm TrapGen(1n, q) that, given the modulus q ≥ 2
and dimension n, outputs B ≈s U(Zn×2n log q

q) with a trapdoor τ . Moreover,
there is a p.p.t. algorithm that given (B, τ) ← TrapGen(1n, q), Z ∈ Z

n×n′
q , and

σ ≥ 2
√

n log q, outputs a sample from B−1(Z, σ).

3.2 Attribute-Based Encryption

Syntax. A ciphertext-policy attribute-based encryption (CP-ABE) scheme for
some class F consists of four algorithms:

228 H. Wee

Setup(1λ,F) → (mpk,msk). The setup algorithm gets as input the security
parameter 1λ and class description F . It outputs the master public key mpk
and the master secret key msk.

Enc(mpk, f, μ) → ctf . The encryption algorithm gets as input mpk, f ∈ F and
a message μ ∈ {0, 1}. It outputs a ciphertext ctf .

KeyGen(mpk,msk, x) → skx. The key generation algorithm gets as input mpk,
msk and x ∈ {0, 1}�. It outputs a secret key skx.

Dec(mpk, skx, ctf) → m. The decryption algorithm gets as input skx and ctf
such that f(x) = 0 along with mpk. It outputs a message μ.

Correctness. For all inputs x and f with f(x) = 0 and all μ ∈ {0, 1}, we
require

Pr

⎡

⎣Dec(mpk, skx, ctf) = μ :
(mpk,msk) ← Setup(1λ,F)
skx ← KeyGen(mpk,msk, x)
ctf ← Enc(mpk, f, μ)

⎤

⎦ = 1 − negl(λ).

Security Definition. For a stateful adversary A, we define the advantage func-
tion

AdvabeA (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎣

b = b′ :

f ← A(1λ)
(mpk,msk) ← Setup(1λ,F)
(μ0, μ1) ← AKeyGen(mpk,msk,·)(mpk)
b ← {0, 1}; ctf ← Enc(mpk, f, μb)
b′ ← AKeyGen(mpk,msk,·)(ctf)

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

with the restriction that all queries x that A sent to KeyGen(mpk,msk, ·) satisfy
f(x) = 0. An ABE scheme is selectively secure if for all PPT adversaries A, the
advantage AdvabeA (λ) is a negligible function in λ. Similarly, say that an ABE
scheme is very selectively secure for the advantage function:

AdvabeA (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′ :

(f, x1, . . . , xQ) ← A(1λ)
(mpk,msk) ← Setup(1λ,F)
ski ← KeyGen(mpk,msk, xi), i = 1, . . . , Q
(μ0, μ1) ← A(mpk, sk1, . . . , skQ)
b ← {0, 1}; ctf ← Enc(mpk, f, μb)
b′ ← A(ctf)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

Broadcast Encryption. Here,

X = {0, 1}N ,Y = [N]

Optimal Broadcast Encryption and CP-ABE 229

where we think of {0, 1}N as the power set of [N] (i.e., set of all subsets of [N]),
and

P(S, y) = 1 ⇐⇒ y ∈ S

As noted in [5,7], very selective security for broadcast encryption implies selective
security since an adversary can simply ask for all keys outside S.

4 Evasive LWE

We proceed to provide a formal statement of our evasive LWE assumption, stated
informally in Sect. 1.

Evasive LWE. Let Samp be a PPT algorithm that on input 1λ, outputs

A′ ∈ Z
n×m′
q ,P ∈ Z

n×t
q , aux ∈ {0, 1}∗

We define the following advantage functions:

AdvpreA0
(λ) := Pr[A0(sA′ + e′ , sB + e , sP + e′′ ,A′,B, aux) = 1]

−Pr[A0(c , c0 , c′ ,A′,B, aux) = 1], (6)

AdvpostA1
(λ) := Pr[A1(sA′ + e′ , sB + e ,K,A′,B, aux) = 1]

−Pr[A1(c , c0 ,K,A′,B, aux) = 1] (7)

where

(A′,P, aux) ← Samp(1λ)

B ← Z
n×m
q , s ← Z

n
q ,

c ← Z
m′
q , c0 ← Z

m
q , c′ ← Z

t
q,

e ← Dm
Z,χ, e′ ← Dm′

Z,χ, e′′ ← Dt
Z,χ

K ← B−1(P) with standard deviation O(
√

m log q)

We say that the evasive LWE assumption holds if for every PPT Samp,A1,
there exists another PPT A0 and a polynomial Q(·) such that

AdvpreA0
(λ) ≥ AdvpostA1

(λ)/Q(λ) − negl(λ)

We consider parameter settings for which LWEn,q,χ holds.

Remark 1 (restricted samplers). As in [5], we only require that the assumption
holds for samplers where aux additionally contains all of the coin tosses used by
Samp. This avoids obfuscation-based counter-examples where aux contains an
obfuscation of a program related to a trapdoor for matrix P.

230 H. Wee

Remark 2 (noise magnitudes). For simplicity, we stated the assumption with
all the LWE error terms e, e′, e′′ having the same Gaussian parameter χ. It is
straight-forward to adapt the assumption and the scheme to a quantitatively
weaker variant where the error terms in the post-condition (7) have a larger
Gaussian parameter than those in the pre-condition.

Remark 3 (weaker pseudorandomness). For the security of our scheme, it suffices
to consider a weaker variant of the assumption where only sA′ + e′ is required
to be pseudorandom in the post-condition.

We refer to Sect. 6 for further discussion on the assumption.

5 Main Constructions

In this section, we present our main constructions:

– a CP-ABE scheme for NC1 achieving |ct| = poly(2d, log s, λ);
– an “optimal” broadcast encryption scheme for N users with |mpk|+ |ct|+ |sk|

= poly(log N,λ);
– a CP-ABE scheme for circuits achieving |ct| = poly(d, log s, λ);

The first scheme serves as the basis for the second and the third scheme. The
first two schemes rely on evasive LWE whereas the third requires an additional
“tensor LWE” assumption. We prove very selective security for all three schemes,
which implies selective security for broadcast encryption.

5.1 Homomorphic Computation on Matrices

We recall basic homorphic computation on matrices used in prior LWE-based
ABE [12].

Lemma 1 (EvalFG,EvalFXG). Fix parameters n, q, � and m = O(n log q).
Given a matrix A ∈ Z

n×�m
q and a circuit f : {0, 1}� → {0, 1} of depth d and size

s, we can efficiently compute a matrix Af ∈ Z
n×m
q such that for all x ∈ {0, 1}�,

there exists a matrix HA,f,x ∈ Z
�m×m with |HA,f,x| = mO(d) · s such that

(A − x ⊗ G) · HA,f,x = Af − f(x)G (8)

where G ∈ Z
n×m
q is the gadget matrix. Moreover, HA,f,x is efficiently computable

given A, f,x. We use EvalFG(A, f),EvalFXG(A, f,x) to denote the algorithms
computing Af ,HA,f,x respectively.

Optimal Broadcast Encryption and CP-ABE 231

Low-Norm Variant. We also consider a variant where A has low-norm and we
replace G with I: when deriving Af , addition gates correspond to matrix addi-
tion and multiplication gates correspond to matrix multiplication.5 The magni-
tude of the noise squares with each multiplication gate, leading to noise growth
that is doubly exponential in d.

Lemma 2 (EvalF,EvalFX). Fix parameters m, �. Given a matrix A ∈ Z
m×�m

and a circuit f : {0, 1}� → {0, 1} of depth d and size s, we can efficiently compute
a matrix Af ∈ Z

m×m such that |Af | = (|A|m)O(2d) · s and for all x ∈ {0, 1}�,
there exists a matrix HA,f,x ∈ Z

�m×m with |HA,f,x| = (|A|m)O(2d) · s such that

(A − x ⊗ Im) · HA,f,x = Af − f(x)Im (9)

Moreover, HA,f,x is efficiently computable given A, f,x. We use EvalF(A, f),
EvalFX(A, f,x) to denote the algorithms computing Af ,HA,f,x respectively.

5.2 CP-ABE for NC1 Circuits

We present our CP-ABE scheme for NC1 circuits.

– Setup(1n, 1�): Sample

(B, τ) ← TrapGen(1n+m2
, q), A0 ← Z

n×m
q , A ← Dm×�m

Z,χ′′ ,u ← Dm
Z,χ′′

Output
mpk :=

(
B,A0,A,u�)

, msk := τ

– Enc(mpk, f, μ ∈ {0, 1}). Compute Af = EvalF(A, f). Sample

s0 ← Z
n
q , s1 ← Z

m2

q , e ← Dm
Z,χ, e0 ← DO((n+m2) log q)

Z,χ ,

Output

ctf :=
(

c0︷ ︸︸ ︷
(s0 | s1)B + e0,

c
︷ ︸︸ ︷
s0A0 + s1(Afu� ⊗ Im) + μ · g + e

)

– KeyGen(msk,x): Sample

r ← Dm
Z,χ′′ , K ← B−1

(
A0r�

A − x ⊗ Im) ⊗ r�

)
,

using τ with standard deviation O(
√

(n + m2) log q). Output

skx :=
(
K, r�)

– Dec(sk,x, ct, f): Compute HA,f,x = EvalFX(A, f,x). Output

roundβ0

(
c · r� − c0 · K ·

(
1

K1 · HA,f,xu�

)
)

where roundβ0(x) outputs 0 if |x| < β0 and 1 otherwise.
5 That is, xi +xj corresponds to Ai +Aj and xi ·xj corresponds to Ai ·Aj instead of
Ai · G−1(Aj). More generally, we can represent a circuit f of depth d and size s as
a polynomial comprising the sum of s monomials, each of total degree at most 2d.
Then, Af = f(A1, . . . ,A�).

232 H. Wee

c c1,i c0,i
H0 s0A0 + s1(Afu ⊗ Im) s1((A − xi ⊗ Im) ⊗ ri) s0A0ri

H1 ↓ ↓ c · ri − c1 · HA,f,xiu − s1(u ⊗ ri)
H2 c ← Z

m
q ↓ ↓

H3 ↓ (s1(Im ⊗ ri) + ei) · (A − xi ⊗ Im) c · ri − c1 · HA,f,xiu − (s1(Im ⊗ ri) + ei) · u
H4 ↓ si (A − xi ⊗ Im) c · ri − c1 · HA,f,xiu − si u

H5 ↓ c1,i ← Zq c0,i ← Zq

Fig. 2. Summary of the hybrid sequence, with H0 ≈s H1 ≈c H2 ≈s H3 ≈c H4 ≈c H5.
We suppress the additive noise terms in c′, c′

1,i, c
′
0,i; ↓ denotes same as previous hybrid;

we sample e′
i ← Dm

Z,χ′′ in H3 and si ← Z
m
q in H4.

Parameters. Suppose |HA,f,x| is bounded by β. We set

n = poly(λ, log β), m = O(n log q), χ′′, χ′ = λω(1), χ = β · λω(1), β = (χ′′m)O(2d) · s

β0 = χ2 · χ′′ · β · poly(m), q = β0 · λω(1)

In particular, this means

|mpk| = � · poly(2d, s, λ), |ct| = poly(2d, s, λ), |sk| = � · poly(2d, s, λ)

Correctness. Fix x, f such that f(x) = 0. First, we have

c0 · K ·
(

1

HA,f,xu�

)

≈ (s0 | s1)B · B−1

(

A0r�

A − x ⊗ Im) ⊗ r�

)

·
(

1

HA,f,xu�

)

= s0A0r� + s1((A − x ⊗ Im) ⊗ r�) · (HA,f,xu
� ⊗ 1)

= s0A0r� + s1((A − x ⊗ Im) · HA,f,xu
� ⊗ Im) · (1 ⊗ r�)

= s0A0r� + s1(Afu
� ⊗ Im) · r�

where the final equality uses (A − x ⊗ Im) · HA,f,x = Af . This means

c · r� − c0 · K ·
(

1
HA,f,xu�

)

≈ (s0A0 + s1(Afu� ⊗ Im) + μ · g) · r� − s0A0r� − s1(Afu� ⊗ Im) · r�

= μ · g · r�

In particular, the error term is bounded by

|e · r�| + |e0 · K ·
(

1
HA,f,xu�

)
| ≤ χ2 · χ′′ · β · poly(m) ≤ β0

Now, g · r� is statistically close to uniform over Zq, and correctness follows as
long as q ≥ β0 · λω(1).

Optimal Broadcast Encryption and CP-ABE 233

Security. Suppose the (very selective) ABE adversary A with randomness
coinsA queries f and x1, . . . ,xQ such that f(x1) = · · · = f(xQ) = 1. We invoke
our evasive LWE hardness assumption with the following sampler Samp:

aux = (

aux0︷ ︸︸ ︷
x1, . . . ,xQ, f, coinsA, r�

1, . . . , r
�
Q,A0,A,u�)

P0 = A0[r�
1 | · · · | r�

Q]

P1 = [(A − x1 ⊗ Im) ⊗ r�
1 | · · · | (A − xQ ⊗ Im) ⊗ r�

Q]

P =
(
P0

P1

)

A′ = [A0 | Afu� ⊗ Im]

where r�
1, . . . , r

�
Q,A0,A,u� are sampled as in our CP-ABE scheme. Note that

Samp satisfies the restriction in Remark 1. At this point, it suffices to show
pseudorandomness of

aux0,A0,A,u�
,B, s0A0 + s1A1 + e′

, (s0 | s1)B + e0, s0P0 + e′
0, s1P1 + e′

1,
{
r�i

}
i∈[Q] (10)

where A0,u�, s0, s1, r�
i are also sampled as in the CP-ABE scheme and e′ ←

Dm
Z,χ′′ , e′

1,i ← D�m
Z,χ′ , e′

0,i ← DZ,χ. Combined with our hardness assumption, the
latter would imply:

mpk
︷ ︸︸ ︷
A0,A,u�,B,

ct
︷ ︸︸ ︷
(s0 | s1)B + e0, s0A0 + s1(Afu� ⊗ Im) + e + μ · g,

{

ski︷ ︸︸ ︷

B−1

(
A0r�

i

(A − xi ⊗ Im) ⊗ r�
i

)
, r�

i)
}

i∈[Q]

≈c A0,A,u�,B, c0, c + μ · g,
{
B−1

(
A0r�

i

(A − xi ⊗ Im) ⊗ r�
i

)
, r�

i)
}

i∈[Q]

(where the distinguisher additionally gets aux0) from which ABE security fol-
lows readily. Next, we prove pseudorandomness of (10) from LWE via a hybrid
sequence summarized in Fig 2:

– H0: the distribution in (10)

aux0,A0,A,u�,B,

c′
︷ ︸︸ ︷
s0A0 + s1(Afu� ⊗ Im) + e′,

c0︷ ︸︸ ︷
(s0 | s1)B + e0

{
c′
1,i

︷ ︸︸ ︷
s1((A − xi ⊗ Im) ⊗ r�

i) + e′
1,i,

c′
0,i

︷ ︸︸ ︷
s0A0r�

i + e′
0,i, r

�
i

}
i∈[Q]

234 H. Wee

– H1: same as H0, except we compute

c′
0,i := c′ · r�

i − c′
1 · HA,f,xi

u� − s1(u� ⊗ r�
i) + e′

0,i.

We claim that H0 ≈s H1. First, observe that

s0A0r
�
i = (

≈ c′
︷ ︸︸ ︷

s0A0 + s1(Afu
� ⊗ Im)) · r�i − s1(Afu

� ⊗ r�i)

= (s0A0 + s1(Afu
� ⊗ Im)) · r�i − s1((A − xi ⊗ Im) · HA,f,xi

u�
+ u�

) ⊗ r�i)

= (s0A0 + s1(Afu
� ⊗ Im)) · r�i −

≈ c′
1,i

︷ ︸︸ ︷

s1((A − xi ⊗ Im) ⊗ r�i) ·HA,f,xi
u�

+ s1(u
� ⊗ r�i)

where the first and third equalities uses the mixed-product property, and the
second equality uses (A− xi ⊗ Im) ·HA,f,xi

= Af − f(xi)Im and f(xi) = 1.
Then, H0 ≈s H1 follows from noise flooding using e′

0,i, namely

e′
0,i ≈s e′

0,i + e′ · r�
i − e′

1,i · HA,f,xi
u�

which in turn follows from χ ≥ χ′ · β · λω(1).

– H2: same as H1, except we sample c′ ← Z
m
q , c0 ← Z

O((n+m2) log q)
q . We have

H1 ≈c H2, since

(A0,B0, s0A0 + e
′
, s0B0 + e0,) ≈c (A0, c

′
, c0), c

′ ← Z
m
q , c0 ← Z

O((n+m2) log q)
q ,B0 ← Z

n×O((n+m2) log q)
q

via the LWE assumption. (In the reduction, B0 corresponds to the top n rows
of B.)

– H3: same as H2, except we compute

si := s1(Im ⊗ r�
i) + e′

i, e′
i ← Dm

Z,χ′′

c′
1,i := si(A − xi ⊗ Im) + e′

1,i

c′
0,i := c′ · r�

i − c′
1 · HA,f,xi

u� − siu� + e′
0,i

We claim that H2 ≈s H3. First, observe that

≈ c′
1,i

︷ ︸︸ ︷

s1((A − xi ⊗ Im) ⊗ r�i) = s1(Im ⊗ r�i)((A − xi ⊗ Im) ⊗ 1) =

≈ si
︷ ︸︸ ︷

s1(Im ⊗ r�i)(A − xi ⊗ Im)

s1(u
� ⊗ r�i) = s1(Im ⊗ r�i)(u

� ⊗ 1) =

≈ si
︷ ︸︸ ︷

s1(Im ⊗ r�i)u
�

where the first equality in each line uses the mixed-product property. Then,
H2 ≈s H3 follows from noise flooding using e′

1,i and e′
0,i, namely

e′
1,i ≈s e′

1,i + e′
i · (A − xi ⊗ Im)

e′
0,i ≈s e′

0,i + e′
i · u�

which in turn follows from χ′, χ′′ ≥ λω(1).

Optimal Broadcast Encryption and CP-ABE 235

– H4: same as H3, except we sample si ← Z
m
q . We have H3 ≈c H4, since

{
s1(Im ⊗ r�

i), r
�
i

}
i∈[Q]

≈c

{
si, r�

i

}
i∈[Q]

, s1 ← Z
m2

q , ri ← Dm
Z,χ, si ← Z

m
q

via the LWE assumption [14,21]. In particular, if we write s1 = (s1,1, . . . , s1,m)
where s1,1, . . . , s1,m ∈ Z

m
q , then s1(Im ⊗ r�

i) = (s1,1r�
i , . . . , s1,mr�

i).

– H5 : same as H4, except we sample c′
0,i ← Z

�m
q , c′

1,i ← Z
�m
q . We have H4 ≈c

H5. This follows from a hybrid argument over i = 1, . . . , Q, where in the i’th
step, we switch the distribution of c′

0,i, c
′
1,i to random via:

(A, u�, siu� + e′
0,i, si(A − xi ⊗ Im) + e′

1,i)
≈s (A + xi ⊗ Im, u�, siu� + e′

0,i, siA + e′
1,i)

≈c (A + xi ⊗ Im, u�, c′
0,i, c′

1,i)
≈s (A, u�, c′

0,i, c′
1,i)

In particular,
• the first and last ≈s rely on noise flooding with A ≈s A+xi ⊗ Im, which

in turn follows from χ′′ ≥ λω(1);
• the ≈c relies on LWE [14] which tells us

(A,u�, siA + e′
1,i, siu� + e′

0,i) ≈c (A,u�, random)

and where the reduction samples si+1, . . . , sQ and computes
c′
0,i+1, . . . , c

′
0,Q, c′

1,i+1, . . . , c
′
1,Q as in H5.

5.3 Optimal Broadcast Encryption

To handle broadcast encryption with N users, we identify a user x ∈ [N] with a
bit string x ∈ {0, 1}�log N�. Let Iy(·) be the point function wrt y, that is,

Iy(x) =

{
1 if x = y
0 otherwise

We can then associate each set S ⊆ [N] with the circuit fS : {0, 1}�log N� → {0, 1}
given by

x �→ 1 −
∑

y∈S

Iy(x) =

{
0 if x ∈ S

1 if x /∈ S

It is easy to see that fS can be computed by a circuit of depth O(log log N) and
size O(N log N):6

– each Iy(·) can be computed by a circuit of depth O(log log N) and size
O(log N);

– followed by an addition gate with fan-in N .
6 As explained in [12], “To support multiplication and addition of constants, we may

assume that we have an extra 0-th input to the circuit that always carries the value
1.” That is, we will set � = �log N� + 1 in our CP-ABE scheme.

236 H. Wee

We can then instantiate our CP-ABE scheme with β = λpoly(log N) ·N log N (via
the bound in Lemma 2) which yields a broadcast encryption scheme with

|mpk| = poly(log N,λ), |ct| = poly(log N,λ), |sk| = poly(log N,λ)

5.4 CP-ABE for Polynomial-Depth Circuits

Tensor LWE. We introduce an additional tensor LWE assumption which states
that for all x1, . . . ,xQ ∈ {0, 1}�, we have

A,
{
s(Im ⊗ r�

i)(A − xi ⊗ G) + ei, r�
i

}
i∈[Q]

≈c A,
{

ci , r�
i

}
i∈[Q]

where A ← Z
m×�m
q , s ← Z

mn
q , ei ← D�m

Z,χ, r�
i ← Dm

Z,χ, ci ← Z
�m
q . We consider

the same parameter settings as LWEn,q,χ, with �,Q = poly(λ). Our analysis in
Sect. 5.2 shows that if we use a low-norm A and replace G with I, then LWE
implies tensor LWE.

CP-ABE Scheme. We modify our CP-ABE scheme in Sect. 5.2 as follows:

– we sample A ← Z
n×�m
q , (B1, τ1) ← TrapGen(1mn, q), s1 ← Z

mn
q ;

– we replace Im in ct, sk with the gadget matrix G ∈ Z
n×m
q and we replace

EvalF,EvalFX with EvalFG,EvalFXG respectively;
– we set χ′′ = poly(λ).

That is, we have:

ctf :=
(
(s0 | s1)B + e0, s0A0 + s1(Afu� ⊗ G) + μ · g + e

)

skx :=
(
B−1

(
A0r�

(A − x ⊗ G) ⊗ r�

)
, r�)

As before, we have: |mpk| = � · poly(log β, λ), |ct| = poly(log β, λ), |sk| = � ·
poly(log β, λ). Now, for circuits of depth d and size s, we have |HA,f,x| = λO(d) ·s,
which yields:

|mpk| = � · poly(d, log s, λ), |ct| = poly(d, log s, λ), |sk| = � · poly(d, log s, λ)

Security. The proof of security requires the following modifications:

– H1:

c′
0,i := c′ · r�

i − c′
1 · HA,f,xi

u� − s1(Gu� ⊗ r�
i) + e′

0,i.

– the proof of H0 ≈s H1 uses (A − xi ⊗ G) · HA,f,xi
= Af − f(xi)G.

– we omit H3,H4 and directly argue that H2 ≈c H5. Tensor LWE implies that
for all x1, . . . ,xQ ∈ {0, 1}�,

A,u�,
{

r�i
}

i∈[Q]
,
{

s1(Im ⊗ r�i)(A − xi ⊗ G) + e′
1,i, s1(Im ⊗ r�i)Gu� + e′

0,i

}

i∈[Q]

≈c A,u�,
{

r�i
}

i∈[Q]
,
{

c′
1,i , c′

0,i

}

i∈[Q]

Formally, we account for u� by taking tensor LWE with parameter � + 1 and
padding x1, . . . ,x� with a 0.

Optimal Broadcast Encryption and CP-ABE 237

6 Discussion on Evasive LWE

Recall our informal statement of evasive LWE: for every efficient samplable dis-
tributions over (A′,P, aux),

if (A′,B,P, sA + e′ , sB + e , sP + e′′, aux) ≈c (A′,B,P, c′ , c , c′′ , aux),

then (A′,B, sA + e′ , sB + e ,B−1(P), aux) ≈c (A′,B, c′ , c ,B−1(P), aux)

We begin with three quick examples:

– if P is drawn from the uniform distribution over Z
n×t
q , then evasive LWE

holds unconditionally, since B−1(P) is distributed according to a random
Gaussian.

– if P = 0, then both the pre and post conditions are false, so evasive LWE is
vacuously true.

– if P = [U | U] where U ← Z
n×t/2
q , then the pre-condition is false, and evasive

LWE does not provide any security guarantees.

Algorithmic Attacks. The known algorithmic attacks on the post-condition
essentially fall into one of two categories:

– Attacks on LWE ignoring B−1(P): this is ruled out via the pre-condition;
– Attacks computing c∗ = (sB + e′) · B−1(P) ≈ sP: suppose given aux, an

attacker can find a low-norm z such that P · z� = 0; we can then use z to
distinguish sP + e′′ from c′′, thereby violating the pre-condition. Zeroizing
attacks on multi-linear map and obfuscation candidates fall into this category.
The attacks on naive approaches to LWE-based ABE via secret-sharing in [2,
Section 6] also falls into this category.

Two Examples. To further our understanding of evasive LWE via cryptanalysis
and security reductions, we consider two concrete distributions for P and where
there is no A′, aux:

– Suppose P is a uniformly random block-diagonal matrix, that is, P =(
U0

U1

)
, where U0,U1 ← Z

n/2×t/2
q . It is easy to see that the pre-condition

holds via LWE, and in this case, we can also show that the post-condition
holds assuming LWE. Concretely, let B0,B1 denote the top and bottom
halves of the matrix B. Then, B−1(P) ≈s (B−1

1 (0),B−1
0 (0)) via [23], and

the post-condition boils down to showing that (B, sB+ e′) is pseudorandom
given trapdoors for B0,B1. As shown in [20, Theorem 5.3], this follows from
LWE, where in the reduction, we sample B0 = [A0 | A0R + G],B1 = [A1 |
A1R − G], where R is low-norm.

– Suppose P is drawn from the Gaussian distribution Dn×t
Z,χ . Then, the pre-

condition holds via [14], but we do not know how to prove the post-condition
assuming LWE. In this case, B−1(P) ≈c [B | I]−1(0). The post-condition then
boils down to showing that (B, sB + e′) is pseudorandom given a low-norm
basis for [B | I].

238 H. Wee

References

1. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 7

2. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional
encryption for threshold functions (or fuzzy IBE) from lattices. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 17

3. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

4. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps:
attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part I. LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 5

5. Agrawal, S., Wichs, D., Yamada, S.: Optimal broadcast encryption from LWE and
pairings in the standard model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I.
LNCS, vol. 12550, pp. 149–178. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64375-1 6

6. Agrawal, S., Yamada, S.: CP-ABE for circuits (and more) in the symmetric key
setting. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp.
117–148. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1 5

7. Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and LWE.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105,
pp. 13–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 2

8. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree
pseudorandom generators (or: sum-of-squares meets program obfuscation). In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp.
649–679. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 21

9. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Return of GGH15: provable security
against zeroizing attacks. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II.
LNCS, vol. 11240, pp. 544–574. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03810-6 20

10. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Com-
puter Society Press, May 2007

11. Beullens, W., Wee, H.: Obfuscating simple functionalities from knowledge assump-
tions. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 254–283.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 9

12. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

13. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-642-30057-8_17
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-030-64375-1_5
https://doi.org/10.1007/978-3-030-45721-1_2
https://doi.org/10.1007/978-3-319-78375-8_21
https://doi.org/10.1007/978-3-030-03810-6_20
https://doi.org/10.1007/978-3-030-03810-6_20
https://doi.org/10.1007/978-3-030-17259-6_9
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16

Optimal Broadcast Encryption and CP-ABE 239

14. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part
I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 23

15. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS
2006, pp. 211–220. ACM Press, October/November 2006

16. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from
multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 206–223. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 12

17. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 27

18. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomor-
phic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45721-1 4

19. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings are not
necessary for iO: circular-secure LWE suffices. Cryptology ePrint Archive, Report
2020/1024 (2020)

20. Brakerski, Z., Vaikuntanathan, V.: Lattice-inspired broadcast encryption and suc-
cinct ciphertext-policy ABE. In: ITCS, pp. 28:1–28:20 (2022)

21. Canetti, R., Chen, Y.: Constraint-Hiding Constrained PRFs for NC1 from LWE. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp.
446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 16

22. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via
predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

23. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 20

24. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

25. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multi-
linear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
607–628. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 21

26. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for
DNFs from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021,
Part I. LNCS, vol. 12696, pp. 177–209. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-77870-5 7

27. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 40

https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-662-44371-2_12
https://doi.org/10.1007/978-3-662-44371-2_12
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-030-77870-5_7
https://doi.org/10.1007/978-3-030-77870-5_7
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40

240 H. Wee

28. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

29. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

30. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016, Part II. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 10

31. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In: STOC
(2021)

32. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

33. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-
9 10

34. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November
2006. Available as Cryptology ePrint Archive Report 2006/309

35. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-
obfuscation using graph-induced encoding. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 783–798. ACM Press, Octo-
ber/November 2017

36. Hopkins, S., Jain, A., Lin, H.: Counterexamples to new circular security assump-
tions underlying iO. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II.
LNCS, vol. 12826, pp. 673–700. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84245-1 23

37. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020)

38. Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k -LWE and applications
in traitor tracing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 315–334. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 18

39. Lombardi, A., Vaikuntanathan, V.: Limits on the locality of pseudorandom gener-
ators and applications to indistinguishability obfuscation. In: Kalai, Y., Reyzin, L.
(eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 119–137. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2 5

40. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 22

41. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

42. Vaikuntanathan, V., Wee, H., Wichs, D.: Witness encryption and null-iO from
evasive LWE. Manuscript (2022)

https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-030-84245-1_23
https://doi.org/10.1007/978-3-030-84245-1_23
https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/978-3-319-70500-2_5
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27

Optimal Broadcast Encryption and CP-ABE 241

43. Wee, H.: Broadcast encryption with size N1/3 and more from k -lin. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 155–178.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 6

44. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. In: Can-
teaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part III. LNCS, vol. 12698,
pp. 127–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5 5

https://doi.org/10.1007/978-3-030-84259-8_6
https://doi.org/10.1007/978-3-030-77883-5_5

Embedding the UC Model into the IITM
Model

Daniel Rausch1(B) , Ralf Küsters1 , and Céline Chevalier2

1 University of Stuttgart, Stuttgart, Germany
{daniel.rausch,ralf.kuesters}@sec.uni-stuttgart.de
2 CRED, Paris-Panthéon-Assas University, Paris, France

celine.chevalier@ens.fr

Abstract. Universal Composability is a widely used concept for the
design and analysis of protocols. Since Canetti’s original UC model and
the model by Pfitzmann and Waidner several different models for uni-
versal composability have been proposed, including, for example, the
IITM model, GNUC, CC, but also extensions and restrictions of the UC
model, such as JUC, GUC, and SUC. These were motivated by the lack
of expressivity of existing models, ease of use, or flaws in previous mod-
els. Cryptographers choose between these models based on their needs
at hand (e.g., support for joint state and global state) or simply their
familiarity with a specific model. While all models follow the same basic
idea, there are huge conceptually differences, which raises fundamental
and practical questions: (How) do the concepts and results proven in one
model relate to those in another model? Do the different models and the
security notions formulated therein capture the same classes of attacks?
Most importantly, can cryptographers re-use results proven in one model
in another model, and if so, how?

In this paper, we initiate a line of research with the aim to address this
lack of understanding, consolidate the space of models, and enable cryp-
tographers to re-use results proven in other models. As a start, here we
focus on Canetti’s prominent UC model and the IITM model proposed
by Küsters et al. The latter is an interesting candidate for comparison
with the UC model since it has been used to analyze a wide variety
of protocols, supports a very general protocol class and provides, among
others, seamless treatment of protocols with shared state, including joint
and global state. Our main technical contribution is an embedding of the
UC model into the IITM model showing that all UC protocols, security
and composition results carry over to the IITM model. Hence, protocol
designers can profit from the features of the IITM model while being
able to use all their results proven in the UC model. We also show that,
in general, one cannot embed the full IITM model into the UC model.

1 Introduction

Universal composability is a widely used approach for the modular design and
analysis of cryptographic protocols. Protocols are shown to be secure in arbi-
trary (polynomial-time) contexts, which allows for composing protocols and
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 242–272, 2022.
https://doi.org/10.1007/978-3-031-07085-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_9&domain=pdf
http://orcid.org/0000-0002-1901-3659
http://orcid.org/0000-0002-9071-9312
https://doi.org/10.1007/978-3-031-07085-3_9

Embedding the UC Model into the IITM Model 243

re-using security results. Security properties are stated in terms of ideal functional-
ities/protocols. To prove a real protocol π secure w.r.t. an ideal functionality φ one
shows that for all network adversaries A attacking π there is an ideal adversary,
called simulator, that interacts with φ such that no (polynomial-time) environ-
ment E can distinguish between the real and the ideal world. We write π ≤ φ in
this case. Composition theorems then immediately imply that one can replace sub-
routines φ used by an arbitrary higher-level protocol ρ with their realization π such
that ρφ→π ≤ ρ, where in ρφ→π the protocol ρ uses (possibly multiple instances
of) π instead of φ.

The UC model by Canetti [5,6] and the reactive simulatability model by Pfitz-
mann and Waidner [20] pioneered this line of research. Since then many differ-
ent models implementing the same idea of universal composability have been pro-
posed, generally motivated by issues in other existing models such as a lack of
expressiveness, overly complicated computational models, and also formal flaws in
theorems. To name just a few examples: The JUC [8] and GUC [7] models were pro-
posed as extended variants of the UC model which allow for modeling larger classes
of protocols, namely those with joint state (where some state, such as a signature
key, is used by multiple protocol sessions) or global state (which is shared with
arbitrary other protocols), respectively. The GNUC model [10] was designed as a
sound alternative to the UC model, fixing several issues that formally invalidated
the UC composition theorem at the time. The IITM model [12,18] offers a simple
computational model that supports a very general class of protocols and composi-
tion theorems, which, out of the box, support joint state, global state, and arbitrar-
ily shared state, also in combination. The CC model [19] follows a more abstract
approach that does not fix a specific computational model, runtime notion, instan-
tiation mechanism, or class of environments.

In the literature, cryptographers often choose the security model based on
their needs at hand (for instance support for joint or global state), syntax pref-
erences, or simply their familiarity with a specific model. While all of the above
models follow the same basic idea of universal composability, the details are
(sometimes drastically) different. It is hence generally unclear how different mod-
els and the security results obtained therein relate to each other: Is one model
strictly more powerful than another? Can all protocols formalized in one model
also be formalized in the other? Are security notions compatible? Do security
results carry over from one model to the other? This lack of a deeper understand-
ing of the relationship of models is quite disturbing. For example, we might miss
some practical attacks in our security proofs because we, due to a lack of knowl-
edge, chose a model that might actually offer only a weaker security notion than
other models. Perhaps worst of all, security results proven in one model currently
cannot be used in another model. This drastically limits reusability of security
results, contradicting one of the key features of universally composable security
and more generally modular analyses.

Our Goal. In this paper, we initiate a line of research with the aim to address
this lack of understanding and clarify the relationships between models for uni-
versal composability. One of our main goals is to identify, as far as possible,

244 D. Rausch et al.

classes of protocols and security results that can be transferred from one model
to another. This would enable protocol designers to use a model of their choice,
based on their personal preference, the specific needs at hand, as well as the fea-
tures offered by the model, while still being able to benefit from results shown
in another model. This would also provide insights into the concepts employed
in one model compared to other models and the strength of the security results
obtained within a specific model, potentially justifying that such results are
reasonable and cover all practical attacks. Besides consolidating and re-using
results, this research can also help consolidating and unifying the space of mod-
els themselves. A complete classification of all universally composable models is
of course out of reach of a single paper. As a first step towards our objective,
we here focus on embedding the UC model into the IITM model. We also prove
that, in general, the IITM model cannot be embedded into the UC model. To
the best of our knowledge our work is the first to study such embeddings, and
hence, relate complete models for universal composability. So far, only specific
aspects have been considered. For example, in [13] the relationship between secu-
rity notions employed in various models has been studied, although the study
was carried out in one model, and [11,12] discuss runtime notions employed in
different models.

On the UC and IITM Models. We choose the UC model [5] since it is cur-
rently the most widely used model in the literature on universal composability.
The IITM model [12] has also already been used intensively to analyze a wide
variety of protocols, including cryptographic protocols (e.g., [14,15]) and also
more generally security protocols such as blockchains and distributed ledgers
(e.g., [9]). The IITM model is an interesting candidate for a comparison since
it supports a very general protocol class and comes with composition theorems
which cover joint state and global state out of the box as well as protocols with
arbitrary shared state (joint and global state are special cases of shared state)
and protocols without pre-established session IDs [15], i.e., parties in one session
are not required to share the same SID or fix it upfront (see [4,15,17,18] for
overviews of these features). Moreover, all these features can be freely combined
since they are all covered within one framework. While recently it has been
shown that the UC model directly supports global state [2], combinations of, for
example, joint state and global state or features like general shared state and
protocols without pre-established SIDs are not yet supported in UC. Hence, an
embedding as carried out in this paper enables protocol designers to profit from
such features of the IITM model while still being able to access the wide range
of existing results shown in the UC model.

For both the UC and IITM model there are recent journal publications; the
UC model has been published in the Journal of the ACM [6] and the IITM model
in the Journal of Cryptology [18]. These provide a solid basis for a comparison.
Such a comparison is far from trivial since the computational frameworks of both
models are defined in very different ways, using sometimes drastically different
concepts where it is far from obvious how they relate and whether there is a
meaningful relationship at all.

Embedding the UC Model into the IITM Model 245

Our Contributions. Conceptual Differences. After recalling the most impor-
tant definitions and theorems of the UC and IITM models in Sect. 2, we first
highlight in Sect. 3.1 the major conceptual differences between the two models:
Diff. 1 concerns support for dynamically generated machine code, Diff. 2 to 8
are about message routing and sender/receiver authentication, Diff. 9 concerns
the different polynomial runtime notions employed in the two models, Diff. 10
concerns the classes of environments considered, and Diff. 11 to 14 are about
requirements of the UC security notion and composition theorem that are not
present in the IITM model.

Mapping of Protocols. With that analysis in mind, one main contribution, given
in Sects. 3.2 and 3.5, consists in mapping UC protocols to IITM protocols. This
requires bridging the mentioned differences and to show that the mapping is
faithul, i.e., the original and the mapped protocols have the same behavior (func-
tional, security, complexity) in all contexts they run in (Lemmas 1 and 2). This
then implies that all UC protocols can be expressed as IITM protocols.

Mapping and Preservation of Security Results. We show in Sect. 3.3 that this
mapping also preserves security results. That is, πUC ≤UC φ UC in the UC
model iff πIITM ≤ IITM φ IITM for the mapped protocols in the IITM model
(Theorem 4). For the direction from IITM to UC, we require that πIITM ≤ IITM

φ IITM can be shown for simulators meeting the UC runtime notion (Theorem 5).
Assuming the existence of time-lock puzzles, we also show that this direction does
not hold in general since the class of IITM simulators is strictly larger than the
class of UC simulators (Lemma 3). This latter result is independent of a specific
protocol mapping, and hence, is a fundamental difference between the models,
which we further discuss in Sect. 3.3.

Mapping and Preservation of Composition Results. Sect. 3.4 discusses composi-
tion. One easily observes that Theorem 4 already implies that security results
for composed protocols carry over from UC to IITM by first applying the UC
composition theorem and then mapping the resulting UC protocols to the IITM
model (Corollary 1). But this result does not relate the composition theorems
employed in the models themselves. We therefore show that Corollary 1 can be
obtained directly in the IITM model using the IITM composition theorem and
without relying on the UC theorem (Corollary 2).

This result also enables composition of mapped UC protocols with arbitrary
other IITM protocols within the IITM model, including those that do not have
a UC counter part and which use features of the IITM model that are out of the
scope of the UC model. We discuss these options in Sect. 3.6.

The Other Direction: Limitations. We discuss in Sect. 4 the other direction of
translating IITM protocols and security results to the UC model. To summarize,
[18] has already shown that the IITM runtime notion permits natural protocols
that cannot be expressed in the UC model. Combined with our results, this shows
that the class of IITM protocols is strictly larger than the class of UC protocols.
Our result from Lemma 3 further shows that also the class of IITM simulators
is strictly larger than the class of UC simulators due to their runtime notions.

246 D. Rausch et al.

So the best one can hope for is a mapping for the class of IITM protocols and
simulators that follow the UC runtime notion. We also discuss further obstacles
of an embedding of the UC model into the IITM model. We leave it to future
work to study this in more details and provide an embedding of (a subset of)
the IITM model into the UC model.

Further Insights and Results Obtained Through the Embedding. Firstly, we develop
amodeling technique that allows for obtaining a new type of composition as a corol-
lary from existing UC and IITM composition theorems as well as similar models
(cf. Sect. 3.4). Secondly, we found several previously unknown technical issues in
the UC model that, among others, formally invalidate the UC composition theo-
rem (cf. Sects. 2.1, 3.3, 3.4). We propose fixes for all of these issues which should
be compatible with existing UC protocols from the literature.

Altogether, our paper provides deep insights into the UC and IITM models,
clarifies the purpose of different concepts employed by the models for achieving
similar goals, relates them, also in terms of expressiveness, and uncovers how
security results compare to each other. Our main result shows that all protocols,
security, and composability results from the UC model carry over to the IITM
model. As an immediate practical benefit, this opens up entirely new options for
protocol designers so far working in the UC model: they can use all their results
also in the IITM model, combine their work with protocols in the IITM model
and benefit from IITM features including seamless support for joint, global,
shared state, and protocols without pre-established session IDs, as well as arbi-
trary combinations thereof.

2 A Brief Overview of the UC and IITM Models

In this section, we provide brief overviews of the UC and IITM models. We
refer the reader to [6,18] for more in-depth information about both models. The
presentation here should suffice to follow the rest of the paper.

2.1 The UC Model

The general computational model of the UC model is defined in terms of systems
of interactive Turing machines (ITMs or just machines, for short). An interac-
tive Turing machine M in the UC model is a probabilistic Turing machine with
three special communication tapes, called input, subroutine-output (or simply
output), and backdoor tape. In a run of a system of machines (see also below),
machine instances are created. Every instance has some machine code that it
runs when activated and some identifier. More specifically, each instance has a
unique so-called extended ID eid = (c, id), consisting of its machine code c and
some identity string id that, except for the environment (which has id = 0),
is of the form id = (pid , sid) for a process/party identifier pid and a session
identifier sid . Machine instances have access to two special operations: a read
next message instruction which moves the head of one of the three mentioned
communication tapes to the start of the next received message within a single

Embedding the UC Model into the IITM Model 247

unit of time and an external-write instruction which allows a machine instance
to append a message m to one of the (three) communication tapes of another
machine instance, and hence, send m to that other instance. On an input tape
machine instances receive messages from higher-level protocols or the environ-
ment, on subroutine-output tapes they receive messages from subroutines, and
on backdoor tapes they receive messages from the network/the adversary.

A system of machines (M,C) consists of the machine code M of the first ITM
to be activated and a so-called control function C which can prohibit or alter
external-write operations; this is later used to define the security experiment.
The first instance to be activated with external input a in a run of this system is
a machine instance running code M with ID 0. During a run of such a system,
at any time only one machine instance is active and all other machine instances
wait for new input via the external write operation. When a machine sends a
message m via an external write operation to one of the three communication
tapes of another machine, say tape t, there are two main options to specify the
recipient: Firstly, by giving an extended ID eid . If there does not exist a machine
instance with this extended identity yet, then such an instance running the code c
specified in its eid is first created. Then, m is written to the tape t of the machine
instance with extended ID eid and that machine becomes active (the sender
becomes inactive). This first case is also called forced-write. Secondly, by giving
a predicate P on extended IDs. In this case, m is written to the tape t of the first
existing machine instance (sorted by the order of their first creation) with eid
such that P (eid) holds true. We will refer to this second case as non-forced-write.
For both types of external write operations, the sender can either hide or reveal
its own extended identity towards the recipient. If an external write operation
does not succeed, e.g., when there is no existing machine instance matching the
predicate P , then the initial ITM instance (M, 0) is activated again. A run ends
when the initial ITM reaches a final halting state. The overall output of such a
run is the first bit written on a specific tape of the initial ITM instance.

Two systems of machines (M,C) and (M ′, C ′) are called indistinguishable
(and we write (M,C) ≡ (M ′, C ′)) if the difference between the probability that
(M,C) outputs 1 and the probability that (M ′, C ′) outputs 1 is negligible in the
security parameter η and the external input a.1

Runtime. Machine instances can receive and send so-called import as part of
their messages m to/from other machine instances, where import is encoded
as a binary number contained in a special field of m. A machine M is called
probabilistic polynomial-time (ppt) iff (i) there is a polynomial p such that
the overall runtime of (an instance of) M during all points of a run is upper
bounded by p(nI − nO), where nI is the sum of all imports received by (that
instance of) M and nO is the sum of all imports sent by (that instance of)
M to other machines, and (ii) whenever M uses a forced write operation to a
machine instance with code M ′, then M ′ is also ppt for the same polynomial p.

1 A function f : N × {0, 1}∗ → R≥0 is called negligible if for all c, d ∈ N there exists

η0 ∈ N such that for all η > η0 and all a ∈ ⋃
η′≤ηd{0, 1}η′

: f(η, a) < η−c.

248 D. Rausch et al.

Furthermore, all machines are parameterized with a security parameter η. All
machine instances are required to run only when they hold at least η import,
i.e., nI − nO ≥ η.

Simulation-Based Security. Security of a protocol π is defined via a security
experiment involving an adversary A and an environment E , where each of these
components is modeled via an ITM with code π, A, and E respectively. More
specifically, the experiment is defined via the system (E , C π,A

EXEC) where C π,A
EXEC

is a control function that enforces the following rules of communication:

– The environment E (with ID 0) can write only to input tapes, only via forced
write, and only to IDs of the form (pid , sid) where sid must be the same
as in previous write operations (if any exist). This uniquely defined sid is
also called challenge session ID sidc. If pid is the special symbol �, then the
control function changes the code of the recipient to A; otherwise, the code
is changed to π. So E can talk to A or to π (in session sidc). Unlike all other
machines, the environment is given the additional freedom to freely choose
the extended identity that is claimed as a sender of a message.

– The adversary A (with ID (�, sidc)) may write only to backdoor tapes of other
machines and may not use the forced-write mechanism (i.e., he can write only
to already existing instances using non-forced-writes).2

– All other machine instances (which are part of the protocol stack of π, includ-
ing subroutines) must always reveal their own sender extended identities.
They may write to the backdoor tape of (the unique instance of) A using
non-forced-write without specifying the code of the adversary and without
providing import. They may write to input and output tapes of instances
other than (the unique instances of) E and A, subject to the following mod-
ification: If the sending instance (M, (pid , sid)) has code M = π, sid = sidc,
the recipient tape is the output tape, and the recipient instance does not exist
yet, then the message is instead redirected to the output tape of E with the
code M removed from the extended sender identity. The extended identity of
the originally intended receiver is also written to the output tape of E .

The initial import for environments is defined to be the length of the external
input a, which is at most some polynomial in the security parameter η (as per the
definition of negligible functions with external input). Environments are required
to be balanced, i.e., provide at least as much import to the adversary as they
provide in total to all instances of the challenge protocol π, i.e., all instance with
extended IDs of the form (π, (pid , sidc)), where sidc is the fixed challenge SID.
Given a set of extended identities ξ, an environment is called ξ-identity-bounded
if it claims only sender extended identities from ξ. The set ξ may be determined
2 The journal version of the UC model [6] formally does not prevent the adversary

from revealing its sender extended identity, including its code, to other machines.
We found that this option actually causes several severe issues, including a failure
of the composition theorem (cf. the full version [21] for details). In what follows, we
therefore assume that adversaries must also hide their own sender extended identity.
This fixes the issue and is compatible with existing results in the literature.

Embedding the UC Model into the IITM Model 249

dynamically via a polytime predicate over the current configuration of the whole
system at the time the input it sent to the protocol, which includes (the states
of) all existing instances of the environment, adversary, and protocol machines.
Given this terminology, the security notion for protocols is defined as follows:

Definition 1. Let π and φ be ppt protocols. Then π realizes φ w.r.t. ξ-identity-
bounded environments (π ≤ ξ

UC φ) if for all ppt adversaries A there exists a ppt
adversary S (a simulator or an ideal adversary) such that for all ppt ξ-identity-
bounded environments E it holds true that (E , C π,A

EXEC) ≡ (E , C φ,S
EXEC).3

Composition Theorem. To state the composition theorem, a bit more termi-
nology is needed. A session (with SID sid) of a protocol π consists of all instances
running code π with SID sid . We call these instances highest-level instances, i.e.,
those are exactly the instances that can receive inputs and provide outputs to the
environment in the security experiment. The session sid of π further includes all
instances, i.e., subroutines, that have received an input or output from another
instance that is part of the session (except for outputs by highest-level instances,
which are intended for the environment/higher-level protocols using the session
of π).

A protocol π is called subroutine respecting if a protocol session of π interacts
with other existing machine instances not belonging to the session only via inputs
to and outputs from the highest level instances of the session, even when π is
used as a subroutine within a higher-level protocol ρ.4 The UC model provides a
standard implementation of the subroutine respecting property via a subroutine
respecting shell code that is added as a wrapper on top of the code of π and
its subroutines. A protocol π is called subroutine exposing if every session s of
the protocol provides an interface to the adversary that the adversary can use
to learn whether some extended identity eid (specified by the adversary) is part
of the session s. The UC model proposes a standard implementation of this
mechanism by adding a so-called directory machine.

A (higher-level) protocol ρ is called (π, φ, ξ)-compliant if (i) all instances
of all sessions of ρ perform write requests to input tapes only via forced-write
and ignore outputs from instances that do not reveal their extended identities,
(ii) there are never two external write requests (made by any instances of any
session of ρ) for the same SID but one for code π while the other is for code φ,
and (iii) the extended identities of all instances in all sessions of ρ that pass
inputs to an instance with code π or φ satisfy the polytime predicate ξ. Given
such a (π, φ, ξ)-compliant protocol ρ, the protocol ρφ→π is defined just as ρ but
replaces (input write requests to) subroutine instances of φ with (input write
3 The UC model also defines security w.r.t. the dummy adversary ADum, which essen-

tially simply forwards messages between the environment and the protocol, and
shows this definition to be equivalent. Also, if ξ always permits all identities, then
one simply writes ≤UC instead of ≤ ξ

UC .
4 The subroutine respecting property ensures that π running within a larger protocol

ρ still behaves as in the security experiment, where an environment can interact only
with one session of π and only via the highest-level instances of that session.

250 D. Rausch et al.

requests to) subroutine instances of π. In subroutines of ρ this replacement is
done as well.5 Now, the composition theorem is as follows:

Theorem 1 (UC Composition [6]). Let ρ, π, φ be ppt protocols, let ξ be a
ppt predicate, such that ρ is (π, φ, ξ)-compliant, π and φ are both subroutine
respecting and subroutine exposing, and π ≤ ξ

UC φ. Then ρφ→π ≤UC ρ.

2.2 The IITM Model

The general computational model of the IITM model is defined in terms of sys-
tems of (inexhaustible) interactive Turing machines (IITMs or just machines,
for short). An interactive Turing machine in the IITM model is a probabilistic
Turing machine with an arbitrary number of named bidirectional communica-
tion tapes.6 The names are used for determining pairwise connections between
machines in a system of machines.7 Each machine specifies a CheckAddress and
a Compute mode that it can run in, where the former is a ppt algorithm used for
addressing individual copies/instances of the same machine and the latter is an
algorithm describing the actual computations of instances of the machine (see
below).

A system Q of IITMs is a set of IITMs of the form Q = {M1, · · · ,Mk, !M ′
1,

· · · , !M ′
k′}8 where the Mi and M ′

j are machines and each tape name is shared
by at most two machines in the system. Two machines are called connected if
they have tapes with the same name. The operator ‘ ! ’ indicates that in a run of a
system an unbounded number of (fresh) instances of a machine may be generated
(e.g., to model multiple protocol sessions); for machines without this operator
there is at most one instance of this machine in every run of the system. The
first instance to be activated with external input a in a run of Q is an instance
of the so-called master IITM; this machine is the only one with a so-called
master (input) tape on which it receives external input a given to the system
(jumping slightly ahead, the master IITM will be part of the environment). In
a run of a system Q, at any time only one machine instance is active and all
other instances wait for new input. If, in Q, machines M and M ′ are connected
via a tape, say a tape named n, then an (instance of) M can send a message m
to and thus trigger an (instance of) M ′ by writing m on its tape named n. To
determine which instance of M ′ (if any) gets to process m, the following is done:
The message is copied to the tape named n of the first existing instance of M ′,
where instances are sorted by the order of their first creation. (The case that
no instance of M ′ exists yet, is handled below.) That instance then processes m

5 Formally, ρ φ→π contains an additional so-called UC composition shell code which
acts as a wrapper that replaces these write requests.

6 Formally, the IITM model uses unidirectional tapes. These can be paired to create
bidirectional tapes as a special case, as shown in, e.g., [3,4].

7 Tape names are hidden from and non-accessible to the logic of the machines.
Hence, they can be renamed and even reconnected without changing the logic of
the machine.

8 Also written M1 | · · · | Mk | ! M ′
1 | · · · | ! M ′

k′ .

Embedding the UC Model into the IITM Model 251

using its CheckAddress algorithm, which either accepts or rejects the input. If
the input is accepted, this instance continues processing m using the Compute
algorithm. Otherwise, if the input is rejected, then its state is reset to the point
before m was written to its tape and the next instance of M ′ is activated with
message m in mode CheckAddress. If none of the existing copies accept and M ′

is in the scope of a ‘ ! ’, or no copies of M ′ exist yet, then a new instance of M ′ is
created and runs in mode CheckAddress with input m on tape n. If it accepts, it
gets to process m using Compute; otherwise, the fresh instance is deleted again
and, as a fallback, an instance of the master IITM of Q is activated with empty
input. The same fallback is also used if an instance (except for instances of the
master IITM) stops without sending a message. A run stops if an instance of
the master IITM does not produce output or a machine outputs a message on a
special tape named decision (just as for the master IITM, only environments
have such a special tape). Such a message is considered to be the overall output
of the system.

Two systems Q and R are called indistinguishable (Q ≡ R) if the difference
between the probability that Q outputs 1 (on the decision tape) and the proba-
bility that R outputs 1 is negligible in the security parameter η and the external
input a (see Footnote 1).

Types of Systems and Their Runtime. We need the following terminol-
ogy. For a system Q, the tapes of machines in Q that do not have a matching
tape, i.e., there does not exist another machine in Q with a tape of the same
name, are called external. External tapes are grouped into I/O and network
tapes/interfaces modeling direct connections to subroutines/higher-level proto-
cols and network communication, respectively. We consider three different types
of systems, modeling i) real and ideal protocols/functionalities, ii) adversaries
and simulators, and iii) environments: Protocol systems (protocols) and envi-
ronmental systems (environments) are systems which have an external I/O and
network interface, i.e., they may have I/O and network tapes. Adversarial sys-
tems (adversaries) only have an external network interface. Environmental sys-
tems may contain a master machine and may produce output on the decision
tape.

An environment must be universally bounded, i.e., the overall runtime of
all instances in a run of an environmental system must be bounded by a sin-
gle unique polynomial (in the security parameter and length of the external
input) even when connected to and running with arbitrary systems. Protocols
are required to be environmentally bounded, i.e., when combined with an envi-
ronment, the overall system (which includes all instances of all machines) must
run in polynomial time (in the security parameter and length of the external
input), except for potentially a negligible set of runs. Note that the polynomial
can depend on the environment. Given a protocol, an adversary for that proto-
col has to satisfy the following condition: the system obtained by combining the
adversary and the protocol needs to be environmentally bounded. (Note that,
e.g., dummy adversaries belong to this class for all protocols).

252 D. Rausch et al.

Simulation-Based Security. We can now define the security notion of strong
simulatability: 9

Definition 2. Let P and F be protocols with the same I/O interface, the real
and the ideal protocol, respectively. Then, P realizes F (P ≤ IITM F) if there
exists an adversary S (a simulator or an ideal adversary) such that the systems P
and S |F have the same external interface and for all environments E, connecting
only to the external network and I/O interface of P (and hence, the external
interface of S |F), it holds true that E | P ≡ E | S |F .

Composition Theorems. The main IITM composition theorem handles con-
current composition of a fixed number of (potentially different) protocols:

Theorem 2 (IITM Composition [18]). Let Q,P,F be protocols such that Q
and P as well as Q and F connect only via their external I/O interfaces with
each other and P ≤ IITM F . Then, Q |P ≤ IITM Q | F .

The IITM model also provides another security notion and a composition
theorem for unbounded self-composition, which intuitively states the following:

Theorem 3 ((Informal) IITM Unbounded Self Composition). Let P,F
be protocols with disjoint sessions. If there exists a simulator S such that no
environment interacting with just a single session of P,F can distinguish P and
S |F , then P ≤ IITM F .

In other words, it is sufficient to analyze the security of a single session of such
a protocol to then conclude security of an unbounded number of sessions. This
second theorem can be combined with the main composition theorem to obtain
a statement similar to Theorem 1 of the UC model since from the assumption
of Theorem 3 and if Q connects only to the external I/O interface of P (and
hence, F), we not only get P ≤ IITM F but immediately also Q | P ≤ IITM Q | F .
Roughly, Q corresponds to (higher-level machines of) ρ in Theorem 1, and P
and F to the subroutines π and φ, respectively.

3 Embedding the UC Model in the IITM Model

We now show the embedding of the UC model into the IITM model. Formally,
we consider arbitrary protocols πUC , φ UC , ρ UC defined in the UC model such
that πUC ≤ ξ

UC φ UC and the UC composition theorem can be applied to ρ UC

to obtain ρ φ→π
UC ≤UC ρ UC . The overall goal of this section is to show that

these protocols, security, and composability results naturally carry over to the
IITM model (and then can further be used in the IITM model). We discuss the
embedding in the other direction in Sect. 4.
9 The IITM model also supports further security notions, including simulation w.r.t.

the dummy adversary ADum or w.r.t. arbitrary adversaries A in the real world. All
of these notions have been shown to be equivalent in the IITM model [18].

Embedding the UC Model into the IITM Model 253

3.1 Main Conceptual Differences

Let us first list the key conceptual and technical differences of the UC and IITM
models in terms of computational models, security definitions, and theorems.
We further give pointers to where these difference are bridged.

Support for Dynamically Generated Machine Code (cf. Sect. 3.5)

1. The UC model directly supports dynamically determining the machine code
of new machine instances. The IITM model fixes a finite static set of machine
codes that can be instantiated during the run of a system.

Message Routing and Sender/Receiver Authentication (cf. Sect. 3.2)

2. Both the UC and IITM models provide an operation for machine instances to
send messages to other instances. The UC model allows an instance to send
messages to any other instance (subject to a few restrictions imposed by the
security experiment). In the IITM model two instances can send messages to
each other iff they are instances of two different machines M1 and M2 that
share a tape with the same name.

3. The UC model distinguishes between two types of messages between protocol
machines, namely those that provide input to a subroutine and those that
provide output to a higher-level protocol. The IITM model does not have
such a distinction but rather uses I/O tapes for both types of messages.

4. The UC model uses IDs of the form (pid , sid) to address messages to different
protocol instances with the same machine code. The IITM model instead
uses the generic CheckAddress mechanism which can be freely instantiated by
protocol designers to capture the desired way of addressing of instances.

5. The UC model authenticates the sender of a message (within a protocol) by
revealing its extended ID, consisting of the machine code and the ID of the
instance. The IITM model authenticates the sender via the tape a message is
received on, but does not guarantee that the receiver learns an ID identifying
a specific instance or the code of the sender.

6. The adversary in the UC model cannot spawn any new protocol machine
instances; he may only communicate with existing instances. The adversary
in the IITM model can spawn new instances.

7. The UC model allows for specifying the receiver of a message via a predicate
over the extended IDs of all existing machine instances (non-forced-writes).
The CheckAddress algorithm of the IITM model bears some similarity, but
runs only over the IDs of instances that share the same machine code.

8. In the UC model, outputs sent from the highest level protocol machines are
redirected to the environment under certain conditions, in which case they
are also modified by removing the machine code of the sender. Protocols in
the IITM model send messages to the environment iff they are written to an
external I/O tape, without redirections or modifications.

254 D. Rausch et al.

Polynomial Runtime Notions (cf. Sect. 3.2)

9. The UC and IITM models use different runtime notions, with the former
being defined for individual machines that use runtime tokens while the latter
is defined for entire systems and does not mandate a specific mechanism for
enforcing runtime.

Support for Specific Classes of Environments (cf. Sect. 3.3)

10. The UC security notion supports identity bounded environments that use
only sender identities as specified by a polytime predicate ξ. Environments
in the IITM model are not required to adhere to any type of predicate.

Additional Requirements of the UC Security Notion and Composition
Theorem (cf. Theorem 4 and Corollary 2)

11. The UC model requires environments to be balanced, providing a minimal
amount of import to the adversary. Environments in the IITM model are
not restricted in a similar way since adversaries in the IITM model do not
require import to be able to run.

12. The UC security notion analyzes the security of a single session of a protocol.
The IITM model offers two security notions: A single session security notion
and a more general multi session security notion.

13. Protocols in the UC model have to be subroutine respecting and subroutine
exposing to support composition. The main composition theorem of the
IITM model does not have analogous requirements since the underlying
security notion considers a more general multi-session setting, where sessions
can share state with each other and subroutines can communicate with the
environment.

14. Higher-level protocols in the UC model have to be compliant to support
composition. Composition in the IITM model instead requires only that
higher-level protocols may not connect to the network interface (the UC
model enforces the latter at the level of its security notion).

These sometimes drastic technical differences create several challenges that
we have to resolve while embedding the UC into the IITM model. For simplicity
of presentation, in what follows we at first focus on the case where protocols use
only machine codes from an arbitrary static but fixed set of different machine
codes, rather than using (ad hoc) dynamically generated code (see Diff. 1); we
denote this fixed set by Codes. Note that this is a very natural class of protocols
which includes virtually all protocols proposed in the UC literature: generally,
the machine codes of honest parties in a protocol are defined and fixed upfront,
potentially as a parameter, before the protocol is analyzed. While corrupted
parties are typically allowed to choose (almost) arbitrary receiver machine codes
for their messages, spawning a new machine with machine code that is not
used/recognized by an honest party does not give any additional power to the
adversary; the adversary can just internally simulate that machine to obtain

Embedding the UC Model into the IITM Model 255

the same results. Hence, w.l.o.g. one can assume that corrupted parties in those
protocols also communicate only with machines running some code from the set
Codes, thereby meeting the above property. Nevertheless, to make our mapping
formally complete, we show in Sect. 3.5 how our embedding and all security
and composability results can easily be extended to handle also protocols with
dynamically generated machine code, i.e., how to bridge Diff. 1.

3.2 Mapping Protocols

Let πUC be a protocol that uses a finite set of machine codes Codes with n :=
|Codes|. Note that πUC itself is also one of those codes, in what follows denoted
by cπ ∈ Codes to make the distinction between the protocol code cπ and the
overall protocol πUC clear.

Normalization. W.l.o.g., let us first bring the protocol πUC and the codes Codes
into a normalized form. These purely syntactical changes remove some technical
edge cases that would otherwise needlessly complicate the mapping. Recall that,
since πUC is subroutine respecting, instances of that protocol can be grouped into
disjoint protocol sessions. In each of those sessions, the only instances that can
communicate with a higher-level protocol/the environment are instances of the
highest-level machine with code cπ and with a certain SID sidc that is specific to
that protocol session. We refer to such a protocol session by sidc. We assume that
πUC is such that within each protocol session sidc there are no instances running
code cπ with an SID different from sidc. Most protocols from the literature natu-
rally meet this property. Other protocols can trivially be modified by, e.g., adding
a dummy forwarder on top of πUC that forwards messages between the environ-
ment and those instances running code cπ with SID sidc. This dummy then meets
our assumption since the dummy code is now the highest level code and one can
easily ensure that it is never called (as a subroutine) with an SID different from
sidc. Note that introducing a dummy does not affect any of the properties of and
security results for πUC so is indeed without loss of generality. We also assume
that the protocol πUC uses the standard mechanism proposed by the UC model
for implementing the “subroutine-respecting” requirement, i.e., all codes in Codes
already include the standard subroutine respecting shell code that acts as a wrap-
per. Among others, this wrapper guarantees that subroutine instances are aware
of the SID sidc of their protocol session since all subroutine instances have SIDs
of the form (sidc, sid ′). Again, this is already the case for virtually all protocols
from the literature. If a protocol does not use this mechanism, it can be added on
top of the protocol since this also does not affect any of the security properties of
and results proven for πUC given that πUC is already assumed to be subroutine
respecting.

IITMs and Tapes. We model the protocol πIITM in the IITM model via a sys-
tem containing machines Mcπ

,Mc1 , . . . ,Mcn−1 , where Codes = {cπ, c1, . . . , cn−1}
and instances of Mc essentially run code c ∈ Codes; see the left hand-side of Fig. 1
for an illustration of the static structure, i.e., the set of machines and I/O tape
connections, of the mapped protocol system πIITM . Just as πUC , πIITM is able

256 D. Rausch et al.

πIITM

Mcπ

Mc1

Mc2 Mmsg

Mbc

π
ξ-id
IITM

Mcπ

Mc1

Mc2 Mmsg

Mbc

M
ξ
identity

Fig. 1. Left: Static structure of a protocol πIITM using three Codes = {cπ, c1, c2}
constructed by our mapping. Right: Static structure of the modified protocol πξ-id

IITM

that enforces ξ-identity bounded environments (cf. Sect. 3.3). Lines denote internal
connections via I/O tapes and the external I/O tape to the environment. Each Machine
also has an external network tape to the adversary (not shown). In a run each machine
can be instantiated arbitrarily often, with instances having IDs of the form (pid , sid).

to create an unbounded number of instances of these machines running any of
the codes in Codes (see below). Each pair of machines Mc,Mc′ is connected by
a pair (t, t′) of uniquely named internal I/O tapes. One of the tapes, say t, is
used by (instances of) Mc to provide subroutine inputs to and receive subroutine
outputs from Mc′ , while the other tape is used for the reverse direction where
Mc′ provides subroutine inputs to and receives subroutine outputs from Mc.10

Altogether these connections allow instances of an arbitrary machine to send
inputs and outputs to and receive outputs and inputs from any (instance of)
another machine in the system simply by choosing the appropriate tape. While
generally not required by protocols from the literature, if required by πUC we can
also extend the protocol πIITM to allow for sending messages between different
instances of the same machine. This is done by adding a special bouncer machine
Mbc to the system πIITM . Mbc connects to all machines in the system via a pair
of I/O tapes each. Each time (a session-specific instance of) this machine receives
a message, it returns the same message on the same tape. Hence, a machine Mc

can send a message to Mbc to effectively send that message to an instance of
itself (see below for how we ensure that this message is delivered to the correct
receiving instance of Mc). Altogether, these internal I/O tapes bridge Diff. 2 and
Diff. 3. In addition to these internal I/O tapes, each machine Mc has one external
(unconnected) network tape that can be used to communicate with the network
adversary. The machine Mcπ

also has an unconnected I/O tape which can be
used to receive inputs from and send outputs to higher-level protocols/the envi-
ronment. These external tapes capture permitted communication flows between
the protocol, the adversary, and the environment as defined in the security game
of the UC model.

10 Typically, the subroutine relation goes only in one direction and in this case just one
tape is needed. But in general the relationship is allowed to go both ways, in which
case using two tapes allows for distinguishing which relationship is meant.

Embedding the UC Model into the IITM Model 257

In addition to the above machines, we also add another machine Mmsg. Jump-
ing slightly ahead, session specific instances of this machine are responsible for
(i) implementing some of the more advanced message transmission and message
redirection features of the UC model and (ii) forcing the environment to be bal-
anced, i.e., to provide a minimal amount of import to the adversary. This machine
connects via a pair of I/O tapes to all machines Mc, c ∈ Codes, and offers one
external network tape for communication with the adversary. We describe the
behavior of Mmsg along with the description of machines Mc below.

Addressing of Instances. In πUC , an instance of a machine running code c is
uniquely addressed by an ID of the form (pid , sid) and learns the ID (pids, sids)
and code cs of senders who provide input or subroutine output. Furthermore,
by our initial normalization of πUC , we have that sid = (sidc, sid ′) for internal
instances, i.e., instances running code c �= cπ, and sid = sidc for instances running
cπ. To capture these unique IDs for instances in πIITM , we use a suitable instantia-
tion of the CheckAddressmode, cf. Fig. 2. That is, instances of Mc expect incoming
inputs/outputs m to be of the form ((pid , sid , c), (pids, sids, cs),m′), where m′ is
the actual message body.11 Network messages from the adversary are expected to
be of the form ((pid , sid , c),m′).12 Furthermore, if c �= cπ (i.e., the current machine
instance is an internal subroutine), then it is also required that sid = (sid ′, sid ′′)
for some sid ′, sid ′′, where sid ′ is interpreted to be the SID sidc of the protocol
session. Messages not conforming to this format are rejected immediately. If the
current instance is fresh, i.e., has not previously accepted any messages, then the
message is accepted and (in mode Compute) this instance stores (pid , sid) as its
own ID. If the instance is not fresh, i.e., has previously accepted a message with
receiver ID (pid0, sid0), then incoming messages are accepted if and only if they
are prefixed by the same ID, i.e., pid = pid0, sid = sid0. Hence, each instance is
effectively assigned a unique ID, namely, the first ID (pid0, sid0) that it has ever
accepted. There will also never be a second instance accepting the same ID since
all message for this ID will already be accepted by the first instance with that ID.
Given this definition of CheckAddress, an instance (pids, sids) of machine Mcs

can
send a message m′ to the unique instance (pid , sid) of machine Mc by writing the
message ((pid , sid , c), (pids, sids, cs),m′) on one of the two tapes connecting to Mc

(this bridges Diff. 4).

11 The only exception are inputs received on the single external I/O tape from the
environment, which use the header ((pid , sid), (pids, sids, cs), m

′). This directly cor-
responds to the UC experiment, where environments specify only the receiver ID
(pid , sid) but not the receiver code, which is rather determined by the experiment.
We also note that, except for outputs returned from the protocol to the environment,
it is actually not necessary to include c in the header of any messages on I/O tapes.
After all, the receiving machines Mc are already aware of their own code. We chose to
nevertheless include c in the header since this matches the format of write commands
in the UC model more closely.

12 Network messages do not contain a sender identity since the sender is always know to
be the network adversary.

258 D. Rausch et al.

Mode CheckAddress:

Let m be the message received on some tape.
If this is the highest level machine (i.e., c = cπ) and m was received on the single external
I/O tape from the environment, then try to parse m as ((pid , sid), (pids, sids, cs), m′).
Otherwise, if m was received on another I/O tape then try to parse it as
((pid , sid , c), (pids, sids, cs), m′). Try to parse m as ((pid , sid , c), m′) if it was received
on the network tape. Furthermore, if c �= cπ , also try to parse sid as (sid ′, sid ′′)
If parsing fails, return reject.
if id = ⊥∨ id = (pid , sid) then

{id is a global variable that is ⊥ iff this instance is
fresh. It is set to be the ID of the current instance
in mode Compute upon accepting the first message.return accept.

else
return reject.

end if

Fig. 2. Checkaddress mode of the machine Mc for c ∈ Codes

All machines Mc are defined in such a way that they never lie about the
sender identity of a message, and hence, the receiver always learns the correct
identity of the sender (see the Compute mode described below). Specifically, if
an instance (pids, sids) of a machine Mcs

sends a message m on some tape, then
it will either be of the form ((pid, sid , c), (pids, sids, cs),m′) (if it is sent on an
I/O tape) or of the form ((pids, sids, cs),m′) (if it is sent on a network tape
connected to the adversary). This bridges Diff. 5 by providing the same level of
authentication of the sender instance in πIITM as in πUC .

Runtime Behavior. The Compute mode of a machine Mc is mostly a direct
implementation of the protocol logic given by code c (cf. Fig. 3). Upon its first
activation in this mode an instance (pid , sid) of Mc stores its own ID (pid , sid)
in a global variable id . The machine then checks, also during subsequent activa-
tions, if it has already received any inputs/outputs on an I/O tape and stops the
activation otherwise. This captures that the network adversary in the UC model
is not allowed to spawn new machine instances. That is, even though spawning
a new protocol machine instance is technically possible in πIITM , the resulting
instance will not do anything until it receives the first input or output from another
protocol machine or the environment, which results in a behavior that is equiva-
lent to the one in the UC model (this bridges Diff. 6). Once it receives its first
input/output on an I/O tape (and therefore the corresponding instance in πUC is
created), the instance registers itself with the instance (ε, sidc) of Mmsg by sending
((ε, sidc, cMmsg), (pid , sid , c), register) on an I/O tape connected to Mmsg. This
instance, which is specific to the protocol session sidc, stores the ID (pid , sid , c)
and immediately returns an acknowledgement. Finally, if this is an instance of the
highest-level machine Mcπ

and it receives some import i > 0 in a message from
the environment, then it sends ((ε, sidc, cMmsg), (pid , sid , c), (notifyImport, i)) to
notify the session specific instance Mmsg about this amount. Mmsg stores i and
returns an acknowledgement; we describe the purpose of registrations and import
notifications later on.

Once all of the above steps are finished (and the instance has not aborted),
the instance processes the incoming message m by running the code c. Note that

Embedding the UC Model into the IITM Model 259

Mode Compute:

Let m = ((pid , sid , c), (pids, sids, cs), m′) be the message received on some I/O tape t
respectively m = ((pid , sid , c), m′) received on the network tape.
if id = ⊥ then

id ← (pid , sid)
{
Store the ID of this instance such that the
CheckAddress mode can use this information.

end if
if this instance has not received any message on an I/O tape yet then

Stop the current activation of this instance. {This activates the environment.
end if
if this is the first message received on an I/O tape then

Send ((ε, sidc), (pid , sid , c), register) on the tape connected to Mmsg, where sidc

can be parsed from sid . Wait for the response and then continue.
end if
if c = cπ and m′ is a message on the external I/O tape containing import i > 0 then

Send ((ε, sidc), (pid , sid , c), (notifyImport, i)) on the tape connected to Mmsg,
where sidc can be parsed from sid . Wait for the response and then continue.

end if

// Main logic //

Run code c using the sender information (pids, sids, cs) (or ε if the message
is from the network adversary), incoming message m′, and the tape type tt ∈
{input, output, backdoor} that m′ is written on determined from the tape t.

When c wants to send a message, proceed as described in the paragraph “Sending
messages” on Page 18. In particular, ensure that the resulting message contains the
correct sender identity (pid , sid , c) in the header.

Fig. 3. Compute mode of the machine Mc for c ∈ Codes

this is indeed possible: Mc can determine whether m is an input, subroutine
output, or a backdoor message depending on the tape m is received on. Inputs
and outputs received from other protocol machines also contain the full extended
identity of the sending instance, including the machine code, so Mc has access to
the same information that instances in πUC have in the UC model upon receiving
a new message.

Sending Messages. During the simulation of code c, whenever the code c
wants to provide input/output m′ to an instance (pid ′, sid ′) of a machine Mc′ ,
Mc chooses the I/O tape t that connects Mc and Mc′ and which models an
input/output from Mc to Mc′ . Then Mc writes ((pid ′, sid ′, c′), (pid , sid , c),m′)
on tape t, where (pid , sid) is the ID of the current instance of Mc. If the code c
wants to send a backdoor message m′ to the network adversary, Mc writes the
message ((pid , sid , c),m′) on its network tape.

We still have to explain how we deal with Diff. 7. That is, code c might choose
to use a non-forced-write command and specify the recipient of a message not by
their extended ID but by a predicate P on extended identities. First, observe that
if a message is sent to a backdoor tape, then it must be for the network adver-
sary by definition of the UC security experiment. Hence, this case is easy to han-
dle in Mc: if the non-forced-write request is to a backdoor tape, then the mes-
sage is sent as described above to the network adversary. Second, for inputs and
outputs observe that those may not be sent directly to the identities of the envi-

260 D. Rausch et al.

ronment or the adversary. So the predicate may match only identities of (exist-
ing) machines within the protocol, i.e., the message will be sent internally. We
can easily mimic this in the IITM model via the machine Mmsg. Recall that, by
the above construction, whenever a new machine instance receives the first input
or output on an I/O tape in mode Compute, it registers its extended identity
(pid , sid , c) at (a session dependent instance of) Mmsg. The machine Mmsg offers
a “nonForcedWrite” command to the machines Mc that, given message body m′,
message type mt ∈ {input, output}, and predicate P , runs the predicate P on
the list of existing protocol machine instances to find the first matching one. The
message m is then delivered to that instance as described above, but with the I/O
tape chosen based on mt and the sender of the message (which is written in the
header of the message) set to be the machine instance (pid , sid , c) that called the
nonForcedWrite command. If no matching instance is found, then Mmsg aborts
and the environment is activated instead, just as in the UC model.

There is another special case that we have to deal with, namely the highest-
level protocol machine Mcπ

sending a subroutine output (cf. Diff. 8). In the UC
model, this output is redirected to the environment (without the code of the
sender but instead including the code of the intended receiver) iff the current
instance has challenge SID sidc and the receiver extended identity does not yet
exist as an instance of a protocol machine. Observe that by our normalization
of πUC all instances of Mcπ

that are part of protocol session sidc also have
SID sidc, i.e., the first condition is always met. The second condition can be
checked using the information stored in the machine Mmsg, yielding the follow-
ing implementation. Whenever an instance (pids, sids) of Mcπ

wants to send a
subroutine output m′ to an extended receiver identity eidr = (pidr, sidr, cr),
Mcπ

first asks Mmsg whether eidr already exists in the system (via a special
existsInstance? request). If so, the message is sent by Mcπ

to the instance
(pidr, sidr) of machine Mcr

as described above. If this instance does not exist
yet, then the message m = ((pidr, sidr, cr), (pids, sids),m′) is sent on the sin-
gle external I/O tape of Mcπ

that is connected to the environment. Note that,
unlike for other messages, the sender machine code cπ is not contained in the
header of m in this case. Altogether, this precisely captures the behavior of the
UC security experiment and hence bridges Diff. 8.

Import Handling. We still have to explain the purpose of the notifyImport
message. Instances of Mmsg use these notifications to keep track of the list of
imports received from the environment in this protocol session. The adversary
can send a special totalImport? request to learn the current list of imports.
Jumping slightly ahead, this information will be used by the simulator con-
structed in Sect. 3.3 to bridge Diff. 11: Instead of requiring the environment in
the IITM model to be balanced (i.e., it has to provide at least the same amount
of import to the simulator as it provides to the protocol), the simulator rather
indirectly enforces this property itself. That is, the simulator checks how much
import the protocol has received already and, if the protocol has received more
than the simulator, adds the missing difference to its own received import. We
note that the security notion of the UC model requires runtime bounds to be

Embedding the UC Model into the IITM Model 261

simulated correctly and hence adversaries/simulators generally must already be
aware of the current protocol imports not just for the whole session but even
for individual (highest-level) instances in a session. The added totalImport?
request only makes this property explicit via a fixed mechanism. Nevertheless,
we show in the full version [21] that our results can actually also be obtained
without adding a totalImport? request. This, however, requires a more involved
mapping than the one we present here.

Finally, we encode runtime import for the machine codes c in unary instead
of binary. This seemingly cosmetic change does not affect the behavior or secu-
rity results obtained for the protocol πUC . But it allows us to argue that an
environment in the IITM model, which may send arbitrary inputs of at most
polynomial length to the protocol, can send at most a polynomial amount of
import just as an environment in the UC model.

Altogether, we define πIITM := !Mcπ
| !Mc1 | . . . | !Mcn−1 | !Mmsg | !Mbc.

Based on the construction and the discussion above, we can easily check that
πUC and πIITM behave the same:

Lemma 1. For all unbounded (including runtime) environments interacting
with πUC/πIITM by sending inputs/receiving outputs but also by directly inter-
acting with arbitrary protocol instances over the network, there is a bijective
mapping between runs of πUC in the UC model and πIITM in the IITM model
such that both protocols behave identically. Both protocols have similar compu-
tational complexity.

Proof. By construction, the only difference between both protocols is the added
explicit totalImport? request on the network in πIITM . In the UC setting with
πUC this request can instead be internally simulated by the environment. �	

We show in the next lemma (proven in the full version [21]) that πIITM is a
well-defined IITM protocol by showing that it meets the IITM runtime notion
for protocols. This bridges Diff. 9 by relating the UC to the IITM runtime notion.

Lemma 2. The protocol πIITM is environmentally bounded in the IITM model
if πUC is ppt in the UC model.

3.3 UC Security Implies IITM Security

Having defined a mapping of protocols from the UC to the IITM model, we now
prove that this mapping preserves security results. That is, if πUC ≤ ξ

UC φ UC ,
then πξ-id

IITM ≤ IITM φ ξ-id
IITM for protocols mapped as described in Sect. 3.2 plus

an additional mechanism to capture ξ-identity bounded environments in the
IITM model, which unlike the UC model does not restrict environments. This
mechanism does not change the IITM model. We rather show that ξ-identity
bounded behavior can be enforced within protocols themselves, thereby bridging
Diff. 10.

While designing this mechanism, we found that the definition of ξ-identity
bounded environments as used in the UC model actually does not support com-
position and the proof of the UC composition theorem is flawed. We describe the

262 D. Rausch et al.

issue in detail in the full version [21]. In a nutshell, the issue is that the UC model
allows for defining the identity set ξ via a predicate over the current configuration
of the whole system. The configuration of the system and hence potentially the
behavior of the predicate is very different in the security experiment, where there
are only instances of the environment, adversary, and one session of πUC respec-
tively φ UC , compared to the composition theorem, where there are additional
instances of a higher-level protocol ρ as well as potentially multiple sessions of
πUC/φ UC . Hence, even if ρ is ξ-compliant in the setting where instances of ρ and
multiple sessions of πUC/φ UC exist, this does not imply that an environment
internally simulating ρ while running only with πUC/φ UC (but with no actual
instances of ρ and only a single session of πUC/φ UC being present in the system)
also is ξ-identity-bounded. Based on this observation, in the full version we show
a concrete counterexample for the UC composition theorem.

Therefore, instead of trying to translate the existing identity-bounded mech-
anism, which does not support composition in the UC model, and hence, would
also not support composition when faithfully translated to the IITM model, we
propose a fix for the UC model and then transfer that fixed version to the IITM
model. Specifically, instead of defining ξ as a predicate over the configuration
of the whole system, we define it as a predicate over the (whole history of)
inputs sent and outputs received by the environment/ρ to/from one session of
the subroutine π/φ. This fix, which follows a similar idea as [1], indeed solves
the problem: The sequence of messages between ρ and one of its subroutine ses-
sions remains the same (for each respective subroutine session) even if we only
simulate ρ within an environment. Hence, such an environment running directly
with a single session of the subroutine π/φ is indeed ξ-identity-bounded. This
fixes this issue of the UC composition theorem and the proof thereof. This fix
should also be sufficient for practical purposes; we are not aware of any protocols
that have been proven secure for a ξ that falls outside this class. We provide an
extended discussion in the full version [21].

We now embed this (fixed) definition of ξ-identity-bounded environments into
the IITM model as follows. The obvious option would be to restrict environments
in the IITM model in the same way. However, this would require us to change the
IITM model and its theorems and proofs. We rather extend the protocols πIITM

and φ IITM in a generic way to manually enforce the ξ-identity-bounded prop-
erty for all environments. This is a technique that is commonly used in the IITM
model, see for example [14,16]. Formally, we add to each protocol an additional
dummy forwarder machine M ξ

identity between the environment and the highest-
level machine Mcπ

respectively Mcφ
, creating new protocols πξ-id

IITM and φ ξ-id
IITM

(cf. right hand-side of Fig. 1). In a run, (a session specific instance of) M ξ
identity

checks for every input whether ξ is met and, if not, drops the input, thereby acti-
vating the environment as a fallback. This achieves the desired goal: On the one
hand, environments that are already ξ-identity-bounded are not restricted since
for such environments the original protocols πIITM/φ IITM and the modified
protocols πξ-id

IITM/φ ξ-id
IITM behave identically. For any other environment E , the

combination of E and M ξ
identity constitutes a ξ-identity-bounded environment for

Embedding the UC Model into the IITM Model 263

the original protocol. Note that the extended protocols are still environmentally
bounded as M ξ

identity adds only a polynomial number of steps; in particular, ξ
can be evaluated in polynomial time by definition. Altogether, this mechanism
indeed bridges Diff. 10.

We can now show that ≤UC security implies ≤ IITM security for the mapped
protocols; we discuss the reverse implication afterwards. In the full version [21],
we show that ≤UC implies ≤ IITM in general by using a somewhat more involved
protocol embedding. Here, using the (simpler) protocol embedding from Sect. 3.2,
we formally show this result for a certain though very general class of simulators,
in fact, a class of simulators containing virtually all simulators that have ever
been considered in the literature so far, as further explained below.

More specifically, first recall that, as stated in the UC model, to prove
π ≤UC φ instead of constructing a simulator for every adversary, it suffices
to construct a simulator just for the dummy adversary. (From such a simulator,
simulators for arbitrary adversaries can be constructed). The dummy adversary
as considered in the UC model allows the environment to provide import i via a
special message, say op(i), which is different from network messages intended for
the protocol. The dummy accepts this import and returns an acknowledgement
to the environment without sending a message to the protocol. We therefore
consider the class of simulators which also do not require an interaction with
the ideal protocol upon receiving import via op from the environment. This is a
natural requirement that should be trivially met by simulators for all reasonable
protocol definitions, also considering that a protocol in reality cannot rely on
the network adversary sending a notification each time the adversary decides to
increase its runtime bound. Indeed, we are not aware of any UC protocols from
the literature where the simulator has to interact with the ideal protocol upon
receiving additional import via op. Simulators are rather defined in a black-box
fashion where they implicitly simulate the dummy adversary and only specify
their behavior for network messages that are forwarded by the dummy to the
real protocol. Since the dummy adversary already handles the input op with-
out sending any network messages to the protocol, all such black-box simulators
trivially have the stipulated property. We note again that, as mentioned above,
this (though natural) requirement on simulators is not formally necessary.

Theorem 4. Let πUC , φ UC be such that πUC ≤ ξ
UC φ UC . Then it holds true

that πξ-id
IITM ≤ IITM φ ξ-id

IITM .

Proof (sketch). We here show this theorem assuming that the simulator for prov-
ing πUC ≤ ξ

UC φ UC has the properties stipulated above. The proof proceeds in
4 steps (see the full version [21] for details and the general case):

Reduction to UC. We first define an IITM dummy adversary AUC-bounded
Dum,IITM

and an IITM simulator SUC-bounded
IITM that adhere to the UC runtime notion and

enforce the balanced requirement for environments. Specifically, both machines
are defined to internally run the UC (real and ideal) adversaries ADum,UC and
SUC , respectively, but add a wrapper around them. This wrapper handles the

264 D. Rausch et al.

added totalImport? request on the network itself by forwarding it to Mmsg and
returning the response without involving the internally simulated UC adversary.
Also, upon each activation the wrapper first checks whether its protocol has
received one or more new imports (via a call to totalImport?) such that its
total import now exceeds the total import directly provided by the environment
to the adversary. If so, the wrapper adds these missing imports to the internally
simulated UC adversary via (potentially several calls to) the operation op. Then,
and in all other cases, the adversary continues as the internal UC adversary.

Consider an IITM environment Esingle,ξ
IITM that sends inputs and network

messages (via the dummy adversary) only to a single session of the protocol
πIITM/φ IITM , adheres to the ξ-identity bound, and tries to distinguish the
worlds AUC-bounded

Dum,IITM |πIITM and SUC-bounded
IITM |φ IITM . We can reduce this case

to the indistinguishability of ADum,UC |πUC and SUC |φ in UC by constructing
an UC environment EUC that internally simulates Esingle,ξ

IITM . EUC further inter-
nally simulates responses to totalImport? requests. Each time EIITM wants to
provide import as part of an input to the protocol such that the total protocol
import exceeds the total import provided to the adversary so far, EUC first adds
the missing difference via a call to op to the adversary and only then sends the
input to the protocol. By construction, EUC is balanced. To see that EUC has the
same distinguishing advantage as Esingle,ξ

IITM , there are only two aspects that we
have to argue. Firstly, in the IITM setting a protocol might obtain one or more
imports that bring the total above the amount of import of the adversary. Then,
as soon as the adversary wrapper becomes active the next time, it calls op for
each of these imports, and then the internally simulated adversary processes the
message. In the UC world, EUC first calls op, then provides import to the pro-
tocol. This might be repeated several times until, at some point, the adversary
processes whatever message �= op it receives next. So while the same number of
calls to op with the same import are used in both UC and IITM setting, for-
mally the state of the protocol might be different when op is executed. Due to
the definition of the dummy and assumption on the simulator, op is independent
of the state of the protocol, i.e., this formal difference does not actually affect
the behavior of the run. (This is the only case where a slight mismatch occurs.
All other messages are processed at the same points in the run by construction).
Secondly, the UC environment is bounded in its current import, so might not
be able to complete the simulation. We can find an external input of suitable
length, which determines the initial import, such that this case does not occur.

Environments Without the ξ-Identity Bound. The indistinguishability
of AUC-bounded

Dum,IITM |πIITM and SUC-bounded
IITM |φ IITM for environments Esingle,ξ

IITM is
easily seen to be equivalent to indistinguishability of AUC-bounded

Dum,IITM |πξ-id
IITM and

SUC-bounded
IITM |φ ξ-id

IITM for arbitrary single session environments Esingle
IITM .

Indistinguishability for the IITM Dummy. So far, we have only considered
the dummy AUC-bounded

Dum,IITM which adheres to the UC runtime notion and hence
might stop whenever he has to forward more bits than he has import. How-
ever, we actually have to show ≤ IITM for the IITM dummy ADum,IITM which

Embedding the UC Model into the IITM Model 265

never stops and always forwards messages. The idea for constructing a simulator
SIITM for ADum,IITM is as follows: Observe that the only difference between
AUC-bounded

Dum,IITM and ADum,IITM is that AUC-bounded
Dum,IITM might stop if it has too lit-

tle import, which SUC-bounded
IITM then also simulates. So we define the simulator

SIITM to internally run SUC-bounded
IITM but, upon each activation, potentially gen-

erate additional import via a call to op such that an imaginary AUC-bounded
Dum,IITM , if

given the same overall import, would not stop. We show that it is indeed possible
to build such a simulator, also while remaining in the polynomial runtime notion
of the IITM model (this is because the additional import is polynomial in the
runtime of the environment and hence the same argument as in Lemma 2 still
applies).

We can then reduce a single session environment Esingle
IITM trying to distinguish

ADum,IITM |πξ-id
IITM and SIITM |φ ξ-id

IITM to indistinguishability of the worlds
AUC-bounded

Dum,IITM |πξ-id
IITM and SUC-bounded

IITM |φ ξ-id
IITM by constructing an environment

E ′ single
IITM that internally simulates Esingle

IITM plus the additional import generated by
the wrapper portion of SIITM .

Indistinguishability of Multiple Sessions. Since the protocols have disjoint
sessions and ADum,IITM |πξ-id

IITM and SIITM |φ ξ-id
IITM are indistinguishable for

any environment Esingle
IITM interacting with just a single session, the second com-

position theorem of the IITM model (cf. Theorem 3) immediately implies that
πξ-id

IITM ≤ IITM φ ξ-id
IITM , i.e., there also exists a simulator for arbitrary environ-

ments EIITM interacting with multiple sessions. �	
The construction of the simulator SUC-bounded

IITM in the above proof bridges
Diff. 11: Since the IITM model does not require that environments provide a
certain minimal amount of import to the adversary (the IITM model does not
even require the concept of import), the simulator instead enforces this property
itself by manually adding the difference between its own import and the import
received by the protocol. The above proof also bridges Diff. 12 by showing that
the UC security notion implies the single session IITM security notion. The
second composition theorem of the IITM model (cf. Theorem 3) then directly
implies security for multiple sessions.

The other implication of Theorem 4 is more involved since the IITM model
considers a larger class of adversaries, including simulators, than the UC model.
Specifically, the runtime of UC simulators is required to be bounded by a fixed
polynomial (in their current import) independently of the environment. An IITM
simulator does not need to adhere to any import mechanism. Its polynomial
runtime bound is rather taken over η and the length of the external input a and
may even depend on the environment. In fact, the following lemma shows that
the reverse implication of Theorem 4 does not hold true in general:

Lemma 3. If time-lock puzzles exist, then there exist protocols πUC and φ UC

such that for the mapped protocols we have πξ-id
IITM ≤ IITM φ ξ-id

IITM but πUC ≤UC

φ UC does not hold true. (These protocols are pretty simple, and hence, the result
works for all mappings that preserve the protocols behaviors).

266 D. Rausch et al.

We recall the definition of time-lock puzzles and formally prove this result in
the full version, along with a discussion on the implications for security results. If
we consider only the subclass of IITM simulators that corresponds to the class
of UC simulators that adhere to the UC runtime notion, such as SUC-bounded

IITM

constructed in the proof of Theorem 4, we have the following reverse implication:

Theorem 5. Let AUC-bounded
Dum,IITM be the IITM dummy adversary that enforces bal-

anced environments and adheres to the UC runtime notion as defined in the
proof of Theorem 4. Let SUC-bounded

IITM be an IITM simulator that is of the form
as the one described in the proof of Theorem 4.

If AUC-bounded
Dum,IITM |πξ-id

IITM and SUC-bounded
IITM |φ ξ-id

IITM are indistinguishable for all
IITM environments interacting with a single session of the protocol, then we have
πξ-id

IITM ≤ IITM φ ξ-id
IITM (multi session IITM security) as well as πUC ≤ ξ

UC φ UC .

We provide the proof in the full version [21]. Theorem 5 shows that the impli-
cation of Theorem 4 is non-trivial and non-degenerate since our mapping not
only preserves security results but also distinguishing attacks. That is, if for all
UC simulators there is a ξ-identity bounded UC environment that distinguishes
πUC and φ UC , then Theorem 5 implies that for all IITM simulators in the UC
runtime class there is an IITM environment distinguishing πξ-id

IITM and φ ξ-id
IITM .

3.4 UC Composition Implies IITM Composition

In this section, we investigate in how far composition results carry over from UC
to IITM. We first observe the following direct corollary of Theorem 4:

Corollary 1 (Composition from the UC theorem). Let πUC , φ UC , ρ UC

be UC protocols such that πUC ≤ ξ
UC φ UC and the UC composition theorem

can be applied to ρ UC to obtain ρ φ→π
UC ≤UC ρ UC . Let ρ IITM and ρ φ→π

IITM be
the IITM protocols obtained by applying the mapping from Sect. 3.2 to ρ UC and
ρ φ→π

UC .13 Then ρ φ→π
IITM ≤ IITM ρ IITM .

While this corollary shows that security results obtained via the UC composi-
tion theorem carry over, it does not actually provide insights into how the UC
and IITM composition theorems relate. To answer this question, we next show
that the same composition statement can be obtained directly from the IITM
composition theorem without relying on the UC theorem.

Obtaining Corollary 1 from the IITM Composition Theorem. We start
by observing that the IITM theorem requires that higher-level protocols access
the subroutine πIITM/φ IITM only via its external I/O interface, i.e., the exter-
nal I/O tapes that the environment had access to in absense of the higher-level
protocol. In the special case of our mapped protocols πIITM/φ IITM , which offer

13 Note that ρ φ→π
UC also contains some UC composition shell code introduced by the

UC composition theorem to replace the code cφ with cπ. ρ φ→π
IITM is thus obtained by

mapping the overall machine codes, including the UC composition shell code.

Embedding the UC Model into the IITM Model 267

ρ IITM

M
ρ
cρ

M
ρ
cφ

⇒

ρ IITM

M
ρ
cρ

Mmultiplex

M
φ
cφ

φ IITM

�

ρ
φ→π
IITM

M
ρ
cρ

Mmultiplex

Mπ
cπ

πIITM

Fig. 4. Overview of the static structures of the protocols in this section. Left: ρ IITM

mapped as per Sect. 3.2. Middle: ρ IITM after redirecting all inputs/outputs from Mρ
cφ

to φ IITM . The machine Mρ
cφ

is formally still present but not used in a run. Right:

The composed protocol ρ φ→π
IITM after applying the IITM composition theorem, which

replaces the protocol (and hence all sessions of) φ IITM with the protocol πIITM .

only a single external I/O tape to/from the machine with code cπ/cφ, this syntac-
tical requirement of the IITM theorem actually corresponds to the “subroutine
respecting” requirement for πUC/φ UC in the UC theorem.14 That is, subrou-
tine respecting protocols are required to reject and drop all messages from and
never send messages to instances outside of their session of πUC/φ UC , except
for inputs to and outputs from highest-level instances running code cπ/cφ. The
only difference is that in UC “subroutine respecting” is a semantic requirement
imposed on the behavior of machines whereas the IITM requirement enforces the
same property on the syntactical level of interfaces by removing any unintended
communication channels/tapes. Hence, to be able to apply the IITM composition
theorem and conclude ρ φ→π

IITM ≤ IITM ρ IITM we have to make some slight syn-
tactical adjustments to ρ IITM such that the semantic “subroutine respecting”
property is also reflected by the tape connections.

So let ρ IITM be the protocol mapped according to Sect. 3.3. Then, since
ρ IITM uses code cφ ∈ Codes and possibly other codes, ρ IITM looks like depicted
in Fig. 4 (left-hand side); we refer to machines of the system ρ IITM by Mρ

i .
The middle picture of Fig. 4 illustrates the idea of our syntactical changes to
ρ IITM : We extend the protocol ρ IITM by including the full set of machines of
φ IITM , as obtained by mapping from φ UC according to Sect. 3.3. We now change
all machines in ρ IITM , i.e., all Mρ

i , to send inputs/receive outputs to/from
φ IITM instead of Mρ

cφ
. Since multiple machines need to connect to φ IITM but

φ IITM provides only a single external I/O tape, we introduce a straightforward

14 The IITM composition theorem also supports IITM protocols that offer several exter-
nal I/O tapes, even to subroutines, which gives the environment and higher-level
protocols direct access to those subroutines. Such IITM protocols are more general.
They do not and do not have to meet the “subroutine respecting” property.

268 D. Rausch et al.

multiplexer Mmultiplex that forwards messages between φ IITM and machines
Mρ

i . Since inputs to and outputs from Mρ
cφ

are the only way for higher-level
instances in ρ to interact with instances in any session of the subroutine φ (by
the subroutine respecting property), this syntactic modification of ρ IITM does
not actually change its behavior. It, however, consistently moves all sessions of φ
to now be instances of the set of machines φ IITM . Note that when φ IITM calls
subroutines (with code in Codes), then φ IITM now uses its own subrountine
machines, instead of those of ρ IITM . The composed protocol ρ φ→π

IITM is then
defined by simply replacing the set of machines φ IITM with the set of machines
πIITM (right hand-side of Fig. 4). This is as simple as reconnecting the single
I/O tape between the multiplexer Mmultiplex and φ IITM to instead connect to
the external I/O tape of πIITM . As a result, in ρ φ→π

IITM all inputs to and outputs
from sessions of φ IITM are now instead handled by sessions of πIITM , which is
just as in ρ φ→π

UC . In other words, reconnecting this tape has the same effect as
adding the UC composition shell code, which internally changes the code cφ to
instead be cπ for such inputs/outputs. So, unlike in Corollary 1, when we use the
IITM composition theorem we actually do not need to include this shell code in
ρ φ→π

IITM . The IITM composition theorem then implies the following:

Corollary 2 (Composition from the IITM theorem). Let πUC , φ UC , ρ UC

be UC protocols such that πUC ≤ ξ
UC φ UC and ρ UC meets the requirements

of the UC composition theorem. Let ρ IITM and ρ φ→π
IITM be the IITM protocols

from above. Then immediately by the IITM composition theorem, ρ φ→π
IITM ≤ IITM

ρ IITM .

We provide full details, including the formal definitions of ρ IITM , ρ φ→π
IITM

and the proof of Corollary 2 in the full version [21]. In the process of showing
this result, we also found and fixed an issue that formally invalidates the UC
theorem, namely, additional assumptions on non-forced writes used within ρ are
actually necessary. Altogether, the construction shown in Fig. 4 and Corollary 2
illustrate how the additional requirements of the UC theorem from Diff. 13 and
Diff. 14 are reflected in the mapped IITM protocols when the IITM theorem is
used to obtain the same composition result.

Novel Composition Operation. Recall that the UC theorem applied to a pro-
tocol ρ replaces all sessions of subroutines running code φ with sessions running
code π. Similarly, the IITM theorem applied to a protocol ρ replaces all sessions
of a set of machines φ with sessions of a set of machines π. Observe that we can
use the above modeling technique not just to move all sessions of φ to a new
set of machines. Under certain conditions, we can rather more generally move a
proper subset of the sessions of φ to a new set of machines, say φ′, while moving
the other sessions to a different set, say φ′′, where φ′ and φ′′ still run the same
code cφ. We then obtain a simple corollary of the UC and IITM composition
theorems (also for similar models), where we can replace φ′ with a realization
π′ but replace φ′′ with a different realization π′′. In other words, our technique
allows for replacing subsets of sessions. This can be useful, e.g., if φ is an ideal

Embedding the UC Model into the IITM Model 269

signature functionality, where each session models one key pair. Then we might
want to implement certain keys with a signature scheme π′ but others with a
different signature scheme π′′, say, depending on where they are used within a
higher-level protocol ρ. We give full details, including requirements on ρ, in [21].

3.5 Capturing Dynamically Generated Machine Code

We now explain how our constructions from the previous sections can be
extended to also support an unbounded number of dynamically generated
machine codes. This bridges Diff. 1 and thus completes our mapping.

We start by observing that the UC model can be interpreted to be defined on
a single universal Turing machine which is instantiated arbitrarily often during a
run. Whenever a new instance receives its first input message, which contains the
extended identity (pid , sid , c) of that instance, it stores this identity and from
then on runs the code c given in its identity. This mechanism, whichs allows
the UC model to seamlessly support arbitrary dynamically generated machine
codes, can be transferred to an IITM protocol as follows.

Whenever a protocol πIITM requires an unbounded number of different
dynamically generated codes, potentially in addition to a finite number of static
machine codes Codes as above, then we first map the fixed number of static codes
of πIITM as described in Sect. 3.2. We then add a universal Turing machine MUT

that all other machines Mci
connect to via pairs of I/O tapes. Each instance of

MUT is identified by an ID (pid , sid , c) (instead of (pid , sid) as for machines Mci

with fixed code ci), where c �∈ Codes, and internally runs code c specified by its
ID. Whenever an instance of any machine in πIITM wants to send a message to
an instance with ID (pid , sid) and code c �∈ Codes, i.e., where Mc does not exist
in πIITM , then it sends the message to the instance (pid , sid , c) of MUT instead
(this is easily done by choosing the appropriate tape; the actual message format,
including the headers, does not change). The resulting protocol πIITM behaves
just as πUC with dynamically generated codes. Hence, by the same reasoning as
for Theorem 4, all realization results carry over for this construction, including
results obtained via the UC composition theorem (i.e., Corollary 1). In the full
version [21] we argue that also Corollary 2 carries over since the same modeling
technique from Sect. 3.4 still applies independently of whether or not there is a
universal Turing machine.

This bridges Diff. 1 by showing that the IITM model with its composition
theorem also fully supports protocols with an unbounded number of dynamically
generated machine codes, including all results available in the UC model.

3.6 Discussion: Beyond UC Protocols

Above, we have considered only IITM protocols that are obtained by mapping
some UC protocols. Of course, once we have mapped a UC protocol φ UC , includ-
ing any security and composability results, into the IITM model, we are no longer
limited to only considering combinations of φ IITM with such mapped protocols.
We can rather consider any combination of φ IITM with arbitrary other IITM

270 D. Rausch et al.

protocols. This includes cases where a higher-level IITM protocol P is designed
based on top of φ IITM , which can then, by the IITM composition theorem,
be composed with any existing UC realization πIITM of φ IITM . One can also
consider novel realizations of φ IITM via an IITM protocol P.

Such IITM protocols, which are combined with the mapped UC protocols,
can then make full use of the features of the IITM model, including seamless
support for joint state, global state, arbitrarily shared state, protocols without
pre-established SIDs, and arbitrary combinations thereof. For example, a higher-
level IITM protocol P can be defined in such a way that different sessions of P
share the same instance of φ IITM and P could also work without pre-established
SIDs etc. We refer the reader to [4,15,17,18] for in-depth overviews, including
examples, of IITM protocols with these features which can now be combined with
existing UC results. Our mapping thus opens entirely new options for protocol
designers so far working in the UC model by allowing them to combine their UC
results with these IITM features, including IITM protocols that would require
extensions of or are not yet supported by the UC model.

4 Impossibility of Embedding the IITM Model
into the UC Model

Having mostly focused on the direction from UC to IITM, we now briefly dis-
cuss the other direction. In [18], it has been shown that the IITM runtime notion
permits IITM protocols which cannot be expressed in the UC model as they do
not meet the UC runtime notion. This includes protocols often encountered in
practice, such as protocols that have to deal with ill-formed network messages.
Combined with our results, this shows that the class of IITM protocols is strictly
larger than the class of UC protocols. Another difference in protocol classes is
due to so-called directory machines as required by the UC model for composition.
These directory machines provide an oracle to the adversary to test whether a
certain extended ID exists and is part of a specific UC protocol session. IITM
protocols need not provide such a side channel, i.e., they are able to keep the
IDs of internal subroutines secret from the adversary. This is not merely a cos-
metic difference. Such an oracle rather changes security properties and might
not be simulatable when (the existence of) extended IDs depend on some infor-
mation that is supposed to remain secret. Finally, in this paper we provide an
impossibility result which shows that also the class of IITM adversaries and
hence simulators is strictly larger than the class of UC adversaries/simulators
(cf. Lemma 3).

So at best one can hope for an embedding of the IITM model into the UC
model for a restricted class of IITM protocols that follow the UC runtime notion
and provide the same side channel as the directory machine. Realization relations
carry over only for simulators that meet the UC runtime notion. Another obstacle
to an embedding are IITM protocols that share state between protocol sessions,
which includes joint state realizations as a special case. This is because the UC
model mandates that UC protocols are subroutine respecting, i.e., have disjoint

Embedding the UC Model into the IITM Model 271

sessions that do not interact with each other. It might be possible to overcome
this mismatch by using an idea briefly mentioned in [4], namely, modeling all
sessions of an IITM protocol within a single session of a UC protocol. We leave
exploring the details of this direction for future work.

Acknowledgements. We thank Ran Canetti and Björn Tackmann for helpful dis-
cussions on an early draft of this paper.

References

1. Backes, M., Dürmuth, M., Hofheinz, D., Küsters, R.: Conditional reactive simu-
latability. Int. J. Inf. Secur. (IJIS) 7(2), 155–169 (2008)

2. Badertscher, C., Canetti, R., Hesse, J., Tackmann, B., Zikas, V.: Universal com-
position with global subroutines: capturing global setup within plain UC. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020, Part III. LNCS, vol. 12552, pp. 1–30. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64381-2 1

3. Camenisch, J., Enderlein, R.R., Krenn, S., Küsters, R., Rausch, D.: Universal com-
position with responsive environments. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 807–840. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 27

4. Camenisch, J., Krenn, S., Küsters, R., Rausch, D.: iUC: flexible universal com-
posability made simple. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019,
Part III. LNCS, vol. 11923, pp. 191–221. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-34618-8 7

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society Press, October
2001

6. Canetti, R.: Universally composable security. J. ACM 67(5), 28:1–28:94 (2020)
7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security

with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

8. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 16

9. Graf, M., Rausch, D., Ronge, V., Egger, C., Küsters, R., Schröder, D.: A security
framework for distributed ledgers. In: ACM CCS 2021, 14–19 November 2021.
ACM, Seoul (2021)

10. Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. J.
Cryptol. 28(3), 423–508 (2015)

11. Hofheinz, D., Unruh, D., Müller-Quade, J.: Polynomial runtime and composability.
J. Cryptol. 26(3), 375–441 (2013)

12. Küsters, R.: Simulation-based security with inexhaustible interactive turing
machines. In: Proceedings of the 19th IEEE Computer Security Foundations Work-
shop (CSFW-19 2006), pp. 309–320. IEEE Computer Society (2006). See [18] for
a full and revised version

13. Küsters, R., Datta, A., Mitchell, J.C., Ramanathan, A.: On the relationships
between notions of simulation-based security. J. Cryptol. 21(4), 492–546 (2008)

14. Küsters, R., Rausch, D.: A framework for universally composable Diffie-Hellman
key exchange. In: 2017 IEEE Symposium on Security and Privacy, pp. 881–900.
IEEE Computer Society Press, May 2017

https://doi.org/10.1007/978-3-030-64381-2_1
https://doi.org/10.1007/978-3-662-53890-6_27
https://doi.org/10.1007/978-3-030-34618-8_7
https://doi.org/10.1007/978-3-030-34618-8_7
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-45146-4_16

272 D. Rausch et al.

15. Küsters, R., Tuengerthal, M.: Composition theorems without pre-established ses-
sion identifiers. In: ACM CCS 2011, pp. 41–50. ACM Press, October 2011

16. Küsters, R., Tuengerthal, M.: Ideal key derivation and encryption in simulation-
based security. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 161–179.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 12

17. Küsters, R., Tuengerthal, M., Rausch, D.: Joint state theorems for public-key
encryption and digital signature functionalities with local computation. J. Cryptol.
33(4), 1585–1658 (2020)

18. Küsters, R., Tuengerthal, M., Rausch, D.: The IITM model: a simple and expressive
model for universal composability. J. Cryptol. 33(4), 1461–1584 (2020)

19. Maurer, U.: Constructive cryptography - a primer (invited paper). In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, p. 1. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14577-3 1

20. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reac-
tive systems. In: ACM CCS 2000, pp. 245–254. ACM Press, November 2000

21. Rausch, D., Küsters, R., Chevalier, C.: Embedding the UC model into the IITM
model. Cryptology ePrint Archive, Report 2022/224 (2022). https://eprint.iacr.
org/2022/224

https://doi.org/10.1007/978-3-642-19074-2_12
https://doi.org/10.1007/978-3-642-14577-3_1
https://doi.org/10.1007/978-3-642-14577-3_1
https://eprint.iacr.org/2022/224
https://eprint.iacr.org/2022/224

Zero-Knowledge Proofs

Zero-Knowledge IOPs with Linear-Time
Prover and Polylogarithmic-Time Verifier

Jonathan Bootle1(B) , Alessandro Chiesa2,3(B), and Siqi Liu3

1 IBM Research, Zurich, Switzerland
jbt@zurich.ibm.com

2 École polytechnique fédérale de Lausanne, Lausanne, Switzerland
alessandro.chiesa@epfl.ch

3 University of California, Berkeley, Berkeley, USA

sliu18@berkeley.edu

Abstract. Interactive oracle proofs (IOPs) are a multi-round general-
ization of probabilistically checkable proofs that play a fundamental role
in the construction of efficient cryptographic proofs.

We present an IOP that simultaneously achieves the properties of
zero knowledge, linear-time proving, and polylogarithmic-time verifica-
tion. We construct a zero-knowledge IOP where, for the satisfiability of
an N -gate arithmetic circuit over any field of size Ω(N), the prover uses
O(N) field operations and the verifier uses polylog(N) field operations
(with proof length O(N) and query complexity polylog(N)). Polyloga-
rithmic verification is achieved in the holographic setting for every cir-
cuit (the verifier has oracle access to a linear-time-computable encoding
of the circuit whose satisfiability is being proved).

Our result implies progress on a basic goal in the area of efficient zero
knowledge. Via a known transformation, we obtain a zero knowledge
argument system where the prover runs in linear time and the verifier
runs in polylogarithmic time; the construction is plausibly post-quantum
and only makes a black-box use of lightweight cryptography (collision-
resistant hash functions).

Keywords: Interactive oracle proofs · Zero knowledge · Succinct
arguments

1 Introduction

Zero knowledge proofs enable a prover to convince a verifier that a statement
is true without revealing any further information about the statement [28]. The
main efficiency measures in a zero knowledge proof are the running time of
the prover, the running time of the verifier, and the number of bits exchanged
between them. A central goal in the study of zero knowledge proofs is to minimize
the complexity of these measures.

Motivated by real-world applications, researchers across multiple commu-
nities have invested significant effort, and made much progress, in designing
efficient zero knowledge protocols.
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 275–304, 2022.
https://doi.org/10.1007/978-3-031-07085-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_10&domain=pdf
http://orcid.org/0000-0003-3582-3368
https://doi.org/10.1007/978-3-031-07085-3_10

276 J. Bootle et al.

Several works (e.g., [18,24,31,32,36,52]) focus on prover time. They con-
struct zero-knowledge proofs for circuit satisfiability where the prover’s time
complexity is linear in circuit size, which is asymptotically optimal.1 The draw-
back of these constructions is that communication complexity and verifier time
also grow linearly with circuit size, which is undesirable for many applications.

This drawback is inevitable because, even without zero knowledge, interac-
tive proofs for hard languages with sublinear communication are unlikely [25,27].
Nevertheless, if instead of considering proofs we consider arguments [15], wherein
soundness is required to hold only against efficient adversaries rather than all
adversaries, then one can hope to avoid the drawback. For this, rather than
studying proofs where zero knowledge holds computationally, one studies argu-
ments where zero knowledge holds statistically.2

Succinctness. In a seminal work, Kilian [37] constructed zero knowledge argu-
ments that are succinct : communication complexity and verifier time are poly-
logarithmic in computation size. While these are essentially optimal, the prover
in Kilian’s construction is a polynomial-time algorithm that fails to achieve
the asymptotically-optimal linear time achieved via the aforementioned (non-
succinct) zero knowledge proofs. Improving the prover time in succinct argu-
ments has been a major goal in a subsequent line of work.

Essentially all approaches for constructing succinct arguments follow the
same high-level template: first construct a probabilistic proof in some proof
model, and then make a black-box use of cryptography to compile the prob-
abilistic proof into an argument system.

A notable exception are zero-knowledge arguments with a linear-time prover
and a polylogarithmic-time verifier. This goal is presently achieved as a conse-
quence of the zero-knowledge argument in [13] (see Sect. 1.3), but only via a
non-black-box use of cryptography. This is unfortunate, as black-box results are
a cryptographic “gold standard” that typically reflect a deeper understanding,
and over time lead to more efficient solutions (once each black-box is suitably
optimized), when compared to non-black-box results.

Interactive Oracle Proofs. The above status quo is due to inefficiencies in
probabilistic proofs. Prior results on zero-knowledge argument systems with a
linear-time prover and sublinear-time verifier rely on compiling interactive oracle
proofs (IOPs) [8,44] into corresponding succinct arguments via a black-box use of
suitable collision-resistant hash functions. The verifier time was sublinear rather
than polylogarithmic due to the underlying IOP constructions. In particular, the
following basic question has remained open:

Do there exist zero-knowledge IOPs with a linear-time prover and a
polylogarithmic-time verifier?

1 Several of these works additionally achieve excellent concrete efficiency, via experi-
ments that demonstrate the ability to prove the satisfiability of circuits with billions
of gates.

2 As soundness is computational then we can hope for zero knowledge to be statistical.

Zero-Knowledge IOPs 277

In this paper we give a positive answer to this question for arithmetic com-
putations over a large field, and obtain a corresponding black-box result about
zero-knowledge succinct arguments. The question of whether an analogous result
can be proved for boolean computations remains an exciting open problem.

Fig. 1. Comparison of known IOPs with a linear-time prover, for soundness error 1/2.
The parameters are for an n-gate arithmetic circuit defined over a field F of size Ω(n);
and ε is any positive constant. Sublinear verification is achieved in the holographic
setting (the verifier has oracle access to an encoding of the circuit).

1.1 Our Results

Our main result is an interactive oracle proof (IOP) [8,44] that simultane-
ously achieves zero knowledge, linear-time proving, and polylogarithmic-time
verification (so also linear proof length and polylogarithmic query complexity).
This implies the first zero-knowledge argument system with linear-time prov-
ing and polylogarithmic-time verification (and thus polylogarithmic communi-
cation complexity) that makes a black-box use of cryptography. Jumping ahead,
our solution uses a lightweight cryptographic primitive (linear-time collision-
resistant hash functions) for which there are plausibly post-quantum candidates.

IOP for R1CS. Our IOP is for a standard generalization of arithmetic circuit
satisfiability, known as rank-1 constraint satisfiability (R1CS), where the “cir-
cuit description” is given by coefficient matrices. This NP-complete problem is
widely used in the probabilistic proof literature (and beyond) because it effi-
ciently expresses arithmetic circuits3 and is convenient to use when designing a
succinct argument.

Definition 1 (informal). The R1CS problem asks: given a finite field F, coef-
ficient matrices A,B,C ∈ F

n×n each containing at most m = Ω(n) non-zero
entries,4 and an instance vector x ∈ F

∗, is there a witness vector w ∈ F
∗ such

that z := (x,w) ∈ F
n and Az ◦ Bz = Cz? (Here “◦” denotes the entry-wise

product.)

3 Satisfiability of an n-gate arithmetic circuit over the field F is reducible, in linear
time, to an R1CS instance also over F where the coefficient matrices are n × n and
have m = O(n) non-zero entries. (In particular, the coefficient matrices are sparse.).

4 Note that m = Ω(n) without loss of generality because if m < n/3 then there are
variables of z that do not participate in any constraint, which can be dropped. Thus
the main size measure for R1CS is the sparsity parameter m.

278 J. Bootle et al.

Merely checking the validity of a witness by directly checking the R1CS condi-
tion costs O(m) field operations, so “linear time” for R1CS means computations
that cost no more than O(m) field operations.

We construct an IOP for the R1CS problem with the parameters below. Our
result significantly improves over prior linear-time IOPs, as summarized in Fig. 1
and further discussed in Sect. 1.2.

Theorem 1 (informal). There is a public-coin IOP for R1CS over any field F

of size Ω(m), where:

– the prover uses O(m) field operations;
– the verifier uses poly(|x|, log m) field operations;
– round complexity is O(log m);
– proof length is O(m) elements in F;
– query complexity is O(log m);
– soundness error is O(1).

Moreover, the IOP is semi-honest-verifier zero-knowledge.

Succinct Argument for R1CS. The above theorem directly implies a zero-
knowledge succinct argument with a linear-time prover and polylogarithmic-time
verifier, obtained in a black-box way under standard cryptographic assumptions.
The implication involves combining IOPs and linear-time collision resistant hash-
ing [13], as reviewed in Sect. 2.7.

In more detail, the result below relies on any linear-time collision-resistant
hash function. Such hash functions are known to exist, e.g., under certain
assumptions about finding short codewords in linear codes [1]; moreover, these
candidate hash functions are not known to be insecure against quantum adver-
saries, and so our succinct argument is plausibly post-quantum secure.

Theorem 2 (informal). Using any linear-time collision-resistant hash function
with security parameter λ as a black box, one can obtain an interactive argument
for R1CS, over any field of size Ω(m), where:

– time complexity of the prover is bounded by the cost of O(λ + m) field opera-
tions;

– time complexity of the verifier is bounded by the cost of poly(λ, |x|, log m) field
operations;

– round complexity is O(log m);
– communication complexity is poly(λ, log m) field elements;
– soundness error is O(1).

Moreover, the argument is malicious-verifier zero-knowledge with private coins.5

5 The private coins come from using the Goldreich–Kahan technique [26]. Achieving
public coins is also possible via different relaxations: (i) (ii) we could rely on a
reference string (which enables the zero knowledge simulator to access a trapdoor);
or (iii) we could relax the goal to honest-verifier zero-knowledge while remaining in
the plain model. See [34] for more on these considerations.

Zero-Knowledge IOPs 279

On Zero Knowledge. The notion of semi-honest-verifier zero-knowledge in
Theorem 1 means that the IOP prover leaks no information to an honest IOP
verifier for any choice of verifier randomness. This suffices for malicious-verifier
zero-knowledge in Theorem 2, as explained in Sect. 2.7. We also present results
(see Sect. 2.6) that allow us to prove a variant of Theorem 1 where the IOP
satisfies the stronger property of bounded-query zero-knowledge, but at the cost
of a sublinear verifier time rather than polylogarithmic. Bounded-query zero-
knowledge is the hiding notion typically studied for PCPs [38], and often enables
reductions in communication complexity when compiling the IOP into a succinct
argument. The aforementioned loss in verifier time only comes from the fact that
known constructions of “zero knowledge codes” with a linear-time encoder are
probabilistic, and the loss could be avoided by derandomizing such families—
overcoming this barrier remains an exciting open problem in coding theory.

On Sublinear Verification. The polylogarithmic verifier time in Theorem 1 is
achieved in the holographic setting, which means that the verifier is given query
access to a linear-length encoding of the coefficient matrices that is computable
in linear time. Similarly, polylogarithmic verifier time in Theorem 2 is achieved in
the preprocessing setting, which means that the verifier receives as input a short
digest of the circuit that can be derived by anyone (in linear time). This follows
a general paradigm wherein holographic proofs lead to preprocessing arguments
[20,21]. Holography/preprocessing is necessary for sublinear verification in the
general case because just reading the R1CS instance takes linear time.6

Open Questions. Our IOP works for satisfiability problems over fields of at least
linear size, as is the case for all known linear-time IOPs (see Sect. 1.2); obtaining
analogous results for all fields, or just the boolean field, is open. Moreover, our
IOP achieves constant soundness error, and the question of additionally achieving
a sub-constant soundness error (ideally, negligible in a security parameter) is open.
Finally, while our focus is asymptotic efficiency, we are optimistic that the ideas
in this paper will facilitate further research that may additionally achieve good
concrete efficiency. (We point to specific ideas for this in Sect. 2.) Initial progress
in this direction has been made in subsequent work discussed in Sect. 1.3.

1.2 Related Work on Probabilistic Proofs

As our main result concerns IOPs, we summarize prior works on probabilistic
proofs that study related questions. Further connections to prior work are given
in Sect. 2 where we overview our techniques.

First we discuss a line of work on probabilistic proofs with linear proof length,
a necessary condition for a linear-time prover (our goal). The first result was [9],
which provides a PCP for boolean circuit satisfiability with linear proof length
and sublinear query complexity; this is the only known result for PCPs, and con-
structing PCPs with linear proof length and polylogarithmic query complexity
6 Holography/preprocessing may be avoidable by focusing on R1CS instances with a

short description [6] or, more generally, uniform models of computation. Achieving
results analogous to ours in such a setting remains an open problem.

280 J. Bootle et al.

remains a major open problem. Subsequently, [4] obtained a 3-round IOP for
boolean circuit satisfiability with linear proof length and constant query com-
plexity; and [45] showed how to reduce the multiplicative constant in the proof
length to arbitrarily close to 1 at the cost of a slightly larger constant round
complexity. None of these works study linear-time proving or sublinear-time ver-
ification. Here we omit a discussion of numerous works that achieve IOPs with
linear size, but not linear prover time, for many other models of computation.

Next, [13] obtained a zero-knowledge IOP for arithmetic circuit satisfiabil-
ity with linear-time prover and square-root-time verifier. Then [14] improved
the verifier time to any sublinear polynomial, but without zero knowledge. We
improve on this by simultaneously achieving the properties of zero knowledge and
polylogarithmic-time verifier. All of these results require working over a finite
field of linear size, and analogous results for boolean circuits are not known. See
Fig. 1 for a table comparing these latter works.

Recurring tools across many of these works, as well as this paper, include:
the sumcheck protocol for tensor codes [42], proof composition (for PCPs [2] and
for IOPs [4]), the linear-time sumcheck [49], and the use of codes without the
multiplication property. (The property states that coordinate-wise multiplication
of codewords yields codewords in a code whose relative distance is still good.)

The main challenge in designing IOPs with linear-time provers is that one
cannot use “useful” codes like the Reed–Solomon code since the encoding time
is quasilinear. Instead, prior works resorted to using linear-time encodable codes
(e.g., of Spielman [48] or Druk–Ishai [22]) that, unfortunately, do not have the
multiplication property, which makes designing IOPs more difficult. (See [41,42]
for more on why the multiplication property is useful in constructing probabilistic
proofs.)

Our zero-knowledge IOPs with linear-time prover and polylogarithmic-time
verifier achieve a central goal in the area of probabilistic proofs, and to construct
them we contribute several novel pieces all towards zero knowledge: (i) construc-
tions of linear-time-encodable codes that satisfy a zero-knowledge property; (ii)
structural results on the tensor products of codes that satisfy the zero-knowledge
property; (iii) a tensor-query zero-knowledge holographic IOP for R1CS with low
randomness complexity; (iv) results on zero knowledge preservation under proof
composition.

1.3 Related Work on Succinct Arguments

Our main result implies a result on succinct arguments, and below we summarize
prior works relevant to that.

A Non-Black-Box Construction. A relaxation of Theorem 2 that makes a
non-black-box use of cryptography is a straightforward implication of [13]. In
more detail, [13] obtained a zero-knowledge argument system for arithmetic cir-
cuit satisfiability over linear-size fields where the prover runs in linear time and
the verifier runs in square-root time. The verifier time can be reduced to poly-
logarithmic, while preserving zero knowledge and a linear-time prover, by using

Zero-Knowledge IOPs 281

any zero-knowledge succinct argument with subquadratic prover time to prove
that the “outer” verifier would have accepted. A similar implication, however
from the non-zero-knowledge succinct argument in [14], is described in subse-
quent work [29,40], and thus we refer the reader to that work for more details
on these non-black-box approaches. (We remark that [29,40] additionally con-
tribute ideas and implementations to improve the concrete efficiency of argument
systems with a linear-time prover and sublinear-time verifier.)

Black-Box Constructions from Probabilistic Proofs. Essentially all
approaches for constructing succinct arguments follow this high-level template:
first construct a probabilistic proof in some proof model, and then make a black-
box use of cryptography to compile the probabilistic proof into an argument
system. The first step alone typically costs more than linear time because it
involves (among other things) using the Fast Fourier Transform (FFT) to encode
the computation as a polynomial.

Several works [12,16,39,46,47,50,53,54] construct various forms of succinct
arguments without FFTs by first constructing linear-time probabilistic proofs in
certain “algebraic” models and then compiling these into arguments by using
homomorphic commitments. However, the cryptography introduces quasilinear
work for the prover,7 usually to perform a linear number of multi-exponentiations
over a cryptographically-large group (which translates to a quasilinear number of
group operations for the prover);8 we refer the reader to follow up work [29,40] for
a detailed discussion of these quasilinear costs in terms of computation size and
the security parameter. In sum, the above line of works has contributed among
the best asymptotic prover times for succinct arguments (as well as excellent
concrete efficiency), but the cryptography has precluded linear-time provers.

Bootle et al. [13] observe that Kilian’s approach to succinct arguments intro-
duces only linear cryptographic costs, when the collision-resistant hash func-
tion used for the compilation is suitably instantiated. (We elaborate on this in
Sect. 2.7.) Prior work leveraged this observation to construct argument systems
with linear-time prover and sublinear-time verifier, given a collision-resistant
hash function as a black box.

– [13] achieves an honest-verifier zero knowledge argument system for arith-
metic circuit satisfiability with a communication complexity of O(

√
n), where

the prover performs O(n) field operations and hash computations while the
verifier performs O(

√
n) field operations and hash computations.

– [14] achieves, for every ε > 0, an argument system for R1CS with a communi-
cation complexity of O(nε), where the prover performs O(n) field operations
and hash computations while the verifier performs O(nε) field operations and
hash computations. No zero knowledge property is achieved in this work.

7 The quasilinear costs in some works (due to cryptography [53,54] or an FFT [55])
scale with witness size rather than computation size, and so the prover runs in linear
time when the witness is small relative to the computation.

8 Some of the cited works still refer to such prover time as “linear” or “asymptotically
optimal”. This is a misnomer.

282 J. Bootle et al.

There are linear-time candidates for the hash function [1], leading to a linear-
time prover.

In both cases the technical core is the construction of IOPs with a linear-time
prover, but, as discussed in Sect. 1.2, these prior works only achieved sublinear
query complexity thereby, after compilation, falling short of the goal of polylog-
arithmic communication complexity. No prior work thus achieves Theorem 2.

Our main result (Theorem 1) offers improved IOP constructions, and we are
then able to improve the state of the art of succinct arguments that make a
black-box use of cryptography (Theorem 2).

2 Techniques

We overview our approach towards Theorem 1 in Sect. 2.1 and the construction
in Sect. 2.2. We provide additional details behind different aspects of the con-
struction in Sects. 2.3 to 2.6. Finally, in Sect. 2.7 we explain how our result about
zero-knowledge succinct arguments (Theorem 2) is a direct implication of our
result about zero-knowledge IOPs (Theorem 1).

Throughout, recall that an IOP is a proof model in which a prover and a
verifier interact over multiple rounds, and in each round the prover sends a
proof message and the verifier replies with a challenge message. The verifier has
query access to all received proof messages, in the sense that it can query any
of the proof messages at any desired location. The verifier decides to accept or
reject depending on its input, its randomness, and answers to its queries. The
main information-theoretic efficiency measures in an IOP are proof length (total
size of all proof messages) and query complexity (number of read locations across
all proof messages), while the main computational efficiency measures are prover
time and verifier time.

2.1 Approach Overview

We provide an overview of our approach to Theorem 1.

Review: Proof Composition. Many constructions of PCPs rely on proof com-
position [2] to achieve the desired goal by combining an “outer” PCP and an
“inner” PCP with suitable properties. The composed PCP (roughly) has the
prover complexity of the outer PCP, and the verifier complexity of the inner
PCP. Informally, the new PCP string consists of the outer PCP string and also,
for every choice of randomness of the outer PCP verifier, an inner PCP string
attesting that the outer PCP verifier would have accepted the local view of the
outer PCP string induced by that choice of randomness. Soundness of the com-
posed PCP requires the outer PCP to be robust9 and the inner PCP to be a
proximity proof.10

9 A proof system is robust if the local view of the verifier is far (e.g. in Hamming dis-
tance) from an accepting view with high probability (over the verifier’s randomness)
whenever the instance is not in the language.

10 A proximity proof shows that a given input is close to some input in the language.

Zero-Knowledge IOPs 283

Proof composition extends to the IOP model [4]: the outer and inner proof
systems can be IOPs instead of PCPs, and must satisfy corresponding notions
of robustness and proximity; moreover, composition is more efficient because the
inner IOP has only to be invoked once rather than for every choice of randomness
of the outer IOP verifier (this is because, after running the outer IOP, the verifier
can simply send the chosen randomness to the prover and then run the inner
IOP on that randomness). Proof composition of IOPs also plays a central role in
constructions of IOPs, and we also use it in our construction, as described next.

Our Setting. Using proof composition in our setting involves several consider-
ations.

– Zero knowledge. We want the composed IOP to be semi-honest-verifier zero-
knowledge, and for this, one can prove that it suffices for the outer IOP
to be semi-honest-verifier zero-knowledge, regardless of any zero knowledge
properties of the inner IOP. We prove this and other properties about zero
knowledge within proof composition in the full version.

– Prover time. We want the prover of the composed IOP to run in linear time.
The composed prover time is the sum of the outer IOP prover time and
the inner IOP prover time. This means that the outer IOP prover must run
in time that is linear, e.g., in the R1CS instance. The requirement on the
inner IOP prover is less straightforward: the inner IOP prover attests to a
computation related to the outer IOP verifier. For example, if the outer IOP
verifier runs in cube-root time (relative to the R1CS instance) then we can
afford an inner IOP prover that runs in up to cubic time (as the cubic blow
up applied to a cube-root time gives linear time overall). In other words, we
require the polynomial blow up of the inner IOP prover time to be made up
by the savings offered by the outer IOP verifier time.

– Verifier time. We want the verifier of the composed IOP to run in polylog-
arithmic time. The composed verifier time equals the time of the inner IOP
verifier when used to test that the outer IOP verifier would have accepted. At
minimum, the inner IOP verifier needs to read the description of the outer
IOP verifier computation, which consists of its input instance (e.g., the R1CS
public input) and its randomness. This implies that the outer IOP verifier can
have at most polylogarithmic randomness complexity, and also implies that
the compound savings in running time of the outer IOP verifier and inner
IOP verifier must lead to a polylogarithmic running time.

The above considerations suggest that one approach that suffices is the following:
(i) an inner IOP of proximity for general computations with polylogarithmic
verifier time; and (ii) an outer IOP for R1CS that is semi-honest-verifier zero-
knowledge, is robust, has a linear prover time, has polylogarithmic randomness
complexity, and has a verifier time that is sufficiently small so that we can afford
the blowup incurred by the inner IOP prover time. For the inner IOP of proximity
we choose the state-of-the-art PCP of proximity for NTIME(T) due to Mie [43]
(discussed later). Our technical contribution is constructing a suitable outer IOP.
As the blowup incurred by the inner PCP prover time will be polynomial, we

284 J. Bootle et al.

need the outer IOP verifier to run in time that is sufficiently sublinear. We now
outline the challenges that arise given prior work.

Challenges. There are two natural paths to explore in order to construct the
outer IOP.

1. One path would be to somehow construct the desired outer IOP by start-
ing from the semi-honest-verifier zero-knowledge IOP for arithmetic circuit
satisfiability in [13], which works over any field of linear size and has lin-
ear prover time and square-root verifier time. This would require addressing
some challenges. First, we would need to robustify the IOP, but robustifica-
tion techniques typically work for verifiers with constant query complexity
(possibly over a large alphabet), and so one would have to adapt [13] for
this setting. Second, the IOP verifier in [13] would have to be derandomized
to achieve polylogarithmic randomness complexity. Third, we cannot afford
more than a quadratic blow up in the inner IOP prover time because the
verifier in [13] runs in square-root time.

2. An alternative path would be to somehow construct the desired outer IOP
by starting from the IOP for R1CS in [14], which over any field of size O(m)
has prover time O(m) and verifier time O(mε) for any a-priori fixed constant
ε > 0. This would require somehow additionally achieving zero knowledge (not
a goal in [14]), and moreover would still require addressing the robustification
and derandomization challenges mentioned above. On the other hand, because
we can choose ε to be small enough, we can afford an inner proximity proof
whose prover runs in any fixed polynomial time (in particular, the PCP of
proximity in [43] would suffice).

This Paper. We believe that both paths are plausible. In this paper we use an
approach that (roughly) follows the second path, because we can use an off-the-
shelf inner proximity proof and we can focus our attention solely on constructing an
appropriate outer IOP. Moreover, we believe that building on [14] will contribute
new understanding of zero knowledge techniques that are likely to be useful else-
where, and will lead to a simpler exposition due to the modular nature of that
construction.

2.2 Construction Overview

We outline the steps in the construction of an IOP that satisfies Theorem 1. We
elaborate on each of these steps in subsequent subsections.

Review: The Tensor-to-Point Approach. The IOP for R1CS in [14] is
obtained in two steps: first construct a tensor IOP for R1CS with linear prover
time and constant query complexity; then apply a compiler that transforms any
tensor IOP into a standard IOP. In a tensor IOP, the verifier may make multiple
tensor queries directly to a proof message Π, each of the form q = (q1, . . . , qt) and
receiving the corresponding answer v := 〈⊗iqi,Π〉. This differs from a standard
IOP, where the verifier makes point queries, that is, it queries single locations

Zero-Knowledge IOPs 285

of proof messages. As mentioned in Sect. 2.1, the resulting (point-query) IOP in
[14] has prover time O(m) and verifier time O(mε) for any a-priori fixed con-
stant ε > 0. (Here m is the maximum number of non-zero entries in an R1CS
coefficient matrix.)

Steps in Our Proof. We take an analogous two-step approach as in [14],
except that we additionally achieve semi-honest-verifier zero knowledge, while
still achieving a prover time of O(m) and reducing the verifier time from O(mε)
to poly(|x|, log m). (Here x is the instance vector of the R1CS instance.)

– Step 1: tensor IOP for R1CS with zero knowledge. Given any finite field F,
we construct a tensor IOP for R1CS over F that is semi-honest-verifier zero-
knowledge, has soundness error O(m

|F|), has prover time O(m), and has verifier
time O(|x|+log m); moreover, the verifier makes O(1) tensor queries (and also
interacts with the prover in a O(log m)-round interactive proof). In Sect. 2.4
we outline the main ideas that we use to additionally achieve zero knowledge
compared to the tensor IOP for R1CS in [14].

– Step 2: from tensor IOPs to standard IOPs while preserving zero knowledge.
Given any finite field F, we construct a compiler that maps a tensor IOP over
the field F into a standard IOP while preserving the zero knowledge property ;
moreover, efficiency measures are preserved up to overheads in the dimension
of the tensor and the query complexity of the input tensor IOP. In Sect. 2.3
we outline the main ideas that we use compared to the tensor-query to point-
query compiler in [14] (which does not preserve zero knowledge and leads to
a large verifier time).

Theorem 1 follows by applying the compiler in the second step to the tensor
IOP for R1CS in the first step, as shown diagrammatically in Fig. 2. Below we
highlight two aspects of our construction of the compiler.

(a) Proof composition. Differing from the approach overview in Sect. 2.1, the
proof composition step actually happens within the tensor-query to point-query
compiler rather than as a final step. This choice leads to a compiler that preserves
efficiency measures of the tensor IOP up to constants (of independent interest),
and moreover invokes the inner proximity proof on a linear computation rather
than an arbitrary computation.
(b) Linear codes that are linear-time encodable and zero knowledge. A
key ingredient in the construction of our compiler is tensor codes that simultane-
ously are linear-time encodable and satisfy a zero-knowledge property (informally,
codewords do not reveal any information about the underlying message when
queried in a restricted way). For this, we establish structural properties of zero-
knowledge codes and prove that they are preserved under tensor products, which
reduces the problem to constructing a linear-time encodable zero-knowledge code
to act as the base of the tensor product code. We obtain a suitable base code
via an explicit (deterministic) construction of zero-knowledge code based on [48]
codes, which protect against a single malicious query. This is enough to prove
zero-knowledge against semi-honest verifiers in Theorem 1, which suffices for our

286 J. Bootle et al.

main theorem. We also give a probabilistic construction of zero-knowledge codes
based on [22] codes which do not reveal information on the underlying message
even when the verifier makes queries to a constant fraction of codeword entries.
This allows us to prove a variation of Theorem 1 with the stronger property of
bounded-query zero-knowledge. We review notions of zero knowledge for linear
codes in Sect. 2.5, and then describe our results about zero-knowledge codes in
Sect. 2.6.

Concrete Efficiency. We do not make any claims regarding the concrete effi-
ciency of our construction. That said, we are optimistic that the ideas intro-
duced in this work can lead to improved constructions with the same asymptotic
efficiency but better concrete efficiency. In particular, we believe that further
research into zero-knowledge linear-time-encodable codes and further research
in specializing the proof composition step to the specific outer statement (a cer-
tain linear computation) may significantly improve efficiency. Subsequent work
has made progress in this direction [29].

Fig. 2. Diagram of our construction of the IOP for Theorem 1.

2.3 From Tensor-Queries to Point-Queries in Zero-Knowledge

We generically transform any tensor-query IOP into a corresponding point-query
IOP, while preserving zero knowledge. The transformation is parametrized by a
zero-knowledge linear code (a notion explained in more detail in Sect. 2.5) and
outputs a point-query IOP that is bounded-query zero knowledge, meaning that
malicious queries up to a fixed query bound do not leak any information. In
contrast, the tensor-query IOP being transformed is only required to satisfy
a weaker notion of zero knowledge, called semi-honest-verifier zero knowledge,
that we describe further below. Here, “(F, k, t)-tensor IOP” means that each
tensor-IOP query q = (q1, . . . , qt) lies in (Fk)t.

Theorem 3 (informal). There is an efficient transformation that takes as input
a tensor-query IOP and a linear code, and outputs a point-query IOP that has
related complexity parameters, as summarized below.

– Input IOP: an (F, k, t)-tensor IOP for a relation R with soundness error
ε, round complexity rc, proof length l, query complexity q, prover arithmetic
complexity tp, and verifier arithmetic complexity tv.

Zero-Knowledge IOPs 287

– Input code: a linear code C over F with rate ρ = k
n , relative distance δ = d

n ,
encoding time Ψ(k) · k, and description size |C|. (The description of a linear
code consists of a specification of the circuit used to compute the encoding
function, including any random coins used to generate the circuit.)

– Output IOP: a point-query IOP with soundness error Oδ,t(ε) + O(dt/|F|),
round complexity Ot(rc), proof length Oρ,t(q·l), query complexity Ot(q), prover
arithmetic complexity tp + Oρ,t(q · l) · Ψ(k) + poly(|C|, t, q, k), and verifier
arithmetic complexity tv + poly(|C|, t, q, log k).

Moreover, when the tensor-query IOP is semi-honest-verifier zero knowledge the
following also holds:

– if the code C is 1-query zero-knowledge, then the point-query IOP is semi-
honest-verifier zero knowledge;

– if the code C is b-query zero-knowledge, then the point-query IOP is b-query
zero knowledge.

Finally, the transformation preserves holography up to the multiplicative encod-
ing overhead Ψ of C and terms that depend on ρ and t: if the indexer for the
input tensor-query IOP runs in time ti and produces an index of length li, then
the indexer for the output point-query IOP runs in time ti + Oρ,t(q · li) · Ψ(k).

We now explain the main ideas behind our compiler.

Starting Point: An Inefficient Compiler that Breaks Zero Knowledge.
Our starting point is the code-based compiler of [14], which takes as input a
tensor-query IOP (P,V) and a linear error-correcting code C and produces a
corresponding point-query IOP (P̂, V̂). We briefly summarize how the compiler
works.

First, the point-query IOP simulates the tensor-query IOP with the modifi-
cation that: (i) each proof oracle Π ∈ F

kt

is replaced by its encoding Π̂ ∈ F
nt

using the tensor product code C⊗t; (ii) instead of making tensor queries to the
proof oracles directly, the new verifier V̂ sends tensor queries q(s) to the prover,
who replies with the answers v(s). Second, the new prover P̂ and new verifier V̂
engage in a consistency test subprotocol to ensure that the answers v(s) (which
may have been computed dishonestly) are consistent with the proofs Π. The con-
sistency test incorporates a proximity test to make sure that each proof message
Π̂ is close to a valid encoding of some proof message Π (as a malicious prover
may send messages which are far from C⊗t). As part of the consistency check, the
prover sends the verifier “folded” proof messages c

(s)
j = 〈⊗i≤jq

(s)
i ,Π〉 encoded

under lower-dimensional tensor codes C⊗t−j . The proximity test works similarly,
using random linear combinations of length k sampled by the verifier instead
of structured tensor queries. In both cases, the verifier checks linear relations
between successive encodings c

(s)
j and c

(s)
j+1 by making O(k) point queries.

This compiler preserves prover time up to the encoding overhead Ψ(k) as
in our Theorem 3, but has two shortcomings. The compiler does not preserve

288 J. Bootle et al.

zero-knowledge, even if the tensor IOP to be compiled is zero knowledge. More-
over, the output IOP has query complexity Ω(k) and verifier complexity Ω(k),
which does not suffice for Theorem 3 (we can at most afford a polylogarithmic
dependence in k). Below we elaborate on how we overcome these shortcomings
for zero-knowledge (Sect. 2.3.1) and for efficiency (Sect. 2.3.2).

2.3.1 Preserving Zero-Knowledge
We explain semi-honest verifier zero knowledge (the property of the tensor IOP
used to achieve zero knowledge for the output IOP) and then how we preserve
zero knowledge in the compiler.

Semi-honest-Verifier Zero Knowledge. Here, “semi-honest” means that
there exists a simulator that (perfectly) simulates the honest verifier’s view
for any fixed choice of the honest verifier’s randomness.11 This requirement is
stronger than honest-verifier zero-knowledge, where the simulator must simu-
late the honest verifier’s view for a random choice of its randomness; also, this
requirement is weaker than the standard definition of zero-knowledge for IOPs,
in which the verifier may deviate from the protocol and make arbitrary queries
to the received oracles up to some query bound. Nevertheless, this notion suffices
for our compilation procedure, which will produce point-query IOPs with zero-
knowledge against semi-honest verifiers or against verifiers making a bounded
number of point queries (depending on the zero-knowledge property of the code).

Approach for Zero Knowledge. We need to ensure that, in our compiler, if
the tensor-query IOP given as input is semi-honest-verifier zero knowledge then,
depending on the zero knowledge property of the code C, the output point-
query IOP is either semi-honest verifier zero knowledge or bounded-query zero
knowledge. This implication does not hold for the compiler of [14] because, when
using a (non-zero-knowledge) linear code C, a point query to any encoded proof
message Π̂ or folded proof message c

(s)
j leaks information about Π. We address

the information leaked by Π̂ and c
(s)
j in two ways.

We ensure that the folded proof messages c
(s)
j do not leak any information

by leveraging the fact that the consistency test of [14] is about a linear relation,
and thus can be invoked on a random shift of the instance of interest. In more
detail, the usual approach to making the messages in such a subprotocol zero-
knowledge is to mask the input message as f = γΠ + Ξ, where Ξ is a random
message sent by the prover and γ is a random challenge sent by the verifier after
that, and then run the consistency test on the encoding c = γΠ̂ + Ξ̂ [3]. (The
claimed tensor-query answers v(s) need to be adjusted accordingly too to account
for the contribution of Ξ.) Informally, this enables the simulator to randomly
sample c and honestly run the [14] consistency test protocol. Queries on the
resulting messages c

(s)
j do not reveal any information, since they are derived

from c, which is a random tensor codeword. Further, we do not require any
zero-knowledge properties from the consistency test.
11 This is related to special honest-verifier zero-knowledge for sigma protocols.

Zero-Knowledge IOPs 289

The simulator must still simulate the answers to point queries on Ξ by query-
ing Π̂ instead. To avoid information leakage from the encoded proofs Π̂, we use
a linear code C with bounded-query zero-knowledge. This is similar to the notion
for IOPs, and means that queries to a codeword up to a fixed query bound do
not leak any information. The [14] compiler uses tensor products of codes, and
to achieve semi-honest-verifier zero knowledge for the output IOP, it is impor-
tant that the tensor product code C⊗t is 1-query zero-knowledge. Furthermore,
to achieve b-query zero knowledge for the output IOP, it is important that the
tensor product code C⊗t is also zero-knowledge against b queries.12 This leads to
the problem of finding a zero-knowledge code which is encodable in linear time,
which we discuss in Sect. 2.6.2, and showing that the zero-knowledge property
of codes is preserved under tensor products, which we discuss in Sect. 2.6.1.

2.3.2 Improving Efficiency
Our modifications to the compiler of [14] to preserve zero-knowledge do not
affect its efficiency; in particular, if the zero-knowledge code C⊗t has a linear-
time encoding, then the compiler preserves linear arithmetic complexity of the
prover. However, when applied to our (F, k, t)-tensor IOP with n = Θ(kt), the
improved consistency test has query complexity O(k), prover arithmetic com-
plexity O(kt), and verifier arithmetic complexity O(k). Though the query com-
plexity and verifier complexity can be improved by increasing t, they remain
sublinear in n, which does not suffice for Theorem 3. To prove Theorem 3, we
must reduce the query complexity from Ω(k) to O(1) and the verifier complexity
from Ω(k) to poly(log k).

We achieve these goals using interactive proof composition and derandom-
ization techniques. First, we strengthen the improved consistency test through
robustification, and then use interactive proof composition for IOPs [4]. This
reduces the query complexity so that it is independent of k, and makes the ver-
ifier complexity depend only on the randomness complexity of the consistency
test verifier. Next, we show that linear prover complexity is preserved. Finally,
we explain how to derandomize the consistency test to obtain the desired veri-
fier complexity. (It remains an interesting question whether one can also achieve
proof length that approaches witness length, the efficiency goal studied in [45]
via related techniques.)

Interactive Proof Composition. Interactive proof composition involves an
“outer” IOP that is robust and is for the desired relation, and an “inner” IOP of
proximity that is for a relation about the outer IOP’s verifier. At a high level, we
wish to apply this with the zero-knowledge consistency test from Sect. 2.3.1 as
the outer IOP, and the PCP of proximity of [43] as the inner IOP. This requires
some care, in part because the consistency check is not robust, and also because
our target parameters do not leave much wiggle room. Below, we elaborate on
how we robustify the outer protocol, and how we perform proof composition.

12 Note also that query bound b must be at least the number of queries that V̂ makes
to the encoded proof Π̂.

290 J. Bootle et al.

– Robustification. Any IOP can be generically robustified by encoding each
proof symbol in every round via an appropriate error-correcting code: if the
IOP has query complexity q then this transformation yields a robustness
parameter α = O(1/q) (over the alphabet of the code).13 This is a straight-
forward generalization of robustifications for IPs (each prover message in each
round is encoded) and for PCPs (each proof symbol of the PCP is encoded).
This also extends to robustifying IOPPs, in which case each symbol of the
witness whose proximity is being proved is also encoded (and this modifies
the relation proved by the IOPP slightly).
Superficially, this robustification seems insufficient to prove Theorem 3
because zero-knowledge consistency test from Sect. 2.3.1 has sublinear query
complexity q = O(k) = O(n1/t), which would lead to a robustness parameter
that is sub-constant. However, fortunately, the queries are bundled : the verifier
always queries entire sets of O(n1/t) locations, so the IOPP can be restated
as a constant-query IOPP over the large alphabet F

O(n1/t). To robustify an
IOPP over such a large alphabet, we need to use a code with linear-time
encoding such as [48] (here zero-knowledge codes are not essential) in order
to preserve the linear complexity of the prover. This gives us an IOPP for ten-
sor queries with prover complexity O(n), verifier complexity O(n1/t), query
complexity O(n1/t) over the alphabet F, constant soundness error, and, most
importantly, a constant robustness parameter α. We are now ready for the
next step, proof composition.

– Composition. Interactive proof composition [4] applies to any outer IOP that
is robust and inner IOP that is a proof of proximity. If the outer IOP is a
proof of proximity (as is the case when using the IOPP obtained above) then
the composed IOP is also a proof of proximity; similarly, if the inner IOP is
robust then the composed IOP is also robust.
We apply proof composition as follows: (i) the outer proof system is the
robust zero-knowledge IOPP for tensor queries obtained above; (ii) the inner
proof system is the PCP of proximity for NTIME(T) due to Mie [43] (which
achieves any constant soundness error and constant proximity parameter,
with proof length Õ(T (|x|)), query complexity O(1), prover time poly(T (|x|)),
and verifier time poly(|x|, log T (|x|))).
Informally, the new verifier in the composed proof system runs the interactive
phase of the IOPP for tensor queries and then, rather than running the query
phase of the outer IOPP, runs the PCPP verifier of [43] to check that the
witness is close to a tensor encoding of a message that is consistent with all
the answers to the tensor queries. This reduces the query complexity from
O(n1/t) to O(1) queries.

Preserving Prover Complexity. We discuss prover complexity for the com-
posed proof system. The cost of the prover in the composed IOP is O(n)

13 An IOP is said to have robustness parameter α if the local view of the verifier is α-
close (in relative Hamming distance) to an accepting view with probability bounded
by the IOP’s soundness error.

Zero-Knowledge IOPs 291

field operations to run the prover of the robust IOPP for tensor queries plus
poly(T (|x|)) bit operations to run the PCPP prover in [43]. In our case, the
NTIME(T) relation being checked is the decision predicate for the verifier in the
robust IOPP, so that T = O(n1/t) (times smaller factors depending on log |F|
since T refers to bit operations rather than field operations). If we take the ten-
sor power t ∈ N to be a sufficiently large constant, then we can ensure that the
prover time in the PCPP of [43], which is polynomial in O(n1/t), is dominated
by O(n) field operations.

Reducing Verifier Complexity. We discuss verifier complexity for the com-
posed proof system. The cost of the verifier in the composed IOP is dominated
by poly(|x|, log T (|x|)) bit operations, the time to run the PCPP verifier in [43].
From our discussion of prover complexity for the composed proof system, we
know that T = O(n1/t) and so log T (|x|) = O(log n). We are thus left to discuss
|x|. Here x is the state used to describe (not run) the computation of the decision
predicate for the verifier in the robust IOPP. The description consists of: (a) the
description of the code C used for the tensor encoding; (b) the description of the
tensor queries whose answers are being checked; and (c) the verifier randomness
for the robust IOPP.

The second term depends on the tensor queries, but for simplicity here we will
ignore it because in our application all the tensor queries can be described via
O(t log n) elements, again a low-order term. The first term depends on the choice
of code C, so we keep it as a parameter. As for the last term, the randomness
complexity of the robust consistency check is O(q ·k ·t), due to the random linear
combinations used in the proximity test of [14], whose randomness complexity
is unchanged by robustification. In sum, the cost of the verifier in the composed
system is poly(|C|, log n, q · k · t) bit operations. This leads to a sublinear verifier
complexity and does not suffice for Theorem 3.

Fortunately, these linear combinations can be derandomized so to reduce
their description size to O(t) (a low-order term), as we now explain. The linear
combinations are used in the soundness analysis of the [14] proximity test as
part of a “distortion statement”: if any member of a collection of messages is far
(in Hamming distance) from a linear code, then a random linear combination
of those messages is also far from the code, except with some small, bounded,
failure probability. Ben-Sasson et al. [10] prove distortion statements for linear
combinations of the form ζ = (α1, α2, α3, . . . , αk) for a uniformly random α ∈ F,
at the cost of a tolerable increase in failure probability, and thus, in the soundness
error of the proximity test. This allows us to dramatically reduce the number of
random field elements used in the proximity test from O(q ·k · t) to O(q · t). After
some work, the result is a verifier complexity of poly(|C|, log n) bit operations in
the composed system which suffices for Theorem 3.

Remark 1. We use the freedom to choose a large enough t in our robust zero-
knowledge IOPP based on [14] to obtain query complexity (and verifier time)
that is O(n1/t). It is plausible that [13] similarly implies a robust zero-knowledge
IOPP with query complexity (and verifier time) O(n1/2). We do not know how

292 J. Bootle et al.

to leverage such a result because that would require an inner IOPP with sub-
quadratic prover time and constant query complexity, and we do not know of
such a result. While it is plausible that the prover of [43] prover runs in sub-
quadratic time, proving this seems an arduous task.

2.4 Tensor IOP for R1CS with Semi-honest Verifier Zero
Knowledge

The input to the compiler in Sect. 2.3 is a tensor IOP for R1CS that is semi-
honest-verifier zero knowledge.

Theorem 4 (informal). For every finite field F and positive integers k, t ∈ N,
there is a (F, k, t)-tensor holographic IOP for the indexed relation RR1CS, which
is semi-honest-verifier zero-knowledge, that supports instances over F with m =
O(kt), that has the following parameters: (1) soundness error is O(m

|F|); (2)
round complexity is O(log m); (3) proof length is O(m) elements in F; (4) query
complexity is O(1); (5) the indexer and prover use O(m) field operations; (6)
the verifier uses O(|x| + log m) field operations.

Our starting point is the holographic tensor IOP for R1CS in [14], which
achieves the same parameters as in the above theorem14 except that it is not
zero knowledge. We use re-randomization techniques to additionally achieve zero
knowledge against semi-honest verifiers, while preserving all efficiency parame-
ters. We now elaborate on this: first we review the structure of the tensor IOP in
[14], and then explain our ideas for how to additionally achieve zero knowledge.

The Holographic Tensor IOP of BCG. The holographic tensor IOP for
R1CS in [14] follows a standard blueprint for constructing protocols for R1CS
[7], adapted to the case of tensor queries. The prover first sends oracles containing
the full assignment z = (x,w) and its linear combinations zA := Az, zB := Bz,
and zC := Cz. The verifier wishes to check that zA ◦zB = zC and that zA, zB , zC

are the correct linear combinations of z. To facilitate this, the verifier sends
some randomness to the prover, which enables reducing the first condition (a
Hadamard product) to a scalar-product condition. The verifier then engages
with the prover in scalar-product subprotocols for checking the scalar products,
and holographic “lincheck” subprotocols for checking the linear relations (given
tensor-query access to suitable linear-time encodings of the matrices A,B,C).
The verifier makes a constant number of tensor queries to each of z, zA, zB , zC

for concluding the subprotocols and performing other consistency checks (e.g.,
consistency of z with x).

14 Note that as described in [14], the tensor IOP of [14] achieves verifier complexity
O(|x| + k) because some of the verifier’s tensor queries are generated from seeds of
length O(k). We reduce the verifier complexity by generating the verifier’s tensor
queries using short seeds.

Zero-Knowledge IOPs 293

This protocol is not zero knowledge even for an honest verifier because: (1) the
answer to each tensor query to z, zA, zB , zC reveals information about the secret
input w (part of the full assignment z); (2) messages sent by the prover dur-
ing the scalar-product and lincheck protocols reveal further information about
z, zA, zB , zC .

Approach for Zero Knowledge. We need to ensure that every prover message
and the answer to every tensor query is simulatable. The fact that queries are
linear combinations with a tensor structure would make this rather difficult if
we had to deal with malicious verifiers.15 Fortunately, we seek zero knowledge
against semi-honest verifiers only, which means that it suffices to consider any
valid execution of an honest verifier, and in particular we have the freedom
to assume that the verifier’s queries have a certain structure. While there are
generic techniques for related settings (e.g., a transformation for linear PCPs
with degree-2 verifiers in [11]), they do not seem to be useful for our setting
(tensor IOPs with linear-time proving). So our approach here will be to modify
the protocol in [14] by adapting ideas used in prior works.

We incorporate random values into the protocol in two different ways to
address the two types of leakage above. This will enable us to make every prover
message and query answer either uniformly random (independent of the witness)
or uniquely determined by other prover messages or query answers. The simula-
tor that we construct will then simply sample all the random values and derive
the rest from them. We elaborate on this strategy in the paragraphs below.

(1) ZK against verifier queries. The answer to each verifier query is a linear
combination (with tensor structure) of elements in the prover’s oracle message.
Intuitively, if we pad each oracle message with as many random values as the
number of queries it receives, and also “force” the linear combination to have
non-zero coefficients in the padded region, then all the query answers will be
uniformly random and reveal no information. Padding each of z, zA, zB , zC with
independent randomness, however, does not preserve completeness because the
padded vectors would not satisfy the R1CS condition.

This naive strategy, however, can be fixed as follows. We rely on a small R1CS
gadget, whose solutions can be efficiently sampled, for which we can control
the amount of independent randomness. Then we augment the original R1CS
instance with this gadget.16 In the first step of the protocol, the prover samples
a random solution to the R1CS gadget and appends it to the witness to obtain

15 For example, constructing linear PCPs that are zero knowledge against malicious
verifiers remains an open problem. Constructing tensor IOPs that are zero knowledge
against malicious verifiers, while formally an easier question, appears similarly hard.

16 This is distinct from how zero knowledge is achieved for prior IOPs for R1CS based on
the Reed–Solomon code [7]. Instead, it is closer in spirit to how semi-honest-verifier
zero knowledge was achieved for linear PCPs for circuits or quadratic arithmetic
programs in [11,23].

294 J. Bootle et al.

an augmented witness.17 In the rest of the protocol, the random solution acts as
padding as described above, while preserving completeness. The choice of how
much to pad depends on how many independent queries each oracle receives.

Though conceptually simple, this approach requires careful design and anal-
ysis. Intuitively, this is because the solutions to the R1CS gadget, which act as
random padding, satisfy some non-linear relations, and therefore cannot consist
entirely of uniformly random field elements. For example, since zC = zA ◦ zB ,
if the padding for zA and zB was uniformly random, then the padding for zC

would be a sum of products of uniformly random field elements, which would
not lead to uniformly random answers to queries on zC . However, introducing
uniformly random padding into zC requires setting some elements of zA (or zB)
to fixed non-zero elements, which cannot then be used to make queries on zA

uniformly random. In sum, the solutions to the R1CS gadgets must hide not
only the results to queries on the vectors zA, zB , zC , but also the dependencies
in the solutions themselves.
(2) ZK for the subprotocols. Each lincheck subprotocol checks a linear rela-
tion Uz = zU , and as with the point-query compiler, the usual approach to
making the messages in such a subprotocol zero-knowledge is to run the sub-
protocol on the input vector e = γz + y, where y is a random vector sent by
the prover and γ is a random challenge sent by the verifier after that. (The
claimed output vector zU needs to be adjusted accordingly too.) This enables
the simulator to randomly sample e and honestly run the lincheck protocol,
which reveals no information, since the honest verifier only queries e = γz + y,
and never z and y separately. As the lincheck subprotocol is used as a black-box,
the holographic properties of our protocol are unaffected by our modifications
for zero-knowledge, and are inherited from the lincheck protocol of [14].

The scalar-product subprotocol is a sumcheck protocol on a certain poly-
nomial p. Sumcheck protocols are usually made zero knowledge by following a
similar pattern and running the sumcheck protocol on the polynomial u := γp+q,
where q is a random polynomial [3]. The simulator can randomly sample u and
honestly run the sumcheck protocol, while simulating answers to q by querying
p instead.

We cannot apply this idea in our setting of linear-time provers without
change. In the protocol of [14], the polynomial p is the product of two multilinear
polynomials f and g, each with log n variables (and thus O(n) coefficients). To
achieve linear arithmetic complexity for the prover, it is crucial that the prover
does not compute the sumcheck directly on p, which could have up to O(n2) coef-
ficients, and works only with f and g following a certain linear-time algorithm
[49]. Thus the prover cannot simply sample a random q.

17 We stress that this modification achieves zero knowledge only against semi-honest
verifiers, because a malicious verifier could choose to query the padded vectors with
a linear combination that leaves out the randomness and thereby learns information
about the secret witness. Nevertheless, as discussed in Sect. 2.3, a tensor IOP that is
merely semi-honest-verifier zero knowledge suffices for obtaining a point-query IOP
with zero knowledge against bounded-query malicious verifiers.

Zero-Knowledge IOPs 295

The solution is to re-randomize the multiplicands f and g separately to γf+r
and γg + s, and run the sumcheck protocol on their product (γf + r) · (γg + s).
(If p = f · g sums to α then (γf + r) · (γg + s) sums to αγ2 + ργ + σ for some ρ
and σ derived from r and s alone.) The prover can then compute on polynomials
with O(n) coefficients, and the simulator can sample each factor of p at random
and proceed similarly.

Efficiency. The resulting tensor IOP inherits all efficiency parameters of the
non-ZK tensor IOP of [14]: soundness error O(m/|F|); logarithmic round com-
plexity; linear proof length; constant query complexity; linear-time indexer;
linear-time prover; and logarithmic-time verifier.

2.5 Hiding Properties of Linear Codes

Linear codes have been used to achieve hiding properties in many applications,
including secret sharing, multi-party computation, and probabilistic proofs.
Below we introduce useful notation and then review the properties of linear
codes that we use, along with other ingredients, to achieve zero knowledge IOPs.
Informally, we consider probabilistic encodings for linear codes with the property
that a small number of locations of a codeword reveal no information about the
underlying encoded message.

Randomized Linear Codes. Let C be a linear code over a field F with message
length k and block length n, and let Enc: Fk → F

n be an encoding function for
C (that is, Enc(Fk) = C). For a fixed choice of km and kr such that km + kr = k,
we can derive from Enc the bivariate function ˜Enc: Fkm × F

kr → F
n defined as

˜Enc(m; r) := Enc(m‖r). In turn, this function naturally induces a probabilistic
encoding: we define ˜Enc(m) to be the random variable {˜Enc(m; r)}r←Fkr . In
other words, we have designated the first km inputs of Enc for the message and
the remaining kr inputs for encoding randomness. We shall refer to a code C
specified via a bivariate function ˜Enc as a randomized linear code.

Bounded-Query Zero Knowledge. A randomized linear code is b-query zero
knowledge if reading any b locations of a random encoding of a message does not
reveal any information about the message. The locations may be chosen arbitrar-
ily and adaptively. In more detail, we denote by View(˜Enc(m; r), A) the view of
an oracle algorithm A that is given query access to the codeword ˜Enc(m; r). We
say that C is b-query zero knowledge if there exists a poly(n, log |F|)-time simu-
lator algorithm S such that, for every message m ∈ F

km and b-query algorithm
A, the following random variables are identically distributed:

{

View
(

˜Enc(m; r), A
)

}

r←Fkr
and SA .

To achieve even 1-query zero knowledge the random encoding cannot be system-
atic (as otherwise the algorithm A could learn any location of the message by
querying the corresponding location in the codeword).

296 J. Bootle et al.

The above notion mirrors the standard notion of bounded-query zero knowl-
edge for several models of probabilistic proofs (PCPs [33,34,38], IPCPs [30],
and IOPs [3,5]). Moreover, it is equivalent, in the special case of codes with a
polynomial-time encoding, to the message-indistinguishability definition of zero
knowledge of [35] (which requires that the encodings of any two messages are
equidistributed when restricted to any small-enough subset of coordinates).

Bounded-Query Uniformity. In intermediate steps we also consider a
stronger notion of zero knowledge: we say that C is b-query uniform if any b
locations of {˜Enc(m; r)}r←Fkr are uniformly random and independent symbols.
This is a strengthening over the prior notion because the simulator for this case
is a simple fixed strategy: answer each query with a freshly sampled random
symbol. We refer the reader to the full version for more intuition on the dif-
ference between the two notions; there we explain how code concatenation, a
standard operation on codes, naturally leads to codes that are bounded-query
zero knowledge but not bounded-query uniform, and in particular the simulator
cannot employ the foregoing simple strategy.

2.6 On Bounded-Query Zero Knowledge

Theorem 1 guarantees zero-knowledge against semi-honest verifiers. However,
we can achieve bounded-query zero-knowledge against a malicious verifier who
makes at most O(mε) queries, if we relax the verifier time in our construction
to poly(|x|) + O(mε) field operations.

The reason behind this is as follows. By Theorem 3, the zero-knowledge
property in Theorem 1 relies (among other things) on a family of explicit linear-
time encodable error-correcting codes which themselves have a zero-knowledge
property, whereby a single query to a codeword leaks no information about
the encoded message. These codes suffice for semi-honest-verifier zero-knowledge
because the honest verifier never learns more than one query of each codeword.
By contrast, in the setting of bounded-query zero-knowledge, we require codes
with a zero-knowledge property against a sublinear number of queries. The above
codes do not satisfy this property. Instead, we show how to obtain suitable codes
from a probabilistic construction of Druk and Ishai [22], leading to an IOP verifier
whose randomness complexity is sublinear.

Obtaining an explicit construction of linear-time encodable zero-knowledge
codes remains an interesting open problem, which would allow us to prove The-
orem 1 with both polylogarithmic verifier complexity and bounded-query zero-
knowledge.

2.6.1 Tensor Products of Zero Knowledge Codes
As part of the tensor-query to point-query compiler (see Sect. 2.4), the prover
sends to the verifier proof messages Π̂ consisting of tensor-IOP proof messages
Π encoded under a tensor code C⊗t. The verifier has point-query access to the
encoded messages Π̂. To ensure that these queries do not leak information (up

Zero-Knowledge IOPs 297

to a certain number of queries), we require the tensor code C⊗t to be zero-
knowledge. To this end, we prove that the tensor product operation preserves the
property of bounded-query zero-knowledge (and bounded-query uniformity). In
particular, for C⊗t to be zero knowledge it will suffice for C to be zero knowledge.
(We discuss how to obtain a zero-knowledge code that is linear-time encodable
after this, in Sect. 2.6.2.)

Theorem 5. Let C and C′ be randomized linear codes.

1. If C is b-query zero-knowledge and C′ is b′-query zero-knowledge, then C ⊗ C′

is min(b, b′)-query zero-knowledge.
2. If C is b-query uniform and C′ is b′-query uniform, then C ⊗ C′ is min(b, b′)-

query uniform.

The formal statement and proof are provided in the full version.

2.6.2 Zero-Knowledge Codes with Linear-Time Encoding
To prove our main theorem, Theorem 1, we require an explicit construction of
a randomized linear code, that must be both linear-time encodable and 1-query
zero-knowledge. Prior works such as [13,17] achieve this by applying a 1-out-of-2
secret sharing scheme to every element of the output of an explicit (non zero-
knowledge) linear-time encodable code, such as [48]. Given the encoding function
Enc for a linear-time encodable code, the new code is defined by ˜Enc(m; r) :=
(Enc(m) + r, r).

Investigating Bounded-Query Zero-Knowledge. To prove the variation on
our main theorem, Theorem 1, with bounded-query zero-knowledge, we require
randomized linear codes which are linear-time encodable as above, but with a
stronger zero-knowledge property. In this case, the code must be b-query zero-
knowledge where b is not only greater than 1, but may even be a constant fraction
of the block length.

Prior works achieved these properties separately. For example, it is well-
known that the Reed–Solomon code can be made b-query zero-knowledge by
using b elements of encoding randomness, but their encoding functions incur
costs quasilinear in the message length. On the other hand, the zero-knowledge
properties of linear-time encodable codes, such as the explicit family by Spielman
[48] or the probabilistic family by Druk and Ishai [22], have not been investigated.

We prove the existence of codes satisfying both requirements, via a proba-
bilistic construction. In the statement below, Hq : [0, 1] → [0, 1] denotes the q-ary
entropy function.

Theorem 6. For every finite field F, every ε ∈ (0, 1), and every function
β : N → (0, 1) bounded away from 1, letting q := |F|, there is a circuit family
{Ekm

: Fkm × F
(Hq(β(km))+ε)·O(km) × F

O(km) → F
O(km)}km∈N such that: (1) Ekm

has size O(km); (2) with probability at least 1−q−Ωε(km) over R ∈ F
O(k), the ran-

domized linear code Ckm
whose encoding function is ˜Enckm

(m; r) := Ekm
(m, r,R)

has constant relative distance and is O(β(km) · km)-query uniform.

298 J. Bootle et al.

The precise statement of the theorem and its proof are provided in the full
version.

Below we provide an overview of the proof; and finally discuss related con-
structions and analyses. Derandomizing Theorem 6, namely the goal of obtaining
an explicit family of codes that are both zero knowledge and linear-time encod-
able, remains an open problem.

Overview of Proof of Theorem 6. We use the same code as in [22], which
is a probabilistic construction (which we inherit). Our contribution is to show
that their construction additionally satisfies the strong requirement of b-query
uniformity, by using ideas from the analysis of [22].

Informally, Druk and Ishai [22] construct a family of distributions G =
{Gk}k∈N such that, for every k ∈ N, Gk = {GR ∈ F

O(k)×k}R∈FO(k) is a dis-
tribution over generator matrices such that: (1) matrix-vector multiplication
is computable in linear time; (2) for any fixed non-zero vector x, when GR is
sampled at random from the distribution, GRx is uniformly distributed. This
latter property is known as linear uniform output, and implies that, with high
probability over R, GR has constant relative distance and dual distance.

We are interested in analyzing what happens if we split the message space
of a generator matrix G ∈ Gk into two parts, one of length km for the actual
message and another of length kr for the encoding randomness, for km + kr =
k. As in Sect. 2.5, this induces a corresponding split in the generator matrix:
G =

[

Gm Gr

]

. In the full version we show that the probability that this code is
b-query uniform is bounded from below by the probability that (Gr)⊥, the dual
of Gr, has minimum (absolute) distance at least b + 1.

Druk and Ishai [22] show that G⊥ has constant relative distance with high
probability. We observe that Gr inherits the linear-uniform output property from
G, and then adapt their analysis to (Gr)⊥. We now summarize the main ideas of
their analysis when it is applied to our setting of b-query uniformity. Similarly,
to the standard probabilistic proof of the Gilbert–Varshamov bound, requiring
that (Gr)⊥ has distance at least b+1 is equivalent to showing that each non-zero
vector z ∈ F

n with Hamming weight at most b is not in (Gr)⊥, i.e., zGr
= 0. The
linear-uniform output property of G implies that zGr is uniformly distributed,
over a random choice of Gr; therefore the probability that z ∈ F

n is in (Gr)⊥

is at most q−kr . Taking a union bound over all vectors of weight at most b, of
which there are at most qHq(b/n)·n, gives an upper bound on the probability that
the distance of (Gr)⊥ is at most b.

We can choose parameters so that n = O(km) and kr = O(Hq(b/n) · n)
with suitable constants so that q−kr · qHq(b/n)·n = q−Ω(km). In combination with
results on the distance of G, this yields Theorem 6.

In sum, we obtain a trade-off between the fraction of the message space
allocated to the encoding randomness and the b-query uniformity of the code.
For example, if (as we use in this paper) b is linear in n then Hq(b/n) is constant
and the encoding randomness is a constant fraction of the input.

Zero-Knowledge IOPs 299

Comparison with Related Work. Chen et al. [19] show a result analogous
to Theorem 6 for random codes: with high probability over a choice of random
code with block length O(km), using Hq(β(km)) · O(km) elements of encoding
randomness ensures O(β(km) · km)-query zero-knowledge. Random codes, how-
ever, are not linear-time encodable. Theorem 6 can be viewed as strengthening
the result for random codes in [19, Theorem 11] to apply to the linear-time codes
of [22] (and to proving the stronger property of bounded-query uniformity). The
proofs of both results follow the standard template of the existence proof of
codes meeting the Gilbert–Varshamov bound, except that the analyzed code
family changes.

Druk and Ishai [22] give a linear-time secret sharing scheme for message vec-
tors of constant length, based on the same code family used to prove Theorem 6.
Their construction generalizes to a randomized encoding scheme with b-query
zero-knowledge (and most likely b-query uniformity), where b is determined by
the distance of the dual code. For this code family, the dual distance is linear in
km, giving b-query zero-knowledge for b = Θ(km). However, encoding requires
solving a system of linear equations whose dimension is the same length as the
message, and so fails to be linear-time.

Ishai et al. [35,51] give a generic construction of zero-knowledge codes from
any linear code, which works by randomizing a generator matrix for the code,
but this does not preserve linear-time encoding.

2.7 Linear-Time Succinct Arguments from Linear-Time IOPs

Known approaches for constructing succinct arguments rely on cryptography to
“compile” various forms of probabilistic proofs into argument systems. However,
the cryptography used typically introduces super-linear overheads, ruling out
a linear-time argument system even when compiling a linear-time probabilistic
proof. Bootle et al. [13] observe that Kilian’s approach [37] is a notable exception.
We review this below because Theorem 1 implies Theorem 2 via this approach;
our technical contribution is Theorem 1.

Linear-Time Arguments via Kilian’s Approach. The cryptography used
in Kilian’s approach is collision-resistant hash functions, for which there are
linear-time candidates under standard assumptions (e.g., based on the hardness
of finding short codewords in linear codes [1]). If we use a linear-time hash
function in Kilian’s approach to compile a linear-time PCP (over a large-enough
alphabet) then we obtain a linear-time argument system.18 While constructions
of linear-time PCPs are not known (and seem far beyond current techniques),
the foregoing implication equally holds for IOPs [8,44]. This route was used in

18 In Kilian’s approach, the argument prover’s cryptographic cost is dominated by the
cost to commit to the PCP string via a Merkle tree. In particular, if the PCP has
proof length l and the size of a proof symbol is linear in the input size of the hash
function, then the running time of the argument prover is within a constant of the
running time of the PCP prover.

300 J. Bootle et al.

[13,14] to obtain interactive arguments with linear-time prover and sublinear-
time verifier from IOPs with linear-time prover and sublinear-time verifier.

Zero Knowledge. Kilian’s approach to additionally achieve zero knowledge
makes a non-black-box use of the collision-resistant hash function and the prob-
abilistic proof’s verifier.19 Ishai et al. [34] then proved that if the underlying
probabilistic proof satisfies a mild notion of zero knowledge then Kilian’s app-
roach can be significantly simplified to yield a zero-knowledge succinct argument
where the collision-resistant hash function and the probabilistic proof are used as
black boxes. This implication, too, preserves linear time of both building blocks
to yield a zero-knowledge succinct argument with a linear-time prover.

The notion of zero-knowledge required of the underlying probabilistic proof
depends on the desired notion of zero knowledge for the argument system. If the
argument system is desired to be honest-verifier zero knowledge (this suffices,
e.g., to subsequently apply the Fiat–Shamir heuristic) then the probabilistic
proof must be honest-verifier zero knowledge. If instead the argument system is
desired to be malicious-verifier zero-knowledge then the probabilistic proof must
be semi-honest-verifier zero knowledge (the simulator works for any possible fixed
execution of the honest verifier). A further strengthening known as bounded-
query zero knowledge, the hiding notion typically studied for PCPs [38], enables
reductions in communication.

In Sum. The interactive argument in Theorem 2 is constructed via the above
approach from the IOP in Theorem 1 (with sublinear verification in the holo-
graphic setting mapping to sublinear verification in the preprocessing set-
ting). The semi-honest-verifier zero-knowledge property of the IOP implies the
malicious-verifier zero-knowledge property of the interactive argument. The lin-
ear prover time and polylogarithmic verifier time of the IOP imply the cor-
responding running times of the interactive argument, as the given collision-
resistant hash function runs in linear time.

References

1. Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-
complexity cryptographic hash functions. In: Proceedings of the 8th Innovations
in Theoretical Computer Science Conference, ITCS 2017, pp. 7:1–7:31 (2017)

2. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998). Preliminary version in FOCS ’92

3. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner,
N.: Zero knowledge protocols from succinct constraint detection. In: Kalai, Y.,
Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 172–206. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70503-3 6

19 Modify the Merkle tree to be over hiding commitments to proof symbols (rather than
over the proof symbols themselves) and then prove in zero knowledge that opening
the queried locations would have made the probabilistic proof verifier accept.

https://doi.org/10.1007/978-3-319-70503-3_6

Zero-Knowledge IOPs 301

4. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive
oracle proofs with constant rate and query complexity. In: Proceedings of the 44th
International Colloquium on Automata, Languages and Programming, ICALP
2017, pp. 40:1–40:15 (2017)

5. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size zero knowl-
edge from linear-algebraic PCPs. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9563, pp. 33–64. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49099-0 2

6. Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.:
Linear-size constant-query IOPs for delegating computation. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 494–521. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36033-7 19

7. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

8. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

9. Ben-Sasson, E., Kaplan, Y., Kopparty, S., Meir, O., Stichtenoth, H.: Constant rate
PCPs for circuit-SAT with sublinear query complexity. In: Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp.
320–329 (2013)

10. Ben-Sasson, E., Kopparty, S., Saraf, S.: Worst-case to average case reductions for
the distance to a code. In: Proceedings of the 33rd ACM Conference on Computer
and Communications Security, CCS 2018, pp. 24:1–24:23 (2018)

11. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

12. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

13. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 12

14. Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification
from tensor codes. In: Proceedings of the 18th Theory of Cryptography Conference,
TCC 2020, pp. 19–46 (2020)

15. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

16. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: Proceedings of the 39th
IEEE Symposium on Security and Privacy, S&P 2018, pp. 315–334 (2018)

17. Cerulli, A.: Efficient zero-knowledge proofs and their applications (2019)
18. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-

key primitives. In: Proceedings of the 24th ACM Conference on Computer and
Communications Security, CCS 2017, pp. 1825–1842 (2017)

https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-030-36033-7_19
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-70700-6_12

302 J. Bootle et al.

19. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure
computation from random error correcting codes. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72540-4 17

20. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

21. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 27

22. Druk, E., Ishai, Y.: Linear-time encodable codes meeting the Gilbert-Varshamov
bound and their cryptographic applications. In: Proceedings of the 5th Innovations
in Theoretical Computer Science Conference, ITCS 2014, pp. 169–182 (2014)

23. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

24. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean
circuits. In: Proceedings of the 25th USENIX Security Symposium, Security 2016,
pp. 1069–1083 (2016)

25. Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett. 67(4), 205–214 (1998)

26. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptol. 9(3), 167–189 (1996). https://doi.org/10.1007/
BF00208001

27. Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a laconic
prover. Comput. Complex. 11(1/2), 1–53 (2002)

28. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). Preliminary version
appeared in STOC ’85

29. Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.: Brakedown: linear-time
and post-quantum snarks for r1cs. Cryptology ePrint Archive, Report 2021/1043
(2021)

30. Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-knowledge
PCPs, and unconditional cryptography. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 173–190. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 10

31. Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 569–
598. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 19

32. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the 39th Annual Symposium on Theory
of Computing, STOC 2007, pp. 21–30 (2007)

33. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28914-9 9

34. Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge PCPs: Lim-
itations, simplifications, and applications (2015). http://www.cs.virginia.edu/
∼mohammad/files/papers/ZKPCPs-Full.pdf

https://doi.org/10.1007/978-3-540-72540-4_17
https://doi.org/10.1007/978-3-540-72540-4_17
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/BF00208001
https://doi.org/10.1007/BF00208001
https://doi.org/10.1007/978-3-642-14623-7_10
https://doi.org/10.1007/978-3-642-14623-7_10
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-642-28914-9_9
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf

Zero-Knowledge IOPs 303

35. Ishai, Y., Sahai, A., Viderman, M., Weiss, M.: Zero knowledge LTCs and their
applications. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P.
(eds.) APPROX/RANDOM -2013. LNCS, vol. 8096, pp. 607–622. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40328-6 42

36. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Proceedings of the 25th ACM Confer-
ence on Computer and Communications Security, CCS 2018, pp. 525–537 (2018)

37. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pp.
723–732 (1992)

38. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, STOC 1997, pp. 496–505 (1997)

39. Kothapalli, A., Masserova, E., Parno, B.: A direct construction for asymptotically
optimal zkSNARKs. Cryptology ePrint Archive, Report 2020/1318 (2020)

40. Lee, J., Setty, S., Thaler, J., Wahby, R.: Linear-time zero-knowledge SNARKs for
R1CS. Cryptology ePrint Archive, Report 2021/030 (2021)

41. Meir, O.: Combinatorial PCPs with short proofs. In: Proceedings of the 26th
Annual IEEE Conference on Computational Complexity, CCC 2012 (2012)

42. Meir, O.: IP = PSPACE using error-correcting codes. SIAM J. Comput. 42(1),
380–403 (2013)

43. Mie, T.: Short PCPPs verifiable in polylogarithmic time with o(1) queries. Ann.
Math. Artif. Intell. 56, 313–338 (2009)

44. Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive proofs for
delegating computation. In: Proceedings of the 48th ACM Symposium on the The-
ory of Computing, STOC 2016, pp. 49–62 (2016)

45. Ron-Zewi, N., Rothblum, R.: Local proofs approaching the witness length. In:
Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2020, pp. 846–857 (2020)

46. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 25

47. Setty, S., Lee, J.: Quarks: quadruple-efficient transparent zkSNARKs. Cryptology
ePrint Archive, Report 2020/1275 (2020)

48. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE
Trans. Inf. Theory 42(6), 1723–1731 (1996). Preliminary version appeared in STOC
’95

49. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 5

50. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: Proceedings of the 39th IEEE Symposium
on Security and Privacy, S&P 2018, pp. 926–943 (2018)

51. Weiss, M.: Secure computation and probabilistic checking (2016)
52. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and

communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
IACR Cryptology ePrint Archive, Report 2020/925 (2020)

53. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 24

https://doi.org/10.1007/978-3-642-40328-6_42
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1007/978-3-030-26954-8_24

304 J. Bootle et al.

54. Zhang, J., Wang, W., Zhang, Y., Zhang, Y.: Doubly efficient interactive proofs
for general arithmetic circuits with linear prover time. Cryptology ePrint Archive,
Report 2020/1247 (2020)

55. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its
applications to zero knowledge proof. In: Proceedings of the 41st IEEE Symposium
on Security and Privacy, S&P 2020, pp. 859–876 (2020)

Non-Interactive Zero-Knowledge Proofs
with Fine-Grained Security

Yuyu Wang1(B) and Jiaxin Pan2

1 University of Electronic Science and Technology of China, Chengdu, China
wangyuyu@uestc.edu.cn

2 Department of Mathematical Sciences, NTNU - Norwegian University of Science
and Technology, Trondheim, Norway

jiaxin.pan@ntnu.no

Abstract. We construct the first non-interactive zero-knowledge
(NIZK) proof systems in the fine-grained setting where adversaries’
resources are bounded and honest users have no more resources than
an adversary. More concretely, our setting is the NC1-fine-grained set-
ting, namely, all parties (including adversaries and honest participants)
are in NC1.

Our NIZK systems are for circuit satisfiability (SAT) under the worst-
case assumption, NC1 � ⊕L/poly. As technical contributions, we pro-
pose two approaches to construct NIZKs in the NC1-fine-grained setting.
In stark contrast to the classical Fiat-Shamir transformation, both our
approaches start with a simple Σ-protocol and transform it into NIZKs
for circuit SAT without random oracles. Additionally, our second app-
roach firstly proposes a fully homomorphic encryption (FHE) scheme
in the fine-grained setting, which was not known before, as a building
block. Compared with the first approach, the resulting NIZK only sup-
ports circuits with constant multiplicative depth, while its proof size is
independent of the statement circuit size.

Extending our approaches, we obtain two NIZK systems in the uni-
form reference string model and two non-interactive zaps (namely, non-
interactive witness-indistinguishability proof systems in the plain model).
While the previous constructions from Ball, Dachman-Soled, and Kulka-
rni (CRYPTO 2020) require provers to run in polynomial-time, our con-
structions are the first one with provers in NC1.

Keywords: Fine-grained cryptography · Non-interactive
zero-knowledge proof · Fully homomorphic encryption

Y. Wang—Supported by the National Natural Science Foundation for Young Scientists
of China under Grant Number 62002049 and the Fundamental Research Funds for the
Central Universities under Grant Number ZYGX2020J017.
J. Pan—Supported by the Research Council of Norway under Project No. 324235.

The original version of this chapter was revised: an erroneous equation in the paper
has been corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-031-07085-3 31

c© International Association for Cryptologic Research 2022, corrected publication 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 305–335, 2022.
https://doi.org/10.1007/978-3-031-07085-3 11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_11&domain=pdf
http://orcid.org/0000-0002-1198-1903
http://orcid.org/0000-0002-7459-6850
https://doi.org/10.1007/978-3-031-07085-3_31
https://doi.org/10.1007/978-3-031-07085-3_11

306 Y. Wang and J. Pan

1 Introduction

Non-interactive zero-knowledge (NIZK) proof systems [11] are a central topic in
complexity theory and theoretical cryptography. In the recent years, it also pro-
vides numerous novel applications in cryptography. An important line of research
is to construct NIZKs based on different assumptions. An earlier work has shown
that NIZKs require a trusted setup, such as a common reference string (CRS)
[4]. Moreover, Pass and shelat [16] showed that (non-uniform) one-way func-
tions are sufficient for NIZK for AM. Recently, it is possible to construct efficient
NIZKs such as Diffie-Hellman-based constructions [12,13]. In this paper, we are
interested in NIZKs based on much mild assumptions.

NC1-fine-grained cryptography. Fine-grained cryptography [7] designs cryp-
tographic schemes in a setting where adversaries have only bounded resources
and honest users have no more resources than adversaries. In this setting, it is
possible to have more efficient schemes and base their security on weaker, or
extremely mild assumptions. Although this notion of cryptography was firstly
proposed by Degwekar, Vaikuntanathan, and Vasudevan [7], it has long history
starting from the Merkle key exchange protocol [15].

In this paper, we consider NC1-fine-grained cryptography where adversaries
are in NC1. Cryptography in this setting is often based on the worst-case assump-
tion on complexity classes, NC1 � ⊕L/poly. Here ⊕L/poly is the class of lan-
guages with polynomial-size branching programs, and all languages in NC1 have
polynomial-size branching programs of constant width by the Barrington the-
orem [3]. The NC1 � ⊕L/poly assumption states that there exists at least one
language having only polynomial-size branching programs with non-constant
width.

We suppose that it is interesting to study NC1-fine-grained cryptography.
First, it is a fundamental question to consider which kind of cryptographic
schemes can be constructed in such a setting by assuming NC1 � ⊕L/poly. Cur-
rently, we know that one-way functions [7], (somewhat homomorphic) public-key
encryption [5,7], hash proof systems (HPS) [9], and attribute-based encryption
[20] are possible in this setting. We want to explore whether it is possible to push
the boundary further. Second, as pointed out in [7], these primitives in NC1 can
be combined with other constructions against polynomial-time adversaries under
stronger assumptions. Although the resulting scheme relies on stronger assump-
tions (e.g., factoring, Diffie-Hellman, and learning with errors) for polynomial-
time adversaries, it is secure for NC1 adversaries as long as NC1 � ⊕L/poly.

Current NIZKs in NC1. We aim at constructing NIZKs in the NC1-fine-grained
setting. To the best of our knowledge, there are three proof systems under the
assumption NC1 � ⊕L/poly [2,9,20], but none of them achieves our goal, and,
in particular, it is inherently difficult to transform them in achieving our goal.

A fine-grained NIZK proof system has previously been constructed by Ball,
Dachman-Soled, and Kulkarni [2] assuming NC1 � ⊕L/poly, but in a stronger
setting, where the prover is polynomial-time and more powerful than NC1 circuits
and the verifier, simulator, and adversaries are in NC1. To be a bit more technical,

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 307

we suppose their requirement on polynomial-time provers is inherent, since their
provers need to compute the determinant of some matrix, which cannot be done
in NC1. Another example is the hash proof system (HPS) by Egashira, Wang,
and Tanaka [9]. Although in their scheme adversaries and all honest parties are in
NC1, an HPS is a weaker form of NIZK, namely, the designated verifier needs to
hold the secret hash key to verify the proof. Recently, Wang, Pan, and Chen [20]
proposed a quasi-adaptive NIZK in NC1 with public verification. However, their
scheme can only support languages that can be expressed as linear subspaces,
which is rather restricted, and their scheme is in the weaker quasi-adaptive
model, namely, their CRSs have to be dependent on the language parameter.

1.1 Our Contributions

We construct the first NIZK proof systems in the fully NC1 setting, where adver-
saries, honest provers, and verifiers are all in NC1. We note that this is in contrast
to schemes in [2] which requires the provers to be polynomial and more powerful
than NC1 circuits. Similar to previous NC1-fine-grained primitives [5,7,9,20], the
security of our scheme is based on the NC1 � ⊕L/poly assumption.

Our approach first constructs a simple Σ-protocol that runs in AC0[2] which
is a subset of NC1, and then compiles it to NIZKs for circuit satisfiability (SAT)
in the CRS model. Our transformation does not require random oracles as in
the classical Fiat-Shamir transformation [10], or pairings as in the recent work
of Couteau and Hartmann [6].

Our transformation contains several intermediate steps, as described figura-
tively in Fig. 1. We first transform our Σ-protocol to a NIZK for linear languages,
namely, a NIZK for proving whether a vector belongs to

LM = {t : ∃w ∈ {0, 1}t, s.t. t = Mw},

where M ∈ {0, 1}n×t. Based on this, we construct an OR-proof system for
disjunction.

NIZK for NC1-circuit SAT

Σ-protocol NIZK for Linear Languages OR-proof

NIZK for AC0
CM[2]-circuit SAT

Sec. 4 Sec. 5

+DVV

Sec
. 6

+FHESec. 7

Fig. 1. Overview of our approaches in constructing NIZK in the CRS model.

Starting from our OR-proof, we have two methods to construct NIZKs for
circuit SAT. Our first method uses the additive homomorphic encryption from
Degwekar, Vaikuntanathan, and Vasudevan (DVV) [7] (in a non-black-box way)
to transform our OR-proof to a NIZK for circuit SAT. Its proof size grows linearly
with the size of the statement circuit. The resulting NIZK can prove statements
that can be represented as NC1 circuits, since our provers are NC1 circuits.

308 Y. Wang and J. Pan

We stress that in the (fully) NC1-fine-grained setting a statement circuit can-
not go beyond NC1. This is because if the statement circuit is outside NC1, then
even the honest prover in NC1 cannot decide with the witness if the statement is
true or not. However, if we allow the honest prover to run in polynomial-time as
in [2], our construction works for any statement circuits with polynomial-size.

Our second method first constructs a fully homomorphic encryption (FHE)
scheme in the NC1 setting, and then uses it to construct a NIZK for circuit
SAT. On the one hand, different to our first method, this NIZK’s proof size is
independent of the statement size. On the other hand, our NIZK from the second
method supports statements in AC0

CM[2], since our FHE supports homomorphic
evaluation of AC0

CM[2] circuits. Here AC0
CM[2] circuits are AC0[2] circuits with

constant multiplicative depth, where multiplicative depth can be thought of as
the degree of the lowest-degree polynomial in GF (2) evaluating to a circuit [5]
(See Definition 4).

Interlude: fine-grained FHE. We highlight that our FHE scheme is of inde-
pendent interest. To the best of our knowledge, the scheme of Campanelli and
Gennaro [5] is the only known somewhat homomorphic encryption (SHE) in
the NC1-fine-grained setting, where SHE is a weaker notion of FHE. Thus, our
scheme is the first FHE in the NC1-fine-grained setting. Moreover, our FHE is
conceptually simpler and compatible with our OR-proof in constructing NIZK
for circuit SAT. In terms of efficiency, our scheme is comparable to the SHE
scheme in [5]: our public key has λ2 bits, while theirs has O(λ3) bits. Also, our
scheme uses less parallel running-time, in the sense that it only computes the
parity of λ bits in parallel for homomorphic multiplication, while theirs has to
compute the parity of λ2 bits. Here λ is the security parameter.

We leave improving the power of homomorphic computation of our scheme as
an open problem. We are also optimistic that all FHE-based applications can be
realized in the NC1-fine-grained setting using our FHE, and we leave a detailed
treatment of it as a future work.

Extensions. We extend our NIZKs to construct non-interactive zaps [8] (i.e.,
non-interactive witness-indistinguishability proof systems in the plain model) by
improving the techniques in [12]. The key enabler for this is that all our NIZKs
have verifiable correlated key generation which is a property used in [12] and
formally defined by us. Roughly speaking, this property states that a perfectly
sound CRS (i.e., a binding CRS) is correlated to a perfectly zero-knowledge one
(i.e., a hiding CRS), and in some particular case this can even be verified.

All the aforementioned NIZKs are in the CRS model. We further extend them
to the uniform random string (URS) model, where a trust setup only samples
public coins.

1.2 Technical Details

In this section, we give more details about our techniques with a particular focus
on constructing NIZKs for circuit SAT in the CRS model. A figurative overview
for this is given in Fig. 1.

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 309

Starting point: a Σ-protocol in AC0[2]. Rather than directly constructing
a NIZK under the worst-case assumption NC1 � ⊕L/poly, we first construct
a Σ-protocol with unconditionally special soundness and special honest-verifier
zero-knowledge. Our protocol does not require any cryptographic group struc-
ture where the discrete logarithm or factoring assumption holds. For the afore-
mentioned linear language LM, the prover sends the commitment C = MR,
where R $← {0, 1}t×(λ−1), to the verifier and receives a challenge r̃ $← {0, 1}λ−1

back. The response to the challenge is D = (R||w)A, where A = (̂R||̂Rr̃)� and

̂R =
(

0
Iλ−1

)

∈ {0, 1}λ×(λ−1). Iλ−1 is an identity matrix in {0, 1}(λ−1)×(λ−1).

The verifier checks whether (C||x)A = MD. In our Σ-protocol, all computa-
tions are in GF (2), and all parties can run in AC0[2]. We refer the reader to
Sect. 3 for the detailed proof, which reflects our main technical contribution in
this part.

Compiling Σ-protocol to NIZK. Couteau and Hartmann [6] showed how
to convert a Σ-protocol into a NIZK for L(gM), where L(gM) is the language
including all the group vectors with exponents in the span of M. Their main
idea is to put the challenge originally in Zp into the group and set it as the
common reference string. Verification can be executed by using bilinear map,
and finding a valid proof can be reduced to breaking the (extended) kernel
matrix Diffie-Hellman assumption. Although this assumption is falsifiable and
has analysis in the generic group model and algebraic group model, we want
a NIZK based on assumptions weaker than that. Moreover, in the fine-grained
cryptographic landscape, we are not aware of the existence of any bilinear map.

Our work exploits the indistinguishability of the following two distributions
against NC1 adversaries used in [2,5,7,9,20]:

{M ∈ {0, 1}λ×λ : M� $← ZeroSamp(λ)}
︸ ︷︷ ︸

=:D0

and {M ∈ {0, 1}λ×λ : M� $← OneSamp(λ)}
︸ ︷︷ ︸

=:D1

.

Here, λ is the security parameter, and the randomized sampling algorithms
ZeroSamp and OneSamp output matrices with rank λ − 1 and full rank, respec-
tively. Concrete definitions of these algorithms are given in Sect. 2.2. Note that
this indistinguishability holds under the assumption NC1 � ⊕L/poly [1,14].
Based on the indistinguishability between D0 and D1, we develop a new compiler
from a Σ-protocol to a NIZK in NC1-fine-grained cryptography.

The main idea is to generate ̂R in our Σ-protocol as eλ
1 ||̂R $← LSamp(λ)

instead of
(

0
Iλ−1

)

, where eλ
1 = (1, 0, · · · , 0)� and LSamp is an intermediate

algorithm in ZeroSamp. This makes the distribution of A = (̂R||̂Rr̃)� in the
Σ-protocol identical to D0 (see Sect. 2.2 for details). The hiding CRS of the
resulting NIZK is A with r̃ being the simulation trapdoor, and a proof consists
of (C,D) (i.e., the first and third round messages of the Σ-protocol). Perfect zero
knowledge follows from the honest-verifier zero-knowledge of the aforementioned
Σ-protocol. To prove soundness, we switch the distribution of A from D0 to D1,

310 Y. Wang and J. Pan

which corresponds to switching a hiding CRS to a binding one. In this case, the
kernel of A� becomes empty and there exists no invalid statements passing the
verification.

Extension to OR-proof. Let A be a binding CRS in D1. From A, we show
that a prover can derive a hiding CRS A1−j with a trapdoor r̃1−j and a binding
CRS Aj . Moreover, switching the distribution of A to D0 leads both Aj and
A1−j to become hiding CRSs. Based on this crucial step, we develop a fine-
grained version of the “OR-proof techniques” [12,17] to achieve the target OR-
proof system. Roughly, the prover generates proofs with respect to both Aj

and A1−j . Soundness is guaranteed when one of them is binding, and perfect
zero-knowledge is guaranteed when both are hiding.

NIZK for circuit SAT using DVV. We now give an overview on how we
construct a NIZK for circuit SAT in NC1 by using our OR-proof and improving
the GOS framework by Groth, Ostrovsky, and Sahai [12].

In the GOS NIZK, for each input/output pair ((wi,wj),wk) of a NAND gate,
the prover encrypts the bits of wires with an additive homomorphic commitment
scheme, and proves that the plaintexts satisfy the relation wi + wj + 2wk − 2 ∈
{0, 1}.1 However, since all the computations are performed in GF (2) in NC1-
fine-grained cryptography, wi + wj + 2wk − 2 ∈ {0, 1} always holds, and thus
proving this relation becomes meaningless.

To address the above problem, we adopt another OR-relation:

1 + wi + wk = 0 ∧ 1 + wj = 0 or 1 + wk = 0 ∧ wj = 0.

One can check that each valid input/output pair of a NAND gate should satisfy
it.2 Then we use the DVV encryption scheme by Degwekar, Vaikuntanathan,
and Vasudevan [7] to encrypt wi, wj , and wk respectively and prove that the
plaintexts satisfy this new relation with our OR-proof. There are two nice prop-
erties of the DVV encryption useful in our case: (1) additive homomorphism
and (2) a ciphertext of 0 (respectively, 1) is in (respectively, outside) the linear
subspace of the public key, which make it compatible with our OR-proof.

NIZK for circuit SAT using FHE. In our NIZK for circuit SAT mentioned
above, we generate a ciphertext for each wire of a statement circuit and a proof
of compliance for each gate. Thus, the final proof size grows linearly with the
circuit size.

Our second construction circumvents this by constructing a fine-grained FHE
scheme. In this way, we only have to encrypt the input bits (i.e., witness) and exe-
cute the fully homomorphic evaluation of a statement circuit on these ciphertexts
to obtain an output ciphertext. Afterwards, we exploit our OR-proof to prove
that all the input ciphertexts are valid and the output ciphertext corresponds

1 Recall that any circuit can be converted to one consisting only of NAND gates, and
1 − wiwj = 0 is equivalent to wi + wj + 2wk − 2 ∈ {0, 1} in Zp for a large number p.

2 Notice that all the computations are performed in GF (2) and thus addition and
subtraction are equivalent.

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 311

to 1. The final NIZK proof does not include intermediate ciphertexts generated
during the homomorphic evaluation. Thus, the proof size is independent of the
circuit size. To verify the final proof, one can just evaluate the ciphertext homo-
morphically and check the proofs for the input/output ciphertexts. Due to the
correctness of the FHE and the soundness of the OR-proof, a valid witness can
be extracted from any valid proof with the secret key of the FHE.

Similar to the fine-grained SHE proposed by Campanelli and Gennaro [5],
our FHE scheme supports the homomorphic evaluation of circuits in AC0

CM[2],
which makes the supporting statement of the resulting NIZK somewhat lim-
ited. Using the generic technique in [5, Section 3.3], we can extend our FHE
to support homomorphic evaluation of circuits in AC0[2] with constant number
of non-constant fan-in gates. Also, our FHE enjoys short public key size and
parallel running-time, and compatibility with our OR-proof.

Extensions to non-interactive zap and NIZK in the URS Model. For the
conversion from NIZKs to non-interactive zaps, the bulk of our technical contri-
bution is to prove that all our NIZKs have verifiable correlated key generation. At
the core of our proof we show that if Nλ = A0+A1 for any (eλ

1 ||A�
0) ∈ LSamp(λ)

and any matrix, where Nλ is some constant matrix (See Sect. 2), either A0 or
A1 must be a binding CRS with perfect soundness. This allows us to improve
the GOS technique to generically convert our NIZKs into non-interactive zaps.

Moreover, we show the existence of an algorithm that can sample matrices
with only public coins, while its output distribution is identical to D0 and D1

with “half-half” probability. Since the CRSs of our NIZKs consist only of matri-
ces in D0 and D1, we can sample CRSs by using this new algorithms for multiple
times, and generate proofs for a same statement in parallel. Zero-knowledge fol-
lows from that of the underlying NIZK and the indistinguishability between D0

and D1. Statistical soundness holds since with high probability, at least one of
the CRSs is binding. Since the sampling procedure for CRSs only uses public
coins, the resulting NIZK is in the URS model.

2 Preliminaries

Notations. We note that all arithmetic computations are over GF (2) in this
work. Namely, all arithmetic computations are performed with a modulus of
2. We write a $← A(b) (respectively, a = A(b)) to denote the random variable
outputted by a probabilistic (respectively, deterministic) algorithm (or circuit)
A on input b. By x $← S we denote the process of sampling an element x from
a set or distribution S uniformly at random. Let R be the randomness space of
A, a $← A(b) is equivalent to a = A(b; r) for r $← R. By x ∈ {0, 1}n we denote a
column vector with size n and by, say, x ∈ {1}×{0, 1}n−1 we mean that the first
element of x is 1. By xi (respectively, xi) we denote the ith element of a vector
x (respectively, x). By [n] we denote the set {1, · · · , n}. By negl we denote an
unspecified negligible function.

For a matrix A ∈ {0, 1}n×t with rank t′ ≤ n, we denote the sets {y | ∃x
s.t. y = Ax} and {x | Ax = 0} by Im(A) (i.e., the span of A) and Ker(A)

312 Y. Wang and J. Pan

respectively. By A⊥ ∈ {0, 1}n×(n−t′) we denote a matrix consisting of n−t′ linear
independent column vectors in the kernel of A�. Note that for any y /∈ Im(A),
we have y�A⊥ �= 0. For a matrix A ∈ {0, 1}λ×λ, by A (respectively, A) we
denote the upper (λ − 1) × λ matrix (respectively, lower 1 × λ vector) of A. Let
b ∈ {0, 1}, by bA we denote a zero matrix 0 ∈ {0, 1}n×t if b = 0 or A if b = 1.

By eλ
i we denote the column vector in {0, 1}λ with the ith element being 1

and the other elements being 0. By 0 we denote a zero vector or matrix. By In

we denote an identity matrix in {0, 1}n×n. By Mn
0 , Mn

1 , and Nn, we denote the

following n × n matrices: Mn
0 =

(

0 0
In−1 0

)

, Mn
1 =

(

0 1
In−1 0

)

, Nn =
(

0 0
1 0

)

.

2.1 Function Families

In this section, we recall the definitions of function family, NC1 circuits, AC0[2]
circuits, AC0

CM[2] circuits, and ⊕L/poly circuits. Note that AC0[2] � NC1 [18,19].

Definition 1 (Function family). A function family is a family of (possibly
randomized) functions F = {fλ}λ∈N, where for each λ, fλ has a domain Df

λ and
a range Rf

λ.

Definition 2 (NC1). The class of (non-uniform) NC1 function families is the
set of all function families F = {fλ}λ∈N for which there is a polynomial p(·) and
constant c such that for each λ, fλ can be computed by a (randomized) circuit
of size p(λ), depth c log(λ), and fan-in 2 using AND, OR, and NOT gates.

Definition 3 (AC0[2]). The class of (non-uniform) AC0[2] function families is
the set of all function families F = {fλ}λ∈N for which there is a polynomial
p(·) and constant c such that for each λ, fλ can be computed by a (randomized)
circuit of size p(λ), depth c, and unbounded fan-in using AND, OR, NOT, and
PARITY gates.

One can see that multiplication of a constant number of matrices can be per-
formed in AC0[2], since it can be done in constant-depth with PARITY gates.

Next we recall the definitions of multiplicative depth in [5], which can be
thought of as the degree of the lowest-degree polynomial in GF (2) evaluating to
a circuit.

Definition 4 (Multiplicative depth [5]). Let C be a circuit, typeC(g) be the
type of a gate g in C, and parentsC(g) be the list of gates of C whose output is an
input to C. The multipicative depth of C is md(gout), where gout is the output
gate and the function md is defined as

md(g) =

⎧

⎪

⎨

⎪

⎩

1 if typeC(g) = input

max{md(g′) : g′ ∈ parentsC(g)} if typeC(g) = XOR
∑

g′∈parentsC(g) md(g′) if typeC(g) ∈ {AND,OR}
,

where the sum in the last case is over the integers.

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 313

Definition 5 (AC0
CM[2] [5]). AC0

CM[2] is the class of circuits in AC0[2] with con-
stant multiplicative depth (as defined in Definition 4).

Note that an AND gate of fan-in λ (i.e., the security parameter) cannot be
performed in AC0

CM[2].

Definition 6 (⊕L/poly). ⊕L/poly is the set of all boolean function families F =
{fλ}λ∈N for which there is a constant c such that for each λ, there is a non-
deterministic Turing machine Mλ such that for each input x with length λ,
Mλ(x) uses at most c log(λ) space, and fλ(x) is equal to the parity of the number
of accepting paths of Mλ(x).

2.2 Sampling Procedure

We now recall the definitions of four sampling procedures LSamp, RSamp,
ZeroSamp, and OneSamp in Fig. 2. Note that the output of ZeroSamp(n) is always
a matrix of rank n − 1 and the output of OneSamp(n) is always a matrix of full
rank [7]. Additionally, in Fig. 3, we define an algorithm ˜ZeroSamp which runs in
exactly the same way as ZeroSamp except that it additionally outputs a vector

LSamp(n):
For all i, j ∈ [n] and i < j:

ri,j
$← {0, 1}

Return
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 r1,2 · · · r1,n−1 r1,n

0 1 r2,3 · · · r2,n

0 0
. . .

...
...

...
. . . 1 rn−1,n

0 · · · 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

RSamp(n):
For i = 1, · · · , n − 1

ri
$← {0, 1}

Return
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · 0 r1
0 1 r2

0 0
. . .

...
...

...
. . . 1 rn−1

0 · · · 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

ZeroSamp(n):
R0

$← LSamp(n) ∈ {0, 1}n×n

R1
$← RSamp(n) ∈ {0, 1}n×n

Return R0M
n
0R1 ∈ {0, 1}n×n

OneSamp(n):
R0

$← LSamp(n)
R1

$← RSamp(n)
Return R0M

n
1R1 ∈ {0, 1}n×n

Fig. 2. Definitions of LSamp, RSamp, ZeroSamp, and OneSamp. n = n(λ) is a polyno-
mial in the security parameter λ.

˜

˜ZeroSamp(n):

R0
$← LSamp(n) ∈ {0, 1}n×n, R1 =

(

Iλ−1 r̃
0 1

)

$← RSamp(n) ∈ {0, 1}n×n

Return (R0M
n
0R1 ∈ {0, 1}n×n, r̃)

Fig. 3. The definition of ˜ZeroSamp.

314 Y. Wang and J. Pan

r̃ = (ri)n−1
i=1 consisting of the random bits used in generating R1. We have

(

r̃
1

)

∈

Ker(R0Mn
0R1), since R0Mn

0R1

(

r̃
1

)

= R0

(

0 0
Iλ−1 0

) (

Iλ−1 r̃
0 1

) (

r̃
1

)

= 0. This

implies the following lemma.

Lemma 1 (Lemma 3 in [9]). For all λ ∈ N and all M ∈ ZeroSamp(λ), it
holds that Ker(M) = {0,k} where k is a vector such that k ∈ {0, 1}λ−1 × {1}.

We now recall an assumption and a lemma on ZeroSamp and OneSamp given
in [7].

Definition 7 (Fine-grained matrix linear assumption [7]). There exists
a polynomial n = n(λ) in the security parameter λ such that for any family
A = {aλ}λ∈N in NC1 and any λ ∈ N, we have

|Pr[aλ(M) = 1 | M $← ZeroSamp(n)]−
Pr[aλ(M′) = 1 | M′ $← OneSamp(n)]| ≤ negl(λ).

Lemma 2 (Lemma 4.3 in [7]). If NC1 � ⊕L/poly, then the fine-grained
matrix linear assumption holds.

Remark. Notice that for any polynomial n = n(λ), we have {fn}λ∈N ∈ NC1 iff
{fλ}λ∈N ∈ NC1 since O(log(n(λ))) = O(log(λ)). Hence, in the above lemma, we
can also set n(·) as an identity function, i.e., n = λ. For simplicity, in the rest of
the paper, we always let ZeroSamp(·) and OneSamp(·) take as input λ.

The following lemma indicates a simple relation between the distributions of
the outputs of ZeroSamp(λ) and OneSamp(λ).

Lemma 3 (Lemma 7 in [9]). For all λ ∈ N, the distributions of M+Nλ and
M′ are identical, where M� $← ZeroSamp(λ) and M′� $← OneSamp(λ).

2.3 Proof Systems

In this section, we give the definitions of Σ-protocol, NIZK, and non-interactive
zap. Below, for a language description ρ with the associated language Lρ and
relation Rρ, by x ∈ Lρ we mean that there exists w such that Rρ(x,w) = 1.

Σ-protocol. The definition of Σ-protocol is as follows.

Definition 8 (Σ-protocol). A C1-Σ-protocol for a language distribu-
tion {Dλ}λ∈N is a function family {Prover1λ, ChSetλ, Prover2λ, SVerλ, SExtλ,
SSimλ}λ∈N ∈ C1 with the following properties.

– Prover1λ(ρ ∈ Dλ, x,w) returns a commitment com and a state st.
– ChSetλ returns a uniformly random string ch.
– Prover2λ(ch, st) returns a response resp.
– SVerλ(ρ, x, com, ch, resp) deterministically returns 1 (accept) or 0 (reject).
– SExtλ(x, com, (ch, resp), (ch′, resp′)) returns a witness w.
– SSimλ(ρ, x, ch) returns a commitment com and a response resp.

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 315

Completeness is satisfied if for all λ ∈ N, all ρ ∈ Dλ with the associated
relation Rρ, all (x,w) such that Rρ(x,w) = 1, all (com, st) ∈ Prover1λ(ρ, x,w),
all ch ∈ ChSetλ, and all resp ∈ Prover2λ(ch, st), we have SVerλ(ρ, x, com, ch,
resp) = 1.

Special Soundness is satisfied if for all λ ∈ N, all ρ ∈ Dλ, and all (x, com,
(ch, resp), (ch′, resp′)) such that ch �= ch′ satisfying

SVerλ(ρ, x, com, ch, resp) = SVerλ(ρ, x, com, ch′, resp′) = 1,

we have Rρ(x,w) = 1 for w = SExtλ(x, com, (ch, resp), (ch′, resp′)).
Special honest-verifier zero-knowledge is satisfied if for all λ ∈ N, all ρ ∈

Dλ, all (x,w) such that Rρ(x,w) = 1, and all ch ∈ ChSetλ, the distributions
of (com, resp) and (com′, resp′) are identical, where (com, st) $← Prover1λ(ρ, x,w),
resp $← Prover2λ(ch, st), and (com′, resp′) $← SSimλ(ρ, x, ch).

NIZK. We now give the definition of fine-grained NIZK with composable zero-
knowledge and statistical/perfect soundness.

Definition 9 (Non-interactive zero-knowledge (NIZK) proof). A C1-
NIZK for a set of language distributions {Dλ}λ∈N is a function family NIZK =
{Genλ,TGenλ,Proveλ,Verλ,Simλ}λ∈N ∈ C1 with the following properties.

– Genλ returns a binding CRS crs.
– TGenλ returns a hiding CRS crs and a simulation trapdoor td.
– Proveλ(crs, ρ ∈ Dλ, x,w) returns a proof π.
– Verλ(crs, ρ, x, π) deterministically returns 1 (accept) or 0 (reject).
– Simλ(crs, td, ρ, x) returns a simulated proof π.

Completeness is satisfied if for all λ ∈ N, all ρ ∈ Dλ with the associ-
ated relation Rρ, all (x,w) such that Rρ(x,w) = 1, all crs ∈ Genλ, and all
π ∈ Proveλ(crs, ρ, x,w), we have Verλ(crs, ρ, x, π) = 1.

C2-composable zero-knowledge is satisfied if for any adversary A =
{aλ}λ∈N ∈ C2, we have

Pr[1 $← aλ(crs)|crs $← Genλ] − Pr[1 $← aλ(crs)|(crs, td) $← TGenλ] ≤ negl(λ),

and for all λ ∈ N, all ρ ∈ Dλ, and all (x,w) such that Rρ(x,w) = 1, the following
distributions are identical.

π $← Proveλ(crs, ρ, x,w) and π $← Simλ(crs, td, ρ, x),

where (crs, td) $← TGenλ.
Statistical soundness is satisfied if for all λ ∈ N and all ρ ∈ Dλ, we have

Pr[∃x /∈ Lρ and π, s.t. Verλ(crs, ρ, x, π) = 1|crs $← Genλ] ≤ negl(λ),

where x ∈ Lρ iff there exists w such that Rρ(x,w) = 1.
Perfect soundness is satisfied if the above probability is 0.

316 Y. Wang and J. Pan

Definition 10 (NIZK in the uniform random string (URS) model.).
A NIZK NIZK = {Genλ,TGenλ,Proveλ,Verλ,Simλ}λ∈N is in the URS model if
Genλ only samples a public coin urs $← {0, 1}p(λ) at random for some polynomial
p and returns urs.

Non-interactive Zap. A non-interactive zap is a witness-indistinguishable non-
interactive proof system in the plain model, where there is no trusted setup. The
definition is as follows.

Definition 11 (Non-interactive zap). A C1-non-interactive zap for a set of
language distributions {Dλ}λ∈N is a function family ZAP = {ZProveλ,ZVerλ}λ∈N

with the following properties.

– ZProveλ(ρ ∈ Dλ, x,w) returns a proof π.
– ZVerλ(ρ, x, π) deterministically returns 1 (accept) or 0 (reject).

Completeness is satisfied if for all λ ∈ N, all ρ ∈ Dλ, all (x,w) such that
Rρ(x,w) = 1, and all π ∈ ZProveλ(ρ, x,w), we have ZVerλ(ρ, x, π) = 1.

C2-witness indistinguishability is satisfied if for all λ ∈ N, all ρ ∈ Dλ with
the associated relation Rρ, all (x,w0,w1) such that Rρ(x,w0) = Rρ(x,w1) = 1,
and any adversary A = {aλ}λ∈N ∈ C2, we have

Pr[1 $← aλ(π)|π $← ZProveλ(ρ, x,w0)]−
Pr[1 $← aλ(π)|π $← ZProveλ(ρ, x,w1)] ≤ negl(λ).

Perfect soundness is satisfied if for all λ ∈ N, all ρ ∈ Dλ, all x /∈ Lρ, and all
π, we have ZVerλ(ρ, x, π) = 0.

3 AC0[2]-Σ-Protocol for Linear Languages

Let Dλ be a probability distribution outputting language descriptions M ∈
{0, 1}n×t, where n(·) and t(·) are functions in λ. We define the associated lan-
guage as LM = {t : ∃w ∈ {0, 1}t, s.t. t = Mw}. For the associated relation RM,

we have RM(x,w) = 1 iff x = Mw. Let ̂R =
(

0
Iλ−1

)

. We give a Σ-protocol Σ

for {Dλ} in Fig. 4.

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 317

Prover1λ(M,x,w):
R $← {0, 1}t×(λ−1)

Return com = MR and st = (R,w)

ChSetλ:
Return ch = r̃ $← {0, 1}λ−1

Prover2λ(ch, st):

A = (̂R|| ̂Rr̃)� ∈ {0, 1}λ×λ

Return resp = (R||w)A ∈ {0, 1}t×λ

SVerλ(M,x, com = C, ch, resp = D):

A = (̂R|| ̂Rr̃)� ∈ {0, 1}λ×λ

Return 1 iff (C||x)A = MD

SExtλ(x, com, (ch, resp), (ch′, resp′)):
r = ch − ch′ ∈ {0, 1}λ−1

T = resp − resp′ ∈ {0, 1}t×λ

If r = 0, abort
Else find the smallest i ∈ [λ − 1] s.t.
ri = 1 and return ti

SSimλ(M,x, ch):
R′ $← {0, 1}t×(λ−1)

A = (̂R|| ̂Rr̃)� ∈ {0, 1}λ×λ

R′ $← {0, 1}t×(λ−1)

C = MR′ − x · r̃�

D = (R′||0)A
Return com = C and resp = D

Fig. 4. Definition of Σ = {Prover1λ, ChSetλ, Prover2λ, SVerλ, SExtλ, SSimλ}λ∈N. Note

that ̂R� = (0||Iλ−1) where Iλ−1 is an identity matrix in {0, 1}(λ−1)×(λ−1).

Theorem 1. Σ is an AC0[2]-Σ-protocol with special soundness and special
honest-verifier zero-knowledge.

Proof. First, we note that {Prover1λ,ChSetλ,Prover2λ,SVerλ,SExtλ,SSimλ}λ∈N

are computable in AC0[2], since they only involve operations including multi-
plication of a constant number of matrices and sampling random bits.

Completeness. Perfect completeness follows from the fact that for C = MR
and D = (R||w)A, we have (C||x)A = (MR||Mw)A = M(R||w)A = MD.

Special Soundness. For a statement x, a commitment (C, ̂R), and two valid
challenge/response pairs ((r̃,D), (r̃′,D′)) such that r̃ �= r̃′, we have

(C||x)

(

̂R�

r̃�
̂R�

)

= MD and (C||x)

(

̂R�

r̃′�
̂R�

)

= MD′.

Combining the above two equations yields x((r̃� − r̃′�)̂R�) = M(D−D′). Since
the rank of ̂R is λ − 1, we have r̃�

̂R� �= r̃′�
̂R� if r̃� �= r̃′�. Let the ith bit of

(r̃� − r̃′�)̂R� be 1 and the ith column vector of D−D′ be di, we have x = Mdi.
Therefore, the extractor can successfully extract a witness for x. This completes
the proof of special soundness.

Special Honest-Verifier Zero-Knowledge. For x = Mw, since MR =
M(R + w · r̃�) − x · r̃� and

(R||w)

(

̂R�

r̃�
̂R�

)

= (R + w · r̃�)̂R� = (R + w · r̃�||0)

(

̂R�

r̃�
̂R�

)

,

318 Y. Wang and J. Pan

and the distribution of R+w ·r̃� is uniform for R $← {0, 1}t×(λ−1), the simulator
perfect simulates honest proofs, completing the proof of special honest-verifier
zero-knowledge.

Putting all the above together, Theorem 1 immediately follows. 	

4 Fine-Grained NIZK for Linear Languages

In this section, we show how to compile the Σ-protocol in Sect. 3 to a fine-grained
NIZK for linear languages.

Let Dλ be a probability distribution outputting language descriptions M of
rank t′ < n from {0, 1}n×t, where n(·), t(·), and t′(·) are functions in λ and there
exists M⊥ ∈ {0, 1}n×(n−t′) such that M�M⊥ = 0. We define the language as

LM = {x : ∃w ∈ {0, 1}t, s.t. x = Mw}.

For the associated relation RM, we have RM(x,w) = 1 iff x = Mw. We give the
construction of NIZK in Fig. 5. Note that each proof of our NIZK consists of a
commitment/response pair in our Σ-protocol, and A used by Prover2λ and SVerλ
is generated by using OneSamp(λ) and plays a binding CRS now. A hiding CRS
is generated by ˜ZeroSamp(λ), and its trapdoor r̃ essentially corresponds to the
challenge in the Σ-protocol. Roughly, soundness follows from the fact that when
A is of full rank, the kernel of A� is empty and no invalid proof can pass the
verification. Zero-knowledge follows immediately from that of our Σ-protocol
when switching A to a non-full rank matrix.

Genλ:
A� $← OneSamp(λ)
Return crs = A ∈ {0, 1}λ×λ

Proveλ(crs,M ∈ {0, 1}n×t,x,w):
R $← {0, 1}t×(λ−1), C = MR ∈ {0, 1}n×(λ−1)

D = (R||w)A ∈ {0, 1}t×λ

Return π = (C,D)

Verλ(crs,M,x, π):
Return 1 iff (C||x)A = MD

TGenλ:

(A�, r̃) $← ˜ZeroSamp(λ)
Return crs = A ∈ {0, 1}λ×λ and
td = r̃

Simλ(crs, td,M,x):
R′ $← {0, 1}t×(λ−1)

C = MR′ − x · r̃�

D = (R′||0)A
Return π = (C,D)

Fig. 5. Definition of LNIZK = {Genλ, TGenλ, Proveλ, Verλ, Simλ}λ∈N for {Dλ}λ∈N.

Theorem 2. If NC1 � ⊕L/poly, then LNIZK in Fig. 5 is an AC0[2]-NIZK with
perfect soundness and NC1-composable zero-knowledge.

Proof. First, we note that {Genλ,TGenλ,Proveλ,Verλ,Simλ}λ∈N are computable
in AC0[2], since they only involve operations including multiplications of a con-
stant number of matrices and sampling random bits.

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 319

Completeness. Completeness follows from the fact that for x = Mw, C =
MR, and D = (R||w)A, we have (C||x)A = (MR||Mw)A = M(R||w)A =
MD.

NC1-composable Zero-Knowledge. For any adversary A = {aλ}λ∈N ∈ NC1,
the advantage of aλ in distinguishing crs $← Genλ from (crs, td) $← TGenλ is the
same as its advantage in breaking the fine-grained matrix linear assumption,
which is negligible if NC1 � ⊕L/poly, due to Lemma 2.

According to the definition of ˜ZeroSamp (see Sect. 2.2), we can give the
running procedure of TGenλ in an explicit way, namely, randomly sampling

R0 = (eλ
1 ||̂R) $← LSamp(λ) and R1 =

(

Iλ−1 r̃
0 1

)

$← RSamp(λ), and setting

A� = R0Mλ
0R1. In this case, A� = (eλ

1 ||̂R)
(

0 0
Iλ−1 0

) (

Iλ−1 r̃
0 1

)

= (̂R||̂Rr̃).

Then for x = Mw, we have MR = M(R + w · r̃�) − x · r̃� and

(R||w)A = (R||w)

(

̂R�

r̃�
̂R�

)

= (R + w · r̃�)̂R� = (R + w · r̃�||0)A.

Moreover, for R $← {0, 1}t×(λ−1), the distribution of R + w · r̃� is uniformly
random in {0, 1}t×(λ−1). Thus, for any statement, the simulator perfect simulates
honest proofs, completing the proof of composable zero-knowledge.

Perfect Soundness. For any valid statement/proof pair (x, (C,D)) such that
(C||x)A = MD for M ∈ Dλ, we have (M⊥)�(C||x)A = 0. Since A� ∈
OneSamp is of full rank, we must have (M⊥)�x = 0, i.e., x ∈ LM, complet-
ing the proof of perfect soundness. Notice that M⊥ is not necessarily efficiently
computable here.

Putting all the above together, Theorem 2 immediately follows. 	

Remark. By replacing OneSamp with ZeroSamp in Genλ, we immediately
achieve a fine-grained NIZK with perfect zero-knowledge and computational
soundness. The proof is almost identical to that of Theorem 2 except that we
exploit the fine-grained matrix linear assumption in the proof of soundness this
time. Similar arguments can also be made for our OR-proof and NIZKs for circuit
SAT given in the following sections.

5 Fine-Grained OR-Proof

In this section, we extend LNIZK in Sect. 4 to an OR-proof system.
Let Dor

λ be a probability distribution outputting matrices of rank t′ < n from
(M0,M1) ∈ {0, 1}n×t × {0, 1}n×t, where n(·), t(·), and t′(·) are functions in λ
and there exists M⊥

i ∈ {0, 1}n×(n−t′) such that M�
i M⊥

i = 0 for i ∈ {0, 1}. We
define the following language

Lor
M0,M1

= {x0,x1 : ∃w ∈ {0, 1}t, s.t. x0 = M0w ∨ x1 = M1w}.

320 Y. Wang and J. Pan

For the associated relation Ror
M0,M1

, we have Ror
M0,M1

((x0,x1),w) = 1 iff x0 =
M0w or x1 = M1w. The OR-proof is given in Fig. 6.

Theorem 3. If NC1 � ⊕L/poly, then ORNIZK in Fig. 6 is an AC0[2]-NIZK with
perfect soundness and NC1-composable zero-knowledge.

Proof. First, we note that {ORGenλ,ORTGenλ,ORProveλ,ORVerλ,ORSimλ}λ∈N

are computable in AC0[2], since they only involve operations including multipli-
cations of a constant number of matrices and sampling random bits.

Completeness. Completeness follows from the fact that for xj = Mjw, Cj =
MjRj , and Dj = (Rj ||w)Aj , we have

(Cj ||xj)Aj = (MjRj ||Mjw)Aj = Mj(Rj ||w)Aj = MjDj ,

and for A1−j =
(

A
r̃�
1−jA

)

, C1−j = M1−jR′
1−j − x1−j · r̃�

1−j , and D1−j =

(R′
1−j ||0)A1−j , we have

(C1−j ||x1−j)A1−j =((M1−jR′
1−j − x1−j · r̃�

1−j)||x1−j)
(

A
r̃�
1−jA

)

=M1−jR′
1−jA = M1−j(R′

1−j ||0)A1−j = M1−jD1−j .

ORGenλ:
A� $← OneSamp(λ)
Return crs = A ∈ {0, 1}λ×λ

ORProveλ(A, (Mi,xi)i=0,1,w):):
Let j ∈ {0, 1} s.t. xj = Mjw
r̃1−j

$← {0, 1}λ−1

A1−j =
(

A

r̃�
1−jA

)

Aj =
(

A

A − r̃�
1−jA

)

Rj
$← {0, 1}t×(λ−1)

Cj = MjRj ∈ {0, 1}n×(λ−1)

Dj = (Rj ||w)Aj ∈ {0, 1}t×λ

R′
1−j

$← {0, 1}t×(λ−1)

C1−j = M1−jR
′
1−j − x1−j · r̃�

1−j

D1−j = (R′
1−j ||0)A1−j

Return π = ((Ci,Di)i=0,1,A0)

ORTGenλ:

(A�, r̃) $← ˜ZeroSamp(λ)
Return (crs = A ∈ {0, 1}λ×λ, td = r̃)

ORSimλ(A, r̃, (Mi,xi)i=0,1

r̃0
$← {0, 1}λ−1, r̃1 = r̃ − r̃0

A0 =
(

A

r̃�
0 A

)

, A1 =
(

A

r̃�
1 A

)

For i = 0, 1
R′

i
$← {0, 1}t×(λ−1)

Ci = MiR
′
i − xi · r̃�

i

Di = (R′
i||0)Ai

Return π = ((Ci,Di)i=0,1,A0)

ORVerλ(A, (Mi,xi)i=0,1, π):

A0 =
(

A
A0

)

, A1 =
(

A
A − A0

)

Return 1 iff (Ci||xi)Ai = MiDi for i = 0, 1

Fig. 6. Definition of ORNIZK = {ORGenλ, ORTGenλ, ORProveλ, ORVerλ, ORSimλ}λ∈N

for {Dor
λ }λ∈N to {Dor

λ }λ∈N. Recall that A (respectively, A) denotes the upper (λ−1)×λ
matrix (respectively, lower 1 × λ vector) of A.

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 321

NC1-composable Zero-Knowledge. For any adversary A = {aλ}λ∈N ∈ NC1,
the advantage of aλ in distinguishing crs $← ORGenλ from (crs, td) $← ORTGenλ

is negligible if the fine-grained matrix linear assumption holds.
According to the definition of ˜ZeroSamp (see Sect. 2.2), we can give the

running procedure of ORTGenλ in an explicit way by randomly sampling

R0 = (eλ
1 ||̂R) $← LSamp(λ) and R1 =

(

Iλ−1 r̃
0 1

)

$← RSamp(λ) and setting

A� = (eλ
1 ||̂R)

(

0 0
Iλ−1 0

) (

Iλ−1 r̃
0 1

)

= (̂R||̂Rr̃), where the distribution of r̃ is

uniform in {0, 1}λ−1. Thus we have A = r̃�A. Therefore, the distributions of
(A0,A1) generated by ORProveλ and ORSimλ on input a CRS generated by
TGenλ are identical. Moreover, we have MjRj = Mj(Rj +w · r̃�) −xj · r̃� and

(Rj ||w)Aj = (Rj ||w)

(

A
�

r̃�
j A

�

)

= (Rj + w · r̃�
j)A

�
= (Rj + w · r̃�

j ||0)Aj

for xj = Mjw. Since the distribution of Rj+w·r̃�
j for Rj

$← {0, 1}t×(λ−1) is uni-
form in {0, 1}t×(λ−1), the simulator perfectly simulate transcripts generated by
honest protocol executions, completing the proof of composable zero-knowledge.

Perfect Soundness. For a valid statement/proof pair (x, π) where x = (x0,x1)

and π = ((Ci,Di)i=0,1,A0), we set A0 =
(

A
A0

)

and A1 =
(

A
A − A0

)

. Since

A� ∈ OneSamp(λ) is of full rank, at least one of A0 and A1 is of full rank.
For i = 0, 1 and (Ci||xi)Ai = MiDi, we have (M⊥

i)�(Ci||xi)Ai = 0. Let
A�

j be of full rank for j = 0 or j = 1. We must have (M⊥
j)�xj = 0. This means

that x ∈ Lor
M0,M1

must hold, completing the proof of perfect soundness. Notice
that M⊥

j is not necessarily efficiently computable here.
Putting all the above together, Theorem 3 immediately follows. 	

6 Fine-Grained NIZK Proof for Circuit SAT

In this section, we propose a fine-grained NIZK for circuit SAT running in NC1

and secure against adversaries in NC1.
Let {NDλ}λ∈N be any family of language distributions such that for all

ρ ∈ NDλ and all x ∈ Lρ, we have {Rρ(x, ·)}λ∈N ∈ NC1, where Lρ and Rρ are
the associated language and relation respectively. Without loss of generality,
we assume that each Rρ(x, ·) only consists of NAND gates, since an NC1 circuit
can be transformed to an NC1 circuits consisting only of NAND gates, and the
transformation can also be performed in NC1 by changing the gates in parallel.
Let ORNIZK = {ORGenλ,ORTGenλ,ORProveλ,ORVerλ,ORSimλ}λ∈N be a NIZK
for distributions {Dor

λ }λ∈N defining the language

Lor
M′ = {x0,x1 : ∃w ∈ {0, 1}2λ s.t. x0 = M′w ∨ x1 = M′w},

322 Y. Wang and J. Pan

NCGenλ:
crsor

$← ORGenλ, M� $← ZeroSamp(λ)
Return CRS = (crsor,M)

NCTGenλ:
(crsor, tdor) $← ORTGenλ(λ), M� $← OneSamp(λ)
Return CRS = (crsor,M) and TD = tdor

NCProveλ(CRS, ρ, x,w):
Extend w to (w1, · · · ,wout) containing the bits of all wires in the circuit Rρ(x, ·)
Compute ri

$← {0, 1}λ and cti = Mri + eλ
λwi for each bit wi

Set rout = 0 and ctout = eλ
λ for the output wire

For each NAND gate with input ciphertexts cti = Mri +eλ
λwi and ctj = Mrj +eλ

λwj

and the output ciphertext ctk = Mrk + eλ
λwk, run

– xi =
(

eλ
λ + cti + ctk
eλ

λ + ctj

)

, r′
i =

(

ri + rk

rj

)

, xj =
(

eλ
λ + ctk
ctj

)

, r′
j =

(

rk

rj

)

– πij
$← ORProveλ(crsor,M′, (xi, xj), r′

b) if xb = M′r′
b for b ∈ {i, j} and abort

otherwise, where M′ =
(

M 0
0 M

)

Return Π consisting of all the ciphertexts and proofs

NCVerλ(CRS, ρ, x, Π):
Check that all wires have a corresponding ciphertext and ctout = eλ

λ

Check that all NAND gates have a valid NIZK proof of compliance
Return 1 iff all checks pass

NCSimλ(CRS,TD, ρ, x):
Compute ri

$← Zλ
p and cti = Mri for each wire in the circuit Rρ(x, ·)

For each NAND gate with input ciphertexts cti and ctj and the output ciphertext
ctk, run

– xi =
(

eλ
λ + cti + ctk
eλ

λ + ctj

)

, xj =
(

eλ
λ + ctk
ctj

)

– πij
$← ORSimλ(crsor, tdor,M′, (xi, xj)) where M′ =

(

M 0
0 M

)

Return Π consisting of all the ciphertexts and proofs

Fig. 7. Definition of NCNIZK = {NCGenλ, NCTGenλ, NCProveλ, NCVerλ, NCSimλ}λ∈N

for {Dλ}λ∈N. Recall that eλ
λ = (0 · · · 01)� ∈ {0, 1}λ.

where M′ =
(

M 0
0 M

)

for M ∈ ZeroSamp(λ). We give our NIZK for {NDλ}λ∈N

in Fig. 7.

Theorem 4. If NC1 � ⊕L/poly and ORNIZK is an AC0[2]-NIZK with perfect
soundness and NC1-composable zero-knowledge, then NCNIZK is an NC1-NIZK
with perfect soundness and NC1-composable zero-knowledge.

Proof. First, we note that {NCGenλ,NCTGenλ,NCProveλ,NCVerλ,NCSimλ}λ∈N

are computable in NC1, since they only involve operations including multiplica-

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 323

tions of a constant number of matrices, sampling random bits, running ORNIZK,
and computing Rρ(x,w) ∈ NC1. Notice that after computing the values of all
wires, the prover can generate ciphertexts and run ORNIZK for each wire and
gate in parallel and the verifier can check the proofs in parallel.

Completeness. Let wi and wj be the input bits of a NAND gate, and wk be the
true output. We must have 1 + wi + wk = 0 ∧ 1 + wj = 0 or 1 + wk = 0 ∧ wj = 0.
Let cti = Mri + eλ

λwi and ctj = Mrj + eλ
λwj be the input ciphertexts and

ctk = Mrk + eλ
λwk be the output ciphertext. We have

xi =
(

eλ
λ + cti + ctk
eλ

λ + ctj

)

= M′
(

ri + rk

rj

)

+
(

eλ
λ(1 + wi + wk)
eλ

λ(1 + wj)

)

= M′
(

ri + rk

rj

)

or

xj =
(

eλ
λ + ctk
ctj

)

= M′
(

rk

rj

)

+
(

eλ
λ(1 + wk)
eλ

λwj

)

= M′
(

rk

rj

)

.

Therefore, we have xi ∈ Im(M′) if wj = 1 and xj ∈ Im(M′) otherwise. Then the
completeness of NCNIZK follows from the completeness of ORNIZK.

NC1-composable Zero-Knowledge. The indistinguishability of CRSs gener-
ated by NCGenλ and NCTGenλ follows immediately from Lemma 2 and the
composable zero-knowledge of ORNIZK.

Next we define a modified prover NCProve′
λ, which is exactly the same

as NCProveλ except that for each NAND gate, πij is generated as πij
$←

ORSimλ(crsor, tdor,M′, (xi, xj)). The following distributions are identical due to
the composable zero-knowledge of ORNIZK.

Π $← NCProveλ(CRS, ρ, x,w) and Π $← NCProve′
λ(CRS, ρ, x,w),

for (CRS,TD) $← TGenλ and any (x,w) such that Rρ(x,w) = 1.
Moreover, since the distribution of cti = Mri is identical to that of cti =

Mri + eλ
λwi for ri

$← {0, 1}λ when M ∈ OneSamp(λ) is of full rank, the distri-
butions of

Π $← NCProve′
λ(CRS, ρ, x,w) and Π $← NCSimλ(CRS,TD, ρ, x),

where (CRS,TD) $← NCTGenλ and Rρ(x,w) = 1, are identical as well, completing
the proof of composable zero-knowledge.

Perfect Soundness. Due to the perfect soundness of ORNIZK, for each NAND
gate with input ciphertexts (cti, ctj) and an output ciphertext ctk in a valid
proof, we have

xi =
(

eλ
λ + cti + ctk
eλ

λ + ctj

)

∈ Im(M′) or xj =
(

eλ
λ + ctk
ctj

)

∈ Im(M′).

Let k = (r̃�, 1)� be the vector in the kernel of M�, which must exist accord-
ing to Lemma 1. We have

k�(eλ
λ + cti + ctk) = 1 + k�cti + k�ctk = 0 ∧ k�(eλ

λ + ctj) = 1 + k�ctj = 0

324 Y. Wang and J. Pan

or
k�(eλ

λ + ctk) = 1 + k�ctk = 0 ∧ k�ctj = 0,

i.e., we can extract a true input/output pair ((k�cti,k�ctj),k�ctk) for each
NAND gate. For the output wire, we have k�ctout = k�eλ

λ = 1. As a result, we
can extract the bits of all the wires leading to a final output 1, completing the
proof of perfect soundness.

Putting all the above together, Theorem 4 immediately follows. 	

Remark. If we relax the restriction on the computational resources of the prover
and allow it to run in, say, polynomial-time, our NIZK can also prove statements
in NP. The same argument can also be made for our non-interactive zap and
NIZK in the URS model (based on this NIZK) given later in Sects. 8.2 and 9.
Notice that for the security proof of the non-interactive zap with a polynomial-
time prover, we have to ensure that the reduction can simulate proofs in NC1.
This is possible by hard-wiring the extended witness in the reduction beforehand.
We refer the reader to the full paper for details.

7 Fine-Grained NIZK for AC0
CM[2] with Short Proofs

In this section, we propose another fine-grained NIZK generically constructed
from fine-grained NIZKs (instantiated as in Sects. 4 and 5) and a new fine-
grained strongly FHE (sFHE) scheme that we give later. Different from the
NIZK in Sect. 6, we only consider statement circuits in AC0

CM[2] here, while the
proof size is independent with the statement circuit size and only dependent on
the length of witness. Specifically, while the proof size of the NIZK in Sect. 6 is
l · O(λ2), that of the NIZK in this section is n · O(λ2), where l and n are the
circuit and witness sizes respectively.

7.1 Definition of Fine-Grained sFHE

For an sFHE scheme, additionally to the properties of a standard FHE, we
require that the homomorphic evaluation do not change the form of ciphertexts,
and there exist an algorithm RandEvalλ outputting the corresponding random-
ness of a homomorphically evaluated ciphertext on input the messages and ran-
domness of the originally ciphertexts. Moreover, we define a composable version
of indistinguishability against chosen plaintext attacks (CPA), which requires
that the adversary cannot distinguish an honest public key with an “invalid”
public key, and a ciphertext generated by an invalid public key reveals no infor-
mation on the message.

Definition 12 (Strongly fully homomorphic encryption (sFHE)). A C1-
sFHE scheme for C3 circuits is a function family sFHE = {FHEGenλ,FHEGen′

λ,
Encλ,Decλ,Evalλ,RandEvalλ}λ∈N ∈ C1 with the following properties.

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 325

– FHEGenλ returns a public/secret key pair (pk, sk).
– FHEGen′

λ returns a public key pk.
– Encλ(pk,m ∈ {0, 1}; r ∈ R) returns a ciphertext ct.
– Decλ(sk, ct) (deterministically) returns a message m ∈ {0, 1}.
– Evalλ(pk, f ∈ C3, (ct1, · · · , ctn)) (deterministically) return a ciphertext ct.

Without loss of generality, we require that f is represented as an arithmetic
circuit in GF (2) with XOR gates of unbounded fan-in and AND gates with
fan-in 2.

– RandEvalλ(pk, f ∈ C3, (m1, · · · ,mn), (r1, · · · , rn)) (deterministically) return a
randomness r ∈ R. We require that f is represented in the same way as above.

Correctness is satisfied if we have m = Decλ(sk,Encλ(pk,m; r)) for all λ ∈ N,
all m ∈ {0, 1}, all (pk, sk) ∈ FHEGenλ, and all r ∈ R.

C2-composable CPA security is satisfied if for any adversary A = {aλ}λ∈N ∈
C2, we have

Pr[1 $← aλ(pk)|(pk, sk) $← FHEGenλ] − Pr[1 $← aλ(pk)|pk $← FHEGen′
λ] ≤ negl(λ),

and for all λ ∈ N and all pk ∈ FHEGen′
λ, the distributions of ct $← Encλ(pk, 0)

and ct $← Encλ(pk, 1) are identical.
Strong homomorphism is satisfied if for every function family {fλ}λ∈N ∈ C3,

all λ ∈ N, all (pk, sk) ∈ FHEGenλ, all m1, · · · ,mn ∈ {0, 1}, and all r1, · · · , rn ∈
R, we have

Evalλ(pk, f,Encλ(pk,m1; r1), · · · ,Encλ(pk,mn; rn))
=Encλ(pk, f(m1, · · · ,mn);RandEvalλ(pk, f, (m1, · · · ,mn), (r1, · · · , rn))).

One can easily see that composable CPA security implies standard CPA
security. Also, strong homomorphism implies standard homomorphism, since a
homomorphically evaluated ciphertext can be decrypted to the right value due
to correctness.

7.2 Construction of Fine-Grained sFHE

We now give our construction of sFHE sFHE = {FHEGenλ,FHEGen′
λ,Encλ,Decλ,

Evalλ,RandEvalλ}λ∈N in Fig. 8. Evalλ is defined by evaluation algorithms of
AND and XOR gates, i.e., Evalandλ and Evalxorλ . Similarly, RandEvalλ is defined
by RandEvalandλ and RandEvalxorλ .

326 Y. Wang and J. Pan

FHEGenλ:

(M�, r̃) $← ˜ZeroSamp(λ)
Return (pk, sk) = (M, r̃)

FHEGen′
λ:

M� $← OneSamp(λ)
Return pk = M

Encλ(pk,m ∈ {0, 1}):
R $← {0, 1}λ×λ

Return ct = MR + mIλ ∈ {0, 1}λ×λ

Decλ(sk, ct):
Let c be the λth column vector of ct
Return (r̃�||1)c

Evalandλ (pk, (ct0, ct1)):
Return ct2 = ct0ct1 ∈ {0, 1}λ×λ

Evalxorλ (pk, (cti)n
i=1):

Return ct =
∑n

i=1 cti ∈ {0, 1}λ×λ

RandEvalandλ (pk, (m0,m1), (R0,R1)):
ct1 = MR1 + m1Iλ ∈ {0, 1}λ×λ

Return (R0ct1 + m0R1) ∈ {0, 1}λ×λ

RandEvalxorλ (pk, (mi)n
i=1, (Ri)n

i=1):
Return

∑n
i=1 Ri ∈ {0, 1}λ×λ

Fig. 8. Definition of sFHE = {FHEGenλ, FHEGen′
λ, Encλ, Decλ, Evalλ, RandEvalλ}λ∈N

where Evalλ (respectively, RandEvalλ) is defined by Evalandλ and Evalxorλ (respectively,
RandEvalandλ and RandEvalxorλ). Recall that Iλ is an identity matrix in {0, 1}λ×λ.

Theorem 5. If NC1 � ⊕L/poly, then sFHE is an AC0[2]-sFHE scheme for
AC0

CM[2] circuits that is NC1-composable CPA secure.

Proof. First, we note that sFHE is computable in AC0[2], since the key gener-
ation algorithms, the encryption algorithm, and the decryption algorithm only
involve operations including multiplications of a constant number of matrices,
sampling random bits, and computing parity, and we only consider homomor-
phic evaluation of circuits in AC0

CM[2] (i.e., with constant multiplicative depth),
which only involve multiplications of a constant number of matrices as well.

Correctness. Correctness follows from the fact that the λth column vector
of a ciphertext for m is in the form of Mrλ + eλ

λm ∈ {0, 1}λ (where eλ
λ =

(0, · · · , 0, 1)�) and we have (r̃�||1)(Mrλ + eλ
λm) = 0 + (r̃�||1)eλ

λm = m.

Strong Homomorphism. To prove strong homomorphism, we just have to
show the correctness of the homomorphic evaluation for XOR and AND gates.

For homomorphic addition, we have

n
∑

i=1

cti = M(
n

∑

i=1

Ri) + (
n

∑

i=1

mi)Iλ.

For homomorphic multiplication, we have

ct0ct1 = (MR0 + m0Iλ)ct1 =MR0ct1 + m0Iλ(MR1 + m1Iλ)
=M(R0ct1 + m0R1) + m0m1Iλ.

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 327

Hence,
∑n

i=1 cti and ct0ct1 are ciphertexts for
∑n

i=1 mi and m0m1 with ran-
domness

∑n
i=1 Rn and R0ct1 + m0R1 respectively, i.e., strong homomorphism

holds.

Composable CPA Security. The security follows immediately from Lemma
2 and the fact that when M ∈ OneSamp(λ), M is of full rank, and thus the
distributions of MR + Iλ and MR are identical for R $← {0, 1}λ×λ.

Putting all the above together, Theorem 5 immediately follows. 	

We now give some remarks on our scheme.

Remark on AC0
CM[2]. We follow Campanelli and Gennaro [5] to define AC0

CM[2]
circuits with constant multiplicative depth. The reason that we only consider
this class is that the main overhead for homomorphic evaluation is given by
the multiplication gates. Each homomorphic multiplication in our case involves
multiplication of two λ×λ matrices, which can be performed in an AC0[2] circuit
with depth 2 (the first layer consists of fan-in 2 multiplication gates and the
second layer consists of fan-in λ addition gates). But it requires Ω(log(λ)) depth
with fan-in two gates. Hence, a circuit with non-constant multiplicative depth
would require an evaluation of ω(log(λ)) depth, which cannot be performed in
NC1, while addition of polynomial numbers of matrices and multiplication of a
constant depth of matrices can be performed in AC0[2].

Remark on Efficiency. In our scheme, the public key size is only λ2 and the
depth of an NC1 circuit required for homomorphic multiplication is small since
it only computes the parity of λ bits (in parallel). In contrast, the somewhat
homomorphic encryption in [5] has public keys of length (L ·λ3 +λ2), where L is
an a-prior fixed upper bound for the multiplicative depth of evaluation circuits,
and computes the parity of λ2 bits in parallel for homomorphic multiplication.

Remark on Proofs for Ciphertexts. We note that our NIZK for linear lan-
guages in Sect. 4 and our OR-proof in Sect. 5 support the following two languages
respectively including ciphertexts of 1 and all valid ciphertexts.

L1
pk = {x : ∃r ∈ R s.t. x = Encλ(pk, 1; r)}

= {x : ∃R ∈ {0, 1}λ×λ,m ∈ {0, 1} s.t. x + Iλ = MR}
and

Lvalid
pk = {x : ∃r ∈ R s.t. x = Encλ(pk, 0; r) ∨ x = Encλ(pk, 1; r)}

= {x : ∃R ∈ {0, 1}λ×λ s.t. x = MR ∨ x + Iλ = MR}.

Here, pk = M ∈ {0, 1}λ×λ. The reason is that, say, x = MR is equivalent to
x′ = M′r′, where x′ and r′ are concatenations of column vectors in x and R
respectively, and M′ ∈ {0, 1}λ2×λ2

is a large matrix with the diagonal being
matrices M and other positions being 0.

328 Y. Wang and J. Pan

7.3 Generic Construction of NIZK

Let {ADλ}λ∈N be any family of language distributions such that for all ρ ∈ ADλ

and all x ∈ Lρ, we have {Rρ(x, ·)}λ∈N ∈ AC0
CM[2], where Lρ and Rρ are the

associated language and relation respectively.
Let sFHE = {FHEGenλ,FHEGen′

λ,Encλ,Decλ,Evalλ,RandEvalλ}λ∈N be an
sFHE scheme with the randomness space R satisfying NC1-composable
CPA security and AC0

CM[2]-randomness homomorphism. Let ORNIZK =
{ORGenλ,ORTGenλ,ORProveλ,ORVerλ,ORSimλ}λ∈N be a NIZK for distribu-
tions {Dor

λ }λ∈N defining the language Lvalid
M and LNIZK = {Genλ,TGenλ,Proveλ,

Verλ,Simλ}λ∈N be a NIZK for a distribution {Dλ}λ∈N defining L1
M (see the

remark in Sect. 7.2 for Lvalid
M and L1

M). We give our NIZK for {ADλ}λ∈N in Fig. 9.

Theorem 6. If NC1 � ⊕L/poly, LNIZK and ORNIZK are AC0[2]-NIZKs with
perfect soundness and NC1-composable zero-knowledge, and sFHE is an AC0[2]-
sFHE for AC0

CM[2] circuits with NC1-composable CPA security and strong homo-
morphism, then NCNIZK∗ is an AC0[2]-NIZK with perfect soundness and NC1-
composable zero-knowledge.

Proof. First, we note that {NCGenλ,NCTGenλ,NCProveλ,NCVerλ,NCSimλ}λ∈N

are computable in AC0[2], since they only involve operations including multi-
plications of a constant number of matrices, sampling random bits, and run-
ning LNIZK,ORNIZK, and homomorphic evaluation for Rρ(x, ·) ∈ AC0

CM[2] is
computable in AC0[2]. Notice that the prover can generate ciphertexts and run
ORNIZK for each input wire in parallel, and the verifier can check the proofs in
parallel.

Completeness. Due to the strong homomorphism of sFHE, we must have ctout =
Encλ(pk, 1; rout) ∈ L1

M when w is a valid witness and ctout and rout are honestly
generated. Then the completeness of NCNIZK∗ follows immediately from the
completeness of LNIZK and ORNIZK.

NC1-composable Zero-Knowledge. The indistinguishability of CRSs gener-
ated by NCGenλ and NCTGenλ follows immediately from Lemma 2, the compos-
able zero-knowledge of LNIZK and ORNIZK, and the composable CPA security
of sFHE.

Next we define a modified prover NCProve′
λ, which is exactly the same

as NCProveλ except that for each i ∈ [n], πvalid
i is generated as πvalid

i
$←

ORSimλ(crsor, tdor, pk, cti) and πout is generated as πout
$← Simλ(crs, td, pk, ctout).

Then the following distributions are identical due to the composable zero-
knowledge of ORNIZK and LNIZK.

Π $← NCProveλ(CRS, ρ, x,w) and Π $← NCProve′
λ(CRS, ρ, x,w),

for (CRS,TD) $← NCTGenλ and any (x,w) such that Rρ(x,w) = 1.
Moreover, since the distribution of cti ← Encλ(pk, 0) is identical to that of

cti
$← Encλ(pk,wi) for pk $← FHEGen′

λ, the distributions of

Π $← NCProve′
λ(CRS, ρ, x,w) and Π $← NCSimλ(CRS,TD, ρ, x),

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 329

NCGenλ:
crsor

$← ORGenλ, crs $← Genλ, (pk, sk) $← FHEGenλ

Return CRS = (crsor, crs, pk)

NCTGenλ:
(crsor, tdor) $← ORTGenλ, (crs, td) $← TGenλ, pk $← FHEGen′

λ

Return CRS = (crsor, crs, pk) and TD = (tdor, td)

NCProveλ(CRS, ρ, x,w = (wi)n
i=1):

For i = 1, · · · , n, compute
ri

$← R, cti = Encλ(pk,wi; ri), and πvalid
i

$← ORProveλ(crsor, pk, cti, ri)
Compute ctout = Evalλ(pk,Rρ(x, ·), (ct1, · · · , ctn))
Compute rout = RandEvalλ(pk,Rρ(x, ·), (w1, · · · ,wn), (r1, · · · , rn))
Compute πout

$← Proveλ(crs, pk, ctout, rout)
Return Π = ((cti)n

i=1, (πvalid
i)n

i=1, πout)

NCVerλ(CRS, ρ, x, Π):
Compute ctout = Evalλ(pk,Rρ(x, ·), (ct1, · · · , ctn))
Check the validity of all NIZK proofs and return 1 iff all checks pass

NCSimλ(CRS,TD, ρ, x):
For i = 1, · · · , n, compute cti

$← Encλ(pk, 0) and πvalid
i

$← ORSimλ(crsor, tdor, pk, cti)
Compute ctout = Evalλ(pk,Rρ(x, ·), (ct1, · · · , ctn)) and πout

$← Simλ(crs, td, pk, ctout)
Return Π = ((cti)n

i=1, (πvalid
i)n

i=1, πout)

Fig. 9. Definition of NCNIZK∗ = {NCGenλ, NCTGenλ, NCProveλ, NCVerλ, NCSimλ}λ∈N

for {ADλ}λ∈N.

where (CRS,TD) $← TGenλ and Rρ(x,w) = 1, are identical as well, completing
the proof of composable zero-knowledge.

Perfect Soundness. Let Π = ((cti)n
i=1, (π

valid
i)n

i=1, πout) be a valid proof for x.
Due to the perfect soundness of ORNIZK and LNIZK, there must exist wi and
ri such that cti = Encλ(pk,wi; ri) for all i. Then we must have Decλ(sk, ctout) =
Rρ(x, (wi)n

i=1) for ctout = Evalλ(pk,Rρ(x, ·), (ct1, · · · , ctn)), due to the homomor-
phism of sFHE. Moreover, due to the completeness of LNIZK, we have ctout ∈ L1,
i.e., Decλ(sk, ctout) = 1. Therefore, we have Rρ(x, (wi)n

i=1) = 1, completing the
proof of perfect soundness.

Putting all the above together, Theorem 4 immediately follows. 	

Remark on the CRS. The size of CRS in NCNIZK∗ can be further reduced,
since we can let LNIZK and ORNIZK share a single matrix A such that A� $←
OneSamp(λ) as their CRS, and use A + Nλ as the public-key of the FHE since
the distribution of A + Nλ is identical to ZeroSamp(λ) according to Lemma 3.

330 Y. Wang and J. Pan

8 Fine-Grained Non-Interactive Zap

In this section, we formally define verifiable correlated key generation, and show
that all our fine-grained NIZKs have such type of key generation. Then we
improve the framework in [12] to transform our NIZKs into zaps in the fine-
grained setting.

8.1 Verifiable Correlated Key Generation

Definition 13 (Verifiable correlated key generation). A C1-NIZK
NIZK = {Genλ,TGenλ,Proveλ,Verλ,Simλ}λ∈N has verifiable correlated key gen-
eration if there exists a function family {Convertλ,Checkλ}λ∈N ∈ C1 such that

1. the distribution of Convertλ(crs0) is identical to that of crs1, where crs0
$←

Genλ and (crs1, td1) $← TGenλ,
2. Checkλ(crs0,Convertλ(crs0)) = 1 for all crs0 ∈ Genλ, and
3. for any crs0, crs1 (not necessarily in the support of Genλ or TGenλ) such that

Checkλ(crs0, crs1) = 1, we have crs0 ∈ Genλ or crs1 ∈ Genλ.

Lemma 4. LNIZK in Sect. 4 (see Fig. 5) and ORNIZK in Sect. 5 (see Fig. 6)
have verifiable correlated key generation.

Proof. For LNIZK and ORNIZK, where a binding (respectively, hiding) CRS con-
sists only of a matrix sampled by OneSamp(λ) (respectively, ZeroSamp(λ)), we
define {Checkλ}λ∈N and {Convertλ}λ∈N as in Fig. 10.

Convertλ(A0):
A1 = A0 + Nλ

Checkλ(A0,A1):

Return 1 iff Nλ = A0 + A1 and (eλ
1 ||A0

�
) ∈ LSamp(λ)

Fig. 10. Definitions of {Checkλ}λ∈N and {Convertλ}λ∈N for LNIZK and ORNIZK. See
Sect. 2 for the definitions of eλ

i , Nλ, and LSamp.

First we note that {Convertλ}λ∈N ∈ AC0[2] and {Checkλ}λ∈N ∈ AC0[2] since
they only involve addition of matrices and it is straightforward that checking
whether (eλ

1 ||A0
�

) ∈ LSamp(λ) is in AC0[2].
For A�

0
$← OneSamp(λ) and A�

1
$← ZeroSamp(λ), the distributions of A0 +

Nλ and A1 are identical due to Lemma 3. Thus, the first condition in Definition
13 is satisfied.

We now generate A�
0 explicitly by sampling (eλ

1 ||̂R) $← LSamp(λ) and
(

Iλ−1 r̃
0 1

)

$← RSamp(λ) and computing A�
0 = R0Mλ

1R1. In this case,

A�
0 = (eλ

1 ||̂R)
(

0 1
Iλ−1 0

) (

Iλ−1 r̃
0 1

)

= (eλ
1 ||̂R)

(

0 1
Iλ−1 r̃

)

= (̂R||̂Rr̃) + N�
λ ,

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 331

i.e., A0 = ̂R�. Hence, we must have (eλ
1 ||A0

�
) ∈ LSamp(λ) for A�

0 ∈
OneSamp(λ). Moreover, for A1 = A0 + Nλ we have Nλ = A0 + A1. Hence,
the second condition in Definition 13 is satisfied.

According to the above arguments, for A0 such that (eλ
1 ||A0

�
) ∈ LSamp(λ),

if A0
� ∈ Im(A0

�
), i.e., there exists r̃ ∈ {0, 1}λ−1 such that A0

� = A0
�
r̃, then

A�
0 + N�

λ ∈ OneSamp(λ). If A0
� /∈ Im(A0

�
), we must have (A0

�||eλ
1)

(

r̃
1

)

=

A0
� for some r̃ ∈ {0, 1}λ−1, since (A0

�||eλ
1) is of full rank and (A0

�||eλ
1)

(

r̃
0

)

�=

A0
� for any r̃. Since (A0

�||eλ
1)

(

r̃
1

)

= A0
� (equivalently, A0 = r̃�A0 + eλ

1
�)

implies A0 =
(

A0

r̃�A0

)

+ Nλ, we have A�
0 ∈ OneSamp(λ). As a result, either

A�
0 or A�

1 must be in the support of OneSamp(λ) when A0 + A1 = Nλ and
(eλ

1 ||A0
�

) ∈ LSamp(λ), i.e., the third condition is satisfied.
Putting all the above together, the proof of Lemma 4 immediately follows. 	

Lemma 5. NCNIZK and NCNIZK∗ in Sects. 6 and 7 (see Figs. 7 and 9) have
verifiable correlated key generation if the underlying NIZKs ORNIZK have veri-
fiable correlated key generation.3

Let {Checkλ}λ∈N ∈ AC0[2] and {Convertλ}λ∈N ∈ AC0[2] be the checking
and converting algorithms for ORNIZK. For NCNIZK and NCNIZK∗, we define
{Check′

λ}λ∈N and {Convert′λ}λ∈N as in Fig. 11.
The proof of Lemma 5 follows immediately from the verifiable correlated key

generation of ORNIZK and the proof of Lemma 4. Notice that M is sampled
from ZeroSamp(λ) rather than OneSamp(λ) in the CRS of NCNIZK. However,
one can see that this does not make any essential difference and some minor
changes on the proof of Lemma 4 is sufficient.

Convert′λ(crsor,M):
crs′or = Convertλ(crsor)
M′ = M + Nλ

Check′
λ((crsor,M), (crs′or,M′)):

Return 1 iff Nλ = M + M′, (eλ
1 ||M�

) ∈ LSamp(λ),
and Checkλ(crsor, crs′or) = 1

Fig. 11. Definitions of {Check′
λ}λ∈N and {Convert′

λ}λ∈N for LNIZK and ORNIZK.

8.2 Construction of Fine-Grained Non-Interactive Zap

In this section, we give the transformation from NIZKs with verifiable correlated
key generation to non-interactive zaps by using the technique in [12].

3 As remarked in Sect. 7.3, we can make the CRS of NCNIZK∗ a single matrix in
OneSamp(λ).

332 Y. Wang and J. Pan

Let {Dλ}λ∈N be any family of language distributions such that for all
ρ ∈ NDλ and all x ∈ Lρ, we can run {Rρ(x, ·)}λ∈N in NC1, where Lρ and
Rρ are the associated language and relation of ρ respectively. Let NIZK =
{Genλ,TGenλ,Proveλ,Verλ,Simλ,Checkλ,Convertλ}λ∈N be a NIZK with veri-
fiable correlated key generation for {Dλ}λ∈N. We give a non-interactive zap
ZAP = {ZProveλ,ZVerλ}λ∈N for {Dλ}λ∈N in Fig. 12.

ZProveλ(ρ, x,w):
(crs0, td0) $← TGenλ, crs1 = Convertλ(crs0)
π0

$← Proveλ(crs0, ρ, x,w)
π1

$← Proveλ(crs1, ρ, x,w)
Return π = (crs0, crs1, π0, π1)

ZVerλ(ρ, x, π):
Return 1 iff

Checkλ(crs0, crs1) = 1
Verλ(crs0, ρ, x, π0) = 1
Verλ(crs1, ρ, x, π1) = 1

Fig. 12. Definition of ZAP = {ZProveλ, ZVerλ}λ∈N for {Dλ}λ∈N.

Theorem 7. If NIZK is an NC1-NIZK with NC1-composable zero-knowledge,
perfect soundness, and verifiable correlated key generation, then ZAP is an NC1-
non-interactive zap with perfect soundness and NC1-witness indistinguishability.

We refer the reader to the full paper for the security proof.
By instantiating the underlying NIZK with our NIZK in Sect. 6, we obtain an

NC1-non-interactive zap with NC1-witness indistinguishability. Also, by using our
NIZK for AC0

CM[2] in Sect. 7, we immediately achieve an AC0[2]-non-interactive
zap for AC0

CM[2], while the proof is almost identical to that of Theorem 7. Similar
argument can also be made for our NIZKs in the URS model in Sect. 9.

9 Fine-Grained NIZK in the URS Model

In this section, we extend our fine-grained NIZKs in the CRS model to ones in
the URS model. We first show the existence of a public coin distribution that
is identical to the output distributions of ZeroSamp(λ) and OneSamp(λ) with
“half-half” probability, and then show how to convert our fine-grained NIZKs
into ones in the URS model by exploiting this distribution.

Matrices Represented by Random Coins. Let r = (r1,2, · · · , r1,λ, r2,3,
· · · , r2,λ, · · · , rλ−1,λ) ∈ {0, 1}λ(λ−1)/2. We define the a function family {Fλ}λ∈N

such that

Fλ(r) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

r1,2 · · · r1,λ−1 r1,λ

1 r2,3 · · · r2,λ

0
. . .

...
...

. . . 1 rλ−1,λ

0 · · · 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

One can see that for uniform random r $← {0, 1}λ(λ−1)/2, the distribution of
eλ

λ||Fλ(r) is exactly the output distribution of LSamp(λ) in Fig. 2.

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 333

Lemma 6. If NC1 � ⊕L/poly, for any {aλ}λ∈N ∈ NC1, we have

|Pr[aλ(Fλ(r)||s) = 1|r $← {0, 1}λ(λ−1)/2, s $← {0, 1}λ]
− Pr[aλ(M)|M $← ZeroSamp(λ)]| ≤ negl(λ).

Proof. Let r̃ $← {0, 1}λ−1, r $← {0, 1}λ(λ−1)/2, s $← {0, 1}λ, and b $← {0, 1}. Since
eλ

λ||Fλ(r) is of full rank, the distribution of Fλ(r)r̃ + eλ
1 · b, where r̃ $← {0, 1}λ−1

and b $← {0, 1}, is uniform over {0, 1}λ. Moreover, since the distributions of

Fλ(r)||Fλ(r)r̃ = (eλ
1 ||Fλ(r))

(

0 0
Iλ−1 0

) (

Iλ−1 r̃
0 1

)

and

Fλ(r)||(Fλ(r)r̃ + eλ
1) = (eλ

1 ||Fλ(r))
(

0 1
Iλ−1 0

) (

Iλ−1 r̃
0 1

)

are exactly the same as the output distributions of ZeroSamp(λ) and OneSamp(λ)
respectively, the distribution of Fλ(r)||s is identical to ZeroSamp(λ) and
OneSamp(λ) with probability 1/2 (over the choice of b) respectively. Then
Lemma 6 immediately follows from the fine-grained matrix linear assumption
(see Lemma 2). 	

One can see that the proof of Lemma 6 also implies the following lemma.

Lemma 7. If NC1 � ⊕L/poly, for r ∈ {0, 1}λ(λ−1)/2 and s $← {0, 1}λ, we have

Pr[(Fλ(r)||s) ∈ ZeroSamp(λ)] = Pr[(Fλ(r)||s) ∈ OneSamp(λ)] = 1/2.

Moreover, combining Lemmata 6 and 2 immediately yields the following
corollary.

Corollary 1. For any {aλ}λ∈N ∈ NC1, we have

|Pr[aλ(Fλ(r)||s) = 1|r $← {0, 1}λ(λ−1)/2, s $← {0, 1}λ]
− Pr[aλ(M)|M $← OneSamp(λ)]| ≤ negl(λ).

Constructions in the URS Model. Let n be some constant and NIZK =
{Genλ,TGenλ,Proveλ,Verλ,Simλ}λ∈N be a NIZK with perfect soundness and
composable zero-knowledge, where each CRS consists of n matrices outputted
by ZeroSamp(λ) or OneSamp(λ). We construct a statistical NIZK URSNIZK in
the URS model as follows (Fig. 13).

334 Y. Wang and J. Pan

UGenλ:
For i = 1, · · · , �

For j = 1, · · · , n
rij

$← {0, 1}λ(λ−1)/2, sij
$← {0, 1}λ

Return urs = ((rij , sij)n
j=1)�

i=1

UProveλ(urs, ρ, x,w):
For i = 1, · · · , �

crsi = ((Fλ(rij)||sij)�)n
j=1

πi
$← Proveλ(crsi, ρ, x,w)

Return π = (πi)�
i=1

UVerλ(urs, ρ,x, π):
For i = 1, · · · , �, crsi = ((Fλ(rij)||sij)�)n

j=1

Return 1 iff Verλ(crsi, ρ, x, πi) = 1 for all i ∈ [�]

UTGenλ:
For i = 1, · · · , �

(crsi, tdi) $← TGenλ

Let ((Fλ(rij)||sij)�)n
j=1 = crsi

Return urs = ((rij , sij)n
j=1)�

i=1

and td = (tdi)�
i=1

USimλ(urs, td, ρ, x):
For i = 1, · · · , �

crsi = ((Fλ(rij)||sij)�)n
j=1

πi
$← Simλ(crsi, tdi, ρ, x)

Return π = (πi)�
i=1

Fig. 13. Definition of URSNIZK = {UGenλ, UTGenλ, UProveλ, UVerλ, USimλ}λ∈N for
{Dλ}λ∈N. � denotes some polynomial in λ and n is some constant.

Theorem 8. If NC1 � ⊕L/poly and NIZK is an NC1-NIZK for a set of lan-
guage distributions {Dλ}λ∈N with perfect soundness and NC1-composable zero-
knowledge, then URSNIZK is an NC1-NIZK for {Dλ}λ∈N in the URS model with
statistical soundness and NC1-composable zero-knowledge.

The composable zero-knowledge of URSNIZK follows from that of NIZK and
Lemma 6 and Corollary 1. Statistical soundness follows from the fact that among
a sufficiently large number of CRSs, at least one of them should be binding with
overwhelming probability according to Lemma 7. We refer the reader to the full
paper for the formal proof.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th FOCS,
pp. 166–175. IEEE Computer Society Press, October 2004

2. Ball, M., Dachman-Soled, D., Kulkarni, M.: New techniques for zero-knowledge:
leveraging inefficient provers to reduce assumptions, interaction, and trust. In: Mic-
ciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp.
674–703. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 24

3. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. In: 18th ACM STOC, pp. 1–5. ACM Press,
May 1986

4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May
1988

5. Campanelli, M., Gennaro, R.: Fine-grained secure computation. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 66–97. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 3

https://doi.org/10.1007/978-3-030-56877-1_24
https://doi.org/10.1007/978-3-030-03810-6_3

Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security 335

6. Couteau, G., Hartmann, D.: Shorter non-interactive zero-knowledge arguments and
ZAPs for algebraic languages. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020, Part III. LNCS, vol. 12172, pp. 768–798. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1 27

7. Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N.: Fine-grained cryptography.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp.
533–562. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-
3 19

8. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283–293.
IEEE Computer Society Press, November 2000

9. Egashira, S., Wang, Y., Tanaka, K.: Fine-grained cryptography revisited. J. Cryp-
tol. 34(3), 23 (2021)

10. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

12. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012)

13. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

14. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st FOCS, pp. 294–304.
IEEE Computer Society Press, November 2000

15. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM
21(4), 294–299 (1978)

16. Pass, Rafael, shelat, abhi: Unconditional characterizations of non-interactive zero-
knowledge. In: Shoup, Victor (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 118–134.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 8

17. Ràfols, C.: Stretching Groth-Sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 10

18. Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a com-
plete basis with logical addition. Math. Notes Acad. Sci. USSR 41(4), 333–338
(1987)

19. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In: Aho, A. (ed.) 19th ACM STOC, pp. 77–82. ACM Press, May 1987

20. Wang, Y., Pan, J., Chen, Y.: Fine-grained secure attribute-based encryption. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp.
179–207. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 7

https://doi.org/10.1007/978-3-030-56877-1_27
https://doi.org/10.1007/978-3-030-56877-1_27
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/11535218_8
https://doi.org/10.1007/978-3-662-46497-7_10
https://doi.org/10.1007/978-3-030-84259-8_7

On Succinct Non-interactive Arguments
in Relativized Worlds

Megan Chen1(B), Alessandro Chiesa2(B), and Nicholas Spooner3

1 Boston University, Boston, MA, USA
megchen@bu.edu

2 EPFL, Lausanne, Switzerland
alessandro.chiesa@epfl.ch

3 University of Warwick, Coventry, UK

Nicholas.Spooner@warwick.ac.uk

Abstract. Succinct non-interactive arguments of knowledge (SNARKs)
are cryptographic proofs with strong efficiency properties. Applica-
tions of SNARKs often involve proving computations that include the
SNARK verifier, a technique called recursive composition. Unfortunately,
SNARKs with desirable features such as a transparent (public-coin) setup
are known only in the random oracle model (ROM). In applications this
oracle must be heuristically instantiated and used in a non-black-box way.

In this paper we identify a natural oracle model, the low-degree ran-
dom oracle model, in which there exist transparent SNARKs for all NP
computations relative to this oracle. Informally, letting O be a low-degree
encoding of a random oracle, and assuming the existence of (standard-
model) collision-resistant hash functions, there exist SNARKs relative to
O for all languages in NPO. Such a SNARK can directly prove a compu-
tation about its own verifier.

To analyze this model, we introduce a more general framework, the
linear code random oracle model (LCROM).

We show how to obtain SNARKs in the LCROM for computations
that query the oracle, given an accumulation scheme for oracle queries.
Then we construct such an accumulation scheme for the special case of
a low degree random oracle.

Keywords: Succinct non-interactive arguments · Random oracle
model · Accumulation schemes

1 Introduction

Succinct non-interactive arguments (SNARGs) are short cryptographic proofs of
NP computations. Many SNARG constructions also have the property of succinct
verification: a SNARG proof can be verified faster than the original NP witness.
This property leads to exciting applications, and one that has received much
attention recently, and motivates this paper, is recursive proof composition.

Recursive proof composition is a general technique for “bootstrapping” a
SNARG of knowledge (SNARK) into an incremental proof system for ongoing
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 336–366, 2022.
https://doi.org/10.1007/978-3-031-07085-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_12&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_12

On Succinct Non-interactive Arguments in Relativized Worlds 337

computations [12]. This technique can be used to build incrementally-verifiable
computation (IVC) [38] and proof-carrying data (PCD) [25]. The basic idea is
relatively simple: to prove t steps of a computation, prove the NP statement
“step t of the computation is correct, and there exists a proof of correctness for
the previous t − 1 steps”. Clearly this is an incremental proof: this statement
depends only on a single step of the computation and the previous proof.

This technique is “recursive” in that it uses the SNARK to prove a statement
about its own verifier. The succinct verification property ensures that the state-
ment size can be bounded independently of t. This “non-black-box” use of the
SNARK verifier leads to theoretical and practical issues, which we now discuss.

The first efficient approach to recursive composition [10] was based on a class
of pairing-based SNARKs (which includes [13,27,29–31]) that are proven secure
under knowledge assumptions or in the generic bilinear group model. This family
of constructions yields extremely small proofs and highly efficient verification,
but has two significant limitations.

First, all such constructions rely on a secret setup: sampling the structured
reference string involves secret trapdoor values (“toxic waste”) that can be used
to attack the scheme. Hence the security of the system depends on these values
being discarded—but this is difficult to ensure, even when accounting for the
cryptographic ceremonies that researchers have designed to mitigate this sam-
pling problem [2,9,16,17]. Second, efficient recursion for these SNARKs relies
on pairing-friendly cycles of elliptic curves. Only a single construction of such
cycles is known, and that cycle’s curves have undesirable algebraic properties
that weaken their security.

A flurry of recent work has focused on developing new techniques that avoid
both of these drawbacks [15,18–20,24,33]. However, all of the proposed schemes
share an unfortunate detail: they rely on proving statements about computations
that query random oracles.

To see how this arises, we consider as an example the construction of [24]
(the other schemes work in different ways but the issue is the same in each case).
This work presents a SNARK that is secure in the random oracle model, and
then applies the recursive composition technique to obtain IVC and PCD. This
entails giving a SNARK proof about a verifier that queries the random oracle. It
is not known whether there exist SNARKs for such computations in the random
oracle model. To avoid this issue, [24] performs a heuristic step: they assume
that there exists a concrete hash function which yields a secure SNARK when
used in place of the random oracle. Under this assumption they obtain a SNARK
in the standard model, which can be (provably) recursively composed. All of the
cited constructions have similar heuristic steps.

This leads to a natural question: can we retain the benefits of these new
constructions without this heuristic step? One approach would be to attempt to
design better schemes in the standard or generic group models, but there has
been little progress in this direction. In this work we propose a new approach:
to build a SNARK in an oracle model which can prove statements about its own
oracle. Such an oracle model admits a proof of security for recursive composition
“within the model”, without any heuristic step.

338 M. Chen et al.

Of course, the resulting system is proven secure only in an idealized model.
Nonetheless, we argue that a black-box security proof in an oracle model has
several advantages.

– Flexibility. The heuristic step in prior constructions requires instantiating the
oracle via an efficient circuit. This rules out certain oracle instantiations, such
as multi-party protocols or hardware tokens. In contrast, any instantiation of
the oracle is possible if the oracle is used as a black box by the construction.

– Efficiency. The random oracle is typically instantiated in practice via a con-
crete “unpredictable” hash function such as SHA-3 or BLAKE. Unfortunately,
producing SNARKs about these functions is expensive. This has motivated
a line of work on hash functions designed to be more efficient for SNARKs
[3–6,28]. These new constructions have received far less scrutiny and crypt-
analysis than standard hash functions. Our approach offers a possible alter-
native: if we can make only black-box use of the oracle, then we do not need
to worry about an instantiation’s “SNARK-friendliness”.

– Understanding security. What should be the standard-model analogue of a
security property in the ROM? Choosing the correct heuristic assumption
is a balancing act between the requirements of the standard model proof
and what can be justified by the idealized proof. There are typically many
details here, and the precise choice of assumption can affect the validity of
the result. In the worst case, security flaws might be hidden in the heuristic
step! In contrast, security proofs in idealized models provide clear “end-to-
end” guarantees. Finally, heuristic assumptions make it difficult to assess the
concrete security of a scheme, while security proofs in idealized models often
lead to concrete security expressions (the random oracle model is an excellent
example of this).

1.1 Our Results

Our main result is to identify a natural oracle model, the low-degree random
oracle model, in which there exist SNARKs for all NP computations relative
to the same oracle. That is, there is a distribution over oracles O such that,
assuming the existence of (standard-model) collision-resistant hash functions,
there exist SNARKs relative to O for all languages in NPO.

We first introduce a more general model we call the linear code random
oracle model, and investigate its structural and cryptographic properties. We
then describe our construction of SNARKs in the low-degree random oracle
model. This construction makes use of an accumulation scheme for queries to
the oracle, which we consider to be of independent interest. We now discuss these
contributions in more detail.

(1) Linear code random oracles. We introduce the linear code random
oracle model (LCROM) and study its structural and security properties. In the
LCROM, all parties have oracle access to a codeword ρ̂ sampled uniformly at
random from a linear code C ⊆ (D → F). We require that C have an associated
efficient injective mapping f : {0, 1}m → D such that the restriction of ρ̂ to

On Succinct Non-interactive Arguments in Relativized Worlds 339

im(f) is distributed as a uniformly random function im(f) → F. This property
ensures that we can query the random oracle by querying ρ̂ ◦ f . We show that,
while there exist exponential separations between the two models, all linear code
random oracles are collision-resistant within im(f).

A low-degree random oracle is a linear code random oracle where C is a
Reed-Muller code: the space of evaluation tables of multivariate polynomials of
bounded (individual) degree. The polynomial structure of this code is important
in several ways. First, these oracles can be efficiently simulated, which directly
implies that standard model computational assumptions continue to hold in this
model. Second, it allows for possible concrete instantiations via structured PRFs
(see Sect. 2.1). Finally, our accumulation scheme (and hence also our SNARK)
relies on polynomial interpolation to perform query reduction.

(2) Transparent SNARKs in the low-degree random oracle model.
We show that, if collision-resistant hash functions exist, there exist SNARKs in
the low-degree random oracle model (LDROM) that can prove NP computations
relative to the same oracle.

Theorem 1. There exists a transparent SNARK in the LDROM for computa-
tions in the LDROM, assuming the existence of collision-resistant hash functions
in the standard model.

The result is obtained by combining a SNARK in the LDROM for NP com-
putations without oracles and an accumulation scheme for oracle queries in the
LDROM. For the former component we use Micali’s construction of a SNARK
in the random oracle model [35], whose security proof we adapt to the LDROM.
The latter component is a new scheme and a key contribution of this work; we
discuss this next.

(3) Accumulation scheme for low-degree random oracle queries. An
accumulation scheme for an oracle θ is a primitive that allows a verifier, with
the help of an untrusted prover, to “store” oracle queries in an accumulator that
can be efficiently checked later by a decider. For non-triviality, we require that
the verifier cannot query the oracle, and that the size of the accumulator and the
query complexity of the decider be independent of the number of accumulated
queries. This is a variation on the notion of accumulation schemes for predicates
as introduced by [20].

In this work, we build an accumulation scheme for the low-degree random
oracle. To do so, we build on a prior interactive query reduction protocol [21,32],
which reduces any number of queries to a low-degree polynomial to a single
query via interpolation. To obtain an accumulation scheme, we use a variant
of the Fiat-Shamir transformation to make (a variant of) the query reduction
protocol non-interactive; this introduces an additional oracle query which must
also be accumulated. Proving security of the accumulation scheme is the most
technically involved part of this paper, and requires developing new tools that
we deem of independent interest; see Sect. 2.2 for more details.

340 M. Chen et al.

1.2 Related Work

Below we summarize prior works related to idealized oracle models and accumu-
lation schemes.

Generic Group Model. Shoup [36] introduced the generic group model
(GGM), an model which represents a prime-order group via two oracles: a ran-
dom injection L : Zp → {0, 1}k and a mapping from (L(x), L(y)) to L(x + y).
The generic bilinear group model (GBM), introduced by Boneh and Boyen [14],
augments this with an oracle implementing a bilinear map. [39] shows that a
generic group or generic bilinear group oracle can be used to construct a ran-
dom oracle by taking ρ(x) to be the first (say) k/2 bits of L(x).1 A natural
question, that we leave open for future work, is whether there exist SNARKs in
the GGM/GBM that can prove GGM/GBM computations.

Probabilistic Proofs in Relativized Worlds. Chiesa and Liu [23] give several
impossibility results for probabilistic proofs in relativized worlds. They show
that there do not exist nontrivial PCPs (or IOPs) for computations relative to
a variety of types of oracle, including random oracles, generic group oracles,
and, most relevant to us, random low-degree polynomial oracles. It is argued
that these separations give evidence that SNARKs relative to these oracles do
not exist. We view this work as a counterpoint: the LDROM does not admit
efficient PCPs but does admit SNARKs (under a cryptographic assumption).
This suggests that the relationship between PCPs and SNARKs in relativized
worlds is more complex than previously thought.

Algebrization. The notion low-degree random oracles is reminiscent of the
algebrization framework [1], introduced to understand the algebraic techniques
used to prove non-relativizing results like PSPACE ⊆ IP. An example of an
“algebrizing” inclusion is that for every oracle θ, PSPACEθ ⊆ IPθ̂, where θ̂ is any
low-degree extension of θ. Note that the left side of the containment is relative to
the original oracle, whereas the right side is relative to θ̂. This is incomparable to
our setting: on the one hand, we want the same low-degree oracle on “both sides”;
on the other hand, our results hold only for specific choices of (distributions over)
oracles. Nonetheless, some of our techniques for analyzing linear code random
oracles are inspired by the study of algebraic query complexity in [1].

2 Techniques

We overview the main ideas behind our results. In Sect. 2.1 we introduce linear
code random oracles, as well as the special case of low-degree random oracles. In
Sect. 2.2 we describe an accumulation scheme for queries to a low-degree random
oracle. Then we discuss technical tools that we use to establish the security of
the accumulation scheme: in Sect. 2.3 a forking lemma for algorithms that query
any linear code random oracle; and in Sect. 2.4 the hardness of a certain zero-
finding game for low-degree random oracles. Finally, in Sect. 2.5 we describe our
SNARK construction that relativizes in the random oracle model.
1 This result is sensitive to the way that the generic group is modelled; in particular,

it is not known to hold for the [34] formalization of the GGM.

On Succinct Non-interactive Arguments in Relativized Worlds 341

2.1 Linear Code Random Oracles

We informally introduce the model of linear code random oracles, in which the
oracle is a uniformly random codeword of a linear code. Then, we explain why
collision resistance holds for the linear code random oracle. Finally we discuss a
notable special case for this paper, low-degree random oracles.

Definition. The (standard) random oracle model considers the setting where
every party (honest or malicious) is granted oracle access to the same random
function. In this paper we consider the setting where every party is granted
oracle access to the same random codeword sampled from a given linear code C.

Recall that a linear code C is a subspace of the vector space of functions from
a domain D to a field F. A linear code random oracle is a codeword ρ̂ : D → F

chosen uniformly at random from the code C.
For cryptographic applications, it will be helpful to impose an additional

requirement on the code C, which we call the “full-rank” condition. Intuitively,
the full-rank condition ensures that there is an efficient embedding of the stan-
dard random oracle ρ in ρ̂. More precisely, we require that C have an associated
efficiently-computable injection f : {0, 1}m → D for some m ∈ N known as the
arity of (C, f). We require that the restriction of C to the image of f has dimen-
sion 2m (equivalently, C is systematic on im(f)). This ensures that the function
ρ̂ ◦ f : {0, 1}m → F is uniformly random when ρ̂ : D → F is uniformly random in
C. In fact, we can view ρ̂ as a (randomized) systematic encoding of the random
oracle using C.

Definition 1 (informal). A linear code random oracle ρ̂ is an oracle drawn
uniformly at random from a full-rank linear code C. A C-oracle algorithm is an
algorithm with oracle access to c ∈ C. A systematic oracle algorithm is an oracle
algorithm making queries in {0, 1}m.

A systematic oracle algorithm is a C-oracle algorithm for any full-rank C via
the associated injection. If C is the space of all functions {0, 1}m → F (and f is
the identity) then we recover the standard random oracle.2

Query Complexity. We wish to understand what additional power is granted
to the adversary by giving it access to an encoding of the random oracle.

A key difference between general linear code random oracles ρ̂ and the stan-
dard random oracle ρ is that querying ρ̂ outside of {0, 1}m can yield information
about evaluations inside {0, 1}m that would otherwise be hard to obtain with
a small number of queries. To illustrate this, consider the full-rank linear code
C ⊆ {0, 1}m ∪ {Σ} → F (for a special symbol Σ), consisting of all functions c
such that c(Σ) =

∑
a∈{0,1}m c(a). Clearly, with oracle access to c ∈ C, one can

determine
∑

a∈{0,1}m c(a) with a single query. On the other hand, it is not hard
to show that no algorithm making fewer than 2m queries to the standard random
oracle can compute this quantity.

2 Setting F to be the field of size 2λ yields the more familiar definition of a random
oracle mapping {0, 1}m → {0, 1}λ; for generality we prefer not to fix the field choice.

342 M. Chen et al.

Hence in general there is an exponential gap in query complexity between a
linear code random oracle model and the standard random oracle model. What
about for problems of cryptographic interest? We show that linear code random
oracles are collision-resistant; in fact, having access to an encoding of the random
oracle using a linear code provides no advantage in collision finding.

Lemma 1. Given oracle access to ρ̂ ← C, a t-query adversary finds x, y ∈
{0, 1}m such that ρ̂(x) = ρ̂(y) with probability at most t2/|F|.
Note that for this lemma to hold it is crucial that C be full-rank and that x, y
are restricted to {0, 1}m. Otherwise finding collisions may be very easy: consider
the repetition code {(α, α) : α ∈ F}. We will make use of the collision-resistance
property to prove security of our SNARK construction.

Low-Degree Random Oracles. Our protocols rely on a special class of lin-
ear code random oracles that we call low-degree random oracles, obtained by
choosing C to be the space F

≤d[X1, . . . , Xm] of m-variate polynomials over F of
individual degree at most d ∈ N, evaluated over the domain F

m. This code is
full-rank via the natural bijection between {0, 1}m and {0F, 1F}m ⊆ F

m, because
the latter is an interpolating set for the space of multilinear polynomials.

There is an efficient and perfect stateful simulation of all low-degree random
oracles (for polynomial m, d) [8]. This implies that low-degree random oracles do
not grant any additional computational power; in particular, it does not impact
any “standard model” cryptography. We will use this fact in Sect. 2.2, where
our accumulation scheme will require a standard model collision-resistant hash
function.

We briefly discuss the possibility of instantiating this model. Given that
the low-degree random oracle can be simulated efficiently, it can at least be
implemented by a trusted party or hardware token. A candidate cryptographic
instantiation is to obfuscate the algebraic pseudorandom functions of Benabbas,
Gennaro and Vahlis [11]. They construct a pseudorandom function F : [d]m → G

(for group G of prime order p) that additionally allows, given the secret key, the
efficient computation of group elements

P (x1, . . . , xm) =
∑

a∈[d]m

F (a) · xa1
1 · · · xam

m

for x1, . . . , xm ∈ Fp. Note that if F is a random function then P is uniformly
random in F

≤d
p [X1, . . . , Xm].3 Hence if F is pseudorandom, P is indistinguishable

from a random polynomial.
Another natural instantiation strategy is to start with some “strong” hash

function that we believe suffices to replace the random oracle in existing construc-
tions, then arithmetize it to obtain a polynomial that extends the hash function.
Of course, all of the security properties of the original hash function are main-
tained under this transformation. Unfortunately, directly arithmetizing a hash

3 We view P as a polynomial over Fp via some isomorphism G → Fp (which need not
be efficiently computable).

On Succinct Non-interactive Arguments in Relativized Worlds 343

function yields a polynomial of quite high degree: approximately 2D, where D
is the circuit depth. The latter ranges from 25 to about 3000 for widely-used
“strong” hash functions [37]. Since our SNARK construction involves proving
a statement of size linear in the degree, this cost becomes prohibitive. While
there exist techniques to reduce the degree of an arithmetization, these modify
the function significantly so that it no longer behaves like a low-degree random
oracle. We leave the question of instantiation via arithmetization to future work.

2.2 Accumulation Scheme for Low-Degree Random Oracles

We describe our construction of an accumulation scheme for accumulating
queries to the low-degree random oracle. First we review the notion of an accu-
mulation scheme. Then we describe an interactive protocol based on the query-
reduction technique for IPCPs in [21,32], and how this leads, via the Fiat–
Shamir transformation, to our accumulation scheme. We conclude by discussing
the challenges of proving security, which motivates developing the new tools that
we introduce in subsequent sections.

Review: Accumulation Schemes. We review the notion of an accumulation
scheme [20], stated for an arbitrary oracle distribution (rather than specifically
for the random oracle model) and specialized to the accumulation of oracle
queries rather than general predicates.

Definition 1. An accumulation scheme for queries to an oracle θ (sampled
according to some distribution) is a triple of algorithms (Pθ,V,Dθ), known as
the prover, verifier, and decider, that satisfies the following.

– Completeness: For all accumulators acc and query-answer pairs (x, α), if
Dθ(acc) = 1 and θ(x) = α, then for (acc′, πV) ← Pθ(x, α, acc) it holds that
V(x, α, acc, acc′, πV) = 1 and Dθ(acc′) = 1.

– Soundness: For efficiently generated accumulators acc, acc′, query-answer
pairs (x, α) and accumulation proofs πV, if Dθ(acc′) = 1 and
V(x, α, acc, acc′, πV) = 1 then θ(x) = α and Dθ(acc) = 1 with all but neg-
ligible probability.

The definition extends in a natural way to accumulate n query-answer pairs
[(xi, αi)]ni=1 and m old accumulators [accj]�j=1, as in the formal in Sect. 3.3.
For simplicity, below we present our accumulation scheme below for the case of
general n and m = 1. Note that we do not grant the accumulation verifier V
access to the oracle θ—this is a key requirement achieved by our construction
and used in our applications.

Review: An Interactive Query Reduction Protocol. [32] describe an inter-
active query reduction protocol for interactive PCPs (IPCPs), a class of prob-
abilistic proofs; subsequently, [21] adapted and simplified this protocol in their
“low-degree” IPCP model. We recast this simplified protocol as an interactive
query reduction protocol in the low-degree random oracle model.

344 M. Chen et al.

Let ρ̂ : Fm → F be a polynomial of individual degree at most d (for now,
ρ̂ need not be random) and let [qi]ni=1 = {(x1, α1), . . . , (xn, αn)} be a list of
(alleged) query-answer pairs. The prover P wishes to convince the verifier V
that ρ̂(xi) = αi for every i ∈ [n], in a setting where both parties have oracle
access to ρ̂. While the verifier V can straightforwardly check this claim with n
queries to ρ̂ (and no help from the prover P), the protocol below enables the
verifier V to check this claim with a single query to ρ̂ (up to some soundness
error). Let b1, . . . , bn ∈ F be a list of n distinct field elements, fixed in advance.

1. Both P and V compute the unique polynomial g of degree less than n such
that g(bi) = xi for all i ∈ [n].

2. The prover P computes the composed polynomial f := ρ̂ ◦ g, and sends
f : F → F to the verifier.

3. The verifier V chooses a random β ∈ F and checks that f(β) = ρ̂(g(β)) (by
querying ρ̂ at g(β)). Finally, the verifier V checks that f(bi) = αi for every
i ∈ [n].

Observe that ρ̂◦g is a univariate polynomial of degree less than nmd, and so the
communication complexity of this protocol is O(nmd · log |F|) bits. If the prover
is honest, then ρ̂(xi) = ρ̂(g(bi)) = f(bi) = αi for every i ∈ [n]. On the other
hand, if a cheating prover sends some polynomial f̃ �= ρ̂◦ g, then f̃(β) �= ρ̂(g(β))
with probability 1 − nmd

|F| over the choice of β ∈ F, in which case the verifier
rejects.

Our Accumulation Scheme. We construct an accumulation scheme for accu-
mulating queries to the low-degree random oracle, based on the above query
reduction protocol. At a high level, the accumulation prover and verifier engage
in the above query reduction protocol, except that rather than directly check-
ing that f̃(β) = ρ̂(g(β)), the prover outputs the new accumulator acc′ :=
(g(β), f̃(β)) containing the query g(β) and claimed answer f̃(β). The decider
can check that acc′ contains a valid query-answer pair with a single query to the
oracle ρ̂. Notice that because an accumulator consists of a query-answer pair,
we can simply include the old accumulator in the input to the query reduction
protocol as an extra pair (xn+1, αn+1).

The challenge now is that an accumulation scheme is a non-interactive proto-
col while the above query-reduction protocol is interactive. Superficially, achiev-
ing non-interactivity appears to be a standard application of the Fiat–Shamir
transform [26] because the interactive query-reduction protocol is public-coin.
That is, since a low-degree random oracle ρ̂ embeds a (standard) random oracle,
the accumulation prover can use that random oracle to generate the verifier’s
random challenge β from the composed polynomial f as β := ρ̂(x1, . . . , xn+1, f)
(the embedding from binary strings into the domain of ρ̂ is implicit). Note that
we include x1, . . . , xn+1 as input to ρ̂ to achieve adaptive security. However, this
setting is quite different from the familiar one for Fiat–Shamir: (i) the original
interactive protocol already involves the oracle; (ii) the oracle is a random low-
degree oracle rather than a standard random oracle; and (iii) the accumulation
verifier cannot query ρ̂! We discuss the latter point in more detail next, since

On Succinct Non-interactive Arguments in Relativized Worlds 345

resolving it requires modifying the construction; the other two points will be
addressed later when we discuss the security proof.

Since the accumulation verifier is not allowed to query the oracle (this is
the point of designing an accumulation scheme for oracle queries), it cannot
check the query-answer pair ((x1, . . . , xn+1, f), β) for correctness. The natural
approach is to store the pair ((x1, . . . , xn+1, f), β) in the accumulator, so that
an accumulator contains an additional query-answer pair (xn+2, αn+2). Unfor-
tunately, this results in the length of the Fiat–Shamir query, and hence the
accumulator, increasing without bound (it will simply contain all accumulated
queries). To address this, we rely on a succinct commitment scheme Commit,
and derive the challenge as β := ρ̂(C) for C := Commit(x1, . . . , xn+2, f) instead.
This ensures that the query to derive the challenge β does not grow in size with
each accumulation.

These considerations lead us to design the following accumulation scheme.

– Accumulation prover: P receives as input an old accumulator acc and a list
of query-answer pairs [(xi, αi)]ni=1, and outputs a new accumulator acc′ and
accumulation proof πV computed as follows.
1. Query-answer list. The old accumulator acc consists of two query-answer

pairs, which we denote by (xn+1, αn+1) and (xn+2, αn+2). Set the query-
answer list Q := [(xi, αi)]n+2

i=1 .
2. Interpolate queries. Compute the unique polynomial g : F → F

m of degree
less than n + 2 such that g(bi) = xi for all i ∈ [n + 2].

3. Compose polynomials. Compute the polynomial f := ρ̂ ◦ g.
4. Commit to polynomials. Compute the commitment C := Commit(x1, . . . ,

xn+2, f).
5. Fiat–Shamir challenge. Compute the challenge β := ρ̂(C) ∈ F.
6. Output. Output the new accumulator acc′ := {(g(β), f(β)), (C, β)} and

accumulation proof πV := f .
– Accumulation verifier: V receives as input ([qi]ni=1, acc, acc

′, πV), where acc′ =
{(x, α), (C ′, β)}, and works as follows. Compute the query-answer list Q as
in Step 1 of the prover, the polynomial g as in Step 2 of the prover and the
commitment C as in Step 3 of the prover. Then check that C ′ = C, f(bi) = αi

for all i ∈ [n + 2], x = g(β), and α = f(β).
– Decider: D checks that the input accumulator acc = {(x, α), (C, β)} satisfies

α = ρ̂(x) and β = ρ̂(C).

Intuitively, the accumulation scheme is secure against efficient attackers
because the binding property of the commitment scheme ensures that setting
the challenge β to ρ̂(C) is as good as ρ̂(x1, . . . , xn+2, f), and the latter gives a
random challenge based on the prover’s first message of the interactive query-
reduction protocol.

We remark that the commitment scheme is the only part of the construction
that uses cryptography outside of the oracle (i.e., is not information theoretic).

Zero-Knowledge. Zero-knowledge for an accumulation scheme means that
there exists a simulator that can sample a new accumulator acci = {(x, α),

346 M. Chen et al.

(C, β)}, without access to inputs [qi]ni=1 or an old accumulator acci−1. The accu-
mulation scheme described above is not zero knowledge, because acci includes
the value g(β), which depends on [qi]ni=1 and acci−1. To remedy this, we modify
the accumulation scheme so that the prover P additionally accumulates a ran-
dom query xn+3 ∈ F

m. This ensures that g(β) is uniformly random in F
m.4 We

also require Commit to be a hiding commitment, and include the commitment
randomness in πV.

Finally, we note that if zero-knowledge is not required, then the commitment
scheme used by the prover to obtain C does not need to be hiding; in this case
a collision-resistant hash function suffices.

How to Prove Security? Proving the security of the above accumulation
scheme is not straightforward, despite the intuition that underlies its design. The
main difficulty is that existing tools for establishing security work for standard
random oracles rather than low-degree random oracles (e.g., security analyses of
the Fiat–Shamir transform). We develop new tools to overcome the above prob-
lems. We formulate a zero-finding game lemma for low-degree random oracles,
which shows that it is computationally hard for an adversary to find f �≡ ρ̂ ◦ g
such that f(z) = (ρ̂ ◦ g)(z) for z := ρ̂(Commit(x1, . . . , xn+2, f)). In order to
prove this lemma, we additionally prove a forking lemma for algorithms that
query any linear code random oracle. We discuss these next: first our forking
lemma in Sect. 2.3, and then our zero-finding game lemma in Sect. 2.4.

2.3 A Forking Lemma for Linear Code Random Oracles

We review a forking lemma for the standard random oracle, and then describe
a new forking lemma for any linear code random oracle.

Review: A Forking Lemma for Random Oracles. In cryptography a fork-
ing lemma relates the probability of an adversary winning some game in multiple
related executions, as a function of the adversary’s winning probability in a sin-
gle execution. Below we describe a forking lemma (based on [7]) that considers
the setting of non-interactive protocols with forks of size 2 via algorithms that
run in strict time.5

4 Both [32] and [21] also add a random point to the curve. In contrast to our con-
struction, in both cases this point is added by the verifier to ensure soundness:
the query-reduction protocol is composed with a low-degree test, whose proximity
guarantee holds only with respect to a uniform query. In our setting, the oracle is
guaranteed to be low degree.

5 The cryptography literature contains several types of forking lemmas, depending
on aspects such as: (i) they apply to interactive protocols (without any oracles) or
non-interactive protocols (in the random oracle model); (ii) they have a fork of size
2, or any size; (iii) the forking algorithm runs in strict time or expected time. The
specific setting that we study is motivated by the present application, though we
expect that the ideas for linear code random oracles that we introduce will extend
to other settings as well.

On Succinct Non-interactive Arguments in Relativized Worlds 347

Let p be a predicate that captures the winning condition. Consider an adver-
sary A that queries the random oracle t times and produces an output (q, o) such
that p(q, o, tr) = 1 with probability δ, where tr = {(q1, α1), . . . , (qt, αt)} are the
query-answer pairs of A. We think of q as the adversary’s “chosen” query, and
o as some additional input to the predicate p.

Now suppose that we additionally run A in a forked execution. Let i :=
FP(q, tr) ∈ [t] be the location of the query q in its query-answer list tr (abort if q
does not appear in tr). Consider the forking algorithm Fork that, given access to
A and input (tr, i), works as follows: (i) run A answering the first i−1 queries to
the random oracle according to tr; (ii) answer subsequent queries uniformly at
random; (iii) output the output (q′, o′) of A and the query transcript tr′ induced
by this execution of A.

The forking lemma below gives a lower bound on the probability that: (1)
p(q, o, tr) = 1 (A wins the original game); (2) p(q′, o′, tr′) = 1 (A wins the game
in the forked execution); (3) q = q′ (the queries output by A in the two related
executions are equal).6

Lemma 1. Suppose that A is a t-query random oracle algorithm such that

δ := Pr
ρ

[
p(q, o, tr) = 1

∣
∣ (q, o; tr) ← Aρ

]
.

Then

Pr
ρ

⎡

⎣
q = q′

∧ p(q, o, tr) = 1
∧ p(q′, o′, tr′) = 1

∣
∣
∣
∣
∣
∣

(q, o; tr) ← Aρ

i ← FP(q, tr)
(q′, o′, tr′) ← ForkA(tr, i)

⎤

⎦ ≥ δ2/t .

Extending the Forking Lemma to any Linear Code Random Oracle.
When extending Lemma 1 to the linear code random oracle setting, a key diffi-
culty is choosing the fork point i. The role of the fork point is to ensure that the
answer to query q is resampled in the fork, while all prior queries stay the same.
For the standard random oracle case, this point is easy to find: it is simply the
index of the query q.

Contrastingly, for linear code random oracles, recall from Sect. 2.1 that A
may learn the evaluation of unqueried points due to the structure of the code
(e.g., if the code is locally decodable). This makes it unclear at which query A
learns the value of ρ̂(q), or even if a single such query exists at all! We show
that the linear structure of the code C implies that there does exist a query qi at
which A first learns the value of ρ̂ at q (and before that A knows nothing about
it); we define FPC(q, tr) := i.

Can FPC be efficiently computed? Note that A may try to obfuscate the fork
point by trying to learn ρ̂(q) in some complicated way via the structure of the
code. The problem of finding the fork point can be solved via constraint detection

6 The bound that appears in [7] is ≥ δ2

t
−negl(λ). The negligible term arises from the

additional condition that tr(q) �= tr′(q). Our applications of the forking lemma refer
directly to the distribution of tr′(q) and so we do not need this explicit condition.

348 M. Chen et al.

[8]: the fork point is the first query i at which there is a linear constraint over
the set {ρ̂(q1), . . . , ρ̂(qi), ρ̂(q)}. For low-degree random oracles, we can implement
FPC efficiently using the efficient constraint detection algorithm for Reed–Muller
codes of [8]. For many interesting linear codes, efficient constraint detection is
an open problem.

To state the forking lemma requires one additional consideration. Strictly
speaking, Lemma 1 holds only for adversaries that do not repeat queries (oth-
erwise the adversary can distinguish a fork from the original execution), which
is without loss of generality. In the LCROM, this restriction is not enough: the
structure of the code might allow an adversary to learn a single query point
in a variety of ways. Instead we must restrict our adversary further, so that
it does not make any query whose answer it can already infer. Any adversary
can be converted into a non-redundant adversary via constraint detection; hence
we assume non-redundancy for efficient adversaries if C has efficient constraint
detection. Due to this complication we prefer to state the non-redundancy con-
dition explicitly in our forking lemma below.

Lemma 2. Let ρ̂ ← C be a linear code random oracle. Suppose that A is a
t-query non-redundant C-oracle algorithm such that

δ := Pr
ρ̂

[
p(q, o, tr) = 1

∣
∣ (q, o; tr) ← Aρ̂

]
.

Then

Pr
ρ̂

⎡

⎣
q = q′ ∈ {0, 1}m

∧ p(q, o, tr) = 1
∧ p(q′, o′, tr′) = 1

∣
∣
∣
∣
∣
∣

(q, o; tr) ← Aρ̂

i ← FPC(tr, q)
(q′, o′, tr′) ← Fork(tr, i)

⎤

⎦ ≥ δ2/t .

Note that the Fork algorithm here is the same as in Lemma 1, except that we
choose the random answers from the alphabet F of C.

2.4 A Zero-Finding Game for Low-Degree Random Oracles

We review the zero-finding game for standard random oracles in [20], and then
we describe our variant for low-degree random oracles.

Review: A Zero-Finding Game for the Standard Random Oracle. Bünz,
Chiesa, Mishra, and Spooner [20] consider a zero-finding game where an efficient
adversary A with query access to a random oracle ρ is challenged to output a
commitment C and a non-zero polynomial f ∈ F

≤d[X1, . . . , Xm] such that C is
a commitment to f and f(ρ(C)) = 0. Intuitively, the binding property of the
commitment scheme implies that A is unlikely to win the game because the
polynomial f is “fixed” before A learns the value of ρ(C), and so the probability
that this value is a zero of f is small by the Schwartz–Zippel lemma. Indeed, [20]
shows that every efficient adversary A that makes at most t queries to ρ wins
with probability at most negligibly more than

√
(t + 1)md/|F| (note that md is

the total degree of f).

On Succinct Non-interactive Arguments in Relativized Worlds 349

Their proof is based on the forking lemma for the standard random oracle
(Lemma 1), as we now sketch. We define the forking lemma predicate p(q, f, tr)
to be satisfied if and only if: (i) f �≡ 0; (ii) f(tr(q)) �= 0; and (iii) q is a com-
mitment to f . By increasing the query complexity of A to t + 1 we can ensure
that q is in the support of tr. It follows that if A wins the zero-finding game
with probability δ, then it satisfies the premise of Lemma 1, and so the forking
experiment succeeds with probability at least δ2/(t + 1).

Suppose that the forking experiment succeeds: we obtain (q, f, f ′, tr, tr′) such
that f and f ′ are non-zero polynomials that are both valid openings of the same
commitment q, and it holds that f(tr(q)) �= 0 and f ′(tr′(q)) �= 0. In the forked
execution, tr′(q) is sampled uniformly at random independently of f , and so
Pr[f(tr′(q)) = 0] ≤ md/|F|. If f = f ′ then the probability that p(q, f ′, tr′) is
satisfied in this case is at most md/|F|; if instead f �= f ′, then we break the
commitment scheme, which can occur with at most negligible probability. Hence
δ2/(t + 1) ≤ md/|F| + negl(λ); rearranging yields the bound.

A Zero-Finding Game for Low-Degree Random Oracles. We require a
variant of the zero-finding game to prove security of our accumulation scheme
from Sect. 2.2. In more detail, we want to bound the probability that an efficient
adversary with query access to a low-degree random oracle ρ̂ outputs a commit-
ment C and two polynomials f, g such that: (1) C is a commitment to (f, g); (2)
f �≡ ρ̂ ◦ g; and (3) the oracle answer z := ρ̂(C) satisfies f(z) = (ρ̂ ◦ g)(z). For
this we prove the following lemma.

Lemma 3 (informal). Let Commit be a binding commitment scheme, and let
ρ̂ be a low-degree random oracle defined over a field F. Then for every efficient
t-query oracle algorithm A,

Pr
ρ̂

⎡
⎣

C = Commit(f, g;ω)
∧ f(X) �≡ ρ̂(g(X))

∧ f(ρ̂(C)) = ρ̂(g(ρ̂(C)))

∣∣∣∣∣∣
(C, f, g, ω) ← Aρ̂

⎤
⎦ = O

(√
t · m · deg(ρ̂) · deg(g)

|F|

)
+negl(λ) .

A key difference of our zero-finding game compared to the one in [20] (besides
the different oracle models) is in the polynomial equation: the polynomial equa-
tion not only involves a random evaluation at a point ρ̂(C) determined by the
oracle ρ̂ (analogous to ρ(C) before) but it also involves the low-degree oracle ρ̂
itself as a polynomial. This causes significant complications to the security proof,
as we discuss next.

A natural approach to prove Lemma 3 would be to adapt the proof of the
zero-finding game in [20], using our forking lemma for linear code random ora-
cles (Lemma 2) rather than the standard forking lemma. Recall that the non-
redundancy requirement is satisfied without loss of generality because low-degree
random oracles have efficient constraint detection. To invoke the lemma we must
choose a forking predicate p(C, (f, g, ω), tr) that captures the three conditions on
the left. Similarly to before, one condition is “C = Commit(f, g;ω)”. However,
translating the other two conditions to be compatible with the forking lemma is
much more involved, and requires overcoming several challenges.

Since the predicate p cannot query the oracle ρ̂, these conditions must be
converted into a statement about the query transcript tr. In the [20] proof, the

350 M. Chen et al.

corresponding condition becomes f(tr(C)) = 0. This is justified in their setting
because adversaries that do not query the oracle at C cannot win the game. This
is not true for low-degree oracles! An adversary can, for example, learn ρ̂(C) by
querying points on a curve that passes through C. To handle this issue, we use
the structure of the linear code to define a partial function ρ̃tr which captures
all of the information that the adversary knows about ρ̂ given the points it has
queried. We show that if ρ̃tr(x) = ⊥, no adversary can determine ρ̂(x) from tr
better than guessing.

We summarize the above discussion by describing the forking lemma pred-
icate explicitly. On input query point C, auxiliary input (f, g, ω), and query
transcript tr, p accepts if the following three conditions hold:

(1) C = Commit(f, g;ω),
(2) f �≡ ρ̃tr ◦ g, and
(3) f(ρ̃tr(C)) = ρ̃tr(g(ρ̃tr(C))).

Note that since ρ̃tr is a partial function, so is ρ̃tr ◦ g, in general. If ρ̃tr ◦ g is not
total then condition (2) holds immediately, since f is total.

We now continue following the template of [20]. Let A be an adversary win-
ning the Lemma 3 game with probability δ. Invoking our forking lemma (Lemma
2), we obtain, with probability δ2/t, (C, (f, g, ω), (f ′, g′, ω′), tr, tr′), where p holds
for (C, (f, g, ω), tr) and (C, (f ′, g′, ω′), tr′). Similarly to before, by the binding
property of Commit we can focus on the case where (f, g) = (f ′, g′). The analo-
gous next step would be to conclude by applying Schwartz–Zippel to the polyno-
mial f − ρ̃tr ◦ g. Here, however, we run into another issue: since this polynomial
depends on tr, it may differ between the two forks!

To resolve this, we use a slightly different polynomial. Denote by tr|i−1 the
truncation of tr to the first i−1 entries, where i is the fork point. By construction,
tr′|i−1 = tr|i−1. Hence ρ̃tr|i−1 ◦ g is the same function in both forks. Of course, it
may be that ρ̃tr|i−1 ◦g is not total (even if ρ̃tr ◦g is). We show that in this case the
adversary is very unlikely to win: in particular, it can be shown that ρ̃tr|i−1 ◦ g is
not total only if ρ̃tr|i−1(g(α)) = ⊥ for all but m ·deg(ρ̂) ·deg(g) choices of α ∈ F.
But then since ρ̃tr′(C) is chosen uniformly at random independently of tr|i−1, in
this case condition (3) holds with probability at most m · deg(ρ̂) · deg(g)/|F|.

In the case that ρ̃tr|i−1 ◦ g is total, we can now apply Schwartz–Zippel to the
polynomial f − ρ̃tr|i−1 ◦ g, which concludes the proof by rearranging to bound δ
as before.

2.5 SNARKs for Oracle Computations

We outline the proof of Theorem 1, which provides a transparent SNARK in the
LDROM for computations in the LDROM, assuming the existence of collision-
resistant hash functions in the standard model.

The proof is in two steps: first we describe a generic SNARK construction in
any oracle model from a SNARK for non-oracle computations and an accumu-
lation scheme for queries to the oracle; then we explain how we instantiate the
construction specifically for the low-degree random oracle model.

On Succinct Non-interactive Arguments in Relativized Worlds 351

Step 1: A Generic Construction. Let θ ← O be any oracle (for now not
necessarily low-degree). Informally, we can view a computation that has oracle
access to θ as made of two parts that share a common (untrusted) witness of
query-answer pairs: (i) a computation where oracle answers are read from the
witness; and (ii) a computation that checks all query-answer pairs for consistency
with the oracle θ. We prove the former using a SNARK ARGin = (Pin,Vin) for
non-oracle computations (whose security holds in a model where parties have
access to θ), and the latter via an accumulation scheme AS = (Pθ,V,Dθ) for
queries to θ. We then combine these two components to obtain a SNARK in the
oracle θ model for computations that query θ.

In more detail, our goal is to prove a relation Rθ := {(x,w) : Mθ(x,w) =
1} ∈ NPθ, where M is a polynomial-time oracle Turing machine. To build a
SNARK for Rθ using our high-level template, we define the following non-oracle
relation:

R′ := {((x, acc), (w, tr, πV)) : M ′(x,w, tr) = 1 ∧ V(tr,⊥, acc, πV) = 1} ∈ NP ,

where M ′ works exactly like M except that its oracle queries are answered using
tr, V is the accumulation verifier, and ⊥ denotes an empty accumulator. Intu-
itively, if (x, acc) ∈ L(R′) and acc is a valid accumulator, then for tr consistent
with θ and some witness w, M ′(x,w, tr) = 1. This implies that Mθ(x,w) = 1,
and so x ∈ L(R).

Next, we describe our SNARK construction ARGout = (Pθ
out,Vθ

out) in terms
of R′.

1. Pθ
out simulates M and records M ’s oracle transcript tr. Then, Pθ

out accumulates
the queries in tr using the accumulation prover acc ← Pθ(⊥, tr). Next, Pθ

out

runs the SNARK prover Pin((x, acc), tr) to obtain a proof πin that (x, acc) ∈
R′. Pθ

out then outputs πout = (πin, acc).
2. Vθ

out receives the input πout = (πin, acc), then runs the SNARK verifier
Vin((x, acc), πin) and the accumulation decider Dθ(acc). If both accept, Vθ

out

accepts.

For (knowledge) soundness, consider a malicious prover P̃ that outputs an
instance x and a proof (πin, acc) that Vθ

out accepts, i.e. Vin((x, acc), πin) = 1 and
Dθ(acc) = 1. By the knowledge guarantee of the SNARK, we can extract a
witness (w, tr, πV). If tr is not consistent with θ, then the soundness of the accu-
mulation scheme implies that Dθ(acc) = 1 with at most negligible probability.
Hence tr is consistent with θ, which implies that (x,w) ∈ Rθ by definition of
R′.

For clarity we have omitted parameter generation from the above description.
The parameters of ARGout are simply the concatenation of the parameters for
ARGin and AS. If, as in our construction below, both of these have transparent
setup, then so does ARGout.

Step 2: Instantiating the Building Blocks. We explain how to instantiate
the above generic construction in the case where θ is a low-degree random oracle.

352 M. Chen et al.

For the accumulation scheme, we use our construction for low-degree oracle
queries from Sect. 2.2. Note that this construction requires a collision-resistant
hash function, so our SNARK inherits its public parameters.

Next, we obtain a SNARK for non-oracle computations relative to the low-
degree random oracle. It is well known that Micali’s SNARG [35], when instan-
tiated with a PCP of knowledge, is a proof of knowledge in the random oracle
model via a straightline extractor [38]. Naturally, we can carry this construc-
tion over to the low-degree random oracle model. However, it is unclear how
to construct a straightline extractor. Instead, we make use of a folklore obser-
vation: there is an alternative extractor which uses a forking algorithm. This
requires polynomially-many forked transcripts (rather than 2); we observe that
our forking lemma in the LCROM (Lemma 2) can easily be extended to support
this.

We observe that our technique for proving knowledge is not specific to the
low-degree oracle. In fact, our forking lemma (Lemma 2) shows that efficient
forking lemmas exist for any linear code random oracle with an efficient con-
straint detection algorithm. Similarly, all linear code random oracles are collision-
resistant. Hence, to build SNARKs for other linear code oracle computations,
it suffices to design an accumulation scheme for oracle queries and an efficient
constraint detection algorithm for the code.

3 Preliminaries

3.1 Notations

We use [n] to denote the set of integers {1, . . . , n}. The notation F
≤d[X1, . . . , Xm]

refers to the set of m-variate polynomials of individual degree at most d with
coefficients in F. In this paper, we write deg(·) to denote individual degree. For
a distribution D, we denote the support of D by supp(D). For a function f , we
denote the image of f with im(f). We denote by (X → Y) the set of all functions
{f : X → Y }. We denote by f : X ⇀ Y a partial function from X to Y .

Indexed Relations. An indexed relation R is a set of triples (i,x,w) where i
is the index, x is the instance, and w is the witness; the corresponding indexed
language L(Rθ) is the set of pairs (i,x) for which there exists a witness w
such that (i,x,w) ∈ R. For example, the indexed relation of satisfiable Boolean
circuits consists of triples where i is the description of a Boolean circuit, x is a
partial assignment to its input wires, and w is an assignment to the remaining
wires that makes the circuit to output 0.

Security Parameters. For simplicity of notation, we assume that all public
parameters have length at least λ, so that algorithms which receive such param-
eters can run in time poly(λ).

Distributions. For finite set X, we write x ← X to denote that x is drawn
uniformly at random from X.

On Succinct Non-interactive Arguments in Relativized Worlds 353

Oracle Algorithms. For a function θ : X → Y , we write Aθ for an algorithm
with oracle access to θ. We say that A is t-query if A makes at most t queries
to θ. We say that an oracle algorithm is systematic if it only makes queries in
{0, 1}m for some m ∈ N.

Random Oracles. Typically, a random oracle is a function ρ sampled uniformly
at random from ({0, 1}m → {0, 1}n) for some m,n ∈ N. It will be convenient
for us to consider a slightly broader definition, where ρ is sampled uniformly at
random from ({0, 1}m → F) for some finite field F.

Oracle Relations. For a distribution over oracles O, we write RO to denote
the set of indexed relations {Rθ : θ ∈ supp(O)}. We define RO ∈ NPO if and
only if there exists a polynomial-time oracle Turing machine M such that for all
θ ∈ supp(O), Rθ = {(i,x,w) : Mθ(i,x,w) = 1}.

3.2 Non-interactive Arguments in Oracle Models

We follow [22] and define the tuple of algorithms ARG = (G, I,P,V) to be a
(preprocessing) non-interactive argument relative to an oracle distribution O
for an indexed oracle relation RO if the algorithms satisfy the following syntax
and properties:

1. Gθ(1λ) → pp. On input a security parameter λ (in unary), G samples public
parameters pp for the argument system.

2. Iθ(pp, i) → (ipk, ivk). On input public parameters pp and an index i for the
relation R, I deterministically specializes pp to index-specific proving and
verification keys (ipk, ivk).

3. Pθ(ipk,x,w) → π. On input an index-specific proving key ipk, an instance
x, and a corresponding witness w, P computes a proof π that attests to the
claim that (i,x,w) ∈ R.

4. Vθ(ivk,x, π) → b ∈ {0, 1}. On input an index-specific proving key ivk, an
instance x, and a corresponding proof π, V checks that π is a valid proof.

– Completeness. For every adversary A,

Pr

⎡

⎢
⎢
⎢
⎢
⎣

(i,x,w) �∈ Rθ

∨
Vθ(ivk,x, π) = 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

θ ← O(λ)
pp ← Gθ(1λ)

(i,x,w) ← Aθ(pp)
(ipk, ivk) ← Iθ(pp, i)

π ← Pθ(ipk,x,w)

⎤

⎥
⎥
⎥
⎥
⎦

= 1 .

– Soundness. For every polynomial-size adversary P̃,

Pr

⎡

⎢
⎢
⎣

(i,x) �∈ L(Rθ)
∧

Vθ(ivk,x, π) = 1

∣
∣
∣
∣
∣
∣
∣
∣

θ ← O(λ)
pp ← Gθ(1λ)

(i,x, π) ← P̃θ(pp)
(ipk, ivk) ← Iθ(pp, i)

⎤

⎥
⎥
⎦ ≤ negl(λ) .

354 M. Chen et al.

The above formulation of completeness allows (i,x,w) to depend on the oracle θ
and public parameters pp, and the above formulation of soundness allows (i,x)
to depend on the oracle θ and public parameters pp.

Knowledge Soundness. We say that ARG has knowledge soundness (with
respect to auxiliary input distribution D) if there exists an efficient extractor E
such that for every polynomial-size adversary P̃,

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Vθ(ivk,x, π) = 1
⇓

(i,x,w) ∈ R

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

θ ← O(λ)
pp ← Gθ(1λ)
ai ← D(pp)

(i,x, π; r) ← P̃θ(pp, ai)
(ipk, ivk) ← Iθ(pp, i)
w ← E P̃,θ(pp, ai, r)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≥ 1 − negl(λ) .

3.3 Accumulation Schemes

We recall the definition of an accumulation scheme from [20]. Let Φ : O(∗) ×
({0, 1}∗)3 → {0, 1} be a predicate (for clarity we write Φθ(ppΦ, iΦ, q) for
Φ(θ, ppΦ, iΦ, q)). Let H be a randomized algorithm with access to θ, which out-
puts predicate parameters ppΦ.

An accumulation scheme for (Φ,H) is a tuple of algorithms AS =
(G, I,P,V,D) all of which (except G) have access to the same oracle θ. These
algorithms must satisfy two properties, completeness and soundness, defined
below.

Completeness. For all (unbounded) adversaries A,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

∀ j ∈ [�], Dθ(dk, accj) = 1
∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

⇓
Vθ(avk, [qi]

n
i=1, [accj]

�
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp ← G(1λ)

ppΦ ← Hθ(1λ)
(iΦ, [qi]

n
i=1, [accj]

�
j=1) ← Aθ(pp, ppΦ)

(apk, avk, dk) ← Iθ(pp, ppΦ, iΦ)
(acc, πV) ← Pθ(apk, [qi]

n
i=1, [accj]

�
j=1)

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1 .

Note that for = n = 0, the precondition on the left-hand side holds vacuously;
this is required for the completeness condition to be non-trivial.

Soundness. For every polynomial-size adversary A,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Vθ(avk, [qi]
n
i=1, [accj]

�
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

⇓
∀ j ∈ [�], Dθ(dk, accj) = 1

∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)

pp ← Gθ(1λ)

ppΦ ← Hθ(1λ)(
iΦ [qi]

n
i=1 [accj]

�
j=1

acc πV

)
← Aθ(pp, ppΦ)

(apk, avk, dk) ← Iθ(pp, ppΦ, iΦ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≥ 1 − negl(λ) .

On Succinct Non-interactive Arguments in Relativized Worlds 355

Zero Knowledge. There exists a polynomial-time simulator S such that for
every polynomial-size “honest” adversary A (see below) the following distribu-
tions are (statistically/computationally) indistinguishable:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(θ, pp, acc)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

θ ← O(λ)

pp ← Gθ(1λ)

ppΦ ← Hθ(1λ)

(iΦ, [qi]
n
i=1, [accj]

�
j=1) ← Aθ(pp, ppΦ)

(apk, avk, dk) ← Iθ(pp, ppΦ, iΦ)

acc, πV ← Pθ(apk, [qi]
n
i=1, [accj]

�
j=1)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(θ, pp, acc)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

θ ← O(λ)

(pp, τ) ← Sθ(1λ)

ppΦ ← Hθ(1λ)

(iΦ, [qi]
n
i=1, [accj]

�
j=1) ← Aθ(pp, ppΦ)

acc ← Sθ(ppΦ, τ, iΦ)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Here A is honest if it outputs, with probability 1, a tuple (iΦ, [qi]ni=1, [accj]�j=1)
such that Φθ(ppΦ, iΦ, qi) = 1 and Dθ(dk, accj) = 1 for all i ∈ [n] and j ∈ [].
Note that the simulator S is not required to simulate the accumulation verifier
proof πV.

3.4 Commitment Schemes

Definition 2. A commitment scheme for a family of message universes
Mck = {0, 1}L, commitment universes Cck = {0, 1}poly(λ,L), and randomness
domains Rck = {0, 1}poly(λ) a is a tuple CM = (CM.Setup,CM.Commit) with the
following syntax.

– CM.Setup, on input a security parameter 1λ and a message format L, outputs
a commitment key ck.

– CM.Commit, on input a commitment key ck, a message m ∈ Mck and ran-
domness ω ∈ Rck, outputs a commitment C ∈ Cck.

The commitment scheme CM is hiding if ck ← CM.Setup(1λ, L), then for
every efficient adversary A that chooses m0 �= m1 ∈ Mck, we have that

{CM.Commit(ck,m0;ω0) | ω0 ← Rck} ≈ {CM.Commit(ck,m1;ω1) | ω1 ← Rck} .

The commitment scheme CM is binding if for every message format L such
that |L| = poly(λ) and for every efficient adversary, the following holds.

Pr

⎡
⎣

m0 �= m1

∧
CM.Commit(ck, m0;ω0) = CM.Commit(ck, m1;ω1)

∣∣∣∣∣∣
ck ← CM.Setup(1λ, L)

((m0, ω0), (m1, ω1)) ← A(ck)

⎤
⎦ ≤ negl(λ).

Finally, CM is s-compressing if for all ck ← CM.Setup(1λ, L), Cck =
{0, 1}s(λ).

356 M. Chen et al.

4 Linear Code Random Oracles

In this section we define our main object of study, linear code random oracles.
We first recall the definition of a linear code and its dual. For a set D and field
F, we write (D → F) or F

D for the vector space of functions from D to F.

Definition 3. Let D be a set, and F a field. A linear code C is a subspace of
F

D. The dual code of C is the set C⊥ := {z ∈ F
D : ∀c ∈ C,

∑
x∈D z(x)c(x) = 0};

observe that C⊥ is also a subspace of FD.

We are now ready to define a linear code random oracle.

Definition 4 (Linear code random oracle). Let C ⊆ (D → F) be a linear
code, and f : {0, 1}k → D. We say that (C, f) is full-rank if C|im(f) = F

im(f) �
F
2k

(in particular, f is an injection).
Let C = {Cλ}λ∈N be a family of linear codes and F an efficient algorithm.

We say that (C , F) is a linear code random oracle of arity m if for each
λ ∈ N if F (1λ) : {0, 1}m(λ) → Dλ is a circuit such that (Cλ, F (1λ)) is full-rank
for all λ ∈ N.

For the remainder of this work, when it is unambiguous we will typically
omit F and write c(q) for c(F (1λ)(q)) when c ∈ Cλ and q ∈ {0, 1}m(λ). The stan-
dard random oracle is the linear code random oracle

({({0, 1}m(λ) → Fλ)}λ, I
)

where I(1λ)(q) = q for q ∈ {0, 1}m(λ). We will often refer to a function sampled
uniformly from a linear code random oracle simply as a “linear code random
oracle”, and we use the symbol ρ̂.

An algorithm with oracle access to c ∈ C, written Ac, can query c at any
point in D; we refer to such an algorithm as a C-oracle algorithm. Any systematic
oracle algorithm B can be interpreted as a Cλ-oracle algorithm via the efficient
injection F (1λ, ·); we write Bρ̂, omitting F . The following statement follows
immediately from the full-rank condition.

Claim. Let (C = {Cλ ⊆ (Dλ → Fλ)}λ, F) be a linear code random oracle of
arity m. For any algorithm B with access to an oracle {0, 1}m(λ) → Fλ,

Pr
ρ←({0,1}m(λ)→F)

[Bρ → 1] = Pr
ρ̂←Cλ

[Bρ̂ → 1] .

4.1 Query Transcripts and Partial Oracles

We define some notions used in security proofs involving linear code random
oracles. A C-query transcript is a list of query-answer pairs consistent with the
execution of a C-oracle algorithm. A partial oracle extends a query transcript to
include evaluations that are fixed by the structure of the code.

Definition 5. Let C ⊆ (D → F) be a linear code. A C-query transcript is a
list tr = [(qi, αi)]ti=1 ∈ (D × F)t for any t ∈ N such that there exists c ∈ C with

On Succinct Non-interactive Arguments in Relativized Worlds 357

c(qi) = αi for all i ∈ [t]. A query transcript tr induces a partial function D ⇀ F

in the natural way, which we also denote by tr:

tr(q) =

{
αi if q = qi

⊥ if q /∈ {q1, . . . , qt}.

We then define the partial oracle ρ̃C
tr : D ⇀ F as follows:

ρ̃C
tr(q) =

{
β if ∀c ∈ C, ((∀i ∈ [t], c(qi) = αi) ⇒ c(q) = β)
⊥ o.w.

.

When C is clear from context we will omit it from the notation.

4.2 Constraints

In this section we examine properties of the partial oracle arising from the linear
structure of C. We first introduce the notion of a constraint for elements in the
domain of a linear code. The results in this section hold for all linear codes, even
those that are not full-rank.

Definition 6. Let C ⊆ (D → F) be a linear code. We say that a subset of the
domain Q ⊆ D is constrained if there exists a nonzero mapping z : Q → F

such that for all c ∈ C,
∑

x∈Q z(x)c(x) = 0. Equivalently, Q is constrained if
there exists z �= 0 ∈ C⊥ with supp(z) ⊆ Q. We refer to z as a constraint on Q.
We say that Q is unconstrained if it is not constrained.

We say that Q ⊆ D determines x ∈ D if either x ∈ Q or there exists a
constraint z on Q ∪ {x} such that z(x) �= 0.

The following claim connects constraints and partial oracles.

Claim. Let C be a linear code, and tr be a C-query transcript. Then for all x ∈ D,
ρ̃C
tr(x) �= ⊥ if and only if supp(tr) determines x.

In particular, ρ̃C
tr(x) = β ∈ F if and only if tr(x) = β, or tr(x) = ⊥ and there

exists z ∈ C⊥ such that supp(z) ⊆ supp(tr) ∪ {x} and z(x) �= 0, and

β = −z(x)−1
(∑

y∈supp(tr)

z(y)tr(y)
)

.

Next we characterize the distribution of c(q) conditioned on a prior query
transcript tr in terms of the value of ρ̃C

tr(q).

Claim. Let C ⊆ (D → F) be a linear code. For all q ∈ D, Q ⊆ D, c′ ∈ C and
β ∈ F,

Pr
c←C

[c(x) = β | c|Q = c′|Q] =

⎧
⎪⎨

⎪⎩

1
|F| if Q does not determine x,

1 if Q determines x and β = c′(x),
0 otherwise.

358 M. Chen et al.

Equivalently, for all q ∈ D and all C-query transcripts tr = {(qi, αi)}t
i=1 and

β ∈ F,

Pr
c←C

[c(x) = β | ∀i ∈ [t], c(qi) = αi] =

⎧
⎪⎨

⎪⎩

1
|F| if ρ̃C

tr(q) = ⊥,

1 if ρ̃C
tr(q) = β,

0 otherwise.

Proof. The equivalence follows from Sect. 4.2 and the definition of a C-query
transcript, so it suffices to prove the second statement. The cases when ρ̃tr(q) �= ⊥
are clear, and so we consider the case when ρ̃tr(q) = ⊥. In this case there exist
codewords c, c′ ∈ C such that c(qi) = c′(qi) for all i but c(q) �= c′(q). It follows
by linearity of C that there exists c∗ = c − c′ ∈ C such that c∗(qi) = 0 for all i
and c∗(q) �= 0. We can sample from the conditional distribution in the claim by
choosing a random c′′ ∈ C such that c(qi) = αi for all i and a random α ∈ F and
returning c′′ + αc∗. The claim follows since c′′(q) + αc∗(q) is uniformly random
in F. ��

We recall the definition of a constraint detector from [8]. A constraint detector
is an algorithm which determines whether a set Q is constrained and, if so,
outputs a constraint.

Definition 7 (Constraint detector). Let C be a linear code. An algorithm
CD is a constraint detector for C if, given as input a set Q ⊆ D,

– if Q is constrained, CD outputs a constraint z;
– otherwise, CD outputs ⊥.

A code family {Cλ}λ has efficient constraint detection if there is a polynomial-
time algorithm CD such that CD(1λ, ·) is a constraint detector for Cλ.

A constraint detector directly yields an implementation of the partial oracle.
It also allows us to remove “redundant” queries from any C-oracle algorithm.

Definition 8. We say that a C-oracle algorithm A is non-redundant if it
never makes any query that is determined by its previous queries.

The following claim, which is straightforward to prove, shows that in many
settings we may restrict our attention to non-redundant algorithms without loss
of generality.

Claim. Let A be a t-query C-oracle algorithm. Then there is a non-redundant
t-query C-oracle algorithm A′ whose input-output behaviour is identical to A.
Moreover, if C has efficient constraint detection, then if A is efficient, A′ is also.

4.3 Query Complexity

We study query complexity in the linear code random oracle model. We first give
an example showing an exponential gap between linear code random oracles and
standard random oracles.

On Succinct Non-interactive Arguments in Relativized Worlds 359

Claim. For every algorithm A making fewer than 2m queries,

Pr
ρ←({0,1}m→F)

[
a =

∑

x∈{0,1}m

ρ(x)
∣
∣
∣ a ← Aρ

]
=

1
|F| .

On the other hand, there exists a linear code random oracle (C , F) and a 1-query
algorithm B such that for all λ ∈ N,

Pr
ρ̂←Cλ

[
a =

∑

x∈{0,1}m

ρ̂(x)
∣
∣
∣ a ← Bρ̂

]
= 1 .

We now show that linear code random oracles are collision-resistant. To prove
this, we will make use of a couple of linear-algebraic tools. First, we show a simple
yet important claim about the existence of codewords with some entries fixed to
zero.

Claim. Suppose that (C ⊆ (D → F), f : {0, 1}m → D) is full-rank. Then for all
q1, . . . , qt ∈ D there exists c ∈ C such that

– c(q1) = · · · = c(qt) = 0, and
– there exists a set S ⊆ {0, 1}m, |S| ≥ 2m−t such that for all x ∈ S, c(f(x)) = 1.

Proof. For i ∈ [2m], let ei ∈ F
im(f) be the vector with zeroes everywhere except

at f (̄i), where ī is the binary expansion of i. Since C is full-rank, there is a basis
of C where the first 2m elements c1, . . . , c2m have ci|im(f) = ei for all i. The claim
follows by elementary linear algebra. ��

We use this to establish an upper bound on the number of points in {0, 1}m

determined by a set of size t.

Lemma 2. Let C ⊆ (D → F) be a full-rank linear code of arity m, Q ⊆ D.
Define T := {x ∈ {0, 1}m : Q determines x}. Then |T | ≤ |Q|.
Proof. By Sect. 4.3, there exists c ∈ C such that for all x ∈ Q, c(x) = 0, and a
set S ⊆ {0, 1}m of size 2m − |Q| such that for all x ∈ S, c(x) = 1. Suppose that
|T | > |Q|. By the pigeonhole principle, there exists y ∈ S ∩ T . By definition of
T , there exists z : D → F with z(y) �= 0 such that

∑
x∈Q z(x)c(x)+z(y)c(y) = 0,

which is a contradiction. ��
Lemma 3. Let C ⊆ (D → F) be a full-rank linear code of arity m. For all
t-query C-oracle adversaries A,

Pr
ρ̂←C

[x, y ∈ {0, 1}m ∧ ρ̂(x) = ρ̂(y) | (x, y) ← Aρ̂] ≤ t2/|F| .

Proof. Consider running A and recording its oracle queries in tr. By Lemma 2,
the set of points T = {x ∈ {0, 1}m : ρ̃tr(x) �= ⊥} is of size at most t. Moreover
for every x ∈ T , ρ̂(x) is sampled uniformly at random. Hence the probability
that there exist x, y ∈ T such that ρ̂(x) = ρ̂(y) is less than t2/|F|. By Sect. 4.2,
if x or y are not in T , then Pr[ρ̂(x) = ρ̂(y) | tr] = 1/|F|. The lemma follows by a
union bound. ��

360 M. Chen et al.

4.4 Low-Degree Random Oracles

We denote by F
≤d[X1, . . . , Xm] the vector space of m-variate polynomials over

F of individual degree at most d.

Definition 9. Let F = {Fλ}λ∈N be a family of fields, m, d : N → N.
The (F ,m, d)-low-degree random oracle is the linear code random oracle
({F≤d(λ)

λ [X1, . . . , Xm(λ)]}λ, F), where

F (1λ)(b1, . . . , bm(λ)) := (iλ(b1), . . . , iλ(bm(λ)))

for the natural injection iλ : {0, 1} → Fλ mapping 0 to 0Fλ
and 1 to 1Fλ

.

5 A Forking Lemma for Linear Code Random Oracles

Let C ⊆ (D → F) be a full-rank linear code, and let A be a t-query C-oracle
algorithm.

For x ∈ {0, 1}n, α ∈ F
t, σ ∈ {0, 1}∗, denote by (q, o; tr) ← Aα (x;σ) the

following procedure: Run A on input x and random tape σ. For every i ∈ [t],
answer A’s i-th query qi ∈ {0, 1}n to the oracle with αi ∈ F. Parse A’s output as
(q, o) for q ∈ D. Let tr = ((q1, α1), . . . , (qt, αt)) be the transcript of A’s queries
to the oracle. Denote by (q, o; tr, σ) ← Aρ̂(x) the same procedure, but where
each αi is adaptively set to ρ̂(qi), and where σ is the random tape used by A
(sampled uniformly).

For a query transcript tr, we define FP(tr, q) to be the smallest i ∈ [t] such
that {q1, . . . , qi, q} is constrained, or ⊥ if there is no such i. Note that given
an efficient constraint detection algorithm CD, FP(tr, q) can be computed in
polynomial time. We now describe a general forking algorithm Fork.

ForkA(q, o, tr, σ):
1. Let ((q1, α1), . . . , (qt, αt)) := tr.
2. Set i := FP(tr, q). If i = ⊥, abort and output ⊥.
3. Otherwise, sample α′

i, . . . , α
′
t ← F, and run (q′, o′; tr′) ← Atri−1;α

′
i,...,α

′
t(σ).

4. Output (q′, o′, tr′, i).

Lemma 4 (Forking Lemma). For every predicate p and t-query non-
redundant C-oracle algorithm A, setting

δ := Pr
[
FP(tr, q) �= ⊥ ∧ q ∈ {0, 1}m

∧ p(q, o, tr) = 1

∣
∣
∣
∣

ρ̂ ← Cλ

(q, o; tr, σ) ← Aρ̂

]

we have that

Pr

⎡

⎢
⎢
⎣

FP(tr, q) �= ⊥ ∧ q ∈ {0, 1}m

∧ q = q′

∧ p(q, o, tr) = 1
∧ p(q′, o′, tr′) = 1

∣
∣
∣
∣
∣
∣
∣
∣

ρ̂ ← Cλ

(q, o; tr, σ) ← Aρ̂

(q′, o′, tr′, i) ← ForkA(q, o, tr, σ)

⎤

⎥
⎥
⎦ ≥ δ2/t .

(1)

On Succinct Non-interactive Arguments in Relativized Worlds 361

Proof. For all i ∈ [t], q ∈ {0, 1}m, we define the set

Si,q := {(α, σ) : (q, o; tr) ← Aα (pp;σ) ∧ FP(tr, q) = i ∧ p(pp, o, tr) = 1} .

Next, define

δi,q(α1, . . . , αi−1;σ) := Pr
α′

i,...,α
′
t∈F

[((α1, . . . , αi−1, α
′
i, . . . , α

′
t), σ) ∈ Si,q].

Denote by E the event in Eq. 1. Observe that because A is non-redundant,
Pr[Fork | (α, σ) ∈ Si,q] is exactly δi,q(α1, . . . , αi−1;σ).

We now analyze Pr[E].

Pr[E] =
∑

i∈[t],q∈{0,1}m

Pr[E | (α, σ) ∈ Si,q] · Pr[(α, σ) ∈ Si,q]

=
∑

i,q

Eα,σ[1Si,q
(α, σ) · δi,q(α1, . . . , αi−1;σ)]

=
∑

i,q

Eα1,...,αi−1,σ

[
δi,q(α1, . . . , αi−1;σ)Eαi,...,αt

[1Si,q
(α, σ)]

]

=
∑

i,q

Eα1,...,αi−1,σ

[
δi,q(α1, . . . , αi−1;σ)2

]

where the last equality holds by definition of δi,q. Let Qi,α,σ := {q :
δi,q(α1, . . . , αi−1;σ) �= 0}. We prove the following claim.

Claim. For all α, σ,
∑

i |Qi,α,σ| ≤ t.

Proof. For any t-query transcript tr = ((q1, α1), . . . , (qt, αt)), let Qi,tr := {q :
FP(tr, q) = i}. By Lemma 2, for all tr it holds that

∑
i |Qi,tr| ≤ t. Note that Qi,tr

is a function of (q1, . . . , qi) only.
Now let (q, o; tr) := Aα (pp;σ). For each i, (q1, . . . , qi) is a function of

α1, . . . , αi−1, σ only; hence so is Qi,tr. It follows that Qi,α,σ ⊆ Qi,tr for all i,
which proves the claim. ��
It follows that

Pr[E] = Eα,σ

[
∑

i

∑

q∈Qi,α ,σ

δi,q(α1, . . . , αi−1;σ)2
]

≥ 1
t

· Eα,σ

[
(∑

i

∑

q

δi,q(α1, . . . , αi−1;σ)
)2

]

≥ δ2

t
,

where the first inequality holds because the number of terms in the sum is at
most t, and the second holds by the inequality E[X2] ≥ E[X]2. (The outer
expectation is taken over α ∈ F

t so that all events are over the same probability
space.)

362 M. Chen et al.

6 Oracle Zero-Finding Games

Lemma 5 (Oracle zero-finding game). Let {Fλ}λ be a family of fields.
Fix a number of variables m ∈ N and a maximum individual degree d ∈ N.
Further, let CM be a binding commitment scheme with message format L that is
two polynomials (f : Fλ → Fλ, g : Fλ → (Fλ)m). Then for every efficient t-query
oracle algorithm A, the following holds.

Pr

⎡
⎢⎢⎢⎢⎣

f(X) �≡ ρ̂(g(X))
∧

f(z) = ρ̂(g(z))

∣∣∣∣∣∣∣∣∣∣

ρ̂ ← F
≤d
λ [X1, . . . , Xm]

ck ← CM.Setup(1λ, L)
(f, g, ω) ← Aρ̂(ck)

C ← CM.Commit(ck, f, g, ω)
z ∈ Fλ ← ρ̂(C)

⎤
⎥⎥⎥⎥⎦

≤
√

t ·
[
2md · deg(g) + 1

|Fλ|
]
+ negl(λ).

Proof. Let A be an adversary that wins the above game with probability δ. By
Sect. 4.2, we may assume without loss of generality that A is non-redundant.

We will apply Lemma 4. The forking predicate p(pp, (q, α), o, tr) is the con-
junction of the following conditions, where (f, g) := o and ρ̃tr is as defined in
Sect. 4.1.

– q = CM.Commit(f, g;ω).
– Either ρ̃tr ◦ g : F → F is not total, or f(X) �≡ ρ̃tr(g(X)).
– f(α) = ρ̃tr(g(α)), where α := ρ̃tr(q).

By assumption, from A we can obtain an adversary satisfying p with proba-
bility > δ.

Lemma 4 guarantees that

p := Pr

⎡

⎢
⎢
⎣

FP(tr, q) �= ⊥ ∧ q ∈ {0, 1}m

∧ q = q′

∧ p(pp, q, o, tr) = 1
∧ p(pp, q′, o′, tr′) = 1

∣
∣
∣
∣
∣
∣
∣
∣

ρ̂ ← Cλ

(q, o; tr, σ) ← Aρ̂(pp)
(q′, o′, tr′, i) ← ForkA(q, o, tr, σ)

⎤

⎥
⎥
⎦ ≥ δ2/t .

To conclude the proof, we will bound p. Denote by E the event on the left
of the above expression.

We first bound the probability that E occurs and o �= o′. By definition of p,
if B succeeds then CM.Commit(o) = q = q′ = CM.Commit(o′). However, by the
binding property of the commitment scheme CM, the probability B succeeds and
o �= o′ occurs with probability ≤ negl(λ). Then the probability that E occurs
and o = o′ is at least p − negl(λ); call this event E′.

Let i := FP(tr, q), and let tr|i−1 denote the truncation of tr to the first i − 1
queries. We show that if E′ occurs then with high probability, tr|i−1 ◦ g is total.

Claim. The probability that E′ occurs and ρ̃tr|i−1 ◦ g is not total is at most
(md · deg(g) + 1)/|F|.

On Succinct Non-interactive Arguments in Relativized Worlds 363

Proof. Since for all c ∈ C, deg(c ◦ g) ≤ d · deg(g), if ρ̃tr|i−1 ◦ g is not total then
there are at most d · deg(g) points x ∈ F such that ρ̃tr|i−1(g(x)) �= ⊥. Then since
α′ is chosen independently of g and tr, Pr[ρ̃tr|i−1(g(α′)) �= ⊥] ≤ md · deg(g)/|F|.
Finally, if ρ̃tr|i−1(g(α′)) = ⊥, Pr[ρ̃tr′(g(α′)) = f(α′)] ≤ 1

|F| , since f and tr′ are
independent conditioned on tr|i−1. ��

It follows that the probability that E′ occurs and ρ̃tr|i−1 ◦g is total is at least
p − (md · deg(g) + 1)/|F| − negl(λ). In this case it holds that ρ̃tr|i−1 ◦ g �≡ f , but
ρ̃tr|i−1(g(α′)) = f(α′). Since α′ is drawn independently of tr|i−1, g and f , this
holds with probability at most md · deg(g)/|F|.

Rearranging, it follows that

p ≤ 2md · deg(g) + 1
|F| + negl(λ) ;

the statement follows since p ≥ δ2/t. ��

7 Accumulation Scheme for Low-Degree Random Oracles

We construct an accumulation scheme AS = (G, I,P,V,D) for any low-degree
random oracle over a sufficiently large field.

Note that AS is typically defined with respect to a predicate Φ and a random-
ized algorithm H, which accesses the oracle and outputs predicate parameters
ppΦ. For this construction, H = ⊥.

Theorem 1. Let C be a (Fλ,m, d)-low-degree random oracle.. Let CM =
(CM.Setup,CM.Commit) be a commitment scheme that is hiding, binding, and
has compression to size m. Then, the scheme AS from Construction 1 is an
accumulation scheme for (Φ,⊥), where Φ([qi]ni=1) = 1 if for all i ∈ [n], the query
qi = (xi, αi) satisfies ρ̂(xi) = αi.

We give the construction below. We assume a global ordering of the field Fλ,
so that Fλ = {b1, . . . , b|Fλ|}.

Construction 1. AS = (G, I,P,V,D) is defined as follows:

– Accumulator: The scheme’s accumulators are of the form acc ∈ ((Fλ)n,Fλ)2.
– G(1λ): Output a commitment scheme’s commitment key and public param-

eters (ck, ppCM) ← CM.Setup(L), such that the message format L is two
polynomials (f : Fλ → Fλ, g : Fλ → (Fλ)m).

– Iρ̂(pp = ck): Output (apk = ck, avk = ck, dk = 1λ).
– Pρ̂(apk = ck, [qi]ni=1, [accj]�j=1):

1. Let Q = [(xk, αk)]n+2�
k=1 be the concatentation of [qi]ni=1 and [accj]�j=1.

2. Sample a random point xn+2�+1 ∈ (Fλ)�, and set αn+2�+1 := ρ̂(xn+2�+1).
3. Compute the polynomial g : Fλ → (Fλ)� of degree at most n + 2 such

that for each k ∈ [n + 2 + 1], g(bk) = xk.

364 M. Chen et al.

4. Compute the polynomial f : Fλ → Fλ as f(X) ≡ ρ̂(g(X)). Note that the
degree of f is at most m · d · (n + 2 + 1).

5. Sample randomness ω for the commitment scheme, then compute
C := CM.Commit(ck, (f, g);ω) ∈ {0, 1}m and β := ρ̂(C).

6. Output the new accumulator acc = {(g(β), f(β)), (C, β)} and proof πV =
(f, ω, (xn+2�+1, αn+2�+1)).

– V(avk = ck, [qi]ni=1, [accj]�j=1, acc = {(x, α), (C, β)}, πV = (f, ω, (xn+2�+1,
αn+2�+1))):
1. Compute the list Q = [(xk, αk)]n+2�

k=1 and the polynomial g from [qi]ni=1 and
[accj]�j=1 as P does. However, rather than sampling (xn+2�+1, αn+2�+1),
use the value received in πV.

2. Check that x = g(β), α = f(β) and C = CM.Commit(ck, (f, g);ω).
3. For each k ∈ [n + 2 + 1], check that f(bk) = αk.
4. Accept if and only if both checks pass.

– Dρ̂(dk = 1λ, acc = {(x1, α1), (x2, α2)}): Accept if and only if ρ̂(x1) = α1 and
ρ̂(x2) = α2.

Remark 1. CM can be replaced by a hash function (sampled from an appropriate
hash family) if AS isn’t required to be zero knowledge.

Acknowledgments. This research was supported in part by a donation from the
Ethereum Foundation, and by DARPA under Agreement No. HR00112020023.

References

1. Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity theory.
ACM Trans. Comput. Theory 1(1), 2:1–2:54 (2009)

2. Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zaj ↪ac, M.: UC-secure
CRS generation for SNARKs. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2019. LNCS, vol. 11627, pp. 99–117. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-23696-0 6

3. Albrecht, M.R., et al.: Algebraic cryptanalysis of STARK-friendly designs: appli-
cation to MARVELlous and MiMC. IACR Cryptology ePrint Archive, Report
2019/419 (2019)

4. Albrecht, M.R., et al.: Feistel structures for MPC, and more. IACR Cryptology
ePrint Archive, Report 2019/397 (2019)

5. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Cryptology
ePrint Archive, Report 2019/426 (2019)

6. Ashur, T., Dhooghe, S.: MARVELlous: a STARK-friendly family of cryptographic
primitives. IACR Cryptology ePrint Archive, Report 2018/1098 (2018)

7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, pp. 390–399 (2006)

8. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner,
N.: Zero knowledge protocols from succinct constraint detection. In: Kalai, Y.,
Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 172–206. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70503-3 6

https://doi.org/10.1007/978-3-030-23696-0_6
https://doi.org/10.1007/978-3-319-70503-3_6

On Succinct Non-interactive Arguments in Relativized Worlds 365

9. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: Proceedings of the 36th
IEEE Symposium on Security and Privacy, S&P 2015, pp. 287–304 (2015)

10. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 16

11. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 7

12. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKs and proof-carrying data. In: Proceedings of the 45th ACM
Symposium on the Theory of Computing, STOC 2013, pp. 111–120 (2013)

13. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

14. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

15. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: recursive zk-SNARKS
from any additive polynomial commitment scheme. ePrint Report 2020/1536
(2020)

16. Bowe, S., Gabizon, A., Green, M.: A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. ePrint Report 2017/602 (2017)

17. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. ePrint Report 2017/1050 (2017)

18. Bowe, S., Grigg, J., Hopwood, D.: Halo: recursive proof composition without a
trusted setup. ePrint Report 2019/1021 (2019)

19. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without
succinct arguments. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol.
12825, pp. 681–710. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84242-0 24

20. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumu-
lation schemes (2020)

21. Chiesa, A., Forbes, M.A., Gur, T., Spooner, N.: Spatial isolation implies zero
knowledge even in a quantum world. In: Proceedings of the 59th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2018, pp. 755–765 (2018)

22. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

23. Chiesa, A., Liu, S.: On the impossibility of probabilistic proofs in relativized worlds.
In: Proceedings of the 11th Innovations in Theoretical Computer Science Confer-
ence, ITCS 2020, pp. 57:1–57:30 (2020)

24. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 27

https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27

366 M. Chen et al.

25. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: Proceedings of the 1st Symposium on Innovations in Computer Science,
ICS 2010, pp. 310–331 (2010)

26. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

27. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

28. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
a new hash function for zero-knowledge proof systems. IACR Cryptology ePrint
Archive, Report 2019/458 (2019)

29. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

30. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

31. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

32. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 536–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 44

33. Kothapalli, A., Setty, S., Tzialla, I.: Nova: recursive zero-knowledge arguments
from folding schemes. ePrint Report 2021/370 (2021)

34. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

35. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). Preliminary version appeared in FOCS ’94

36. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

37. Smart, N.P.: ‘Bristol fashion’ MPC circuits. https://homes.esat.kuleuven.be/
∼nsmart/MPC/

38. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

39. Zhandry, M., Zhang, C.: The relationship between idealized models under com-
putationally bounded adversaries. Cryptology ePrint Archive, Report 2021/240
(2021)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/3-540-69053-0_18
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://doi.org/10.1007/978-3-540-78524-8_1

Families of SNARK-Friendly 2-Chains
of Elliptic Curves

Youssef El Housni1,2,3(B) and Aurore Guillevic4,5(B)

1 ConsenSys, gnark, Paris, France
youssef.elhousni@consensys.net

2 LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

3 Inria, Saclay, France
4 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

aurore.guillevic@inria.fr
5 Aarhus University, Aarhus, Denmark

Abstract. At CANS’20, El Housni and Guillevic introduced a new 2-
chain of pairing-friendly elliptic curves for recursive zero-knowledge Suc-
cinct Non-interactive ARguments of Knowledge (zk-SNARKs) made of
the former BLS12-377 curve (a Barreto–Lynn–Scott curve over a 377-
bit prime field) and the new BW6-761 curve (a Brezing–Weng curve of
embedding degree 6 over a 761-bit prime field). First we generalise the
curve construction, the pairing formulas (e : G1 × G2 → GT) and the
group operations to any BW6 curve defined on top of any BLS12 curve,
forming a family of 2-chain pairing-friendly curves.

Second, we investigate other possible 2-chain families made on top of
the BLS12 and BLS24 curves. We compare BW6 to Cocks–Pinch curves
of higher embedding degrees 8 and 12 (CP8, CP12) at the 128-bit secu-
rity level. We derive formulas for efficient optimal ate and optimal Tate
pairings on our new CP curves. We show that for both BLS12 and BLS24,
the BW6 construction always gives the fastest pairing and curve arith-
metic compared to Cocks-Pinch curves. Finally, we suggest a short list
of curves suitable for Groth16 and KZG-based universal SNARKs and
present an optimized implementation of these curves. Based on Groth16
and PlonK (a KZG-based SNARK) implementations in the gnark ecosys-
tem, we obtain that the BLS12-377/BW6-761 pair is optimized for the
former while the BLS24-315/BW6-672 pair is optimized for the latter.

1 Introduction

A SNARK [7,33,35] is a cryptographic primitive that enables a prover to prove
to a verifier the knowledge of a satisfying witness to a non-deterministic (NP)
statement by producing a proof π such that the size of π and the cost to verify
it are both sub-linear in the size of the witness. If π does not reveal anything
about the witness we refer to the cryptographic primitive as a zero-knowledge
(zk) SNARK. Today, the most efficient SNARKs require pairing-friendly ellip-
tic curves and trusted setup assumptions as in Groth’16 [25] but in return
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 367–396, 2022.
https://doi.org/10.1007/978-3-031-07085-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_13&domain=pdf
http://orcid.org/0000-0003-2873-3479
http://orcid.org/0000-0002-0824-7273
https://doi.org/10.1007/978-3-031-07085-3_13

368 Y. El Housni and A. Guillevic

admit small, constant-size proofs with a constant-time verification. However,
the trusted setup is specific to the NP statement to prove. Hence, Groth’16 is
not suitable in applications that need to prove many different statements. For-
tunately, SNARKs with a universal or transparent setup are an active area of
research and recent polynomial-commitment-based constructions allow very effi-
cient constructions. The most efficient universal constructions such as PlonK [21]
and Marlin [11] are based on the KZG polynomial commitment [32], which also
requires a pairing-friendly elliptic curve.

A pairing-friendly curve E has a bilinear map e : G1 × G2 → GT , where
G1, G2 are distinct prime-order r subgroups of E, and GT ⊂ Fqk of the same
order r. On the one hand, one requires two different kind of curves: a curve
tailored for Groth’16 should be optimized for operations in G1, G2 and for pair-
ings while a curve tailored for KZG-based SNARKs should only focus on G1 and
pairings. On the other hand, both constructions make SNARKs appealing for an
incrementally verifiable computation (IVC) [41] in which proofs not only attest
to the correct execution of a computation but also, by exploiting succinctness,
to the validity of a previous proof. The canonical construction of IVC, or proof-
carrying data [8] (PCD) as a generalization, can be achieved via recursive proof
composition which was demonstrated to be practical for pairing-based SNARKs
in [5]. In such a setting, a prover encodes the statement in the curve’s scalar field
Fr (the Gi are of order r) and a verifier checks the proof π in an extension Fqk of
the curve base field. To allow recursive proof composition, one needs to encode
the verification algorithm (which lies in Fqk) as a statement in Fr. However, this
is highly impractical as r �= q and simulating one field’s operations in the other
incurs a significant overhead. The authors of [5] sidestep this issue by construct-
ing a 2-cycle of pairing-friendly elliptic curves such that the base field of either
curve is the scalar field of the other. Unfortunately, only the MNT4/MNT6 [19,
Sec. 5] family of pairing-friendly curves is known to satisfy this property and due
to their low embedding degrees, secure curves in this family must be constructed
over very large (1024-bit) fields, downgrading the performances. To relax this
constraint, authors of ZEXE [10] constructed a 2-chain of pairing-friendly ellip-
tic curves such that only the base field of one curve is equal to the scalar field
of the other, allowing one-layer recursive proof composition. Namely, the inner
curve is a BLS12-377 and the outer curve is a CP6-782. A one-layer recursive
proof composition is particularly the building block of two schemes: Decentral-
ized Private Computation (DPC) schemes as introduced in ZEXE [10] and proofs
aggregation. This work is directly relevant to these two contructions.

Previous Work. In [15], El Housni and Guillevic introduced a 2-chain of curves
made of the previous BLS12-377 and a new BW6-761 curve, a Brezing-Weng
curve of embedding degree 6 defined over a 761-bit prime field, which they
demonstrated to be orders of magnitude faster than CP6-782.

Contributions. First we are interested in families of 2-chains in which the BW6-
761 curve would fall. We present a family of BW6 curves from any BLS12 curve
and derive generic formulas, in terms of the BLS12 curve seed u, and integer

Families of SNARK-Friendly 2-Chains of Elliptic Curves 369

parameters ht, hy. We extend this work to a 2-chain family of BW6 curves from
BLS24 curves. We particularly improve the multi-pairing computation on any
BW6 curve by deriving a new endomorphism-based optimal Tate pairing (Algo-
rithm 2). To achieve higher levels of security in the target finite field of the
outer curves, we compare a larger field characteristic thanks to larger parame-
ters ht, hy, to the larger embedding degrees 8 and 12 obtained with Cocks-Pinch
curves. Finally, we argue that the BLS12 and BLS24 based families are respec-
tively tailored for Groth’16 and KZG-based SNARKs recursive proof composi-
tion, and we present a short list of curves with an optimized implementation
along with benchmarks.

Organization of the Paper. Section 2 provides the preliminaries and definitions
of SNARK-friendly elliptic curves. In Sect. 3, we argue on the choice of BLS
family as the inner curve and present faster group operations. The core of the
paper are Sects. 4 and 5. Section 4 exposes the constructions of the outer curves,
with optimized pairings and group operations. Finally, Sect. 5 reports on the
implementation of the most promising constructions identified in Sect. 4 and
compares the performances in relevant practical settings.

2 Preliminaries

We present a short background on pairing-friendly elliptic curves and propose
definitions of a SNARK-friendly chain of curves.

2.1 Background on Bilinear Pairings

We briefly recall elementary definitions on pairings and present the computation
of two pairings used in practice, the modified Tate and ate pairings. All elliptic
curves discussed below are ordinary (i.e. non-supersingular).

Let E be an elliptic curve defined over a field Fq, where q is a prime power. Let
πq be the Frobenius endomorphism: (x, y) �→ (xq, yq). Its minimal polynomial is
X2 − tX + q where t is called the trace. Let r be a prime divisor of the curve
order #E(Fq) = q + 1 − t. The r-torsion subgroup of E is denoted E[r] =
{P ∈ E(Fq), [r]P = O} and has two subgroups of order r (eigenspaces of πq in
E[r]) that are useful for pairing applications. We define the two groups G1 =
E[r]∩ker(πq − [1]) with a generator denoted by G1, and G2 = E[r]∩ker(πq − [q])
with a generator G2. The group G2 is defined over Fqk , where the embedding
degree k is the smallest integer k ∈ N

∗ such that r | qk − 1.
We recall the Tate and ate pairing definitions, based on the same two steps:

evaluating a function fs,Q at a point P , the Miller loop step, and then raising
it to the power (qk − 1)/r, the final exponentiation step. The function fs,Q has
divisor div(fs,Q) = s(Q) − ([s]Q) − (s − 1)(O) and satisfies, for integers i and j,
fi+j,Q = fi,Qfj,Q�[i]Q,[j]Q/v[i+j]Q, where �[i]Q,[j]Q and v[i+j]Q are the two lines
needed to compute [i+j]Q from [i]Q and [j]Q (� intersecting the two points and v
the vertical). We compute fs,Q(P) with the Miller loop presented in Algorithm 1.

370 Y. El Housni and A. Guillevic

Algorithm 1: MillerLoop(s, P,Q)
Output: m = fs,Q(P)

1 m ← 1; S ← Q
2 for b from the second most significant bit of s to the least do
3 � ← �S,S(P); S ← [2]S; v ← v[2]S(P) // Doubling Step

4 m ← m2 · �/v
5 if b = 1 then
6 � ← �S,Q(P); S ← S + Q; v ← vS+Q(P) // Addition Step

7 m ← m · �/v

8 return m

The Tate and ate pairings are defined by

Tate(P,Q) = fr,P (Q)(q
k−1)/r, ate(Q,P) = ft−1,Q(P)(q

k−1)/r

where P ∈ G1 ⊂ E[r](Fq) and Q ∈ G2 ⊂ E[r](Fqk). The final powering z �→
z(q

k−1)/r ensures that the values Tate(P,Q) and ate(Q,P) are in the target
group GT of r-th roots of unity in Fqk . It is decomposed into two steps: the easy
part z(q

k−1)/Φk(q) with one inversion and some Frobenius powers, and the hard
part zΦk(q)/r, where Φk is the k-th cyclotomic polynomial. In this paper, when
abstraction is needed, we denote a pairing as follows: e : G1 × G2 → GT .

It is also important to recall some results with respect to the complex mul-
tiplication (CM) discriminant −D. When D = 3 (resp. D = 4), the curve has
CM by Q(

√−3) (resp. Q(
√−1)) so that twists of degrees 3 and 6 exist (resp. 4).

If moreover the twist degree d divides k, then G2 is isomorphic to E′[r](Fqk/d)
for a d-twist E′. Otherwise, in the general case, E admits a single twist (up to
isomorphism) and it is of degree 2.

2.2 zk-SNARKs

In this paper, we focus on preprocessing zkSNARKs for NP languages for which
we give a basic explanation. Given a public NP program F , public inputs a and b
and private input w, such that the program F satisfies the relation F (a,w) := b,
a zk-SNARK consists in proving this relation succinctly without revealing the
private input w. Given a security parameter λ, it consists of the Setup, Prove
and Verify algorithms:

(σp, σv) ← Setup(F, τ, 1λ); π ← Prove(a, b, w, σp); 0/1 ← Verify(a, b, π, σv)

where τ is the setup trapdoor, σp the proving key which encodes the program F
for the prover, σv the verification key that encodes F for the verifier and π the
proof.

2.3 SNARK-Friendly Chains

Definition 1. An m-chain of elliptic curves is a list of distinct curves

E1/Fq1 , . . . , Em/Fqm

Families of SNARK-Friendly 2-Chains of Elliptic Curves 371

where q1, . . . , qm are large primes and

q1 = r2 | #E2(Fq2), . . . , qi−1 = ri | #Ei(Fqi
), . . . , qm−1 = rm | #Em(Fqm

).

Definition 2. An m-chain of SNARK-friendly elliptic curves is an m-chain
where each of the {Ei/Fqi

}1≤i≤m curves

– is pairing-friendly;
– has a highly 2-adic subgroup, i.e. ri − 1 ≡ 0 mod 2L for a large L ≥ 1.

In particular, a SNARK-friendly 2-chain is a pair of two pairing-friendly elliptic
curves E1/Fq1 and E2/Fq2 where q1 = r2 | #E2(Fq2) and r2 − 1 ≡ r1 − 1 ≡ 0
mod 2L. We call E1 the inner curve and E2 the outer curve.

In this paper, we aim at constructing families of SNARK-friendly 2-chains
that are suitable respectively for Groth’16 and KZG-based universal SNARKs.

3 Inner Curves: Barreto–Lynn–Scott (BLS) Curves

We investigate the BLS family as an option for a SNARK-friendly inner curve.
We first present our results for a better arithmetic on all BLS curves and then
argue on the choice of BLS12 and BLS24 curves for our applications.

3.1 Parameters with a Polynomial Form

BLS curves were introduced in [4]. This is a family of pairing-friendly elliptic
curves of embedding degree k multiple of 3 but not multiple of 18. Well-known
families are given with k = 2i3j for i, j ≥ 0: k = 9, 12, 24, 27, 48 (Table 1).
The curves have j-invariant 0, discriminant −D = −3. Each family has polyno-
mial parameters q(x), r(x), t(x) for characteristic, subgroup order of embedding
degree k, and trace. The subgroup order is r(x) = Φk(x) the k-th cyclotomic
polynomial. The trace has a simple expression t(x) = x + 1, so that the ate
pairing whose Miller loop computes the function fx,Q(P) is optimal in terms of
Vercauteren’s paper [42]. The curve order is q(x)+1− t(x) and the CM equation
is 4q(x) = t(x)2 +Dy(x)2. We state useful lemmas whose proofs are given in [16,
Appendix A.1].

Lemma 1. The cofactor c(x) of BLS curves such that q(x)+1−t(x) = c(x)r(x)
has the form

1. (x − 1)2/3 · c2(x) for odd k, where c2(x) = (x2k/3 + xk/3 + 1)/Φk(x) ∈ Q[x];
2. (x − 1)2/3 · c2(x) for even k, where c2(x) = (xk/3 − xk/6 + 1)/Φk(x) ∈ Q[x].

Lemma 2. For all BLS curves, the polynomial form of the characteristic q(x)
is such that (x − 1)/3 divides q(x) − 1.

Lemma 3. The parameter y(x) of BLS curves has the form

(x − 1)(2xk/3 + 1)/3 for odd k and (x − 1)(2xk/6 − 1)/3 for even k.

Lemma 4. Any BLS curve has endomorphism ring Z[ω] where ω=(1+
√−3)/2.

372 Y. El Housni and A. Guillevic

Table 1. Parameters of BLS curves for k = 2i3j , i ≥ 0, j ≥ 1, 18 � k.

k 2i3j , i, j ≥ 1 (6, 12, 24, 48, 96, . . .) 3j , j ≥ 1 (3, 9, 27, 81, . . .)

t(x) x + 1

y(x) (x − 1)(2xk/6 − 1)/3 (x − 1)(2xk/3 + 1)/3

r(x) xk/3 − xk/6 + 1 x2k/3 + xk/3 + 1

q(x) r(x)(x − 1)2/3 + x r(x)/3(x − 1)2 + x

c2(x) 1 1

ρ 1 + 6/k 1 + 3/k

3.2 Faster Co-factor Multiplication

Because G1 is a proper subgroup of E(Fq), one multiplies a point P ∈ E(Fq) by
the cofactor c(x) = (x − 1)2/3 to map it to G1, a.k.a. cofactor clearing. Wahby
and Boneh noted in [43], that it is sufficient to multiply by x − 1 to clear the
cofactor of G1 for the BLS12-381 curve (also in [37, §2]). Here we generalize
and prove that it is true for all BLS curves. Let EndFq

(E) denote the ring of
Fq-endomorphisms of E, let O denote a complex quadratic order of the ring
of integers of a complex quadratic number field, and O(Δ) denote the complex
quadratic order of discriminant Δ.

Theorem 1 ([36, Proposition 3.7]). Let E be an elliptic curve over Fq and
n ∈ Z≥1 with q � n. Let πq denote the Frobenius endomorphism of E and t its
trace. Then,

E[n] ⊂ E(Fq) ⇐⇒

⎧
⎪⎨

⎪⎩

n2 | #E(Fq),
n | q − 1 and
πq ∈ Z or O(

t2−4q
n2

) ⊂ EndFq
(E).

Proof. Proposition 3.7. in [36].

Corollary 1. Let E(Fq(x)) be a BLS curve of order c(x)r(x) where r(x) is the
subgroup prime order and c(x) = (x − 1)2/3 · c2(x) the cofactor. It is sufficient
to multiply by (x − 1)c2(x) to clear the cofactor.

Proof. Let n(x) = (x−1)/3, we show that the full n(x)-torsion is in E(Fq), that
is there is no point of order n2(x) in E(Fq) but there are n2(x) points of order
n(x). Thus it is sufficient to multiply by 3n(x) to clear the (x − 1)2/3 cofactor.
According to Lemmas 1, 2, 3, and 4, we have n(x)2 | #E(Fq), n(x) | q(x) − 1.
Now (t2(x) − 4q(x))/n2(x) = −3y2(x)/n2(x) = −3(2xk/6 − 1)2 for even k, and
−3(2xk/3 + 1)2 for odd k. Hence O(t(x)2−4q(x)

n2(x)

) ⊂ EndFq
(E). Thus, Theorem 1

applies and E[n(x)] ⊂ E(Fq).

Theorem 1 applied to BLS curves tells us that the curve endomorphism
φ : E → E, (x, y) �→ (ωx, y) with ω ∈ Fq a primitive third root of unity (ω2 +

Families of SNARK-Friendly 2-Chains of Elliptic Curves 373

ω + 1 = 0 mod q) acts as a distortion map on E[n] � Z/nZ ⊕ Z/nZ. With a
Weil pairing eW , one can embed a discrete logarithm on E(Fq)[n] into F

∗
q , where

subexponential DL computation takes place, although the much larger size of
q compared to n seems prohibitive. For G,P ∈ E[n] in the same subgroup of
order n, logG(P) = logeW (G,φ(G)) eW (P, φ(G)). See [16, Appendix A.2] for more
details.

3.3 Subgroup Membership Testing: GT

Testing membership in GT for candidate elements z of Fqk is done in two steps.
First, one checks that z belongs to the cyclotomic subgroup of Fqk (subgroup of
order Φk(q)), that is zΦk(q) = 1. To avoid inversions, one multiplies the positive
terms in qi on one hand, and the negative terms on the other hand, and check
for equality: it costs only Frobenius powers. With k = 6 and Φ6(q) = q2 − q + 1,
it means checking that zq2+1 = zq. Second, we propose to use a generalisation of
Scott’s technique first developed for BN curves, where r = q +1− t [39, §8.3]. In
the BN case, the computation of zr is replaced by a Frobenius power zq and an
exponentiation zt−1, and the test zq = zt−1. BLS curves are not of prime order,
and we use Proposition 1.

Proposition 1. Let E be a pairing-friendly curve defined over Fq, of embedding
degree k w.r.t. the subgroup order r, and order #E(Fq) = r · c = q + 1 − t. For
z ∈ F

∗
qk , we have this alternative GT membership testing:

zΦk(q) = 1 and zq = zt−1 and gcd(q + 1 − t, Φk(q)) = r =⇒ zr = 1 .

Proof. If zΦk(q) = 1 and zq+1−t = 1, then the order of z divides the gcd of the
exponents gcd(Φk(q), q +1− t). If this gcd is exactly r, then z is in the subgroup
of order r, that is zr = 1.

BLS curves have c · r = q + 1 − t = q − u hence q ≡ u mod r . As soon as
gcd(q + 1 − t, Φk(q)) = r, then the following two tests are enough:

1. test if zΦk(q) = 1 with Frobenius maps;
2. test if zq = zu, using cyclotomic squarings [23] for a faster exponentiation.

Proposition 1 came out of email discussions between cryptographers, and
appears in Scott’s preprint [37].

Remark 1. For BLS-curves of embedding degree k a power of 3 (k = 3j), the
cyclotomic polynomial Φk(x) does not generate primes, actually one has r(x) =
Φk(x)/3. Moreover a BLS curve has points of order 3, hence gcd(q+1−t, Φk(q)) =
3r for all k = 3j .

Remark 2. For SNARK-friendly 2-chains, zu ∈ GT can be implemented effi-
ciently by mixing Granger-Scott’s [23] and Karabina’s [31] cyclotomic squares.
Since 2L | u−1, there are L−1 consecutive squarings in the exponentiation. One

374 Y. El Housni and A. Guillevic

can use Karabina’s method for this series and then switch to Granger-Scott’s
method for the remaining part. Hence, trading off one inversion in Fqk/d for
2(L − 1) multiplications in Fqk/d . Particularly, for BLS12 and BLS24, this trick
yields significant speedups as long as an Fq-inverse costs, respectively, less than
(6L − 4) and (18L − 16) Fq-multiplications, which is the case of curves we are
interested in.

3.4 Choosing a Curve Coefficient b = 1

Proposition 2. Half of BLS curves are of the form Y 2 = X3 +1, these are the
curves with odd seed x.

Proof. Let E : Y 2 = X3 + b be a BLS curve over Fq and g neither a square
nor a cube in Fq. One choice of b ∈ {1, g, g2, g3, g4, g5} gives a curve with the
correct order (i.e. r | #E(Fq)) [40, §X.5]. For all BLS curves, x − 1 | #E(Fq) (cf
Lemma 1, Tables in [16, Appendix A.2]) and 3 | x−1 (which leads to all involved
parameters being integers). If, additionally, 2 | x − 1 then 2, 3 | #E(Fq) and the
curve has points of order 2 and 3. A 2-torsion point is (x0, 0) with x0 a root of
x3 + b, hence b = (−x0)3 is a cube. The two 3-torsion points are (0,±√

b) hence
b is a square. This implies that b is a square and a cube in Fq and therefore b = 1
is the only solution in the set {gi}0≤i≤5 for half of all BLS curves: those with
odd x.

3.5 SNARK-Friendly Inner BLS Curves

This paper focuses on inner SNARK-friendly BLS curves as in Definition 1 at
the 128-bit security level and suitable for the Groth’16 and KZG-based univer-
sal SNARKs. On the one hand, a Groth’16-tailored curve should optimize G1

and G2 operations, and the pairing computation: the proving algorithm involves
multi-scalar multiplications (MSM) in G1 and G2, and the verification algorithm
involves multi-pairings. On the other hand, KZG polynomial commitments only
need multi-scalar multiplications in G1 and multi-pairings.

According to the post1, an efficient non-conservative choice of a Groth’16-
tailored curve at the 128-bit security level is a BLS12 curve of roughly 384 bits.
A conservative but efficient alternative is a BLS12 curve of 440 to 448 bits.
Then to fulfill SNARK-friendliness, it is sufficient to choose a seed x s.t. x ≡ 1
mod 3 ·2L with the desired 2-adicity L ≥ 1. Consequently, Propositions 1 and 2,
and Corollary 1 apply: such an inner BLS12 is always of the form Y 2 = X3 + 1;
multiplying by x − 1 is sufficient to clear the cofactor on G1, and the efficient
GT membership testing applies. In fact, for all BLS12 curves, gcd(q(x) + 1 −
t(x), Φ12(q(x))) is always equal to r(x) and the membership testing boils down
to zq = (zq)q · z and zq = zu for z ∈ GT .

KZG-based SNARKs require a 128-bit secure curve with efficient G1 oper-
ations and fast pairing. For a faster G1 arithmetic, we consider a BLS24

1 https://members.loria.fr/AGuillevic/pairing-friendly-curves/.

https://members.loria.fr/AGuillevic/pairing-friendly-curves/

Families of SNARK-Friendly 2-Chains of Elliptic Curves 375

curve of roughly 320 bits, that meets the 128-bit level security [28] and gives
the best tradeoff between small ρ = log2 q/ log2 r value (ρ = 1.25) and fast
pairing. For SNARK-friendliness, cofactor clearing and curve equation (Y 2 =
X3 +1), the same observations as for BLS12 apply. For GT membership testing,
gcd(q(x) + 1 − t(x), Φ24(q(x))) is always equal to r(x) for the BLS24 curves and
the test boils down to zq2

= (zq2
)q2 · z and zq = zu for z ∈ GT .

4 Outer Curves: Brezing–Weng, Cocks–Pinch

This section presents the families of 2-chains with a BW6 curve on top of a BLS12
curve (Sect. 4.2), and on top of a BLS24 curve (Sect. 4.3). Cocks-Pinch curves
(CP) [19, §4.1] are addressed in Sect. 4.4. For BW6, all parameters and formulas
are given as polynomials in the variable x, with integer parameters ht, hy that
are the lifting cofactors of the Brezing-Weng construction. We use subscripts
qbls, qbw, qcp to identify parameters of BLS, BW and CP curves. BW and CP
constructions follow the same recipe, but CP deals with integers, while BW deals
with polynomials [19, §4.1,§6]. They start from the subgroup order rbw(x) =
qbls(x), rcp(u) = qbls(u), and look for k-th roots of unity ζk mod qbls to set the
trace value t = ζk + 1. For CP, the existence of ζk requires qbls(u) ≡ 1 mod k:
for k = 6, 12, 8 resp., this means u ≡ 1 mod 3, 1, 10 mod 12, and 1, 10 mod 24
resp. For BW, the number field defined by qbls(x) only contains ζk(x) for k | 6,
limiting the BW construction to k = 6 at most.

4.1 Generic BW6 Curve Parameters

To satisfy Definition 1, a BW curve chained to a BLS curve (of any embedding
degree) has a subgroup of prime order rbw(x) = qbls(x). To get an embedding
degree k = 6, a primitive 6-th root of unity ζ6 modulo rbw(x) is required, the
trace of the curve modulo rbw is then tbw,3 = ζ6 + 1 mod rbw. Alternatively
tbw,0 = ζ6 + 1 mod rbw with ζ6 = −ζ6 + 1. With D = −3 and 1/

√−3 = (2ζ6 −
1)/3 mod rbw, then ybw,0 = (tbw,0 − 2)/

√−3 = (ζ6 + 1)/3 = −tbw,0/3. Or with
1/

√−3 = −(2ζ6−1)/3 mod rbw, one has ybw,3 = (tbw,3−2)/
√−3 = (ζ6+1)/3 =

tbw,3/3. Any BW6 curve will have parameters of the form ti = tbw,i ± htr,
yi = ybw,i ±hyr, where ht, hy are integer lifting cofactors. We label the two cases
according to the constant coefficient of the polynomial defining the trace modulo
rbw: this is either 0 or 3.

One denotes qbw,0(x, ht, hy) = ((tbw,0 + htr)2 + 3(ybw,0 + hyr)2)/4. We have

qbw,0 = t2bw,0/3 + tbw,0 · rbw(ht − hy)/2 + r2bw(h2
t + 3h2

y)/4 , (1)

qbw,3 = t2bw,3/3 + tbw,3 · rbw(ht + hy)/2 + r2bw(h2
t + 3h2

y)/4 . (2)

The curve cofactor cbw,i(x, ht, hy) such that cbw,irbw = qbw,i + 1 − tbw,i is

cbw,0 = (h2
t + 3h2

y)/4rbw + (ht − hy)/2tbw,0 + (t2bw,0/3 − tbw,0 + 1)/rbw − ht (3)
cbw,3 = (h2

t + 3h2
y)/4rbw + (ht + hy)/2tbw,3 + (t2bw,3/3 − tbw,3 + 1)/rbw − ht (4)

376 Y. El Housni and A. Guillevic

where (t2bw,i/3 − tbw,i + 1)/rbw = Φ6(tbw,i − 1)/(3rbw) is a polynomial in Q[x]
since by construction rbw divides Φ6(tbw,i − 1). Tables 3 and 5 give the explicit
values of the polynomials for BLS12 and BLS24 inner curves.

Cofactor of G2. The group G2 of order rbw is a subgroup of one of the two
sextic twists of E, defined over Fq. Generically, the orders of the two sextic twists
are q + 1 − (t + 3y)/2 and q + 1 − (t − 3y)/2, where y satisfies t2 − 4q = −3y2.
One of the orders is a multiple of rbw, and has cofactor c′

bw,i. Observe that
(tbw,0 − 3ybw,0)/2 = tbw,0 since ybw,0 = −tbw,0/3. The correct sextic twist has
order qbw,0 + 1 − (tbw,0 + htrbw − 3(ybw,0 + hyrbw))/2, and a calculation gives

c′
bw,0 = cbw,0 + (ht + 3hy)/2 . (5)

For the other trace, (tbw,3 + 3ybw,3)/2 = tbw,3 and the correct sextic twist has
order qbw,3 + 1 − (tbw,3 + htrbw + 3(ybw,3 + hyrbw))/2 a multiple of rbw, and
cofactor

c′
bw,3 = cbw,3 + (ht − 3hy)/2 . (6)

Congruences of Cofactors ht , hy . One requires qbw,i (Eqs. (1), (2)) to be an
integer and a prime. Because tbw,i is always multiple of 3, t2bw,i/3 is an integer.
We need (ht ± hy)/2tbw,i + (h2

t + 3h2
y)/4rbw to be an integer. We now look at

(ht ± hy), (h2
t + 3h2

y). We have tbw,0 always even, then (ht − hy)tbw,0/2 is an
integer and we require 4 | (h2

t + 3h2
y). For that we need ht − hy ≡ 0 mod 2 (see

Table 2). We have tbw,3 always odd. If (ht + hy) is odd, then (ht + hy)tbw,3 is
odd but at the same time (see Table 2), (h2

t + 3h2
y) is odd, and the condition

is not satisfied. Hence we need (ht − hy) to be even, and consequently we have
(h2

t + 3h2
y)/4 an integer. Finally, for both tbw,0 and tbw,3, we need 2 | (ht − hy)

and consequently we have 4 | h2
t + 3h2

y, to ensure qbw to be an integer. Note
also that because x ≡ 1 mod 3, one has tbw = 0 mod 3, and Eqs. (1), (2) give
4qbw = h2

t mod 3. Because qbw needs to be prime, ht is not multiple of 3, and
3 � (h2

t + 3h2
y).

Table 2. Are 2(ht ± hy), h2
t + 3h2

y multiple of 4?

ht hy ht ± hy h2
t + 3h2

y 2(ht ± hy)tbw,i + (h2
t + 3h2

y)rbw mod 4

mod2 mod2 mod2 mod4 tbw,0 = 0 mod 2 tbw,3 = 1 mod 2

0 0 0 0 0 0

0 1 1 3 3rbw �= 0 2 + 3rbw �= 0

1 0 1 1 rbw �= 0 2 + rbw �= 0

1 1 0 0 0 0

Subgroup Membership Testing: GT . We apply the technique of Sect. 3.3.
BW6 curves over their base field have order cbw,i ·rbw = qbw,i +1− tbw,i −htrbw,
hence

qbw,i ≡ tbw,i − 1 mod rbw . (7)

As soon as gcd(qbw,i + 1 − tbw,i, Φk(qbw,i)) = rbw, then the following two tests
are enough:

Families of SNARK-Friendly 2-Chains of Elliptic Curves 377

1. test if zΦk(qbw,i) = 1 with Frobenius maps;
2. test if zqbw,i = ztbw,i−1 with cyclotomic squarings.

Easy Part of the Final Exponentiation. The final exponentiation raises the
Miller loop output f to the power

(q6 − 1)/r = (q6 − 1)/Φ6(q) · Φ6(q)/r = (q3 − 1)(q + 1)(q2 − q + 1)/r .

The easy part (q3 − 1)(q + 1) costs one conjugation (q3-Frobenius power), one
inversion in Fq6 , one q-Frobenius power and two multiplications. We optimise
the hard part (q2 − q + 1)/r in Sect. 4.2, 4.3.

Optimal Pairing Computation. In [15], the authors presented an optimal
ate pairing formula that can be generalized as follows: write

a0 + a1(tbw,i − 1) = 0 mod rbw (8)

with shortest possible scalars a0, a1. On G2, the Frobenius πq has eigenvalue
tbw,i − 1. The optimal ate Miller loop is computed with the formula

fa0,Q(P)fa1,πq(Q)(P) = fa0,Q(P)fq
a1,Q(P) . (9)

Moreover, it turned out that (a1 − 1) | a2, and some of the computations were
shared. We now introduce another optimisation. We consider Eq. (8) with a
new point of view. BW6 curves have an endomorphism φ : (x, y) �→ (ωx,−y)
on G1 of eigenvalue λ = tbw,i − 1 = qbw,i mod rbw, and characteristic poly-
nomial χ2 − χ + 1 = 0. The (bilinear) twisted ate pairing [30, §6] has pre-
cisely Miller loop fλ,P (Q). However, λ is too large so instead, we consider a
multiple of the Tate pairing fhr,P (Q) = fa0+a1λ,P (Q) for some h (e.g. Eqs.
(18), (25)). Instead of decomposing the Miller function fa0+a1λ,P (Q) into sub-
functions fa0,P (Q)fa1λ,P (Q), we use Lemma 5 (proof in the full version) to get
shared squares in Fqk and shared doubling steps in G1 (Tate), resp. G2 (ate), in
the same idea as a multi-scalar multiplication. This gives us Algorithm 2. We are
in the very particular case of k/d = 1, φ on G1 and πq on G2 both have eigen-
value qbw,i mod rbw, and our variant of the twisted ate pairing is competitive
with the ate pairing.

Lemma 5. Let E be a pairing-friendly curve with the usual order-r subgroups
G1, G2, two points P ∈ Gi, Q ∈ G1−i of order r, and an endomorphism φ of
eigenvalue λ over Gi: φ(P) = [λ]P , λ = qe mod r for some 1 ≤ e ≤ k − 1. The
Miller function can be decomposed as follows.

f2(u+vλ),P (Q) = f2
u+vλ,P (Q)�(u+vλ)P,(u+vλ)P (Q) (10)

fu+1+vλ,P (Q) = fu+vλ,P (Q)�(u+vλ)P,P (Q) (11)
fu+(v+1)λ,P (Q) = fu+vλ,P (Q)�(u+vλ)P,λP (Q) (12)

fu+1+(v+1)λ,P (Q) = fu+vλ,P (Q)�P,λP (Q)�(u+vλ)P,(1+λ)P (Q) (13)

where λP = φ(P), (1 + λ)P = P + φ(P), and �P,λP (Q) can be precomputed.

378 Y. El Housni and A. Guillevic

Algorithm 2: Miller loop for optimal pairing with endomorphism φ on
G1 (Tate), resp. G2 (ate) of eigenvalue λ and degree 2.
Input: P ∈ Gi, Q ∈ G1−i, end. φ on Gi of eigenvalue λ, scalars a0, a1

s. t. a0 + a1λ = 0 mod r
Output: fa0+a1λ,P (Q)

1 P0 ← P ; P1 ← φ(P)
2 if a0 < 0 then a0 ← −a0; P0 ← −P0

3 if a1 < 0 then a1 ← −a1; P1 ← −P1

4 P1+λ ← P0 + P1; �1,λ ← �P0,P1(Q)
5 l0 ← bits(a0); l1 ← bits(a1)
6 if #l0 = #l1 then S ← P1+λ; f ← �1,λ; n ← #l0
7 else if #l0 < #l1 then S ← P1; f ← 1; n ← #l1; pad l0 with 0 s.t. #l0 = n
8 else S ← P0; f ← 1; n ← #l0; pad l1 with 0 s.t. #l1 = n
9 for i = n − 2 downto 0 do

10 f ← f2 ; �t ← �S,S(Q); S ← [2]S
11 if l0[i] = 0 and l1[i] = 0 then f ← f · �t // Eq. (10), mfull-sparse

12 else if l0[i] = 1 and l1[i] = 1 then // Eq. (13)

13 S ← S + P1+λ; � ← �S,P1+λ(Q)
14 f ← (f · �t) · (� · �1,λ) // mk + mfull-sparse + msparse-sparse

15 else if l0[i] = 1 then // Eq. (11)

16 S ← S + P0; � ← �S,P0(Q)
17 f ← f · (�t · �) // mk + msparse-sparse

18 else (l1[i] = 1) // Eq. (12)

19 S ← S + P1; � ← �S,P1(Q)
20 f ← f · (�t · �) // mk + msparse-sparse

21 return f

Remark 3. Algorithm 2 shares the squarings in Fqk and the doubling steps in G1

(Tate), resp. G2 (ate). With all parameterized pairing-friendly families, the scalar
decomposition gives all but one trivial Miller function, and the ate, or twisted-
ate pairing boils down to one Miller loop computation of optimal length, and a
few line additions [42]. In our case, while being short, none of the scalars a0, a1

is trivial. It is possible to derive a 2-NAF variant of Algorithm 2 (see Table 9). It
requires the additional precomputations of P − φ(P) and �P,−λP (Q). From the
estimate in Table 9, our Miller loop variant in Algorithm 2 would give up to a
7% speed-up compared to [15, Alg. 5], for BLS24-BW6 curves. Our Algorithm 2
works for Tate and ate pairing. If there is an endomorphism of higher degree on
G2 (or two independent endomorphisms), use Algorithm 4 instead.

4.2 BW6 with BLS-12

Table 3 gives the parameters of the BW6-BLS12 curves in terms of the seed x,
and the two lifting cofactors ht, hy.

Optimal Ate Pairing Computation. We investigate two pairings on our
BW6 curves: optimal ate and optimal Tate. In [15], the authors presented an
optimal ate pairing formula, for any BW6 curve with tbw,3:

Families of SNARK-Friendly 2-Chains of Elliptic Curves 379

Table 3. Parameters of a BW6 outer curve with a BLS12 inner curve, x ≡ 1 mod 3.

parameter value property

rbw qbls = (x − 1)2/3(x4 − x2 + 1) + x generates prime

ζ6 −x5 + 3x4 − 3x3 + x − 1

ζ6 x5 − 3x4 + 3x3 − x + 2

1/
√−3 −(2x5 − 6x4 + 6x3 − 2x + 3)/3

tbw,0 −x5 + 3x4 − 3x3 + x 6 | tbw,0

tbw,3 x5 − 3x4 + 3x3 − x + 3 3 | tbw,3, 2 � tbw,3

ybw,0 (x5 − 3x4 + 3x3 − x)/3 = −tbw,0/3 2 | ybw,0

ybw,3 (x5 − 3x4 + 3x3 − x + 3)/3 = tbw,3/3 2 � ybw,3

qbw,0 ((tbw,0 + htrbw)2 + 3(ybw,0 + hyrbw)2)/4 generates prime

qbw,3 ((tbw,3 + htrbw)2 + 3(ybw,3 + hyrbw)2)/4 generates prime

Φ6(tbw,i − 1) 3rbw(x4 − 4x3 + 7x2 − 6x + 3)

cbw,0 (h2
t + 3h2

y)/4rbw + (ht − hy)/2tbw,0 + x4 − 4x3 + 7x2 − 6x + 3 − ht

cbw,3 (h2
t + 3h2

y)/4rbw + (ht + hy)/2tbw,3 + x4 − 4x3 + 7x2 − 6x + 3 − ht

c′
bw,0 (G2) cbw,0 + (ht + 3hy)/2

c′
bw,3 (G2) cbw,3 + (ht − 3hy)/2

mopt. ate = fu+1,Q(P)fq
u3−u2−u,Q(P) and eopt. ate = m

(q6
bw−1)/rbw

opt. ate (14)

with optimized computation in [15, Alg. 5]:

fu = fu,Q(P); mopt. ate = fu · (fu)q
u2−u−1,[u]Q(P)�[u]Q,Q(P) , (15)

where [u]Q is precomputed together with fu,Q(P). The equivalent formula for a
trace tbw,0 is

fu(u2−u−1),Q(P)fq
u+1,Q(P) (16)

whose optimized version is

fu = fu,Q(P); mopt. ate = (fu · �[u]Q,Q(P))q(fu)u2−u−1,[u]Q(P) . (17)

In the two cases tbw,0 and tbw,3, the cost in terms of multiplications in the base
field are the same.

Optimal Pairing Computation with Algorithm 2. G1 and G2 have an endo-
morphism φ1, φ2 of eigenvalue λbw,i = tbw,i−1 mod rbw. Low degree polynomials
(short scalars once evaluated at a seed u) a0, a1 s.t. a0 + a1λbw,i = 0 mod rbw
are

(x3 − x2 − x) + (x + 1)(tbw,0 − 1) = −3rbw (18)
−x − 1 + (x3 − x2 + 1)(tbw,0 − 1) = −3(x2 − 2x + 2)rbw (19)
(x + 1) + (x3 − x2 − x)(tbw,3 − 1) = 3(x − 1)2rbw (20)
(x3 − x2 + 1) − (x + 1)(tbw,3 − 1) = −3rbw (21)

380 Y. El Housni and A. Guillevic

The optimal Tate or ate Miller loop with e.g. (19), (21) are:

mTate = f−u−1+(u3−u2+1)λbw,0,P (Q), mate = f−u−1+(u3−u2+1)qbw,0,Q(P)

mTate = fu3−u2+1−(u+1)λbw,3,P (Q), mate = fu3−u2+1−(u+1)qbw,3,Q(P) .

G1 and G2 Membership Testing. For G1 membership testing, one uses one of
Eqs. (18), (19), resp. (20), (21), with x = u. However, these formulas (e.g. [u3 −
u2 − u]P + [u + 1]φ(P)) will output O for any point in the subgroup of order
3rbw. For G2 membership testing, the same equations can be re-used: we showed
in Sect. 4.1 that the twisted curve E′ of G2 has the same trace as E modulo rbw,
either (tbw,0 − 3ybw,0)/2 = tbw,0, or (tbw,3 + 3ybw,3)/2 = tbw,3.

Final Exponentiation. Writing the hard part of the final exponentiation
zΦ6(qbw,i)/rbw in terms of x, ht, hy, Magma runs LLL on multivariate polynomials
and provides the result. With tbw,i, LLL gives short vectors for the exponent:

ebw,i = 3(x + 1)Φk(qbw,i)/rbw(x) (22)

and the formulas for ebw,i are

ebw,0 = 3(cbw,0+ht)(x3− x2 + 1 − (x + 1)qbw,0) − 9(x2− 2x + 2 − qbw,0) (23)

ebw,3 = 3(cbw,3+ht)(x3− x2 − x + (x + 1)qbw,3) + 9(x2− 2x + 1 + qbw,3) (24)

We explicit in the full version the link with Hayashida, Hayasaka and Teruya’s
formulas [29] and show that our formulas are the most efficient.

Cofactor Clearing on G1 and G2 with one Endomorphism. The cofac-
tors are cbw,i for G1 (Eqs. (3), (4)), resp. c′

bw,i for G2 (Eqs. (5), (6)), Table 3.
The curve and its sextic twist for G2 have an endomorphism defined over Fq, of
characteristic polynomial x2 + x + 1 and eigenvalue λ such that λ2 + λ + 1 = 0
modulo the curve order. There are two formulas, one for each choice of eigen-
value modulo the curve order, and l0 + l1λ = 0 mod cbw,i, resp. modulo c′

bw,i,
summarized in Table 4. Formulas with λ can be found in the full version and the
GIT at [17].

Table 4. Cofactor clearing on Gi with an endomorphism of eigenvalue λ : λ2+λ+1 = 0.

G1

cbw,0
l0 = (h2

t + 3h2
y)/4 · (x3 − x2 + 1) − ht(x

2 − 2x + 1) − (ht − 3hy)/2

l1 = (h2
t + 3h2

y)/4 · (x + 1) − (ht + 3hy)/2 · (x2 − 2x + 1) − ht

cbw,3
l0 = (h2

t + 3h2
y)/4 · (x3 − x2 + 1) + ht + (ht + 3hy)/2 · (x − 1)2

l1 = (h2
t + 3h2

y)/4 · (x + 1) − (ht − 3hy)/2 · (x2 − 2x + 2) + ht

G2

c′
bw,0

l0 = (h2
t + 3h2

y)/4(x + 1) + (ht + 3hy)/2(x2 − 2x + 2) − ht

l1 = (h2
t + 3h2

y)/4(x3 − x2 + 1) − (ht − 3hy)/2(x2 − 2x + 1) − ht

c′
bw,3

l0 = −(h2
t + 3h2

y)/4(x + 1) − (ht − 3hy)/2(x2 − 2x + 1) − ht

l1 = (h2
t + 3h2

y)/4(x3 − x2 − x) + (ht + 3hy)/2(x2 − 2x + 2) − ht

Families of SNARK-Friendly 2-Chains of Elliptic Curves 381

Table 5. Parameters of a BW6 outer curve with inner BLS24, x ≡ 1 mod 3.

rbw qbls = (x − 1)2/3(x8 − x4 + 1) + x prime

(x10 − 2x9 + x8 − x6 + 2x5 − x4 + x2 + x + 1)/3

ζ6 −x9 + 3x8 − 4x7 + 4x6 − 3x5 + 2x3 − 2x2 + x − 1

ζ6 x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x + 2

1/
√−3 (2x9 − 6x8 + 8x7 − 8x6 + 6x5 − 4x3 + 4x2 − 2x + 3)/3

tbw,0 −x9 + 3x8 − 4x7 + 4x6 − 3x5 + 2x3 − 2x2 + x 6 | tbw,0

tbw,3 x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x + 3 3 | tbw,3, 2 � tbw,3

ybw,0 (x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x)/3

ybw,0 −tbw,0/3 2 | ybw,0

ybw,3 (x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x + 3)/3

ybw,3 tbw,3/3 2 � ybw,3

qbw,0 ((tbw,0 + htrbw)2 + 3(ybw,0 + hyrbw)2)/4 prime

qbw,3 ((tbw,3 + htrbw)2 + 3(ybw,3 + hyrbw)2)/4 prime

Φ6(tbw,i−1) (x8 − 4x7 + 8x6 − 12x5 + 15x4 − 14x3 + 10x2 − 6x + 3) · 3 · rbw

cbw,0 (h2
t + 3h2

y)/4rbw + (ht − hy)/2tbw,0 + Φ6(tbw,0 − 1)/(3rbw) − ht

cbw,3 (h2
t + 3h2

y)/4rbw + (ht + hy)/2tbw,3 + Φ6(tbw,3 − 1)/(3rbw) − ht

c′
bw,0 (G2) cbw,0 + (ht + 3hy)/2

c′
bw,3 (G2) cbw,3 + (ht − 3hy)/2

4.3 BW6 with BLS-24

We follow the same process as for BW6-BLS12 and report the parameters in
Table 5.

Pairing Computation: Miller Loop. Assuming an endomorphism of eigen-
value λbw,i = tbw,i − 1, the formulas are

− x − 1 + (x5 − x4 + 1)(tbw,0 − 1) = −3rbw((x − 1)2(x2 + 1) + 1) (25)
x5 − x4 − x + (x + 1)(tbw,0 − 1) = −3rbw (26)
x + 1 + (x5 − x4 − x)(tbw,3 − 1) = 3rbw(x − 1)2(x2 + 1) (27)
x5 − x4 + 1 − (x + 1)(tbw,3 − 1) = −3rbw (28)

and one obtains optimal ate and Tate (a.k.a. twisted ate) pairings from (25), (28)

mTate=f−(u+1)+(u5−u4+1)λbw,0,P (Q),
mate=f−(u+1)+(u5−u4+1)qbw,0,Q(P),

mTate=fu5−u4+1−(u+1)λbw,3,P (Q),
mate=fu5−u4+1−(u+1)qbw,3,Q(P).

Pairing Computation: Final Exponentiation. Like for BLS12-BW6, the
hard part can be expressed in terms of qbw,i, ht, hy. One obtains two cases. Note
that according to Table 2, (h2

t + 32y)/4 and (ht − hy)/2 are integers. With the
parameters of Table 5, the exponent (q2bw,i −qbw,i +1)/rbw multiplied by 3(x+1)
has coefficients of low degree in x in basis qbw,i. The highest power to compute
is u15 due to cbw,i of degree 10 in u. The two cases have very similar formulas.

382 Y. El Housni and A. Guillevic

(−x5+ x4− 1 + (x + 1)qbw,0)3(cbw,0+ht) + 9(x4− 2(x3− x2+ x − 1) − qbw,0),
(x(x4− x3− 1) + (x + 1)qbw,3)3(cbw,3+ht) + 9(x4− 2(x3− x2+ x) + 1 + qbw,3).

4.4 Two-Chains with Inner BLS and Outer Cocks-Pinch

Section 4.2 showed that a Brezing-Weng outer curve of embedding degree k = 6
is optimal with a BLS-12 curve whose prime-order subgroup is about 256 bits
long. However BW6 is no longer optimal with BLS24 over a prime field of about
320 bits: we measure the security in the finite field Fq6 whose q is roughly 640
bits long to be about 124 bits in Sect. 5.3. To increase the security in the finite
field Fqk , we can increase the size of the prime q thanks to the choice of lifting
co-factors ht, hy, and obtain a q of 672 bits, or we can increase the embedding
degree k, but then the BW construction is no longer available: we move to the
Cocks-Pinch construction. To allow twist optimisation, we focus on k = 8 with
D = 1 (quartic twist) and k = 12 with D = 3 (sextic twist). Our Cocks-Pinch
curves are similar to the curves of Guillevic, Masson and Thomé [27]. The lifting
cofactor idea appeared before in Fotiadis and Konstantinou paper [18].

With the Cocks-Pinch construction of embedding degree not 6, the optimal
ate pairing like for BW6 curves is no longer available because the eigenvalue of
the Frobenius endomorphism πq on a CP curve E(Fqk) does not have a simple
polynomial form modulo the subgroup order rcp = qbls. In other words, there
is no k-th root of unity modulo qbls(x) (as polynomials). However, πq has an
eigenvalue (as a scalar integer) modulo rcp(u) ∈ Z, and one can use the LLL
algorithm to obtain a decomposition with short scalars ai, of size r

1/4
cp : a0 +

a1qcp + a2q
2
cp + a3q

3
cp = 0 mod rcp. This 4-fold holds for CP8 and CP12 curves

as ϕ(8) = ϕ(12) = 4. The optimal ate Miller loop would be

fa0,Q(P)fq
a1,Q(P)fq2

a2,Q(P)fq3

a3,Q(P)�a0Q,a1πq(Q)(P)�a2πq2 (Q),a3πq3 (Q)

But the scalars ai are not sparse and none of them is trivial, contrary to [42].
Instead, we generalize our Algorithm 2 and obtain Algorithm 4. Algorithm 3
precomputes the data and Algorithm 4 computes the pairing, with the formu-
las (10)–(13) adapted to the ate pairing with swapped P and Q and λ = q, and
with Ci =

∑
i ciq

i,

f2Ci,Q(P) = f2
Ci,Q(P)�[Ci]Q,[Ci]Q(P) (29)

fCi+qj+ql+qm,Q(P) = fCi,Q(P)fqj+ql+qm,Q(P)�[Ci]Q,[qj+ql+qm]Q(P)

= fCi,Q(P)�[Ci]Q,[qj+ql+qm]Q(P)�[qj+ql]Q,[qm]Q(P)�[qj]Q,[ql]Q(P) (30)
fCi+1+q+q2+q3,Q(P) = fCi,Q(P)f1+q+q2+q3,Q(P)�[Ci]Q,[1+q+q2+q3]Q(P)

= fCi,Q(P)�[Ci]Q,[1+q+q2+q3]Q(P)

·�[1+q]Q,[q2+q3]Q(P)�Q,[q]Q(P)�[q2]Q,[q3]Q(P) (31)

The fqj ,Q(P) terms are removed [30]. The points [qj]Q, [qj +ql]Q, [qj +ql+qm]Q,
[1 + q + q2 + q3]Q, lines �[qm]Q,[qn]Q(P), �[qj+ql]Q,[qm]Q(P), �[1+q]Q,[q2+q3]Q(P),
and their products, are precomputed.

On CP8 curves, G1 has an endomorphism φ : (x, y) �→ (−x,
√−1y) of eigen-

value λ ≡ q2 mod r, λ2 ≡ −1 mod r. On CP12 curves, G1 has the same

Families of SNARK-Friendly 2-Chains of Elliptic Curves 383

endomorphism as BW6 curves, of eigenvalue λ ≡ q2 mod r. The twisted ate
pairing on our CP curves has Miller loop fλ,P (Q) = fq2,P (Q), and we derive our
optimal Tate pairing like for BW6 curves, with short scalars a0+a1λ ≡ 0 mod r.

Algorithm 3: Precomputations of sums of points and lines
Input: P ∈ E(Fq)[r], Q0, Q1, Q2, Q3 ∈ E′(Fqk/d)[r]
Output: array T of length 15, of precomputed points and lines

1 T ← array of length 15
2 for i = 0 to 3 do
3 T [2i − 1][0] ← Qi ; T [2i − 1][1] ← 1
4 for 0 ≤ m < n ≤ 3 do
5 i ← 2m + 2n

6 T [i − 1][0] ← T [2m − 1] + T [2n − 1]
7 T [i − 1][1] ← �Qm,Qn

(P)
8 for 0 ≤ m < n < s ≤ 3 do
9 i ← 2m + 2n + 2s

10 T [i − 1][0] ← T [2m + 2n − 1][0] + T [2s − 1][0]
11 T [i − 1][1] ← T [2m + 2n − 1][1] · �Qm+Qn,Qs

(P)
12 T [15 − 1][0] ← T [7 − 1][0] + T [8 − 1]
13 T [15 − 1][1] ← T [7 − 1][1] · �Q0+Q1+Q2,Q3(P)
14 return T

Algorithm 4: Miller loop for optimal ate pairing, Cocks-Pinch
Input: P ∈ G1 = E(Fq)[r], Q ∈ G2 = ker(πq − [q]) ∩ E(Fqk)[r], scalars

a0, a1, a2, a3 such that a0 + a1q + a2q
2 + a3q

3 = 0 mod r
Output: fa0+a1q+a2q2+a3q3,Q(P)

1 Q0 ← Q; Q1 ← πq(Q); Q2 ← πq2(Q); Q3 ← πq3(Q)
2 for i = 0 to 3 do
3 if ai < 0 then ai ← −ai ; Qi ← −Qi

4 T ← precomputations(Q0, Q1, Q2, Q3)
5 li ← bits(ai) for 0 ≤ i ≤ 3
6 i ← max0≤j≤3(lenlj)
7 j ← l0,i + 2l1,i + 4l2,i + 8l3,i

8 f ← T [j − 1][1]
9 S ← T [j − 1][0]

10 for i = i − 1 downto 0 do
11 f ← f2

12 �t ← �S,S(P); S ← [2]S
13 j ← l0,i + 2l1,i + 4l2,i + 8l3,i

14 if j > 0 then
15 Qj ← T [j − 1][0]; � ← �S,Qj

(P); S ← S + Qj

16 f ← f · (�t · �)
17 if T [j − 1][1] �= 1 then f ← f · T [j − 1][1]
18 else f ← f · �t

19 return f

384 Y. El Housni and A. Guillevic

4.5 Comparison of BW6, CP8 and CP12 Outer Curve Performances

We reproduce the field arithmetic estimates from [15,27] in Table 6 and the
pairing cost estimates in Table 7. Parameters of CP8 and CP12 are in Table 8,
BW6 are in Table 12. We justify our choice of seeds and curve parameters in
Sec. 5. Ate and Tate pairing estimates of our BW6 and CP curves are in Table 9.
We have a speed-up of the optimal ate pairing on BW6 curves compared to [15]
with the formula (32) with v = u2 −2u+1 for BLS12-BW6 and v = u4 −2(u3 −
u2 + u) + 1 for BLS24-BW6 because the 2-NAF Hamming weight of the scalar
v is lower.

fu+1 = fu+1,Q(P), mopt. ate = (fu+1)
q
v,[u+1]Q(P)�q

[(u+1)v]Q,−Q(P) . (32)

BW6 curves as outer curves of BLS24 have a faster pairing than CP8 and CP12
curves: a larger characteristic gives better performances than a larger embedding
degree. Assuming a ratio m704/m640 = 1.25, an ate Miller loop on CP8-632 is
25% slower compared to BW6-672, but the final exp. is 15% faster. A full pairing
on CP8 is about 7% slower, and 59% slower on CP12. BLS24-BW6 has a faster
pairing than BLS12-BW6, but the 2-adicity of BLS24 curves is much smaller.

Table 6. Cost from [27, Tab. 6] of mk, sk and ik for field extensions Fpk . Inversions in
Fpik come from i2k = 2mk +2sk + ik and i3k = 9mk +3sk + ik. Fp12 , resp. Fp24 always
have a first quadratic, resp. quartic extension, i24 = 2m12 +2s12 + i12 = 293m+ i with
i12 = 9m4+3s4+i4, and for Fp12 , i12 = 2m6+2s6+i6 = 97m+i with i6 = 9m2+3s2+i2.

k 1 2 3 4 6 8 12 24

mk m 3m 6m 9m 18m 27m 54m 162m

sk m 2m 5m 6m 12m 8m 36m 108m

fk 0 0 2m 2m 4m 6m 10m 22m

scyclok − 2s − 4m 6m 12m 18m 54m

ik − i1 0 2m + 2s 9m + 3s 14m 34m 44m 97m 293m

ik, with i1 = 25m 25m 29m 37m 39m 59m 69m 119m 318m

Table 7. Miller loop cost in non-affine, Weierstrass model [2,12]. For 6 | k, two sparse-
dense multiplications cost 26mk/6 whereas one sparse-sparse and one multiplication
cost 6mk/6 + mk = 24mk/6. For 4 | k, this is 16mk/4 compared to 6mk/4 + mk =
15mk/4.

k D curve
DoubleLine

and AddLine
ref

SparseM

and SparseSparseM

6 | k −3 Y 2 = X3 + b 3mk/6 + 6sk/6 + (k/3)m [2, §4] 13mk/6

sextic twist 11mk/6 + 2sk/6 + (k/3)m 6mk/6

4 | k −1 Y 2 = X3 + ax 2mk/4 + 8sk/4 + (k/2)m [12, §4] 8mk/4

quartic twist 9mk/4 + 5sk/4 + (k/2)m 6mk/4

Families of SNARK-Friendly 2-Chains of Elliptic Curves 385

Table 8. CP8 and CP12 outer curve parameters on top of BLS24-315

outer curve u (ht, hy)
(t − 1)2 + 1

modr, u
equation

Fqk

(bits)

est. DL

in Fqk

BLS24-315-CP8-632 -0xbfcfffff (6,2) – y2 = x3 − x 5056 140

BLS24-315-CP12-630 -0xbfcfffff (1,2) 0 y2 = x3 − 1 7560 166

Table 9. Pairing cost estimates on BLS12-BW6, BLS24-BW6, BLS24-CP8, BLS24-
CP12 curves. BLS12-BW6 curves use Eq. (20) with [15, Alg. 5], and v = u2 − 2u + 1.
BLS24-BW6 curves use Eq (26), (27) with v = u4 − 2(u3 − u2 + u) + 1.

BLS12-377-BW6-761 BLS12-379-BW6-764

ate fu+1,Q(fu)
q

u2−u−1,[u]Q
7863m768 7653m768

ate fu+1,Q(fu+1)
q
v,[u+1]Q

�q
(u+1)vQ,−Q

7555m768 7389m768

Tate fu+1+(u3−u2−u)λ,P Algorithm 2 7729m768 7540m768

Final exp. [15, § 3.3, Tab. 7] 5081m768 –

Final exp. Eq. (24) 5195m768 5033m768

BLS24-315-BW6-633 BLS24-315-BW6-672

ate fu+1,Q(fu+1)
q
v,[u+1]Q

�q
(u+1)vQ,−Q

7285m640 7285m704

Tate fu+1+(u5−u4−u)λ,P Algorithm 2 6813m640 6813m704

Final exp. 5027m640 5501m704

BLS24-315-CP8-632 BLS24-315-CP12-630

ate fa0+a1q+a2q2+a3q3,Q Algorithm 4 10679m640 13805m640

Tate fa0+a1λ,P Algorithm 2 12489m640 15780m640

Final exp. 5835m640 10312m640

5 Implementation and Benchmarking

In previous sections, we presented families of SNARK-friendly 2-chains that
are suitable for Groth’16 and KZG-based universal SNARKs. These families
are composed of BLS12 and BLS24 inner curves and BW6, CP8 and CP12
outer curves. We demonstrated that the pair family BLS12/BW6 is suitable for
recursive Groth’16 applications and meets the best security/performance trade-
off. Similarly, we showed that BLS24/BW6 is suitable for KZG-based universal
SNARKs. We also investigated the family pairs BLS24/CP8 and BLS24/CP12
as more conservative choices and showed that CP8-632 is competitive with
BLS24/BW6-672. BW6-633, CP8 and CP12 are defined over a base field of
roughly the same bit length, and all have a GLV endomorphism, hence per-
formances on G1 are expected to be the same. On G2, BW6 are always faster
because they are defined over the same base field as G1, contrary to CP curves.
For the pairing computation, as discussed in Sect. 4.5, CP8 and CP12 are slower
than both choices of BW6. Additionally, multi-pairings (as used in SNARKs)
scale better on BW6 curves (Algorithm 2) compared to CP8 and CP12. There-
fore, we have chosen to focus our benchmarks on BLS12/BW6 and BLS24/BW6
families of curves.

386 Y. El Housni and A. Guillevic

In this section, we first present an open-sourced SageMath library to derive
these curves and test our generic formulas. Then, based on additional practi-
cal criteria, we recommend a short list of SNARK-friendly 2-chains. Finally, we
implement this short-list in the open-sourced gnark ecosystem [9]. We bench-
mark the relevant curve operations in G1 and G2, and the pairings, and compare
efficiency of all choices in practical Groth’16 and PlonK settings, which is a pop-
ular KZG-based universal SNARK. Both schemes are implemented in gnark and
maintained by ConsenSys.

5.1 SageMath Library: Derive the Curves

In this public Git repository [17], we present SageMath scripts to derive all the
SNARK-friendly 2-chain families and verify the formulae presented in Sects. 3
and 4, and the pairing cost estimates of Table 9.

5.2 Our Short-List of Curves

For all curves, in addition to SNARK-friendliness and security level λ, we shall
consider the following properties:

– A seed u with low Hamming weight HW(u), allowing fast Miller loops in
pairings.

– Isogenies of low degree d from a curve with j-invariant different from 0
and 1728, allowing use of the “simplified SWU“ method for hashing to the
curve [43].

– Small integer α relatively prime to r − 1, allowing the use of xα as an S-box
in the algebraic SNARK-hashes (e.g. Poseidon [24]).

– Small non-residues in Fq, for an efficient tower arithmetic.
– “Spare“ bits in Fq, for carries, infinity point or compressed point flag.

For outer curves, an additional property is

– Smallest h2
t + 3h2

y with low Hamming weight, allowing fast final exponentia-
tion.

BLS12/BW6. The security of BLS12-384 and BLS12-448 is explained in [28],
BLS12-448 being presented as a more conservative choice: it offers about 132
bits of security in Fq12 instead of 126 bits. Because a BLS12-448 would imply
a much larger BW6-896, we concentrate on the BLS12 curves of 377 to 383
bits of Table 10. Given the above requirements, we short-list BLS12-377 with
u = 0x8508c00000000001 and BLS12-379 with u = 0x9b04000000000001. The
former was proposed in [10] and used in [15] and the latter is new, of higher
2-adicity. Both have a HW(u) = 7, d = 2, α ≤ 7 and tower fields can be

constructed as Fq
i2+5−−−→ Fq2

v3−i−−−→ Fq6
w2−v−−−−→ Fq12 .

Now, we construct outer BW6 curves to these inner BLS12 curves. For
BLS12-377, we find BW6-761 to be optimal and refer the reader to [15] for
a more detailed study. For BLS12-379, we restrict the search to curves up to
768 bits and suggest the corresponding BW6-764 with ht = −23, hy = 3 and
equation Y 2 = X3+1 (and M-twist Y 2 = X3+2). Both BW6-761 and BW6-764
fall in the tbw,3 case (Table 3).

Families of SNARK-Friendly 2-Chains of Elliptic Curves 387

BLS24/BW6. A BLS24 curve defined over a 320-bit prime field offers 128 bits
of security on the curve thanks to a subgroup of prime order r of 256 bits, and
offers around 160 bits in Fq24 . Accordingly, we find the following SNARK-friendly
inner BLS24 curves (Table 11).

Given all the requirements, we choose BLS24-315 (u = -0xbfcfffff) over Fq

of 315 bits and with Fr of 253 bits. It has 2-adicity 22 and security level almost

128. The tower fields can be constructed as Fq
i2−13−−−−→ Fq2

v2−i−−−→ Fq4
w2−v−−−−→

Fq8
c3−w−−−→ Fq24 .

Now, we construct outer BW6 curves to BLS24-315. First, we search for less
conservative curves over a field of up to 640 bits. We recommend the BW6-633
curve with hy = −7, hy = −1 and the equation Y 2 = X3 + 4 (and M-twist Y 2 =
X3+8). For more conservative curves offering 128 bits of security, we search for qbw
of exactly 672 bits. We recommend the BW6-672 curve with ht = 5111800, hy = 0
(HW2-NAF(h2

t + 2h2
y) = 8) and equation Y 2 = X3 − 4 (D-twist Y 2 = X3 − 4/3).

The former falls in the tbw,0 and the latter in the tbw,3 case.

5.3 Estimated Complexity of a DL Computation in GF (qk)

This section recalls the results from [3,26,28]. A BLS12 curve with r of about
256 bits has q of about 384 bits. In [28, Table 10] the estimated security in Fq12

for the BLS12-381 curve is 126 bits. Running the tool from [28], the paper [15]
shows that BLS12-377 in Fq12 has 125 bits of security, and BW6-761 has 126 bits
of security in Fq6 . With the same approach and the SageMath tool2 from [28],
our BLS12-379 curve has 125 bits in Fq12 and our BLS24-315 curve has 160 bits
of security in Fq24 .

We observe a notable difference between the BW6 outer curves of BLS12
and BLS24 because of the degree of the polynomial qbw(x). This polynomial is
the key-ingredient of the Special (Tower) NFS [34]. However when its degree is
too high, the general (Tower) NFS performs better, unless a tweak of qbw(x) is
possible [26]. This tweak divides by n the degree of qbw(x) while increasing its
coefficients by at most un−1. It works only if either qbw has an automorphism

Table 10. Seeds of SNARK-friendly inner BLS12 curves around 128 bits of security.

u q (bits) r (bits) λ E(Fq) λ Fq12 2-adicity L d α

0x8508c00000000001 377 253 126 126 47 2 11

-0x7fb80fffffffffff 377 252 126 126 45 2 5

0x9b04000000000001 379 254 127 126 51 2 7

-0xfffbc3ffffffffff 383 256 128 126 43 2 7

-0xfff7c1ffffffffff 383 256 128 126 42 2 7

-0xffc3bfffffffffff 383 256 128 126 47 2 7

0x105a8000000000001 383 257 128 126 52 2 7

2 SageMath code available at https://gitlab.inria.fr/tnfs-alpha/alpha.

https://gitlab.inria.fr/tnfs-alpha/alpha

388 Y. El Housni and A. Guillevic

Table 11. Seeds of SNARK-friendly inner BLS24 curves around 128 bits of security.

u q (bits) r (bits) λ E(Fq) λ Fq24 2-adicity L d α

0x60300001 305 245 122 158 22 2 7

-0x950fffff 311 250 125 159 22 2 7

0x9f9c0001 312 251 125 159 20 2 7

-0xbfcfffff 315 253 126 160 22 2 7

-0xc90bffff 315 254 126 160 20 2 13

0xe19c0001 317 255 127 160 20 2 17

-0x10487ffff 319 257 128 161 21 2 11

Table 12. BW6 outer curve parameters, where y2 = x3 + b.

outer curve u (ht, hy)
tmod

r, u
b

F
qk

(bits)

est. DL

in F
qk

BLS12-377-BW6-761 0x8508c00000000001 (13, 9) 0 −1 4566 126

BLS12-379-BW6-764 0x9b04000000000001 (−25, 3) 0 1 4584 126

BLS24-315-BW6-633 -0xbfcfffff (−7, −1) 0 4 3798 124

BLS24-315-BW6-672 -0xbfcfffff (0x4dfff8, 0) 0 −4 4032 128

of degree n, hence the new polynomial has coefficients as small as the initial
one, or the seed u is small enough. Here qbw has no automorphism, and u is
32 bits long. We obtain a new q̃bw(x) of degree 10 and coefficients of 40 bits.
The lowest estimate of DL cost with STNFS is 2132 with h of degree 6 for
the 633-bit curve. The general TNFS works slightly better: with h of degree
2, and the Conjugation method (Conj), we obtain a DL cost estimate of 2124.
This is coherent with MNT-6 curve security estimates, where the same choice of
parameters for TNFS apply [27, Fig. 1]. To reach the 2128 cost, we increase qbw
up to 672 bits. We stress that the tool we use only gives an estimate, and recent
progress are being made about TNFS [13]. In case of underestimate of the tool,
one can consider a 704-bit BLS24-BW6 curve.

For the Cocks-Pinch construction, the parameters do not have a polynomial
form. For the embedding degree 8 we consider the TNFS-Conj algorithm with
h of degree 2 according to [27, Fig. 2]. We obtain 140 bits of security in Fq8 for
the BLS24-315-CP8-632 curve. For the BLS24-315-CP12-630 curve we measure
a DL cost of 166 bits in Fq12 with TNFS-Conj and h of degree 3 for the tower.

5.4 Golang Library: Implement the Short-List Curves

In this Git repository [14], we present an optimized implementation, with x86-64
assembly code for the finite fields, of the short-listed curves: BLS12-377, BW6-
761, BLS12-379, BW6-764, BLS24-315, BW6-633 and BW6-672 (Table 13). All
curve implementations are written in Golang (tested with 1.16 and 1.17 ver-
sions) and benefit from Fq and Fr x86-64 assembly accelerated arithmetic. Also,
they benefit from D = −3 endomorphism-based optimizations (GLV and 2-
dimensional GLS scalar multiplication, fast subgroup checks and cofactor clear-
ing). For the pairing, we follow optimizations from [1,23,29,38] and Sect. 4.

Families of SNARK-Friendly 2-Chains of Elliptic Curves 389

Table 13. Short-listed curves.

curve, tower fields equation twist equation

BLS12-377, Fq
i2+5−−−→ Fq2

v3−i−−−→ Fq6
w2−v−−−→ Fq12 Y 2 = X3 + 1 Y 2 = X3 + 1/i

BLS12-379, Fq
i2+5−−−→ Fq2

v3−i−−−→ Fq6
w2−v−−−→ Fq12 Y 2 = X3 + 1 Y 2 = X3 + 1/(5+i)

BLS24-315, Fq
i2−13−−−−→Fq2

v2−i−−−→Fq4
w2−v−−−→Fq8

c3−w−−−→Fq24 Y 2 = X3 + 1 Y 2 = X3 + 1/i

BLS12-377-BW6-761, Fq
i3+4−−−→ Fq3

v2−i−−−→ Fq6 Y 2 = X3 − 1 Y 2 = X3 + 4

BLS12-379-BW6-764, Fq
i3−2−−−→ Fq3

v2−i−−−→ Fq6 Y 2 = X3 + 1 Y 2 = X3 + 2

BLS24-315-BW6-633, Fq
i3−2−−−→ Fq3

v2−i−−−→ Fq6 Y 2 = X3 + 4 Y 2 = X3 + 8

BLS24-315-BW6-672, Fq
i3−3−−−→ Fq3

v2−i−−−→ Fq6 Y 2 = X3 − 4 Y 2 = X3 − 4/3

5.5 Benchmarking

In this section, we benchmark our Golang implementation for all short-listed
curves on two levels. First, independently from the context, we benchmark G1,
G2 scalar multiplications (with GLV/GLS acceleration [22] and multi-scalar-
multiplication (Bucket-list method [6, section 4]). Also, we benchmark the pair-
ing computation (Miller loop, Final exponentiation and total pairing). Then, we
benchmark the time to setup, prove and verify Groth’16 and PlonK proofs of
circuits with different number of constraints.

The first level benchmarks are run on a AWS z1d.large (3.4 GHz Intel Xeon)
and the second level on a an AWS c5a.24xlarge (AMD EPYC 7R32). This allows
to handle large proofs and to test different architectures. All with hyperthread-
ing, turbo and frequency scaling disabled. G1, G2 and GT operations. G1

coordinates for all short-listed curves are over Fq and use D = −3 endomor-
phism to implement GLV. For G2, BW6 coordinates are over Fq as well and
implements GLV (D = −3). For BLS12 and BLS24, the implementation uses
2-dim. GLS [22] over Fq2 and Fq4 respectively. Timings are reported in Tables 14
and 15. For multi-scalar-multiplication, we report timings in Figs. 1 and 2 for
different sizes (25 to 224 points).

Table 14. G1 and G2 scalar multiplication benchmarks.

curve G1 scalar mul. (ns) G2 scalar mul. (ns)

BLS12-377 77606 261607

BLS12-379 81090 272107

BLS24-315 65825 622044

BLS12-377-BW6-761 377360 377360

BLS12-379-BW6-764 390647 390647

BLS24-315-BW6-633 255600 255600

BLS24-315-BW6-672 300929 300929

390 Y. El Housni and A. Guillevic

0 2 4 6 ·1010
0.0

0.5

1.0

1.5
·107

Timing (ns)

S
iz
e
o
f
M
S
M

BLS12-377

BLS12-379

BLS24-315

(a) G1-MSM

0 2 4·1011
0.0

0.5

1.0

1.5
·107

Timing (ns)

S
iz
e
o
f
M
S
M

BLS12-377

BLS12-379

BLS24-315

(b) G2-MSM

Fig. 1. MSM on G1 a and G2 b for short-listed inner curves.

On the one hand, we note that for inner curves BLS24-315 is the fastest
on G1, the slowest on G2 while still competitive on GT (especially for multi-
pairings when the final exponentiation is factored out). Thus, it is suitable for
KZG-based SNARKs where only G1 operations and pairings accounts for the
Setup, Prove and Verify algorithms. On the other hand, BLS12-377 presents
the best tradeoff on all operations making it suitable for Groth’16 SNARK. For
the less conservative choice of outer curve to BLS24-315, namely BW6-633, a
pairing computation is almost as fast as on BLS24-315 and MSMs are the fastest
on all outer curves given the small field size. For the conservative choice, namely
BW6-672, operations on all three groups are reasonably fast and notably faster
than on outer curves to BLS12 (BW6-761 and BW6-764).

Groth’ 16 and PlonK Schemes. Based on previous paragraph analysis, here,
we discard BLS12-379/BW6-764 pair and choose to bench BLS12-377/BW6-761
and BLS24-315/BW6-633/BW6-762 pair of curves in the context of Groth’16

Table 15. Pairing computation benchmarks.

curve Miller Loop (ns) Final Exp. (ns) Pairing (ns)

BLS12-377 opt. ate 377191 422157 799348

BLS12-379 opt. ate 383753 453687 837440

BLS24-315 opt. ate 435958 993500 1429458

BLS12-377-BW6-761 opt. ate (Eq. 14) 1613306 1099533 2712839

BLS12-377-BW6-761 opt. ate (Eq. 32) 1249860 1099533 2349393

BLS12-377-BW6-761 opt. Tate 1249860 1099533 2349393

BLS12-379-BW6-764 opt. ate (Eq. 14) 1548546 1057174 2605720

BLS24-315-BW6-633 opt. ate 918724 727918 1646642

BLS24-315-BW6-633 opt. Tate 809503 727918 1537421

BLS24-315-BW6-672 opt. ate 1073268 977436 2050704

BLS24-315-BW6-672 opt. Tate 973630 977436 1951066

Families of SNARK-Friendly 2-Chains of Elliptic Curves 391

0 1 2 ·1011
0.0

0.5

1.0

1.5
·107

Timing (ns)

S
iz
e
o
f
M
S
M

BLS12-377-BW6-761

BLS12-379-BW6-764

BLS24-315-BW6-672

BLS24-315-BW6-633

Fig. 2. G1/G2-MSM on short-listed outer curves.

and PlonK SNARKs. We choose a simple circuit (proof of exponentiation:
aw := b (see Sect. 2.2)) to be able to control precisely the number of constraints.
We bench the Setup, Prove and Verify algorithms for both Groth16 and PlonK
schemes and report timings in Figs. 3, 4, 5, 6 and 7. The benchmark is run, this
time, on an AWS c5a.24xlarge (AMD EPYC 7R32) to be able to test large
circuits. In Table 16 we recall the cost of SNARK algorithms in terms of pre-
ponderant groups operations.

Remark 4. The maximum number of constraints nmax a circuit can have is dif-
ferent per SNARK scheme and per curve. For Groth16, nmax = 2L and for
PlonK nmax = 2L−2 where L is the 2-adicity of the chosen curve.

Table 16. Cost of Setup, Prove and Verify algorithms for Groth16 and PlonK.
m =number of wires, n =number of multiplications gates, a =number of additions
gates and � =number of public inputs. MG =multiplication in G and P=pairing.

Setup Prove Verify

Groth16 3n MG1 , m MG2 (3n + m − �) MG1 , n MG2 3 P, � MG1

PlonK (KZG) d≥n+a MG1 , 1 MG2 9(n + a) MG1 2 P, 18 MG1

It is clear from Figs. 3, 4 and 7 that BLS12-377 is optimized to setup and
prove Groth16 proofs while BLS24-315 is suitable to setup and prove PlonK
proofs at the cost of acceptably slower verification time. For proof composition,
we see from Figs. 5, 6 and 7 that the outer curves to BLS24-315, namely BW6-
633 and BW6-672, are faster for all the SNARK algorithms for both Groth16
and PlonK. This confirms the recommendation of BLS24/BW6 pair of curves
for KZG-based SNARK. We should also note that for applications where one
would like to optimize the cost of generating and proving a proof of several
proofs {πi}0≤i≤M at the cost of slow generation of πi (e.g. proof aggregation by
light clients of off-chain generated proofs), one could use the BLS24/BW6 pair
for Groth16.

392 Y. El Housni and A. Guillevic

0 1e3 5e3 1e4 5e4 1e5 5e5 1e6

0.0

10.0

20.0

30.0·103

#constraints

T
im

e
(m

s)

BLS12-377

BLS24-315

(a) Groth16 setup - inner curves

0 1e3 5e3 1e4 5e4 1e5 5e5 1e6

0.0

1.0

2.0
·103

#constraints

T
im

e
(m

s)

BLS12-377

BLS24-315

(b) Groth16 prover - inner curves

Fig. 3. Groth16 Setup (a) and Prove (b) times per number of constraints for inner
curves.

0 1e3 5e3 1e4 5e4 1e5 5e5

0.0

0.5

1.0

·103

#constraints

T
im

e
(m

s)

BLS12-377

BLS24-315

(a) PlonK setup - inner curves (b) PlonK prover - inner curves

Fig. 4. PlonK Setup (a) and Prove (b) times per number of constraints for inner curves.

0 1e3 5e3 1e4 5e4 1e5 5e5

0.0

10.0

20.0

30.0

40.0·103

#constraints

T
im

e
(m

s)

BLS24-315-BW6-672

BLS24-315-BW6-633

BLS12-377-BW6-761

(a) Groth16 setup - outer curves

0 1e3 5e3 1e4 5e4 1e5 5e5

0.0

1.0

2.0

·103

#constraints

T
im

e
(m

s)

BLS24-315-5BW6-672

BLS24-315-BW6-633

BLS12-377-BW6-761

(b) Groth16 prover - outer curves

Fig. 5. Groth16 Setup (a) and Prove (b) times per number of constraints for outer
curves.

Families of SNARK-Friendly 2-Chains of Elliptic Curves 393

0 1e3 5e3 1e4 5e4 1e5

0.0

1.0

2.0

·103

#constraints

T
im

e
(m

s)

BLS24-315-BW6-672

BLS24-315-BW6-633

BLS12-377-BW6-761

(a) PlonK setup - outer curves

0 1e3 5e3 1e4 5e4 1e5

0.0

1.0

2.0

·103

#constraints

T
im

e
(m

s)

BLS24-315-BW6-672

BLS24-315-BW6-633

BLS12-377-BW6-761

(b) PlonK prover - outer curves

Fig. 6. PlonK Setup (a) and Prove (b) times per number of constraints for outer
curves.

0 0.2 0.4 0.6 0.8 1·106
0

5

10

#constraints

T
im

in
g

(m
s)

BLS12-377

BLS24-315

BLS12-377-BW6-761

BLS24-315-BW6-672
BLS24-315-BW6-633

(a) Groth16 verification

0 0.2 0.4 0.6 0.8 1·106
0

5

10

#constraints

T
im

in
g

(m
s)

BLS12-377
BLS24-315

BLS12-377-BW6-761

BLS24-315-BW6-672
BLS24-315-BW6-633

(b) PlonK verification

Fig. 7. Groth16 (a) and PlonK (b) Verify times on short-listed curves.

6 Conclusion

We generalized the curve construction of [15] and proposed a family in which
this curve falls. Precisely, a family of SNARK-friendly 2-chains built on top of
BLS12 inner curves. We investigated another family composed of inner BLS24
curves and outer BW6, CP8 and CP12 curves. We first presented our results
for a better arithmetic on all BLS curves and then derived generic formulas for
group operations and pairings over our outer curves. Then, we analysed and
compared the security and performance tradeoffs of all the constructions. In the
context of SNARK applications, we short-listed several curves based on practical
criteria. Finally, we presented a SageMath library to derive the curves and verify
the formulas and an optimized Golang implementation of the short-listed curves
along with benchmarks. We concluded that BLS12-377/BW6-761 is optimized in
the Groth16 setting while BLS24-315/BW6-672 (or less conservative BW6-633)
is optimized in the KZG-based SNARK setting.

As a future work, we would like to investigate optimized pairing algorithms
for SNARK circuits (e.g. R1CS). In fact, while pairings are well studied in the

394 Y. El Housni and A. Guillevic

classical setting, there isn’t much work in the SNARK setting. This would enable
faster proof composition with SNARK-friendly 2-chains. Another avenue that is
worth noting is combining our work with other techniques that allow proof com-
position, such as Plookup [20]. This is a protocol for checking whether the values
of a committed polynomial are contained in the values of a table but it can be
used to emulate non-native field operations in a SNARK circuit. However, this
is less efficient than the 2-chains based method and we propose to mix both
methods. On a platform where only a target curve is available (e.g. Ethereum
blockchain supports BN254 only), one can imagine composing efficiently multi-
ple PlonK proofs with BLS24/BW6 pair of curves and then using the Plookup
technique only once to prove the composed BW6-proof over the target curve.

Acknowledgements. We thank Thomas Piellard and Olivier Bégassat for valuable
discussions and feedback. We thank Gautam Botrel for helping with the Go implemen-
tation. We thank Diego Aranha, Julien Doget and Mike Scott for stimulating discus-
sions on GT membership testing and subgroup security in Fqk .

References

1. Aranha, D.F., Barreto, P.S.L.M., Longa, P., Ricardini, J.E.: The realm of the
pairings. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 3–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-
7 1

2. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 5

3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32(4), 1298–1336 (2019). https://doi.org/10.1007/s00145-018-9280-5

4. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36413-7 19

5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1 16

6. Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.-J.: Faster batch forgery
identification. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol.
7668, pp. 454–473. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34931-7 26

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, January 2012. https://doi.
org/10.1145/2090236.2090263

8. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120. ACM Press, June 2013.
https://doi.org/10.1145/2488608.2488623

https://doi.org/10.1007/978-3-662-43414-7_1
https://doi.org/10.1007/978-3-662-43414-7_1
https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-642-34931-7_26
https://doi.org/10.1007/978-3-642-34931-7_26
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2488608.2488623

Families of SNARK-Friendly 2-Chains of Elliptic Curves 395

9. Botrel, G., Piellard, T., Housni, Y.E., Kubjas, I., Tabaie, A.: Consensys/gnark:
v0.6.0, January 2022. https://doi.org/10.5281/zenodo.5819105

10. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling
decentralized private computation. In: 2020 IEEE Symposium on Security and
Privacy, pp. 947–964. IEEE Computer Society Press, May 2020. https://doi.org/
10.1109/SP40000.2020.00050

11. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45721-1 26

12. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 224–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 14

13. De Micheli, G., Gaudry, P., Pierrot, C.: Lattice enumeration for tower NFS:
a 521-bit discrete logarithm computation. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021, Part I. LNCS, vol. 13090, pp. 67–96. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-92062-3 3

14. El Housni, Y.: A fork of gnark-crypto: Golang library for finite fields, fft, and
elliptic curves (2021). https://github.com/yelhousni/gnark-crypto

15. El Housni, Y., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves
suitable for one layer proof composition. In: Krenn, S., Shulman, H., Vaudenay, S.
(eds.) CANS 2020. LNCS, vol. 12579, pp. 259–279. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-65411-5 13

16. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic curves.
ePrint 2021/1359 (2021)

17. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic curves
(2021). MIT License. https://gitlab.inria.fr/zk-curves/snark-2-chains

18. Fotiadis, G., Konstantinou, E.: TNFS resistant families of pairing-friendly elliptic
curves. Theor. Comput. Sci. 800, 73–89 (2019). https://doi.org/10.1016/j.tcs.2019.
10.017

19. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptol. 23(2), 224–280 (2010). https://doi.org/10.1007/s00145-009-9048-z

20. Gabizon, A., Williamson, Z.J.: plookup: a simplified polynomial protocol for lookup
tables. ePrint 2020/315 (2020)

21. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. ePrint
2019/953 (2019)

22. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 30

23. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth
degree extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 209–223. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 13

24. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
a new hash function for zero-knowledge proof systems. In: USENIX Security Sym-
posium (2021)

https://doi.org/10.5281/zenodo.5819105
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-642-13013-7_14
https://doi.org/10.1007/978-3-642-13013-7_14
https://doi.org/10.1007/978-3-030-92062-3_3
https://github.com/yelhousni/gnark-crypto
https://doi.org/10.1007/978-3-030-65411-5_13
https://doi.org/10.1007/978-3-030-65411-5_13
https://gitlab.inria.fr/zk-curves/snark-2-chains
https://doi.org/10.1016/j.tcs.2019.10.017
https://doi.org/10.1016/j.tcs.2019.10.017
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/978-3-642-13013-7_13
https://doi.org/10.1007/978-3-642-13013-7_13

396 Y. El Housni and A. Guillevic

25. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

26. Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at
the 128-bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 535–564. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45388-6 19

27. Guillevic, A., Masson, S., Thomé, E.: Cocks-Pinch curves of embedding degrees five
to eight and optimal ate pairing computation. Des. Codes Cryptogr. 88, 1047–1081
(2020). https://doi.org/10.1007/s10623-020-00727-w

28. Guillevic, A., Singh, S.: On the alpha value of polynomials in the tower number
field sieve algorithm. Math. Cryptol. 1(1), 1–39 (2021). https://journals.flvc.org/
mathcryptology/article/view/125142

29. Hayashida, D., Hayasaka, K., Teruya, T.: Efficient final exponentiation via cyclo-
tomic structure for pairings over families of elliptic curves. ePrint 2020/875 (2020)

30. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf.
Theory 52(10), 4595–4602 (2006). https://doi.org/10.1109/TIT.2006.881709

31. Karabina, K.: Squaring in cyclotomic subgroups. Math. Comput. 82(281), 555–579
(2013). https://doi.org/10.1090/S0025-5718-2012-02625-1

32. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

33. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992. https://doi.
org/10.1145/129712.129782

34. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
I. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53018-4 20

35. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Com-
puter Society Press, November 1994. https://doi.org/10.1109/SFCS.1994.365746

36. Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Comb. Theory Ser.
A 46(2), 183–211 (1987). https://doi.org/10.1016/0097-3165(87)90003-3

37. Scott, M.: A note on group membership tests for G1, G2 and GT on BLS pairing-
friendly curves. ePrint 2021/1130 (2021)

38. Scott, M.: Pairing implementation revisited. ePrint 2019/077 (2019)
39. Scott, M.: Unbalancing pairing-based key exchange protocols. ePrint 2013/688

(2013)
40. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-

ics, Springer, Dordrecht (2009). https://doi.org/10.1007/978-0-387-09494-6
41. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply

time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

42. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010).
https://doi.org/10.1109/TIT.2009.2034881

43. Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-381
elliptic curve. IACR TCHES 2019(4), 154–179 (2019). https://doi.org/10.13154/
tches.v2019.i4.154-179

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-45388-6_19
https://doi.org/10.1007/s10623-020-00727-w
https://journals.flvc.org/mathcryptology/article/view/125142
https://journals.flvc.org/mathcryptology/article/view/125142
https://doi.org/10.1109/TIT.2006.881709
https://doi.org/10.1090/S0025-5718-2012-02625-1
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1016/0097-3165(87)90003-3
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.13154/tches.v2019.i4.154-179
https://doi.org/10.13154/tches.v2019.i4.154-179

Fiat–Shamir Bulletproofs are
Non-Malleable (in the Algebraic Group

Model)

Chaya Ganesh1 , Claudio Orlandi2 , Mahak Pancholi2(B),
Akira Takahashi2 , and Daniel Tschudi3

1 Indian Institute of Science, Bengaluru, India
chaya@iisc.ac.in

2 Aarhus University, Aarhus, Denmark
{orlandi,mahakp,takahashi}@cs.au.dk

3 Concordium, Zürich, Switzerland
dt@concordium.com

Abstract. Bulletproofs (Bünz et al. IEEE S&P 2018) are a celebrated
ZK proof system that allows for short and efficient proofs, and have been
implemented and deployed in several real-world systems.

In practice, they are most often implemented in their non-interactive
version obtained using the Fiat-Shamir transform, despite the lack of a
formal proof of security for this setting.

Prior to this work, there was no evidence that malleability attacks
were not possible against Fiat-Shamir Bulletproofs. Malleability attacks
can lead to very severe vulnerabilities, as they allow an adversary to
forge proofs re-using or modifying parts of the proofs provided by the
honest parties.

In this paper, we show for the first time that Bulletproofs (or any
other similar multi-round proof system satisfying some form of weak
unique response property) achieve simulation-extractability in the alge-
braic group model.

This implies that Fiat-Shamir Bulletproofs are non-malleable.

Keywords: Non-interactive zero-knowledge ·
Simulation-extractability · Fiat-Shamir

1 Introduction

Zero-knowledge (ZK) proof systems [24] are one of the most fascinating ideas in
modern cryptography, as they allow a prover to persuade a verifier that some
statement is true without revealing any other information. In recent years we
have observed a new renaissance for ZK proofs, motivated in large part by their
applications to advanced Blockchain applications. This has led, among other
things, to a standardization effort for ZK proofs.1.
1 https://zkproof.org.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 397–426, 2022.
https://doi.org/10.1007/978-3-031-07085-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_14&domain=pdf
http://orcid.org/0000-0002-2909-9177
http://orcid.org/0000-0003-4992-0249
http://orcid.org/0000-0001-8556-3053
http://orcid.org/0000-0001-6188-1049
https://zkproof.org
https://doi.org/10.1007/978-3-031-07085-3_14

398 C. Ganesh et al.

A celebrated modern ZK proof system is Bulletproofs [6]. Bulletproofs offer
transparent setup, short proofs and efficient verification (and it is therefore a
zero-knowledge succinct argument of knowledge or zkSNARK) using only very
well established computational assumptions, namely the hardness of discrete
logarithms. At the heart of Bulletproofs lies an “inner product” component.
This can be used then for general purpose proofs (i.e., where the statement
is described as an arithmetic circuit) or for specific purpose proofs (i.e., range
proofs, which are the most common use case in practice). Bulletproofs have
been implemented in real world systems, especially for confidential transaction
systems, like Monero, Mimblewimble, MobileCoin, Interstellar, etc.

Most practical applications of Bulletproofs utilize their non-interactive vari-
ant which, since Bulletproofs is a public-coin proof system, can be obtained using
the Fiat-Shamir heuristic [17] e.g., the interaction with the verifier (who is only
supposed to send uniformly random challenges) is replaced by interacting with a
public hash function. Under the assumption that the hash function is a random
oracle, one can hope that the prover has no easier time producing proofs for false
statements (or for statements for which they do not know a witness) than when
interacting with an actual verifier.

While the Fiat-Shamir heuristic has been around for decades, its formal anal-
ysis has only been performed much later. It is first in [16] that it was formally
proven that the Fiat-Shamir heuristic is indeed sound. However, this proof only
applies to classic Σ-protocols [11], which are a special class of ZK protocols with
only 3 moves. Therefore this analysis does not cover the case of Bulletproofs,
which is a multi-round protocol.

For the case of Bulletproofs, it was first in [22], that it was shown that Fiat-
Shamir Bulletproofs are indeed arguments of knowledge e.g., it is not possible
for the prover to produce a valid proof without knowing a witness for the state-
ment (a similar result, but with less tight bounds, appeared concurrently also
in [8]). However, the results in [22] only consider a malicious prover “in isola-
tion”, whereas in most practical applications of Bulletproofs, several provers are
producing and exchanging proofs at the same time (e.g., on a Blockchain).

The notion of non-malleability in cryptography was introduced in [14], and
the notion of non-malleability for zero-knowledge proofs was introduced in [33].
In a nutshell, a malleability attack is one in which the adversary gets to see proofs
from honest parties, and then modifies or re-uses parts of the proofs output by
the honest parties to forge a proof on some statement for which they do not
know a witness. Malleability attacks can have very serious consequences, such
as the famous MtGox attack of 2014 [13].

Therefore, it is worrisome that Fiat-Shamir Bulletproofs have been imple-
mented in the wild without any solid evidence that malleability attacks are not
possible against them.

Luckily, in this paper we are able to show that Fiat-Shamir Bulletproofs
satisfy a strong notion of simulation-extractability which in particular implies
non-malleability. We do so in the algebraic group model (AGM) which is a model
that only considers restricted classes of adversaries that, in a nutshell, output a
group element z ∈ G together with its representations [z] w.r.t. all elements they

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 399

have seen so far. This is a limitation that our result shares with previous results
in this area [8,22] that studied concrete knowledge-soundness of Fiat–Shamir
Bulletproofs.

1.1 Technical Overview

As already argued, in applications where proof systems are deployed, an adver-
sary who tries to break the system has access to proofs provided by other parties
using the same scheme. Thus, any reasonable security notion must require that
a ZK proof system be secure against adversaries that potentially see and utilise
proofs generated by different parties. Simulation-soundness (SIM-SND) and
simulation-extractability (SIM-EXT) are the notions that guarantee soundness
(the prover cannot prove false statements) or the stronger property knowledge-
soundness (the prover cannot prove statements without knowing a witness) to
hold against adversaries who may see many (simulated) proofs.

Our starting point is the work of [22], that proves that the Fiat-Shamir
transform of Bulletproofs (henceforth BP) is knowledge-sound in the AGM and
random oracle (RO) model. They do this by first proving that the interactive
version of BP satisfies a stronger property of state-restoration witness extended
emulation (SR-WEE), where the prover is allowed to rewind the verifier a poly-
nomial number of times (hence the name since the prover can “restore” the state
of the verifier). They then turn this into a result for Fiat-Shamir BP by showing
that for any adversary who breaks the knowledge-soundness of Fiat-Shamir BP,
there exists an adversary for the SR-WEE property of the interactive BP.

The natural question is then, can their proof be easily extend to the case of
SIM-EXT (where the result needs to hold even when the simulator has to provide
the adversary with simulated proofs on statements of their choice)? To see why
this is not straightforward, consider the following natural approach: just answer
the proof queries of the adversary by running the honest verifier zero-knowledge
simulator of BP, and then program the RO with the challenges returned by
the simulator. The RO queries, on the other hand, are simply forwarded to the
state-restoration oracle as before. This simple approach works if the underlying
protocol satisfies “unique response”, which informally means that the adver-
sary cannot generate two distinct accepting transcripts that share a common
prefix. (This notion has already been used to prove simulation-extractability of
Σ-protocols [16], multi-round public coin interactive protocols [15,30], and Sonic
and Plonk [30]). However, BP does not have unique response under their def-
inition: this is simple to see since randomized commitments are sent from the
prover during the third round. Therefore, if the forged proof returned by the
adversary has a matching prefix as one of the simulated proofs, this forged proof
cannot be used to break SR-WEE. 2

2 In a nutshell, this is because the forged proof may not be an accepting transcript
in the SR-WEE game since the shared prefix is a partial transcript that has not
been queried to the oracle before. Hence, the oracle has no knowledge of the simu-
lated proofs and therefore any partial transcript that has a matching prefix with a
simulated proof.

400 C. Ganesh et al.

The next natural attempt might then be to “de-randomize” later rounds of
BP e.g., by letting the prover choose and commit all their random coins in the
first round, and then prove consistency of all future rounds with these coins. This
of course introduces new challenges, since these additional consistency proofs
must themselves not use any additional randomness in rounds other than the first
one. While these technical challenges could be overcome using the right tools,
the final solution would be all but satisfactory. First of all, the new protocol
would be less efficient than the original BP. And perhaps more importantly, all
real-world implementations of BP would have to decide whether to switch to the
new protocol without any evidence that the original BP is insecure.

Instead, we present a new approach here that allows us to prove that Fiat-
Shamir BP as is satisfies SIM-EXT, which has wide-reaching impact for systems
based on BP that are already in use. The diagram in the full version [21] summa-
rizes our modular security analysis towards simulation-extractability of multi-
round Fiat–Shamir NIZK. We discuss our new security notions and a chain of
implications below.

Unique Response. We introduce two new definitions: state-restoration unique
response (SR-UR), and weak unique response (FS-WUR), which are the interac-
tive, and non-interactive definitions for showing unique response of protocols.
We show that these two notions are tightly related, i.e., FS-WUR tightly reduces
to SR-UR of the interactive protocol (Lemma 1). Both notions require that it
should be hard for the adversary, on input a simulated proof, to output a proof
which shares a prefix with it. This is opposed to the previous notion of unique
response that requires it should be infeasible for the adversary to come up with
two different proofs that share a prefix. As an analogy, our notion is akin to sec-
ond preimage resistance for hash functions, while the previous notion is akin to
collision resistance. Clearly, it is easier to show that an existing protocol satisfies
the weaker definition. But it is in turn harder to show that the weaker definition
is enough to achieve the overall goal. However, note that the weaker variant of
the definition is also somewhat closer to the intuitive goal of non-malleability:
we do not want the adversary to be able to reuse parts of proofs generated by
other parties to forge new proofs.

Simultation-extractability of Multi-round Fiat–Shamir. Once we have
FS-EXT (i.e., extractability), FS-WUR, and NIZK for a non-interactive protocol,
we are able to show its online simulation-extractability (Lemma 2). Putting
together, we prove a general theorem showing that:

Theorem 1 (General Theorem (Informal)). If a multi-round public-coin
interactive protocol satisfies: (1) adaptive state-restoration witness extended emu-
lation (aSR-WEE), (2) perfect HVZK with an algebraic simulator, and (3) state-
restoration unique responses (SR-UR), then the non-interactive version of the
protocol achieved via the Fiat-Shamir transform, is online simulation-extractable
(FS-SIM-EXT) in the algebraic group model and the random oracle model.

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 401

While our framework has been built with Bulletproofs as its main use case,
we believe that it is general enough and could be used to show simulation-
extractability for other public-coin protocols in the literature.

Non-malleable Bulletproofs. We use our definitional foundation to show
that Fiat-Shamir BP is non-malleable and give concrete security bounds for it.
The main technical contribution here is to show that BP satisfies our (weaker)
definition of unique response, namely SR-UR. For the other assumptions in the
theorem, we rely on existing knowledge with some adjustments: BP is already
known to satisfy SR-WEE (from [22]), however in our theorem we require a
stronger (adaptive) version of the definition, namely aSR-WEE, but it turns out
that the proof of SR-WEE in [22] can be used to show the stronger definition as
well. Finally, BP is already known to admit a perfect HVZK simulator, which we
have to extend to the algebraic setting. Thus, using the general theorem, we get
our result. We do this for two versions of BP, namely Bulletproofs for arithmetic
circuits (in Sect. 4) and range-proofs Bulletproofs (cf. full version [21]).

1.2 Related Work

Goldwasser and Kalai [23] show that the Fiat-Shamir heuristic is not sound in
general, by showing explicit – and somewhat contrived – counterexamples that
cannot be proven secure for any hash function. However, there is no evidence
that any natural construction using the Fiat-Shamir heuristic is insecure.

Faust et al. [16] are the first to analyze SIM-SND and SIM-EXT of Fiat–
Shamir NIZK from Σ-protocols. Kohlweiss and Zaj ↪ac [30] extend their result to
multi-round protocols with (n1, . . . , nr)-special soundness where all-but-one ni’s
are equal to 1, which is the case for some modern zkSNARKs (cf. [20,31]), but
is not the case for Bulletproofs-style recursive protocols.

Don et al. [15] study multi-round Fiat–Shamir in the quantum random oracle
model, but their generic claim (Corollary 15) incurs at least a multiplicative fac-
tor O(qr)3. in the loss in soundness due to Fiat–Shamir, even if the result is down-
graded to the classical setting. Hence their result leads to a super-polynomial
loss when the number of rounds r depends on the security parameter as in
Bulletproofs. They also showed SIM-EXT of multi-round Fiat–Shamir proofs in
the QROM assuming the unique response property of the underlying interac-
tive protocols. As we shall see later, Bulletproofs do not meet their definition of
unique responses and we are thus motivated to explore alternative paths towards
SIM-EXT, but in the classical ROM and the AGM.

There are a limited number of works that analyze the concrete soundness loss
incurred by Fiat–Shamir when applied to non-constant round protocols. Ben-
Sasson et al. [5] show that if the underlying interactive oracle proof protocol
satisfies state-restoration soundness (SR-SND) (a stronger variant of soundness
where the prover is allowed to rewind the verifier states) then Fiat–Shamir only
introduces 3(q2 + 1)2−λ of additive loss both in soundness (SND) and proof
3 Here and below q is the number of queries to the random oracle, r is the number of

rounds, and λ is the security parameter.

402 C. Ganesh et al.

of knowledge (EXT). Canetti et al. [9,10] propose the closely related notion of
round-by-round soundness (RBR-SND) which is sufficient to achieve soundness,
even without round oracles. Following these works, Holmgren [29] shows SR-SND
and RBR-SND are equivalent.

The latest works on this line of research are due to Ghoshal and Tessaro [22]
and Bünz et al. [8]. They both provide a detailed analysis of non-interactive
Bulletproofs in the algebraic group model (AGM) [19] and, in particular, the
former shows state-restoration witness extended emulation (SR-WEE) of interac-
tive Bulletproofs in the AGM and uses it to argue that EXT of non-interactive
Bulletproofs results in (q + 1)/2sLen(λ) in additive loss, where sLen(λ) is the bit
length of the shortest challenge. However, none of these works explore SIM-SND
or SIM-EXT of non-constant round Fiat–Shamir.

There are also other zkSNARKs that satisfy simulation-extractability such
as e.g., [27] and [26,30]. However, these constructions are very different than
Bulletproofs since they rely on a structured reference string which comes with
a trapdoor, the knowledge of which compromises the soundness. [3] show tech-
niques to make [26] black-box weakly SIM-EXT NIZK using verifiable encryption.
A generic framework to turn existing zkSNARKs into SIM-EXT zkSNARKs was
presented in [2], but Bulletproofs is not covered by their result since their trans-
form only works for schemes with trusted setup.

2 Preliminaries

Due to space constraints, some standard preliminaries are deferred to the full
version [21].

The Algebraic Group Model. The algebraic group model was introduced
in [19]. An adversary Aalg is called algebraic if every group element output by
Aalg is accompanied by a representation of that group element in terms of all
the group elements that Aalg has seen so far (input and output). Let y1, . . . , yk

be all the group elements previously input and output by Aalg. Then, every
group element y output by Aalg, is accompanied by its representation (x1, . . . , xk)
such that y =

∏k
i=1 yxi

i . Following [19], we write [y] to denote a group element
enhanced with its representation; [y] = (y, x1, . . . , xk).

Adaptive State-restoration Witness Extended Emulation. Here we
define an adaptive variant of state-restoration witness extended emulation (
aSR-WEE) defined in [22]. Intuitively, state-restoration witness extended emu-
lation says that having resettable access to the verifier (or “restoring its state”,
hence the name) should not help a malicious prover in producing a valid proof
without knowing a witness for the statement. Formally, the definition consists of
two games denoted as aWEE-1Palg,D

Π and aWEE-0E,Palg,D
Π,R described in Fig. 1. The

former captures the real game, lets the prover Palg interact with an oracle O1
ext,

which additionally stores all queried transcripts tr. The latter is finally given
to a distinguisher D which outputs a decision bit. In contrast, the ideal game
delegates the role of answering Palg’s oracle queries to a (stateful) extractor E .

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 403

The extractor, at the end of the execution, also outputs a witness candidate w.
Due to the adaptive nature of our variant, we also need to redefine the predicate
Acc() so that it accepts a pair (x∗, T ∗) output by the adversary at the end if and
only if the pair exists in the execution paths and it gets accepted by the verifier.
Formally, Acc(tr, x∗, T ∗) now outputs 1 if (x∗, T ∗) ∈ tr and V(pp, x∗, T ∗) = 1,
and outputs 0 otherwise. For an interactive proof Π = (Setup,P,V) and an
associated relation R, non-uniform algebraic prover Palg, a distinguisher D, and
an extractor E we define:

AdvaSR-WEE
Π,R (E , Palg, D, λ) :=

∣
∣
∣Pr

[

aWEE-1
Palg,D
Π (λ)

]

− Pr
[

aWEE-0
E,Palg,D
Π,R (λ)

]∣
∣
∣ . (1)

Definition 1 (aSR-WEE security). An interactive proof Π = (Setup,P,V)
is online aSR-WEE secure if there exists an efficient E such that for any (non-
uniform algebraic) Palg and for any distinguisher D, AdvaSR-WEE

Π,R (E ,Palg,D, λ)
is negligible in λ.

The main difference with the original definition in [22] is that we allow the
adversary to change the statement associated with a transcript in every query,
whereas [22] forces the adversary to commit to the fixed statement x in advance.
We remark that their results about Bulletproofs still hold under this variant,
because nowhere in the proof do they actually exploit the fact that the statement
is fixed. Hence, the following is immediate from [22]. We provide more details
on this in the full version [21].

Theorem 2 (Adapted from Theorem 6 of [22]). The protocol BP is
aSR-WEE secure.

NIZK and Simulation Oracles. We define zero-knowledge for non-interactive
arguments in the explicitly programmable random oracle model where the sim-
ulator can program the random oracle. The formalization below can be seen as
that of [16] adapted to multi-round protocols. The zero-knowledge simulator SFS

is defined as a stateful algorithm that operates in two modes. In the first mode,
(ci, st

′) ← SFS(1, st, t, i) takes care of random oracle calls to Hi on input t. In
the second mode, (T̃ , st′) ← SFS(2, st, x) simulates the actual argument. For
convenience we define three “wrapper” oracles. These oracles are stateful and
share state.

– S1(t, i) to denote the oracle that returns the first output of SFS(1, st, t, i);
– S2(x,w) that returns the first output of SFS(2, st, x) if (pp, x, w) ∈ R and ⊥

otherwise;
– S ′

2(x) that returns the first output of SFS(2, st, x).

Since NIZK is a security property that is only guaranteed for valid statements
in the language, the definition below makes use of S2 as a proof simulation oracle.
As we shall see later, simulation-extractability on the other hand is defined with
respect to an oracle similar to S ′

2 following [16].

404 C. Ganesh et al.

Definition 2 (Non-interactive Zero Knowledge). A non-interactive argu-
ment ΠFS = (Setup,PH

FS,VH
FS) for relation R is unbounded non-interactive zero

knowledge (NIZK) in the random oracle model, if there exist a PPT simulator
SFS with wrapper oracles S1 and S2 such that for all PPT distinguisher D there
exist a negligible function μ(λ) it holds that

| Pr
[
DH,PH

FS(1λ) = 1
]

− Pr
[
DS1,S2(1λ)

]
| ≤ μ(λ)

where both PH
FS(pp, x, w) and S2 return ⊥ if (pp, x, w) �∈ R.

Given a perfect HVZK simulator S for Π, we immediately obtain the following
canonical NIZK simulator SFS for ΠFS by defining responses of each mode as
follows.

– To answer query (t, i) with mode 1, SFS(1, st, t, i) lazily samples a lookup table
Q1,i kept in state st. It checks whether Q1,i[t] is already defined. If this is the
case, it returns the previously assigned value; otherwise it returns and sets a
fresh random value ci sampled from Chi.

– To answer query x with mode 2, SFS(2, st, x) calls the perfect HVZK simulator
S of Π to obtain a simulated proof π = (a1, c1, . . . , ar, cr, ar+1). Then, it
programs the tables such that Q1,1[x, a1] := c1, . . . ,Q1,r[x, a1, c1, . . . , ar] :=
cr. If any of the table entries has been already defined SFS aborts, which
should happen with negligible probability assuming high min-entropy of a1.

Online Extractability in the AGM. We introduce the definition of (adap-
tive) online extractability (FS-EXT) in the AGM. Unlike the usual online extrac-
tion scenario (e.g., [18,32,34]), where an extractor is only given x∗, T ∗ and the
random oracle query history as inputs and asked to extract the witness, our defi-
nition below requires the extractor to intercept/program the queries/answers to
the RO for Palg. We do so because some proofs in [22] (such as Theorem 2 and
3) relating state-restoration witness-extended emulation for Π and argument
of knowledge for ΠFS do appear to exploit this extra power of the extractor,
which to the best of our understanding appears necessary for their proofs to go
through.

This modification in turn requires the existence of an extractor (E0, E1) where
E1 takes care of simulating the RO responses for Palg and then E0 produces a
valid witness given an adversarial forgery. Our formalization therefore follows
variants of extractability in the literature that explicitly introduce a distinguisher
to guarantee the validity of simulation conducted by E1, e.g., [35, Def. 11] for
Fiat–Shamir NIZK or [25] for CRS-based NIZK. On the other hand, we do not
grant the extractor an oracle access to Palg to explicitly capture the “online”
nature of extraction, i.e., no rewinding step is required.

Note also that the roles of (E0, E1) and D below are also analogous to those
of the extractor and the distinguisher in aSR-WEE. Thus, our definition allows
smooth transition from aSR-WEE to FS-EXT.

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 405

Fig. 1. Online aSR-WEE Security (adapted from [22], with differences highlighted in
orange). (Color figure online)

Fig. 2. Extractability games. Note that in the EXT-1 experiment, calling the verifi-
cation algorithm VFS has an impact on the RO query set Q1. In particular, omitting
this, there might be trivial distinguishing attacks due to the differences in Q1 between
EXT-1 and EXT-0.

406 C. Ganesh et al.

Definition 3 (FS-EXT security). Let ΠFS = (Setup,PFS,VFS) be a NIZK
scheme for language L. Let H be a random oracle. ΠFS is online extractable
(FS-EXT) in the AGM and the ROM if there exists an efficient extractor
E = (E0, E1) such that for every PPT algebraic adversary Palg and every dis-
tinguisher D, the following probability is negligible in λ:

AdvFS-EXTΠFS,R (H, E ,Palg,D, λ) :=
∣
∣
∣Pr[EXT-1H,Palg,D

ΠFS
(λ)] − Pr[EXT-0E,Palg,D

ΠFS,R (λ)]
∣
∣
∣ .

In Fig. 2, each of Q1 = {Q1,i}i∈[1,r] is a set of query response pairs corresponding
to queries to H or E1 with random oracle index i.

We recall a relation between aSR-WEE and FS-EXT, because one of our claims
(Lemma 2) uses FS-EXT as an assumption. Although Theorem 2 of [22] is for
non-adaptive variants of these notions, the proof for the following theorem is
almost identical except that we do not ask P∗

alg to submit the statement x in the
beginning, just like in Theorem 2.

Theorem 3. Let R be a relation. Let Π be a r-challenge public coin interactive
protocol for the relation R where the ith challenge is sampled from Chi for i ∈
[1, r]. Let E be an aSR-WEE extractor for Π. There exists an FS-EXT extractor
E∗ = (E∗

0 , E∗
1) for ΠFS such that for every non-uniform algebraic prover P∗

alg

against ΠFS that makes q random oracle queries, and for every distinguisher
D∗, there exists a non-uniform algebraic prover Palg and a distinguisher D such
that for all λ ∈ N

+,

AdvFS-EXTΠFS,R (H, E∗,P∗
alg,D∗, λ) ≤ AdvaSR-WEE

Π,R (E ,Palg,D, λ) + (q + 1)/|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 . Moreover,
Palg makes at most q queries to its oracle and is nearly as efficient as P∗

alg. The
extractor E∗ is nearly as efficient as E.

A proof sketch is found in the full version [21].

3 Simulation-Extractability from State-Restoration
Unique Response

Our results make use of the concrete security proof of extractability for Bullet-
proofs given by [22] in the algebraic group model. Thus, the first step towards
proving simulation-extractability for Bulletproofs is to provide a formal defini-
tion of simulation-extractability in the algebraic group model, which has not
previously appeared in the literature.

3.1 Simulation-Extractability in the AGM

On a high-level, the simulation-extractability (SIM-EXT) property ensures that
extractability holds even if the cheating adversary sees simulated proofs. Defin-
ing SIM-EXT in the AGM is a non-trivial task: because the algebraic adversary

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 407

outputs group representation with respect to all the group elements they have
observed so far, the format of representation gets complex as the adversary
receives more simulated proofs, whose representation might not be w.r.t. gener-
ators present in pp. To make our analysis simpler, we introduce the notion of
algebraic simulator.

Definition 4 (Algebraic simulator). Consider a perfectly HVZK argument of
knowledge (Setup,P,V) with a PPT simulator S. The simulator S is algebraic
if on receiving a statement x and its group representation [x] as input, it out-
puts a proof T̃ and its group representation [T̃] with respect to generators in pp
and generators used for representing x. For an algebraic simulator S, we denote
[T̃] ← S([x]).

Definition 5 (Algebraic simulator for NIZK). Consider a non-interactive
argument of knowledge (Setup,PFS,VFS) with NIZK simulator SFS. The simula-
tor SFS is algebraic if on receiving a statement x and its group representation
[x] as input, its second mode outputs proofs T̃ , their group representations [T̃]
with respect to generators in pp and generators used for representing x. For an
algebraic simulator SFS, we denote ([T̃], st′) ← SFS(2, st, [x]).

Remark 1. Our use of algebraic is similar in spirit to composability results in the
AGM [1] where the environment is required to be algebraic as well, in addition
to the adversary; in particular they require the simulator for proving security
to be algebraic. Restricting the simulator to be algebraic does not seem to limit
the class of protocols that we can analyze, since typical simulators for discrete-
log-based protocols are already algebraic. Consider the simulator for the Schnorr
protocol: given a statement x ∈ G and random challenge ρ the simulator outputs
(gzx−ρ, ρ, z) where z is uniformly sampled from Zq. In the next section, we show
that the simulator for Bulletproofs is also algebraic.

Remark 2. By construction, if we have an algebraic HVZK simulator S for Π,
then the corresponding canonical NIZK simulator SFS for ΠFS (see the paragraph
after Definition 2) fixed by S is also algebraic, since SFS internally invokes S to
obtain a proof.

We now extend the definition of FS-EXT to simulation-extractability, by
equipping the cheating algebraic prover with access to proof simulation oracles
in addition to the random oracle. Formally, we define simulation-extractability
with respect to a specific NIZK simulator SFS and the corresponding wrapper ora-
cles (S1,S ′

2) (see Sect. 2). That is, S1 on input (t, i) returns the first output of
SFS(1, st, t, i) (i.e., corresponding the random oracle H in FS-EXT) and S ′

2 on an
input statement x returns the first output of SFS(2, st, x), respectively.

Following FS-EXT, we define a simulator-extractor E = (E0, E1, E2), where E1

receives a random oracle query of the form (t, i) (similar to the wrapper oracle
S1) and returns a challenge from Chi; E2 receives a statement query x and returns
a simulated proof (similar to the wrapper oracle S ′

2); E0 extracts a witness at
the end. The differences with Definition 3 are highlighted in orange.

408 C. Ganesh et al.

Fig. 3. Simulation extractability games. Like in Fig. 2, in the SIM-EXT-1 experiment,
calling the verification algorithm VFS has an impact on the RO query set Q1.

At a high-level, the security requirement of FS-SIM-EXT is two-fold: (1)
(E1, E2) in the game SIM-EXT-0 correctly simulates the adversary’s view in
SIM-EXT-1 (indicated by a bit b̃), and (2) the extractor E0 outputs a valid wit-
ness as long as an adversarial forgery (x∗, T ∗) is accepting and non-trivial, i.e.,
not identical to what’s obtained by querying a proof simulation oracle (indicated
by a bit b).

Definition 6 (FS-SIM-EXT security). Consider a NIZK scheme ΠFS =
(Setup,PFS,VFS) for language L with an NIZK simulator SFS. Let (S1,S ′

2) be
wrapper oracles for SFS as defined in Sect. 2. ΠFS is online simulation-extractable
(FS-SIM-EXT) with respect to SFS in the AGM and ROM, if there exists an
efficient simulator-extractor E = (E0, E1, E2) such that for every PPT algebraic
adversary Palg and every distinguisher D, the following probability is negligible
in λ:

AdvFS-SIM-EXT
ΠFS,R (SFS, E ,Palg,D, λ)

:=
∣
∣
∣Pr[SIM-EXT-1S1,S′

2,Palg,D
ΠFS

(λ)] − Pr[SIM-EXT-0E,Palg,D
ΠFS,R (λ)]

∣
∣
∣ .

In Fig. 3, each of Q1 = {Q1,i}i∈[1,r] is a set of query response pairs corresponding
to queries to S1 or E1 with random oracle index i. Q2 is a set of statement-
transcript pairs (x, T̃), where x is a statement queried to the proof simulation
oracle S ′

2 or E2 by Palg, and T̃ is the corresponding simulated proof, respectively.

Comparison with Previous SIM-EXT Definitions. Although we borrow the
formalization of wrapper oracles (S1,S ′

2) from [16], our definition of FS-SIM-EXT
is different from their “weak” (Definition 6, an extractor requires rewinding
access to the adversary) and “full” (Definition 7, an extractor is tasked with
extracting a witness by only looking at an adversarial statement-proof pair)
SIM-EXT. Indeed, neither of these is suitable in our setting. The former is too

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 409

weak because we aim for an “online” way of extraction; the latter is too strong
since the extractor used for showing reduction from FS-EXT to aSR-WEE (The-
orem 3) already needs additional control over RO queries. To the best of our
knowledge, there has been no previous work analyzing Fiat–Shamir NIZK under
the latter notion even in the AGM.

Another difference with previous FS-SIM-EXT definitions is that ours explic-
itly handles indistinguishability of two games. This wasn’t the case in [16]
because their proof of weak SIM-EXT invokes the general forking lemma [4]
that implicitly takes care of perfect indistinguishability of two runs. Our defini-
tion can essentially be seen as Definition 11 of Unruh [35] extended with a proof
simulation oracle, which however was considered “too strong” in that work as
its focus is security in the QROM. In contrast, our main focus is analysis in
the CROM and online extraction enabled by the AGM (following the previous
FS-EXT analysis conducted by [22]). Thus, we believe ours is most suitable for
formally analyzing SIM-EXT of Bulletproofs based on the state-of-the-art.

There also exist several SIM-EXT definitions for CRS-NIZK (e.g., [2,3,12,25,
28,33]) but the way they are formulated is naturally different since the plain
extractability already varies and simulators for CRS-NIZK behave in a different
fashion. Perhaps a variant of Groth [25] is somewhat close to ours: the first part of
the extractor handles simulation of CRS (so that it generates a trapdoor without
the adversary noticing) and the second part takes care of witness extraction.

Remark 3. In the AGM, the representation submitted by the adversary is w.r.t.
the group elements present in pp and all the simulated proofs they have seen
so far. However, once we assume an algebraic simulator, it is always possible
for E to convert such representation to the one w.r.t. pp and previously queried
statements. As we shall see later, this will greatly simplify our security proof in
the AGM because it will allow us to reuse the existing extractor analysis (where
there is no simulation oracle).

State-restoration Unique Response. Our first definition considers the game
SR-UR

Aalg,S
Π (λ) in Fig. 4. As the name indicates it has a flavor of aSR-WEE and it

is therefore – compared to the the usual UR definition for interactive protocols
– both stronger (in the sense that an adversary can rewind the verifier) and
weaker (in the sense that an adversary is forced to use the simulated transcript
to find a forgery).

Concretely, the prover initially generates an instance x on which it attempts
to break the unique response property. Similar to aSR-WEE, we capture the
power of the prover to rewind the verifier with an oracle Oext. Roughly, the oracle
allows the prover to build an execution tree, which is extended with each query
to it by the prover. The prover succeeds if it comes up with another accepting
transcript T that is part of the execution tree and have a prefix in common with
the simulated transcript T̃ . Let T = (a1, c1, . . . , ar, cr, ar+1) denote a transcript.
We write T |i to denote a partial transcript consisting of the first 2i messages of
T , i.e., T |i = (a1, c1, . . . , ai, ci).

410 C. Ganesh et al.

Fig. 4. State-restoration Unique Response.

We also remark that, unlike aSR-WEE, our SR-UR is deliberately made non-
adaptive to prove subsequent lemmas with a weaker assumption. Indeed, the
reductions we present later will go through even though the resulting simulation-
extractability claim has an adaptive flavor.

Definition 7 (SR-UR). Consider a (2r + 1)-round public-coin interactive proof
system Π = (Setup,P,V) that has perfect HVZK simulator S. Π is said
to have state-restoration unique response (SR-UR) with respect to a simula-
tor S, if for all PPT algebraic adversaries Aalg = (A1,A2), the advantage

AdvSR-URΠ (Aalg,S) := Pr[SR-URAalg,S
Π (λ)] is negl(λ).

Weak Unique Response We now present our weak unique response definition
tailored to non-interactive protocols. While typical unique response properties
in the literature are defined for interactive protocols, [30, Definition 7] is in the
non-interactive setting. Our definition below is strictly weaker than theirs, as
we only need to guarantee the hardness of finding another accepting transcript
forked from simulated (honest) one.

Definition 8 (FS-WUR). Consider a (2r+1)-round public-coin interactive proof
system Π = (Setup,P,V) and the resulting NIZK ΠFS = (Setup,PFS,VFS) via
Fiat-Shamir transform. Let SFS be a perfect NIZK simulator for ΠFS (Definition
2) with wrapper oracles (S1,S ′

2) as defined in Section 2. ΠFS is said to have
weak unique responses (FS-WUR) with respect to SFS if given a transcript T̃ =
(ã1, c̃1, . . . , ãr, c̃r, ãr+1) simulated by SFS, it is hard to find another accepting
transcript T = (a1, c1, . . . , ar, cr, ar+1) that both have a common prefix up to
the ith challenge for an instance x. That is, for all PPT algebraic adversaries

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 411

Aalg = (A1,A2) the advantage AdvFS-WUR
ΠFS

(Aalg,SFS) defined as the following
probability is negl(λ):

Pr

⎡

⎢
⎢
⎣

VS1
FS (pp, x, T) = 1

∧
(
∃j ∈ [1, r] : T |j = T̃ |j
∧ aj+1 �= ãj+1

)

∣
∣
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ);
([x], st) ← AS1

1 (pp);
T̃ ← S ′

2(x);
[T] ← AS1

2 (T̃ , st);

⎤

⎥
⎥
⎦.

We now show that FS-WUR of ΠFS reduces to SR-UR of the interactive proof
system Π in the AGM. Informally, the lemma below guarantees that one can
construct an adversary breaking unique response in the interactive setting, given
an adversary breaking unique response in the non-interactive setting, as long as
it makes RO queries for the accepting transcript in right order. As mentioned
earlier, the reduction below does not crucially depend on the AGM: if a given
protocol meets SR-UR without the AGM the proof holds almost verbatim with-
out the AGM as well. Proof is rather straightforward and thus is deferred to the
full version [21].

Lemma 1. Consider a (2r + 1)-round public-coin interactive proof system Π =
(Setup,P,V) and the resulting NIZK ΠFS = (Setup,PFS,VFS) via Fiat-Shamir
transform. Let S be a perfect algebraic HVZK simulator for Π and SFS be the
corresponding canonical NIZK simulator for ΠFS. If Π has SR-UR with respect to
S, then ΠFS has FS-WUR with respect to SFS. That is, for every PPT adversary A
against FS-WUR of ΠFS that makes q queries to S1, there exists a PPT adversary
B against SR-UR of Π such that,

AdvFS-WUR
ΠFS

(A,SFS) ≤ AdvSR-URΠ (B,S) +
q + 1
|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 . Moreover, B
makes at most q queries to its oracle and is nearly as efficient as A.

3.2 From Weak Unique Response to Simulation-extractability

We now prove the simulation-extractability of a non-interactive protocol ΠFS

assuming it comes with an algebraic NIZK simulator SFS, it is extractable and
has weak unique responses with respect to SFS. On a high-level the proof works
by constructing another adversary Palg that forwards the RO queries made by a
FS-SIM-EXT adversary P∗

alg to the FS-EXT game, except for the ones that have
prefix in common with any of the simulated transcripts. This will allow us to
invoke the extractor E that is only guaranteed to work in the FS-EXT setting.
On the other hand, thanks to the FS-WUR property we can argue that a cheating
prover also has a hard time finding another transcript by reusing any prefix of
a simulated transcript.

We stress that, as long as FS-WUR and FS-EXT are satisfied without the
AGM the proof below holds almost verbatim without the AGM as well. Inter-
estingly, proof in the AGM requires additional care about representation sub-
mitted by Palg: whenever Palg forwards group elements with representation to

412 C. Ganesh et al.

external entities (i.e., H, E1, and E0), it must always convert representation to
the one only with respect to generators in pp. This is made possible thanks to an
algebraic simulator SFS; by probing how SFS simulates a transcript with respect
to the generators in pp, Palg can translate the group representation submitted
by P∗

alg even if it depends on previously simulated transcripts. This is crucial
for invoking the extractor from FS-EXT, since a cheating prover against FS-EXT
is only allowed to use the generators present in pp. We also remark that the
additive security loss due to failure of RO programming by S ′

2 is not present in
the bound since we use a canonical NIZK simulator as an assumption and such
a loss already appears when showing NIZK from HVZK.

Lemma 2. Consider a NIZK argument system ΠFS with an algebraic NIZK sim-
ulator SFS. If ΠFS is FS-WUR with respect to SFS and online FS-EXT, then it is
online FS-SIM-EXT with respect to SFS.

Concretely, let E = (E0, E1) be an FS-EXT extractor for ΠFS. There exists
an efficient FS-SIM-EXT simulator-extractor E∗ = (E∗

0 , E∗
1 , E∗

2) for ΠFS such that
for every algebraic prover P∗

alg against ΠFS that makes q1 random oracle queries
(i.e., queries to S1 or E∗

1), and q2 simulation queries (i.e., queries to S ′
2 or

E∗
2), and for every distinguisher D∗, there exists another algebraic prover Palg,

a distinguisher D, and an FS-WUR adversary Aalg, such that for all λ ∈ N
+,

Adv
FS-SIM-EXT
ΠFS,R (SFS, E∗

, P∗
alg, D∗

) ≤ Adv
FS-EXT
ΠFS,R (H, E, Palg, D) + q2 · Adv

FS-WUR
ΠFS,R (Aalg, SFS).

Moreover, Palg and Aalg make at most q1 queries to their oracle and is nearly as
efficient as P∗

alg. The extractor E∗ is nearly as efficient as E.

Proof. Without loss of generality we assume P∗
alg does not repeat the same RO

queries. We first construct a cheating prover Palg against FS-EXT that internally
uses the FS-SIM-EXT adversary P∗

alg and simulates its view in FS-SIM-EXT.
We now describe the following simple hybrids.

G0 This game is identical to SIM-EXT-1
S1,S′

2,P∗
alg,D∗

ΠFS
(λ). We have

Pr[G0(P∗
alg,D∗)] = Pr[SIM-EXT-1

S1,S′
2,P∗

alg,D∗

ΠFS
(λ)].

G1 This game is identical to G0 except that it aborts if d = 1 (i.e., (x∗, T ∗) is
accepting) and (x∗, T ∗) /∈ Q2, while there exists some (x∗, T̃) ∈ Q2 that has
prefix in common with T ∗ but differs at the response right after that prefix,
i.e., for some j ≤ r it holds that T ∗|j = T̃ |j and a∗

j+1 �= ãj+1. The abort event
implies that there exists an efficient FS-WUR adversary Aalg that internally uses
P∗
alg. That is,

∣
∣Pr[G0(P∗

alg,D∗)] − Pr[G1(P∗
alg,D∗)]

∣
∣ ≤ Pr[G1(P∗

alg,D∗)aborts]

≤ q2 · AdvFS-WUR
ΠFS,R (Aalg,SFS).

(2)

We defer the reduction deriving (2) to later.
Constructing Palg and D for FS-EXT. We now construct a FS-EXT adversary
Palg and a distinguisher D. Palg plays an FS-EXT game while internally simulating
the view of P∗

alg in the game G1 as follows.

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 413

– On receiving pp from Setup(1λ), Palg forwards pp to P∗
alg.

– Whenever P∗
alg makes a simulation query with input [x], Palg internally invokes

SFS(2, st, [x]) to obtain ([T̃], st′) and records a statement-proof pair (x, T̃)
in the set Q2. Palg also separately keeps track of representation of every
entry in Q2. Then it programs the RO tables Q1 for every challenge in T̃ as
SFS(2, st, [x]) would do.

– Whenever P∗
alg (or VFS at the end) makes a random oracle query with input

((pp, [x], [T], [ai]), i), where T = (a1, c1, . . . , ai−1, ci−1), Palg checks whether
there exists some (x, T̃) ∈ Q2 that has prefix in common with T , i.e., for
some j ≤ i − 1 it holds that T |j = T̃ |j . If that is the case, it lazily samples
ci from Chi and updates Q1,i accordingly, as SFS(1, st, (pp, [x], [T], [ai]), i)
would do. Otherwise, it forwards the query ((pp, x, T , ai), i) to a FS-EXT
game with converted group representation, receives ci ∈ Chi, and updates
Q1,i accordingly.

– When P∗
alg outputs a forgery ([x∗], [T ∗]), Palg first checks whether it causes

aborts in the game G1. If that is the case, Palg also aborts because it implies
that the challenge values in T ∗ are not obtained by forwarding the corre-
sponding queries to a FS-EXT game and therefore (x∗, T ∗) is not accepting
in the FS-EXT game.

– Otherwise, Palg outputs (x∗, T ∗, stPalg
) to a FS-EXT game with converted

group representation, where stPalg
= (Q1,Q2).

A FS-EXT distinguisher D internally invokes D∗ on input (stPalg
, x∗, T ∗,Q1,Q2)

and outputs whatever D∗ returns. By construction, we have

Pr[G1(P∗
alg,D∗)] = Pr[EXT-1H,Palg,D

ΠFS
(λ)].

Constructing E∗ for FS-SIM-EXT. We define a simulator-extractor E∗ =
(E∗

0 , E∗
1 , E∗

2) using a FS-EXT extractor E = (E0, E1). E∗
1 answers the random oracle

queries made by P∗
alg as Palg would, by using the responses from E1. E∗

2 answers
the simulation queries made by P∗

alg as Palg would, by internally invoking SFS.
E∗
0 outputs whatever E0 returns on input (stE , [x∗], [T ∗]). Note that, if Palg does

not abort, T ∗ has no prefix in common with any of the previously simulated
transcripts. In that case, thanks to the random oracle simulation conducted by
Palg as above, for every i ∈ [1, r], c∗

i has been obtained by querying the random
oracle in a FS-EXT game with input ((pp, x∗, T ∗|i−1, a

∗
i), i). Therefore, (x∗, T ∗)

gets accepted by VE1
FS whenever it gets accepted by VE∗

1
FS , (x∗, T ∗) /∈ Q2, and Palg

does not abort. By construction, E∗ succeeds in extraction if and only if E does
so in the game EXT-0E,Palg,D

ΠFS,R (λ). Thus we have

Pr[SIM-EXT-0
E∗,P∗

alg,D∗

ΠFS,R (λ)] = Pr[EXT-0E,Palg,D
ΠFS,R (λ)].

Reduction to FS-WUR. We now bound the probability that the game G1 aborts.
We argue that, if there exists (P∗

alg,D∗) that causes G1(P∗
alg,D∗) to abort (or in

414 C. Ganesh et al.

other words, that causes Palg to abort), one can use P∗
alg to construct another

adversary Aalg = (A1,A2) that breaks FS-WUR with respect to SFS. The reduc-
tion goes as follows. The differences with Palg are highlighted in orange.

– A1 first picks a query index k ∈ [1, q2] uniformly at random.
– On receiving pp from Setup(1λ), A1 forwards pp to P∗

alg.
– Whenever P∗

alg makes a simulation query with input [x], if this is the kth
simulation query then it forwards x to S ′

2 in the FS-WUR game with con-
verted group representation. We denote the statement-transcript pair of the
kth query by (xk, T̃ k).4 Otherwise, A1 internally invokes SFS(2, st, [x]) to
obtain ([T̃], st′). It records a statement-proof pair (x, T̃) in the set Q2. A
also separately keeps track of representation of every entry in Q2. Then it
programs the RO tables Q1 for every challenge in T̃ as SFS(2, st, [x]) would
do. A2 also responds to simulation queries in the same way, except that it
never forwards a statement to the FS-WUR game.

– Whenever P∗
alg (or VFS at the end) makes a random oracle query with input

((pp, [x], [T], [ai]), i), where T = (a1, c1, . . . , ai−1, ci−1), A2 checks whether
(xk, T̃ k) has prefix in common with T , i.e., for some j ≤ i − 1 it holds that
T |j = T̃ k|j . If that is the case, it forwards the query ((pp, x, T , ai), i) to S1

in the FS-WUR game with converted group representation, receives ci ∈ Chi,
and updates Q1,i accordingly. Otherwise, it lazily samples ci from Chi and
updates Q1,i accordingly, as SFS(1, st, (pp, [x], [T], [ai]), i) would do. A1 also
responds to random oracle queries in the same way, except that it never
forwards queries to the FS-WUR game.

– When P∗
alg outputs a forgery ([x∗], [T ∗]), Aalg first checks whether it causes

aborts in the game G1. If that is the case, A2 forwards T ∗ to the FS-WUR
game as a forgery with converted group representation.

The above procedure perfectly simulates P∗
alg’s view in the game G1. By

construction Aalg breaks FS-WUR with respect to SFS if G1 aborts and (x∗ =
xk∧T ∗ has some prefix in common with T̃ k), because then it is guaranteed that
for every i ∈ [1, r], c∗

i has been obtained by querying the oracles (S1,S ′
2) in the

FS-WUR game. Therefore, T ∗ does qualify as a valid forgery in the FS-WUR
game. Conditioned on the event that G1 aborts, the probability that Aalg wins
is at least 1/q2. Therefore, we have

1
q2

· Pr[G1(P∗
alg,D∗)aborts] ≤ AdvFS-WUR

ΠFS,R (Aalg,SFS)

which derives (2). Putting together, we obtain

4 We note that Aalg does not get to know the representation of T̃ k unlike other sim-
ulated transcripts, as that particular one comes from the FS-WUR game and its
representation is not disclosed to the adversary. Therefore, all the subsequent out-
puts from P∗

alg are with respect to pp and T̃ k. This, however, does not prevent us

from showing reduction because outputting representation w.r.t. pp and T̃ k is indeed
allowed in the FS-WUR game.

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 415

∣
∣
∣Pr[SIM-EXT-1

S1,S′
2,P∗

alg,D∗

ΠFS
(λ)] − Pr[SIM-EXT-0

E∗,P∗
alg,D∗

ΠFS,R (λ)]
∣
∣
∣

≤
∣
∣
∣Pr[EXT-1H,Palg,D

ΠFS
(λ)] − Pr[EXT-0E,Palg,D

ΠFS,R (λ)]
∣
∣
∣ + q2 · AdvFS-WUR

ΠFS,R (Aalg,SFS)

≤AdvFS-EXTΠFS,R (H, E ,Palg,D) + q2 · AdvFS-WUR
ΠFS,R (Aalg,SFS).

	

3.3 Generic Result on Simulation-Extractability

Theorem 4. Let R be a relation. Let Π be a r-challenge public coin interac-
tive protocol for the relation R where the ith challenge is sampled from Chi for
i ∈ [1, r]. Suppose Π satisfies: aSR-WEE, perfect HVZK with algebraic simulator
S, and SR-UR with respect to S. Let SFS be the corresponding canonical NIZK
simulator for SFS fixed by S. Then ΠFS is FS-SIM-EXT with respect to SFS.

Concretely, let E be an aSR-WEE extractor for Π. There exists an efficient
FS-SIM-EXT simulator-extractor E∗ for ΠFS such that for every non-uniform
algebraic prover P∗

alg against ΠFS that makes q1 random oracle queries, and q2
simulation queries, and for every distinguisher D∗, there exists a non-uniform
algebraic prover Palg, an SR-UR adversary Aalg, and a distinguisher D such that
for all λ ∈ N

+,

AdvFS-SIM-EXT
ΠFS,R (SFS, E∗,P∗

alg,D∗, λ)

≤AdvaSR-WEE
Π,R (E ,Palg,D, λ) + q2 · AdvSR-URΠ,R (Aalg,S, λ) +

(q2 + 1)(q1 + 1)
|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 .

Proof. From Theorem 3, aSR-WEE of Π implies FS-EXT security of ΠFS. From
Lemma 1, SR-UR and HVZK of Π implies FS-WUR security of ΠFS. Finally, from
Lemma 2, FS-EXT and FS-WUR imply FS-SIM-EXT security of ΠFS. Putting
together all the concrete bounds, we obtain the result. 	

4 Non-Malleability of Bulletproofs – Arithmetic Circuits

The protocol for arithmetic circuit satisfiability as it appears in Bulletproofs
(henceforth referred as BP) [7] is formally described in Protocol 1 of the full ver-
sion [21] and proceeds as follows: In the first round, the prover commits to values
on the wire of the circuit (i.e. aL,aR and aO), and the blinding vectors (sL, sR).
It receives challenges y, z from the verifier. Based on these challenges, the prover
defines three polynomials, l, r and t, where t(X) = 〈l(X), r(X)〉, and commits
to the coefficients of the polynomial t in the third round, i.e. commitments
T1, T3, T4, T5, and, T6

5. On receiving a challenge x from the verifier, the prover
5 The degree two term is independent of the witness and can be computed by the

verifier, therefore there is no T2 commitment.

416 C. Ganesh et al.

evaluates polynomials l, r on this challenge point, computes t̂ = 〈l(x), r(x)〉, and
values βx, μ, and sends βx, μ, t̂, l = l(x) and r = r(x) in the fifth round. The
verifier accepts if: the commitments {Ti}i=S (for S = {1, 3, 4, 5, 6}) are to the
correct polynomial t and if t̂ = 〈l, r〉. To get logarithmic proof size, the prover
and verifier define an instance of the inner dot product for checking the condition
t̂ = 〈l, r〉, instead of sending vectors l, r in clear.

The inner product subroutine is presented in the full version [21].

Simulator 1: SBP

The algebraic simulator SBP is given as input:

pp = (n,Q, g, h, u,g,h), x = (WL,WR,WO , c)

The transcript is simulated as follows where the difference with the original
simulator is marked in orange:

1. x, y, w, z
$←− Zp

2. βx, μ
$←− Zp

3. l, r $←− Z
n
p

4. t̂ = 〈l, r〉
5. ρI , ρO, t3, t4, t5, t6, β3, β4, β5, β6

$←− Zp

6. AI = gρI , AO = uρO

7. Ti = gtihβi for i ∈ {3, 4, 5, 6}
8. h′ = hy−n

, u′ = uw

9. WL = h′zQ+1
[1:] ·WL , WR = gy−n◦(zQ+1

[1:] ·WR)
, WO = hy−n◦(zQ+1

[1:] ·WO)

10. S =
(
Ax

I · Ax2

O · g−l · (h′)−yn−r · W x
L · W x

R · WO · h−μ
)−x−3

11. T1 =
(
h−βx · g

x2·(δ(y,z)+〈zQ+1
[1:] ,c〉)−t̂ ·

∏6
i=3 T xi

i

)−x−1

12. T = (S,AI , AO; y, z; {Ti}i∈S ;x; t̂, βx, μ;w; l, r)
13. Output [T]

4.1 Algebraic Simulation

In Simulator 1 we define an algebraic simulator SBP for BP which is going to
be used in both the proof of HVZK and SR-UR. The simulator SBP essentially
works as the simulator from [6], except that, since it needs to explicitly output
group representation for each simulated element, it will generate AI , AO as well

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 417

as the Ti’s by learning their discrete logarithm in bases g, h, u instead of generi-
cally sampling random group elements like in the original proof. This makes no
difference for the ZK claim and makes the proof of SR-UR simpler. Note that,
since the simulator picks all the challenges at random in the first step, the sim-
ulator can easily be changed to satisfy the stronger special HVZK. However, by
defining the simulator like this we can reuse it in both of the following claims.
Note also that while the output of the simulator does not explicitly contain the
group representation (t1, β1) of T1 w.r.t base (g, h), it is possible to compute
these values from the output of the simulator.

Remark 4. The simulator for the recursive version of Bulletproof e.g., the one
that calls InPrd instead of sending l, r directly, can easily be constructed from the
simulator above by running the InPrd protocol on l, r. The algebraic simulator
also outputs the representation for the elements Li, Ri generated during this
protocol and this representation will be used explicitly in the proof later.

Claim 1. The protocol BP (Protocol 1 of the full version [21]) is perfect HVZK
with algebraic simulator SBP (Simulator 1) .

Proof. The claim follows directly from the proof of HVZK in [6] by observing that
the way AI , AO, T3, T4, T5, T6 are generated in our and their simulator produces
the exact same distribution (in their case they are sampled as random elements
from the group; in ours, we generate them by raising generators to random
exponents, and those are not re-used anywhere else).

4.2 State-Restoration Unique Responses

The following claim is crucial for invoking our generic result from Theorem 4. We
remind the reader that proving uniqueness of the randomized commitments Ti’s
is made possible thanks to our relaxed definition: if the adversary was allowed
to control both transcripts, it would be trivial to break the (strong) unique
response by honestly executing the prover algorithm twice with known witness
and by committing to ti using distinct randomnesses βi and β′

i. Our proof below
on the other hand argues that a cheating prover in SR-UR has a hard time
forging Ti once one of the transcripts has been fixed by a simulator. In other
words, they cannot reuse parts of simulated proofs without knowing how the
simulated messages were generated. This is true even for true statements where
the prover might know the witness.

Claim 2. Protocol BP (Protocol 1 of the full version [21]) satisfies state-
restoration unique response (SR-UR) with respect to SBP (Simulator 1) in the
AGM, under the assumption that solving the discrete-log relation is hard. That
is, for every PPT adversary Aur against SR-UR of BP that makes q queries to
Oext (Fig. 4), there exists a PPT adversary A against DL-REL such that,

AdvSR-URBP (Aur,SBP) ≤ AdvDL-REL(Gλ,Aλ) +
(14n + 8)q

(p − 1)
.

418 C. Ganesh et al.

Proof. Given an algebraic adversary for SR-UR-game Aur = (A1,A2) for pro-
tocol BP (Fig. 4), we construct an adversary, A, who breaks the discrete-log
relation.

A, upon receiving a discrete-log relation challenge interacts with Aur as fol-
lows: It first runs A1(pp) (where pp includes all the generators from the discrete-
log relation assumption) to receive an instance [x] and st. A then invokes the
simulator SBP on [x] to receive a transcript T̃ . A then runs A2 on T̃ and st.
Queries to the SR-UR-oracle Oext are handled by A locally as in the SR-UR
game, by sampling random challenges and forwarding to A2. A locally records
the tree of transcripts. Note that when Aur queries Oext, it also submits the
group representation in terms of all groups elements seen so far. Moreover, the
simulator SBP is algebraic, and therefore A can efficiently recover all representa-
tion for elements in T and T̃ into an equivalent representation purely in terms
of g,h, g, h, u which will be used to break the discrete-logarithm assumption.

Since Aur wins the SR-UR game [T] is an accepting transcript for statement
[x] which is different from [T̃], but has a common prefix. Therefore, at least the
first two messages must be equal. In particular, SBP outputs transcript of the
form

T̃ =
(
ÃI , ÃO, S̃; ỹ, z̃; (T̃i)i∈S ; x̃, β̃x, μ̃, ˜̂t, w̃, L̃1, R̃1, x̃1, . . . , L̃m, R̃m, x̃m, ã, b̃

)

and Aur outputs transcripts of the form

T = (ÃI , ÃO, S̃; ỹ, z̃; (Ti)i∈S ;x, βx, μ, t̂, w, L1, R1, x1, . . . , Lm, Rm, xm, a, b)

where we denote m = log(n).
We now proceed with a case by case analysis based on the first message in

T which is different from T̃ .
If T̃i �= Ti for some i ∈ S, then the verification equation satisfied by T is

(g(m))a(h(m))b(u′)ab

=

(
m∏

i=1

L
x2

i
i

)

·
(

m∏

i=1

R
x−2

i
i

)

· h−μ · Ãx
I · Ãx2

O · (h̃′)−ỹn

· W̃ x
L · W̃ x

R · W̃O · S̃x3 · (u′)t̂.

(The values W̃(·) and h̃′ are also marked as (̃·) to remind the reader that they
are the same in both T and T̃ . Remember that g(m),h(m) are different in the
two transcripts and they are generated as part of the InPrd). Dividing it by the
verification equation for the simulated transcript, we get

(g(m))a(h(m))b(u′)ab · (g̃(m))−ã(h̃(m))−b̃(ũ′)−ãb̃ (3)

=

(
m∏

i=1

L
x2

i
i

) (
m∏

i=1

L̃
−x̃2

i
i

) (
m∏

i=1

R
x−2

i
i

) (
m∏

i=1

R̃
−x̃−2

i
i

)

· h−(μ−μ̃) · Ãx−x̃
I · Ãx2−x̃2

O · W̃ x−x̃
L · W̃ x−x̃

R · S̃x3−x̃3 · (u′)t̂ · (ũ′)−t̂. (4)

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 419

We rearrange the exponents w.r.t. the generators (g, h,g,h, u). Let us focus
on the exponent of g. The only elements with a non-zero component for g are: the
simulated ÃI and S̃ that have ρI and −ρI x̃

−2 in the exponents of g, respectively;
and Li (resp. Ri) with g-component li,g (resp. ri,g) submitted by the adversary
during the oracle queries. Then the exponent of g in (4) is

m∑

i=1

li,gx
2
i +

m∑

i=1

ri,gx
−2
i − ρI x̃

−2x3 + ρIx. (5)

If (5) is non-zero then we find a non-trivial DL solution since the left-hand side
of 4 has g-component 0. Now we argue that (5) vanishes with negligible probabil-
ity. Since the state-restoration adversary makes queries to Oext in order (e.g., it
cannot query a transcript whose prefix has not been queried yet), the challenges
x, x1, . . . , xm are also assigned in order. Suppose the first m variables are fixed
to x, x1, . . . , xm−1 and regard (5) as a univariate polynomial with indeterminate
Xm. Define

e(m)
g (Xm) = lm,gX

2
m + rm,gX

−2
m +

m−1∑

i=1

li,gx
2
i +

m−1∑

i=1

ri,gx
−2
i − ρI x̃

−2x3 + ρIx.

Then, by the Schwartz–Zippel Lemma, if the polynomial e
(m)
g (Xm) is non-

zero, e
(m)
g (xm) vanishes with probability at most 4/(p − 1) over the random

choice of xm ∈ Zp; if it is a zero-polynomial, it must be that the constant term
of e

(m)
g is 0. Hence, if the polynomial

e(m−1)
g (Xm−1) = lm−1,gX

2
m−1 + rm−1,gX

−2
m−1 +

m−2∑

i=1

li,gx
2
i

+
m−2∑

i=1

ri,gx
−2
i − ρI x̃

−2x3 + ρIx

is non-zero, e
(m−1)
g (xm−1) vanishes with probability at most 4/(p − 1) over the

random choice of xm−1 ∈ Zp. Iterating the same argument, we are eventually
tasked with showing e

(0)
g (x) = −ρI x̃

−2x3 + ρIx = 0 with negligible probability.
This only happens if (1) ρI = 0, i.e., e

(0)
g (X) is a zero-polynomial, or (2) e

(0)
g (x) =

0 over the random choice of x ∈ Zp. The former happens with probability 1/(p−
1) because ρI are uniformly chosen by the simulator; the latter happens with
probability at most 3/(p − 1).
If βx �= β̃x or t̂ �= ˜̂t, then we have another transcript

TBP = (ÃI , ÃO, S̃; ỹ, z̃; (T̃i)i∈S ; x̃, βx, μ, t̂, w, L1, R1, x1, . . . , Lm, Rm, xm, a, b).

Since both simulated and adversarial transcripts satisfy the verification equation
w.r.t. the same R, we have

gt̂hβx = R = g
˜̂thβ̃x

420 C. Ganesh et al.

which leads to a non-trivial DL relation.
If μ �= μ̃, the analysis is similar to the case where T̃i �= Ti. The verification
equation satisfied by TBP is

(g(m))a(h(m))b(u′)ab

=

(
m∏

i=1

L
x2

i
i

)

·
(

m∏

i=1

R
x−2

i
i

)

· h−μ · Ãx̃
I · Ãx̃2

O · (h̃′)−ỹn

· W̃ x̃
L · W̃ x̃

R · W̃O · S̃x̃3 · (u′)t̂.

Dividing it by the verification equation for the simulated transcript, we get

(g(m))a(h(m))b(u′)ab · (g̃(m))−ã(h̃(m))−b̃(ũ′)−ãb̃

=

(
m∏

i=1

L
x2

i
i

) (
m∏

i=1

L̃
−x̃2

i
i

) (
m∏

i=1

R
x−2

i
i

) (
m∏

i=1

R̃
−x̃−2

i
i

)

· h−(μ−μ̃) · (u′)t̂ · (ũ′)−t̂. (6)

We rearrange the exponents w.r.t. the generators (g, h,g,h, u). Let us focus
on the exponent of h. Then the exponent of h in (6) is

m∑

i=1

li,gx
2
i +

m∑

i=1

ri,gx
−2
i − (μ − μ̃) (7)

where li,h (resp. ri,h) is the exponent of h available as group representation of Li

(resp. Ri) submitted by the adversary. Using the same argument as before, since
the h-component in the left-hand side of 6 is 0, if μ �= μ̃ we obtain non-trivial
DL relation except with negligible probability.
If Li �= L̃i or Ri �= R̃i This part of the proof uses similar techniques as the
ones for Lemma 8 in [22], with the main difference that we explicitly show
the equalities and constraints that must hold for all exponents of parameters
g,h, g, h, u. For instance, we introduce polynomials �g and �h which are essential
for the full analysis, but were absent from proof in [22].

Let the representations output by the adversary for Li, Ri be

Li =
n∏

j=1

(
g

ligj

j h
lihj

j

)
glghlhulu and Ri =

n∏

j=1

(
g

rigj

j h
rihj

j

)
grghrhuru

and let P ′ =
∏n

j=1

(

g
p′

gj

j h
p′

hj

j

)

gp′
ghp′

hup′
u be the representation of P ′ which is

same in both the transcript of the simulator and the one of the adversary. In what
follows we prove that the exponents of Li (resp. Ri) match those of L̃i (resp.
R̃i) for i = 1, . . . , m except with negligible probability and otherwise one can
find non-trivial discrete-log relation. Let bit(k, i, t) be the function that return
the bit ki where (k1, · · · , kt) is the t-bit representation of k.

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 421

Since T is accepting, the outcome of InPrd.V should be 1, and therefore, the
following must hold:

(g(m))a(h(m))b(u′)ab =

(
m∏

i=1

L
x2

i
i

)

P ′
(

m∏

i=1

R
x−2

i
i

)

, (8)

where g(m),h(m) are parameters for the last round, and a, b are the last round
messages. All terms in this equality can be expressed in terms of g,h, g, h, u and
we can compute the tuple

(e(2)g , e
(2)
h , e(2)g , e

(2)
h , e(2)u)

such that ge(2)
g he

(2)
h ge(2)

g he(2)
g ue(2)

u = 1. We compute e
(2)
g , e

(2)
h , e

(2)
g , e

(2)
h , e

(2)
u as in

Eqs. 9 to 13. Note that if T is accepting, (e(2)g , e
(2)
h , e

(2)
g , e

(2)
h , e

(2)
u) = (0,0, 0, 0, 0),

otherwise we get a non-trivial discrete-log relation.
For k=0 to n − 1:

e(2)gk+1
= 0

=

(
m∑

i=1

(lig1+k
x2

i + rig1+k
x−2

i) + p′
g1+k

)

− a ·
(

m∏

i=1

x
(−1)1−bit(k,i,m)

i

)
(9)

e
(2)
hk+1

= 0

=

(
m∑

i=1

(lih1+k
x2

i + rih1+k
x−2

i) + p′
h1+k

)

− by(−(k)) ·
(

m∏

i=1

x
(−1)bit(k,i,m)

i

)
(10)

e(2)u = 0 =

(
m∑

i=1

(liux2
i + riux−2

i) + p′
u

)

− w · ab (11)

e(2)g = 0 =

(
m∑

i=1

(ligx2
i + rigx

−2
i) + p′

g

)

(12)

e
(2)
h = 0 =

(
m∑

i=1

(lihx2
i + rihx−2

i) + p′
h

)

(13)

In order to derive relation between values ligj
, rigj

, lihj
, rihj

, ui, and the group
representation of statement P ′, we will invoke Schwartz-Zippel lemma in a recur-
sive way. It is convenient to define the following polynomials to invoke the lemma
recursively. For all t ∈ {1, . . . , m}, for all j ∈ {0, . . . , n − 1},

fg
t,j(X) = lt,g1+j

X2 + rt,g1+j
X−2 + p′

g1+j
+

k−1∑

i=1

(
li,g1+j

x2
i + ri,g1+j

x−2
i

)
,

fh
t,j(X) = lt,h1+j

X2 + rt,h1+j
X−2 + p′

h1+j
+

k−1∑

i=1

(
li,h1+j

x2
i + ri,h1+j

x−2
i

)
,

422 C. Ganesh et al.

and

fu
t (X) = lt,uX2 + rt,uX−2 + p′

u +
t−1∑

i=1

(
li,ux2

i + ri,ux−2
i

)
.

Combining different polynomials, one can eliminate a (and b) from Eq. (9)
(and similarly from (10)) and rewrite the resultant equation in terms of polyno-
mial fg

t,j (similarly, fh
t,j) to get: For t ∈ {1, . . . , m}, j ∈ {0, . . . , n/2t − 1},

fg
t,j(xt) · x2

t − fg
t,j+n/2t(xt) = 0 (14)

and

fu
log(n)(xlog(n)) − w · fg

log(n),j(xlog(n)) · fh
log(n),j(xlog(n)) = 0. (15)

Since all the challenges are in order, we rewrite (14) as a univariate polynomial
in terms of variable Xt:

fg
t,j(Xt) · X2

t − fg
t,j+n/2t(Xt) = 0. (16)

(16) vanishes with probability at most 6/(p − 1), and otherwise it is a zero
polynomial. Equating each coefficient term to 0, we get

rt,g1+j
= fg

t−1,j+n/2t(xt−1), lt,g1+j
= 0, rt,gj+n/2t = 0, (17)

lt,gj+n/2t = p′
g1+j

+
t−1∑

i=1

(li,g1+j
x2

i + ri,g1+j
x−2

i) = �gt−1,j(xt−1) (18)

where the last term in (18) can be rewritten as a univariate polynomial:

�gt−1,j(X) = lt−1,g1+j
X2 + rt−1,g1+j

X−2 + p′
g1+j

+
t−2∑

i=1

(lig1+j
x2

i + rig1+j
x−2

i).

Iterating a similar argument for all rounds, for t = 1 we get, r1,g1+j
= p′

g1+j+n/2

and l1,gj+n/2 = p′
g1+j

. Similarly, arguing for polynomial fh
k,j , we get the condition:

fh
t−1,j(Xt) · X−2

t − fh
t,j+n/2t(Xt) = 0. (19)

Analogous to polynomial �gt,j , we define �ht,j(X) = lt−1,h1+j
X2 + rt−1,h1+j

X−2 +
p′

h1+j
+

∑t−2
i=1(lih1+j

x2
i + rih1+j

x−2
i). Equalities 16, 19 gives following constraints:

For all t ∈ {2, . . . , m}, for all j ∈ {0, . . . , n/2 − 1}:

rtg1+j
= fg

t−1,j+n/2t(xt−1), ltg1+j
= 0, rt,gj+n/2t = 0,

lt,gj+n/2t = �gt,j(xt−1), rth1+j
= 0, lth1+j

= fh
t−1,j+n/2t(xt−1) · yn/2t

,

lt,h1+j+n/2t = 0, rt,h1+j+n/2t = �ht,j(xt−1)

(20)

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 423

For t = 1, for all j ∈ {0, . . . , n/2 − 1}:

r1g1+j
= p′

g1+n/2
, l1g1+j

= 0, r1,gj+n/2 = 0,

l1,gj+n/2 = p′
g1+j

, r1h1+j
= 0, l1h1+j

= p′
h1+j+n/2

· yn/2,

l1,h1+j+n/2 = 0, r1,h1+j+n/2 = p′
h1+j

· yn/2

(21)

Note that the output of polynomials fg
k,j , f

h
k,j , �

g
k,j , �

h
k,j are deterministic given

challenges (x1, . . . , xk). Also note, values p′
g, . . . , p′

u are fixed as they are equal
to the representation output by the simulator. Hence, values for ri,g1+j

, ri,h1+j
,

li,g1+j
and li,h1+j

(in Eq. 21) are fixed given previous round challenges.
Now, consider exponents for generators g, h and u. Since Eqs. (11, 12, 13)

hold, using Schwartz-Zippel lemma recursively, it can be shown that li,u, ri,u =
0, li,g, ri,g, li,h = ri,h = 0.

Note that, for a honest execution of InPrd, the exponents for Li, Ri are derived
using constraints in (21). Thus, Li, Ri cannot differ from L̃i, R̃i.

Concrete Advantage of the Adversary. This analysis comes directly from
the Bad Challenge analysis for ACSPf in [22]. For the case Ti �= T̃i, the adversary
succeeds in forging if any one of the polynomials e

(0)
g , . . . , e

(m)
g vanishes. Using

union bound, this happens with probability 4(m + 1)/(p − 1). Similarly, for the
case μ �= μ̃, we break discrete-log relation except with probability: 4m+1/(p−1).
Now, consider the case, Li �= L̃i. The adversary succeeds in forging a proof for
a false statement if they were lucky enough to get a challenge xi such that Eqs.
15, 16 and 19 vanish at xi. This means, for round t ∈ {1, . . . , m = log(n)}, if
any of the

∑t−1
i=1 2n/2t polynomials of degree at most 4, 2n/2t polynomials of

degree at most 6, and one polynomial of degree at most 8, vanish, i.e., adversary
succeeding in forging a proof, which turns out to be at most (14n + 8)/(p − 1).
Note that the adversary can query Oext for SR-UR q times. It is enough to take
max of all case-by-case probabilities to get an upper bound for the probability
of the adversary succeeding in forging a proof. This is because all the cases
are sequential and the adversary succeeds in forging unless we break discrete-
log relation for the very first case that the adversary exploits. Thus, adversary
succeeds in forging a proof with probability at most (14n + 8)q/(p − 1).

	

Combining the results from Theorem 4 and Claim 2, we get the following
corollary.

Corollary 1. Fiat-Shamir transform of BP satisfies FS-SIM-EXT with respect
to a canonical simulator SFS-BP corresponding to the algebraic simulator SBP.
Concretely, there exists an efficient FS-SIM-EXT extractor E∗ for FS-BP such
that for every non-uniform algebraic prover P∗

alg against FS-BP that makes q1
random oracle queries and q2 simulation queries, and for every distinguisher D∗,
there exists a non-uniform adversary A against DL-REL with the property that
for all λ ∈ N

+,

424 C. Ganesh et al.

AdvFS-SIM-EXT
FS-BP,R (SFS-BP, E∗, P∗

alg, D∗, λ) ≤
(

AdvDL-REL(Gλ, Aλ) +
(14n + 8)q1

(p − 1)

)

+q2 ·
(

AdvDL-REL(Gλ, Aλ) +
(14n + 8)q2

(p − 1)

)

+
(q2 + 1)(q1 + 1)

|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 .

Acknowledgment. The authors are grateful to Thomas Attema, Matteo Campanelli,
Jelle Don, Serge Fehr, Ashrujit Ghoshal, Christian Majenz, Stefano Tessaro, and anony-
mous reviewers of EUROCRYPT 2022 for helpful comments and insightful discussions.
This research was supported by: the Concordium Blockchain Research Center, Aarhus
University, Denmark; the Carlsberg Foundation under the Semper Ardens Research
Project CF18-112 (BCM); the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement No
803096 (SPEC); Core Research Grant CRG/2020/004488, SERB, Department of Sci-
ence and Technology.

References

1. Abdalla, M., Barbosa, M., Katz, J., Loss, J., Xu, J.: Algebraic adversaries in the
universal composability framework. Cryptology ePrint Archive, Report 2021/1218
(2021). https://ia.cr/2021/1218

2. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift obtaining simulation
extractable subversion and updatable SNARKs generically. In: Ligatti, J., Ou, X.,
Katz, J., Vigna, G. (eds.) ACM CCS, pp. 1987–2005. ACM Press, New York (2020).
https://doi.org/10.1145/3372297.3417228

3. Baghery, K., Kohlweiss, M., Siim, J., Volkhov, M.: Another look at extraction and
randomization of groth’s zk-snark. Cryptology ePrint Archive, Report 2020/811
(2020). https://ia.cr/2020/811

4. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.)
ACM CCS, pp. 390–399. ACM Press, New York (2006). https://doi.org/10.1145/
1180405.1180453

5. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

6. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press (2018). https://
doi.org/10.1109/SP.2018.00020

7. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. Cryptology ePrint Archive,
Report 2017/1066 (2017). https://eprint.iacr.org/2017/1066

8. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing
products and applications. Cryptology ePrint Archive, Report 2019/1177 (2019).
https://eprint.iacr.org/2019/1177

https://ia.cr/2021/1218
https://doi.org/10.1145/3372297.3417228
https://ia.cr/2020/811
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2019/1177

Fiat-Shamir Bulletproofs are Non-Malleable (in Algebraic Group Model) 425

9. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive, Report
2018/1004 (2018). https://eprint.iacr.org/2018/1004

10. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) 51st ACM STOC, pp. 1082–1090. ACM Press, New York (2019). https://
doi.org/10.1145/3313276.3316380

11. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

12. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

13. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 18

14. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, pp. 542–552. ACM Press, New York (1991). https://doi.org/
10.1145/103418.103474

15. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: multi-
round Fiat-Shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12172, pp. 602–631. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56877-1 21

16. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7 5

17. Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-
7 12

18. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 10

19. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

20. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

21. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir
bulletproofs are non-malleable (in the algebraic group model). Cryptology ePrint
Archive, Report 2021/1393 (2021). https://eprint.iacr.org/2021/1393

22. Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the algebraic group
model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp.
64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 3

23. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th FOCS, pp. 102–115. IEEE Computer Society Press (2003). https://doi.org/
10.1109/SFCS.2003.1238185

https://eprint.iacr.org/2018/1004
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-319-11212-1_18
https://doi.org/10.1145/103418.103474
https://doi.org/10.1145/103418.103474
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2021/1393
https://doi.org/10.1007/978-3-030-84252-9_3
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1109/SFCS.2003.1238185

426 C. Ganesh et al.

24. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press
(1985). https://doi.org/10.1145/22145.22178

25. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

26. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

27. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 20

28. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 18

29. Holmgren, J.: On round-by-round soundness and state restoration attacks. Cryp-
tology ePrint Archive, Report 2019/1261 (2019). https://eprint.iacr.org/2019/1261

30. Kohlweiss, M., Zaj ↪ac, M.: On simulation-extractability of universal zksnarks. Cryp-
tology ePrint Archive, Report 2021/511 (2021). https://eprint.iacr.org/2021/511

31. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS, pp. 2111–2128.
ACM Press, New York (2019). https://doi.org/10.1145/3319535.3339817

32. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 19

33. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press
(1999). https://doi.org/10.1109/SFFCS.1999.814628

34. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

35. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 3

https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-540-74143-5_18
https://eprint.iacr.org/2019/1261
https://eprint.iacr.org/2021/511
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70694-8_3

Gemini: Elastic SNARKs for Diverse
Environments

Jonathan Bootle1(B) , Alessandro Chiesa2,3, Yuncong Hu3 ,
and Michele Orrú3(B)

1 IBM Research, Zurich, Switzerland
jbt@zurich.ibm.com

2 École polytechnique fédérale de Lausanne, Lausanne, Switzerland
alessandro.chiesa@epfl.ch

3 University of California, Berkeley, Berkeley, USA
{yuncong hu,michele.orru}@berkeley.edu

Abstract. We introduce a new class of succinct arguments, that we call
elastic. Elastic SNARKs allow the prover to allocate different resources
(such as memory and time) depending on the execution environment
and the statement to prove. The resulting output is independent of the
prover’s configuration. To study elastic SNARKs, we extend the stream-
ing paradigm of [Block et al., TCC’20]. We provide a definitional frame-
work for elastic polynomial interactive oracle proofs for R1CS instances
and design a compiler which transforms an elastic PIOP into a prepro-
cessing argument system that supports streaming or random access to
its inputs. Depending on the configuration, the prover will choose differ-
ent trade-offs for time (either linear, or quasilinear) and memory (either
linear, or logarithmic). We prove the existence of elastic SNARKS by pre-
senting Gemini, a novel FFT-free preprocessing argument. We prove its
security and develop a proof-of-concept implementation in Rust based
on the arkworks framework. We provide benchmarks for large R1CS
instances of tens of billions of gates on a single machine.

Keywords: Succinct non-interactive arguments · Interactive oracle
proofs

1 Introduction

Succinct non-interactive arguments of knowledge (SNARKs) allow for efficient
verification of NP statements. They are an essential component for a number of
protocols, including private transactions [Ben+14b,Zcash], verifiable computa-
tion [Ben+14a,Boo+18,Gen+13], and anonymous credentials [Bel+09,GGM14].
Recent years have seen a surge of interest in SNARKs, and after much
dedicated research reducing communication complexity and verifier complex-
ity [Par+13,Boo+16,Tha13], the cost of running the prover algorithm has
emerged as the most relevant bottleneck.

Today, the most important factors are the time and memory required to run
the prover algorithm. For example, in zk-rollups1, some nodes in the network
1 https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 427–457, 2022.
https://doi.org/10.1007/978-3-031-07085-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_15&domain=pdf
http://orcid.org/0000-0003-3582-3368
http://orcid.org/0000-0002-8338-3507
http://orcid.org/0000-0001-6518-2712
https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/
https://doi.org/10.1007/978-3-031-07085-3_15

428 J. Bootle et al.

(called relayers) must produce a SNARK proving validity of a large amount of
transactions. Here, the instance being proven may contain billions of constraints.
Even more resource-intensive is the Filecoin network: daily, Filecoin generates
proofs for about 930 B constraints2. In both cases, the ability to prove massive
statements efficiently is critical, yet many SNARK implementations today can’t
prove circuits of tens of billions of constraints. This work investigates time- and
space-efficient SNARKSs, and the possible compromises that can be made within
the same proving algorithm to get the best of both worlds.

Fast Prover. A colossal effort has been put into reducing computational over-
heads for the prover. A long line of works [Set20,BCG20,Boo+17,Boo+18,
Xie+19] focusing on prover efficiency has led to SNARKs whose prover algo-
rithm runs in linear (or almost-linear) time with respect to the instance and
the witness. Some works [Zha+21,JW17] even rely on specialized hardware to
accelerate prover computation. Unfortunately, most linear-time provers [Tha13]
exploit dynamic programming techniques and as a consequence also require ran-
dom access to both instance and witness, and demand space linear in the instance
size. When proving large instances, this makes them prohibitively greedy in terms
of memory.

Slim Prover. A recent research direction [HR18,Blo+20,Blo+21] investigated,
from a theoretical perspective, the possibility of a space-efficient prover. This line
of work considers provers that have streaming access to the inputs (the statement
and the witness), rather than random access to them. It has been shown [Blo+20]
that a space-efficient prover needs only logarithmic memory space throughout
their entire execution, but requires quasilinear computation time.

Serving Diverse Computing Environments. Each of the above lines of
research aims to optimise for a single type of complexity measure. Works which
optimise for prover time assume that large amounts of memory are available,
which is unlikely to be the case for considerably large instances. On the other
hand, for works which focus on optimising for prover space, time efficiency is
not a priority, and time overheads may be problematic in practice. In the best
case, one could envisage a SNARK which simultaneously runs in linear time
and uses only logarithmic memory space by accessing its inputs via streams.
Unfortunately, constructing such SNARKs remains a challenging open problem.
Complexity-preserving SNARKs [BC12,Bit+13], which aim to preserve both
time and space complexity, are a step in the right direction. Sadly, the notion of
complexity-preservation in this works allows polylogarithmic blow-ups in time
and space, and this looseness makes complexity preserving SNARKs inefficient
in practice. In this work, our goal is to meaningfully relax the goal of com-
plexity preservation, in a way that allows us to serve many different computing
environments in a concretely-efficient manner.

2 https://research.protocol.ai/sites/snarks/.

https://research.protocol.ai/sites/snarks/

Gemini: Elastic SNARKs for Diverse Environments 429

1.1 Our Results

(i) Elastic SNARKs. Roughly speaking, we consider SNARKs whose prover
admits two different implementations:

– the time-efficient prover Pt, which receives as input instance and witness;
– the space-efficient prover Ps, which has streaming access to the same

inputs.
Provided with this “dual-mode” framework, an elastic prover can choose
which implementation to use, and allocate resources depending on the exe-
cution environment and the instance size. In addition, the two algorithms
are compatible in such a way that during the execution of the protocol the
space-efficient prover can stop and transcribe a (compressed) prover state.
Then, the prover can switch to the time-efficient implementation, enjoying
the benefits of a fast prover.
To achieve the above, we extend the notion of streams of Block et al. [Blo+20]:
we study stream composition, and provide a definitional framework for
streaming holographic polynomial IOPs for Rank-1 Constraint Systems
(R1CSs) instances. We construct a compiler that transforms an elastic PIOP
into a preprocessing argument using elastic polynomial commitment schemes.
(ii) An elastic SNARK for R1CS.
We realize the above notion by constructing a novel argument system for
R1CS, whose prover admits a time-efficient mode and a space-efficient mode.
The two modes are compatible in such a way that it is possible to migrate
state from one to the other, and produce the same final proof independently
of the prover configuration.

Definition 1. The R1CS problem asks: given a finite field F, coefficient matrices
A,B,C ∈ F

N×N each containing at most M = Ω(N) non-zero entries,3 and an
instance vector x over F, is there a witness vector w such that z := (x,w) ∈ F

N

and Az ◦ Bz = Cz?

Above, “◦” denotes the entry-wise product. We use standard Landau nota-
tion. When referring to time efficiency, the asymptotic number of cryptographic
operations (that is, group operations) will be denoted by Oλ, to distinguish them
from (less expensive) field operations, that instead we denote with standard big-
O notation. Our main contribution is the following theorem:

Theorem 1 (informal). There exists an elastic SNARK for RR1CS whose
prover admits two implementations:

– the time-efficient prover runs in Oλ(M) time and O(M) space;
– the space-efficient prover runs in Oλ(M log2 M) time and O(log M) space,

where M is the number of non-zero entries in the R1CS instance. The proof can
be verified in Oλ(|x| + log M) time, and has size O(log M).
3 Note that M = Ω(N) without loss of generality because if M < N/3 then there are

variables of z that do not participate in any constraint, which can be dropped. Thus
the main size measure for R1CS is the sparsity parameter M .

430 J. Bootle et al.

To achieve the above, we study the commitment of Kate et al. [KZG10] from
the perspective of an elastic commitment scheme, which involves constructing a
streaming interface for commitment and opening algorithms.
Then, we construct an elastic scalar product protocol that runs in linear-time and
linear-space, or quasi-linear time and log-space. Our scalar product argument is
based on the sumcheck protocol which, thanks to its recursive nature, allows us
to easily migrate from a space-efficient instance to a time-efficient one. Using
the above elastic scalar product protocol, we build a polynomial IOP [BCS16]
for R1CS.
Finally, we give a compiler which uses elastic polynomial commitment schemes
and elastic polynomial IOPs to construct elastic cryptographic arguments. This
modularity is beneficial not only for protocol design but also reflects the actual
implementation. On the one hand, when studying a complex protocol, one can
still isolate the cryptographic components from the information-theoretic part to
study its complexity and its security. On the other hand, the implementation can
benefit from an abstraction layer that reduces the implementation overhead.
Using similar techniques, we provide a preprocessing SNARK with the same
complexity.

(iii) Implementation. We implement the construction of Theorem 1 in
Rust using the arkworks ecosystem [ark]. Our implementation consists of
the main preprocessing argument, and a non-preprocessing argument (where
the verification procedure is assumed access to the R1CS instance in full).
Extending the library with streaming-friendly primitives required a notable
engineering effort that we believe could be of independent interest for future
space-efficient projects. In Sect. 2.7, we give an overview of the relevant design
choices and provide a number of algorithmic optimizations.
(iv) Evaluation. While there are plenty of benchmarks publicly available for
time-efficient SNARKs, few works evaluate SNARKs on large circuits. To the
best of our knowledge, the largest instance size ever proven in the literature
is DIZK [Wu+18], with a maximal instance of size 231, and using a cluster of
20 machines in 256 executors.
Our benchmarks, described more in-depth in Sect. 2.8 show the following:

– Gemini is able to prove instances of arbitrary size. In particular, using a
single machine with around 1 GB of memory budget, we are able to run
benchmarks with instances of 232 for the preprocessing argument. If the
verifier is allowed to read the entire circuit (that is, a non-preprocessing
argument), we were able to carry out proofs for 235 constraints. In con-
trast, the largest instance ever proven in the literature [Wu+18] is only
231.

– Gemini is concretely and economically efficient. The preprocessing proto-
col can prove instances of size 231 within two days and save about 82%
(about 400 USD) of expenses when comparing with DIZK on Amazon
EC2.

– Gemini provides succinct proofs and verifiers. For instances of size 235,
the proof size is about 27 KB and the verification time is below 30 ms.

Gemini: Elastic SNARKs for Diverse Environments 431

1.2 Related Work

There is a long line of work on improving the time complexity of SNARK provers,
both asymptotically and concretely; this has culminated in SNARKs with linear-
time provers. See [Gol+21] and references therein. However, these optimizations
typically come at the expense of space complexity, which is typically linear in
the computation size either due to the use of FFTs or dynamic programming
algorithms.

Simultaneously optimizing for time and space efficiency was first considered
for succinct arguments in [BC12], via the notion of complexity preservation.
This roughly means that the time and space to prove a computation must be
asymptotically close to those for merely running the computation itself. Further
constructions of complexity preserving succinct arguments were given in [Bit+13,
HR18,Blo+20,Blo+21]. In all of these constructions space efficiency is achieved
at the expense of a somewhat higher time complexity, due to the need for either
a non-black-box use of cryptography or the need to perform multiple (indeed,
logarithmically many) passes on the computation transcript.

Our goal in this work is to study succinct arguments that offer multiple
algorithms for the same prover that optimize for different settings, e.g., for time
efficiency or space efficiency. Moreover, prior works that study streaming SNARK
provers were theoretical, while in this work we additionally study streaming
implementations with concrete efficiency.

2 Techniques

In Sect. 2.1, we outline the streaming model. After setting some terminology,
we state our main theorem, which is based on elastic polynomial commitment
schemes and elastic probabilistic proofs. We describe then the two components
separately: first, we describe an elastic polynomial commitment based on KZG
in Sect. 2.3, and then we construct a polynomial PIOP for R1CS, which is itself
based on a novel elastic scalar-product argument.

2.1 Elasticity and a Streaming Model

The notion of elasticity refers to having multiple realizations of the same algo-
rithm (more precisely, function) for use in different situations. Specifically in this
work:

Elasticity means that we aim for two realizations: a time-efficient real-
ization for a setting where time complexity is most important, possibly
at the expense of space complexity; and a space-efficient realization
for a setting where space complexity (i.e., memory consumption) is most
important, possibly at the expense of time complexity.

This means that in theorem statements, and in their proofs, we will consider
two realizations with different complexities for the same functionality (e.g., the
SNARK prover algorithm).

432 J. Bootle et al.

Time-efficient algorithms are a familiar concept. To discuss space-efficiency,
however, we must consider streaming algorithms, which receive their inputs in
streams (small pieces at a time) so that we can design algorithms that use less
memory than the size of their inputs. Below we describe: (i) a formal model
of streams, and (ii) a notion of streaming algorithms, and how their efficiency
behaves under composition.

Streams and Streaming Oracles. A stream is a tuple consisting of an alpha-
bet Σ, a well-ordered countable set I, and a sequence K ∈ ΣI . Streams can be
accessed via special oracles: if K is a sequence, the streaming oracle S(K) of K
takes two input commands, start and next; the oracle simply responds to the i-th
next command with the i-th element of K; the stream S(K) can be reset to the
first element in the sequence using the start command, in case earlier elements
of the stream need to be viewed again. However, the streaming oracle does not
allow random access to elements of K. In the full version, we define streaming
relations in which the instance and the witness are given as streams.

Streaming Algorithms. A streaming algorithm is an algorithm that has access
to all of its inputs via streaming oracles and produces a stream as its output, by
yielding the next element on upon receiving the next command. The complexity
of a streaming algorithm is measured in terms of its time complexity, space
complexity, and the number of passes that it makes over each input stream.

Any binary operation over an alphabet can be viewed as a streaming algo-
rithm which takes as input two sequences K and K ′ over the same alphabet Σ
that are indexed by the same set I. In this case, the binary operation acts on
successive pairs of elements of K and K ′, to produce a new stream on the fly. For
instance, let f ,g be two vectors over a prime field F of order p, and S(f), S(g)
(respectively) their canonical streams4. The stream S(f + ρg) for two vectors
f ,g over a field F and scalar ρ ∈ F can be evaluated as a new stream using S(f)
and S(g), by responding to each next query in the following way: first query S(f)
to obtain the i-th entry fi of f , then query S(g) to obtain gi, and finally respond
with fi + ρgi.

Since a streaming algorithm produces a stream as output, multiple stream-
ing algorithms can be composed so that the output stream produced by one
algorithm acts as the input stream for the next algorithm. The time and space
complexity and number of input passes of streaming algorithms behave pre-
dictably under composition. If A is a streaming algorithm with time complexity
tA, space complexity sA, and kA input passes, and B is a streaming algorithm
with time complexity tB, space complexity sB, and kB input passes, then A com-
posed with B has time complexity tA + kAtB, space complexity sA + sB, and
kAkB input passes.

2.2 A Modular Construction of Elastic SNARKs

Many succinct arguments are built in two steps. First, construct an information-
theoretic probabilistic proof in a model where the verifier has a certain type of
4 The canonical stream of a vector consists of the sequence of its entries, from last to

first.

Gemini: Elastic SNARKs for Diverse Environments 433

query access to the prover’s messages. Second, compile the probabilistic proof
into an interactive succinct argument, via a cryptographic commitment scheme
that “supports” this query access5. Finally, if non-interactivity is desired, apply
the Fiat–Shamir transformation [FS86]. This modular approach has enabled
researchers to study the efficiency and security of simpler components, which
has facilitated much progress in succinct arguments.

We observe that the techniques used in [Chi+20,BFS20] to build a compiler
from IOPs to preprocessing arguments preserve elasticity : if the ingredients to
the approach are elastic then the resulting SNARK is elastic. In more detail, the
compiler involves two ingredients.

– Polynomial IOPs. A probabilistic proof in which the prover sends polynomial
oracles to the verifier, who accesses them via polynomial evaluation queries.
This is an interactive oracle proof [BCS16,RRR16] where query access to
prover messages is changed from “point queries” to “polynomial evaluation
queries”.

– Polynomial commitments. A cryptographic primitive that enables a sender
to commit to a polynomial f ∈ F[X] of bounded degree, and later prove that
f(z) = v for given v, z ∈ F.

If the polynomial IOP is additionally holographic then the resulting succinct
argument is a preprocessing argument, which means that it is possible, in an
offline phase, to perform a public computation that enables sub-linear verification
later on. The lemma below summarizes how elasticity is preserved. The formal
statement (and its proof) are relative to the formalism for streaming algorithms
that we outlined in Sect. 2.1.

Theorem 2 (informal). Suppose that we are given the following ingredients.

– A public-coin polynomial IOP for a relation R with: (i) time-efficient prover
time tP ; (ii) space-efficient prover space sP with kP passes; (iii) s oracles;
(iv) query complexity q (v) verifier complexity tV

– A polynomial commitment scheme PC with (i) time-efficient commit and open
time tPC.Com; (ii) space-efficient commit (and open) space sPC.Com with kPC.Com

passes; and (iii) checking time tPC.Check.

Then there exists an interactive argument system for the relation R with (i)
time-efficient prover time tP + s · tPC.Com + q · tPC.Com; (ii) space-efficient prover
space sP + s · sPC.Com with q · kPC.Com · kP passes; and (iii) verifier complexity
tV + q · tPC.Check. Moreover, the argument system is preprocessing if the given
polynomial IOP is holographic (with time and space properties similarly preserved
by the transformation).

5 The argument prover and argument verifier emulate the underlying probabilistic
proof, with the argument prover sending commitments to proof messages and send-
ing answers to queries together with commitment openings to authenticate those
answers.

434 J. Bootle et al.

Roughly speaking, the argument prover commits to each polynomial ora-
cle via the polynomial commitment scheme, and answers polynomial evaluation
queries by sending the evaluation along with a proof that it is consistent with the
corresponding polynomial commitment. The security and most efficiency mea-
sures are studied in [Chi+20,BFS20]. Less obvious is how space complexity is
affected.

A streaming implementation of the PIOP prover does not necessarily pro-
duce all of its output polynomial streams one by one, and therefore the space
complexity of the resulting argument prover is not, e.g., just the sum sP +sPC.Com

of the PIOP prover space and the PC commitment algorithm space. Indeed, if
the PIOP prover’s message polynomials all depend on the same input stream, it
might be advantageous to produce two polynomials at the same time to avoid
making extra passes over the input stream6. Furthermore, the commitment algo-
rithm may require several passes over a single input polynomial, so that the
argument prover must run the PIOP prover several times in order to completely
commit to each polynomial, keeping partially computed commitments to each
polynomial in memory. Such considerations lead to the space-efficient argument
prover having space complexity sP + s · sPC.Com with q · kPC.Com · kP passes. Our
PIOP construction actually satisfies the strong property that each polynomial
can be produced independently without rerunning the entire prover algorithm,
which reduces the space complexity to sP + sPC.Com.

Remark 1 (types of polynomials). The above discussion is deliberately ambigu-
ous about certain aspects: are the polynomials univariate or multivariate? are
the polynomials represented as vectors of coefficients or as vectors of evaluations
(or vectors in some other basis)? These details do not matter for Theorem 2
as long as the two components “match up”: if the PIOP outputs polynomials
represented in a way that is compatible with how the PC scheme expects inputs.
Nevertheless, in this paper we focus on the case of univariate polynomials rep-
resented as vectors of coefficients, because our construction and implementation
are in this setting.

Remark 2 (multilinear vs. univariate). The fact that the approach in [Chi+20,
BFS20] preserves space efficiency in the case of multilinear polynomials repre-
sented over the boolean hypercube was used in [Blo+20,Blo+21]. Theorem 2 is a
straightforward observation about [Chi+20,BFS20] that additionally considers
elasticity. In particular, we believe that the constructions in [Blo+20,Blo+21]
could be shown to have elastic realizations, by showing that the underlying mul-
tilinear PIOP and multilinear PC schemes have elastic realizations. We choose
to work with univariate polynomials, instead of multilinear polynomials, because
they have seen more success in real world deployments, and thus focus our inves-
tigation on the concrete efficiency of elastic SNARKs based on univariate poly-
nomials. We leave the study of concrete efficiency of elastic SNARKs based on
multilinear polynomials to future work.

6 For example, if one polynomial consists of all of the even coefficients of another, one
can produce streams of the coefficients of both polynomials simultaneously, in half
the number of passes required to compute streams of each polynomial one at a time.

Gemini: Elastic SNARKs for Diverse Environments 435

Remark 3 (elastic setup and indexer). For any succinct argument, elasticity
is a desirable property as the size of the statement to be proven increases. In
particular, we are going to focus on elasticity of the prover, which is the current
bottleneck for proving large instances.

– Setup. We assume the existence of a setup algorithm that samples the public
parameters of the system. Despite its complexity can be linear (or more!) in
the statement size, we do not discuss setup algorithms in this paper for two
reasons: (i) known setup algorithms have straightforward realizations that are
simultaneously efficient in time and space (that is, there is less of a tension
between optimizing for time or for space as there is for the prover); (ii) public
parameters are typically sampled via “cryptographic ceremonies” that realize
the setup functionality via secure multi-party protocols [BGM17], and so it
is more relevant to discuss the time and space efficiency of these ceremonies.

– Indexer. In the case of preprocessing arguments, there is an indexer algorithm
that produces the so-called proving key and verification key. The indexer
in our construction and implementation is elastic, but we will not focus on
it since all ideas relevant for the indexer can be inferred from the proving
algorithm.

2.3 An Elastic Realization of the KZG Polynomial Commitment
Scheme

We use a univariate polynomial commitment scheme from [KZG10] to construct
our SNARK (see Sect. 2.2). Below we review this scheme and explain how to
realize it elastically.

Review: A Polynomial Commitment from [KZG10]. The setup algo-
rithm samples and outputs public parameters for the scheme to support
polynomials of degree at most D ∈ N: the description of a bilinear group
(G1,G2,GT , q,G,H, e);7 the commitment key ck := (G, τG, . . . , τDG) ∈ G

D+1
1

for a random field element τ ∈ Fq; and the receiver key rk := (G,H, τH) ∈
G1 × G

2
2. The commitment to a polynomial p ∈ Fq[X] of degree at most D

is computed as C := 〈p, ck〉 = p(τ)G ∈ G1. Subsequently, to prove that the
committed polynomial p evaluates to v at z ∈ Fq, the committer computes the
witness polynomial w(X) := (p(X)−p(z))/(X −z), and outputs the evaluation
proof π := 〈w, ck〉 = w(τ)G ∈ G1. Finally, to verify the evaluation proof, the
receiver checks that e(C − vG,H) = e(π, τH − zH).

Elastic Realization. An elastic realization of the above scheme requires a time-
efficient realization and a space-efficient realization for each relevant algorithm
of the scheme. Here we do not discuss the setup algorithm, as it has a natural
time-and-space-efficient realization (cf. Remark 3). We do not discuss the ver-
ification algorithm either, because it only involves a constant number of scalar

7 Here |G1| = |G2| = |GT | = q, G generates G1, H generates G2, and e : G1×G2 → GT

is a non-degenerate bilinear map.

436 J. Bootle et al.

multiplications and pairings. Our focus is thus on the commitment and opening
algorithm.

– Commitment algorithm. We are given streams of the commitment key ele-
ments {τ iG}d

i=0 and of the coefficients {pi}d
i=0 of the polynomial p(X) =

∑d
i=0 piX

i to be committed. We compute the commitment C =
∑d

i=0 piτ
iG

by multiplying each coefficient-key pair (pi, τ
iG) together and adding them

to a running total. Each scalar-multiplication of pi · τ iG is performed via a
double-and-add algorithm in constant space and linear time.
The above operation is also known as multi-scalar multiplication or multi-
exponentiation in the literature, and there exists different algorithms, such
as Pippenger’s [Pip80], that can greatly improve the concrete efficiency of
the multi-scalar multiplication by reducing the number of group operations.
Unfortunately, the algorithm requires random access to the vectors of scalars
(p) and bases (ck) and, despite Pippenger itself can be transformed into a
streaming algorithm (trading off constant memory), the best performance in
practice is achieved by setting a constant buffer and computing the result
C = 〈p, ck〉 via multiple executions of Pippenger’s algorithm. We investigate
more non-näıve streaming algorithms in Sect. 2.7.

– Opening algorithm. We are given the same streams as above, and an opening
location z. By rearranging the expression for the witness polynomial w(X) =
(p(X) − p(z))/(X − z), we can stream the coefficients {wi}d−1

i=0 of w(X) via
Ruffini’s rule: wi := pi+1 + wi+1z. The evaluation proof π =

∑d−1
i=0 wiτ

iG is
computed in the same way as the commitment algorithm.

Note that the recurrence relation in the opening algorithm uses wj+1 to compute
wj , which means that w(X) is computed from its highest-order coefficient to its
lowest. In turn, this means that the commitment key ck and scalarthe polynomial
p(X) are streamed from highest-degree to lowest-degree coefficient. Setup and
commitment algorithms are agnostic to the order elements are being streamed.
The above discussion implies the following (informal) lemma.

Lemma 1 (informal). The polynomial commitment scheme of [KZG10] has
an elastic realization.

2.4 An Elastic Scalar-Product Protocol

A scalar-product protocol enables the prover to convince the verifier that the
scalar product of two committed vectors equals a certain target value. In the
literature, scalar-product protococols [BCG20] are also known as inner-product
arguments or IPAs [Boo+16,DRZ20,Bün+21]. Many constructions of succinct
arguments internally rely on scalar-product protocols as their main component
for proving NP statements [Boo+16,PLS19,BCG20]. The PIOP for R1CS that
we construct in Sects. 2.5 and 2.6 relies on a PIOP for scalar products where
the prover has two realizations: (i) one that runs in linear-time and linear-space;
and (ii) one that runs in quasilinear-time and logarithmic-space.

Gemini: Elastic SNARKs for Diverse Environments 437

Definition 2. A PIOP for scalar products is a PIOP where the verifier
receives as input (F, N, u) and has (polynomial evaluation) query access to f ,g ∈
F

N , and checks with the help of the prover that 〈f ,g〉 = u.

Theorem 1 (informal). There is a PIOP for scalar products with proof length
O(N), query complexity O(log N), verifier time O(log N), and prover that has
two realizations:

– a time-efficient realization that runs in time O(N) and space O(N);
– a space-efficient realization that runs in time O(N log N) and space O(log N)

in O(log N) passes.

In the remainder of this section, we outline the scalar-product protocol, defer-
ring to the full version formal security proofs and a more in-depth discussion of
the protocol. We also note that our construction uses two slightly different pro-
tocols, one for twisted scalar-products [BCG20], where 〈f ◦y,g〉 = u for a vector
y of the form y = (1, ρ0) ⊗ (1, ρ1) ⊗ · · · ⊗ (1, ρn−1) where n := log N (we recall
that by log we denote the ceil of the logarithm base 2), and one for verifying
Hadamard product relations f ◦ g = h. These only require small modifications
to the scalar-product protocol.

We proceed in three steps. First, in Sect. 2.4.1 we describe how to reduce
checking a scalar product to checking tensor products of univariate polynomials.
Then, we describe a tensor product protocol in Sect. 2.4.2. Finally, in Sect. 2.4.3
we describe how to realize this protocol in an elastic way.

2.4.1 Verifying Scalar Products Using the Sumcheck Protocol
Consider two vectors f , g ∈ F

N with 〈f ,g〉 = u as in Definition 2. The verifier has
polynomial evaluation query access to polynomial evaluations of f and g. That
is, the verifier can obtain evaluations of the polynomials f(X) =

∑N−1
i=0 fiX

i

and g(X) =
∑N−1

i=0 giX
i at any point x ∈ F. Note that the product polynomial

h(X) := f(X) · g(X−1) has 〈f ,g〉 =
∑N−1

i=0 figi as the coefficient of X0, because
for every i, j ∈ [N] the powers of X associated with fi and gj multiply together
to give X0 if and only if i = j. Therefore, to check the scalar-product 〈f ,g〉 = u,
it suffices to check that the coefficient of X0 in the product polynomial h(X)
equals u.

However, this check must somehow be performed without the prover actu-
ally computing h(X). This is because the fastest algorithm for computing h(X)
requires O(N log N) time and O(N) space (via FFTs), which is neither time-
efficient nor space-efficient. On the other hand, the scalar product 〈f ,g〉 = u can
be checked (directly) in time O(N) and space O(1), which leaves open the possi-
bility of a scalar-product protocol where the prover does better than computing
h(X) explicitly (and then running some protocol).

This issue is addressed in prior work if the verifier can query the multilin-
ear polynomials f̂(X) and ĝ(X) associated to the vectors f ,g ∈ F

N : we index
the entries of f using binary vectors, and fi = fb0,...,bn−1 is the coefficient of
Xb0

0 · · · Xbn−1
n−1 , where (b0, . . . , bn) is the binary decomposition of i. From previ-

ous results [Tha13,Xie+19,BCG20], we have the following lemma.

438 J. Bootle et al.

Lemma 2. Let F be a finite field and N be a positive integer. Define n = log N ;
the sumcheck protocol for

1
2n

∑

ω∈Hn

(f̂ · ĝ)(ω) = u . (1)

for H = {−1, 1} and two multilinear polynomials f̂(X0, . . . , Xn−1) and ĝ(X0, . . . ,
Xn−1) has the following properties: soundness error is O(log N/|F|) (as a reduc-
tion to claims about polynomial evaluations); round complexity is O(log N); the
prover uses O(log N) field operations; and the verifier uses O(log N) field oper-
ations.

Then, one can use the (multivariate) sumcheck protocol of [Lun+92] to reduce
〈f ,g〉 = u to two evaluation queries f̂(ρ) and ĝ(ρ), where ρ := (ρ0, . . . , ρn−1) ∈
F

n are the random verifier challenges used in the sumcheck protocol. Crucially,
the prover algorithm in the sumcheck protocol applied to the two product of
two multilinear polynomials also has a space-efficient realisation which runs in
time O(N log N) and space O(log N) [CMT12], which would provide an elastic
solution in this multilinear regime.

In our setting the verifier can only query the univariate polynomials f(X) and
g(X) associated with the vectors f ,g ∈ F

N . Nevertheless, we follow a similar
approach, by running the sumcheck protocol on the multivariate polynomials
f̂(X) and ĝ(X), producing two claimed evaluations f̂(ρ) = u and ĝ(ρ) = u′. We
check that these claimed evaluations are consistent with f and g using evaluations
of the univariate polynomials f(X) and g(X).

Remark 4 (unstructured fields). While other probabilistic proofs using univari-
ate polynomials, such as the low-degree test in [Ben+18], require the size of the
field F to be smooth, so that the field contains high-degree roots of unity or struc-
tured linear subspaces. In contrast, using the strategy above, our scalar-product
protocol works with univariate polynomials over any sufficiently large field. This
allows a much wider range of parameter choices for the [KZG10] polynomial
commitment scheme which is likely to lead to better concrete efficiency.

2.4.2 A Tensor-Product Protocol
Consider the claimed evaluation f̂(ρ) = v. To check that this is correct using
univariate polynomial evaluations, note that f̂(X) and f(X) have the same coef-
ficients, and moreover partially evaluating f̂(X) by setting X0 equal to ρ0, the
polynomial f̂(ρ0,X1, . . . , Xlog N−1) has the same coefficients as the polynomial
f ′(X) := fe(X) + ρ0 · fo(X). Here, fe(X) and fo(X) are the unique odd and even
parts of f(X), defined by f(X) = fe(X2) + Xfo(X2).

This suggests a protocol where the prover sends f ′(X) to the verifier. If
the verifier can check that f ′(X) was correctly computed from f(X), then the
original problem of consistency between f(X) and an evaluation of f̂(X0, . . . ,
Xlog N−1) is reduced to checking consistency between f ′(X) and an evaluation
of f̂(ρ0,X1, . . . , Xlog N−1). Repeating this reduction with every value ρj , the

Gemini: Elastic SNARKs for Diverse Environments 439

prover and verifier eventually arrive at a claim about constant-degree polyno-
mials, which the prover can send to the verifier allowing the verifier to check
autonomously.

To check that f ′(X) is consistent with f(X), the verifier can sample a random
challenge point β ∈ F

× (where F
× denotes the multiplicative group of F), and

make polynomial evaluation queries in order to check the following equations:

f ′(β2) = fe(β) + ρ0 · fo(β) =
f(β) + f(−β)

2
+ ρ0 · f(β) − f(−β)

2β
. (2)

This is reminiscent of a similar reduction in [Ben+18] used to construct a low-
degree test for univariate polynomials. By the Schwartz–Zippel lemma, the check
passes with small probability unless f ′(X) was computed correctly.

Noting that f̂(ρ) = 〈f ,⊗n−1
j=0 (1, ρj)〉, this procedure gives a univariate poly-

nomial IOP for the following relation:

Definition 3. The tensor-product relation RTC is the set of tuples

(i,x,w) = (⊥, (F, N, ρ0, . . . , ρn−1, u), f)

where n = log N , f ∈ F
N , u ∈ F, and 〈f ,⊗j(1, ρj)〉 = u.

We give full details of the tensor-product protocol in the full version of this
paper. In fact, the tensor check will be useful not only as part of our scalar-
product protocol, but also more generally as part of simple checks that take
place as part of our R1CS protocols (as described in Sects. 2.5 and 2.6).

2.4.3 Elastic Realization of the Prover Algorithm
Most complexity measures claimed in Theorem 1 follow straightforwardly from
the sumcheck protocol described in Lemma 2. What remains is to describe an
elastic realization of the prover algorithm for the tensor-product protocol.

The prover’s task is to compute the polynomials f (j) for each round j ∈
[n]. Given f (j−1), which has degree O(N/2j), the prover can compute f (j) in
O(N/2j) operations via Eq. 2. Summing up the prover costs for j ∈ [n] gives
O(N) operations. Therefore, it is easy to see that the tensor-product protocol
has a linear-time prover realisation.

Next, we give a space-efficient prover realisation that uses logarithmic space.

Logarithmic Space. We aim for the prover to run in logarithmic space com-
plexity, given streaming access to f and g. This is more challenging than the
time-efficient case, as the prover cannot store f (j−1) to help it compute f (j),
as this would require linear space complexity (for small j). Instead, the prover
computes each f (j) from scratch using streams of f .

We begin by explaining how the prover can produce a stream of f (j) efficiently,
given streaming access to f , in a similar way to streaming evaluations of multi-
variate polynomials and low-degree extensions in [Blo+21,Blo+20,CMT12]. Our
main contribution here is to show that f (j) can be evaluated in O(N) time and
O(log N) space, saving a logarithmic factor over prior work. Then, we explain
how to perform the consistency checks.

440 J. Bootle et al.

f (0)

f (1)

f (2)

...

f
(0)
0

f
(1)
0

f
(0)
0 f

(0)
1

f
(1)
0

f
(0)
0 f

(0)
1 f

(0)
2 f

(0)
0 f

(0)
1 f

(0)
2 f

(0)
3

f
(1)
0 f

(1)
1

f
(2)
0

. . .

f
(0)
0 f

(0)
1 f

(0)
2 f

(0)
3 f

(0)
4 f

(0)
5 f

(0)
6

f
(1)
0 f

(1)
1 f

(1)
2

f
(2)
0

. . .

Fig. 1. A streaming algorithm for computing the coefficients of f (j) from f (0) := f .
Nodes in blue denote the coefficients that are stored in memory at any moment.

– Streaming f (j). Let f =
∑N−1

i=0 fiX
i. We can compute f ′ =

∑N/2−1
i=0 (f2i +

ρf2i+1)Xi from a stream of coefficients of f by reading each pair of coefficients
f2i, f2i+1 from the stream, and produce the next coefficient f ′

i := f2i +ρf2i+1

of f ′. This process uses a constant amount memory space, storing f2i, and
f2i+1 and deleting them immediately after computing f ′

i . Each coefficient of
f ′ costs two arithmetic operations to compute.
The prover can produce the stream S(f (j)) for f (j) by applying the same
idea recursively as follows. Initialise a stack Stack consisting of pairs (j, x) ∈
[log N]×F, and a list of challenges ρ0, . . . , ρj . To generate S(f (j)), the prover

• If the top element in the stack is of the form (j, y) for some y ∈ F, pop it
and return y.

• If the top two elements in the stack are of the form (k′, x′) and (k, x) with
k = k′ (and k < j), then pop them and push (k+1, x + ρk x′), where
x + ρk x′ is equal to f

(j)
k+1 (recall that the values are streamed from last

to first index);
• Otherwise, query the stream S(f) for the next element x ∈ F and add

(0, x) to the stack.
The stack Stack must be initialized with some zero-entries if N �= 2n (for
instance, where N is odd) for correctness, but we avoid discussing this case
here for simplicity. A visual representation of this process is displayed in
Fig. 1. This procedure produces a stream of f (j) from a stream of f in O(N)
and using log N memory space (since the stack Stack holds at most log N
elements at any time).

– Space-efficient tensor check. The verifier must perform consistency checks to
make sure that each polynomial f (j) was correctly computed from f (j−1), and
similarly for g(j). This check requires the computation of f (0), . . . , f (n−1). We
compute them in parallel with a minor modification to the folding algorithm
illustrated in Fig. 1. Instead of returning only when the top of the stack has
a particular index, we always output the top element in the stack. We thus
construct a streaming algorithm S(f (0), . . . , f (n−1)) that returns elements of
the form (j, x) ∈ [n]×F where x is the next coefficient of the polynomial f (j).
With the above stream, it is possible to simulate the streaming oracle S(f (j))
and the evaluations f (j)(β2), f (j)(+β), f (j)(−β), for each j ∈ [n]. In particular
computing each evaluation requires storing a single F-element; therefore, the
total consistency check uses n = log N memory and N time. This allows to
check Eq. 2, substituting f ′ = f (j), f = f (j−1) for j ∈ [n].

Gemini: Elastic SNARKs for Diverse Environments 441

Based on the costs of maintaining the stacks for f and g, and computing
the coefficients of q(j) incrementally, it follows that each round takes time O(N)
and space O(log N). Therefore, summing over the O(log N) rounds, the protocol
requires time O(N log N) and space O(log N).

Remark 5. Based on our tensor product protocol in Sect. 2.4.2, one can con-
struct a linear-time univariate sumcheck protocol with proof length O(N) and
query complexity O(log N), which we believe could be of independent interest for
future research. There are other univariate sumcheck protocols in the literature;
however, these protocols cannot be used in our setting.

The univariate sumcheck protocol in [Ben+19] is a 1-message PIOP with
proof length O(N) and query complexity O(1). That protocol does not seem
useful here, because the prover requires O(N log N) time and O(N) space due
to the use of FFTs. In contrast, our protocol achieves elasticity, at the cost of
logarithmic round complexity and logarithmic query complexity.

Drake [Dra20] sketches a Hadamard product protocol based on univariate
polynomials that does not use FFTs. That protocol, also inspired by the low-
degree test in [Ben+18], may conceivably lead to a univariate sumcheck protocol
that is elastic. However, no details (or implementations) of the protocol are
available.

2.5 Warm-up: An Elastic Non-holographic PIOP for R1CS

We describe an elastic PIOP for R1CS (Definition 1), based on the elastic scalar-
product protocol from Sect. 2.4. Due to the large verifier complexity of this pro-
tocol, we note that the verifier can also be made elastic using similar techniques
to the elastic prover. We will build on this construction later in Sect. 2.6, and
construct a holographic polynomial IOP with logarithmic verifier complexity.

Theorem 2 (informal). For every finite field F, there is a PIOP for RR1CS

over F with the following parameters:

– soundness error O(N/|F|);
– round complexity O(log N);
– proof length O(N) and query complexity O(log N);
– a time-efficient prover that runs in time O(M) and space O(M);
– a space-efficient prover that runs in time O(M log2 N) and space O(log N)

(with O(log N) input passes);
– a time-efficient verifier that runs in time O(M) and space O(M); and
– a space-efficient verifier that runs in time O(M log N) and space O(log N).

Above, N is the matrix size and M the number of non-zero entries in an R1CS
instance.

The theorem holds for any finite field F, and in particular does not require any
smoothness properties for F.

To make the space-efficient realisation of the prover well-defined, we must
explain how to stream an R1CS instance. Below we describe a concrete choice of
streams that (i) suffices for the theorem; (ii) is realistic (as we elaborate shortly).
After that we outline the polynomial IOP for R1CS.

442 J. Bootle et al.

Streaming R1CS. The R1CS problem is captured using the following indexed
relation:

Definition 4. The indexed relation RR1CS is the set of all triples:

(i,x,w) =
(
(F, N,M,A,B,C),x,w

)

where F is a finite field, A,B,C are matrices in F
N×N , each having at most M

non-zero entries, and z := (x,w) is a vector in F
N such that Az ◦ Bz = Cz.

We define streams for each of i, x and w, with A, B and C in sparse represen-
tation.

Definition 1. Let U ∈ F
N×N be a matrix with M non-zero entries. The sparse

representation of U consists of its coordinate-list representation. That is, the
stream S(U) of U is the sequence of elements in the support as tuples (row, col-
umn, value), sorted by row index or column index. We denote by Srow(U) the
row-major coordinate list (that is, ordering the entries of the matrix in lexico-
graphic order with row index before column index), and by Scol(U) the column-
major coordinate list.

In our definition of streams for R1CS, we allow the computation trace
(Az, Bz, Cz) of an R1CS instance to be streamed as part of the witness.

Definition 2 (streaming R1CS). The streams associated with the R1CS
instance ((F, N,M,A,B,C),x,w) are:

– the index streams: streams S(A), S(B), S(C), the coordinate lists of the
R1CS matrices, in row-major and column-major.

– the instance stream: stream of the instance vector S(x) ;
– the witness streams: stream of the witness S(w) and the computation trace

vectors S(Az),S(Bz),S(Cz).

The field description F, instance size N , and maximum number M of non-zero
entries are explicit inputs.

Including steams for S(Az), S(Bz), and S(Cz) makes our polynomial IOPs
for R1CS space efficient even when matrix multiplication by A, B and C requires
a large amount of memory and Az, Bz and Cz cannot be computed element
by element on the fly given streaming access to x and w. On the other hand,
for R1CS instances defined by many natural computations, such as a machine
computation which repeatedly applies a transition function to a small state,
the matrices A, B and C are banded ; that is, their non-zero entries all lie in
a thin, central diagonal band. In this case, it is easy to generate a stream of
S(Az), for example, using streams S(x), S(w) and the column-major matrix
stream Scol(A).

The Polynomial IOP Construction. We outline the PIOP construction
which proves Theorem 2. The protocol adopts standard ideas from [Ben+19]
and an optimization from [Gab20] for concrete efficiency. In the time-efficient
realisation of our protocol, the prover takes i, x and w as input, and the verifier

Gemini: Elastic SNARKs for Diverse Environments 443

receives i and x. In the space-efficient realisation, these inputs are provided as
streams according to Definition 2.

In the first step of the protocol, the prover sends z to the verifier. To check
that Az ◦Bz = Cz, the verifier replies by sending a random challenge υ ∈ F

× to
the prover, which the prover expands into a vector yC := (1, υ, υ2, . . . , υN−1).
Then, multiplying Az ◦ Bz = Cz on the left by yᵀ

C , the prover and verifier will
check that

〈Az ◦ yC , Bz〉 = 〈Cz,yC〉 . (3)

The prover will send the value uC := 〈Cz,yC〉 ∈ F to the verifier. At this point,
the prover will convince the verifier that Eq. 3 holds by reducing the two claims
〈Az ◦ yC , Bz〉 = uC and 〈Cz,yC〉 = uC to tensor consistency checks on z, for
which we can apply the tensor-product protocol in Sect. 2.4.

As a sub-protocol for the first claim, the prover and verifier run a twisted
scalar product protocol, as described in Sect. 2.4. This generates two new claims,
one about each of Az and Bz, leaving us with a total of three claims:

〈Az,yB ◦ yC〉 = uA ,

〈Bz,yB〉 = uB ,

〈Cz,yC〉 = uC .

(4)

Here, yB := ⊗j(1, ρj), where ρ0, ρ1, . . . , ρn−1 ∈ F
× are the random challenges

sent by the verifier during the sub-protocol. Setting yA := yB ◦ yC , and moving
the matrices A, B and C into the right input argument of the scalar-product
relation, we have

〈z, â〉 = uA ,

〈z, b̂〉 = uB ,

〈z, ĉ〉 = uC ,

(5)

where â := yᵀ
AA, and similarly for b̂ and ĉ. Although yB , yC , and yA all have

a tensor structure, â, b̂ and ĉ will not generally have the same structure, which
means that Eq. 5 cannot be checked directly using the tensor-product protocol.
Thus, the verifier sends another random challenge η ∈ F

× to the prover. Taking
linear combinations of the three claims in Eq. 5 using powers of η yields a single
scalar-product claim

〈z, â + η · b̂ + η2 · ĉ〉 = uA + η · uB + η2 · uC . (6)

The prover and verifier run a second twisted scalar-product protocol for Eq. 6.
This produces two new claims

〈z,y〉 = uD , (7)

〈â + η · b̂ + η2 · ĉ,y〉 = uE , (8)

where again, y is a vector with the same tensor structure as described in Sect. 2.4,
generated using random challenges produced by the verifier.

Finally, the prover and the verifier engage in a tensor-product protocol to
check Eq. 7. The verifier can check Eq. 8 directly, since â, b̂ and ĉ can be

444 J. Bootle et al.

computed directly from the R1CS matrices A, B and C, along with the ran-
dom challenges used throughout the R1CS protocol.

Time-Efficient Prover. The prover runs in linear time if the prover algorithms
for the underlying scalar-product and tensor-product sub-protocols can be real-
ized in linear time. Note that the cost of computing â, b̂ and ĉ is linear in the
number of non-zero entries in A,B,C. As a result, the verifier also runs in linear
time.

Space-Efficient Prover. We start by noting that the streams S(Az), S(Bz)
S(Cz) are provided as input to the prover, and that the stream S(z) can be
produced by chaining the instance stream S(x) with the witness stream S(w).
In order to run the first twisted scalar-product protocol (cf. Eq. 3), the prover
must compute also the stream for the tensor product vector yC = ⊗j(1, υ2j).
This stream can be generated in linear time: during the i-th iteration, the
stream of any vector of the form ⊗j(1, υj) must return the product

∏
j,bj �=0 υj ,

where i = (b0, . . . , bn−1)2 in binary. Consider the bit-string representing i:
after yielding the i-th element

∏
j,bj �=0 υj , the next element in the stream has

index (i − 1), and it can be either obtained by clearing the last multiplication
(that is, multiplying the previous element by υ−1

0) or multiplying the previ-
ous element by υ−1

k υk−1 · · · υ0 (when the subtraction has a carry bit propa-
gating k times). The stream, during the initialization phase, stores the incre-
mental products υ0, υ0υ1, υ0υ1υ2, . . . , υ0υ1 · · · υn−1 and the “carry elements”
υ−1
0 , υ−1

1 v0, . . . , υ−1
n−1υn−2 · · · υ0 Initialisation of the stream costs O(log N)

field operations and O(n) space; and each new element is produced with a single
field multiplication. Using the same idea, it is possible to produce the streams
S(yA) and S(yB).

In the second sumcheck (cf. Eq. 6), the stream for S(â) = S(yᵀ
AA) (respec-

tively, S(b̂) and S(ĉ)) are not implemented using trivial matrix multiplication
from the row-major stream of Srow(A) (resp. Srow(B), Srow(C)) with the above
tensor product. Instead of using O(N) passes over the stream vector, we compute
the i-th element on the fly: using the stream Srow(A), all elements of i-th row
(i, j, ai,j) produced by the stream are multiplied by υi and accumulated in the
final result. Overall, producing the next element costs O(log N) multiplications.

Composing the above streams with the space-efficient realisations of the
scalar product and tensor-product sub-protocols described in Sect. 2.4, we obtain
a space-efficient prover algorithm which runs in quasilinear time and logarithmic
space: overall, the non-holographic protocol can be run in O(M log2 N) time and
O(log N) space.

2.6 Elastic Holographic PIOP for R1CS

The verifier complexity in the non-holographic protocol for R1CS described in
Sect. 2.5 is linear in the size of the R1CS instance. This is because in order to
run a scalar-product protocol to check Eq. 6, the verifier must compute â, b̂, ĉ
via expensive matrix-vector multiplications involving all of the non-zero entries
of matrices A, B and C.

Gemini: Elastic SNARKs for Diverse Environments 445

In this section, we explain how to construct a holographic polynomial IOP
protocol for R1CS, in which the verifier’s direct access to A, B and C is replaced
by query access, as in [Chi+20,COS20]. In this construction, the prover can
either run in linear-time and linear-space, or quasilinear-time and log-space, and
the verifier runs in log-time and log-space.

Theorem 3 (informal). There exists an elastic holographic polynomial IOP
for RR1CS, whose prover admits two implementations:

– the time-efficient prover runs in O(M) time and O(M) space;
– the space-efficient prover runs in O(M log2 M) time and O(log M) space,

where N is the size of the R1CS input, and M is the number of non-zero entries
in the R1CS instance. The verifier runs in O(|x| + log M) time and space.

High-Level Overview. Our holographic protocol follows the same strategy as
prior work [BCG20]. Roughly speaking, the core difference between the holo-
graphic protocol in this section and the non-holographic protocol in Sect. 2.5 is
that the prover and verifier use an alternative strategy to check Eq. 5. Instead
of reducing Eq. 5 to Eq. 6, and then verifying Eq. 6 via â, b̂ and ĉ, the prover
sends extra oracle messages to the verifier, corresponding to partial computa-
tions of Eq. 5. Then, the prover and the verifier engage in various sub-protocols
to check that the partial computations were performed correctly. As in prior
works [BCG20], the key sub-protocols are a look-up protocol and an entry-
product protocol (also known as grand product argument [Set20]).

Our main contribution is a space-efficient realisation of these sub-protocols,
which leads to a space-efficient holographic R1CS protocol. The main challenge
is to show that it is possible to generate the prover’s extra messages in a space-
efficient manner from a streaming R1CS instance (Definition 2). This places
particular restrictions on the design of a space-efficient look-up protocol, which
we explain how to deal with in Sect. 2.6.1. We explain how to construct a space-
efficient entry-product protocol in Sect. 2.6.2.

Achieving Holography. For a matrix U ∈ {A,B,C}, consider the vectors row,
col, val ∈ F

M , such that, for each i ∈ [M], vali ∈ F is the (rowi, coli)-entry of
U , ordered column-major. In the construction of a holographic PIOP, we will
assume that the matrices A, B and C have the same support, which means that
row := rowA = rowB = rowC and col := colA = colB = colC . This can easily be
achieved by padding valA, valB and valC with zeroes as required, and increases
the length of row, col and val by at most a factor of 3.

The prover constructs the following vectors and sends them to the verifier as
oracle messages:

r∗
A := yA|row , r∗

B := yB |row , r∗
C := yC |row , z� := z|col . (9)

In Eq. 9, r∗
A is the vector whose i-th element is the (rowi)-th element of â, and

similarly for r∗
B , r∗

C and z�. Using Eq. 9, Eq. 4 can be reformulated as:

〈r∗
A ◦ valA, z�〉 = uA ,

〈r∗
B ◦ valB , z�〉 = uB ,

〈r∗
C ◦ valC , z�〉 = uC .

(10)

446 J. Bootle et al.

Then, the verifier must check the three claims of Eq. 10, and that r∗
A, r∗

B , r∗
C and

z� were correctly computed. The prover and verifier run a twisted scalar-product
protocol for the three claims. To check that r∗

A, r∗
B , r∗

C and z� were correctly
computed, the prover and verifier run a look-up protocol, which we describe in
more detail in Sect. 2.6.1.

Elastic Realization. The twisted scalar-product protocol and look-up protocol
are elastic protocols with both time and space-efficient prover realization, and
a succinct verifier. Our holographic protocol for R1CS inherits a time-efficient
prover and succinct verifier from these sub-protocols. However, to give a space-
efficient prover realisation, we must show that the prover can produce streams
of r∗

A, r∗
B , r∗

C , using input R1CS streams and the verifier challenges. The R1CS
streams Scol(A), Scol(B) and Scol(C) of the matrices A,B and C produce ele-
ments of the form (i, j, e) ∈ [N]× [N]×F. Streaming only the first element of the
triple produces the stream Scmrow(A) = Scmrow(B) = Scmrow(C) of the vector
row (we recall that we assumed the support of A,B,C to be the same, and that
row is ordered column-major).

Similairly, the second element of the triple induces a stream Scmcol(A) of the
vector col, which is also equal to Scmcol(B) and Scmcol(C), again since the support
is the same. Additionally, Scmcol(A) is non-increasing: the column indices, in the
dense representation of the matrix, are sorted in decreasing order when streamed
column-major. As a result, the entries of z� can be produced one by one in O(1)
space from streams S(z) and Scol(A): examine each entry of Scmcol(A), advance
forwards z if the column changed, and output that same entry as long as the
next element of Scmcol(A) stays unchanged.

The streams Scmval(A) (respectively, Scmval(B) and Scmval(C)) are defined by
projecting onto the third element of the streams Scol(A) (respectively, Scol(B)
and Scol(C)), and produce the streams for the vectors valA, valB , and valC in
column-major order.

For r∗
A, r∗

B and r∗
C , recall that yB = ⊗j(1, ρj), yC = ⊗j(1, υ2j), and yA =

yB ◦ yC = ⊗j(1, ρjυ
2j). Thus, any entry of r∗

B or r∗
C (and hence r∗

A) can be
computed in O(log N) operations from υ ∈ F

× and ρ0, . . . , ρn−1 ∈ F
×.

2.6.1 Lookup Protocol
Lookup protocols enable the prover to convince the verifier that all of the entries
in a vector g∗ ∈ F

M appear as entries of another vector g ∈ F
N according to

the data stored in the address vector addr ∈ [N]M , i.e.:

{(g∗
i , addri)}i∈[M] ⊆ {(gj , j)}j∈[N] .

We denote this condition by “(g∗, addr) ⊆ (g, [N])”. In order to verify that r∗
U

and z� were correctly computed, the verifier must check four lookup relations:

(r∗
A, row) ⊆ (â, [N]) , (r∗

B , row) ⊆ (b̂, [N]) ,

(r∗
C , row) ⊆ (ĉ, [N]) , (z�, col) ⊆ (z, [N]) .

(11)

Note that since yA = yB ◦yC , and r∗
A, r∗

B and r∗
C come from looking up the

entries of yA, yB and yC at the indices specified by row. Therefore, instead of

Gemini: Elastic SNARKs for Diverse Environments 447

checking that (r∗
A, row) ⊆ (yA, [N]), it suffices to check the Hadamard product

relation yA = yB ◦yC . This can be done using an extension of the twisted scalar
product protocol. This leaves four look-up relations to check.

Polynomial Identities for Look-Up Relations. To verify look-up relations,
we use the polynomial identity derived by Gabizon and Williams [GW20], and
similar strategies to Bootle et al. [BCG20] to construct a polynomial IOP to
verify the identity.

We reduce the lookup conditions
(
r∗

U , row
) ⊆ (

yU , [N]
)

and
(
z�, col

) ⊆(
z, [N]

)
to simpler inclusion conditions such as f∗ ⊆ f , where each entry in

the vector f∗ equals some entry in the vector f . To do so, for each matrix
U = A,B,C, algebraically hash the pairs (r∗

U , row), (yU , [N]), (z�, col) and
(z, [N]) into single vectors by considering a random linear combination of each
pair, using a random challenge from the verifier. Let sort(g, f) denote the func-
tion that sorts the entries of g || f according to order of appearance in f .

Lemma 3 ([GW20, Claim 3.1]). Let f∗ ∈ F
M and f ∈ F

N . Then f∗ ⊆ f if
and only if there exists w ∈ F

M+N such that the equation below in F[X,Y] is
satisfied:

M+N−1∏

j=0

(
Y (1 + Z) + wj+1 + wj · Z

)
=

(1 + Z)M
M−1∏

j=0

(Y + fj)
N−1∏

j=0

(
Y (1 + Z) + fj+1 + fj · Z

)
(12)

where indices are taken (respectively) modulo M + N , N . If f∗ ⊆ f , then w :=
sort(f∗, f) satisfies Eq. 12.

The strategy in the look-up protocol is for the prover to compute w and
prove that Eq. 12 is satisfied for every look-up relation that needs to be checked.
In the protocol, the prover computes w and sends it to the verifier. Then, the
verifier sends random challenges υ, ζ ∈ F

× to the prover, who computes each of
the three product expressions in Eq. 12, evaluated at υ and ζ:

e0 =
M+N−1∏

i=0

(
υ(1 + ζ) + wi+1 + wi · ζ

)
,

e1 =
M−1∏

i=0

(υ + f∗
i),

e2 =
N−1∏

i=0

(
υ(1 + ζ) + fi+1 + fi · z

)
.

(13)

where (again) indices are taken (respectively) modulo M + N , N . The prover
then sends the three product values e0, e1 and e2 to the verifier. The verifier
checks Eq. 12 holds at υ and ζ by checking that e0 = (1 + ζ)Me1e2, and uses

448 J. Bootle et al.

three entry-product sub-protocols, which we describe in Sect. 2.6.2, to prove that
e0, e1 and e2 were correctly computed from f∗, f and w.

This approach requires polynomial query access to f∗
�, the cyclic right-shift

of f∗, since the inputs to the entry product protocols depend on f∗
�. The look-up

protocol of Bootle et al. [BCG20] uses an additional shift sub-protocol to check
this condition. By contrast, we remove this additional step by considering instead
the lookup protocol over vectors with a leading zero coefficient. Now, queries on
the right-shift f∗

� can be related to queries on f∗ with a single evaluation query,
since the leading coefficient is known in advance. We explain this optimisation
further in the full version of this paper.

Elastic Realization. As shown in prior work [BCG20], if the underlying entry
product protocols have a linear-time prover realisation and succinct verifier,
then the same is true for the look-up protocol. Therefore, we focus on explaining
a space-efficient prover realisation of the look-up protocol. Assuming that the
entry-product protocol has a suitable space-efficient realisation, it suffices to
explain how to simulate streaming access to look-up protocol vectors f∗, f and
w using previously derived streams.

First we consider (z�, col) and (z, [N]). Recall that each pair is algebraically
hashed into vectors f∗ and f . It is simple produce the streams S(f∗) and S(f) from
the streams S(z�), Scmcol(A), S(z) and S([N]), by applying the same algebraic
hash function to pairs of entries on-the-fly. The same applies to input pairs
(r∗

U , row) and (yU , [N]).
Now, we explain how to generate a stream of w = sort(f∗, f) using little

memory space. This is more challenging because storing the entire vectors f∗ and
f and sorting them requires O(M + N) memory. In the case of inputs (z�, col)
and (z, [N]), as col is a non-decreasing sequence, it turns out that Scmcol(A) is
already sorted into a suitable order, and it suffices to merge the streams of f∗ and
f together to produce a stream for w. The same can’t be said for row, which is not
necessarily ordered. However, the vector row in non-decreasing form is already
available from the inputs: it can be streamed from the dense representation of
the matrix in row-major ordering Srow(A). To apply the same idea to input pairs
r∗

U and row, we build Srmrow(A), which is non-decreasing, and use it to produce
the stream of the sorted vector for the lookup protocol. We describe our look-up
protocol in more detail in the full version.

On Alternative Proof Techniques for Look-Up Relations. Prior
work such as [Set20] checks look-up relations using an offline memory-
checking [Blu+91,Cla+03] abstraction in which the prover shows that g∗ was
correctly constructed entry by entry from g using read and write operations. This
leads to an alternative polynomial identity replacing Equation 12, which uses a
list of timestamps recording when a particular element of g∗ was read from g.
In this case though, it is unclear how to generate the timestamps required for by
this method without storing linear memory. While in the argument of Gabizon
and Williams [GW20] the polynomial relation is independent from the ordering
of the matrix S(A) (row- or column-major), memory-checking arguments require
random access to the vector row in order to access the last visited timestamps,
which cannot be performed in log-space.

Gemini: Elastic SNARKs for Diverse Environments 449

2.6.2 Entry Product Protocol
Let f = (f0, . . . , fN−1) ∈ F

N such that e = f0 · · · fN−1. We describe an entry-
product protocol, building on Bootle et al. [BCG20, Sec. 6.4], that reduces an
entry product statement

∏
i fi = e to a single scalar-product relation, using

polynomial evaluation query access to f .
Compared with the prior work, our work exploits the structure of univari-

ate polynomials to simplify the scheme and remove the need for cyclic-shift
tests [BCG20, Sec. 6.3]. We propose additional optimizations in Sect. 2.7 which
improve the concrete efficiency of our protocol.

High-Level Overview. Let f be as above, with fN−1 = 1.8 Let ψ ∈ F
× and

let y′ = (1, ψ, . . . , ψN−1). Let g be the vector of partial products of the entries
of f , that is:

g := (
∏

i≥0 fi,
∏

i≥1 fi, . . . , fN−2fN−1, fN−1) (14)

Then, observe that:

〈g ◦ y′, f�〉 =
N−1∑

i=1

gifi−1ψ
i + g0fN−1

=
N−1∑

i=1

gi−1ψ
i + e + gN−1ψ

N − gN−1ψ
N

= ψg(ψ) + e − ψN

(15)

In the entry product protocol, the prover sends the oracle g to the verifier, and
the verifier replies with the random challenge ψ ∈ F

×, and makes a polynomial
evaluation query g(ψ) = v. Then, both parties engage in a twisted scalar product
protocol to verify Eq. 15. Polynomial evaluation queries f�(x) for x ∈ F made
as part of the twisted scalar-product protocol can be computed using evaluation
queries f(x). To do this, note that f�(x) = xf(x) − xN + 1 since fN−1 = 1; thus
the verifier can compute f�(x) from f(x) in O(log N) operations. The partial
products in Eq. 14 are computed starting with fN−1 because

Elastic Realization. As with other sub-protocols, the entry-product protocol
inherits a linear-time prover realisation and succinct verifier from the underlying
twisted scalar-product protocol.

To give a space-efficient realisation, it suffices to show that g can be gener-
ated element-by-element given access to the stream S(f): the partial products of
elements of f can be produced by streaming each successive element of S(f) and
multiplying it into a running product. Note that the partial products in g are

8 This restriction is merely didactical. Given any f ∈ F
N , representing the coefficients

of a degree N − 1 polynomial, it is easy to simulate polynomial-evaluation query
access to (f , 1) using the polynomial f(X) + XN+1. For any evaluation query in
x ∈ F, forward evaluation queries to f and add xN+1 before returning. This costs
O(log N) F-ops.

450 J. Bootle et al.

computed from the last entry to the first, starting with fN−1. This is because
streams of polynomials move from the highest-order coefficient to the lowest
to be compatible with space-efficient commitment algorithms, as explained in
Sect. 2.3.

2.7 Implementation and Optimizations

We implemented the elastic argument from Sects. 2.5 and 2.6 by leveraging and
extending arkworks [ark], a Rust ecosystem for developing and programming
with zk-SNARKs. Our implementation, called ark-gemini9, is open-source and
freely available under MIT license. The code structure follows the modular design
of the protocol, which involves combining an elastic polynomial commitment
scheme and an elastic (holographic) PIOP. We deem each of the single com-
ponents of the protocol (the streaming infrastructure, the commitment scheme,
and the sub-protocols for sumcheck, tensor check, entry product, lookup proto-
col, etc.) to be independent interest for future space-efficient projects. Below, we
provide an overview of the streaming infrastructure and the algorithmic opti-
mizations that were adopted in the implementation.

2.7.1 Streaming Infrastructure
We extend the arkworks framework with support for streams in order to
express our space-efficient protocols. A stream is simply a wrapper over
iter::Iterator, the Rust interface for dealing iterators. Streams can be
restarted and iterated over multiple times. We use Rust’s borrow abstractions to
produce streams that avoid copying elements whenever possible: a stream either
returns a field element, or a reference to a field element. In other words, we
have zero-copy interface where data structures do not require to be copied from
memory, unless really needed. In practice, input streams could be instantiated
with arrays (for instance, a memory-mapped files), or a concurrent stream of
data downloaded from the web. Our design supports stream compositions and
could be potentially extended to new front-ends.

A recent work by Baum, Malozemoff, Rosen, and Scholl [Bau+21] also studies
streaming provers, and provides a space-efficient proving algorithm in Rust. To
achieve a space-efficient prover, they rely on Rust’s concurrency features (also
known as Rust async), which is a more specific interface compatible with our
framework based on iterators.

2.7.2 Practical Optimizations
We introduce several algorithmic optimizations that improve the concrete per-
formance of our scheme.

Elastic Provers. One of the benefits of the elastic SNARK is that it allows
switching from the space-efficient implementation to the time-efficient one. For
example, in the scalar product, if the prover has enough memory, then it can
9 See https://github.com/arkworks-rs/gemini.

https://github.com/arkworks-rs/gemini

Gemini: Elastic SNARKs for Diverse Environments 451

transcribe the folded sumcheck claim and proceed with the time-efficient imple-
mentation of the prover function. This allows for a more fine-grained control of
the memory for the prover, and benefit from the speed-up of the time-efficient
prover for the last few rounds of the protocol. Since the prover’s messages are the
same in both modes, this does not affect the end result. In our implementation,
it is possible to enforce a memory budget that, once hit, allows the prover to
stop and store the intermediate claim entirely in memory. Once the claim has
been stored, it is possible to proceed with the time-efficient implementation.

Batch [KZG10]. Boneh et al. [Bon+20] proposed an optimization of [KZG10] to
batch evaluation proofs for a set of evaluation points over different polynomials,
exploiting the special structure of univariate polynomials.

We adapt these optimizations to our elastic polynomial commitment scheme,
and implement them. In particular, although our tensor product protocol may
require the verifier to query different polynomials at a set of different evaluation
points, a single constant-size evaluation will have to be sent. This renders the
concrete size of the proof significantly better than multi-linear approaches such
as [Zha+17,Zha+18], which require a logarithmic-size opening proof.

Offline Memory-Checking. As discussed in Sect. 2.6.1, the offline memory-
checking protocol is not compatible with the space-efficient prover, because the
computation of timestamps may require random-access over non-zero entries.
However, we also observe that given a particular ordering of the non-zero entries,
it might be possible to apply the offline memory-checking partially in our poly-
nomial IOP. In the particular implementation of our protocol, the offline memory
checking can be used to prove the lookup for

(
z�

U , colU
) ⊆ (

z, [N]
)
.

We view the offline memory-checking as an optimization because it is con-
cretely more efficient than the plookup protocol. That is because the sender in
the plookup protocol must send additional commitments to the verifier; whereas,
the commitments in the offline memory-checking can be precomputed by the
indexer.

2.8 Evaluation

We run extensive benchmarks over Gemini (both preprocessing and non-pre-
processing SNARKs), over an Amazon AWS EC2 c5.9xlarge instance, with 36
cores. We enable multi-threading using rayon, a Rust library for parallelism,
and use it for efficiently computing multi-scalar multiplications and to run the
batched sumcheck in the preprocessing SNARK protocol, where multiple sum-
check instances can be run in parallel. We select BLS12-381 as the pairing-
friendly elliptic curve, but we note however that smaller elliptic curves are suit-
able, due to the remark in Remark 4. Our chosen field F is the scalar field of
BLS12-381.

We perform tests for different instance sizes N , with M = N , for the range
N = 218 up to 235. These instance sizes are much larger than what is commonly
covered in the literature, and are meant to illustrate the behavior of a proving
system over very large instances.

452 J. Bootle et al.

Proving Space. We show that the Gemini prover can support instances with
arbitrary sizes. In Fig, 2 it is possible to observe that the memory trace remains
constant across large instance sizes, and that is stays consistently below 1 GB
of required memory, while the preprocessing SNARK protocol demands slightly
more than 1 GB to run. Two main constants influence the overall memory trace
of the program:

– the memory budget allocated for multi-scalar multiplication (MSM). Despite
the MSM operation can also be implemented in a streaming fashion, either
with trivial scalar-multiplication, or by making small changes over Pip-
penger’s algorithm, we noted that, in practice, best performance is achieved
by performing Pippenger over buffers of fixed sizes, and then accumulating
the partial result. We set the buffer to host 220 field elements.

– the sumcheck round threshold, after which the elastic prover will transcribe
the sumcheck instance and proceed with the time-efficient algorithm. We set
the threshold to 22. That is, the last 22 rounds of the sumcheck will always
be performed with the time-efficient prover.

The memory footprint stays constant because the constants chosen for the multi-
scalar multiplication buffer and sumcheck round threshold are much larger than
the asymptotic factors of the proving algorithm. The difference in memory is
related solely to the batched sumcheck step in the preprocessing SNARK proto-
col, where multiple instances are being transcribed in memory at the same time
once the round threshold hits.

Our benchmarks stop at 235 for the non-preprocessing SNARK and the 232

for the preprocessing one, but the upper limit in our benchmarks is arbitrary:
as long as it is possible to generate the input streams for the time prover, then
prover will be able to carry out in full the proving algorithm, and keeping the
memory footprint very small. Prior works, such as Setty [Set20] and Chiesa et al.
[Chi+20] provide public benchmarks for sizes up to 220. When running bench-
marks ourselves to compare our work with previous literature such as Marlin10,
we were unable to proceed over size 224 due to out of memory crashed. Even if
we instruct the kernel to allow for memory over-commitment11, the kernel will
refuse to allocate new memory and eventually Rust will panic due to memory
allocation failures. Our own prover, when run as a purely time-efficient prover,
cannot successfully prove instances of size 225 and 227.

Proving Time. We present the proving time of elastic provers. The elastic
prover will switch to the time-efficient mode if the intermediate state can be
loaded within the memory budget. So when the instance size is small, the elastic
prover will run purely in the time-efficient mode. As far as runtime is concerned,
we make an important initial remark: the most expensive operations in our pro-
tocol are given by the cryptographic operations, namely the multi-scalar mul-
tiplications. For this reason, in Fig. 2, where we show the running times for for
10 cf. https://github.com/arkworks-rs/marlin.
11 This is vm.overcommit=2. See https://www.kernel.org/doc/Documentation/vm/

overcommit-accounting.

https://github.com/arkworks-rs/marlin
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

Gemini: Elastic SNARKs for Diverse Environments 453

Fig. 2. Runtimes (above) and memory usage (below) for the elastic prover in the
preprocessing protocol (blue) and the non-preprocessing protocol (red), for different
R1CS sizes with N = M . The black squares indicate the size for which the time-
efficient prover triggers an out-of-memory crash.(Color figure online)

different values of N , with M = N , it is possible to observe a graph that evolves
almost linearly. The squared logarithmic factor does not influence noticeably the
overall runtime, as far as we were able to measure within the window of instance
sizes of our benchmarks.

We also measure the economic cost of running the Gemini prover. Roughly
speaking, the cost per gate of the preprocessing SNARK prover is around than
7.6 × 10−5 seconds per gate. Using the AWS estimator12 (on-demand hourly
cost 1.836 USD), we are able to conclude that, roughly speaking, the cost for
the preprocessing SNARK is about 2.30 × 10−5 USD per gate. In particular,
the estimated cost for an instance of 231 gates is 89 USD. In contrast, the cost
of DIZK [Wu+18] is much higher and around 500 USD for an instance of 231,
because DIZK has to run the computation on 20 more powerful and expensive
machines (r3.8xlarge EC2 instances with on-demand hourly cost 2.656 USD)
for about 10 h. In the case of non-preprocessing SNARK, the cost is a bit lower
and around 40 USD for a circuit of 235.

12 source: https://calculator.aws.

https://calculator.aws

454 J. Bootle et al.

Verification Time and Proof Size. We measure the proof size and verification
time for the preprocessing protocol. Note that the verifier can easily verify the
proof for large instances since it does not need to read and load the instance into
the memory. For instance size ranging from 212 to 235, the proof size is about
13−27 KB, and the verification time is about 16−30 ms.

References

[Bau+21] Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac′n′Cheese: zero-
knowledge proofs for Boolean and arithmetic circuits with nested disjunc-
tions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828,
pp. 92–122. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84259-8 4

[BC12] Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive
proofs and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 16

[BCG20] Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear
verification from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020.
LNCS, vol. 12551, pp. 19–46. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64378-2 2

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

[Bel+09] Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous credentials.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 7

[BFS20] Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK
compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 24

[BGM17] Bowe, S., et al.: Scalable multi-party computation for zk-SNARK param-
eters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050

[Bit+13] Bitansky, N., et al.: Recursive composition and bootstrapping for SNARKs
and proof-carrying data. In: STOC 2013 (2013)

[Blo+20] Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-
coin zero-knowledge arguments with (almost) minimal time and space over-
heads. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551,
pp. 168–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64378-2 7

[Blo+21] Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and
space-efficient arguments from groups of unknown order. In: Malkin, T.,
Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 123–152. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 5

[Blu+91] Blum, M., et al.: Checking the correctness of memories. In: FOCS 1991
(1991)

https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-64378-2_7
https://doi.org/10.1007/978-3-030-64378-2_7
https://doi.org/10.1007/978-3-030-84259-8_5

Gemini: Elastic SNARKs for Diverse Environments 455

[Bon+20] Boneh, D., et al.: Efficient polynomial commitment schemes for multiple
points and polynomials. Cryptology ePrint Archive, Report 2020/081

[Boo+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 12

[Boo+17] Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen,
S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 12

[Boo+18] Bootle, J., Cerulli, A., Groth, J., Jakobsen, S., Maller, M.: Arya: nearly
linear-time zero-knowledge proofs for correct program execution. In: Peyrin,
T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 595–626.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 20

[Bün+21] Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner
pairing products and applications. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021. LNCS, vol. 13092, pp. 65–97. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-92078-4 3

[Chi+20] Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin:
preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 26

[Cla+03] Clarke, D., Devadas, S., van Dijk, M., Gassend, B., Suh, G.E.: Incre-
mental multiset hash functions and their application to memory integrity
checking. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp.
188–207. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
40061-5 12

[CMT12] Cormode, G., et al.: Practical Verified Computation with Streaming Inter-
active Proofs. In: ITCS 2012 (2012)

[COS20] Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent
recursive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 27

[Dra20] Drake, J.: PLONK without FFTs. https://www.youtube.com/watch?
v=ffXgxvlCBvo

[DRZ20] Daza, V., Ràfols, C., Zacharakis, A.: Updateable inner product argu-
ment with logarithmic verifier and applications. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 527–557.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 18

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[Gab20] Gabizon, A.: Lineval Protocol. https://hackmd.io/aWXth2dASPaGVrXiGg
1Cmg?view

[Gen+13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 37

https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-540-40061-5_12
https://doi.org/10.1007/978-3-540-40061-5_12
https://doi.org/10.1007/978-3-030-45721-1_27
https://www.youtube.com/watch?v=ffXgxvlCBvo
https://www.youtube.com/watch?v=ffXgxvlCBvo
https://doi.org/10.1007/978-3-030-45374-9_18
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://hackmd.io/aWXth2dASPaGVrXiGg1Cmg?view
https://hackmd.io/aWXth2dASPaGVrXiGg1Cmg?view
https://doi.org/10.1007/978-3-642-38348-9_37

456 J. Bootle et al.

[GGM14] Garman, C., et al.: Decentralized anonymous credentials (2013)
[Gol+21] Golovnev, A., et al.: Brakedown: linear-time and post-quantum SNARKs

for R1CS. Cryptology ePrint Archive, Report 2021/1043 (2021)
[GW20] Gabizon, A., et al.: Plookup: a simplified polynomial protocol for lookup

tables. Cryptology ePrint Archive, Report 2020/315 (2020)
[HR18] Holmgren, J., et al.: Delegating computations with (almost) minimal time

and space overhead. In: FOCS 2018 (2018)
[JW17] Javeed, K., et al.: Low latency flexible FPGA implementation of point

multiplication on elliptic curves over GF(p). In: International Journal of
Circuit Theory and Applications (2017)

[KZG10] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to
polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17373-8 11

[Lun+92] Lund, C., et al.: Algebraic methods for interactive proof systems. J. ACM
39, 859–868 (1992)

[Par+13] Parno, B., et al.: Pinocchio: nearly practical verifiable computation. In:
S&P 2013 (2013)

[Pip80] Pippenger, N.: On the Evaluation of Powers and Monomials (1980)
[PLS19] del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for FHE

and ring-LWE ciphertexts. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS,
vol. 11442, pp. 344–373. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17253-4 12

[RRR16] Reingold, O., et al.: Constant-round interactive proofs for delegating com-
putation. In: STOC 2016 (2016)

[Set20] Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted
setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-56877-1 25

[Tha13] Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 5

[Wu+18] Wu, H., et al.: DIZK: a distributed zero knowledge proof system. In:
USENIX Security 2018 (2018)

[Xie+19] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct
zero-knowledge proofs with optimal prover computation. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 24

[Zcash] Zcash. https://z.cash/
[Zha+17] Zhang, Y., et al.: vSQL: verifying arbitrary SQL queries over dynamic out-

sourced databases. In: S&P 2017 (2017)
[Zha+18] Zhang, Y., et al.: vRAM: faster verifiable RAM with program-independent

preprocessing. In: S&P 2018 (2018)
[Zha+21] Zhang, Y., et al.: PipeZK: accelerating zero-knowledge proof with a

pipelined architecture. In: ISCA 2021 (2021)
[Ben+14a] Ben-Sasson, E., et al.: Succinct non-interactive zero knowledge for a von

neumann architecture. In: USENIX Security 2014 (2014)
[Ben+14b] Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from

bitcoin. In: SP 2014 (2014)
[Ben+18] Ben-Sasson, E., et al.: Fast reed-solomon interactive oracle proofs of prox-

imity. In: ICALP 2018 (2018)

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1007/978-3-030-26954-8_24
https://z.cash/

Gemini: Elastic SNARKs for Diverse Environments 457

[Ben+19] Ben-Sasson, E., et al.: Aurora: transparent succinct arguments for R1CS.
In: EUROCRYPT 2019 (2019)

[ark] arkworks. arkworks: an ecosystem for developing and programming with
zkSNARKs.https://github.com/arkworks-rs

https://github.com/arkworks-rs

Stacking Sigmas: A Framework
to Compose Σ-Protocols for Disjunctions

Aarushi Goel1(B), Matthew Green1, Mathias Hall-Andersen2,
and Gabriel Kaptchuk3(B)

1 Johns Hopkins University, Baltimore, USA
{aarushig,mgreen}@cs.jhu.edu

2 Aarhus University, Aarhus, Denmark
ma@cs.au.dk

3 Boston University, Boston, USA
kaptchuk@bu.edu

Abstract. Zero-Knowledge (ZK) Proofs for disjunctive statements have
been a focus of a long line of research. Classical results such as Cramer
et al. [CRYPTO’94] and Abe et al. [AC’02] design generic compilers that
transform certain classes of ZK proofs into ZK proofs for disjunctive
statements. However, communication complexity of the resulting pro-
tocols in these results ends up being proportional to the complexity of
proving all clauses in the disjunction. More recently, Heath et al. [EC’20]
exploited special properties of garbled circuits to construct efficient ZK
proofs for disjunctions, where the proof size is only proportional to the
length of the largest clause in the disjunction. However, these techniques
do not appear to generalize beyond garbled circuits.

In this work, we focus on achieving the best of both worlds. We
design a general framework that compiles a large class of unmodified
Σ-protocols, each for an individual statement, into a new Σ-protocol
that proves a disjunction of these statements. Our framework can be
used both when each clause is proved with the same Σ-protocol and
when different Σ-protocols are used for different clauses. The result-
ing Σ-protocol is concretely efficient and has communication complexity
proportional to the communication required by the largest clause, with
additive terms that are only logarithmic in the number of clauses.

We show that our compiler can be applied to many well-known
Σ-protocols, including classical protocols (e.g. Schnorr [JC’91] and
Guillou-Quisquater [CRYPTO’88]) and modern MPC-in-the-head pro-
tocols such as the recent work of Katz, Kolesnikov and Wang [CCS’18]
and the Ligero protocol of Ames et al. [CCS’17]. Finally, since all of
the protocols in our class can be made non-interactive in the random
oracle model using the Fiat-Shamir transform, our result yields the first
generic non-interactive zero-knowledge protocol for disjunctions where
the communication only depends on the size of the largest clause.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 458–487, 2022.
https://doi.org/10.1007/978-3-031-07085-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_16&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_16

A Framework to Compose Σ-Protocols for Disjunctions 459

1 Introduction

Zero-knowledge proofs and arguments [26] are cryptographic protocols that
enable a prover to convince the verifier of the validity of an NP statement with-
out revealing the corresponding witness. These protocols, along with proof of
knowledge variants, have now become critical in the construction of larger cryp-
tographic protocols and systems. Since classical results established feasibility
of such proofs for all NP languages [24], significant effort has gone into mak-
ing zero-knowledge proofs more practically efficient e.g. [9,10,13,28,31,34,35],
resulting in concretely efficient zero-knowledge protocols that are now being used
in practice [7,41,42].

Zero-Knowledge for Disjunctive Statements. There is a long history of
developing zero-knowledge techniques for disjunctive statements [1,17,21]. Dis-
junctive statements comprise of several clauses that are composed together with
a logical “OR.” These statements also include conditional clauses, i.e. clauses
that would only be relevant if some condition on the statement is met. The wit-
ness for such statements consists of a witness for one of the clauses (also called
the active clause), along with the index identifying the active clause. Disjunctive
statements occur commonly in practice, making them an important target for
proof optimizations. For example, disjunctive proofs are often also used to give
the prover some degree of privacy, as a verifier cannot determine which clause is
being satisfied. Use cases include membership proofs (e.g. ring signatures [37]),
proving the existence of bugs in a large codebase (as explored in [31]), and prov-
ing the correct execution of a processor, which is typically composed of many
possible instructions, only one of which is executed at a time [8].

An exciting line of recent work has emerged that reduces the communication
complexity for proving disjunctive statements to the size of the largest clause
in the disjunction [31,36]. While succinct proof techniques exist [10,22,27,28],
known constructions are plagued by very slow proving times and often require
strong assumptions, sometimes including trusted setup. These recent works
accept larger proofs in order to get significantly faster proving times and more
reasonable assumptions—while still reducing the size of proofs significantly. Intu-
itively, the authors leverage the observation that a prover only needs to honestly
execute the parts of a disjunctive statement that pertain to their witness. Using
this observation, these protocols modify existing proof techniques, embedding
communication-efficient ways to “cheat” for the inactive clauses of the disjunc-
tive statement. We refer to these techniques as stacking techniques, borrowing
the term from the work of Heath and Kolesnikov [31].

Although these protocols achieve impressive results, designing stacking tech-
niques requires significant manual effort. Each existing protocol requires the
development of a novel technique that reduces the communication complexity
of a specific base protocol. For instance, Heath and Kolesnikov [31] observe
that garbled circuit tables can be additively stacked (thus the name), allowing
the prover in [34] to un-stack efficiently, leveraging the topolgy hiding property
of garbling. Techniques like these are tailored to optimize the communication

460 A. Goel et al.

complexity of a particular underlying protocol, and do not appear to generalize
well to large families of protocols. In contrast, classical results [1,17] succeed in
designing a generic compiler that tranforms a large familily of zero-knowledge
proof systems into proofs for disjunction, but fall short of reducing the size of
the resulting proof.

In this work, we take a more general approach towards reducing the com-
munication complexity of zero-knowledge protocols for disjunctive statements.
Rather than reduce the communication complexity of a specific zero-knowledge
protocol, we investigate generic stacking techniques for an important family of
zero-knowledge protocols—three round public coin proofs of knowledge, popu-
larly known as Σ-protocols. Specifically, we ask the following question:

Can we design a generic compiler that stacks any Σ-protocol without
modification?

We take significant steps towards answering this question in the affirmative.
While we do not demonstrate a technique for stacking all Σ-protocols, we present
a compiler that stacks many natural Σ-protocols, including many of practical
importance. We focus our attention on Σ-protocols because of their widespread
use and because they can be made non-interactive in the random oracle model
using the Fiat-Shamir transform [19]. However we expect that the techniques
can easily be generalized to public-coin protocols with more rounds.

Benefits of a Generic Stacking Compiler. There are several significant bene-
fits of developing generic stacking compilers, rather than developing bespoke pro-
tocols that support stacking. First, automatically compiling multiple Σ-protocols
into ones supporting stacking removes the significant manual effort required to
modify existing techniques. Moreover, newly developed Σ-protocols can be used
to produce stacked proofs immediately, significantly streamlining the deployment
process. A second, but perhaps even more practically consequential, benefit of
generic compilers is that protocol designers are empowered to tailor their choice
of Σ-protocol to their application—without considering if there are known stack-
ing techniques for that particular Σ-protocol. Specifically, the protocol designer
can select a proof technique that fits with the natural representation of the rele-
vant statement (e.g. Boolean circuit, arithmetic circuit, linear forms or any other
algebraic structure). Without a generic stacking compiler, a protocol designer
interested in reducing the communication complexity of disjunctive proofs might
be forced to apply some expensive NP reduction to encode the statement in a
stacking-friendly way. This is particularly relevant because modern Σ-protocols
often require that relations are phrased in a very specific manner, e.g. Ligero
[2] requires arithmetic circuits over a large, finite field, while known stacking
techniques [31] focus on Boolean circuits.

A common concern with applying protocol compilers is that they trade gen-
erality for efficiency (e.g. NP reductions). However, we note that the compiler
that we develop in this work is extremely concretely efficient, overcoming this
common limitation. For instance, näıvely applying our protocol to the classi-
cal Schnorr identification protocol and applying the Fiat-Shamir [19] heurestic

A Framework to Compose Σ-Protocols for Disjunctions 461

yields a ring signature construction with signatures of length 2λ · (2 + 2 log(�))
bits, where λ is the security parameter and � is the ring size; this is actually
smaller than modern ring signatures from similar assumptions [4,12] without
requiring significant optimization.1

1.1 Our Contributions

In this work, we give a generic treatment for minimizing the communication
complexity of Σ-protocols for disjunctive statements. In particular, we identify
some “special properties” of Σ-protocol that make them amenable to “stacking.”
We refer to protocols that satisfy these properties as stackable protocols. Then
we present a framework for compiling any stackable Σ-protocols for independent
statements into a new, communication-efficient Σ-protocol for the disjunction
of those statements. Our framework only requires oracle access to the prover,
verifier and simulator algorithms of the underlying Σ-protocols. We present our
results in two-steps:

Self-stacking Compiler. First, we present our basic compiler, which we call a
“self-stacking” compiler. This compiler composes several instances of the same
Σ-protocol, corresponding to a particular language into a disjunctive proof. The
resulting protocol has communication complexity proportional to the commu-
nication complexity of a single instance of the underlying protocol. Specifically,
we prove the following theorem:

Informal Theorem 1 (Self-Stacking). Let Π be a stackable Σ-protocol for
an NP language L that has communication complexity CC(Π). There exists is
a Σ-protocol for the language (x1 ∈ L) ∨ . . . ∨ (x� ∈ L), with communication
complexity O(CC(Π)+λ log(�)), where λ is the computational security parameter.

Cross-Stacking. We then extend the self-stacking compiler to support stacking
different Σ-protocols for different languages. The communication complexity of
the resulting protocol is a function of the largest clause in the disjunction and
the similarity between the Σ-protocols being stacked. Let fCC be a function that
determines this dependence. For instance, if we compose the same Σ-protocol
but corresponding to different languages, then the output of fCC will likely be
the same as that of a single instance of that protocol for the language with
the largest relation function. However, if we compose Σ-protocols that are very
different from each other, then the output of fCC will likely be larger. We prove
the following theorem:

Informal Theorem 2 (Cross-Stacking). For each i ∈ [�], let Πi be a
stackable Σ-protocol for an NP language Li There exists is a Σ-protocol for
the language (x1 ∈ L1) ∨ . . . ∨ (x� ∈ L�), with communication complexity
O(fCC({Πi}i∈[�]) + λ log(�)).

1 Although concrete efficiency is a central element of our work, applying our compiler
to applications is not our focus. The details of this ring signature construction can
be found in the full version of the paper.

462 A. Goel et al.

Examples of Stackable Σ-Protocols. We show many concrete examples of
Σ-protocols that are stackable. Specifically, we look at classical protocols like
Schnorr [39], Guillio-Quisquater [29] and Blum [11], and modern MPC-in-the-
head protocols like KKW [35] and Ligero [2]. Previously it was not known how
to prove disjunction over these Σ-protocols with sublinear communication in
the number of clauses. When applied to these Σ-protocols, our compiler yields
a Σ-protocol which can can made non-interactive in the random oracle model
using the Fiat-Shamir heurestic. For example, when instantiated with Ligero our
compiler yields a concretely efficient Σ-protocol for disjunction over � different
circuits of size |C| each, with communication O(

√|C| + λ log �). Additionally,
we explore how to apply our cross-stacking compiler to stack different stackable
Σ-protocols with one another (e.g. stacking a KKW proof for one relation with
a Ligero proof for another relation).

Partially-Binding Non-interactive Vector Commitments. Central to
our compiler is a new variation of commitments called partially-binding non-
interactive vector commitment schemes. These schemes allow a committer to
commit to a vector of values and equivocate on a subset of the elements in that
vector, the positions of which are determined during commitment and are kept
hidden. We show how such commitments can be constructed from the discrete
log assumption.

Extensions and Implementation Considerations. We finish by discussing
extensions of our work and concrete optimizations that improve the efficiency of
our compiler when implemented in practice. Specifically, we consider generaliz-
ing our work to k-out-of-� proofs of partial knowledge, i.e. the threshold analog
of disjunctions. We give a version of our compiler that works for these threshold
statements. Additionally, we demonstrate the efficiency of our compiler by pre-
senting concrete proof sizes when our compiler is applied to both a disjunction
of KKW and Schnorr signatures.

1.2 Related Work

A more in depth overview of these techniques can be found in ??.

Disjunctive Compilers for Zero-Knowledge. The classic work of Cramer
et al. [17] showed how to compile Σ-protocols into k-of-� disjunctions, but does
not provide any communications savings. Abe et al. [1] presented an alternative
compiler specifically designed for signatures in the random oracle model. More
recently, Ciampi et al. [15] show how to augment this construction to allow the
prover to select instances in the disjunction during the third round. We note that
although Ciampi et al. make use of a similar commitment scheme, the focus of
their work is very different and they do not consider minimizing communication.

Communication Reduction for Disjunctive Zero-Knowledge. In [36],
Kolesnikov observed that the topology of a garbled circuit could be decou-
pled from its tables, resulting in S-universal two party SFE (Secret Function
Evaluation). Building on this idea, Heath and Kolesnikov [31] brought the

A Framework to Compose Σ-Protocols for Disjunctions 463

topology-decoupled paradigm to interactive zero-knowledge, based on the works
of Jawurek et al. [34] and Frederiksen et al. [20]. This resulted in zero-knowledge
with communication complexity proportional to the size of the largest clause in
the disjunction, but is inherently interactive. In concurrent work, Baum et al.
[5] present Mac’n’Cheese, a constant round zero-knowledge proof system that
obtains “free nested disjunctions;” It is not clear how to make these protocols
public coin. Heath and Kolesnikov also explored similar ideas to reduce the com-
munication complexity of MPC protocols executed over disjunctions [30,32].

2 Technical Overview

In this section, we give a detailed overview of the techniques that we use to
design a generic framework to achieve communication-efficient disjunctions of
Σ-protocols without requiring non-trivial2 changes to the underlying
Σ-protocols. Throughout this work, we consider a disjunction of � clauses, one
(or more) of which are active, meaning that the prover holds a witness satisfy-
ing the relation encoded into those clauses. For the majority of this technical
overview, we focus on the simpler case where the same Σ-protocol is used for
each clause. We will then extend our ideas to cover heterogeneous Σ-protocols.

Recall that Σ-protocols are three-round, public-coin zero-knowledge proto-
cols, where the prover sends the first message. In the second round, the verifier
sends a random “challenge” message to the prover, that only depends on the
random coins of the the verifier. Finally, in the third round, the prover responds
with a message based on this challenge. Based on this transcript the verifier then
decides whether to accept or reject the proof.

We start by considering the approaches taken by recent works focusing on
privacy-preserving protocols for disjunctive statements, e.g. [31]. We observe
that the “stacking” techniques used in all these works can be broadly classified
as taking a cheat and re-use approach. In particular, all of these works show how
some existing protocols can be modified to allow the parties to “cheat” on the
inactive clauses—i.e. only executing the active clause honestly—and “re-using”
the single honestly-computed transcript to mimic a fake computation of the
inactive clauses. Critically, this is done while ensuring that the verifier cannot
distinguish the honest execution of the active clause from the fake executions of
the inactive clauses.

Our Approach. In this work we extend the cheat and re-use approach to
design a framework for compiling Σ-protocols into a communication-efficient
Σ-protocol for disjunctive statements without requiring modification of the
2 We assume that basic, practice-oriented optimizations have already been applied to

the Σ-protocols in question. For instance, we assume that only the minimum amount
of information is sent during the third round of protocol. Hereafter, we will ignore
these trivial modifications and simply say “without requiring modification.” Note
that these modifications truly are trivial: the parties only need to repeat existing
parts of the transcript in other rounds. We discuss this in the context of MPC-in-
the-head protocols in Sect. 5.

464 A. Goel et al.

underlying protocols. Specifically, we are interested in reducing the number of
third round messages that a prover must send to the verifier, since the third round
message is typically the longest message in the protocol. Intuition extracted from
prior work leads us to a natural high-level template for achieving this goal: Run
individual instances of Σ-protocols (one-for each clause in the disjunction) in
parallel, such that only one of these instances (the one corresponding to the
active clause) is honestly executed, and the remaining instances re-use parts of
this honest instance.

There are two primary challenges we must overcome to turn this rough outline
into a concrete protocol: (1) how can the prover cheat on the inactive clauses?
and (2) what parts of an honest Σ-protocol transcript can be safely re-used
(without revealing the active clause)? We now discuss these challenges, and the
techniques we use to overcome them, in more detail.

Challenge 1: How will the Prover Cheat on Inactive Clauses? Since
the prover does not have a witness for the inactive clauses, the prover can cheat
by creating accepting transcripts for the inactive clauses using the simulator(s)
of the underlying Σ-protocols. The traditional method (e.g. [17] for disjunctive
Schnorr proofs) requires the prover to start the protocol by randomly selecting a
challenge for each inactive clause and simulating a transcript with respect to that
challenge. In the third round, the prover completes the transcript for each clause
and demonstrates that it could only have selected the challenges for all-but-one
of the clauses. This approach, however, inherently requires sending many third
round messages, which will make it difficult to re-use material across clauses
(discussed in more detail below). Similarly, alternative classical approaches for
composing Σ-protocols for disjunctives, like that of Abe et al. [1], also require
sending a distinct third round message for each clause. As such, we require a
new approach for cheating on the inactive clauses.

Our first idea is to defer the selection of first round messages for the inactive
clauses until after the verifier sends the challenge (i.e. in the third round of the
compiled protocol), while requiring that the prover select a first round message
honestly for the active clause (i.e. in the first round of the compiled protocol).
To do this, we introduce a new notion called non-interactive, partially-binding
vector commitments.3 These commitments allow the committer to commit to a
vector of values and equivocate on a hidden subset of the entries in the vector
later on. For instance, a 1-out-of-� binding commitment allows the committer to
commit a vector of � values such that that one of the vector positions (chosen
when the commitment is computed) is binding, while allowing the committer
to modify/equivocate the remaining positions at the time of opening. For a
disjunction with � clauses, we can now use this primitive to ensure that the
prover computes an honest transcript for at least one of the Σ-protocol instances
as follows:

3 A similar notion for interactive commitments was introduced in [15]. Note that
this notion of commitments is very different from the similarly named notion of
somewhere statistically binding commitments [18].

A Framework to Compose Σ-Protocols for Disjunctions 465

– Round 1: The prover computes an honest first round message for the
Σ-protocol corresponding to the active clause. It commits to this message
in the binding location of a 1-out-of-� binding commitment, along with � − 1
garbage values, and sends the commitment to the verifier.

– Round 2: The verifier sends a challenge message for the � instances.
– Round 3: The prover honestly computes a third round message for the active

clause and then simulates first and third round messages for the remaining
� − 1 clauses. It equivocates the commitment with these updated first round
messages, and sends an opening of this commitment along with all the � third
round messages to the verifier.

While this is sufficient for soundness, we need an additional property from
these partially-binding vector commitments to ensure zero-knowledge. In partic-
ular, in order to prevent the verifier from learning the index of the active clause,
we require these partially-binding commitments to not leak information about
the binding vector position. We formalize these properties in terms of a more
general t-out-of-� binding vector commitment scheme, which may be of indepen-
dent interest, and we provide a practical construction based on the discrete log
assumption.4

Challenge 2: How will the Prover Re-use the Active Transcript? The
above approach overcomes the first challenge, but doesn’t achieve our goal of
reducing the communication complexity of the compiled Σ-protocol. Next, we
need to find a way to somehow re-use the honest transcript of the active clause.
Our key insight is that for many natural Σ-protocols, it is possible to simu-
late with respect to a specific third round message. That is, it is often easy to
simulate an accepting transcript for a given challenge and third round message.
This allows the prover to create a transcript for the inactive clauses that share
the third round message of the active clause. In order for this compilation app-
roach to work, Σ-protocols must satisfy the following properties (stated here
informally):

– Simulation With Respect To A Specific Third Round Message: To re-use the
active transcript, the prover simulates with respect to the third round message
of the active transcript. This allows the prover to send a single third round
message that can be re-used across all the clauses. More formally, we require
that the Σ-protocol have a simulator that can reverse-compute an appropriate
first round message to complete the accepting transcript for any given third
round message and challenge. While not possible for all Σ-protocols, simulat-
ing in this way—i.e., by first selecting a third round message and then “reverse
engineering” the appropriate first round message—is actually a common
simulation strategy, and therefore possible with most natural Σ-protocols.
In order to get communication complexity that only has a logarithmic

4 We also explore a construction that is half the size and leverages random oracles in
the full-version of this paper [23].

466 A. Goel et al.

dependence on the number of clauses, we additionally require this simula-
tor to be deterministic.5 We formalize this property in Sect. 5.

– Recyclable Third Round Messages: To re-use third round messages in this way,
the distribution of these third round messages must be the same. Otherwise,
simulating the inactive clauses would fail and the verifier could detect the
active clause used to produce the third round message. Thus, we require that
the distribution of third round messages in the Σ-protocol be the same across
all statements of interest. We formalize this property in Sect. 5.

An mentioned before, most natural Σ-protocols satisfy both these properties
and we refer to such protocols as stackable Σ-protocols. We can compile such
Σ-protocols into a communication-efficient Σ-protocol for disjunctions, where
the communication only depends on the size of one of the clauses, as follows:
Rounds 1 and 2 remain the same as in the protocol sketch above. In the third
round, the prover first computes a third round message for the active clause.
It then simulates first round messages for the remaining clauses based on the
active clause’s third round message and the challenge messages. As before, it
equivocates the commitment with these updated first round messages.6 While
this allows us to compress the third round messages, we still need to send a
vector commitment of the first round messages. In order to get communication
complexity that does not depend on the size of all first round messages, the
size of this vector commitment should be independent of the size of the values
committed. Note that this is easy to achieve using a hash function.

Summary of our Stacking Compiler. Having outlined our main techniques,
we now present a detailed description of our compiler for 2 clauses, as depicted
in Fig. 1 (similar ideas extend for more than 2 clauses). The right (unshaded)
box represents the active clause and the left (shaded) box represents the inactive
clause. Each of the following numbered steps refer to a correspondingly numbered
arrow in the figure: (1) The prover runs the first round message algorithm of
the active clause to produce a first round message a2. (2) The prover uses the
1-of-2 binding commitment scheme to commit to the vector v = (0, a2). (3) The
resulting commitment constitutes the compiled first round message a′. (4) The
challenge c′ is created by the verifier. (5) The prover generates the third round
message z for the active clause using the first round message a2, the challenge c′,
and the witness w. (6) The prover then uses the simulator for the inactive clause
on the challenge c′ and the honestly generated third round message z to generate
a valid first round message for the inactive clause a1. (7) The prover equivocates
on the contents of the commitment a′ – replacing 0 with the simulated first round
message a1. The result is randomness r′ that can be used to open commitment

5 We elaborate on the importance of this additional property in the technical sections.
6 If the simulator computes the first round messages deterministically, then the prover

only needs to reveal the randomness used in the commitment in the third round,
along with the common third round message to the verifier. Given the third round
message, the verifier can compute the first round messages on its own and check if
the commitment was valid and that the transcripts verify.

A Framework to Compose Σ-Protocols for Disjunctions 467

Fig. 1. High level overview of our compiler applied to a Σ-protocol Σ = (A, C, Z, φ)
over statements x1 and x2. Several details have been omitted or changed to illustrate
the core ideas more simply. The red circle contains a value used in the first round,
while purple circles contain values used in the third round. We include a1 and a2 in
the third round message for clarity; in the real protocol, the verifier will be able to
deterministically recompute these values on their own. (Color figure online)

a′ to the vector v′ = (a1, a2). (8) The compiled third round message consists of
honestly generated third round message z, the randomness r′ of the equivocated
commitment, and the two first round messages a1, a2.7 (9) The verifier then
verifies the proof by ensuring that each transcript is accepting and that the first
round messages constitute a valid opening to the commitment a′.

Complexity Analysis: Communication in the first round only consists of the com-
mitment, which we show can be realized in O(�λ) bits, where λ is the security
parameter. In the last round, the prover sends one third round message of the
underlying Σ-protocol that depends on the size of one of the clauses8 and � first
round messages of the underlying Σ-protocol. Thus, näıvely applying our com-
piler results in a protocol with communication complexity O(CC(Σ) + � · λ),
where CC(Σ) is the communication complexity of the underlying stackable
Σ-protocol, when executed for the largest clause. In the technical sections, we
show that the resulting protocol is itself “stackable”, it can be recursively com-
piled. This reduces the communication complexity to O(CC(Σ) + log(�) · λ).

Stackable Σ-Protocols. While not all Σ-protocols are able to satisfy the
first two properties that we require, we show that many natural Σ-protocols

7 In the compiler presented in the main body, a1 and a2 are omitted from the third
round message and the verifier recomputes them from z and c′ directly. We make
this simplification in the exposition to avoid introducing more notation.

8 We can assume w.l.o.g. that all clauses have the same size. This can be done by
appropriately padding the smaller clauses.

468 A. Goel et al.

like Schnorr [38], and Guillio-Quisquater [29] satisfy these properties. We also
show that more recent state-of-the-art protocols in MPC-in-the-head paradigm
[33] like KKW [35] and Ligero [2] have these properties. We formalize the
notion of “F-universally simulatable MPC protocols”, which produce stackable
Σ-protocols when compiled using MPC-in-the-head [33]. This formalization is
highly non-trivial and requires paying careful attention to the distribution of
MPC-in-the-head transcripts. Our key observation is that transcripts generated
when executing one circuit can often be seamlessly reinterpreted as though they
were generated for another circuit (usually of similar size). We refer the reader
to Sect. 5 for more details on stackable Σ-protocols.

Stacking Different Σ-Protocols. The compiler presented above allows stack-
ing transcripts for a single Σ-protocol, with a single associated NP language,
evaluated over different statements e.g., (x1 ∈ L) ∨ . . . ∨ (x� ∈ L). This is quite
limiting and does not allow a protocol designer to select the optimal Σ-protocol
for each clause in a disjunction. As such, we explore extending our compiler to
support stacking different Σ-protocols with different associated NP languages,
i.e. (x1 ∈ L1) ∨ (x2 ∈ L2) ∨ . . . ∨ (x� ∈ L�).

A simple approach would be to rely on NP reductions to define a “meta-
language” covering all of L1, . . . L�. Unfortunately, this approach will often result
in high concrete overheads. It would be preferable to allow “cross-stacking,” or
using different Σ-protocols for each clause in the disjunction.9 The key impedi-
ment to applying our self-stacking compiler to different Σ-protocols is that the
distribution of third round messages between two different Σ-protocols may be
very different. For example, a statement with three clauses may be composed
of one Σ-protocol defined over a large, finite field, another operating over a
boolean circuit, and a third that is consisting of elements of a discrete logarithm
group. Thus, attempting to use the simulator for one Σ-protocol with respect to
the third round message of another might result in a domain error; there may
be no set of accepting transcripts for the Σ-protocols that share a third round
message. As re-using third round messages is the way we reduce communication
complexity, this dissimilarity might appear to be insurmountable.

To accommodate these differences, we observe that the extent to which a
set of Σ-protocols can be stacked is a function of the similarity of their third
round messages. In the self-stacking compiler, these distributions were exactly
the same, resulting in a “perfect stacking.” With different Σ-protocols, the prover
may only be able to re-use a part of the third round message when simulating
for another Σ-protocol, leading to a “partial stacking.” We note, however, that
the distributions of common Σ-protocols tend to be quite similar—particularly
when seen as an unstructured string of bits. Due to space constraints we include
our cross stacking compiler, including case studies on its use, in the full-version
of this paper [23].

9 While it might be possible to define a Σ-protocol that uses different techniques for
different parts of the relation, this would require the creation of a new, purpose built
protocol—something we hope to avoid in this work. Thus, the difference between
self-stacking in this work is primarily conceptual, rather than technical.

A Framework to Compose Σ-Protocols for Disjunctions 469

Paper Organization. The paper is organized as follows: we present required
preliminaries Sect. 3 and the interface for partially-binding commitment schemes
in Sect. 4. In Sect. 5 we cover the properties of Σ-protocols that our compiler
requires and give examples of conforming Σ-protocols. We present our self-
stacking compiler in Sect. 6.

3 Preliminaries

3.1 Notation

Throughout this paper we use λ to denote the computational security parame-
ter and κ to denote the statistical security parameter. We denote by x

$←− D the
sampling of ‘x’ from the distribution ‘D’. We use [n] as a short hand for a list
containing the first n natrual numbers in order: i.e. [n] = 1, 2 . . . , n. We denote

by x
$←−s D the process of sampling ‘x’ from the distribution ‘D’ using pseudo-

random coins derived from a PRG applied to the seed ‘s’, when the expression
occurs multiple times we mean that the element is sampled using random coins
from disjoint parts of the PRG output. We denote by H a collision-resistant hash
function (CRH). We write group operations using multiplicative notation.

3.2 Σ-Protocols

In this section, we recall the definition of a Σ-protocol.

Definition 1 (Σ-Protocol). Let R be an NP relation. A Σ-Protocol Π for R
is a 3 move protocol between a prover P and a verifier V consisting of a tuple of
PPT algorithms Π = (A,Z, φ) with the following interfaces:

– a ← A(x,w; rp): On input the statement x, corresponding witness w, such
that R(x,w) = 1, and prover randomness rp, output the first message a that
P sends to V in the first round.

– c
$←− {0, 1}κ: Sample a random challenge c that V sends to P in the second

round.
– z ← Z(x,w, c; rp): On input the statement x, the witness w, the challenge

c, and prover randomness rp, output the message z that P sends to V in the
third round.

– b ← φ(x, a, c, z): On input the statement x, prover’s messages a, z and the
challenge c, this algorithm run by V, outputs a bit b ∈ {0, 1}.

A Σ-protocol has the following properties:

– Completeness: A Σ-Protocol Π = (A,Z, φ) is said to be complete if for any

x,w such that R(x,w) = 1, and any prover randomness rp $←− {0, 1}λ, it holds
that,

Pr
[
φ(x, a, c, z) = 1

∣
∣∣ a ← A(x,w; rp); c $←− {0, 1}κ; z ← Z(x,w, c; rp)

]
= 1

470 A. Goel et al.

– Special Soundness. A Σ-Protocol Π = (A,Z, φ) is said to have spe-
cial soundness if there exists a PPT extractor E, such that given any two
transcripts (x, a, c, z) and (x, a, c′, z′), where c �= c′ and φ(x, a, c, z) =
φ(x, a, c′, z′) = 1, it holds that

Pr
[
R(x,w) = 1| w ← E(1λ, x, a, c, z, c′, z′)

]
= 1

– Special Honest Verifier Zero-Knowledge. A Σ-Protocol Π = (A,Z, φ)
is said to be special honest verifier zero-knowledge, if there exists a PPT
simulator S, such that for any x,w such that R(x,w) = 1, it holds that

{(a, z) | c
$←− {0, 1}κ; (a, z) ← S(1λ, x, c)} ≈c

{(a, z) | rp $←− {0, 1}λ; a ← A(x,w; rp); c $←− {0, 1}κ; z ← Z(x,w, c; rp)}

4 Partially-Binding Vector Commitments

In this section, we introduce non-interactive partially-binding vector commit-
ments. These commitments allow a committer to commit to a vector of � elements
such that exactly t positions are binding (i.e. cannot be opened to another value)
and the remaining �−t positions can be equivocated. The committer must decide
the binding positions of the vector before committing and the binding positions
are hidden.

Definition 2 (t-out-of-� Binding Vector Commitment). A t-out-of-� bind-
ing non-interactive vector commitment scheme with message space M, is defined
by a tuple of the PPT algorithms (Setup,Gen,EquivCom,Equiv,BindCom) defined
as follows:

– pp ← Setup(1λ) On input the security parameter λ, the setup algorithm out-
puts public parameters pp.

– (ck, ek) ← Gen(pp, B): Takes public parameters pp and a t-subset of indices
B ∈ (

[�]
t

)
. Returns a commitment key ck and equivocation key ek.

– (com, aux) ← EquivCom(pp, ek,v; r): Takes public parameter pp, equivocation
key ek, �-tuple v and randomness r. Returns a partially-binding commitment
com as well as some auxiliary equivocation information aux.

– r ← Equiv(pp, ek,v,v′, aux): Takes public parameters pp, equivocation key ek,
original commitment value v and updated commitment values v′ with ∀i ∈
B : vi = v′

i, and auxiliary equivocation information aux. Returns equivocation
randomness r.

– com ← BindCom(pp, ck,v; r): Takes public parameters pp, commitment key
ck, �-tuple v and randomness r and outputs a commitment com. Note that
this algorithm does not use the equivocation key ek. This algorithm plays a
similar role to that of Open in a typical commitment scheme.

The properties satisfied by the above algorithms are as follows:

A Framework to Compose Σ-Protocols for Disjunctions 471

(Perfect) Hiding: The commitment key ck (perfectly) hides the binding posi-
tions B and commitments com (perfectly) hide the � committed values in the
vector. Formally, for all v(1),v(2) ∈ M�, B,B′ ∈ (

[�]
t

)
, and pp ← Setup(1λ):

[

(ck, com)

∣∣∣
∣∣

(ck, ek) ← Gen(pp, B); r $←− {0, 1}λ;
(com, aux) ← EquivCom(pp, ek,v; r)

]

p=

[

(ck′, com′)

∣∣∣
∣∣

(ck′, ek′) ← Gen(pp, B′); r′ $←− {0, 1}λ

(com′, aux′) ← EquivCom(pp, ek′,v′; r′);

]

(Computational) Partial Binding: It is intractable for an adversary that
generates the commitment key ck to equivocate on more than �−t positions. To
formalize this property, we consider the class of adversaries Ak that produces
a single commitment key ck and k equivocations to a commitment under that
key. We denote the jth opening to the commitment as the vector v(j) and the
ith element of that vector as v

(j)
i . Formally, for all k ∈ poly(λ), for all PPT

algorithms Ak:

Pr

[
�S ⊂ [�], |S| ≥ t, s.t. i ∈ S, v

(1)
i = . . . = v

(k)
i ∧

BindCom(pp, ck,v(1); r1) = . . . = BindCom(pp, ck,v(k); rk)
∣∣∣∣∣

pp ← Setup(1λ);

(ck,v(1), . . . ,v(k), r1, . . . , rk) ← Ak(1λ, pp)

]

≤ negl(λ)

Partial Equivocation: Given a commitment to v under a commitment key
ck ← Gen(pp, B), it is possible to equivocate to any v′ as long as ∀i ∈ B : vi =
v′

i. More formally, for all B ∈ (
[�]
t

)
, and all v,v′ ∈ M� st. ∀i ∈ B : vi = v′

i

then:

Pr

⎡

⎢⎢⎢⎢
⎣
BindCom(pp, ck,v′; r′) = com

∣∣
∣∣∣∣∣
∣∣∣

pp ← Setup(1λ); r $←− {0, 1}λ;
(ck, ek) ← Gen(pp, B);

(com, aux) ← EquivCom(pp, ek,v; r);
r′ ← Equiv(ek,v,v′, aux)

⎤

⎥⎥⎥⎥
⎦

= 1

Throughout this work we will impose the efficiency requirement that the size
of the commitment is independent of the size of the elements. We note that
this is easy to achieve using a collision resistant hash function, when targeting
computational binding.

4.1 Partially-Binding Vector Commitments from Discrete Log

We now present a simple and concretely efficient construction of t-out-of-�
partially-binding vector commitments from the discrete log assumption. The
idea is to have the committer use a Pedersen commitment for each element
in the vector. Recall that a Pedersen commitment to the message m ∈ Z|G|

472 A. Goel et al.

pp ← Setup(1λ)

1 : G ← GenGroup(1λ); g0, h
$←− G

2 : return (G, g0, h)

(com, aux) ← EquivCom(pp, ek,v):

1 : r
$←− Z|G|

2 : com ← BindCom(pp, ck,v, r)

3 : return (com, r)

(ck, ek) ← Gen(pp, B)

1 : Let E = [] \ B (set of equivocal indexes)

2 : for i ∈ E : yi
$←− Z|G|, gi ← hyi//Generate trapdoors

3 : for j ∈ [− t] : gj ← i∈E∪{0} gi
L(E∪{0},i)(j)//Interpolate first −t elements

4 : ck = (g1, . . . , g −t)

5 : ek = (g1, . . . , g −t, {yi}i∈E , E, B)

6 : return (ck, ek)

r ← Equiv(pp, ek,v,v , aux):

1 : Let E = [] \ B (set of equivocal indexes)

2 : Parse aux = (r1, . . . , r) ∈ Z|G|

3 : for j ∈ [−] : gj ← i∈[−t]∪{0} g
L([−t]∪{0},i)(j)

i //Interpolate other elements

4 : for j ∈ B : rj ← rj

5 : for j ∈ E : rj ← rj − yj · (v j − vj)

6 : return r

com ← BindCom(pp, ck,v, r):

1 : for j ∈ [−] : gj ← i∈[−t]∪{0} g
L([−t]∪{0},i)(j)

i //Interpolate other elements

2 : for j ∈ [] : comj ← hrj · g
vj

j //Commit individually

3 : return (com1, . . . , com)

Fig. 2. t-of-� binding commitment from discrete log in the CRS model.

with public parameters g, h ∈ G is computed as gmhr for a random value r.
The binding property of Pedersen commitments relies on the committer not
knowing the discrete log of g with respect to h. For our partially-binding vec-
tor commitment scheme, the commitment key is a set of public parameters for
the Pedersen commitments, constructed such a way that the committer knows
discrete logs for exactly � − t parameters. This is done by having the commit-
ter pick � − t of the parameters and computing the remaining t parameters by
interpolating in the exponent. More formally, let use begin by fixing some nota-
tion. Let Z|G| be a prime field. In our construction, we implicitly treat indexes
i ∈ [0, |G| − 1] as field elements, i.e. there is an implicit bijective map between

A Framework to Compose Σ-Protocols for Disjunctions 473

[0, |G| − 1] and Z|G| (e.g. i mod |G| ∈ Z/(|G|)). Let X ⊆ Z|G| and j ∈ X , define
L(X ,j)(X) :=

∏
m∈X ,m �=j

X−m
j−m ∈ Z|G|[X] i.e. the unique degree |X | − 1 poly-

nomial for which ∀x ∈ X \ {j} : L(X ,j)(x) = 0 and L(X ,j)(j) = 1. The formal
description of the commitment scheme can be found in Fig. 2. While our con-
struction does require a CRS, we note that the CRS is just two randomly selected
group elements10, which in practice can be generated by hashing a ‘nothing-up-
by-sleeve’ constant to the curve by using a cryptographic hash function.

Theorem 1. Under the discrete log assumption, for any (t, �) with t < �: the
scheme shown in Fig. 2 is a family of (perfectly hiding, computationally binding)
t-of-� partially binding commitment schemes.

The security reduction is straightforward and tight: for each position i in
which the adversary A manages to equivocate we can extract the discrete log
of gi (as for regular Pedersen commitments), if we extract the discrete log in
� − t + 1 positions, we have sufficient points on the degree � − t polynomial to
recover f[�]∪{0}(X) explicitly and simply evaluate it at 0 to recover the discrete
log of g0 from pp. The full proof can be found in the full-version of this paper
[23].

Remark 1. To commit to longer strings a collision resistant hash H :
{0, 1}∗ → Z|G| is used to compress each coordinate before committing using
BindCom/EquivCom as a black-box: by committing to v′ = (H(v1), . . . ,H(v�))
instead. Note that the discrete log assumption, used above, also implies the
existance of collision resistant hash functions.

5 Stackable Σ-Protocols

In this section, we present the properties of Σ-protocols that our stacking frame-
work requires and show that many Σ-protocols satisfy these properties.

5.1 Well-Behaved Simulators

As outlined in Sect. 2, a critical step of our compilation framework is applying
the simulator of the underlying Σ-protocols to the inactive clauses. This raises
a technical (mostly definitional) concern: some of inactive clauses may not actu-
ally be true, possibly because they were adversarially chosen. At first glance,
this might seem like a strange concern. For most interesting NP languages of
interest, it should be hard to tell if an instance is in the language, and therefore
having false instances in the disjunction should not be a problem. However, the
behavior of a simulator is only defined with respect to statements that are in
the NP language—that is, true instances. As such, if the disjunction contains
false clauses, there is no guarantee that the simulator will produce an accepting
transcript. This could cause problems with verification—the verifier will know

10 Like regular Pedersen commitments.

474 A. Goel et al.

that one of the transcripts is not accepting, but will not know if this is due to a
simulation failure or malicious prover. As such, we must carefully consider what
simulators will produce when executed on a false instance.

As noted in [25], simulators commonly constructed in proofs of the zero-
knowledge property will usually output accepting transcripts when executed
on these false instances. If the simulator were able to consistently output non-
accepting transcripts for false instances, it could be used to decide the NP lan-
guage in polynomial time. However, it is possible to define a valid simulator that
produces an output that is not an accepting transcript with non-negligible prob-
ability e.g. (1) the input instance is trivially false (e.g. a fully connected graph
with 4 nodes is not 3-colorable), or (2) the simulator has a hard-coded set of false
instances on which it deviates from its normal behavior. Indeed, a probabilistic
simulator may also output a non-accepting transcript in each of these cases only
occasionally, possibly depending on the challenge. This behavior will not compro-
mise zero-knowledge, but could result in correctness or soundness errors.

We emphasize that this is a corner case: commonly constructed simulators
will most likely produce accepting transcripts even on false instances, unless the
instance is trivially false or not in the domain of the simulator. Nevertheless,
we observe that any Σ-protocol can be generically transformed into one that
has a simulator that outputs accepting transcripts for all statements. We refer
to such simulators as well-behaved simulators. We give a formal definition for
well-behaved simulators and present the transformation in the full version [23].

5.2 Properties of Stackable Σ-Protocols

We now formalize the definition of a “stackable” Σ-protocol. As discussed in
Sect. 2, a Σ-protocol is stackable (meaning, it can be used by our stacking frame-
work), if it satisfies two main properties: (1) simulation with respect to a specific
third round message, and (2) recyclable third round messages.

Cheat Property: “Extended” Honest Verifier Zero-Knowledge. We
view “simulation with respect to a specific third round message” as a natural
strengthening of the typical special honest verifier zero-knowledge property of
Σ-protocols. At a high level, this property requires that it is possible to design
a simulator for the Σ-protocol by first sampling a random third round mes-
sage from the space of admissible third round messages, and then constructing
the unique appropriate first round message. We refer to such a simulator as an
extended simulator. A similar notion is considered by Abe et al. [1] in their defi-
nition of type-T signature schemes: a type-T signature scheme is essentially the
Fiat-Shamir [19] heuristic applied to an EHVZK Σ-protocol.

Definition 3 (EHVZK Σ-Protocol). Let Π = (A,Z, φ) be a Σ-protocol for
the NP relation R, with a well-behaved simulator. We say that Π is “extended
honest-verifier zero-knowledge (EHVZK)” if there exists a polynomial time com-
putable deterministic “extended simulator” Sehvzk such that for any (x,w) ∈ R
and c ∈ {0, 1}κ, there exists an efficiently samplable distribution D(z)

x,c such that:

A Framework to Compose Σ-Protocols for Disjunctions 475

{
(a, c, z) | rp $←− {0, 1}λ; a ← A(x,w; rp); z ← Z(x,w, c; rp)

}

≈
{

(a, c, z) | z
$←− D(z)

x,c; a ← Sehvzk(1λ, x, c, z)
}

The natural variants (perfect/statistical/computational) of EHVZK are defined
depending on which class of distinguishers for which ≈ is defined.

Observation 1 (All Σ-protocols can be made EHVZK.) In the full ver-
sion of this paper, we present a transformation that transforms any Σ-protocol
into a EHVZK Σ-protocol.

Re-use Property: Recycle Third Round Messages. The next property
that our stacking compilers require is that the distribution of third round mes-
sages does not significantly rely on the statement. In more detail, given a fixed
challenge, the distribution of possible third round messages for any pair of state-
ments in the language are indistinguishable from each other. We formalize this
property by using D(z)

c to denote a single distribution with respect to a fixed
challenge c. We say that a Σ-protocol has recyclable third round messages, if
for any statement x in the language the distribution of all possible third round
messages corresponding to challenge c is indistinguishable from D(z)

c . We now
formally define this property:

Definition 4 (Σ-Protocol with Recyclable Third Messages). Let R be
an NP relation and Π = (A,Z, φ) be a Σ-protocol for R, with a well-behaved
simulator. We say that Π has recyclable third messages if for each c ∈ {0, 1}κ,
there exists an efficiently sampleable distribution D(z)

c , such that for all instance-
witness pairs (x,w) st. R(x,w) = 1, it holds that

D(z)
c ≈

{
z | rp $←− {0, 1}λ; a ← A(x,w; rp); z ← Z(x,w, c; rp)

}
.

This property is fundamental to stacking, as it means that the contents of
the third round message do not ‘leak information’ about the statement used to
generate the message. This means that the message can be safely re-used to
generate transcripts for the non-active clauses and an adversary cannot detect
which clause is active.11 Although this property might seem strange, we will
later show that many natural Σ-protocols have this property.

Stackability. With our two-properties formally defined, we are now ready to
present the definition of stackable Σ-protocols:

Definition 5 (Stackable Σ-Protocol). We say that a Σ-protocol Σ =
(A,Z, φ) is stackable, if it is EHVZK (see Definition 3) and has recyclable third
messages (see Definition 4).

11 We further elaborate on this in Remark 2.

476 A. Goel et al.

We now note a useful property of stackable Σ-protocols that follow directly from
Definition 5:

Remark 2. Let Σ = (A,Z, φ) be a stackable Σ-protocol for the NP relation
R, with a well-behaved simulator. Then for each c ∈ {0, 1}λ and any instance-
witness pair (x,w) with R(x,w) = 1, an honestly computed transcript is compu-
tationally indistinguishable from a transcript generated by sampling a random
third round message from D(z)

c and then simulating the remaining transcript
using the extended simulator. More formally,

{
(a, z) | rp $←− {0, 1}λ; a ← A(x,w; rp); z ← Z(x,w, c; rp)

}

≈
{

(a, z) | z
$←− D(z)

c ; a ← Sehvzk(1λ, x, c, z)
}

Looking ahead, these observations will be critical in proving security of our
compilers.

5.3 Classical Examples of Stackable Σ-Protocols

In this section, we show some examples of classical Σ-protocols which are stack-
able. Rather than considering multiple classical Σ-protocols like Schnorr and
Guillou-Quisquater separately, we consider the generalization of these protocols
as explored in [16]. Once we show that this generalization is stackable, it is simple
to see that specific instantiations are also stackable.

Lemma 1 (Σ-protocol for ψ-preimages [16] is stackable). Let G∗
1 and

G∗
2 be groups with group operations ∗1, ∗2 respectively (multiplicative notation)

and let ψ : G∗
1 → G∗

2 be a one-way group-homomorphism. Recall the simple
Σ-protocol (Πψ) of Cramer and Damg̊ard [16] for the relation of preimages

Rψ(x,w) := x
?= ψ(w), where x ∈ G∗

2, w ∈ G∗
1. The protocol is a generaliza-

tion of Schnorr [39] and works as follows:

– A(x,w; rp), the prover samples r
$←− G∗

1 and sends the image a = ψ(r) ∈ G∗
2

to the verifier.
– Z(x,w, c; rp), the prover intreprets c as an integer from a subset C ⊆ Z and

replies with z = wc ∗1 r
– φ(x, a, c, z), the verifier checks ψ(z) = xc ∗2 a.

Completeness follows since ψ is a homomorphism: ψ(z) = ψ(wc ∗1 r) = ψ(w)c ∗2
ψ(r) = xc∗2a. The knowledge soundness error is 1/|C| (see [16] for more details).
For any homomorphism ψ, Πψ is stackable:

Proof. To see that Πψ is stackable, define an extended simulator and check for
recyclable third messages:

1. Πψ is EHVZK: Let D(z)
x,c := {z | z

$←− G∗
1}, let Sehvzk(1λ, x, c, z) := ψ(z)∗2x−c

A Framework to Compose Σ-Protocols for Disjunctions 477

2. Πψ has recyclable third messages: Observe that ∀x1, x2 : D(z)
x1,c = D(z)

x2,c =
U(G∗

1)
12.

Remark 3. The following variants of Πψ (with different choices of G∗
1,G

∗
2, ψ) are

captured in this generalization (along with other similar Σ-protocols):

(1) Guillou-Quisquater [29] (e-roots in an RSA group) for which G∗
1 = G∗

2 = Z∗
n

for a semi-prime n = pq, C = [0, e) and ψ(w) := we for some prime e ∈ N.
(2) Schnorr [39] (knowledge of discrete log): for which G∗

1 = Z+
|G|,G

∗
2 = G where

G is a cyclic group of prime order |G|, C = [0, |G|) and ψ(w) := gw for some
g ∈ G.

(3) Chaum-Pedersen [14] (equality of discrete log): for which G∗
1 = Z+

|G|,G
∗
2 =

G × G where G is a cyclic group of prime order |G|, C = [0, |G|) and ψ :
Z|G| → G × G, ψ(w) := (gw

1 , gw
2) for g1, g2 ∈ G.

(4) Attema-Cramer [3] (opening of linear forms): for which G∗
1 = Z�

|G| × Z|G|,
G∗

2 = (Z|G|, G), C = [0, |G|) and ψ((x, γ)) := (L(x),gxhγ) for some linear
form L(x) = 〈x, s〉, s ∈ Z�

|G|

In the full version of this paper, we also show that Blum’s classic 3 move protocol
[11] for graph Hamiltonicity is stackable.

5.4 Examples of Stackable “MPC-in-the-Head” Σ-Protocols

We now proceed to show that many natural “MPC-in-the-head” style [33]
Σ-protocols (with minor modifications) are stackable. MPC-in-the-head (hence-
forth refereed to as IKOS) is a technique used for designing three-round, public-
coin, zero-knowledge proofs using MPC protocols. At a high level, the prover
emulates execution of an n-party MPC protocol Π virtually, on the relation
function R(x, ·) using the witness w as input of the parties, and commits to the
views of each party. An honest verifier then selects a random subset of the views
to be opened and verifies that those views are consistent with each other and
with an honest execution, where the output of Π is 1.

Achieving EHVZK. Since the first round messages in such protocols only con-
sist of commitments to the views of all virtual partials, a subset of which are
opened in the third round, a natural simulation strategy when proving zero-
knowledge of such protocols is the following: (1) based on the challenge message,
determine the subset of parties whose views will need be opened later, (2) imag-
ining these as the “corrupt” parties, use the simulator of the MPC protocol to
simulate their views, and, finally, (3) compute commitments to these simulated
views for this subset of the parties and commitments to garbage values for the
remaining virtual parties. Clearly, since the first round messages in this simula-
tion strategy are computed after the third round messages, these protocols are
naturally EHVZK.

12 Uniform distribution over G∗
1.

478 A. Goel et al.

Achieving Recyclable Third Messages. To show that these Σ-protocols
have recyclable third messages, we observe that in many MPC protocols, an
adversary’s view can often be condensed and decoupled from the structure of the
functionality/circuit being evaluated. We elaborate this point with the help of
an example protocol—semi-honest BGW [6].

Recall that in the BGW protocol, parties evaluate the circuit in a gate-
by-gate fashion on secret shared inputs13 as follows: (1) for addition gates, the
parties locally add their own shares for the incoming wire values to obtain shares
of the outgoing wire values. (2) For multiplication gates, the parties first locally
multiply their own shares for the incoming wire values and then secret share these
multiplied share amongst the other parties. Each party then locally reconstructs
these “shares of shares” to obtain shares of the outgoing wire values. (3) Finally,
the parties reveal their shares for all the output wires in the circuit to all other
parties and reconstruct the output.

By definition, the view of an adversary in any semi-honest MPC protocol
is indistinguishable from a view simulated by the simulator with access to the
corrupt party’s inputs and the protocol output. Therefore, to understand the
view of an adversary in this protocol, we recall the simulation strategy used in
this protocol:

1. For each multiplication gate in the circuit, the simulator sends random values
on behalf of the honest parties to each of the corrupt parties.

2. For the output wires, based on the messages sent to the adversary in the
previous step and the circuit that the parties are evaluating, the simulator
first computes the messages that the corrupt parties are expected to send to
the honest parties. It then uses these messages and the output of protocol to
simulate the messages sent by the honest parties to the adversary. Recall that
this can be done because these messages correspond to the shares of these
parties for the output wire values, and in a threshold secret sharing scheme,
the shares of an adversary and the secret, uniquely define the shares of the
remaining parties.

Observe that the computation done by the simulator in the first part is indepen-
dent of the actual circuit or function being computed (it only depends on the
number of multiplication gates in the circuit). We refer to the messages com-
puted in (1) and the inputs of the corrupt parties as the condensed view of the
adversary. Additionally, given these simulated views, the output of the protocol,
and the circuit/functionality, the simulated messages of the honest parties in (2)
can be computed deterministically. Looking ahead, because the output of rela-
tion circuits—the circuits we are interested in simulating—should always be 1
to convince the verifier, this deterministic computation will be straight forward.
Since the condensed view is not dependent on the function being computed, it
can be used with “any” functionality in the second step to compute the remain-
ing view of the adversary. In other words, given two arithmetic circuits with the

13 These shares are computed using some threshold secret sharing scheme, e.g., Shamir’s
polynomial based secret sharing [40].

A Framework to Compose Σ-Protocols for Disjunctions 479

same number of multiplication gates, the condensed views of the adversary in an
execution of the BGW protocol for one of the circuits can be re-interpreted as
their views in an execution for the other one. We note that circuits can always
be “padded” to be the same size, so this property holds more generally.

As a result, for IKOS-style protocols based on such MPC protocols, while
some strict structure must be imposed upon third round messages (which are
views of a subset of virtual parties) when verifying that they have been generated
correctly, the third round messages themselves can simply consist of these con-
densed views (and not correspond to any particular functionality) and hence can
be re-used. To make this work, we must make a slight modification to the IKOS
compiler. As before, in the first round, the prover will commit to the views
(where they are associated with a given function f) of all parties in the first
round. However, in the third round, the prover can simply send the condensed
views of the opened parties to the verifier. The verifier can deterministically com-
pute the remaining view of these parties w.r.t. the appropriate relation function
f and check if they are consistent amongst each other and with the commit-
ments sent in the first round. Since the third round messages in this protocol
are not associated with any function, it is now easy to see that they can be the
distribution of these messages is independent of the instance.

Building on this intuition, we show that many natural MPC protocols pro-
duce stackable Σ-protocols for circuits of the same size when used with the IKOS
compiler. Before giving a formal description of the required MPC property, we
recall the IKOS compiler in more detail, assuming that the underlying MPC pro-
tocol has the following three-functions associated with it: ExecuteMPC emulates
execution of the protocol on a given function with virtual parties and outputs
the actual views of the parties, CondenseViews takes the views of a subset of the
parties as input and outputs their condensed views, and ExpandViews takes the
condensed views of a subset of the parties and returns their actual view w.r.t. a
particular function.

IKOS Compiler. Let f = R(x, ·). In the first round, the prover runs
ExecuteMPC on f and the witness w to obtain views of the parties and commits
to each of these views. In the second round, the verifier samples a random subset
of parties as its challenge message. Size of this subset is equal to the maximal
corruption threshold of the MPC protocol. In the third round, the prover uses
CondenseViews to obtain condensed views for this subset of parties and sends
them to the verifier along with the randomness used to commit to the original
views of these parties in the first round. The verifier runs ExpandViews on f and
the condensed views received in the third round to obtain the corresponding
original views. It checks if these are consistent with each other and are valid
openings to commitments sent in the first round. Depending on the corruption
threshold and the security achieved by the underlying MPC protocol, the above
steps might be repeated a number of times to reduce the soundness error. Below
we restate the main theorem from [33], which also trivially holds for our modified
variant.

480 A. Goel et al.

Theorem 2 (IKOS [33]). Let L be an NP language, R be its associated NP-
relation and F be the function set {R(x, ·) : ∀x ∈ L}. Assuming the existence of
non-interactive commitments, the above compiler transforms any MPC protocol
for functions in F into a Σ-protocol for the relation R.

Next, we formalize the main property of MPC protocols that facilitates in
achieving recyclable third messages when compiled with the above IKOS com-
piler. We characterize this property w.r.t. a function set F , and require the MPC
protocol to be such that the condensed views can be expanded for any f ∈ F .
For our purposes, it would suffice, even if the condensed view of the adversary is
dependent on the final output of the protocol, as long as it is independent of the
functionality. This is because, in our context, the circuit being evaluated will be
a relation circuit with the statement hard-coded and should always output 1 in
order to convince the verifier.

Definition 6 (F-universally simulatable MPC). Let Π be an n-party MPC
protocol that is capable of securely computing any function f ∈ F (where F :
X n → O) against any semi-honest adversary A who corrupts a set I ⊂ [n] of
parties, such that I ∈ C, where C is the set of admissible corruption sets. We say
that Π is F-universally simulatable if there exists a 3-tuple of PPT functions
(ExecuteMPC,ExpandViews,CondenseViews) and a non-uniform PPT simulator
Sf-mpc : F × C × O → V ∗, defined as follows

– ({viewi}i∈[n], o) ← ExecuteMPC(f, {xi}i∈[n]): This function takes inputs of
the parties {xi}i∈[n] ∈ X n and a function f ∈ F as input and returns the
views {viewi}i∈[n] of all parties and their output o ∈ O in protocol Π.

– {con.viewi}i∈I ← CondenseViews(f, I, {viewi}i∈I , o): This function takes as
input the set of corrupt parties I ∈ C, views of the corrupt parties {viewi}i∈I
and the output of the protocol o ∈ O and returns their condensed views
{con.viewi}i∈I .

– {viewi}i∈I ← ExpandViews(f, I, {con.viewi}i∈I , o): This function takes as
input the functionality f ∈ F , set of corrupt parties I ∈ C, condensed views
{con.viewi}i∈I of the corrupt parties and the output of the protocol o ∈ O and
returns their views {viewi}i∈I .

– {con.viewi}i∈I ← Sf-mpc(f, I, {xi}i∈I , o): The simulator takes as input the
functionality f ∈ F , set of corrupt parties I ∈ C, inputs of the corrupt parties
{xi}i∈I ∈ X |I| and the output of the protocol o ∈ O and returns simulated
condensed views {con.viewi}i∈I of the corrupt parties.

And these functions satisfy the following properties:

1. Condensing-Expanding Views is Deterministic: For all {xi}i∈[n] ∈ X n

and ∀f ∈ F , let ({viewi}i∈[n], o) ← ExecuteMPC(f, {xi}i∈[n]). For all I ∈ C
it holds that:

Pr [ExpandViews(f, I,CondenseViews(f, I, {viewi}i∈I , o), o) = {viewi}i∈I] = 1

A Framework to Compose Σ-Protocols for Disjunctions 481

2. Indistinguishability of Simulated Views from real execution: For all
{xi}i∈[n] ∈ X n and ∀f ∈ F , let ({viewi}i∈[n], o) ← ExecuteMPC(f, {xi}i∈[n]).
For all I ∈ C it holds that:

CondenseViews(f, I, {viewi}i∈I , o) ≈ Sf-mpc(f, I, {xi}i∈I , o)

3. Indistinguishability of Simulated Views for all functions: For any
I ∈ C, all inputs {xi}i∈I ∈ X |I| of the corrupt parties, and all outputs o ∈ O,
there exists a function-independent distribution D{xi}i∈I ,o, such that ∀f ∈ F ,
if ∃{xi}i∈[n]\I for which f({xi}i∈[n]\I , {xi}i∈I) = o, then it holds that:

D{xi}i∈I ,o ≈ Sf-mpc(f, I, {xi}i∈I , o)

We note that a central notion used in the “stacked-garbling literature” (for
communication efficient disjunction for garbled circuit based zero-knowledge
proofs) is a special case of F-universally simulatable:

Remark 4 (Topology Decoupled Garbled Circuits and F-universally simulat-
able MPC.). The notion of topology decoupled garbled circuits introduced by
Kolesnikov [36] is a special case of F-universally simulatable MPC: a topology
decoupled garbled circuit (E, T) separates the cryptographic material (E, e.g.
garbling tables) and topology (T , i.e. wiring) of a garbled circuit and (informally
stated) requires that generating E for different topologies introduces indistin-
guishable distributions. Letting X be the garbled input labels14 held by the
evaluator, in F-universally simulatable terminology (E,X) would constitute the
“condensed view”, while (E,X, T)15 would constitute the “expanded views” ,
indistinguishablilty of simulated views for functions with the same number of
gates and inputs follows easily from the “topology decoupling“of the garbled
circuits and the uniform distribution of the input labels.

In the full version [23], we prove the following theorem, which states that
when instantiated with an F-universally simulatable MPC protocol, Theorem 2
yields a stackable Σ-protocol for languages with relation circuits in F .

Theorem 3 (F-universally simulatable implies stackable). The IKOS
compiler (see Theorem 2) yields an stackable Σ-protocol for languages with
relation circuit in F when instantiated with an F-universally simulatable MPC
protocol (see Definition 6) with privacy and robustness against a subset of the
parties.

In the full version, we use Theorem 3 to show that two popular IKOS-based
Σ-protocols are stackable, namely KKW [35] and Ligero [2].

14 Obtained using an oblivious transfer.
15 Where T can be computed from f .

482 A. Goel et al.

Self-Stacking Compiler

Statement: x = x1, . . . , xn

Witness: w = (α, wα)

– First Round: Prover computes A (x,w; rp) → a as follows:
• Parse rp = (rp

α r).
• Compute aα ← A(xα, wα; rp

α).
• Set v = (v1, . . . , v), where vα = aα and ∀i ∈ [] \ α, vi = 0.
• Compute (ck, ek) ← Gen(pp, B = {α}).
• Compute (com, aux) ← EquivCom(pp, ek,v; r).
• Send a = (ck, com) to the verifier.

– Second Round: Verifier samples c ← {0, 1}λ and sends it to the prover.
– Third Round: Prover computes Z (x,w, c; rp) → z as follows:

• Parse rp = (rp
α r).

• Compute z∗ ← Z(xα, wα, c; rp
α).

• For i ∈ []/α, compute ai ← Sehvzk(xi, c, z
∗).

• Set v = (a1, . . . , a)
• Compute r ← Equiv(pp, ek,v,v , aux) (where aux can be regenerated with r).
• Send z = (ck, z∗, r) to the verifier.

– Verification: Verifier computes φ (x, a, c, z) → b as follows:
• Parse a = (ck, com) and z = (ck , z∗, r)
• Set ai ← Sehvzk(xi, c, z

∗)
• Set v = (a1, . . . , a)
• Compute and return:

b = (ck ?= ck) ∧ com
?= BindCom(pp, ck,v ; r) ∧

⎛

⎝
i∈[]

φ(xi, ai, c, z
∗)

⎞

⎠

Fig. 3. A compiler for stacking multiple instances of a Σ-protocol.

6 Self-stacking: Disjunctions with the Same Protocol

We now present a self-stacking compiler for Σ-protocols, presented in Fig. 3.
By self-stacking, we mean a compiler that takes a stackable Σ-protocol Π for a
language L and produces a Σ-protocol for language with disjunctive statements
of the form (x1 ∈ L) ∨ (x2 ∈ L) ∨ . . . ∨ (x� ∈ L) with communication complexity
proportional to the size of a single run of the underlying Σ-protocol (along with
an additive factor that is linear in � and λ). The key ingredient in our compiler
is the partially-binding vector commitments (See Definition 2), which will allow
the prover to efficiently compute verifying transcripts for the inactive clauses.

The compiler generates an accepting transcript (aα, c, z∗) to the active clause
α ∈ [�] using the witness, and then simulates accepting transcripts for each non-
active clause, using the extended simulator. Recall that this extended simulator
takes in a third round message z and a challenge c and produces a first round

A Framework to Compose Σ-Protocols for Disjunctions 483

message a such that φ(x, a, c, z) = 1. Thus, the prover can re-use the third round
message z∗, for each simulated transcript, thereby reducing communication to
the size of a single third round message. For a more detailed overview, we refer
the reader to Sect. 2.

We now present a formal description of the self-stacking compiler, which we
prove in the full version of the paper [23].

Theorem 4 (Self-Stacking). Let Π = (A,Z, φ) be a stackable (See Def-
inition 5) Σ-protocol for the NP relation R : X × W → {0, 1} and let
(Setup,Gen,EquivCom,Equiv,BindCom) be a 1-out-of-� binding vector commit-
ment scheme (See Definition 2). For any pp ← Setup(1λ), the compiled protocol
Π ′ = (A′, Z ′, φ′) described in Fig. 3 is a stackable Σ-protocol for the relation
R′ : X � × ([�] × W) → {0, 1}, where R′((x1, . . . , x�), (α,w)) := R(xα, w).

Communication Complexity. Let CC(Π) be the communication complexity
of Π. Then, the communication complexity of the Π ′ obtained from Theorem
4 is (CC(Π) + |ck| + |com| + |r′|), where the sizes of ck, com and r′ depends on
the choice of partially-binding vector commitment scheme and are independent
of CC(Π). With our instantiation of partially binding vector commitments, the
size of |ck|, |r′| will depend linearly on �. However since our resulting protocol
Π ′ is also stackable, the communication complexity can be reduced further to
CC(Π) + 2 log(�)(|ck| + |com| + |r′|) by recursive application of the compiler as
follows: let Π1 = Π and for n > 1 let Π2n be the outcome of applying the
compiler from Theorem 4 with � = 2 to Πn. Note that Π� only applies the
stacking compiler �log(�)� times and that CC(Π2n) = CC(Πn)+ |ck|+ |com|+ |r′|.
Therefore CC(Π�) = CC(Π) + 2 log(�)(|ck| + |com| + |r′|).
Computational Complexity. In general, the computation complexity of this
protocol is � times that of Π. However, in many protocols, the simulator is much
faster than computing an honest transcript. We note that for such protocols, our
compiler is expected to also get savings in the computation complexity.

6.1 Extending to Multiple Languages

Many known constructions of Σ-protocols work for more than one language. For
instance, most MPC-in-the-head style Σ-protocols (e.g. KKW [35], Ligero [2])
can support all languages with a polynomial sized relation circuit, as long as
the underlying MPC protocol works for any polynomial sized function. How-
ever, because Σ-protocols are defined w.r.t. a particular NP language/relation,
instantiating [35] for two different NP languages L1 and L2 will (by definition)
result in two distinct Σ-protocols. Therefore, applied näıvely, our compiler could
only be used to stack Σ-protocols from [35] for the exact same relation circuit.

We explore two alternatives for overcoming this limitation. First, we note
that in many situations it is trivial to generalize our technique to cover
“Σ-protocols based on a particular technique,” e.g. protocols based on [35]. This
can be done using a “meta-language” like circuit satisfiability that generalizes

484 A. Goel et al.

across multiple NP languages without introducing a high NP-reduction cost. In
the full-version of this paper [23], we explore a conceptually different approach,
we call cross-stacking. Our cross-stacking compiler applies the self-stacking tech-
niques to different Σ-protocols (both based on a single technique and otherwise)
without modifying the Σ-protocols. The major barrier is that the third round
message distributions of the Σ-protocols are different, so third round messages
may not be recyclable. To overcome this, we define a distribution which captures
the “union” of the third round message distributions of each Σ-protocol, and
map messages into and out of this distribution. The communication complexity
of the resulting protocol is determined by the size of this distribution. We give
concrete case studies of cross-stacking various Σ-protocols.

Acknowledgments. We would like to thank the anonymous reviewers of CRYPTO
2021 for their helpful comments on our initial construction of the partially-binding
commitments. Additionally, we would like to thank Nicholas Spooner for his helpful
comments on the definition of our commitments.

The first and second authors are supported in part by NSF under awards CNS-
1653110, and CNS-1801479, and the Office of Naval Research under contract N00014-
19-1-2292. The first author is also supported in part by NSF CNS grant 1814919,
NSF CAREER award 1942789 and the Johns Hopkins University Catalyst award.
The second author is also funded by DARPA under Contract No. HR001120C0084,
as well as a Security and Privacy research award from Google. The third author is
funded by Concordium Blockhain Research Center, Aarhus University, Denmark. The
forth author is supported by the National Science Foundation under Grant #2030859
to the Computing Research Association for the CIFellows Project and is supported by
DARPA under Agreements No. HR00112020021 and Agreements No. HR001120C0084.
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the United States
Government or DARPA.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press (2017)

3. Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical applica-
tion to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III, LNCS, vol. 12172, pp. 513–543. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 18

4. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k -out-of-n partial knowl-
edge. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp.
65–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 3

5. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac′n′Cheese: zero-knowledge
proofs for Boolean and arithmetic circuits with nested disjunctions. In: Malkin, T.,
Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 92–122. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84259-8 4

https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-84259-8_3
https://doi.org/10.1007/978-3-030-84259-8_4

A Framework to Compose Σ-Protocols for Disjunctions 485

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press (1988)

7. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press (2014)

8. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II, LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

9. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I, LNCS, vol. 11476, pp. 103–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2 4

10. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Fu, K., Jung, J. (eds.) USENIX
Security 2014, pp. 781–796. USENIX Association (2014)

11. Blum, M.: How to prove a theorem so no one else can claim it. pp. 1444–1451
(1987)

12. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015, Part I, LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24174-6 13

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press (2018)

14. Chaum, D., Pedersen, T.P.: Transferred cash grows in size. In: Rueppel, R.A. (ed.)
EUROCRYPT 1992. LNCS, vol. 658, pp. 390–407. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-47555-9 32

15. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR-
composition of sigma-protocols. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016,
Part II, LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49099-0 5

16. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or:
can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 424–441. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055745

17. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

18. Fauzi, P., Lipmaa, H., Pindado, Z., Siim, J.: Somewhere statistically binding com-
mitment schemes with applications. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS,
vol. 12674, pp. 436–456. Springer, Heidelberg (2021). https://doi.org/10.1007/978-
3-662-64322-8 21

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/3-540-47555-9_32
https://doi.org/10.1007/978-3-662-49099-0_5
https://doi.org/10.1007/978-3-662-49099-0_5
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-662-64322-8_21
https://doi.org/10.1007/978-3-662-64322-8_21
https://doi.org/10.1007/3-540-47721-7_12

486 A. Goel et al.

20. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with
applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part II, LNCS, vol. 9057, pp. 191–219. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 7

21. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
177–194. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 11

22. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

23. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: a frame-
work to compose Σ-protocols for disjunctions. Cryptology ePrint Archive, Report
2021/422 (2021). https://eprint.iacr.org/2021/422

24. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In: 27th
FOCS, pp. 174–187. IEEE Computer Society Press (1986)

25. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

26. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press
(1985)

27. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

28. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II, LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

29. Guillou, L.C., Quisquater, J.-J.: A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, New York (1990). https://doi.org/10.1007/0-387-
34799-2 16

30. Heath, D., Kolesnikov, V.: Stacked garbling - garbled circuit proportional to longest
execution path. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II,
LNCS, vol. 12171, pp. 763–792. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56880-1 27

31. Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III, LNCS, vol. 12107,
pp. 569–598. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-
3 19

32. Heath, D., Kolesnikov, V., Peceny, S.: MOTIF: (almost) free branching in GMW -
via vector-scalar multiplication. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020,
Part III, LNCS, vol. 12493, pp. 3–30. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64840-4 1

33. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.; Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press (2007)

34. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: Sadeghi, A.-R., Gligor, V.D.,
Yung, M. (eds.) ACM CCS 2013, pp. 955–966. ACM Press (2013)

https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/3-540-39200-9_11
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://eprint.iacr.org/2021/422
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-64840-4_1
https://doi.org/10.1007/978-3-030-64840-4_1

A Framework to Compose Σ-Protocols for Disjunctions 487

35. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press (2018)

36. Kolesnikov, V.: Free IF : how to omit inactive branches and implement S-universal
garbled circuit (almost) for free. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018, Part III, LNCS, vol. 11274, pp. 34–58. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03332-3 2

37. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

38. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

39. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

40. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
41. Swisspost evoting: E-voting system 2019. https://gitlab.com/swisspost-evoting/e-

voting-system-2019 (2019)
42. Zaverucha, G.: The picnic signature algorithm. Technical report (2020). https://

github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf

https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/BF00196725
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf

One-Shot Fiat-Shamir-Based NIZK
Arguments of Composite Residuosity
and Logarithmic-Size Ring Signatures

in the Standard Model

Benôıt Libert1,2(B), Khoa Nguyen3, Thomas Peters4, and Moti Yung5

1 CNRS, Laboratoire LIP, Lyon, France
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL),

Lyon, France
benoit.libert@ens-lyon.fr

3 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong, Australia

4 FNRS and UCLouvain (ICTEAM), Ottignies-Louvain-la-Neuve, Belgium
5 Google and Columbia University, New York, USA

Abstract. The standard model security of the Fiat-Shamir transform
has been an active research area for many years. In breakthrough results,
Canetti et al. (STOC’19) and Peikert-Shiehian (Crypto’19) showed that,
under the Learning-With-Errors (LWE) assumption, it provides sound-
ness by applying correlation-intractable (CI) hash functions to so-called
trapdoor Σ-protocols. In order to be compatible with CI hash functions
based on standard LWE assumptions with polynomial approximation fac-
tors, all known such protocols have been obtained via parallel repetitions
of a basic protocol with binary challenges. In this paper, we consider lan-
guages related to Paillier’s composite residuosity assumption (DCR) for
which we give the first trapdoor Σ-protocols providing soundness in one
shot, via exponentially large challenge spaces. This improvement is anal-
ogous to the one enabled by Schnorr over the original Fiat-Shamir pro-
tocol in the random oracle model. Using the correlation-intractable hash
function paradigm, we then obtain simulation-sound NIZK arguments
showing that an element of Z∗

N2 is a composite residue, which opens the
door to space-efficient applications in the standard model. As a concrete
example, we build logarithmic-size ring signatures (assuming a common
reference string) with the shortest signature length among schemes based
on standard assumptions in the standard model. We prove security under
the DCR and LWE assumptions, while keeping the signature size compa-
rable with that of random-oracle-based schemes.

Keywords: NIZK arguments · Compactness · Simulation-soundness ·
Composite residuosity · Fiat-Shamir · Ring signatures · Standard
model

K. Nguyen—This work was done while this author was at Nanyang Technological
University, SPMS, Singapore.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 488–519, 2022.
https://doi.org/10.1007/978-3-031-07085-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_17&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_17

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 489

1 Introduction

The Fiat-Shamir transform [40] is a famous technique that collapses interactive
protocols into non-interactive proof systems by computing the verifier’s chal-
lenges as hash values of the transcript so far. Since its introduction, it enabled
a wide range of applications in the random oracle model (ROM) although it
may fail to preserve soundness in general [43]. In the standard model, it was not
known to be safely instantiable under standard assumptions until recently. The
beautiful work of Canetti et al. [15] and Peikert and Shiehian [66] changed this
state-of-affairs by showing the existence of Fiat-Shamir-based non-interactive
zero-knowledge (NIZK) proofs for all NP languages under the Learning-With-
Errors (LWE) assumption [67]. Their results followed the methodology of cor-
relation intractable (CI) hash functions [17], which can sometimes emulate the
properties of random oracles in the standard model.

In short, correlation intractability for a relation R requires the infeasibility of
finding x such that (x,Hk(x)) ∈ R given a random hashing key k. This property
provides soundness because, with high probability, it prevents a cheating prover’s
first message from being hashed into a challenge admitting a valid response.
Canetti et al. [18] formalized this intuition by observing that it suffices to build
CI hash functions for efficiently searchable relations as long as Fiat-Shamir is
applied to trapdoor Σ-protocols. These are like standard Σ-protocols with two
differences. First, they assume a common reference string (CRS). Second, there
exists an efficiently computable function BadChallenge that inputs a trapdoor τΣ

together with a false statement x �∈ L and a first prover message a in order to
compute the only challenge Chall such that an accepting transcript (a,Chall, z)
exists for some response z. If BadChallenge is efficiently computable, soundness
can be achieved using CI hash functions for any efficiently computable relation,
which covers the case of the relation R such that (x, y) ∈ R if and only if
y = BadChallenge(τΣ , x, a).

While the results of [15,66] resolve the long-standing problem of realizing
NIZK proofs for all NP under standard lattice assumptions, they raise the nat-
ural open question of whether LWE-based correlation-intractable hash functions
can lead to compact proofs/arguments for specific languages like subgroup mem-
bership. In this paper, we consider this problem for Paillier’s composite residu-
osity assumption [64] for which we obtain NIZK arguments that are roughly as
short as those obtained from the Fiat-Shamir heuristic in the ROM. In particu-
lar, we aim at trapdoor Σ-protocols that ensure soundness in one shot, without
going through Θ(λ) parallel repetitions to achieve negligible soundness error.
Our Contribution. We provide space-efficient NIZK arguments showing that
an element is a composite residue in the group Z

∗
N2 , for an RSA modulus N = pq.

In particular, we can argue that Paillier [64] or Damg̊ard-Jurik [34] ciphertexts
decrypt to 0. These arguments extend to handle multiplicative relations between
Paillier ciphertexts. We achieve this by showing that several natural Σ-protocols
for Paillier-related languages can be extended into trapdoor Σ-protocols with an
exponentially large challenge space, which achieve negligible soundness error in
a single protocol execution. To our knowledge, we thus obtain the first trapdoor
Σ-protocols that guarantee soundness without parallel repetitions.

490 B. Libert et al.

Our constructions provide multi-theorem statistical NIZK and their sound-
ness can be proved under the Learning-With-Errors (LWE) assumption. In addi-
tion, we show how to upgrade them into unbounded simulation-sound NIZK
arguments based on the LWE and DCR assumptions. In their single-theorem
version, our arguments of composite residuosity are as short as their random-
oracle-based counterpart obtained from the Fiat-Shamir heuristic. Their multi-
theorem and simulation-sound extensions are only longer by a small constant
factor. In particular, we can turn any trapdoor Σ-protocol into an unbounded
simulation-sound NIZK argument for the same language while only lengthening
the transcript by the size of a Paillier ciphertext and its randomness.

As a main application, we obtain logarithmic-size ring signatures with con-
cretely efficient signature length in the standard model. Recall that ring sig-
natures allow a signer to sign messages while hiding in an ad hoc set of users
called a ring. To this end, the signer only needs to know the public keys of all
ring members and its own secret key. So far, the only known logarithmic-size
realizations in the standard model under standard assumptions [3,24] incur very
large signatures due to the use of witness indistinguishable proofs for NP. In con-
trast, we obtain fairly short signatures comprised of a small number of Paillier
ciphertexts while retaining security under well-studied assumptions. For rings of
R = 2r users, each signature fits within the equivalent of 15r + 7 RSA moduli,
which is only 3 times as large as in a Fiat-Shamir-like construction in the ran-
dom oracle model under the DCR assumption. The unforgeability of our scheme
is proved under the DCR and LWE assumptions while its anonymity holds for
unbounded adversaries.

To our knowledge, our NIZK arguments for DCR-related languages give the
first examples where, under standard assumptions, Fiat-Shamir-based arguments
in the standard model can be almost as short as those in the random oracle
model. We believe they can find many other applications than ring signatures.
For example, they easily extend to prove multiplicative relations among Paillier
ciphertexts, which is a common task in MPC [30] or voting protocols [34]. The
trapdoor Σ-protocol of our DCR-based ring signature can also be used in other
applications of compact 1-out-of-R proofs [45,46].

Technical Overview. Ciampi et al. [27] recently showed that any Σ-protocol
can be turned into a trapdoor Σ-protocol with small (i.e., binary) challenge
space, which requires many repetitions to achieve negligible soundness error. In
order to obtain an exponentially large challenge space in one shot, we rely on
earlier an observation by Chaidos and Groth [21] who noticed that a certain
family of encryption schemes with linearly homomorphic properties over their
message and randomness spaces admit a trapdoor Σ-protocol for the language
L0 = {x | ∃w ∈ R : x = Epk(0;w)} of encryptions of 0. At a high level, if the
prover’s first message is an encryption a = Epk(0; r) of 0 and the verifier sends
a challenge Chall, the response z = r + Chall · w satisfies a · xChall = Epk(0; z).
If x �∈ L0, the special soundness property ensures that, for any given a, there
is at most one Chall such that a · xChall = Epk(0; z) for some z ∈ R. Moreover,
the secret key sk can serve as a trapdoor τΣ to compute BadChallenge(τΣ , x, a)

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 491

for any element a of the ciphertext space. Indeed, if Chall lives a polynomial-size
set (say {0, 1}log λ), the bad challenge is efficiently computable by outputting
the first Chall ∈ {0, 1}log λ for which Dsk(a · xChall) = 0. The above construction
thus decreases the number of parallel repetitions by a factor O(log λ). Using
the Okamoto-Uchiyama cryptosystem [63], Chaidos and Groth [21] apply the
above technique to identify bad challenges within an exponentially large chal-
lenge space. A follow-up work by Lipmaa [58] shows that, although the plaintext
space of Paillier’s cryptosystem [64] has non-prime order N = pq, bad chal-
lenges are still computable using the factorization of N as long as the challenge
space is contained in {0, . . . ,min(p, q) − 1}. We actually identify a gap in [58],
which adapts the Chaidos-Groth technique [21] to build designated verifier NIZK
proofs that an Elgamal-Paillier ciphertext [13] encrypts 0. The proof of sound-
ness of [58, Theorem 2] implicitly constructs a trapdoor Σ-protocol showing
that (C0, C1) = (gr mod N2, (1 + N)b · hr mod N2) encrypts b = 0. We actually
show that, for false statements, the extractor may fail to extract the bad chal-
lenge when a maliciously generated first prover message is outside the range of
the encryption algorithm. Our trapdoor Σ-protocol for DCR proceeds like the
extractor of [58, Theorem 2] but avoids this problem as it only relies on the Pail-
lier/Damg̊ard-Jurik encryption scheme, which has the property that all elements
of the ciphertext space encrypt something.

In order to obtain a multi-theorem NIZK argument of composite residuos-
ity, we can then apply the construction of [55, Appendix B], which compiles
any trapdoor Σ-protocol into a NIZK argument for the same language using
a lossy encryption scheme with equivocable lossy mode. As considered [4,72],
lossy encryption is a primitive where ciphertexts encrypted under lossy public
keys – which are computationally indistinguishable from injective ones – statisti-
cally hide the underlying plaintexts. Moreover, the equivocation property (a.k.a.
“efficient opening” [4]) makes it possible to trapdoor open any lossy ciphertext
exactly as in a trapdoor commitment. It is known [47] that Paillier’s cryptosys-
tem [64] provides these properties under the DCR assumption.

However, in the context of the signature-of-knowledge paradigm [23], we need
NIZK arguments with unbounded simulation-soundness [35]. Libert et al. [55]
showed that any trapdoor Σ-protocol can be turned into an USS argument for
the same language using a generalization of the R-lossy encryption primitive
introduced by Boyle et al. [9]. In [55], they introduced two distinct equivocation
properties and gave a candidate based on the LWE assumption. In order to opti-
mize the signature length, we give an efficient equivocable R-lossy encryption
candidate under the DCR assumption. This task is non-trivial since injective keys
have to be indistinguishable from lossy keys, even when one of the equivocation
trapdoors is given. Yet, our candidate only uses the DCR assumption while [55]
used fairly powerful tools (i.e., lattice trapdoors [41]) to equivocate lossy cipher-
texts. Although our DCR-based realization satisfies slightly weaker properties
than those of [55], we prove it sufficient to obtain simulation-soundness. It thus
allows compiling trapdoor Σ-protocols into unbounded simulation-sound NIZK
arguments without using lattice trapdoors.

492 B. Libert et al.

Armed with a DCR-based construction of USS arguments, we then build a
simulation-sound NIZK argument that one-out-of-many elements of Z

∗
N2 is a

composite residue. To this end, we provide a DCR-based variant of the Groth-
Kohlweiss (GK) [46] Σ-protocol, which allows proving that one out of R commit-
ments contains 0 with communication cost O(log R). The reason why DCR is the
most promising assumption towards trapdooring [46] is that, in its original ver-
sion, the GK protocol cannot immediately be turned into a trapdoor Σ-protocol
by applying the transformation of Ciampi et al. [27]. The main difficulty is that
it only yields (r + 1)-special-soundness for r = O(log R), so that up to r bad
challenges may exist for a false statement and a given first prover message. Even
if BadChallenge can identify them all for a given protocol iteration, over κ rep-
etitions, we end up with up to rκ combinations, which are not enumerable in
polynomial time for non-constant κ and r.1 In order to apply the LWE-based
CI hash function of [66], we construct a variant of GK with an exponentially
large challenge space and where BadChallenge can efficiently enumerate all bad
challenges after a single protocol iteration. We achieve this by extending our
trapdoor Σ-protocol showing composite residuosity, using a BadChallenge func-
tion that computes the roots of a degree-r (instead of a degree-1) polynomial.

Adapting [46] to Paillier-based commitments raises several difficulties if we
want to apply it in the context of ring signatures. In our security proofs, we need
the Σ-protocol to be statistically honest-verifier zero-knowledge. In the protocol
of [46] and our DCR-based variant, this requires that users’ public keys be com-
puted as statistically hiding commitments to 0. A first idea is to apply Paillier,
where ciphertexts C = gm · rN mod N2 are perfectly hiding commitments when
g is an N -th residue (and extractable commitments when N divides the order of
g). Unfortunately, as shown in [57, Section 2.6], using a statistically hiding com-
mitment is not sufficient to ensure statistical anonymity when the adversary can
introduce maliciously generated public keys in the ring. In the case of Paillier,
when g is an N -th residue, so is any honestly generated commitment. However,
in the anonymity game, the adversary can choose a ring containing malformed
public keys that are not N -th residues in Z

∗
N2 . This affects the statistical ZK

property since the simulator cannot fully randomize commitments by multiply-
ing them with a random commitment to 0. To address this issue, we need a
statistically hiding commitment which is “dense” in that commitments to 0 are
uniformly distributed over Z∗

N2 . In order to obtain trapdoor Σ-protocols, we also
need the commitment to be dual-mode as the BadChallenge function should be
able to efficiently extract committed messages in the perfectly binding setting.
We thus use commitments (suggested in [20] for their online/offline property)
of the form C = (1 + N)m · hy · wN mod N2, for randomness (y, w), which are
perfectly binding if h is an N -th residue and perfectly hiding if N divides the

1 Holmgren et al. [50] recently gave a technique allowing to address the combinatorial
explosion of bad challenges induced by parallel repetitions. In the full version of the
paper [56], we discuss the applicability of their approach to our setting. Although
it allows instantiations under the DDH assumption, these are considerably more
expensive that our DCR-based candidate.

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 493

order of h. Moreover, the latter configuration provides dense statistically hiding
commitments since commitments to 0 are uniformly distributed over Z

∗
N2 .

A second difficulty arises when we adapt the proof of unforgeability of the
Groth-Kohlweiss ring signature, which relies on the extractability property of
their Σ-protocol. They apply the forking lemma to extract an opening of a per-
fectly hiding commitment by replaying the adversary O(r) times. In the stan-
dard model, our reduction does not have the degree of freedom of replaying the
adversary with a different random oracle. Instead, we proceed with a sequence of
hybrid games that exploits the dual-mode property of our DCR-based commit-
ment and moves to a setting where the signer’s identity is only computationally
hidden. In one game, the commitment is switched to its extractable mode so
as to extract the committed bits ��

1 . . . ��
r ∈ {0, 1}r of the signer’s position ��

in the ring. In the next game, the reduction guesses which honestly generated
public key vk(i�) will be in the ring position �� and fails if this guess is incorrect.
Finally, we modify the key generation oracle and replace the expected target
user’s public key vk(i�) by a random element of Z∗

N2 in order to force the forgery
to prove a false statement. In the last game transition, the problem is that we
cannot immediately rely on the DCR assumption to change the distribution of
vk(i�) while using the factorization of N to extract ��

1 . . . ��
r . We thus involve two

distinct moduli in our DCR-based adaptation of GK. The use of distinct moduli
N and N̄ requires to adjust our Σ-protocol and force some equality to hold over
the integers (and thus modulo both N and N̄) between values a, � ∈ ZN̄ that
our BadChallenge function extracts from the commitments in the first prover
message. We enforce this condition by imposing an unusual range restriction to
some component of the response z = a + Chall · � ∈ Z: Instead of only checking
an upper bound for z, the verifier also checks a lower bound to ensure that no
implicit modular reduction occurs when homomorphically computing a+Chall ·�
over commitments sent by a malicious prover.

Using the above ideas, the proof of unforgeability requires reliable erasures.
The reason is that the security proof appeals to the NIZK simulator to answer
all signing queries. Hence, if the adversary corrupts some user i after a signing
query involving sk(i), the challenger has to pretend that the random coins of user
i’s past signatures have been erased as it cannot efficiently compute randomness
that explain the simulated NIZK arguments as real arguments. In a second step,
we modify the scheme to get rid of the erasure assumption.

A first idea to avoid erasures is to adapt the proof of unforgeability in such
a way that the NIZK simulator is only used to simulate signatures on behalf
of the expected target user (whose index i� is guessed upfront), while all other
users’ signatures are faithfully generated. If the guess is correct, user i� is never
corrupted and the reduction never gets stuck when it comes to explaining the
generation of signatures created by adaptively corrupted users. However, this
strategy raises a major difficulty since decoding the signer’s position �� in the
ring is only possible when the bits ��

1 . . . ��
r ∈ {0, 1}r of �� are committed using

extractable commitments {L�
i }r

i=1. At the same time, our security proof requires
the guessed index i� to be statistically independent of the adversary’s view until

494 B. Libert et al.

the forgery stage. In turn, this requires to simulate user i�’s signatures via statis-
tical NIZK arguments. Indeed, computational NIZK proofs would information-
theoretically leak the index i� of the only user for which the NIZK simulator is
used in signing queries. Unfortunately, perfectly binding commitments are not
compatible with statistical ZK in our setting. To resolve this tension, we need a
commitment which is perfectly hiding in all signing queries and extractable in
the forgery. Moreover, for anonymity purposes, the perfectly hiding mode should
make it possible to perfectly randomize adversarially-chosen commitments when
we multiply them with commitments to 0. We instantiate this commitment using
a variant (called “dense R-lossy PKE” hereafter) of our DCR-based R-lossy PKE
scheme. Like our original R-lossy PKE system, it can be programmed to be
statistically hiding in all signing queries and extractable in the forgery, but it
features different properties: It does not have to be equivocable, but we need its
lossy mode to be dense in Z

∗
N2 (a property not met by our equivocable R-lossy

PKE) in order to use it in a statistically HVZK Σ-protocol.

Related Work. The negative results (e.g., [17,43]) on the standard-model
soundness of Fiat-Shamir did not rule out the existence of secure instantia-
tions when specific protocols are compiled using concrete hash functions. A large
body of work [10,14,16,26,29,49,52,59,71] investigated the circumstances under
which CI hash functions [17] lead to secure standard model instantiations of the
paradigm. Canetti et al. [15] showed that correlation intractability for efficiently
searchable relations suffices to remove interaction from any trapdoor Σ-protocol.
This includes their variant of [39] for the language of Hamiltonian graphs, which
enables Fiat-Shamir-based proofs for all NP. They also gave candidates assuming
the existence of fully homomorphic encryption (FHE) with circular security [18].
Peikert and Shiehian [66] subsequently achieved the same result under the stan-
dard LWE assumption [67].

Canetti et al. [15,18] gave trapdoor Σ-protocols for the languages of Hamil-
tonian graphs and quadratic residues in Z

∗
N [42]. Like the generic trapdoor Σ-

protocol of [27], they proceed with parallel repetitions of a Σ-protocol with
challenge space {0, 1}. CI hash functions were also used to compress protocols
with multiple interaction rounds [14,26,52,59] and larger challenges. Lombardi
and Vaikuntanathan [59] notably extended the CI paradigm beyond the class
of protocols where the BadChallenge function is efficiently computable. In this
case, however, evaluating the hash function in polynomial time requires a fairly
strong LWE assumption to ensure correlation intractability. Brakerski et al. [10]
considered a stronger notion of correlation intractability which allows handling
relations where the BadChallenge function can only be approximated by a distri-
bution over constant-degree polynomials. They thus obtained Fiat-Shamir-based
NIZK arguments from standard assumptions that are not known to imply FHE.

In the following, we consider 3-message protocols where bad challenges are
efficiently (and exactly) computable – and thus enable the use of polynomial-
time-computable CI hash functions based on standard lattice assumptions – in
an exponentially large set after a single protocol run.

Ring signatures were coined by Rivest, Shamir and Tauman [68]. They enable
unconditional anonymity and involve no registration phase nor any tracing

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 495

authority. Whoever has a public key can be appointed as a ring member without
being asked for his consent or even being aware of it. The original motivation of
ring signatures was to enable the anonymous leakage of secrets, by concealing
the identity of a source (e.g., a whistleblower in a political scandal) while simul-
taneously providing reliability guarantees. Recently, the primitive also found
applications in the context of cryptocurrencies [62].

After the work of Rivest, Shamir and Tauman [68], a number of solutions
were given under various assumptions [1,2,11,12,46,65,70]. Bender et al. [6] gave
stronger definitions and constructions from general assumptions. In the standard
model, more efficient schemes were given [8,70] in groups with a bilinear map.
Brakerski and Tauman [11] gave the first constructions from lattice assumptions.

In early realizations [8,12,68,70], the size of signatures was linear in the num-
ber of ring members. Dodis et al. [36] suggested constant-size ring signatures in
the random oracle model. Chase and Lysyanskaya [23] took a similar approach
while using simulation-extractable NIZK proofs in the standard model. However,
it is not clear how to adapt their approach without using generic NIZK. Assum-
ing a common reference string, constructions with sub-linear-size signatures in
the standard model were given in [22,28,44]. Malavolta and Schröder [60] used
SNARKs (and thus non-falsifiable assumptions) to obtain constant-size signa-
tures. In the random oracle model, Groth and Kohlweiss [46] obtained an elegant
construction with logarithmic-size ring signatures under the discrete logarithm
assumption. Lattice-based analogues of [46] were given in [37,38].

The log-size signatures of [46,54,57] are obtained by applying Fiat-Shamir to
Σ-protocols that are not immediately compatible with the BadChallenge func-
tion paradigm. In their settings, it would require to iterate a basic Σ-protocol
(with small challenge space) a super-constant number of times, thus leading to a
combinatorial explosion in the total number of bad challenges as each iteration
would tolerate more than one bad challenge. Backes et al. [3] and Chatterjee et
al. [24] eliminated the need for a CRS while retaining logarithmic signature size.
However, they did not provide concrete signature sizes and, due to the use of
general NIWI/ZAPs techniques, their constructions would require much longer
signatures than ours for any realistic ring cardinality. For instance, even for very
small rings, the construction of [24] would incur signatures comprised several
hundreds of Megabytes to represent O(λ3) FHE ciphertexts. In stark contrast
with earlier solutions, our signatures would still fit within ≈ 1.5Mb (using 3072-
bit RSA moduli) for rings as large as the number of atoms in the universe.

While our construction relies on a common reference string, it features (to
our knowledge) the first logarithmic-size signatures with concretely efficient sig-
nature length and security under standard assumptions in the standard model.

2 Background and Definitions

For any t ≥ 2, we denote by Zt the ring of integers with addition and multi-
plication modulo t. For a finite set S, U(S) stands for the uniform distribution
over S. If X and Y are distributions over the same domain, Δ(X,Y) denotes
their statistical distance. For a distribution D, x ∼ D means that x is distributed
according to D, while x ←↩ D denotes the explicit action of sampling x from D.

496 B. Libert et al.

2.1 Hardness Assumptions

We first recall the Learning-With-Errors (LWE) assumption.

Definition 2.1 ([67]). Let m ≥ n ≥ 1, q ≥ 2 be functions of a security parame-
ter λ and let a distribution χ over Z. The LWE problem consists in distinguishing
between the distributions (A,As+e) and U(Zm×n

q ×Z
m
q), where A ∼ U(Zm×n

q),
s ∼ U(Zn

q) and e ∼ χm.

When χ is the discrete Gaussian distribution DZm,αq with standard deviation αq
for some α ∈ (0, 1), this problem is as hard as worst-case instances of well-studied
lattice problems. We now recall the Composite Residuosity assumption.

Definition 2.2 ([34,64]). Let integers N = pq and ζ > 1 for primes p, q. The
ζ-Decision Composite Residuosity (ζ-DCR) assumption states that the dis-
tributions {x = wNζ

mod N ζ+1 | w ← U(Z�
N)} and {x | x ← U(Z�

Nζ+1)} are
computationally indistinguishable.

It is known [34] that the ζ-DCR assumption is equivalent to 1-DCR for any ζ > 1.

2.2 Correlation Intractable Hash Functions

We consider efficiently enumerable [15] relations R ⊆ X × Y where, for each
x ∈ X , there is a polynomial number of elements y ∈ Y satisfying R(x, y) = 1.
Moreover, these are efficiently enumerable.

Definition 2.3. A relation R ⊆ X ×Y is enumerable in time T if there exists
a function fR : X → 2Y computable in time T such that, for each x ∈ X ,
fR(x) = {yx ∈ Y | (x, yx) ∈ R}. If maxx∈X |fR(x)| ≤ 1, it is called searchable.

Let λ ∈ N a security parameter. A hash family with input length n(λ) and
output length λ is a collection H = {hλ : {0, 1}s(λ) × {0, 1}n(λ) → {0, 1}λ}
of keyed functions induced by efficient algorithms (Gen,Hash), where Gen(1λ)
outputs a key k ∈ {0, 1}s(λ) and Hash(k, x) computes hλ(k, x) ∈ {0, 1}λ.

Definition 2.4. For a relation ensemble {Rλ ⊆ {0, 1}n(λ) × {0, 1}λ}, a hash
function family H = {hλ : {0, 1}s(λ)×{0, 1}n(λ) → {0, 1}m(λ)} is R-correlation
intractable if, for any probabilistic polynomial time (PPT) adversary A, we
have Pr

[
k ← Gen(1λ)), x ← A(k) : (x, hλ(k, x)) ∈ R

]
= negl(λ).

Peikert and Shiehian [66] described a CI hash family for any searchable rela-
tion defined by functions f of bounded depth. Their construction relies on the
standard LWE assumption with polynomial approximation factors. Their proof
was given for efficiently searchable relations. However, it also implies correlation
intractability for efficiently enumerable relations, as observed in [18,52].

2.3 Admissible Hash Functions

Admissible hash functions were introduced in [7] as a combinatorial tool for
partitioning-based security proofs.

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 497

Definition 2.5 ([7]). Let �(λ), L(λ) ∈ N be functions of λ ∈ N. Let an effi-
ciently computable function AHF : {0, 1}� → {0, 1}L. For each K ∈ {0, 1,⊥}L,
let the partitioning function FADH(K, ·) : {0, 1}� → {0, 1} such that

FADH(K,X) :=
{

0 if ∀i ∈ [L] (AHF(X)i = Ki) ∨ (Ki =⊥)
1 otherwise

We say that AHF is an admissible hash function if there exists an effi-
cient algorithm AdmSmp(1λ, Q, δ) that takes as input Q ∈ poly(λ) and a non-
negligible δ(λ) ∈ (0, 1] and outputs a key K ∈ {0, 1,⊥}L such that, for all
X(1), . . . , X(Q),X� ∈ {0, 1}� such that X� �∈ {X(1), . . . , X(Q)}, we have

Pr
K

[
FADH(K, X(1)) = · · · = FADH(K, X(Q)) = 1 ∧ FADH(K, X�) = 0

]
≥ δ(Q(λ)) .

It is known that admissible hash functions exist for �, L = Θ(λ).

Theorem 2.6 ([51, Theorem 1]). Let (C�)�∈N
be a family of codes C� :

{0, 1}� → {0, 1}L with minimal distance cL for some constant c ∈ (0, 1/2). Then,
(C�)�∈N

is a family of admissible hash functions. Furthermore, AdmSmp(1λ, Q, δ)
outputs a key K ∈ {0, 1,⊥}L for which η = O(log λ) components are not ⊥ and
δ(Q(λ)) is a non-negligible function of λ.

2.4 Trapdoor Σ-protocols

Canetti et al. [18] defined a trapdoor variant of the notion of Σ-protocols [31].

Definition 2.7 (Adapted from [18]). Let a language L associated with an NP
relations R. A 3-move interactive proof system Π = (Genpar,GenL,P,V) in the
common reference string model is a Σ-protocol for L if it satisfies the following:

– 3-Move Form: P and V both input crs = (par, crsL), with par ← Genpar(1λ)
and crsL ← GenL(par,L), and a statement x. They proceed as follows: (i)
P inputs w ∈ R(x), computes (a, st) ← P(crs, x, w) and sends a to V; (ii)
V sends back a random challenge Chall; (iii) P finally sends a response z =
P(crs, x, w,a,Chall, st) to V; (iv) On input of (a,Chall, z), V outputs 1 or 0.

– Completeness: If (x,w) ∈ R and P honestly computes (a, z) for a challenge
Chall, then V(crs, x, (a,Chall, z)) outputs 1 with probability 1 − negl(λ).

– Special zero-knowledge: There is a PPT simulator ZKSim that inputs crs,
x ∈ L and a challenge Chall ∈ C. It outputs (a, z) ← ZKSim(crs, x,Chall) such
that (a,Chall, z) is indistinguishable from a real transcript (for w ∈ R(x))
with challenge Chall.

– (r+1)-Special soundness: For any CRS crs = (par, crsL) obtained as par ←
Genpar(1λ), crsL ← GenL(par,L), any x �∈ L, and any first message a sent by
P, the set of challenges BADC = f(crs, x,a) for which an accepting transcript
(crs, x,a,Chall, z) exists for some third message z has cardinality |BADC| ≤ r.
The function f is called the “bad challenge function” of Π. That is, if x �∈ L
and Chall �∈ BADC, the verifier never accepts.

498 B. Libert et al.

Canetti et al. [18] define trapdoor Σ-protocols as Σ-protocols where the bad
challenge function is efficiently computable using a trapdoor. They also define
instance-dependent trapdoor Σ-protocol where the trapdoor τΣ should be gen-
erated as a function of some instance x �∈ L. Here, we use a definition where x
need not be known in advance and the trapdoor does not depend on a specific x.
However, the CRS and the trapdoor may depend on the language in our setting.
The CRS crs = (par, crsL) consists of a fixed part par and a language-dependent
part crsL which is generated as a function of par and a language description L.

Definition 2.8 (Adapted from [18]). A Σ-protocol Π = (Genpar,GenL,P,V)
with bad challenge function f for a trapdoor language L is a trapdoor Σ-
protocol if it satisfies the properties of Definition 2.7 and there exist PPT
algorithms (TrapGen,BadChallenge) with the following properties.

• Genpar inputs λ ∈ N and outputs public parameters par ← Genpar(1λ).
• GenL is a randomized algorithm that, on input of public parameters par, out-

puts the language-dependent part crsL ← GenL(par,L) of crs = (par, crsL).
• TrapGen(par,L, τL) inputs public parameters par and (optionally) a trapdoor

τL allowing to test membership of L. It outputs crsL and a trapdoor τΣ.
• BadChallenge(τΣ , crs, x,a) takes in a trapdoor τΣ, a CRS crs = (par, crsL), an

instance x, and a first prover message a. It outputs a set BADC.

In addition, the following properties are required.

• CRS indistinguishability: For any par ← Genpar(1λ), and any trapdoor τL
for the language L, an honestly generated crsL is computationally indistin-
guishable from a CRS produced by TrapGen(par,L, τL). Namely, for any aux
and any PPT distinguisher A, we have

Advindist-Σ
A (λ) := |Pr[crsL ← GenL(par,L) : A(par, crsL) = 1]
−Pr[(crsL, τΣ) ← TrapGen(par,L, τL) : A(par, crsL) = 1]| ≤ negl(λ).

• Correctness: There exists a language-specific trapdoor τL such that, for
any instance x �∈ L and all pairs (crsL, τΣ) ← TrapGen(par,L, τL), we have
BadChallenge(τΣ , crs, x,a) = f(crs, x,a) .

Note that the TrapGen algorithm does not take a specific statement x as input,
but only a trapdoor τL allowing to recognize elements of L.

2.5 R-Lossy Public-Key Encryption with Equivocation

In [55], Libert et al. considered a generalization of the notion of R-lossy encryp-
tion introduced by Boyle et al. [9]. The primitive is a flavor of tag-based encryp-
tion [53] where the tag space T is partitioned into injective and lossy tags. When
ciphertexts are generated for an injective tag, the decryption algorithm recovers
the plaintext. On lossy tags, ciphertexts statistically hide the plaintexts. In R-
lossy PKE schemes, the tag space is partitioned according to a binary relation
R ⊆ K × T . The key generation algorithm inputs an initialization value K ∈ K

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 499

and partitions T in such a way that injective tags t ∈ T are those for which
(K, t) ∈ R (i.e., all tags t for which (K, t) �∈ R are lossy).

The definition of [55] requires the existence of a lossy key generation algo-
rithm LKeygen that outputs public keys for which all tags t are lossy (in contrast
with injective keys where the only lossy tags are those for which (K, t) �∈ R).
In addition, [55] also asks that a trapdoor allows equivocating lossy ciphertexts
(a property called efficient opening [4]) using an algorithm called Opener. The
application to simulation-soundness [55] involves two opening algorithms Opener
and LOpener. The former operates over injective public keys for lossy tags while
the latter can equivocate ciphertexts encrypted under lossy keys for any tag.

Definition 2.9. Let R ⊆ Kλ × Tλ be a binary relation. An equivocable R-lossy
PKE scheme is a 7-uple of PPT algorithms (Par-Gen,Keygen, LKeygen,Encrypt,
Decrypt,Opener, LOpener) such that:

Parameter generation: Given a security parameter λ, a tag length L ∈ poly(λ)
and a message length B ∈ poly(λ), Par-Gen(1λ, 1L, 1B) outputs public param-
eters Γ that specify a tag space T , a space of initialization values K, a public
key space PK, a secret key space SK and a trapdoor space T K.

Key generation: For an initialization value K ∈ K and public parameters Γ ,
algorithm Keygen(Γ,K) outputs an injective public key pk ∈ PK, a decryption
key sk ∈ SK and a trapdoor key tk ∈ T K. The public key specifies a ciphertext
space CtSp and a randomness space RLPKE.

Lossy Key generation: Given an initialization value K ∈ K and public param-
eters Γ , the lossy key generation algorithm LKeygen(Γ,K) outputs a lossy
public key pk ∈ PK, a lossy secret key sk ∈ SK and a trapdoor key tk ∈ T K.

Decryption on injective tags: For any Γ ← Par-Gen(1λ, 1L, 1B), any K ∈ K,
any tag t ∈ T such that (K, t) ∈ R, and any message Msg ∈ MsgSp, we
have Pr

[
∃r ∈ RLPKE : Decrypt

(
sk, t,Encrypt(pk, t,Msg; r)

)
�= Msg

]
< ν(λ), for

some negligible function ν(λ), where (pk, sk, tk) ← Keygen(Γ,K) and the
probability is taken over the randomness of Keygen.

Indistinguishability: For any Γ ← Par-Gen(1λ, 1L, 1B), the key generation
algorithms LKeygen and Keygen satisfy the following:

(i) For any K ∈ K, the distributions Dinj = {(pk, tk) | (pk, sk, tk) ←
Keygen(Γ,K)} and Dloss = {(pk, tk) | (pk, sk, tk) ← LKeygen(Γ,K)} are
computationally indistinguishable. For any PPT adversary A, the follow-
ing advantage function Advindist-LPKE

A (λ) is negligible:

|Pr[(pk, tk) ←↩ Dinj : A(pk, tk) = 1] − Pr[(pk, tk) ←↩ Dloss : A(pk, tk) = 1]| .

(ii) For any initialization values K,K ′ ∈ K, the two distributions {pk |
(pk, sk, tk) ← LKeygen(Γ,K)} and {pk | (pk, sk, tk) ← LKeygen(Γ,K ′)}
are 2−Ω(λ)-close in terms of statistical distance.

Lossiness: For any Γ ← Par-Gen(1λ, 1L, 1B), any initialization value K ∈ K
and tag t ∈ T such that (K, t) �∈ R, any (pk, sk, tk) ← Keygen(Γ,K), and
any Msg0,Msg1 ∈ MsgSp, the following distributions are statistically close:

500 B. Libert et al.

{C | C ← Encrypt(pk, t,Msg0)} ≈s {C | C ← Encrypt(pk, t,Msg1)}. For
any (pk, sk, tk) ← LKeygen(Γ,K), the above holds for any tag t.

Equivocation under lossy tags: For any Γ ← Par-Gen(1λ, 1L, 1B), any K ∈
K, any keys (pk, sk, tk) ← Keygen(Γ,K), let DR the distribution, defined over
RLPKE, from which the random coins of Encrypt are sampled. For any message
Msg ∈ MsgSp and ciphertext C, let Dpk,Msg,C,t denote the distribution on
RLPKE with support Spk,Msg,C,t = {r ∈ RLPKE | Encrypt(pk, t,Msg, r) = C}
and such that, for each r ∈ SPK,Msg,C,t, we have

Dpk,Msg,C,t(r) = Pr
r′←↩DR

[r′ = r | Encrypt(pk, t,Msg, r′) = C] . (1)

For any random coins r ←↩ DR, any tag t ∈ Tλ such that (K, t) �∈ R,
and any messages Msg0,Msg1 ∈ MsgSp, algorithm Opener takes as inputs
pk, C = Encrypt(pk, t,Msg0, r), r t, and tk. It outputs a sample r from a
distribution statistically close to Dpk,Msg1,C,t.

Equivocation under lossy keys: For any K ∈ K, any keys (pk, sk, tk) ←
LKeygen(Γ,K), any randomness r ←↩ DR, any tag t ∈ Tλ, and any messages
Msg0,Msg1 ∈ MsgSp, algorithm LOpener inputs C = Encrypt(pk, t,Msg0, r),
r, t and sk. It outputs r ∈ RLPKE such that C = Encrypt(pk, t,Msg1, r̄).
We require that, for any tag t ∈ Tλ such that (K, t) �∈ R, the distribution
{r̄ ← LOpener(pk, sk, t, ct,Msg0,Msg1, r) | r ←↩ DR} is statistically close to
{r̄ ← Opener(pk, tk, t, ct,Msg0,Msg1, r) | r ←↩ DR}.

The above definition is slightly weaker than the one of [55] in the property
of equivocation under lossy keys. Here, we do not require that the output of
LOpener be statistically close to Dpk,Msg1,C,t as defined in (1): We only require
that, on lossy keys and lossy tags, Opener and LOpener sample random coins
from statistically close distributions. Our definition turns out to be sufficient for
the purpose of simulation-sound arguments (as shown in the full version [56] of
the paper) and will allow us to obtain a construction from the DCR assumption.

Definition 2.9 also differs from [55, Definition 2.10] in that the equivocation
algorithms (Opener, LOpener) can use the original random coins r ∈ RLPKE of
the encryption algorithm. Again, this relaxation will suffice in our setting.

In our ring signature system, we also use a variant of the above R-lossy
encryption primitive to instantiate a tag-based commitment scheme.

Definition 2.10. A dense R-lossy PKE scheme is a tuple (Par-Gen,Keygen,
LKeygen,Encrypt,Decrypt) of efficient algorithms that proceed identically to Def-
inition 2.9, except that the lossy mode is dense and the indistinguishability prop-
erty is relaxed as below. Moreover, no equivocation property is required.

Weak Indistinguishability: For any Γ ← Par-Gen(1λ, 1L, 1B), the key gener-
ation algorithms LKeygen and Keygen satisfy the following:

(i) For any K ∈ K, Dinj = {pk | (pk, sk, tk) ← Keygen(Γ,K)} is indistin-
guishable from Dloss = {pk | (pk, sk, tk) ← LKeygen(Γ,K)}. For any PPT
adversary A, the advantage function Advweak-indist-LPKE

A (λ), defined as the

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 501

distance |Pr[pk ←↩ Dinj : A(pk) = 1] − Pr[pk ←↩ Dloss : A(pk) = 1]|, is
negligible as a function of the security parameter.

(ii) For any initialization values K,K ′ ∈ K, the two distributions {pk |
(pk, sk, tk) ← LKeygen(Γ,K)} and {pk | (pk, sk, tk) ← LKeygen(Γ,K ′)}
are 2−Ω(λ)-close in terms of statistical distance.

Density of Lossy Mode: For any Γ ← Par-Gen(1λ, 1L, 1B), any initialization
value K ∈ K, any (pk, sk, tk) ← LKeygen(Γ,K) and Msg ∈ MsgSp, the dis-
tribution of {Encrypt(pk,Msg, r)|r ←↩ DR} is statistically close to U(CtSp).

2.6 Ring Signatures

A ring signature [68] scheme consists of the following efficient algorithms:

CRSGen(1λ): Generates a common reference string ρ.
Keygen(ρ): Generates a public key vk and the corresponding secret key sk.
Sign(ρ, sk,M,R): Outputs a signature Σ on the message M ∈ {0, 1}∗ with

respect to the ring R = {vk0, . . . , vkR−1} as long as (vk, sk) is a valid key
pair produced by Keygen(ρ) and vk ∈ R (otherwise, it outputs ⊥).

Verify(ρ,M,Σ,R): Given a signature Σ on a message M w.r.t. the ring of public
keys R, this algorithm outputs 1 if Σ is deemed valid and 0 otherwise.

Correctness requires that users can always sign any message on behalf of a ring
they belong to. The standard security requirements for ring signatures are called
unforgeability and anonymity. We use the strong definitions of [6,22], which are
recalled in the full version of the paper. In particular, we consider unforgeability
with respect to insider corruption and statistical anonymity.

3 R-Lossy Encryption Schemes from DCR

Libert et al. [55] gave a method that directly compiles any trapdoor Σ-protocol
for a trapdoor language into an unbounded simulation-sound NIZK argument for
the same language. As a building block, their construction uses an LWE-based
equivocable R-lossy PKE scheme for the bit-matching relation.

The construction of [55] is recalled in the full version [56] of the paper, where
we show that it applies to trapdoor Σ-protocols with (r+1)-special-soundness for
r > 1 as long as we have a CI hash function for efficiently enumerable relations.

Definition 3.1. Let K = {0, 1,⊥}L and T = {0, 1}L, for some L ∈ poly(λ).
The bit-matching relation RBM : K×T → {0, 1} is defined as RBM(K, t) = 1
if and only if K = K1 . . . KL and t = t1 . . . tL satisfy

∧L
i=1(Ki =⊥) ∨ (Ki = ti).

In [55], the authors described an RBM-lossy PKE under the LWE assumption. In
order to instantiate their construction with a better efficiency, we now describe
a more efficient RBM-lossy PKE scheme based on the DCR assumption.

502 B. Libert et al.

3.1 An Equivocable RBM-Lossy PKE Scheme from DCR

Par-Gen(1λ, 1L, 1B): Define the spaces T = {0, 1}L, K = {0, 1,⊥}L and the
public parameters as Γ = (1λ, 1B ,K, T).

Keygen(Γ,K): Given public parameters Γ and an initialization value K ∈ K,
generate a key pair as follows.

1. Choose an RSA modulus N = pq such that p, q > 2l(λ), for some polyno-
mial l : N → N such that l(λ) > L(λ) for any sufficiently large λ, and an
integer ζ ∈ poly(λ) such that Nζ > 2B .

2. Choose g ←↩ U(Z∗
Nζ+1) and αi,0, αi,1 ←↩ U(Z∗

N) for each i ∈ [L]. Then,
for each i ∈ [L] and b ∈ {0, 1}, compute vi,b = gδb,1−Ki · αNζ

i,b mod N ζ+1 if

Ki �=⊥ and vi,b = αNζ

i,b mod N ζ+1 if Ki =⊥.

Define RLPKE = Z
∗
N × ZNζ and output sk = (p, q,K) as well as

pk :=
(
N, ζ, g, {vi,b}i∈[L],b∈{0,1}

)
, tk =

(
{αi,b}i∈[L],b∈{0,1},K

)
.

LKeygen(Γ,K): is identical to Keygen except that step 2 generates g by choosing
g0 ←↩ U(Z∗

N) and computing g = gNζ

0 mod N ζ+1. The algorithm defines

RLPKE = Z
∗
N × ZNζ and outputs the lossy secret key sk = (g0, tk) together

with pk :=
(
N, ζ, g, {vi,b}i∈[L],b∈{0,1}

)
, tk =

(
{αi,b}i∈[L],b∈{0,1},K

)
.

Encrypt(pk, t,Msg): To encrypt Msg ∈ ZNζ for the tag t = t1 . . . tL ∈ {0, 1}L,
choose r ←↩ U(Z∗

N), s ←↩ U(ZNζ) and compute

ct = gMsg ·
(L∏

i=1

vi,ti

)s

· rNζ

mod N ζ+1 . (2)

Decrypt(sk, t, ct): Given sk = (p, q,K) and t = t1 . . . tL ∈ {0, 1}L, return ⊥ if

RBM(K, t) = 0. Otherwise,
∏L

i=1 vi,ti
≡

(∏L
i=1 αi,ti

)Nζ

(mod N ζ+1).

1. Compute βg = (gλ(N) mod Nζ+1)−1
N , where λ(N) = lcm(p − 1, q − 1) and

return ⊥ if βg = 0 or gcd(βg, N
ζ) > 1.

2. Otherwise, compute Msg = (ctλ(N) mod Nζ+1)−1
N · β−1

g mod N ζ , where the
division is computed over Z, and output Msg ∈ ZNζ .

Opener
(
pk, tk, t, ct,Msg0,Msg1, (r, s)

)
: Given tk = ({αi,b}i,b,K), t ∈ {0, 1}L,

plaintexts Msg0,Msg1 ∈ ZNs and random coins (r, s) ∈ RLPKE such that
ct = Encrypt(pk, t,Msg0; (r, s)), return ⊥ if RBM(K, t) = 1. Otherwise, define

vt �
L∏

i=1

vi,ti
mod N ζ+1 = gdt ·

(L∏

i=1

αi,ti

)Nζ

mod N ζ+1, (3)

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 503

where dt ∈ {1, . . . , L} is the number of non-⊥ entries of K such that Ki �= ti.
Note that gcd(dt, N

ζ) = 1 since p, q > L. Then, compute and output

s̄ = s + (d−1
t mod N ζ) · (Msg0 − Msg1) mod N ζ (4)

r̄ = r ·
L∏

i=1

αs−s̄
i,ti

· g(Msg0−Msg1+dt·(s−s̄))/Nζ

mod N,

where the division in the exponent above g can be computed over Z since we
have Msg0 + dt · s ≡ Msg1 + dt · s̄ (mod N ζ). Note that (r̄, s̄) satisfy

gMsg1 ·vs̄
t · r̄Nζ ≡ gMsg1 ·

(
gdt ·

L∏

i=1

αNζ

i,ti

)s̄

· r̄Nζ

.

≡ gMsg1 ·
(
gdt ·

L∏

i=1

αNζ

i,ti

)s̄

· rNζ ·
L∏

i=1

α
(s−s̄)·Nζ

i,ti
· g(Msg0−Msg1+dt·(s−s̄))

≡ gMsg0 ·
(
gdt ·

L∏

i=1

αNζ

i,ti

)s

· rNζ ≡ gMsg0 · vs
t · rNζ

(mod N ζ+1)

LOpener
(
pk, sk, t, ct,Msg0,Msg1, (r, s)

)
: Given sk =

(
g0, tk = ({αi,b}i,b,K)

)
, an

arbitrary tag t ∈ {0, 1}L, plaintexts Msg0,Msg1 ∈ ZNζ and randomness
(r, s) ∈ RLPKE such that ct = Encrypt(pk, t,Msg0; (r, s)), let dt ∈ {0, . . . , L}
the number of non-⊥ entries such that Ki �= ti. If dt �= 0, compute s̄ as per
(4). Otherwise, choose s̄ ←↩ U(ZNζ). In both cases, output the pair (r̄, s̄),
where r̄ = r ·

∏L
i=1 αs−s̄

i,ti
· g

Msg0−Msg1+dt·(s−s̄)
0 mod N.

Theorem 3.2. The above scheme is an equivocable RBM-lossy PKE scheme
under the DCR assumption. (The proof is given in the full version of the paper.)

By plugging the above system in the construction described in the full version
of the paper, we obtain USS arguments from the DCR and LWE assumptions.
A difference with [55] is that LWE is only used in the correlation intractable
hash function and lattice trapdoors are not needed anywhere. This DCR-based
scheme drastically reduces the signature length of our construction. If we were
to use the LWE-based R-Lossy PKE scheme from [55], a single ciphertext would
already be roughly 20 larger than an entire ring signature, as discussed in the
full version of the paper.

3.2 A Dense RBM-Lossy PKE Scheme from DCR

In order to construct a ring signature without relying on erasures, we will also
use a “downgraded” version of the scheme in Sect. 3.1, where we do not need
equivocation properties. However, we will rely on the property that its lossy
mode induces dense commitments that are uniformly distributed in Z

∗
Nζ+1 . The

scheme of Sect. 3.1 does not have this density property as its lossy mode induces
commitments that live in the subgroup of Nζ-th residues.

504 B. Libert et al.

Par-Gen(1λ, 1L, 1B): Define the spaces T = {0, 1}L, K = {0, 1,⊥}L and the
public parameters as Γ = (1λ, 1B ,K, T).

Keygen(Γ,K): Given public parameters Γ and an initialization value K ∈ K,
generate a key pair as follows.
1. Choose an RSA modulus N = pq such that p, q > 2l(λ), for some polyno-

mial l : N → N such that l(λ) > L(λ) − λ for any sufficiently large λ, and
an integer ζ ∈ poly(λ) such that Nζ > 2B .

2. Choose αi,0, αi,1 ←↩ U(Z∗
N) for each i ∈ [L]. Then, for each i ∈ [L] and

b ∈ {0, 1}, compute vi,b = (1 + N)δb,1−Ki · αNζ

i,b mod N ζ+1 if Ki �=⊥ and

vi,b = αNζ

i,b mod N ζ+1 if Ki =⊥.
Define RLPKE = Z

∗
N × ZNζ and output the secret key sk = (p, q,K) together

with pk :=
(
N, ζ, {vi,b}i∈[L],b∈{0,1}

)
and tk =⊥ .

LKeygen(Γ,K): proceeds identically to Keygen with the difference that step 2
chooses {vi,b}i,b at random. For each i ∈ [L], b ∈ {0, 1}, the algorithm chooses
vi,b ←↩ U(Z∗

Nζ+1). It defines RLPKE = Z
∗
N × ZNζ and outputs sk =⊥ as well

as pk :=
(
N, ζ, {vi,b}i∈[L],b∈{0,1}

)
, and tk =⊥ .

Encrypt(pk, t,Msg): To encrypt Msg ∈ ZNζ for the tag t = t1 . . . tL ∈ {0, 1}L,
choose random coins r ←↩ U(Z∗

N), s ←↩ U(ZNζ) and compute the ciphertext

ct = (1 + N)Msg ·
(∏L

i=1 vi,ti

)s

· rNζ

mod N ζ+1.

Decrypt(sk, t, ct): Given the secret key sk = (p, q,K) and the tag t ∈
{0, 1}L, return ⊥ if RBM(K, t) = 0. Otherwise, compute Msg =
(ctλ(N) mod Nζ+1)−1

N mod N ζ , where the division is computed over Z, and out-
put Msg ∈ ZNζ .

Theorem 3.3. The above system is a dense RBM-lossy PKE scheme under the
DCR assumption. Moreover, the lossy mode is dense in Z

∗
Nζ+1 . (The proof is

given in the full version of the paper.)

4 Trapdoor Σ-Protocols for DCR-Related Languages

Ciampi et al. [27] showed that any Σ-protocol with binary challenges can be
turned into a trapdoor Σ-protocol by having the prover encrypt the two pos-
sible responses and send them along with its first message. While elegant, this
approach requires Θ(λ) repetitions to achieve negligible soundness error. In this
section, we give communication-efficient protocols requiring no repetitions.

In the full version of the paper, we show that the standard Σ-protocol that
allows proving composite residuosity readily extends into a trapdoor Σ-protocol.
By exploiting earlier observations from [46,58], we show that, for a single pro-
tocol iteration, the factorization of N allows computing bad challenges within
an exponentially large challenge space. In this section, we describe trapdoor
Σ-protocols that will serve as building blocks for our ring signature.

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 505

4.1 Trapdoor Σ-Protocol Showing that a Paillier
Ciphertext/Commitment Contains 0 or 1

We give a trapdoor Σ-protocol allowing to prove that a (lossy) Paillier cipher-
text encrypts 0 or 1. This protocol is a DCR-based adaptation of a Σ-protocol
proposed in [21,46] for Elgamal-like encryption schemes. The original protocol of
[21,46] assumes additively homomorphic properties in the plaintext and random-
ness spaces. Here, we adapt it to the DCR setting where the randomness space
is a multiplicative group. We also describe a BadChallenge function to obtain a
trapdoor Σ-protocol with a large challenge space.

The BadChallenge function uses observation from Lipmaa [58] showing that
bad challenges are also computable when the message space has composite order
N = pq (instead of prime order as in [21]). We actually point out an issue
in [58]. Lipmaa aims to identify bad challenges in a Σ-protocol showing that
an Elgamal-Paillier ciphertext [13] encrypts 0 or 1. However, in the Elgamal-
Paillier scheme, not all elements of Z∗

N2 ×Z
∗
N2 are in the range of the encryption

algorithm. In the full version of the paper, we show that a cheating prover can
send maliciously generated first prover messages for which bad challenges are
not efficiently computable although they may exist for false statements.

Here, to avoid this issue, we need a DCR-based dual-mode commitment where
the binding mode has the property that any element of Z∗

N2 is in the range of the
commitment algorithm. Moreover, even the hiding mode should be dense, mean-
ing that honestly generated commitments to 0 should be uniformly distributed
over Z∗

N2 . We thus use commitments of the form C = (1+N)Msg ·hy ·wN mod N2,
where the distribution of h determines if the commitment is perfectly hiding or
perfectly binding. If h is an N -th residue (resp. h ∼ U(Z∗

N2)), it is perfectly
binding (resp. perfectly hiding). Moreover, the density property of the hiding
mode will be crucial to prove the special ZK property of the Σ-protocol.

Let an RSA modulus N = pq and let a random element h ∈ Z
∗
N2 . We give a

trapdoor Σ-protocol for the following language, which is parametrized by h:

L0-1(h) =
{
C ∈ Z

∗
N2 | ∃b ∈ {0, 1}(y, w) ∈ ZN × Z

�
N :

C = (1 + N)b · hy · wN mod N2
}
.

We include h as a language parameter because we allow the CRS to depend
on N , but not on h. We note that, if N divides the order of h, the language
L0-1(h) is trivial since all elements of Z∗

N2 can be explained as a commitment
to a bit. However, the language becomes non-trivial when h is an N -th residue
since C = (1 + N)b hy wN mod N2 is then a perfectly binding commitment to b.

While a trapdoor Σ-protocol for L0-1(h) can be obtained from [31], the one
below is useful to show that one out of many ciphertexts encrypts 0 [46]. A
difference with the Σ-protocols in [21, Figure 2] and [58, Section 3.2] is that,
in order to use it in Sect. 4.2, we need the verifier to perform a non-standard
interval check for the response over the integers.

Genpar(1λ) : Given the security parameter λ, define par = {λ}.

506 B. Libert et al.

GenL(par,L0-1) : Given public parameters par and the description of a language
L0-1, consisting of an RSA modulus N = pq with p and q prime satisfying
p, q > 2l(λ), for some polynomial l : N → N such that l(λ) > 2λ, define the
language-dependent crsL = {N}. The global CRS is crs = ({λ}, crsL).

TrapGen(par,L0-1, τL) : Given par, a language description L0-1 that specifies an
RSA modulus N = pq, and the membership-testing trapdoor τL = (p, q),
output crs = ({λ}, crsL) as in GenL and the trapdoor τΣ = (p, q).

P
(
crs, �x, �w

)
↔ V(crs, �x) : Given crs, a statement �x = “C ∈ L0-1(h)”, for some

h ∈ Z
∗
N2 , P (who has �w = (b, y, w)) and V interact as follows:

1. P chooses a ←↩ U({2λ, . . . , 22λ − 1}), d, e ←↩ U(ZN), u, v ←↩ U(Z∗
N) and

sends V the following:

A1 = (1 + N)a hd uN mod N2, A2 = (1 + N)−a·b he vN mod N2.

2. V sends a random challenge Chall ←↩ U({0, . . . 2λ − 1}).
3. P sends V the response (z, zd, ze, zu, zv) ∈ Z × (ZN)2 × (Z∗

N)2, where

z = a + Chall · b, z1 = d + Chall · y, z2 = e + (z − Chall) · y,

zd = z1 mod N, zu = u · wChall · h�z1/N� mod N,

ze = z2 mod N, zv = v · wz−Chall · h�z2/N� mod N.

4. V returns 1 if and only if 2λ ≤ z < 22λ+1 and

A1 = C−Chall · (1 + N)z · hzd · zN
u mod N2, (5)

A2 = CChall−z · hze · zN
v mod N2.

BadChallenge
(
par, τΣ , crs, �x,�a

)
: Given a statement �x = “C ∈ L0-1(h)”, a trap-

door τΣ = (p, q) and �a = (A1, A2) ∈ (Z∗
N2)2, return ⊥ if h is not an N -th

residue. Otherwise, decrypt C and (A1, A2) to obtain b = DτΣ
(C) ∈ ZN and

ai = DτΣ
(Ai) ∈ ZN for each i ∈ {1, 2}. If �x is false, we have b �∈ {0, 1}.

Consider the following linear system with the unknowns (Chall, z) ∈ Z
2
N :

z − b · Chall ≡ a1 (mod N),
b · (Chall − z) ≡ a2 (mod N).

(6)

1. If b(b − 1) ≡ 0 (mod N), assume that b ≡ 0 (mod p) and b ≡ 1 (mod q).
Compute z′ = a1 mod p and Chall′ = z′ − a1 mod q. Then, return ⊥ if
Chall′ − z′ �≡ a2 (mod q) or a2 �≡ 0 (mod p).

2. If b(b − 1) �≡ 0 (mod N), define db = gcd(b(b − 1), N), so that we have
gcd(b(b − 1), N/db) = 1. Any solution of (6) also satisfies the system

z − b · Chall ≡ a1 (mod N/db)
b · z − b · Chall ≡ −a2 (mod N/db),

which has a unique solution (Chall′, z′) ∈ (ZN/db
)2.

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 507

In both cases, if 2λ ≤ z′ < 22λ+1 and 0 ≤ Chall′ < 2λ, return Chall = Chall′.
Otherwise, return ⊥.

Any honest protocol execution always returns a valid transcript since we have
2λ ≤ a + b · Chall ≤ 22λ + 2λ − 2 < 22λ+1 and

(1 + N)z · hzd · zN
u

≡ (1 + N)a+Chall·b · uN · wN ·Chall · hzd · h(d+Chall·y)−(d+Chall·y mod N)

≡ (1 + N)a+Chall·b · uN · wN ·Chall · hd+Chall·y

≡ (1 + N)a · uN · hd ·
(
(1 + N)b · wN · hy

)Chall ≡ A1 · CChall (mod N2)

CChall−z ·hze · zN
v ≡

(
(1 + N)b · wN · hy

)Chall−z · vN · w(z−Chall)N · he+(z−Chall)·y

≡ (1 + N)b(Chall−z) · vN · he ≡ (1 + N)b(−a+(1−b)·Chall) · vN · he

≡ (1 + N)−ab · vN · he ≡ A2 (mod N2)

The correctness of BadChallenge follows from the fact that 0 ≤ Chall < 2λ (so
that Chall = Chall mod p = Chall mod q) and the observation that the verifier
never accepts when z ≥ min(p, q). This ensures that a valid response exists for
at most one z ∈ Z such that z = z mod p = z mod q.

Remark 4.1. When h is a composite residue, the condition b ∈ {0, 1} implies
that, over Z, we have either z = a + b · Chall or z = a + b · Chall − N , where
a = DτΣ

(A1) and b = DτΣ
(C) (recall that (5) implies z = a + b · Chall mod N).

The latter case can only occur if b = 1 and N − 2λ ≤ a ≤ N − 1. However, this
would imply Chall−2λ ≤ a+Chall−N ≤ Chall−1, which is not compatible with
the lower bound of the verification test 2λ ≤ z < 22λ+1. As a result, the equation
z = a+ b ·Chall holds over Z, and not only modulo N . While this property is not
necessary to ensure the soundness of the above Σ-protocol, it will be crucial for
the BadChallenge function of the trapdoor Σ-protocol in Sect. 4.2.2 In order to
ensure perfect completeness, the prover chooses a in a somewhat unusual interval
that does not start with 0. However, we still have statistical completeness and
statistical HVZK if a is sampled from U({0, . . . , 22λ − 1}).

4.2 Trapdoor Σ-Protocol Showing that One Out of Many
Ciphertexts/Commitments Contains 0

We now present a DCR-based variant of the Σ-protocol of Groth and Kohlweiss
[46], which allows proving that one commitment out of R = 2r contains 0.

Intuition. The Σ-protocol of [46] relies on a protocol, like the one of Sect. 4.1,
showing that a committed b is a bit using a response of the form z = a+b ·Chall.
To prove that some commitment C� ∈ {Ci}R−1

i=0 opens to 0 without revealing

2 In contrast, the upper bound for z is crucial here in the first step of BadChallenge.

508 B. Libert et al.

the index � ∈ {0, . . . , R − 1}, the bits �1 . . . �r ∈ {0, 1}r of � are committed and,
for each of them, the prover provides evidence that �j ∈ {0, 1}. The response
zj = aj + �jChall is seen as a degree-1 polynomial in Chall and used to define
polynomials fj,1[X] = aj + �jX and ff,0[X] = X − fj , which in turn define

Pi[X] =
r∏

j=1

fj,ij
[X] = δi,� · Xr +

r−1∑

k=0

pi,k · Xk ∀i ∈ {0, . . . , R − 1},

where Pi[X] has degree r if i = � and degree ≤ r − 1 otherwise. In order to
prove that one of the {Pi[X]}R−1

i=0 has degree r, Groth and Kohlweiss homo-
morphically compute

∏R−1
i=0 C

Pi(Chall)
i and multiply it with

∏r−1
k=0 C−Challk

dk
, for

auxiliary commitments {Cdk
=

∏R−1
i=0 C

pi,k

i }r−1
k=0, in order to cancel out the

terms of degree 0 to r − 1 in the exponent. Then, they prove that the prod-
uct

∏R−1
i=0 C

Pi(Chall)
i ·

∏r−1
k=0 C−Challk

dk
is indeed a commitment to 0.

Let N = pq and N̄ = p̄q̄ denote two RSA moduli. Let also h ∈ Z
∗
N2 and

h̄ ∈ Z
∗̄
N2 . We give a trapdoor Σ-protocol for the language

L1-R
∨ (h, h̄) :=

{(
(C0, . . . , CR−1)(L1, . . . , Lr)

)
∈ (Z∗

N2)R × (Z∗̄
N2)r | (7)

∃y ∈ ZN , w ∈ Z
∗
N , ∃r

j=1(�j , sj , tj) ∈ {0, 1} × ZN̄ × Z
∗̄
N :

∧r
j=1 Lj = (1 + N̄)�j h̄sj tN̄j mod N̄2 ∧ C� = hywN mod N2

}

where R = 2r and � =
∑r

j=1 �j · 2j−1. In (7), h ∈ Z
∗
N2 and h̄ ∈ Z

∗̄
N2 are used as

language parameters since we allow the CRS to depend on N and N̄ , but not on
h nor h̄. The reason is that, in our construction of Sect. 5, we need to generate
the CRS before h̄ is chosen.

We note that L1-R
∨ (h, h̄) is a trivial language (i.e., it is (Z∗

N2)R × (Z∗̄
N2)r)

when N and N̄ divide the order of h and h̄, respectively. However, the security
proof of our ring signature will switch to a setting where h and h̄ are composite
residues, which turns C� = hy ·wN mod N2 into a perfectly binding commitment
to 0 (since C = (1+N)Msg ·hy ·wN mod N2 uniquely determines the underlying
Msg ∈ ZN) and Lj into a perfectly binding commitment to �j .

Description. Our Paillier-based adaptation Π1-R
∨ = (Genpar,GenL,P,V) of the

Σ-protocol of [46] is described as follows.

Genpar(1λ) : Given the security parameter λ, define par = {λ}.
GenL(par,L1-R

∨) : Given par and the description of a language L1-R
∨ , consisting of

RSA moduli N = pq, N̄ = p̄q̄ with primes p, q, p̄, q̄ satisfying p, q, p̄, q̄ > 2l(λ),
where l : N → N is a polynomial such that l(λ) > 2λ, define the language-
dependent crsL = {N, N̄} and the global CRS crs = ({λ}, crsL).

TrapGen(par,L1-R
∨ , τL) : Given par, the description of a language L1-R

∨ and a
language trapdoor τL, it proceeds identically to GenL except that it also
outputs the trapdoor τΣ = (p, q, p̄, q̄).

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 509

P
(
crs, �x, �w

)
↔ V(crs, x) : P has the witness �w = (y, w, {(�j , sj , tj)}r

j=1) to the
statement �x = “

(
(C0, . . . , CR−1), (L1, . . . , Lr)

)
∈ L1-R

∨ (h, h̄)” and interacts
with the verifier V in the following way:

1. For each j ∈ [r], P chooses āj ←↩ U({2λ, . . . , 22λ − 1}), d̄j , ēj ,←↩ U(ZN̄),
ūj , v̄j ←↩ U(Z∗̄

N
) and computes
{

Āj = (1 + N̄)āj · h̄d̄j · ūN̄
j mod N̄2,

B̄j = (1 + N̄)−āj ·�j · h̄ēj · v̄N̄
j mod N̄2.

(8)

It then defines degree-1 polynomials Fj,1[X] = āj + �jX ∈ ZN [X],
Fj,0[X] = X − Fj,1[X] ∈ ZN [X]. For each index i ∈ {0, . . . , R − 1} of
binary expansion i1 . . . ir ∈ {0, 1}r, it computes the polynomial

Pi[X] =
r∏

j=1

Fj,ij
[X] = δi,� · Xr +

r−1∑

k=0

pi,k · Xk ∈ ZN [X], (9)

which has degree ≤ r − 1 if i �= � and degree r if i = �. Then, using the
coefficients pi,0, . . . , pi,r−1 ∈ ZN of (9), P computes commitments

Cdk
=

R−1∏

i=0

C
pi,k

i · hμk · ρN
k mod N2 0 ≤ k ≤ r − 1, (10)

where μ0, . . . , μr−1 ←↩ U(ZN), ρ0, . . . , ρr−1 ←↩ U(Z∗
N). Finally, P sends

V the message �a =
(
{(Āj , B̄j)}r

j=1, {Cdk
}r−1

k=0

)
.

2. V sends a random challenge Chall ←↩ U({0, . . . , 2λ − 1}).
3. P sends the response

(
zy, zw, {(z̄j , z̄d,j , z̄e,j , z̄u,j , z̄v,j)}r

j=1

)
, where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z̄d,j = d̄j + Chall · sj mod N̄ z̄j = āj + Chall · �j

z̄e,j = ēj + (āj + Chall · (�j − 1)) · sj mod N̄

z̄u,j = ūj · t̄Challj · h̄�(d̄j+Chall·sj)/N̄� mod N̄

z̄v,j = v̄j · t̄āj+Chall·(�j−1)
j · h̄�(ēj+(āj+Chall·(�j−1))·sj)/N̄� mod N̄

(11)

and, letting P ′[X] = y · Xr −
∑r−1

k=1 μk · Xk ∈ Z[X],

zy = y · Challr −
r−1∑

k=0

μk · Challk mod N = P ′(Chall) mod N,

zw = wChallr
r−1∏

k=0

ρ−Challk

k

R−1∏

i=0

C
−�Pi(Chall)/N�
i · h�P ′(Chall)/N� mod N,

(12)

where Pi(Chall) and P ′(Chall) are evaluated over Z in the exponent.

510 B. Libert et al.

4. V defines fj,1 = z̄j and fj,0 = Chall − z̄j mod N for each j ∈ [r]. Then, it
accepts if and only if 2λ ≤ z̄j < 22λ+1 for all j ∈ [r],

∀j ∈ [r] :

{
Āj = L−Chall

j · (1 + N̄)z̄j · h̄z̄d,j · z̄N̄
u,j mod N̄2

B̄j = L
Chall−z̄j

j · h̄z̄e,j · z̄N̄
v,j mod N̄2

(13)

and, parsing each i ∈ {0, . . . , R − 1} into bits i1 . . . ir ∈ {0, 1}r,

r−1∏

k=0

C−Challk

dk
·

R−1∏

i=0

C
(
∏r

j=1 fj,ij
mod N)

i ≡ hzy · zN
w (mod N2). (14)

BadChallenge
(
par, τΣ , crs, �x,�a

)
: On input of a trapdoor τΣ = (p, q, p̄, q̄), a

statement �x = “((C0, . . . , CR−1), (L1, . . . , Lr)) ∈ L1-R
∨ (h, h̄)” and a first

prover message �a =
(
{(Āj , B̄j)}r

j=1, {Cdk
}r−1

k=0

)
, return ⊥ if h is not an

N -th residue in Z
∗
N2 or h̄ is not an N̄ -th residue in Z

∗̄
N2 . Otherwise, compute

�j = DτΣ
(Lj) ∈ ZN̄ and decrypt �a so as to obtain āj = DτΣ

(Āj) ∈ ZN̄ ,
b̄j = DτΣ

(B̄j) ∈ ZN̄ , for each j ∈ [r], and cdk
= DτΣ

(Cdk
) ∈ ZN for each

k. Let also ci = DτΣ
(Ci) ∈ ZN for each i = 0 to R − 1. Since �x is false, we

have either: (i) �j �∈ {0, 1}, for some j ∈ [r]; or (ii) ∀j ∈ [r] : �j ∈ {0, 1} but
c� �= 0 mod N , where � =

∑r
j=1 �j · 2j−1. We consider two cases:

1. If there exists j ∈ [r] such that �j �∈ {0, 1}, then run the BadChallenge0-1

function of Sect. 4.1 on input of elements
(
par, (p̄, q̄), {N̄}, Lj , (Āj , B̄j)

)

and return whatever it outputs.
2. Otherwise, we have �j ∈ {0, 1} for all j ∈ [r]. Define degree-1 polynomi-

als Fj,1[X] = āj + �jX, Fj,0[X] = X − Fj,1[X] ∈ ZN [X] and compute
{Pi[X]}R−1

i=0 as per (9). For each i ∈ {0, . . . , R − 1}, parse the polyno-
mial Pi[X] ∈ ZN [X] as Pi[X] = δi,� · Xr +

∑r−1
k=0 pi,k · Xk for some

pi,0, . . . , pi,r−1 ∈ ZN . Define the polynomial

Q[X] � c� · Xr +
r−1∑

k=0

(
(R−1∑

i=0

ci · pi,k

)
− cdk

)

· Xk ∈ ZN [X],

which has degree r since c� �= 0 mod N . Define Qp[X] � Q[X] mod p

and Qq[X] � Q[X] mod q over Zp[X] and Zq[X], respectively. Since at
least one of them has degree r, we assume w.l.o.g. that deg(Qp[X]) = r.
Then, compute the roots3 Challp,1, . . . ,Challp,r of Qp[X] over Zp[X] in
lexicographical order (if it has less than r roots, the non-existing roots
are replaced by Challp,i =⊥). For each i ∈ [r], do the following:
a. If Challp,i �∈ {0, . . . , 2λ − 1}, set Challi =⊥.
b. If Challp,i ∈ {0, . . . , 2λ − 1} and Qq(Challp,i) ≡ 0 (mod q), then set

Challi = Challp,i. Otherwise, set Challi =⊥.

3 This can be efficiently achieved using the Cantor-Zassenhaus algorithm [19], which is
a probabilistic algorithm with small failure probability. The CI hash function of [66]
is compatible with BadChallenge functions failing with negligible probability.

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 511

Correctness. To see that honestly generated proofs are always accepted by
the verifier, we first note that 2λ ≤ āj ≤ z̄j = āj + Chall · �j ≤ 22λ + 2λ < 22λ+1,
for all j ∈ [r], and that the Eqs. (13) are satisfied for the same reasons as in
Sect. 4.1. As for Eq. (14), we observe that, if the witnesses y ∈ ZN and w ∈ Z

∗
N

satisfy C� = hy · wN mod N2, we have

hzy · zN
w ·

R−1∏

i=0

C
−(

∏r
j=1 fj,ij

mod N)

i ≡ hzy · zN
w ·

R−1∏

i=0

C
−Pi(Chall) mod N
i

≡ hzy · wChallr·N ·
r−1∏

k=0

ρ−Challk·N
k ·

R−1∏

i=0

C
−Pi(Chall)+(Pi(Chall) mod N)
i

· hP ′(Chall)−zy ·
R−1∏

i=0

C
−Pi(Chall) mod N
i

≡ hP ′(Chall) · wChallr·N ·
r−1∏

k=0

ρ−Challk·N
k ·

R−1∏

i=0

C
−Pi(Chall)
i

≡ hChallr·y · wChallr·N ·
r−1∏

k=0

(h−Challkμk · ρ−Challk·N
k)

·
R−1∏

i=0

C
−δi,�·Challr−∑r−1

k=0 pi,k·Challk
i

≡ (hy · wN)Chall
r ·

r−1∏

k=0

(hμk · ρN
k)−Challk · C−Challr

� ·
R−1∏

i=0

C
− ∑r−1

k=0 pi,k·Challk
i

≡
r−1∏

k=0

(hμk · ρN
k)−Challk ·

r−1∏

k=0

R−1∏

i=0

C
−pi,k·Challk
i ≡

r−1∏

k=0

C−Challk

dk
(mod N2).

Lemma 4.2. The above construction is a trapdoor Σ-protocol for L1-R
∨ . (The

proof is available in the full version of the paper.)

Following [46] and standard Σ-protocols over the integers, the above Σ-
Protocol Π1-R

∨ = (Genpar,GenL,P,V) is statistically special honest-verifier zero-
knowledge. Although the adversary can choose Paillier commitments {Ci}R−1

i=0

of its own (which may be N -th residues or not), we can rely on the fact that
h has a component of order N to perfectly randomize commitments {Cdk

}r−1
k=0

over the full group Z
∗
N2 even if some of the {Ci}R−1

i=0 are maliciously generated.

Lemma 4.3. For any language L1-R
∨ (h, h̄) such that N divides the order of h ∈

Z
∗
N2 and N̄ divides the order of h̄ ∈ Z

∗̄
N2 , Π1-R

∨ (h, h̄) is statistically special honest-
verifier zero-knowledge. (The proof is given in the full version of the paper.)

512 B. Libert et al.

5 Logarithmic-Size Ring Signatures in the Standard
Model from DCR and LWE

The proof of unforgeability departs from [46] in that we cannot replay the adver-
sary with a different random oracle. Instead, we use Paillier as a dual-mode
commitment, which is made extractable at some step to enable the extraction of
bits ��

1 . . . ��
r ∈ {0, 1}r from the commitments {L�

j}r
j=1 contained in the forgery

�Σ� = ((L�
1, . . . , L

�
r), �π

�). The next step is to have the reduction guess which hon-
estly generated public key vk(i�) will belong to the signer identified by decoding
the forgery. Then, vk(i�) is replaced by a random element of Z∗

N2 in order to force
the adversary to break the simulation-soundness of Πuss by arguing that vk(i�)

is a commitment to 0, which it is not. The use of two distinct moduli allows us
to decode ��

1, . . . , �
�
r ∈ {0, 1}r from {L�

j}r
j=1 (which is necessary to check that

�� = ��
1 . . . ��

r still identifies the expected verification key vk(i�)) even when we
rely on the DCR assumption to modify the distribution of vk(i�).

The security proof of our simplified scheme relies on erasures because the
NIZK simulator is used in all signing queries. If the adversary makes a corruption
query Corrupt(i) after a signing query involving sk(i), the challenger’s loophole
is to claim that it erased the signer’s randomness in signing queries of the form
(i, ·, ·).

To avoid erasures, we adapt the security proof in such a way that the NIZK
simulator only simulates signatures on behalf of the expected target user i�.
All other users’ signatures are faithfully generated, thus allowing the challenger
to reveal consistent randomness explaining their generation. Since user i� is
not corrupted with noticeable probability, the challenger never has to explain
the generation of a simulated signature. This strategy raises a major difficulty
since decoding ��

1 . . . ��
r from {L�

j}r
j=1 is only possible when these are extractable

commitments. Unfortunately, the NIZK simulator cannot answer signing queries
(i�, ·, ·) by computing {Lj}r

j=1 as perfectly binding commitments as this would
not preserve the statistical ZK property of the Σ-protocol of Sect. 4.2. Moreover,
relying on computational ZK does not work because we need the guessed index
i� to be statistically independent of the adversary’s view until the forgery stage.
If we were to simulate signatures using computational NIZK proofs, they would
information-theoretically leak the index i� of the only user for which the NIZK
simulator is used in signing queries (i�, ·, ·). To resolve this problem, we use a
tag-based commitment scheme which is perfectly hiding in all signing queries
and extractable in the forgery (with noticeable probability).

We thus commit to the string � ∈ {0, 1}r using the dense RBM-lossy PKE
scheme of Sect. 3.2. We use the property that, depending on which tag is used
to generate a commitment, it either behaves as perfectly hiding or extractable
commitment. In the perfectly hiding mode, we also exploit its density property
to ensure the statistical ZK property.

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 513

The construction uses the trapdoor Σ-protocol of Sect. 4.2 to prove member-
ship of the parametrized language

L1-R
∨ (h, h̄VK) :=

{(
(C0, . . . , CR−1)(L1, . . . , Lr)

)
∈ (Z∗

N2)R × (Z∗̄
N2)r | (15)

∃y ∈ ZN , w ∈ Z
∗
N , s1, . . . , sr ∈ ZN̄ , t1, . . . , tr ∈ Z

∗̄
N ,

(�1, . . . , �r) ∈ {0, 1}r : C� = hy · wN mod N2

∧ Lj = (1 + N̄)�j · h̄
sj

VK · tN̄j mod N̄2 ∀j ∈ [r]
}
,

with R = 2r and � =
∑r

j=1 �j · 2j−1, where h̄VK changes in each signature.
The construction relies on the following ingredients:

– A trapdoor Σ-protocol Π′ = (Gen′
par,Gen′

L,P′,V′) for the parametrized lan-
guage L1-R

∨ defined in (15).
– A strongly unforgeable one-time signature scheme OTS = (G,S,V) with ver-

ification keys of length �v ∈ poly(λ).
– An admissible hash function AHF : {0, 1}�v → {0, 1}L, for some L ∈ poly(λ).
– A dense R-lossy PKE scheme R-LPKE =(Par-Gen,Keygen, LKeygen, Encrypt,

Decrypt) for RBM : K × T → {0, 1}, where K = {0, 1,⊥}L and T = {0, 1}L.

Our erasure-free ring signature goes as follows.

CRSGen(1λ) : Given a security parameter λ, conduct the following steps.
1. Generate par ← Genpar(1λ) for the trapdoor Σ-protocol of Sect. 4.2.
2. Generate an RSA modulus N = pq and choose an element h ←↩ U(Z∗

N2),
which has order divisible by N w.h.p.

3. Choose an admissible hash function AHF : {0, 1}�v → {0, 1}L. Generate
public parameters Γ ←↩ Par-Gen(1λ, 1L, 1|N |) for the dense RBM-lossy
PKE scheme of Sect. 3.2 with ζ = 1, which is associated with the bit-
matching relation RBM : K × T → {0, 1}. Choose a random initialization
value K ←↩ U(K) and generate lossy keys (pk, sk, tk) ← LKeygen(Γ,K).
Parse pk as pk :=

(
N̄ , {v̄i,b}i∈[L],b∈{0,1}

)
, for an RSA modulus N̄ = p̄q̄,

where v̄i,b ∼ U(Z∗̄
N2) for each i ∈ [L], b ∈ {0, 1}.

4. Generate a pair (crs, τzk) ← GenL(par,L1-R
∨) comprised of the CRS crs

of an USS argument Πuss (recalled in the full version of the paper) for
the language L1-R

∨ defined in (15) with a simulation trapdoor τzk. The
common reference string crs contains crs′

L = {N, N̄}, which is part of a
CRS crs′ = ({λ}, crs′

L) for the Σ-protocol of Sect. 4.2.
Output the common reference string ρ = (crs, h,AHF, pk, Γ,OTS), where OTS
is the specification of a one-time signature scheme.

Keygen(ρ) : Pick w ←↩ U(Z∗
N), y ←↩ U(ZN) and compute C = hy · wN mod N2.

Output (sk, vk), where sk = (w, y) and vk = C.
Sign(ρ, sk,M,R) : Given a ring R = {vk0, . . . , vkR−1} (we assume that R = 2r

for some r ∈ N), a message M and a secret key sk = (w, y) ∈ Z
∗
N × ZN , let

� ∈ {0, . . . , R − 1} the index such that vk� = hy · wN mod N2.

514 B. Libert et al.

1. Generate a one-time signature key pair (VK,SK) ← OTS.G(1λ) and let
VK′ = AHF(VK) ∈ {0, 1}L. Compute h̄VK =

∏L
j=1 v̄j,VK′[j] mod N̄2.

2. For each j ∈ [r], choose sj ←↩ U(ZN̄), tj ←↩ U(Z∗̄
N

) and compute a
commitment Lj = (1 + N̄)�j · h̄

sj

VK · tN̄j mod N̄2.

3. Define lbl = VK and compute a NIZK argument �π ← P
(
crs, �x, �w, lbl

)

that �x � ((vk0, . . . , vkR−1), (L1, . . . , Lr)) ∈ L1-R
∨ (h, h̄VK) by running

the prover P with the Σ-protocol of Sect. 4.2 using the witness �w =
((�1, . . . , �r), w, (s1, . . . , sr), (t1, . . . , tr)).

4. Generate a one-time signature sig ← OTS.S(SK, (�x,M,R, �π))).
Output the signature �Σ = (VK, (L1, . . . , Lr), �π, sig).

Verify(ρ,M, �Σ,R) : Given a signature �Σ = (VK, (L1, . . . , Lr), �π, sig), a message
M and a ring R = {vk0, . . . , vkR−1}, return 0 if these do not parse properly.
Otherwise, let lbl = VK and return 0 if OTS.V(VK, (�x,M,R, �π), sig) = 0.
Otherwise, run V(crs, �x, �π, lbl) which outputs 1 iff �π is a valid argument that(
(vk0, . . . , vkR−1), (L1, . . . , Lr)

)
∈ L1-R

∨ (h, h̄VK).

In the full version of the paper, we provide concrete efficiency estimations
showing that, in terms of signature length, the above realization competes with
its random-oracle-model counterpart. We now state our main security results.

Theorem 5.1. The above ring signature provides unforgeability if: (i) The one-
time signature OTS is strongly unforgeable; (ii) The scheme of Sect. 3.2 is a
secure dense RBM-lossy PKE scheme; (iii) The DCR assumption holds; (iv) Πuss

is an unbounded simulation-sound NIZK argument for the parametrized language
L1-R

∨ . (The proof is in the full version of the paper.)

The proof of anonymity follows from the fact that all commitments are per-
fectly hiding when the CRS ρ is configured as in the real scheme. The proof of
Theorem 5.2 is given in the full version of the paper.

Theorem 5.2. The above construction instantiated with the trapdoor Σ-protocol
of Sect. 4.2 provides full anonymity under key exposure provided Πuss is a statis-
tical NIZK argument for the language L1-R

∨ (h, h̄VK) of (15) when the order of h
is a multiple of N and the order of h̄VK is a multiple of N̄ .

Acknowledgements. This research was partially funded by the French ANR ALAM-
BIC project (ANR-16-CE39-0006). Khoa Nguyen was supported in part by the
Gopalakrishnan - NTU PPF 2018, by A*STAR, Singapore under research grant SERC
A19E3b0099, and by Vietnam National University HoChiMinh City (VNU-HCM)
under grant number NCM2019-18–01. Thomas Peters is a research associate of the
Belgian Fund for Scientific Research (F.R.S.-FNRS).

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

https://doi.org/10.1007/3-540-36178-2_26

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 515

2. Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rosen, A.: Non-interactive
composition of sigma-protocols via share-then-hash. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 749–773. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64840-4 25

3. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
logarithmic-size, no setup—from standard assumptions. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 281–311. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 10

4. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 1

5. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
Cryptology ePrint Archive: report 2009/101

6. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. J. Cryptology 22(1), 114–138 (2007). https://
doi.org/10.1007/s00145-007-9011-9

7. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 27

8. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol.
4515, pp. 210–227. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72540-4 12

9. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. J. Cryptology
26(3), 513–558 (2012). https://doi.org/10.1007/s00145-012-9136-3

10. Brakerski, Z., Koppula, V., Mour, T.: NIZK from LPN and trapdoor hash via
correlation intractability for approximable relations. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 738–767. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 26

11. Brakerski, Z., Tauman-Kalai, Y.: A framework for efficient signatures, ring sig-
natures and identity based encryption in the standard model. Cryptology ePrint
Archive: report 2010/086 (2010)

12. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to
Ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 30

13. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 8

14. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G., Rothblum,
R.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive: report
2018/1004

15. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Symposium on Theory
of Computing (2019)

16. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–122. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 4

17. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisted.
J. ACM 51(4), 557–594 (2004)

https://doi.org/10.1007/978-3-030-64840-4_25
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/s00145-007-9011-9
https://doi.org/10.1007/s00145-007-9011-9
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/s00145-012-9136-3
https://doi.org/10.1007/978-3-030-56877-1_26
https://doi.org/10.1007/3-540-45708-9_30
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-319-78381-9_4

516 B. Libert et al.

18. Canetti, R., Lombardi, A., Wichs, D.: Fiat-Shamir: from practice to theory, part II
(NIZK and correlation intractability from circular-secure FHE). Cryptology ePrint
Archive: report 2018/1248

19. Cantor, D., Zassenhaus, H.: A new algorithm for factoring polynomials over finite
fields. Math. Comput. 36(154), 587–592 (1981)

20. Catalano, D., Gennaro, R., Howgrave-Graham, N., Nguyen, P. : Paillier’s cryp-
tosystem revisited. In: ACM-Conference on Computer and Communications Secu-
rity (2001)

21. Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without random
oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 650–670. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 29

22. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73420-8 38

23. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

24. Chatterjee, R., Garg, S., Hajiabadi, M., Khurana, D., Liang, X., Malavolta, G.,
Pandey, O., Shiehian, S.: Compact ring signatures from learning with errors. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 282–312.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 11

25. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

26. Choudhuri, A., Hubacek, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum, G.:
Finding a Nash equilibrium is no easier than breaking Fiat-Shamir. In: Symposium
on Theory of Computing (2019)

27. Ciampi, M., Parisella, R., Venturi, D.: On adaptive security of delayed-input sigma
protocols and Fiat-Shamir NIZKs. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020.
LNCS, vol. 12238, pp. 670–690. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57990-6 33

28. Couteau, G., Hartmann, D.: Shorter non-interactive zero-knowledge arguments and
zaps for algebraic languages. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12172, pp. 768–798. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56877-1 27

29. Couteau, G., Katsumata, S., Ursu, B.: Non-interactive zero-knowledge in pairing-
free groups from weaker assumptions. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12107, pp. 442–471. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45727-3 15

30. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

31. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

32. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

https://doi.org/10.1007/978-3-662-46447-2_29
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-030-84242-0_11
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-030-56877-1_27
https://doi.org/10.1007/978-3-030-56877-1_27
https://doi.org/10.1007/978-3-030-45727-3_15
https://doi.org/10.1007/978-3-030-45727-3_15
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-45539-6_30

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 517

33. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 3

34. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

35. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

36. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad
Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 36

37. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

38. Esgin, M., Zhao, R., Steinfeld, R., Liu, J., Liu, D.: MatRiCT: efficient, scalable and
post-quantum blockchain confidential transactions protocol. In: ACM-Computer
and Communications Security (2019)

39. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero-knowledge under
general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

40. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

41. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Symposium on Theory of computing (2008)

42. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. comput. 18(1), 186–208 (1989)

43. Goldwasser, S., Tauman Kalai, Y.: On the (in) security of the Fiat-Shamir
paradigm. In: Foundations of Computer Science (2003)

44. González, A.: Shorter ring signatures from standard assumptions. In: Lin, D., Sako,
K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 99–126. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17253-4 4

45. Green, M., Ladd, B.-W. , Miers, I.: A Protocol for privately reporting Ad impres-
sions at scale. In: ACM-Computer and Communications Security (2016)

46. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

47. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 4

48. Hofheinz, D., Jager, T., Rupp, A.: Public-key encryption with simulation-based
selective-opening security and compact ciphertexts. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 146–168. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 6

https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-17253-4_4
https://doi.org/10.1007/978-3-030-17253-4_4
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-662-53644-5_6
https://doi.org/10.1007/978-3-662-53644-5_6

518 B. Libert et al.

49. Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way func-
tions (or: one-way product functions and their applications). In: Foundations of
Computer Science (2018)

50. Holmgren, J., Lombardi, A., Rothblum, R.: Fiat-Shamir via list-recoverable codes
(or: parallel repetition of GMW is not zero-knowledge). In: Symposium on Theory
of Computing (2021)

51. Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7 5

52. Jawale, R., Tauman-Kalai, Y., Khurana, D., Zhang, R.: SNARGs for bounded
depth computations and PPAD hardness from sub-exponential LWE. In: Sympo-
sium on Theory of Computing (2021)

53. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 30

54. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

55. Libert, B., Nguyen, K., Passelègue, A., Titiu, R.: Simulation-sound arguments for
LWE and applications to KDM-CCA2 security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12491, pp. 128–158. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64837-4 5

56. Libert, B., Nguyen, K., Peters, T., Yung, M.: One-shot fiat-shamir-based NIZK
arguments of composite residuosity and logarithmic-size ring signatures in the
standard model. Cryptology ePrint Archive: report 2020/1334

57. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security
from the DDH assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS
2018. LNCS, vol. 11099, pp. 288–308. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98989-1 15

58. Lipmaa, H.: Optimally sound sigma protocols under DCRA. In: Kiayias, A. (ed.)
FC 2017. LNCS, vol. 10322, pp. 182–203. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70972-7 10

59. Lombardi, A., Vaikuntanathan, V.: PPAD-hardness and VDFs based on iterated
squaring, in the standard model. Crypto (2020)

60. Malavolta, G., Schröder, D.: Efficient ring signatures in the standard model. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 128–157.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 5

61. Mohassel, P.: One-time signatures and chameleon hash functions. In: Biryukov, A.,
Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7 21

62. Noether, S.: Ring signature confidential transactions for monero. Cryptology ePrint
Archive report 2015/1098 (2015)

63. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054135

64. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

https://doi.org/10.1007/978-3-662-46497-7_5
https://doi.org/10.1007/11681878_30
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-030-64837-4_5
https://doi.org/10.1007/978-3-030-64837-4_5
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-319-70972-7_10
https://doi.org/10.1007/978-3-319-70972-7_10
https://doi.org/10.1007/978-3-319-70697-9_5
https://doi.org/10.1007/978-3-642-19574-7_21
https://doi.org/10.1007/BFb0054135
https://doi.org/10.1007/3-540-48910-X_16

One-Shot Fiat-Shamir-Based NIZK Arguments in the Standard Model 519

65. Park, S., Sealfon, A.: It wasn’t me! In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 159–190. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 6

66. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

67. Regev. O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. STOC (2005)

68. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

69. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Foundations of Computer Science (1999)

70. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 12

71. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of fiat-shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 8

72. Young, A., Yung, M.: Questionable encryption and its applications. In: Dawson,
E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 210–221. Springer,
Heidelberg (2005). https://doi.org/10.1007/11554868 15

https://doi.org/10.1007/978-3-030-26954-8_6
https://doi.org/10.1007/978-3-030-26954-8_6
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-540-71677-8_12
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/11554868_15

SNARGs for P from Sub-exponential
DDH and QR

James Hulett1,2, Ruta Jawale1,2, Dakshita Khurana1,2(B),
and Akshayaram Srinivasan1,2

1 University of Illinois, Urbana-Champaign, USA
{jhulett2,jawale2,dakshita}@illinois.edu

2 Tata Institute of Fundamental Research, Bengaluru, India
akshayaram.srinivasan@tifr.res.in

Abstract. We obtain publicly verifiable Succinct Non-Interactive
Arguments (SNARGs) for arbitrary deterministic computations and
bounded space non-deterministic computation from standard group-
based assumptions, without relying on pairings. In particular, assum-
ing the sub-exponential hardness of both the Decisional Diffie-Hellman
(DDH) and Quadratic Residuosity (QR) assumptions, we obtain the fol-
lowing results, where n denotes the length of the instance:
1. A SNARG for any language that can be decided in non-deterministic

time T and space S with communication complexity and verifier
runtime (n + S) · T o(1).

2. A SNARG for any language that can be decided in deterministic time
T with communication complexity and verifier runtime n · T o(1).

1 Introduction

We consider the problem of constructing succinct, publicly verifiable arguments
to certify the correctness of computation. By succinct, we refer to the setting
where the running time of verifier is much smaller than the time required to
perform the computation.

The problem of constructing such proof systems has received widespread
attention over the last three decades. These are typically called succinct non-
interactive arguments (SNARGs), where argument refers to any proof system
whose soundness holds against polynomial-time provers (under cryptographic
assumptions) and the non-interactive setting refers to a single message of com-
munication sent by the prover to the verifier. As in prior work, our work focuses
on constructions in the CRS model, where participants have access to a common
reference string.

J. Hulett, R. Jawale and D. Khurana—Supported in part by DARPA SIEVE award
under contract number HR001120C0024, a gift from Visa Research, and a C3AI DTI
award. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the United
States Government or DARPA.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 520–549, 2022.
https://doi.org/10.1007/978-3-031-07085-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_18&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_18

SNARGs for P from Sub-exponential DDH and QR 521

Until recently, a significant amount of prior work on SNARGs focused on
constructions proven secure under non-falsifiable assumptions or shown secure
only in idealized models (such as the Random Oracle Model). Indeed, Gentry
and Wichs [24] showed that if such an argument system satisfied a strong form of
soundness called as adaptive soundness, then such non-falsifiable assumptions are
necessary for SNARGs for NP. There has been recent exciting progress on con-
structing SNARGs for classes that are subsets of NP under falsifiable standard
cryptographic assumptions, and in particular the LWE (Learning with Errors
assumption), by instantiating the Fiat-Shamir paradigm, discussed next.

The Fiat-Shamir Paradigm. The Fiat-Shamir paradigm is a transformation that
converts any public-coin interactive argument (P,V) for a language L to a non-
interactive argument (P ′,V ′) for L. The CRS consists of randomly chosen hash
functions h1, . . . , h� from a hash family H, where � is the number of rounds in
(P,V). To compute a non-interactive argument for x ∈ L, the prover P ′(x) gen-
erates a transcript corresponding to (P,V)(x), by emulating P(x) and replacing
each random verifier message by a hash of the transcript so far. The verifier V ′(x)
accepts if and only if V(x) accepts this transcript and all verifier challenges are
computed correctly as the output of the hash function on the transcript so far.
This paradigm is sound when applied to constant round protocols in the Ran-
dom Oracle Model (ROM) [6,46]. At the same time there are counterexamples
that demonstrate its insecurity in the plain model [4,5,16,25].

The recent work of Canetti et al. [15] and subsequent work of Peikert and
Shiehian [45] proved the soundness of the Fiat-Shamir paradigm, assuming stan-
dard hardness of the Learning With Errors (LWE) problem, when applied to a
specific zero-knowledge protocol. This gave the first NIZK argument from LWE.
This work also obtained a SNARG for all bounded depth computations, assuming
the existence of an FHE scheme with optimal circular security – which appears
to be an extremely strong assumption. Subsequently, [32] gave an instantia-
tion of the Fiat-Shamir paradigm applied to special classes of succinct proofs,
which resulted in SNARGs for bounded depth computations from sub-exponential
LWE [32]. Even more recently, Choudhuri et al. [21] gave a construction of
SNARGs for the complexity class P from polynomial LWE, using which Kalai
et al. [37] gave a construction of SNARGs for bounded-space nondeterministic
computation under sub-exponential LWE. The LWE assumption is a structured
cryptographic assumption that is known to imply among several other inter-
esting cryptographic primitives, compact (leveled) homomorphic encryption. In
fact, all aforementioned constructions of SNARGs implicitly make use of homo-
morphic encryption.

On the other hand, foundational group-based assumptions such as Decisional
Diffie-Hellman and Quadratic Residuosity are not known to imply homomor-
phic encryption, and yet their (sub-exponential) variants have surprisingly, via
the Fiat-Shamir paradigm, been shown to imply non-interactive zero-knowledge
[14,31] as well as non-trivial SNARGs for batched NP statements [20]. This moti-
vates the following question:

522 J. Hulett et al.

Do there exist SNARGs for P (and beyond) from standard group-based
assumptions like DDH and QR?

1.1 Our Results

We address the above question and obtain the following positive results.

– We build a SNARG for the class of all non-deterministic computations requir-
ing time T (n) and space S(n) (denoted by NTISP(T (n);S(n))) where the
prover runs in time poly(T (n)) given a witness for the computation and the
verifier runs in time (n + S(n)) · T (n)o(1) where n is the instance length.

– Plugging the SNARG above into a compiler from [37], we obtain a SNARG for
the class P where the prover runs in time poly(T (n)) and the verifier runs in
time n · T (n)o(1).

Our construction for NTISP is obtained in three steps.

1. We develop a new folding technique for interactive succinct arguments, where
we recursively break down a time-T computation into smaller subcomputa-
tions, each of time T/k (for an appropriate choice of k) and have the prover
send batch proofs of the validity of each subcomputation. This can be viewed
as a computational analogue of the RRR interactive proof [47].

2. We instantiate our protocol using batch interactive arguments for NP1 that
are “FS-compatible”, which were in particular developed in [20] based on the
hardness of QR. Here, FS-compatible refers to the fact that these interactive
batch NP arguments can be soundly converted into SNARGs via the Fiat-
Shamir paradigm. In addition, we show that our interactive argument for
NTISP is FS-compatible as long as the underlying batch NP argument is FS-
compatible.

3. We then soundly convert the above succinct interactive argument to a SNARG
by making use of correlation-intractable hash functions for low-depth thresh-
old circuits constructed in [31], based on sub-exponential hardness of DDH.

Finally, we note that the works of [2,28,41] observed that in addition to inter-
active proofs, the Fiat-Shamir paradigm can be soundly instantiated for special
types of arguments. They observed that this is possible for arguments that have
an unconditionally sound mode, and where the prover cannot detect whether the
argument is unconditionally or computationally sound. These ideas were then
extended to the setting of succinct arguments in [20,21]. As a contribution that
may be of independent interest, we abstract out a notion of Fiat-Shamir compat-
ibility of argument systems, which captures these broad requirements (includ-
ing those used in [2,20,21,28,41]) that interactive arguments satisfy in order
to soundly instantiate Fiat-Shamir from standard assumptions using known
techniques.

1 Batch arguments for NP allow a verifier to verify the correctness of k NP instances
with circuit complexity smaller than k times the size of the NP verification circuit.

SNARGs for P from Sub-exponential DDH and QR 523

1.2 Other Prior Work

The works of [7–9,22,23,29,40,42] obtain SNARGs for non-deterministic com-
putations, with security either in the Random Oracle Model [6] or from non-
falsifiable “knowledge assumptions.” The schemes of [1,10,17–19,39,43] rely
on assumptions related to obfuscation, which are both stronger in flavor and
less widely studied than the ones used in this work. More recently, [34] con-
structed a SNARG (for deterministic computations) based on a (new) efficiently
falsifiable decisional assumption on groups with bilinear maps. Later, a line of
work [15,20,21,32,37] instantiated the Fiat-Shamir paradigm to finally result in
SNARGs for P from the learning with errors (LWE) assumption. Very recently,
the work of Gonzalez and Zacharias [27] constructed SNARGs from pairing-
based assumptions. On the other hand, in this work, we obtain SNARGs from
assumptions that hold in pairing-free groups.

Another line of work [3,12,13,33,35,36] built privately verifiable schemes
for deterministic computations and a sub-class of non-deterministic compu-
tations, based on standard assumptions (specifically, the hardness of LWE or
φ-hiding). These schemes, however, are not publicly verifiable. The CRS is gen-
erated together with a secret key which is needed in order to verify the proofs.

In the interactive setting, publicly verifiable schemes exist, even for non-
deterministic computations, under standard cryptographic assumptions [11,38,
44]. In fact some publicly verifiable interactive proof systems for restricted classes
of computations exist even unconditionally, in particular for bounded depth [26]
and bounded space computations [47].

2 Technical Overview

We start with a high-level overview of our recursively-built interactive argument.
To begin with, we will only focus on languages that can be decided in determin-
istic time T and space S. The prover will run in time poly(T), and the size of
our proofs will grow (linearly) in S.

2.1 Succinct Interactive Arguments for Bounded Space
from Succinct Arguments for Batch NP

In what follows, we describe a form of interactive arguments for bounded space
computations that can be soundly compressed via the Fiat-Shamir transform.
We discuss why these ideas may seem to necessitate the use of LWE, and then
describe how our folding technique helps get around the need for the LWE
assumption while achieving T o(1) verification time.

Consider a deterministic computation that takes T steps: the prover and
verifier agree on a (deterministic) Turing Machine M, an input y ∈ {0, 1}n,
and two configurations u, v ∈ {0, 1}S (a configuration includes the machine’s
internal state, the contents of all memory tapes, and the position of the heads).
The prover’s claim is that after running the machine M on input y, starting at
configuration u and proceeding for T steps, the resulting configuration is v. This
is denoted by

524 J. Hulett et al.

(M, y) : u
T−→ v.

To prove correctness of this T -step computation, the prover will send (k − 1)
alleged intermediate configurations

(s1, s2, . . . , sk−1)

and will set s0 := u, sk := v, where for every i ∈ [1, k], si is the alleged configu-
ration of the machine M after T/k steps when starting at configuration si−1.

Now the prover will attempt to prove correctness of all these intermediate
configurations: a näıve way to achieve this is to run k executions of the base
protocol, one for every i ∈ [k]. But the trick to achieving succinctness will be to
prove correctness of all configurations simultaneously in verification time that
is significantly smaller than running the base protocol k times, while also not
blowing up the prover’s complexity by a factor of k. To enable this, the prover
and verifier can rely on an appropriate succinct interactive argument for batch
NP to establish that all responses would have been accepted by the verifier.

In a succinct argument for batch NP, a prover tries to convince a verifier that
(x1, . . . , xk) ∈ L⊗k, in such a way that the proof size and communication com-
plexity are smaller than the trivial solution where the prover simply sends all wit-
nesses (w1, . . . , wk) to the verifier, and the verifier computes

∧
i∈[k] RL(xi, wi).

In particular, [20] recently obtained SNARGs for batching k NP instances
(from QR and sub-exponential DDH) where the communication complexity is
Õ(|C| + k log |C|) · poly(λ), and verifier runtime is Õ(kn + |C|) · poly(λ), where
λ is the security parameter, |C| denotes the size of the verification circuit and n
denotes the size of each instance. In our setting, |C| ≈ (T/k), which means that
verification time for the SNARG will be Õ(k + T/k). Setting k = O(

√
T), we

would obtain communication complexity (and verification runtime) that grows
(approx.) with O(

√
T) and this is the best that one can hope for in this case [20].

However, in this work, we would like to achieve an overhead of T o(1).

A Recursive Construction. The argument described above incurred an overhead
of T/k because the verification circuit for each subcomputation had size T/k.
However, what if we substituted this verification circuit with the (relatively
efficient) verifier for a succinct interactive argument for T/k-time computations?

Specifically, assume there exists a public-coin interactive argument for veri-
fying computations of size T/k. As before, suppose a prover wants to convince
a verifier that

(M, y) : u
T−→ v.

The prover sends (k − 1) intermediate configurations, as before, and then pre-
pares the first messages of all k interactive arguments, where the ith interactive

argument attests to the correctness of (M, y) : si−1
T/k−−→ si. Instead of sending

these messages in the clear, the prover sends to the verifier a succinct commit-
ment to all k first messages. Here, following [20,21,37], one could use a keyed
computationally binding succinct commitment whose key is placed in the CRS.
In fact, looking ahead, we will require a commitment that that is binding to

SNARGs for P from Sub-exponential DDH and QR 525

a (hidden) part of the input string [30], and in fact the bound parts of the
input should be extractable given a trapdoor. We will call such commitments
somewhere-extractable (SE) commitments. In more detail, these commitments
have a key generation algorithm Gen(1λ, i) that on input an index i ∈ [k] outputs
a commitment key ck together with an extraction trapdoor td, and an extrac-
tion algorithm that given td and any commitment string c outputs the unique
ith committed block (out of a total of k blocks). Moreover, the commitment key
hides the index i in a CPA-sense.

Next, the verifier sends a single (public coin) message that serves as a chal-
lenge for all k arguments. Subsequently, the prover prepares a third message
for all arguments, and commits to these messages, after which the verifier again
generates a single (public coin) message that serves as its fourth message for all
k arguments. The prover and verifier proceed until all rounds of all k arguments
are committed, and then the prover (as before) must prove to the verifier that
all committed transcripts would be accepted.

At this point, one solution is for the prover and verifier to engage in a batch
NP argument (as before), where the prover must convince the verifier that for
every i ∈ [k], there is an opening to the commitment that would cause the verifier
to accept. In what follows, we will rely on the fact that the batch NP SNARG can
actually be obtained in two steps: first, build an interactive argument for batch
NP, and next compress rounds of interaction via Fiat-Shamir. Indeed, the batch
SNARG from [20] that we will use is obtained by first building an interactive
argument and then compressing it by soundly instantiating the Fiat-Shamir
paradigm. From this point on, unless otherwise specified, we will make use of
the [20] interactive batch NP argument, and later separately use the fact that
it can be soundly compressed via Fiat-Shamir based on sub-exponential DDH
(a property referred to as FS-compatibility). This modified interactive argument
〈P,V〉 for T -time computations is described in Fig. 1, and it relies on a protocol
for T/k-time computations.

Batch NP and the Need for Local Openings. Unfortunately, the protocol
described in Fig. 1 is not succinct. In particular, each batch NP statement
involves verifying an opening of the SE commitment, and therefore the verifica-
tion complexity of batch NP grows with the complexity of verifying commitment
openings. For this to be small, the SE commitment must satisfy an important
property: namely, that it is possible to succinctly decommit to a part of the
committed input in such a way that the size of the opening and complexity of
verifying openings depend only on the part being opened, and do not grow with
the size of input to the commitment. Unfortunately, such commitments are only
known from the learning with errors (LWE) assumption2; and therefore we take
a different route.
2 In the full version of this paper, we show that one can in fact construct a com-

mitment with somewhat succinct local openings from DDH or QR. However, these
are significantly less succinct than their LWE-based counterparts, and using these
commitments would lead to marginally worse parameters than one can get with the
methods described next.

526 J. Hulett et al.

Emulation Phase.
1. P computes and sends (k −1) intermediate configurations (s1, . . . , sk−1)

to V, where si is the configuration of machine M after T/k steps when
starting at configuration si−1.

2. P prepares the first messages {m
(i)
1 }i∈[k] for k interactive arguments,

where the ith interactive argument attests to the correctness of (M, x) :

si−1
T/k−−→ si. Next, P computes an SE commitment c(1) to these first

messages, and sends the commitment string c(1) to V.
3. V generates a single (public coin) message for (a single copy of) the

interactive argument for T/k-sized computation. All k arguments will
share the same verifier message.

4. More generally, for every round j ∈ [ρ] of the underlying interactive
argument,
– P computes the jth round messages for all k interactive arguments

where the ith interactive argument attests to the correctness of

(M, x) : si−1
T/k−−→ si. Next, P computes an SE commitment c(j)

to all these first messages, and sends the commitment string c(j) to
V.

– V generates a single (public coin) message for the underlying inter-
active argument for T/k-sized computation. All k arguments will
share the same verifier message.

Batch NP Phase. P proves to V that there exists an opening of the com-
mitment c = (c(1), . . . , c(ρ)) where for i ∈ [k] the ith opened value is an
interactive argument such that:

1. The commitment verifier would accept the opening and
2. The verifier for the T/k interactive argument would accept the ith ar-

gument.

Fig. 1. Recursively defined interactive argument for bounded space deterministic com-
putation

Coincidentally, in the interactive arguments for batch NP due to [20], the first
step requires the prover to commit to witnesses (w1, . . . , wk) corresponding to
each of the k instances (x1, . . . , xk). This is done via an SE commitment in such
a way that when the commitment key is binding at index i ∈ [k], the extraction
algorithm outputs the ith committed witness wi. Moreover, this commitment
does not need to have local openings; somewhere extractability suffices3. Finally,
the [20] protocol is actually an argument of knowledge for one of the instances:

3 We remark that [20] also require some additional linear homomorphism properties
from the commitment, but these are not necessary for our discussion.

SNARGs for P from Sub-exponential DDH and QR 527

implicit in their proof is the fact that when the SE commitment keys (in the
CRS) are binding on index i, no efficient prover can commit to wi that is a
non-witness for xi and produce an accepting transcript (except with negligible
probability).

This gives us a way out: in the Batch NP phase of our protocol, instead
of proving that there exists an opening to the commitment, we omit sending
commitments (since we already committed to all T

k transcripts), and simply
prove that for each of the transitions si−1 → si, there exists a prover strategy
corresponding to verifier coins sent in the emulation phase, that would cause
the verifier to accept. That is, the prover demonstrates membership of instances
(x̃1, . . . , x̃k) in the language L̃, where for any i ∈ [k],

x̃i = (si−1, si, y,M, β)

and L̃ is the language of all such x̃ such that there exist prover messages that
when combined with the verifier messages β create an accepting transcript. We
note that an honest prover, by the end of the emulation phase in Fig. 1, will
already be committed to witnesses for this language.

Thus our final protocol has an emulation phase that is identical to Fig. 1, but
the batch NP phase is modified as described in Fig. 2.

It may appear that the language L̃ will contain nearly all strings: since the
protocol for T/k-sized computations is an argument, so there will exist prover
messages even for instances not in the language. However, this would only be a
problem if we relied on soundness of the batch NP protocol: on the other hand,
we are able to use the fact that the [20] protocol is an argument of knowledge
for the ith statement when the SE commitment key is binding at index i. In
particular, this means that if the SE commitment was binding at index i, then
it is possible to efficiently extract a witness, i.e., an accepting transcript for the
ith subcomputation si−1 → si.

Now if the prover managed to break soundness of our protocol, this would
imply that there exists an index j ∈ [k] such that the machine M on input
y does not transition from configuration sj−1 to sj . But, if j = i, where i is
the index where the SE commitment is binding, then one can in fact extract an
accepting transcript for the jth incorrect subcomputation sj−1 → sj . This can
therefore be used to build a prover that contradicts soundness of the protocol
for T/k-sized computations. Moreover, hiding of the index i ensures that j = i
occurs with non-negligible probability.

Finally, we point out that in the base case, i.e., for unit-time computations,
the verifier simply checks the statement on its own (this takes one time-step).

The recursive protocol described so far satisfies succinctness for an appropri-
ate choice of k (that we discuss later) but requires multiple rounds, since each
round of recursion adds a few rounds of interaction. The goal of this work is to
build a non-interactive argument, which we achieve by compressing this inter-
active argument to a SNARG based on correlation-intractable hash functions for
low-depth threshold circuits. We discuss this in detail below.

528 J. Hulett et al.

Updated Batch NP Phase
– P and V define instances

(x1, . . . xk) where xi = (si−1, si, y, M, β)

where β denote all verifier messages from the emulation phase.
– P additionally defines witnesses

(w1, . . . wk)

where for every i ∈ [k], wi contains the prover messages for the ith

subcomputation for size T
k .

– Finally, define language

L = {(s, s , y, M, β) : ∃ prover messages π s.t.

(π, β) is accepting transcript for (M, y) : s
T/k−−→ s .}

– P and V execute a batch NP argument to prove that for every i ∈ [k],
xi ∈ L, where they replace the first round of Batch NP (where prover
SE-commits to witnesses) with the transcript of the emulation phase.

Fig. 2. Updated batch NP phase for bounded space deterministic computation

2.2 Obtaining a SNARG

We now discuss why this argument can be compressed by relying on the same
CI hash functions as used in [20], leading to a sound SNARG.

Fiat-Shamir Compatible Batch NP. To soundly compress their batch NP inter-
active argument into a SNARG, the work of [20] (building on a line of recent
works including [2,14,15,28,31,32,41,45]) relies on a special type of hash func-
tion, called a correlation intractable hash function. The prover generates verifier
messages for the interactive protocol locally by applying this hash function to its
partial transcripts, in effect eliminating the need to interact with a verifier. At a
high level, a hash family H is correlation intractable (CI) for a relation R(x, y)
if it is computationally hard, given a random hash key k, to find any input x
such that (x,H(k, x)) ∈ R.

Given a CI hash function, the key observation is that if the BAD verifier
challenge for the interactive argument, which allows a prover to cheat, can be
computed by an efficient function, then replacing the verifier message by the
output of a CI hash function results in a verifier message that does not allow
a prover to cheat, except with negligible probability. But this paradigm is only
applicable to protocols where the circuits computing BAD verifier challenges
are supported by constructions of CI hash functions exist based on standard

SNARGs for P from Sub-exponential DDH and QR 529

assumptions. In particular, CI hash functions from (sub-exponential) DDH are
known for functions that are computable by constant (and in fact, O(log log λ))
depth threshold circuits. Recall that the [20] batch NP interactive argument has
a first message that contains SE commitments to all witnesses; [20] show that
the SE commitment they use (which they construct based on the QR assump-
tion) allows for extraction in constant depth. Moreover, given the witness, all
other computations can also be performed by constant depth threshold circuits.
Therefore, their interactive arguments can be compressed based on the (sub-
exponential) DDH assumption. [20] call this the strong FS-compatible property.
We will now prove that our interactive arguments for bounded space, also inherit
this property.

Fiat-Shamir Compatible Bounded Space Arguments. To begin, we assume that
all cryptographic primitives (SE commitments, CI hash functions) satisfy T -
security, meaning that no poly(T)-size adversary can break the primitive with
advantage better than negl(T).

Our interactive argument begins with P sending (k − 1) intermediate config-
urations to V. Observe that it is possible to verify (in time ≤T) whether or not
a given intermediate configuration is correct4. Of course, the verifier should not
be verifying intermediate configurations directly (as this will make verification
inefficient).

As discussed above, a cheating prover must output at least one pair of consec-
utive intermediate configurations si, si+1 such that M does not transition from
si to si+1 in T/k steps. Moreover, by T -index hiding of the SE commitment, if
the SE commitment is set to be binding at a random index i′, the probability
(over the randomness of i′) that the prover cheats on the i′th underlying T/k
interactive argument must be (negligibly) close to 1/k. Finally, because the SE
commitment is extractable, in this mode, it becomes possible for a reduction to
extract an accepting transcript of the underlying T/k argument corresponding
to a false statement.

Peeling off the recursion just a little, we observe that the (T/k) interactive
argument itself begins with the prover sending (k − 1) intermediate configu-
rations, each corresponding to (T/k2) steps of the Turing Machine M. Again,
one pair of consecutive configurations s′

j , s
′
j+1 must be such that M does not

transition from s′
j to s′

j+1 in (T/k2) steps. Moreover, by index hiding of the SE
commitment used in the (T/k) argument, if the (T/k) commitment is set to be
binding at a uniformly random index j′, the probability that the prover cheats
on the j′th underlying (T/k2) argument in addition to cheating on the i′th (T/k)
argument must be (negligibly) close to (1/k2). We can recurse logk T times all
the way to the base case, where the base argument is simply a unit-time com-
putation where the verifier checks the statement on its own. Moreover, letting π
denote the unit-time protocol obtained by peeling all layers of the recursion, we

4 This becomes somewhat non-trivial in the non-deterministic setting, which we dis-
cuss in an upcoming subsection.

530 J. Hulett et al.

can establish that with probability (close to) (1/klogk T) = 1/T , π corresponds
to a false statement. The rest of our analysis will be conditioned on this event.

Assuming that the base statement π (that the prover is statistically bound
to) at the end of the first message is false, we must now understand the distribu-
tion of BAD verifier challenges in subsequent messages of the argument system.
Note that the very next message will consist of the batch NP phase of the inter-
active argument for k-size computations, encrypted under (logk T − 1) layers of
SE commitments. This phase starts with commitments to k witnesses (in this
case, the witnesses are empty transcripts), each one proving the correctness of
one of the unit-size subcomputations. The false statement from the emulation
phase immediately determines which one of the batch statements is incorrect.
As long as the SE commitment is binding at this index, the BAD function at this
lowest layer of recursion will correspond to the set of verifier challenges in the
corresponding batch NP argument that allow the prover to cheat within that
argument. This means that the BAD function can be computed by peeling off
layers of the commitment (i.e. performing logk T sequential extractions), and
then computing the BAD function for the batch NP argument (which we know
is efficiently computable by a constant-depth circuit).

Next, going back up one step, we have the protocol corresponding to k2-sized
computations. It will again be the case that assuming the SE commitment binds
at the right index, the BAD function at this layer of recursion will correspond to
the set of verifier challenges in the corresponding batch NP argument that allow
the prover to cheat within that argument. This means that the BAD function
can be computed by peeling off logk T − 1 layers of the commitment, and then
computing the BAD function for the batch NP argument (which we know is
efficiently computable by a constant-depth threshold circuit).

More generally, the BAD function of our protocol corresponds to extracting
from upto logk T layers of commitments, and feeding the result as input to the
BAD function circuit of the interactive argument for batch NP.

Communication Complexity and Verifier Runtime. Considering now the effi-
ciency of the verifier, we note that in the emulation phase, the verifier simply
has to read prover messages and generate random strings. Thus, for our overview,
it suffices to focus on the batch NP phase, as the time taken there will dominate
that of the emulation phase. If we were to use a trivial batch NP protocol that
simply provided all k witnesses and asked the verifier to check them all, this
would mean that the run time of the T verifier would increase by a factor of
k over the run time of the T/k verifier. Unrolling the recursion, unfortunately,
we would obtain a T -time verifier. Luckily, we are not constrained to use only
a trivial batch NP protocol; by being more efficient, we can improve upon the
above analysis. Indeed, applying the batch NP described above, we can improve
the k multiplicative overhead to a polynomial in λ overhead, where λ is the
security parameter of our batch NP scheme.5

5 For simplicity of exposition, we are here ignoring some additional additive overhead
as well as polylogarithmic multiplicative factors.

SNARGs for P from Sub-exponential DDH and QR 531

By choosing k and λ such that λ << k, we can ensure that the difference
in verifier efficiency over the logk T levels between the unit protocol and the T
protocol is λc·logk T for some constant c, which can be set to T o(1) by a careful
choice of parameters. Since the verifier run time is an upper bound on the com-
munication complexity of the protocol (as the verifier needs to at a minimum
read all the messages), this gives us the same bound on the size of the proof.

This completes an overview of our SNARGs for deterministic bounded space
computation. In what follows, we will discuss how to extend these ideas to the
non-deterministic setting.

2.3 SNARGs for Bounded Space Non-deterministic Computation

When the machine M is non-deterministic it is a-priori no longer clear how
to argue or even define “correctness” of intermediate configurations. It may be
tempting to consider defining correctness of intermediate configurations with
respect to both the instance and the witness. However, the witness used can
potentially change every time the prover is queried, and is therefore not well
defined. It may also in general be too large to be sent as part of the SNARG.

However, inspired by [3], we observe that if the non-deterministic Turing
Machine reads each bit of the witness only once, then it becomes possible to get
around this barrier. Similar to [3], we consider the class NTISP(T (n), S(n)) of
all languages recognizable by nondeterministic Turing Machines in time O(T (n))
and space O(S(n)). Recall that a non-deterministic Turing Machine allows each
step of the computation to non-deterministically transition to a new state. This,
in a sense, corresponds to the setting where each bit of the witness is read at
most once (and if the machine wishes to remember previous non-deterministic
choices it must explicitly write them down on its worktape). Thus an alternative
way to describe this class is as the class of languages L with a corresponding
witness relation RL, recognizable by a layered circuit Cn,m parameterized by
n = |x| and m = m(n) = |w|, that on input a pair (x,w) outputs 1 if and only
if RL(x,w) = 1. Each layer of gates in this circuit has input wires that directly
read the instance, or directly read the witness, or are the output wires of gates
in the previous layer. Moreover, each bit of the witness is read by at most one
layer. This circuit has depth D = O(T (n)) and width W = O(S(n)), where W
may be smaller than n and m.

The SNARG Construction. The construction remains largely similar to the one
in the deterministic setting. The only (syntactical) difference is that Step 1 in
the recursively defined interactive argument from Fig. 1 is modified to send wire
assignments (W1, . . . Wk−1) to (k−1) intermediate layers of the circuit, each at a
depth interval of D/k from the base layer. Next, for every i ∈ [k], the prover runs
(parallel) interactive arguments proving that there is an assignment to witness
wires such that configuration Wi transitions to Wi+1 in depth D/k.

Analysis. As discussed above, unlike the deterministic setting, it appears difficult
define a notion of “correctness” of these intermediate wire assignments. Instead,
inspired by [3], we define the notion of an accepting layer.

532 J. Hulett et al.

The output layer consists only of the output wire, and thus the only valid
assignment for this layer is the symbol 1. For each layer i, we partition the wires
that are input to gates in layer i into three sets: intermediate wires, instance
wires, and witness wires. Intermediate wires for layer i are all wires connecting
gates in layer (i − 1) to gates in layer i; instance wires for layer i are all wires
that directly read the instance x and are input to gates in layer i; and witness
wires for layer i are all wires that directly read the witness and are input to
gates in layer i. We define AccD(x) = 1. The set AccD−1(x) contains all possible
assignments to intermediate wires connecting a gate in layer (D−1) to a gate in
layer D, such that when the instance wires for layer D are set consistently with
x, there exists some assignment to the witness wires for layer D, such that the
transition function applied to these wires results in output 1.

For each layer i < (D − 1), the set Acci(x) is defined recursively in a similar
manner. That is, for i < (D−1), Acci(x) is the set of all possible assignments to
intermediate wires connecting gates in layer i to gates in layer i + 1, such that
when the instance wires for layer i are set consistently with x, there exists an
assignment to the witness wires for layer i + 1, such that the transition function
applied to these wires outputs intermediate wires connecting layer i + 1 to layer
(i + 2) that lie in the set Acci+1(x). We note that the lowest i for which this
definition is meaningful is i = 1, since there are no intermediate wires before the
first layer.

By this definition, for x 	∈ RL, the set Acc1(x) is empty. This implies that
for any set of claimed intermediate configurations (W1, . . . ,Wk−1) sent by P
(and for Wk = 1), there must exist an i ∈ [k − 1] such that Wi+1 ∈ Acci+1(x)
but Wi 	∈ Acci(x). This means that there is no set of assignments to witness
wires that would lead to a correct transition from Wi to Wi+1. This means
that the prover must be cheating in the ith interactive argument for T/k-time
(non-deterministic) computation.

Moreover, as observed in [3], for any width W and depth D non-deterministic
computation, it is possible to decide whether a set of wire assignments are in
Acci(x), for any i ∈ [D] in time poly(D, 2W). This is done via a straightforward
dynamic programming approach. We will set parameters so that the SE commit-
ment is index-hiding against poly(T, 2S)-size adversaries. This, together with the
previous claim implies that if the SE commitment is set to be binding at a ran-
dom index i′, the probability that the prover cheats on the i′th underlying T/k
interactive argument must be (negligibly) close to 1/k. Moreover, because the
SE commitment is extractable, in this mode, it becomes possible for a reduction
to extract an accepting transcript of the underlying T/k argument for a false
statement.

At this point, it becomes possible to apply the same recursive argument as
in the deterministic setting to argue that with probability (negligibly) close to
1/klogk T = 1/T , the base argument corresponds to a false statement. Condi-
tioned on this event, it becomes possible to analyze the batch NP phase in a
manner similar to the analysis in the deterministic setting.

SNARGs for P from Sub-exponential DDH and QR 533

SNARGs for P. We rely on the recent work of [37] to compile our SNARGs for
non-deterministic bounded-space computations to SNARGs for P.

To this end, we observe that for any language L ∈ NTISP(T, S), it holds
that L⊗k ∈ NTISP(kT, S + T), where L⊗k is the language of k instances from
L. This implies SNARGs for batch NP with improved parameters than the [20]
SNARGs, from sub-exponential DDH and QR. In particular, this implies SNARGs
for batching k instances that have a description of size n, and proving that the
batched instances are in L⊗k where L ∈ NTISP(T, S), with communication com-
plexity and verifier runtime ko(1)(n+ poly(T +S)). By plugging this into a com-
piler of [37] from Batch SNARGs to SNARGs for P, we obtain SNARGs for T -time
deterministic computations with overhead T o(1) from sub-exponential DDH and
QR. We point out that the [37] compiler as stated also requires SE commitments
that allows for committing to T values with local openings of size polylog(T).
However, we show that for our setting of parameters, it suffices to have a weaker
local opening property, where openings are of size T o(1). We build such commit-
ments from any (sub-exponentially index-hiding) SE commitment without local
openings, therefore obtaining our final results also from sub-exponential DDH
and QR.

FS-compatible Arguments. In the body of our paper, we abstract out some gen-
eral properties of our interactive arguments, and define a class of FS-compatible
interactive arguments that can be soundly compressed using the Fiat-Shamir
paradigm based on our technique. We show that any interactive batch NP argu-
ment that is an “FS-compatible argument” can also be converted into a proof,
(intuitively) as long as its first message essentially contains a succinct commit-
ment to witnesses for all the NP statements. We define FS-compatible interactive
arguments to be those that satisfy a variant of round-by-round soundness [15]
w.r.t. a predicate. This predicate is computed as a function of the first message of
the interactive argument6 and a trapdoor associated with the CRS. Intuitively,
we will say that an interactive argument is FS-compatible w.r.t. a predicate φ if
transcripts that satisfy the predicate, also satisfy round-by-round soundness with
sparse and efficiently computable BAD verifier challenges. Moreover, in order to
ensure that these arguments can be soundly converted into SNARGs based on
CI hash functions, we will require that the predicate be “non-trivial”. That is,
any adversary that produces accepting transcripts for false statements with non-
negligible probability should also produce accepting transcripts that satisfy the
predicate and correspond to false statements, with non-trivial probability. We
show the non-triviality of our predicate using the index hiding property of the
underlying SE commitments.

Roadmap. A formalization of the FS-compatible property and a proof that such
arguments can be converted to SNARGs can be found in Sect. 4. Next, in Sects. 5
and 6 we formalize our constructions of SNARGs for deterministic and non-
deterministic bounded-space computations, respectively. We also combine the
latter with recent work [37] to obtain SNARGs for P in Sect. 6.5. Due to shortage
6 More generally, this can be computed as a function of the entire transcript.

534 J. Hulett et al.

of space, we only provide constructions and theorem statements, and defer proofs
to the full version of the paper.

3 Preliminaries

In what follows, when we say we assume (T1, T2)-hardness of an efficiently falsi-
fiable assumption, we mean that there exists a negligible function μ(·) such that
no poly(T1)-size adversary can falsify the assumption with probability better
than μ(T2).

3.1 Correlation Intractable Hash Functions

In this section, we recall the notion of a CI hash family. We start by recalling
the notion of a hash function family.

Definition 1. A hash family H is associated with algorithms (H.Gen,H.Hash),
and a parameter n = n(λ), such that:

– H.Gen is a PPT algorithm that takes as input a security parameter 1λ and
outputs a key k.

– H.Hash is a polynomial time computable (deterministic) algorithm that takes
as input a key k ∈ H.Gen(1λ) and an element x ∈ {0, 1}n(λ) and outputs an
element y.

We consider hash families H such that for every λ ∈ N, every key k ∈ H.Gen(1λ)
and every x ∈ {0, 1}n(λ), the output y = H.Hash(k, x) is in {0, 1}λ.

Definition 2 (Correlation Intractable). [15,16] Fix any T1 = T1(λ) ≥
poly(λ) and T2 = T2(λ) ≥ poly(λ). A hash family H = (H.Gen,H.Hash) is said
to be (T1, T2) correlation intractable (CI) for a family R = {Rλ}λ∈N of efficiently
enumerable relations if the following two properties hold:

– For every λ ∈ N, every R ∈ Rλ, and every k ∈ H.Gen(1λ), the functions R
and H.Hash(k, ·) have the same domain and the same co-domain.

– For every poly(T1)-size A = {Aλ}λ∈N there exists a negligible function μ such
that for every λ ∈ N and every R ∈ Rλ,

Pr
k←H.Gen(1λ)

x←A(k)

[(x,H.Hash(k, x)) ∈ R] = μ(T2(λ)).

We will use the following theorems from prior work.

Theorem 1. [31] Fix any T = T (λ) ≥ 2λε

for some 0 < ε < 1. Assuming
the (T, T)-hardness of DDH, there exists a constant c > 0 such that for any
B = B(λ) = poly(λ), depth L ≤ O(log log λ) and any family R = {Rλ}λ∈N of
relations that are enumerable by threshold circuits of size B(λ) and depth L, there
exists a (T, T) correlation intractable (CI) hash family H = (H.Gen,H.Hash)
computable in time (B(λ) · λ · L)c, for R (Definition 2).

SNARGs for P from Sub-exponential DDH and QR 535

3.2 Somewhere Extractable (SE) Commitments

Definition 3 (SE Commitments). A somewhere extractable (SE) commit-
ment consists of PPT algorithms (Gen,Com,Open,Verify,Extract) along with an
alphabet Σ = {0, 1}�blk and a fixed polynomial p = p(·) satisfying the following:

– (ck, ek) ← Gen(1λ, L, �blk, i): Takes as input an integer L ≤ 2λ, block length
�blk and integer i ∈ {0, . . . , L − 1} and outputs a public commitment key ck
along with an extraction trapdoor ek.

– h ← Com(ck, x): is a deterministic polynomial time algorithm that takes as
input x = (x[0], . . . , x[L − 1]) ∈ ΣL and outputs h ∈ {0, 1}�com .

– π ← Open(ck, x, i): Given the commitment key ck, x ∈ ΣL and an index
i ∈ {0, . . . , L − 1}, outputs proof π ∈ {0, 1}�open .

– b ← Verify(ck, y, i, u, π): Given a commitment key ck and y ∈ {0, 1}�com , an
index i ∈ {0, . . . , L − 1}, opened value u ∈ Σ and a proof π ∈ {0, 1}�open ,
outputs a decision b ∈ {0, 1}.

– u ← Extract(ek, y): Given the extraction trapdoor ek and a commitment y ∈
{0, 1}�com , outputs an extracted value u ∈ Σ.

We require the following properties:

– Correctness: For any integers L ≤ 2λ and i ∈ {0, . . . , L − 1},
any ck ← Gen(1λ, L, i), x ∈ ΣL, π ← Open(ck, x, j): we have that
Verify(ck,Com(ck, x), j, x[j], π) = 1.

– Index Hiding: We consider the following game between an attacker A and
a challenger:

• The attacker A(1T1) outputs an integer L and two indices i0, i1 ∈
{0, . . . , L − 1}.

• The challenger chooses a bit b ← {0, 1} and sets ck ← Gen(1λ, L, ib).
• The attacker A gets ck and outputs a bit b′.

We say that an SE commitment satisfies (T1, T2) index-hiding if for every
poly(T1)-size attacker A there exists a negligible function μ(·) such that:

∣
∣
∣ Pr[A = 1|b = 0] − Pr[A = 1|b = 1]

∣
∣
∣ = μ(T2)

in the above game.
– Somewhere Extractable: We say that a commitment is somewhere

extractable if there is a negligible function μ such that for every L(λ) ≤ 2λ

and i ∈ {0, . . . L − 1},
Pr

(ck,ek)←Gen(1λ,L,i)

[
∃y∈{0,1}�com , u∈Σ, π∈{0,1}�open

s.t. Verify(ck,y,i,u,π)=1 ∧ Extract(ek,y) 	=u

]
= μ(T2)

Theorem 2 (SE Commitments from QR [20]). Fix any T1 = T1(λ) ≥
poly(λ) and T2 = T2(λ) ≥ poly(λ). Assuming (T1, T2) hardness of QR, there
exists an SE commitment satisfying Definition 3 where the extraction algorithm
can be implemented by a threshold circuit of constant depth, and which satisfies
(T1, T2)-index hiding. Furthermore, this satisfies the following properties: �com =
�blkλ, �open = �blkL, |ck| = �blkLλ, |ek| = �blkλ, the running time of Gen and Verify
is �blkLλ and the running time of Extract is �blkpoly(λ).

536 J. Hulett et al.

4 Fiat-Shamir for Arguments

In this section, we define a class of (multi-round) interactive arguments to which
the Fiat-Shamir paradigm can be soundly applied, based on an (appropriate)
correlation-intractable hash function. In particular, we will define a few prop-
erties that a multi-mode interactive argument should satisfy, in order to be
converted to a non-interactive one by applying our technique. We begin with a
natural definition of multi-mode interactive arguments:

Definition 4 (N-Mode Protocols). Let N(λ) ≥ λ be a function. We say
that Π = (Setup,P,V) is an N -mode protocol for a language L if the following
property holds:

– Syntax: Setup is a randomized algorithm that obtains input a security param-
eter λ and some i ∈ [N(λ)]. Setup outputs common reference string CRS and
auxiliary information aux such that aux contains i.

Next, we define a notion of a predicate, that applies to the first prover mes-
sage, the instance and a trapdoor in the CRS.

Definition 5 (Predicate). φ is a predicate for an N -mode (Definition 4) pro-
tocol Π = (Setup,P,V) if φ has the following property:

– Syntax: For any i ∈ [N(λ)], φ takes as input instance x, the first prover
message α1, and some auxiliary information aux computed by Setup(1λ, i). φ
outputs a binary value in {0, 1}.

Definition 6 ((T ′, N)-Non-Trivial Predicate). Let Π = (Setup,P,V) be an
N -mode (Definition 4) public-coin interactive proof system for a language L. We
say that a predicate φ for Π (Definition 5) is time-T ′ non-trivial for Π if the
following properties hold:

– Syntax: For any λ ∈ Z
+, any instance x, any i ∈ [N(λ)], any (CRS, aux) ∈

Support(Setup(1λ, i)), and any (partial) transcript τ = (α1, β1, . . . , αj) for
some j ∈ [ρ(λ)], we define φ(x, τ, aux) = φ(x, α1, aux).

– Non-Triviality: There exists a polynomial p(·) such that for λ ∈ Z
+, and

any poly(T ′)-time adversary A, if there exists a polynomial q(·) such that:

Pr
i←[N],

(CRS,aux)←Setup(1λ,i),
(x,α1)←A(CRS)

[x 	∈ L ∧ x 	= ⊥] ≥ 1
q(λ)

then

Pr
i←[N],

(CRS,aux)←Setup(1λ,i),
(x,α1)←A(CRS)

[φ(x, α1, aux) = 1|x 	∈ L ∧ x 	= ⊥] ≥ 1
p(N(λ))

.

– Efficiency: φ can be evaluated in poly(T ′) time.

SNARGs for P from Sub-exponential DDH and QR 537

4.1 Round-by-Round Soundness

We now define a notion of round-by-round soundness for interactive arguments
w.r.t. a predicate φ. The definition below is a generalization of the definition in
[15] to the setting of interactive arguments.

Unlike [15], we don’t define State on the empty transcript, instead only start-
ing to define it once the first prover message has been sent. The key differ-
ence from [15] is that we define the State function on the first prover message
to reject when the predicate φ(x, α1, aux) = 1, instead of defining it to reject
when x 	∈ L. In particular, if we apply the definition below with the predicate
φ(x, α1, aux) = x 	∈ L (and modify the syntax of Setup appropriately), we will
recover the definition in [15,32].

Definition 7 (b-Round-by-Round Soundness w.r.t. φ). [15] Let Π =
(Setup,P,V) be a public-coin N -mode (Definition 4) interactive proof system for
a language L. We say that Π is b-round-by-round sound with respect to predicate
φ (Definition 5), if there exists State such that, denoting the size of every verifier
message by λ, for any i ∈ [N(λ)], any (CRS, aux) ∈ Support(Setup(1λ, i)), the
following properties hold:

1. Syntax: State is a deterministic function that takes as input the CRS, an
instance x, a transcript prefix τ , and auxiliary information aux computed by
Setup. State outputs either accept or reject.
For every x, every non-empty transcript τ = (α1, β1, . . . , αj , βj), and any
next prover message αj+1, we have

State(CRS, x, τ, aux) = State(CRS, x, τ‖αj+1, aux).

2. End Functionality: For every x and every first prover message α1,
State(CRS, x, α1, aux) = reject iff φ(x, α1, aux) = 1. For every complete tran-
script τ , if V(CRS, x, τ) = 1, State(CRS, x, τ, aux) = accept.

3. Sparsity: For every x and transcript prefix τ = (α1, β1, . . . , αj−1, βj−1, αj),
if φ(x, α1, aux) = 1 and State(CRS, x, τ, aux) = reject, it holds that

Pr
β←{0,1}λ

[State(CRS, x, τ‖β, aux) = accept] ≤ b(λ) · 2−λ. (1)

4.2 FS-Compatible Arguments

In the following definition, we formalize the requirements from round-by-round
sound arguments w.r.t. φ that allow them to be compressed by the Fiat-Shamir
paradigm via our approach.

Definition 8 (FS-Compatible Multi-mode Argument with Respect to
φ). For some ρ,N : Z

+ → Z
+, let Π = (Setup,P,V) be a ρ-round N -mode

(Definition 4) public-coin interactive argument system where Setup is a random-
ized algorithm that obtains input a security parameter λ and some i ∈ [N(λ)].
For any B, b, d : Z+ → Z

+, we say that Π is (B, b, d) FS-compatible with respect
to predicate φ (Definition 5) if the following properties hold:

538 J. Hulett et al.

1. Completeness: For any λ ∈ Z
+, i ∈ {1, 2, . . . , N(λ)}, and x ∈ L, we have

Pr
CRS←Setup(1λ,i)

[〈P,V〉(CRS, x) = accept] = 1.

2. b-Round-by-round soundness w.r.t. φ: Π is b-round-by-round sound with
respect to φ (Definition 7); let State be the corresponding state function.

3. d-depth B-efficient BAD w.r.t. φ: For any λ ∈ Z
+, any i ∈ [N(λ)], any

(CRS, aux) ∈ Support(Setup(1λ, i)), there exists a (non-uniform) randomized
function BADaux that satisfies the following guarantees:
– Syntax: BADaux is hardwired with aux and takes as input the CRS,

instance x, a partial transcript τ = (α1, β1, . . . , αi); and potentially addi-
tional uniform randomness r.

– BAD w.r.t. φ: For every x and every τ � (α1, β1, . . . , αj−1, βj−1, αj) s.t.
State(CRS, x, τ, aux) = reject and φ(x, α1, aux) = 1, BADaux(CRS, x, τ)
enumerates the set BCRS,φ,aux,τ , where

BCRS,φ,aux,τ := {β : State(CRS, x, τ‖β, aux) = accept}.

If BCRS,aux = ∅, BADaux(CRS, x, τ) outputs ⊥. By Equation (1),
|BCRS,aux| ≤ b(λ).

– d-Depth, B-Efficient computation: BADaux can be evaluated by a
d(λ)-depth (non-uniform) threshold circuit of size B = B(λ).

4.3 From FS-Compatible Arguments to SNARGs

In what follows, we formally state our theorem that arguments satisfying Def-
inition 8 with respect to a non-trivial predicate (Definition 6) can be soundly
compressed to obtain a SNARG; the proof of this is deferred to the full version
of the paper.

Definition 9 ((T ′, N)-Sound Non-interactive Arguments). For any T ′ =
T ′(λ) and N = N(λ), we say that a N -mode protocol (Definition 4) Π =
(Setup,P,V) is a non-interactive argument for a language L if the following
properties hold:

– Completeness: For any λ ∈ Z
+, any i ∈ [N(λ)], and x ∈ L, we have that

Pr
CRS←Setup(1λ,i)

τ←P(1λ,CRS)

[V(CRS, x, τ) = accept] = 1.

– N-Mode Indistinguishability of CRS: There exists a negligible function
μ(·) such that for any i1, i2 ∈ [N(λ)], and any poly(T ′)-time adversary A we
have that

∣
∣
∣
∣ Pr
CRS←Setup(1λ,i1)

[A(CRS) = 1] − Pr
CRS←Setup(1λ,i2)

[A(CRS) = 1]
∣
∣
∣
∣ = μ(N(λ)).

SNARGs for P from Sub-exponential DDH and QR 539

– Adaptive Soundness: There exists a negligible function μ(·) such that for
any λ ∈ Z

+, any i ∈ [N(λ)], and any non-uniform poly(T ′)-time adversary
A we have that

Pr
CRS←Setup(1λ,i)

(x,τ)←A(1λ,CRS)

[x 	∈ L ∧ V(CRS, x, τ) = 1] ≤ μ(N(λ)).

Theorem 3 (FS-Compatible). Suppose that there exist N,T ′, B, b, d (all
functions of λ) where N,T ′ ≥ λ. Let Π = (Setup,P,V) be a ρ(λ)-round N(λ)-
mode (Definition 4) protocol for a language L decidable in (deterministic) time
poly(T ′). Let Π have prover runtime TP and verifier runtime TV. Let H be a
hash function. If Π and H are such that:

– Π is (B, b, d)-FS-compatible according to Definition 8 with respect to a (T ′, N)
nontrivial predicate φ (Definition 6).

– H is (T ′, N) CI (Definition 2) for all relations sampleable by d-depth threshold
circuits of size B, and is computable in time p(B) for some fixed polynomial
p(·).

Then ΠH
FS, which is the protocol where every verifier message is computed by the

prover by hashing the latest prover message, is a (T ′, N)-sound non-interactive
argument system for L (Definition 9). ΠH

FS has ρ(λ)·p(B(λ))+TP prover runtime
and ρ(λ) · p(B(λ)) + TV verifier runtime.

5 FS-Compatible Arguments for Bounded Space
Computations

In this section, we describe and prove FS-compatibility of our interactive argu-
ments for bounded space computation. Before providing a formal theorem, in
the following subsection, we define an FS-Compatible Batch NP argument with
respect to a batch predicate and SE commitment. We will bootstrap interactive
arguments for batch NP satisfying this definition to obtain interactive arguments
for bounded space computation.

5.1 FS-Compatible Batch NP Arguments

Let ΠBNP = (SetupBNP,PBNP,VBNP) be a public-coin argument system for Rk for
some circuit satisfiability relation R such that SetupBNP(1λ, i) runs (ck, ek) ←
C.Gen(1λ, k, i) for some SE commitment scheme C and puts ck in CRS and (i, ek)
in aux. Then we define a predicate φBNP such that

φBNP((x1, . . . , xk), α1, aux) =
(
(xi, C.Extract(ek, α1)) 	∈ R

)
.

Theorem 4 (FS-compatible Batch NP w.r.t. C [20]). Assuming the hard-
ness of QR, for any n = n(λ),m = m(λ), s = s(λ), k = k(λ), and field F where
|F| ≤ 2λ there exists an FS-compatible Batch NP w.r.t. C and φBNP, where C
satisfies Definition 3, for Rk

n,m,s,F where Rn,m,s,F is any C-SAT relation.

540 J. Hulett et al.

5.2 Bounded-Space Protocol Construction

For any T ∈ N, consider a language LT that contains the set of all strings
(M, s0, sT , y) where M is the description of a Turing machine, s0 is the initial
state, sT is the final state and y is an input such that running M on y with the
start state to be s0 for T time steps results in the final state sT . We construct
an interactive FS-compatible argument for the language LT .

For any k, γ ≥ 1 where kγ = T , for every � ∈ [γ], we construct an argument
for k�-time, S-space computations in Fig. 4 in terms of an interactive argument
for k�−1-time, S-space computations.

– Let Π0 = (Setup,P,V) denote a trivial protocol (Fig. 3) for unit-time com-
putations where the verifier given a machine M, instance x and states s0, s1,
outputs 1 if M(x, s0) transitions to state s1 in one time step. Setup(1λ) out-
puts (⊥,⊥).

– Let Πk�−1 = (Setup,P,V) be a ρ-round public-coin protocol for (k�−1)-time
computations with ν-length prover messages whose verifier V = (V1, . . . ,Vρ)
where r(i) ← Vi(1λ, |x|) for i ∈ [ρ − 1] and {0, 1} ← Vρ(x, τ) for transcript τ .

– Let C = (Gen,Com,Open,Verify,Extract) be an SE commitment satisfying
Definition 3.

– Let ΠBNP be a batch NP protocol for circuit satisfiability that is FS-
compatible with respect to the commitment C (see Sect. 5.1 in the full version
of the paper for a formal definition of FS-compatibility for batch NP proto-
cols).

Unit Time Interactive Protocol
P and V obtain an instance x(0), which P wishes to prove is in the language

L(0) (M, y, s0, s1) : s1 ← M(y, s0, 1) .

That is, M with initial state s0 reaches state s1 in one time step on input
y.

1. P sends dummy message α to V.
2. V sends dummy message β to P.
3. V computes s1 ← M(y, s0). V accepts iff s1 = s1.

Fig. 3. Unit time interactive protocol (Setup,P,V)

SNARGs for P from Sub-exponential DDH and QR 541

Interactive Argument for k -Time S-Space Computation
Common Input: The common input for P and V is an instance

x = (M, s0, sT , y) of the language Lk . Setup(1λ, i, k):

– Parse i as a tuple (i1, i2, . . . , i) ∈ [k] .
– Obtain (ck, ek) ← C.Gen(1λ, i , k) and

(CRS , aux) = Πk −1 .Setup(1λ, (i1, . . . , i −1), k).
– Output CRS = (CRS , ck), aux = (aux , ek, (i1, . . . , i)).

– Initial Processing. P computes s = (s0, . . . , sk) for initial state s0 and
{sj M y, s0, 1T ·j/k }j∈[k]. P sends s to V.

– P and V define k instances (x1, . . . , xk) for language Lk −1 where xj =
(M, sj−1, sj , y) for j ∈ [k].

– Emulation Phase. For every r ∈ [1, ρ], let ν denote the maximum
message size of Πk −1 .P. P computes k parallel executions of Πk −1 .P’s
rth round message, Πk −1 .Pr:

π(r) =

⎡

⎣ π(r)[1] · · · π(r)[ν]

⎤

⎦

⎡

⎢
⎣

π
(r)
1 Πk −1 .Pr(CRS , x1, Lk −1 , {β(1), . . . , β(r−1)})

· · ·
π
(r)
k Πk −1 .Pr(CRS , xk, Lk −1 , {β(1), . . . , β(r−1)})

⎤

⎥
⎦ .

P sends C(r) = (C(r)[1], . . . , C(r)[ν]) where C(r)[j] C.Com(ck, π(r)[j])
for j ∈ [ν].

– V sends Πk −1 .V’s rth round message computed as β(r) ← Πk −1 .Vr(1λ).

– Batch NP Phase. P and V define the instances (x1 , . . . , xk) and P
defines the witnesses (ω1 , . . . , ωk) as follows:
For j ∈ [k], xj = (xj , {β(r)}r∈[ρ]), ωj = {π

(r)
j }r∈[ρ].

– Define language L
(x, {βr}r∈[ρ]) : ∃{πr}r∈[ρ] s.t. Πk −1 .V(CRS , x, {πr, βr}r∈[ρ]) = 1 .

– P and V execute ΠBNP on input ck, instances (x1 , . . . , xk) and witnesses
(ω1 , . . . , ωk) where the first round message of P in ΠBNP is ignored and
replaced by {C(r)}r∈[ρ] as sent in the emulation phase.

– If ΠBNP.V accepts, then V accepts.

Fig. 4. Bounded space computation protocol Πk� w.r.t. ΠBNP and C

542 J. Hulett et al.

5.3 Non-trivial Predicate for Bounded-Space Protocol

We start with the description of the predicate φ for the protocol Πkγ . Let ΠT =
(Setup,P,V) be the protocol defined by Fig. 4, where T = kγ . The predicate φ
equals φγ , where φ� is defined recursively for every x, α, aux and � ∈ [γ].

– φ0(x, α, aux) = 1 ⇐⇒ x 	∈ L(0).
– φ�(x, α, aux) for � ∈ [1, γ]: Parse aux = (aux′, ek, (i1, . . . , i�)) and parse

α = ((s0, . . . , sk), C(1)). Define instances (x′
1, . . . , x

′
k) as in Fig. 4, where

x′
j = (M, sj−1, sj , y) for j ∈ [k].

Set φ�(x, α, aux) = (x′
i�

	∈ Lk�−1) ∧ φ�−1(x′
i�

, C.Extract(ek, C(1)), aux′).

Theorem 5 (Non-trivial predicate). For every T = T (λ), T ′ = T ′(λ),
assuming the (T ′, T)-index hiding property of SE commitments, φ is a (T ′, T)-
non-trivial predicate for the protocol ΠT .

5.4 FS-Compatibility for Bounded-Space Protocol

Theorem 6 (FS-Compatibility w.r.t. Predicate φ). Let C be a somewhere
extractable commitment (Definition 3) with security parameter λ whose extrac-
tion algorithm Extract has depth dExtract and size BExtract. Suppose that ΠBNP is
a k-mode (BBNP, bBNP, dBNP)-FS-compatible batch NP argument with respect to C
and φBNP for some BBNP, bBNP, dBNP, k that are all functions of λ.

Then for any T = T (λ) ≥ λ and k = k(λ), Π (Fig. 4) is a T -mode (B, b, d)-
FS-compatible argument (Definition 8) with respect to the predicate φ, where

B = logk T · BExtract + BBNP, b = bBNP, d = logk T · dExtract + dBNP.

Furthermore, Π has both communication complexity and verifier complexity
|Πkγ .V| = (kS + |y|) · (λ · log(kS + |y|))O(γ) and prover complexity poly(kγ) for
a fixed polynomial poly(·).
Corollary 1. Assuming the subexponential hardness of QR and subexponential
hardness of DDH, there exists a SNARG for any time-T space-S deterministic
computation with

(
T

c√
log log log T · (S + n)

)
verifier runtime and communication

complexity, as well as poly(T, S) prover runtime, where n denotes the size of the
input, and c is a constant >0.

6 FS-Compatible Arguments for Non-deterministic
Bounded Space

We now describe our interactive arguments for NTISP(T (n), S(n)), which is the
class of all languages recognizable by non-deterministic Turing Machines in time
T (n) and space S(n). Such a Turing Machine allows each step of the compu-
tation to non-deterministically transition to a new state. Thus, in a sense, this

SNARGs for P from Sub-exponential DDH and QR 543

corresponds to the setting where each bit of the witness is read at most once7. An
alternative way to describe this class is as the class of languages L with a corre-
sponding witness relation RL, recognizable by a deterministic Turing Machines
with access to an input tape and a read-only, read-once witness tape, in addition
to a work tape where only O(S(n)) space is used, and that runs in O(T (n)) time.

First, we introduce some notation and provide some background on NTISP
computations. The following subsection closely mirrors [3].

6.1 Background

Fix any L ∈ NTISP(T (n), S(n)). Denote by RL its corresponding NP relation,
and denote by M = ML a T (n)-time S(n)-space (non-deterministic) Turing
machine for deciding L. M can alternately be defined as a two-input Turing
machine, that takes as input a pair (x,w) and outputs 1 if and only if (x,w) ∈
RL.

Corresponding Layered Circuit CM
n,m. Any such Turing machine M can be con-

verted into a layered circuit, denoted by CM
n,m, which takes as input a pair (x,w),

where n = |x| and |w| = m = m(n) (where m(n) is an upper bound on the length
of a witness corresponding to a length n instance), and outputs 1 if and only if
M(x,w) = 1. Moreover, CM

n,m is a layered circuit, with W = O(S(n)) denoting
the maximum of the number of gates and number of wires in each layer, and
depth D = O(T (n)), such that an incoming wire to a gate in layer i+1 is either
an input wire (i.e. a wire that reads the input), a witness wire (i.e. a wire that is
attached to a trivial witness gate with fan-in and fan-out 1 whose output equals
its input, and whose input wire reads the witness), or the output wire of a gate
in layer i. Moreover, any witness gate has fan-out 1 (this corresponds to read-
once access to the witness tape), and any layer of the circuit reads at most one
(unique) bit from the witness tape. In addition, there is a deterministic Turing
machine M ′ of space O(log T) that on input n outputs the (description of the)
circuit CM

n,m.

6.2 Interactive Arguments for Bounded Space Non-deterministic
Computation

For any � ≥ 1, we construct an interactive argument that proves correctness of
wire assignments to layered circuits Cktn,m where n = |x| and m = |w| that
are of the form described above (i.e. corresponding to computations of a Turing
Machine M). We will assume that Cktn,m has depth D = k� and width W , and
describe an interactive argument in terms of an interactive argument for k�−1-
depth, W -width circuits. We will prove in subsequent sections that this protocol
is FS-compatible.

7 If a non-deterministic Turing Machine wishes to remember what non-deterministic
choices it made, it has to write them down to its work tape.

544 J. Hulett et al.

– Let Π0 = (Setup,P,V) denote a trivial protocol for unit-depth circuits where
the prover sends a dummy message followed by a dummy verifier message, and
the verifier given a circuit Cktn,1 with a single layer, instance x s.t. |x| = n and
states s0, s1, outputs 1 iff s1 = Cktn,1(x, 0, s0, 1) or s1 = Cktn,1(x, 1, s0, 1).
Setup(1λ) outputs (⊥,⊥).

– Let Πk�−1 = (Setup,P,V) be a ρ-round public-coin protocol for (k�−1)-time
computations with �-length prover messages whose verifier V = (V1, . . . ,Vρ)
where r(i) ← Vi(1λ, |x|) for i ∈ [ρ − 1] and {0, 1} ← Vρ(x, τ).

– Let C = (Gen,Com,Open,Verify,Extract) be an SE commitment satisfying
Definition 3.

– Let ΠBNP be a batch NP protocol for circuit satisfiability.

For any D ∈ N, consider language LD defined by the NP relation RLD
where

RLD
(x,w) = 1 iff x = (M ′, n, sn, sD, y) where M ′ outputs a description of

a circuit Ckt such that sn is a set of wire assignments to the intermediate and
input wires in the nth layer of the circuit, y and w respectively define assignments
to all input and witness wires in the circuit, and sD is a set of consistent wire
assignments to intermediate and input wires of the circuit at layer D + n.

Our argument is identical to the one in Fig. 4, except for the following (syn-
tactic) changes to the inputs of both players, and to the initial processing.

Inputs. The common input for P and V is an instance x = (M ′, s0, sT , y) of the
language Lk� . P also obtains a witness ω, such that (x, ω) ∈ RLD

.

Initial Processing.

– P sends s = (s0, . . . , sk) for {si � Ckt (y, ω, s0, iD/k)}i∈[k] to V.
– P and V define instances (x1, . . . , xk) where {xi � (M ′, (i−1)D

k , si−1, si,
y)}i∈[k] of the language Lk�−1 .

– P partitions ω into witnesses ω1, . . . , ωk where for all i ∈ [k], ωi is used to
generate assignments to witness wires in layers (i−1)D

k through iD
k .

6.3 Non-trivial Predicate

Let ΠT = (Setup,P,V) be the protocol defined by Fig. 4, where D = kγ , and
with modifications from the previous section. The predicate φ equals φγ , where
φ� is defined recursively for every x, α, aux and � ∈ [γ].

– φ0(x, α, aux) = 1 ⇐⇒ x 	∈ L(0).
– φ�(x, α, aux) for � ∈ [1, γ]: Parse aux = (aux′, ek, (i1, . . . , i�)) and parse

α = ((s0, . . . , sk), C(1)). Define instances (x′
1, . . . , x

′
k) as in Fig. 4, where

x′
j = (M, sj−1, sj , y) for j ∈ [k]. Finally, set φ�(x, α, aux) = (x′

i�
	∈ Lk�−1) ∧

φ�−1(x′
i�

, C.Extract(ek, C(1)), aux′).

Theorem 7 (Non-trivial predicate). Assuming the (T · 2S , T)-index hid-
ing property of SE commitments, φ is a (T · 2S , T)-non-trivial predicate for the
protocol ΠT where T = kγ .

The proof of this theorem builds on [3] and appears in the full version.

SNARGs for P from Sub-exponential DDH and QR 545

6.4 FS-Compatibility W.r.t. Predicate Φ

Theorem 8 (FS-Compatibility w.r.t. Predicate φ). Let C be a some-
where extractable commitment (Definition 3) whose extraction circuit has depth
dExtract and size BExtract. Let ΠBNP be a k-mode ρ-round (BBNP, bBNP, dBNP)-FS-
compatible batch NP with respect to C, for some BBNP, bBNP, dBNP, k (all functions
of λ).

Then for any T = T (λ) ≥ λ and k = k(λ), Π defined above is a T -mode
(B, b, d)-FS-compatible argument (Definition 8) with respect to the predicate φ
defined above, where B = logk T · BExtract + BBNP, b = bBNP, d = logk T ·
dExtract + dBNP.

Furthermore, Π has communication complexity and verifier runtime
|Πkγ .V| = (kS + |y|) · (λ · log(kS + |y|))O(γ) and prover runtime poly(T) given
the witness, for a fixed polynomial poly(·).

The proof of this theorem follows identically to that of Theorem 6. In par-
ticular, the proofs of completeness, round-by-round soundness, FS-compatibility
and efficiency follow identically to that of Theorem 6. We obtain the following
corollaries of this theorem.

Corollary 2. Assuming the (T ·2S , T)-hardness of QR, for any time-T space-S
non-deterministic computation, there is a T -mode (B, b, d)-FS-compatible argu-
ment (Definition 8) w.r.t. a (T ·2S , T) non-trivial predicate φ, where each verifier
message is of size λ (which also denotes the security parameter), and where veri-
fier runtime and communication complexity are bounded by T

c√
log log log T ·(S+|y|),

c is a constant > 0, |y| denotes the size of the input and where λ = T
1

log log log T ,
where B = T

c√
log log log T , b = poly(λ), d = O(

√
log log log T).

Proof. We set λ such that λγ = k, this implies that T = λγ2
, and log T =

γ2 log λ. We also set γ2 = log log log T , This implies that λ = T
1

γ2 = T
1

log log log T ,
and log T < log2 λ. Substituting, this implies that there is a constant c > 0 such
that

|ΠT .V| ≤ (kS + |y|) · (kc)

which implies that there is a constant c > 0 such that

|ΠT .V| ≤ T
c√

log log log T · (S + |y|)

Finally, we note that λ = T
1

log log log T , which completes our proof.

The following Corollary follows from Corollary 2, Theorem 3 and Theo-
rem 1, where we set the security parameter λ = max(S1/ε, T

1
log log log T), where ε

is the smaller of the subexponential parameters for QR/DDH hardness. Then,
(2λε

, 2λε

)-hardness of QR implies the conditions of the corollary above. In addi-
tion, (2λε

, 2λε

)-hardness of DDH implies the conditions of Theorem 1.

546 J. Hulett et al.

Corollary 3. Assuming the subexponential hardness of QR and subexponen-
tial hardness of DDH, there exists a SNARG for any time-T space-S non-
deterministic computation with verifier runtime and communication complexity
T

c√
log log log T · (S + n) and prover runtime poly(T, S) given the witness, where n

denotes the size of the input, and c is a constant > 0.

We also obtain the following corollary about improved SNARGs for Batch
NTISP, which follows from the observation that if L ∈ NTISP(T, S), then L⊗k ∈
NTISP(kT, S), where L⊗k is the language containing k instances of L. This is
because we can verify the k different instances by verifying each one individually
in time T , and reusing the same workspace for every instance.

Corollary 4. For every L ∈ NTISP(T, S) and every k ≥ S, assuming the sub-
exponential hardness of QR and DDH, there exists a SNARG for L⊗k where
verifier runtime and communication complexity are bounded by (kT)

c√
log log log kT ·

(S + n) and prover runtime is poly(k, T, S) given the NP witnesses where n
denotes the size of the claimed (potentially succinctly described) instance of L⊗k,
and c > 0 is a constant.

6.5 SNARGs for P and Beyond

Given the SNARG for batch-NTISP above, we can use methods from [37] to
build a SNARG for any language decidable in deterministic time T (and in
fact, any language that has a no-signaling PCP, just as in [37]). We instantiate
what is essentially their approach with different parameters, specifically, while
they obtain polylog(T) overhead from sub-exponential LWE, we obtain T o(1)

overhead from sub-exponential DDH and QR. Thus, we have:

Corollary 5. Let L be a language and T = T (n) be a function such that
poly(n) ≤ T (n) ≤ exp(n) and L ∈ DTIME(T). Then assuming the subexponential
hardness of QR and DDH, there exists a SNARG for L with prover time poly(T),
verifier time n · poly (

T o(1)
)
, and communication complexity n · poly (

T o(1)
)
.

References

1. Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating RAM
computations with adaptive soundness and privacy. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 3–30. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 1

2. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical
ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12107, pp. 642–667. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45727-3 22

3. Badrinarayanan, S., Kalai, Y.T., Khurana, D., Sahai, A., Wichs, D.: Succinct dele-
gation for low-space non-deterministic computation. In: STOC, pp. 709–721 (2018)

4. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp.
106–115 (2001)

https://doi.org/10.1007/978-3-662-53644-5_1
https://doi.org/10.1007/978-3-662-53644-5_1
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-030-45727-3_22

SNARGs for P from Sub-exponential DDH and QR 547

5. Bartusek, J., Bronfman, L., Holmgren, J., Ma, F., Rothblum, R.D.: On the
(in)security of Kilian-based SNARGs. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019.
LNCS, vol. 11892, pp. 522–551. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36033-7 20

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM Conference on Computer and Communications Security, pp. 62–73.
ACM (1993)

7. Bitansky, N., et al.: The hunting of the SNARK. IACR Cryptol. ePrint Arch. 2014,
580 (2014). http://eprint.iacr.org/2014/580

8. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: STOC, pp. 111–120 (2013)

9. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18, http://dx.doi.org/10.1007/978-3-642-36594-2 18

10. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. IACR Cryptology ePrint Archive 2015, 356 (2015)

11. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) STOC,
pp. 671–684. ACM (2018)

12. Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and batch
NP verification from standard computational assumptions. In: STOC, pp. 474–482
(2017)

13. Brakerski, Z., Kalai, Y.: Witness indistinguishability for any single-round argument
with applications to access control. In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 97–123. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45388-6 4

14. Brakerski, Z., Koppula, V., Mour, T.: NIZK from LPN and trapdoor hash via
correlation intractability for approximable relations. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 738–767. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 26

15. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) STOC, pp. 1082–1090. ACM (2019)

16. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

17. Canetti, R., Holmgren, J.: Fully succinct garbled RAM. In: ITCS, pp. 169–178.
ACM (2016)

18. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: STOC, pp. 429–437. ACM
(2015)

19. Chen, Y., Chow, S.S.M., Chung, K., Lai, R.W.F., Lin, W., Zhou, H.: Cryptography
for parallel RAM from indistinguishability obfuscation. In: ITCS, pp. 179–190.
ACM (2016)

20. Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. IACR Cryptol. ePrint Arch. 2021, 807 (2021). https://
eprint.iacr.org/2021/807

21. Choudhuri, A.R., Jain, A., Jin, Z.: Snargs for P from LWE. IACR Cryptol. ePrint
Arch, p. 808 (2021). https://eprint.iacr.org/2021/808

https://doi.org/10.1007/978-3-030-36033-7_20
https://doi.org/10.1007/978-3-030-36033-7_20
http://eprint.iacr.org/2014/580
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
http://dx.doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-030-45388-6_4
https://doi.org/10.1007/978-3-030-56877-1_26
https://eprint.iacr.org/2021/807
https://eprint.iacr.org/2021/807
https://eprint.iacr.org/2021/808

548 J. Hulett et al.

22. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low commu-
nication. In: Theory of Cryptography–9th Theory of Cryptography Conference,
TCC 2012, Taormina, Sicily, Italy, 19–21 March 2012. Proceedings, pp. 54–74
(2012). https://doi.org/10.1007/978-3-642-28914-9 4, http://dx.doi.org/10.1007/
978-3-642-28914-9 4

23. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38348-9 37, http://dx.doi.org/10.1007/978-3-
642-38348-9 37

24. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC, pp. 99–108 (2011)

25. Goldwasser, S., Kalai, Y.T.: On the (in)security of the fiat-shamir paradigm. In:
FOCS, p. 102 (2003)

26. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. J. ACM 62(4), 27 (2015)

27. González, A., Zacharakis, A.: Fully-succinct publicly verifiable delegation from
constant-size assumptions. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS,
vol. 13042, pp. 529–557. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-90459-3 18

28. Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new oblivious
transfer protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12107, pp. 668–699. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45727-3 23

29. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

30. Hubácek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Roughgarden, T. (ed.) Proceedings of the 2015 Confer-
ence on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel,
11–13 January 2015, pp. 163–172. ACM (2015). https://doi.org/10.1145/2688073.
2688105

31. Jain, A., Jin, Z.: Non-interactive zero knowledge from sub-exponential DDH. In:
Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp.
3–32. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 1

32. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.: SNARGs for bounded depth
computations and PPAD hardness from sub-exponential LWE. In: Khuller, S.,
Williams, V.V. (eds.) STOC 2021: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, 21–25 June 2021, pp. 708–721. ACM
(2021). https://doi.org/10.1145/3406325.3451055

33. Kalai, Y.T., Paneth, O.: Delegating RAM computations. In: Theory of Cryptog-
raphy - 14th International Conference, TCC 2016-B, Beijing, China, 31 October–3
November 2016, Proceedings, Part II, pp. 91–118 (2016). https://doi.org/10.1007/
978-3-662-53644-5 4

34. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In:
Charikar, M., Cohen, E. (eds.) Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, 23–26 June
2019, pp. 1115–1124. ACM (2019). https://doi.org/10.1145/3313276.3316411

35. Kalai, Y.T., Raz, R., Rothblum, R.D.: Delegation for bounded space. In: Sympo-
sium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4
June 2013, pp. 565–574 (2013). https://doi.org/10.1145/2488608.2488679

https://doi.org/10.1007/978-3-642-28914-9_4
http://dx.doi.org/10.1007/978-3-642-28914-9_4
http://dx.doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-030-90459-3_18
https://doi.org/10.1007/978-3-030-90459-3_18
https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1145/2688073.2688105
https://doi.org/10.1145/2688073.2688105
https://doi.org/10.1007/978-3-030-77870-5_1
https://doi.org/10.1145/3406325.3451055
https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1145/3313276.3316411
https://doi.org/10.1145/2488608.2488679

SNARGs for P from Sub-exponential DDH and QR 549

36. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power
of no-signaling proofs. In: STOC, pp. 485–494. ACM (2014)

37. Kalai, Y.T., Vaikuntanathan, V., Zhang, R.Y.: Somewhere statistical soundness,
post-quantum security, and snargs. Cryptology ePrint Archive, Report 2021/788
(2021). https://ia.cr/2021/788

38. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, pp. 723–732. ACM (1992)

39. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC, pp. 419–428. ACM (2015)

40. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

41. Lombardi, A., Vaikuntanathan, V., Wichs, D.: Statistical ZAPR arguments from
bilinear maps. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 620–641. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3 21

42. Micali, S.: CS proofs (extended abstracts). In: 35th Annual Symposium on Foun-
dations of Computer Science, Santa Fe, New Mexico, USA, 20–22 November 1994,
pp. 436–453 (1994). full version in [?]. https://doi.org/10.1109/SFCS.1994.365746,
http://dx.doi.org/10.1109/SFCS.1994.365746

43. Paneth, O., Rothblum, G.N.: On zero-testable homomorphic encryption and pub-
licly verifiable non-interactive arguments. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10678, pp. 283–315. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70503-3 9

44. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28914-9 24

45. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

46. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

47. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21
June 2016, pp. 49–62 (2016). https://doi.org/10.1145/2897518.2897652, http://
doi.acm.org/10.1145/2897518.2897652

https://ia.cr/2021/788
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-030-45727-3_21
https://doi.org/10.1007/978-3-030-45727-3_21
https://doi.org/10.1109/SFCS.1994.365746
http://dx.doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1007/978-3-319-70503-3_9
https://doi.org/10.1007/978-3-319-70503-3_9
https://doi.org/10.1007/978-3-642-28914-9_24
https://doi.org/10.1007/978-3-642-28914-9_24
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1145/2897518.2897652
http://doi.acm.org/10.1145/2897518.2897652
http://doi.acm.org/10.1145/2897518.2897652

Cryptographic Primitives

Optimal Tightness for Chain-Based
Unique Signatures

Fuchun Guo(B) and Willy Susilo

Institute of Cybersecurity and Cryptology (iC2),
School of Computing and Information Technology,

University of Wollongong, Wollongong, NSW, Australia
{fuchun,wsusilo}@uow.edu.au

Abstract. Unique signatures are digital signatures with exactly one
unique and valid signature for each message. The security reduction for
most unique signatures has a natural reduction loss (in the existentially
unforgeable against chosen-message attacks, namely EUF-CMA, security
model under a non-interactive hardness assumption). In Crypto 2017,
Guo et al. proposed a particular chain-based unique signature scheme
where each unique signature is composed of n BLS signatures computed
sequentially like a blockchain. Under the computational Diffie-Hellman
assumption, their reduction loss is n · q

1/n
H for qH hash queries and it is

logarithmically tight when n = log qH . However, it is currently unknown
whether a better reduction than logarithmical tightness for the chain-
based unique signatures exists.

We show that the proposed chain-based unique signature scheme by
Guo et al. must have the reduction loss q1/n for q signature queries when
each unique signature consists of n BLS signatures. We use a meta reduc-
tion to prove this lower bound in the EUF-CMA security model under
any non-interactive hardness assumption, and the meta-reduction is also
applicable in the random oracle model. We also give a security reduction
with reduction loss 4 · q1/n for the chain-based unique signature scheme
(in the EUF-CMA security model under the CDH assumption). This

improves significantly on previous reduction loss n · q1/n
H that is logarith-

mically tight at most. The core of our reduction idea is a non-uniform
simulation that is specially invented for the chain-based unique signature
construction.

Keywords: Unique signatures · Optimal reduction

1 Introduction

A digital signature scheme is a unique signature scheme if there exists a unique
and valid signature for each message [5,16,34]. That is, for any message, we
cannot find two different signatures that are both valid for that message. Unique
signatures prohibit the use of randomness in the signature generation.

It is non-trivial to construct a digital signature scheme that is tightly secure
in the existentially unforgeable against chosen-message attacks (EUF-CMA)
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 553–583, 2022.
https://doi.org/10.1007/978-3-031-07085-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_19&domain=pdf
http://orcid.org/0000-0001-6939-7710
http://orcid.org/0000-0002-1562-5105
https://doi.org/10.1007/978-3-031-07085-3_19

554 F. Guo and W. Susilo

security model under a non-interactive hardness assumption. Intensive research
such as [1,3,4,6–10,13,14,17–19,24–28,32,33,36–39,42,43,48,49] have been con-
ducted in this security model or the more advanced multi-user setting model.
Most methods must employ randomness in signature generations and are there-
fore not suitable for unique signatures.

It looks “paradoxical” when proving tight security for a unique signature
scheme (in the EUF-CMA model under a non-interactive hardness assump-
tion). Taking the BLS (unique) signature by Boneh et al. [11] as an exam-
ple: upon receiving the public key (g, gα), the adversary might first query mes-
sages to random oracle to know H(m1),H(m2), · · · ,H(mq). For each signature
H(mi)α, i ∈ [1, q], it must be either simulatable (the signature is signable by
the simulator) or reducible (the signature is unsignable and problem solution
can be extracted from the signature) and it cannot be switched. After receiving
the public key and all responses to hash queries, the adversary first picks q − 1
random messages out of q for their signature queries, and forges the signature
on the remaining message. It has been proved in [5,16,34] that the probability
of successfully reduction for BLS-like unique signatures is at most 1/q.

So far, the only known tight security method for unique signature1 was pro-
posed by Guo et al. [27] in Crypto 2017. They constructed a chain-based unique
signature scheme (see Subsect. 1.2), where BLS signatures are generated, hashed
into messages, and then signed again like a blockchain. Each unique signature
has n BLS signatures as block signatures. With this signature structure, they
can program the reduction tightly because the simulator will already solve the
hard problem before each unique signature is “committed” into simulatable or
reducible. In their tight reduction, the adversary must generate and make a
special hash query that carries the CDH (Computational Diffie-Hellman) prob-
lem solution to the random oracle with probability at least 1/(n · q

1/n
H) if the

adversary can successfully forge a signature after making qH hash queries. This
chain-based method was later adopted to construct tightly secure and short
unique signatures from RSA signatures by Shacham in [51].

Even though our community has rich methods of tight reduction for digital
signatures and other primitives such as the recent results for key exchange [15,25,
31,35], the only tightness method applicable to unique signatures is the chain-
based construction2. However, it is currently unknown whether there exists a
better reduction than [27] for the chain-based unique signatures.

1.1 Our Contributions

In this paper, we analyze the optimal tightness of reductions for the chain-based
unique signature scheme in [27] and then propose a reduction with optimal
tightness for this scheme.
1 In 2012, Kakvi and Kiltz [37] introduced a conceptual level RSA-FDH scheme with

unique signatures and a tight security reduction.
2 We meant reductions against general adversaries. It is worth noting that BLS-like

unique signatures can be proved tight security in the Algebraic Group Model [22]
when adversaries are restricted in algebraic operations.

Optimal Tightness for Chain-Based Unique Signatures 555

We show that any reduction proof for the chain-based unique signature
scheme must have a reduction loss of at least q1/n for q signature queries if each
unique signature has n BLS block signatures. This optimal analysis is also appli-
cable in the random oracle model and is proved via meta-reduction under any
non-interactive computationally hardness assumption in the EUF-CMA security
model. The given optimal analysis indicates that it is necessary to generate a
chain-based unique signature having n = log(q) block signatures in order to
obtain tight security. The chain-based unique signature scheme is actually the
BLS scheme when n = 1 and our corresponding result is in line with the negative
results in [5,16,34].

We propose a completely different security reduction for the chain-based BLS
scheme in length n with optimal tightness. The core of our reduction idea is a
non-uniform programming that perfectly suits the chain-based construction. Our
reduction loss is at most 4 · q1/n for q signature queries under the CDH assump-
tion in the EUF-CMA security model (using random oracles). This improves
significantly on previous n · q

1/n
H in [27], because the previous result is logarith-

mically tight only when n = log qH while ours is fully tight when n = log q.
Our fully tight reduction does not require to increase the length of signatures
(depending on n) because q ≤ qH is always true. In particular, the signatures in
our reduction have the same size as in [27] when q ≈ qH , and are much shorter
than [27] when q << qH such as q = 230 and qH = 2100.

Our results are also applicable to the Shacham’s tightly secure and short RSA
unique signatures [51]. Our optimal analysis is general and also applicable to
this unique signature scheme. The reduction loss is reduced from logarithmically
large to constant, and the computational efficiency is improved because of the
decrease of length n when q << qH . The details will be given in the full version.

1.2 Technical Idea

We first review the chain-based BLS scheme proposed in [27] as follows.

KeyGen: Let (G,GT , p, e, g) be a bilinear pairing. The key generation algo-
rithm chooses a random integer α ∈ Zp and a cryptographic hash function
H : {0, 1}∗ → G that will be viewed as a random oracle in the security proof.
It computes h = gα and chooses an integer n as the scheme parameter. The
public key pk is (G,GT , p, e, g,H, h, n), and the secret key sk is α.

Sign: The signing algorithm takes as input a message m ∈ {0, 1}∗ and the
key pair (pk, sk). It computes the signature Σm = (σ1, σ2, · · · , σn) on m as

(σ1, σ2, σ3, · · · , σn) =
(
H(m|Σ0

m)α, H(m|Σ1
m)α, H(m|Σ2

m)α, · · · , H(m|Σn−1
m)α

)
,

where σi for all i ∈ [1, n] is called block signature, Σ0
m = (), and Σi

m =
(σ1, σ2, · · · , σi). The final signature Σm on m is Σn

m.

556 F. Guo and W. Susilo

Note: To be able to distinguish messages and signatures, we must include the sym-
bols “ |” and brackets “()” as part of hash inputs. In particular, m|Σ0

m = m|().

Verify: The verification algorithm takes as input the public key pk, a message m,
and its signature Σm = (σ1, σ2, · · · , σn). It accepts the signature if

e
(
σi+1, g

)
= e

(
H(m|Σi

m), h
)

: for all i ∈ [0, n − 1].

In the security reduction for the chain-based BLS signature in the random
oracle model, a hash query x = m|Σi

m to H is called type-i query of m . To
forge a valid signature on m∗, the adversary must make the type-0 query of m∗,
compute Σ1

m∗ , make the type-1 query of m∗, compute Σ2
m∗ and so on until make

the type-(n − 1) query of m∗, and compute Σn
m∗ as the forged signature.

The chain-based construction enables the simulator to solve the CDH prob-
lem with the adversary’s hash queries. Given a problem instance (g, ga, gb),
if gα = ga and the type-i query of m is responded with H(m|Σi

m) = gb,
the type-(i + 1) query of m generated and made by the adversary contains
σi+1 = H(m|Σi

m)α = gab that is the solution to the CDH problem. It is worth
noting that the hash query used to solve the hard problem does not have to the
query of m∗ but can be the query of any message generated by the adversary.

Optimal Analysis of the Chain-Based BLS Scheme. We prove that any
security reduction R for the chain-based BLS scheme in the EUF-CMA secu-
rity model under any non-interactive computationally hard assumption must
be bounded with success probability 1/q

1
n . Otherwise, we construct a meta-

reduction B to break this hardness assumption by following the meta-reduction
framework given by Coron in [16], which is described as follows.

– We construct a special hypothetical adversary that can break the chain-based
BLS scheme with probability εA. When interacting with such a hypothetical
adversary, R would break the hardness assumption with probability εR.

– We simulate this hypothetical adversary via rewinding R. When interacting
with the simulated adversary, if we can efficiently simulate the hypotheti-
cal adversary except with error probability εE , R would break the hardness
assumption with probability εR − εE .

– The meta-reduction therefore shows that εR must be not larger than εE .
Otherwise, we can run R as an oracle to break the hardness assumption.

Based on the Coron’s framework, our optimal analysis is to show how a hypo-
thetical adversary will possibly attack and how to simulate this hypothetical
adversary successfully except with error probability εE = εA/q

1
n .

The Hypothetical Adversary. A hypothetical adversary might make hash
queries and signature queries in the sequence T0(M0) → S(M0 \ M1) →
T1(M1) → S(M1 \ M2) → · · · → S(Mn−1 \ Mn) → Tn(Mn) as long as R
does not fail in responding to queries. The queries are explained as follows.

Optimal Tightness for Chain-Based Unique Signatures 557

– M0,M1, · · · ,Mn are n + 1 message sets satisfying that the subset relation-
ship M0 ⊃ M1 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mn holds and the set Mi has q1− i

n

messages (we simply treat q
1
n as an integer). All messages in the these message

sets are randomly chosen by the adversary. In particular, we have |M0| = q
and |Mn| = 1. We define Mi \ Mi+1 to be the set of messages in Mi but
not in Mi+1.

– Ti(Mi) is the set of type-i queries of all messages in Mi.
– S(Mi \ Mi+1) is the set of signature queries on all messages in Mi \ Mi+1.

That is, the (computationally unbounded) adversary first generates type-0
queries of all messages in M0 and submits all of them to the random oracle.
Upon receiving all responses to hash queries, the adversary makes the signature
queries on all messages in M0 \ M1. If R aborts, the adversary stops. Other-
wise, the adversary generates type-1 queries of all messages in M1 and repeats
the above queries and computations until Tn(Mn). Suppose m∗ ∈ Mn. After
Tn(Mn), the adversary has already generated the type-n query of m∗, namely
m∗|Σn

m∗ . The type-n query implies the signature on m∗. Therefore, at the end
of the above query sequence, the adversary can easily return Σm∗ = Σn

m∗ as the
forged signature on a new message m∗ whose signature was not queried.

The Simulated Adversary. It is easy to simulate the hash queries T0(M0)
because all hash queries are type-0 queries (namely m|() for m ∈ M0) and com-
posed of messages only. The challenge of simulating the hypothetical adversary
is to generate and make hash queries Ti(Mi) for all i ∈ [1, n] because the type-i
query of m (m|Σi

m) contains block signatures Σi
m = (σ1, σ2, · · · , σi) that cannot

be efficiently simulated without knowing the secret key.
We simulate the hypothetical adversary with a rewinding argument. Different

from the original meta-reduction in [16], we need to rewind at most n times in
order to successfully simulate the hypothetical adversary. The rewinding works
as follows from i = 1 to i = n.

1-st rewind 2-nd rewind n-th rewind

↗ S(M1) ↗ S(M2) ↗ S(Mn)

T0(M0) → S(M0 \ M1) → T1(M1) → S(M1 \ M2) → · · · → S(Mn−1 \ Mn) → Tn(Mn)

– Before the i-th time rewind, we first make signature queries S(Mi) to R
to obtain signatures ΣMi

= {Σn
m : m ∈ Mi}.

– Then we rewind R (the i-th time rewind) to the state it was after the hash
queries Ti−1(Mi−1). This time, we make signature queries S(Mi−1 \ Mi) .
We can continue the simulation of making hash queries Ti(Mi) = {m|Σi

m :
m ∈ Mi} with the help of ΣMi

if R does not abort before the rewind.

The Error Probability. If R does not abort, the simulated adversary must
continue to complete the queries T0(M0) → S(M0 \ M1) → T1(M1) →
S(M1 \ M2) → · · · → S(Mn−1 \ Mn) → Tn(Mn). We note that if R can-
not respond to one of signature queries in this query sequence, the simulation
on the hypothetical adversary is still successful because the reduction is aborted
by R. We claim that the error happens when there exists an integer i# ∈ [1, n]
such that

558 F. Guo and W. Susilo

– R cannot respond to queries S(Mi#) before the i#-th time rewind, but

– R can respond to queries S(Mi#−1 \ Mi#) after the i#-th time rewind.

The simulation on the hypothetical adversary fails because the simulated adver-
sary must continue to make the type-i# queries Ti#(Mi#), but the simulated
adversary does not have ΣM

i#
to simulate these type-i# queries.

Let S(M) = 1 denote that R can simulate all signature queries on M and
S(M) = 0 denote the opposite case. When the hypothetical adversary attacks
the scheme, no matter what i ∈ [1, n] is, we have

|Mi|
|Mi−1|

=
q1− i

n

q1− i−1
n

=
1

q
1
n

.

Then the error probability will be the same no matter what i# ∈ [1, n] is during
the reduction.

Taking i# = 1 as the example. After the type-0 queries of all messages in
M0 namely T0(M0), it means that R cannot compute H(m|Σ0

m)α for some
m ∈ M0, while R can respond to signature queries S(M0 \ M1) meaning that
m /∈ M0 \ M1. Since the message set M1 is randomly chosen, we prove that

Pr
[
S(M0 \ M1) = 1

∣∣∣S(M0) = 0,
|M1|
|M0|

=
1

q
1
n

]
≤ 1

q
1
n

.

The above probability is in line with [5,16,34] when M1 has one message
only. Our case needs to consider multiple messages in M1.

With the above analysis, we shall prove that the error probability of simu-
lating the hypothetical adversary is at most εA/q

1
n . This completes the intuitive

observation of our optimal analysis.

Optimal Tightness of the Chain-Based BLS Scheme. The security of
the chain-based BLS scheme is based on the CDH hard assumption where it
is hard to compute gâb̂ from (g, gâ, gb̂). In the proof, the simulator sets α = â
and controls the random oracle. How to respond to each hash query in the ran-
dom oracle model is the core for obtaining a tight reduction.

Classifications of Hash Queries. All hash queries to the random oracle will be
classified into two types called Normal Query and Challenge Query accord-
ing to the ways of response by the simulator.

– Normal Query. A hash query x is called a normal query if the simulator
sets H(x) = gz in response where z ∈ Zp is randomly chosen by the simulator
for the query x. Then H(x)α = (gâ)z is computable by the simulator.

– Challenge Query. A hash query x is called a challenge query if the simulator
sets H(x) = gb̂+z in response, where z ∈ Zp is randomly chosen by the
simulator for the query x. Then H(x)α = gâb̂+âz and the CDH problem
solution gâb̂ can be extracted from H(x)α by computing H(x)α/(gâ)z.

Optimal Tightness for Chain-Based Unique Signatures 559

Most importantly, suppose that the type-i query of m, namely m|Σi
m, is set as the

challenge query and the adversary makes the type-(i + 1) query of m, denoted
by m|Σi+1

m . We have that Σi+1
m = (σ1, σ2, · · · , σi+1) and the block signature

σi+1 = H(m|Σi
m)α = gâb̂+âz carries the CDH problem solution.

The Idea in [27]. Let qH be the number of hash queries. The authors proved
that no matter how the adversary adaptively makes hash queries and signature
queries in the EUF-CMA security model, there exists an integer i∗ ∈ [0, n − 1]
such that

– The number of type-i∗ queries is not more than (qH)1− i∗
n .

– The number of type-(i∗ + 1) queries is larger than (qH)1− i∗+1
n .

The integer i∗ is dependent on how the adversary adaptively makes hash queries.
In [27], the simulator randomly picks an integer c∗ ∈ [0, n−1] and an integer

l∗ ∈ [1, (qH)1− c∗
n]. Then the simulator will set the l∗-th new type-c∗ query (of

any message m) generated and made by the adversary as the challenge query.
When c∗ = i∗, their proof result guarantees that the adversary will generate and
make the type-(c∗ + 1) query of the same message m with probability

(qH)1− i∗+1
n

(qH)1− i∗
n

=
1

(qH)
1
n

.

Therefore, their reduction loss is n · (qH)1/n for the chain-based BLS scheme.
The features of this logarithmically tight reduction are summarized as follows.

– Single Challenge. Only one of qH hash queries is set as the challenge query.
All other hash queries are set as normal queries by the simulator.

– Uniform Choice. The simulator will set one type-c∗ query as the challenge
query, and c∗ ∈ [0, n−1] is uniformly chosen to capture the success probability
Pr[c∗ = i∗] = 1

n for any adaptive i∗ decided by the adversary.
– Static Setting. In this reduction, the integers c∗ and l∗ are chosen by the

simulator before the start of hash queries. Which hash query will be set as
the challenge query is therefore static.

Our Main Idea. The Single-Uniform-Static approach in [27] (same as in [51])
is based on a natural rule of queries from the adversary. We invent a completely
new approach called Multiple-Non-Uniform-Dynamic approach. This approach
will allow the simulator to control the simulation such that the probability of
success reduction will be increased when the adversary makes more hash queries.

– Multiple Challenges. For every message m, the simulator will choose an
independent integer cm ∈ [0, n − 1] and set the type-cm query of m, denoted
by m|Σcm

m , as a challenge query. Then, the type-(cm + 1) query of m carries
the problem solution. The integer cm for m will be chosen when the adversary
makes the type-0 query of m. The number of challenge queries is therefore
multiple and depends on how many messages are involved in all hash queries.

560 F. Guo and W. Susilo

– Non-Uniform Choice. We choose cm ∈ [0, n − 1] in a non-uniform way.
That is, cm is not uniformly distributed in [0, n − 1]. In our formal reduc-
tion description, we give a general approach of choosing cm for any scheme
parameter n. Here we give a specific choice for n = log(q) and set

Pr[cm = i] =
2i

2 · 2n
=

1
2 · 2n−i

.

That is, for each message m, the challenge query will be set at its type-0
query with probability 1/2n+1, at its type-1 query with probability 2/2n+1,
and at its type-i query with probability 2i/2n+1. It is not hard to achieve this
non-uniformity3.

– Dynamic Setting. Generally speaking, the adversary makes type-0 query,
type-1 query, and so on until type-ki query of mi before signature query on
mi for an adaptive integer ki ∈ [0, n − 1]. If ki < cmi

, it means that no hash
query of mi has yet been set as a challenge query by the simulator. To enable
signature simulation, upon receiving the signature query on mi, the simulator
will change cmi

= ∞ such that all hash queries of mi will be set as normal
queries and the signature on mi is computable by the simulator.

This completes the description of our approach. We define that the adver-
sary adaptively chooses ki ∈ [0, n − 1] and makes type-0 query, type-1 query,
and so on until type-ki query of mi, denoted by Hki(mi) = {mi|Σ0

mi
,

mi|Σ1
mi

, · · · ,mi|Σki
mi

}, before the signature query on mi, denoted by S(mi). We
define that the adversary will query the signatures on messages (m1,m2, · · · ,mq)
before forging the signature on m∗. According to the setting, we have:

– If cmi
< ki, the simulator can solve the hard problem with type-(cmi

+ 1)
query of mi from the adversary according to the truth of cmi

+ 1 ≤ ki and
the setting of multiple challenges.

– If cmi
= ki, namely the type-ki query of mi is set as the challenge query, the

simulator has to abort.
– If cmi

> ki, the simulator can simulate the signature according to the dynamic
setting.

We cannot directly analyze how the simulator solves the CDH problem because
it depends on the adversary’s adaptive choice of ki and the simulator’s setting
parameter cmi

. What we do instead is to prove the lower bound of proba-
bility of successful reduction. We are going to prove that

1
4

≈ Pr[Q∗
2,0] ≤ Pr[Q∗

2,1] ≤ Pr[Q∗
2,2] ≤ · · · ≤ Pr[Q∗

2,q] ≤ Pr[Q∗
A],

where Q∗ is the query sequence (mixture of hash queries and/or signature
queries) made by the adversary A, Pr[Q∗] is the success probability of reduction
under the query sequence Q∗, Q∗

A is the real query sequence launched by the
adversary during attacks, and all query sequences are defined in Table 1.
3 To implement such a non-uniform choice, we firstly randomly choose an integer

w ∈ [1, 2n+1]. Then we find the integer i satisfying 2i ≤ w < 2i+1 and set cm = i. It is
not hard to verify that Pr[w ←R [1, 2n+1] : 2i ≤ w < 2i+1] = 2i/2n+1 = Pr[cm = i].

Optimal Tightness for Chain-Based Unique Signatures 561

Table 1. The defined query sequences. Hk1(m1) → S(m1) means that the adver-
sary will query Hk1(m1) first and then query S(m1). The differences between
two neighbor queries have been highlighted in the same color and Hki(mi) =
{mi|Σ0

mi
, mi|Σ1

mi
, · · · , mi|Σki

mi
}. If the adversary can forge and return the signature

Σm∗ = Σn
m∗ on m∗, it implies that the adversary is able to generate and make hash

queries Hn(m∗) = {m∗|Σ0
m∗ , m∗|Σ1

m∗ , · · · , m∗|Σn
m∗}.

Q∗
2,0 : H 0

(m1) → S(m1) → H 0(m2) → S(m2) → · · · → H0(mq) → S(mq) → Hn(m∗)

Q∗
2,1 : H k1

(m1) → S(m1) → H 0
(m2) → S(m2) → · · · → H0(mq) → S(mq) → Hn(m∗)

Q∗
2,2 : Hk1 (m1) → S(m1) → H k2

(m2) → S(m2) → · · · → H0(mq) → S(mq) → Hn(m∗)
.
.
.

.

.

.

Q∗
2,q−1 : Hk1 (m1) → S(m1) → Hk2 (m2) → S(m2) → · · · → H 0

(mq) → S(mq) → Hn(m∗)

Q∗
2,q : Hk1 (m1) → S(m1) → Hk2 (m2) → S(m2) → · · · → H kq

(mq) → S(mq) → Hn(m∗)
Q∗

A : Real query sequence includes Hk1 (m1), Hk2 (m2), · · · , Hkq (mq), Hn(m∗)

Now we prove the above inequalities of probabilities step by step.
♠(Step 1) Suppose the adversary can forge a signature without signature queries
and the adversary’s query sequence is denoted by Q∗

1 = Hn(m∗). According to
the non-uniform parameter cm∗ ∈ [0, n − 1] satisfying Pr[cm∗ = i] = 1

2·2n−i and
the adversary will make the type-0 query, the type-1 query and so on until the
type-n query of m∗, we immediately have

Pr[Q∗
1] = Pr[cm∗ ≤ n − 1] =

n−1∑

i=0

Pr[cm∗ = i] =
1

2 · 2n
+

1

2 · 2n−1
+ · · · + 1

2 · 2
=

1

2
− 1

2n+1
.

♠(Step 2.0) Suppose the adversary’s query sequence during attacks is denoted
by Q∗

2,0 = H0(m1) → S(m1) → H0(m2) → · · · → H0(mq) → S(mq) → Hn(m∗).
That is, the adversary only makes the type-0 query of mi before its signature
query for all i ∈ [1, q].

For each signature query S(mi), the simulator aborts if only if the type-0
query of mi is set as a challenge query and the probability is Pr[cmi

= 0] = 1
2·2n .

We have n = log(q). Therefore, the simulator does not abort after q signature
queries with probability (1 − 1

2n+1)q = (1 − 1
2q)q ≥ (1 − 1

2)1 = 1
2 . Then the

simulator will solve the hard problem from Q∗
1 with probability Pr[Q∗

1] ≈ 1
2 . We

therefore approximately obtain Pr[Q∗
2,0] ≥ 1

4 .

♣(Step 2.i) We prove that Pr[Q∗
2,i−1] ≤ Pr[Q∗

2,i] hold for all i ∈ [1, q] because of
the non-uniform choice cmi

in the programming.
We have the comparison of Q∗

2,i−1 and Q∗
2,i as follows.

Hk1(m1) → S(m1) → · · · → S(mi−1)
↗
↘

H 0 (mi) → S(mi) → Q∗
2,[>i] : Q∗

2,i−1

H ki (mi) → S(mi) → Q∗
2,[>i] : Q∗

2,i

562 F. Guo and W. Susilo

where Q∗
2,[>i] = H0 (mi+1) → S(mi+1) → · · · → H0(mq) → S(mq) → Hn(m∗).

Since the two query sequences have the identical sub-sequence before S(mi−1),
we have that the following inequality

Pr[H0(mi) → S(mi) → Q∗
2,[>i]] ≤ Pr[Hki(mi) → S(mi) → Q∗

2,[>i]]

implies that Pr[Q∗
2,i−1] ≤ Pr[Q∗

2,i].
Next we prove the correctness of the above inequality. In both query

sequences H0(mi) → S(mi) → Q∗
2,[>i] and Hki(mi) → S(mi) → Q∗

2,[>i], the
simulator will either (1) solve hard problem from hash queries of mi or (2) solve
hard problem from Q∗

2,[>i] when the simulator neither succeeds nor aborts after

S(mi). Let S
(ki)
i be the event that the problem solution appears in Hki(mi) of

mi for integer ki, and F
(ki)
i be the corresponding event that the simulator fails

in responding to S(mi). We have

Pr[H0(mi) → S(mi) → Q∗
2,[>i]] = Pr[S

(0)
i] +

(
1 − Pr[S

(0)
i] − Pr[F

(0)
i]

)
Pr[Q∗

2,[>i]]

Pr[Hki (mi) → S(mi) → Q∗
2,[>i]] = Pr[S

(ki)
i] +

(
1 − Pr[S

(ki)
i] − Pr[F

(ki)
i]

)
Pr[Q∗

2,[>i]]

We have the following equations and a positive value X according to the non-
uniform setting Pr[cm = i] = 1

2·2n−i .

Pr[S(ki)
i] − Pr[S(0)

i] = Pr[cmi
< ki] − Pr[cmi

< 0]
= Pr[cmi

= 0] + Pr[cmi
= 1] + · · · + Pr[cmi

= ki − 1] − 0

=
1
2

(1
2n−ki

− 1
2n

)
= X,

Pr[F (ki)
i] − Pr[F (0)

i] = Pr[cmi
= ki] − Pr[cmi

= 0]

=
1
2

(1
2n−ki

− 1
2n

)
= X.

We further have Pr[Q∗
2,[>i]] ≤ Pr[Q∗

1] ≤ 1
2 for any i ∈ [1, q] because signature

queries in Q∗
2,[>i] will decrease the success probability of reduction compared to

no signature query in Q∗
1. We therefore obtain

Pr[Hki(mi) → S(mi) → Q∗
2,[>i]] − Pr[H0(mi) → S(mi) → Q∗

2,[>i]]

= Pr[S(ki)
i] +

(
1 − Pr[S(ki)

i] − Pr[F (ki)
i]

)
Pr[Q∗

2,[>i]]

−
(

Pr[S(0)
i] +

(
1 − Pr[S(0)

i] − Pr[F (0)
i]

)
Pr[Q∗

2,[>i]]
)

= X − 2X · Pr[Q∗
2,[>i]]

≥ X − 2X · 1
2

= 0.

♣(Step Final) We have Pr[Q∗
2,q] ≤ Pr[Q∗

A]. In comparison with Q∗
2,q, the query

sequence Q∗
A allows the adversary to (1) generate and make hash queries of any

Optimal Tightness for Chain-Based Unique Signatures 563

message m /∈ {m1,m2, · · · ,mq,m
∗} without signature query on m, and to (2)

make hash queries without following the sequence Q∗
2,q, where the adversary

could make hash queries of mi before S(mi−1).
All hash queries will be responded by the simulator without abort. Making

hash queries of additional messages without signature queries on them will not
increase the failure probability of simulation. In our simulation, a hash query
associated with mi is responded according to the parameter cmi

, which is chosen
independently for each message. Whether or not the simulator fails in S(mi)
depends on (ki, cmi

) and is not related to when the adversary made hash queries
of mi. We therefore have Pr[Q∗

2,q] ≤ Pr[Q∗
A].

This completes the high-level intuition of our reduction with success proba-
bility 1

4 for the chain-based BLS scheme in the EUF-CMA security model under
the CDH assumption, no matter what (the polynomial number) q is as long as
we have n = log q.

1.3 Impossibility of Reductions

Many excellent research results in the literature have focused on disproving the
equivalence between constructed schemes and underlying hardness assumptions.

The impossibility of efficient reduction includes the result [12] that inverting
low-exponent RSA may not be equivalent to factoring, the result [47] that break-
ing ElGamal like discrete-log-based signatures may not be equivalent to discrete
log, and the result [41] that breaking some HIBE or ABE system cannot be
efficiently reduced to breaking a non-interactive hardness assumption.

The impossibility of reduction better than optimal tightness was first studied
by Coron in [16] by introducing the meta-reduction technique. So far, the analysis
of optimal tightness has been studied for many primitives including any “simple”
reduction for unique signatures or re-randomizable signatures in [5,16,34,44], for
specific schemes (like Schnorr-type signatures) in [20,21,23,47,50], for encryp-
tion in [5,29], for signatures from identification in [40], for non-interactive key-
exchange in [5,15,30], for MACs and PRFs in [45], and the recent result for
verifiable random functions in [46].

2 Definitions

Definition 1 (Digital Signatures). A digital signature scheme consists of the
following three algorithms and fulfills correctness.

KeyGen(1κ). The key generation algorithm takes as input a security parameter
κ and returns a key pair denoted by (pk, sk).

Sign(pk, sk,m). The signing algorithm takes as input (pk, sk) and a message m
to be signed. It returns a signature on m denoted by Σm.

Verify(pk,Σm,m). The verification algorithm takes as input pk and a signed
message (m,Σm). It returns true or false.

The correctness requires that for any key pair (pk, sk), any message m from
message space, and its signature Σm, we have Pr[Verify(pk,Σm,m) = true] = 1.

564 F. Guo and W. Susilo

Definition 2 (Unique Signatures [5]). Let (KeyGen,Sign,Verify) be a signa-
ture scheme and Σ(pk,m) be the set of valid signatures on m under pk, defined as
Σ(pk,m) = {Σm : Verify(pk,Σm,m) = true}. We say that (KeyGen,Sign,Verify)
is a unique signature scheme if |Σ(pk,m)| = 1 for all pk and m.

We stress that deterministic signatures (such as [38]) and unique signatures
are different. In deterministic signatures, the signature on m generated by the
signer is unique. In unique signatures, the signature on m that can pass the
verification is unique, which implies that the generated signature must be also
unique. That is, a deterministic signature scheme may not be a unique signature
scheme, while a unique signature scheme must be a deterministic scheme.

Definition 3 (EUF-CMA Security Model). The existentially unforgeable
against chosen-message attacks (EUF-CMA) security model is defined as follows.

– Setup: The challenger takes as input security parameter κ and generates a
key pair (pk, sk). The public key is given to the adversary.

– Query: The adversary adaptively chooses any message m for its signature
query. The challenger runs the signing algorithm and sends the output signa-
ture Σm to the adversary.

– Forgery: The adversary outputs a forged signature Σm∗ on message m∗ and
wins the game if Σm∗ is valid and no signature query was made on m∗.

A digital signature scheme is (t, q, ε)-secure in the EUF-CMA security model
if no probabilistic polynomial time adversary can win the game with probability
ε in polynomial time t after making at most q signature queries, where ε is a
negligible function in κ.

3 Optimal Analysis for the Chain-Based BLS Scheme

We first give a general definition of non-interactive computationally hard
assumption that was originally given in [2,5].

Definition 4. A non-interactive computationally hard assumption, denoted by
(T,V), consists of two probabilistic polynomial time algorithms.

– Taking as input a security parameter κ, the instance generation algorithm T
outputs a problem instance ins and a witness wit.

– Taking as input (ins,wit) and a candidate solution sol, the verification algo-
rithm V returns true or false. If V(ins,wit, sol) = true, then we say that sol is
a valid solution to the problem instance ins.

We say that the assumption (T,V) is (t(κ), ε(κ)) computationally hard if every
probabilistic polynomial time algorithm B that stops in t(κ) polynomial time can
only return sol to a given instance ins with negligible success probability ε(κ),
where the probability is taken over the random coins consumed by T and B.

Optimal Tightness for Chain-Based Unique Signatures 565

The original definition has been simplified because we focus on computationally
hard assumptions instead of general assumptions that include the decisionally
hard assumptions.

Our optimal analysis is given below for the chain-based BLS scheme. In
comparison with other meta-reductions [5,16,34] in simulating the adversary
via rewinding, our meta-reduction proof requires to rewind at most n times in
order to simulate the adversary successfully in attacking the chain-based BLS
scheme.

Theorem 1. Let (T,V) be a non-interactive computationally hard assumption.
Let A be an adversary who can (tA, q, εA)-break the chain-based BLS scheme in
the EUF-CMA model. Suppose there exists a reduction R that can (tA, q, εA, tR,
εR)-reduce from breaking (T,V) assumption to breaking the chain-based BLS
scheme by A. We can construct an algorithm B that (tB, εB)-breaks (T,V) with

tB ≤ O(n · tR), εB ≥ εR − εA
q

1
n

.

Proof. We first describe a potentially hypothetical and inefficient adversary A.
Then this adversary will be simulated by us (namely we construct a simulated
adversary) in order to run R to break the hardness assumption.

The Hypothetical Adversary. The hypothetical adversary attacks the chain-based
BLS scheme in the corresponding EUF-CMA security model as follows.

Setup: Given an instance ins of (T,V), R generates a public key pk that is
given to the hypothetical adversary.

Query: The adversary flips a biased coin with Pr[Coin = 1] = εA and
Pr[Coin = 0] = 1 − εA. If Coin = 0, abort the attack. Otherwise, the
adversary picks q random messages denoted by M0 = {m∗

1,m
∗
2, · · · ,m∗

q},
where q − 1 of them will be randomly picked for signature queries (satisfies
the definition of at most q in the EUF-CMA model) and the last one is used
for signature forgery. For simplicity, we assume that the adversary runs
an inefficient algorithm that computes the secret key sk from the received
public key pk and uses it to generate all involved hash queries.

The adversary computes and makes queries as follows.

– Make type-0 queries of all m ∈ M0, denoted by x = m|Σ0
m = m|().

– Upon receiving all responses to type-0 queries of all messages in M0,
randomly pick q−q1− 1

n numbers of messages from M0 for their signature
queries. If R aborts, the adversary stops. Otherwise, let the remaining
messages whose signatures are not queried be in M1. We have

|M1| = q − (q − q1− 1
n) = q1− 1

n .

– For i = 1, 2, 3, · · · , n − 1, the adversary makes queries as follows.

566 F. Guo and W. Susilo

• Make type-i queries of all m ∈ Mi, denoted by x = m|Σi
m.

• Upon receiving all responses to type-i queries of all messages, ran-
domly pick q1− i

n − q1− i+1
n numbers of messages from Mi for their

signature queries. If R aborts, the adversary stops. Otherwise, let the
remaining messages whose signatures are not queried be in Mi+1.

|Mi+1| = q1− i
n − (q1− i

n − q1− i+1
n) = q1− i+1

n .

– Make the type-n query of all m ∈ Mn, denoted by x = m|Σn
m.

Forgery: We have |Mn| = q0 = 1. Let the type-n query of message m∗ be
denoted by m∗|Σn

m∗ . We have Σn
m∗ = Σm∗ which is the signature on m∗.

Notice that there is no signature query on m∗. The adversary outputs Σm∗

as the forged signature on m∗ and R outputs sol as the solution to ins to
break the hardness assumption (T,V).

In summary, the hypothetical adversary makes hash queries and signature
queries in the following sequence as long as R does not abort.

T0(M0) → S(M0 \ M1) → T1(M1) → S(M1 \ M2) → · · · → S(Mn−1 \ Mn) → Tn(Mn).

– Ti(Mi) is the set of type-i queries of all messages in Mi defined as
{

m|Σi
m : m ∈ Mi, Σ

i
m =

(
H(m|Σ0

m)α,H(m|Σ1
m)α, · · · ,H(m|Σi−1

m)α
)}

.

– S(Mi \ Mi+1) is the set of signature queries on all messages in Mi \ Mi+1.
– We have Mi ⊂ Mi−1 and |Mi| = q1− i

n for all i ∈ [1, n].

When interacting with such a hypothetical adversary, R would break the hard-
ness assumption with probability εR according to the definition.

The Simulated Adversary. Given as input an instance ins of (T,V), R generates
a public key pk and gives it to the simulated adversary. The simulated adversary
also tosses a biased coin the same as the hypothetical adversary to continue or
abort. When Coin = 1, the simulated adversary aims to simulate the hypothet-
ical adversary in making queries as follows unless R aborts.

T0(M0) → S(M0 \ M1) → T1(M1) → S(M1 \ M2) → · · · → S(Mn−1 \ Mn) → Tn(Mn).

It is easy to simulate the adversary in computing hash queries in T0(M0) because
all hash queries are plain messages, namely m|Σ0

m = m|(), without any block
signature (BLS signature). The main difficulty of simulating the adversary is to
generate and make all hash queries in Ti(Mi) for all i ∈ [1, n]. This is because
all these hash queries contain block signatures Σi

m that cannot be efficiently
computed without knowing the secret key α.

Optimal Tightness for Chain-Based Unique Signatures 567

We are going to simulate this hypothetical adversary with a rewinding argu-
ment. We will be able to successfully simulate the hypothetical adversary after
rewinding R with the help of signature computed by R before the rewind. More
precisely, for all i ∈ [1, n], we make signature queries S(Mi) to R and then
rewind R once to simulate hash queries Ti(Mi). The details are as follows.

1. Let the state after the hash queries T0(M0) be st0.
2. At the state st0, we make signature queries on M1 to R as follows.

T0(M0)
st0→ S(M1).

If R does not abort, we will receive signatures ΣM1 on messages in M1.
3. We rewind R to the state st0. This time, we make signature queries on

M0\M1 to R. That is, T0(M0)
st0→ S(M0\M1). If R aborts, we stop the

interaction with R the same as the hypothetical adversary. Otherwise, R
does not abort and we continue type-1 queries

T0(M0)
st0→ S(M0 \ M1) → T1(M1),

where the hash queries T1(M1) will be simulated with signatures ΣM1

on M1 received from R in the step 2.
4. Let the state after the hash queries T1(M1) be st1.

When we are at the state st1 after the hash queries T1(M1), we can continue
the simulation on T2(M2) in an analogous way for T1(M1). In general, when we
are at the state sti after the hash queries Ti(Mi) for any i ∈ [0, n−1] and seeing
all responses, we continue the simulation on the adversary as follows.

1. Let the state after the hash queries Ti(Mi) be sti.
2. At the state sti, we make signature queries on Mi+1 to R as follows.

T0(M0) → · · · → Ti(Mi)
sti→ S(Mi+1).

If R does not abort, we will receive signatures ΣMi+1 on Mi+1.
3. We rewind R to the state sti. This time, we make signature queries on

Mi \Mi+1 to R. That is, T0(M0) → · · · → Ti(Mi)
sti→ S(Mi \Mi+1). If

R aborts, we stop the interaction with R. Otherwise, R does not abort
and we continue type-(i + 1) queries

T0(M0) → · · · → Ti(Mi)
sti→ S(Mi \ Mi+1) → Ti+1(Mi+1),

568 F. Guo and W. Susilo

where the hash queries Ti+1(Mi+1) will be simulated with signatures
ΣMi+1 on Mi+1 received from R in the step 2.

4. Let the state after the hash queries Ti+1(Mi+1) be sti+1.

If R does not abort in responding to signature queries, after the n-th time rewind,
we have successfully simulated the adversary who generated and made queries
T0(M0) → S(M0 \ M1) → T1(M1) → · · · → S(Mn−1 \ Mn) → Tn(Mn). This
completes the description of how to simulate the hypothetical adversary.

Next we analyze the correctness of simulating Ti+1(Mi+1) in step 3 with
ΣMi+1 from step 2. At the state sti, when R does not abort before the rewind
(step 2), we have

ΣMi+1 =
{(

H(m|Σ0
m)α,H(m|Σ1

m)α, · · · ,H(m|Σn−1
m)α

)
: m ∈ Mi+1

}
.

When R does not abort after the rewind (step 3), we need Σi+1
m to simulate all

type-(i + 1) queries of m ∈ Mi+1:

Ti+1(Mi+1) =
{

m
∣∣∣
(
H(m|Σ0

m)α,H(m|Σ1
m)α, · · · ,H(m|Σi

m)α
)

: m ∈ Mi+1

}
.

At the state sti it was after Ti(Mi), R should have responded to all type-i queries
of messages in Mi. That is, α, H(m|Σ0

m), · · · ,H(m|Σi
m) for all m ∈ Mi+1 ⊆ Mi

must be identical before the rewind and after the rewind at the state sti. Then,
the unique block signatures (H(m|Σ0

m)α,H(m|Σ1
m)α, · · · ,H(m|Σi

m)α) in ΣMi+1

and in Ti+1(Mi+1) must be identical and therefore we can correctly use ΣMi+1

to simulate Ti+1(Mi+1).

The Error Probability. We fail in simulating the hypothetical adversary if there
exists i# ∈ [1, n] such that we need to continue type-i# queries Ti#(Mi#) in
step 3 but we did not receive signatures ΣM

i#
in step 2 due to the failure of R.

We define Stopi, Badi for all i ∈ [1, n] to be events as follows.

Badi : S(Mi) = 0 ∧ S(Mi−1 \ Mi) = 1
Stopi : S(Mi−1) = 0

– S(M) = 0 means that R cannot respond to signature queries S(M), while
S(M) = 1 means that R can respond to signature queries S(M).

– Badi refers to the event that we fail in simulating the adversary after the
state sti−1 and before the state sti. More precisely, this event occurs when R
cannot respond to signature queries S(Mi) in step 2 denoted by S(Mi) = 0,
but R can respond to signature queries S(Mi−1 \ Mi) in step 3 denoted by
S(Mi−1 \ Mi) = 1.

– Stopi refers to the event that the simulation stops after the state sti−1 and
before the state sti. It stops either because R fails or we fail in simulating
the adversary.

Optimal Tightness for Chain-Based Unique Signatures 569

Let Ai be the event that the simulation first stops due to the event Stopi.

Ai = Stop1 ∧ Stop2 ∧ · · · ∧ Stopi−1 ∧ Stopi, where A1 = Stop1.

Then we fail in simulating the hypothetical adversary with probability Pr[Bad]:

Pr[Bad] =
n∑

i=1

(
Pr[Badi|Ai] · Pr[Ai]

)

We deduct Pr[Bad] ≤ 1/q
1
n according to the following two results.

– Pr[Badi|Ai] ≤ 1

q
1
n

for all i ∈ [1, n], which is proved in Lemma 1.

–
∑n

i=1 Pr[Ai] ≤ 1, which is proved as follows. We have the following equation

Pr[Stop1 ∧Stop2 ∧· · ·∧Stopi−1 ∧Stopi]+Pr[Ai] = Pr[Stop1 ∧Stop2 ∧· · ·∧Stopi−1]

for all i ∈ [1, n] by applying the rule Pr[B ∧ C] + Pr[B ∧ C] = Pr[B] for any
events B and C. With this equation, we have

Pr[Stop1 ∧ Stop2 ∧ · · · ∧ Stopn] +
n∑

i=1

Pr[Ai] = Pr[Stop1] + Pr[A1] = 1,

which implies
∑n

i=1 Pr[Ai] ≤ 1.

Finally, we fail in simulating the adversary when the events Coin = 1 and
Bad both occur with probability εA ·Pr[Bad]. Otherwise, the bad event does not
occur. When interacting with this simulated adversary, according to the meta-
reduction framework by Coron in [16], R would break the hardness assumption
for us with probability εR − εA

q
1
n

.

This completes the proof of the theorem. ��

Lemma 1. Pr[Badi|Ai] ≤ 1

q
1
n

for all i ∈ [1, n].

Proof. The event Ai = Stop1∧Stop2∧· · ·∧Stopi−1∧Stopi indicates S(Mi−1) = 0
at the state sti−1. Let Ms

i−1 be the largest subset of Mi−1 such that S(Ms
i−1) =

1, namely R can simulate all signatures on messages in Ms
i−1. We have

|Ms
i−1| ≤ |Mi−1| − 1 = q1− i−1

n − 1.

By putting all above analysis together, we obtain

Pr[Badi|Ai] = Pr[S(Mi) = 0 ∧ S(Mi−1 \ Mi) = 1| S(Mi−1) = 0]
≤ Pr[S(Mi−1 \ Mi) = 1| S(Mi−1) = 0]
= Pr[(Mi−1 \ Mi) ⊆ Ms

i−1]

The probability Pr[(Mi−1 \ Mi) ⊆ Ms
i−1] is equivalent to that |Mi−1 \ Mi|

distinct messages randomly picked from the set Mi−1 lie in Ms
i−1. By picking

570 F. Guo and W. Susilo

messages one by one, the first one lies in Ms
i−1 with probability |Ms

i−1|
|Mi−1| and the

second one lies in Ms
i−1 with probability |Ms

i−1|−1

|Mi−1|−1 and so on.
Based on the above analysis, we have

Pr[Badi|Ai]
≤ Pr[(Mi−1 \ Mi) ⊆ Ms

i−1]

=
|Ms

i−1|
|Mi−1|

·
|Ms

i−1| − 1
|Mi−1| − 1

·
|Ms

i−1| − 2
|Mi−1| − 2

· · ·
|Ms

i−1| − |Mi−1 \ Mi| + 1
|Mi−1| − |Mi−1 \ Mi| + 1

≤ |Mi−1| − 1
|Mi−1|

· |Mi−1| − 2
|Mi−1| − 1

· |Mi−1| − 3
|Mi−1| − 2

· · · |Mi−1| − |Mi−1 \ Mi|
|Mi−1| − |Mi−1 \ Mi| + 1

=
|Mi−1| − |Mi−1 \ Mi|

|Mi−1|

=
q1− i−1

n −
(
q1− i−1

n − q1− i
n

)

q1− i−1
n

=
1

q
1
n

.

This completes the proof of the lemma. ��

4 Optimal Tightness for the Chain-Based BLS Scheme

In this section, we formally show how to prove the security of the chain-based
BLS scheme with optimal tightness in the EUF-CMA security model under the
CDH hardness assumption. In comparison with the high-level intuition proof
given in the introduction,

– The formal proof here defines and classifies hash queries including useless or
dummy hash queries generated and made by the adversary.

– The formal proof here considers the general parameter setting for any scheme
parameter n instead of n = log q. More precisely, the proof will show that
given a chain-based BLS scheme instantiated with any integer n, the reduction
loss is at most 4 · q

1
n for q signature queries.

Our security reduction is split into two theorems. In the first theorem, we provide
the framework of the reduction without calculating the success probability. We
analyze the success probability in the second theorem.

4.1 Framework of Security Reduction

Theorem 2. Let H be the hash function viewed as the random oracle. Suppose
there exists an adversary A who can (t, q, ε)-break the chain-based BLS scheme in
the EUF-CMA security model. We can construct a simulator B that (t′, ε′)-solves
the CDH problem, where

t′ = t + O(qH + q · n), ε′ = Pr[Suc] · ε.

Optimal Tightness for Chain-Based Unique Signatures 571

Here qH is the number of hash queries to the random oracle and Pr[Suc] is the
success probability of solving the CDH problem when the adversary successfully
forges a valid signature.

Proof. Suppose there exists an adversary who can (t, q, ε)-break the chain-based
BLS scheme in the EUF-CMA model. A simulator can be constructed to solve
the CDH problem defined over a bilinear pairing (G,GT , p, e, g). Given as input
a random instance (g, gâ, gb̂), the simulator aims to compute gâb̂ and constructs
the simulated scheme for the adversary as follows.

Setup: The simulator sets h = gα = gâ and gives pk = (G,GT , p, e, g, h, n) to
the adversary. The hash function H is set as a random oracle controlled by the
simulator.

Hash Query: Our reduction uses the adversary’s hash queries to the random
oracle H to solve the CDH problem. We clarify all hash queries before introducing
how to program their responses.

– A hash query x is called type-j query of m if x = m|Σj
m, where Σj

m =
(σ1, σ2, · · · , σj) is the first j block (basic) BLS signatures on m and σj =
H(m|Σj−1

m)α. In particular, the type-0 query of m is m|() composed of m

and Σ0
m = (). We define Hi(m) to be the set of queries of m from type-0 to

type-i as Hi(m) = {m|Σ0
m,m|Σ1

m,m|Σ2
m, · · · ,m|Σi

m}. Except hash queries
in Hn(m), other queries of m in our reduction are defined as useless queries
because the signature on m is not related to useless queries.

– The simulator uses a hash list to record all hash queries from the adversary A
and their responses. Suppose x is a hash query and y is the response, namely
y = H(x). If x is a useless query, the simulator will add the tuple (x, y) into
the hash list. Otherwise, x = m|Σj

m ∈ Hn(m) is a type-j query of m, and the
simulator will add the tuple (m, j,Σj

m, cm, x, y, zj
m) into the hash list where

cm is a secret related to message m and zj
m is a secret related to the query x

(to be explained later).
– The simulator can easily verify whether a candidate query x lies in Hn(m).

Given a query x, the simulator will judge it as a type-j query of m if x can
be parsed as x = m|(σ1, · · · , σj) and

e
(
σi+1, g

)
= e

(
H(m|Σi

m), h
)
, for all i ∈ [0, j − 1].

In the above computation, if the type-i query of m for any i ∈ [0, j − 1]
was never being queried to the random oracle by the adversary before x, the
simulator will firstly respond to the hash query m|Σi

m before verifying the
query x. It guarantees queries in a sequence that if x is the valid type-i query
of m, the type-1, type-2, · · · , type-(i − 1) queries of m have already been
added and responded by the simulator before the type-i query.

– An integer cm ∈ [0, n − 1] for each message m is chosen independently but
non-uniformly satisfying Pr[cm = j] = aj . Here a0, a1, · · · , an−1 > 0 are
values satisfying 0 < a0 + a1 + a2 + · · · + an−1 ≤ 1

2 defined in Theorem 3.

572 F. Guo and W. Susilo

Upon receiving a hash query x from the adversary, the simulator programs
the response y = H(x) as follows.

– Step 1: If x has already been queried, the simulator responds to this query
following the tuple (x, y) or (m, j,Σj

m, cm, x, y, zj
m) in the hash list. Other-

wise, the simulator uses the symbols “|, ()” to parse the query x = ∗|(∗) for
arbitrary strings denoted by ∗. It might be a candidate type-i query or a
useless query with structures different from the description in the scheme.

– Step 2: Suppose x ∈ Hn(m). If message m inside the query x = m|Σj
m

is a new message to the random oracle, the simulator should first choose
cm ∈ [0, n−1] as stated previously. Otherwise, cm can be obtained from other
tuples about message m in the hash list. The simulator randomly chooses
zj
m ∈ Zp and sets

y = H(x) = H(m|Σj
m) =

{
gzj

m : j �= cm

gb̂+zj
m : j = cm

.

The simulator adds (m, j,Σj
m, cm, x, y, zj

m) into the list.
– Step 3: Suppose x /∈ Hn(m). The simulator chooses a random y ∈ G and

adds (x, y) into the hash list.

This completes the description of hash queries and their responses. We classify
all hash queries in Hn(m) into the following three kinds.

– We name the type-cm query of m as a challenge query.
– We name the type-(cm + 1) query of m as a solution query.
– Other queries in Hn(m) are named as normal queries.

That is, if x is a type-cm query of m, it will be set as a challenge query by the
simulator and responded with

H(x) = H(m|Σcm
m) = gb̂+zcm

m .

Then the type-(cm + 1) query of m, denoted by m|Σcm+1
m , carries the block

signatures Σcm+1
m = (σ1, σ2, · · · , σcm+1) and σcm+1 is equal to

σcm+1 = H(m|Σcm
m)α =

(
gb̂+zcm

m

)â

= gâb̂+âzcm
m .

The CDH problem solution can be extracted from this block signature with the
known zcm

m in the hash list by

σcm+1

(gâ)zcm
m

=
gâb̂+âzcm

m

(gâ)zcm
m

= gâb̂.

Therefore, a solution query is a hash query that carries the CDH problem solu-
tion. The simulator is able to solve the CDH problem if the adversary generates

Optimal Tightness for Chain-Based Unique Signatures 573

and makes a solution query to the random oracle. We note that once the simu-
lator extracts the problem solution gâb̂, it can immediately stops the simulation
or can continue the simulation successfully without abort using gâb̂ until the
adversary returns a forged signature.

Signature Query: The adversary adaptively chooses a message mi for its sig-
nature query. Before the signature query on mi, we assume that the adversary
has generated and made the following hash queries to the random oracle

Hki(mi) = {mi|Σ0
mi

,mi|Σ1
mi

, · · · ,mi|Σki
mi

},

where ki ∈ [0, n − 1] is an integer adaptively decided by the adversary and the
range is explained as follows. The type-0 query mi|Σ0

mi
= mi|() is the plain

message. Therefore we simply assume that the adversary makes at least the
type-0 query of mi (ki ≥ 0). If the adversary also generates and makes the type-
n query of mi, namely mi|Σn

mi
, the hash query already implies a valid signature

on mi and then there is no need to make its signature query. We therefore also
assume that ki ≤ n − 1.

Recalling that the simulator chose an integer ci ∈ [0, n − 1] for the message
mi (the symbol cmi

is simplified into ci for message mi) in the response to hash
queries. The signature simulation falls into the following three cases.

– Case 1: ci < ki. That is, ci + 1 ≤ ki. In this case, the type-ci query is set
as a challenge query and the adversary has already generated and made the
type-(ci + 1) query (the solution query) to the random oracle. The simulator
is able to extract the problem solution from this solution query.

– Case 2: ci = ki. The simulator aborts and fails in the signature simulation.
– Case 3: ki < ci. In this case, the adversary has not yet generated and made

the type-ci query of mi. Then no hash query of mi is set as the challenge
query. Upon receiving the signature query on mi, the simulator updates ci

with ci = ∞ in all tuples related to message mi in the hash list. According
to the setting of the oracle response, the hash queries

x = mi|Σj
mi

for all j = 0, 1, 2, · · · , n − 1

will be all normal queries before and after the signature query on message
mi. According to the response to normal queries, we have (the symbol zj

mi
is

simplified into zj
i for message mi below)

H(mi|Σj
mi

) = gzj
i , for all j = 0, 1, 2, · · · , n − 1.

Then all block signatures are equal to

σj+1 = H(mi|Σj
mi

)α =
(
gzj

i

)â

= (gâ)zj
i , for all j = 0, 1, 2, · · · , n − 1.

Therefore, the simulator is able to compute Σmi
= (σ1, σ2, · · · , σn) on mi for

the adversary without knowing the secret key α.

574 F. Guo and W. Susilo

Forgery: The adversary outputs a forged signature on a new message m∗ to
break the scheme where the signature on m∗ was not queried before. Let the
forged signature be

Σm∗ =
(
H(m∗|Σ0

m∗)α, H(m∗|Σ1
m∗)α, · · · ,H(m∗|Σn−1

m∗)α
)
.

With the forged signature Σm∗ = Σn
m∗ , one can easily create a type-n query

m∗|Σn
m∗ of m∗. Therefore, if the adversary can forge a valid signature on m∗, it

is equivalent that the adversary must ever generate and make all hash queries
in Hn(m∗) to the random oracle.

This completes the simulation and the reduction. The problem solution will
appear in one of the hash queries to the random oracle if a solution query of any
message is generated and made by the adversary. In the simulation phase, the
simulator will continue the simulation until it receives a solution query unless it
has to abort.

Our simulated scheme is indistinguishable from the real scheme from the view
of the adversary if the simulation is successful. Each hash query x is responded
with a random and independent integer z in the computation. All responses
therefore are random and independent from the view of the adversary. Further,
all simulated signatures are correct by the construction of the random oracle.
The simulation therefore is indistinguishable from the real signature scheme.

Each hash query requires O(1) exponentiations and each signature query
requires the simulator to generate at most n BLS signatures. Let the success
probability of receiving a solution query from the adversary be Pr[Suc] when
the adversary can successfully forge a valid signature on m∗. We obtain the
results given in theorem and complete the proof. ��

4.2 Probability Analysis

Theorem 3. Let the positive values a0, a1, · · · , an−1 in Theorem 2 be a geomet-
ric sequence satisfying:

aj =
d − 1

2d(dn − 1)
· dj : j ∈ [0, n − 1],

for the integer d satisfying dn = q. Then Pr[Suc] in Theorem 2 satisfies

Pr[Suc] ≥ 1
4q

1
n

,

where q is the number of signature queries and n is the scheme parameter.

Proof. We calculate the success probability Pr[Suc] on the condition that the
adversary can successfully forge a valid signature. Namely,

Pr[Suc] = Pr[The adversary made a solution query|Verify(pk,Σm∗ ,m∗) = true].

Let m1,m2,m3, · · · ,mq be the order of messages selected for signature queries
by the adversary before it forges a valid signature on a new message m∗. We
have the following important parameters in Theorem 2.

Optimal Tightness for Chain-Based Unique Signatures 575

m1 m2 m3 · · · mq m∗

The adversary’s adaptive choices k1 k2 k3 · · · kq k∗

The simulator’s non-uniform choices c1 c2 c3 · · · cq c∗

– For each message mi before its signature query, the adversary will generate
and make type-0, type-1, · · · , type-ki queries of mi, namely Hki(mi). The
integer ki ∈ [0, n − 1] is adaptively decided by the adversary.

– For the message m∗, a successful forgery Σm∗ = Σn
m∗ is equivalent to that

the adversary will generate and make hash queries Hn(m∗) to the random
oracle. Therefore, we have k∗ = n.

– For each message m including (m1,m2, · · · ,mq,m
∗), the simulator will set

its type-cm query, namely m|Σcm
m , as a challenge query. We have that cm ∈

[0, n − 1] for each message is chosen independently with

Pr[cm = j] = aj =
d − 1

2d(dn − 1)
· dj .

The reduction is successful if one of the hash queries of any message
generated and made by the adversary is a solution query. We note that
the solution query does not have to be of message m∗.

Let Q∗
A be the mixture of hash queries and signature queries made by the

adversary in attacking the scheme before returning a forged signature on m∗. In
the query sequence Q∗

A, we have that

– The adversary makes queries Hki(mi) = {mi|Σ0
mi

,mi|Σ1
mi

, · · · , mi|Σki
mi

}
before the signature query on mi denoted by S(mi).

– The adversary makes queries Hn(m∗) = {m∗|Σ0
m∗ ,m∗|Σ1

m∗ , · · · , m∗|Σn
m∗}

on the message m∗.
– The adversary could generate and make hash queries of any message m /∈

{m1,m2, · · · ,mq,m
∗} without signature query on m.

– The exact sequences of each hash query and each signature query are adap-
tively decided by the adversary. The adversary could make all hash queries
first before signature queries, or will only make hash queries of mi before
signature query on mi.

The success probability of reduction is rewritten as Pr[Suc] = Pr[Q∗
A], where

Pr[Q∗] denotes the success probability of reduction against the adversary who
makes hash/signature queries according to the sequence Q∗.

It is hard to directly analyze the success probability Pr[Q∗
A] because the

exact sequence of each hash query and each signature query are unknown by the
simulator at the beginning. We solve this difficulty by firstly (1) analyzing the
probability Pr[Q∗

2,0] instead, where Q∗
2,0 is a well-format and simplified query

sequence whose success probability of reduction is easy in analysis, and then (2)
proving that Pr[Q∗

A] ≥ Pr[Q∗
2,0].

More precisely, the query sequence Q∗
2,0 is defined as H0(m1) → S(m1) →

H0 (m2) → S(m2) → · · · → H0(mq) → S(mq) → Hn(m∗), where the adversary
only makes type-0 query of mi after S(mi−1) and before S(mi) for all i ∈ [1, q],
and the adversary makes hash queries Hn(m∗) of m∗.

576 F. Guo and W. Susilo

Next we prove

– Pr[Q∗
2,0] ≥ 1

4·q 1
n

in Lemma 2.

– Pr[Q∗
A] ≥ Pr[Q∗

2,0] in Lemma 3.

This completes the proof of Pr[Suc] = Pr[Q∗
A] ≥ Pr[Q∗

2,0] ≥ 1
4q1/n . �

Lemma 2. Pr[Q∗
2,0] ≥ 1

4·q 1
n

.

Proof. The probability Pr[Q∗
2,0] is calculated in the way that the simulator does

not abort in the signature query phase on messages (m1,m2, · · · ,mq) and the
solution query appears in one of the hash queries in Hn(m∗).

The simulator aborts due to the signature query S(mi) if and only if the
type-0 query of mi is set as the challenge query. Since the simulator will set the
type-ci query as a challenge query for mi with probability Pr[ci = 0] = a0, the
simulator will not abort in the signature query phase with probability

q∏
i=1

(
1 − Pr[ci = 0]

)
=

(
1 − a0

)q

=
(
1 − d − 1

2d(dn − 1)

)q

=
(
1 − 1

2d(1 + d + d2 + · · · + dn−1)

)q

≥
(
1 − 1

2dn

)q

=
(
1 − 1

2q

)q

≥
(
1 − 1

2 · 1

)1

=
1
2
.

For the hash queries of message m∗, the simulator sets the type-c∗ query as a
challenge query. Since the adversary makes hash queries Hn(m∗), we have that
the solution query appears in Hn(m∗) as long as 0 ≤ c∗ ≤ n − 1.

Pr[c∗ ≤ n − 1] = a0 + a1 + · · · + an−1

=
d − 1

2d(dn − 1)
+

d − 1
2d(dn − 1)

· d + · · · +
d − 1

2d(dn − 1)
· dn−1

=
d − 1

2d(dn − 1)

(
1 + d + d2 + · · · + dn−1

)

=
d − 1

2d(dn − 1)
· 1 − dn

1 − d

=
1
2d

.

Therefore, we have

Pr[Q∗
2,0] =

q∏
i=1

(
1 − Pr[ci = 0]

)
· Pr[c∗ ≤ n − 1] ≥ 1

2
· 1
2d

=
1

4q
1
n

.

This completes the proof of the lemma.

Optimal Tightness for Chain-Based Unique Signatures 577

Lemma 3. Pr[Q∗
A] ≥ Pr[Q∗

2,0].

The roadmap of the proof to this lemma is as follows. We define more inter-
mediate query sequences, namely Q∗

2,1,Q∗
2,2, Q∗

2,3, · · · ,Q∗
2,q, and prove that

Pr[Q∗
A] ≥ Pr[Q∗

2,q] ≥ · · · ≥ Pr[Q∗
2,1] ≥ Pr[Q∗

2,0].

– Firstly, we define the query sequences Q∗
2,i for all i ∈ [1, q].

– Secondly, we prove Pr[Q∗
2,i] ≥ Pr[Q∗

2,i−1] for all i ∈ [1, q].
– Finally, we prove Pr[Q∗

A] ≥ Pr[Q∗
2,q].

Proof. We define the query sequence Q∗
2,i for each i ∈ [1, q] based on Q∗

2,0 and the
adaptive integers (k1, k2, · · · , ki) in Q∗

A. We define Q∗
2,i = Hk1(m1) → S(m1) →

Hk2(m2) → S(m2) → · · · → Hki(mi) → S(mi) → H0(mi+1) → S(mi+1) →
· · · → H0(mq) → S(mq) → Hn(m∗).

The only difference is the number of hash queries of (m1,m2, · · · ,mi) when
compared to Q∗

2,0. In Q∗
2,0, the hash queries of messages are

Q∗
2,0 : (m1,m2, · · · ,mq) �

(
H0(m1),H0(m2), · · · ,H0(mq)

)
.

While in the query sequence Q∗
2,i, we define

Q∗
2,i :

⎧
⎨
⎩

(m1, m2, · · · ,mi) �
(
Hk1(m1), Hk2(m2), · · · , Hki(mi)

)

(mi+1,mi+2, · · · ,mq) �
(
H0(mi+1),H0(mi+2), · · · ,H0(mq)

)

Next, we compare the success probabilities of reduction under the two query
sequences Q∗

2,i−1 and Q∗
2,i. The two query sequences Q∗

2,i−1 and Q∗
2,i are com-

pared as follows.

Hk1(m1) → S(m1) → · · · S(mi−1)
↗
↘

H 0 (mi) → S(mi) → Q∗
2,[>i] : Q∗

2,i−1

H ki (mi) → S(mi) → Q∗
2,[>i] : Q∗

2,i

where Q∗
2,[>i] is a truncated query sequence of Q∗

2,0 defined as

Q∗
2,[>i] = H0(mi+1) → S(mi+1) → · · · → H0(mq) → S(mq) → Hn(m∗).

The two query sequences Q∗
2,i−1 and Q∗

2,i have the identical sub-sequence before
S(mi−1), and then the reduction will have the identical success probability before
S(mi−1) in these two query sequences. The two query sequences have the only
difference that the adversary makes hash queries Hki(mi) in Q∗

2,i instead of
H0(mi) in Q∗

2,i−1. Therefore, we have

Pr[Hki(mi) → S(mi) → Q∗
2,[>i]] ≥ Pr[H0(mi) → S(mi) → Q∗

2,[>i]] (1)

implies that Pr[Q∗
2,i] ≥ Pr[Q∗

2,i−1].

578 F. Guo and W. Susilo

Next, we prove the correctness of the inequality (1). In both the two query
sub-sequences H0(mi) → S(mi) → Q∗

2,[>i] and Hki(mi) → S(mi) → Q∗
2,[>i], the

simulator will either (1) obtain a solution query of mi or (2) obtain a solution
query from Q∗

2,[>i] when the simulator neither succeeds nor aborts after S(mi).
We have

Pr[H0(mi) → S(mi) → Q∗
2,[>i]] = Pr[S

(0)
i] +

(
1 − Pr[S

(0)
i] − Pr[F

(0)
i]

)
Pr[Q∗

2,[>i]]

Pr[Hki (mi) → S(mi) → Q∗
2,[>i]] = Pr[S

(ki)
i] +

(
1 − Pr[S

(ki)
i] − Pr[F

(ki)
i]

)
Pr[Q∗

2,[>i]]

where S
(ki)
i is the event that the solution query appears in Hki(mi), and F

(ki)
i

is the corresponding event that the simulator fails due to S(mi). In particular,
we have Pr[S(0)

i] = 0 and Pr[F (0)
i] = a0.

We have the following results hold according to the setting of ai.

Pr[S(ki)
i] − Pr[S(0)

i] =
(

Pr[ci ≤ ki − 1]
)

− 0

= a0 + a1 + · · · + aki−1

=
d − 1

2d(dn − 1)
+

d − 1
2d(dn − 1)

· d + · · · +
d − 1

2d(dn − 1)
· dki−1

=
d − 1

2d(dn − 1)

(
1 + d + d2 + · · · + dki−1

)

=
d − 1

2d(dn − 1)
· 1 − dki

1 − d

=
dki − 1

2d(dn − 1)

Pr[F (ki)
i] − Pr[F (0)

i] =
(

Pr[ci = ki]
)

−
(

Pr[ci = 0]
)

= aki
− a0

=
d − 1

2d(dn − 1)
· dki − d − 1

2d(dn − 1)
· d0

=
dki − 1

2d(dn − 1)
· (d − 1)

Therefore, we have

Pr[Hki (mi) → S(mi) → Q∗
2,[>i]] − Pr[H0(mi) → S(mi) → Q∗

2,[>i]]

=
(
Pr[S

(ki)
i] − Pr[S

(0)
i]

)
+ Pr[Q∗

2,[>i]] ·
(
Pr[S

(0)
i] − Pr[S

(ki)
i] + Pr[F

(0)
i] − Pr[F

(ki)
i]

)

=
dki − 1

2d(dn − 1)
+ Pr[Q∗

2,[>i]] ·
(

− dki − 1

2d(dn − 1)
− dki − 1

2d(dn − 1)
· (d − 1)

)

=
dki − 1

2d(dn − 1)
− Pr[Q∗

2,[>i]] ·
dki − 1

2d(dn − 1)
· d

=
dki − 1

2d(dn − 1)

(
1 − Pr[Q∗

2,[>i]] · d
)
,

Optimal Tightness for Chain-Based Unique Signatures 579

which is positive (≥ 0) because we have

– d ≥ 1 since d = q
1
n and q ≥ 1.

– The inequality Pr[Q∗
2,[>i]] ≤ Pr[Hn(m∗)] holds since making type-0 query and

then signature query will decrease the success probability of reduction only,
such that

Pr[Q∗
2,[>i]] = Pr[H0(mi+1) → S(mi) → · · · → H0(mq) → S(mq) → Hn(m∗)]

≤ Pr[Hn(m∗)]
= Pr[c∗ ≤ n − 1]

=
1
2d

≤ 1
d

Therefore, from the above analysis, we obtain Pr[Q∗
2,i] ≥ Pr[Q∗

2,i−1].

Finally, we prove Pr[Q∗
A] ≥ Pr[Q∗

2,q]. In comparison with Q∗
2,q, Q∗

A generates
and makes the same hash queries of (m1,m2, · · · ,mq,m

∗).

Q∗
A, Q∗

2,q : (m1, m2, · · · , mq, m
∗) �

(
Hk1(m1), Hk2(m2), · · · , Hkq (mq), Hn(m∗)

)
.

The only differences are as follows.

– In the real sequence Q∗
A, the adversary could also make hash queries of any

message m whose signature was not queried by the adversary.
– In the real sequence Q∗

A, the adversary could make the mixture of hash queries
and signature queries without following the well-format sequence. For exam-
ple, the sub-sequence of Q∗

A is Hk1(m1) → Hk2(m2) → S(m1) instead of
Hk1(m1) → S(m1) → Hk2(m2) in Q∗

q , where the adversary made hash queries
of message m2 before the signature query on m1.

Note that any hash query will be responded by the random oracle correctly with-
out abort. Therefore, any query sequence Q∗

A different from Q∗
2,q would increase

the success probability of reduction and then we have Pr[Q∗
A] ≥ Pr[Q∗

2,q].
This completes the proof of the lemma. ��

Acknowledgement. We would like to thank Tibor Jager for insightful discussions
on the first version of this work in 2020. We would also like to thank the anonymous
reviewers from Eurocrypt 2021, Crypto 2021, and Eurocrypt 2022 for their constructive
comments.

References

1. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 34

https://doi.org/10.1007/978-3-642-29011-4_34

580 F. Guo and W. Susilo

2. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 34

3. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 19

4. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK
and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11923, pp. 669–699. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34618-8 23

5. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 10

6. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 15

7. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

8. Bernstein, D.J.: Proving tight security for Rabin-Williams signatures. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 70–87. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 5

9. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 12

10. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

12. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054117

13. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based
encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 404–434. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 14

14. Chailloux, A., Debris-Alazard, T.: Tight and optimal reductions for signatures
based on average trapdoor preimage sampleable functions and applications to code-
based signatures. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC
2020. LNCS, vol. 12111, pp. 453–479. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45388-6 16

15. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 767–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 25

https://doi.org/10.1007/978-3-642-25385-0_34
https://doi.org/10.1007/978-3-642-25385-0_34
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-540-78967-3_5
https://doi.org/10.1007/978-3-662-46447-2_12
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-030-45388-6_16
https://doi.org/10.1007/978-3-030-45388-6_16
https://doi.org/10.1007/978-3-030-26954-8_25

Optimal Tightness for Chain-Based Unique Signatures 581

16. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 18

17. Diemert, D., Gellert, K., Jager, T., Lyu, L.: Digital signatures with memory-tight
security in the multi-challenge setting. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021. LNCS, vol. 13093, pp. 403–433. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92068-5 14

18. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp.
1–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4 1

19. El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: efficient signature
scheme with tight reduction to decisional CSIDH-512. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 157–186.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 6

20. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: the
case of Schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 27

21. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
512–531. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 27

22. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

23. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 6

24. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure
structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 8

25. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 4

26. Goh, E.-J., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 25

27. Guo, F., Chen, R., Susilo, W., Lai, J., Yang, G., Mu, Y.: Optimal security reduc-
tions for unique signatures: bypassing impossibilities with a counterexample. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 517–547.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 18

28. Han, S., et al.: Authenticated key exchange and signatures with tight security in
the standard model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol.
12828, pp. 670–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84259-8 23

29. Han, S., Liu, S., Gu, D.: Key encapsulation mechanism with tight enhanced security
in the multi-user setting: impossibility result and optimal tightness. In: Tibouchi,

https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/978-3-030-92068-5_14
https://doi.org/10.1007/978-3-030-92068-5_14
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/3-540-39200-9_25
https://doi.org/10.1007/978-3-319-63715-0_18
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23

582 F. Guo and W. Susilo

M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 483–513. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92075-3 17

30. Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key exchange.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 65–94.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 3

31. Hesse, J., Hofheinz, D., Kohl, L., Langrehr, R.: Towards tight adaptive security of
non-interactive key exchange. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS,
vol. 13044, pp. 286–316. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-90456-2 10

32. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
251–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-
9 11

33. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

34. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30057-8 5

35. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated
key exchange, revisited. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12696, pp. 117–146. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77870-5 5

36. Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure structure-
preserving signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10770, pp. 123–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76581-5 5

37. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
537–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 32

38. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp.
155–164. ACM (2003)

39. Kiltz, E., Loss, J., Pan, J.: Tightly-secure signatures from five-move identification
protocols. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 68–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 3

40. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

41. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 4

42. Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 1

43. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes.
J. Cryptol. 15(1), 1–18 (2002). https://doi.org/10.1007/s00145-001-0005-8

https://doi.org/10.1007/978-3-030-92075-3_17
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-030-90456-2_10
https://doi.org/10.1007/978-3-030-90456-2_10
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-319-76581-5_5
https://doi.org/10.1007/978-3-319-76581-5_5
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-319-70700-6_3
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-662-45608-8_1
https://doi.org/10.1007/s00145-001-0005-8

Optimal Tightness for Chain-Based Unique Signatures 583

44. Morgan, A., Pass, R.: On the security loss of unique signatures. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 507–536. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03807-6 19

45. Morgan, A., Pass, R., Shi, E.: On the adaptive security of MACs and PRFs. In:
Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 724–753.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 24

46. Niehues, D.: Verifiable random functions with optimal tightness. In: Garay, J.A.
(ed.) PKC 2021. LNCS, vol. 12711, pp. 61–91. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-75248-4 3

47. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent
to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

48. Rotem, L., Segev, G.: Tighter security for Schnorr identification and signatures:
a high-moment forking lemma for Σ-protocols. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12825, pp. 222–250. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84242-0 9

49. Schäge, S.: Tight proofs for signature schemes without random oracles. In: Pater-
son, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-20465-4 12

50. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 33

51. Shacham, H.: Short unique signatures from RSA with a tight security reduction
(in the random oracle model). In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS,
vol. 10957, pp. 61–79. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-662-58387-6 4

https://doi.org/10.1007/978-3-030-03807-6_19
https://doi.org/10.1007/978-3-030-64837-4_24
https://doi.org/10.1007/978-3-030-75248-4_3
https://doi.org/10.1007/978-3-030-75248-4_3
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/978-3-642-20465-4_12
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-662-58387-6_4
https://doi.org/10.1007/978-3-662-58387-6_4

On Building Fine-Grained One-Way
Functions from Strong Average-Case

Hardness

Chris Brzuska1(B) and Geoffroy Couteau2(B)

1 Aalto University, Espoo, Finland
chris.brzuska@aalto.fi

2 CNRS, IRIF, Université de Paris, Paris, France

geoffroy.couteau@ens.fr

Abstract. Constructing one-way functions from average-case hardness
is a long-standing open problem. A positive result would exclude Pessi-
land (Impagliazzo ’95) and establish a highly desirable win-win situation:
either (symmetric) cryptography exists unconditionally, or all NP prob-
lems can be solved efficiently on the average. Motivated by the lack of
progress on this seemingly very hard question, we initiate the investiga-
tion of weaker yet meaningful candidate win-win results of the following
type: either there are fine-grained one-way functions (FGOWF), or non-
trivial speedups can be obtained for all NP problems on the average.
FGOWFs only require a fixed polynomial gap (as opposed to superpoly-
nomial) between the running time of the function and the running time
of an inverter. We obtain three main results:
Construction. We show that if there is an NP language having a very

strong form of average-case hardness, which we call block finding hard-
ness, then FGOWF exist. We provide heuristic support for this very
strong average-case hardness notion by showing that it holds for a ran-
dom language. Then, we study whether weaker (and more natural) forms
of average-case hardness could already suffice to obtain FGOWF, and
obtain two negative results:
Separation I. We provide a strong oracle separation for the implica-

tion (∃ exponentially average-case hard language =⇒ ∃ FGOWF).
Separation II. We provide a second strong negative result for an even
weaker candidate win-win result. Namely, we rule out a black-box proof for
the implication (∃ exponentially average-case hard language whose hard-
ness amplifies optimally through parallel repetitions =⇒ ∃ FGOWF).
This separation forms the core technical contribution of our work.

1 Introduction

In his celebrated 1995 position paper [Imp95], Impagliazzo describes his per-
sonal view of the study of average-case complexity, an emergent (at the time)
and fundamental area of computational complexity initiated in a seminal work
of Levin [Lev86], which aims to characterize NP problems which are not only
hard for a worst-case choice of inputs, but also for natural distributions over
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 584–613, 2022.
https://doi.org/10.1007/978-3-031-07085-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_20&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_20

On Building FGOWFs from Strong AC Hardness 585

Fig. 1. Impagliazzo’s five worlds

the inputs. In Impagliazzo’s view, our current understanding of the landscape
of complexity theory is best described by considering five possible worlds we
might live in, which are now commonly known as the five worlds of Impagli-
azzo, corresponding to the five possible outcomes regarding the existence of
worst-case hardness in NP, average-case hardness in NP, one-way function, and
public-key cryptography. The corresponding five worlds, Algorithmica, Heuris-
tica, Pessiland, Minicrypt, and Cryptomania, and their relations are summa-
rized on Fig. 1. Algorithmica and Heuristica correspond to the “algorithmist’s
wonderland”, where all NP languages can be decided efficiently on the average.
Cryptomania and Minicrypt correspond to the “cryptographer’s wonderland”,1

where one-way functions (and therefore, stream ciphers, signatures, pseudoran-
dom functions, etc.) exist. Eventually, Pessiland is what Impagliazzo describes
as “the worst of all possible worlds”: a world in which many NP problems might
be untractable (even on natural instances), yet no one-way function (and thus
no cryptography) exists.

One-Way Functions Based on Average-Case Hardness. In this article,
we study whether (the existence of) average-case hard NP problems imply (the
existence of) one-way functions. Conceptually, a positive answer to this ques-
tion rules out Pessiland, i.e., it constitutes a win-win result: Either all NP
problems can be solved efficiently, on the average, or cryptographic one-way
functions exist. Little progress has been made on this question in the past
two-and-a-half decades. There is a partial explanation for this lack of success:
we know that any construction of one-way functions from average-case hard
NP problems must rely on non-black-box techniques (Wee [Wee06] attributes
this simple observation to Impagliazzo and Rudich). Indeed, similar separations

1 Though we heard that lately, some cryptographers have been found dreaming of an
even higher heaven, the mysterious land of Obfustopia.

586 C. Brzuska and G. Couteau

[IR90,FF93,BT03,AGGM06,BB15] are known between any two of Impagliazzo’s
worlds. However, there, the situation is much more satisfying: At the bottom of
the hierarchy, we know that stronger exponential worst-case assumptions imply
that avgP �= DistNP [Yao82,WB86,Sud97,Lev87,STV01]. At the top of the
hierarchy, we know that exponentially secure one-way functions imply a weak,
but useful notion of public-key cryptography, namely fine-grained public-key
cryptography where there is a polynomial (rather than superpolynomial) gap
between the time to encrypt and the time needed to break the cryptosystem
[Mer78,BGI08]. Interestingly, the very first publicly-known work on public-key
cryptography, the 1974 project proposal of Merkle2 (published much later in
[Mer78]) achieves exactly such a weak notion of security: Merkle shows that an
ideal OWF (modeled as a random oracle) can be used to construct a key agree-
ment protocol where the honest parties run in time n, while the best attack
requires time n2. The assumption of an ideal OWF was later relaxed to the exis-
tence of exponentially hard OWFs by Biham, Goren and Ishai [BGI08]. Hence,
in essence, Merkle establishes a weak exclusion of Minicrypt, by showing that
strong hardness in Minicrypt already implies some nontrivial form of public-
key cryptography, with a quadratic gap between the attacker’s runtime and the
honest parties’ runtime.

1.1 Our Contribution: Inbetween Heuristica and Pessiland

The above result suggests a natural relaxation of Impagliazzo’s program: rather
than ruling out Pessiland entirely, one could hope to show that sufficiently strong
forms of average-case hardness suffice to construct weak forms of cryptography.
Such a result would still have a very desirable win-win flavor. For example, if
one shows that exponential average-case hardness implies fine-grained one-way
functions, it would show that either all NP problems admit nontrivial (subex-
ponential) algorithms on the average, or there must exist some form of cryptog-
raphy, with a polynomial security gap. As the computational power increases,
such a gap translates to an increasingly larger runtime gap on concrete instances
and thus a larger concrete security margin in realistic situations.

We can also consider starting from even stronger forms of average-case hard-
ness. A very natural target is non-amortizing average-case hardness, which states
(in essence) that deciding whether k words (x1, · · · , xk) belong to a language L
is k times harder (on average) than deciding membership of a single word. This
stronger form of average-case hardness is closely related to the widely stud-
ied notion of proofs of work [BRSV18]. Building fine-grained one-way functions
from this strong form of average-case hardness would still be a very meaningful
win-win: it would show that either we can obtain nontrivial savings on average
for all NP problems when amortizing over many instances (which would be an
algorithmic breakthrough), or there must exist some weak form of cryptography.

In this work, we initiate the study of these intermediate layers between
Heuristica and Pessiland, obtaining both positive and negative results.
2 Ralph Merkle, 1974 project proposal for CS 244 at U.C. Berkeley, http://www.

merkle.com/1974/.

http://www.merkle.com/1974/
http://www.merkle.com/1974/

On Building FGOWFs from Strong AC Hardness 587

Fine-Grained OWFs from Block-Finding Hardness. We mentioned above
two natural strengthenings of average-case hardness: exponential average-case
hardness, and non-amortizable average-case hardness (deciding whether k words
(x1, · · · , xk) belong to L is k times harder that deciding membership of a sin-
gle word). Here, we consider even stronger notions: we assume that there is a
language where it is already hard to decide, given k random words (x1, · · · , xk),
whether their language membership satisfies some local structure. As a sim-
ple example of such a notion, consider the following (average-case) block-finding
hardness notion: given k random words �x = (x1, · · · , xk) and a t ≈ log k-bit
string s, computed as the t language membership bits of a randomly chosen
sequence of t consecutive words in �x, find these consecutive words. The notion
states (informally) that finding such a sequence (when it exists, and with prob-
ability significantly better than the random guess) cannot be done much faster
than by brute-forcing a significant fraction of all the language membership.

To get an intuition of this problem, it is helpful to consider an even sim-
pler formulation: given k random words (x1, · · · , xk) with the promise that t
consecutive words are not in the language, find these t consecutive words (with
probability significantly better than 1/k). For a very hard language, it is not
clear how to do this without naively brute-forcing the language membership of
Ω(k/t) words. We show that this (very strong) average-case hardness notion
already gets us outside of Pessiland: if there is a block-finding hard language,
then there exists fine-grained one-way functions (with a quadratic hardness gap).

Heuristically Evaluating the Assumption on Random Languages. Given that this
strong form of average-case hardness is new, we provide some heuristic analysis to
support the intuition that it plausibly holds for some hard languages. To do so, we
introduce a convenient tool for this heuristic analysis, a random language model
(RLM), analogous to how the random oracle model [BR93] is used to heuristically
study the security of constructions when instantiated with a sufficiently strong
hash function. The RLM provides oracle access to a truly random NP-language L.
In the RLM, each bitstring x ∈ {0, 1}n belongs to L with probability exactly 1/2,
and the membership witness for a word x ∈ L ∩ {0, 1}n is a uniformly random
bitstring from {0, 1}n.3 To check membership to the language, the parties have
access to an oracle Chk which, on input a pair (x,w) ∈ {0, 1}n ×{0, 1}n, returns
1 if x ∈ L and w is the right corresponding witness, and 0 otherwise. Finding
out whether a random bitstring x ∈ {0, 1}n belongs to L requires 2n−1 calls to
Chk on the average.4

3 Of course, this heuristic is simplified: most real languages can have more than a
single witness, and the choice of having |w| = |x| is a somewhat arbitrary way of
tuning the hardness to make it exactly 2n. Still, we believe that there is value in
using a simple model to heuristically analyze the plausibility of an assumption –
even though, as any heuristic model, it must fail on artificial counter examples.

4 More precisely, it requires 2n−1 calls to Chk on the average to find a witness of
language membership if x is indeed in the language. In turn, it requires 2n calls to
confirm that there is indeed no witness if x is not in the language.

588 C. Brzuska and G. Couteau

The RLM captures idealized hard language where it is not only (exponen-
tially) hard to decide language membership, but also hard to sample an element
of the language with probability significantly better than 1/2 (hence, in particu-
lar, it is also hard to generate a word together with the corresponding witness).
This captures hard languages where no further structure is assumed beyond the
ability to efficiently check a candidate witness; note that the ability to sample
instances together with their witness is exactly the additional structure which
implies the existence of one-way functions [Imp95], hence the question of build-
ing one-way functions from average-case hardness asks precisely about whether
this can be done without assuming this additional structure to start with.

In this work, we prove that a random language satisfies block-finding hard-
ness, providing some heuristic support for this strong form of average-case hard-
ness. Hence, we get as a corollary:

Corollary 1 (Informal). In the Random Language model, there exists a fine-
grained one-way function which can be evaluated with n oracle calls, but cannot
be inverted with o(n2) calls to the random language.

Constructing a FGOWF from Block-Finding Hardness. At a (very) high level,
the construction proceeds as follows: suppose that there exists hard puzzles where
sampling a random puzzle p is easy (it takes time, say, O(1)), but finding the
unique solution s = s(p) to the puzzle, and verifying that a candidate solution s
to the puzzle is correct, are comparatively harder (they take some much larger
respective times N1 and N2 with N1 ≈ N2). For example, such puzzles can be
constructed by sampling |s| words (x1, · · · , x|s|), and asking for the length-|s|
bitstring of the bits indicating for each word xi whether it belongs to a given
hard language L. Then we construct a fine-grained OWF as follows: an input to
the function is a list of n puzzles (p1, · · · , pn) for some bound n, and an integer
i ≤ n. The function F (p1, · · · , pn, i) first solves the puzzle pi, and outputs the
solution s(pi) together with (p1, · · · , pn). Evaluating F takes time O(n)+N1; on
the other hand, when L is an ideally hard language, inverting F requires brute-
forcing many of the pi, which takes time O(n · N2). Setting n ≈ N1 ≈ N2 gives
a quadratic hardness gap. We refer to Sect. 3 for a technical overview and the
full version of this work [BC20] for a formal proof and analysis of block-finding
hardness in the RLM.

Average-Case Hard Languages and Fine-Grained OWF. With the
above, we know that a sufficiently strong form of average-case hardness suf-
fices to construct fine-grained one-way functions. The natural next question is
whether weaker forms of average-case hardness could possibly suffice. We con-
sider the two natural notions we mentioned previously: exponential average-case
hardness, and the stronger non-amortizing exponential average-case hardness.
For both, our main results are negative and rule out relativizing (black-box)
constructions.

For exponential average-case hard languages, we show that any construction
of fine-grained OWF from an (even exponentially) average-case hard language,

On Building FGOWFs from Strong AC Hardness 589

even with an arbitrarily small polynomial security gap N1+ε (for any absolute
constant ε > 0), must make a non-black-box use of the language. We prove
this by exhibiting an oracle relative to which there exists an exponentially hard
language, but no fine-grained one-way functions:

Theorem 2 (Informal). There is an oracle relative to which there exists an
exponentially secure average-case hard language, but any candidate fine-grained
OWF f can be inverted with probability O(1) and Õ(N) calls to the oracle, where
N denotes the number of oracle calls to compute f in the forward direction.

Black-Box Separation Between Non-Amortizable Average-Case Hard
Languages and Fine-Grained OWF. We then investigate whether non-
amortizability (which states, roughly, that deciding membership of k random
instances to L should take O(k) times longer than deciding membership of a sin-
gle instance to L) suffices to construct fine-grained OWFs. As we explained, this
would still constitute a very interesting win-win result: it would show that either
weak forms of cryptography exist unconditionally, or nontrivial speedups can be
achieved for all NP problems when amortizing over many random instances.
Below, we sketch another motivation for studying this setting.

Non-Amortizability Helps Circumvent Black-Box Impossibilities. Non-amortiza-
bility features have proven to be a key approach to overcoming black-box impos-
sibility results for cryptographic primitives. For example, the Biham-Goren-Ishai
construction [BGI08] of fine-grained key agreement from exponential OWFs
only provides an inverse-polynomial bound on the probability that an attacker
retrieves the shared key when relying on Yao’s XOR Lemma. In turn, when rely-
ing on a (plausible) version of the XOR Lemma stating that success probability
decreases exponentially fast in the number of XORed instances, the adversary’s
success probability can be brought down to negligible. Yet, this “Dream XOR
Lemma” cannot be proven under black-box reductions [BGI08]. An even more
striking example is given by Simon’s celebrated black-box separation between
one-way functions and collision-resistant hash functions [Sim98]: Holmgren and
Lombardi [HL18] recently showed that a one-way product function (i.e., a OWF
that amplifies twice, meaning that inverting f on two random images (y1, y2)
takes twice the time of inverting f on a single random image) suffices to circum-
vent Simon’s impossibility result and build a collision-resistant hash function (in
a black-box way).

A Black-Box Separation. Motivated by the above, we investigate the possi-
bility of building fine-grained OWFs from non-amortizable average-case hard
languages (i.e., languages whose average-case hardness amplifies through par-
allel repetitions). Unfortunately, our result turns out to be negative: we prove
that there is no black-box construction of an N1+ε-hard OWF (where N is the
time it takes to evaluate the function in the forward direction), for an arbitrary
constant ε > 0, even from an exponentially average-case hard language whose

590 C. Brzuska and G. Couteau

hardness amplifies at an exponential rate through parallel repetition. Conceptu-
ally, our second negative result separates fine-grained one-way functions from a
much stronger primitive and can thus be seen as a much stronger result. Note,
however, that technically, the two negative results are incomparable since the
first one rules out relativizing reductions whereas the latter rules out black-box
reductions, see the beginning of Sect. 3 for a discussion.

Theorem 3 (Informal). There is no black-box construction of an N1+ε-hard
OWF f , for an arbitrary constant ε > 0, from exponentially average-case hard
languages L whose hardness amplifies at an exponential rate through parallel
repetition.

In the nomenclature of Reingold, Vadhan and Trevisan [RTV04], we rule out
a ∀∃-weakly-reduction, a slightly weaker notion than a relativizing reduction.
Namely, the reduction can access the adversary. Our result becomes a full oracle
separation if the fine-grained one-way function f would be given black-box access
to the adversary A as well. Reingold, Vadhan and Trevisan point out that in
some cases, the adversary A can be embedded into the oracle O, but doing so
did not seem straightforward for our case and is left as an open question. In
the CAP nomenclature of Baecher, Brzuska and Fischlin [BBF13], we rule out
NNN reductions, since the construction f can depend on the language L, and
the reduction C can depend on both, the adversary and the primitive, i.e., each
of these dependencies can be seen as non-black-box, thus NNN.

Why Study Non-amortizability? In the past, non-amortizability proved key
to overcome related limitations. For example, if one wants to build fine-grained
key exchange with overwhelming security from (exponential) OWFs, a strong
non-amortizability property (dubbed dream XOR lemma) is known to be nec-
essary [BGI08]. Non-amortizability also allows bridging the gap between OWF
and CRHFs [HL18]. Moreover, a very natural and—initially—promising-looking
approach towards fine-grained cryptography from weaker-than-usual assump-
tions inherently goes through (and stops at) non-amortizable languages. Finally,
a positive result (non-amortizable languages give FGOWF) would give a really
nice win-win (algorithms efficiency vs cryptographic security) result.

Let us elaborate on the approach being natural and looking promising.
The goal (FGOWFs from “weaker” assumptions) was set forth in [BRSV17],
with a promising path: starting from a worst-case assumption (the exponential
time hypothesis (ETH)), one gets structured average-case hardness (through
the orthogonal vector problem (OV)); furthermore, this was pushed to non-
amortizable hardness in follow-up work [BRSV18]. Then, [BRSV17] asked: can
we push this OV-based construction further, up to FGOWFs?

One way to read our contributions is the following: our positive result can
easily be framed as an OV-based construction (solving a block becomes find-
ing x such that F (x) = 1, where F is an explicit low-degree polynomial). The
key technique in [BRSV17,BRSV18] are a worst-case to average-case reduction
and an average-case to non-amortizability reductions using the Berlekamp-Welch

On Building FGOWFs from Strong AC Hardness 591

algorithm, which inherently only works for search OV. Block-finding hardness,
on the other hand, formalizes what we would need to prove to achieve FG-OWF
from ETH through this approach. Then, our last separation says: the further the
Berlekamp-Welch techniques seems to get us (i.e., to non-amortizing hardness)
won’t suffice (in a black-box way) to achieve what we need, with any candidate
construction. In other words, we need new non-black-box techniques that go
beyond the Berlekamp-Welch algorithm. Since non-amortizability proved key to
overcome related limitations in the past, we actually attempted to prove security
of our construction from non-amortizing hardness for a long time.

1.2 A Core Abstract Lemma: The Hitting Lemma

At the heart of both our positive result and our black-box separations is an
abstract lemma, which we call the Hitting Lemma. While the statement of the
lemma is very intuitive, its proof is quite technical, and forms one of the core
technical contributions of this work. In its abstract form, the Hitting Lemma is
a very general probability statement about a simple two-player game between a
challenger and an adversary. It shows up naturally on three seemingly unrelated
occasions in our work, hence it seems likely that it can have other applications,
and we believe it to be of independent interest.

At a high level, the Hitting Lemma provides a strong Chernoff-style bound
on the number of witnesses which an adversary can possibly find given oracle
access to the relation of a hard language. More precisely, we state the Hitting
Lemma in an abstract way, as a game with the following structure:

– First, the game chooses a list of sets Vi. Each set Vi has size bounded by some
value 2n and can be thought of as the set of candidate witnesses for a size-n
word.

– In each set Vi, the game chooses a uniformly random witness ri. The sets Vi

are allowed to have different sizes, to capture the more general setting where
the adversary already obtained preliminary information excluding candidate
witnesses.

– Eventually, the adversary interacts with an oracle Guessr1···r�
which, on input

(i, x), returns 1 if x = ri and ⊥ otherwise.

We call a query (i, x) such that Guessr1···r�
(i, x) = 1 a hitting query (or a hit).

The goal of the adversary is to get as many distinct hits as possible within a
bounded number of queries. Intuitively, the most natural strategy to maximize
the number of hits is to proceed as follows: first pick the smallest set Vi, and
query arbitrary positions one by one, until a hit is obtained. Then, pick the
second smallest set Vj and keep proceeding the same way, until all of the ri are
found or the query budget is exhausted.

In essence, the Hitting Lemma states that the above natural strategy is really
the best possible strategy, in a strong sense. Namely, denoting mQ the average
number of hits obtained by a Q-query adversary following the above strategy,
the Hitting Lemma shows that for any possible adversarial strategy, the proba-
bility of getting O(mQ)+ c distinct hits using Q queries decreases exponentially

592 C. Brzuska and G. Couteau

with c (for some explicit constant in the O(·)). The proof combines a reduction
to a simpler probabilistic statement, proven by induction over Q, with a tight
concentration bound on the winning probability of the above natural strategy.

Interestingly, the Hitting Lemma extends directly to the non-uniform setting,
where the adversary is allowed to receive an arbitrary k-bit advice about the
Guess oracle; this properties turns out to be crucial in some of our results. Our
bound shows that this advice cannot provide more than k additional hits. More
precisely, for any possible adversarial strategy where the adversary receives an
arbitrary k-bit advice about the oracle, the probability of getting O(mQ)+k + c
hits decreases exponentially with c. We refer to Sect. 6 for the full statement and
analysis of the Hitting Lemma.

Analogy with the ROM. In the Random Oracle Model, a long line of work (see for
example [Hel80,Unr07,DGK17,CDGS18] and references therein) has established
the hardness of inverting an idealized random function in a non-uniform setting,
given a bounded-length advice about the oracle. These results have proven to
be important and powerful tools to reason about the Random Oracle Model.
At a high level, the hitting lemma provides a comparable tool in the Random
Language Model, and captures the hardness of deciding language membership
for an idealized hard language, even given a non-uniform advice, and even when
the adversary tries to amortize over many instances.

1.3 On the Significance of Our Results

We now address some points about how our results should be interpreted, and
what they imply.

On Basing FGOWF on the Average-Case Hardness of a Concrete NP-
complete Language. Our impossibility results rule out constructions of fine-
grained one-way function that would work using black-box access to an arbitrary
average-case hard language. However, it seems plausible that a construction of
FGOWFs from the average-case hardness of an arbitrary language could pro-
ceed differently. Typically, such a construction could first reduce the language
to a SAT instance (or any other NP-complete problem) using a non-black-box
(e.g. Karp) reduction. Then, the construction of FGOWF would build upon the
concrete structure of SAT; such a construction would not be ruled out by our
results.

Implications of our Negative Results. In this setting, our negative results should
be interpreted as saying that if such a construction is possible, then it must
crucially rely on specific structural hardness properties of the chosen language,
and not solely on natural properties such as its exponential hardness, or its non-
amortizability. As it turns out, this has implications to previous attempts of
basing cryptography on weaker hardness assumptions. The work of [BRSV17]
showed constructions of fine-grained average-case hard languages from the strong

On Building FGOWFs from Strong AC Hardness 593

exponential-time hypothesis (SETH), using a worst-case to average-case reduc-
tion based on the orthogonal vector problem. A major open problem left in
their work, which they discuss at length, is whether their construction could be
strenghtened to give FGOWFs. In a subsequent work [BRSV18], the authors
made a step in the right direction, building proofs of work from SETH (build-
ing upon their result in [BRSV17]). Their construction precisely exploits that
due to the specific structure of the orthogonal vector problem, it is possible to
show non-amortizability of their fine-grained average-case hard language, which
suffices to build proofs of work. Our result shows that this non-amortizability
does not suffice to build FGOWFs: if there is a construction, it must rely on a
different structural hardness property.

In fact, we initially designed the construction of FGOWF from block-finding
hardness as a construction based on the average-case hard puzzles of [BRSV18],
and dedicated an important effort to trying to reduce its security to the non-
amortizable average-case hardness of this puzzle, viewing this approach as the
most promising direction to based FGOWFs on a worst-case hardness assump-
tion such as SETH. After failing to prove it secure, we realized that our lack of
success might be inherent, and turned this realization into a proof by demon-
strating the impossibility of basing a FGOWF on non-amortizing hardness in a
blackbox way. We hope and believe that our negative results will therefore guide
future attempts of basing FGOWFs on weaker assumptions, even attempts that
do not ultimately aim at building them from arbitrary hard languages.

Implications of our Positive Results. Furthermore, our positive result hints pre-
cisely at the type of hardness which could suffice to build FGOWFs: intuitively,
what is needed is that the concrete language satisfies some form of pattern find-
ing hardness, where given a list of words (x1, · · · , xn), finding whether there is
a sub-vector of words whose membership bits (i.e. the vector of bits indicat-
ing for each word whether it is in the language) satisfy a given pattern should
require deciding membership of a large fraction of all words. This is formalized
as block-finding hardness in our work (see Sect. 3.1 and the full version of this
work [BC20]). We note that other related forms of hardness – where one must
decide whether the membership bits of a vector of words satisfy some locally
testable property – can also be shown to imply FGOWFs. We note that actu-
ally, a very similar type of structural hardness has been used in [LLW19] to build
fine-grained one-way functions from concrete average-case hard problems.

1.4 Related Work

Fine-Grained Cryptography. We already pointed out that Merkle’s construc-
tion [Mer78] provides the first example of fine-grained cryptography (as well
as the first known example of public-key cryptography). It was further studied
in [BGI08,BM09], and generalized to the quantum setting in [BS08,BHK+11].
Fine-grained cryptography has only become an explicit subject of study
recently. The work of [BRSV17,BRSV18] constructs proofs of work from explicit
fine-grained average-case hard languages which can be based on the strong

594 C. Brzuska and G. Couteau

exponential-time hypothesis (SETH), and explicitly poses the problem of build-
ing fine-grained one-way functions (while showing some barriers for basing them
on SETH via natural approaches). The work of [DVV16] studies a different form
of fine-grained cryptography, showing cryptosystems secure against resource-
bounded adversaries, such as adversaries in NC1, under a worst-case hardness
assumption. Eventually, the work of [LLW19] is the most closely related to ours:
it shows constructions of fine-grained one-way functions and fine-grained encryp-
tion schemes from the average-case hardness of concrete problems, such as the
Zero-k-Clique problem.

Hardness in Pessiland. While building one-way functions from average-case
hardness has remained elusive, some works have investigated other useful forms
of hardness which could possibly reside in Pessiland. In particular, in [Wee06],
Wee shows that the existence of non-trivial succinct 2-round argument systems
for some languages in NP cannot be excluded from Pessiland in a black-box way.

Oracle Techniques. Besides new ideas, our oracle separation relies on several
established techniques. We use the two-oracle technique of [Sim98,HR04] where
one oracle implements the base primitive and the second oracle breaks construc-
tions built from this primitive. As we argue about the efficiency of the con-
structed one-way function, we use similar techniques to Gennaro and Trevisan
[GT00] who describe the emulation of a random oracle based on a bounded-
length string, implicitly applying a compression argument. We use Borel-Cantelli
to extract a single oracle from a distribution of random oracles as the semi-
nal work on black-box separations by Impagliazzo and Rudich [IR89]. In order
to make our oracle deterministic, we use the hashing trick of Valiant-Vazirani
[VV85] to obtain a unique value out of many pre-image for a one-way function.
In particular, we hash evaluation paths similar to Bogdanov and Brzuska [BB15]
who separate size-verifiable one-way functions from NP-hardness.

On the Relation to Two Recent Works. In a recent work [PV20], Pass and
Venkitasubramaniam show that TFNP (the class of total NP search problems)
is unconditionally hard in Pessiland. More precisely, they show the following: if
there exists average-case hard languages, then either there exists average-case
hard TFNP problems, or there exists one-way functions. We note that, since their
constructions are black-box, combining their result with our work further implies
the following result stating that proving that total search average-case hardness
suffices to construct fine-grained one-way functions is likely to be hard, since any
such black-box proof would unconditionally imply the existence of (full-fledged)
one-way functions:

Theorem 4 (this work + [PV20], informal). If there is a black-box con-
struction of N1+ε-hard one-way function, for an arbitrary constant ε > 0, from
average-case TFNP hardness, then one-way functions exist unconditionally.

In another recent work [PL20], Pass and Liu showed that mild average-case
hardness of computing time-bounded Kolmogorov complexity already suffices to

On Building FGOWFs from Strong AC Hardness 595

establish (in a black-box way) the existence of one-way functions. In particular,
we note that, combined with our results, this implies that even exponentially-
strong, self-amplifiable average-case hardness in NP does not imply (in a black-
box way) mild average-case hardness of time-bounded Kolmogorov complexity.

Theorem 5 (this work + [PL20], informal). There is no black-box reduc-
tion from the mild average-case hardness of computing time-bounded Kolmogorov
complexity to the existence of exponentially average-case hard languages whose
hardness amplifies at an exponential rate via parallel repetition.

2 Preliminaries

2.1 Notation, Computational Models and Oracles

For any n ∈ N, [n] denotes the set {1, · · · , n}. Throughout this paper, we repre-
sent algorithms as families of boolean circuits (one for each input length), and
use circuit size (i.e., the number of wires) as the main measure of efficiency.
We model oracle access by allowing circuits to have oracle gates. We measure
the size of such an oracle circuit as for a standard circuit, as the number of its
wires. Typically, if an oracle takes an n-bit entry as input and outputs an m-bit
response, this will be modeled by a fan-in-n fan-out-m oracle gate (hence this
gate will contribute n + m to the total circuit size).

As in the standard model for boolean circuits, the wires typically carry bit
values. For simplicity and readability, we will generally allow the wires to directly
carry other special symbols, such as ⊥ and err (converting a circuit in this model
to a “purely boolean” circuit only introduces some constant blowup which has
no impact on our asymptotic results). By default, even when we do not mention
it explicitly, we allow all (standard and oracle) gates to receive the symbol err
as one of their inputs. If a gate receives err as one of its inputs, it returns the
err on all of its output wires. We use pseudo-code as a description language and
only argue about the size of the corresponding circuit informally.

2.2 Fine-Grained One-Way Functions

We start by introducing the notion of a fine-grained one-way function (FG-OWF).
At a high level, an (ε, δ)-FG-OWF is a function f (modeled as a family {fm}m

of circuits, one for each input size) such that all circuits of size o(|f |1+δ) have
probability at most ε to find a preimage of f(x) for a random input x.

Definition 6 (Fine-Grained One-Way Function). Let ε : N
→ R
+ be a

positive function and δ > 0 be a constant. A function f : {0, 1}∗ → {0, 1}∗ is an
(ε, δ)-fine-grained one-way function if for all circuit families C = {Cm}m∈N and
all large enough m, if |Cm| < |fm|1+δ, then we have

Prz←${0,1}m

[
Cm(f(z), 1m) ∈ f−1(f(z))

]
≤ ε(m).

596 C. Brzuska and G. Couteau

One can also consider a slightly weaker notion, namely a fine-grained one-
way function distribution (FG-OWFD), were the hardness of inversion should
hold with respect to a randomly sampled function f from a distribution D.

Definition 7 (Fine-Grained One-Way Function Distribution). Let ε :
N
→ R

+ be a positive function and δ > 0 be a constant. A distribution D
over functions f : {0, 1}∗ → {0, 1}∗ is an (ε, δ)-fine-grained one-way function
distribution if for all circuit families C = {Cm}m∈N and all large enough m, if
|Cm| < |fm|1+δ for all f in the support of D, then it holds that

Prz←${0,1}m,f←$D

[
Cm(f, f(z), 1m) ∈ f−1(f(z))

]
≤ ε(m).

Any distribution over FG-OWFs induces a FG-OWFD, but the converse need
not hold in general.

2.3 Languages

The class NP contains all languages L of the form L = {x | ∃w, (|w| = poly(|x|))∧
(R(x,w) = 1)}, where R is a relation computable by a polysize uniform circuit.
This definition naturally extends to the case where an oracle O is available; in
this case, we say that the oracle language LO is in NPO if it is of the above form,
where R is computable by a uniform oracle circuit with |R| = poly(|x|). When
the oracle O is clear from the context, we will sometimes abuse this notation and
simply say that the oracle language LO is in NP. For a string x, we will denote
by L(x) the bit which is 1 if x ∈ L, and 0 otherwise. We will also extend this
definition to vectors of strings �x in a natural way.

Average-Case Hard Languages. We now define (exponentially) average-case
hard languages (EACHLs). Note that the exponential hardness in the following
definition refers to the success probability of the algorithm.

Definition 8 (Exponential Average-Case Hardness). A language L is
exponentially average-case hard if for any circuit family C = {Cn}n∈N and all
large enough n,

Prx←${0,1}n [Cn(x) = L(x)] ≤ 1
2

+
|Cn|
2n

.

Note that in the most common definition of EACHLs, one does usually not
consider an exact bound |Cn|, and instead define a language to be exponen-
tially hard if a polytime algorithm Cn finds L(x) with probability at most
1/2 + poly(n)/2n for a random word x ∈ {0, 1}n. However, since we will work
in the fine-grained setting, we settle for a stricter definition, with an explicit
relation between the running time of Cn and the probability of finding L(x).
Similarly as for FG-OWFs, we can also define a weaker notion of exponential
average-case hard language distributions (EACHLD):

On Building FGOWFs from Strong AC Hardness 597

Definition 9 (Exponential Average-Case Hard Language Distribu-
tion). A distribution D over languages L is exponentially average-case hard
if for any circuit family C = {Cn}n∈N and all large enough n,

Prx←${0,1}n,L←$D[Cn(x,L) = L(x)] ≤ 1
2

+
|Cn|
2n

.

Note that any distribution over EACHLs induces an EACHLD, but the con-
verse need not hold in general.

2.4 Pairwise Independent Hash-Functions

Definition 10. For all j, i ∈ N, we call a distribution Hj,i over functions h :
{0, 1}j
→ {0, 1}i+2 a distribution of pairwise independent hash-functions, if for
all p, p′ ∈ {0, 1}j with p �= p′, it holds that

Prh←$Hj,i+2

[
h(p) = 0i+2

]
= 2−i−2

Prh←$Hj,i+2

[
h(p′) = 0i+2

]
= 2−i−2

Prh←$Hj,i+2

[
h(p) = h(p′) = 0i+2

]
= 2−2i−4

The following fact is used, e.g., by Valiant and Vazirani in their randomized
reduction which solves SAT given a UniqueSAT oracle [VV85].

Claim 1. For all sets S ⊆ {0, 1}j such that 2i ≤ |S| ≤ 2i+1, it holds that

Prh←$Hj,i+2

[
∃!p ∈ S : h(p) = 0i+2

]
≥ 1

8
.

3 Technical Overview: FGOWFs from Block-Finding
Hardness

We first introduce the Random Language Model (RLM), which captures ideal-
ized average-case hard languages, in the same way that random oracles capture
idealized one-way functions.5 We will use this model as a heuristic tool to analyze
the new form of average-case hardness which we will introduce next. We note
that this model has limitations: it is a simplified model, and it is actually not
too hard to directly build a fine-grained OWF in this model (e.g. one can define
the function F which maps x to the list of language memberships of the words
x||1, x · · · , x||n′, for an appropriate choice of n′6). However, such simplified con-
structions do not correspond to any natural form of average-case hardness that
could be formulated on standard NP languages. Rather, our goal is only to use
5 More formally, since we consider an oracle sampled from a distribution over oracles,

as for the Random Oracle Model, this captures average-case hard language distribu-
tions. I.e., the hardness of a language is averaged over the choice of the instance and
the sampling of the oracle.

6 We thank an anonymous reviewer for pointing out this construction.

598 C. Brzuska and G. Couteau

the RLM as a heuristic rule of thumb to evaluate the plausibility of our new
average-case hardness notion.

We define a random language L as follows: for each integer n and each word
x ∈ {0, 1}n, sample a uniformly random bit B[x]. Then the elements of L are all
x with B[x] = 1. For notational convenience, we extend this notation to vectors:
given a vector �x of words, B(�x) denotes the vector of the bits B[xi]. For each
x ∈ {0, 1}n, we also sample a uniformly random witness W [x] ←$ {0, 1}n. To
check membership to the language, we introduce an oracle Chk defined as follows:
on input a pair (x,w), the oracle checks whether B[x] = 0 or w �= W [x]. If one
of these conditions hold, it outputs ⊥; otherwise, it outputs 1 (See Fig. 2). It is
relatively easy to see that to check membership of a candidate word x to L given
access to Chk, the best possible strategy is to query (x,w) for all possible values
w ∈ {0, 1}n, hoping to hit the uniformly random value W [x]. Hence, deciding
membership of a word x to L requires on the average 2n−1 queries to Chk, which
shows that L is (exponentially) average-case hard.

Distribution T
for n ∈ N :

for x ∈ {0, 1}n :

W [x] ←$ {0, 1}n

B[x] ←$ {0, 1}
return (W,B)

Chk[W,B](x,w)

if W [x] = w ∧ B[x] = 1

return 1

else return ⊥

Fig. 2. Distribution T for sampling a random lan-
guage LO = {x ∈ {0, 1}∗ | B[x] = 1} with associ-
ated list of witnesses W . The oracle O = Chk[W,B]
allows to check membership of a word x ∈ LO given
witness W [x].

We now define the notion
of block-finding hardness. We
will show that (1) block-finding
hardness holds for a random
language, and (2) if there is
a block-finding hard language,
then there is an explicit con-
struction of a FG-OWF f such
that every adversary running in
time N(n)2−ν for an arbitrarily
small constant ν has only a neg-
ligible probability of inverting f
(in n) – id est, there exists a
(negl(n), 1−ν)-FG-OWF, where
negl(n) denotes some negligible
function of n.

3.1 Block-Finding Hardness of L
Informally, we say that a language satisfies block-finding hardness if for any
adversary A and any large enough n, the following holds: The adversary A
is given N ≤ 2n/k many length-k vectors �xi of distinct words xi,j ∈ {0, 1}n

together with the string s = B[�xi] (the vector of language membership bits for
the words in �xi) for a uniformly random block index i ←$ [N]. If A finds the
block index i with probability significantly better than guessing, it must run
in time Ω̃(N · 2n) (in the RLM, this corresponds to making Ω̃(N · 2n) queries
to Chk). Intuitively, this means that (up to polylogarithmic factors) the best
strategy to find i is to find out the language membership bits of some of the
words in each of the blocks, by brute-forcing every possible witness for these

On Building FGOWFs from Strong AC Hardness 599

words, until one finds membership bits that are consistent with s. Slightly more
formally, we show the following:

Lemma 11 (Block-Finding Hardness of L – Informal Version). For any
adversary C, n ∈ N, block size k, and number of blocks N (with k · N ≤ 2n),
and any tuple of blocks (�xi)i≤N = (xi,1, · · · , xi,k)i≤N such that all the xi,j are
distinct:

Pri←$[N][Cn((�xj)j , B[�xi]) = i] ≤ 1
Õ(N)

·
(

|Cn|
2n

+ 1
)

· 2O(k).

In the RLM, the language L satisfies block-finding hardness essentially
because distinct words have truly independent witnesses and language member-
ship bits. More formally, the above lemma will follow from a strong and generic
concentration bound, the hitting lemma. We state and formally prove the hitting
lemma separately in Sect. 6, Lemma 19, since it turns out that this lemma pro-
vides a very convenient and versatile tool to bound the success probability of an
adversary which attempts to decide membership of words in an oracle language
(the hitting lemma will be needed on three different occasions in this paper). In
the context of proving the block-finding hardness of L, we will need a variant of
the hitting lemma of the following form:

Lemma 12 (Simplified Hitting Lemma with Advice – Informal Ver-
sion). For every integers n,N, k ∈ N with kN ≤ 2n, vector �y of kN words,
adversary A getting �y and B[�yi] for a random i (where �yi is a vector of k words),
and for every integer c ≥ 1,

Pr(W,B)←T

[
#Hit ≥ O(|A|)

2n
+ k + c

]
≤ 2−O(c),

where #Hit counts the number of witnesses found by A for distinct words of
length n among the entries of �y.

At the same time, conditioned on making less than M hits in different blocks,
it is straightforward to show that A can find i with probability M/N : intuitively,
this is because if i belongs to one of the N −M blocks where no hits were made,
then the indices of all these blocks are perfectly equiprobable conditioned on the
view of A. Applying Bayes rule to combine the above bounds, the probability
that A finds i is upper bounded by the probability that A finds i conditioned
on making less than M hits, plus the probability of making more than M hits.
Therefore, for any M , the probability that A finds i is upper bounded by

M

N
+ 2−O(M−|A|/2n−k).

From there, an appropriate choice of M (depending on |A|, N, and n) suffices to
conclude that A finds i with probability at most 1

Õ(N)
·
(

|Cn|
2n + 1

)
· 2O(k), which

concludes the proof.

600 C. Brzuska and G. Couteau

From Block-Finding Hardness to Fine-Grained One-Way Function. A
block-finding hard language immediately leads to a FG-OWF with a quadratic
hardness gap: the input to the function is a list of N = 2n/k blocks �x of distinct
words �xi together with an index i. Evaluating the function is done by brute-
forcing the languages membership bits of the words in �xi, which takes at most
k ·2n queries to Chk, and outputting (�x, s = B[�xi]). By the block finding hardness
of L, inverting the function on a random input, on the other hand, requires
Õ(N · 2n) = Õ(22n/k) queries to Chk to succeed with constant probability when
the index i is uniquely defined (i.e., there is a unique index i such that the block
�xi satisfies s = B[�xi]). This can be guaranteed to hold except with negligible
probability, by choosing k = ω(log n). Overall, this leads to a FG-OWF with
quadratic hardness gap (up to polylogarithmic factors), with some small but
non-negligible inversion probability ε. Parallel amplification can then be used to
make the inversion probability negligible, leading to the following corollary:

Corollary 13. For any ε > 0, there exists a (negl(m), 1 − ε)-fine-grained one-
way function distribution in the Random Language Model.

4 Overview: No FGOWFs from Average-Case Hardness

Next, we study the possibility of instantiating the above construction using an
average-case hard language, instead of a block-finding hard language. At first
sight, it is not clear that average-case hardness suffices, since our construction
crucially relies on the block-finding hardness of the language, a seemingly much
stronger property. Indeed, we show that there exists no construction of essentially
any non-trivial FG-OWF making a black-box use of an exponentially average-
case hard language. To do so, we exhibit an oracle distribution relative to which
there is an exponentially average-case hard language, but no FG-OWF, even with
arbitrarily small hardness gap. This proof is the only part of our paper that does
not require the hitting lemma.

Language Description. We start by introducing our language. Our oracle
defines a somewhat exotic language: for each integer k, we let all words x ∈
{0, 1}n such that k = �log n� have the same random witness w ←$ {0, 1}2k

, and
we put either all these words simultaneously inside or outside the language, by
picking the same random membership bit bk for all of them. Intuitively, this
provides an extreme example of a language which is still hard to decide (since
given a word x ∈ {0, 1}n, one must still enumerate over 22

�log n�
> 2n candidate

witnesses to find out whether x ∈ L), but whose hardness does not amplify at all
(since finding a witness for a single word x gives the witness for all words whose
bitlength is close to that of x). This aims at capturing the intuition that any
candidate FG-OWF built from an average-case hard language L must somehow
leverage some amplification properties of the hardness of L. Then, the oracle
Chk is similar as before: on input (x,w), it returns ⊥ if x /∈ L or w is not the
right witness for x, and 1 otherwise. We will show that any oracle adversary A

On Building FGOWFs from Strong AC Hardness 601

requires O(2n) queries to decide membership of a word x ∈ {0, 1}n to L. The
proof is relatively straightforward and relies on the fact that the membership of
x to L remains random conditioned on the view of A as long as A did not make
any hit, i.e., a query with the right witness for x.

Inexistence of FG-OWF Relative to Chk. Next, we show that for any constant
δ, there exists an oracle algorithm A such that for any candidate FG-OWF f , A
(given access to Chk) of size bounded by |f |1+δ which inverts f with probability
0.99. The adversary works as follows: for any integer k, it checks whether the
function will make “too many” queries of the form (x,w) with x of length n such
that k = �log n� (we call this a k-query), where “too many” is defined as (22

k

)ε

for a value ε = (1+δ/2)−1. Intuitively, making more than this number of queries
ensures that f will have a noticeable probability of making a hitting query. For
all such “heavy queries”, A makes all possible (22

k

) queries to Chk with respect
to some fixed word x, until he finds the witness. A also does the same for all
k-queries with k ≤ B(ε) for some bound B(ε) to be determined later, even when
they do not correspond to heavy query (this is to avoid some “border effects”
of small queries in the probability calculations). Note that this allows A to find
the witness for all words of length n such that k = �log n�, since they all share
the same witness. A defines the following oracle-less function f ′ that contains
all the hardcoded witnesses that A recovered. Now, on input x, f ′ runs exactly
as f and if f makes a k-query (x,w) for some k, then f ′ proceeds as follows:

– If k corresponds to a heavy query, then, using (22
k

) queries, A already com-
puted the witness for all k-queries and thus f ′ contains the hardcoded witness
to correctly answer the query.

– If k does not correspond to a heavy query, f ′ simulates the answer of the
oracle as ⊥.

We prove that with high probability (at least 0.999), the function f ′ agrees
with f on a random input x; this is because f ′ disagrees with f only if there
is a k-query with k > 10 where f makes less than (22

k

)ε queries, yet hits a
witness (for all other types of queries, A finds the witness by brute-force, hence
it can always simulate correctly the answer of the oracle). But this happens
only with probability 1 −

∑∞
k=B(ε)+1(2

2k

)ε · 2−2k

, which is bounded by 0.999
by picking a sufficiently large bound B(ε) such that (1 − ε)2B(ε) > B(ε). Then,
by a straightforward probability calculation, the probability that inverting f ′

(which A can easily do locally since f ′ is oracle-less) corresponds to successfully
inverting f on a random input x can be lower-bounded by 0.9992 > 0.99, which
concludes the proof.

5 Overview: No FG-OWF from Non-Amortizable
Hardness

Note that the techniques from our simpler oracle separation crucially exploit
that the hardness of the average-case hard language implemented by Chk does

602 C. Brzuska and G. Couteau

not amplify well (in fact, this is the reason why the hitting lemma is not needed
in the analysis). We are thus interested in understanding whether we can still
provide a black-box impossibility result even when the underlying average-case
hard language satisfies non-amortizable exponential hardness, or whether non-
amortizable average-case hard languages suffice to construct a fine-grained one-
way function.

We call a language L (exponentially) self-amplifiable average-case hard if for
any superlogarithmic (computable, total) function �(·), for any circuit family
C = {Cn : {0, 1}�(n)·n
→ {0, 1}n}n∈N of size at most 2O(n) · �(n), and for all large
enough n ∈ N,

Prx←${0,1}�·n [Cn(�x) = L(�x)] ≤ poly(n) · 2−
(

�(n)− Õ(|Cn|)
2O(n)

)
.

Informally, this means that to find the language membership bits of �(n)
challenge words, the best an adversary Cn can do (up to polylogarithmic factors
in |Cn| and constant factors in n) is to brute-force as many membership bits as
it can (roughly, Õ(|Cn|)/2n since brute-forcing a single membership bit requires
O(2n) queries), and guessing the �(n) − Õ(|Cn|)/2n missing membership bits at
random. Note that self-amplifiable average-case hardness is especially interesting
when the circuit Cn is allowed to run in time larger than 2n (for small circuits,
of size much smaller than 2n, the standard average-case hardness notion already
bounds their probability of guessing correctly a single entry of L(�x)). In this
range, the poly(n) factor in our definition is absorbed in the Õ(|Cn|) term in the
exponent (note also that adversaries of size larger than 2O(n) · �(n) can solve the
full challenge by brute-force).

Our main result rules out black-box reductions from any exponentially self-
amplifiable average-case hard language to fine-grained one-way functions, with
arbitrarily small hardness gap. Slightly more formally, we prove the following
theorem:

Theorem 14 (Informal). There exists an oracle O and an oracle language LO

such that for any fine-grained one-way function f , there exists an (inefficient)
adversary A that inverts f with probability close to 1 such that L remains expo-
nentially self-amplifiable average-case hard against any candidate reduction C
given oracle access to both O and A.

We prove Theorem 14 which is phrased in terms of reductions by establishing
Theorem 15 which is phrased in terms of oracle worlds.

Theorem 15 (Language Hardness and Good Inversion, Informal).
There exists an oracle O and an oracle Inv such that for all oracle functions
f , there exists an inverter A of size |A| = Õ(|f |) which, given oracle access
to (O, Inv) and input (f, y), outputs a preimage of y with respect to fO with
probability close to 1. Moreover, there exists an oracle language LO which is
exponentially self-amplifiable average case hard against any candidate reduction
C given oracle access to (O, Inv).

On Building FGOWFs from Strong AC Hardness 603

Theorem 15 is slightly different from our main theorem: the inverter A is now
required to be efficient, but gets the help of an additional oracle Inv. Furthermore,
the reduction C is now given oracle access to (O, Inv) instead of (O,A); the
implication follows from the fact that the code of A is linear in its input size,
and thus, its code can be hardcoded into the code of C, hence the reduction
CO,A in our main theorem can be emulated by a reduction CO,Inv

A in Theorem 15,
where |CA| ≈ |C|. To prove Theorem 15, we rely on a standard method in oracle
separations: we first prove a variant of Theorem15 with respect to a distribution
over oracles O, Inv (where both the success probability of the inverter and the
probability of breaking the self-amplifiable average-case hardness of L will be
over the random choice of O, Inv as well). Then, we apply the Borel-Cantelli
lemma to show that with measure 1 over the choice of the oracle, the oracle
is “good” and thus, in particular, a single good oracle exists as required by
Theorem 15. In summary, to prove Theorem 15 we prove two theorems relative
to an explicit distribution T over oracles O, Inv:

Theorem 16 (Language Hardness, Informal). For any � : N
→ N, circuit
family C = {Cn}n, and for all large enough n ∈ N,

Pr�x←${0,1}�·n,(O,Inv)←$T
[
CO,Inv

n (�x) = LO(�x)
]

≤ poly(n) · 2−
(

�(n)− Õ(|Cn|)
2O(n)

)
.

Theorem 17 (Efficient Inversion, Informal). Let f : {0, 1}∗ → {0, 1}∗

be an oracle function. There exists an efficient inverter AO,Inv(f, .) for f . More
precisely, A is of size |A| = Õ(|f |) and for sufficiently large m ∈ N, it holds
that

Prz←${0,1}m,(O,Inv)←$T
[
fO(AO,Inv(f, fO(z))) = fO(z)

]
≈ 1.

5.1 Defining the Oracle Distribution T
The distribution T samples a triple (W,B,H) where:

– B defines a random language L: for every x ∈ {0, 1}∗, B[x] is set to 0 or 1
with probability 1/2;

– W defines a set of random witnesses: for any n ∈ N and x ∈ {0, 1}n, W [x] is
set to a uniformly random bitstring wx of length n.

– H contains a pairwise independent hash-function for each triple (i, C, y),
where i ∈ N, C is an encoding of a circuit and y is a bitstring.

A sample (W,B,H) from T defines a pair of oracles (O, Inv), where the oracle
O = (Chk,Pspace) is defined as follows:

– Chk is a membership checking oracle: on input (x,w), it returns ⊥ if W [x] �=
w, and B[x] otherwise. Note that this means that relative to Chk, L is a
random language in NP∩ co-NP, since Chk allows to check both membership
and non-membership in L, given the appropriate witness. A hit is a query to
Chk which does not output ⊥. To emphasize the dependency of L on O, we
use the notation LO.

604 C. Brzuska and G. Couteau

– Pspace is a PSPACE oracle which allows the caller to efficiently perform
computations that do not involve calls to the oracles Chk, Inv.

We now turn our attention to the oracle Inv, which is the most involved com-
ponent: Inv must be defined such that there is an efficient oracle algorithm A
which can, given access to O, Inv, invert any candidate one-way function fO, yet
no algorithm (reduction) can break the self-amplifiable average-case hardness of
the language LO given access to O, Inv. Hence, the goal of Inv is, given an input
(f, y), to help compute preimages z of y with respect to the oracle function fO,
but with carefully chosen safeguards to guarantee that Inv cannot be abused to
decide the language LO. Our solution relies on two crucial safeguards, which we
describe below.

First Safeguard: Removing Heavy Paths. The oracle Inv refuses to invert
functions f on outputs y if the query-path from the preimage z to y in fO

is “too lucky” with respect to O. To understand this, consider the following
folklore construction of a worst-case one-way function f : on input (x,w), it
queries Chk(x,w) and outputs (x, 1) if the check succeeds, and (x, 0) otherwise.
Then, querying Inv on input (f, (x, 1)) allows the adversary to find the witness
w associated to x efficiently, since the function f makes only a single query and
thus the inversion query Inv(f, (x, 1)) has small cost for A.

But since fO is a normal (average-case) one-way function, we can allow the
oracle to not invert on a too lucky evaluation path, if we can show that it still
inverts sufficiently often. Concretely, on input (f, y), the oracle Inv computes
the set S of all paths from an input z to y = fO(z), defined as the sequence of
input-output pairs. Then, for all k ≤ |f |, Inv discards from this set S all k-heavy
paths, i.e., the paths along which the number of Chk hits on k-bit inputs is much
higher7 than expected, i.e., N(k)/2k−1, where N(k) is the number of Chk gates
with k-bit inputs in f .

If S is not empty, then Inv samples a uniformly random element from S and
returns the set of queries made on the path to the adversary. Since oracles need
to be deterministic, we derandomize the sampling via the use of the pairwise
independent hash-function stored in the third output H of T at H[log|S|, f, y]
by the Valiant-Vazirani [VV85] trick that ensures that with probability 1

8 , there
is only a unique value in S that hashes to 0log(|S|−1). Note that it suffices to
return the set of query-answer pairs, as the adversary can use the Pspace oracle
to find an input z that leads to y with this set of query-answer pairs produced
by fO. I.e., the Pspace uses the set to emulate the answers to queries made by
f and discards a candidate z as soon as it makes a query not in the set.

Let us return to the issue of k-lightness. Firstly, note that we need to check for
lightness for all values k, since the oracle Inv accepts functions that make queries
to Chk on different k-values, and the Inv-oracle does not “know” the length of
the xi-values for which C tries to decide membership. Secondly, we now need to
clarify that we consider the number of hits as too high above its expected value

7 Determining an appropriate bound on much higher is crucial to avoid that deciding
LO becomes too easy. We return to this issue shortly.

On Building FGOWFs from Strong AC Hardness 605

if there are more than O(N(k))/2k + log2(|f |) k-hits on the evaluation path. In
this case, if |f | = O(2k), then on input length k, the adversary could essentially
get the same number of hits without Inv queries by using a circuit of slightly
bigger size Õ(|f |) that only makes Chk queries. The point of the additive log2 |f |
term is to ensure (via a concentration bound) that on a uniformly random input
z, the probability that the path on z is light is at least 1 − 1

superpoly|f | (while at
the same time, the language hardness is maintained).

In turn, when |f | is smaller than, say, 2
k
6 , then the additive log2 |f | term turns

out to allow for too many hits. In this case, the probability of making even a single
hit is 2− 5(k−1)

6 and thus exponentially small in k whereas O(N(k))/2k + log2 |f |
might potentially allow for many hits. Thus, before performing all steps described
in the first saveguard, we first replace f by a shaved function fs, described below.

Second Safeguard: Shaving High Levels. We shave all Chk-gates of |f | that
are for large input length k, i.e., for all Chk-gates with input length k such that
|f | ≤ 2

k
6 . To do so, we replace f by a shaved function fs where the answers of

such Chk queries are hardcoded to be ⊥. The probability (over O and z) that
this changes the behaviour of f is equal to the probability of making a hit on
one of these high levels and thus 2− 5(k−1)

6 for the smallest k such that |f | ≤ 2
k
6 ,

i.e., k ≥ 6 log(|f |). Thus, 2− 5(k−1)
6 ≤ m−3, where m = |z|. Note that later, in

the Borel-Cantelli Lemma, we need to sum over these bad events, and thus, it
is important that the sum of m−3 over all m is a constant.

Putting Everything Together. Finally, with the above two safeguards, our
oracle Inv works as follows: on input (f, y), it first shaves f of its higher-level
Chk gates, computing fs ← shave(f). Then, it constructs the set S of all paths
from some input z to y = fO

s (z), where a path is defined to be the set of all
query pairs to O made during the evaluation of fs on z. Afterwards, it removes
from S all paths which are too heavy, where a path is called heavy if there is a
k such that it contains a number N(k) k-Chk queries, out of which more than
O(N(k))/2k + log2|f | are hits. Eventually, it returns a path from this set S of
light paths using the hashing trick to derandomize the sampling.

As we already outlined, the last output H of T is therefore a set which
contains, for every possible triple (i, f, y) where i is an integer, f is an oracle
function, and y is a bitstring, a hash function h = H[i, f, y]. The guarantee
offered by h is that for any set S′ of size 2i−1 ≤ |S′| ≤ 2i, the probability of the
random choice of h = H[i, f, y] that S′ contains exactly one entry s such that
h(s) = 0 is at least 1/8. Hence, after it computes the set S of light paths, Inv
compute the unique integer i such that 2i−1 ≤ |S| ≤ 2i, retrieves h ← H[i, f, y],
and output the unique path p ∈ S such that h(p) = 0, or ⊥ if there is no unique
such path. Note that this oracle Inv can fail to return a valid path from an
input z to the target output y in f for three reasons: because shaving caused
fs to differ from f on input z (we show that this is uniquely for a random z),
because the path from z to y is heavy (again, we show that this is unlikely), and
because there is not a unique p ∈ S such that h(p) = 0 (but with probability at
least 1/8, there will be a unique such p). This last source of failure can be later

606 C. Brzuska and G. Couteau

removed by a straightforward parallel amplification, by querying Inv on many
pairs (fk, y) where the fi are functionally equivalent variants of f (in which case
the corresponding hk = H[i, fk, y] are independently random by construction).
Note that we could have also hardcoded “true” randomness into Inv instead of
using the hashing trick. However, as we will see, the hashing trick enables a
compression argument since (a) the hash-functions are sampled independently
from W and B and (b) the sampling can be emulated when only knowing a
single element in the set as well as the size of the set S. Details follow in the
next section.

5.2 Proving Theorem 16

Fix a function � : N
→ N, a circuit family C, and an integer n ∈ N. We want
to bound the probability, over the choice of �x ←$ {0, 1}�(n)·n and (O, Inv) ←$ T ,
that CO,Inv

n (�x) = LO(�x). We proceed in two steps:

– First, we prove an emulation lemma which states that there is an explicit
algorithm EmuO which emulates CO,Inv

n without calling the oracle Inv, but using
instead some partial information g(W,B,H) about (W,B,H). By emulating,
we mean that EmuO(�x, g(W,B,H)) = CO,Inv

n (�x), and Emu makes the same
number of queries to O as Cn.

– Second, we use the hitting lemma, which we already mentioned in Sect. 3
(in the technical overview about the existence of FG-OWFs in the RLM), to
bound the number of hits on �x that Emu can possibly make (where a hit on
�x is a query of the form (xi,W [xi]) to Chk, from which Emu learns whether
xi ∈ LO).

The Emulation Lemma. Concretely, we give an explicit algorithm Emu such
that EmuO(L, �x, Cn) = CO,Inv

n (�x) and Emu makes the same queries to O as Cn,
where the leakage string L contains the following information:

– The sets H and (W�̄x, B�̄x) of all witnesses and membership bits except for those
corresponding to the entries of �x (intuitively, this corresponds to giving to Emu
all information about Inv which is sampled independently of the W [xi], B[xi]
and does not help with finding LO(�x)).

– The sets (WHit, BHit) which contains all Chk-hits on �x in paths obtained by
Cn through queries to Inv.

– The set WHit which contains all other (non-hitting) Chk-query pairs in paths
obtained by Cn through queries to Inv.

– A list I which for each query (f, y) of Cn to Inv indicates whether this query
returned ⊥ or not, and if it did not, the value i which was used to select the
hash function h = H[i, f, y].

The emulation proceeds by using its information: Emu runs Cn internally on
input �x, forwarding its queries to O. Each time Cn makes a query (f, y) to Inv,
Emu first retrieves from I the information whether Inv outputs ⊥ or not. If it
does not, Emu tries all possible inputs z to fO, but without actually querying O:

On Building FGOWFs from Strong AC Hardness 607

for each possible input z, Emu runs fO(z) by retrieving the answers of O from
the sets (W�̄x, B�̄x,WHit, BHit,WHit). If fO(z) makes a query whose answer is not
contained in these sets or if fO(z), Emu discards candidate z.

After trying all inputs to f , Emu has a set S′ of candidate inputs z, with
a corresponding path. Then, it retrieves the index i from I and selects h ←
H[i, f, y], and sets the output of Inv on (f, y) to be the unique path p associated
to some z ∈ S′ such that h(p) = 0; by construction, there will be a unique such
path. The correctness of the emulation follows by construction and by definition
of the sets (W�̄x, B�̄x,WHit, BHit,WHit) which Emu gets as input.

This emulation highlights the rationale behind the design of Inv: the use
of a hash function h to select the output guarantees that, on top of the
sets (W�̄x, B�̄x,WHit, BHit,WHit), Emu will only need to receive a relatively small
amount of additional “leakage”, corresponding to the list of all values i for each
query to Inv. Now, by definition, i is at most log |S|, where S is a set of paths
in f , hence |S| ≤ 2|f |. Therefore, i ≤ |f |, hence i can be represented using at
most log |f | bits. By construction, a query (f, y) to Inv can leak information
about �x only if |f | ≥ 2n/C , because otherwise all n-Chk gates gets removed by
shave(f). Hence, our emulator gets a total amount of leakage about �x bounded
by |Cn|/2O(n). From there, we want to prove that

Pr�x←${0,1}�·n,(O,Inv)←$T
[
CO,Inv

n (�x) = LO(�x)
]

≤ poly(n) · 2−
(

�(n)− Õ(|Cn|)
2O(n)

)
.

We will do so by proving that

Pr�x←${0,1}�·n,(O,Inv)←$T

[
EmuO(L, �x, Cn) = LO(�x)

]
≤ poly(n) · 2−

(
�(n)− Õ(|Cn|)

2O(n)

)
.

(1)

Bounding Eq. 1 is the goal of the hitting lemma.

Applying the Hitting Lemma. The hitting lemma states that for any circuit
Cn, any algorithm A having only access to the inputs and oracles of Cn’s emulator
(i.e., B has only access to the oracle O and L) cannot possibly make too many
hit, even though the emulator gets |Cn|/2O(n) bits of leakage about the oracle.
Let HitOB(L, �x, Cn) be the random variable that counts the number of hits on �x
made by A on input (L, �x, Cn).

Lemma 18 (Hitting Lemma with Advice, Informal). For every �(·), pos-
itive integers q, large enough n, challenge �x, L with |WHit| = q and list I rep-
resented by a string length |I| = |Cn|/2O(n), adversaries Cn,B, and for every
integer c ≥ 1,

Pr(W,B,H)←T |LĪ

[
HitOB(L, �x, Cn) ≥ O(|Cn|) + q

2n
+ c + |I|

]
≤ 1

2γ·c ,

where γ > 1, and where the probability is taken over the random sampling of
(W,B,H) ←$ T , conditioned on L.

608 C. Brzuska and G. Couteau

We first explain how the hitting lemma implies Eq. 1. First, if EmuO got a
total number of hits t on �x, either through queries to O or through the hits
contained in WHit, then conditioned on all observation seen by Emu, �(n)− t bits
of LO(�x) are truly undetermined. Hence,

Pr�x←${0,1}�·n,(O,Inv)←$T

[
EmuO(LĪ , �x, Cn) = LO(�x)

∣
∣Emu gets ≤ t hits on �x

]
≤ 2−(�−t).

Now, the number of hits seen by Emu is bounded by HitOEmu(LĪ , �x, Cn)+|WHit|,
where |WHit| is at most poly(n)· Õ(|Cn|)

2n : this follows from the fact that the number
of hits in WHit is bounded by design by the fact that Inv on input (f, y) only
returns light paths, which cannot contain more than poly(n) · Õ(|f |)

2n hits. The
result follows by relying on the fact that

Pr�x←${0,1}�·n,(O,Inv)←$T

[
EmuO(LĪ , �x, Cn) = LO(�x)

]

=
∑

t

Pr[Emu gets ≤ t hits on �x] · Pr
[
EmuO(LĪ , �x, Cn) = LO(�x) |Emu gets t hits

]

≤
∑

t

2−(�−t) · Pr[Emu gets ≤ t hits on �x].

Now, the bound of Eq. 1 will be obtained by plugging the bound on

Pr[Emu gets ≤ t hits on �x] ≤ HitOEmu(L, �x, Cn) + |WHit|,

by using the hitting lemma to bound HitOEmu(L, �x, Cn). The proof then follows
from the hitting lemma, to which we devote Sect. 6.

5.3 Proving Theorem 17

Let f : {0, 1}∗ → {0, 1}∗ be an oracle function. We exhibit an efficient inverter
AInv(f, .) for f , such that

Prz←${0,1}m,(O,Inv)←$T
[
fO(AO,Inv(f, fO(z))) = fO(z)

]
≈ 1.

A works as follows: to invert a function f : {0, 1}m
→ {0, 1}∗ given an image y, it
queries Inv log3 m times on independent inputs (fk, y), where each fk are syntac-
tically different but functionally equivalent to f (this guarantees that the failure
probabilities introduced by the choice of the hash function h are independent).
Then, it takes a path p returned by any successful query to Inv (if any), and
returns a uniformly random preimage z consistent with this path (this requires
a single query to the PSPACE oracle). The proof that A is a successful inverter
proceeds by a sequence of lemmas. First, we define fapprox as fs = shave(f),
except that it outputs ⊥ on any input z such that the path in fO

s (z) is not light.

First Lemma. The first lemma states that

PrO,z←${0,1}m

[
fO
approx(z) = fO

s (z)
]

≈ 1.

On Building FGOWFs from Strong AC Hardness 609

This lemma will follow again from the Hitting lemma, which provides a strong
concentration bound on the probability that the path of fO

s (z) is light: by this
concentration bound, it follows that the path is light with probability at least
1 − log |f | · 2−O(log2 |f |) (recall that a path is heavy if, for some k, it contains
N(k) k-Chk queries, and more than O(N(k)) + log2 |f | hits).

Second Lemma. The second lemma states that

PrO,z←${0,1}m

[
fO

s (z) = fO(z)
]

≈ 1.

This lemma follows from the definition of shaving: since only Chk gates with
k ≥ 6 log |f | are shaved, the probability that fO

s (z) �= fO(z) is bounded by the
sum

∑
k≥6 log(|f |) 2− 5k

6 ≤ 4/m3. Combining the above lemmas with an averaging
argument, we will show that

Prz←${0,1}m

[
f(f−1

approx(f(z), 1m)) = f(z)
]

≈ 1.

When A makes a single query to Inv, its overall success probability is approxi-
mately 1/8. Since all queries have independent probability of failing due to an
unfortunate choice of h, we will show that A inverts successfully with probability

Prz←${0,1}m,(O,Inv)←$T
[
fO(AO,Inv(f, fO(x))) = fO(x)

]
≈ 1 −

(
7
8

)log3 m

.

Note that A, on input f , sends log3 m ≤ log3 |f | queries to Inv, selects one of the
path from the successful queries, and queries it to the PSPACE oracle to select
the preimage z it outputs. Therefore, the size of A is |A| = Õ(|f |).

6 The Hitting Lemma

For any �r = r1 · · · r�, we define an oracle Guess�r(i, r∗) as taking an input r∗

and an index i and checking whether ri = r∗. If so, the oracle returns 1. Else,
the oracle returns ⊥. We define HitGuess�r (A) as the number of distinct queries A
makes which returns something different than ⊥.

Lemma 19 (Abstract Hitting Lemma). For every positive integer q, large
enough n, � = �(n), sets V1, · · · , V� of size 1 ≤ |Vi| ≤ 2n such that q = � · 2n −∑�

i=1|Vi|, for every adversary A, and for every integer c ≥ 1, ∃α > 0, ∃γ > 1:

Pr�r←$V1×···×V�

[
HitGuess�r (A) ≥ 16 · qryA + q

2n
+ c

]
≤ α

2γc
.

The hitting lemma gives a strong Chernoff-style bound on the number of distinct
hits which an arbitrary adversary A can make using qryA queries. The strength
of this bound allows to show that the bound degrades gracefully even if A is
additionally given an arbitrary advice string of bounded size about the truth
table of the Guess oracle. We discuss applications and variants of the Hitting
Lemma in the full version of this work [BC20], and now turn to its proof.

610 C. Brzuska and G. Couteau

6.1 Proof of the Hitting Lemma – Proof Structure

Fig. 3. Q-query adversary BQ

The goal of A is to find as
many distinct ri’s as possible,
where each ri is sampled ran-
domly from a set Vi of size
|Vi| ≤ 2n, given access to an
oracle which indicates whether
a guess is correct or not. Intu-
itively, A’s best possible strat-
egy is to first choose the small-
est set Vi1 , query its elements to
Guess (in arbitrary order) until
it finds ri1 , then move on to the
second smallest set Vi2 , and so
on. The proof of the abstract hitting lemma closely follows this intuition: we
first show that this strategy is indeed the best possible strategy, then bound it’s
success probability using a second moment concentration bound. Formally, for
any Q ≥ 1, let BQ be a Q-query adversary that implements the following simple
strategy: order V1, · · · , V� by increasing size, as Vσ(1), · · · , Vσ(�) for some fixed
permutation σ such that |Vσ(1)| ≤ · · · ≤ |Vσ(�)|. For every i ≤ �, let vi ← |Vσ(i)|,
and let fi be an arbitrary bijection between [vi] and Vσ(i). The algorithm BQ is
given on Fig. 3.

The adversary BQ sequentially queries the values of the sets Vi ordered by
increasing size, following an arbitrary ordering of the values inside each Vi, until
it finds ri (after which it moves to the next smallest larger set) or exhausts its
budget of Q queries. To simplify notations, for any vector �u ∈ [v1] × · · · × [v�],
we write π(�u) = f−1

1 (uσ−1(1)), · · · , f−1
� (uσ−1(�)). Observe that for any t ∈ N,

Pr�r←$V1×···×V�

[
HitGuess�r (BQ) ≥ t

]
= Pr�u←$[v1]×···×[v�]

[
HitGuessπ(�u)(BQ) ≥ t

]

= Pr�u←$[v1]×···×[v�]

[
t∑

i=1

ui ≤ Q

]

,

where the last equality follows from the fact that BQ queries the positions one
by one in a fixed order, and needs exactly ui queries to find rσ(i) = fσ(i)(ui)
for i = 1 to t. The proof of the hitting lemma derives directly from two claims.
The first claim states that no Q-query adversary can make t distinct hits with
probably better than that of BQ:

Claim 2 (BQ’s strategy is the best possible strategy). For every integers
n,Q, � = �(n), sets V1, .., V� of size 1 ≤ |Vi| ≤ 2n, and for any Q-query algorithm
A and integer t,

Pr�r←$V1×···×V�

[
HitGuess�r (A) ≥ t

]
≤ Pr�u←$[v1]×···×[v�]

[
t∑

i=1

ui ≤ Q

]

.

On Building FGOWFs from Strong AC Hardness 611

By construction, the average number of hits E�r[HitGuess�r (BQ)] made by BQ is the
largest value m such that

∑m
i=1

vi+1
2 ≤ Q. Recall that q = � · 2n −

∑�
i=1|Vi| =

�·2n−
∑�

i=1 vi and vi ≤ 2n for every i, which implies in particular that
∑m

i=1 vi ≥
m · 2n − q. We thus bound m as a function of Q, q, and 2n:

m∑

i=1

vi + 1
2

≤ Q ⇐⇒ m +
m∑

i=1

vi ≤ 2Q

=⇒ m + m · 2n − q ≤ 2Q ⇐⇒ m ≤ 2Q + q

2n + 1
.

The second claim states, in essence, that the probability over �r that BQ does t
hits decreases exponentially with the distance of t to the mean m (up to some
multiplicative constant).

Claim 3 (Bounding BQ’s number of hits). There exists constants α > 0
and γ > 1 such that for every �(·), positive integers q,Q, large enough n, integers
v1, · · · , v� with 1 ≤ vi ≤ 2n such that q = � · 2n −

∑�
i=1 vi, and for every integer

c ≥ 1,

Pr�u←$[v1]×···×[v�]

[
t∑

i=1

ui ≤ Q

]

≤ α

2γc
,where t =

16 · Q + q

2n
+ c.

We prove Claim 2 and Claim 3 in the full version of this work [BC20].

Acknowledgements. We thank Félix Richart for help with the experimental verifi-
cation of some probability claims, and the anonymous Eurocrypt reviewers for their
careful proofreading of the paper. C. Brzuska supported by the academy of Finland.
G. Couteau supported by the ANR SCENE.

References

[AGGM06] Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-
way functions on NP-hardness. In: 38th ACM STOC, pp. 701–710. ACM
Press, May 2006

[BB15] Bogdanov, A., Brzuska, C.: On basing size-verifiable one-way functions on
NP-hardness. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS,
vol. 9014, pp. 1–6. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46494-6 1

[BBF13] Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions,
revisited. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS,
vol. 8269, pp. 296–315. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42033-7 16

[BC20] Brzuska, C., Couteau, G.: Towards fine-grained one-way functions
from strong average-case hardness. Cryptology ePrint Archive, Report
2020/1326 (2020). https://eprint.iacr.org/2020/1326

[BGI08] Biham, E., Goren, Y.J., Ishai, Y.: Basing weak public-key cryptography
on strong one-way functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 55–72. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78524-8 4

https://doi.org/10.1007/978-3-662-46494-6_1
https://doi.org/10.1007/978-3-662-46494-6_1
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-42033-7_16
https://eprint.iacr.org/2020/1326
https://doi.org/10.1007/978-3-540-78524-8_4
https://doi.org/10.1007/978-3-540-78524-8_4

612 C. Brzuska and G. Couteau

[BHK+11] Brassard, G., Høyer, P., Kalach, K., Kaplan, M., Laplante, S., Salvail, L.:
Merkle puzzles in a quantum world. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 391–410. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22792-9 22

[BM09] Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal—an
O(n2)-query attack on any key exchange from a random oracle. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-03356-8 22

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

[BRSV17] Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Average-case fine-grained
hardness. In: 49th ACM STOC, pp. 483–496. ACM Press, June 2017

[BRSV18] Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-
case assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part I. LNCS, vol. 10991, pp. 789–819. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 26

[BS08] Brassard, G., Salvail, L.: Quantum Merkle puzzles. In: Second Interna-
tional Conference on Quantum, Nano and Micro Technologies (ICQNM
2008), pp. 76–79. IEEE (2008)

[BT03] Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for
NP problems. In: 44th FOCS, pp. 308–317. IEEE Computer Society Press,
October 2003

[CDGS18] Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Random oracles and non-
uniformity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part
I. LNCS, vol. 10820, pp. 227–258. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78381-9 9

[DGK17] Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random ora-
cles with auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 473–495. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 16

[DVV16] Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N.: Fine-grained cryptog-
raphy. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS,
vol. 9816, pp. 533–562. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53015-3 19

[FF93] Feigenbaum, J., Fortnow, L.: Random-self-reducibility of complete sets.
SIAM J. Comput. 22(5), 994–1005 (1993)

[GT00] Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic crypto-
graphic constructions. In: 41st FOCS, pp. 305–313. IEEE Computer Soci-
ety Press, November 2000

[Hel80] Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf.
Theory 26(4), 401–406 (1980)

[HL18] Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way
functions (or: one-way product functions and their applications). In: 59th
FOCS, pp. 850–858. IEEE Computer Society Press, October 2018

[HR04] Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure
hash functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28628-8 6

https://doi.org/10.1007/978-3-642-22792-9_22
https://doi.org/10.1007/978-3-642-22792-9_22
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-540-28628-8_6

On Building FGOWFs from Strong AC Hardness 613

[Imp95] Impagliazzo, R.: A personal view of average-case complexity. In: Proceed-
ings of Structure in Complexity Theory. Tenth Annual IEEE Conference,
pp. 134–147. IEEE (1995)

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989

[IR90] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol.
403, pp. 8–26. Springer, New York (1990). https://doi.org/10.1007/0-387-
34799-2 2

[Lev86] Levin, L.A.: Average case complete problems. SIAM J. Comput. 15(1),
285–286 (1986)

[Lev87] Levin, L.A.: One way functions and pseudorandom generators. Combina-
torica 7(4), 357–363 (1987)

[LLW19] LaVigne, R., Lincoln, A., Williams, V.V.: Public-key cryptography in the
fine-grained setting. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019, Part III. LNCS, vol. 11694, pp. 605–635. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 20

[Mer78] Merkle, R.C.: Secure communications over insecure channels. Commun.
ACM 21(4), 294–299 (1978)

[PL20] Pass, R., Liu, Y.: On one-way functions and Kolmogorov complexity. In:
FOCS 2020 (2020)

[PV20] Pass, R., Venkitasubramaniam, M.: Is it easier to prove statements that
are guaranteed to be true? In: FOCS 2020 (2020)

[RTV04] Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between
cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951,
pp. 1–20. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24638-1 1

[Sim98] Simon, D.R.: Finding collisions on a one-way street: can secure hash func-
tions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054137

[STV01] Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without
the XOR lemma. J. Comput. Syst. Sci. 62(2), 236–266 (2001)

[Sud97] Sudan, M.: Decoding of Reed Solomon codes beyond the error-correction
bound. J. Complex. 13(1), 180–193 (1997)

[Unr07] Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 12

[VV85] Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions.
In: 17th ACM STOC, pp. 458–463. ACM Press, May 1985

[WB86] Welch, L.R., Berlekamp, E.R.: Error correction for algebraic block codes
(1986). US Patent 4,633,470

[Wee06] Wee, H.: Finding Pessiland. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 429–442. Springer, Heidelberg (2006). https://doi.
org/10.1007/11681878 22

[Yao82] Yao, A.C.-C.: Theory and applications of trapdoor functions (extended
abstract). In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press,
November 1982

https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-030-26954-8_20
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/11681878_22
https://doi.org/10.1007/11681878_22

On the Multi-user Security of Short
Schnorr Signatures with Preprocessing

Jeremiah Blocki(B) and Seunghoon Lee(B)

Purdue University, West Lafayette, IN 47906, USA
{jblocki,lee2856}@purdue.edu

Abstract. The Schnorr signature scheme is an efficient digital signature
scheme with short signature lengths, i.e., 4k-bit signatures for k bits of
security. A Schnorr signature σ over a group of size p ≈ 22k consists of
a tuple (s, e), where e ∈ {0, 1}2k is a hash output and s ∈ Zp must be
computed using the secret key. While the hash output e requires 2k bits
to encode, Schnorr proposed that it might be possible to truncate the
hash value without adversely impacting security.

In this paper, we prove that short Schnorr signatures of length 3k
bits provide k bits of multi-user security in the (Shoup’s) generic group
model and the programmable random oracle model. We further analyze
the multi-user security of key-prefixed short Schnorr signatures against
preprocessing attacks, showing that it is possible to obtain secure signa-
tures of length 3k + log S + log N bits. Here, N denotes the number of
users and S denotes the size of the hint generated by our preprocessing
attacker, e.g., if S = 2k/2, then we would obtain secure 3.75k-bit signa-
tures for groups of up to N ≤ 2k/4 users.

Our techniques easily generalize to several other Fiat-Shamir-based
signature schemes, allowing us to establish analogous results for Chaum-
Pedersen signatures and Katz-Wang signatures. As a building block, we
also analyze the 1-out-of-N discrete-log problem in the generic group
model, with and without preprocessing.

1 Introduction

The Schnorr signature scheme [Sch90] has been widely used due to its simplicity,
efficiency and short signature size. In the Schnorr signature scheme, we start with
a cyclic group G = 〈g〉 of prime order p and pick a random secret key sk ∈ Zp.
To sign a message m, we pick r ∈ Zp uniformly at random, compute I = gr,
e = H(I‖m), and s = r + sk · e mod p. Then, the final signature is σ = (s, e).

We recall that a signature scheme Π yields k bits of (multi-user) security if
any attacker running in time at most t can forge a signature with probability
at most εt = t/2k in the (multi-user) signature forgery game, and this should
hold for all time bounds t ≤ 2k. To achieve k bits of security, we select a hash
function H with 2k-bit outputs, and we select p to be a random 2k-bit prime so
that the length of a signature is 4k bits.

In Schnorr’s original paper [Sch90], the author proposed the possibility of
achieving even shorter Schnorr signatures by selecting a hash function H with
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 614–643, 2022.
https://doi.org/10.1007/978-3-031-07085-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_21&domain=pdf
http://orcid.org/0000-0002-5542-4674
http://orcid.org/0000-0003-4475-5686
https://doi.org/10.1007/978-3-031-07085-3_21

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 615

k-bit outputs (or truncating to only use the first k bits) so that the final signature
σ = (s, e) can be encoded with 3k bits. We refer to this signature scheme as
the short Schnorr signature scheme. In this paper, we investigate the following
questions:

Does the short Schnorr signature scheme achieve k bits of (multi-user)
security? If so, is the short Schnorr signature scheme also secure against
preprocessing attacks?

Proving security for the Schnorr signatures has been a challenging task against
the interactive attacks. Pointcheval and Stern [PS96] provided a reduction from
the discrete-log problem in the random oracle model (ROM) [BR93]. However,
their reduction is not tight, i.e., they show that Advsig ≤ Advdlog × qH for any
attacker making at most qH queries to the random oracle. The loss of the factor
qH, which prevents us from concluding that the scheme provides k bits of security,
seems to be unavoidable, e.g., see [Seu12,FJS14].

Neven et al. [NSW09] analyzed Schnorr signatures in the generic group model
(GGM) [Sho97], showing that the scheme provides k bits of security as long as
the hash function satisfies two key properties: random-prefix preimage (rpp) and
random-prefix second-preimage (rpsp) security. Interestingly, Neven et al. do not
need to assume that H is a random oracle, though a random oracle H would
satisfy both rpp and rpsp security. Neven et al. considered the short Schnorr
signature scheme, but their upper bounds do not allow us to conclude that the
short Schnorr signature scheme provides k bits of security . See the full version
[BL19] for further discussion.

An earlier paper of Schnorr and Jakobsson [SJ00] analyzed the security of
the short Schnorr signature scheme in the ROM plus the GGM. While they show
that the scheme provides k bits of security, they also consider another version of
the GGM which is different from the definition proposed by Shoup [Sho97]. The
reason is that the version they consider is not expressive enough to capture all
known attacks, e.g., any attack that requires the ability to hash group elements
including preprocessing attacks of Corrigan-Gibbs and Kogan [CK18] cannot be
captured in their GGM. See the full version [BL19] for further discussion.

Galbraith et al. [GMLS02] claimed to have a tight reduction showing that
single-user security implies multi-user security of the regular Schnorr signature
scheme. However, Bernstein [Ber15] identified an error in the security proof in
[GMLS02], proposed a modified “key-prefixed” version of the original Schnorr
signature scheme (including the public key as a hash input), and proved that
the “key-prefixed” version does provide multi-user security. Derler and Slamanig
[DS19] later showed a tight reduction from single-user security to “key-prefixed”
multi-user security for a class of key-homomorphic signature schemes includ-
ing Schnorr signatures. The Internet Engineering Task Force (IETF) adopted
the key-prefixed modification of Schnorr signatures to ensure multi-user security
[Hao17]. Kiltz et al. [KMP16] later gave a tight security reduction establishing
multi-user security of regular Schnorr signatures in the programmable random
oracle model plus (another version of) the generic group model without key-

616 J. Blocki and S. Lee

prefixing. Our results imply that key-prefixing is not even necessary to estab-
lish tight multi-user security of short Schnorr signatures1. On the other hand
key-prefixing is both necessary and sufficient to establish multi-user security of
(short) Schnorr signatures against preprocessing attackers.

1.1 Our Contributions

We show that the short Schnorr Signature scheme provides k bits of security
against an attacker in both the single and multi-user versions of the signature
forgery game. Our results assume the programmable ROM and the (Shoup’s)
GGM. We further analyze the multi-user security of key-prefixed short Schnorr
signatures against preprocessing attacks. The preprocessing attacker outputs a
hint of size S after making as many as 23k queries to the random oracle and
examining the entire generic group oracle. Later on, the online attacker can use
the hint to help win the multi-user signature forgery game by forging a signature
for any one of the N users. By tuning the parameters of the key-prefixed short
Schnorr signature scheme appropriately, we can obtain (3k + log S + log N)-bit
signatures with k bits of security against a preprocessing attacker.

Single-User Security of Short Schnorr Signatures. As a warm-up, we first con-
sider the single-user security of the short Schnorr Signature scheme without
preprocessing, showing that short Schnorr signatures provide k bits of security
in the (Shoup’s) generic group model and the random oracle model.

Theorem 1 (informal). Any attacker making at most q queries wins the sig-
nature forgery game (chosen message attack) against the short Schnorr signature
scheme with probability at most O

(
q/2k

)
in the generic group model (of order

p ≈ 22k) plus programmable random oracle model (See Definition 1 and Theorem
4).

Theorem 1 tells us that the short Schnorr signature obtained by truncating
the hash output by half would yield the same k bits of security level with the
signature length 3k, instead of 4k. A 25% reduction in signature length is par-
ticularly significant in contexts where space/bandwidth is limited, e.g., on the
blockchain.

Multi-User Security of Short Schnorr Signatures. We show that our proofs can
be extended to the multi-user case even in the so-called “1-out-of-N” setting,
i.e., if the attacker is given N public keys pk1, . . . , pkN , s/he can forge a signature
σ which is valid under any one of these public keys (it does not matter which).

1 The authors of [KMP16] pointed out that their analysis can be adapted to demon-
strate multi-user security of short Schnorr signatures (private communication)
though the paper itself never discusses short Schnorr signatures. Furthermore, their
proof is in a different version of the generic group model which is not suitable for
analyzing preprocessing attacks. See discussion in the full version [BL19].

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 617

Theorem 2 (informal). Let N denote the number of distinct users/public
keys. Then any attacker making at most q queries wins the multi-user signa-
ture forgery game (chosen message attack) against the short Schnorr signature
scheme with probability at most O

(
(q + N)/2k

)
in the generic group model (of

order p ≈ 22k) plus programmable random oracle model (See Definition 2 and
Theorem 6).

Theorem 2 guarantees that breaking multi-user security of short Schnorr
signatures in the 1-out-of-N setting is not easier than breaking a single instance,
as the winning probability is still in the same order as long as N ≤ q, which
is the typical case. A näıve reduction loses a factor of N , i.e., any attacker
winning the multi-user forgery game with probability εMU can be used to win
the single-user forgery game with probability ε ≥ εMU/N . For example, suppose
that p ≈ 2224 (i.e., k = 112), and there are N = 232 instances of short Schnorr
signatures, which is more than the half of the entire world population. In the
original single-user security game, an attacker wins with probability at most ε ≤
O

(
t/2k

)
, so an attacker running in time t = 280 would succeed with probability

at most ε ≈ 2−32. This only allows us to conclude that an attacker succeeds with
probability at most εMU ≤ Nε ≈ 1 in the multi-user security game! Our security
proof implies that the attacker will succeed with probability εMU ≈ ε ≈ 2−32

in the above example. In particular, we don’t lose a factor of N in the security
reduction.

Security of Key-Prefixed Short Schnorr Signatures Against Preprocessing
Attacks. We further show that key-prefixed short Schnorr signatures are also
secure against preprocessing attacks. Here, we consider a key-prefixed version of
Schnorr signatures, because regular Schnorr signatures are trivially vulnerable
to preprocessing attacks, e.g., if a preprocessing attacker finds some message m
and an integer r such that e = H(gr‖m) = 0, then σ = (r, 0) is always a valid
signature for any public key pk = gsk since gr−sk·0 = gr. We note that several
standardized implementations of Schnorr signatures (i.e., BSI [fIS18] or ISO/IEC
[fSC18]) slightly deviate from Schnorr’s original construction and explicitly dis-
allowing e = 0 signatures which defends against our particular preprocessing
attack – see the full version [BL19] for further discussion if interested.

We consider a preprocessing attacker who may query the random oracle at
up to 23k points and may also examine the entire generic group oracles before
outputting an S-bit hint for the online attacker. We leave it as an interesting open
question whether or not the restriction on the number of random oracle queries is
necessary. However, from a practical standpoint, we argue that a preprocessing
adversary will never be able to make 22k queries, e.g., if k ≥ 128, then 22k

operations is already far too expensive for even a nation-state attacker.

Theorem 3 (informal). Let N denote the number of distinct users/public
keys. Then any preprocessing attacker making at most qpre queries and outputs
an S-bit hint during the preprocessing phase and making at most qon queries
during the online phase wins the multi-user signature forgery game (chosen mes-
sage attack) against the short Schnorr signature scheme with probability at most

618 J. Blocki and S. Lee

Õ
(
SN(qon + N)2/p + qon/2k + Nqpreqon/p2

)
in the generic group model of order

p > 22k plus programmable random oracle model (see Theorem 8).

Theorem 3 tells us that with suitable parameter setting, key-prefixed short
Schnorr signatures also achieve k bits of multi-user security even against pre-
processing attacks. In particular, by setting p ≈ 22kSN and maintaining k-bit
hash outputs, the short Schnorr signature scheme still maintains k bits of multi-
user security against our preprocessing attacker. For example, if S = 2k/2 and
N = 2k/4, then setting p ≈ 22.75k yields signatures of length k+log p = 3.75k. Up
to a factor N , the results from Theorem 3 are tight as a preprocessing attacker
can succeed with probability at least Sq2on/p.

Other Fiat-Shamir Signatures. Using similar reductions, we establish similar
security bounds for the full-domain hash variant of (key-prefixed) Chaum-
Pedersen signatures [CP93] and for Katz-Wang signatures [KW03] with trun-
cated hash outputs. In particular, a preprocessing attacker wins the multi-user
signature forgery game with probability at most O

(
SNq2/p + q/2k

)
– see The-

orem 10 and Theorem 12 in Sect. 6. Short Katz-Wang signatures [KW03] have
the same length as short Schnorr signatures with equivalent security guarantees,
while Chaum-Pedersen signatures are a bit longer.

1.2 Our Techniques

The Multi-User Bridge-Finding Game. We introduce an intermediate problem
called the 1-out-of-N bridge-finding game. Oversimplifying a bit, in a cyclic group
G = 〈g〉, the attacker is given N inputs gx1 , . . . , gxN , and the goal of the attacker
is to produce a non-trivial linear dependence, i.e., a1, . . . , aN and b such that
a1x1 + . . . + aNxN = b, and ai 	= 0 for at least one i ≤ N . We then show that
in the generic group model, an attacker making at most q generic group queries
can succeed with probability at most O

(
q2/p + qN/p

)
, where p ≈ 22k is the size

of the group.
We also show that a preprocessing attacker wins the 1-out-of-N bridge-

finding game with probability at most O
(
SNq2 log p/p

)
when given an arbi-

trary S-bit hint fixed a priori before x1, . . . , xN are chosen. Our proof adapts
a compression argument of [CK18] which was used to analyze the security of
the regular discrete logarithm problem. In particular, if the probability that our
preprocessing attacker wins is ω

(
SNq2 log p/p

)
, then we could derive a contra-

diction by compressing our random injective map τ , mapping group elements to
binary strings.

An interesting corollary of these results is that the 1-out-of-N discrete-log
problem is hard even for a preprocessing attacker. Intuitively, if a discrete-log
attacker can successfully compute xi for any i ≤ N , then s/he can also win the
1-out-of-N bridge-finding game.

Restricted Discrete-Log Oracle. In fact, we consider a stronger attacker A who
may query the usual generic group oracle, and is additionally given access to

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 619

a restricted discrete-log oracle DLog. The oracle DLog will solve the discrete-
log problem but only for “fresh” inputs, i.e., given N inputs gx1 , . . . , gxN , if
h = ga1x1+...+aN xN for known values of a1, . . . , aN , then this input would not be
considered fresh.

We remark that by restricting the discrete-log oracle to fresh queries, we
can rule out the trivial attack where the attacker simply queries DLog(gxi) for
any 1 ≤ i ≤ N . The restriction also rules out other trivial attacks, where the
attacker simply queries DLog(gxi+r) after computing gxi+r for some i ≤ N and
some known value r.

Security Reduction. We then give a reduction showing that any attacker Asig

that breaks multi-user security of short Schnorr signatures can be used to win
the 1-out-of-N bridge-finding game. In the reduction, we interpret the bridge
inputs gx1 , . . . , gxN as public signing keys, and we simulate the attacker Asig. The
reduction uses the restricted discrete log oracle to ensure that any group element
that is submitted as an input to the random oracle has the form gb+a1x1+...aN xN

for values a1, . . . , aN , and b that are known to the bridge attacker. The reduction
also makes use of a programmable random oracle to forge signatures whenever
Asig queries the signing oracle for a particular user i ≤ N .

One challenge with carrying out this reduction in the preprocessing setting is
that we need to ensure that the hint does not allow the attacker to detect when
the random oracle has been programmed. We rely on the observation that the
reduction programs the random oracle at random inputs which are unknown to
the preprocessing a priori.

A similar reduction allows us to establish multi-user security of other Fiat-
Shamir-based signatures such as Chaum-Pedersen signatures [CP93] and Katz-
Wang signatures [KW03], with and without preprocessing.

1.3 Related Work

Security Proofs in the Generic Group Model. The generic group model goes back
to Nechaev [Nec94] and Shoup [Sho97]. One motivation for analyzing crypto-
graphic protocols in the generic group model is that for certain elliptic curve
groups, the best known attacks are all generic [JMV01,FST10,WZ11,BL12,
GWZ15]. It is well known that in Shoup’s generic group model [Sho97], an
attacker requires Ω(

√
p) queries to solve the discrete-log problem in a group

of prime order p and the same lower bound holds for other classical problems
like Computational Diffie-Hellman (CDH) and Decisional Diffie-Hellman (DDH).
This bound is tight as discrete-log algorithms such as the Baby-Step Giant-Step
algorithm by Shanks [Sha71], Pollard’s Rho and Kangaroo algorithms [Pol78],
and the Pohlig-Hellman algorithm [PH06] can all be described generically in
Shoup’s model. However, there are some exceptions for other elliptic curves
and subgroups of Z

∗
p, where the best discrete-log algorithms are not generic

and are much more efficient than any generic discrete log algorithms, e.g., see
[GHS02,MVO91,Sma99].

Dent [Den02] showed that there are protocols which are provably secure in the
generic group model but which are trivially insecure when the generic group is

620 J. Blocki and S. Lee

replaced with any (efficiently computable) real one. However, these results were
artificially crafted to provide a counterexample. Similar to the random oracle
model, experience suggests that protocols with security proofs in the generic
group model do not have inherent structural weaknesses, and will be secure
as long as we instantiate with a reasonable elliptic curve group. See [KM07,
Fis00,JS08] for additional discussion of the strengths/weaknesses of proofs in
the generic group model.

Corrigan-Gibbs and Kogan [CK18] analyzed the security of several key cryp-
tographic problems (e.g., discrete-log, computational/decisional Diffie-Hellman,
etc.) against preprocessing attacks in the generic group model. We extend their
analysis to analyze the multi-user security of key-prefixed short Schnorr signa-
tures against preprocessing attacks. See Sect. 5 for the further details.

Schnorr Signatures and Multi-Signatures. Bellare and Dai [BD20] recently
showed that the (single-user) security of Schnorr signatures could be based on
the Multi-Base Discrete Logarithm problem which in turn is similar in flavor to
the One More Discrete Log Problem [BNPS03]. There has also been an active
line of work on adapting the Schnorr signature scheme to design compact multi-
signature schemes, e.g., see [BN06,BCJ08,DEF+19,MPSW19]. The goal is for
multiple parties to collaborate to generate a single Schnorr signature which is
signed using an aggregate public key that can be (publicly) derived from the
individually public keys of each signing party. A very recent line of work has
reduced the interaction to generate a Schnorr multi-signature to two-rounds
without pairings [NRSW20,NRS20,AB20].

Other Short Signatures. Boneh et al. [BLS04] proposed even shorter signatures
called BLS signatures, which is as short as 2k bits to yield k bits of security
in the random oracle model, assuming that the Computational Diffie-Hellman
(CDH) problem is hard on certain elliptic curves over a finite field. While BLS
signatures yield even shorter signature length than Schnorr signatures, the com-
putation costs for the BLS verification algorithm is several orders of magnitude
higher, due to the reliance on bilinear pairings. If we allow for “heavy” crypto-
graphic solutions such as indistinguishability obfuscation [GGH+13] (practically
infeasible at the moment), then it becomes possible to achieve k-bit signatures
with k bits of security [SW14,RW14,LM17].

2 Preliminaries

Let N be the set of positive integers, and we define [N] := {1, . . . , N} for N ∈ N.
Throughout the paper, we denote the security parameter by k. We say that
�x = (x1, . . . , xN) ∈ Z

N
p is an N -dimensional vector over ZN

p , and for each i ∈ [N],
we define ûi to be the ith N -dimensional unit vector, i.e., the ith element of ûi

is 1, and all other elements are 0 elsewhere. For simplicity, we let log(·) be a log
with base 2, i.e., log x := log2 x. The notation ←$ denotes a uniformly random
sampling, e.g., we say x ←$ Zp when x is sampled uniformly at random from Zp.

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 621

2.1 The Generic Group Model

The generic group model is an idealized cryptographic model proposed by Shoup
[Sho97]. Let G = 〈g〉 be a multiplicative cyclic group of prime order p. In the
generic group model, since G is isomorphic to Zp, we select a random injective
map τ : Zp → G, where G is the set of bit strings of length 	 (with 2� ≥ p) and
we encode the discrete log of a group element instead of the group element itself.

The key idea in the generic group model is that the map τ does not need
to be a group homomorphism, because any adversary against a cryptographic
scheme is only available to see a randomly chosen encoding of the discrete log of
each group element, not the group element itself. Hence, the generic group model
assumes that an adversary has no access to the concrete representation of the
group elements. Instead, the adversary is given access to an oracle parametrized
by τ , which computes the group operation indirectly in G as well as the encoding
of the discrete log of the generator g given as g = τ(1). More precisely, for an
input (a, b) ∈ G × G, the oracles Mult(a, b), and Inv(a) act as following:

Mult(a, b) = τ(τ−1(a) + τ−1(b)), and

Inv(a) = τ(−τ−1(a)),

if τ−1(a), τ−1(b) ∈ G. We remark that the adversary has no access to the map
τ itself and does not know what is going on in a group G. Hence, the adversary
has no sense that which element in G maps to Mult(a, b) in G even if s/he sees
the oracle output.

For convenience, we will use the notation Pow(a, n) = τ(nτ−1(a)). Without
loss of generality, we do not allow the attacker to directly query Pow as an oracle,
since the attacker can efficiently evaluate this subroutine using the Mult oracle.
In particular, one can evaluate Pow(a, n) using just O (log n) calls to Mult using
the standard modular exponentiation algorithm.

2.2 The Schnorr Signature Scheme

The Schnorr signature scheme is a digital signature scheme, which consists of
a tuple of probabilistic polynomial-time algorithms Π = (Kg,Sign,Vfy), where
Kg(1k) is a key-generation algorithm to generate a secret key sk ∈ Zp and a public
key pk = Pow(g = τ(1), sk) = τ(sk). The size of the prime number p will be tied
to the security parameter k, e.g., p ≈ 22k. Sign(sk,m) is a signing algorithm
which generates a signature σ on a message m ∈ {0, 1}∗, and Vfy(pk,m, σ) is a
verification algorithm which outputs 1 if the signature is valid, and 0 otherwise.

Throughout the paper, we will consider the notion of the generic group
model in the Schnorr signature scheme as described in Fig. 1. We remark
that verification works for a correct signature σ = (s, e), because R =
Mult(τ(s), Pow(Inv(pk), e)) = τ(s − sk · e) = τ(r) = I if the signature is valid.

Short Schnorr Signatures. Typically, it is assumed that the random oracle
H(I‖m) outputs a uniformly random element e ∈ Zp, where p is a random 2k-bit
prime. Thus, we would need 2k bits to encode e. To produce a shorter signature,

622 J. Blocki and S. Lee

Kg(1k):

1 : sk ←$Zp

2 : pk ← Pow(g, sk)

3 : return (pk, sk)

Sign(sk, m):

1 : r ←$Zp

2 : I ← Pow(g, r)

3 : e ← H(I m)

4 : s ← r + sk · e mod p

5 : return σ = (s, e)

Vfy(pk, m, σ):

1 : Parse σ = (s, e)

2 : R ← Mult(Pow(g, s), Pow(Inv(pk), e))

3 : if H(R m) = e then

4 : return 1

5 : else return 0

Fig. 1. The Schnorr signature scheme in the generic group model. Note that instead
of the direct group operation in G, we use the encoding by the map τ and the generic
group oracle queries.

we can assume that H(I‖m) outputs a uniformly random integer e ∈ Z2k with
just k bits. In practice, the shorter random oracle is easier to implement, since
we do not need to worry about rounding issues when converting a binary string
to Z2k , i.e., we can simply take the first k bits of our random binary string. The
result is a signature σ = (s, e), which can be encoded in 3k bits – 2k bits to
encode s ∈ Zp plus k bits to encode e. This natural modification is straightfor-
ward and is not new to our paper. The key question we investigate is whether
or not short Schnorr signatures can provide k bits of security.

3 Single-User Security of Short Schnorr Signatures

As a warm-up to our main result, we first prove that short Schnorr Signatures
(of length 3k) achieve k bits of security. We first describe the standard signature
forgery experiment SigForgeτ

A,Π(k) in the generic group model and the random
oracle model. Here, an attacker is given the public key pk = τ(sk) along with
g = τ(1) (the encoding of the group generator 1 of Zp). The attacker is given
oracle access to the signing oracle Sign(·), as well as the generic group oracles
GO = (Mult(·, ·), Inv(·)), and the random oracle H(·). The attacker’s goal is to
eventually output a forgery (m,σ = (s, e)) for a fresh message m that has not
previously been submitted to the signing oracle.

Generic Signature Forgery Game. Fixing an encoding map τ : Zp → G, g = τ(1)
and the random oracle H, and an adversary A, consider the following experiment
defined for a signature scheme Π = (Kg,Sign,Vfy):

The Generic Signature Forgery Game SigForgeτ,H
A,Π(k):

(1) Kg(1k) is run to obtain the public and the secret keys (pk, sk). Here, sk
is chosen randomly from the group Zp where p is a 2k-bit prime, and
pk = Pow(g, sk) = τ(sk).

(2) Adversary A is given (g = τ(1), pk, p) and access to the generic group
oracles GO = (Mult(·, ·), Inv(·)), the random oracle H(·), and the sign-
ing oracle Sign(·). After multiple access to these oracles, the adversary
outputs (m,σ = (s, e)).

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 623

(3) We define SigForgeτ,H
A,Π(k) = Vfy(pk,m, σ), i.e., the output is 1 when A

succeeds, and 0 otherwise.

Definition 1 formalizes this argument in the sense that an attacker forges a
signature if and only if SigForgeτ,H

A,Π(k) = 1.

Definition 1. Consider the generic group model with an encoding map τ : Zp →
G. A signature scheme Π = (Kg,Sign,Vfy) is said to be (qH, qG, qS, ε)-UF-CMA
secure (unforgeable against chosen message attack) if for every adversary A
making at most qH (resp. qG, qS) queries to the random oracle (resp. generic
group, signing oracles), the following bound holds:

Pr
[
SigForgeτ,H

A,Π(k) = 1
]

≤ ε,

where the randomness is taken over the selection of τ , the random coins of A,
the random coins of Kg, and the selection of random oracle H.

3.1 Discrete Log Problem with Restricted Discrete Log Oracle

Restricted Discrete-Log Oracle in the Generic Group Model. In the discrete log
problem we pick a random x ∈ Zp and the attacker is challenged to recover
x given g = τ(1) and h = Pow(g, x) after making queries to the generic group
oracles Mult and Inv. As we mentioned in Sect. 1.2, we analyze the discrete log
problem in a stronger setting where the attacker is additionally given access
to a restricted discrete-log oracle DLog. Given the map τ : Zp → G and y ∈
Zp, DLog(τ(y)) will output y as long as τ(y) is a “fresh” group element. More
specifically, we say τ(y) is “fresh” if (1) τ(y) is not equal to h, and (2) τ(y) has
not been the output of a previous generic group query.

The requirement that τ(y) is fresh rules out trivial attacks where the attacker
picks a, b ∈ Zp, computes τ(ax + b) = Mult(Pow(h, a), Pow(g, b)) and queries
DLog(τ(ax + b)) and solves for x = a−1(DLog(τ(ax + b)) − b) mod p.

The Generic Discrete-Log Game. The formal definition of the discrete log exper-
iment DLogChalτA(k) is given below:

The Generic Discrete-Log Game DLogChalτA(k):

(1) The adversary A is given (g = τ(1), τ(x)) for a random value of x ∈ Zp.
Here, τ : Zp → G is a map from Zp to a generic group G with a 2k-bit
prime p.

(2) A is allowed to query the usual generic group oracles (Mult, Inv) and
is additionally allowed to query DLog(τ(y)), but only if τ(y) is “fresh”,
i.e., τ(y) is not τ(x), and τ(y) has not been the output of a previous
random generic group query.

(3) After multiple queries, A outputs x′.
(4) The output of the game is defined to be DLogChalτA(k) = 1 if x′ = x,

and 0 otherwise.

624 J. Blocki and S. Lee

Lemma 1 upper bounds the probability that an attacker wins the generic
discrete-log game DLogChalτA(k). Intuitively, the proof works by maintaining
a list L of tuples (τ(y), a, b) such that y = ax + b for every oracle output τ(y).

Initially, the list L contains two items (τ(x), 1, 0) and (τ(1), 0, 1), and the list
is updated after every query to the generic group oracles, e.g., if (τ(y1), a1, b1) ∈
L and (τ(y2), a2, b2) ∈ L, then querying Mult(τ(y1), τ(y2)) will result in the
addition of (τ(y1 + y2), a1 + a2, b1 + b2) into L. If L already contained a tuple of
the form (τ(y1 + y2), a′, b′) with a′ 	= a1 + a2 or b′ 	= b1 + b2, then we say that
the event BRIDGE occurs.

We can use the restricted discrete log oracle to maintain the invariant that
every output of our generic group oracles Mult and Inv can be added to L. In
particular, if we every encounter an input y = τ(b) that does not already appear
in L, then y is fresh and we can simply query the restricted discrete log oracle
to extract b = DLog(y), ensuring that the tuple (y, 0, b) is added to L before the
generic group query is processed.

The key component of the proof is to upper bound the probability of the
event BRIDGE. This is sufficient as any attacker that can recover x will also be
able to ensure that (τ(x), 0, x) is added to L, which would immediately cause
the event BRIDGE to occur, since we already have (τ(x), 1, 0) ∈ L. We defer the
full proof of Lemma 1 to the full version [BL19] for readers who are interested.

Lemma 1. The probability the attacker making at most qG generic group oracle
queries wins the generic discrete-log game DLogChalτA(k) (even with access to
the restricted DLog oracle) is at most

Pr [DLogChalτA(k) = 1] ≤ 6qG(qG + 1) + 12
4p − (3qG + 2)2

,

in the generic group model of prime order p, where the randomness is taken over
the selection of τ , the challenge x, as well as any random coins of A.

3.2 Security Reduction

Given Lemma 1, we are now ready to describe our security reduction for short
Schnorr signatures of length 3k. As in our security proof for the discrete-log
problem, we will ensure that for every output τ(y) of a generic group query, we
can express y = ax + b for known constants a and b – here x is the secret key
that is selected in the security game, i.e., any time Asig makes a query involving
a fresh element τ(y), we will simply query DLog(τ(y)) so that we can add τ(y)
to the list L.

Theorem 4 provides the first rigorous proof of the folklore claim that short
(3k-bit) Schnorr signatures can provide k bits of security. The formal security
proof uses both the generic group model and the random oracle model.

Theorem 4. The short Schnorr signature scheme Πshort = (Kg,Sign,Vfy) of
length 3k is (qH, qG, qS, ε)-UF-CMA secure with

ε =
6qG(qG + 1) + 12
4p − (3qG + 2)2

+
qS(qH + qS)

p
+

qH + qS
p − (3qG + 2)

+
qH + 1

2k
= O

(q

2k

)
,

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 625

in the generic group model of prime order p ≈ 22k and the programmable random
oracle model, where q denotes the total number of queries made by an adversary.

Proof Sketch of Theorem 4: Here, we only give the intuition of how the proof
works. The full proof of Theorem 4 is similar to that of Theorem 6 and we defer
it to the full version [BL19].

We give the proof by reduction, i.e., given an adversary Asig attacking short
Schnorr signature scheme, we construct an efficient algorithm Adlog which solves
the discrete-log problem. During the reduction, we simulate the signature signing
process without secret key x by programming the random oracle, i.e., to sign a
message m we can pick s and e randomly, compute I = τ(s − xe) by querying
adequate generic group oracles2, and see if the random oracle has been previously
queried at H(I‖m). If not, then we can program the random oracle as H(I‖m) :=
e and output the signature (s, e). Otherwise, the reduction simply outputs ⊥ for
failure. Since s and e are selected randomly, we can argue that the probability
that we output ⊥ because H(I‖m) is already defined is small, i.e., ≈ qH/p.

We can use the oracle DLog to maintain the invariant that before processing
any random oracle query of the form H(y‖·) that we know a, b such that τ(ax +
b) = y. In particular, if y is a fresh string that has not previously been observed,
then we can simply set a = 0 and query the restricted discrete log oracle to
find b such that τ(b) = y. We say that the random oracle query is lucky if
H(y‖m) = −a, or H(y‖m) = 0. Assuming that the event BRIDGE does not
occur, it is straightforward to upper bound the probability of a lucky query as
O(qH/2k). Similarly, it is straightforward to show that the probability that Asig

gets lucky and guesses a valid signature (s, e) for a message m without first
querying H(τ(s−xe)‖m) is O(2−k). Assuming that there are no lucky queries or
guesses but the attacker still outputs a successful signature forgery (s, e). In this
case we have I = τ(s − xe) = τ(ax + b), which allows for us to solve for x using
the equation (a + e)x = (s − b). Thus, we can argue that the probability Adlog

solves the discrete-log challenge correctly is lower bounded by the probability
that Asig forges a signature minus O(q/2k). Finally, by applying Lemma 1 we
can upper bound the probability Asig wins the generic signature forgery game
SigForgeτ,H

A,Π(k) to be O(q/2k). ��

4 Multi-user Security of Short Schnorr Signatures

In this section, we prove that short Schnorr signatures also provide k
bits of security in the multi-user setting. The reduction uses similar ideas,
but requires us to introduce and analyze a game called the 1-out-of-N
generic BRIDGEN -finding game. We first define the 1-out-of-N generic sig-
nature forgery game, where an adversary is given N independent public keys
(pk1, . . . , pkN) = (τ(sk1), . . . , τ(skN)) along with oracle access to the sign-
ing oracles Sign(sk1, ·), . . . ,Sign(skN , ·), the random oracle H, and the generic
group oracles. The attacker can succeed if s/he can output a forgery (σ,m)

2 We can compute I without knowledge of x because τ(x) is given as public key.

626 J. Blocki and S. Lee

which is valid under any one public key, e.g., for some public key pkj we have
Vfy(pkj ,m, σ) = 1, while the query m was never submitted to the jth sign-
ing oracle Sign(skj , ·). In our reduction, we show that any attacker that wins
the 1-out-of-N generic signature forgery game can be used to win the 1-out-of-
N generic BRIDGEN -finding game. We separately upper bound the probability
that a generic attacker can win the 1-out-of-N generic BRIDGEN -finding game.

1-out-of-N Generic Signature Forgery Game. Fixing the injective mapping
τ : Zp → G, a random oracle H, and an adversary A, consider the following
experiment defined for a signature scheme Π = (Kg,Sign,Vfy):

The 1-out-of-N Generic Signature Forgery Game SigForgeτ,H,N
A,Π (k):

(1) Kg(1k) is run N times to obtain the public and the secret keys (pki, ski)
for each i ∈ [N]. Here, for each i ∈ [N], ski is chosen randomly from
the group Zp, where p is a 2k-bit prime, and pki = τ(ski).

(2) Adversary A is given (g = τ(1), pk1, · · · , pkN , p), and access to the
generic group oracles GO = (Mult(·, ·), Inv(·)), the random oracle H(·),
and the signing oracles Sign(sk1, ·), . . . , Sign(skN , ·). The experiment
ends when the adversary outputs (m,σ = (s, e)).

(3) A succeeds to forge a signature if and only if there exists some
j ∈ [N] such that Vfy(pkj ,m, σ) = 1 and the query m was never
submitted to the oracle Sign(skj , ·). The output of the experiment is
SigForgeτ,H,N

A,Π (k) = 1 when A succeeds; otherwise SigForgeτ,H,N
A,Π (k) = 0.

Definition 2. Consider the generic group model with an encoding map τ :
Zp → G. A signature scheme Π = (Kg,Sign,Vfy) is (N, qH, qG, qS, ε)-MU-UF-
CMA secure (multi-user unforgeable against chosen message attack) if for every
adversary A making at most qH (resp. qG, qS) queries to the random oracle (resp.
generic group, signing oracles), the following bound holds:

Pr
[
SigForgeτ,H,N

A,Π (k) = 1
]

≤ ε,

where the randomness is taken over the selection of τ , the random coins of A,
the random coins of Kg, and the selection of random oracle H.

The Discrete-Log Solution List L in a Multi-User Setting. As before, we will
maintain the invariant that for every output y of a generic group query that
we have recorded a tuple (y,�a, b) in a list L where DLog(y) = �a · �x + b
(here, �a = (a1, . . . , aN), �x = (x1, . . . , xN) ∈ Z

N
p). Note that the restricted

oracle DLog(·) will solve DLog(y) for any fresh group element y such that
y 	∈ {τ(1), τ(x1), . . . , τ(xN)}, and y has not been the output of a prior generic
group query.

– Initially, L contains (τ(1),�0, 1) and (τ(xi), ûi, 0) for 1 ≤ i ≤ N .
– If the attacker ever submits a fresh group element y which was not previously

an output of a generic group oracle query, then we can query b = DLog(y),

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 627

and add (y,�0, b) to our list. Thus, without loss of generality, we can assume
that all query inputs to Mult, Inv were first added to L.

– If (y1,�a1, b1), (y2,�a2, b2) ∈ L, and the attacker queries Mult(y1, y2), then add
(Mult(y1, y2),�a1 + �a2, b1 + b2) to L.

– If (y,�a, b) ∈ L, and Inv(y) is queried, then add (Inv(y),−�a,−b) to L.

4.1 The Multi-user Bridge-Finding Game

We establish the multi-user security of short Schnorr signatures via reduction
from a new game we introduce called the 1-out-of-N generic BRIDGEN -finding
game. As in the 1-out-of-N discrete-log game, the attacker is given τ(1), as well
as τ(x1), . . . , τ(xN) for N randomly selected values �x = (x1, . . . , xN) ∈ Z

N
p . The

key difference between this game and the 1-out-of-N discrete-log game is that
the attacker’s goal is simply to ensure that the “bridge event” BRIDGEN occurs,
whether or not the attacker is able to solve any of the discrete-log challenges. As
in Sect. 3, we will assume that we have access to DLog(·), and we will maintain
the invariant that for every output τ(y) of some generic group query, we have
y = �a ·�x+b for known values �a = (a1, . . . , aN) ∈ Z

N
p and b ∈ Zp, i.e., by querying

the restricted oracle DLog(τ(y)) whenever we encounter a fresh input.

The 1-out-of-N Generic BRIDGEN -Finding Game BridgeChalτ,N
A (k, �x):

(1) The challenger initializes the list L = {(τ(1),�0, 1), (τ(x1), û1, 0), . . . ,
(τ(xN), ûN , 0)}, and �x = (x1, · · · , xN).

(2) The adversary A is given g = τ(1) and τ(xi) for each i ∈ [N].
(3) A is allowed to query the usual generic group oracles (Mult, Inv).

(a) If the challenger ever submits any fresh element y which does not
appear in L as input to a generic group oracle, then the challenger
immediately queries by = DLog(y), and adds the tuple (y,�0, by) to
the list L.

(b) Whenever A submits a query y1, y2 to Mult(·, ·), we are ensured
that there exist tuples (y1,�a1, b1), (y2,�a2, b2) ∈ L. The challenger
adds the tuple (Mult(y1, y2),�a1 + �a2, b1 + b2) to the list L.

(c) Whenever A submits a query y to Inv(·), we are ensured
that some tuple (y,�ay, by) ∈ L. The challenger adds the tuple
(Inv(y),−�ay,−by) to the list L.

(4) If at any point in time we have a collision, i.e., two distinct tuples
(y,�a1, b1), (y,�a2, b2) ∈ L with (�a1, b1) 	= (�a2, b2), then the event
BRIDGEN occurs, and the output of the game is 1. If BRIDGEN never
occurs, then the output of the game is 0.

We further define the game BridgeChalτ,N
A (k) in which �x = (x1, . . . , xN) are first

sampled uniformly at random, and then we run BridgeChalτ,N
A (k, �x). Thus,

Pr
A,τ

[BridgeChalτ,N
A (k) = 1] := Pr

A,τ,�x
[BridgeChalτ,N

A (k, �x) = 1] .

628 J. Blocki and S. Lee

As long as the event BRIDGEN has not occurred, we can (essentially) view
x1, . . . , xN as uniformly random values that are yet to be selected. More pre-
cisely, the values x1, . . . , xN are selected subject to a few constraints, e.g., if we
know f1 = τ(�a1 · �x + b1) 	= f2 = τ(�a2 · �x + b2) then we have the constraint that
�a1 · �x + b1 	= �a2 · �x + b2.

Theorem 5. For any attackers A making at most qG := qG(k) queries to the
generic group oracles,

Pr
[
BridgeChalτ,N

A (k) = 1
]

≤ qGN + 3qG(qG + 1)/2
p − (N + 3qG + 1)2 − N

,

in the generic group model of prime order p where the randomness is taken over
the selection of x1, . . . , xN , τ as well as any random coins of A.

Proof. Consider the output yi of the ith generic group query. We first analyze
the probability that this query results in the event BRIDGEN conditioning on the
event BRIDGE

N

<i that the event has not yet occurred, i.e., the event BRIDGEN

has not been occurred until the (i−1)th query. Before we even receive the output
yi, we already know the values �ai, bi such that the tuple (yi,�ai, bi) will be added
to L. If L does already contain this exact tuple, then outputting yi will not
produce the event BRIDGEN . If L does not already contain this tuple (yi,�ai, bi),
then we are interested in the event Bi that some other tuple (yi,�a

′
i, b

′
i) has been

recorded with (�a′
i, b

′
i) 	= (�ai, bi). Observe that Bi occurs if and only if there

exists a tuple of the form (·,�a, b) with (�a − �ai) · �x = bi − b and (�a, b) 	= (�ai, bi).
If we pick �x randomly, the probability that (�a − �ai) · �x = bi − b would be 1/p.
However, we cannot quite view �x as random due to the restrictions, i.e., because
we condition of the event BRIDGE

N

<i we know that for any distinct pair (yi,�ai, bi)
and (yi,�aj , bj) we know that �ai · �x + bi 	= �aj · �x + bj .

Consider sampling �x uniformly at random subject to this restriction. Let
r ≤ N be an index such that �a[r] − �ai[r] 	= 0 and suppose that xr = �x[r] is
the last value sampled. At this point, we can view xr as being drawn uniformly
at random from a set of at least p − |L|2 − (N − 1) remaining values, subject
to all of the restrictions. We also observe that |L| ≤ N + 3qG + 1 since each
generic group oracle query adds at most three new tuples to L—exactly three in
the case that we query Mult(y1, y2) on two fresh elements. Thus, the probability
that (�a − �ai) · �x = bi − b is at most 1

p−(N+3qG+1)2−(N−1) . Union bounding over
all tuples (·,�a, b) ∈ L, we have

Pr
[
Bi : BRIDGE

N

<i

]
≤ N + 3i

p − (N + 3qG + 1)2 − N
.

To complete the proof, we observe that

Pr
[
BridgeChalGO,NA (k) = 1

]
=

∑

i≤qG

Pr
[
Bi : BRIDGE

N

<i

]

≤
∑

i≤qG

N + 3i

p − (N + 3qG + 1)2 − N
=

qGN + 3qG(qG + 1)/2
p − (N + 3qG + 1)2 − N

.

��

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 629

As an immediate corollary of Theorem 5, we can show that an attacker wins
the 1-out-of-N discrete log game with (approximately) the same probability
as in the multi-user bridge-finding game. In particular, given any attacker A′

in the 1-out-of-N discrete-log game 1ofNDLogτ,N
A (k), where the attacker’s goal

is to output any x ∈ {x1, . . . , xN} given input τ(1), τ(x1), . . . , τ(xN), we can
construct an attacker A in the game BridgeChalτ,N

A (k). A simply runs A′ to
obtain an output x, and then computes τ(x) using at most 2 log p queries to the
Mult(·, ·) oracle. If x ∈ {x1, . . . , xN}, then the bridge event BRIDGEN must have
occurred at some point, since we have (τ(x),�0, x) ∈ L and (τ(x), ûi, 0) ∈ L for
some i ∈ [N].

Corollary 1. For any attacker A making at most qG + 2 log p queries,

Pr
[
1ofNDLogτ,N

A (k) = 1
]

≤ qGN + 3qG(qG + 1)/2
p − (N + 3qG + 1)2 − N

,

in the generic group model of prime order p, where the randomness is taken over
the selection of τ , the challenges x1, . . . , xN , and any random coins of A.

4.2 Security Reduction

Theorem 6. The short Schnorr signature scheme Πshort = (Kg,Sign,Vfy) of
length 3k is

(
N, qH, qG, qS, ε = O

(
q+N
2k

))
-MU-UF-CMA secure with

ε =
qGN + 3qG(qG + 1)/2

p − (N + 3qG + 1)2 − N
+

qS(qH + qS)
p

+
qH + qS

p − (N + 3qG + 1)
+

qH + 1
2k

,

in the generic group model of prime order p ≈ 22k and the programmable random
oracle model, where q denotes the total number of queries made by an adversary.

Proof. Given an adversary Asig attacking short Schnorr signature scheme, we
construct the following efficient algorithm Abridge which tries to succeed in the
1-out-of-N generic BRIDGEN -finding game BridgeChalτ,N

Abridge
(k):

Algorithm Abridge:
The algorithm is given p, g = τ(1), τ(xi), 1 ≤ i ≤ N as input.

1. Initialize the list L = {(τ(1),�0, 1), (τ(xi), ûi, 0) for each i ∈ [N]}, and Hresp =
{}, where Hresp stores the random oracle queries.

2. Run Asig with a number of access to the generic oracles GO =
(Mult(·, ·), Inv(·)), DLogg(·), Signi(·) for 1 ≤ i ≤ N , and H(·). The signing
oracle without a secret key is described in Fig. 2. Now we consider the follow-
ing cases:
(a) Whenever Asig submits a query w to the random oracle H:

– If there is a pair (w,R) ∈ Hresp for some string R, then return R.
– Otherwise, select R ←$ Z2k , and add (w,R) to the set Hresp.

630 J. Blocki and S. Lee

Given: g = τ(1), pki = τ(xi), i ∈ [N], p

/* begin simulation */

Asig

Mult(·)
Inv(·)

DLogg(·)

H(·)

σi∗ = (si∗, ei∗), mi∗

Signj(·)
{mi}N

i=1

{σi}N
i=1

1 : Pick si, ei randomly

2 : Compute Ii = Mult(Pow(g, si), Pow(pkj , −ei)) = τ(si − xjei)

3 : if H(Ii||mi) previously queried then

4 : return ⊥
5 : else

6 : Program H(Ii||mi) := ei

7 : return σi = (si, ei)

Signj(mi) without secret key xj (j ∈ [N])

/* end simulation */

Compute: Ii∗ = Mult(Pow(g, si∗), Pow(pki∗, −ei∗)) = τ(si∗ − xi∗ei∗)

Extract: a ∈ G,�a ∈ Z
N
p , b, c ∈ Zp

Reduction Abridge

Fig. 2. A reduction to the BridgeChalτ,N
Abridge

(k) attacker Abridge from the short Schnorr

signature attacker Asig.

– If w has the form w = (a‖mi), where the value a has not been observed
previously (i.e., is not in the list L), then we query b = DLog(a), and
add (a,�0, b) to L.

(b) Whenever Asig submits a query a to the generic group oracle Inv(a):
– If a is not in L then we immediately query b = DLog(a) and add

(a,�0, b) to L.
– Otherwise, (a,�a, b) ∈ L. Then we query Inv(a) = τ(−�a ·�x−b), output

the result and add the result (τ(−�a · �x − b),−�a,−b) ∈ L.
(c) Whenever Asig submits a query a, b to the generic group oracle Mult(a, b):

– If the element a (resp. b) is not in L, then query b0 = DLog(a) (resp.
b1 = DLog(b)), and add the element (a,�0, b0) (resp. (b,�0, b1)) to L.

– Otherwise, both elements (a,�a0, b0), (b,�a1, b1) ∈ L. Then we return
Mult(a, b) = τ((�a0 +�a1) · �x + b0 + b1), and add (τ((�a0 +�a1) · �x + b0 +
b1),�a0 + �a1, b0 + b1) ∈ L.

(d) Whenever Asig submits a query mi to the signing oracle Sign(xj , ·):
– We use the procedure Signj described in Fig. 2 to forge a signature

without knowledge of the secret key xi. Intuitively, the forgery pro-
cedure relies on our ability to program the random oracle.

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 631

– We remark that a side effect of querying the Signj oracle is the
addition of the tuples (τ(si),�0, si), (τ(xjei), eiûi, 0) and (τ(si −
xjei),−eiûi, si) to L, since these values are computed using the
generic group oracles Inv and Mult.

(e) If at any point we find some string y such that (y,�a, b) ∈ L and (y,�c, d) ∈ L
for (�a, b) 	= (�c, d), then we can immediately have a BRIDGEN instance
(τ((�a−�c) ·�x),�a−�c, 0) ∈ L and (τ(d−b),�0, d−b) ∈ L since τ((�a−�c) ·�x) =
τ(d−b).3 Thus, without loss of generality, we can assume that each string
y occurs at most once in the list L.

3. After Asig outputs σi∗ = (si∗, ei∗) and mi∗, identify the index i∗ ∈ [N] such
that Vfy(pki∗,mi∗, σi∗) = 1.

4. Compute τ(−ei∗xi∗) = Inv(Pow(τ(xi∗), ei∗)) and si∗ = Pow(g, si∗). This will
ensure that the elements (τ(−ei∗xi∗),−ei∗ûi∗, 0) and (τ(ei∗xi∗), ei∗ûi∗, 0),
and (si∗,�0, si∗) are all added to L.

5. Compute Ii∗ = Mult(si∗, τ(−ei∗xi∗)) = τ(si∗ − xi∗ei∗) which ensures that
(Ii∗,−ei∗ûi∗, si∗) ∈ L. Finally, we can check to see if we previously had any
tuple of the form (Ii∗,�a, b) ∈ L.

Analysis. We first remark that if the signature is valid then we must have
ei∗ = H(Ii∗‖mi∗) and DLog(Ii∗) = si∗ − xi∗ei∗ = �a · �x + b.

We now define failure events FailtoFind(Ii∗) and BadQuery. FailtoFind(Ii∗)
denotes the event that we find that the signature is valid, but Ii∗ was not pre-
viously recorded in our list L before we computed Mult(si∗, τ(−ei∗xi∗)) in the
last step. Similarly, let BadQuery denote the event that the signature is valid but
for the only prior tuple (Ii∗,�a, b) ∈ L recorded in L we have that �a = −ei∗ûi∗.
If the signature is valid and neither of the events FailtoFind(Ii∗) and BadQuery
occur, then the bridge event BRIDGEN must have occurred and we immediately
win the game since (Ii∗,�a, b) ∈ L, (Ii∗,−ei∗ûi∗, si∗) ∈ L and �a 	= −ei∗ûi∗.

We additionally consider then the event FailtoSign where our reduction out-
puts ⊥ in Step 2.(d) due signing oracle failure i.e., because H(Ii‖mi) has been
queried previously. Intuitively, the attacker will output a valid signature forgery
with probability at least Pr[SigForgeτ,N

Asig,Πshort
(k) = 1] − Pr[FailtoSign] after we

replace the signing oracle with the procedure Signj described in Fig. 2.
Claim 1, Claim 2, and Claim 3 upper bound the probability of our events

FailtoSign, FailtoFind and BadQuery respectively. We defer the proofs to the full
version [BL19].

Claim 1. Pr[FailtoSign] ≤ qS(qH+qS)
p .

Claim 2. Pr[FailtoFind(Ii∗)] ≤ qH+qS
p−|L| + 1

2k .

Claim 3. Pr[BadQuery] ≤ qH
2k .

3 Note that (�a, b) �= (�c, d) implies �a �= �c since if �a = �c then �a · �x + b = �a · �x + d implies
b = d as b, d ∈ Zp.

632 J. Blocki and S. Lee

Since we have |L| ≤ N + 3qG + 1, we can apply Theorem 5 to conclude that

Pr[SigForgeτ,N
Asig,Πshort

(k) = 1]

≤ Pr[BridgeChalτ,N
Abridge

(k) = 1] + Pr[FailtoSign] + Pr[FailtoFind(Ii∗)] + Pr[BadQuery]

≤ qGN + 3qG(qG + 1)/2

p − (N + 3qG + 1)2 − N
+

qS(qH + qS)

p
+

qH + qS
p − (N + 3qG + 1)

+
qH + 1

2k

= O
(

q + N

2k

)
.

��

5 Multi-user Security of Short Schnorr Signatures
with Key-Prefixing Against Preprocessing Attacks

In this section, we analyze the security of short Schnorr signatures against a
preprocessing attacker who first outputs an S-bit hint after making (a very large
number of) preprocessing queries to the generic group oracles Mult and Inv,
as well as the random oracle H. After the public/secret keys are chosen, the
signature forgery attacker will try use the hint to help win the signature forgery
game. The hint must be fixed before the public/secret keys for our signature
scheme are selected, otherwise the preprocessing attacker can generate forged
signatures and embed them in the hint.

We first observe that Schnorr signatures are trivially broken against a pre-
processsing attack, e.g., if the preprocessing attacker finds some message m
and an integer r such that e = H(τ(r)‖m) = 0, then the attacker can sim-
ply include the tuple (m, r) as part of the S-bit hint. Observe that the hint
is completely independent of the public key pk. In fact, for any public key pk,
we have that σ′ = (s = r, e = 0) is a valid signature for the message m! To
see this, note that R = τ(s − sk · 0) = τ(r) = 0 and that, by assumption,
H(R‖m) = H(τ(r)‖m) = 0 = e.

The above attack can easily be addressed with key-prefixing, i.e., to sign a
message m, we pick an integer r, compute e = H(pk‖τ(r)‖m), and output the
signature σ = (s = r+ sk ·e, e). Intuitively, since the preprocessing attacker does
not know the public key pk in advance, s/he is unlikely to have stored a tuple of
the form (pk,m, r, τ(r)). The key question is whether or not short Schnorr sig-
natures with key-prefixing are secure against any preprocessing attack. To prove
that short Schnorr signatures with key-prefixing are secure against preprocess-
ing attacks, we revisit the 1-out-of-N bridge-finding game in the preprocessing
setting.

5.1 Security of BRIDGEN -Finding Game with Preprocessing

We analyze the BRIDGEN -finding game in the setting with preprocessing attacks.
In particular, an attacker consists of a pair of algorithms (Apre,Aon). The basic
idea is that we split the attack into two phases, preprocessing and online phase,
so that the attacker has (exponential) time to make preprocessing queries before
playing the bridge game. Specifically,

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 633

– Algorithm Apre runs a preprocessing phase, where it takes as input g = τ(1)
and outputs a hint strτ , which is a binary string after making queries to the
generic group oracles GO = (Mult(·, ·), Inv(·)). Without loss of generality, we
can assume that Apre is deterministic, and we simply use strτ to refer to the
hint when the random mapping τ is fixed.

– The online attacker Aon attempts to win the BRIDGEN -finding game. The
online attacker Aon is given the hint strτ (which was produced in the prepro-
cessing phase), as well as (τ(x1), . . . , τ(xN)). However, the challenger picks
(x1, . . . , xN) ∈ Z

N
p after the hint strτ is fixed. For convenience, we will write

Aon,strτ to denote the online attacker with the hint strτ hardcoded.

We are interested in the setting where the preprocessing algorithm Apre can
make qpreG ≥ 22k queries to the generic group oracles. In other words, the prepro-
cessing algorithm Apre can examine the entire input/output table of the mapping
τ . However, the length of the hint strτ given to the online attacker is bounded
by S, and the online attacker can make at most qonG < 2k queries to the generic
group oracles. Theorem 7 says that the probability of a successful preprocessing
attack is at most Õ(SN(qonG)2/p).

Theorem 7. Let p > 22k be a prime number and N ∈ N be a parameter. Let
(Apre,Aon) be a pair of generic algorithms with an encoding map τ : Zp → G

such that Apre outputs an S-bit hint and Aon makes at most qonG := qonG (k) queries
to the generic group oracles. Then

Pr
[
BridgeChalτ,N

Aon,strτ
(k) = 1

]
≤ Õ

(
SN(qonG + N)(qonG + 2N)

p

)
,

where the randomness is taken over the selection of τ , the random coins of Aon,
and the random coins used by the challenger in the bridge game (the hint strτ =
AGO

pre(g) is selected independently of the random coins used by the challenger). In
particular, if qonG ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p), then

Pr
[
BridgeChalτ,N

Aon,strτ
(k) = 1

]
≤ 12SN(qonG)2 log p

p
.

Remark 1. The upper bound is essentially tight as a preprocessing attacker can
solve a random 1-out-of-N discrete-log challenge with probability Ω̃((qonG)2S/p)
which would trivially allow the attacker to win the bridge-finding game. In par-
ticular, even when N = 1, there is a preprocessing with success probability
Ω((qonG)2S/p), e.g., see [CK18, Section 7.1]. Thus, our upper bound is tight up
to a factor of N .

The proof of Theorem 7 closely follows [CK18, Theorem 2] with a few minor
modifications, and the full proof can be found in the full version [BL19]. One
small difference is that we need to extend the proofs of [CK18] to handle queries
to the inverse oracle Inv(·), and the restricted discrete log oracle DLog. The
proof of Theorem 7 relies on Lemma 2, which is similar to [CK18, Lemma 4].
Intuitively, if the preprocessing attack is too successful, then one can derive a
contradiction by compressing the random mapping τ .

634 J. Blocki and S. Lee

Lemma 2. Let G be the set of binary strings of length 	 such that 2� ≥ p
for a prime p. Let T = {τ1, τ2, . . .} be a subset of the labeling functions from
Zp to G. Let (Apre,Aon) be a pair of generic algorithms for Zp on G such
that for every τ ∈ T and every �x = (x1, . . . , xN) ∈ Z

N
p , Apre outputs an S-

bit advice string, Aon makes at most qon oracle queries, and (Apre,Aon) satisfy

PrAon

[
BridgeChalτ,N

Aon,strτ
(k, �x) = 1

]
≥ ε, where strτ = AGO

pre(τ(1)). Then, there
exists a randomized encoding scheme that compresses elements of T to bitstrings
of length at most

log
|G|!

(|G| − p)!
+ S + 1 − εp

6qon(qon + N)(N log p + 1)
,

and succeeds with probability at least 1/2.

The full proof of Lemma 2 can be found in the full version [BL19].
Here, we only give the brief idea as follows. To compress τ , our encod-
ing algorithm first runs Apre to extract an S-bit hint strτ . We then execute
Aon(strτ , τ(x1), . . . , τ(xN)) multiple times with different challenges x1, . . . , xN .
During each execution we record the responses to the new generic group oracle
queries, so that the decoder can also execute Aon(strτ , τ(x1), . . . , τ(xN)). Intu-
itively, whenever the BRIDGEN event occurs, the decoder can save a few bits by
simply recording the index of prior query involved in the collision. This requires
just log qon bits to encode instead of log p bits.

5.2 Multi-user Security of Key-Prefixed Short Schnorr Signatures
with Preprocessing

Theorem 7 upper bounds the probability that a preprocessing attacker wins
the multi-user bridge-finding game. In this setting, we observe that the hint
str := strτ,H that the preprocessing attacker outputs may depend both on the
random oracle H as well as the encoding map τ . We show how to adapt our
prior reduction to establish the multi-user security of key-prefixed short Schnorr
signatures against preprocessing attackers. Recall that in our reduction, we sim-
ulated a signature forgery attacker for (non key-prefixed) short Schnorr signa-
tures responding to queries to the signing oracle by programming the random
oracle. In the preprocessing setting without key-prefixing, the reduction breaks
down immediately. For example, the probability of a lucky random oracle query
H(τ(r)‖m) = 0 is no longer ≈ qonH /2k, since the preprocessing attacker can sim-
ply hardcode the pair (r,m) as part of the hint str := strτ,H. Similarly, the
hint str := strτ,H may be correlated with particular input/output pairs from the
random oracle, making it infeasible to program those points.

We address this challenge by considering a model where a preprocessing
attacker is time-bounded, i.e., the preprocessing attacker can look at the entire
generic group oracles but only allowed to query the random oracle at up to
qpreH = 23k points during the preprocessing phase. We leave it as an interesting
theoretical challenge whether or not the bounds can be extended to unbounded

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 635

preprocessing attacks. However, we would argue that in practice, 23k greatly
overestimates the running time of any preprocessing attacker, e.g., if k = 112,
then 23k = 2336. Intuitively, the signing oracle for key-prefixed short Schnorr
signatures involves two random points: a public key pk ∈ G and a random value
r ←$ Zp. The probability that a preprocessing attacker submitted a query of the
form H(pk, τ(r), ·) is at most qpreH p−2 ≤ 2−k, since the qpreH random oracle queries
are fixed before pk and r are sampled.

In our analysis, we consider the bad event that the signing oracle queries the
random oracle at a point H(pki‖τ(rj)‖m), which was previously queried by the
preprocessing attacker. Note that if this bad event never occurs, then we can
view H(pki‖τ(rj)‖m) as a uniformly random string that is uncorrelated with the
attacker’s state. The probability of this bad event occurring on any single query
to the signing oracle is at most NqpreH /p2. In particular, fixing an arbitrary set
of qpreH random oracle queries and then sampling pk1, . . . , pkN ∈ G and r ∈ Zp,
we can apply union bounds to argue that the probability that the preprocessing
attacker previously submitted some query of the form H(pki, τ(r), ·) for any i
is at most NqpreH /p2. Union bounding over the qonS online queries to the signing
oracle, the probability of the bad event ever occurring on any query to the signing
oracle is at most NqpreH qonS /p2. Assuming that the bad event never occurs, we can
safely program the random oracle to simulate queries to the signing oracle when
we simulate our signature forgery attacker.

The other challenge that arises in the preprocessing setting is upper bound-
ing the probability of the bad event that the attacker forges a signature without
causing the bridge event to occur. Previously, our argument relied on the obser-
vation that for “fresh” group elements r ∈ Zp, we can effectively view τ(r) as
random bit string that is yet to be fixed. This intuition does not carry over
into the preprocessing setting, as the hint str might be correlated with τ(r). We
address these challenges by applying a random oracle compression argument.
In particular, if the attacker can generate forged signatures without causing the
bridge event to occur, we can use this attacker to predict random oracle outputs,
allowing us to derive a contraction by compressing the random oracle.

Theorem 8. Let Π = (Kg,Sign,Vfy) be a key-prefixed Schnorr signature
scheme and p > 22k be a prime number. Let N ∈ N be a parameter and
(Apre

sig ,Aon
sig) be a pair of generic algorithms with an encoding map τ : Zp → G such

that Apre
sig makes at most qpreH queries to the random oracle H : {0, 1}∗ → {0, 1}k1

and outputs an S-bit hint strτ,H, and Aon
sig makes at most qonG := qonG (k) queries

to the generic group oracles and at most qonH queries to the random oracle. Then

Pr
[
SigForgeτ,N

Aon
sig,strτ,H

,Π(k) = 1
]

≤ ε, with

ε = Õ
(

SN(qon
G +N)(qon

G +2N)
p

)
+ Nqpre

H qon
S

p2 + qon
S (qon

S +qon
H)

p + 4(qon
H +1)

2k1
+ N2(S+k1)

p ,

where qonS denotes the number of queries to the signing oracle and the randomness
is taken over the selection of τ and the random coins of Aon

sig (the hint strτ,H =
Apre,GO

sig (g) is selected independently of the random coins used by the challenger).

636 J. Blocki and S. Lee

In particular, if qonG ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p), then

ε =
12SN(qonG)2 log p

p
+

NqpreH qonS
p2

+
qonS (qonS + qonH)

p
+

4(qonH + 1)
2k1

+
N2(S + k1)

p
.

Remark 2. The upper bound in Theorem 8 is essentially tight (up to a factor of
N), because of the following observations:

– Making the reasonable assumption that NqpreH qonS < 23k and qonG >
√

N , the
dominating terms in ε are Õ(SN(qonG)2/p) and/or O

(
qonH /2k1

)
.

– A preprocessing attacker can simply solve one of the discrete-log challenges
with probability at least Ω(S(qonG)2/p) which would recover a secret key and
make it trivial to forge a signature.

– Any attacker who makes qonH ≥ qonS queries to the random oracle can fix
an arbitrary message m and pick random numbers r1, . . . , rqon

H
hoping that

H(pk1‖τ(rj)‖m) = 0 for some j ≤ qonH . In this case, (rj , 0) is a valid forged
signature for m under public key pk1. Thus, the attacker can succeed with
probability ≈ qonH /2k1 .

The full proof of Theorem 8 can be found in the full version [BL19]. The
key idea is that we can repeat the essentially same reduction from Sect. 4, i.e.,
we can build a bridge-finding game attacker (Apre

bridge,Aon
bridge) with preprocessing

from the signature forgery attacker (Apre
sig ,Aon

sig) with preprocessing, except that
when we program a random oracle, we define an additional bad event that we
program a random oracle at a point the attacker has already queried the point
during the preprocessing phase. We observe that such probability is negligibly
small. As long as the failure event does not occur we can program the random
oracle and the attacker will not notice the difference.

Instantiating Key-Prefixed Short Schnorr Signatures. We would like to have the
success probability in Theorem 8 bounded by O

(
q/2k

)
for any q ≤ 2k, where

q = qonG +qonH +qonS is the total number of online queries made by a preprocessing
attacker. To achieve k bits of multi-user security for key-prefixed short Schnorr
signatures with preprocessing, we can fix p such that p ≈ 22kSN log p, and set
the length of our hash output to be k1 = k. With these parameters, Theorem
8 tells us that a preprocessing attacker wins the signature forgery game with
probability at most ε = O

(
(qonH + qonG)/2k

)
. The length of the signatures we

obtain will be k + log p = 3k + log N + log S + log log p.
As a concrete example, if N ≤ 2k/4 and S ≤ 2k/2, then we obtain signatures

of length ≈ 3.75k + log 2.75k. If we want k ≥ 128 bits of security, then the
assumption that N < 2k/4 seems quite reasonable, since 232(≈ 4.3 billion) is over
half of the current global population, and 264 bits exceeds the storage capacity
of Facebook’s data warehouse4. As a second example, if we take S ≤ 280 as an
upper bound on the storage capacity of any nation state and N ≈ 240, then we
obtain signatures of length ≈ 3k + 120 + log(2k + 120).
4 See the link: https://engineering.fb.com/2014/04/10/core-data/scaling-the-facebo

ok-data-warehouse-to (Retrieved 2/20/2021).

https://engineering.fb.com/2014/04/10/core-data/scaling-the-facebook-data-warehouse-to
https://engineering.fb.com/2014/04/10/core-data/scaling-the-facebook-data-warehouse-to

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 637

6 Multi-user Security of Other Fiat-Shamir Signatures

In this section, we show that our techniques from Sect. 4 and Sect. 5 apply to
other Fiat-Shamir-based signature schemes. We apply our reductions to ana-
lyze the multi-user security of the full-domain hash variant of Chaum-Pedersen
signatures [CP93], and (short) Katz-Wang signatures [KW03], with and with-
out preprocessing. In practice, the full-domain hash variant of Chaum-Pedersen
would be used to ensure that our signature scheme supports the message space
m ∈ {0, 1}∗ instead of requiring that m is a group element. We begin by introduc-
ing regular Chaum-Pedersen signatures in the next paragraph before describing
the full-domain hash variant (Chaum-Pedersen-FDH) that we analyze.

Security Analysis of Chaum-Pedersen-FDH Signatures. The Chaum-Pedersen
signature scheme [CP93] is obtained by applying the Fiat-Shamir transform
[FS87] to the Chaum-Pedersen identification scheme and works as follows.

– Given a cyclic group G = 〈g〉 of prime order p, the key generation algorithm
picks sk ←$ Zp and sets pk = gsk.

– To sign a message m ∈ G with the secret key sk, we sample r ←$ Zp and
compute y = msk, a = gr, b = mr, and e = H(m‖y‖a‖b). Finally, we output
a signature σ = (y, a, b, s), where s := r + sk · e mod p.

– The verification algorithm takes as inputs a signature σ′ = (y′, a′, b′, s′) and
computes e′ = H(m‖y′‖a′‖b′), A = gs′

, B = a′gsk·e
′
, C = ms′

and D = b′y′e′
.

Finally, we verify that (A = B) and (C = D) before accepting the signature.

The full-domain hash variant of Chaum-Pedersen signature, say Chaum-
Pedersen-FDH signature, is obtained by hashing a message m into a group
element so that we can perform generic group operations when signing the
message. That is, in the generic group model, we compute h = H′(pk‖m) :=
Pow(g,H(pk‖m)) and compute y = Pow(h, sk) and b = Pow(h, r) (which corre-
sponds to y = hsk and b = hr when instantiated with a cyclic group G = 〈g〉)
during the signing procedure. Note that key-prefixing is necessary as otherwise an
attacker can always forge a signature for a message m, e.g., simply find m 	= m′

such that H(m) = H(m′). The full description for each of these algorithms can
be found in the full version [BL19].

Our reduction in Sect. 4 naturally extends to Chaum-Pedersen-FDH signa-
ture scheme by using signing oracle in Fig. 3. The signing oracle is able go gener-
ate valid signatures without the secret key by programming the random oracle.
This allows us to prove Theorem 9. We remark that a Chaum-Pedersen-FDH
signature with k bits of security has length 8k—each group element requires 2k
bits to encode since p ≈ 22k. Note that reducing the length of the hash output
does not have any effect on Chaum-Pedersen-FDH signature length. Thus, we
assume that H is a random oracle with 2k-bit outputs. The proof of Theorem 9
can be found in the full version [BL19].

Theorem 9. The Chaum-Pedersen-FDH signature scheme is (N, qH, qG, qS,

O
(

q+N
2k

))
-MU-UF-CMA secure under the generic group model of prime order

638 J. Blocki and S. Lee

p ≈ 22k and the programmable random oracle model, where q denotes the total
number of queries made by an adversary.

We can also show that the key-prefixed Chaum-Pedersen-FDH signature
scheme is secure against proprocessing attacks. That is, we apply key-prefixing
when computing e, i.e. e ← H(pk‖h‖y‖a‖b) during the signing procedure and
e′ ← H(pk‖h‖y′‖a′‖b′) during the verification (see the full version [BL19] for the
figure). During the online phase we can request a signature σ for m and output
σ′ = σ as our forgery for m′. We defer the full proof of Theorem 10 to the full
version [BL19].

Theorem 10. Let Π = (Kg,Sign,Vfy) be a key-prefixed Chaum-Pedersen-FDH
signature scheme and p > 22k be a prime number. Let N ∈ N be a parameter and
(Apre

sig ,Aon
sig) be a pair of generic algorithms with an encoding map τ : Zp → G such

that Apre
sig makes at most qpreH < 23k queries to the random oracle H : {0, 1}∗ →

{0, 1}2k and outputs an S-bit hint strτ,H, and Aon
sig makes at most qonG := qonG (k)

queries to the generic group oracles and at most qonH queries to the random oracle.

Then Pr
[
SigForgeτ,N

Aon
sig,strτ,H

,Π(k) = 1
]

≤ ε, with

ε = Õ
(

SN(qon
G +N)(qon

G +2N)
p

)
+ Nqpre

H qon
S

p2 + qon
S (qon

S +qon
H)

p + 4(qon
H +q̃2

on+1)
22k + 3N2(S+2k)

2p ,

where qonS denotes the number of queries to the signing oracle, q̃on = qonH + 2qonS ,
and the randomness is taken over the selection of τ and the random coins of Aon

sig

(the hint strτ,H = Apre,GO
sig (g) is selected independently of the random coins used

by the challenger).

Applying Theorem 10, we can fix p such that p ≈ 22kSN log p to achieve k
bits of multi-user security. The final signature size would be ≈ 8k + 4 log S +
4 log N + 4 log(2k + log SN).

Security Analysis of Katz-Wang Signatures. The Katz-Wang signature scheme
[KW03] is a double generator version of Schnorr signature scheme. In the generic
group model on a cyclic group G of prime order p, we have two generators
p1, p2 ∈ Zp so that we can associate with gp1 and gp2 to the generators of the
group G. Here, the message space for m is arbitrary, i.e., m ∈ {0, 1}∗.

Given our encoding τ : Zp → G and g = τ(1), our key generation algorithm
picks sk ←$ Zp and sets pk = (p1, p2, h1, h2), where hi = Pow(τ(pi), sk) for
i = 1, 2. To sign a message m ∈ {0, 1}∗ with the secret key sk, we sample
r ←$ Zp, and compute ai = Pow(τ(pi), r) for i = 1, 2, e = H(pk‖a1‖a2‖m), and
s = r + sk · e mod p. Finally, we output σ = (s, e). The verification algorithm
takes as inputs a signature σ′ = (s′, e′), pk = (p1, p2, h1, h2) and the message m,
and compute a′

i = Mult(Pow(τ(pi), s′), Pow(Inv(hi), e′)) for i = 1, 2. Finally, we
verify that e′ = H(pk‖a′

1‖a′
2‖m) before accepting the signature. The pseudocode

for each of these algorithms can be found in the full version [BL19].
We remark that the length of a regular Katz-Wang signature is 4k bits when

p ≈ 22k. Similar to short Schnorr signatures, one can shorten the length of the

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 639

Signj(mi) without secret key xj , j ∈ [N] (Chaum-Pedersen-FDH)

1 : Pick si and ei ∈ Zp randomly
2 : Compute si = Pow(g, si) and hij = Pow(g,H(pkj mi))
3 : Compute yi = Pow(pkj ,H(pkj mi))
4 : Compute ai = Mult(si, Pow(Inv(pkj), ei))
5 : Compute bi = Mult(Pow(hij , si), Pow(Inv(yi, ei)))
6 : if H(hij yi ai bi) ∈ prior query then
7 : return ⊥
8 : else Program H(hij yi ai bi) := ei
9 : return σi = (yi,ai,bi, si)

Signj(mi) without secret key xj , j ∈ [N] (Katz-Wang)

1 : Pick si, ei ∈ Zp randomly
2 : Compute a1,i = Mult(Pow(τ (p1), si), Pow(Inv(Pow(τ (xj), p1)), ei))
3 : Compute a2,i = Mult(Pow(τ (p2), si), Pow(Inv(Pow(τ (xj), p2)), ei))
4 : if H(pkj a1,i a2,i mi) ∈ prior query then
5 : return ⊥
6 : else Program H(pkj a1,i a2,i mi) := ei

7 : return σi = (si, ei)

Fig. 3. The signing oracle without secret key in the Chaum-Pedersen-FDH scheme
(top) and the Katz-Wang scheme (bottom). Note that pkj = τ(xj) is public in both
schemes while the signing oracle has no information about xj . We further remark that
in the key-prefixed Chaum-Pedersen-FDH scheme, the only difference is to do a key-
prefixing pkj = τ(xj) to the input of the random oracle (line 6 and 8).

hash output to k bits to obtain 3k bit signature. Essentially the same reduc-
tion can be used to demonstrate the multi-user security of (short) Katz-Wang
signatures, while we use the signing oracle in Fig. 3 without the secret key.

We observe that Katz-Wang signature is already key-prefixed. The security
bounds in Theorem 11 and Theorem 12 are equivalent to our bounds for short
Schnorr signatures with and without pre-processing. Thus, we obtain 3k (resp.
3k+log N +log S+log(2k+log NS))-bit signatures with k bits of security in the
multi-user setting without preprocessing (resp. with preprocessing). As before in
the preprocessing setting we select our prime number p ≈ 22kNS log(2k+log NS)
and we fix the length of the hash output to be k1 = k. We defer the full proof
of Theorem 11 and Theorem 12 to the full version [BL19].

Theorem 11. The (short) Katz-Wang signature scheme is (N, qH, qG, qS,

O
(

q+N
2k

))
-MU-UF-CMA secure under the generic group model of prime order

p ≈ 22k and the programmable random oracle model, where q denotes the total
number of queries made by an adversary.

Kiltz et al. [KMP16] showed that if the decisional Diffie-Hellman problem
is (t, ε)-hard then an adversary who tries to forge one out of N (regular) Katz-

640 J. Blocki and S. Lee

Wang signatures running at most time t′ can succeed with the probability ε′ ≤
t′(4ε/t + qS/p + 1/2k). While their result is similar to Theorem 11, our bounds
apply to (short) Katz-Wang signatures, with and without preprocessing.

Theorem 12. Let Π = (Kg,Sign,Vfy) be a Katz-Wang signature scheme and
p > 22k be a prime number. Let N ∈ N be a parameter and (Apre

sig ,Aon
sig) be a pair

of generic algorithms with an encoding map τ : Zp → G such that Apre
sig makes at

most qpreH < 23k queries to the random oracle at most qpreH < 23k queries to the
random oracle H : {0, 1}∗ → {0, 1}k1 and outputs an S-bit hint strτ,H, and Aon

sig

makes at most qonG := qonG (k) queries to the generic group oracles and at most qonH

queries to the random oracle. Then Pr
[
SigForgeτ,N

Aon
sig,strτ,H

,Π(k) = 1
]

≤ ε, with

ε = Õ
(

SN(qon
G +N)(qon

G +2N)
p

)
+ Nqpre

H qon
S

p2 + qon
S (qon

S +qon
H)

p + 4(qon
H +1)

2k1
+ N2(S+k1)

p ,

where qonS denotes the number of queries to the signing oracle and the randomness
is taken over the selection of τ and the random coins of Aon

sig (the hint strτ,H =
Apre,GO

sig (g) is selected independently of the random coins used by the challenger).

Acknowledgements. Jeremiah Blocki was supported in part by the National Science
Foundation under NSF CAREER Award CNS-2047272 and NSF Awards CNS-1704587
and CNS-1755708 and CCF-1910659. Seunghoon Lee was supported in part by NSF
Award CNS-1755708 and by the Center for Science of Information (NSF CCF-0939370).
The opinions in this paper are those of the authors and do not necessarily reflect the
position of the National Science Foundation.

References

[AB20] Kilinc Alper, H., Burdges, J.: Two-round trip Schnorr multi-signatures
via delinearized witnesses. Cryptology ePrint Archive, Report 2020/1245
(2020). https://eprint.iacr.org/2020/1245

[BCJ08] Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the
discrete logarithm assumption and a generalized forking lemma. In: Ning,
P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 449–458. ACM Press,
October 2008

[BD20] Bellare, M., Dai, W.: The multi-base discrete logarithm problem: tight
reductions and non-rewinding proofs for Schnorr identification and
signatures. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.)
INDOCRYPT 2020. LNCS, vol. 12578, pp. 529–552. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-65277-7 24

[Ber15] Bernstein, D.J.: Multi-user Schnorr security, revisited. Cryptology ePrint
Archive, Report 2015/996 (2015). http://eprint.iacr.org/2015/996

[BL12] Bernstein, D.J., Lange, T.: Two grumpy giants and a baby. Cryptology
ePrint Archive, Report 2012/294 (2012). http://eprint.iacr.org/2012/294

[BL19] bibitem[BL19]ch21cryptoeprint:2019:1105 Blocki, J., Lee, S.: On the multi-
user security of short Schnorr signatures with preprocessing. Cryptology
ePrint Archive, Report 2019/1105 (2019). https://ia.cr/2019/1105

https://eprint.iacr.org/2020/1245
https://doi.org/10.1007/978-3-030-65277-7_24
http://eprint.iacr.org/2015/996
http://eprint.iacr.org/2012/294
https://ia.cr/2019/1105

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 641

[BLS04] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pair-
ing. J. Cryptol. 17(4), 297–319 (2004). https://doi.org/10.1007/s00145-
004-0314-9

[BN06] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model
and a general forking lemma. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S. (eds.) ACM CCS 2006, pp. 390–399. ACM Press, Octo-
ber/November 2006

[BNPS03] Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-
more-RSA-inversion problems and the security of Chaum’s blind signa-
ture scheme. J. Cryptol. 16(3), 185–215 (2003). https://doi.org/10.1007/
s00145-002-0120-1

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R.,
Sandhu, R.S., Ashby, V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

[CK18] Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with pre-
processing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part
II. LNCS, vol. 10821, pp. 415–447. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 14

[CP93] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-48071-4 7

[DEF+19] Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019
IEEE Symposium on Security and Privacy, pp. 1084–1101. IEEE Computer
Society Press, May 2019

[Den02] Dent, A.W.: Adapting the weaknesses of the random oracle model to the
generic group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 100–109. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-36178-2 6

[DS19] Derler, D., Slamanig, D.: Key-homomorphic signatures: definitions and
applications to multiparty signatures and non-interactive zero-knowledge.
Des. Codes Cryptogr. 87(6), 1373–1413 (2018). https://doi.org/10.1007/
s10623-018-0535-9

[Fis00] Fischlin, M.: A note on security proofs in the generic model. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 458–469. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-44448-3 35

[fIS18] Federal Office for Information Security. Elliptic curve cryptography, version
2.1. Technical Guideline BSI TR-03111, June 2018

[FJS14] Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for
Schnorr signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part
I. LNCS, vol. 8873, pp. 512–531. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-45611-8 27

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[fSC18] International Organization for Standardization and International Elec-
trotechnical Commission. It security techniques - digital signatures with
appendix - part 3: Discrete logarithm based mechanisms. ISO/IEC 14888–
3, November 2018

https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-36178-2_6
https://doi.org/10.1007/3-540-36178-2_6
https://doi.org/10.1007/s10623-018-0535-9
https://doi.org/10.1007/s10623-018-0535-9
https://doi.org/10.1007/3-540-44448-3_35
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12

642 J. Blocki and S. Lee

[FST10] Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic
curves. J. Cryptol. 23(2), 224–280 (2010). https://doi.org/10.1007/s00145-
009-9048-z

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, Octo-
ber 2013

[GHS02] Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of
Weil descent on elliptic curves. J. Cryptol. 15(1), 19–46 (2002). https://
doi.org/10.1007/s00145-001-0011-x

[GMLS02] Galbraith, S., Malone-Lee, J., Smart, N.P.: Public key signatures in the
multi-user setting. Inf. Process. Lett. 83(5), 263–266 (2002)

[GWZ15] Galbraith, S.D., Wang, P., Zhang, F.: Computing elliptic curve discrete log-
arithms with improved baby-step giant-step algorithm. Cryptology ePrint
Archive, Report 2015/605 (2015). http://eprint.iacr.org/2015/605

[Hao17] Hao, F.: Schnorr Non-interactive Zero-Knowledge Proof. RFC 8235,
September 2017

[JMV01] Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature
algorithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001). https://doi.org/
10.1007/s102070100002

[JS08] Jager, T., Schwenk, J.: On the equivalence of generic group models. In:
Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324,
pp. 200–209. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-88733-1 14

[KM07] Koblitz, N., Menezes, A.: Another look at generic groups (2007)
[KMP16] Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from

identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part II. LNCS, vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53008-5 2

[KW03] Katz, J., Wang, N.: Efficiency improvements for signature schemes with
tight security reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM
CCS 2003, pp. 155–164. ACM Press, October 2003

[LM17] Liang, B., Mitrokotsa, A.: Fast and adaptively secure signatures in the ran-
dom oracle model from indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2017/969 (2017). http://eprint.iacr.org/2017/969

[MPSW19] Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-
signatures with applications to bitcoin. Des. Codes Cryptogr. 87(9), 2139–
2164 (2019). https://doi.org/10.1007/s10623-019-00608-x

[MVO91] Menezes, A., Vanstone, S.A., Okamoto, T.: Reducing elliptic curve log-
arithms to logarithms in a finite field. In: 23rd ACM STOC, pp. 80–89.
ACM Press, May 1991

[Nec94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete
logarithm. Math. Notes 55, 165–172 (1994). https://doi.org/10.1007/
BF02113297

[NRS20] Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round Schnorr multi-
signatures. Cryptology ePrint Archive, Report 2020/1261 (2020). https://
eprint.iacr.org/2020/1261

[NRSW20] Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: Schnorr multi-
signatures with verifiably deterministic nonces. Cryptology ePrint Archive,
Report 2020/1057 (2020). https://eprint.iacr.org/2020/1057

https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/s00145-001-0011-x
https://doi.org/10.1007/s00145-001-0011-x
http://eprint.iacr.org/2015/605
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/978-3-540-88733-1_14
https://doi.org/10.1007/978-3-540-88733-1_14
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
http://eprint.iacr.org/2017/969
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/BF02113297
https://doi.org/10.1007/BF02113297
https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1057

On the Multi-user Security of Short Schnorr Signatures with Preprocessing 643

[NSW09] Neven, G., Smart, N., Warinschi, B.: Hash function requirements for
Schnorr signatures. J. Math. Cryptol. 3, 05 (2009)

[PH06] Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms
over GF (p) and its cryptographic significance (corresp.). IEEE Trans. Inf.
Theor. 24(1), 106–110 (2006)

[Pol78] Pollard, J.M.: Monte Carlo methods for index computation mod p. Math.
Comput. 32, 918–924 (1978)

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 33

[RW14] Ramchen, K., Waters, B.: Fully secure and fast signing from obfuscation.
In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 659–673. ACM
Press, November 2014

[Sch90] Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 22

[Seu12] Seurin, Y.: On the Exact security of Schnorr-type signatures in the random
oracle model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 554–571. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 33

[Sha71] Shanks, D.: Class number, a theory of factorization, and genera. In: 1969
Number Theory Institute (Proceedings of Symposia in Pure Mathematics,
Vol. XX, State University of New York, Stony Brook, N.Y., 1969), pp.
415–440 (1971)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

[SJ00] Schnorr, C.-P., Jakobsson, M.: Security of signed ElGamal encryption.
In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 7

[Sma99] Smart, N.P.: The discrete logarithm problem on elliptic curves of trace one.
J. Cryptol. 12(3), 193–196 (1999). https://doi.org/10.1007/s001459900052

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–
484. ACM Press, May/June 2014

[WZ11] Wang, P., Zhang, F.: Computing elliptic curve discrete logarithms with
the negation map. Cryptology ePrint Archive, Report 2011/008 (2011).
http://eprint.iacr.org/2011/008

https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-44448-3_7
https://doi.org/10.1007/s001459900052
http://eprint.iacr.org/2011/008

Multi-Designated Receiver Signed Public
Key Encryption

Ueli Maurer1, Christopher Portmann2, and Guilherme Rito1(B)

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
{maurer,gteixeir}@inf.ethz.ch
2 Concordium, Zürich, Switzerland

cp@concordium.com

Abstract. This paper introduces a new type of public-key encryption
scheme, called Multi-Designated Receiver Signed Public Key Encryp-
tion (MDRS-PKE), which allows a sender to select a set of designated
receivers and both encrypt and sign a message that only these receivers
will be able to read and authenticate (confidentiality and authenticity).
An MDRS-PKE scheme provides several additional security properties
which allow for a fundamentally new type of communication not consid-
ered before. Namely, it satisfies consistency—a dishonest sender cannot
make different receivers receive different messages—off-the-record—a dis-
honest receiver cannot convince a third party of what message was sent
(e.g., by selling their secret key), because dishonest receivers have the
ability to forge signatures—and anonymity—parties that are not in the
set of designated receivers cannot identify who the sender and designated
receivers are.

We give a construction of an MDRS-PKE scheme from standard
assumptions. At the core of our construction lies yet another new type of
public-key encryption scheme, which is of independent interest: Public
Key Encryption for Broadcast (PKEBC) which provides all the security
guarantees of MDRS-PKE schemes, except authenticity.

We note that MDRS-PKE schemes give strictly more guarantees than
Multi-Designated Verifier Signature (MDVS) schemes with privacy of
identities. This in particular means that our MDRS-PKE construction
yields the first MDVS scheme with privacy of identities from standard
assumptions. The only prior construction of such schemes was based on
Verifiable Functional Encryption for general circuits (Damg̊ard et al.,
TCC ’20).

1 Introduction

1.1 Public Key Encryption Security Properties

The most common use case for cryptography is sending a message to a single
receiver. Here one usually desires to have confidentiality (only the desired receiver
can read the message) and authenticity (the receiver is convinced that the mes-
sage is from the declared sender). Although one might be interested in signatures
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 644–673, 2022.
https://doi.org/10.1007/978-3-031-07085-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_22&domain=pdf
http://orcid.org/0000-0002-0080-8670
https://doi.org/10.1007/978-3-031-07085-3_22

Multi-Designated Receiver Signed Public Key Encryption 645

that can be publicly verified (e.g. for a judge to verify a contract), when trying
to protect the privacy of personal communication one often wants the opposite:
not only is the intended receiver the only one that can verify the signature, but
even if this person sells their secret key, no third party will be convinced of the
authenticity of the message. This latter property is called off-the-record in the
Designated Verifier Signature (DVS) literature [12,16,19–21,23,29–31], and is
achieved by designing the scheme so that the receiver’s secret key can be used
to forge signatures. One may take this a step further and require anonymity, i.e.
third parties cannot even learn who the sender and receiver are (this is called
privacy of identities in the (M)DVS literature) [12].1

Another setting of interest is where the message is sent to many recipients.
Consider, for example, the case of sending an email to multiple receivers. Apart
from all the security properties listed above, here one would additionally require
consistency : all the (intended) receivers will get the same email when decrypting
the same ciphertext, even if the sender is dishonest. We note that it is crucial that a
receiver can decrypt ciphertexts using only their secret key, i.e. without having to
use the public key of the sender and other receivers. It is common in the literature
to assume that the receiver knows who the sender and other receivers are so that
their public keys can be used for decryption [6,22]. But in many contexts adding
this information in plain to the ciphertext would violate crucial properties, e.g.,
in broadcast encryption the ciphertext size would not be small any longer and in
MDVS schemes anonymity (privacy) would be violated [22].

Many different schemes have been introduced in the literature that satisfy
some of the properties listed here, see Sect. 1.5. In this work we propose two
new primitives, Public Key Encryption for Broadcast (PKEBC) and Multi-
Designated Receiver Signed Public Key Encryption (MDRS-PKE), which we
explain in the following two subsections.

1.2 Public Key Encryption for Broadcast

The first type of primitive that we introduce, PKEBC, can be seen as an
extension of Broadcast Encryption (BE) [13] which additionally gives consis-
tency guarantees in the case of a dishonest sender.2 More specifically, we expect
PKEBC schemes to provide the following guarantees:

Correctness If a ciphertext c is honestly generated as the encryption of a mes-
sage m with respect to a vector of receivers, say �R := (Bob,Charlie), then
we want that if Bob is honest and decrypts c using its secret key, it obtains
a pair ((pkBob, pkCharlie),m), where pkBob and pkCharlie are, respectively,
Bob’s and Charlie’s public keys;

1 With off-the-record, a third party will know that either the alleged sender or the
receiver wrote the message, whereas anonymity completely hides who the sender
and receiver are. However, anonymity only holds when the receiver is honest whereas
off-the-record provides guarantees against a dishonest receiver.

2 Though BE usually requires the ciphertext size to be sublinear in the number of
receivers, which PKEBC does not.

646 U. Maurer et al.

Robustness Let c be the ciphertext from above. We do not want Dave, who
is honest but yet not an intended receiver of c, to think c was meant for
himself. In other words, we do not want Dave to successfully decrypt c.

Consistency Now consider a dishonest party Alice who wants to confuse Bob
and Charlie, both of whom are honest. We do not want Alice to be capable of
creating a ciphertext c such that when Bob decrypts c, it obtains some pair
((pkBob, pkCharlie),m), but when Charlie decrypts c it obtains some different
pair. Instead, we want that if Bob obtains a pair ((pkBob, pkCharlie),m), then
so will Charlie (and vice-versa).

Confidentiality Now, suppose that Alice is honest. If Alice encrypts a message
m to Bob and Charlie (who are both honest), we do not want Eve, who is
dishonest, to find out what m is.

Anonymity Finally, suppose there are two more honest receivers, say Frank
and Grace, to whom Alice could also be sending a message to. If, again,
Alice encrypts a message m to both Bob and Charlie, and letting c be the
corresponding ciphertext, we do not want Eve to find out that the receivers
of ciphertext c are Bob and Charlie; in fact, we do not want Eve to learn any-
thing about the intended receivers of c, other than the number of receivers.

The formal definitions of PKEBC are given in Sect. 3. In Sect. 4 we show
how to construct a PKEBC from standard assumptions. Our construction is a
generalization of Naor-Yung’s scheme [26] that enhances the security guarantees
given by the original scheme. In particular, as we will see if the underlying
PKE scheme is anonymous, then this anonymity is preserved by the PKEBC
construction.

One important difference from other public key schemes for multiple parties
is that to decrypt, a receiver only needs to know their own secret key; the decryp-
tion of a ciphertext yields not only the underlying plaintext but also the set of
receivers for the ciphertext. This then allows the corresponding public keys to
be used as needed.3

1.3 Multi-Designated Receiver Signed Public Key Encryption

Our main primitive has all of the properties listed in Sect. 1.1. Namely, a
MDRS-PKE scheme is expected to provide the following guarantees:

Correctness If a ciphertext c is honestly generated as the encryption of a
message m from a sender Alice to a vector of receivers �R := (Bob,Charlie)
then we want that if Bob is honest and decrypts c using its secret key, it
obtains a triple (spkAlice, (rpkBob, rpkCharlie),m), where spkAlice is Alice’s
public sending key, and rpkBob and rpkCharlie are, respectively, Bob’s and
Charlie’s receiver public keys;

Consistency Now consider a dishonest party Donald who is a sender and wants
to confuse Bob and Charlie, both of whom are honest. We do not want

3 We note that this is only important since we want to achieve anonymity, otherwise
once could send the public keys of the other parties together with the ciphertext.

Multi-Designated Receiver Signed Public Key Encryption 647

Donald to be able to create a ciphertext c such that when Bob decrypts
c, it obtains some triple (spkDonald, (pkBob, pkCharlie),m), but when Charlie
decrypts c it obtains some different triple (or does not even decrypt). Instead,
we want that if Bob obtains a triple (spkDonald, (pkBob, pkCharlie),m), then
so will Charlie (and vice-versa).

Unforgeability We do not want that Eve can forge a ciphertext as if it were
from an honest sender, say Alice, to a vector of receivers Bob and Charlie.

Confidentiality If an honest sender Alice encrypts a message m to Bob and
Charlie (who are both honest), we do not want Eve, who is dishonest, to
find out what m is.

Anonymity Suppose there is another honest sender, say Heidi. If Alice encrypts
a message m to Bob, and letting c be the corresponding ciphertext, we do
not want Eve to find out that Alice is the sender or that Bob is the receiver;
Eve should at most learn that someone sent a message to a single receiver.

Off-The-Record Suppose Alice sends a message to Bob, Charlie and Donald.
Donald, being dishonest, might be enticed to try convincing Eve that Alice
sent some message. However, we do not want Donald to have this capability.

The formal definitions of MDRS-PKE are given in Sect. 5. In Sect. 6 we show
how to construct a MDRS-PKE from standard assumptions. As we will see, our
construction essentially consists of using the MDVS scheme to sign messages,
and then using the PKEBC scheme to encrypt the signed messages, together
with their MDVS signatures.

Since an MDRS-PKE scheme is an extension of an MDVS scheme with pri-
vacy of identities and confidentiality, any MDRS-PKE scheme yields an MDVS
scheme with privacy of identities. Since we give an MDRS-PKE scheme which is
secure under standard assumptions, this in particular implies that our construc-
tion is the first achieving privacy of identities from standard assumptions. The
only previous construction of an MDVS scheme with privacy of identities relied
on a Verifiable Functional Encryption scheme for general circuits [12].

1.4 Applications to Secure (Group) Messaging

As we now discuss, one main application of MDRS-PKE schemes is secure mes-
saging, and in particular secure group messaging.

Suppose Alice and Bob are using a secure messaging application to chat with
each other. Of course, they expect the messenger to provide basic guarantees such
as Correctness—if Alice sends a message to Bob, Bob receives this message—
Confidentiality—no one other than Alice and Bob should learn the contents of
the messages—and Authenticity—if Alice reads a message m, then Bob must
have sent m. Another desirable guarantee they could expect from the messenger
is Anonymity : suppose that in parallel to Alice and Bob’s chat, Charlie and
Dave are also chatting; then, if a third party Eve intercepts a ciphertext c from
Alice and Bob’s chat and Eve cannot a priori tell that c came from and/or is
addressed to Alice or Bob, then Eve should not gain any additional information
about the identity of c’s sender and/or receiver from inspecting the contents of

648 U. Maurer et al.

ciphertext c itself (in other words, Eve cannot tell if the ciphertext is from Alice
and Bob’s chat, from Alice and Charlie’s chat, from Bob and Charlie’s chat, or
from Charlie and Dave’s chat). Finally, imagine that Bob, who wants to keep the
history of his chat with Alice, outsources the storage of the chat’s ciphertexts
to an external storage service which reliably, but not authentically, stores these
ciphertexts. An important additional guarantee Alice expects from the messaging
application is Off-The-Record Deniability (Off-The-Record) [10,12]: if, somehow,
Eve manages to access whatever is stored by Bob’s storage service, Eve cannot
tell by inspecting the stored ciphertexts, even if Bob chooses to cooperate with
Eve4, if these ciphertexts are authentic ones corresponding to real messages sent
by Alice to Bob in their chat, or if they are fake ones generated by Bob (in case
Bob is cooperating with Eve) or generated by anyone else (in case Bob is not
cooperating with Eve) to incriminate Alice.

A related, yet very different property that secure messaging applications
like Signal [11] provide is Forward Secrecy [17]. Informally, Forward Secrecy
guarantees that even if Eve stores any ciphertexts received by Bob and later hacks
into Bob’s computer to learn his secret key, Eve cannot learn the decryptions (i.e.
the plaintexts) of the ciphertexts she previously intercepted. Off-The-Record,
on the other hand, does not give any guarantees about hiding the contents of
previously exchanged messages. However, it hides from Eve whether Alice really
sent a message m to Bob or if Bob faked receiving m. Furthermore, Forward
Secrecy assumes Bob is honest: if Bob were dishonest, he could simply store the
decryptions of the ciphertexts he receives to later disclose them to Eve. Off-The-
Record does not make such assumption: even if Bob is dishonest, Eve cannot
tell if it was Alice sending a message m, or if Bob faked receiving m from Alice
(in case Bob is dishonest), or anyone else faked Alice sending m to Bob (in
case Bob is honest). Finally, as one can deduce, Forward Secrecy is incompatible
with parties keeping a history of their chats, whereas this is not the case for
Off-The-Record. A different problem is Alice’s computer getting hacked by Eve.
In such scenario it would be desirable to still give the Off-The-Record guarantee
to Alice: Eve should not be able to tell if Alice ever sent any message or not.
However, current Off-The-Record notions [12], including the one given in this
paper, do not capture this.

A natural generalization of two party secure messaging is secure group mes-
saging [2,12]. Suppose Alice, Bob and Charlie now share a group chat. The key
difference between Alice, Bob and Charlie sharing a group chat or having multi-
ple two party chats with each other is Consistency : even if Charlie is dishonest,
he cannot create confusion among Alice and Bob as to whether he sent a mes-
sage to the group chat or not [12]. In other words, honest group members have
a consistent view of the chat. Surprisingly, for the case of MDVS, this guarantee
was only recently introduced by Damg̊ard et al. in [12].

To achieve Off-The-Record in the group messaging case, one must consider
that any subset of the parties participating in the group chat may be dishon-

4 By Bob collaborating with Eve we mean that Bob shares all his secrets (including
secret keys) with Eve.

Multi-Designated Receiver Signed Public Key Encryption 649

est [12]. This property, also known as Any-Subset Off-The-Record Deniability
(or more simply Off-The-Record) was first introduced by Damg̊ard et al. in [12].
Returning to Alice, Bob and Charlie’s group chat, this property essentially guar-
antees that regardless of who (among Bob and Charlie) cooperate with Eve in
trying to convince her that Alice sent some message, Eve will not be convinced
because any of them (or the two together) could have created a fake message to
pretend that Alice sent it.

1.5 Related Work

A closely related type of encryption scheme are Broadcast Encryption (BE)
schemes [9,13]. However, BE schemes do not give the consistency guarantee that
PKEBC give; the main goal of BE schemes is actually making ciphertexts short—
ideally the size of ciphertexts would be independent from the number recipients.
Conversely, the size of the ciphertexts of the PKEBC scheme construction we
give in this paper grows quadratically with the number of recipients. Diament
et al. introduce a special type of BE scheme, called Dual-Receiver Encryption
schemes, which allow a sender to send messages to two (and only two) receivers.
By limiting the number of receivers to two receivers, these schemes allow for
efficient constructions with relatively short ciphertexts and public keys from
standard assumptions.

As already mentioned, PKEBC schemes allow receivers to decrypt a cipher-
text meant for multiple receivers using their secret key only. This problem had
been noticed before by Barth et al. in [6], and by Libert et al. in [22]. Barth et
al. modify the definition of BE schemes in a way that allows receivers to decrypt
ciphertexts without knowing who the other recipients are a priori [6]. Libert et
al. strengthens this by guaranteeing that receivers do not learn who the other
receivers are, even after decrypting ciphertexts.

Other closely related works are Multi-Designated Verifier Signature (MDVS)
schemes [12]. They provide consistency, authenticity, and off-the record and
sometimes also anonymity (called privacy). However, to the best of our knowl-
edge, MDVS schemes require the public keys of the sender and other designated
receivers to be used to verify signatures, and the existing literature does not
discuss how the receiver gets that information, e.g. sending this information in
plain would violate privacy. Thus, existing constructions of MDVS with privacy
can only be used if the number of combinations of possible sender and receivers
is small enough that all combinations can be tried by the verifier.

2 Preliminaries

We now introduce conventions and notation we use throughout the paper. We
denote the arity of a vector �x by |�x| and its i-th element by xi. We write α ∈ �x to
denote ∃i ∈ {

1, . . . , |�x|} with α = xi. We write Set(�x) to denote the set induced
by vector �x, i.e. Set(�x) :=

{
xi | xi ∈ �x

}
.

650 U. Maurer et al.

Throughout the paper we frequently use vectors. We use upper case letters to
denote vectors of parties, and lower case letters to denote vectors of artifacts such
as public keys, messages, sequences of random coins, and so on. Moreover, we use
the convention that if �V is a vector of parties, then �v denotes �V ’s corresponding
vector of public keys. For example, for a vector of parties �V := (Bob,Charlie),
�v := (pkBob, pkCharlie) is �V ’s corresponding vector of public keys. In particular,
V1 is Bob and v1 is Bob’s public key pkBob, and V2 is Charlie and v2 is Charlie’s
public key pkCharlie. More generally, for a vector of parties �V with corresponding
vector of public keys �v, Vi’s public key is vi, for i ∈ {

1, . . . , |�V |}.

3 Public Key Encryption for Broadcast Schemes

We now introduce the first new type of scheme we give in this paper, namely
Public Key Encryption for Broadcast (PKEBC). A PKEBC scheme Π with
message space M is a quadruple Π = (S,G,E,D) of Probabilistic Polynomial
Time Algorithms (PPTs), where:

– S: on input 1k, generates public parameters pp;
– G: on input pp, generates a receiver key-pair;
– E: on input (pp, �v,m), where �v is a vector of public keys of the intended

receivers and m is the message, generates a ciphertext c;
– D: on input (pp, sk, c), where sk is the receiver’s secret key, D decrypts c

using sk, and outputs the decrypted receiver-vector/message pair (�v,m) (or
⊥ if the ciphertext did not decrypt correctly).

3.1 The Security of PKEBC Schemes

We now state the definitions of Correctness, Robustness, Consistency, and IND-
CCA-2 and IK-CCA-2 security for PKEBC schemes. Before proceeding to the
actual definitions, we first introduce some oracles the game systems from Defini-
tions 1, 2 and 3 use. In the following, consider a PKEBC scheme Π = (S,G,E,D)
with message space M. The oracles below are defined for a game-system with
(an implicitly defined) security parameter k:

Public Parameters Oracle: OPP

1. On the first call, compute and store pp ← S(1k); output pp;
2. On subsequent calls, output the previously generated pp.

Secret Key Generation Oracle: OSK(Bj)
1. If OSK was queried on Bj before, simply look up and return the previously

generated key for Bj ;
2. Otherwise, store (pkj , skj) ← G(pp) as Bj ’s key-pair, and output (pkj ,

skj).
Public Key Generation Oracle: OPK(Bj)

1. (pkj , skj) ← OSK(Bj);
2. Output pkj .

Multi-Designated Receiver Signed Public Key Encryption 651

Encryption Oracle: OE(�V ,m)
1. �v ← (OPK(V1), . . . ,OPK(V|�V |));
2. Create and output a fresh encryption c ← Epp,�v(m).

In addition to the oracles above, the game systems from Definitions 1 and 2
further provide adversaries with access to the following oracles:

Decryption Oracle: OD(Bj , c)
1. Query OSK(Bj) to obtain the corresponding secret-key skj ;
2. Decrypt c using skj , (�v,m) ← Dpp,skj

(c), and then output the resulting
receivers-message pair (�v,m), or ⊥ (if (�v,m) = ⊥, i.e. the ciphertext is
not valid with respect to Bj ’s secret key).

Definition 1 (Correctness). Consider the following game played between
between an adversary A and game system GCorr:

– AOP P ,OP K ,OSK ,OE ,OD

A wins the game if there are two queries qE and qD to OE and OD, respectively,
where qE has input (�V ,m) and qD has input (Bj , c), satisfying Bj ∈ �V , the
input c in qD is the output of qE, the output of qD is either ⊥ or (�v′,m′) with
(�v,m) �= (�v′,m′), and A did not query OSK on input Bj.

The advantage of A in winning the Correctness game, denoted AdvCorr(A),
is the probability that A wins game GCorr as described above.

We say that an adversary A (εCorr, t)-breaks the (n, dE , qE , qD)-Correctness
of a PKEBC scheme Π if A runs in time at most t, queries OPK , OE and OD

on at most n different parties5, makes at most qE and qD queries to OE and OD,
respectively, with the sum of lengths of the party vectors input to OE being at
most dE , and satisfies AdvCorr(A) ≥ εCorr.

The following notion captures the guarantee that if a ciphertext c is an hon-
estly generated ciphertext for a vector of receivers �R (for some message), then no
honest receiver B who is not one of the intended receivers of c can successfully
decrypt c (i.e. if B �∈ �R then the decryption of c with B’s secret key outputs
⊥). As one might note, this notion is a variant of the Weak Robustness notion
introduced in [1], but adapted to PKEBC schemes.

Definition 2 (Robustness). Consider the following game played between an
adversary A and game system GRob:

– AOP P ,OP K ,OSK ,OE ,OD

A wins the game if there are two queries qE and qD to OE and OD, respectively,
where qE has input (�V ,m) and qD has input (Bj , c), satisfying Bj �∈ �V , the input
c in qD is the output of qE, the output of qD is (�v′,m′) with (�v′,m′) �= ⊥, and
A did not query OSK on input Bj.
5 Here, querying on most n parties means that the number of different parties in

all queries is at most n. In particular, the number of different parties in a query
OE((B1, B2, B3), (. . .)) is 3, assuming B1 �= B2 �= B3 �= B1; the number of different
parties in a query OD(Bj , ·) is 1.

652 U. Maurer et al.

The advantage of A in winning the Robustness game is the probability that
A wins game GRob as described above, and is denoted AdvRob(A).

An adversary A (εRob, t)-breaks the Robustness of a PKEBC scheme Π if A
runs in time at most t and satisfies AdvRob(A) ≥ εRob.

Remark 1. Correctness and Robustness are properties only relevant to honest
parties. It is common in the literature to either define such security notions with-
out any adversary or to consider a stronger adversary that is unbounded or has
access to the honest parties’ secret keys. We choose the weaker definitions above
for two main reasons: first, it has been proven that analogous Correctness and
Robustness notions [1,5] for PKE schemes—also defined with respect to com-
putationally bounded adversaries who are not given access to the secret keys
of honest parties—imply (corresponding) composable security notions (see [5]
and [18]); second, since the remaining PKEBC security notions (e.g. IND-CCA-2
security) are defined with respect to computationally bounded adversaries that
cannot obtain the secret keys of honest parties, there is no advantage in consid-
ering strengthened Correctness and Robustness security notions. Nevertheless,
as we will see, if the PKE scheme underlying our PKEBC scheme’s construction
satisfies Correctness against unbounded adversaries, then the PKEBC scheme’s
construction can be proven to satisfy such stronger Correctness and Robustness
security notions.

We now introduce the notion of Consistency. Essentially, this notion captures
the guarantee that a dishonest sender cannot create confusion between any pair
of honest receivers as to whether they received some message m with respect to
a vector of receivers �R that includes both parties.

Definition 3 (Consistency). Consider the following game played between an
adversary A and game system GCons:

– AOP P ,OP K ,OSK ,OD

A wins the game if there is a ciphertext c such that OD is queried on inputs
(Bi, c) and (Bj , c) for some Bi and Bj (possibly with Bi = Bj), there is no
prior query on either Bi or Bj to OSK , query OD(Bi, c) outputs some (�v,m)
satisfying (�v,m) �= ⊥ with pkj ∈ �v (where pkj is Bj’s public key), and query
OD(Bj , c) does not output (�v,m).

The advantage of A in winning the Consistency game is denoted AdvCons(A)
and corresponds to the probability that A wins game GCons as described above.

We say that an adversary A (εCons, t)-breaks the (n, qD)-Consistency of Π
if A runs in time at most t, queries OSK , OPK and OD on at most n different
parties, makes at most qD queries to OD and satisfies AdvCons(A) ≥ εCons.

Remark 2. Similarly to Remark 1, Consistency is a security property only rele-
vant to honest receivers, for which reason Definition 3 disallows adversaries from
querying for the secret keys of honest receivers. It was proven in [24] that an
analogous Consistency notion for MDVS schemes (introduced in [12]) implies

Multi-Designated Receiver Signed Public Key Encryption 653

composable security. Yet, as we will see, if the PKE scheme underlying our
PKEBC scheme’s construction satisfies Correctness against unbounded adver-
saries, then our PKEBC scheme can be proven to satisfy a stronger Consistency
notion in which the adversary can query for any party’s secret key.

The two following security notions are the multi-receiver variants of IND-
CCA-2 security (introduced in [27]) and IK-CCA-2 security (introduced in [7]).
The games defined by these notions provide adversaries with access to the oracles
OPP and OPK defined above as well as to oracles OE and OD. For both notions,
OD is defined as follows:

Decryption Oracle: OD(Bj , c)
1. If c was the output of some query to OE , output test;
2. Otherwise, compute and output (�v,m) ← Dpp,skj

(c), where skj is Bj ’s
secret key.

The OE oracle provided by the IND-CCA-2 games differs from the one provided
by the IK-CCA-2 games; for IND-CCA-2, OE is as follows:

Encryption Oracle: OE(�V ,m0,m1)
1. For game system GIND-CCA-2

b , encrypt mb under �v (the vector of public
keys corresponding to �V); output c.

Adversaries do not have access to OSK in either notion.

Definition 4 (IND-CCA-2 Security). Consider the following game played
between an adversary A and a game system GIND-CCA-2

b , with b ∈ {
0, 1

}
:

– b′ ← AOP P ,OP K ,OE ,OD

A wins the game if b′ = b and every query OE(�V ,m0,m1) satisfies |m0| = |m1|.
We define the advantage of A in winning the IND-CCA-2 game as

AdvIND-CCA-2(A) :=
∣
∣
∣Pr[AGIND-CCA-2

0 = win] + Pr[AGIND-CCA-2
1 = win] − 1

∣
∣
∣.

For the IK-CCA-2 security notion, OE behaves as follows:

Encryption Oracle: OE(�V0, �V1,m)
1. For game system GIK-CCA-2

b , encrypt m under �vb, the vector of public keys
corresponding to �Vb, creating a fresh ciphertext c; output c.

Definition 5 (IK-CCA-2 Security). Consider the following game played
between an adversary A and a game system GIK-CCA-2

b , with b ∈ {
0, 1

}
:

– b′ ← AOP P ,OP K ,OE ,OD

A wins the game if b′ = b and every query OE(�V0, �V1,m) satisfies |�V0| = |�V1|.
We define the advantage of A in winning the IK-CCA-2 security game as

AdvIK-CCA-2(A) :=
∣
∣
∣Pr[AGIK-CCA-2

0 = win] + Pr[AGIK-CCA-2
1 = win] − 1

∣
∣
∣.

654 U. Maurer et al.

We say that an adversary A (εIND-CCA-2, t)-breaks (resp. (εIK-CCA-2, t)-breaks)
the (n, dE , qE , qD)-IND-CCA-2 (resp. (n, dE , qE , qD)-IK-CCA-2) security of Π if A
runs in time at most t, queries the oracles it has access to on at most n different
parties, makes at most qE and qD queries to oracles OE and OD, respectively,
with the sum of lengths of all the party vectors input to OE being at most dE ,
and satisfies AdvIND-CCA-2(A) ≥ εIND-CCA-2 (resp. AdvIK-CCA-2(A) ≥ εIK-CCA-2).

Finally, we say that Π is

(εCorr,εRob, εCons, εIND-CCA-2, εIK-CCA-2, t, n, dE , qE , qD)-secure,

if no adversary A:

– (εCorr, t)-breaks the (n, dE , qE , qD)-Correctness of Π;
– (εRob, t)-breaks the Robustness of Π;
– (εCons, t)-breaks the (n, qD)-Consistency of Π;
– (εIND-CCA-2, t)-breaks the (n, dE , qE , qD)-IND-CCA-2 security of Π; or
– (εIK-CCA-2, t)-breaks the (n, dE , qE , qD)-IK-CCA-2 security of Π.

4 A PKEBC Scheme from Standard Assumptions

We now present our construction of a PKEBC scheme. The construction is a
generalization of Naor-Yung’s scheme [26] that enhances the security guarantees
given by the original scheme. In particular, if the underlying PKE scheme is
anonymous, then this anonymity is preserved by the PKEBC construction. First,
while the scheme should preserve the anonymity of the underlying PKE scheme,
parties should still be able to obtain the vector of receivers from ciphertexts,
using only their own secret key. For this reason, the underlying PKE scheme
is used to encrypt not only the messages to be sent, but also the vector of
receivers to which each message is being sent to. As one might note, however,
to preserve the anonymity of the underlying PKE scheme, the NIZK proof that
proves the consistency of the ciphertexts for the various receivers can no longer
be a proof for a statement in which the public keys are part of the statement.
This introduces an extra complication since for some PKE schemes such as
ElGamal, for every ciphertext c and message m, there is a public key pk and a
sequence of random coins r such that c is an encryption of m under pk, using r
as the sequence of random coins for encrypting m. In particular, this means that
the NIZK proof is not actually proving the consistency of the ciphertexts. To
solve this issue, we further add a (binding) commitment to the vector of receiver
public keys used to encrypt each ciphertext, and then use the NIZK proof to
show that each ciphertext is an encryption of this same message under the public
keys of the vector to which the commitment is bound. Note, however, that this
is still not sufficient: despite now having the guarantee that if the NIZK proof
verifies then all ciphertexts are encryptions of the same plaintext with respect a
vector of public keys, since a party can still decrypt ciphertexts not meant for
itself without realizing it, it could happen that a receiver decrypts the wrong
ciphertext, thus getting the wrong vector of receivers-plaintext pair. To avoid

Multi-Designated Receiver Signed Public Key Encryption 655

this, the commitment additionally commits to the message being sent, and the
sequence of random coins used to create the commitment are now encrypted
along with the vector of public keys of the parties and the message being sent.
This then allows a receiver to recompute the commitment from the vector of
parties and message it decrypted. Given the commitment is binding, this implies
that if the recomputed commitment matches the one in the ciphertext then
decryption worked correctly (as otherwise the recomputed commitment would
not match the one in the ciphertext).

We note that our security reductions are tight, and that there are tightly
secure instantiations of each of the schemes we use as building blocks for our
construction. For instance, ElGamal could be used as the underlying IND-CPA
secure encryption scheme, as it is tightly multi-user multi-challenge IND-CPA
secure [8].6 Furthermore, we could use any perfectly correct PKE scheme as the
statistically binding commitment scheme needed by our scheme (in particular
ElGamal), and the tightly unbounded simulation sound NIZK scheme from [14].

Algorithm 1 gives a construction of a Public Key Encryption for Broad-
cast scheme Π = (S,G,E,D) from a Public Key Encryption scheme ΠPKE =
(G,E,D), a Commitment Scheme ΠCS = (GCRS , Commit, V erify) and a
Non Interactive Zero Knowledge scheme ΠNIZK = (GCRS , P rove, V erify, S :=
(SCRS , SSim)). Consider relation RCons defined as

RCons :=
{(

(crsCS, comm,�c), (ρ,�v,m,�r)
) |

|�c| = |�v|
∧ comm = ΠCS.Commitcrs(�v,m; ρ)

∧ (∀j ∈ {1, . . . , |�c|},∀b ∈ {0, 1},

cj,b = ΠPKE.Evj,b
(ρ,�v,m; rj,b)

)}
.

(4.1)

In Algorithm 1, we consider the language induced by RCons, which is defined as

LCons :=
{(

crsCS, comm,�c
) |

∃(ρ,�v,m,�r)
(
(crsCS, comm,�c), (ρ,�v,m,�r)

) ∈ RCons

}
.

(4.2)

4.1 Security Analysis of PKEBC Construction

We now prove the security of our PKEBC scheme construction. Refer to [25] for
a full proof of the following results.

Theorem 1. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE, qDPKE,Corr)-secure,
(4.3)

6 In the full version of this paper, we show that ElGamal is also tightly multi-user
multi-challenge IK-CPA secure under the DDH assumption (see [25]).

656 U. Maurer et al.

Algorithm 1. Construction of a PKEBC scheme Π = (S,G,E,D).
S(1k)

return (1k, ΠNIZK.GCRS(1k), ΠCS.GCRS(1k))

G(pp := (1k, crsNIZK, crsCS))

(pk0, sk0) ← ΠPKE.G(1k)

(pk1, sk1) ← ΠPKE.G(1k)

return
(
pk := (pk0, pk1), sk := ((pk0, sk0), (pk1, sk1))

)

E(pp := (1k, crsNIZK, crsCS), �v :=
(
(pk1,0, pk1,1), . . . , (pk|�v|,0, pk|�v|,1)

)
, m ∈ M)

ρ ← RandomCoins
comm ← ΠCS.CommitcrsCS (�v, m; ρ)

for (pkj,0
′, pkj,1

′) ∈ �v do
(rj,0, rj,1) ← (RandomCoins, RandomCoins)
(cj,0, cj,1) ← (ΠPKE.Epkj,0 (ρ, �v, m; rj,0), ΠPKE.Epkj,1 (ρ, �v, m; rj,1))

�r :=
(
(r1,0, r1,1), . . . , (r|�v|,0, r|�v|,1)

)

�c :=
(
(c1,0, c1,1), . . . , (c|�v|,0, c|�v|,1)

)

p ← ΠNIZK.ProvecrsNIZK

(
(crsCS, comm, �c) ∈ LCons, (�v, m, ρ, �r)

)

return (p, comm, �c)

D(pp := (1k, crsNIZK, crsCS), skj :=
(
(pkj,0, skj,0), (pkj,1, skj,1)

)
, c := (p, comm, �c))

if ΠNIZK.V erifycrsNIZK

(
(crsCS, comm, �c) ∈ LCons, p

)
= valid then

for i ∈ {
1, . . . , |�c|} do(

ρ, �v :=
(
(pk1,0

′, pk1,1
′), . . . , (pk|�v|,0

′, pk|�v|,1
′)

)
, m

) ← ΠPKE.Dskj,0
′ (ci,0)

if (ρ, �v, m) �= ⊥ ∧ (pkj,0, pkj,1) = (pki,0
′, pki,1

′) then
if comm = ΠCS.CommitcrsCS (�v, m; ρ) then

return (�v, m)

return ⊥

ΠNIZK is

(εNIZK-Complete,εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qP NIZK, qV NIZK)-secure,
(4.4)

and ΠCS is

(εCS-Hiding,εCS-Binding, tCS, qCS,Binding)-secure, (4.5)

then no adversary A (ε, t)-breaks Π’s

(n := nPKE, dE := qEPKE, qE := qP NIZK,

qD := min (qV NIZK, qDPKE))-Correctness,

with ε > εCS-Binding + εPKE-Corr + εNIZK-Complete, and tCS, tPKE, tNIZK ≈ t + tCorr,
where tCorr is the time to run Π’s GCorr game.

Proof Sketch. Algorithm 1 is composed of a CS, a NIZK and a PKE scheme. The
correctness error of this PKEBC protocol is essentially the sum of the errors
of these underlying schemes. We prove this by game hoping: we replace each
scheme with a perfect version of itself, until the final game has correctness error
0. The advantage in distinguishing between the first and the last game is then
the sum of advantages in distinguishing between the underlying schemes and the
corresponding perfect versions. ��

Multi-Designated Receiver Signed Public Key Encryption 657

Remark 3. Theorem 1 states that Π’s Correctness holds against computationally
bounded adversaries who do not have access to the secret keys of honest parties.
However, since we use an underlying PKE with correctness against unbounded
adversaries, the proof of Theorem 1 implies something stronger, namely that Π
is Correct according to a stronger Correctness notion wherein adversaries are
allowed to query for the secret key of any honest receiver.

Theorem 2. If ΠCS is

(εCS-Hiding,εCS-Binding, tCS, qCS,Binding)-secure, (4.6)

then no adversary A (ε)-breaks Π’s Robustness, with ε > εCS-Binding.

Proof Sketch. To violate robustness, the same ciphertext must be the encryption
of two plaintexts that have different vectors of receivers. But since a commitment
to this vector (along with the message) is part of the ciphertext, there must be
two vectors of receivers (and messages) that produce the same commitment. And
the probability of this happening is bounded by εCS-Binding. ��
Remark 4. Note that Theorem 2 states that Π’s Robustness holds against com-
putationally unbounded adversaries; such adversaries can compute the private
key of any party from its public key.

In the following we assume, without loss of generality for any practical pur-
pose, that the NIZK proof verification algorithm is deterministic. For instance,
the NIZK scheme given in [14] has deterministic proof verification and is tightly
unbounded simulation sound. The reason for this assumptions is that an adver-
sary could potentially come up with a NIZK proof for a valid statement which
would only be considered as valid by the NIZK verification algorithm sometimes.

Theorem 3. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE, qDPKE,Corr)-secure,
(4.7)

ΠNIZK is

(εNIZK-Complete,εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qP NIZK, qV NIZK)-secure,
(4.8)

ΠCS is

(εCS-Hiding,εCS-Binding, tCS, qCS,Binding)-secure, (4.9)

and ΠNIZK.V is a deterministic algorithm, then no adversary A (ε, t)-breaks Π’s

(n := nPKE, qD := qV NIZK)-Consistency,

with ε > εCS-Binding+εNIZK-Sound+εPKE-Corr and with tPKE, tCS, tNIZK ≈ t+tCons,
where tCons is the time to run Π’s GCons game.

658 U. Maurer et al.

Proof Sketch. As in the proof of Theorem 1, we proceed by game hoping and
replace the CS and NIZK by ideal versions. We then show that if the underlying
PKE has perfect correctness, consistency cannot be violated. Hence the final
error is that of the CS, the soundness of the NIZK and the correctness of the
PKE. ��
Remark 5. Theorem 3 states that Π’s Consistency holds against computation-
ally bounded adversaries who do not have access to the secret keys of honest
parties. However, similarly to Remark 3, its proof implies something stronger,
namely that Π is Consistent with respect to a stronger Consistency notion which
allows adversaries to query for the secret key of any honest receiver.

Theorem 4. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE, qDPKE,Corr)-secure,
(4.10)

ΠNIZK is

(εNIZK-Complete,εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qP NIZK, qV NIZK)-secure,
(4.11)

and ΠCS is

(εCS-Hiding,εCS-Binding, tCS, qCS,Binding)-secure, (4.12)

then no adversary A (ε, t)-breaks Π’s

(n := nPKE, dE := qEPKE,

qE := min (qP NIZK, qCS), qD := qV NIZK)-IK-CCA-2 security,

with

ε > 4 · (εPKE-IND-CPA + εPKE-Corr)
+ 2 · (εNIZK-ZK + εPKE-IK-CPA + εNIZK-SS)
+ εCS-Hiding,

tPKE, tCS ≈ t + tIK-CCA-2 + qE · tSSim
+ tSCRS

,

tNIZK ≈ t + tIK-CCA-2,

where tIK-CCA-2 is the time to run Π’s GIK-CCA-2
b game experiment, tSSim

is the
runtime of SSim, and tSCRS

is the runtime of SCRS.

Proof Sketch. The definition of IK-CCA-2 security bounds the ability of the
adversary to distinguish between two games, one of which generates challenge
ciphertexts encrypted for the vector of receivers �V0 and the other for �V1. The full
proof is a simple generalization of the one from [28] and consists of 16 game hops
that bound an adversary’s advantage in distinguishing the two game systems.
Here we highlight the main ideas in this proof.

Multi-Designated Receiver Signed Public Key Encryption 659

The first step in the proof is replacing the NIZK proofs with simulated ones,
as this allows creating valid NIZK proofs for false statements. Recall that each
PKEBC ciphertext includes, for each receiver, two encryptions of the same plain-
text under the two different (and independent) public keys of the receiver. This
allows being able to answer the adversary’s decryption queries while only know-
ing one of the two secret keys of the receiver, which is crucial for the reductions
to the IND-CPA and IK-CPA security for the underlying PKE scheme. Another
key step in the proof is relying on the Simulation Soundness of the underly-
ing NIZK scheme to be able to change the key used for answering decryption
queries. Finally, the last main technical idea in the proof is making the sequence
of random coins ρ encrypted using the underlying PKE scheme independent of
the random coins actually used by the underlying Commitment Scheme when
reducing to its Hiding property. ��
Theorem 5. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE, qDPKE,Corr)-secure,
(4.13)

ΠNIZK is

(εNIZK-Complete,εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qP NIZK, qV NIZK)-secure,
(4.14)

and ΠCS is

(εCS-Hiding,εCS-Binding, tCS, qCS,Binding)-secure, (4.15)

then no adversary A (ε, t)-breaks Π’s

(n := nPKE, dE := qEPKE,

qE := min (qP NIZK, qCS), qD := qV NIZK)-IND-CCA-2 security,

with

ε > 4 · (εPKE-IND-CPA + εPKE-Corr)
+ 2 · (εNIZK-ZK + εNIZK-SS)
+ εCS-Hiding

tPKE ≈ t + tIND-CCA-2 + qE · tSSim
+ tSCRS

,

tNIZK, tCS ≈ t + tIND-CCA-2,

where tIND-CCA-2 is the time to run Π’s GIND-CCA-2
b game, tSSim

is the runtime
of SSim, and tSCRS

is the runtime of SCRS.

Proof Sketch. The proof of this theorem is a simple adaptation of the proof of
Theorem 4, but where one no longer makes game hopping on the IK-CPA security
of the PKE scheme ΠPKE underlying PKEBC scheme Π’s construction. ��

660 U. Maurer et al.

5 Multi-Designated Receiver Signed Public Key
Encryption Schemes

We now introduce the second new type of scheme we give in this paper:
Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE). An
MDRS-PKE scheme Π = (S,GS , GV , E,D) with message space M is a five-
tuple of PPTs, where:

– S: on input 1k, generates public parameters pp;
– GS : on input pp, generates a sender key-pair;
– GV : on input pp, generates a receiver key-pair;
– E: on input (pp, ssk, �v,m), where ssk is the secret sending key, �v is a vector

of public keys of the intended receivers, and m is the message, generates a
ciphertext c;

– D: on input (pp, rsk, c), where rsk is the receiver’s secret key, D decrypts c
using rsk, obtaining a triple sender/receiver-vector/message (spk, �v,m) (or
⊥ if decryption fails) which it then outputs.

5.1 The Security of MDRS-PKE Schemes

Below we state the definitions of Correctness, Consistency, Unforgeability, IND-
CCA-2 security, IK-CCA-2 security, and Off-The-Record for MDRS-PKE schemes.
Before proceeding to the actual definitions, we first introduce some oracles the
game systems for MDRS-PKE use. In the following, consider an MDRS-PKE
scheme Π = (S,GS , GV , E,D) with message space M. The oracles below are
defined for a game-system with (an implicitly defined) security parameter k:

Public Parameter Generation Oracle: OPP

1. On the first call, compute pp ← S(1k); output pp;
2. On subsequent calls, simply output pp.

Sender Key-Pair Oracle: OSK(Ai)
1. On the first call on input Ai, compute and store (spki, sski) ← GS(pp);

output (spki, sski);
2. On subsequent calls, simply output (spki, sski).

Receiver Key-Pair Oracle: ORK(Bj)
1. Analogous to the Sender Key-Pair Oracle.

Sender Public-Key Oracle: OSPK(Ai)
1. (spki, sski) ← OSK(Ai); output spki.

Receiver Public-Key Oracle: ORPK(Bj)
1. Analogous to the Sender Public-Key Oracle.

Encryption Oracle: OE(Ai, �V ,m)
1. (spki, sski) ← OSK(Ai);
2. �v ← (ORPK(V1), . . . ,ORPK(V|�V |));
3. Output c ← Epp(sski, �v,m).

Decryption Oracle: OD(Bj , c)
1. (vpkj , vskj) ← ORK(Bj);

Multi-Designated Receiver Signed Public Key Encryption 661

2. Output (spk, �v := (rpk1, . . . , rpk|�v|),m) ← Dpp(vskj , c).

We now introduce the game-based notions. Let Π = (S,GS , GV , E,D) be an
MDRS-PKE.

Definition 6 (Correctness). Consider the following game played between an
adversary A and game system GCorr:

– AOP P ,OSP K ,OSK ,ORP K ,ORK ,OE ,OD

A wins the game if there are two queries qE and qD to OE and OD, respectively,
where qE has input (Ai, �V ,m) and qD has input (Bj , c), satisfying Bj ∈ �V ,
the input c in qD is the output of qE, the output of qD is (spki

′, �v′,m′) with
(spki

′, �v′,m′) = ⊥ or (spki
′, �v′,m′) �= (spki, �v,m)—where spki is Ai’s public

key and �v is the corresponding vector of public keys of the parties of �V — and A
did not query OSK on Ai nor ORK on Bj.

The advantage of A in winning the Correctness game, denoted AdvCorr(A),
is the probability that A wins game GCorr as described above.

As already noted in Remark 1, Correctness is a property only relevant to
honest parties. As these parties are not corrupted, their keys do not leak to the
adversary. Definition 6 hence disallows adversaries from querying for the secret
keys of honest parties. Note that the analogous Correctness notion for MDVS
schemes introduced in [24]—which also does not allow adversaries to query for
the secret keys of honest parties—is known to imply the composable security of
MDVS schemes (see [24]). As noted in Remark 9, the MDRS-PKE construction
we give actually satisfies a stronger Correctness notion analogous to the one
mentioned in Remark 1, as long as both of the underlying (PKEBC and MDVS)
schemes satisfy analogous Correctness notions.

The following notion captures Consistency for MDRS-PKE schemes, and is
analogous to the PKEBC Consistency notion.

Definition 7 (Consistency). Consider the following game played between an
adversary A and game system GCons:

– AOP P ,OSP K ,OSK ,ORP K ,ORK ,OE ,OD

A wins the game if there is a ciphertext c such that OD is queried on inputs
(Bi, c) and (Bj , c) for some Bi and Bj (possibly with Bi = Bj), there is no prior
query on either Bi or Bj to ORK , query OD(Bi, c) outputs some (spkl, �v,m)
satisfying (spkl, �v,m) �= ⊥, spkl is some party Al’s public sender key (i.e.
OSPK(Al) = spkl) and rpkj ∈ �v (where rpkj is Bj’s public key), and query
OD(Bj , c) does not output the same triple (spkl, �v,m).

The advantage of A in winning the Consistency game is denoted AdvCons(A)
and corresponds to the probability that A wins game GCons as described above.

The following security notion is analogous to the EUF-CMA security notion for
Digital Signature Schemes. For the case of a single receiver, it informally states
that if a sender A is honest, then no dishonest party can forge a ciphertext that
fools an honest receiver into believing A sent it some message that A actually
did not send.

662 U. Maurer et al.

Definition 8 (Unforgeability). Consider the following game played between
adversary A and game system GUnforg:

– AOP P ,OSP K ,OSK ,ORP K ,ORK ,OE ,OD

We say that A wins the game if there is a query q to OD on an input (Bj , c)
that outputs (spki, �v,m) �= ⊥ with spki being some party Ai’s sender public key
(i.e. OSPK(Ai) = spki), there was no query OE(Ai, �V ,m) where �V is the vector
of parties with corresponding public keys �v, OSK was not queried on input Ai,
and ORK was not queried on input Bj.

The advantage of A in winning the Unforgeability game is the probability that
A wins game GUnforg as described above, and is denoted AdvUnforg(A).

We say that an adversary A (ε, t)-breaks the (nS , nR, dE , qE , qD)-
Correctness, Consistency, or Unforgeability of Π if A runs in time at most
t, queries OSPK , OSK , OE and OD on at most nS different senders, queries
ORPK , ORK , OE and OD on at most nR different receivers, makes at most
qE and qD queries to OE and OD, respectively, with the sum of lengths of the
party vectors input to OE being at most dE , and A’s advantage in winning the
(corresponding) security game is at least ε.

The following security notions are the MDRS-PKE variants of Definitions 4
and 5. The games defined by these notions provide adversaries with access to
the oracles OPP , OSPK , OSK and ORPK defined above as well as to oracles OE

and OD. For both notions, OD is defined as follows:

Decryption Oracle: OD(Bj , c)
1. If c was the output of some query to OE , output test;
2. Otherwise, compute (spki, �v,m) ← Dpp,skj

(c), where skj is Bj ’s secret
key; output (spki, �v,m).

The OE oracle provided by the IND-CCA-2 games differs from the one provided
by the IK-CCA-2 games; for IND-CCA-2, OE is as follows:

Encryption Oracle: OE(Ai, �V ,m0,m1)
1. For game system GIND-CCA-2

b , encrypt mb under sski (Ai’s sender secret
key) and �v (�V ’s corresponding vector of receiver public keys); output c.

Definition 9 (IND-CCA-2 Security). Consider the following game played
between an adversary A and a game system GIND-CCA-2

b , with b ∈ {
0, 1

}
:

– b′ ← AOP P ,OSP K ,OSK ,ORP K ,OE ,OD

A wins the game if b′ = b and for every query OE(Ai, �V ,m0,m1):

– |m0| = |m1|; and
– there is no query on Ai to OSK .

We define the advantage of A in winning the IND-CCA-2 game as

AdvIND-CCA-2(A) :=
∣
∣
∣Pr[AGIND-CCA-2

0 = win] + Pr[AGIND-CCA-2
1 = win] − 1

∣
∣
∣.

Multi-Designated Receiver Signed Public Key Encryption 663

For the IK-CCA-2 security notion, OE behaves as follows:

Encryption Oracle: OE((Ai,0, �V0), (Ai,1, �V1),m)
1. For game system GIK-CCA-2

b , encrypt m under sski,b (Ai,b’s secret key)
and �vb (the vector of public keys corresponding to �Vb), creating a fresh
ciphertext c; output c.

Definition 10 (IK-CCA-2 Security). Consider the following game played
between an adversary A and a game system GIK-CCA-2

b , with b ∈ {
0, 1

}
:

– b′ ← AOP P ,OSP K ,OSK ,ORP K ,OE ,OD

A wins the game if b′ = b and for every query ((Ai,0, �V0), (Ai,1, �V1),m) to OE:

– |�V0| = |�V1|; and
– OSK is not queried on neither Ai,0 and Ai,1.

We define the advantage of A in winning the IK-CCA-2 security game as

AdvIK-CCA-2(A) :=
∣
∣
∣Pr[AGIK-CCA-2

0 = win] + Pr[AGIK-CCA-2
1 = win] − 1

∣
∣
∣.

We say that an adversary A (ε, t)-breaks the (nR, dE , qE , qD)-IND-CCA-2
security or IK-CCA-2 security of Π if A runs in time at most t, queries ORPK ,
OE and OD on at most nR different receivers, makes at most qE and qD queries
to OE and OD, respectively, with the sum of lengths of the party vectors input to
OE being at most dE , and has at least ε advantage in winning the corresponding
security game.

Remark 6. The IND-CCA-2 and IK-CCA-2 security notions for MDRS-PKE
schemes capture, respectively, confidentiality and anonymity. Even though one
could define stronger variants of these notions wherein the adversary is allowed to
query for the secret key of any sender, we chose these definitions because they are
weaker, but yet strong enough to imply composable security (see [3,4,15] for the
analogous case of the Outsider Security Model for Signcryption). Nonetheless,
our MDRS-PKE construction satisfies the stronger IND-CCA-2 and IK-CCA-2
security notions in which the adversary is allowed to query for the secret key of
every sender.

The following notion captures the Off-The-Record property of MDRS-PKE
schemes, and resembles the (Any-Subset) Off-The-Record security notion intro-
duced in [12] for MDVS schemes. This notion defines two game systems,
GOTR-Forge

0 and GOTR-Forge
1 , which are parameterized by an algorithm Forge.

The game systems also provide adversaries with access to an oracle OE , whose
behavior varies depending on the underlying game system, i.e. depending on
b ∈ {

0, 1
}
. OE behaves as follows:

Encryption Oracle: OE(type ∈ {
sign, forge

}
, Ai, �V ,m,D)

For game system GOTR-Forge
b , the oracle behaves as follows:

664 U. Maurer et al.

1. c0 ← Epp(sski, �v,m);
2. c1 ← Forgepp(spki, �v,m, {rskj}Bj∈D);
3. If b = 0, output c0 if type = sign and c1 if type = forge;
4. Otherwise, if b = 1, output c1.

Definition 11. (Off-The-Record). Let Forge be a PPT algorithm that on
input pp, spki∗ , �v, m∗ and

{
rskj

}
Bj∈D∗ , outputs a forged ciphertext c′. For

b ∈ {
0, 1

}
, consider the following game played between an adversary A and

game system GOTR-Forge
b :

– b′ ← AOP P ,OSP K ,OSK ,ORP K ,ORK ,OE ,OD

A wins the game if b′ = b and for every query (type, Ai, �V ,m,D) to OE, and
letting c be the output of OE, all of the following hold:

1. D ⊆ Set(�V);
2. for every query Bj to OV K , Bj �∈ Set(�V) \ D;
3. for every query Al to OSK , Al �= Ai; and
4. for all queries OD(Al, Bj , �V ′,m′, c′) with Al = Ai and �V ′ = �V , c′ �= c.

A’s advantage in winning the Off-The-Record security game with respect to
Forge is defined as

AdvOTR-Forge(A) :=
∣
∣
∣Pr[AGOTR-Forge

0 = win] + Pr[AGOTR-Forge
1 = win] − 1

∣
∣
∣.

We say that an adversary A (εOTR, t)-breaks the (nS , nR, dE , qE , qD)-Off-The-
Record security of Π with respect to algorithm Forge if A runs in time at most
t, queries OSPK , OSK , OE and OD on at most nS different senders, queries
ORPK , ORK , OE and OD on at most nR different receivers, makes at most qE

and qD queries to OE and OD, respectively, with the sum of lengths of the party
vectors input to OE being at most dE , and satisfies AdvOTR-Forge(A) ≥ εOTR.

Finally, we say that Π is

(εCorr, εCons, εUnforg,εIND-CCA-2, εIK-CCA-2, εOTR,

t, nS , nR, dE , qE , qD, Forge)-secure,

if no adversary A:

– (εCorr, t)-breaks the (nS , nR, dE , qE , qD)-Correctness of Π;
– (εCons, t)-breaks the (nS , nR, dE , qE , qD)-Consistency of Π;
– (εUnforg, t)-breaks the (nS , nR, dE , qE , qD)-Unforgeability of Π;
– (εIND-CCA-2, t)-breaks the (nR, dE , qE , qD)-IND-CCA-2 security of Π;
– (εIK-CCA-2, t)-breaks the (nR, dE , qE , qD)-IK-CCA-2 security of Π; or
– (εOTR, t)-breaks the (nS , nR, dE , qE , qD)-Off-The-Record security of Π with

respect to Forge.

Multi-Designated Receiver Signed Public Key Encryption 665

Remark 7. As one may note, due to the Off-The-Record property of MDRS-PKE
schemes (see Definition 11), any receiver Bj can generate a ciphertext that
decrypts correctly under Bj ’s own receiver secret key using only its own secret
key and the public keys of the sender and any other receivers. It is thus crucial
that, when defining ciphertext Unforgeability (see Definition 8), the adversary
is not allowed to query for the secret key of any receiver with respect to which
it is trying forge a signature.

It is equally important that the adversary is not allowed to query for the
secret keys of honest receivers in the Off-The-Record security notion (Defini-
tion 11): as honest receivers do not participate in the ciphertext forgery, due
to the Unforgeability of ciphertexts (Definition 8)—which in particular guaran-
tees that if a receiver is honest, then it only decrypts ciphertexts generated by
the actual sender, assuming the sender is honest—if an adversary could query
for the secret key of an honest receiver Bj , it would be able to distinguish real
ciphertexts generated by the sender—which Bj would decrypt successfully using
its secret key—from fake ciphertexts generated by dishonest receivers—which,
by the Unforgeability of ciphertexts, Bj would not decrypt successfully.

Finally, the adversary can also not be given access to the secret key of any
honest receiver Bj in the Consistency game of Definition 7, as otherwise, by the
Off-The-Record guarantee (Definition 11), it would be able to use Bj ’s receiver
secret key to forge a ciphertext c that Bj would decrypt successfully (as if it
really had been sent by the actual sender), whereas any other honest (designated)
receiver’s decryption of c would fail.

6 A Multi-Designated Receiver Signed Public Key
Encryption Scheme from Standard Assumptions

In this section we give a construction of an MDRS-PKE scheme from a PKEBC
scheme and an MDVS scheme (see Algorithm 2). The construction essentially
consists of using the MDVS scheme to sign both the messages and the vectors
of public PKEBC keys of the receivers, and then using the PKEBC scheme
to encrypt the signed message, together with its MDVS signature, the public
MDVS signer key of the sender and the vector of public MDVS verifier keys of
the receivers.

Remark 8. Even though our MDRS-PKE construction allows parties to locally
generate their keys, to achieve the Off-The-Record guarantee it is required that
dishonest receivers know their secret keys. This is only so as otherwise one could
mount attacks that break the Off-The-Record guarantee. For instance, consider
an honest sender Alice that sends a message m to Bob. Bob, who is dishonest
wants to convince a non-designated receiver, Eve, that Alice sent m. To do that,
Bob could have Eve generating the keys for Bob herself, and give him only the
public key (that Bob would claim as being his public key). When Alice sends m,
Eve can now learn that Alice sent m as it can use Bob’s secret key. Furthermore,
since no one other than Eve has Bob’s secret key, Eve knows that it cannot be
a fake message, implying that it must be Alice’s message. Current composable

666 U. Maurer et al.

Algorithm 2. Construction of an MDRS-PKE scheme Π = (S,GS , GV , E,D)
from a PKEBC scheme ΠPKEBC = (G,S,E,D), and an MDVS scheme ΠMDVS =
(Setup,GS , GV , Sign, V fy).

Setup(1k)

ppMDVS ← ΠMDVS.Setup(1k)

ppPKEBC ← ΠPKEBC.S(1k)
pp := (ppMDVS, ppPKEBC)
return pp

GS(pp := (ppMDVS, ppPKEBC))
(spkMDVS, sskMDVS) ← ΠMDVS.GS(ppMDVS)
spk := spkMDVS
ssk := (spk, sskMDVS)
return (spk, ssk)

GV (pp := (ppMDVS, ppPKEBC))
(vpkMDVS, vskMDVS) ← ΠMDVS.GV (ppMDVS)
(pkPKEBC, skPKEBC) ← ΠPKEBC.G(ppPKEBC)
rpk := (vpkMDVS, pkPKEBC)

rsk :=
(
rpk, (vskMDVS, skPKEBC)

)

return (rpk, rsk)

Epp(sski, �v, m)
With

pp := (ppMDVS, ppPKEBC)
sski := (spki, sskMDVSi)

�v :=
(
rpk1, . . . , rpk|�v|

)

for each i ∈ {
1, . . . , |�v|}

rpki := (vpkMDVSi
, pkPKEBCi

)

�vPKEBC ← (pkPKEBC1, . . . , pkPKEBC|�v|)
�vMDVS ← (vpkMDVS1, . . . , vpkMDVS|�v|)
σ ← ΠMDVS.SignppMDVS

(sskMDVSi, Set(�vMDVS), (�vPKEBC, m))

return ΠPKEBC.EppPKEBC

(
�vPKEBC, (spki, �vMDVS, m, σ)

)

Dpp(rskj , c)
With

pp := (ppMDVS, ppPKEBC)

rskj :=
(
rpkj , (vskMDVSj , skPKEBCj)

)

rpkj := (vpkMDVSj
, pkPKEBCj

)

(
�vPKEBC, (spki, �vMDVS, m, σ)

) ← ΠPKEBC.DppPKEBC (skPKEBCj , c)

if
(
�vPKEBC, (spki, �vMDVS, m, σ)

)
= ⊥ ∨ |�vPKEBC| �= |�vMDVS| then

return ⊥
�v :=

(
(vMDVS1, vPKEBC1), . . . , (vMDVS|�vPKEBC|, vPKEBC|�vPKEBC|)

)

if rpkj �∈ �v then
return ⊥

if ΠMDVS.V fyppMDVS
(spki, vskMDVSj , Set(�vMDVS), (�vPKEBC, m), σ) �= valid then

return ⊥
return (spki, �v, m)

notions capturing the security of MDVS schemes solve this problem by assuming
a trusted third party which generates all key-pairs and gives everyone access to
their own key-pair [24]7. This in particular implies that Bob would have access
7 The composable notions capturing the security of MDVS given in [24] actually

assume something even stronger: every dishonest party has access to the secret keys
of every other dishonest party.

Multi-Designated Receiver Signed Public Key Encryption 667

to its own secret key, and so even if Eve would know Bob’s secret key, she would
not be able to tell if Alice was the one sending messages or if Bob was faking
Alice’s messages.

6.1 Security Analysis of the MDRS-PKE Construction

The security of our MDRS-PKE scheme follows from the security of the under-
lying PKEBC and MDVS schemes. For a full proof of these results, refer to [25].

Theorem 6. If ΠPKEBC is

(εPKEBC-Corr,εPKEBC-Rob, εPKEBC-Cons, εPKEBC-IND-CCA-2, εPKEBC-IK-CCA-2,

tPKEBC, nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-secure,
(6.1)

and ΠMDVS is

(εMDVS-Corr,εMDVS-Cons, εMDVS-Unforg, εMDVS-OTR, εMDVS-PI,

tMDVS, nSMDVS, nV MDVS, dSMDVS,

qSMDVS, qV MDVS, ForgeMDVS)-secure,
(6.2)

then no adversary A (ε, t)-breaks Π’s

(nS := nSMDVS,

nR := min (nPKEBC, nV MDVS),
dE := min (dEPKEBC, dSMDVS),
qE := min (qEPKEBC, qSMDVS),
qD := min (qDPKEBC, qV MDVS))-Correctness,

with ε > εPKEBC-Corr + εMDVS-Corr, and tPKEBC, tMDVS ≈ t + tCorr, where tCorr is
the time to run Π’s GCorr game.

Proof Sketch. To prove this theorem one introduces an intermediate game that
assumes the correctness of the ΠPKEBC scheme underlying Π’s construction.
Then, one shows that the advantage of any adversary in winning this interme-
diate game can only differ from the advantage in winning the original game by
at most the advantage that an adversary could have in winning the Correctness
game of ΠPKEBC. Finally, one shows that the advantage in winning the new
game is bound by the advantage in winning the Correctness game of the MDVS
scheme ΠMDVS underlying Π’s construction. ��
Remark 9. Similarly to Remark 3, if ΠPKEBC’s correctness holds even when the
adversary is allowed to query for the secret key of any receiver, and ΠMDVS’s
correctness holds even when the adversary is allowed to query for the secret keys
of any signer or verifier, then Π’s Correctness holds even when the adversary is
allowed to query for the secret keys of any sender and receiver.

668 U. Maurer et al.

Theorem 7. If ΠPKEBC is

(εPKEBC-Corr,εPKEBC-Rob, εPKEBC-Cons, εPKEBC-IND-CCA-2, εPKEBC-IK-CCA-2,

tPKEBC, nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-secure,
(6.3)

and ΠMDVS is

(εMDVS-Corr,εMDVS-Cons, εMDVS-Unforg, εMDVS-OTR, εMDVS-PI,

tMDVS, nSMDVS, nV MDVS, dSMDVS,

qSMDVS, qV MDVS, ForgeMDVS)-secure,
(6.4)

then no adversary A (ε, t)-breaks Π’s

(nS := nSMDVS, nR := min (nPKEBC, nV MDVS), dE := dSMDVS,

qE := qSMDVS, qD := min (qDPKEBC, qV MDVS))-Consistency,

with ε > εPKEBC-Cons + εMDVS-Cons, and tPKEBC, tMDVS ≈ t + tCons, where tCons
is the time to run Π’s GCons game.

Proof Sketch. To win the Consistency game, an adversary has to make
two queries OD(Bi, c) and OD(Bj , c) such that OD(Bi, c) outputs some
(spkl, �v,m) �= ⊥—where spkl is some party Al’s public sender key and Bj ’s
public key is in �v, query OD(Bj , c) does not output the same as OD(Bi, c), and
there is no query to ORK on Bi or Bj . Note that this is the only possible way
to win the Consistency game. With this, one then shows that an adversary win-
ning the Consistency implies that it either broke the consistency of the PKEBC
scheme ΠPKEBC underlying Π’s construction, or that it broke the consistency
of the MDVS scheme ΠMDVS underlying Π’s construction. ��
Theorem 8. If ΠMDVS is

(εMDVS-Corr,εMDVS-Cons, εMDVS-Unforg, εMDVS-OTR, εMDVS-PI,

tMDVS, nSMDVS, nV MDVS, dSMDVS,

qSMDVS, qV MDVS, ForgeMDVS)-secure,
(6.5)

then no adversary A (ε, t)-breaks Π’s

(nS := nSMDVS, nR := nV MDVS, dE := dSMDVS,

qE := qSMDVS, qD := qV MDVS)-Unforgeability,

with ε > εMDVS-Unforg, and tMDVS ≈ t + tUnforg, where tUnforg is the time to run
Π’s GUnforg game.

Proof Sketch. Any adversary for Π’s Unforgeability game can be easily reduced
into an adversary for the Unforgeability game of the MDVS scheme ΠMDVS

underlying Π’s construction that has the same advantage in winning ΠMDVS’s
Unforgeability game. ��

Multi-Designated Receiver Signed Public Key Encryption 669

Theorem 9. If ΠPKEBC is

(εPKEBC-Corr,εPKEBC-Rob, εPKEBC-Cons, εPKEBC-IND-CCA-2, εPKEBC-IK-CCA-2,

tPKEBC, nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-secure,
(6.6)

then no adversary A (ε, t)-breaks Π’s

(nR := nPKEBC, dE := dEPKEBC,

qE := qEPKEBC, qD := qDPKEBC)-IND-CCA-2 security,

with ε > εPKEBC-IND-CCA-2, and tPKEBC ≈ t + tIND-CCA-2, where tIND-CCA-2 is the
time to run Π’s GIND-CCA-2 games.

Proof Sketch. Distinguishing Π’s (MDRS-PKE) IND-CCA-2 security games can
be trivially reduced to distinguishing ΠPKEBC’s (PKEBC) IND-CCA-2 security
games with the same advantage. ��
Remark 10. Note that Definition 9 and 10 do not allow an adversary to query
for the secret keys of any sender Ai that is given as input to a query to OE . Yet,
the proofs of Theorems 9 and 10 actually show something stronger. Namely, that
Π is secure according to even the stronger IND-CCA-2 and IK-CCA-2 security
notions in which an adversary is allowed to query for the secret key of any sender.

Theorem 10. If ΠPKEBC is

(εPKEBC-Corr,εPKEBC-Rob, εPKEBC-Cons, εPKEBC-IND-CCA-2, εPKEBC-IK-CCA-2,

tPKEBC, nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-secure,
(6.7)

then no adversary A (ε, t)-breaks Π’s

(nR := nPKEBC, dE := dEPKEBC,

qE := qEPKEBC, qD := qDPKEBC)-IK-CCA-2 security,

with ε > εPKEBC-IND-CCA-2 + εPKEBC-IK-CCA-2, and tPKEBC ≈ t + tIK-CCA-2, where
tIK-CCA-2 is the time to run Π’s GIK-CCA-2 games.

Proof Sketch. To prove this theorem we introduce an intermediate game which
is just like GIK-CCA-2

0 except that the OE oracle behaves slightly differently: for
each query ((Ai,0, �V0), (Ai,1, �V1),m), OE behaves exactly as GIK-CCA-2

0 ’s OE ora-
cle would behave, except that now it encrypts the PKEBC ciphertext using the
vector of public PKEBC keys corresponding to �V1, rather than using the vec-
tor of public keys corresponding to �V0. An adversary trying to distinguishing
GIK-CCA-2

0 from this intermediate game can be trivially reduced to an adversary
distinguishing the two IK-CCA-2 game systems for the underlying ΠPKEBC with
the same distinguishing advantage; an adversary distinguishing the intermediate
game from GIK-CCA-2

1 can be (again trivially) reduced to an adversary distin-
guishing the two IND-CCA-2 game systems for the underlying ΠPKEBC with the
same distinguishing advantage. ��

670 U. Maurer et al.

Algorithm 3. Forge algorithm for the construction given in Algorithm 2. In
the following, let ΠMDVS and ΠPKEBC respectively be the MDVS and PKEBC
schemes underlying the construction given in Algorithm 2, ForgeMDVS be a
signature forging algorithm for ΠMDVS, and

{
rskj′

}
Bj′∈D be the set of secret

receiver keys of D, the set of dishonest parties.
Forgepp(spki, �v, m,

{
rskj′

}
B

j′ ∈D)

With
pp := (ppMDVS, ppPKEBC)
spki := spkMDVSi

for each rskj ∈ {
rskj′

}
B

j′ ∈D
rskj :=

(
(vpkMDVSj

, pkPKEBCj
), (vskMDVSj , skPKEBCj)

)

�v :=
(
rpk1, . . . , rpk|�v|

)

for each i ∈ {
1, . . . , |�v|}

rpki = (vpkMDVSi
, pkPKEBCi

)

�vPKEBC ← (pkPKEBC1, . . . , pkPKEBC|�v|)
�vMDVS ← (vpkMDVS1, . . . , vpkMDVS|�v|)
σMDVS ← ForgeMDVSppMDVS

(spkMDVSi
, Set(�vMDVS), (�vPKEBC, m),

{
vskMDVSj′

}
B

j′ ∈D)

return ΠPKEBC.EppPKEBC

(
�vPKEBC, (spkMDVSi

, �vMDVS, m, σMDVS)
)

Theorem 11. In the following let Forge denote Algorithm 3. If ΠMDVS is

(εMDVS-Corr,εMDVS-Cons, εMDVS-Unforg, εMDVS-OTR, εMDVS-PI,

tMDVS, nSMDVS, nV MDVS, dSMDVS,

qSMDVS, qV MDVS, ForgeMDVS)-secure,
(6.8)

then no adversary A (ε, t)-breaks Π’s

(nS := nSMDVS, nR := nV MDVS, dE := dSMDVS,

qE := qSMDVS, qD := qV MDVS, Forge)-Off-The-Record security,

with ε > εMDVS-OTR, and tMDVS ≈ t + tOTR, where tOTR is the time to run Π’s
GOTR games.

Proof Sketch. Any adversary for Π’s Off-The-Record games can trivially be
reduced into an adversary for the Off-The-Record games of the ΠMDVS scheme
underlying Π’s construction that has the same advantage in winning the MDVS
Off-The-Record games of ΠMDVS. ��
Remark 11. It is easy to see from the proof of Theorem 11 that if ΠMDVS sat-
isfies a stronger Off-The-Record notion in which the adversary is allowed to
query for the secret key of any sender, then Π would also satisfy the analogous
stronger Off-The-Record notion for MDRS-PKE schemes in which the adversary
is allowed to query for the secret key of any sender.

Multi-Designated Receiver Signed Public Key Encryption 671

Acknowledgments. The authors would like to thank Dennis Hofheinz for helpful dis-
cussions and for suggesting Naor-Yung’s scheme [26] together with a Simulation Sound
NIZK scheme [28] and a Binding Commitment scheme as a starting point to construct
the PKEBC scheme. The authors would also like to thank Christian Badertscher,
Daniel Jost and Chen-Da Liu-Zhang for helpful discussions.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2 28

2. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 9

3. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 6

4. Badertscher, C., Banfi, F., Maurer, U.: A constructive perspective on signcryption
security. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp.
102–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 6

5. Badertscher, C., Maurer, U., Portmann, C., Rito, G.: Revisiting (R)CCA security
and replay protection. In: Garay, J.A. (ed.) PKC 2021, Part II. LNCS, vol. 12711,
pp. 173–202. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4 7

6. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using
private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006.
LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006). https://doi.org/10.1007/
11889663 4

7. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

8. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

9. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

10. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why
not to use PGP. In: Atluri, V., Syverson, P.F., di Vimercati, S.D.C. (eds.) WPES
2004, pp. 77–84. ACM (2004). https://doi.org/10.1145/1029179.1029200

11. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. J. Cryptol. 33(4), 1914–1983
(2020). https://doi.org/10.1007/s00145-020-09360-1

12. Damg̊ard, I., Haagh, H., Mercer, R., Nitulescu, A., Orlandi, C., Yakoubov, S.:
Stronger security and constructions of multi-designated verifier signatures. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 229–260. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 9

https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/978-3-319-98113-0_6
https://doi.org/10.1007/978-3-030-75248-4_7
https://doi.org/10.1007/11889663_4
https://doi.org/10.1007/11889663_4
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1145/1029179.1029200
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1007/978-3-030-64378-2_9

672 U. Maurer et al.

13. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 40

14. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 1

15. Gjøsteen, K., Kr̊akmo, L.: Universally composable signcryption. In: Lopez, J.,
Samarati, P., Ferrer, J.L. (eds.) EuroPKI 2007. LNCS, vol. 4582, pp. 346–353.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73408-6 26

16. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

17. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part I. LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17653-2 6

18. Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: Anonymity-
preserving public-key encryption: a constructive approach. In: De Cristofaro, E.,
Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 19–39. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39077-7 2

19. Laguillaumie, F., Vergnaud, D.: Multi-designated Verifiers Signatures. In: Lopez,
J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 495–507.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30191-2 38

20. Laguillaumie, F., Vergnaud, D.: Designated verifier signatures: anonymity and effi-
cient construction from Any bilinear map. In: Blundo, C., Cimato, S. (eds.) SCN
2004. LNCS, vol. 3352, pp. 105–119. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30598-9 8

21. Li, Y., Susilo, W., Mu, Y., Pei, D.: Designated verifier signature: definition, frame-
work and new constructions. In: Indulska, J., Ma, J., Yang, L.T., Ungerer, T., Cao,
J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 1191–1200. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73549-6 116

22. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: adap-
tive security and efficient constructions in the standard model. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 13

23. Lipmaa, H., Wang, G., Bao, F.: Designated verifier signature schemes: attacks, new
security notions and a new construction. In: Caires, L., Italiano, G.F., Monteiro,
L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 459–471.
Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 38

24. Maurer, U., Portmann, C., Rito, G.: Giving an adversary guarantees (or: how
to model designated verifier signatures in a composable framework). In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 189–219. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92078-4 7

25. Maurer, U., Portmann, C., Rito, G.: Multi-designated receiver signed public key
encryption. Cryptology ePrint Archive, Report 2022/250 (2022). https://eprint.
iacr.org/2022/250

26. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990.
https://doi.org/10.1145/100216.100273

https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-540-73408-6_26
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-642-39077-7_2
https://doi.org/10.1007/978-3-540-30191-2_38
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/978-3-642-30057-8_13
https://doi.org/10.1007/11523468_38
https://doi.org/10.1007/978-3-030-92078-4_7
https://eprint.iacr.org/2022/250
https://eprint.iacr.org/2022/250
https://doi.org/10.1145/100216.100273

Multi-Designated Receiver Signed Public Key Encryption 673

27. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-
1 35

28. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press,
October 1999. https://doi.org/10.1109/SFFCS.1999.814628

29. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier sig-
natures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 33

30. Steinfeld, R., Wang, H., Pieprzyk, J.: Efficient extension of standard schnorr/RSA
signatures into universal designated-verifier signatures. In: Bao, F., Deng, R., Zhou,
J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 86–100. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24632-9 7

31. Zhang, Y., Au, M.H., Yang, G., Susilo, W.: (Strong) multi-designated verifiers
signatures secure against rogue key attack. In: Xu, L., Bertino, E., Mu, Y. (eds.)
NSS 2012. LNCS, vol. 7645, pp. 334–347. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34601-9 25

https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1007/978-3-540-24632-9_7
https://doi.org/10.1007/978-3-642-34601-9_25
https://doi.org/10.1007/978-3-642-34601-9_25

A Fast and Simple Partially Oblivious
PRF, with Applications

Nirvan Tyagi1(B), Sof́ıa Celi2(B), Thomas Ristenpart1, Nick Sullivan2,
Stefano Tessaro3, and Christopher A. Wood2

1 Cornell Tech, New York, USA
tyagi@cs.cornell.edu

2 Cloudflare, San Francisco, USA
cherenkov@riseup.net

3 University of Washington, Seattle, USA

Abstract. We build the first construction of a partially oblivious pseu-
dorandom function (POPRF) that does not rely on bilinear pairings.
Our construction can be viewed as combining elements of the 2HashDH
OPRF of Jarecki, Kiayias, and Krawczyk with the Dodis-Yampolskiy
PRF. We analyze our POPRF’s security in the random oracle model via
reduction to a new one-more gap strong Diffie-Hellman inversion assump-
tion. The most significant technical challenge is establishing confidence
in the new assumption, which requires new proof techniques that enable
us to show that its hardness is implied by the q-DL assumption in the
algebraic group model.

Our new construction is as fast as the current, standards-track OPRF
2HashDH protocol, yet provides a new degree of flexibility useful in a
variety of applications. We show how POPRFs can be used to prevent
token hoarding attacks against Privacy Pass, reduce key management
complexity in the OPAQUE password authenticated key exchange pro-
tocol, and ensure stronger security for password breach alerting services.

Keywords: Verifiable oblivious pseudorandom functions ·
Diffie-Hellman inversion · Anonymous tokens · Blind signatures

1 Introduction

An oblivious pseudorandom function (OPRF) [23,32] allows a client holding
a private input x and a server holding a key sk for a PRF f to engage in
a protocol to obliviously evaluate fsk on x. The client learns (and optionally
verifies) the evaluation fsk(x) while the server learns nothing. Partially-oblivious
PRFs (POPRF), first introduced by Everspaugh et al. in the context of the
Pythia password hardening system [20], extend this functionality to include a
public input (or metadata tag) t for the PRF evaluation. A client learns (and,
optionally, verifies) fsk(t, x) where t is known by both server and client; the
private input x remains hidden.

OPRFs are increasingly becoming a critical cryptographic tool for privacy-
preserving protocols. Examples include one-time use anonymous credentials for
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 674–705, 2022.
https://doi.org/10.1007/978-3-031-07085-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_23&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_23

A Fast and Simple Partially Oblivious PRF, with Applications 675

spam prevention [18], private set intersection (PSI) for checking compromised cre-
dentials [36,42], de-identified authenticated logging [26], and password authenti-
cated key exchange [28,30]. In all these applications, we observe that there is a
need to “partition” the PRF in a productive manner, i.e., allowing computation of
fsk(t, x) using domain separation on some public value t. OPRF blinding protocols
do not support this in a secure manner, because the server cannot verify what t is
used within a client’s oblivious request. Most OPRF applications therefore use a
separate key instance for each t, with an associated increase in key management
complexity. POPRFs directly provide this functionality. While one can simply use
a standard PRF with a master key to derive a key for each t (see, e.g., [29]), there is
no known way to make this efficiently verifiable. The only known POPRF support-
ing efficient verification relies on bilinear pairings [20], which slows performance
relative to the best known OPRF and also complicates deployment given the lack
of widespread implementation support for pairings.

In this work, we introduce a new POPRF that combines aspects of the
2HashDH OPRF of Jarecki et al. [28], that is the de facto standard used in
practice, with the Dodis-Yampolskiy (DY) verifiable random function [19]. Our
POPRF is also closely related to a signature scheme suggested by Zhang, Safavi-
Naini, and Susilo (ZSS) [46,47]. Our new POPRF, called 3HashSDHI, is essen-
tially as performant as 2HashDH and does not rely on pairings, thereby enabling
support for a public input virtually for free. While 3HashSDHI’s protocol is sim-
ple, its analysis is not, requiring a new interactive discrete log (DL) assumption
whose security we reduce to q-DL in the algebraic group model [24]. We also pro-
vide new formal security notions for POPRFs and (as a special case) OPRFs,
which we believe will be of independent interest.

Formal Syntax and Security Notions for POPRFs. We start with the
latter contribution. We provide a new formalization for POPRFs, including syn-
tax, semantics, and security definitions. Our formal syntax builds off of [20]
and previous OPRF formalizations [28,32]. In terms of security, we propose new
property-based security definitions that cover pseudorandomness (in the face of
malicious clients) as well as request privacy and verifiability (in the face of mali-
cious servers). Our property-based security games avoid the ideal function based
formulations inherited from 2PC and used in prior works on OPRFs; they also
avoid the non-standard “one-more” PRF security definition of [20].

Our pseudorandomness notion for POPRFs guarantees that the evaluation
outputs look random to a malicious client, even when the malicious client has
access to a blinded evaluation oracle. It is formalized with a simulation-based
indistinguishability game that takes rough inspiration from the UC-style all-in-
one OPRF security definition of [28] and prior notions for partially blind signa-
tures [1]. Here an adversary must distinguish between real evaluations of the PRF
given access to a blind evaluation oracle, and evaluations of a random function
given access to a simulated blind evaluation oracle. The simulator can receive
random function evaluations on a limited number of points for any given public
input t, where the limit is determined by the number of times the adversary
has queried the blind evaluation oracle for that t. This restriction captures that
only one random function evaluation is learned for each blind evaluation. Note

676 N. Tyagi et al.

that our accounting is more granular than the general “ticketing” approaches of
blind UC protocols [22,28,33], due to the need of tying invocations to particular
t values.

Our next notion is request privacy which captures that nothing about a client
message x should leak to a malicious server during an oblivious evaluation, and,
moreover, the server should not be able to associate an output fsk(t, x) to the
particular oblivious request transcript used to produce fsk(t, x). The latter is
often referred to as a linking attack, and is problematic in various applications
of POPRFs. Our request privacy notion comes in two flavors, depending on
whether the malicious server behaves passively or actively. The former allows us
to analyze the privacy of schemes that do not allow verification that a server legit-
imately computed the blinded evaluation protocol; the latter requires schemes
to allow client-side verification of the server’s response.

Finally we formalize a notion of uniqueness. It ensures that a malicious server
cannot trick clients into accepting inconsistent evaluations, relative to a shareable
public key associated to the secret key sk. This is similar to the property of
verifiability, which, informally, states that servers prove in zero-knowledge that
output fsk(t, x) corresponds to the public key associated with sk.

The 3HashSDHI Construction. The main contribution of this work is a
new construction of a POPRF, which we call 3HashSDHI. The name refers to
its use of three hashes and its reliance on the strong Diffie-Hellman inversion
assumption. Its starting point is the 2HashDH construction of Jarecki et al. [28],
whose full PRF evaluation we define as 2HashDH.Ev(sk, x) = H2(x,H1(x)sk).
The blinded evaluation protocol has the client send B = H1(x)r for random r,
and the server respond with B′ = Bsk. The client can unblind to (B′)1/r =
H1(x)sk in order to complete the evaluation of the function. Here operations are
over a prime-order group (written multiplicatively) such as an elliptic curve.
Proof of evaluation consists of a simple Chaum-Pedersen proof of discrete log
equality [15] proving logg pk = logB B′ where pk = gsk is the server’s public key.
As mentioned, 2HashDH is already in use in practice [18,26,42] and is on track
to become a standard [17].

We want a way to extend 2HashDH to allow public tags. To do so, we take
inspiration from the Dodis-Yampolskiy PRF, whose evaluation is defined as
DY.Ev(sk, t) = g1/(sk+t). Put together, the 3HashSDHI scheme gives a PRF
evaluated as:

3H.Ev(sk, t, x) = H2

(
t, x,H1(x)1/(sk+H3(t))

)
.

It can therefore be interpreted as evaluating the Dodis-Yampolskiy PRF on
the public input t over a random generator determined by the private input x,
followed by a final hashing step. The basic structure of H1(x)1/(sk+H3(t)) was also
described in an attempt to build secure partially blind signatures by ZSS [46].
Their analysis is incorrect, as we discuss further below and in Sect. 4.

To perform a blind evaluation, the client hashes and blinds their private input
as B = H1(x)r using a random scalar r and sends B to the server holding sk.
The server computes and sends back to the client the strong Diffie-Hellman

A Fast and Simple Partially Oblivious PRF, with Applications 677

inversion B′ = B1/(sk+H3(t)) of the blinded element using the secret key and
public hash of the public input t. The client can unblind by computing (B′)1/r =
H1(x)1/(sk+H3(t)) and then complete the evaluation by hashing appropriately. To
provide verifiability, the server uses a Chaum-Pedersen zero-knowledge proof
(ZKP) of discrete log equality to prove logg pk

′ = logB′ B where pk′ = pk ·gH3(t)

which can be easily computed from public values by the client.
Our protocol incurs minimal overhead on top of the OPRF blind evaluation

of 2HashDH, requiring only an extra hash computation, group operation, and
scalar inversion. It makes use of the same Chaum-Pedersen proof for verifiability,
which, as has been observed for 2HashDH, allows for evaluation of a batch of
inputs whilst only constructing one Chaum-Pedersen proof [17,18] (provided the
batch is for the same public metadata tag t).

We formally show request privacy against passive adversaries (without ZKP)
holds based just on the randomness of the blinding, and that request privacy
against malicious adversaries holds additionally assuming the ZKP is sound. The
key technical challenge is proving the new POPRF is pseudorandom.

As is seemingly requisite for schemes with blinded evaluation protocols, we
prove the pseudorandomness security of our scheme with respect to a one-more
gap style assumption [4,8]. In fact the algebraic structure exposed to adversar-
ial clients by the 3HashSDHI blinded evaluation protocol—raising an arbitrary
group element Y to 1/(sk + H3(t)) for adversarial t—requires new proof tech-
niques compared to prior approaches. We start by introducing a new one-more
gap strong Diffie-Hellman inversion (OM-Gap-SDHI) assumption, based on the
perceived hardness of computing Y 1/(x+c) for any base Y and (restricted) scalars
c. We show via a relatively straightforward proof that this assumption is suf-
ficient to prove POPRF pseudorandomness for 3HashSDHI, modeling the hash
functions as random oracles. Additionally, the verifiable version requires that
the ZKP is zero-knowledge.

The main difficulty is analyzing the security of our new computational
assumption. In particular, for given distinct constants c1, . . . , cn, the assump-
tion considers a setting with an oracle SDH returning B1/(x+ci) on input (B, i).
Given some additional random group elements Y1, . . . , Ym, it requires it to be
hard to compute � elements Y

1/(x+ci)
i1

, . . . , Y
1/(x+ci)
i�

, for any i ∈ [n] and for dis-
tinct i1, . . . , i� ∈ [m], using fewer than � queries SDH(·, i). The challenge is that
we do not restrict the number of queries SDH(X, j) for j �= i, and this could
be for group elements of X that depend on ci (e.g., X is a prior output of an
SDH(·, i) query). Ultimately, we show in the algebraic group model (AGM) [24]
that the assumption reduces to one of the uber assumptions from Bauer, Fuchs-
bauer, and Loss [3], and therefore, in turn, is implied by the q-DL assumption,
where q is a bound on the number of oracle queries. This AGM analysis implies
hardness of the new assumption in the generic group model (GGM) [37,40].

In terms of concrete security, our analysis shows that, roughly speaking,
3HashSDHI is as hard as breaking the q-DL problem. Actually our main AGM
proof is loose by a factor that is the maximum number of blind evaluation
queries made by an adversary. Whether this AGM analysis can be tightened is

678 N. Tyagi et al.

an open question, but we observe in the body that a slight alternative to our
AGM analysis gives a tight reduction in the GGM. We suggest using this tighter
analysis to drive parameter selection: the best known attack against q-DL is
due to Cheon [16] and indicates that a 256-bit group suffices for 80-bit security
and a 384-bit group for 128-bit security. Importantly this matches the situation
for 2HashDH, and so moving to 3HashSDHI does not require changing group
parameters to achieve the desired security levels.

Partially-Blind Signatures. Our techniques provide a new approach to build-
ing partially-blind signatures [1]. Whereas an OPRF requires access to the pri-
vate key to verify a given input, a blind signature protocol only requires the
public key. This property is useful for a number of applications and deployment
settings. For example, in settings where multiple instances of a verifier may check
the output of the OPRF, each instance would either (a) require access to the
private key or (b) request verification from an entity which holds the private key.
The former may be problematic if instances that verify outputs do not mutually
trust one another or cannot otherwise share private key material, and the lat-
ter may be problematic because it incurs a network performance penalty. Blind
signatures avoid both problems by allowing each instance to use the public key
for verification.

Blind signatures are used in one-time use anonymous credentials, and are
also being proposed as a tool for private click measurement (PCM) in the W3C
[45]. One limitation in these use cases is that the protocols do not admit public
metadata in the signature computation. PCM, for example, would benefit from
binding additional context to signature computations [45].

As previously mentioned, the 3HashSDHI construction is closely related to
the ZSS partially blind signature scheme [46], which uses pairings. As we explain
in Sect. 4, the original unforgeability proof is however incorrect. We rectify this
situation and provide the first formal analysis of the security of ZSS using our
new techniques in the full version [43]. To the best of our knowledge, this result
provides the most efficient partially-blind signature supporting arbitrary pub-
lic metadata; previous RSA-based constructions [1,2] require the set of public
metadata tags to be incorporated during parameter setup, previous Schnorr-
based constructions [2,25] are vulnerable in the concurrent signing setting [7],
and other existing constructions are more heavyweight as they are tailored for
the anonymous credential setting [10].

Finally, we also show how any unique (partially) blind signature scheme
can be used to generically construct a POPRF by hashing the signature using
a random oracle. This is apparently a folklore result for OPRFs, and we are
unaware of any formal treatment it. We provide one that also covers partial
obliviousness/blindness. See the full version [43].

Applications of our POPRF. Equipped with our new POPRF and the under-
lying design of 3HashSDHI, we return to our motivating applications and show
how swapping in a POPRF for the existing OPRF can lead to various benefits
for deployments.

A Fast and Simple Partially Oblivious PRF, with Applications 679

One-Time Use Anonymous Credentials. Privacy Pass [12,18] is a protocol in
which clients may be issued one-time use tokens that can later be redeemed
anonymously to authenticate themselves. It has been proposed for use in the
context of content distribution networks and web advertising, requiring users to
authenticate with a token, and thereby reducing malicious web requests, pro-
tecting against, e.g., denial-of-service attacks and fraudulent advertisement con-
versions. Tokens are issued to users that prove trustworthiness, e.g., through a
CAPTCHA challenge. The protocol is being considered for standardization by
both the IETF and the World Wide Web Consortium (W3C), and a prototype
deployment is already in production use by Cloudflare, hCaptcha, and others.

An OPRF is the core component of the protocol. Tokens are issued via an
OPRF in which users obtain evaluations at random points, storing the point x
and evaluation y. Redeeming a token simply involves showing the pair (x, y),
which the server can check is valid, but cannot link x back to an issuance due to
the oblivious evaluation. The server stores a strikelist of used tokens to prevent
double spending. Additionally, all servers perform a global double-spend check
to avoid clients from exploiting the possibility of spending tokens more than
once against distributed token checking systems. The use of an OPRF leads to a
more efficient issuance protocol than alternate approaches for keyed-verification
anonymous credentials that support attributes and proofs over attributes [13,14].

An abuse of the protocol that has been observed in its early use is individual
users (or groups of users) gathering tokens over a long period of time and redeem-
ing them all at once, e.g., in an attempt to overwhelm a website. We refer to such
behavior as a hoarding attack. A conceptually easy way to mitigate the damage
of a hoarding attack is to expire old unspent tokens after an amount of time: the
way to do this with an OPRF is by rotating the OPRF key. But key rotations
are complex, limiting their frequency: establishing trust in a frequently-rotating
key is a challenging problem. Trustworthy keys are important in this context,
as a server that equivocates on their public key can link token issuances and
redemptions, by, for example, using a unique public key for each issuance. As we
show, POPRFs address the issue of expiring tokens without the need of rotating
keys by using the public metadata input to encode an expiration epoch.

Bucketized PSI for Checking Compromised Credentials. Password breach alerting
protocols [36,42] allow a user to query to determine if their username, password
pair (u, pw) has appeared in a dataset D of known breaches. If so, the user
is vulnerable to credential stuffing attacks and should change their password.
Current services for breach alerting rely on an ad hoc 2HashDH-based private-
set membership protocol that achieves scalability via bucketization: the user
sends a truncated hash H(u) of their username to identify a subset B ⊆ D that
have matching truncated username hash. A 2HashDH-based protocol is then
performed over B: the client obliviously evaluates 2HashDH.Ev(sk, u ‖ pw) with
sk held by server, and also obtains the OPRF outputs for all the values in the
bucket B. Bucketization ensures scalability by limiting |B| despite |D| being on
the order of billions of username, password pairs.

680 N. Tyagi et al.

One issue is that currently deployed protocols provide no cryptographic bind-
ing between the bucket identifier H(u) and the blinded OPRF output: a malicious
client can query for arbitrary usernames, not just ones that match H(u). Whether
this is a significant security problem in practice is not clear, but we note that
POPRFs easily rectify it by replacing 2HashDH above with 3HashSDHI and
setting t = H(u).

Asymmetric Password-Authenticated Key Exchange. Password authenticated
key exchange (PAKE) protocols [6] allow a client and server to establish a
shared session key authenticated by a short password. Strong asymmetric PAKE
(SaPAKE) protocols [30] additionally ensure that the server stores what amounts
to private salted hashes of user passwords. Since these salted hashes are private,
an attacker cannot perform offline pre-computation that would lead to instan-
taneous compromise of user passwords upon the event of a server breach. The
OPAQUE [30] SaPAKE protocol uses an OPRF as one of its core components; it
is currently being considered for standardization by the IETF [34]. The OPRF
suggested for use is 2HashDH.

In OPAQUE the server uses a separate OPRF key for each user. We show
how we can instead use our 3HashSDHI POPRF to allow OPAQUE to work
with a single master key pk; diversity across users can then be provided using
usernames as the public input t to 3HashSDHI. We believe that this will simplify
deployments and potentially improve their security, as discussed in the body.

2 Preliminaries

2.1 Algebraic Group Model

In some of our security proofs, we consider security against algebraic adver-
saries which we model using the algebraic group model, following the treatment
of [24]. We call an algorithm A algebraic if for all group elements Z that are
output (either as final output or as input to oracles), A additionally provides
the representation of Z relative to all previously received group elements. The
previous received group elements include both original inputs to the algorithm
and outputs received from calls to oracles. More specifically, if [X]i is the list
of group elements [X0, . . . , Xn] ∈ G that A has received so far, then, when pro-
ducing group element Z, A must also provide a list [z]i = [z0, . . . , zn] such that
Z =

∏
i Xzi

i .

2.2 Random Oracle Model

We will prove security using ideal primitives, modeling hash functions as ran-
dom oracles. Since our schemes will make use of more than one hash function,
it will be useful to have a general abstraction for the use of ideal primitives,
following the treatment of [27]. An ideal primitive P specifies algorithms P.Init
and P.Eval. The initialization algorithm has syntax stP ←$ P.Init(1λ). The state-
ful evaluation algorithm has syntax y ←$ P.Eval(x : stP). We sometimes use AP

A Fast and Simple Partially Oblivious PRF, with Applications 681

as shorthand for giving algorithm A oracle access to P.Eval(· : stP). While, the
stateful formulation of the ideal primitive is used to allow for efficient instan-
tiation in our security proofs, e.g., by “lazy sampling”, ideal primitives should
be essentially stateless [27] to prevent contrived behavior. For example, a ran-
dom oracle can be written to be stateless, but it would inefficient to have to
store a huge random table. We can combine access to multiple ideal primitives
primitives P = P1 × . . . × Pm as follows:

P.Init(1λ)

[stP,i]
m
i

←$
[
Pi.Init(1λ)

]m

i

Return [stP,i]
m
i

P.Eval(x : [stP,i]
m
i
)

(i, x) ← x

y ←$ Pi.Eval(x : stP,i)

Return y

To concretize the above, we focus on random oracles. We define a random ora-
cle that takes arbitrary input and produces random output from a sampling algo-
rithm Samp. It is captured by the ideal primitive RO[Samp] = (RO.Init,RO.H)
defined as follows. When the range is clear from context, Samp may be omitted.

RO.Init(1λ)

T ← [·]
Return T

RO.Eval(x : T)

If x �∈ T then T [x] ←$ Samp()

Return T [x]

When clear from context and in an abuse of notation (since we will use Hi

to denote a hash function as well), we will write P = H1 × · · · × Hm as the ideal
primitive that gives access to m random oracles, accessible by querying directly
an oracle labeled Hi.

Algebraic Algorithms in the Random Oracle Model. As in [25], to sup-
port algebraic algorithms, we will require the structure of the domain and range
to be specified for any random oracle RO. We assume an input can be efficiently
checked to be a valid member of the domain and perform such checks implicitly
returning ⊥ if they fail. We will require that algebraic algorithms provide repre-
sentations for any group element input, specified as part of the domain of RO.
And similarly, any group element output of RO is included in the list of received
group elements for the algebraic adversary.

2.3 Non-interactive Zero Knowledge Proofs

We define a non-interactive proof system NiZK over an efficiently computable
relation R defined over pairs (x,w) where x is called the statement and w
is called the witness. It is made up of the following algorithms. The setup
algorithm produces the public parameters for execution, pp ←$ NiZK.Setup(λ).
The proving algorithm takes a witness and statement and produces a proof,
π ←$ NiZK.ProveP

pp(w, x)1. The verification algorithm verifies the proof for a
statement, b ← NiZK.VerPpp(x, π). We define the following security properties.

Completeness. A proof system is complete if given a true statement, a prover
with a witness can convince the verifier. We will make use of a proof system
1 P is an arbitrary ideal primitive.

682 N. Tyagi et al.

Game SoundA
NiZK,R,P(λ)

pp ←$ NiZK.Setup(λ)
stP ←$ P.Init(λ)
(x, π) ←$ AP(pp)
Return
∧

⎛
⎝ NiZK.VerP(x, π)

� ∃ w : (x, w) ∈ R

⎞
⎠

Game ZKA,b
NiZK,R,S,P(λ)

pp1 ←$ NiZK.Setup(λ)
stP ←$ P.Init(λ)
(stS, pp0) ←$ S.Init(λ)
b′ ←$ APrim,Prove(ppb)
Return b′

Oracle Prove(x, w)

Require (x, w) ∈ R
π1 ←$ NiZK.ProveP(x, w)
π0 ←$ S.Prove(x : stS)
Return πb

Oracle Prim(x)

y1 ←$ P.Eval(x : stP)
y0 ←$ S.Eval(x : stS)
Return yb

Fig. 1. Soundness (left) and zero knowledge (right) security games for non-interactive
zero knowledge proof systems.

with perfect completeness. A proof system has perfect completeness if for all
(x,w) ∈ R,

Pr
[
NiZK.VerPpp(x,NiZK.ProveP

pp(w, x)) = 1
]

= 1 .

Knowledge Soundness. A proof system is computationally knowledge sound
if whenever a prover is able to produce a valid proof for a statement x, it
is a true statement, i.e., there exists some witness w such that (x,w) ∈ R.
Knowledge soundness is defined by the security game SoundA

NiZK,R,P(λ) (Fig. 1)
in which an adversary is tasked with finding a verifying statement and proof
where the statement is not in R. The advantage of an adversary is defined as
AdvsoundNiZK,R,P,A(λ) = Pr[SoundA

NiZK,R,P(λ) = 1] with respect to ideal primitive P.

Zero Knowledge. A proof system is computationally zero-knowledge if a proof
does not leak any information besides the truth of a statement. Zero knowledge
is defined by the security game ZKA,b

NiZK,R,S,P(λ) (Fig. 1) in which an adversary
is tasked with distinguishing between proofs generated from a valid witness and
simulated proofs generated without a witness. The advantage of an adversary is
defined as

AdvzkNiZK,R,S,P,A(λ) = |Pr[ZKA,1
NiZK,R,S,P(λ) = 1] − Pr[ZKA,0

NiZK,R,S,P(λ) = 1]| ,

with respect to simulator algorithm S and ideal primitive P.

Fiat-Shamir Heuristic for Sigma Protocols. Our protocol requires a non-
interactive zero knowledge proof for the relation including two pairs of group
elements with equivalent discrete logs:

R = {(g, U, V,W), (α) : U = gα ∧ W = V α} .

This relation falls into a general family of relations of discrete log linear homomor-
phisms for which there exist so-called “Sigma protocols” [9] to construct interac-
tive proofs of knowledge. These can be made non-interactive using the Fiat-Shamir
heuristic in the standard way. We denote ΣR[GGen] (shortened to ΣR for sim-
plicity) as the resulting non-interactive proof system for R known as the Chaum-
Pedersen protocol [15] (shown in Fig. 2); it is perfectly complete, computationally
sound, and perfectly zero-knowledge in the random oracle model.

A Fast and Simple Partially Oblivious PRF, with Applications 683

ΣR.ProveH(α, (g, U, V, W))

r ←$ Zp

sU ← gr ; sW ← V r

c ← H(g ‖ U ‖ V ‖ W ‖ sU ‖ sW)
z ← r − cα

π ← (z, c)
Return π

ΣR.VerH((g, U, V, W), π)

(z, c) ← π

sU ← gzUc ; sW ← V zW c

Return c = H(g ‖ U ‖ V ‖ W ‖ sU ‖ sW)

R = {(α), (g, U, V, W) : U = gα ∧ W = V α}

Fig. 2. Description of Chaum-Pedersen discrete log equality Sigma protocol [15].

3 Partially Oblivious Pseudorandom Functions

We provide a new formalization for POPRFs, including syntax, semantics, and
security. Our formalization builds off that from [20], but we offer new security
notions that cover simulation-based security as a PRF (in the presence of a
blinded evaluation oracle), client input privacy, and verifiability.

Syntax and Semantics. A partially-oblivious pseudorandom function
(POPRF) scheme, Fn, is a tuple of algorithms

(Fn.Setup,Fn.KeyGen,Fn.Req,Fn.BlindEv,Fn.Finalize,Fn.Ev) .

The setup and key generation algorithm generate public parameters pp and a
public key, secret key pair (pk, sk), respectively. Oblivious evaluation is carried
out as an interactive protocol run between client and server. The protocols we
consider in this work make use of only a single round of interaction, so we sim-
plify the syntax of the interactive oblivious evaluation protocol into algorithms
(Fn.Req, Fn.BlindEv, Fn.Finalize) that work as follows:

(1) First, a client runs the algorithm Fn.ReqP
pp(pk, t, x), which takes input a

public key pk, tag (or public input) t, and private input x, and outputs a
local state st and a request message req. The message req is sent to a server.

(2) A server runs algorithm Fn.BlindEvP
pp(sk, t, req), using as input a secret key,

a tag t, and the request message. It produces a response message rep that
should be sent back to the client.

(3) Finally, the client runs the algorithm Fn.Finalize(rep : st) and outputs a
PRF evaluation or ⊥ if the response message is rejected, for example, due
to the verification check failing.

The unblinded evaluation algorithm Fn.Ev is deterministic, and takes as input a
public key, secret key pair (pk, sk), an input pair (t, x), and outputs a PRF eval-
uation y. We also define sets Fn.SK, Fn.PK, Fn.T, Fn.X, and Fn.Out representing
the secret key, public key, tag, private input, and output space, respectively. We
define the input space Fn.In = Fn.T × Fn.X. We assume efficient algorithms for
sampling and membership queries on these sets. When it is clear from context,
we drop the prefix Fn and subscript pp from algorithm names.

684 N. Tyagi et al.

For correctness, we require that Ev is a function, and that the blinded and
unblinded evaluations are consistent. To formalize the latter: we require that for
any pp output from Setup, any pk, sk output by KeyGen, and any t, x, it holds
that Pr[Ev(sk, t, x) = y] = 1 where the probability is taken over choice of y via
the following process:

(st, req) ←$ ReqP(pk, t, x) ; rep ←$ BlindEvP(sk, t, req) ; y ←$ FinalizeP(rep : st) .

Security. We introduce three new security definitions for POPRFs. We use
code-based games mostly following the framework of Bellare and Rogaway [5].

Pseudorandomness. The first definition captures pseudorandomness, i.e., indis-
tinguishability of the POPRF from a random function, even for malicious clients
that have access to a blinded evaluation oracle. We borrow some elements from
the UC definition for standard OPRFs from [28], but opt for what we believe to
be a simpler, standalone formulation. We also extend to handle partial oblivi-
ousness, which has some subtleties.

A pseudocode game appears in Fig. 3. The game is parameterized by a secu-
rity parameter λ, an adversary A, a challenge bit b, a POPRF Fn, a simulator
S = (S.Init,S.BlindEv,S.Eval), and an ideal primitive P. The last will be used
for random oracles in our main result. A simulator is a triple of algorithms that
share state (explicitly denoted by stS in the game). Algorithm S.Init initializes
the simulator state and outputs a public key for the game. Algorithm S.BlindEv
simulates blinded evaluation response messages while S.Eval simulates random
oracle queries. Importantly, S.BlindEv and S.Eval can obtain Ev outputs, but
they can only do so in a circumscribed way: the simulator has oracle access to
LimEv which limits the number of full evaluations it can obtain to be at most the
number of queries so far made by the adversary to the BlindEv. Importantly,
this limit is per-metadata value t (indicated via the subscript): the LimEv query
on any particular t is bound by the total number of blinded evaluation queries on
that particular t. This follows from similar granular restrictions in the partially
blind signatures literature [1].

A weaker version of the game would simply cap the total number of queries
to LimEv by the total number of queries to BlindEv. This notion is, however,
too weak for applications because we would like to ensure that querying, say,
three times on public input t1 cannot somehow help an adversary complete the
evaluation for another public input t2 �= t1. We note that a recent preprint [41]
contained this weaker notion, couched in the context of Privacy Pass. (We discuss
this paper further in Sect. 4.)

We let the advantage of a POPRF adversary A be defined by

Advpo-prfFn,S,P,A,(λ) =
∣∣∣Pr

[
POPRFA,1

Fn,S,P(λ) ⇒ 1
]

− Pr
[
POPRFA,0

Fn,S,P(λ) ⇒ 1
]∣∣∣

where the probability spaces are taken over the random choices made in the
games and the events signify that the game outputs the value one.

One could relax our definition in various ways. For example, by setting a
parameter qt,max that upper bounds the total number of BlindEv queries on

A Fast and Simple Partially Oblivious PRF, with Applications 685

Game POPRFA,b
Fn,S,P(λ)

RandFn ←$ FnGen(Fn.In, Fn.Out)
stP ←$ P.Init(λ)
pp ←$ Fn.Setup(λ)
(sk, pk1) ←$ Fn.KeyGenP

pp()
(stS, pk0) ←$ S.Init(pp)
b′ ←$ AEv,BlindEv,Prim(pp, pkb)
Return b′

Oracle Ev(t, x)

y1 ← Fn.EvP(sk, t, x)
y0 ← RandFn(t, x)
Return yb

Oracle LimEv(t, x)

qt,s ← qt,s + 1
If qt,s ≤ qt then

Return Ev(t, x)
Return ⊥

Oracle BlindEv(t, req)

qt ← qt + 1
rep1 ← Fn.BlindEvP(sk, t, req)
(rep0, stS) ←$ S.BlindEvLimEv(t, req : stS)
Return repb

Oracle Prim(x)

y1 ←$ P.Eval(x : stP)
(y0, stS) ←$ S.EvalLimEv(x : stS)
Return yb

Fig. 3. Simulation-based security definition for pseudorandomness against malicious
clients, with granular accounting for metadata in queries. The LimEval oracle limits
the number of evaluations the simulator can make on a per-metadata tag basis.

tag t over the course of the game and letting the simulator—at any point in
the game—obtain qt,max full evaluations. This would seem to still provide qual-
itatively the same level of security, but our schemes meet the stronger notion
that restricts the simulator over the course of the game. Another relaxation that
does not preserve the same level of security would be to allow the simulator
more queries than qt,max, for example, 2 · qt,max. But this degrades the security
guarantee as it means that in q queries to BlindEv on some t a malicious client
can potentially compute up to 2q POPRF outputs for that tag t.

Request Privacy and Unlinkability. Our second goal is to capture privacy for
clients. This means not only that requests should hide the private input portion
x, but also that request/response transcripts and output POPRF values should
be unlinkable. We formalize two models for this goal, corresponding to the level
of maliciousness by a misbehaving server.

Game POPRIV1 (Fig. 4, left game) captures an indistinguishability exper-
iment in which the adversary can query to obtain full transcripts (including
output) resulting from honest blinded evaluation of a POPRF. The transcripts
are either returned properly (b = 0) or with the request-response pairs swapped
relative to the outputs (b = 1). Intuitively, if the adversary cannot distinguish
between these two worlds, then there is no way to link a POPRF output value
to a particular blinded evaluation, despite the adversary knowing the secret
POPRF key. This captures also input privacy security: if a request reveals some
information about the input x this can be used to win the POPRIV1 game. We
sometimes refer to this as request privacy against passive adversaries, because
the adversary cannot interfere with the server’s proper execution.

The advantage of a POPRIV1 adversary A in the P-model is defined by

Advpo-priv1Fn,P,A (λ) =
∣∣∣Pr

[
POPRIV1A,1

Fn,P(λ) ⇒ 1
]

− Pr
[
POPRIV1A,0

Fn,P(λ) ⇒ 1
]∣∣∣

where the probability spaces are taken over the random choices made in the
games and the events signify that the game outputs the value one. We say a Fn
scheme is perfectly private if Advpo-priv1Fn,P,A (λ) = 0 for all adversaries A.

686 N. Tyagi et al.

Game POPRIV1A,b
Fn,P(λ)

pp ←$ Fn.Setup(λ)
(pk, sk) ←$ Fn.KeyGen(pp)
stP ←$ P.Init(λ)
b′ ←$ ATrans,P(pp, pk, sk)
Return b′

Oracle Trans(t, x0, x1)

(st0, req0) ←$ Fn.ReqP(pk, t, x0)
(st1, req1) ←$ Fn.ReqP(pk, t, x1)
rep0 ←$ Fn.BlindEvP(sk, t, req0)
rep1 ←$ Fn.BlindEvP(sk, t, req1)
y0 ← Fn.FinalizeP(rep0; st0)
y1 ← Fn.FinalizeP(rep1; st1)
τ ← (reqb, repb, y0)
τ ′ ← (req1−b, rep1−b, y1)
Return (τ, τ ′)

Game POPRIV2A,b
Fn,P(λ)

pp ←$ Fn.Setup(λ)
stP ←$ P.Init(λ)
i ← 0
b′ ←$ AReq,Fin,P(pp)
Return b′

Oracle Req(pk, t, x0, x1)

i ← i + 1
(sti,0, req0) ←$ Fn.ReqP(pk, t, x0)
(sti,1, req1) ←$ Fn.ReqP(pk, t, x1)
Return (reqb, req1−b)

Oracle Fin(j, rep, rep′)

If j > i then return ⊥
yb ← Fn.FinalizeP(stj,b, rep)
y1−b ← Fn.FinalizeP(stj,1−b, rep′)
If y0 = ⊥ or y1 = ⊥ then

Return ⊥
Return (y0, y1)

Fig. 4. Security definitions for honest-but-curious server unlinkability (left) and mali-
cious server unlinkability (right).

POPRIV1 security does not capture malicious servers that deviate from the
protocol. So, for example, it doesn’t rule out attacks in which the server replies
with garbage to a blinded evaluation request.

Our next game POPRIV2 allows the adversary to choose the public keys used
for request generation and leaves to the adversary how to reply to requests. The
game therefore splits transcript generation across two oracles, a request oracle
(Req) and finalize oracle (Fin). The first oracle replies with a randomly ordered
pair of request messages based on the challenge bit, and the second oracle can be
queried with adversarially chosen response messages. The game requires that nei-
ther y0 nor y1 is equal to ⊥—if either is then the finalize oracle returns ⊥. This
prevents the trivial attack of corrupting one reply but not the other.

The advantage of a POPRIV2 adversary A in the P-model is defined by

Advpo-priv2Fn,P,A (λ) =
∣∣∣Pr

[
POPRIV2A,1

Fn,P(λ) ⇒ 1
]

− Pr
[
POPRIV2A,0

Fn,P(λ) ⇒ 1
]∣∣∣

where the probability spaces are taken over the random choices made in the
games and the events signify that the game outputs the value one.

POPRIV2 is strictly stronger than POPRIV1. Looking ahead our new
POPRF meets POPRIV1 when verification is omitted, and POPRIV2 when
verification is required.

Uniqueness. Lastly, we discuss an additional property that is relevant in the ver-
ifiable setting when clients want to ensure that servers honestly perform blind
evaluations. This means that the output of the blind evaluation protocol should
be consistent relative to the public key pair, i.e., consistent with the output of
unblinded evaluation using the secret key. Our correctness definition requires this

A Fast and Simple Partially Oblivious PRF, with Applications 687

is the case for honest execution of the algorithms. We formalize this correctness
property for malicious servers as a uniqueness definition POUNIQ, taking inspi-
ration from definitions used previously for verifiable random functions (c.f., [19]).
In short, no malicious server should be able to convince a client into accepting
two different outputs for the same (pk, t, x). We show that uniqueness is implied
by correctness and POPRIV2. The complete definition for POUNIQ, theorem
statement, and proof are deferred to the full version [43].

Relation to Partially Blind Signatures. POPRFs are related to two-move
partially blind signatures, which were introduced by Abe and Fujisaki [1]. A
partially blind signature is a tuple of algorithms

DS = (DS.Setup,DS.KeyGen,DS.Sign,DS.Ver,DS.Req,DS.BlindSign,DS.Finalize)

where the first four algorithms define a standard digital signature scheme for
message space consisting of pairs (t,m), called the public input (or tag) and
private message, respectively. Signatures can also be generated via an interactive
protocol which, like we did for POPRFs, we formalize simply as a single round
trip protocol initiated by a client running DS.Req(pk, t,m) to generate a request
message req and client state st, sending the former to the server which runs
DS.BlindSign(sk, req) to generate and send a response rep back to the client,
which then computes a signature via DS.Finalize(st, rep). This protocol should
achieve blindness, which can be defined similarly to our request privacy definition
above for POPRFs.

The main security property targeted is one-more unforgeability, which,
roughly speaking, states that an adversarial client can’t generate q + 1 unique
message-signature pairs (m1, σ1), . . . , (mq+1, σq+1) that all verify under a public
key pk and public tag t even when given the ability to query a blind signing
oracle with the only restriction being that only q queries can be made for the
chosen public tag t. This intuitively enforces that each query to the blind signing
oracle only results in one learned signature, and queries for a different public tag
do not help in forging a signature for the target tag. We present a complete
formal treatment of partially blind signatures in the full version [43].

A partially blind signature is unique if DS.Sign is deterministic and its output
on (pk, t,m) matches that of the interactive protocol when initiated on the same
triple. A blind signature is just a partially blind signature with t omitted. [28]
observed that one can transform unique blind signatures into OPRFs by hash-
ing the signature. A similar transform exists to build a POPRF from a unique
partially blind signature. We provide details and proof of this transform in the
full version [43] for both cases, with and without public input). (As far as we
are aware there has been no formal treatment of this observation.)

Most prior partially blind signature schemes are not unique, e.g., [1,2]. The
only unique scheme we are aware of is due to Zhang, Safavi-Naini, and Susilo
(ZSS) [46], but it relies on bilinear pairings and so this generic transformation will
not achieve our goals for a POPRF. Moreover as mentioned in the introduction,
the security analysis in ZSS is wrong. That said, our construction shares much of
the underlying structure from the ZSS one. Using our new proof techniques, we

688 N. Tyagi et al.

furthermore provide the first complete proof of the ZSS partially blind signature
scheme (see the full version [43]).

4 The 3HashSDHI POPRF

We now turn to our main result: providing a new POPRF. Our construction
combines elements of the 2HashDH construction with a technique used by Dodis
and Yampolskiy for their verifiable PRF; it is also related to a partially blind
signature scheme suggested by Zhang, Safavi-Naini, and Susilo. We call our
construction 3HashSDHI, which we often abbreviate to 3H. The name refers to its
use of three hashes and reliance on the strong inverse Diffie-Hellman assumption.

Algorithms. Our protocol relies on a group G of prime order p and with gen-
erator g. As mentioned in the introduction, the 3HashSDHI protocol computes
a PRF output as

3H.Ev(sk, t, x) = H2

(
t, x,H1(x)1/(sk+H3(t))

)

where H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → {0, 1}γ2 , and H3 : {0, 1}∗ → {0, 1}γ3 are
the titular hash functions. Note that H1 has range the group G, whereas the
second and third hashes output bit strings of length γ2 and γ3. By default we
set γ2 = λ and γ3 = 2λ. The third hash must be collision resistant for security to
hold. Looking ahead to the security analysis, we will model the hash functions
as random oracles. The setup, key generation, and full evaluation algorithms are
shown in pseudocode below.

3H.Setup(λ)

(p, g,G) ←$ GGen(λ)

pp ← (p, g,G)

Return pp

3H.KeyGenH1×H2×H3 (pp)

(p, g,G) ← pp

sk ←$ Zp ; pk ← gsk

Return (pk, sk)

3H.EvH1×H2×H3 (sk, t, x)

Y ← H1(x)
1/(sk+H3(t))

Z ← H2(t, x, Y)

Return Z

Here, GGen denotes a group parameter generator outputting a triple (p, g,G)
consisting of a prime p, (the description of) a group G of order p, and a genera-
tor g of G.

The blind evaluation protocol has a client compute H1(x) and mask the
resulting group element by raising it to a random scalar r. The client can send
the resulting blinded value B to the server, who can then raise B to 1/(sk+H3(t))
and return the result. The client then finalizes by raising the returned value to
1/r in order to remove the blinding, followed by the final step of computing the
final hash H2. The blinding ensures request privacy.

We optionally can extend this blinded evaluation protocol to include a proof
that the server properly exponentiated B. This is necessary to have the protocol
enjoy POPRIV2 security, which is important in some (but not all) applications.
At first, it may not be obvious how to prove to the client that the server is
returning B′ = B1/(sk+H3(t)) relative to the public key gsk, because the sum
appears in the denominator. However, we can use the following trick: the server
generates a standard DL proof that B = (B′)k for some k. The client runs

A Fast and Simple Partially Oblivious PRF, with Applications 689

3H.ReqH1×H2×H3×H4 (pk, t, x)

r ←$ Zp ; B ← H1(x)r

Return ((pk, r, t, x), B)

3H.FinalizeH1×H2×H3×H4 (B′, π; (pk, r, t, x))

Y ← (B′)1/r

Require ΣR.VerH4 ((g, gH3(t) · pk, B′, B), π)
Z ← H2(t, x, Y)
Return Z

B, t−−−−−−−−−−→

B
′
, π←−−−−−−−−−−

3H.BlindEvH1×H2×H3×H4 (sk, t, B)

k ← sk + H3(t)
B′ ← B1/k

π ←$ ΣR.ProveH4 (k, (g, gk, B′, B))
Return (B′, π)

Fig. 5. Blind evaluation for our 3H POPRF construction. All three algorithms have
implicit input the parameters pp = (p, g,G) that describe the group used. The NIZK
uses relation R = {(g, U, V, W), (α) : U = gα ∧ W = V α}.

verification by explicitly reconstructing gk = pk · gH3(t) = gsk+H3(t). This means
that the verification procedure checks the special structure of the exponent k.

The full protocol, including the NIZK (which uses its own hash H4), is shown
in Fig. 5. Here we show that t is sent from the client to server, though in some
applications the server may receive t out-of-band. Execution requires just one
round trip. It requires just two group exponentiations on the client side (and,
when using the NIZK, those used for its verification). The server uses one expo-
nentiation plus one for the NIZK proof.

Relation to Partially Blind Signatures. 3HashSDHI is closely related to
a partially blind signature suggested by Zhang, Safavi-Naini, and Susilo [46]. It
uses groups G1,G2,GT each of order p, with generators g1, g2, gT , and that come
equipped with an efficient-to-compute pairing e : G1 × G2 → GT such that for
any α, β ∈ Zp it holds that e(gα

1 , gβ
2) = gαβ

T . Their signature is defined as

ZSS1.Ev(sk, t, x) = HG2(x)1/(sk+H3(t))

where HG2 : {0, 1}∗ → G2 hashes onto the group G2 and H3 is as defined above
for 3HashSDHI. We use ZSS1 to differentiate from our suggested modifications,
which we call ZSS2 and discuss in the full version [43]. As can be seen, 3HashS-
DHI uses essentially the same structure, combined with a final hash but we
dispense with the use of bilinear pairings using instead NIZKs to provide verifi-
ability. We also comment on two aspects of the original security analysis of the
partially blind signature scheme in [46]: (1) the analysis of one-more unforgeabil-
ity is incorrect; and (2) it contains an incorrect claim that so-called “exponential”
blinding (see below for discussion in the context of OPRFs) is insecure. More
precisely, for (1), the claimed security proof relies on a lemma (stated without a
proof) which says that if the scheme is secure, in terms of one-more unforgeabil-
ity, for any fixed public input, then it is secure as a partially-blind signature –
such lemma does not appear to be provable; for (2), the claimed distinguishing
test does not work, rather it identifies every pair of signature and signing tran-
script as a match, regardless of whether they are associated. Our new techniques,

690 N. Tyagi et al.

in particular a variant of the new gap assumption discussed in the next section,
enable a new proof of unforgeability for the ZSS partially blind signature, and we
also provide a proof that exponential blinding is secure. See the full version [43]
for the details.

Comparison to prior (O)PRFs. Recall that the 2HashDH OPRF is defined
by 2HashDH.Ev(sk, x) = H2(x,H1(x)sk). On the other hand, the DY PRF [19] is
evaluated on a message t via DY.Ev(sk, t) = h1/(sk+t) for generator h. Thus, our
3HashSDHI can be seen as blending of the two approaches, basically defining, for
each x, a separate instance of the DY PRF with generator h = H1(x) and input
message t. The way we combine them retains the simple blinding mechanism of
2HashDH to allow hiding x. Despite the similarity to the prior constructions,
analyzing security requires new techniques (see the next section).

2HashDH is often formulated using an alternative “multiplicative” blinding
strategy as opposed to the “exponential” blinding presented here. Multiplicative
blinding enables client-side performance improvements of fixed-base exponentia-
tion with precomputation over variable-base exponentiation, but has been shown
to have some security drawbacks in the non-verified setting [31]. 3HashSDHI
is not compatible with the multiplicative blinding protocol used by 2HashDH,
however the full version [43] presents an alternative multiplicative blinding pro-
tocol [46] that enjoys the same performance benefits.

Miao et al. construct an oblivious evaluation protocol for the DY PRF
[38]. Their approach makes use of the additive-homomorphic Camenisch-Shoup
encryption scheme [11] and related proofs of discrete log representation. In
contrast, 3HashSDHI uses the more efficient oblivious evaluation approach of
2HashDH and uses the structure of DY to tie in the public metadata, meaning
the more expensive DY oblivious evaluation techniques are avoided.

Pythia [20] provided the first POPRF. It uses pairing-friendly groups
G1,G2,GT each of order p, with generators g1, g2, gT . Then, the Pythia POPRF
is defined by

Pythia.Ev(sk, t, x) = e(HG1(t),HG2(x))sk

where HG2 and HG2 are hash functions that map to the groups G1,G2. This
construction enables blinded evaluation by sending B ← HG2(x)r, and hav-
ing the server respond with e(HG1(t)

sk, B). It also has some other features
that were desirable in the password hardening context for which Pythia was
designed, specifically, that one can have compact key rotation tokens of the
form Δ = sk′/sk. The token Δ can be shared with a client to help it update
previously computed POPRF values for any t, x. Compared to Pythia’s POPRF,
3HashSDHI avoids use of pairings. This makes it faster to compute and saves
bandwidth.

That said, the 3HashSDHI construction does not support key rotations even
if one omits the final H2 evaluation. To expand, consider using a (non-compact)
key rotation in a way analogous to Pythia, i.e., distributing to a client Δt1 =
(sk+ H3(t1))/(sk′ + H3(t1)) and Δt2 = (sk+ H3(t2))/(sk′ + H3(t2)). This would
allow rotating (unhashed) POPRF outputs on public inputs t1 and t2 from an
old key sk to a new key sk′. But this also trivially reveals sk and sk′, given that

A Fast and Simple Partially Oblivious PRF, with Applications 691

H3(t1) and H3(t2) are publicly computable. While in the applications we explore
in Sect. 7 we do not need key rotation tokens, the question of finding a POPRF
that avoids pairings yet supports key rotations remains open.

Jarecki et al. [29] propose construction of a POPRF F from OPRF F1 and
PRF F2 as F.Ev(sk, t, x) = F1.Ev(F2.Ev(sk, t), x). They go on to propose a con-
struction instantiating F1 with 2HashDH and F2 with a symmetric PRF (e.g.,
HMAC); this construction is highly efficient but does not provide verifiability
due to the non-algebraic choice of F2. 3HashSDHI can be thought of as fol-
lowing this approach composing 2HashDH with the algebraic VRF of Dodis-
Yampolskiy [19].

We also compare to the recent attribute-based verifiable OPRF (AB-
VOPRF) suggested by Huang et al. of Facebook [26] for use with Privacy Pass.
An attribute-based VOPRF is a POPRF that separates out an explicit algorithm
for converting a secret key and attribute t (what we call a tag) into a tag-specific
public key, secret key pair. As with other VOPRFs, there is a verifiable, blinded
evaluation protocol by which a client can obtain an output on some (t, x) pair
without revealing x. Any AB-VOPRF gives a POPRF, and vice versa.

Again following the blueprint of [29], Facebook’s proposed construction [26] of
an AB-VOPRF combines the 2HashDH OPRF with the Naor-Reingold PRF [39].
Evaluation is defined by

FB.Ev(sk, t, x) = H1(x)a0·∏i a
t[i]
i

where sk = a0, a1, . . . , a|t| and t[i] indicates the ith bit of t. To make this veri-
fiable, the scheme must provide a more complex NIZK involving |t| group ele-
ments, making it expensive to transmit and verify, particularly in applications
where a wide variety of tags t will be used. In comparison 3HashSDHI is as
efficient as 2HashDH.

Finally, a concurrent, independent work by Silde and Strand [41] describe
what we call the 3HashSDHI protocol and how it could be useful for Privacy Pass
and the Facebook de-identified logging application. They formalize a notion of
anonymous token security that is more tailored to Privacy Pass style applications
(compared to our general POPRF definitions), but this definition contains the
aforementioned problem (see Sect. 3) of not performing query accounting on a per
public input basis, making it too weak of a security notion for their applications.
In addition, the security analysis relative to this notion is incomplete, and so
the paper does not yet provide a proof even of this weaker security notion.
Nevertheless, their work underscores the benefits of the 3HashSDHI protocol in
the applications they explore and our proof techniques (in particular, the new
one-more gap SDHI assumption discussed in the next section) should enable
improvements to their analysis.

Extension to Private Metadata Bit. Recall a primary application of OPRFs
is in the construction of anonymous tokens. We have thus far been concerned with
adding support for public metadata, but there are also settings that benefit from
being able to associate private metadata to tokens that can only be identified by
the issuer. To prevent trivial linking attacks by a malicious server, it is necessary

692 N. Tyagi et al.

that the private metadata space remain small. Kreuter et al. propose a variant
of Privacy Pass (based on the 2HashDH OPRF) that supports a single private
metadata bit [35]. The high level approach is to simply maintain two keys and
prove in zero knowledge that the token is issued under one of the two keys.
However, they observe that a deterministic primitive (like a PRF) is insufficient
to achieve indistinguishability between private metadata bits. Therefore, the core
of their construction is a new anonymous token protocol that can be considered
as a randomized variant of 2HashDH. It is likely similar techniques can be applied
to construct a randomized version of 3HashSDHI to support public metadata
as well as a private metadata bit; we leave the details of such a construction to
future work. Silde and Strand propose a construction along these lines, but as
mentioned before, the security analysis is incomplete [41].

5 Security Analysis

We show formally that the 3HashSDHI PO-PRF enjoys pseudorandomness and
request privacy. The former is the more complex analysis; we start with it.

5.1 Pseudorandomness

The main technical challenge is showing that 3HashSDHI meets our pseudoran-
domness definition, captured by game POPRF (Fig. 3 in Sect. 3). We start with
an overview of our proof strategy, and then state our main result.

Proof Strategy. Our proof of pseudorandomness proceeds in several steps.
First, we introduce a new discrete log (DL) type cryptographic hardness
assumption: the one-more gap strong Diffie-Hellman inversion problem, denoted
(m,n)-OM-Gap-SDHI for parameters m,n that we will explain. The new
assumption is a generalization of prior one-more DL assumptions, but extended
with two oracles and a more involved one-more winning condition which depends
on the number of queries with a specific form to one of the oracles. We show
that we can build a POPRF simulator such that, in the ROM, distinguishing
between the real (b = 1) and ideal worlds (b = 0) reduces to breaking an instance
of (m,n)-OM-Gap-SDHI where m is the number of H3 queries made by A and n
is the number of H1 queries. We note that use of random oracles here allows us
to avoid the more complex proof techniques used by Dodis and Yampolskiy [19],
and indeed it is unclear what kind of analysis could work for this step without
random oracles.

In the second step, we analyze the security of our new assumption, showing
that, in the Algebraic Group Model (AGM) [24] it reduces to one of the uber
assumptions from Bauer, Fuchsbauer, and Loss (BFL) [3]. In turn, we can use a
result from BFL to finally show that our new assumption is implied (again, in
the AGM) by the q-DL assumption. This provides good evidence of the difficulty
of the problem, and allows us to derive precise concrete security bounds.

A Fast and Simple Partially Oblivious PRF, with Applications 693

The One-More Gap SDHI Assumption. Game (m,n)-OM-Gap-SDHI is
shown in Fig. 7. The game generates a group instance and a challenge secret sk.
The adversary A = (A1,A2) runs in two stages. In the first stage it receives
the group description p,G and outputs a sequence of n scalar values c1, . . . , cn.
Importantly A1 does not receive g, forcing it to commit to the ci values in a way
independently of the generator g. We assume that g is randomly chosen; this
will be important in our analysis. Then, the second stage A2 is run on input the
generator g, gsk, and a vector of m group elements gy1 , . . . , gyn . The adversary
is given access to two oracles. The SDH oracle returns B1/(sk+ci) for arbitrary
B and one of the previously specified ci values. The SDDH oracle is a decision
oracle that helps the adversary determine whether Z = Y 1/(sk+ci) for arbitrary
Y,Z and one of the previously specified ci values.

The adversary outputs a distinguished index γ indicating a cγ value, as well
as a set of � pairs (Zi, αi) ∈ G × [0..m]. The adversary wins if � > qγ and Zi =
Y

1/(sk+cγ)
αi for all 1 ≤ i ≤ �. Here qγ is the number of queries to the SDH with

second input set to γ. Without the “one more” restriction of � > qγ , it is trivial
to win. We define the (m,n)-OM-Gap-SDHI-advantage of an adversary A by

Adv
(m,n)-om-gap-sdhi
GGen,A (λ) = Pr

[
(m,n)-OM-Gap-SDHI

A
GGen(λ) ⇒ true

]
.

An adversary A has query budget (
q, qSDDH) for
q = [
q1, . . . ,
qn] if at the end of the
game A has made at most
qi queries to SDH with index i and has made at most
qSDDH queries to SDDH. Requiring fixed query budgets is an artifact of existing
analysis approaches to Diffie-Hellman inversion-like assumptions; we leave it as an
open question whether the per-tag query budget can be handled adaptively.

We note that a weakening of the assumption dispenses with the more granular
per-c-value accounting, instead just asking that the adversary can’t come up with
� > q solutions for any mixture of Yi and cj values. This variant is much easier
to analyze in the AGM, but is not sufficient for our analysis.

Game q-DLA
GGen(λ)

(p, g,G) ←$ GGen(λ)
x ←$ Zp

x′ ←$ A
(

p,G, g,
[
gxi

]q

i=1

)

Return x = x′

Fig. 6. The q-type discrete log security
game.

Reducing (m,n)-OM-Gap-SDHI to
q-DL. In two steps, we show how to
reduce this assumption, in the AGM,
to the difficulty of q-DL. The latter
involves a game q-DL (Fig. 6) that gen-
erates a group instance p, g,G for secu-
rity parameter λ, and gives an adver-
sary g, gx, gx2

, . . . , gxq

for a random
scalar x. The adversary must output
x. We define the advantage of a q-DL-adversary A to be Advq-dl

GGen,A(λ) =
Pr

[
q-DLA

GGen(λ) ⇒ true
]
.

As a convenient middle layer, we rely on BFL’s “Uber-assumption” [3], for-
malized via the game m-Uber in Fig. 8. It involves a game where the adversary
can obtain gρ(�x) by querying an arbitrarily chosen m-variate polynomial ρ(
X)
to an oracle Ev, for a secret vector
x ←$ Z

m
p . The adversary wins if it outputs

successfully gμ(�x) for some polynomial μ(
X) which is independent of the poly-
nomials ρ1(
X), . . . , ρq(
X) queried to Ev, i.e., μ(
X) cannot be expressed as an

694 N. Tyagi et al.

Game (m, n)-OM-Gap-SDHIAGGen(λ)

(p, g,G) ←$ GGen(λ)
sk ←$ Zp ; [yi]mi ←$ [Zp]mi
(stA, [ci]ni) ←$ A1(p,G)
Require ∀n

i�=jci �= cj

(γ, [Zi, αi]�i) ←$ ASDH,SDDH
2

(
g, gsk , [gyi]mi : stA

)

Require qγ < � ∧ ∀�
i�=jαi �= αj

Return [Zi]�i =
[
gyαi

/(sk+cγ)
]�

i

Oracle SDH(B, i)

Require i /∈ [1, n]
qi ← qi + 1
Z ← B1/(sk+ci)

Return Z

Oracle SDDH(Y, Z, i)

Return Z = Y 1/(sk+ci)

Fig. 7. The one-more gap strong Diffie-Hellman inversion security game.

Game m-UberA
GGen(λ)

(p, g,G) ←$ GGen(λ)
Q ← {}
�x = [xi]mi ←$ [Zp]mi
(U, μ(�X)) ←$ AEv,Decide(p,G, g)

Return
(

U = gμ(�x) ∧ Q ⊥⊥ {μ(�X)}
)

Oracle Ev(ρ(�X))

Q ← Q ∪ {ρ(�X)}
Return gρ(�x)

Oracle Decide(ρ(�X), [Yi]ni)

�y = [yi]ni ← [
logg Yi

]n

i

Return ρ(�y) ≡p 0

Fig. 8. The interactive, flexible-output, polynomial uber assumption with decision ora-
cle. Here, ⊥⊥ denotes algebraic independence.

affine combination μ(
X) = α1ρ1(
X)+ · · ·+αqρq(
X)+β. The adversary can also
query an additional Decide oracle with a polynomial ρ(
X), as well as group
elements gy1 , . . . , gym , and learn whether gρ(y1,...,ym) = 0 or not. We denote the
corresponding advantage as Advm-uber

GGen,A(λ) = Pr
[
m-UberA

GGen(λ) ⇒ true
]
.

We prove the following theorem in the full version [43]. Here and subsequently
we use ‘≈’ to denote that runtimes are equal up to small constant factors.

Theorem 1. For any algebraic adversary Asdhi of (m,n)-OM-Gap-SDHI with
query budget (
q = [q1, . . . , qn], qSDDH), and any GGen outputting (p, g,G), where
g is a uniformly chosen element of G, we give adversary Auber such that

Adv
(m,n)-om-gap-sdhi
GGen,Asdhi

(λ) ≤ (qmax + 1) · Adv
(m+1)-uber
GGen,Auber

(λ) +
q

p
,

where q =
∑n

i qi and qmax = max{qi}n
i . Also, Auber makes at most q queries

to its polynomial evaluation oracle with maximum degree q + 1, and outputs a
polynomial of degree at most q. Further, T (Asdhi) ≈ T (Auber).

It is important here to note that the theorem assumes that the query budgets
qi corresponding to different i’s are fixed a priori, rather than being chosen
adaptively.

Combined with a basic reduction from [3], this gives us the following imme-
diate corollary.

A Fast and Simple Partially Oblivious PRF, with Applications 695

Corollary 1. For any algebraic adversary Asdhi of (m,n)-OM-Gap-SDHI,
with query budget (
q = [q1, . . . , qn], qSDDH), and any GGen outputting (p, g,G),
where g is a uniformly chosen element of G, we give adversary Adl such that

Adv
(m,n)-om-gap-sdhi
GGen,Asdhi

(λ) ≤ (qmax + 1) · Adv
(q+1)-dl
GGen,Adl

(λ) +
q

p
,

where q =
∑n

i qi and qmax = max{qi}n
i . Further, T (Asdhi) ≈ T (Adl).

The main difficulty of the proof of Theorem 1 in the full version [43] stems
from the one-more requirement � > qγ in the winning condition, which is defined
in a way that depends on the specific number of queries qγ to SDH(·, γ). To gain
some intuition, it is convenient to think of the game in algebraic terms (and this
point of view is also accurate when casting our proof in the AGM).2 Specifically,
let us describe exponents of the elements provided to A2 as formal polynomials
X0 (standing for the secret key) and X1, . . . , Xm (for the values y1, . . . , ym). Ini-
tially, the adversary has these polynomials available, and now a call to SDH(P, i)
can also be thought of as dividing some polynomial P (or more generally, a ratio-
nal function) by (X0+ci). The rational function P can be any affine combination
of the functions obtained so far, and SDH(P, i) adds a new rational function to
this set of available rational functions. In other words, consecutive queries induce
a transcript τ consisting of the initial functions X0,X1, . . . , Xm, and the func-
tions returned by SDH. The goal of the adversary is to ensure that, for some γ,
the span3 of τ contains � > qγ functions of the form

Xα1

X0 + cγ
, . . . ,

Xα�

X0 + cγ
.

An adversary cannot achieve this goal naively by querying SDH(Xαj
, γ) for

j ∈ [�] without violating the query budget. Still, the key difficulty here is that
the adversary could, after learning (say) X1/(X0+cγ) make a further query that
would give X1/(X0 + cγ)(X0 + cγ′) for some γ′ �= γ. This second query would
not count towards qγ , and could potentially be helpful, as it does involve cγ .

The bulk of our proof shows that arbitrary queries to SDH cannot, in fact,
help the adversary. We do so via a careful inductive analysis which shows that
the transcript τ can be rewritten in an equivalent way, call it τ ′, without affecting
its span. In particular, τ ′ only involves rational functions whose denominators
have form (X0 + ci)k for some i and k, but no products involving multiple ci’s
appear in the denominators. We leverage this structure to show that the span
of such τ ′ can include at most qγ rational functions of the form Xi

X0+cγ
.

Now, given the above algebraic game cannot be won, an adversary winning
the game must necessarily produce an output (γ, [Zi, αi]

�
i) where for at least one

i ∈ [�], we have that the polynomial Xαi
/(X0+ci) is not in the span of the queries

2 We ignore the SDDH oracle in this discussion, and it will be easy to handle in the
actual proof via the Decide oracle.

3 By “span” we mean the set of rational functions that can be obtained by taking
affine combinations of the functions in τ .

696 N. Tyagi et al.

to SDH. This lends itself naturally to a reduction to the Uber-assumption, which
we describe in full in the proof.

Reducing to (m,n)-OM-Gap-SDHI. We now turn to showing that we can
reduce the pseudorandomness security of 3HashSDHI to our new assumption. We
focus on the verifiable version of 3HashSDHI; an analysis for the non-verifiable
version is easily derived from our analysis here. Our analysis is in the RO model;
we model all four hash functions as ROs.

We start by describing the simulator used in the proof. The simulator’s goal
is to respond to blind evaluation and RO queries so that the resulting transcript
of values is indistinguishable from real responses. Importantly, the simulator
must do this without making too many calls to the full evaluate oracle for each
BlindEval-queried public input t. Intuitively, achieving this security enforces
that a malicious client can not exploit the blinded evaluation oracle to do more
than help it compute a single POPRF output for the particular requested t.

The simulator works as follows. It chooses its own secret key sk and answers
the H1 and H3 queries with random group elements and scalars, respectively.
To answer a blinded evaluation query, it runs the scheme’s blind evaluation
algorithm Fn.BlindEv(sk, B), except that it uses the NIZK’s simulator to generate
the proof π (and to simulate any ideal primitive underlying the NIZK, i.e., H4).
The key challenge is in simulating H2 queries, that which enables the adversary
to “complete” a blinded evaluation. The simulator must arrange that the value it
returns in response to H2 queries is consistent with the random value returned by
Ev. To do so, the simulator checks whether a queried point (t, x, Y) is such that
Y = H1(x)1/(sk+H3(t)) and, if so, it queries LimEv(t, x) and returns the output.
Otherwise, it chooses a random point to return. The simulator can perform this
check because it chose sk. See the full version [43] for the full details of the
simulator.

The simulation can fail should the adversary be able to query it on a point
Y = H1(x)1/(sk+H3(t)) when the simulator cannot make another call to LimEv
for that value t. This can only arise should the adversary query H2 on more such
values t, Y than queries it so far made to BlindEv on that t. We show that an
adversary, that can do so, can also win the (m,n)-OM-Gap-SDHI game where
m,n are the total number of queries involving a distinct x value and distinct t
value, respectively. (We define this more precisely below.) This step also relies
on the collision resistance of H3, which holds in the ROM.

To formalize this, we state below a theorem using the ideal primitive model in
which P = H1×H2×H3×H4 for random oracles over H1 : ∗ → G, H2 : ∗×∗×G →
{0, 1}λ, H3 : ∗ → Zp, H4 : G6 → Zp for (p,G) determined by GGen(λ). Here ‘∗’
denotes the set of arbitrary inputs. We define the query budget for an adversary
Aprf in the P model to be a tuple (m,n, qE,
q, qH1 , qH2 , qH3 , qH4) where:

• m is the maximum number of distinct x values queried by Aprf to H1 or H2;
• n is the maximum number of distinct t values queried by Aprf to BlindEv,

H2, or H3;

A Fast and Simple Partially Oblivious PRF, with Applications 697

•
q = [
q1, . . . ,
qn] is a vector where each
qi is the maximum number of queries
by Aprf to BlindEv(ti, req) for any req and where t1, . . . , tn are the (at most)
n values ti queried in the course of the game in the order of when they are
queried. (That is, t1 is the first t value queried, t2 is the second, etc.) In
words, the adversary is limited to some number n of public inputs t that it
can target, and makes a limited number of blinded evaluation queries for each
of those inputs t.

• qE, qH1 , qH2 , qH3 , and qH4 are the maximum number of queries made by Aprf

to the Ev, H1, H2, H3, and H4 oracles, respectively.

Note that our query budget requirement
q does not restrict which values t the
adversary can use; these can be picked adaptively. But the number of times
each t value is queried is restricted by the order in which they are queried. The
granular accounting of blinded evaluation queries via
q will be important when
combining the following theorem with Theorem 1.

Theorem 2. Let Aprf be a P-model POPRF adversary against 3H with query
budget (m,n, qE,
q, qH1 , qH2 , qH3 , qH4). Then we give a H4-model adversary Azk,
an adversary Asdhi, and a simulator S such that

Advpo-prf3H,S[SΣ],P,Aprf
(λ) ≤ AdvzkΣR,R,H4,SΣ ,Azk

(λ) + Adv
(m,n)-om-gap-sdhi
GGen,Asdhi

(λ) +
n2

p
,

Adversary Azk makes qH4 queries to its random oracle and Asdhi has query budget
(
q, qH2). Further, T (Aprf) ≈ T (Azk) ≈ T (Asdhi).

A detailed proof is given in the full version [43]. It proceeds via a sequence of
games, starting with the real world POPRF

Apo-prf,1

3H,P,S (λ) and first transitioning to
a game that replaces the NIZK π with one generated by the NIZK simulator SΣ .
Then we change how Ev queries are handled. Instead of computing the POPRF
using sk, we pick a random value and add it to a table R. We also modify the
handling of H2 queries to check if R has been set on a relevant value and, if so,
patch up H2’s response so that it maintains consistency. This does not change
the distribution of responses to the adversary. Finally, we are in position to
perform a reduction to (qH1 , qH3)-OM-Gap-SDHI: the only difference between
this game and the ideal world POPRF

Aprf,0

3H,P,S[SΣ](λ) is when H2 needs to repair
a R value more often than queries to BlindEv. This reduction step is made
relatively simple by our new assumption, which provides the values and oracles
necessary to simulate Aprf’s view in a straightforward way.

We can combine the two main theorems with a standard result about the
NIZK that we use (restated in Sect. 2) to give the following corollary.

Corollary 2. Let Aprf be a P-model POPRF adversary against 3H with query
budget (m,n, qE,
q, qH1 , qH2 , qH3 , qH4) and GGen any group parameter generator
outputting (p, g,G), where p is a prime g is a uniformly chosen element of G.

698 N. Tyagi et al.

Then, we give adversary Adl and simulator S such that

Advpo-prf3H,S[SΣ],P,Aprf
(λ) ≤ (qmax + 1) · Adv

(q+1)-dl
GGen,Adl

(λ)

+
q + n2

p
+

3q2 + q(qH4 + 4) + 2
2λ

,

where q =
∑n

i qi, qmax = max{qi}n
i . Further, T (Aprf) ≈ T (Adl).

Concrete Security and Parameter Selection. Corollary 2 is interpreted best
in the generic-group model (GGM) [37,40], as this yields an absolute bound in
terms of Aprf’s resources. The advantage of a generic algorithm Adl running in
time T (or more precisely, making T queries to the generic-group oracle) against
(q + 1)-DL in a group of order p is Adv

(q+1)-dl
GGen,Adl

(λ) ≤ (T + q + 2)2(q + 1)/(p − 1)
(see, e.g., [3] for a proof). This advantage is multiplied by qmax to obtain the
dominating term in our final bound. We conjecture however that the bound is
somewhat pessimistic, and that the factor qmax is an artifact of the proof. In
fact, as we discuss below, a different interpretation of our proof flow, which is
particularly meaningful in the GGM, avoids this factor altogether. This improved
bound omitting qmax is also essentially tight, since Cheon’s attack [16] extracts4

the secret key from q BlindEval queries in time
√

p/q, as long as q divides
p − 1 or p + 1.

Cheon’s attack can therefore guide parameter selection, as is also done for
2HashDH deployments. For example, a 256-bit group may be sufficient to achieve
security for up T = 280, as this would still accommodate up to q ≈ 296 blind
evaluations without violating our bounds. In contrast, to ensure security up to
T = 2128, moving to a 384-bit curve appears necessary. The conclusion being
that our choice of parameters is consistent with that for 2HashDH, meaning we
achieve the same group operation performance while adding public inputs.

We also note that our reduction to the uber assumption requires the gener-
ator to be uniformly chosen. We cannot envision any security issues when the
generator is instead fixed, and the need for uniformly chosen generators is likely
just an artifact of our proof technique.

Tighter GGM Bound. We only sketch the main idea behind the tighter GGM
proof, as it is the result of a minor modification of our AGM proof flow. First,
note that the (qmax +1) factor in Corollary 2 is inherited from Theorem 1 and is
due to our inability to efficiently find, within the adversary Auber, a good index
j ∈ [�] that leads to a break of the uber-assumption. Therefore, we are left with
guessing. However, an alternative is to find such j by computing all � possible
polynomials μ(
X), and outputting the one which is independent from those input
to Ev. Unfortunately, this is computationally expensive, and requires time at
least Ω(q2max). In other words, we could make the proof tight with respect to

4 Define x = (sk + H3(t))
−1 for some fixed t. Then, the attacker can just obtain,

via consecutive iterative queries, the values gx, gx2
, . . . , gxq

, and then recover x via
Cheon’s attack. Finally, sk = x−1 − H3(t).

A Fast and Simple Partially Oblivious PRF, with Applications 699

advantage while losing tightness with respect to time complexity. While in our
proof flow in the AGM this needs to be taken into account, in the GGM only the
number of group operations matters (i.e., the number of oracle calls), whereas
“additional” running time (enumerating polynomials and testing independence)
is for free. Thus, if Aprf makes T queries to its GGM oracles, our proof flow
yields (with the proposed modification) an adversary Adl with roughly the same
number of GGM queries and advantage against (q + 1)-DL.

5.2 Request Privacy

We now turn to request privacy, which is simpler to analyze. Intuitively, 3HashS-
DHI client requests leak no information because the blinding makes them inde-
pendent of other requests and finalized outputs. The following theorem formal-
izes this for the case of POPRIV1 for the non-verifiable version of 3HashSDHI.

Theorem 3. For any POPRIV1 adversary Apo-priv1 against 3H (without client
verification) we have that Advpo-priv13H,Apo-priv1

(λ) = 0.

Note that the theorem makes no assumptions about the hash functions or
group, instead privacy derives directly from the information-theoretic blinding.

Proof. Let G be the same as game POPRIV1A,b
3H,P(λ) except that we replace

(reqd, repd) = (H1(xd)rd , H1(xd)rd·sk) with (reqd, repd) = (grd , grd·sk) for d ∈
{0, 1} and where r0, r1 are the random exponents chosen in the two invocations
of 3H.Req. Observe that in game G the values returned by Req are independent
of the challenge bit b. Then we have that

Pr
[
POPRIV1A,1

3H,P(λ) ⇒ 1
]

= Pr [G ⇒ 1] = Pr
[
POPRIV1A,0

3H,P(λ) ⇒ 1
]

.

�

Non-verifiable PO-PRFs, including the non-verifiable version of 3HashSDHI,
cannot achieve our stronger notion of malicious request privacy. The attack is
straightforward since the adversary can simply replace one of the two responses
with garbage, and determine the challenge bit. In detail for the case of 3H,
adversary Apo-priv2 can pick sk ∈ G arbitrarily, let pk = gsk, and then query
Req(pk, t, x0, x1) for some arbitrary t, x0, x1. It obtains back from the oracle
req, req′, and then parses req as a pair (B, t). It then queries Fin(B1/(sk+H3(t)), g)
to get back reply (y0, y1). It checks if y0 = H2(H3(x0)1/(sk+H3(t))) and returns 0
if so. Otherwise it returns one. This adversary wins with probability 1.

The verifiable version of 3HashSDHI achieves our stronger notion of malicious
request privacy, due to the ZKP forcing the malicious server to respond honestly
to blinded requests (relative to the public key being used). The following theorem
formalizes this, where we model the hash used by the ZKP as a random oracle,
and all other hashes as standard model.

700 N. Tyagi et al.

Theorem 4. Let Apo-priv2 be a POPRIV2 adversary in the P-model against 3H

that makes at most q queries to Fin. We give in the proof below a SoundA
NiZK,R,H4

adversary Bsound such that

Advpo-priv23H,P,Apo-priv2
(λ) ≤ 4q · AdvsoundNiZK,R,H4,Bsound

(λ)) .

Further, T (Bsound) ≈ T (Apo-priv2).

Proof. Consider game POPRIV2
Apo-priv2,1
3H,P (λ). We consider the event that, in the

course of the game, a Fin(j, (B′
1, π1), (B′

2, π2)) query is made such that either

1. B′
1 �= B

1/(sk+H3(tj)
j,b but ΣR.VerH4((g, gH3(tj) · pkj , B

′
1, Bj,b), π1) = 1; or

2. B′
2 �= B

1/(sk+H3(tj)
j,1−b but ΣR.VerH4((g, gH3(tj) · pkj , B

′
2, Bj,1−b), π2) = 1.

Here pkj , tj are the values queried to the jth call to Req and we let skj =
dlogg pkj . Recall that here R = {(g, U, V,W), (α) : U = gα ∧ W = V α}, and
verification is therefore checking, in case (1), that

B′
2 = B

H3(tj)+skj

j,b ⇔ (B′
2)

1/(skj+H3(tj)) = Bj,b

and a similar equality for case (2). So if this event occurs, this means the adver-
sary has violated the soundness of the ZKP: only a single value α = skj +H3(tj)
can be the witness for R.

To formally reduce to ZKP soundness, first let game G0 be the same as
POPRIV2

Apo-priv2
3H,P,b (λ) but the bit b is chosen at random from {0, 1}. Let “G0 ⇒

b” be the event in game G0 that the game returns the value b. (We use this
event notation for subsequent games analogously.) Further we let G0bad be the
same as G0 except that within each Fin it first computes skj = dlogg pkj and
checks if conditions (1) and (2) hold. If either does not, then it sets a flag
bad. Clearly G0bad is not computationally efficient; our reduction will avoid this
computationally inefficient step. Finally we let G1 be the same as game G0 except
that all Fin(j, rep, rep′) queries are handled by first replacing rep and rep′ with
the correct values, i.e., rep ← B

skj

j,b and rep′ ← B
skj

j,1−b where skj ← dlogg(pkj).
Notice that G0bad and G1 are identical until the first query, if any, that sets the
flag bad. We have that

Advpo-priv23H,P,Apo-priv2
(λ) = 2 · Pr [G0 ⇒ b] − 1 .

and that

Pr [G0 ⇒ b] = Pr [G0bad ⇒ b] ≤ Pr [G1 ⇒ b] + Pr [G0bad sets bad] ,

where the inequality comes from the fact that G0bad and G1 are identical-until-
bad and application of the fundamental lemma of game playing [5]. We now
bound the probability that Pr[G0bad sets bad] via reduction to the soundness of
the ZKP.

A Fast and Simple Partially Oblivious PRF, with Applications 701

Adversary Bsound works as follows. First, it randomly chooses a number
q∗ ∈ [1, 2q] to serve as its guess for which ZKP π will be forged by the adver-
sary. Here q is the maximum number of Fin queries made by Apo-priv2; each
such query includes two proofs. Then Bsound runs G0, stopping when Apo-priv2

has made j = �q∗/2� queries to Fin. At this point, Bsound stops outputting
((g, gH3(tj)pkj , B

′
1, Bj,b), π1) if q∗ is odd and ((g, gH3(tj)pkj , B

′
2, Bj,1−b), π2) oth-

erwise. Adversary Bsound avoids computing skj ; it simply guesses which of the
proofs would have caused bad to be set to true, had skj been computed and the
conditions (1) and (2) been checked. A standard argument yields that

Pr [G0bad sets bad] ≤ 2q · AdvsoundNiZK,R,P,Bsound
(λ) .

To finish the proof, we can observe that G1 always correctly computes responses,
and a similar argument as we used for POPRIV1 gives that the transcript
observed by Apo-priv2 is independent of the challenge bit b, and so Pr[G1 ⇒ b] =
1/2. Combining all the above yields the advantage statement in the theorem. �

6 Performance Evaluation

We implemented 3HashSDHI to measure the computational cost of the proto-
col in comparison to related protocols, including the baseline 2HashDH VOPRF
from [17], Pythia [20], and the recent attribute-based VOPRF (ABVOPRF)
from Facebook [26]. Each protocol was implemented in a minimal fashion, e.g.,
by omitting domain separating hash function invocations, in order to emphasize
the cost of core public key operations. Our implementations use the ristretto255
group [44] where prime-order groups are required, and the bn256 curve for
Pythia, where pairing-friendly curves are required. We implemented each proto-
col in Go using the CIRCL experimental cryptographic library [21] and bn256
package. These benchmarks were evaluated on a machine with a 2.6 GHz 6-Core
Intel Core i7 CPU and 32 GB RAM running macOS 10.15.7. We defer the results
of our benchmarks to the full version [43].

7 Applications

POPRFs provide a new degree of flexibility that we observe to be useful in a
variety of applications. Essentially anywhere an OPRF is used we see opportu-
nity for POPRFs to provide potential benefits in terms of increasing deployment
flexibility, reducing key management challenges, and/or improving security. In
the full version [43], we discuss further three previously mentioned motivat-
ing applications: anonymous one-time-use tokens, password breach alerting, and
password-based authenticated key exchange.

Acknowledgments. The authors would like to thank Tjerand Silde, Martin Strand,
and Tancrede Lepoint for helpful discussions on early versions of this work. This work
was supported in part by NSF grants CNS-1930117 (CAREER), CNS-1926324, CNS-
2026774, CNS-2120651, a Sloan Research Fellowship, a JP Morgan Faculty Award, and
a Facebook PhD Fellowship.

702 N. Tyagi et al.

References

1. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto,
T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0034851

2. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 17

3. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions
in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56880-1 5

4. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

5. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

6. Bellovin, S., Merritt, M.: Augmented encrypted key exchange: a password based
protocol secure against dictionary attacks and password file compromise. In: CCS,
pp. 244–250. ACM (1993)

7. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5 2

8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

9. Camenisch, J.: Group signature schemes and payment systems based on the dis-
crete logarithm problem. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (1998)

10. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

11. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 8

12. Celi, S., Davidson, A., Faz-Hernández, A.: Privacy Pass Protocol Spec-
ification. Internet-Draft draft-ietf-privacypass-protocol-00, Internet Engineer-
ing Task Force, January 2021. https://datatracker.ietf.org/doc/html/draft-ietf-
privacypass-protocol-00. Work in Progress

13. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic macs and keyed-verification
anonymous credentials. In: CCS, pp. 1205–1216. ACM (2014)

14. Chase, M., Perrin, T., Zaverucha, G.: The signal private group system and anony-
mous credentials supporting efficient verifiable encryption. In: CCS, pp. 1445–1459.
ACM (2020)

15. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

https://doi.org/10.1007/BFb0034851
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-45146-4_8
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-00
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-00
https://doi.org/10.1007/3-540-48071-4_7

A Fast and Simple Partially Oblivious PRF, with Applications 703

16. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006). https://doi.org/10.1007/11761679 1

17. Davidson, A., Faz-Hernández, A., Sullivan, N., Wood, C.A.: Oblivious Pseudoran-
dom Functions (OPRFs) using Prime-Order Groups. Internet-Draft draft-irtf-cfrg-
voprf-05, Internet Engineering Task Force, November 2020. https://datatracker.
ietf.org/doc/html/draft-irtf-cfrg-voprf-05. Work in Progress

18. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy
pass: bypassing internet challenges anonymously. Proc. Priv. Enhancing Technol.
2018(3), 164–180 (2018)

19. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

20. Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., Ristenpart, T.: The pythia
PRF service. In: 24th USENIX Security Symposium (USENIX Security 2015),
pp. 547–562. USENIX Association (2015). https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/everspaugh

21. Faz-Hernández, A., Kwiatkowski, K.: Introducing CIRCL: An Advanced Crypto-
graphic Library. Cloudflare, June 2019. https://github.com/cloudflare/circl

22. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 4

23. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

24. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

25. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed ElGa-
mal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2 3

26. Huang, S., et al.: PrivateStats: De-Identified Authenticated Logging at Scale, Jan-
uary 2021. https://research.fb.com/wp-content/uploads/2021/01/PrivateStats-
De-Identified-Authenticated-Logging-at-Scale final.pdf

27. Jaeger, J., Tyagi, N.: Handling adaptive compromise for practical encryption
schemes. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12170, pp. 3–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56784-2 1

28. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 13

29. Jarecki, S., Krawczyk, H., Resch, J.K.: Threshold partially-oblivious PRFs with
applications to key management. IACR Cryptology ePrint Archive, p. 733 (2018)

30. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

https://doi.org/10.1007/11761679_1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-05
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-05
https://doi.org/10.1007/978-3-540-30580-4_28
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://github.com/cloudflare/circl
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-030-45724-2_3
https://research.fb.com/wp-content/uploads/2021/01/PrivateStats-De-Identified-Authenticated-Logging-at-Scale_final.pdf
https://research.fb.com/wp-content/uploads/2021/01/PrivateStats-De-Identified-Authenticated-Logging-at-Scale_final.pdf
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15

704 N. Tyagi et al.

31. Jarecki, S., Krawczyk, H., Xu, J.: On the (in)security of the Diffie-Hellman oblivi-
ous PRF with multiplicative blinding. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol.
12711, pp. 380–409. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75248-4 14

32. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 34

33. Kiayias, A., Zhou, H.-S.: Equivocal blind signatures and adaptive UC-security. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78524-8 19

34. Krawczyk, H., Lewi, K., Wood, C.A.: The OPAQUE Asymmetric PAKE Protocol.
Internet-Draft draft-irtf-cfrg-opaque-02, Internet Engineering Task Force, Febru-
ary 2021. https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-02. Work
in Progress

35. Kreuter, B., Lepoint, T., Orrù, M., Raykova, M.: Anonymous tokens with private
metadata bit. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12170, pp. 308–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56784-2 11

36. Li, L., Pal, B., Ali, J., Sullivan, N., Chatterjee, R., Ristenpart, T.: Protocols for
checking compromised credentials. In: CCS, pp. 1387–1403. ACM (2019)

37. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11586821 1

38. Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious security
for private intersection-sum with cardinality. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 3–33. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1 1

39. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: FOCS, pp. 458–467. IEEE Computer Society (1997)

40. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

41. Silde, T., Strand, M.: Anonymous tokens with public metadata and applications
to private contact tracing. IACR Cryptol. ePrint Arch. 2021, 203 (2021)

42. Thomas, K., et al.: Protecting accounts from credential stuffing with password
breach alerting. In: USENIX Security Symposium, pp. 1556–1571. USENIX Asso-
ciation (2019)

43. Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., Wood, C.A.: A fast
and simple partially oblivious PRF, with applications. IACR Cryptology ePrint
Archive, p. 864 (2021)

44. de Valence, H., Grigg, J., Tankersley, G., Valsorda, F., Lovecruft, I., Hamburg, M.:
The ristretto255 and decaf448 Groups. Internet-Draft draft-irtf-cfrg-ristretto255-
decaf448-00, Internet Engineering Task Force, October 2020. https://datatracker.
ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-00. Work in Progress

45. Wilander, J., Taubeneck, E., Knox, A., Wood, C.: Consider using blinded signa-
tures for fraud prevention - Private Click Measurement (2020). https://github.
com/privacycg/private-click-measurement/issues/41

https://doi.org/10.1007/978-3-030-75248-4_14
https://doi.org/10.1007/978-3-030-75248-4_14
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-540-78524-8_19
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-02
https://doi.org/10.1007/978-3-030-56784-2_11
https://doi.org/10.1007/978-3-030-56784-2_11
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/3-540-69053-0_18
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-00
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-00
https://github.com/privacycg/private-click-measurement/issues/41
https://github.com/privacycg/private-click-measurement/issues/41

A Fast and Simple Partially Oblivious PRF, with Applications 705

46. Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient verifiably encrypted signature and
partially blind signature from bilinear pairings. In: Johansson, T., Maitra, S. (eds.)
INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-24582-7 14

47. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear
pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24632-9 20

https://doi.org/10.1007/978-3-540-24582-7_14
https://doi.org/10.1007/978-3-540-24632-9_20
https://doi.org/10.1007/978-3-540-24632-9_20

Hiding in Plain Sight: Memory-Tight
Proofs via Randomness Programming

Ashrujit Ghoshal1(B), Riddhi Ghosal2, Joseph Jaeger3, and Stefano Tessaro1

1 Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA

{ashrujit,tessaro}@cs.washington.edu
2 University of California, Los Angeles, USA

riddhi@cs.ucla.edu
3 Georgia Institute of Technology, Atlanta, GA, USA

josephjaeger@gatech.edu

Abstract. This paper continues the study of memory-tight reductions
(Auerbach et al., CRYPTO ’17). These are reductions that only incur
minimal memory costs over those of the original adversary, allowing pre-
cise security statements for memory-bounded adversaries (under appro-
priate assumptions expressed in terms of adversary time and memory
usage). Despite its importance, only a few techniques to achieve memory-
tightness are known and impossibility results in prior works show that
even basic, textbook reductions cannot be made memory-tight.

This paper introduces a new class of memory-tight reductions which
leverage random strings in the interaction with the adversary to hide
state information, thus shifting the memory costs to the adversary.

We exhibit this technique with several examples. We give memory-
tight proofs for digital signatures allowing many forgery attempts when
considering randomized message distributions or probabilistic RSA-
FDH signatures specifically. We prove security of the authenticated
encryption scheme Encrypt-then-PRF with a memory-tight reduction
to the underlying encryption scheme. By considering specific schemes or
restricted definitions we avoid generic impossibility results of Auerbach
et al. (CRYPTO ’17) and Ghoshal et al. (CRYPTO ’20).

As a further case study, we consider the textbook equivalence of CCA-
security for public-key encryption for one or multiple encryption queries.
We show two qualitatively different memory-tight versions of this result,
depending on the considered notion of CCA security.

Keywords: Provable security · Memory-tightness · Time-memory
trade-offs

1 Introduction

The aim of concrete security proofs is to lower bound, as precisely as possible,
the resources needed to break a cryptographic scheme of interest, under some
plausible assumptions. The traditional resource used in provable security is time
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 706–735, 2022.
https://doi.org/10.1007/978-3-031-07085-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_24&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_24

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 707

complexity (as well as related metrics, like data complexity). Recent works [1,7,
9–12,15–17,20–22] have focused on additionally taking the memory costs of the
adversary into account. This is important, as the amount of available memory
can seriously impact the feasibility of an attack.

This paper presents new techniques for memory-tight reductions, a notion
introduced by Auerbach et al. [1] to relate the assumed time-memory hardness of
an underlying computational problem to the security of a scheme. More precisely,
the end goal is to prove, via a reduction, that any adversary running in time t and
with s bits of memory can achieve at most advantage ε = ε(t, s) in compromising
a scheme, by assuming that some underlying computational problem can only
be solved with advantage δ = δ(t′, s′) by algorithms running in time t′ and with
memory s′. A memory-tight reduction guarantees that s ≈ s′, and usually, we
want this to be tight also according to other parameters, i.e., t ≈ t′ and ε ≈ δ.

Memory-tight reductions are of value whenever the underlying problem is
(conjectured to) be memory sensitive, i.e., the time needed to solve it grows
as the amount of memory available to the adversary is reduced. Examples of
memory-sensitive problems include classical ones in the public-key setting, such
as breaking RSA and factoring, lattice problems and LPN, solving discrete log-
arithms over finite fields,1 as well as problems in the secret-key setting, such as
finding k-way collisions (for k > 2), finding several collisions at once [11], and
distinguishing random permutations from random functions [12,17,20].

Developing memory-tight reductions is not always easy, and can be (prov-
ably) impossible [1,15,16,22]. This makes it fundamental to develop as many
techniques as possible to obtain such reductions. In this paper, we identify a class
of examples which admit a new kind of memory-tight reductions. Our approach
relies on the availability of random strings exchanged between the adversary and
the security game, and which the reduction can leverage to encode state which
can be recovered from later queries of the adversary, without the need to store
this information locally, and thus saving memory. (In particular, the burden of
keeping this information remains on the adversary, which needs to reproduce
this random string for this state information to be relevant.) We present these
techniques abstractly in the next section, with the help of a motivating example,
and then move on to an overview of our specific results.

1.1 Our Techniques - An Overview

As a motivating example, consider the standard UFCMA security notion for
signatures. It is defined via a game where the attacker, given the verification key
vk, obtains signatures for chosen messages m1,m2, . . ., after which it outputs a
candidate message-signature pair (m∗, σ∗), and wins if m∗ was not signed before,
and σ∗ is valid for m∗. When ignoring memory, this notion is tightly equivalent
to one (which we refer to as mUFCMA) that allows for an arbitrary number

1 However, the discrete logarithm problem in elliptic-curve groups, or any other group
in which the best-known attacks are generic, is not memory sensitive, since optimal
memory-less attacks are known.

708 A. Ghoshal et al.

of “forgery attempts” for pairs (m∗, σ∗), and the adversary wins if one of them
succeeds in the above sense. This is convenient: we generally target mUFCMA,
but only need to deal with proving the simpler UFCMA notion.

The classical reduction transforms any mUFCMA adversary into a roughly
equally efficient UFCMA adversary, which wins with the same probability, by (1)
simulating forgery queries using the verification key, and (2) outputting the first
forgery query (m∗, σ∗) which validates and such that m∗ is fresh. This reduction
is however not memory-tight, as we need to ensure the freshness of m∗, which
requires remembering the previously signed messages. ACFK [1] prove that this
is in some sense necessary, by showing that a (restricted) class of reductions
cannot be memory-tight via a reduction to streaming lower bounds.

Our idea: Efficient tagging. To illustrate our new technique, which we refer
to as efficient tagging, imagine now that we only use the signature scheme to sign
random messages m1,m2, . . . , mq ←$ {0, 1}�, and consider a corresponding vari-
ant of mUFCMA security, which we want to reduce to (plain) UFCMA security.
This, intuitively, does not seem to help resolve the above issue, because random
messages are hardest to compress.

However, what is important here is that the reduction is responsible for simu-
lating the random messages, and can simulate them in special ways, and program
them so that they encode state information. For instance, assume that the reduc-
tion has access to an injective random function f : [q] → {0, 1}�, with inverse
f−1, which can be simulated succinctly from a short key as a pseudorandom
object. Then, the reduction to UFCMA can set mi ← f(i) for the i-th query,
and upon simulating a forgery query for (m∗, σ∗), the reduction checks whether
f−1(m∗) ∈ [q] to learn whether m∗ is a fresh signing query or not.

Of course, the simulation is not perfect: The original mi’s are not necessarily
distinct (this can be handled via the classical “switching lemma”). Also, the
reduction could miss a valid forgery if the adversary outputs mi before it is
given to the adversary, but this again only occurs with small probability.

Inefficient tagging and non-time-tight reductions. In the above exam-
ple, we can efficiently check that f−1(m∗) ∈ [q]. However, in some cases we may
not – again, consider an example where the messages to be signed are sampled
as mi ← h(ri), where h is a hard-to-invert function and ri is random. Then, we
could adapt our proof above by setting mi ← h(f(i)), but now, to detect a prior
signing query, we would have to check whether m∗ = h(f(i)) for some i ∈ [q],
and this can only be done in linear time. The resulting UFCMA adversary runs
in time t′ = t+Θ(qF ·q), where t is the running time of the original adversary and
qF is the number of forgery attempts. For example, if q ≈ qF ≈ t, the reduction
is not time tight, and the adversary runs in time t′ = O(t2).

Are non-time-tight reductions useless? It turns out that such non-time-
tight reductions can still be helpful to infer that breaking a scheme requires
memory, although this ultimately depends on the concrete security of the prob-
lem targeted by the reduction. Say, for example, a reduction for a given scheme
transforms a successful adversary running in time t and using memory s into an

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 709

adversary running in time t2 and using memory s breaking discrete logarithms
over Fp, for a 4096-bit prime p. It turns out that if we have fewer than 278

bits of memory, no known discrete logarithm algorithm is better than a generic
one (i.e. runs in time better than 22048), which means that our non-time-tight
reduction is still sufficient to infer security for any s < 278 as long as t < 21024.

Message encoding. At the highest level, what happens is that the reduction is
in control of certain random values which we can exploit to hide state information
which can later be uniquely recovered, since triggering a situation where the
reduction needs to remember requires the adversary to actually give back to
the reduction this value. In the above, this state information is simple, namely
whether the query is old or not. But as we will show below, the paradigm can
be used to store complex information – we refer to this technique as message
encoding, and discuss an example below.

A New Viewpoint: F-oracle adversaries. In our technique described
above we needed access to a large random injection, which we argue can be
simulated pseudorandomly. Prior works have similarly used PRFs to pseudoran-
domly simulate random oracles [1,6] with low memory. The fact that one needs
to decide how to simulate such objects when stating a memory-tight reduction
is rather inconvenient: different instantiations seemingly lead to quantitatively
different reductions, although this fact does not appear to be a reflection of any
particular reality. In this paper, we propose (and advocate for) what we believe to
be the “right” viewpoint: Our reductions are stated in terms of F-oracle adver-
saries where F is a set of functions and such an adversary expects oracle access
to a random f ∈ F . Then, a memory-tightness theorem is obtained in one of two
ways, by either (1) applying a generic lemma stating that f can be instantiated
in low memory using an F-pseudorandom function, or (2) assuming that the use
of f does not functionally increase the success chances of the adversary because
f is independent of the problem instance being solved (this is provably the case
for some information theoretic problems). In particular, (1) is more conservative
than (2), but it is very likely that (2) is also a viable approach which leads to
cleaner result – indeed, we do not expect any of the considered memory-sensitive
problems to become easier given access to an oracle from any natural class F –
e.g., Factoring does not become easier given access to a random injection.

1.2 Our Results

We now move to an overview of our results (summarized in Fig. 1) which exem-
plify different applications of the tagging and message-encoding techniques.

Multi-challenge Security of Digital Signatures. Our first results
consider the security of digital signatures in the face of multiple forgery
attempts (i.e., challenge queries), generalizing the examples discussed above.
We work with a notion we refer to as UFRMA (unforgeability under random-
ized message attack). This notion is parameterized by a message distribution
D and when the attacker makes a signing query for m it receives a signature

710 A. Ghoshal et al.

of m′ = D(m; r) for a random r. If m and r can be extracted from m′, giving
the notion xUFRMA (or mxUFRMA for many forgery attempts), we can gen-
eralize our efficient tagging approach above by having the reduction to UFCMA
choose r = f(m, i) where each f(m, ·) is a random injection. This setting can
capture, e.g., the signatures used in key exchange protocols like TLS 1.3 where
the server signs a transcript which includes a random 256-bit nonce. A version
of our inefficient tagging example works when only m can be extracted from m′

(wUFRMA); we pick r = f(m, i) and in verification of a forgery query perform
the linear time check of whether m∗ = D(m; f(m, i)) for some i ∈ [q]. This
setting captures places where the message to be signed includes a fresh public
key or ciphertext. This includes, for example, the use of signatures for signing
certificates, in some key exchange protocols, and in signcryption.

We further prove mUFCMA security for particular schemes. First, we can
randomize any digital signature scheme DS (obtaining a scheme we call RDS)
by signing m ‖ r for random r chosen by the signing algorithm and including r
as part of the signature. An immediate implication of our mxUFCRA result is
a tight reduction from the mUFCMA security of RDS to the UFCMA security
of the underlying scheme. One particular instantiation of RDS is Probabilistic
Full Domain Hash with RSA (RSA-PFDH) which was introduced by Coron [8] to
provide a variant of Full Domain Hash [4] with an (advantage-) tighter security
proof. Using our efficient tagging technique we obtain a fully tight proof of the
strong mUFCMA security of RSA-PFDH from the RSA assumption.

In independent and concurrent work, Diemert, Gellert, Jager, and Lyu [10]
studied the mUFCMA security of digital signature schemes. They also considered
the RDS construction, proving that if DS can be proven strong UFCMA1 secure2

with a restricted class of “canonical” memory-tight reductions then there is a
memory-tight reduction for the strong mUFCMA security of RDS. This com-
plements our result, showing memory-tight strong mUFCMA security of RDS
based on a restricted class of schemes while our result proves memory-tight plain
mUFCMA security based on any plain UFCMA scheme. They apply their RDS
result to establish tight proofs for the strong mUFCMA security of RSA-PFDH
(matching our direct proof in Theorem 3). as well as schemes based on lossy
identification schemes and pairings.

Authenticated Encryption Security. Ghoshal, Jaeger, and Tessaro [15]
have recently observed that in the context of authenticated encryption (AE), it is
difficult to lift confidentiality of the scheme, in terms of INDR security, to full AE
security, when additionally assuming ciphertext integrity, if we want to do so in a
memory-tight way. This is well motivated, as several works establish tight time-
memory trade-offs for INDR security [9,12,17,20,21], which we would like to lift
to their AE security. The difficulty in the proof is that the INDR reduction must
simulate a decryption oracle which rejects all ciphertexts except those forwarded
from an encryption query. Recognizing these forwarded ciphertexts seems to
require remembering state.

2 The suffix ‘1’ indicates a variant of UFCMA security in which the adversary can
only obtain a single signature per message. The security game always returning the
same signature if the adversary repeats signature queries.

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 711

Fig. 1. Memory-tight reductions we provide. A 1 vs. an m prefix indicates whether one
or many challenge queries are allowed. A ✓ vs. an ✗ indicates whether the reduction
is tight with respect to that complexity metric. Reductions lacking tightness multiply
running time/advantage by O(q) or add O(q) to the memory complexity, where q is the
number of queries. An x vs. a w indicates whether the coins underlying the distribution
of messages can be extracted from the message. RDS is randomization of any digital
signature scheme by padding input messages with randomness. RSA-PFDH is proba-
bilistic full-domain hash with RSA. EtP is the Encrypt-then-PRF AE construction.

Here, we give a different take and show that for specific schemes – in particu-
lar, those obtained by adding integrity via a PRF, following the lines of [3,18,19]
– a memory-tight reduction can be given. Our INDR reduction is applied after
arguing that the PRF looks like a random function f and thus forgeries are
unlikely to occur. It uses f in a version of our efficient tagging technique to
identify whether a ciphertext queried to decryption is fresh.3

Chosen ciphertext security: One to many. A classical textbook result
for public-key encryption shows that CCA-security against a single encryption
query (1CCA) implies security against multiple queries (mCCA), with a quanti-
tative advantage loss accounting to the number of such queries. ACFK [1] claim,
incorrectly, that the associated reduction from 1CCA to mCCA is easy to make
memory-tight, but this appears to be an oversight: No such reduction is known,
and here we use our techniques to recover a memory-tight version of this result.

Let us consider concretely the “left-or-right” formulation of 1CCA/mCCA-
security: The reduction from 1CCA to mCCA, given an adversary A, picks a
random i ←$ [q] (where q is the number of encryption queries) and simulates the
multi-query challenger to A by answering its first i − 1 encryption queries with
an encryption of the left message, whereas the last q − i queries are answered
by encrypting the right message. Only the answer to the i-th query is answered
by the single-query challenger. A problem arises when simulating the decryption
queries: Indeed, we need to guarantee that a decryption query for any of the
challenge ciphertexts c∗

1, . . . , c
∗
q returns an error ⊥, yet this suggests that we

seemingly need to remember the extra challenge ciphertexts c∗
j for j �= i.

3 Ghoshal et al. [15] in fact described three variants of AE with different conven-
tions for how decryption responds to non-fresh queries. By our results, memory-tight
reductions to INDR are possible for two of the three variants.

712 A. Ghoshal et al.

We will resolve this in two ways. First, we give a new memory-tight reduction
using the inefficient tagging method, with the same advantage loss as the original
textbook reduction. Our reduction is non-time-tight, so may not be suitable for
all situations. The main idea here is that we use the randomness used to generate
the challenge ciphertext as our tag.

To obtain a reduction which is also tight with respect to time, we resort
to the observation that changing to a stronger (but still commonly achieved)
definition of CCA-security allows for different memory-tight reductions. We give
in particular a memory-tight and time-tight reduction (with the usual factor q
advantage loss) from the notion of 1$CCA-m security to the notion of m$CCA-m
security. These are variants of CCA security where (1) encryption queries are
with respect to a single message, and return either the encryption of the message,
or a random, independent ciphertext, and (2) decryption queries on a challenge
ciphertext c∗

i returns the associated message.
Our reduction uses the full power of our message encoding approach, sim-

ulating random ciphertexts in a careful way which allows for recovering the
associated challenge plaintext.

A few remarks. The above results on CCA security show us that the ability
to give a memory-tight reduction is strongly coupled with definitional choices. In
particular, different equivalent approaches to modeling the decryption oracle in
the memory unbounded regime may not be equivalent in the memory-bounded
setting. This means in particular that we need to exercise more care in choos-
ing the right definition. We believe, for example, that the approach taken in
m$CCA-m security is the more “natural” one (as it does not require artificially
blocking the output of the decryption oracle, by always returning a message),
but there may be contexts where other definitional choices are favored.

Another important lesson learnt from our AE result is that impossibility
results, such as those in [1,15,16,22], do not preclude positive results in form of
memory-tight reductions, either by leveraging the structure of specific schemes,
or by considering restricted security notions.

1.3 Paper Outline

Section 2 introduces notation, our computational model, and basic cryptographic
background. Section 3 discusses our convention of using F-oracle adversaries.
Section 4 gives our memory-tight reduction for digital signature schemes when
many forgery attempts are allowed. In particular, the generic results are in
Sect. 4.2, while the result specific to RSA-PFDH is in Sect. 4.5. Section 5 proves
the security of Encrypt-then-PRF with a memory-tight reduction to the INDR
security of the encryption scheme. Section 6 gives our results relating the one- and
many-challenge query variants of CCA security. In particular, Sect. 6.1 gives our
result for the traditional “left-vs.-right” notion and Sect. 6.2 gives our result for
the “indistinguishable from random” variant. The full version of this paper [14]
contains omitted proofs.

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 713

2 Preliminaries

Let N = {0, 1, . . . } and [n] = {1, . . . , n} for n ∈ N. If x ∈ {0, 1}∗ is a string,
then |x| denotes its length in bits. If S is a set, then |S| denotes its size. We let
x ‖ y ‖ . . . denote an encoding of the strings x, y, . . . from which the constituent
strings can be unambiguously recovered. We identify bitstrings with integers in
the standard way.

Functions. Let T be a set (called the tweak set) and for each t ∈ T let Dt and
Rt be sets. Then Fcs(T,D,R) denotes the set of all f such that for each t ∈ T ,
f(t, ·) is a function from Dt to Rt. Similarly, Inj(T,D,R) denotes the set of all
f such that for each t ∈ T , f(t, ·) is an injection from Dt to Rt. When Dt or Rt

are independent of the choice of t we may omit the subscript.
If f ∈ Inj(T,D,R), then its inverse f−1 is defined by f−1(t, f(t, x)) = x for all

(t, x) and f−1(t, y) = ⊥ for y �∈ f(t,Dt). For such f we let f± denote the function
defined by f±(+, x) = f(x) and f±(−, x) = f−1(x). We let Inj±(T,D,R) =
{f± : f ∈ Inj(T,D,R)}.

2.1 Computational Model

Pseudocode. We regularly use pseudocode inspired by the code-based frame-
work of [5]. We think of algorithms as randomized RAMs when not specified
otherwise. If A is an algorithm, then y ← AO1,...(x1, . . . ; r) denotes running A
on inputs x1, . . . with coins r and access to the oracles O1, . . . to produce output
y. When the coins are implicit we write ←$ in place of ← and omit r.

We let x ←$ D denote sampling x according to the distribution D. If D is a
set, we overload notation and let D also denote the uniform distribution over
elements of D. The domain of D is denoted by [D].

Security notions are defined via games; for an example see Fig. 2. The prob-
ability that G outputs true is denoted Pr[G]. In proofs we sometimes define a
sequence of “hybrid” games in one figure, using comments of the form “//H[i,j).”
A line of code commented thusly is only included in the hybrids Hk for i ≤ k < j.
(We are of course referring only to values of k ∈ N.) By this convention to iden-
tify the differences between Hk−1 and Hk one looks for comments H[i,k) (code no
longer included in the k-th hybrid) and H[k,j) (code new to the k-th hybrid).

We let ⊥ be a special symbol used to indicate rejection. If we do not explicitly
include ⊥ in a set, then ⊥ is not contained in that set. If ⊥ is an input to a
function or algorithm, then we assume its output is ⊥. We do not distinguish
between ⊥ and tuples (⊥, . . . ,⊥). Algorithms cannot query ⊥ to their oracles.

Complexity measures. To measure the complexity of algorithms we follow
the conventions of measuring their local complexity, not including the complex-
ity of whatever oracles they interact with. Local complexity was preferred by
Auerbach et al. [1] for analyzing memory-limited adversaries so that analysis
can be agnostic to minor details of security definitions’ implementations. We
focus on worst-case runtime Time(A) and memory complexity Mem(A) (i.e.

714 A. Ghoshal et al.

how many bits of state it stores for local computation). These exclude the inter-
nal complexity of oracles queried by A, but include the time and memory used
to write the query and receive the response. If A expects access to n oracles then
we let Query(A) = (q1, . . . , qn) where qi is an upper bound on the number of
queries to its i-th oracle. (Here we index from left to right, so for AO1,...,On the
i-th oracle is Oi.) If S is a scheme, then Time(S) and Mem(S) are the sums
of the corresponding complexities over all of its algorithms. If G is a game, then
we define Time(G) and Mem(G) to exclude the complexity of any adversaries
embedded in the game.

2.2 Cryptographic Background

Ideal models. Some schemes we look at may be proven secure in ideal models
(e.g. the random oracle or ideal cipher models). To capture this we can think of a
scheme S as specifying a set of functions S.I. At the beginning of a security game
a function h will be sampled from this set. The adversary and all algorithms of
S are given oracle access to h.

Fig. 2. Security game capturing the pseu-
dorandomness of function family F.

Function families. A family of func-
tions F specifies, for each K ∈ F.K, an
efficiently computable function FK ∈
F.F. We refer to F.F as the function
space of F. Pseudorandom (PR) secu-
rity of F is captured by the game
defined in Fig. 2. It measures how F
with a random key can be distinguished
from a random function in F.F via
oracle access. We define AdvprF (A) =
Pr[Gpr

F,1(A)] − Pr[Gpr
F,0(A)]. The standard notions of (tweakable) pseudorandom

functions/injections/permutations or strong injections/permutations are cap-
tured by appropriate choices of F.F.

Switching lemma. We make use of the following standard result which bounds
how well a random function and a random injection can be distinguished.

Lemma 1 (Switching Lemma). Fix T , D, and R. Let N = mint∈T |Rt|.
Then for any adversary A with q = Query(A) we have that

|Pr[Af ⇒ 1] − Pr[Ag ⇒ 1]| ≤ 0 · q2/N.

The probabilities are measured over the coins of A, the uniform choice of f from
Fcs(T,D,R), and the uniform choice of g from Inj(T,D,R).

Recent papers [11,17,20] have given improved versions of the switching lemma
for adversaries with bounded memory complexity, as long as it does not repeat
oracle queries. In our application of the switching lemma the adversary’s memory
complexity is too large for these bounds to provide any improvement.

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 715

Other primitives. We recall relevant syntax and security definitions for digital
signatures, nonce-based encryption, and public key encryption schemes in the
sections where we consider them (Sects. 4, 5, and 6 respectively).

3 Adversaries with Access to Random Functions

This paper proposes and adopts what we consider to be a better formalism to
deal with memory-tight reductions. Namely, all of our reductions will require
access to some variety of large random functions which it will query on a small
number of inputs (specifically uniformly random functions and invertible random
injections). That is, our reduction adversaries can be written in the form shown
of the left below, for some set of functions F and algorithm A2. (On the right is
a pseudorandom version of A which we will discuss momentarily.)

Adversary AO(in)
f ←$ F
out ←$ AO,f

2 (in)
Return out

Adversary AO
F (in)

K ←$ F.K

out ←$ AO,FK

2 (in)
Return out

We refer to such an A as an F-oracle adversary. In this section we will generally
discuss such adversaries, rather than separately providing the discussion for such
adversaries each time we apply them.

The time and memory complexity of any F-oracle adversary must include
the complexity of sampling, storing, and evaluating f . This will be significant if
F is large. However, as we will argue, this additional state and time should be
assumed to not significantly increase the advantage of A. As such, we will define
the reduced complexity of A by

Time∗(A) = Time(A2) and Mem∗(A) = Mem(A2).

Later we state theorems in terms of reduced complexity.

Pseudorandom replacement. The most conservative justification of F-oracle
adversaries is to bound how much the oracle can help by replacing it with a pseu-
dorandom version. This was the approach taken by Auerbach et al. [1] when they
used pseudorandom functions for purposes such as emulating random oracles
and storing the coins required by an adversary with low memory, and has been
adopted by follow-up work [7,10,22]. If F is a function family with F.F = F , then
the adversary AF we gave above does exactly this. It replaces A2’s oracle access
to f with access to FK for a random K. The following lemma is straightforward.

Lemma 2. Let A be an F-oracle adversary for a game G. Then for any function
family F with F.F = F we can define a pseudorandomness adversary Ai such that

Pr[G(A)] ≤ Pr[G(AF)] + AdvprF (Ai),
Query(Ai) = q, and

Time(Ai) = Time∗(A) + Time(G(A)),
Mem(Ai) = Mem∗(A) + Mem(G(A)).

Here q is an upper bound on the number of queries A2 makes to its second oracle.

716 A. Ghoshal et al.

Note that the complexity of AF is given by Time(AF) = Time∗(A) + q ·
Time(F) and Mem(AF) = Mem∗(A) + Mem(F). Thus the existence of an
appropriate pseudorandom F ensures that the memory and time complexity
excluded by Time∗ and Mem∗ cannot significantly aid an adversary. In the use
of this technique by Auerbach et al. [1] the reduction Ai was memory-tight. Note
this is not strictly necessary as long as we are willing to assume the existence of
F with sufficient security as a function of attackers’ time and query complexities
without regard to memory complexity.

We could have combined Lemma 2 with any of our coming theorems to obtain
bounds in terms of Time and Mem, rather than their reduced version. However
we find the use of reduced complexity cleaner as it simplifies our theorems,
allowing us to focus on the conceptual core of the proofs without having to
repeat the rote step of replacing random objects with pseudorandom ones.

When combining the lemma with a theorem, game G would correspond to the
security game played by the reduction adversary. For our theorems, that game
will have low time and memory overhead over that of A, so the application of
the lemma would be time- and memory-tight. That said, the tightness of this
is less important than the tightness of the other components of the theorem we
would apply it to. Note that the definition of Ai is independent of the choice of
F. Consequently, we can always choose F with a very high security threshold to
counteract any looseness in the lemma. In the full version [14], we summarize the
F used in our theorems and how they could be pseudorandomly instantiated.

Assumed independence. As a second observation why the storage of f may
not help A, note that f is completely “independent” of the problem A is try-
ing to solve (as specified by in and the behavior of O). In various settings it
seems likely that such independent state does not help. For example, it would
be very surprising (or even a breakthrough) to show a better factoring or lattice
algorithm given access to a random function f from a natural set. Indeed, crypt-
analytic work often makes use of random oracles without significant comment
(from which other types of random functions can be constructed).

Information theoretic settings. In some information theoretic settings, the
“independence” of f from the problem can be made rigorous. Information theo-
retic results are typically depending only on the query complexity of the attacker
or its memory usage, ignoring code size. In such settings, we expect bounds of
the form Adv(A) ≤ ε(Mem(A),Query(A)) for some function ε. Because this
bound does not depend on the code size of A, if A is an F-oracle adversary
we should be able to prove Adv(A) ≤ ε(Mem∗(A),Query(A)) by a coin-fixing
argument in which we fix the random choice of function ahead of time and
embed it in the description of the adversary. This is, for example, the case for
the recent time-memory tradeoffs shown for distinguishing between a random
function and a random injection without repeating queries [11,17,20]. A coin-
fixing readily shows that these tradeoffs hold when using Mem∗(A) in place of
Mem(A),Query(A).

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 717

4 Multi-challenge Security of Digital Signature Schemes

In the context of memory-tightness, the security of digital signature schemes has
been considered in several works [1,10,22]. The standard security notion for sig-
natures asks the attacker, given examples, to come up with a forged signature on
a fresh message. A straightforward proof shows (in the standard setting where
memory efficiency is not a concern) that the security notion is equivalent whether
the attacker is allowed one or many forgery attempts. However, Auerbach
et al. [1] proved an impossibility result showing that a (certain form of black-box)
reduction cannot be time, memory, and advantage tight. The difficulty faced by
the reduction is in distinguishing between when the adversary has produced a
novel forgery and when it is simply repeating a signature that it was given.

In this section we show a few ways that security against many forgery
attempts (i.e., multiple challenges) can be proven to follow from security
against a single forgery (i.e., a single challenge) in a memory-tight man-
ner. Our first results consider a variant definition of digital signature secu-
rity we introduce (called UFRMA) in which the adversary has only par-
tial control over the messages being signed. Using our new techniques, we
show that single challenge UFCMA security implies multi-challenge UFRMA
security in a memory-tight manner (for some practically relevant distribu-
tions over messages). We also consider the security of the RSA full domain
hash digital signature scheme. Auerbach et al. [1] gave a memory-, but not
advantage-tight proof of the security of the standard version of this scheme
in the single challenge setting. By considering a probabilistic variant of the
scheme introduced by Coron [8] we are able to provide a memory-, time-, and
advantage-tight proof of the many-forgery SUFCMA security of the variant.

Fig. 3. Syntax of digital signature scheme.

4.1 Syntax and Security

Digital signature syntax. A dig-
ital signature scheme DS specifies a
key generation algorithm DS.K, a sign-
ing algorithm DS.Sign, and a verifica-
tion algorithm DS.Ver. The syntaxes of
these algorithms are shown in Fig. 3.
We capture ideals models by providing
DS.Sign and DS.Ver with oracle access
to a function h drawn at random from
the set DS.I. When relevant we let DS.M denote the set of messages it accepts.
The verification and signing keys are respectively denoted by vk and sk. The
message to be signed is m, the signature produced is σ, and the decision is
d ∈ {true, false}. Correctness requires DS.Verh(vk,m, σ) = true for all h ∈ DS.I,
all (vk, sk) ∈ [DS.K], all m ∈ DS.M, and all σ ∈ [DS.Signh(sk,m)].

718 A. Ghoshal et al.

Fig. 4. Security games capturing the unforgeability of a digital signature scheme.

Message distribution syntax. One of the security notions we consider for
digital signature schemes will be parameterized by a message distribution via
which the adversary is given incomplete control over the messages which are
signed. A message distribution D specifies sampling algorithm D.S which sam-
ples an output message m′ based on parameters m given as input (written
m′ ←$ D.S(m)). The parameters m must be drawn from a set D.M, which we
typically leave implicit. When making the randomness of the sampling algo-
rithm explicit we let D.R be the set from which its randomness is drawn
and write m′ ← D.S(m; r). If there exists an extraction algorithm D.X such
that D.X(D.S(m; r)) = (m, r) for all m, r then we say D is extractable. If
D.X(D.S(m; r)) = m for all m, r then we say D is weakly extractable. We assume
that D.X(m′) = ⊥ if m′ �= D.S(m; r) for all m, r. We define the min-entropy of
D as

D.H∞ = − lg max
m

Pr[r ←$ D.R : D.S(m; r) = m′] .

Unforgeability security. The unforgeability security notions we consider
are defined in Fig. 4. The standard notion of UFCMA (unforgeability under
chosen message attack) security is captured by Gufcma which includes the boxed
but not the highlighted code, giving the adversary access to a regular signing
oracle Sign. The goal of the adversary is to query Forge with a valid signature
σ∗ of a message m∗ which was not previously included in a signing query (as
stored by the set S). We define Advufcma

DS (A) = Pr[Gufcma
DS (A)].

Our new security notion UFRMA (unforgeability under randomized message
attack) is captured by the game Gufrma which is parameterized by a message
distribution D. In this game the adversary is instead given access to the ran-
domized signing oracle RSign where the message to be signed is chosen by D.
Note that the coins used by D are returned to the adversary along with the
signature. Otherwise this game matches that of UFCMA security. We define
Advufrma

DS,D (A) = Pr[Gufrma
DS,D (A)].

We will relate the advantage of attacks making only a single forgery attempt
and those making many such attempts. When wanting to make the distinc-
tion explicit we prefix the abbreviation of a security notion with an ‘m’ or ‘1’.
Strong UFCMA security, denoted SUFCMA, is captured by modifying Gufcma to

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 719

store the tuple (σ,m) in S in Sign and checking (m∗, σ∗) �∈ S in Forge. We
denote this by Gsufcma and the corresponding advantage by Advsufcma. We define
SUFRMA, Gsufrma, and Advsufrma analogously. We write xUFRMA when assum-
ing that D is extractable and wUFRMA when assuming it is weakly extractable.

4.2 Multi-challenge Security for Extractable Message Distributions

The first applications we show for our techniques are generic methods of tightly
implying security of a digital signature scheme against multiple forgery attempts
(i.e., multi-challenge security). Recall that Auerbach et al. [1] gave a lower bound
showing that a black-box reduction proving that single UFCMA security implies
many UFCMA cannot be made memory-tight and time-tight. We avoid this in
two ways; first by considering mUFRMA, rather than mUFCMA, security and
then by considering a particular choice of digital signature scheme.

High-level idea. The primary difficulty of a tight proof that 1UFCMA security
implies mUFCMA security is that a successful mUFCMA attacker may have
made many Forge queries which verify correctly, one of which is a valid forgery
and the rest of which were just forwarded from its Sign oracle. A 1UFCMA
reduction must then somehow be able to identify which of the queries is the true
forgery so it can forward this to its own Forge oracle.

The technical core of the coming proof for mUFRMA is that our reduction
adversary will use the random coins of the message distribution D to signal things
to its future self. In particular, when Ar makes a query RSign(m), the reduction
will choose coins for D.S via r ← f(m, i) where i is a counter which is incremented
with each query and f is a random tweakable function/injection. The coins then
act as a sort of authentication tag for m. On a later Forge(m∗, σ∗) query, if
m∗ = D.S(m; r) where r = f(m, i) for some i ∈ [qSign] the reduction can safely
assume this message was signed by an earlier RSign query.

When D is fully extractable, we can perform the requisite check for Forge
by having f be an injection. We extract m and r from m∗ and then compute
i ← f−1(m, r). This is the strategy used in Theorem 1. If we assume only that D
is weakly extractable, we can extract m if D has a sufficient amount of entropy,
and then individually check if D.S(m; f(m, i)) holds for each choice of i. This
reduction strategyobtains the same advantage at the cost of an extra runtime
being needed to iterate over the possible choices of i in Forge.

Extractable Message Distribution. If the message distribution D is
extractable, the following theorem captures that 1UFCMA security tightly
implies mUFRMA security. The proof makes use of our efficient tagging
technique.

Theorem 1 (1UFCMA ⇒ mxUFRMA). Let DS be a digital signature
scheme and D be an extractable message distribution. Let Ar be an adversary
with (qSign, qForge, qh) = Query(Ar) and assume qSign ≤ 0.5|D.R|. Let Au be the

720 A. Ghoshal et al.

Fig. 5. Adversary Au used in proof of Theorem 1.

Inj±(DS.M, [qSign],D.R)-oracle adversary shown in Fig. 5. Then,

Advufrma
DS,D (Ar) ≤ Advufcma

DS (Au) + (0.5 · q2Sign + 2 · qSign · qForge)/|D.R|
Query(Au) = (qSign, 1, qh + qForge · Query(DS))
Time∗(Au) = Time(Ar) + qSign · Time(D) + qForge(Time(D) + Time(DS))
Mem∗(Au) = Mem(Ar) + Mem(D) + Mem(DS) + lg(qSign).

This is time-tight because Time(Ar) ∈ Ω(qSign + qForge) must hold and
Time(D) and Time(DS) will be small. This is memory-tight because Mem(D),
Mem(DS), and lg(qSign) will be small.

The main idea of Au is using the output of an invertible random injection
f on the message and a counter as coins instead of sampling them uniformly
at random when answering RSign queries. Since D is fully extractable, during
a Forge query on m∗, we can extract (m, r) ← D.X(m∗) and use the fact
that f is invertible to compute f−1(m, r) and check if the index is in [qSign].
This is used to avoid remembering S. If m∗ ∈ S, and (m, r) ← D.X(m∗), then
there exists j ∈ [qSign] such that r = f(m, j) – so the check passes. We can
argue that if m∗ �∈ S, our check is unlikely to pass. We give the formal proof of
this theorem in Sect. 4.3. It applies the switching lemma to argue the use of f
cannot be distinguished from honestly sampling r with advantage better than
0.5 · q2Sign/|D.R| and shows that the probability of falsely making the check pass
is bounded by 2qSignqForge/|D.R|.

We would not be able to use the technique in this proof to prove mxSUFRMA
from 1SUFCMA in a memory-tight way. In particular, since the coins r of the
message distribution are chosen before σ is known, our trick of using r to signal
freshness of a forgery query does not work for a message-signature pair.

4.3 Proof of Theorem 1 (1UFCMA⇒mUFRMA)

Proof. We consider a sequence of hybrids H0 through H4 defined in Fig. 6. When
examining these hybrids recall our conventions regarding “//H[i,j)” comments
described in Sect. 2.1. Of these hybrids we will make the following claims, which
establish the upper bound on the advantage of Ar claimed in the proof.

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 721

Fig. 6. Hybrid games used in proof of Theorem 1.

1. Pr[Gufrma
DS,D (Ar)] = Pr[H0] = Pr[H1]

2. Pr[H1] ≤ Pr[H2] + 0.5 · q2Sign/|D.R|
3. Pr[H2] = Pr[H3]

4. Pr[H3] ≤ Pr[H4] + 2qSignqForge/|D.R|
5. Pr[H4] = Advufcma

DS (Au)

Transition H0 to H1. The hybrid H0 is simply a copy of the game Gufrma.
(We also added code to initialize variables i and I[·] that will be used in later
hybrids.) Hence Pr[Gufrma(Ar)] = Pr[H0]. In hybrid H1, we replace the random
sampling of r for D in RSign with the output of a random function f applied
to m, using a counter i to provide domain separation between different queries.
This method of choosing r is equivalent, so Pr[H0] = Pr[H1].

Transition H1 to H2. In hybrid H2 we replace the random function with a
random injection. This modifies the behavior of the game only in that values
of r are guaranteed not to repeat across different signing queries that used the
same message. There are at most qSign invocations of f , so the switching lemma
(Lemma 1) tells us that Pr[H1] ≤ Pr[H2] + 0.5 · q2Sign/|D.R|.
Transition H2 to H3. In hybrid H3, we replace the check whether m∗ �∈ S in
oracle Forge with a check if f−1(m, r) �∈ I[m] where (m, r) = D.X(m∗). Here
I[·] is a new table introduced into the game. In RSign, code was added which
uses I[m] to store each of the counter values for which Ar made a signing query
for m. Hence f−1(m, r) will be in I[m] iff m∗ is in S and so Pr[H2] = Pr[H3].

Transition H3 to H4. In the final transition to hybrid H4 we replace the Forge
check f−1(m, r) �∈ I[m] with f−1(m, r) �∈ [qSign]. This does change behavior if Ar

ever makes a successful forgery query for m∗ = D.S(m; f(m, i)) without its i-th
signing query having used the message m. This would require guessing f(m, i) for

722 A. Ghoshal et al.

some i ∈ [qSign] \ I[m]. We can bound the probability of this ever occurring by a
union bound over the Forge queries made by Ar. Consider the set f(m, [qSign]\
I[m]) = {f(m, i) : i ∈ [qSign] \ I[m]}. It has size at most qSign. Because f is a
random injection it is uniform subset of the set D.R \ f(m, I[m]) (which has size
at least |D.R| − qSign). Hence the probability of any particular query triggering
this different behavior is at most qSign/(|D.R| − qSign) ≤ 2qSign/|D.R|. Applying
the union bound gives us Pr[H3] ≤ Pr[H4] + 2qSign · qForge/|D.R|.
Reduction to UFCMA. We complete the proof using adversary Au from Fig. 5
which simulates hybrid H4 and succeeds whenever Ar would. The adversary
Au samples f at random from Inj(DS.M, [qSign],D.R). When run on input vk,
it runs Ar on the same input. It gives Ar direct access to h. To simulate a
query RSign(m), it computes m′ ← D.S(m; f(m, i)), increments i, and queries
Sign(m′), returning the result to Ar. On a query Forge(m∗, σ∗), it computes
(m, r) ← D.X(m∗). If f−1(r) �∈ [qSign] and DS.Ver(vk,m∗, σ∗) = true then it
queries its own oracle with (m∗, σ∗) and halts. Otherwise it ignores the query.

If adversary Au ever makes a Forge query, it will succeed. It ensured that
(m∗, σ∗) is verified correctly and f−1(r) �∈ [qSign] ensures that it is has not
previously made a Sign query for m∗. If Ar would have succeeded in hybrid
H4, its winning query will cause Au to make a Forge query. Hence, we have
Pr[H4] = Advufcma

DS (Au).

4.4 Applications and Weakly Extractable Variant

We discuss some applications of Theorem 1. This includes scenarios where
extractable message distributions are used and proving security of digital signa-
ture schemes when their messages are padded with randomness. Additionally,
we give a variant of the theorem when the underlying message distribution is
only weakly extractable. The resulting reduction is memory- but not time-tight.

Example extractable distributions. The simplest extractable distribution
does not accept parameters as input and simply outputs its randomness as the
message. Security with respect to this is the standard notion of security against
random message attacks which was originally introduced by Even, Goldreich,
and Micali [13].

Extractable distributions arise naturally when the messages being signed
include random values. For example, protocols often include random nonces in
messages that are signed. In TLS 1.3, for example, when the server is responding
to the Client Hello Message it signs a transcript of the conversation up until that
point which includes a 256-bit nonce just chosen by the server. We could think
of the security for this setting being captured by an extractable distribution Dtls

that takes as input message parameter m that specifies all of the transcript other
than the nonce and sets the nonce to its randomness r ∈ {0, 1}256.
Padding schemes with randomness. Using Theorem 1, we can see that aug-
menting any digital signature scheme by appending auxiliary randomness will
give us a memory-tight reduction from the mUFCMA security of the augmented
scheme to the 1UFCMA security of the original scheme.

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 723

Let DS be a digital signature scheme and R be a set. We define RDS[DS,R]
by having RDS[DS,R].Sign(sk,m) do “r ←$ R; Return DS.Sign(sk,m ‖ r) ‖ r” and
having RDS[DS,R].Ver(vk,m, σ′) do “σ ‖ r ← σ′; Return DS.Ver(vk,m ‖ r, σ).”
We also define a related message distribution RD[R] by RD[R].R = R and
RD[R].S(m; r) = m ‖ r. Clearly it is extractable.

The following reduces the mUFCMA security of RDS to the mUFRMA secu-
rity of DS. Theorem 1 can in turn be used to reduce this to the 1UFCMA security
of DS. It also relates the mSUFCMA security of RDS to the mSUFRMA security
of DS. We note this because if DS has unique signatures, then its mSUFRMA
and mUFRMA security are identical and hence UFCMA security of DS implies
mSUFCMA security of RDS in a memory-tight way.

Theorem 2. Let DS be a digital signature scheme and R be a set. Then for
any Au we can construct Ar such that Advufcma

RDS[DS,R](Au) = Advufrma
DS,RD[R](Ar). It

additionally holds that Advsufcma
RDS[DS,R](Au) = Advsufrma

DS,RD[R](Ar). Adversary Ar has
essentially the same complexity as Au.

Proof (Sketch). The proof of this is straightforward. If Au queries Sign(m),
then Ar queries Sign(m) and receives (σ, r) and returns σ ‖ r to Au. If Au

queries Forge(m∗, σ∗ ‖ r∗), then Ar queries Forge(m∗ ‖ r∗, σ∗). Note that Ar

wins whenever Au would. ��
In independent and concurrent work, Diemert, Gellert, Jager, and Lyu [10] also
considered RDS, proving that if DS can be proven SUFCMA1 secure (in this
notion the game records its responses to signature queries and repeats them if
the adversary repeats a query) with a restricted class of “canonical” memory-
tight reductions, then there is a memory-tight reduction for the mSUFCMA
security of RDS. This complements our results as they use a more restrictive
assumption to prove mSUFCMA while we use a generic assumption to prove
mUFCMA.

In the full version [14], we further show that if D is only weakly extractable
(but still has high entropy), then we can prove a variant of Theorem 1 with
a less efficient reduction. In particular, the running time of the reduction has
an additional term of qForge · qSign · Time(D.S). This difference arises because
rather than extracting r and computing j ← f−1(m, r) in Forge we instead
need to iterate over the possible values of f(m, j) to check for consistency. Thus
the proof for this is an instance of our inefficient tagging technique.

4.5 mSUFCMA Security of RSA-PFDH

The RSA-based Probabilistic Full-Domain Hash (RSA-PFDH) scheme, origi-
nally introduced by Coron [8], can be viewed as the result of applying the RDS[·]
transform to RSA-based Full-Domain Hash [4] (RSA-FDH). Auerbach et al. [1]
gave a memory-, but not time-tight reduction from the 1UFCMA security of
RSA-FDH to the one-wayness of RSA. Applying Theorems 1 and 2 would give
a memory-, but not time-tight reduction for the security of RSA-PFDH.

724 A. Ghoshal et al.

By a careful combination of our tagging technique with the proof ideas of
Coron and of Auerbach et al. we can analyze RSA-PFDH directly. We prove
the following result – a time, memory, and advantage tight reduction for the
security of RSA-PFDH. The theorem is properly formalized and proven in the
full version [14].

Theorem 3 (Informal, mSUFCMA security of RSA-PFDH).
Define RSA := RDS[RSA-FDH, {0, 1}rl]. Let Am be an adversary with
(qSign, qForge, qh) = Query(Am). Then we can construct an adversary ARSA

against one-wayness of rl-bit RSA such that

Advsufcma
RSA (Am) ≤ Advow-rsa(ARSA) + (0.5 · q2Sign + 2 · qSign · qForge)/2rl

The running time and memory of ARSA is roughly the same as Am.

In concurrent work, Diemert, Gellert, Jager, and Lyu [10] also give a time, mem-
ory, and advantage tight reduction for RSA-PFDH via a different proof.

5 AE Security of Encrypt-then-PRF

For nonce-based secret-key encryption schemes, we often want Authenticated
Encryption (AE) security which simultaneously asks for confidentiality and
ciphertext integrity. The common approach to prove AE security of a nonce-
based encryption scheme is to give separate reductions to the indistinguishabil-
ity of its ciphertexts from truly random ones (INDR security) and its ciphertext
integrity. Ghoshal et al. [15] proved an impossibility result showing that a (cer-
tain form of black-box) reduction from AE security to INDR security and cipher-
text integrity cannot be memory-tight. Making the INDR part memory-tight is
of particular interest because of results which establish tight time-memory trade-
offs for INDR security [9,12,17,20,21].

In this section we look at a particular scheme which we refer to as Encrypt-
then-PRF. Given a nonce-based encryption scheme NE that only has INDR
security, one generic way to construct a new encryption scheme NE′ which also
achieves ciphertext integrity is to use a PRF and let the ciphertext of NE′ be
the concatenation of the ciphertext of NE and a tag which is the evaluation of
the PRF on the ciphertext and the nonce.

We show that in the context of Encrypt-then-PRF, for two of the notions
of AE security introduced in [15], we can give a memory-tight reduction to the
INDR security of the underlying encryption scheme and a non-memory-tight
reduction to the security of the PRF. This shows that we can bypass the generic
impossibility result of [15] if we consider specific constructions of nonce-based
authenticated encryption schemes. In more detail, the impossibility result of [15]
rules out lifting the INDR security of a scheme to full AE security in a memory
tight way, when additionally assuming ciphertext integrity for a generic scheme.
Here, we show that for the specific case of Encrypt-then-PRF schemes, lifting the
INDR security of the encryption scheme to full AE security of Encrypt-then-PRF
is possible in a memory-tight way, assuming security of the PRF.

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 725

Fig. 7. Games defining INDR and AE-w security of NE for w ∈ {m, �,⊥}.

5.1 Syntax and Security Definitions

Nonce-Based Encryption. A nonce-based (secret-key) encryption scheme NE
specifies algorithms NE.K, NE.E, and NE.D. It specifies message space NE.M and
nonce space NE.N. The syntax of the algorithms is shown in Fig. 8. The secret
key is denoted by K, the message is m, the nonce is n, and the ciphertext is
c. The decryption algorithm may return m = ⊥ to indicate rejection of the
ciphertext. Correctness requires for all K ∈ [NE.K], n ∈ NE.N, and m ∈ NE.M
that NE.D(K,n,NE.E(K,n,m)) = m. We assume there is a ciphertext-length
function NE.cl : N → N such that for all K ∈ [NE.K], n ∈ NE.N, and m ∈
NE.M we have |c| = NE.cl(|m|) where c ← NE.E(K,n,m). We define NE.C =⋃

m∈NE.M{0, 1}NE.cl(|m|). Typically, a nonce-based encryption scheme also takes
associated data as input which is authenticated during encryption. This does
not meaningfully affect our proof, so we omit it for simplicity.

Fig. 8. Syntax of (nonce-based) secret-key
encryption scheme.

Encrypt-then-PRF. In this section
we consider the Encrypt-then-PRF
construction of a nonce-based encryp-
tion scheme, due to Rogaway [19].
Namprempre et al. [18] gave a more
extensive exploration of the many ways
to construct an AEAD encryption
scheme via generic composition. Given
nonce-based encryption scheme NE and
function family F, we define EtP[NE,F]
by the following algorithms. We refer to the t component of the ciphertext
returned by EtP[NE,F].E as the “tag” below. When including associated data, it
would be input to F.

726 A. Ghoshal et al.

EtP[NE,F].K
K ←$ NE.K
K ′ ←$ F.K
Return (K,K ′)

EtP[NE,F].E(K,n,m)
(K,K ′) ← K
c′ ← NE.E(K,n,m)
t ← FK′(n, c′)
Return (c′, t)

EtP[NE,F].D(K,n, c)
(K,K ′) ← K; (c′, t) ← c
If t = FK′(n, c′):

Return NE.D(K,n,m)
Return ⊥

Our security result will analyze the authenticated security of EtP assuming NE
has ciphertexts indistinguishable from random ciphertexts and F is pseudoran-
dom. Let us recall these security notions.

Indistinguishability From Random (INDR) Security. This security
notion requires that ciphertexts output by the encryption scheme cannot be
distinguished from random strings. Consider the game Gindr

NE,b defined in Fig. 7.
Here an adversary A is given access to an encryption oracle Encb to which it can
query a pair (n,m) and receive an honest encryption of message m with nonce
n if b = 1 or a random string of the appropriate length if b = 0. We restrict
attention to “valid” adversaries that never repeat the nonce n across different
encryption queries. We define AdvindrNE (A) = Pr[Gindr

NE,1(A)] − Pr[Gindr
NE,0(A)].

Authenticated Encryption (AE) security. AE security simultaneously
asks for integrity and confidentiality. Consider the games Gae-w

NE,b which defines
three variants of authenticated encryption security parameterized by w ∈
{m, ,⊥} shown in Fig. 7. In this game, the adversary is given access to an encryp-
tion oracle and a decryption oracle. Its goal is to distinguish between a “real” and
“ideal” world. In the real world (b = 1) the oracles use NE to encrypt messages
and decrypt ciphertexts. In the ideal world (b = 0) encryption returns random
messages of the appropriate length and decryption returns ⊥. For simplicity, we
will again restrict attention nonce-respecting adversaries which do not repeat
nonces across encryption queries. (Note that there is no restriction placed on
nonces used for decryption queries.)

The decryption oracle is parameterized by the value w ∈ {m, ,⊥} corre-
sponding to three different security notions. In all three, we use a table M [·, ·] to
detect when the adversary forwards encryption queries on to its decryption ora-
cle. When w = m, the decryption oracle returns M [n, c]. When w = , it returns
a special symbol . When w = ⊥, it returns the symbol ⊥ which is also used
by the encryption scheme to represent rejection. For w ∈ {m, ,⊥} we define the
advantage of an adversary A by Advae-wNE (A) = Pr[Gae-w

NE,1(A)] − Pr[Gae-w
NE,0(A)].

Discussion of variants. This choice of considering three variants of the defi-
nition follows the same choice made by Ghoshal et al. [15]. First off, we note that
if there are no restrictions on the memory of the adversary, all the three defini-
tions are tightly equivalent. An adversary can simply remember its past encryp-
tion queries and answers, and without loss of generality never make a decryption
query on the answer of an encryption query. In the memory restricted setting
these definitions no longer appear to be equivalent. The only known implication
is that w = security tightly implies w = ⊥ security. Other implications seem
to require remembering all encryption queries to properly simulate the decryp-
tion oracle. In Sect. 6 we parameterize public-key encryption CCA definitions
similarly. This discussion applies to those definitions as well.

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 727

Ghoshal et al. argued that w = m is the “correct” definition. They argue
that chosen ciphertext security is intended to capture the power of an adversary
that can observe the behavior of a decrypting party. Both the w = ⊥ and
w = definitions restrict what the adversary learns about this behavior when
honestly generated ciphertexts are forwarded, which does not seem to model
anything about real use of encryption. The w = m definition avoids this unnatural
restriction.

We provide some technical context for this philosophical argument. In the full
version [14] we give memory-tight proofs for the security of encryption schemes
constructed with the KEM/DEM paradigm with w = m and noting this does
not seem possible for the other choices of w. In this section and Sect. 6 we prove
the AE/CCA-w security of encryption schemes for differing choices of w. We
view this as a general exploration of what results are possible with memory-
tight proofs. A proof which works for some w, but not others helps build some
understanding of how these notions related.

5.2 Security Result

Now we give a proof of the AE- security of EtP[NE,F]. In particular we provide
a memory-tight reduction to the INDR security of NE and a non-memory-tight
reduction to the security of F. Such a result is useful if a time-memory tradeoff
is known for NE and F is sufficiently secure even against high-memory attackers.

Theorem 4 (Security of EtP). Let NE be a nonce-based encryption scheme
and F be a family of function with F.F = Fcs(NE.N,NE.C, {0, 1}τ) for τ ∈ N. Let
Aa be an AE- adversary with (qEnc, qDec) = Query(Aa). Define adversaries
Ap and Ar as shown in Fig. 9. Then,

Advae-�EtP[NE,F](Aa) ≤ AdvprF (Ap) + AdvindrNE (Ar) + 2qDec/2τ

Query(Ap) = qEnc + qDec

Time(Ap) = Time(Gae-�
EtP[NE,F](Aa))

Mem(Ap) = Mem(Gae-�
EtP[NE,F](Aa))

Query(Ar) = qEnc

Time∗(Ar) = Time(Aa)
Mem∗(Ar) = Mem(Aa).

Adversary Ar is an F.F-oracle adversary.

The standard (not memory-tight) proof of the security of EtP begins iden-
tically to our proof; we start in Gae-�

EtP[NE,F],1 replace the use of F with a truly
random function (using Ap) and then information theoretically argue that the
attacker shall be incapable of creating any forgeries. In the standard proof we
would transition to a game where the decryption oracle is exactly that of Dec�

0,
i.e. it always returns ⊥ when M [n, c] = ⊥. Then we reduce to the security of NE
to replace the generated ciphertexts with random. However this standard reduc-
tion will not be memory-tight because the attacker must store the table M [·, ·]
to know whether it should return or ⊥ when simulating decryption queries.4

4 Note this would be memory-tight for AE-⊥ security.

728 A. Ghoshal et al.

Fig. 9. Adversaries used for proof of Theorem 4.

Instead we first transition to a world where F has been replaced by the random
function f and Dec always returns when given a ciphertext with a correct
tag. (Which we can do because either M [n, c] �= ⊥ held or the attacker managed
to guess a random tag, which is unlikely.) Now we can make our INDR reduc-
tion memory-tight. It forwards encryption queries to its encryption oracle and
then uses its own function f to create the tag. For decryption queries it checks
f(n, c′) = t, returning if so and ⊥ otherwise. Then we can finally conclude by
switching to the decryption oracle Dec�

0 by arguing that noticing this change
requires guessing a random tag.

The full proof is given in the full version [14].
It does not seem possible to extend this proof technique to AE-m security

because the tag would be too short to embed values of m we need to remember.

6 Chosen Ciphertext Security of Public Key Encryption

Now we apply our techniques to give memory-tight reductions between single-
and multi-challenge notions of chosen-ciphertext security. The standard reduc-
tion bounds the advantage of an adversary making qEnc encryption queries by
qEnc times the advantage of an adversary making 1 query. The reduction requires
memory linear in qEnc and so is not memory-tight.5 In Sect. 6.1, we consider the
most common “left-or-right” definition of CCA security and introduce three dif-
ferent variants (mirroring the three notions for AE security in Sect. 5). We give a
memory-tight reduction between single- and multi-challenge security for two of
5 Auerbach et al. [1] stated that this reduction is memory-tight for both CPA and

CCA security. While the former is correct, the latter depends on the definition of
CCA. In personally communication with Auerbach et al. [2], they concurred that
their claim was incorrect for their intended definition of CCA security (w = �) but
pointed out that it does work for an “exclusion” variant, w = E, which we discuss
in the full version [14].

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 729

Fig. 11. Game defining CCA-w security of PKE for w ∈ {m, �,⊥}.

the three variants (and ⊥), but the reduction is not time-tight. In Sect. 6.2, we
look at the CCA security variant that requires ciphertexts be indistinguishable
from random. We give a memory-tight and time-tight reduction between single-
and multi-challenge security for all three variants of this notion.

Fig. 10. Syntax of a public key
encryption scheme PKE.

Public key encryption. A public key
encryption scheme PKE specifies algorithms
PKE.K, PKE.E, and PKE.D. The syntax of
these algorithms is shown in Fig. 10. The key
generation algorithm PKE.K returns encryp-
tion key ek and decryption key dk. The
encryption algorithm PKE.E encrypts message
m with ek to produce a ciphertext c. We write
PKE.E(ek,m; r) when making random coins
r ∈ PKE.R explicit. The decryption algorithm decrypts c with dk to produce
m. The decryption algorithm may output m = ⊥ to indicate rejection.

Correctness requires that PKE.D(dk, c) = m for all (ek, dk) ∈ [PKE.K], all m,
and all c ∈ [PKE.E(ek,m)]. We define the min-entropy of PKE as

PKE.H∞ = − lg max
m,ek,c

Pr[r ←$ PKE.R : PKE.E(ek,m; r) = c] .

6.1 Left-or-Right CCA Security of PKE

Left-or-right CCA security. In this section, we consider the left-or-
right definition of CCA-security most commonly used in the literature. For
w ∈ {m, ,⊥} we denote this as CCA-w6 and the corresponding security game
Gcca-w
PKE,b is defined in Fig. 11. The adversary gets the encryption key ek and

has access to an encryption and a decryption oracle. The encryption oracle
takes in messages m0 and m1 and encrypts mb where b is the secret bit. The
decryption oracle returns the decryption of a ciphertext, unless the ciphertext
was previously returned by an encryption query. This is tracked by table M .

6 The discussion in Sect. 5 about the choice to have three variants of the definitions is
applicable here as well.

730 A. Ghoshal et al.

Fig. 12. Adversary A1 for Theorem 5.

When w = m, the decryption oracle returns M [c] which is m1 from the ear-
lier encryption query. When w = , it returns . When w = ⊥, it returns
⊥ which is also used by the encryption scheme to represent rejection. The
advantage of an adversary A against the CCA-w security of PKE is defined
as Advcca-wPKE (A) = Pr[Gcca-w

PKE,1(A)] − Pr[Gcca-w
PKE,0(A)].

The goal of this section is to relate the advantage of attacks making only a
single encryption query and those making many such queries. When wanting to
make the distinction explicit we may use the adjectives “many” and “single” or
prefix the abbreviation of a security notion with an ‘m’ or ‘1’.

1CCA- implies mCCA-. The following theorem gives a memory-tight reduc-
tion establishing that CCA- security against adversaries making one encryption
query implies security for an arbitrary number of queries. The proof makes use
of our inefficient tagging technique. The reduction performs a hybrid over the
encryption queries of the original adversary and is thus not advantage-tight.

Theorem 5. (1CCA- ⇒ mCCA-). Let PKE be a public key encryption
scheme. Let Am be an adversary with (qEnc, qDec) = Query(Am). Define D(·) by
Dn = {0, 1}n × [qEnc]. Let A1 be the Fcs(N,D,PKE.R)-oracle adversary shown
in Fig. 12. Then,

Advcca-�PKE (Am) ≤ qEnc · Advcca-�PKE (A1) + 4 · qEnc · qDec/2PKE.H∞

Query(A1) = (1, qDec)
Time∗(A1) = O(Time(Am)) + qEnc(qDec + 1)Time(PKE)
Mem∗(A1) = O(Mem(Am)) + Mem(PKE) + lg qEnc.

The standard (non-memory-tight) reduction against 1CCA security picks an
index k ∈ [qEnc] where qEnc is the number of encryption queries made by Am. It
runs Am, simulating encryption queries as follows. For the first k − 1 encryption
queries, it answers with an encryption of m1, for the k-th encryption query it
forwards the query to its own encryption oracle, and the rest of the queries it

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 731

Fig. 13. Game defining $CCA-w security of PKE for w ∈ {m, �,⊥}.

answers with an encryption of m0. To answer the decryption queries, the reduc-
tion returns if it was ever queried the ciphertext for a previous encryption query.
Otherwise, it forwards the query to its own decryption oracle. Finally, the reduc-
tion adversary outputs whatever Am outputs. Standard hybrid analysis shows
that if the advantage of Am is ε, then the advantage of the reduction adversary is
ε/qEnc. Simulating decryption queries required remembering all prior encryption
queries and hence the reduction is not memory-tight.

We give an adversary A1 in Fig. 12 that is very similar to the reduction just
described, but avoids remembering prior encryption queries. The main idea is
that it picks the coins when encrypting m0 or m1 locally as the output of a
random function f applied to the message and a counter. This allows A1 to
detect whether a ciphertext c queried to the decryption oracle is one it answered
to an earlier encryption query as follows: it first asks for the decryption of c
from its own decryption oracle and receives m. Then it iterates over all counter
values for which encryption queries have been made so far and checks if c was the
encryption of m using the output of f on m and the counter as coins. If any of
these checks succeed it returns , otherwise it returns m. If c was the answer of
an encryption query A1 detects it successfully. The probability that A1 returns
 for a decryption query when it should not is small. We give the formal proof
of Theorem 5 in the full version [14] where we use a sequence of hybrid games
to transition from Gcca-�

PKE,b to a hybrid game that is simulated by A1.
Notice that the additional memory overhead for A1 is just that required to

store a counter, run PKE.E, and store (c∗,m∗
0,m

∗
1). However, there is an increase

in runtime by qEnc · qDec ·Time(PKE) because of the iteration over the counters
to answer decryption queries. As discussed in the introduction, such reductions
may be useful when the best attack for the underlying problem with low memory
requires significantly more running time than the best attack with high memory.

The same proof strategy would work essentially unchanged for CCA-⊥. For
CCA-m, the strategy does not suffice. If the adversary queries the decryption
oracle on a ciphertext c which was an answer to a previous query for (m0,m1)
the oracle needs to return m1 even if c is an encryption of m0.

732 A. Ghoshal et al.

6.2 Indistinguishable from Random CCA Security of PKE

We saw in the previous section that we could have a memory-tight reduction
from mCCA- to 1CCA-; however, the reduction is not tight with respect to
running time. In this section, we show that for a different formalization of CCA
security, we can indeed have a memory-tight and time-tight reduction between
many- and single-challenge variants.

Ciphertext and encryption key space. Before describing the indistinguish-
able from random formalization of CCA security, we need to make some assump-
tions on PKE. We define the encryption keyspace by PKE.Ek = {ek : (ek, dk) ∈
PKE.K}. We assume for each ek ∈ PKE.Ek and allowed message length n ∈ N

there is a set PKE.C(ek, n) such that PKE.E(ek,m; r) ∈ PKE.C(ek, |m|) always
holds. Let PKE.C−1(ek, c) returns n such that c ∈ PKE.C(ek, n). Correctness
implies that PKE.C(ek, n) and PKE.C(ek, n′) are disjoint for n �= n′.

Indistinguishable from random ciphertext CCA security. The security
notion we will consider in this section is captured by the game G$cca-w shown
in Fig. 13. It requires that ciphertexts output by the encryption scheme can-
not be distinguished from ciphertexts chosen at random even given access to a
decryption oracle. The adversary gets the encryption key ek and has access to
an encryption oracle Enc and a decryption oracle Dec. The adversary needs
to distinguish the following real and ideal worlds: in the real world, a query to
Enc with a message m returns an encryption of m under ek, while in the ideal
world, the same query returns a uniformly random element of PKE.C(ek, |m|).
The decryption oracle Decw acts exactly as the corresponding oracle in Gcca-w.7

The advantage of an adversary A against the $CCA-w security of PKE is defined
as Adv$cca-wPKE (A) = Pr[G$cca-w

PKE,1 (A)] − Pr[G$cca-w
PKE,0 (A)].

1$CCA-m implies m$CCA-m. The following theorem captures a memory-
tight reduction establishing that 1$CCA-m security implies m$CCA-m security.
The proof makes use of our message encoding technique.

Theorem 6 (1$CCA-m ⇒ m$CCA-m). Let PKE be a public key encryption
scheme. Let τ satisfy |PKE.C(ek, n)| ≥ 2n · 2τ for all n, ek. Let Am be an adver-
sary with (qEnc, qDec, qh) = Query(Am) and assume qEnc + qDec ≤ 0.5 · 2τ .
Let F = Inj±(T,D,R) where T , D, and R are defined by T = N × PKE.Ek,
Dn,ek = {0, 1}n × [qEnc] and Rn,ek = PKE.C(ek, n). Let A1 be the F-oracle
adversary defined in Fig. 14. Then,

Adv$cca-mPKE (Am) ≤ qEnc · Adv$cca-mPKE (A1) + 8qEncqDec/2τ + 5q2Enc/2τ

Query(A1) = (1, qDec, qh)
Time∗(A1) = O(Time(Am)) + qEncTime(PKE)
Mem∗(A1) = O(Mem(Am)) + Mem(PKE) lg qEnc.

7 As mentioned, the discussion in Sect. 5 about the three variants definitions is appli-
cable here as well. In the full version [14] we give an example where we can prove
CCA security of a KEM/DEM scheme in the memory restricted setting, but only if
we use the w = m definition.

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 733

Fig. 14. Adversary A1 for Theorem 6.

The standard (non-memory-tight) reduction against 1$CCA security that runs
an m$CCA adversary Am works in a similar manner as the standard reduction
from an 1CCA adversary and an mCCA adversary that we described in Sect. 6.1.
Again here, simulating decryption queries requires remembering all the answers
of the encryption queries, and hence the reduction is not memory-tight.

We give an adversary A1 in Fig. 14 that is very similar to the standard
reduction, but avoids remembering all the answers of the encryption queries.
The main idea here is picking the ciphertext c0 as the output of a random
injective function f evaluated on the message and a counter, instead of sampling
it uniformly at random. This way of picking the c0 allows A1 detect whether
a ciphertext c queried to the decryption oracle was the answer to an earlier
encryption query as follows: it first checks if the inverse of f on the ciphertext is
defined (i.e., not ⊥), it returns the message part of the inverse. Otherwise it asks
for the decryption of the ciphertext to its own decryption oracle and returns the
answer. Using our assumption on the size of PKE.C(ek, n), we can argue that
except with small probability, A1 simulates the decryption oracle correctly. We
give the formal proof in the full version [14] where we use a sequence of hybrid
games to transition from G$cca-m

PKE,b to a game that is perfectly simulated by A1.
The additional memory overhead for A1 is only a counter. Moreover, there

is no increase in the running time of A1 unlike the adversary in Theorem 5.

Extension to $CCA-, $CCA-⊥. We can prove the same result for $CCA-,
$CCA-⊥ but the adversary would not be tight with respect to running time. The
adversary in these cases would pick the coins for encrypting m (to compute c1)
like the adversary in Theorem 5. This would require iterating over counters to
answer decryption queries and hence lead to looseness with respect to running
time. We omit the theorems for these notions because they would not involve
any new ideas beyond those presented in Theorems 5 and 6.

Acknowledgements. Ashrujit Ghoshal, Joseph Jaeger, and Stefano Tessaro were
partially supported by NSF grants CNS-1930117 (CAREER), CNS-1926324, CNS-
2026774, a Sloan Research Fellowship, and a JP Morgan Faculty Award. Joseph
Jaeger’s work was done while at the University of Washington.

734 A. Ghoshal et al.

References

1. Auerbach, B., Cash, D., Fersch, M., Kiltz, E.: Memory-tight reductions. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 101–132. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 4

2. Auerbach, B., Cash, Fersch, M., Kiltz, E.: Personal communication (2021)
3. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions

and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008)

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS, vol. 93, pp. 62–73. ACM Press (1993)

5. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

6. Bernstein, D.J.: Extending the salsa20 nonce. In: Workshop record of Symmetric
Key Encryption Workshop, vol. 2011. Citeseer (2011)

7. Bhattacharyya, R.: Memory-tight reductions for practical key encapsulation mech-
anisms. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020.
LNCS, vol. 12110, pp. 249–278. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45374-9 9

8. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 18

9. Dai, W., Tessaro, S., Zhang, X.: Super-linear time-memory trade-offs for symmetric
encryption. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 335–
365. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2 12

10. Diemert, D., Gellert, K., Jager, T., Lyu, L.: Digital signatures with memory-tight
security in the multi-challenge setting. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021. LNCS, vol. 13093, pp. 403–433. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92068-5 14

11. Dinur, I.: On the streaming indistinguishability of a random permutation and a
random function. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12106, pp. 433–460. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45724-2 15

12. Dinur, I.: Tight time-space lower bounds for finding multiple collision pairs and
their applications. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12105, pp. 405–434. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45721-1 15

13. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptol.
9(1), 35–67 (1996). https://doi.org/10.1007/BF02254791

14. Ghoshal, A., Ghosal, R., Jaeger, J., Tessaro, S.: Hiding in plain sight: memory-
tight proofs via randomness programming. Cryptology ePrint Archive, Report
2021/1409 (2021). https://eprint.iacr.org/2021/1409

15. Ghoshal, A., Jaeger, J., Tessaro, S.: The memory-tightness of authenticated encryp-
tion. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170,
pp. 127–156. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 5

16. Ghoshal, A., Tessaro, S.: On the memory-tightness of hashed elgamal. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 33–62. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 2

https://doi.org/10.1007/978-3-319-63688-7_4
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-030-45374-9_9
https://doi.org/10.1007/978-3-030-45374-9_9
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/978-3-030-64381-2_12
https://doi.org/10.1007/978-3-030-92068-5_14
https://doi.org/10.1007/978-3-030-92068-5_14
https://doi.org/10.1007/978-3-030-45724-2_15
https://doi.org/10.1007/978-3-030-45724-2_15
https://doi.org/10.1007/978-3-030-45721-1_15
https://doi.org/10.1007/978-3-030-45721-1_15
https://doi.org/10.1007/BF02254791
https://eprint.iacr.org/2021/1409
https://doi.org/10.1007/978-3-030-56784-2_5
https://doi.org/10.1007/978-3-030-45724-2_2

Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming 735

17. Jaeger, J., Tessaro, S.: Tight time-memory trade-offs for symmetric encryption. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 467–497.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 16

18. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 15

19. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-25937-4 22

20. Shahaf, I., Ordentlich, O., Segev, G.: An information-theoretic proof of the stream-
ing switching lemma for symmetric encryption. In: 2020 IEEE International Sym-
posium on Information Theory (ISIT), pp. 858–863 (2020)

21. Tessaro, S., Thiruvengadam, A.: Provable time-memory trade-offs: symmetric cryp-
tography against memory-bounded adversaries. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 3–32. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03807-6 1

22. Wang, Y., Matsuda, T., Hanaoka, G., Tanaka, K.: Memory lower bounds of reduc-
tions revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 61–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 3

https://doi.org/10.1007/978-3-030-17653-2_16
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-030-03807-6_1
https://doi.org/10.1007/978-3-030-03807-6_1
https://doi.org/10.1007/978-3-319-78381-9_3
https://doi.org/10.1007/978-3-319-78381-9_3

Dynamic Collusion Bounded Functional
Encryption from Identity-Based

Encryption

Rachit Garg1(B), Rishab Goyal2(B), George Lu1, and Brent Waters1,3

1 UT Austin, Austin, USA
{rachg96,gclu,bwaters}@cs.utexas.edu

2 MIT, Cambridge, USA
goyal@utexas.edu

3 NTT Research, Palo Alto, USA

Abstract. Functional Encryption is a powerful notion of encryption in
which each decryption key is associated with a function f such that
decryption recovers the function evaluation f(m). Informally, security
states that a user with access to function keys skf1 , skf2 , . . . (and so on)
can only learn f1(m), f2(m), . . . (and so on) but nothing more about the
message. The system is said to be q-bounded collusion resistant if the
security holds as long as an adversary gets access to at most q = q(λ)
function keys. A major drawback of such statically bounded collusion
systems is that the collusion bound q must be declared at setup time
and is fixed for the entire lifetime of the system.

We initiate the study of dynamically bounded collusion resistant func-
tional encryption systems which provide more flexibility in terms of
selecting the collusion bound, while reaping the benefits of statically
bounded collusion FE systems (such as quantum resistance, simulation
security, and general assumptions). Briefly, the virtues of a dynamically
bounded scheme can be summarized as:

Fine-grained individualized selection. It lets each encryptor select
the collusion bound by weighing the trade-off between performance
overhead and the amount of collusion resilience.

Evolving encryption strategies. Since the system is no longer tied
to a single collusion bound, thus it allows to dynamically adjust the
desired collusion resilience based on any number of evolving factors
such as the age of the system, or a number of active users, etc.

R. Goyal—Research supported in part by NSF CNS Award #1718161, an IBM-MIT
grant, and by the Defense Advanced Research Projects Agency (DARPA) under Con-
tract No. HR00112020023. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Government or DARPA.
B. Waters—Supported by NSF CNS-1908611, CNS-1414082, Packard Foundation Fel-
lowship, and Simons Investigator Award.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 736–763, 2022.
https://doi.org/10.1007/978-3-031-07085-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_25&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_25

Dynamic Collusion Bounded FE from IBE 737

Ease and simplicity of updatability. None of the system parameters
have to be updated when adjusting the collusion bound. That is, the
same key skf can be used to decrypt ciphertexts for collusion bound
q = 2 as well as q = 2λ.

We construct such a dynamically bounded functional encryption scheme
for the class of all polynomial-size circuits under the general assumption
of Identity-Based Encryption.

1 Introduction

Public-key encryption [18] is one of the most fundamental concepts in cryptog-
raphy. Traditionally, public-key encryption was defined to provide an “all-or-
nothing” type functionality and security, where given a decryption key sk, a user
can either recover the entire plaintext m from a ciphertext ct or nothing at all.
In the recent years, an extremely powerful notion of encryption called Functional
Encryption (FE) [11,32] has emerged.

FE provides a fine-grained access control mechanism over encrypted data
where a decryption key is now associated with a function f and the decryptor
recovers the function evaluation f(m) from the ciphertext. Moreover, a user with
access to function keys skf1 , . . . , skfn

can only learn f1(m), . . . , fn(m) but noth-
ing more about the message. This security requirement is commonly captured
in a game based indistinguishability definition, where the adversary submits
two messages, m0 and m1, as a challenge and must be unable to distinguish
between encryptions of m0 and m1 with non-negligible probability given that
fi(m0) = fi(m1) hold for all keys in adversary’s possession.

Over the last several years, FE has been studied extensively. Significant
progress has been made towards building various expressive forms of FE under
such indistinguishability-based definitions. Starting with initial works [12,29]
that built specific forms of predicate encryption over bilinear maps, the search
for FE for general circuits under standard cryptographic assumptions culminated
in the recent breakthrough work of Jain, Lin, and Sahai [28]. They proposed an
FE scheme for general circuits from a combination of PRGs in NC0, Symmetric
eXternal Diffie-Hellman (SXDH), Learning with Errors (LWE), and Learning
Parity with Noise (LPN) over large fields assumptions. While this is tremendous
progress, an unfortunate limitation of this FE scheme is that it is susceptible
to quantum attacks due to the post-quantum insecurity of the SXDH assump-
tion. But even more broadly, pursuing the direction of indistinguishability-based
security for FE suffers from the drawback that it is unclear how it captures the
intuition that an attacker learns at most the function evaluation but nothing
more.

For these reasons, FE has also been investigated in the bounded collusion
model under simulation-based definitions. In the bounded collusion model, the
FE system declares a bound q at the setup time, such that all the system parame-
ters are allowed to grow polynomially with q (in addition to the security param-
eter λ). Additionally, the security requirement is captured via a simulation-
based game, which says that as long as the attacker does not make more than q

738 R. Garg et al.

key queries, the adversary’s view - which includes the ciphertext ctm and func-
tion keys skf1 , . . . , skfq

- can be “simulated” given only the function evaluations
f1(m), . . . , fq(m) and nothing more about m. Although this more closely cap-
tures the intuition behind FE, if the attacker corrupts more than q keys, then
no security is provided. Despite its limitations, the bounded collusion model for
FE has been very useful in various contexts such as proving negative results in
differential privacy [30], applications to tracing [15,26], etc. In some cases, it is
the only currently known pathway to certain applications in the post-quantum
regime. A notable feature of the bounded collusion model is that under them, FE
can be built from the minimal assumption of public-key encryption (and OWFs
in case of private-key FE) as studied in a long line of works [1,4,7,15,24,26,31].

The Question. A major drawback of such bounded collusion FE systems is
that the setup authority needs to declare the collusion bound q at the very
beginning, and the bound q is fixed, once and for all, for the entire lifetime of
the system. This puts the authority in a difficult situation, as it requires an
incredible amount of foresight at the setup time. In particular, if the authority
sets the bound q lower than the eventual number of compromised keys, then
the system will be insecure; whereas overestimating the bound q would result
in significant performance overhead. Now when the collusion bound is breached,
the only option is to do a fresh setup and redistribute the keys which is at
best inefficient, and possibly infeasible in certain scenarios. Switching to the
state-of-the-art fully collusion resistant FE schemes would suffer from drawbacks
discussed above.

With the aforementioned limitations of existing FE systems, we ask the fol-
lowing –

Can we build an FE system for general circuits that reaps the benefits of
bounded collusion FE systems – post-quantum security, simulation secu-
rity, and general assumptions – while at the same time provide more flex-
ibility to the authority in terms of selecting the collusion bound? And,
would such an FE system lead to results in the domain of full collusion
resistance?

In this work, we study the above question. We answer the first part in affirma-
tive by introducing a new flexible corruption model that we call the “dynamic
collusion” model, and building a simulation secure FE system in the dynamic
collusion model from the general assumption of Identity-Based Encryption
(IBE) [10,16,34] (for which we have quantum-safe instantiations [2,14,22]). Since
it is widely believed that the FE for general circuits is significantly more expres-
sive than plain IBE, this seems to answer the latter part negatively. Concur-
rently1, the authors of [3] noticed the same gaps and limitations in bounded-
collusion FE security, and defined a similar dynamic collusion model. For a more
detailed comparison of the concurrent work, refer to Sect. 1.3.

1 Both works, this work and [3], were submitted to Crypto 2021.

Dynamic Collusion Bounded FE from IBE 739

Defining Dynamically Bounded Collusion Resistance

In this work, we refer to the traditional notion of bounded collusion resistance
for FE as statically bounded collusion resistance. Recall that, syntactically, a
statically bounded FE is defined exactly as fully collusion resistant FE, that is
using four polynomial time algorithms – Setup, KeyGen, Enc, and Dec – except
the Setup algorithm now additionally takes the target collusion bound q as an
input. As mentioned previously, declaring the collusion bound q upfront lets the
setup authority set up the system parameters with enough redundancy, and this
typically leads to the running time and sizes of all system parameters (i.e., the
keys and ciphertexts) to grow polynomially with q.

In the dynamic collusion model, the Setup algorithm no longer takes the
collusion bound as input, but instead the Enc algorithm selects the collusion
bound per ciphertext. That is, the setup and key generation algorithms no longer
depend on the collusion bound q, but only the encryptor needs to specify the col-
lusion bound.2 Basically, this lets the encryptor dynamically decide the size of set
of colluding users against which it wants to hide its message. As a consequence,
in the dynamic collusion model, only the size of the ciphertexts potentially grows
with the collusion bound q, but the running times of the Setup and KeyGen algo-
rithms (therefore the public and secret keys) are independent of q. The security
requirement is again captured via a simulation-based game but where the admis-
sibility constraints on the attacker are lifted such that the number of key queries
the attacker is permitted can be adaptively specified at the time of committing
the challenge m instead of beginning of the game as in the static model.

Our dynamic collusion model and its comparison with the static model is
discussed in detail in Sect. 3. Below we briefly highlight the virtues of the dynamic
collusion model.

Fine-grained individualized selection. A dynamically bounded collusion
FE scheme allows each user to select the collusion bound by weighing
the trade-off between the performance overhead and amount of collusion
resilience at encryption time. For example, depending upon the factors such
as available computing resources, or the bandwidth on the communica-
tion channel, or the sensitivity of data etc., an encryptor might want to
increase/decrease the amount of collusion resilience to better fit the comput-
ing/communication/privacy constraints.

Evolving encryption strategies. Since the system is no longer statically tied
to a single collusion bound at setup time, thus it allows to dynamically adjust
the desired collusion resilience based on any number of evolving factors such
as the age of the system, or number of active users etc. Thus, the authority
does not need to have any foresight about the attackers at setup time in
contrast to statically bounded collusion FE systems.
(Of course the ciphertexts in which the collusion bound was exceeded will
not be secure, but future attacks can be prevented by adapting to a larger
collusion bound.)

2 However, note that it is essential that the master public-secret keys and every func-
tion key is resuable for all values of the collusion bound.

740 R. Garg et al.

Ease and simplicity of updatability. While the above features are already
highly desirable, a noteworthy property of these systems is that none of the
parameters have to be updated when adjusting the collusion bound. That is,
the same function key skf can be used to decrypt ciphertexts for collusion
bound q = 2 as well as q = 2λ without requiring any updates. Also, the
storage space for the parameters is bounded by a fixed polynomial in λ.

Next, we provide an overview of our approach and describe the technical
ideas. Later on, we discuss some related works and open questions.

1.1 Technical Overview

In this section, we provide a high level overview of our new collusion framework
and the corresponding FE construction. The overview is split into five parts
which roughly correspond to the proceeding sections of the paper. First, we
informally introduce the notion of dynamically bounded collusion resistant FE.
Second, we define an efficiency property that we refer to as weak optimality for
statically bounded collusion FE systems, and show that any weakly optimal FE
construction could be generically lifted to a dynamically bounded collusion FE
scheme. Next, we build such a weakly optimal FE scheme via the framework
of tagged functional encryption scheme, where a tagged FE scheme is same
as a regular FE scheme except each ciphertext and secret key is additionally
embedded with a tag such that only ciphertexts and keys with the same tag
can be combined together. Finally, we build a tagged FE scheme for statically
bounded collusions in two steps – first, reduce the problem of constructing tagged
FE with static collusions to the simpler setting of at most one key corruption
(also referred to as 1-bounded collusion); and second, design a tagged FE system
in the simpler setting directly from IBE.

Dynamic vs. Static Bounded Collusion Model

Let us start by recalling the syntax of functional encryption in the static collusion
model. An FE scheme in the static collusion model consists of four algorithms
with the following semantics:

– Setup takes as input the collusion bound q and samples the master public-
secret key pair (mpk,msk).

– KeyGen generates a function key skf given function f and master key msk.
– Enc encrypts a message m to a ciphertext ct.
– Dec recovers f(m) from the ciphertext and decryption key.

In the dynamic collusion model, the collusion bound q is not fixed at the system
setup, but instead the encryptor chooses the amount of collusion resilience it
wants every time a fresh ciphertext is created. This is reflected with the following
changes:

– Setup no longer takes the collusion bound q as an input.
– Enc takes the desired collusion bound q as an additional input for sampling

the ciphertext.

Dynamic Collusion Bounded FE from IBE 741

Note that since the collusion bound q is not specified during setup or key genera-
tion at all, thus the efficiency condition for a dynamically bounded collusion FE
scheme requires the running time of Setup and KeyGen to be fixed polynomials
in λ, whereas in static setting they are allowed to grow polynomially with q.

Static to Dynamic via Weak Optimality

As we mentioned before, our first observation is that a dynamically bounded
collusion FE scheme can be constructed from any statically bounded scheme if
it satisfies a ‘weak optimality’ property. Intuitively, the weak optimality property
says that the running time of the setup and key generation algorithms grows only
poly-logarithmically in the collusion bound q.

Now looking closely at the notion of weakly-optimal statically bounded collu-
sion FE, we observe that the major difference between this and a dynamic system
is that the Setup algorithm requires q as an explicit input in the static setting,
but not in the dynamic setting. Our idea to get around this is to exploit the
efficiency property of the static scheme, where the dynamic collusion FE scheme
essentially runs λ independent instances of the static collusion FE scheme in
parallel with geometrically increasing collusion bounds. That is, i-th subsystem
(running a single instance of the static scheme) is set up with collusion bound
qi = 2i. And, now the master public-secret key pair as well as each function key
in the dynamic system contains λ independently sampled keys where the i-th
sub-key is sampled using the i-th static FE system. Since the encryption algo-
rithm receives the target collusion bound q as input, thus the encryptor uniquely
selects a static FE sub-system under which it encrypts the message. The target
collusion bound to subsystem index mapping can simply be defined i := �log q�
(i.e., nearest power of two). Note that setting up the system this way ensures the
dynamic system achieves the desired efficiency. This is because the setup and
key generation will be efficient (by weak optimality of the static FE scheme),
and since 2i = 2�log q� < 2q, thus the running time of encryption and decryption
is a polynomial in q.

Since the above transformation is very natural, one would expect the simu-
lation security of the resulting dynamic FE system to also follow directly from
the simulation security of the underlying static FE schemes. However, this is
not the case. To better understand the technical barrier, let us first consider the
most natural simulation strategy described next. The simulator for the dynamic
system simply runs the simulator for each of the underlying static systems in
parallel, where the ciphertext simulator is only run for the static system corre-
sponding to the adversarially selected challenge target collusion bound q∗. While
this seems to compile, there are two subtle issues that need to be carefully han-
dled.

First, the running time of each static FE simulator grows with the underlying
collusion bound which grows as large as exponential in λ. For avoiding the prob-
lem of inefficient simulation, we additionally require the underlying static FE
scheme to have weakly-optimal simulators as well which means that all but the
ciphertext simulation phase of the static FE could be performed optimally (i.e.,
the simulator running time grows only poly-logarithmically in q). However, this

742 R. Garg et al.

is still not enough for proving simulation security. The reason is that typically
the simulation security states that the distribution of secret keys and ciphertext
are simulatable as long as the adversary does not make more key queries than
what is specified by the static collusion bound. That is, if the adversary makes
more key queries then no guarantee is provided. Now our dynamic FE simulator
must invoke the underlying static FE simulator even for collusion bounds smaller
than q∗, thus the standard simulation guarantee is insufficient. To get around
this issue, we define a notion called strong simulation security for static-bounded-
collusion FE schemes under which we require that the real and ideal worlds are
also indistinguishable even when the adversary makes more key queries than
that specified by the collusion bound as long as the adversary does not make
any challenge message queries. More details are provided in Sect. 3.2.

From Tagged FE to Weak Optimality

Our next idea is to embed auxiliary tagging information inside each individual
ciphertext and decryption key such that the auxiliary information is useful for
achieving weak optimality generically by embedding information about the col-
lusion bound inside the auxiliary information. Formally, in a tagged FE system,
the semantics of encryption and key generation are changed as:

– KeyGen,Enc, both also take in a tag string tg as an input.

And, now the decryption algorithm recovers f(m) from the ciphertext and
decryption key corresponding to tags tg1, tg2 (respectively) iff tg1 = tg2. Basi-
cally, the intuition behind a tagged FE scheme is to efficiently implement many
parallel instances of a statically bounded collusion FE scheme such that the
master public-secret keys do not grow with number of underlying (untagged)
FE instances.

In other words, the idea behind tagged FE is to serve as an extension to
regular (untagged) FE in the same way as IBE is to PKE, that is to capture
the same master public-secret key compression properties. That is, a tagged
FE enables compressing exponentially many parallel instances of untagged FE
into a succinct system where all the system parameters are efficient, and the
ciphertexts and decryption keys corresponding to each underlying untagged FE
system can be efficiently computed given those parameters. In terms of simu-
lation security for tagged FE, the property is a natural extension of statically
bounded-collusion security model for FE to the tagged setting, where now the
adversary is allowed to query keys and ciphertexts for an unbounded number of
tags, and the simulation security must hold for all challenge ciphertexts (queried
under separate tags) as long as the number of key queries does not exceed the
collusion bound on any tag for which a challenge ciphertext is also requested.

Looking ahead, the benefit of a tagged FE scheme will be that we can dis-
tribute the final desired collusion bound over to the auxiliary tag space as well,
and not just the collusion bound ingrained in the tagged FE system. And, since
tagged FE can encode the tag space more efficiently than the collusion bound,
thus this is useful for obtaining the desired weak optimality.

Dynamic Collusion Bounded FE from IBE 743

At a high level, to transform any tagged FE scheme into an FE scheme that
satisfies the desired weak optimality property, we rely on the linearization trick
by Ananth and Vaikuntanathan [7] where they suggested a generic compiler to
improve efficiency of a statically bounded-collusion FE scheme from an arbitrary
polynomial dependence on the collusion bound, q, to only a linear dependence.
Our observation is that if we substitute all the underlying FE scheme in the
linearization transformation from [7] with a single tagged FE scheme, then that
would result in a statically bounded-collusion FE scheme with weak optimality.

Briefly, collusion bound linearization transformation simply consists of run-
ning q many parallel instances of the inefficient (untagged) FE scheme each, but
with collusion bound set to be the security parameter λ. While for encrypting
the message m, the ciphertext is computed as an encryption of m under each
of the underlying FE schemes; the key generator only generated a decryption
key for a random instance out of the q inefficient FE systems. By a standard
balls and bins concentration argument, it was shown that, with all but negligible
probability, the collusion bound of λ was never crossed for any of the underlying
FE system as long as only q many total key queries were made. We rely on the
same idea for our weak optimality transformation wherein we simply replace the
q many parallled untagged FE systems with a single tagged FE system, where
now the i-th FE sub-scheme in the [7] transformation is set to be the sub-scheme
corresponding to tag value i. The full transformation is provided later in Sect. 5.

Intuitively, we use the linearization trick to absorb the blow-up due to the
collusion bound in the tag space of the FE scheme instead. This decouples the
desired collusion bound, q, from the resulting FE scheme with the collusion
bound fixed inside the underlying tagged FE system thereby allowing us to set
the collusion bound for the tagged system to be simply λ. Thus, we can reason
from the efficiency of the tagged FE scheme that the resulting scheme only has
polylogarithmic dependence in the λ for Setup and KeyGen, making it weakly
optimal.

Amplifying Collusion Bound in Tagged FE

The next component in our sequence of transformations is a generic collusion
bound amplification procedure for tagged FE, in turn reducing the problem to
constructing tagged FE for 1-bounded collusion instead. Our approach follows
the general bootstrapping blueprint developed for upgrading collusion bound
in untagged FE literature [7,24] which runs a specific multiparty computation
protocol in the head.

In such MPC protocols, there are N servers/parties and a single client with
an input x with the computation proceeding in two phases – offline and online.
In the offline phase, the client encodes its input x into N individual encodings
– {x̂1, . . . , x̂N} – one for each server. While in the online phase, a function f is
encoded into N individual encodings – {f̂1, . . . , f̂N} – such that i-th server learns
the i-th function encoding, and any subset S of servers of size p can locally decode
their individual encodings to obtain partial evaluations, ŷi for i ∈ S, such that
all these p partial evaluations can be publicly combined to compute the function
evaluation f(x). And importantly, the security of the MPC protocol assures that,

744 R. Garg et al.

even if at most t servers get corrupted, no information other than actual value
f(x) can be adversarially learned given the public partial evaluations. Now for
applications to collusion bound amplification in FE, it is important to have MPC
protocols in which the client can delegate the computation for multiple functions
w.r.t. a single offline phase.

The high level idea is that each ciphertext encodes the message m into various
different pieces where each piece corresponds to an individual offline encoding for
a particular server, and now the key generator selects a random subset of servers
for which it gives the appropriate function encodings for each selected server. In
more detail, the bootstrapping procedure works as follows, where 1KeyFE is any
1-bounded collusion untagged FE scheme:

– Setup samples N independent master public-secret key pair (mpki,mski) for
the 1KeyFE scheme. These N key pairs are set as the master public-secret key
pairs for this scheme respectively.

– Enc encodes the message m using the offline phase to compute encodings
{x̂1, . . . , x̂N}, and encrypts the i-th encoding under the i-th master public
key, that is cti ← 1KeyFE.Enc(mpki, x̂

i) for i ∈ [N], and outputs (ct1, . . . , ctN)
as the full ciphertext.

– KeyGen selects a random subset S ⊆ [N] of size p, and performs the online
phase to compute {f̂1, . . . , f̂N}. Now enable decryption, it creates a FE
decryption key for each server i ∈ S enabling the local circuit computation,
that is skf,i ← 1KeyFE.KeyGen(mski, Local(f̂ i, ·)), and sets the final decryp-
tion key as these individual decryption keys skf,i for i ∈ S.

– Dec first recovers the partial evaluations ŷi = Local(f̂ i, x̂i) for i ∈ S by
running the 1KeyFE decryption, and then combines them to compute f(m).

It turns out that the above compiler amplifies the collusion bound from 1
to q if a simple combinatorial property, regarding the random sets (S1, . . . , Sq)
sampled for each key, is satisfied. Here Sj ⊆ [N] be the set sampled while anwer-
ing the j-th key query. Observe that whenever two sets Sj , Sj′ intersect at an
index i, we learn two keys for the underlying 1KeyFE scheme thereby breaking
its security, and an adversary can completely learn the underlying encoding x̂i.
And, if the security is broken for enough 1KeyFE systems (i.e., > t), then our
MPC guarantee fails. Thus, to prove security it is sufficient to show that the
total number of pairwise intersections is not larger than t. With this combina-
torial guarantee, we can rely on the security of 1KeyFE and the MPC protocol
to ensure no information other than f(m) is revealed.

Our observation here is that the same blueprint can also be used for tagged
FE schemes where for amplifying 1-bounded collusion to q-bounded collusion,
we start with a slightly larger tag space for the underlying 1-bounded tagged
FE scheme. Basically, to build a q-bounded collusion tagged FE scheme with tag
space T , we start with a 1-bounded scheme with tag space [N] × T , and replace
i-th instantiation of the 1KeyFE scheme with 1-bounded tagged FE scheme and
the tag is set as (i, tg) where tg is the tag to be embedded (during encryption and
key generation, respectively). Now the correctness and security of the resulting

Dynamic Collusion Bounded FE from IBE 745

compiler closely follows the analysis for untagged FE schemes from [7], with some
subtleties in the analysis that arise due to the fact that in tagged FE simulation
security we need to be able to jointly simulate multiple ciphertexts (though for
distinct tags) at that the same time. More details follow later in Sect. 6.

Adding Tags to 1-Bounded-Collusion FE via IBE

Lastly, to instantiate our above transformations to build a dynamically bounded
collusion FE scheme, we need a tagged FE scheme that achieves 1-bounded col-
lusion simulation security. To that end, we look back at the 1-bounded collusion
untagged FE construction by Sahai and Seyalioglu [31] which works by com-
bining garbled circuits with plain public-key encryption. In a few words, our
idea is to imitate the same ideology for instantiating our tagged FE scheme, but
replace the plain public-key encryption scheme with an identity-based encryp-
tion scheme to introduce additional space for efficiently embedding tags in the
identity space of the IBE scheme.

Recall that in the well-known 1-bounded collusion untagged FE construction,
an encryptor garbles the universal circuit U with message m hardwired such
that, on an input a description of a circuit C, the hardwired circuit computes
C(m). Now the encryptor hides the wire keys for the garbled circuit under the
corresponding PKE public keys chosen during setup time, where two PKE key
pairs are sampled per bit of the description length of the circuit C. And, the
decryption key for a circuit C simply corresponds to half of the PKE secret keys
selected on the basis of bit description of C, that C[i]-th PKE secret key for each
i. Basically, a decryptor first uncovers the wire labels corresponding to circuit
C using PKE decryption, and then simply evaluates the garbled circuit to learn
the circuit evaluation C(m).

We observe that the same construction can be upgraded to a tagged FE
scheme if we simply replace each PKE system in the above transformation with
an IBE system3, where the identity space of the IBE system will be used to
encode the “designated tag”. Thus, the encryptor simply sets the IBE iden-
tity corresponding to which encryption is performed to be the input tag tg,
and the decryption key consists of appropriate IBE keys where the identity for
each underlying IBE system is the tag tg to be embedded. Clearly, this gives
the desired efficiency if the underlying IBE scheme is efficient, and the secu-
rity follows by a similar argument as to before where a more careful analysis
is needed to argue simulation security in presence of multiple tags. While the
above transformation is sufficient to prove security in the non-adaptive setting
as the original [31] construction, we rely on the delayed/non-committing encryp-
tion strategies [13] as in [24,27] to upgrade to adaptive security. Our tagged FE
scheme with 1-bounded collusion security is described in Sect. 7.

3 Technically, we compress the keys even further as we replace all the PKE key pairs
with a single IBE key pair instead of a sequence of IBE key pairs. However, for the
purpose of this overview, we present this simpler version.

746 R. Garg et al.

1.2 Related Work and Future Directions

Prior Work on Bounded Collusion Resistance. The intial works on bounded
collusion resistance for FE were for the specific class of IBE systems. Dodis et
al. [19] and Goldwasser, Lewko, and Wilson [23] constructed bounded collusion
secure IBE with varying parametere size from regular public-key encryption and
special types of linearly key homomorphic public-key encryption, respectively.
For more expressive classes of FE, Sahai and Seyalioglu [31] proposed general
functional encryption schemes resilient against a single function-key query using
garbled circuits [35]. Following [31], GVW [24] build a statically bounded col-
lusion resistant FE scheme for NC1 circuits from any public-key encryption
scheme, and also provided a generic compiler to improve to the class of all poly-
nomial time computable functions by additionally relying on PRFs computable
in NC1. Afterwards, a number of follow-up works [1,4,15,26] improved the con-
crete efficiency of the statically bounded collusion resistant FE scheme wherein
they improved the dependence of the FE scheme parameters on the collusion
bound q by relying on more structured algebraic assumptions. Most recently,
Ananth and Vaikuntanathan [7] achieved optimally efficient statically secure FE
scheme from the minimal assumption of public-key encryption. The optimal effi-
ciency states that the system parameters grow only linearly with the collusion
bound q, since any further improvement would lead to a fully collusion resistant
FE scheme via the bootstrapping theorems from [5,6,9,21,33].

Comparison with Bundling Functionalities and Encrypt Ahead FE. Goyal, Kop-
pula, and Waters (GKW) [25] proposed the concept of bundling functionalities
in FE systems, where bundling functionalities in an FE scheme meant having
the property that a single set of public parameters can support the union of all
message/function spaces supported by the underlying FE system. They provided
a generic transformation that started with IBE (and other implied primitives)
and was able to upgrade any FE scheme to its bundled counterpart. One might
ask that whether applying the [25] transformation to the family of bounded col-
lusion FE, where the the collusion bound q is treated as part of the functionality
index that is bundled, already leads to a dynamically bounded collusion FE
system. It turns out this is not the case because such a generic transformation
suffers from the limitation that a function key for a given collusion bound is not
reusable for other collusion bounds. In particular, this necessitates each user to
make additional queries to the authority for obtaining function keys for desired
collusion bound, and this only solves the problem of removing the problem of
removing the collusion bound dependence for the setup algorithm. Additionally,
GKW proposed a novel variant of FE called encrypt ahead FE. One could ask
the same question about relationship between encrypt ahead FE and dynami-
cally bounded collusion resistant FE, and the answer is the same as for the case
of bundling functionalities which is they are insufficient.

Open Questions. Our work introduces a new interesting avenue for exploring
dynamic collusion resilience in FE systems. An interesting research direction is

Dynamic Collusion Bounded FE from IBE 747

studying similar concepts of dynamic “query” resilience in other cryptographic
contexts. For example, one could ask the same question for the concept of
CCA-secure encryption where we know that CPA-secure public-key encryption
implies (statically-)bounded-query-CCA security for public-key encryption [17].
We believe answering the question of dynamically bounded-query-CCA secu-
rity might provide more insight in resolving the longstanding open problem of
constructing a (general) CCA-secure encryption scheme from a CPA-secure one.

1.3 Concurrent Work

In a concurrent and independent work, Agrawal et al. [3] also define the dynamic
collusion model for bounded-collusion functional encryption, with a similar moti-
vation of providing more flexibility in selecting the collusion bound. Their pri-
mary construction of dynamic-bounded FE is essentially the same as ours, with
the main difference in their presentation. We define abstractions to simplify
exposition, while their construction focuses on constructing a ciphertext-policy
FE scheme (CPFE) rather than a key-policy FE scheme (KPFE). One can trans-
form any CPFE scheme to a KPFE scheme and vice versa, by using a universal
circuit.

Our main results are the same, but [3] extend their results to uniform com-
putation models while relying on specific algebraic assumptions. Finally, they
answer the question of the necessity of IBE in building dynamic-bounded col-
lusion FE in the affirmative, which was left as an open problem in an earlier
version of this paper.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2,
we let Zq denote the ring of integers modulo q. We denote the set of all posi-
tive integers upto n as [n] := {1, . . . , n}. For any finite set S, x ← S denotes
a uniformly random element x from the set S. Similarly, for any distribution
D, x ← D denotes an element x drawn from distribution D. The distribution
Dn is used to represent a distribution over vectors of n components, where each
component is drawn independently from the distribution D. Two distributions
D1 and D2, parameterized by security parameter λ, are said to be computation-
ally indistinguishable, represented by D1 ≈c D2, if for all PPT adversaries A,
|Pr[A(x) = 1 : x ← D1] − Pr[A(x) = 1 : x ← D2]| ≤ negl(λ).

2.1 Garbled Circuits

Our definition of garbled circuits [35] is based upon the work of Bellare et al.
[8]. Let {Cn}n be a family of circuits where each circuit in Cn takes n bit inputs.
A garbling scheme GC for circuit family {Cn}n consists of polynomial-time algo-
rithms Garble and Eval with the following syntax.

748 R. Garg et al.

– Garble(1λ, C ∈ Cn): The garbling algorithm takes as input the security param-
eter λ and a circuit C ∈ Cn. It outputs a garbled circuit ˜C, together with 2n
wire keys {wi,b}i≤n,b∈{0,1}.

– Eval(˜C, {wi}i≤n): The evaluation algorithm takes as input a garbled circuit
˜C and n wire keys {wi}i≤n and outputs y ∈ {0, 1}.

Correctness. A garbling scheme GC for circuit family {Cn}n is said to be correct
if for all λ, n, x ∈ {0, 1}n and C ∈ Cn, Eval(˜C, {wi,xi

}i≤n) = C(x), where
(˜C, {wi,b}i≤n,b∈{0,1}) ← Garble(1λ, C).

Security. Informally, a garbling scheme is said to be secure if for every circuit
C and input x, the garbled circuit ˜C together with input wires {wi,xi

}i≤n cor-
responding to some input x reveals only the output of the circuit C(x), and
nothing else about the circuit C or input x.

Definition 1. A garbling scheme GC = (Garble,Eval) for a class of circuits
C = {Cn}n is said to be a secure garbling scheme if there exists a polynomial-
time simulator Sim such that for all n, C ∈ Cn and x ∈ {0, 1}n, the following
distributions are computationally indistinguishable:
{
Sim

(
1

λ
, 1

n
, 1

|C|
, C(x)

)}
λ

≈c

{(
C̃, {wi,xi

}i≤n

)
:

(
C̃, {wi,b}i≤n,b∈{0,1}

)
← Garble(1λ

, C)
}

λ
.

While this definition is not as general as the definition in [8], it suffices for our
construction.

2.2 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme IBE for set of identity spaces I =
{In}n∈N and message spaces M consists of four polynomial time algorithms
(Setup,KeyGen,Enc,Dec) with the following syntax:

Setup(1λ, 1n) → (mpk,msk). The setup algorithm takes as input the security
parameter λ and identity space index n. It outputs the public parameters
mpk and the master secret key msk.

KeyGen(msk, id) → skid. The key generation algorithm takes as input the master
secret key msk and an identity id ∈ In. It outputs a secret key skid.

Enc(mpk, id,m) → ct. The encryption algorithm takes as input the public param-
eters mpk, a message m ∈ M, and an identity id ∈ In. It outputs a ciphertext
ct.

Dec(skid, ct) → m/⊥. The decryption algorithm takes as input a secret key skid
and a ciphertext ct. It outputs either a message m ∈ M or a special symbol ⊥.

Correctness. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) satisfies
correctness if for all λ, n ∈ N, (mpk,msk) ← Setup(1λ, 1n), id ∈ In, m ∈ M, skid
← KeyGen(msk, id), and ct ← Enc(mpk, id,m), we have that Dec(skid, ct) = m.

Dynamic Collusion Bounded FE from IBE 749

Definition 2. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) is secure
if for any stateful PPT adversary A there exists a negligible function negl(·), such
that for all λ, n ∈ N, the probability

Pr

⎡
⎣AKeyGen(msk,·)

1 (st, ct) = b :
(mpk,msk) ← Setup(1λ, 1n); b ← {0, 1}
(m0, m1, id

∗) ← AKeyGen(msk,·)(1λ, 1n,mpk)
ct ← Enc(mpk, id∗, mb)

⎤
⎦ ,

is ≤ 1
2

+ negl(λ) where all identities id queried by A satisfy id �= id∗.

3 Functional Encryption: Dynamic Bounded Collusion

In this section, we define the notion of functional encryption (FE) where we
start by recalling the regime of (statically) bounded collusion secure FE systems
as studied in prior works [24,31]. We follow that by extending the notion to
dynamic collusion bounded secure FE systems. And, along the way we also
introduce a special compactness property for statically bounded collusion secure
FE schemes. This will serve as an appropriate intermediate abstraction to build
a fully dynamic collusion bounded FE schemes.

Syntax. Let M = {Mn}n∈N, R = {Rn}n∈N be families of sets, and F = {Fn} a
family of functions, where for all n ∈ N and f ∈ Fn, f : Mn → Rn. We will also
assume that for all n ∈ N, the set Fn contains an empty function εn : Mn → Rn.
As in [11], the empty function is used to capture information that intentionally
leaks from the ciphertext.

A functional encryption scheme FE for a family of function classes {Fn}n∈N

and message spaces {Mn}n∈N consists of four polynomial-time algorithms
(Setup,Enc,KeyGen,Dec) with the following semantics.

Setup(1λ, 1n) → (mpk,msk). The setup algorithm takes as input the security
parameter λ and the functionality index n4 (in unary), and outputs the
master public-secret key pair (mpk,msk).

Enc(mpk,m ∈ Mn) → ct. The encryption algorithm takes as input the master
public key mpk and a message m ∈ Mn and outputs a ciphertext ct.

KeyGen(msk, f ∈ Fn) → skf . The key generation algorithm takes as input the
master secret key msk and a function f ∈ Fn and outputs a function key skf .

Dec(skf , ct) → Rn. The decryption algorithm takes as input a ciphertext ct and
a secret key skf and outputs a value y ∈ Rn.

4 One coud additionally consider the setup algorithm to take as input a sequence of
functionality indices where the function class and message space are characterized by
all such indices (e.g., having input length and circuit depth as functionality indices).
For ease of notation, we keep a single functionality index in the above definition.

750 R. Garg et al.

Correctness and Efficiency. A functional encryption scheme FE = (Setup,Enc,
KeyGen,Dec) is said to be correct if for all λ, n ∈ N, functions f ∈ Fn, messages
m ∈ Mn and (mpk,msk) ← Setup(1λ, 1n), we have that

Pr [Dec(KeyGen(msk, f),Enc(mpk,m)) = f(m)] = 1,

where the probability is taken over the coins of key generation and encryption
algorithms. And, it is said to be efficient if the running time of the algorithms
is a fixed polynomial in the parameters λ and n.

3.1 Bounded Collusion FE: Static and Dynamic

Informally, a functional encryption scheme is said to be secure if an adversary
having secret keys for functions {fi}i≤q and a ciphertext ct for message m learns
only {fi(m)}i≤q, ε(m) and nothing else about the underlying message m. Here
ε is the empty function associated with the message space.

The Static Setting. Now in the “static” bounded collusion setting, the scheme
is said to guarantee security so long as q is a polynomial in the security parameter
λ and fixed a-priori at the setup time. Thus, the syntax of the setup algorithm
changes as follows:

Setup(1λ, 1n, q) → (mpk,msk). The setup algorithm takes as input the security
parameter λ and the functionality index n (in unary), and also takes as input
the ‘collusion bound’ q (in binary).5 It outputs the master public-secret key
pair (mpk,msk).

Efficiency. Although the collusion bound q is given in binary to the setup algo-
rithm, the efficiency condition for a statically bounded collusion FE scheme only
requires that the running time of the all the algorithms is a fixed polynomial in
λ, n and q. That is, the running time of Setup, KeyGen, Enc, and Dec is allowed
to polynomially grow with the collusion bound q.

Static Bounded Collusion Security. This is formally captured via the following
‘simulation based’ security definition as follows. We first provide the adaptive
definition, and later provide the non-adaptive definition.

Definition 3 (static-bounded-collusion simulation-security). A func-
tional encryption scheme FE = (Setup,Enc,KeyGen,Dec) is said to be statically-
bounded-collusion simulation-secure if there exists a stateful PPT simulator
Sim = (S0,S1,S2,S3) such that for every stateful PPT adversary A, the fol-
lowing distributions are computationally indistinguishable:

5 Although most prior works on bounded collusion security consider the collusion
bound q to either be a global parameter, or given in unary to the setup algorithm.
Here we instead pass it in binary for technical reasons as will become clear in the
sequel. See Remark 1 for more details.

Dynamic Collusion Bounded FE from IBE 751

⎧

⎪

⎪

⎨

⎪

⎪

⎩

AKeyGen(msk,·)(ct) :

(1n, 1q) ← A(1λ)
(mpk,msk) ← Setup(1λ, 1n, q)

m ← AKeyGen(msk,·)(mpk)
ct ← Enc(mpk,m)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

λ∈N

≈c
⎧

⎪

⎪

⎨

⎪

⎪

⎩

AS
Um(·)
3 (st2,·)(ct) :

(1n, 1q) ← A(1λ)
(mpk, st0) ← S0(1λ, 1n, q)

m ← AS1(st0,·)(mpk)
(ct, st2) ← S2(st1,Πm)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

λ∈N

whenever the following admissibility constraints and properties are satisfied:

– S1 and S3 are stateful in that after each invocation, they updates their states
st1 and st3 (respectively) which is carried over to its next invocation.

– Πm contains a list of functions fi queried by A in the pre-challenge phase
along with the their output on the challenge message m. That is, if fi is the
i-th function queried by A to oracle S1 and qpre be the number of queries A
makes before outputting m, then Πm =

(

(f1, f1(m)), . . . , (fqpre , fqpre(m))
)

.6
– A makes at most q queries combined to the key generation oracles in the

corresponding games.
– S3 for each queried function fi, in the post-challenge phase, makes a single

query to its message oracle Um on the same fi itself.

Remark 1 (unary vs binary). Note that in the above security games, we require
the adversary to specify the collusion bound q in unary at the beginning. This is
in contrast to the setup algorithm which gets q in binary as an input. The reason
for this distinction is that in the security game for bounded collusion security we
do not want to allow the attacker to specify super-polynomial collusion bounds,
whereas (as we point out later) allowing the setup algorithm to be run on super-
polynomial values of the collusion bound is important for our dynamic collusion
bounded FE schemes.

Weak Optimality. Additionally, we also introduce the notion of a “weakly opti-
mal” statically-bounded-collusion secure FE scheme where this system provides
better efficiency properties. That is, in a weakly optimal static bounded collusion
system, the running time of the setup and key generation algorithms grows only
poly-logarithmically in the collusion bound q. Concretely, we define it below.

Definition 4 (weakly optimal statically-bounded-collusion). A func-
tional encryption scheme FE = (Setup,Enc,KeyGen,Dec) is said to be ‘weakly
optimal’ statically-bounded-collusion FE scheme if the running time of the Setup
and KeyGen algorithm is additionally upper bounded by a fixed polynomial in λ,
n and log q.
6 To be more precise, Πm should also contain the empty function and the evaluation

of empty function on challenge message (εn, εn(m)). However, for ease of notation,
throughout the paper we assume that to be implicitly added to the list of function-
value pairs.

752 R. Garg et al.

Strengthening the Simulation Guarantee. In this work, we consider a strength-
ening of the above simulation-secure properties (for the class of weakly optimal
static-bounded-collusion FE schemes) which will be be crucial towards building
a dynamic-bounded-collusion functional encryption scheme. Note that typically
the simulation security states that the distribution of secret keys and cipher-
text are simulatable as long as the adversary does not make more key queries
than what is specified by the static collusion bound. That is, if the adversary
makes more key queries then no guarantee is provided. However, we consider a
stronger simulation guarantee below wherein the real world is still simulatable
even when the adversary makes more key queries than that specified by the
collusion bound as long as the adversary does not make any challenge message
queries. That is, either the collusion bound is not crossed, or no challenge cipher-
text is queried. In addition to this, we require the running time of the simulator
algorithms S0,S1 and S3 (that is, all except the ciphertext simulator S2) grow
only poly-logarithmically in the static collusion bound q. Formally, we define it
below.

Definition 5 (strong simulation-security). A functional encryption scheme
FE = (Setup,Enc,KeyGen,Dec) is said to be statically-bounded-collusion strong
simulation-secure if, in the security game defined in Definition 3, the following
additional conditions hold:

1. the number of key queries made by adversary is allowed to exceed the static
collusion bound q as long as the adversary does not submit any challenge
message, and

2. the running time of the simulator algorithms S0,S1 and S3 is upper bounded
by a fixed polynomial in λ, n and log q.

Lastly, we also define the non-adaptive variant of the simulation security.

Definition 6 (non-adaptive simulation-security). A functional encryption
scheme FE = (Setup,Enc,KeyGen,Dec) is said to be statically-bounded-collusion
non-adaptive (regular/strong) simulation-secure if the adversary is prohibited
from making any key queries in the post-challenge phase (that is, after receiving
the challenge ciphertext) in its respective security game.

The Dynamic Setting. Now in the “dynamic” bounded collusion setting, the
scheme is no longer tied to a single collusion bound q fixed a-priori at the system
setup, but instead the encryptor could choose the amount of collusion resilience
it wants. Thus, this changes the syntax of the setup and encryption algorithm
when compared to the static setting from above:

Setup(1λ, 1n) → (mpk,msk). The setup algorithm takes as input the security
parameter λ and the functionality index n (in unary). It outputs the master
public-secret key pair (mpk,msk).
(Note that thus syntactically the setup of a dynamic bounded collusion
scheme is same as that of a fully collusion resistant scheme.)

Dynamic Collusion Bounded FE from IBE 753

Enc(mpk,m ∈ Mn, 1q) → ct. The encryption algorithm takes as input the master
public key mpk, a message m ∈ Mn, and it takes the desired collusion bound
q (in unary) as an input. It outputs a ciphertext ct.

Efficiency. Since the collusion bound q is not specified during setup or key gen-
eration at all, thus the efficiency condition for a dynamically bounded collusion
FE scheme requires the running time of Setup and KeyGen to be fixed polyno-
mials in λ and n. While since the encryptor takes q as input in unary, thus the
running time of the Enc algorithm could grow polynomially with collusion bound
q. Similarly, the running time of Dec is also allowed to grow polynomially with
collusion bound q.

Dynamic Bounded Collusion Security. This is formally captured via a ‘simulation
based’ security definition as in the static setting. The game is similar to that
provided in Definition 3, except now the attacker specifies the collusion bound q
while making the challenge ciphertext query and the simulator also only receives
the collusion bound as input at that point. For completeness, we describe it
formally below (both the adaptive and non-adaptive variants).

Definition 7 (dynamic-bounded-collusion simulation-security). A func-
tional encryption scheme FE = (Setup,Enc,KeyGen,Dec) is said to be dynamically-
bounded-collusion simulation-secure if there exists a stateful PPT simulator Sim =
(S0,S1,S2,S3) such that for every stateful PPT adversary A, the following distri-
butions are computationally indistinguishable:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

AKeyGen(msk,·)(ct) :

1n ← A(1λ)
(mpk,msk) ← Setup(1λ, 1n)

(m, 1q) ← AKeyGen(msk,·)(mpk)
ct ← Enc(mpk,m, 1q)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

λ∈N

≈c
⎧

⎪

⎪

⎨

⎪

⎪

⎩

AS
Um(·)
3 (·)(ct) :

1n ← A(1λ)
mpk ← S0(1λ, 1n)

(m, 1q) ← AS1(·)(mpk)
ct ← S2(Πm, 1q)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

λ∈N

whenever the admissibility constraints and properties, as defined in Definition 3,
are satisfied.

Definition 8 (non-adaptive simulation-security). A functional encryp-
tion scheme FE = (Setup,Enc,KeyGen,Dec) is said to be dynamically-bounded-
collusion non-adaptive simulation-secure if, in the security game defined in Def-
inition 7, the adversary is prohibited from making any key queries in the post-
challenge phase (that is, after receiving the challenge ciphertext).

3.2 Upgrading Static to Dynamic Bounded Collusion FE via Weak
Optimal Efficiency

In this section, we provide a generic construction of a dynamic-bounded-collusion
FE scheme from any static-bounded-collusion FE scheme that satisfies the strong

754 R. Garg et al.

simulation property (Definition 5) and the weak optimality property (Defini-
tion 4). Below we provide our construction followed by correctness and security
proofs.

Construction. Let Static-FE = (S-FE.Setup,S-FE.Enc,S-FE.KeyGen,S-FE.Dec)
be a weakly-optimal static-bounded-collusion FE scheme for a family of func-
tion classes {Fn}n∈N and message spaces {Mn}n∈N. We use Static-FE to build a
dynamic-bounded-collusion FE scheme FE= (Setup,Enc,KeyGen,Dec) as follows.

Setup(1λ, 1n) → (mpk,msk). The setup algorithm runs the Static-FE setup algo-
rithm λ times with increasing values of the static collusion bound q as follows:

∀i ∈ [λ], (mpki,mski) ← S-FE.Setup(1λ, 1n, q = 2i).

It then sets the master secret and public keys as an λ-tuple of all these keys,
i.e. msk = (mski)i∈[λ] and mpk = (mpki)i∈[λ].

KeyGen(msk, f) → skf . Let msk = (mski)i∈[λ]. The key generation algorithm
runs the Static-FE key generation algorithm with all λ keys independently
as ski,f ← S-FE.KeyGen(mski, f) for i ∈ [λ]. It outputs the secret key sk as
sk = (ski,f)i∈[λ].

Enc(mpk,m, 1Q) → ct. Let mpk = (mpki)i∈[λ]. The encryption algorithm sim-
ply encrypts the message m under �log Q�-th master public key as ct ←
S-FE.Enc(mpk�log Q�,m). (It also includes Q as part of the ciphertext.)

Dec(skf , ct) → z. Let skf = (ski,f)i∈[λ]. The decryption algorithm runs
the Static-FE decryption using the �log Q�-th function key as z ←
S-FE.Dec(sk�log Q�,f , ct).

Correctness, Efficiency, and Security. The correctness of the above scheme
follows directly from the correctness of the underlying static-bounded-collusion
FE system, while for the desired efficiency consider the following arguments.
First, note that by weak optimality of Static-FE we have that the running time
of S-FE.Setup and S-FE.KeyGen grows as poly(λ, n, log q). Since the Setup and
S-FE.KeyGen algorithms run S-FE.Setup and S-FE.KeyGen (respectively) λ many
times for log q ∈ {1, . . . , λ}, thus we get that running time of Setup and KeyGen
is poly(λ, n) as desired. Lastly, the encryption and decryption algorithm run
in time at most poly(λ, n, 2�log Q�) = poly(λ, n,Q) since the �log Q�-th static-
bounded-collusion FE system uses 2�log Q� ≤ 2 · Q as the static collusion bound.
Thus, the resulting FE scheme satisfies the required efficiency properties.
To conclude, we prove the following.

Theorem 1. If Static-FE = (S-FE.Setup,S-FE.Enc,S-FE.KeyGen,S-FE.Dec) is
a weakly-optimal static-bounded-collusion simulation-secure FE scheme (as
per Definition 5 and 4), then the above scheme FE = (Setup,Enc,KeyGen,Dec)
is a dynamic-bounded-collusion simulation-secure FE scheme (as per Definition
7).

The proof follows from a composition of the static-bounded-collusion
simulation-security property of Static-FE. Recall that in the static setting, we
require the scheme to provide a stronger form of real world vs. ideal world

Dynamic Collusion Bounded FE from IBE 755

indistinguishability. Where typically the simulation security states that the dis-
tribution of secret keys and ciphertext are simulatable as long as the adversary
does not make more key queries than what is specified by the static collusion
bound. That is, if the adversary makes more key queries then no guarantee is pro-
vided. However, in our formalization of simulation security for static-bounded-
collusion FE schemes, we require that the real and ideal worlds are also indistin-
guishable even when the adversary makes more key queries than that specified by
the collusion bound as long as the adversary does not make any challenge mes-
sage queries. That is, either the collusion bound is not crossed, or no challenge
ciphertext is queried. Also, the running time of the simulator algorithms S0,S1
and S3 (all except the ciphertext simulator S2) grow only poly-logarithmically
in the collusion bound.

Thus, the simulator for the dynamic-bounded-collusion FE scheme simply
runs the S0 algorithms for all collusion bounds q = 1, . . . , 2λ to simulate the
individual master public keys. It then also runs the S1 algorithms for simulating
the individual function keys for each of these static-bounded-collusion FE sys-
tems for answering each adversarial key query. Note that since the running time
of S0 and S1 is also poly(λ, n, log q) where q = 1, . . . , 2λ, thus this is efficient.

Now when the adversary makes the challenge query for message m, it also
specifies the target collusion bound Q∗. The dynamic-bounded-collusion simula-
tor then runs only the ciphertext simulator algorithm S2 for the static FE system
corresponding to collusion bound log q = �log Q∗�. Note that the simulator does
not run S2 for the underlying FE schemes with lower (and even higher) collusion
bounds. This is important for two reasons: (1) we want to invoke the simulation
security of the i-th static FE scheme for i < �log Q∗� but we can only do this if
the ciphertext simulator S2 is not run for these static FE schemes, (2) the running
time of S2 could grow polynomially with the collusion bound q, thus we should
not invoke simulator algorithm S2 for i > �log Q∗� as well (since for say i = λ, the
running time would be exponential in λ which would make the dynamic simulator
inefficient). Thus, even the ciphertext simulation is efficient and the dynamic simu-
lator is an admissible adversary with respect to static FE challenger, therefore our
dynamic FE simulator is both efficient and can rely on simulation security of the
underlying static FE schemes. The last phase of simulation (i.e., post-challenge
key generation phase) works the same as the second phase simulator (i.e., pre-
challenge key generation phase) which is by running S3 for all collusion bounds.

This completes a high level sketch. A complete proof is provided in our full
version [20].

Remark 2 (non-adaptive simulation-security). If the underlying static-bounded-
collusion FE scheme only provides security against non-adaptive attackers (as
per Definition 6), then the resulting dynamic-bounded-collusion FE scheme is
also secure only against non-adaptive attackers (as per Definition 8).

4 Tagged Functional Encryption

In this work, we introduce the concept of tagged functional encryption where
the basic difference when compared to regular functional encryption systems is

756 R. Garg et al.

that ciphertexts and secret keys are embedded with a tag value such that only
the ciphertexts and keys with the same tags can be combined during decryption.

Formally, a tagged FE scheme in the static collusion model for a set of tag
spaces I = {Iz}z∈N consists of the same four algorithms with following modifi-
cation to the syntax:

Setup(1λ, 1n, 1z, 1q) → (mpk,msk). In addition to the normal inputs taken by a
static-bounded FE scheme, the setup also takes in a tag space index z, which
fixes a tag space Iz.

Enc(mpk, tg ∈ Iz,m ∈ Mn) → ct. The encryption also takes in a tag tg ∈ Iz to
bind to the ciphertext.

KeyGen(msk, tg ∈ Iz, f ∈ Fn) → sktg,f . The key generation also binds the secret
keys to a fixed tag tg ∈ Iz.

Dec(sktg,f , ct) → Rn. The decryption algorithm has syntax identical to a non-
tagged scheme.

Correctness and Efficiency. A tagged FE scheme tgfe is said to be correct if for
all λ, n, z, q ∈ N, every function f ∈ Fn, message m ∈ Mn, tag tg ∈ Iz, and
(mpk,msk) ← Setup(1λ, 1n, 1z, 1q), we have that

Pr [Dec(KeyGen(msk, tg, f),Enc(mpk, tg,m)) = f(m)] = 1,

where the probability is taken over the coins of key generation and encryption
algorithms. And, it is said to be efficient if the running time of the algorithms
is a fixed polynomial in the parameters λ, n, q and z.

Security. The security definition is modelled in a similar fashion to the ordinary
static bounded collusion FE game with the difference that the adversary plays it
on multiple tg simultaneously and the simulator must simulate the ciphertexts
for every tag. In addition, the adversary is also allowed to make arbitrary many
secret key queries for all other tags. The formal definition follows.

Definition 9 (tagged-static-bounded-collusion simulation-security).
For any choice of parameters λ, n, q, z ∈ N, consider the following list of

stateful oracles S0,S1,S2 where these oracles simulate the FE setup, key genera-
tion, and encryption algorithms respectively, and all three algorithms share and
update the same global state of the simulator. Here the attacker interacts with the
execution environment E, and the environment makes queries to the simulator
oracles. Formally, the simulator oracles and the environment are defined below:

S0(1λ, 1n, 1z, 1q) generates the simulated master public key mpk of the system,
and initializes the global state st of the simulator which is used by the next
two oracles.

S1(·, ·, ·), upon a call to generate secret key on a function-tag-value tuple
(fi, tgi, μi), where the function value is either μi = ⊥ (signalling that the
adversary has not yet made any encryption query on tag tgi), or (mtgi , tgi)
has already been queried for encryption (for some message mtgi), and μi =
fi(mtgi), the oracle outputs a simulated key skfi,tgi

.

Dynamic Collusion Bounded FE from IBE 757

S2(·, ·), upon a call to generate ciphertext on a tag-list tuple (tgi,Π
mtgi), where

the list Πmtgi is a possibly empty list of the form Πmtgi =
(

(f tgi
1 , f

tgi
1 (mtgi)),

. . . , (f tgi
qpre , f

tgi
qpre(mtgi))

)

(that is, contains the list of function-value pairs for
which the adversary has already received a secret key for), the oracle outputs
a simulated ciphertext cttgi

.
ES1,S2(·, ·), receives two types of queries – secret key query and encryption query.

Upon a secret key query on a function-tag pair (fi, tgi), if (mtgi , tgi) has
already been queried for encryption (for some message mtgi) then E queries
key oracle S1 on tuple (fi, tgi, μi = fi(mtgi)), otherwise it adds (fi, tgi) to
the its local state, and queries S1 on tuple (fi, tgi, μi = ⊥). And, it simply
forwards oracle’s simulated key skfi,tgi

to the adversary.
Upon a ciphertext query on a message-tag pair (mi, tgi), if the adversary
made an encryption query on the same tag tgi previously, then the query is
disallowed (that is, at most one message query per every unique tag is per-
mitted). Otherwise, it computes a (possibly empty) list of function-value pairs
of the form Πmi =

(

(f tgi
1 , f

tgi
1 (mtgi)), . . . , (f tgi

qpre , f
tgi
qpre(mtgi))

)

where (f tgi
j , tgi)

are stored in E’s local state, and removes all such pairs (f tgi
j , tgi) from its

local state. E then queries ciphertext oracle S2 on tuple (tgi,Π
mi), and simply

forwards oracle’s simulated ciphertext cttgi
to the adversary.

A tagged functional encryption scheme FE = (Setup,Enc,KeyGen,Dec) is said
to be tagged-statically-bounded-collusion simulation-secure if there exists a state-
ful PPT simulator Sim = (S0,S1,S2) such that for every stateful admissible PPT
adversary A, the following distributions are computationally indistinguishable:

{

AKeyGen(msk,·,·),Enc(mpk,·,·)(mpk) :
(1n, 1q, 1z) ← A(1λ)

(mpk,msk) ← Setup(1λ, 1n, 1z, 1q)

}

λ∈N

≈c
{

AES1,S2 (·,·)(mpk) :
(1n, 1q, 1z) ← A(1λ)

mpk ← S0(1λ, 1n, 1z, 1q)

}

λ∈N

where A is an admissible adversary if:

– A makes at most one encryption query per unique tag (that is, if the adversary
made an encryption query on some tag tgi previously, then making another
encryption query for the same tag is disallowed)

– A makes at most q queries combined to the key generation oracles in the above
experiments for all tags tgi such that it also submitted an encryption query
for tag tgi.

Definition 10 (tagged-static-bounded-collusion non-adaptive simula-
tion-security). A tagged functional encryption scheme FE = (Setup,Enc,
KeyGen,Dec) is said to be tagged-statically-bounded-collusion non-adaptive
simulation-secure if, in the security game defined in Definition 9, the adversary
is prohibited from making any key queries on any particular tag in the post-
challenge phase (that is, if the adversary makes an encryption query w.r.t. tag

758 R. Garg et al.

tg, then it must not make any more key queries on the same tag tg but can make
key queries for other tags).

5 Tagged to Weakly Optimal Static Collusion FE

In this section we show how to convert the our construction of Q-bounded tagged
FE to a weakly optimal statically secure functional encryption scheme with
collusion bound Q. The transformation is very similar to the transformation in
[7] that achieves linear complexity for any bounded-key FE scheme.

Let Q be the desired collusion bound for the static scheme. The transfor-
mation in [7] starts with Q instances of q-bounded statically secure FE, where
q is set to some polynomial in the security parameter. The setup parameters
are thus linearly bounded in Q. Encryption simply calls the base encrypt algo-
rithm (for the q-bounded collusion scheme) on each instance. Since the base
encryption scheme is for collusion bound q = poly(λ), one instance of encrypt
takes time polynomial in the security parameter and thus encrypt is linearly
bounded in Q. Key generation for a circuit C simply selects one of the instances
at random and outputs the key generated by the base scheme on this instance.
Correctness holds as the encrytor has encrypted for all possible instances. Secu-
rity fails only if, after giving out Q secret keys, the load on a particular instance
exceeds q = poly(λ) (which happens with only negligible probability via a simple
Chernoff argument).

The transformation has the drawback that the setup outputs Q instances and
thus all the algorithms depend linearly on Q. Our observation is thar if we start
with a tagged FE scheme instead, then we can compress the public and secret
parameters using the tag space by setting it proportional to the desired collusion
bound Q. Similarly the key generation algorithm takes in a single master public
key and master secret key and outputs one instance of the secret key. This helps
us satisfy the weakly optimal property. More formal details follow below.

5.1 Construction

Let tgfe = (TgFE.Setup,TgFE.Enc,TgFE.KeyGen,TgFE.Dec) be a bounded-
collusion tagged FE scheme for a family of circuit classes {Fn}n∈N, message
spaces {Mn}n∈N, and tag space {Iz = {0, 1}z}z∈N. We use TgFE to build
Static-FE a weakly-optimal static-bounded-collusion FE scheme for the same
function classes and message spaces.

Setup(1λ, 1n, Q) → (mpk,msk). The setup algorithm runs the TgFE setup algo-
rithm with the tag space of Iz = [2�log Q�] and collusion bound q = λ and
sets the master public-secret keys as

(mpk,msk) ← TgFE.Setup(1λ, 1n, 1z = 1�log Q�, 1q = 1λ).

Notation. Here and throughout the paper, we represent �log Q�-bit tags as ele-
ments over a larger alphabet [2�log Q�], and when we write u ← [Q] then
that denotes sampling u as a random integer between 1 and Q which can be
uniquely encoded as an �log Q�-bit tag.

Dynamic Collusion Bounded FE from IBE 759

KeyGen(msk, C) → skC . It samples a tag u ← [Q], key skC,u ←
TgFE.KeyGen(msk, u, C), and outputs skC = (skC,u, u).

Enc(mpk,m, 1Q) → ct. It encrypts the message m for all possible tags, and out-
puts the ciphertext ct = (ct1, . . . , ctQ) where each sub-ciphertext is computed
as:

∀u ∈ [Q], ctu ← TgFE.Enc(mpk, u,m).

Dec(skC , ct) → y. Let skC = (skC,u, u) and ct = (ct1, . . . , ctQ). The algorithm
outputs y ← TgFE.Dec(skC,u, ctu).

5.2 Correctness, Efficiency, and Security

The correctness of the above scheme follows directly from the correctness of
the underlying TgFE scheme. For the efficiency, recall the requirements (Defi-
nition 4) which state that the Setup and KeyGen algorithms should be bound
by a polynomial in λ, n and log Q. Both Setup and KeyGen run TgFE.Setup and
TgFE.KeyGen once respectively. From the efficiency of these algorithms, we know
that the running time is poly(λ, n, �log Q�).

Our full security proof is described in the full version [20].

6 Upgrading Collusion Bound for Tagged FE

Now we show that a bounded-collusion tagged FE scheme where the collusion
bound can be any arbitrary polynomial can be generically built from a tagged FE
scheme that allows corrupting at most one key per unique tag (i.e., 1-bounded
collusion secure) by relying on the client server framework from [7]. The ideas
behind this transformation are based on the 1-bounded non-tagged FE to Q-
bounded non-tagged FE transformation from [7].

The client server framework is formally defined later in our full version [20]
for completeness. Intuitively, in the client server framework, there is a single
client and N servers. The computation proceeds in two phases, an offline phase,
where the client encrypts an input x of the protocol for N servers where u-th
server gets x̂u. This is followed by an online phase which runs in Q sessions
for computation on circuits C1, . . . , CQ. In each session j ∈ [Q], client delegates
the computation of Cj by computing Ĉu

j for u ∈ [N] and sending Ĉu
j to u-th

server. Now S ⊆ [N] where |S| = p servers come online and for u ∈ S, u-th
server computes ŷu

j ← Local(Ĉu
j , x̂u). Finally the S server send information back

to client who computes y ← Decode({ŷu
j }u∈S , S) for each j ∈ [Q], to compute

Cj(x).
The transformation in [7] invokes N (polynomial in Q,λ) many instantiations

of the one bounded FE scheme. These N instances act like a separate server in
the client server framework. Encryption simply computes the encryption of each
one bounded instance on the offline computation on the inputs, i.e. encrypt
under x̂u for u ∈ [N] under the one bounded FE algorithm. Key generation
computes the online encryption of the circuits, Ĉu for u ∈ [N] and picks a

760 R. Garg et al.

random subset S of size p and generates the secret keys on the 1 bounded
instance for circuit Local(Ĉu, ·) for u ∈ S. In our transformation, instead of
having N independent instances, we instead blowup the tag space for the one
tagged FE scheme and perform the key generation and encryption procedures
very similarly. The analysis of the correctness and security are very similar to [7],
except that in the 1TgFE security game (Definition 9), we allow the adversary
to request for multiple challenge ciphertexts (each on a different tag) and thus
the security proof is tweaked adequately.

The full construction and proof is described in our full version [20].

7 Building 1-Bounded Collusion Tagged FE from IBE

Here we construct a tagged FE scheme that achieves security in the 1-bounded
collusion model and, as we discussed in the previous section, this is sufficient to
build a general bounded-collusion tagged FE scheme. Our construction is itself
split into two components where first we have a simple construction using garbled
circuits and IBE while only achieving non-adaptive security, and later show how
to generically upgrade it to full adaptive security by relying on non-committing
encryption techiques. We quickly sketch our formal constructions here. Please
see the full version of our paper, [20], for the complete proofs.

7.1 Non-Adaptive 1-Bounded Tagged FE from Garbled Circuits
and IBE

The non-adaptive construction is a close adaptation of the traditional construc-
tion of 1-bounded FE from public key encryption and garbled circuits found
in [24,31]. The idea is to simply encrypt all the wire labels of a garbling of a
universal circuit using IBE and only give out select IBE secret keys of the wires
corresponding to the circuit.

For simplicity, we assume that the functionality class Fn includes all circuits
of size n (the circuit description is n bits long).

Setup(1λ, 1n, 1z) → (mpk,msk). Sample an IBE master key pair as (ibe.pk,
ibe.msk) ← IBE.Setup(1λ, 1z+�log n�+1), and output mpk = ibe.pk,msk =
ibe.msk.

Notation. Here and throughout the paper, we use (b, i, tg) to denote the
(z + �log n� + 1)-bit identity, where b is a single bit, i encodes �log n�)-bits,
and tg is encoded in the remaining z bits. Basically, each bit-index-tag tuple
is uniquely and efficiently mapped into the identity space.

Enc(mpk, tg,m ∈ Mn) → ct. Let U be the universal circuit for the family of size
n circuits on inputs in Mn (i.e., U(C,m) = C(m)). Now in the following
garble U(·,m) as (Û , {wi,b}i≤n,b∈{0,1}) ← GC.Garble(1λ,U), and encrypt the
labels as

∀i ∈ n, b ∈ {0, 1}, cti,b ← IBE.Enc(ibe.pk, (b, i, tg), wi,b)

It finally outputs ct = (Û , {cti,b}i≤n,b∈{0,1}).

Dynamic Collusion Bounded FE from IBE 761

KeyGen(msk, tg, C ∈ {0, 1}n) → sktg,C . Let C[1], C[2], . . . C[n] denote the
bit representation of circuit C. It samples n IBE secret keys as ski =
IBE.KeyGen(msk, (C[i], i, tg)) for i ∈ [n], and outputs sktg,C = {ski}i∈[n].

Dec(sktg,C , ct) → y. It parses the secret key and ciphertext as above. It first
decrypts the wire keys as wi,C[i] ← IBE.Dec(ski, cti,C[i]) for i ∈ [n], and then
outputs y = GC.Eval(Û , {wi,C[i]}i∈[n]).

7.2 Upgrading to Adaptive Security

We can transform any non-adaptive 1-bounded tagged FE scheme to an adaptive
one using IBE. This is an analogue of the traditional method of using weak non-
committing encryption (which is constructable from plain public key encryption)
to make 1-bounded FE adaptive. Here, the encryption has two modes—a ‘normal
mode’, where the scheme functions like a normal public key/IBE scheme, and
a non-committing mode, where the encryptor can produce secret keys which
equivocate to any value. This enables us to delay simulating the ciphertext of a
adaptive key queries until the secret key is requested.

Setup(1λ, 1n, 1z) → (mpk,msk). The setup algorithm runs the underlying tagged
FE and IBE setup algorithms as (natgfe.pk, natgfe.msk) ← NATgFE.Setup(1λ,
1n, 1z), and (ibe.pk, ibe.msk) ← IBE.Setup(1λ, 1z+�log n′�+1) where n′ denotes
the length of natgfe ciphertexts with the above parameters.
It outputs the master keys as (mpk,msk) = ((natgfe.pk, ibe.pk), (natgfe.msk,
ibe.msk)).
Notation. Here and throughout the paper, we use (b, i, tg) to denote the
(z + �log n′� + 1)-bit identity, where b is a single bit, i encodes �log n′�)-bits,
and tg is encoded in the remaining z bits. Basically, each bit-index-tag tuple
is uniquely and efficiently mapped into the identity space.

Enc(mpk, tg,m) → ct. Let mpk = (natgfe.pk, ibe.pk). It encrypts m using tagged
FE as ct′ ← NATgFE.Enc(natgfe.pk, tg,m), and it encrypts ct′ bit-by-bit
under IBE as cb,j = IBE.Enc(ibe.pk, (b, j, tg), ct′[j]) for b ∈ {0, 1}, j ∈ [n′]. It
then outputs ct = {cb,j}b∈{0,1},j∈[n′].

KeyGen(msk, tg, C ∈ {0, 1}n) → sktg,C . Let msk = (natgfe.msk, ibe.msk). It sam-
ples n′ random bits b1, b2, . . . , bn′ ← {0, 1}, and computes secret keys for the
underlying systems as:

natgfe.sktg,C ← NATgFE.KeyGen(natgfe.msk, tg, C),
∀j ∈ [n′], ibe.skbj ,j ← IBE.KeyGen(ibe.msk, (bj , j, tg)).

And it outputs sktg,C = (natgfe.sktg,C , {(bj , ibe.skj,bj
)}j∈[n′]).

Dec(sktg,C , ct) → y. It parses the secret key and ciphertext as above. It first
decrypts the IBE ciphertexts as ct′[j] as IBE.Dec(ibe.skbj ,j , ctb,j) for j ∈ [n′],
and then computes y = NATgFE.Dec(natgfe.sktg,C , ct′) where ct′[i] is the i-th
bit of ct′.

Acknowledgements. We thank the anonymous reviewers for CRYPTO 2021 for use-
ful feedback regarding our abstractions.

762 R. Garg et al.

References

1. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and
attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
3–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 1

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

3. Agrawal, S., Maitra, M., Vempati, N.S., Yamada, S.: Functional encryption for tur-
ing machines with dynamic bounded collusion from LWE. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 239–269. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84259-8 9

4. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 173–205. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 7

5. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

6. Ananth, P., Jain, K., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Cryptology ePrint Archive, Report 2015/730
(2015)

7. Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional
encryption. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp.
174–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 8

8. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: CCS
2012 (2012)

9. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS (2015)

10. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

12. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

13. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: Miller, G.L. (ed.) STOC (1996)

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2011). https://doi.org/10.1007/s00145-
011-9105-2

15. Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-tracing
from LWE made simple and attribute-based. In: Beimel, A., Dziembowski, S. (eds.)
TCC 2018. LNCS, vol. 11240, pp. 341–369. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03810-6 13

16. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

https://doi.org/10.1007/978-3-319-63688-7_1
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-030-84259-8_9
https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-030-36030-6_8
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/s00145-011-9105-2
https://doi.org/10.1007/s00145-011-9105-2
https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/3-540-45325-3_32

Dynamic Collusion Bounded FE from IBE 763

17. Cramer, R., et al.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76900-2 31

18. Diffie, W., Hellman, M.E.: New directions in cryptography (1976)
19. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:

Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 5

20. Garg, R., Goyal, R., Lu, G., Waters, B.: Dynamic collusion bounded functional
encryption from identity-based encryption. Cryptology ePrint Archive (2021)

21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

22. Gentry, S., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

23. Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-collusion IBE from key homo-
morphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564–581. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 32

24. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

25. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling func-
tionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 361–388. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 14

26. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning
with errors. In: STOC (2018)

27. Goyal, R., Syed, R., Waters, B.: Bounded collusion abe for tms from ibe. Cryptol-
ogy ePrint Archive, Report 2021/709 (2021)

28. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: STOC (2021)

29. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

30. Kowalczyk, L., Malkin, T., Ullman, J., Wichs, D.: Hardness of non-interactive
differential privacy from one-way functions. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 437–466. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 15

31. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: CCS (2010)

32. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

33. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484 (2014)

34. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

35. Yao, A.: How to generate and exchange secrets. In: FOCS, pp. 162–167 (1986)

https://doi.org/10.1007/978-3-540-76900-2_31
https://doi.org/10.1007/3-540-46035-7_5
https://doi.org/10.1007/978-3-642-28914-9_32
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-319-96884-1_15
https://doi.org/10.1007/978-3-319-96884-1_15
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-39568-7_5

Property-Preserving Hash Functions
for Hamming Distance from Standard

Assumptions

Nils Fleischhacker1(B) , Kasper Green Larsen2 , and Mark Simkin3

1 Ruhr University Bochum, Bochum, Germany
mail@nilsfleischhacker.de

2 Aarhus University, Aarhus, Denmark
larsen@cs.au.dk

3 Ethereum Foundation, Aarhus, Denmark

mark.simkin@ethereum.org

Abstract. Property-preserving hash functions allow for compressing
long inputs x0 and x1 into short hashes h(x0) and h(x1) in a manner
that allows for computing a predicate P (x0, x1) given only the two hash
values without having access to the original data. Such hash functions
are said to be adversarially robust if an adversary that gets to pick x0

and x1 after the hash function has been sampled, cannot find inputs for
which the predicate evaluated on the hash values outputs the incorrect
result.

In this work we construct robust property-preserving hash functions
for the hamming-distance predicate which distinguishes inputs with a
hamming distance at least some threshold t from those with distance
less than t. The security of the construction is based on standard lattice
hardness assumptions.

Our construction has several advantages over the best known previous
construction by Fleischhacker and Simkin (Eurocrypt 2021). Our con-
struction relies on a single well-studied hardness assumption from lattice
cryptography whereas the previous work relied on a newly introduced
family of computational hardness assumptions. In terms of computa-
tional effort, our construction only requires a small number of modular
additions per input bit, whereas the work of Fleischhacker and Simkin
required several exponentiations per bit as well as the interpolation and
evaluation of high-degree polynomials over large fields. An additional
benefit of our construction is that the description of the hash function
can be compressed to λ bits assuming a random oracle. Previous work
has descriptions of length O(�λ) bits for input bit-length �.

We prove a lower bound on the output size of any property-preserving
hash function for the hamming distance predicate. The bound shows that
the size of our hash value is not far from optimal.

N. Fleischhacker—Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.
K. Green Larsen—Supported by Independent Research Fund Denmark (DFF) Sapere
Aude Research Leader Grant No. 9064-00068B.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 764–781, 2022.
https://doi.org/10.1007/978-3-031-07085-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_26&domain=pdf
http://orcid.org/0000-0002-2770-5444
http://orcid.org/0000-0001-8841-5929
http://orcid.org/0000-0002-7325-5261
https://doi.org/10.1007/978-3-031-07085-3_26

PPH for Hamming Distance from Standard Assumptions 765

1 Introduction

Efficient algorithms that compress large amounts of data into small digests that
preserve certain properties of the original input data are ubiquitous in computer
science and hardly need an introduction. Sketching algorithms [5], approximate
membership data structures [8], locality-sensitive hash functions [15], stream-
ing algorithms [20], and compressed sensing [11] are only a few among many
examples.

Commonly, these algorithms are studied in benign settings where no adver-
sarial parties are present. More concretely, these randomized algorithms usually
state their (probabilistic) correctness guarantees by quantifying over all inputs
and arguing that with high probability over the chosen random coins, the algo-
rithm will behave as it should. Importantly, the inputs to the algorithm are
considered to be independent of the random coins used.

In real world scenarios, however, the assumption of a benign environment
may not be justified and an adversary may be incentivized to manipulate a
given algorithm into outputting incorrect results by providing malicious inputs.
Adversaries that choose their inputs adaptively after the random coins of the
algorithm have been sampled, were previously studied in the context of sketching
and streaming algorithms [6,7,9,10,12,14,19,21]. These works show that algo-
rithms which work well in benign environments are not guaranteed to work well
in the presence of adaptive malicious inputs and several algorithms with security
guarantees against malicious inputs were proposed.

The focus of this work are adversarially robust property-preserving hash
(PPH) functions recently introduced by Boyle, LaVigne, and Vaikuntanathan [9],
which allow for compressing long inputs x0 and x1 into short hashes h(x0) and
h(x1) in a manner that allows for evaluating a predicate P (x0, x1) given only
the two hash values without having access to the original data. A bit more
concretely, a PPH function for a predicate P : X × X → {0, 1} is composed of
a deterministic compression function h : X → Y and an evaluation algorithm
Eval : Y × Y → {0, 1}. Such a pair of functions is said to be adversarially robust
if no computationally bounded adversary A, who is given a random (h,Eval)
from an appropriate family, can find inputs x0 and x1, such that P (x0, x1) �=
Eval(h(x0), h(x1)).

BLV constructed PPH functions that compress inputs by a constant factor for
the gap hamming predicate, which distinguishes inputs with very small hamming
distance from those with a large distance1. For inputs that have neither a very
small or very large distance, their construction provided no guarantees.

Subsequently Fleischhacker and Simkin [12] constructed PPH functions for
the exact hamming distance predicate, which distinguishes inputs with distance
at least t from those with distance less than t. Their construction compresses
arbitrarily long inputs into hash values of size O(tλ), where λ is the computa-
tional security parameter. Unfortunately, their construction is based on a new

1 We do not care about the exact size of their gap, since we will focus on a strictly
stronger predicate in this work.

766 N. Fleischhacker et al.

family of computational assumptions, which is introduced in their work, meaning
that the security of their result is not well understood. From a computational
efficiency point of view, their construction is rather expensive. It requires O(�)
exponentiations for hashing a single �-bit long input and evaluating the predi-
cate on the hashes requires interpolating and evaluating high-degree polynomials
over large fields.

1.1 Our Contribution

In this work we present a new approach for constructing PPH functions for
the exact hamming distance predicate, which improves upon the result of Fleis-
chhacker and Simkin in several ways.

The security of our construction relies on a well-studied hardness assumption
from the domain of lattice-based cryptography. Both hashing an input and eval-
uating a predicate on hash values only involves fast operations, such as modular
additions, xor, and evaluating a few t-wise independent hash functions. The size
of our hash values is Õ(λ2t) bits. We present a lower bound of Ω(t log(�/t)) on
the size of the hash value of any PPH function for the exact hamming distance
predicate, showing that our result is not far from optimal.

Our hash functions can be described by a uniformly random bit string of
sufficient length. This means that, assuming a random oracle, these descriptions
can compressed into λ bits by replacing it with a short seed. This compression is
not applicable to the work of Fleischhacker and Simkin, since their hash function
descriptions are Θ(�λ)-long bit strings with a secret structure that is only known
to the sampling algorithm.

1.2 Technical Overview

Let x0 and x1 be two �-bit strings, which we would like to compress using a hash
function h in a manner that allows us to use h(x0) and h(x1) to check whether
d(x0, x1) < t, where d is the hamming distance and t is some threshold. We start
with a simple observation from the work of Fleischhacker and Simkin [12]. We
can encode bit strings x = x1x2 . . . x� into sets X = {2i − xi | i = 1, . . . , �} and
for x0, x1 ∈ {0, 1}� we have that d(x0, x1) < t, if and only if |X0 � X1| < 2t.
Thus, from now on we can focus on hashing sets and constructing a property-
preserving hash function for the symmetric set difference, which turns out to be
an easier task.

Conceptually, our construction is inspired by Invertible Bloom Lookup Tables
(IBLTs), which were introduced by Goodrich and Mitzenmacher [13]. This data
structure allows one to encode a set into an Õ(t) sketch with the following
properties: Two sketches can be subtracted from each other, resulting in a new
sketch that corresponds to an encoding of the symmetric set difference of the
original sets. If a sketch contains at most O(t) many set elements, then it can
be decoded with high probability, meaning that the elements within it can be
fully recovered.

PPH for Hamming Distance from Standard Assumptions 767

Given this data structure, one could attempt the following construction of
a PPH function for the symmetric set difference predicate. Given an input set,
encode it as an IBLT. To evaluate the symmetric set difference predicate on two
hash values, subtract the two given IBLTs and attempt to decode the resulting
data structure. If decoding succeeds, then count the number of decoded elements
and check, whether it’s more or less than 2t. If decoding fails, then conclude that
the symmetric set difference is too large. The main issue with this construction
is that IBLTs do not provide any correctness guarantees for inputs that are
chosen adversarially. Thus, the main contribution of this work is to construct a
robust set encoding similar to IBLTs that remains secure in the presence of an
adversary.

Our robust set encoding is comprised of “random” functions ri : {0, 1}∗ →
{1, . . . , 2t} for i = 1, . . . , k and a “special” collision-resistant hash function A.
To encode a set X, we generate an initially empty k×2t matrix H. Each element
x ∈ X is then inserted by adding A(x) in each row i to column ri(x) in H, i.e.,
H[i, ri(x)] = H[i, ri(x)] + A(x) for i = 1, . . . , k. To subtract two encodings, we
simply subtract the two matrices entry-wise. To decode a matrix back into a set,
we repeatedly look for entries in H that contain a single hash value A(x), i.e., for
cells i, j with |H[i, j]| = A(x) for some x, and peel them away. That is, whenever
we find such an entry, we find x corresponding to A(x) and then remove x from
all positions, where it was originally inserted in H. Then we repeat the process
until the matrix H is empty or until the process gets stuck, because no cell
contains a single set element by itself.

To prove security of our construction, we will show two things. First, we
will show that no adversary can find a pair of sets that have a small symmetric
set difference, where the peeling process will get stuck. Actually, we will show
something stronger, namely that such pairs do not exist with overwhelming
probability over the random choices of r1, . . . , rk. Secondly, we will need to show
that no (computationally bounded) adversary can find inputs, which decode
incorrectly. In particular, we will have to argue that the peeling process never
decodes an element that was not actually encoded, i.e., that the sum of several
hash values in some cell H[i, j] never looks like A(x) for some single set element
x. To argue that such a bad sum of hash values does not exist, one would need to
pick the output length of A too big in the sense that our resulting PPH function
would not be compressing. Instead, we will show that for an appropriate choice
of A these sums may exist, but finding them is hard and can be reduced to
the computational hardness of solving the Short Integer Solution Problem [4], a
well-studied assumption from lattice-based cryptography.

2 Preliminaries

This section introduces notation, some basic definitions and lemmas that we
will use throughout this work. We denote by λ ∈ N the security parameter and
by poly(λ) any function that is bounded by a polynomial in λ. A function f in
λ is negligible, if for every c ∈ N, there exists some N ∈ N, such that for all

768 N. Fleischhacker et al.

λ > N it holds that f(λ) < 1/λc. We denote by negl(λ) any negligible function.
An algorithm is PPT if it is modeled by a probabilistic Turing machine with a
running time bounded by poly(λ).

We write ei to denote the i-th canonical unit vector, i.e. the vector of zeroes
with a one in position i, and assume that the dimension of the vector is known
from the context. For a row vector v, we write vᵀ to denote its transpose. Let
n ∈ N, we denote by [n] the set {1, . . . , n}. Let X,Y be sets, we denote by
|X| the size of X and by X � Y the symmetric set difference of X and Y , i.e.,
X �Y = (X ∪Y) \ (X ∩Y) = (X \Y)∪ (Y \X). We write x ← X to denote the
process of sampling an element of X uniformly at random. For x, y ∈ {0, 1}n, we
write w(x) to denote the Hamming weight of x and we write d(x, y) to denote
the Hamming distance between x and y, i.e., d(x, y) = w(x ⊕ y). We write xi to
denote the i-th bit of x.

2.1 Property-Preserving Hash Functions

The following definition of property-preserving hash functions is taken almost
verbatim from [9]. In this work, we consider the strongest of several different
security notions that were proposed in [9].

Definition 1 (Property-Preserving Hash). For a λ ∈ N an η-compressing
property-preserving hash function family Hλ = {h : X → Y } for a two-input
predicate requires the following three efficiently computable algorithms:

Sample(1λ) → h is an efficient randomized algorithm that samples an efficiently
computable random hash function from H with security parameter λ.

Hash(h, x) → y is an efficient deterministic algorithm that evaluates the hash
function h on x.

Eval(h, y0, y1) → {0, 1}: is an efficient deterministic algorithm that on input h,
and y0, y1 ∈ Y outputs a single bit.

We require that H must be compressing, meaning that log |Y | ≤ η log |X| for
0 < η < 1.

For notational convenience we write h(x) for Hash(h, x).

Definition 2 (Direct-Access Robustness). A family of PPH functions H =
{h : X → Y } for a two-input predicate P : X × X → {0, 1} is a family of
direct-access robust PPH functions if, for any PPT adversary A it holds that,

Pr

[
h ← Sample(1λ);
(x0, x1) ← A(h)

: Eval(h, h(x0), h(x1)) �= P (x0, x1)

]
≤ negl(λ),

where the probability is taken over the internal random coins of Sample and A.

PPH for Hamming Distance from Standard Assumptions 769

Two-Input Predicates. We define the following two-input predicates, which
will be the main focus of this work.

Definition 3 (Hamming Predicate). For x, y ∈ {0, 1}n and t > 0, the two-
input predicate is defined as

HAMt(x, y) =

{
1 if d(x, y) ≥ t

0 Otherwise

2.2 Lattices

In the following we recall some lattice hardness assumptions and the relationships
between them. We start by revisiting one of the most well-studied computational
problems.

Definition 4 (Shortest Independent Vector Problem). For an approxi-
mation factor of γ := γ(n) ≥ 1, the (n, γ)-SIVP is defined as follows: Given
a lattice L ⊂ Rn, output n linearly independent lattice vectors, which have all
euclidean length at most γ · λn(L), where λn(L) is the minimum possible.

Starting with the celebrated work of Lenstra, Lenstra, and Lovász [16], a
long line of research works [1–3] has been dedicated to finding fast algorithms
for solving the exact and approximate shortest independent vector problem. All
existing algorithms for finding any poly(n)-approximation run in time 2Ω(n) and
it is believed that one can not do better asymptotically as is captured in the
following assumption.

Assumption 5. For large enough n, there exists no 2o(n)-time algorithm for
solving the (n, γ)-SIVP with γ = poly(n).

A different computationally hard problem that has been studied extensively
is the short integer solution problem.

Definition 6 (Short Integer Solution Problem). For parameters n,m, q,
β2, β∞ ∈ N, the (n,m, q, β2, β∞)-SIS problem is defined as follows: Given a
uniformly random matrix A ∈ Zn×m

q , find s ∈ Zm with ‖s‖2 ≤ β2 and ‖s‖∞ ≤
β∞, such that Asᵀ = 0.

It was shown by Micciancio and Peikert that the difficulty of solving the SIS
problem fast on average is related to the difficulty of solving the SIVP in the
worst-case.

Theorem 1 (Worst-Case to Average-Case Reduction for SIS [17]). Let
n, m := m(n), and β2 ≥ β∞ ≥ 1 be integers. Let q ≥ β2 · nδ for some constant
δ > 0. Solving the (n,m, q, β2, β∞)-SIS problem on average with non-negligible
probability in n is at least as hard as solving the (n, γ)-SIVP in the worst-case
to within γ = max(1, β2 · β∞/q) · Õ (β2

√
n).

770 N. Fleischhacker et al.

Combining the above result with Assumption 5, we get the following corollary.

Corollary 2. Let n ∈ Θ(λ) and m = poly(λ) be integers, let β∞ = 2, and let
β2 =

√
m + ν for some constant ν. Let q > β2 · nδ for some constant δ > 0.

If Assumption 5 holds, then for large enough λ, there exists no PPT adversary
that solves the (n,m, q, β2, β∞)-SIS problem with non-negligible (in λ) probabil-
ity.

3 Robust Set Encodings

In this section, we define our notion of robust set encodings. The encoding trans-
forms a possibly large set into a smaller sketch. Given two sketches of sets with
a small enough symmetric set difference, one should be able to decode the sym-
metric set difference. The security of our encodings guarantees that no computa-
tionally bounded adversary can find a pair of sets where decoding either returns
the incorrect result or fails even though the symmetric set difference between
the encoded sets is small.

Definition 7 (Robust Set Encodings). A robust set encoding for a universe
U is comprised of the following algorithms:

Sample(1λ, t) → f is an efficient randomized algorithm that takes the security
parameter λ and threshold t as input and returns an efficiently computable
set encoding function f sampled from the family E.

Encode(f,X) → y is an efficient deterministic algorithm that takes set encoding
function f and set X ⊂ U as input and returns encoding y.

Decode(f, y0, y1) → X ′/⊥ is an efficient deterministic algorithm that takes set
encoding function f and two set encodings y0, y1 as input and returns set X ′

or ⊥.

We denote by LenE : N × N → N the function that describes the length of the
encoding for a given security parameter λ and threshold t. For any two sets
X0,X1 we use X ′ ← Diff(f,X0,X1) as a shorthand notation for

X ′ ← Decode(f,Encode(f,X0),Encode(f,X1)).

We say a set encoding is robust, if for any PPT adversary A and any thresh-
old t ∈ N it holds that,

Pr

⎡
⎢⎣

f ← Sample(1λ, t);
(X0,X1) ← A(f, t);
X ′ ← Diff(f,X0,X1)

:
X ′ �∈ {X0 � X1,⊥}

∨ (|X0 � X1| < t ∧ X ′ = ⊥)

⎤
⎥⎦ ≤ negl(λ),

where the probability is taken over the random coins of the adversary A and
Sample.

PPH for Hamming Distance from Standard Assumptions 771

Fig. 1. Construction of a robust set encoding for universe [m].

3.1 Instantiation

In this section we construct a set encoding for universe [m] with m = poly(λ) by
modifying Invertible Bloom Lookup Tables [13] to achieve security against adap-
tive malicious inputs. Since we are only encoding polynomially large sets and can
leverage the cryptographic hardness of the SIS problem, we can get away with
only maintaining a matrix of hash values in our sketch and we do not require the
additional counter or value fields that were present in the original construction of
Goodrich and Mitzenmacher. Refer to Fig. 1 for a full description of the construc-
tion. Before we prove that the construction is a robust set encoding we will first
prove a few of its properties that will be useful in the following.

The following lemma effectively states that given the difference of two encod-
ings there will always be a least one element that can be peeled if the symmetric
set difference is small enough.

Lemma 3. Let R be a family of t-wise independent hash functions r : [m] → [2t]
and let k ≥ 2 log3/e m. With probability at least 1−2−Ω(k), it simultaneously holds
for all sets T ⊆ [m] with 0 < |T | ≤ t that there is at least one x ∈ T and one

772 N. Fleischhacker et al.

index i ∈ [k] such that ri(x) �= ri(y) for all y ∈ T \ {x}. Here the probability is
taken over the random choice of the ri’s.

Proof. Let E denote the event that there is a set T with 0 < |T | ≤ t such that
for all x ∈ T and all i ∈ [k], there is a y ∈ T \ {x} with ri(x) = ri(y). We show
that Pr[E] is small. The proof follows from a union bound over all T ⊆ [m] with
2 ≤ |T | ≤ t. So fix one such T . Let ET denote the event that there is no i ∈ [k]
and x ∈ T such that ri(x) �= ri(y) for all y ∈ T \ {x}. Then by a union bound,
we have

Pr[E] ≤ Pr
[⋃
T⊆[m]

ET

]
≤

∑
T⊆[m]

Pr[ET].

To bound Pr[ET], notice that conditioned on ET , the number of distinct hash
values |{ri(x) | x ∈ T}| for the ith hash function is at most |T | /2, as every hash
value is hit by either 0 or at least 2 elements from T . Now define an event ET,S

for every k-tuple S = (S1, . . . , Sk) where Si is a subset of |T |/2 values in [k]. The
event ET,S occurs if ri(x) ∈ Si for every x ∈ T and every i ∈ [k]. If ET happens
then at least one event ET,S happens. Thus

Pr[ET] ≤ Pr
[⋃

S

ET,S] ≤
∑
S

Pr[ET,S].

To bound Pr[ET,S], notice that by t-wise independence, the values ri(x) are
independent and fall in Si with probability exactly |T |/(2 · 2t). Since this must
happen for every i and every x ∈ T , we get that Pr[ET,S] ≤ (|T |/(4t))|T |k and
Pr[ET] ≤ (

2t
|T |/2

)k
(|T |/(4t))|T |k. A union bound over all T gives us Pr[E] ≤∑t

j=2

(
m
j

)(
2t

j/2

)k
(j/(4t))jk. Using the bound

(
n
k

) ≤ (en/k)k for all 0 ≤ k ≤ n and
the bound

(
m
j

) ≤ mj , we finally conclude:

Pr[E] ≤
t∑

j=2

(
m

j

)(
2t

j/2

)k

(j/(4t))jk

≤
t∑

j=2

mj(4et/j)jk/2(j/(4t))jk

=
t∑

j=2

mj(e/3)jk/2(3j/(4t))jk/2

For k ≥ 2 log3/e m we have (e/3)k/2 ≤ 1/m. The above is thus bounded by

Pr[E] ≤
t∑

j=2

(3j/(4t))jk/2

≤
t∑

j=2

(3/4)jk/2

PPH for Hamming Distance from Standard Assumptions 773

For any k ≥ 2, the terms in this sum go down by a factor at least 4/3 and thus
is bounded by 2−Ω(k). ��

In the next lemma we show that correctly peeling one layer of elements
during decoding leads to a state that is equivalent to never having inserted
those elements in the first place.

Lemma 4. For any security parameter λ, any threshold t, any encoding function
f ← Sample(1λ, t), any pair of subsets X0,X1 ⊆ [m] and any set

Z ⊆ {(x,Aeᵀ
x) | x ∈ X0 \ X1} ∪ {(x,−Aeᵀ

x) | x ∈ X1 \ X0}
and X := {x | ∃w. (x,w) ∈ Z} it holds that

Peel(Encode(f,X0)−Encode(f,X1), Z) = Encode(f,X0\X)−Encode(f,X1\X).

Proof. Let Hb := Encode(f,Xb), H ′
b := Encode(f,X ′

b \X) and H := Peel(f,H0−
H1, Z) For any (i, j) ∈ [k] × [2t], let Si,j = {x ∈ [m] | ri(x) = j}. Then for each
(i, j) ∈ [k] × [2t] we have

H[i, j] =H0[i, j] − H1[i, j] −
∑

x∈X∩Si,j

Z(x) (1)

=
∑

x∈X0∩Si,j

Aeᵀ
x −

∑
x∈X1∩Si,j

Aeᵀ
x −

∑
x∈X∩Si,j

Z(x) (2)

=
∑

x∈X0∩Si,j

Aeᵀ
x −

∑
x∈X1∩Si,j

Aeᵀ
x −

∑
x∈X∩X0∩Si,j

Z(x) −
∑

x∈X∩X1∩Si,j

Z(x) (3)

=
∑

x∈X0∩Si,j

Aeᵀ
x −

∑
x∈X1∩Si,j

Aeᵀ
x −

∑
x∈X∩X0∩Si,j

Aeᵀ
x +

∑
x∈X∩X1∩Si,j

Aeᵀ
x (4)

=
∑

x∈(X0\X)∩Si,j

Aeᵀ
x −

∑
x∈(X1\X)∩Si,j

Aeᵀ
x (5)

=H ′
0[i, j] − H ′

1[i, j], (6)

where we denote by Z(x) the unique value w such that (x,w) ∈ Z. Equations 1
and 2 follow from the definitions of Peel and Encode respectively. Equations 3
and 5 follow from the fact that X is a subset of the symmetric set difference
of X0 and X1. Equation 4 follows from the fact that w = (−1)bAeᵀ

x iff x ∈ Xb.
Finally, Eq. 6 follows again from the definition of Encode. ��

The following lemma essentially states that during the decoding process we
will never peel an element that is not in the symmetric set difference and all
elements will be peeled correctly, i.e., the decoding algorithm correctly identifies
whether an element is from X0 or from X1.

Lemma 5. For an encoding function f ← Sample(1λ, t) and two sets X0,X1,
let Z1, Z2, . . . denote the sequence of sets peeled during the execution of

Decode(f,Encode(f,X0),Encode(f,X1)).

774 N. Fleischhacker et al.

Let further Xc
b = Xb\{y | ∃w. (y, w) ∈ Z1∪· · ·∪Zc−1}. If the (n,m, q,

√
m + 3, 2)-

SIS problem is hard, then for any PPT algorithm A, it holds that

Pr

[
f := Sample(1λ, t);
(X0,X1) ← A(f)

∃c. Zc �⊆ {(x,Aeᵀ
x) | x ∈ Xc

0 \ Xc
1}

∪{(x,−Aeᵀ
x) | x ∈ Xc

1 \ Xc
0}

]
≤ negl(λ).

Proof. Let A be an arbitrary PPT algorithm with

Pr

[
f := Sample(1λ, t);
(X0,X1) ← A(f)

∃c. Zc �⊆ {(x,Aeᵀ
x) | x ∈ Xc

0 \ Xc
1}

∪{(x,−Aeᵀ
x) | x ∈ Xc

1 \ Xc
0}

]
= ε(λ).

We construct an algorithm B that solves (n,m, q,
√

m + 3, 2)-SIS as follows. B
receives as input a random matrix A ∈ Zn×m

q , samples ri ← R for i ∈ [k]
and invokes A on f = (A, (r1, . . . , rk)). Once A outputs X0,X1, B runs
H0 := Encode(f,X0) and H1 := Encode(f,X1) and then starts to execute
Decode(f,H0,H1). Let Zc denote the set Z in the c-th iteration of the main
loop of Decode. In each iteration, if

Zc �⊆ {(x,Aeᵀ
x) | x ∈ Xc

0 \ Xc
1} ∪ {(x,−Aeᵀ

x) | x ∈ Xc
1 \ Xc

0},

then B stops the decoding process and proceeds as follows.
Let Si,j = {x ∈ [m] | ri(x) = j}. By definition of Z, there must exists at

least one element (x,w) ∈ Zc, such that

H[i, j] = (−1)bAeᵀ
x and x �∈ Xc

b \ Xc
1−b (7)

for some cell (i, j) and some bit b. B identifies one such cell by exhaustive search
and outputs the vector

s :=
∑

y∈Xc
0∩Si,j

ey −
∑

y∈Xc
1∩Si,j

ey − (−1)bex.

If the decoding procedure terminates without such a Zc occurring, B outputs
⊥.

To analyze the success probability of B, consider that by Lemma 4 and since
Zc is the first set in which an element as specified above exists, we have that
H = Encode(f,X ′

0) − Encode(f,X ′
1), i.e.

(−1)bAeᵀ
x = H[i, j] =

∑
y∈Xc

0∩Si,j

Aeᵀ
y −

∑
y∈Xc

1∩Si,j

Aeᵀ
y

Thus, whenever B outputs a vector s, it holds that Asᵀ = 0. Furthermore,
this vector consists of the sum of at most m unique canonical unit vectors and
one additional canonical unit vector. This implies that ‖s‖2 ≤ √

m + 3 and
‖s‖∞ ≤ 2. It remains to argue that s is non-zero. The vector s is zero, iff∑

y∈Xc
0∩Si,j

ey −
∑

y∈Xc
1∩Si,j

ey = (−1)bex.

PPH for Hamming Distance from Standard Assumptions 775

Observe that, since we are summing up canonical unit vectors, this can hold only
if x ∈ Xc

b \ Xc
1−b. However, by Eq. 7 this does not occur, therefore s is non-zero.

We can conclude that B solves (n,m, q,
√

m + 3, 2)-SIS, with probability ε(λ).
Since (n,m, q,

√
m + 3, 2)-SIS is assumed to be hard, ε(λ) must be negligible. ��

The following lemma states that with overwhelming probability the decoding
process will output either ⊥ or a subset of the symmetric set difference, even for
maliciously chosen sets X0,X1.

Lemma 6. If the (n,m, q,
√

m + 3, 2)-SIS problem is hard, then for any PPT
adversary A it holds that

Pr

⎡
⎢⎣

f := Sample(1λ, t);
(X0,X1) ← A(f);

X ′ := Diff(f,X0,X1)
: X ′ �= ⊥ ∧ X ′ �⊆ X0 � X1

⎤
⎥⎦ ≤ negl(λ)

Proof. Let Z1, Z2, . . . denote the sequence of sets peeled during the execution of

Decode(f,Encode(f,X0),Encode(f,X0)).

If an algorithm outputs X0,X1, such that X ′ �⊆ X0 � X1, there must exist an
x ∈ X ′ such that

x′ �∈ X0 � X1 = (X0 \ X1) ∪ (X1 \ X0).

Since X ′ := {x | ∃w. (x,w) ∈ Z1 ∪ . . . }, this can only happen with negligible
probability by Lemma5. ��

The following lemma states that with overwhelming probability the decoding
process will never output a strict subset of the symmetric set difference, even
for maliciously chosen sets X0,X1.

Lemma 7. If the (n,m, q,
√

m + 3, 2)-SIS problem is hard, then for any PPT
adversary A it holds that

Pr

⎡
⎢⎣

f := Sample(1λ, t);
(X0,X1) ← A(f);

X ′ := Diff(f,X0,X1)
: X ′ � X0 � X1

⎤
⎥⎦ ≤ negl(λ)

Proof. Let A be a PPT an adversary for the above experiment. We construct
an adversary B against (n,m, q,

√
m + 3, 2)-SIS as follows. B is given matrix A,

samples ri ← R for i ∈ [k] and invokes A on f = (A, (r1, . . . , rk)). Adversary
A returns X0 and X1 and B computes X ′ := Diff(f,X0,X1). If X ′ � X0 � X1,
then B computes X ′

b = Xb \ X ′ for b ∈ {0, 1} and finds an index i, j such that
there exists an x ∈ X ′

0 � X ′
1 with ri(x) = j. B returns

s :=
∑

y∈X′
0∩Si,j

ey −
∑

y∈X′
1∩Si,j

ey.

776 N. Fleischhacker et al.

Since every canonical unit vector appears at most once in the sum above, it
follows that ‖s‖2 ≤ √

m and ‖s‖∞ = 1. Further, since, by construction, there
exists at least one y ∈ (X ′

0 ∩ Si,j) � (X ′
1 ∩ Si,j) it follows that s �= 0.

To analyze the probability that Asᵀ = 0 we consider the following. Let
H ′ be the value of the matrix H when the decoding procedure terminates. By
Lemma 5 and Lemma 4 it holds with overwhelming probability that H ′ = H ′

0 −
H ′

1 = Encode(f,X ′
0) − Encode(f,X ′

1). However, since the decoding terminates
successfully, it must also hold that H ′ = (0n)k×2t. It follows that for all i, j, we
have H ′

0[i, j] − H ′
1[i, j] = 0 and therefore As = 0 with overwhelming probability.

Since (n,m, q,
√

m + 3, 2)-SIS is assumed to be hard the lemma follows. ��
By combining Lemma 6 and Lemma 7 we obtain the following corollary stat-

ing that with overwhelming probability the decoding process will output either
the correct symmetric set difference or the error symbol ⊥.

Corollary 8. If the (n,m, q,
√

m + 3, 2)-SIS problem is hard, then for any PPT
adversary A it holds that

Pr

⎡
⎢⎣

f := Sample(1λ, t);
(X0,X1) ← A(f);

X ′ := Diff(f,X0,X1)
: X ′ �∈ {X0 � X1,⊥}

⎤
⎥⎦ ≤ negl(λ)

The following lemma states that with overwhelming probability the decoding
process will not output ⊥ if the symmetric set difference is small.

Lemma 9. If the (n,m, q,
√

m + 3, 2)-SIS problem is hard, then for any PPT
adversary A it holds that

Pr

⎡
⎢⎣

f ← Sample(1λ, t);
(X0,X1) ← A(f, t);
X ′ ← Diff(f,X0,X1)

: |X0 � X1| < t ∧ X ′ = ⊥

⎤
⎥⎦ ≤ negl(λ)

Proof. Let A be an arbitrary PPT algorithm. By Lemma5 and Lemma 4 it
holds that in each iteration c we have H = Hc,0 − Hc,1, where Hc,b =
Encode(f,Xc,0,Xc,1) and Xc,b = Xb \ {x | ∃w. (x,w) ∈ Z1 ∪ · · · ∪ Zc−1}. Since
it must hold that |X0 � X1| < t it in particular holds that |Xc,0 � Xc,1| < t in
each iteration. By Lemma 3, in each iteration where Xc,1 � Xc,2 �= ∅ it holds
that Zc �= ∅ with overwhelming probability. Therefore, the decoding process ter-
minates after at most t steps, with X ′ = X0 � X1. Since each peeling step was
correct with overwhelming probability it must hold that H = (0n)k×2t. ��

Given the above lemmas, we can now easily prove the following theorem.

Theorem 10. Let R be a family of t-wise independent hash functions r : [m] →
[2t] and let k ≥ max{λ, 2 log3/e m}. Then the construction in Fig. 1 is a robust
set encoding for universe [m] if the (n = n(λ),m, q,

√
m + 3, 2)-SIS problem is

hard.

PPH for Hamming Distance from Standard Assumptions 777

Fig. 2. A family of direct-access robust PPHs for the predicate HAMt over the domain
{0, 1}� for any � ∈ N.

Proof. Let A be an arbitrary PPT algorithm, using Corollary 8, Lemma 9 and a
simple union bound we can conclude that

Pr

⎡
⎢⎣

f ← Sample(1λ, t);
(X0,X1) ← A(f, t);
X ′ ← Diff(f,X0,X1)

:
X ′ �∈ {X0 � X1,⊥}

∨ (|X0 � X1| < t ∧ X ′ = ⊥)

⎤
⎥⎦

≤ Pr

⎡
⎢⎣

f ← Sample(1λ, t);
(X0,X1) ← A(f, t);
X ′ ← Diff(f,X0,X1)

: X ′ �∈ {X0 � X1,⊥}

⎤
⎥⎦

+ Pr

⎡
⎢⎣

f ← Sample(1λ, t);
(X0,X1) ← A(f, t);
X ′ ← Diff(f,X0,X1)

: |X0 � X1| < t ∧ X ′ = ⊥

⎤
⎥⎦

≤ negl(λ).

Remark 1. Instantiated as specified, the construction has keys that consist of k
many t-wise independent hash functions and a matrix A ∈ Zm×n

q , leading to a
key length of kt · log m + mn · log q. Note that the entire key can be represented
by a public uniformly random kt · log m + mn · log q bit string. Assuming the
existence of a random oracle, this string can be replaced by a short λ bit seed.

4 Construction

In this section we construct property-preserving hash functions for the exact
hamming distance predicate based on robust set encodings.

4.1 PPH for the Hamming Distance Predicate

Theorem 11. Let � = poly(λ) and t ≤ �. Let E be a robust set encoding for
universe [2�] with encoding length LenE . Then, the construction in Fig. 2 is a
LenE(λ, 2t)/�-compressing direct-access robust property-preserving hash function
family for the two-input predicate HAMt and domain {0, 1}�.

778 N. Fleischhacker et al.

Proof. Let A be an arbitrary PPT adversary against the direct-access robustness
of H. We construct an adversary B against the robustness of E as follows. Upon
input e, B invokes A on input h := f . When A outputs x0, x1, B outputs
X0 := {2i − x0,i | i ∈ [�]} and X1 := {2i − x1,i | i ∈ [�]}. We note that it holds
that

Pr

[
h ← Sample(1λ);
(x0, x1) ← A(h)

: Eval(h, h(x0), h(x1)) �= HAMt(x0, x1)

]
(8)

= Pr

⎡
⎢⎢⎢⎣

f ← E .Sample(1λ, 2t);
(X0,X1) ← B(f);
y0 := E .Encode(f,X0);
y1 := E .Encode(f,X1)

: Eval(f, y0, y1) �= HAMt(x0, x1)

⎤
⎥⎥⎥⎦ (9)

= Pr

⎡
⎢⎣

f ← E .Sample(1λ, 2t);
(X0,X1) ← B(f);
X ′ := Diff(f,X0,X1)

:
(d(x0, x1) ≥ t ∧ X ′ �= ⊥ ∧ |X ′| < 2t)

∨(d(x0, x1) < t ∧ (X ′ = ⊥ ∨ |X ′| ≥ 2t))

⎤
⎥⎦ (10)

= Pr

⎡
⎢⎣

f ← E .Sample(1λ, 2t);
(X0,X1) ← B(f);
X ′ := Diff(f,X0,X1)

:
(|X0 � X1| ≥ 2t ∧ X ′ �= ⊥ ∧ |X ′| < 2t)

∨(|X0 � X1| < 2t ∧ (X ′ = ⊥ ∨ |X ′| ≥ 2t))

⎤
⎥⎦
(11)

= Pr

⎡
⎢⎣

f ← E .Sample(1λ, 2t);
(X0,X1) ← B(f);
X ′ := Diff(f,X0,X1)

:
(|X0 � X1| ≥ 2t ∧ X ′ �= ⊥ ∧ |X ′| < 2t)

∨(|X0 � X1| < 2t ∧ X ′ �= ⊥ ∧ |X ′| ≥ 2t)
∨(|X0 � X1| < 2t ∧ X ′ = ⊥)

⎤
⎥⎦ (12)

= Pr

⎡
⎢⎣

f ← E .Sample(1λ, 2t);
(X0,X1) ← B(f);
X ′ := Diff(f,X0,X1)

:
(X ′ �= ⊥ ∧ |X0 � X1| �= |X ′|)

∨(|X0 � X1| < 2t ∧ X ′ = ⊥)

⎤
⎥⎦ (13)

≤Pr

⎡
⎢⎣

f ← E .Sample(1λ, 2t);
(X0,X1) ← B(f);
X ′ := Diff(f,X0,X1)

:
X ′ �∈ {X0 � X1,⊥}

∨(|X0 � X1| < 2t ∧ X ′ = ⊥)

⎤
⎥⎦ . (14)

Here Eq. 9 follows from the definition of Sample and Hash and Eq. 10 follows
from the definition of Eval as well as the exact hamming distance predicate.
Equation 11 follows from the definition of the sets X0,X1: for each position i
where the x0,i = x1,i, the sets share an element, whereas for every position
where x0,i �= x1,i, one of them contains the element 2i and the other 2i− 1, thus
d(x0, x1) = t ⇐⇒ |X0 � X1| = 2t. Equations 12 and 13 follow by first splitting
the bottom clause and then rewriting the top two clauses.

Finally, since E is a robust set encoding it holds by assumption that the
probability in Eq. 14 is negligible and the theorem thus follows.

PPH for Hamming Distance from Standard Assumptions 779

Corollary 12. Instantiating the construction from Fig. 2 using the robust set
encoding from Sect. 3 with k = n = λ and q =

√
λ(2� + 3) leads to a 2tkn log q

� =
tλ2 log(λ(2�+3))

� compressing PPH for exact hamming distance.

5 Lower Bound

In this section, we show a lower bound on the output length of a PPH for exact
Hamming distance. We prove the lower bound by reduction from indexing. In
the indexing problem, there are two parameters k and m. The first player Alice
is given a string x = (x1, . . . , xm) ∈ [k]m, while the second player Bob is given
an integer i ∈ [m]. Alice sends a single message to Bob and Bob should output
xi. The following lower bound holds:

Lemma 13 ([18]). In any one-way protocol for indexing in the joint random
source model with success probability at least 1−δ over a uniform random string x
and uniform random index i, Alice must send a message of size Ω((1−δ)m log k−
m) in expectation.

Here the joint random source model means that Alice and Bob have shared
randomness that is drawn independently of their inputs. Note that we have
strengthened the lemma a bit over the original result, to allow the failure prob-
ability to be “on average” over a uniform random index. The proof of the above
lemma is very short using modern techniques:

Proof. Let X = (X1, . . . , Xm) be a uniform random string over [k]m and let
I be a uniform random index in [m]. Let R be a random variable giving the
shared randomness between Alice and Bob (independent of their inputs) drawn
from some universe R of finite bit strings. Let π : [k]m × R → {0, 1}∗ give
Alice’s message in a protocol and let τ : {0, 1}∗ × [m] × R → [k] be Bob’s
decoding. That is, π(X,R) is Alice’s message and τ(π(X,R), I, R) is Bob’s out-
put. Assume PrX,I,R[τ(π(X,R), I, R) = XI] ≥ 1 − δ. For every i ∈ [m], let
δi = PrX,R[τ(π(X,R), i, R) �= Xi]. Then

∑m
i=1 δi/m ≤ δ. Thus given Alice’s mes-

sage π(X,R), Bob may reconstruct Xi except with probability δi by computing
τ(π(X,R), i, R). By Fano’s inequality, this implies that H(Xi | π(X,R), R) ≤
Hb(δi) + δi log k ≤ 1 + δi log k (here Hb(·) denotes binary entropy). There-
fore, we have H(X | π(X,R), R) ≤ ∑m

i=1 1 + δi log k ≤ m + δm log k. But
H(X | R) = m log k. Thus H(π(X,R)) ≥ H(π(X,R) | R) ≥ I(X;π(X,R) |
R) = H(X | R) − H(X | R, π(X,R)) ≥ (1 − δ)m log k − m. Since the entropy of
a bit string is no more than its expected length, the lower bound follows.

Using the above lemma, we prove the following lower bound:

Theorem 14. Any PPH for the exact Hamming distance predicate on �-bit
strings with threshold t and success probability at least 1 − δ(This means that
the direct access robustness error is at most δ.), must have an output length of
Ω((1 − δ)(t − 1) log(�/t) − t) bits.

780 N. Fleischhacker et al.

Proof. Assume that there exists a PPH-family H for the predicate HAMt and
input length � with t ≤ � and direct robustness error at most δ. Let s denote the
output length of H. We then use H to solve indexing with parameters k = ��/t�
and m = t − 1. When Alice receives a string x ∈ [k]m, she constructs a binary
string y consisting of m chunks of k bits. If mk < �, she pads this string with 0’s.
Each chunk in y has a single 1 in position xi and 0’s elsewhere. She then computes
the hash value h(y), where h is sampled from H using joint randomness, and
sends it to Bob, costing s bits.

From his index i ∈ [m], Bob constructs k bit strings z1, . . . , zk of length �, such
that zj has a 1 in the position corresponding to the j’th position of the i’th chunk
of y, and 0 everywhere else. He then computes the hash values h(z1), . . . , h(zk)
(using the joint randomness to sample h) and runs Eval(h, h(y), h(zj)). Bob
outputs as his guess for xi, an index j, such that Eval(h, h(y), h(zj)) = 0. Notice
that the Hamming distance between zj and y is m + 1 ≥ t if j �= xi and it
is m − 1 < t otherwise. Thus if all k evaluations are correct, Bob succeeds in
reporting xi. The probability that all evaluations are correct is at least 1 − δ,
since otherwise an adversary could break the direct access robustness of H with
probability greater than δ by sampling x and i uniformly at random, simulating
the above protocol, checking for which zj the evaluation is correct and outputting
y, zj . Thus, Bob is correct with probability at least 1 − δ. By Lemma 13, we
conclude s = Ω((1 − δ)(t − 1) log(�/t) − t).

Remark 2. We note that for δ = negl(λ), t > 2, and � > 4t the lower bound
from Theorem 14 simplifies to Ω(t log(�/t)).

References

1. Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the short-
est vector problem in 2n time using discrete Gaussian sampling: extended abstract.
In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual ACM Symposium on Theory
of Computing, pp. 733–742. ACM Press, Portland, OR, USA (2015). https://doi.
org/10.1145/2746539.2746606

2. Aggarwal, D., Li, J., Nguyen, P.Q., Stephens-Davidowitz, N.: Slide reduction,
revisited—Filling the gaps in SVP approximation. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 274–295. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 10

3. Aggarwal, D., Stephens-Davidowitz, N.: Just take the average! An embarrassingly
simple 2n-time algorithm for SVP (and CVP). In: Seidel, R. (ed.) 1st Sympo-
sium on Simplicity in Algorithms (SOSA 2018). OpenAccess Series in Informatics
(OASIcs), vol. 61, pp. 12:1–12:19. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2018). https://doi.org/10.4230/OASIcs.SOSA.2018.12

4. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM Press,
Philadelphia, PA, USA (1996). https://doi.org/10.1145/237814.237838

5. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. In: 28th Annual ACM Symposium on Theory of Computing,
pp. 20–29. ACM Press, Philadelphia, PA, USA (1996). https://doi.org/10.1145/
237814.237823

https://doi.org/10.1145/2746539.2746606
https://doi.org/10.1145/2746539.2746606
https://doi.org/10.1007/978-3-030-56880-1_10
https://doi.org/10.4230/OASIcs.SOSA.2018.12
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237823
https://doi.org/10.1145/237814.237823

PPH for Hamming Distance from Standard Assumptions 781

6. Ben-Eliezer, O., Jayaram, R., Woodruff, D.P., Yogev, E.: A framework for adver-
sarially robust streaming algorithms. In: Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 63–80 (2020)

7. Ben-Eliezer, O., Yogev, E.: The adversarial robustness of sampling. In: Proceedings
of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pp. 49–62 (2020)

8. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

9. Boyle, E., LaVigne, R., Vaikuntanathan, V.: Adversarially robust property-
preserving hash functions. In: Blum, A. (ed.) ITCS 2019: 10th Innovations in
Theoretical Computer Science Conference, vol. 124, pp. 16:1–16:20. LIPIcs, San
Diego, CA, USA (2019). https://doi.org/10.4230/LIPIcs.ITCS.2019.16

10. Clayton, D., Patton, C., Shrimpton, T.: Probabilistic data structures in adversarial
environments. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019: 26th Conference on Computer and Communications Security, pp. 1317–1334.
ACM Press (2019). https://doi.org/10.1145/3319535.3354235

11. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306
(2006)

12. Fleischhacker, N., Simkin, M.: Robust property-preserving hash functions for ham-
ming distance and more. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12698, pp. 311–337. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77883-5 11

13. Goodrich, M.T., Mitzenmacher, M.: Invertible bloom lookup tables. In: 2011 49th
Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton), pp. 792–799. IEEE (2011)

14. Hardt, M., Woodruff, D.P.: How robust are linear sketches to adaptive inputs? In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium
on Theory of Computing, pp. 121–130. ACM Press, Palo Alto, CA, USA (2013).
https://doi.org/10.1145/2488608.2488624

15. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: 30th Annual ACM Symposium on Theory of Comput-
ing, pp. 604–613. ACM Press, Dallas, TX, USA (1998). https://doi.org/10.1145/
276698.276876

16. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

17. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

18. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asym-
metric communication complexity. J. Comput. Syst. Sci. 57(1), 37–49 (1998)

19. Mironov, I., Naor, M., Segev, G.: Sketching in adversarial environments. In: Ladner,
R.E., Dwork, C. (eds.) 40th Annual ACM Symposium on Theory of Computing,
pp. 651–660. ACM Press, Victoria, BC, Canada (2008). https://doi.org/10.1145/
1374376.1374471

20. Muthukrishnan, S.: Data streams: algorithms and applications. In: 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, p. 413. ACM-SIAM, Baltimore,
MD, USA (2003)

21. Naor, M., Yogev, E.: Bloom filters in adversarial environments. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 565–584. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48000-7 28

https://doi.org/10.4230/LIPIcs.ITCS.2019.16
https://doi.org/10.1145/3319535.3354235
https://doi.org/10.1007/978-3-030-77883-5_11
https://doi.org/10.1007/978-3-030-77883-5_11
https://doi.org/10.1145/2488608.2488624
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1145/1374376.1374471
https://doi.org/10.1145/1374376.1374471
https://doi.org/10.1007/978-3-662-48000-7_28

Short Pairing-Free Blind Signatures
with Exponential Security

Stefano Tessaro and Chenzhi Zhu(B)

Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA
{tessaro,zhucz20}@cs.washington.edu

Abstract. This paper proposes the first practical pairing-free three-
move blind signature schemes that (1) are concurrently secure, (2) pro-
duce short signatures (i.e., three or four group elements/scalars), and
(3) are provably secure either in the generic group model (GGM) or the
algebraic group model (AGM) under the (plain or one-more) discrete
logarithm assumption (beyond additionally assuming random oracles).
We also propose a partially blind version of one of our schemes.

Our schemes do not rely on the hardness of the ROS problem (which
can be broken in polynomial time) or of the mROS problem (which
admits sub-exponential attacks). The only prior work with these proper-
ties is Abe’s signature scheme (EUROCRYPT ’02), which was recently
proved to be secure in the AGM by Kastner et al. (PKC ’22), but which
also produces signatures twice as long as those from our scheme.

The core of our proofs of security is a new problem, called weighted
fractional ROS (WFROS), for which we prove (unconditional) exponen-
tial lower bounds.

1 Introduction

Blind signatures [1] allow a user to interact with a signer to produce a valid sig-
nature that cannot be linked back by the signer to the interaction that produced
it. Blind signatures are used in several applications, such as e-cash systems [1,2],
anonymous credentials (e.g., [3]), privacy-preserving ad-click measurement [4],
and various forms of anonymous tokens [5,6]. They are also covered by an RFC
draft [7].

This paper develops the first practical pairing-free three-move blind signa-
ture schemes that (1) are concurrently secure, (2) produce short signatures (i.e.,
three or four group elements/scalars), and (3) are provably secure either in the
generic group model (GGM) [8,9] or in the algebraic group model (AGM) [10]
under the discrete logarithm (DL) or the one-more discrete logarithm (OMDL)
assumption (in addition to assuming random oracles [11]). Our DL-based scheme
also admits a partially blind version [12], roughly following a paradigm by Abe
and Okamoto [13], that targets applications where signatures need to depend on
some public input (e.g., an issuing date) known to the signer. An overview of
our schemes is given in Table 1.
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 782–811, 2022.
https://doi.org/10.1007/978-3-031-07085-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_27&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_27

Short Pairing-Free Blind Signatures 783

Unlike blind Schnorr [14], Okamoto-Schnorr [15], and other generic construc-
tions based on identification schemes [16], we do not rely on the hardness of
the ROS problem, for which a polynomial-time attack has recently been pre-
sented [17]. Also, unlike Clause Blind Schnorr (CBS) signatures [18], we do not
rely on the assumed hardness of the mROS problem, which is subject to (mildly)
sub-exponential attacks and we can thus support smaller group sizes.1 In fact,
our schemes all admit tight bounds, and this suggests that they can achieve
pλ{2q-bit of security on λ-bit elliptic curves, supporting an instantiation with
256-bit curves. Our security proofs rely on a reduction to a new variant of the
ROS problem, called weighted fractional ROS (WFROS), for which we prove an
exponential, unconditional lower bound. Therefore, another benefit over CBS,
beyond concrete parameters, is that we do not need to rely on an additional
assumption.

Perhaps as a testament of the unsatisfactory status of pairing-free schemes,
the only other scheme known to achieve exponential, concurrent, security is
Abe’s scheme [19]. Although its original (standard-model) proof was found to
be flawed, proofs were then given both in the GGM [20] and the AGM [21],
along with a proof for the restricted setting of sequential security [22]. Still, it
produces longer signatures and public keys, and is overall less efficient. Also, it
only offers computational blindness (under DDH), whereas our scheme provides
perfect blindness.

Discrete-Logarithm based blind signatures. We stress that our focus
here is making pairing-free schemes as practical and as secure as possible. Indeed,
very simple pairing-based blind signature schemes in the ROM can be obtained
from BLS signatures [23,24]. Blind BLS offers a different trade-off: signatures
are short (i.e., one group element) and signing requires only two moves, but
signature verification requires a more expensive (and more complex) pairing
evaluation. Indeed, the current blind signature RFC draft [7] favors RSA over
BLS, also due to lesser availability of pairings implementations. In particular,
several envisioned applications of blind signatures are inherently browser-based,
and the available cryptographic libraries (e.g., NSS for Firefox and BoringSSL
for Chrome) do not yet offer pairing-friendly curve implementations.

In contrast, (non-blind) Schnorr signatures [25,26] (such as EdDSA [27]) are
short, can rely on standard libraries, and outperform RSA. Though their blind
evaluation requires three rounds, this may be less concerning in applications
where verification cost is the dominating factor and the signing application can
easily keep state. Indeed, [7] identifies CBS as the only plausible alternative to
RSA, and our schemes improve upon CBS by avoiding the mROS assumption.
Once the group order is adjusted to resist sub-exponential attacks, we achieve
comparable signature size, more efficient signing, and accommodate for partial

1 The best known attack against mROS [18] runs in time 2�`logp�`1q`λ{p1`logp�`1qq, where
λ is the security parameter and � corresponds to the number of concurrent sessions.
The worst � gives a 2Opλ{ log λq attack, and in practice, this suggests a choice of
λ “ 512 to achieve 128-bit security for all �’s.

784 S. Tessaro and C. Zhu

Table 1. Overview of our results. The four schemes proposed in this paper com-
pared to pairing-free schemes that admit GGM/AGM security proofs in the literature.
All schemes are three-move and secure assuming the ROM; All schemes except BS1

admit AGM security proofs; further p “ |G|. As in plain Schnorr signatures, most
schemes allow replacing one element in Zp with a group element in the signature. The
ROS assumption can be broken in polynomial time unless the scheme is restricted
to tolerate only a very small number of sessions. Also, the mROS assumption admits
sub-exponential attacks, which require the choice of a larger order p over all schemes
(roughly 512-bit for 128-bit security [18]).

Scheme PK size Sig. size Assumption Communication

BS1 (Sect. 4) 1 G 3 Zp GGM 2 G + 3 Zp

BS2 (full version) 1 G 4 Zp OMDL 2 G + 4 Zp

BS3 (Sect. 5.1) 2 G 4 Zp DL 2 G + 4 Zp

PBS (Sect. 6) 1 G 4 Zp DL 2 G + 4 Zp

Blind Schnorr [18] 1 G 2 Zp OMDL + ROS 1 G + 2 Zp

Clause Blind Schnorr [18] 1 G 2 Zp OMDL + mROS 2 G + 4 Zp

Abe [19,21] 3 G 2 G + 6 Zp DL λ bits + 3 G + 6 Zp

blindness. (No partially blind version of CBS is known to the best of our knowl-
edge.)

Finally, note that it is easier to prove security of pairing-free schemes under
sequential access to the signer. For example, Kastner et al. [21] prove that plain
blind Schnorr signatures are secure in this case, in the AGM, assuming the
hardness of OMDL. Also, Baldimtsi and Lysyanskaya [22] (implicitly) prove
sequential security of Abe’s scheme. However, many applications, like PCM,
easily enable concurrent attacks.

On ideal models. The use of the AGM or the GGM, along with the ROM, still
appears necessary for the most practical pairing-free schemes with concurrent
security. As of now, solutions solely assuming the ROM can only handle bounded
concurrency [16] or, alternatively, their communication and computation costs
grow with the number of signing sessions [28–30].

A number of other schemes [31–37] partially or completely avoid ideal models,
some of which are fairly practical. However, they do not yet appear suitable for
at-scale deployment.

1.1 A Scheme in the GGM

Our simplest scheme only admits a proof in the generic-group model (GGM)
but best illustrates our ideas, in particular, how we bypass ROS-style attacks. It
is slightly less efficient than Schnorr signatures, i.e., a signature that consists of
three scalars mod p (or alternatively, two scalars and a group element). Nonethe-
less, it has a very similar flavor (in particular, signature verification can be built
on top of a suitable implementation of Schnorr signatures in a black-box way).

Short Pairing-Free Blind Signatures 785

Preface: Blind Schnorr Signatures and ROS. Recall that we seek an
interactive scheme (1) that is one-more unforgeable (i.e., no adversary should be
able to generate � ` 1 signatures by interacting only � times with the signer),
and (2) for which interaction can be blinded. It is helpful to illustrate the main
technical barrier behind proving (1) for interactive Schnorr signatures. Recall
that the verification key is X “ gx for a generator g of a cyclic group G of prime
order p, and a signing key x. The signer starts the session by sending A “ ga,
for a random a P Zp. Then, the user sends a challenge c “ HpA,mq for a hash
function H and a message m to be signed. Finally, the signer responds with
s “ a ` c · x, and the signature is σ “ pc, sq.

Let us now consider an adversary that obtains � initial messages A1, . . . , A�

from the signer, where Ai “ gai . By solving the so-called ROS problem [16,18,38],
the attacker can find �`1 vectors α1, . . . ,α�`1 P Z

�
p and a vector pc1, . . . , c�q P Z

�
p

such that
�ÿ

j“1

α
pjq
i · cj “ c∗

i (1)

for all i P r� ` 1s, where c∗
i “ Hpś�

j“1 A
α

pjq
i

j ,m∗
i q, for some message m∗

i P {0, 1}∗.

(Here, α
pjq
i is the j-th component of αi.) Then, the attacker can obtain sj “

aj ` cjx from the signer for all j P r�s by completing the � signing sessions. It is
now easy to verify that pc∗

i , s
∗
i q is a valid signature for m∗

i for all i P r�`1s, where
s∗

i “ ř�
j“1 α

pjq
i · sj . Benhamouda et al. [17] recently gave a simple polynomial-

time algorithm to solve the ROS problem for the case � ą logppq, which thus
breaks one-more unforgeability.2

Fuchsbauer et al. [18] propose a different interactive signing process for
Schnorr signatures that is one-more unforgeable (in the AGM + ROM) assuming
that a variant of the ROS problem, called mROS, is hard. The mROS problem,
however, admits sub-exponential attacks, and as it gives approximately only 70
bits of security from an implementation on a 256-bit curve, it effectively forces
the use of 512-bit curves.3

Our first scheme. We take a different path which completely avoids the ROS
and mROS problems to obtain our first scheme, BS1. Again, we present a non-
blind version – the scheme can be made blind via fairly standard tricks, as we
explain in the body of the paper below. Again, the public key is X “ gx for a
secret key x. Then, the signer and the user engage in the following protocol to
sign m P {0, 1}∗:

1. The signer sends A “ ga and Y “ Xy for random a, y P Zp.
2. The user responds with c “ HpA, Y,mq
2 Many envisioned implementations allow for � ą logppq. Still, is worth noting that

the scheme retains some security for � ă logppq even in the standard model [16].
3 mROS depends on a parameter �, with a similar role as in ROS – sub-exponential

attacks require � ă logppq, but a one-more unforgeability attack for a small � implies
one for any �′ ą � simply by generating p�′ ´ �q additional valid signatures.

786 S. Tessaro and C. Zhu

3. The signer returns a pair ps, yq, where s “ a ` cxy.
4. The user accepts the signature σ “ pc, s, yq iff gs “ A · Y c and Y “ Xy.

Verification simply checks that HpgsX´yc,Xy,Mq “ c. In particular, note that
pc, sq is a valid Schnorr signature with respect to the public-key Xy – this can be
leveraged to implement the verification algorithm on top of an existing imple-
mentation of basic Schnorr signatures that also hash the public key (EdDSA
does exactly this).4 Further, as in Schnorr signatures, we could replace c with A
in σ, and our results would be unaffected.

Security intuition. To gather initial insights about the security of BS1, it is
instructive to attempt an ROS-style attack. The attacker opens � sessions and
obtains pairs pA1, Y1q, . . . , pA�, Y�q, where Ai “ gai and Yi “ Xyi “ gxyi for all
i P r�s. One natural extension of the ROS attack is to find � ` 1 vectors αi P Z

�
p

along with messages m∗
1,m

∗
2, . . . P {0, 1}∗ such that

c∗
i “ H

(
�ź

j“1

A
α

pjq
i

j ,
�ź

j“1

Y
α

pjq
i

j ,m∗
i

)

for all i P r� ` 1s and then find pc1, . . . , c�q P Z
�
p such that

�ÿ

j“1

α
pjq
i · yj · cj “ c∗

i ·
�ÿ

j“1

α
pjq
i · yj , (2)

for all i P r� ` 1s. Indeed, if this succeeded, the adversary could complete the �
sessions to learn psj , yjq by inputting cj , where yj is random and sj “ aj`cj ·x·yj .
One could generate � ` 1 signatures pc∗

i , s
∗
i , y

∗
i q for i P r� ` 1s by setting s∗

i “ř�
j“1 α

pjq
i sj and y∗

i “ ř�
j“1 α

pjq
i · yj . These would be valid because

gs∗
i “ g

ř�
j“1 α

pjq
i paj`cjxyjq

“
�ź

j“1

A
α

pjq
i

j · X
ř�

j“1 α
pjq
i cjyj

(2)“
�ź

j“1

A
α

pjq
i

j ·
(

�ź

j“1

Y
α

pjq
i

j

)c∗
i

.

However, finding pc1, . . . , c�q that satisfy (2) for � ` 1 i’s simultaneously is much
harder than ROS. An initial intuition here is that Xy completely hides y to the
point where y is revealed later in the session, where it appears like a random and
fresh weight in the sum, independent of ci. This intuition is however not correct,
as an attacker can use the group element Xy and can try to gain information
about y, but our proof will show (among other things) that in the GGM no
useful information is obtained about y, and y is (close to) uniform when it is
later revealed.

4 Note that this only superficially resembles key-blinding for Schnorr signatures [39].
Here, the “blinding” y is actually public and part of the signature.

Short Pairing-Free Blind Signatures 787

The WFROS problem. The above attack paradigm is in fact generalized in
terms of a new ROS-like problem that we call WFROS (this stands for Weighted
Fractional ROS), for which we prove an unconditional lower bound. WFROS
considers a game with two oracles that can be invoked adaptively in an inter-
leaved way:

– The first oracle, H, accepts as input a pair of vectors α,β P Z
2�`1
p , which are

then associated with a random δ P Z
∗
p.

– The second oracle, S, allows to bind, for some i P r�s, chosen input ci P Zp

with a random weight yi P Z
∗
p. During the course of the game, this latter

oracle must be called exactly once for each i P r�s.
The adversary finally commits to a subset of �`1 prior H queries and wins if for
each query in the subset, which has defined a pair of vector α,β and returned
δ, we have A{B “ δ, where

A “ αp0q `
ÿ

iPr�s
yipαp2i´1q ` ci · αp2iqq , B “ βp0q `

ÿ

iPr�s
yipβp2i´1q ` ci · βp2iqq .

Here, vpiq denotes the i-th component of vector v. Our main result (Theorem 1)
says that no adversary making QH queries to H can win this game with proba-
bility better than pQ2

H ` 2�QHq{pp ´ 1q, or, in other words, QH ě min{‘
p, p{�}

is needed to win with constant probability. Note that � ! ‘
p is generally true,

as for our usage, � is bounded by the number of signing sessions.
Our GGM proof for BS1 transforms any generic attacker into one breaking

the WFROS problem. This transformation is actually not immediate because a
one-more unforgeability attacker can learn functions of the secret key x when
obtaining the second message from the signer. A similar challenge occurs in
proving hardness of the OMDL problem in the GGM, which was recently resolved
by Bauer et al. [40], and we rely on their techniques.

1.2 AGM Security and Partial Blindness

The Algebraic Group Model (AGM) [10] can be seen as a weaker idealization
than the GGM. In particular, AGM proofs deal with actual groups (as opposed
to representing group elements with random labels) and proceed via reductions
that apply only to “algebraic adversaries”, which provide representation of the
group elements they output to the reduction. AGM has become a very popular
model for validating security of a number of practical group-based protocols.

The main barrier to proving one-more unforgeability of BS1 in the AGM is
that the representation of Xy could leak some information about y that would
not be available in the GGM, and thus we would not be able to apply our argu-
ment showing that y is still (close to) random looking when it is later revealed
– our reduction in the GGM security proof crucially relies on this. To over-
come this issue, for the two schemes BS2 and BS3, we replace Xy with a hiding
commitment to y. In particular, we propose two different ways of achieving this:

788 S. Tessaro and C. Zhu

Scheme BS2. Here, Xy is replaced by gtXy. Later, the signer responds to chal-
lenge c with ps, y, tq, where s “ a ` c · y · x. A signature is σ “ pc, s, y, tq.

Scheme BS3. Here, gtXy is replaced by gtZy, where Z is an extra random group
element included in the verification key.

We consider BS2 mostly for pedagogical reasons. Indeed, we can prove security
of BS3 in the AGM based solely on the discrete logarithm problem (DL). In
contrast, BS2 relies on the hardness of the (stronger) one-more DL problem
(OMDL) [41], which asks for the hardness of breaking � ` 1 DL instances given
access to an oracle that can solve at most � (adaptively chosen) DL instances.
While we know that OMDL is generally not easier than DL [40], a prudent
instantiation may prefer relying on the (non-interactive) DL problem. While
BS3 requires a longer key, one could mitigate this by obtaining Z as the output
of a hash function (assumed to be a random oracle) evaluated on some public
input.

The proof of security for both schemes consists of showing that any adversary
breaking one-more unforgeability can be transformed into one breaking either
OMDL or DL (depending on the scheme) or into one breaking the WFROS
problem. For the latter, however, we can resort to our unconditional hardness
lower bound (Theorem 1).

Adding Partial Blindness. Finally, we note that it is not too hard to add
partial blindness to BS3, which is another reason to consider this scheme. In
particular, to obtain the resulting PBS scheme, we can adopt a framework by
Abe and Okamoto [13]. The main idea is simply to use a hash function (modeled
as a random oracle) to generate the extra group element Z in a way that is
dependent on a public input upon which the signature depends. We target in
particular a stronger notion of one-more unforgeability, which shows that if the
protocol is run � times for a public input, then no �`1 signatures can be generated
for that public input regardless of how many signatures have been generated for
different public inputs. We defer more details to Sect. 6.

Outline of the Paper

Section 2 will introduce some basic preliminaries. Section 3 will then introduce
the WFROS problem, and prove a lower bound for it. We will then discuss our
GGM-based scheme in Sect. 4, whereas variants secure in the AGM are presented
in Sect. 5. Finally, we give a partially blind instantiation of our AGM scheme in
Sect. 6.

2 Preliminaries

Notation. For positive integer n, we write rns for {1, . . . , n}. We use λ to
denote the security parameter. We use G to denote an (asymptotic) family of
cyclic groups G :“ {Gλ}λą0, where |Gλ| ą 2λ. We use gpGλq to denote the

Short Pairing-Free Blind Signatures 789

generator of Gλ, and we will work over prime-order groups. We tacitly assume
standard group operations can be performed in time polynomial in λ in Gλ and
adopt multiplicative notation. We will often compute over the finite field Zp (for
a prime p) – we usually do not write modular reduction explicitly when it is clear
from the context. We write Z

∗
p “ Zp \ {0}. We often need to consider vectors

α P Z
�
p and usually refer to the i-th component of α as αpiq P Zp.

Blind signatures. This paper focuses on three-move blind signature schemes,
and our notation is similar to that of prior works (e.g., [16,18]). Formally, a
(three-move) blind signature scheme BS is a tuple of efficient (randomized) algo-
rithms

BS “ pBS.Setup,BS.KG,BS.S1,BS.S2,BS.U1,BS.U2,BS.Verq ,

with the following behavior:

– The parameter generation algorithm BS.Setupp1λq outputs a string of param-
eters par, whereas the key generation algorithm BS.KGpparq outputs a key-
pair psk, pkq, where sk is the secret (or signing) key and pk is the public (or
verification) key.

– The interaction between the user and the signer to sign a message m P {0, 1}∗

with key-pair ppk, skq is defined by the following experiment:

psts,msg1q Ð BS.S1pskq , pstu, chlq Ð BS.U1ppk,msg1,mq ,

msg2 Ð BS.S2psts, chlq , σ Ð BS.U2pstu,msg2q .
(3)

Here, σ is either the resulting signature or an error message K.
– The (deterministic) verification algorithm outputs a bit BS.Verppk, σ,mq.
We say that BS is (perfectly) correct if for every message m P {0, 1}∗, with
probability one over the sampling of parameters and the key pair ppk, skq, the
experiment in (3) returns σ such that BS.Verppk, σ,mq “ 1. All of our schemes
are going to be perfectly correct.

One-more unforgeability. The standard notion of security for blind sig-
natures is one-more unforgeability (OMUF). OMUF ensures that no adversary
playing the role of a user interacting with the signer � times, in an arbitrarily
concurrent fashion, can issue �`1 signatures (or more, of course). The OMUFA

BS

game for a blind signature scheme BS is defined in Fig. 1. The corresponding
advantage of A is defined as Advomuf

BS pA, λq :“ PrrOMUFA
BSpλq “ 1s. All of our

analyses will further assume one or more random oracles, which are modeled as
an additional oracle to which the adversary A is given access.

Blindness. We also consider the standard notion of blindness against a mali-
cious server that can, in particular, attempt to publish a malformed public key.
The corresponding game BlindA

BS is defined in Fig. 2, and for any adversary A,
we define its advantage as AdvblindBS pA, λq :“

∣∣∣PrrBlindA
BSpλq “ 1s ´ 1

2

∣∣∣ . We say

the scheme is perfectly blind if and only if AdvblindBS pA, λq “ 0 for any A and
all λ.

790 S. Tessaro and C. Zhu

Fig. 1. The OMUF security game for a blind signature scheme BS.

Fig. 2. The Blind security game for a blind signature scheme BS.

Game-playing proofs. Several of our proofs adopt a lightweight variant of the
standard “Game-Playing Framework” by Bellare and Rogaway [42].

3 The Weighted Fractional ROS Problem

This section introduces and analyzes an unconditionally hard problem under-
lying all of our proofs, which we call the Weighted Fractional ROS problem
(WFROS). It is a variant of the original ROS problem [16,18,38], which, in
turn, stands for Random inhomogeneities in a Overdetermined Solvable system
of linear equations. While ROS can be solved in polynomial time [17] and its
mROS variant can be solved in sub-exponential time [18], we are going to prove
an exponential lower bound for WFROS.

The WFROS problem. The problem is defined via the game WFROSA
�,p,

described in Fig. 3, which involves an adversary A and depends on two inte-
ger parameters � and p, where p is a prime. The adversary here interacts with

Short Pairing-Free Blind Signatures 791

Fig. 3. The WFROS problem. Here, α, β P Z
2�`1
p , which is indexed as α “

pαp0q, . . . , αp2�qq and β “ pβp0q, . . . , βp2�qq.

two oracles, H and S. The first oracle allows the adversary to link a vector pair
α,β P Z

2�`1
p with a random inhomogeneous part δ P Z

∗
p – each such query defines

implicitly an equation A{B “ δ in the unknowns C1, . . . ,C� and Y1, . . . ,Y�. A
call to Spi, ciq lets us set the value of Ci to ci and set Yi to a random value yi.
The second oracle Spi, ·q must be called once for every i P r�s. It is noteworthy
to stress that the ci’s can be chosen arbitrarily, whereas the corresponding yi’s
are random and independent.

In the end, the adversary wins the game if a subset of �`1 equations defined
by the H queries is satisfied by the assignment defined by querying S. In particu-
lar, we define Advwfros

�,p pAq “ Pr
[
WFROSA

�,p “ 1
]
. Note that it would be possible

to carry out some of the following security proofs using restricted versions of the
WFROS game, but the above formulation lets us handle all schemes via a single
notion.

A Lower Bound for WFROS. The following theorem, our main result on
WFROS, shows that any adversary winning WFROS with constant probability
requires QH “ Ωpmin{‘

p, p{�}q queries. (Also, note that all applications of
interest assume � ! ‘

p.)

Theorem 1 (Lower bound for WFROS). For any � ą 0, any prime number
p, and any adversary A playing the WFROS�,p game that makes at most QH

queries to H, we have

Advwfros
�,p pAq ď QHp2� ` QHq

p ´ 1
.

The proof is given in the next section. To gain some very high-level intuition,
we observe that a key contributor to the hardness of WFROS are values yi,
which are defined after the ci’s are fixed and hence randomize the Aj and Bj ’s.
Therefore, to satisfy Aj “ δj ·Bj , the adversary is restricted in the way it plays.
For example, to satisfy an equation defined by an H query pαj ,βjq, the adversary

792 S. Tessaro and C. Zhu

can pick ci’s such that pαp2i´1q
j ` ciα

p2iq
j q “ δj · pβp2i´1q

j ` ciβ
p2iq
j q for all i P r�s.

Then, the equation Aj “ δjBj is satisfied no matter what the yi’s are. Our proof
shows that the adversary has to pick ci’s this way – and in fact, it has to follow
even more restrictions. Finally, we show that under these restrictions, no set of
� ` 1 equations can be satisfied simultaneously.

3.1 Proof of Theorem 1

Let A be an adversary for the WFROS game that makes at most QH queries to
H. Without loss of generality, we assume that A makes exactly one query pi, ciq
to S for each i P r�s and that A always outputs J Ď rQHs.

In the WFROSA
�,p game, for each j P rQHs, denote the event Wj as

α
p0q
j `

ÿ

iPr�s
yipαp2i´1q

j ` ci · α
p2iq
j q “ δj

⎛
⎝β

p0q
j `

ÿ

iPr�s
yipβp2i´1q

j ` ci · β
p2iq
j q

⎞
⎠ (W1)

^ β
p0q
j `

ÿ

iPr�s
yipβp2i´1q

j ` ci · β
p2iq
j q ‰ 0 . (W2)

In other words, Wj is the event that the equation defined by the j-th H query
is satisfied. Then, A wins if and only if |J | ą � and Wj occur for each j P J .

Denote W :“ p|J | ą �q ^
(Ź

jPJ Wj

)
and we have Advwfros

�,p pAq “ PrrW s.
To bound PrrW s, we need notation to refer to some values (formally, random

variables) defined in the execution of the WFROSA
�,p game. First, denote as Ipjq

fin

the contents of the set Ifin when the adversary makes the j-th query to H, and
let pαj ,βjq be the input of this query to H, which is answered with δj . Also, let
Ipjq
unk :“ r�s \ Ipjq

fin , i.e., the set of indices i P r�s for which A has not yet made
any query pi, ·q to S when the j-th query to H is made. Further, c1, . . . , c� and
y1, . . . , y� are the values defined by querying S.

Now, for each j P rQHs, we define the following events:

Event E
p1q
j . First, let E

p1q
1,j be the event that β

p0q
j `ř

iPIpjq
fin

yi

(
β

p2i´1q
j ` ci · β

p2iq
j

)
‰ 0. For each i P Ipjq

unk, also let E
p1q
2,pj,iq be the event that α

p2i´1q
j ` ci · α

p2iq
j ‰

δj

(
β

p2i´1q
j ` ci · β

p2iq
j

)
. Finally, let E

p1q
j :“ E

p1q
1,j _

(Ž
iPrIpjq

unks E
p1q
2,pj,iq

)
.

Event E
p2q
j . We denote the event E

p2q
j as the event where

∀ i P Ipjq
unk : α

p2iq
j · β

p2i´1q
j “ α

p2i´1q
j · β

p2iq
j . (4)

Note that events E
p1q
j and E

p2q
j are, by themselves, not necessarily unlikely – the

adversary can certainly provoke them. However, we intend to show that this has
implications on the ability to satisfy the j-th equation. In particular, we prove
the following two lemmas in Sects. 3.2 and 3.3 below, respectively.

Short Pairing-Free Blind Signatures 793

Lemma 1. PrrWj ^ E
p1q
j s ď �`1

p´1 .

Lemma 2. PrrWj ^ p�E
p1q
j q ^ E

p2q
j s ď �

p´1 .

Now, if we denote Ep1q :“ Ž
jPrQHspWj ^ E

p1q
j q and Ep2q :“ Ž

jPrQHspWj ^
p�E

p1q
j q ^ E

p2q
j q, the union bound yields PrrEp1qs ď QHp�`1q

p´1 and PrrEp2qs ď QH·�
p´1 .

Our final lemma (proved in Sect. 3.4) is then the following:

Lemma 3. PrrW ^ p�Ep1qq ^ p�Ep2qqs ď QHpQH´1q
p´1 .

The three lemmas can be combined to obtain

PrrW s ď PrrEp1qs ` PrrEp2qs ` PrrW ∧ p�Ep1qq ∧ p�Ep2qqs ď QHp2� ` QHq
p ´ 1

.

which concludes the proof. In the next three sections, we prove the three perced-
ing lemmas.

3.2 Proof of Lemma 1

Throughout this proof, let us fix j P rQHs. We first define a sequence of ran-
dom variables pD0, D1, . . . , Dn, X1, . . . , Xnq, where n “ � ` 1, such that E

p1q
j

implies one of D0, . . . , Dn is not equal to 0 and D0 ` ř
kPrns DkXk “ 0. Fur-

ther, we also ensure that Xk is uniformly distributed over Z
∗
p independent of

pD0,D1, . . . , Dk,X1, . . . , Xk´1q for each k P rns and use this to bound PrrEp1q
j s.

More concretely:

– Let D0 :“ α
p0q
j ` ř

iPIpjq
fin

yi

(
α

p2i´1q
j ` ci · α

p2i´1q
j

)
, X1 :“ ´δj , D1 :“ β

p0q
j `

ř
iPIpjq

fin
yi

(
β

p2i´1q
j ` ci · β

p2iq
j

)
, and note that E

p1q
1,j is equivalent to D1 ‰ 0.

– Further, for 1 ď k ď |Ipjq
unk|, denote ik P Ipjq

unk as the index such that pik, cik
q

is the k-th query made to S among the indexes in Ipjq
unk and let Xk`1 “ yik

,

Dk`1 :“ α
p2ik´1q
j ` cik

· α
p2ikq
j ´ δj

(
β

p2ik´1q
j ` cik

· β
p2ikq
j

)
, we have E

p1q
2,pj,ikq

occurs is equivalent to Dk`1 ‰ 0.
– For |Ipjq

unk| ` 1 ă k ď n, let Dk “ 0 and Xk be a random variable uniformly
distributed in Z

∗
p independent of pD0,D1, . . . , Dk,X1, . . . , Xk´1q.5

Note that D0 ` řn
k“1 DkXk “ α

p0q
j ` ř

iPr�s yi ·
(
α

p2i´1q
j ` ci · α

p2iq
j

)
´ δj ·

(
β

p0q
j

` ř
iPr�s yi

(
β

p2i´1q
j ` ci · β

p2iq
j

))
. Therefore, by (W1), we know Wj occurs implies

D0 ` řn
i“1 DiXi “ 0. Thus, the event Wj ^ E

p1q
j implies, in addition, that one

of D0, . . . , Dn is not equal to 0. Then, the upper bound PrrWj ^ E
p1q
j s ď �`1

p´1

5 For |Ipjq
unk| ` 1 ă k ď n, Dk, Xk act as placeholders so that we can apply Lemma 4

for an a priori fixed value n instead of a random variable |Ipjq
unk| ` 1.

794 S. Tessaro and C. Zhu

follows by combining the following lemma6 and claim. The proofs of the lemma
and claim are presented in the full version of this paper.

Claim 1. For each k P rns, Xk is uniformly distributed over Z
∗
p independent of

pD0,. . . , Dk, X1,. . . , Xk´1q.
Lemma 4. Let p be prime. Let D0,D1, . . . , Dn,X1, . . . , Xn P Zp be random
variables such that for all k P rns, Xk is uniform over Uk Ď Zp and independent
of pD0, . . . , Dk,X1, . . . , Xk´1q. Then,

Pr

[
∃ i P {0, . . . , n} : Di ‰ 0 ^ D0 `

nÿ

j“1

DjXj “ 0

]
ď

nÿ

i“1

1
|Ui| .

3.3 Proof of Lemma 2

It is easier to introduce a new event Fj and show that Wj ^ p�E
p1q
j q implies

Fj . We will then bound PrrFj ^ E
p2q
j s. In particular, define the event Fj as

∀ i P Ipjq
unk : α

p2i´1q
j ` ci · α

p2iq
j ´ δj

(
β

p2i´1q
j ` ci · β

p2iq
j

)
“ 0 (F1)

^
ÿ

iPIpjq
unk

yi

(
β

p2i´1q
j ` ci · β

p2iq
j

)
‰ 0 , (F2)

and we have the following lemma.

Lemma 5. If Wj ^ p�E
p1q
j q occurs, then the event Fj occurs.

We also denote

Dj :“
{

α
p2iq
j

β
p2iq
j

| i P Ipjq
unk, β

p2iq
j ‰ 0

}
∪

{
α

p2i´1q
j

β
p2i´1q
j

| i P Ipjq
unk, β

p2iq
j “ 0, β

p2i´1q
j ‰ 0

}
.

We have |Dj | ď |{i P Ipjq
unk | β

p2iq
j ‰ 0} ∪ {i P Ipjq

unk | β
p2iq
j “ 0}| “ |Ipjq

unk|.

Claim 2. The event Fj ^ E
p2q
j implies δj P Dj.

The proofs of the above claim and lemma are presented in the full version of
this paper. Note that δj is generated uniformly at random, independently of Dj ,
since the latter is defined by the j-th H query. Therefore, Lemma 5 and Claim 2

yield PrrWj ^ p�E
p1q
j q ^ E

p2q
j s ď PrrFj ^ E

p2q
j s ď Prrδj P Djs ď |Ipjq

unk|
p´1 ď �

p´1 .

6 Note that Lemma 4 cannot be directly derived from the Schwartz-Zippel lemma
by viewing D0 ` řn

j“1 DjXj “ 0 as a polynomial of X1, . . . , Xn, since we cover
for example the case where D0, D1, . . . , Dn are adaptively chosen, i.e., each Di can
depend on X1 . . . , Xi´1.

Short Pairing-Free Blind Signatures 795

3.4 Proof of Lemma 3

To conclude the analysis, we introduce yet another event, Ep3q. We will show
below that W ^ p�Ep1qq ^ p�Ep2qq implies Ep3q, and thus it is enough to
upper bound the probability of Ep3q occurring. Concretely, Ep3q is defined as
follows (the definition of the following events Fj′ is given in Sect. 3.3).

Event Ep3q. For each j1, j2 P rQHs and j1 ă j2, denote the event E
p3q
pj1,j2q as

∃ i P Ipj1q
unk ∩Ipj2q

unk : α
p2iq
j1

·βp2i´1q
j1

‰ α
p2i´1q
j1

·βp2iq
j1

^ α
p2iq
j2

·βp2i´1q
j2

‰ α
p2i´1q
j2

·βp2iq
j2

.

Denote E′p3q
pj1,j2q :“ E

p3q
pj1,j2q ^ Fj1 ^ Fj2 and Ep3q :“ Ž

j1,j2PrQHs,j1ăj2
E′p3q

pj1,j2q.

To see why the above implication is true, assume that W indeed occurs, but
both Ep1q and Ep2q do not occur. We now fix some j P J . We know Wj occurs,
but both E

p1q
j and E

p2q
j do not occur. In particular, by the definition of E

p2q
j , we

know there exists i P Ipjq
unk such that α

p2iq
j · β

p2i´1q
j ‰ α

p2i´1q
j · β

p2iq
j .

Let i
pjq
min be the smallest index in Ipjq

unk such that α
p2i

pjq
minq

j ·βp2i
pjq
min´1q

j ‰ α
p2i

pjq
min´1q

j ·
β

p2i
pjq
minq

j . Since W occurs, we know |J | ą �. Then, since i
pjq
min P Ipjq

unk Ď r�s for each
j P J and |J | ą �, by the pigeonhole principle, we know there exists j1, j2 P J
such that j1 ă j2 and i

pj1q
min “ i

pj2q
min, which implies E

p3q
pj1,j2q occurs. Also, since we

know both Wj1 ^ p�E
p1q
j1

q and Wj2 ^ p�E
p1q
j2

q occur, by Lemma 5, we have

Fj1 and Fj2 both occur. Therefore, we know E′p3q
pj1,j2q “ E

p3q
pj1,j2q ^ Fj1 ^ Fj2

occurs, which implies Ep3q occurs.
Therefore, we have Pr

[
W ^ p�Ep1qq ^ p�Ep2qq] ď PrrEp3qs. We now just

need to bound PrrE′p3q
pj1,j2qs for any j1 ă j2.

To gain insight, suppose E′p3q
pj1,j2q occurs. We can show that there exists i P

Ipj1q
unk ∩ Ipj2q

unk such that α
p2iq
j1

´ δj1β
p2iq
j1

‰ 0 and α
p2iq
j2

´ δj2β
p2iq
j2

‰ 0. Then, since

Fj1 and Fj2 occur, by (F1), it holds that
α

p2i´1q
j1

´δj1 ·βp2i´1q
j1

α
p2iq
j1

´δj1 ·βp2iq
j1

“ ci “ α
p2i´1q
j2

´δj2 ·βp2i´1q
j2

α
p2iq
j2

´δj2 ·βp2iq
j2

.

However, this can occur with only small probability since δj1 and δj2 are sampled
independently. The following claim makes this formal. The proof is presented in
the full version of this paper.

Claim 3. For any j1, j2 P rQHs such that j1 ă j2, suppose E′p3q
pj1,j2q occurs.

Let idif be the smallest index in Ipj1q
unk ∩ Ipj2q

unk such that α
p2idif q
j1

· β
p2idif´1q
j1

‰
α

p2idif´1q
j1

· β
p2idif q
j1

and α
p2idif q
j2

· β
p2idif´1q
j2

‰ α
p2idif´1q
j2

· β
p2idif q
j2

. Then, we have

α
p2idif q
j1

´ δj1β
p2idif q
j1

‰ 0. Moreover, let T “ α
p2idif ´1q
j1

´δj1 ·βp2idif ´1q
j1

α
p2idif q
j1

´δj1 ·βp2idif q
j1

, and we have

β
p2idif´1q
j2

´ T · β
p2idif q
j2

‰ 0 and δj2 “ α
p2idif ´1q
j2

´T ·αp2idif q
j2

β
p2idif´1q
j2

´T ·βp2idif q
j2

.

796 S. Tessaro and C. Zhu

Fig. 4. The blind signature scheme BS1 “ BS1rGs.

Let T and idif be the values defined in the above claim. Consider the step when
δj2 is generated. We know the j2-th query to H has been made, and thus αj2

and βj2 are determined. Also, since j1 ă j2, the j1-th query to H has returned,
and thus αj1 , αj2 , and δj1 are determined. Therefore, we know idif and T are
also determined. Thus, we know δj2 is picked uniformly at random from Z

∗
p

independent of idif , αj1 , αj2 , βj1 , βj2 , δj1 , and T . Then, by the above claim,

PrrE′p3q
pj1,j2qs ď Pr

[
α

p2idif q
j1

´ δj1β
p2idif q
j1

‰ 0
^ β

p2idif´1q
j2

´ T · β
p2idif q
j2

‰ 0
^ δj2 “ α

p2idif ´1q
j2

´T ·αp2idif q
j2

β
p2idif´1q
j2

´T ·βp2idif q
j2

]

ď Pr

[
δj2 “ α

p2idif ´1q
j2

´T ·αp2idif q
j2

β
p2idif´1q
j2

´T ·βp2idif q
j2

∣∣∣∣∣ α
p2idif q
j1

´ δj1β
p2idif q
j1

‰ 0
^ β

p2idif´1q
j2

´ T · β
p2idif q
j2

‰ 0

]

ď 1
p ´ 1

.

4 Efficient Blind Signatures in the GGM

This section introduces our first scheme, BS1, which relies on a prime-order
cyclic group and a hash function H. We describe this scheme formally in Fig. 4.
Roughly, it extends (blind) Schnorr Signatures by sending an additional group

Short Pairing-Free Blind Signatures 797

element Y “ Xy in the first round. Then, the signer’s final response to challenge
c reveals y along with s “ a`cxy. We also note that we could consider a variant
of the scheme where the signature consists of σ “ pA′, s′, y′q, where A′ replaces
c′.

Security analysis. First off, we observe that the protocol is blind. We give a
complete proof of the following theorem in the full version of this paper.

Theorem 2. Let G be an (asymptotic) family of prime-order cyclic groups.
Then, the blind signature scheme BS1rGs is perfectly blind.

Our main result shows OMUF security of BS1 in the generic-group model
(GGM) following Shoup’s original formalization [8], which encodes every group
element with a random label. To this end, we present in Fig. 5 a game describing
a GGM-version of OMUF security for BS1, adapting the one from Sect. 2. We also
define a corresponding advantage Advomuf-ggm

BS1rGs pA, λq to measure the probability
that A wins the game. Note that to keep notation homogenous, it is convenient
to allow the game to depend on G, although the game itself only makes use of
the order of the group. The game also models the hash function H as a random
oracle, to which the adversary is given oracle access.

The following theorem states our main result in the form of a reduction to
WFROS and is proved in Sect. 4.1.

Theorem 3 (OMUF Security of BS1). Let G be an (asymptotic) family of
prime-order cyclic groups. For any adversary A for the OMUF-GGMBS1rGspλq
game making at most QΠ queries to Π, QS1 queries to S1, and QH queries to
the random oracle H, there exists an adversary B for the WFROSQS1 ,p problem,
where p “ |Gλ|, making at most QH ` QS1 ` 1 queries to the random oracle H

such that Advomuf-ggm
BS1rGs pA, λq ď Advwfros

QS1 ,ppBq ` QΦpQΦ`2QH`2QS1`2q
p´p1`QS1`Q2

Φq , where QΦ is
the maximum number of queries to Φ during the game OMUF-GGM, and we
have QΦ “ QΠ ` 4QS1 ` 4.

By Theorem 1, we have the following corollary.

Corollary 1. Let G be an (asymptotic) family of prime-order cyclic groups.
For any adversary A playing game OMUF-GGMBS1rGspλq making at most QΠ

queries to Π, QS1 queries to S1, and QH queries to the random oracle H, we
have Advomuf-ggm

BS1rGs pA, λq ď 2QΦpQΦ`2QH`2QS1`2q
p´p1`QS1`Q2

Φq , where QΦ “ QΠ ` 4QS1 ` 4.

We note in particular that the concrete security of BS1 in the GGM is compa-
rable to that of the discrete logarithm problem, in that QΦ “ Ωpmin{‘

p, p{QH,
p{QS1}q is necessary to break security with constant probability.

798 S. Tessaro and C. Zhu

Fig. 5. The OMUF security game in GGM for the blind signature scheme BS1rGs.

4.1 Proof of Theorem 3

Let us fix an adversary A that makes (without loss of generality) exactly QΠ

queries to Π, QS1 queries to S1, and QH queries to the random oracle H. Without
loss of generality, assume it also makes exactly one query pi, ciq to S2 for each
i P rQS1s. Then, after A returns, we know � “ QS1 and Ifin “ rQS1s. Also, it
is clear that the overall number of queries to Φ in OMUF-GGMA

BS1
is at most

QΦ :“ QΠ ` 4QS1 ` 4.
We prove the theorem by going through a series of games, from Game0 to

Game4, where Game0 is the OMUF-GGMA
BS1

game and Game4 is an interme-
diate game that enables an easier reduction to WFROS. Here, however, we first
introduce Game4 and Lemma 6 and then discuss the reduction to WFROS,
which is the core of the proof. We leave the definition of the intermediate games
between Game0 to Game4 to the proof of Lemma 6. The game-hopping argument
is non-trivial, but it follows the same blueprint as in [40].

Definition of Game4. The pseudocode description of Game4 is given in Fig. 6.
The main difference from OMUF-GGMA

BS1
is that the encoding oracle Φ takes

as input a polynomial instead of an integer in Zp. (Note that the adversary
cannot query Φ directly, and thus this difference is not directly surfaced.) This
essentially captures the algebraic core of our proof.

Also, for a valid query pi, ciq to S2, the output values psi, yiq are directly
sampled uniformly from Zp ×Z

∗
p. Furthermore, when this happens, two polyno-

Short Pairing-Free Blind Signatures 799

Fig. 6. The definition of Game4. The symbols P and P ′ denote polynomials over
variables X, {Ai,Yi}iPrsids. Also, a new equality notation, ““L”, is used. We say P1 “L

P2 if and only if P1´P2 can be represented as a linear combination of polynomials in L.

mials, R1 “ Ai ` ci ·Yi ´si and R2 “ Yi ´yi ·X, are recorded in the set L. Then,
in the encoding oracle Φ, two polynomials, P1 and P2, are considered to differ
if and only if P1 ‰L P2, where P1 “L P2 means that P1 ´ P2 can be generated
as a linear combination of polynomials in L. Still, P1 ‰L P2 could occur when
queries P1 and P2 are made to Φ, but they becomes equal (in the sense of ““L”)
after L is updated. The game aborts when this happens.

Overall, we have the following lemma. The proof is presented in the full
version of this paper.

Lemma 6. Advomuf-ggm
BS1rGs pA, λq ď PrrGameA

4 “ 1s ` Q2
Φ

p´p1`QS1`Q2
Φq .

Reduction to WFROS. The core of the proof is to relate the probability of
the adversary A winning Game4 with the advantage of an adversary B winning
the WFROS problem, as stated in the following lemma. The proof is given in
Sect. 4.2.

800 S. Tessaro and C. Zhu

Lemma 7. For every λ, there exists an adversary B for the WFROSQS1 ,p prob-
lem, where p “ |Gλ|, making at most QH ` QS1 ` 1 queries to H such that

PrrGameA
4 “ 1s ď Advwfros

QS1 ,ppBq ` p2QΦ ` 1qpQH ` QS1 ` 1q
p ´ QΦ

. (5)

The statement of Theorem 3 follows by combining Lemmas 6 and 7.

4.2 Proof of Lemma 7

We construct B that interacts with A by simulating the oracles from Game4 using
the two oracles S and H in WFROS. In particular, we extract suitable vectors α
and β to query to H in WFROS, i.e., each RO query str is decomposed as str “
ξA ‖ ξY ‖m, where ξA and ξY are encodings of group elements. If both encodings
are valid, there must exist PA, PY such that ΞpPAq “ ξA and ΞpPY q “ ξY ;
then, B defines two vectors α and β to make a corresponding query to H in
WFROS. The oracle S is also used to simulate the signer’s second stage. Finally,
when A outputs QS1 ` 1 different valid message-signature pairs in Game4, B
tries to map each valid message-signature pair to a query to H in WFROS. We
show that this strategy succeeds with probability close to that of A succeeding.

The adversary B. Specifically, B initializes the variables sid, Cur, Ifin, Ξ, and
T as in Game4. In addition, B initializes an empty table Hid, used later in the
simulation of Ĥ.

Then, B runs A on input pp, Φ̂p1q, Φ̂pXqq and with access to the oracles Π̂,
Ŝ1, Ŝ2, and Ĥ. These oracles, along with Φ̂, operate as follows:

–Oracles Φ̂, Π̂: Same as in Game4. In particular, L is updated by calls to Ŝ2.
–Oracle Ŝ1: Same as in Game4.
–Oracle Ŝ2: Same as Game4 except that instead of sampling yi randomly, if

i P rsids \ Ifin, B makes a query pi, ciq to S and uses its output as the value
yi.

–Oracle Ĥ: After receiving a query str, if T pstrq ‰ K, the value T pstrq is returned.
Otherwise, str is decomposed as str “ ξA ‖ ξY ‖m such that the length of ξA

and ξY is rlogppqs.
– If there exist PA, PY P Cur such that ΞpPAq “ ξA and ΞpPY q “ ξY ,

denote the coefficients of PA, PY as

PA “ α̂g ` α̂XX `
ÿ

iPrsids
α̂AiAi `

ÿ

iPrsids
α̂YiYi , (6)

PY “ β̂g ` β̂XX `
ÿ

iPrsids
β̂AiAi `

ÿ

iPrsids
β̂YiYi . (7)

Short Pairing-Free Blind Signatures 801

Then, B issues the query pα,βq to H, where α,β P Z
2QS1`1
p are such that

αpi′q “

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α̂X , i′ “ 0
α̂Yi , i′ “ 2i ´ 1 , i P rsids
´α̂Ai , i′ “ 2i , i P rsids
0 , o.w.

,

βpi′q “

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

´β̂X , i′ “ 0
´β̂Yi , i′ “ 2i ´ 1 , i P rsids
β̂Ai , i′ “ 2i , i P rsids
0 , o.w.

.

(8)

After receiving the output pδhid,hidq, B sets T pstrq Ð δhid and Hidpstrq Ð
hid.

– Otherwise, if ξA R T pCurq or ξY R T pCurq (or if the decomposition of str is
not possible), B samples T pstrq uniformly from Zp and sets Hidpstrq “ K.

Finally, B returns T pstrq.
After A outputs {pm∗

k, σ∗
kq}kPrQS1`1s, B aborts if the signatures are not valid,

i.e., one of the following conditions is not satisfied:

∀ k1, k2 P rQS1 ` 1s and k1 ‰ k2 : pm∗
k1

, σ∗
k1

q ‰ pm∗
k2

, σ∗
k2

q , (9)

∀ k P rQS1 ` 1s : y∗
k ‰ 0 ^ c∗

k “ Ĥpstr∗
kq , (10)

where pc∗
k, s∗

k, y∗
kq “ σ∗

k and str∗
k “ Φ̂ps∗

k ´ c∗
k · y∗

k · Xq ‖ Φ̂py∗
k · Xq ‖m∗

k. (Here, Ĥ
and Φ̂ are the oracles described previously.) Further, B aborts if the following
condition does not hold:

∀ k P rQS1 ` 1s : Hidpstr∗
kq ‰ K . (11)

Otherwise, B outputs J :“ {Hidpstr∗
kq}kPrQS1`1s.

Analysis of B. Note that B queries to H at most once when it receives a query
to Ĥ and makes QS1 ` 1 more queries to Ĥ when checking the validity of the
output. Therefore, B makes at most QH ` QS1 ` 1 queries to H. Also, it is clear
that B simulates oracles S1, S2 in Game4 perfectly. For the simulation of Ĥ, the
only difference is that the distribution of δhid outputting from H in WFROS is
uniformly over Z∗

p, where in Game4 it is always uniformly from Zp. However, the
statistical distance between the two distributions is 1{p. Since B makes at most
QH ` QS1 ` 1 queries to H, the statistical difference between the view of A in
Game4 and that in the one simulated by B is bounded by pQH ` QS1 ` 1q{p.

Denote the event E1 such that when B checks the output from A, both (9) and
(10) hold. As these are exactly the winning conditions of Game4, which is simu-
lated statistically closed to perfect, we have PrrE1s ` QH`QS1`1

p ě PrrGameA
4 “

802 S. Tessaro and C. Zhu

1s. Also, let E2 be the event for which the condition (11) holds immediately
afterward. If E2 does not happen, but E1 does, then we know A outputs a valid
message-signature pair pm∗

k, σ∗
kq such that Hidpstr∗

kq “ K, which is unlikely to
happen. The following formalizes this.

Claim 4. PrrE1 ^ p�E2qs ď 2QΦpQH`QS1`1q
p´QΦ

.

Then, we can conclude the proof with the following claim.

Claim 5. If both E1 and E2 happen, then B outputs a valid WFROS solution
J , which in turn implies that PrrE1 ^ E2s ď Advwfros

QS1 ,ppBq.
The proofs of the above two claim are presented in the full version of this paper.

5 Efficient Blind Signatures in the AGM

We now present schemes that are secure in the algebraic group model (AGM) [10].
This model considers security for algebraic adversaries - these are adversaries
that, when used within a reduction, provide a representation of any group ele-
ment they output in terms of all prior group elements input to the adversary. (We
dispense with a more formal definition since the use of the AGM is self-evident
in our proofs.)

5.1 A Protocol Secure Under the DL Assumption

In this section, we introduce a scheme, which we refer to as BS3, that relies on
the hardness of the (plain) discrete logarithm (DL) problem, which is formalized
in Fig. 8. In contrast to BS1, our new scheme (described in Fig. 7) requires an
extra group element Z in the public key, and the commitment Xy in is replaced
by gtZy. (This will necessary result in an additional scalar in the signature.)
However, one could generate Z as an output of a hash function (assuming the
hash function is a random oracle, which we assume anyways), although, inter-
estingly, our proof for BS3 will show that blindness holds even when Z is chosen
maliciously by the signer (who may consequently also know its discrete loga-
rithm). We also present a slightly simpler alternative protocol, called BS2, in the
full version of this paper, that avoids the need of such an extra group element, at
the cost of relying on the hardness of a stronger assumption, the one-more dis-
crete logarithm (OMDL) problem. (Needless to say, a scheme based on DL only
is seen as more desirable than a scheme based on the OMDL assumption [43].)

The additional group element Z will in fact allow us to develop a partially
blind version of BS3, which we refer to as PBS, which we discuss in Sect. 6 below.
We note that in fact all results about BS3 can be obtained as a corollary of our
analysis of PBS, because a blind signature scheme is of course a special case
of a partially blind one. However, we are opting for a separate presentation, as
the main ideas behind the reduction are much simpler to understand in (plain)
BS3, and the proof of PBS adds some extra complexity (in particular, in order
to obtain a tighter bound), which obfuscates the main ideas.

Short Pairing-Free Blind Signatures 803

Fig. 7. The blind signature scheme BS3 “ BS3rGs.

Security analysis. The following theorem establishes the blindness of BS3.
(Its proof is presented in the full version of this paper.)

Theorem 4. Let G be an (asymptotic) family of prime-order cyclic groups.
Then, the blind signature scheme BS3rGs is perfectly blind.

The core of the analysis is once again a proof that the scheme is one-more
unforgeable in the AGM, i.e., we only prove security against algebraic adver-
saries. In particular, we model the selected hash function as a random oracle H,
to which the adversary is given explicit access.

Theorem 5. Let G be an (asymptotic) family of prime-order cyclic groups. For
any algebraic adversary Aalg for the game OMUFBS3rGspλq making at most QS1

queries to S1 and QH queries to the random oracle H, there exists an adversary
Bdlog for the DLog problem running in a similar running time as Aalg such that
Advomuf

BS3rGspAalg, λq ď 2Advdlog
G

pBdlog, λq ` pQH`QS1`1qpQH`3QS1`1q
p´1 .

Proof (of Theorem 5). Let us fix an adversary Aalg that makes at most QS1

queries to S1 and QH queries to the random oracle H. Without loss of generality,
assume Aalg makes exactly QS1 queries to S1 and exactly one query pi, ciq to S2

for each i P rQS1s. Then, after Aalg returns, we know � “ QS1 and Ifin “ rQS1s.

804 S. Tessaro and C. Zhu

Fig. 8. The DLog game.

Fig. 9. The OMUF security game for the blind signature scheme BS3rGs.

The OMUFAalg

BS3rGs game is formally defined in Fig. 9. In addition to the original
OMUF game (defined in Fig. 1), for each query pA ‖C ‖mq to H, its correspond-
ing hid is recorded in HidpA ‖Y ‖mq, and the output of the query is recorded as
δhid. Also, since Aalg is algebraic, it also provides the representations of A and
C, and the corresponding coefficient α̂ and β̂ are recorded as α̂hid and β̂hid.

Denote the event WIN as Aalg wins the OMUFAalg

BS3rGs game, i.e., all output
message-signature pairs {m∗

k, σ∗
k}kPrQS1`1s are distinct and valid. Furthermore,

let us denote str∗
k :“ gs∗

kX´c∗
k·y∗

k ‖ gt∗
kZy∗

k ‖m∗
k. We let E be the event in the

OMUFAalg

BS3rGs game for which, after the validity of the output is checked, for each
k P rQS1 ` 1s and j “ Hidpstr∗

kq,7 the following conditions hold:

7 Here, Hidpstr∗
kq must be defined since a query str∗

k is made to H when checking the
validity of the output pm∗

k, σ∗
kq.

Short Pairing-Free Blind Signatures 805

α̂X
j ´

ÿ

iPrQS1 s
yi · ci · α̂Ai

j “ ´δj · y∗
k , (12)

β̂Z
j `

ÿ

iPrQS1 s
yi · β̂Ci

j “ y∗
k . (13)

Since Advomuf
BS3rGspAalg, λq “ PrrWINs “ PrrWIN ^ Es ` PrrWIN ^ p�Eqs,

the theorem follows by combining the following two lemmas with Theorem 1.

Lemma 8. There exists an adversary Bwfros for the WFROSQS1 ,p problem
making at most QH ` QS1 ` 1 queries to the random oracle H such that
Advwfros

QS1 ,ppBwfrosq ě PrrWIN ^ Es.
Lemma 9. There exists an adversary Bdlog for the DLog problem running in a
similar running time as Aalg such that Advdlog

G
pBdlog, λq ě 1

2PrrWIN ^ p�Eqs.
�	

The proof of Lemma 8 is presented in the full version of this paper, which is
similar to the proof of Lemma 7.

5.2 Proof of Lemma 9

Proof. We first partition the event WIN ^ p�Eq into two cases. Denote F1 as
the event in the OMUFAalg

BS3rGs game that there exists k P rQS1 `1s such that (12)
does not hold, and denote F2 as the event that there exists k P rQS1 ` 1s such
that (13) does not hold. Then, if E does not occur, we know either F1 or F2

occurs. Therefore, we have WIN ^ p�Eq “ pWIN ^ F1q _ pWIN ^ F2q. We
then prove the following two claims.

Claim 6. There exists Bp0q
dlog for the DLog problem running in a similar running

time as Aalg such that PrrWIN ^ F1s ď Advdlog
G

pBp0q
dlog, λq.

Claim 7. There exists Bp1q
dlog for the DLog problem running in a similar running

time as Aalg such that PrrWIN ^ F2s ď Advdlog
G

pBp1q
dlog, λq.

From the above two claims, we can conclude the lemma by construct the adver-
sary Bdlog that runs either Bp0q

dlog or Bp1q
dlog with 1/2 probability. �	

Proof (of Claim 6). We first give a detailed description of Bp0q
dlog playing the

DLog
G

game.

The adversary Bp0q
dlog. Initially, Bp0q

dlog initializes sid, Ifin, �, T , hid, and Hid as

described in the OMUFAalg

BS3rGs game. After Bp0q
dlog receives pp, g,Gλ,W q from the

DLog
G

game, Bp0q
dlog samples z uniformly from Zp and sets X Ð W,Z Ð gz.

Then, Bp0q
dlog runs Aalg on input pp, g,Gλ,Xq and with access to the oracles Ŝ1,

Ŝ2, and Ĥ. These oracles operate as follows:

806 S. Tessaro and C. Zhu

Oracle Ŝ1: Bp0q
dlog samples ssid, t

′
sid uniformly from Zp and y′

sid uniformly from

Z
∗
p and sets Asid “ gssidX´y′

sid and Csid “ gt′
sid . Then, Bp0q

dlog returns
psid, Asid, Csidq.

Oracle Ŝ2: Same as in the OMUFAalg

BS3rGs game if i R rsids \ Ifin or ci “ 0.

Otherwise, after receiving a query pi, ciq to Ŝ2 from Aalg, Bp0q
dlog sets yi Ð y′

i{ci

and ti Ð t′i ´ yi · z. Then, Bp0q
dlog returns psi, yi, tiq to Aalg.

Oracle Ĥ: Same as in the OMUFAalg

BS3rGs game.

After receiving the output {pm∗
k, σ∗

kq}kPrQS1`1s, Bp0q
dlog aborts if the event WIN ^

F1 does not occur.
It is clear that Bp0q

dlog simulates the OMUFAalg

BS3rGs game perfectly. Therefore, it

is left to show that if the event WIN ^ F1 occurs within the simulation, Bp0q
dlog

can compute the discrete log of X, which equals to W .
Suppose WIN ^ F1 occurs. There exists k P rQS1 ` 1s and j “ Hidpstr∗

kq
such that (12) does not hold. Since Hidpstr∗

kq “ j and δj “ c∗
k, we have

gs∗
kX´δj ·y∗

k “ gs∗
kX´c∗

k·y∗
k “ gα̂g

j X α̂X
j Zα̂Z

j

ź

iPrsids
A

α̂
Ai
j

i C
α̂

Ci
j

i . (14)

Similar to the preceding case, since Bp0q
dlog knows the discrete log of Z as z and

(12) does not hold, by substituting Ai “ gsiX´ci·yi , Ci “ gtiZyi , and Z “ gz

into (14), Bp0q
dlog can compute the discrete log of X as

x :“ s∗
k ´ α̂g

j ´ α̂Z
j · z ´ ř

iPrQS1 spα̂Ai
j · si ` α̂Ci

j · pti ` yi · zqq
α̂X

j ´ ř
iPrQS1 s yi · ci · α̂Ai

j ` δj · y∗
k

.

�	
The proof of Claim 7 is presented in the full version of this paper, which is
analogous to the proof of Claim 6.

6 Partially Blind Signatures

This section presents our partially blind signature scheme, PBS, which is detailed
in Fig. 10. The scheme builds on top of the BS3 scheme by replacing the extra
generator Z contained in the public key with the output of a hash function F
(also modeled as a random oracle in the OMUF proof) applied to the public
input info. We do not formally redefine the syntax of partially blind signatures,
but we note that it simply extends that of blind signatures by adding the extra
input info P {0, 1}∗ to the signer, the user, and the verification algorithm.

Blindness. We first study the blindness of PBS. The PBlindA
PBS game is defined

in Fig. 11. The only difference between PBlind and Blind is that initially, the

Short Pairing-Free Blind Signatures 807

Fig. 10. The partially blind signature scheme PBS “ PBSrGs.

adversary A also picks a public information info and interacts with PBS.U1 and
PBS.U2 for signing pinfo,m0q and pinfo,m1q. Denote the advantage of the adver-
sary A as AdvpblindPBS pA, λq :“

∣∣∣PrrPBlindA
PBSpλq “ 1s ´ 1

2

∣∣∣. We say a partially

blind signature scheme PBS is perfectly blind if and only if AdvpblindPBS pAq “ 0 for
any A.

Theorem 6. Let G be an (asymptotic) family of prime-order cyclic groups. The
partially blind signature scheme PBSrGs is perfectly blind.

Since the algorithm PBS.U1 and PBS.U2 are almost the same as BS3.U1 and
BS3.U2, we can use a proof similar to the one for BS3 (Sect. 5.1) to show PBSrGs
is perfectly blind. The only difference is that in BS3, Z is given in the public
key, while in PBSrGs, Z is given by Fpinfoq.
OMUF security. We next study the OMUF security of PBS. Note that the
definition must also be adjusted: The main difference is that the adversary wins
as long as it can produce � ` 1 valid message-signature pairs for some info for
which it has run only � signing sessions, regardless of how many signing sessions
are run with info′ ‰ info (i.e., their number could be higher than �). We present
the corresponding game for the specific case of the scheme PBS and prove the
following theorem in the full version of this paper.

808 S. Tessaro and C. Zhu

Fig. 11. The PBlind security game for a partially blind signature scheme PBS.

Theorem 7. Let G be an (asymptotic) family of prime-order cyclic groups. Let
Aalg be an algebraic adversary for the game OMUFPBSrGspλq such that for each
public information info, makes at most QS1 queries to S1 and QH queries to the
random oracle H that start with info. Also, let the total number of distinct public
information info’s queried by Aalg to S1 be bounded by Qinfo. Then, there exists
an adversary Bdlog for the DLog problem running in similar running time as

Aalg such that Advomuf
PBSrGspAalg, λq ď 2Advdlog

G
pBdlog, λq ` QinfopQH`3QS1`1q2`2

p´1 .

The proof is very similar to that for BS3 except we need to additionally
perform a hybrid argument over queries to F, guessing which info will be the one
leading to a one-more forgery. However, we need to work harder here to ensure
the discrete logarithm advantage does not scale with Qinfo.

We also note that we have no argument supporting the fact that the
information-theoretic term in Theorem 7 is tight and the inclusion of info in
H is necessary. However, a tighter analysis appears to require studying a more
general version of WFROS. We leave this to future work.

Acknowledgments. The authors wish to thank Christopher A. Wood for exten-
sive discussions. Both authors were partially supported by NSF grants CNS-1930117
(CAREER), CNS-1926324, CNS-2026774, a Sloan Research Fellowship, and a JP Mor-
gan Faculty Award.

References

1. Chaum, D.: Verification by anonymous monitors. In: Gersho, A. (ed.) CRYPTO
1981, volume ECE Report 82–04, pp. 138–139. U.C. Santa Barbara, Department
of Electrical and Computer Engineering (1981)

2. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2 25

https://doi.org/10.1007/0-387-34799-2_25

Short Pairing-Free Blind Signatures 809

3. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

4. PCM: Click fraud prevention and attribution sent to advertiser. https://webkit.
org/blog/11940/pcm-click-fraud-prevention-and-attribution-sent-to-advertiser/,
Accessed 30 Sept 2021

5. Hendrickson, S., Iyengar, J., Pauly, T., Valdez, S., Wood, C.A.: Private Access
Tokens. Internet-Draft draft-private-access-tokens-01, Internet Engineering Task
Force (2021). Work in Progress

6. Trust tokens. https://developer.chrome.com/docs/privacy-sandbox/trust-tokens/,
Accessed 11 Jan 2022

7. Denis, F., Jacobs, F., Wood, C.A.: RSA Blind Signatures. Internet-Draft draft-
irtf-cfrg-rsa-blind-signatures-02, Internet Engineering Task Force (2021). Work in
Progress

8. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

9. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

10. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

11. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93, pp. 62–73. ACM Press (1993)

12. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto,
T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0034851

13. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 17

14. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

15. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

16. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 12

17. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ros. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5 2

18. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed elga-
mal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2 3

https://doi.org/10.1007/978-3-540-28628-8_4
https://webkit.org/blog/11940/pcm-click-fraud-prevention-and-attribution-sent-to-advertiser/
https://webkit.org/blog/11940/pcm-click-fraud-prevention-and-attribution-sent-to-advertiser/
https://developer.chrome.com/docs/privacy-sandbox/trust-tokens/
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/BFb0034851
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-030-45724-2_3

810 S. Tessaro and C. Zhu

19. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 9

20. Ohkubo, M., Abe, M.: Security of some three-move blind signature schemes recon-
sidered. In: The 2003 Symposium on Cryptography and Information Security
(2003)

21. Kastner, J., Loss, J., Rosenberg, M., Xu, J.: On pairing-free blind signature schemes
in the algebraic group model. In: PKC 2022 (2022). to appear

22. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.R.,
Gligor,V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press (2013)

23. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 30

24. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

25. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

26. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

27. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)

28. Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 468–
492. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 16

29. Chairattana-Apirom, R., Lysyanskaya, A.: Compact cut-and-choose: boosting the
security of blind signature schemes, compactly. Cryptology ePrint Archive, Report
2022/003 (2022). https://ia.cr/2022/003

30. Wagner, B., Hanzlik, L., Loss, J.: Pi-cut-choo! parallel instance cut and choose
for practical blind signatures. Cryptology ePrint Archive, Report 2022/007 (2022).
https://ia.cr/2022/007

31. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 36

32. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Short blind signatures.
J. Comput. Secur. 21(5), 627–661 (2013)

33. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 27

34. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 12

35. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal
blind signatures in the standard model from weaker assumptions. In: Zikas, V., De
Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44618-9 21

https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-030-92068-5_16
https://ia.cr/2022/003
https://ia.cr/2022/007
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-319-44618-9_21

Short Pairing-Free Blind Signatures 811

36. Ghadafi, E.: Efficient round-optimal blind signatures in the standard model. In:
Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 455–473. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70972-7 26

37. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Round-optimal blind
signatures in the plain model from classical and quantum standard assumptions. In:
Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp.
404–434. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 15

38. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45600-7 1

39. Hopper, N.: Proving security of tor’s hidden service identity blinding protocol
(2013). https://www-users.cse.umn.edu/∼hoppernj/basic-proof.pdf

40. Bauer, B., Fuchsbauer, G., Plouviez, A.: The one-more discrete logarithm assump-
tion in the generic group model. Cryptology ePrint Archive, Report 2021/866
(2021). https://ia.cr/2021/866

41. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

42. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

43. Koblitz, N., Menezes, A.: Another look at non-standard discrete log and diffie-
hellman problems. J. Math. Cryptol. 2(4), 311–326 (2008)

https://doi.org/10.1007/978-3-319-70972-7_26
https://doi.org/10.1007/978-3-030-77870-5_15
https://doi.org/10.1007/3-540-45600-7_1
https://www-users.cse.umn.edu/~hoppernj/basic-proof.pdf
https://ia.cr/2021/866
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25

Real-World Systems

CoCoA: Concurrent Continuous Group
Key Agreement

Joël Alwen1, Benedikt Auerbach2 , Miguel Cueto Noval2, Karen Klein3,
Guillermo Pascual-Perez2(B) , Krzyzstof Pietrzak2, and Michael Walter4

1 AWS Wickr, New York, USA
alwenjo@amazon.com

2 ISTA, Klosterneuburg, Austria
{bauerbac,mcuetono,gpascual,pietrzak}@ist.ac.at

3 ETH Zurich, Zürich, Switzerland
karen.klein@inf.ethz.ch

4 Zama, Paris, France
michael.walter@zama.ai

Abstract. Messaging platforms like Signal are widely deployed and pro-
vide strong security in an asynchronous setting. It is a challenging prob-
lem to construct a protocol with similar security guarantees that can
efficiently scale to large groups. A major bottleneck are the frequent
key rotations users need to perform to achieve post compromise forward
security.

In current proposals – most notably in TreeKEM (which is part of
the IETF’s Messaging Layer Security (MLS) protocol draft) – for users
in a group of size n to rotate their keys, they must each craft a message
of size log(n) to be broadcast to the group using an (untrusted) delivery
server.

In larger groups, having users sequentially rotate their keys requires
too much bandwidth (or takes too long), so variants allowing any T ≤ n
users to simultaneously rotate their keys in just 2 communication rounds
have been suggested (e.g. “Propose and Commit” by MLS). Unfortu-
nately, 2-round concurrent updates are either damaging or expensive (or
both); i.e. they either result in future operations being more costly (e.g.
via “blanking” or “tainting”) or are costly themselves requiring Ω(T)
communication for each user [Bienstock et al., TCC’20].

M. Walter—Benedikt Auerbach and Krzysztof Pietrzak have received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (682815 - TOCNeT); Karen Klein was supported
in part by ERC CoG grant 724307 and conducted part of this work at IST Austria,
funded by the ERC under the European Union’s Horizon 2020 research and innovation
programme (682815 - TOCNeT); Guillermo Pascual-Perez was funded by the European
Union’s Horizon 2020 research and innovation programme under the Marie Sk�lodowska-
Curie Grant Agreement No.665385; Michael Walter conducted part of this work at IST
Austria, funded by the ERC under the European Union’s Horizon 2020 research and
innovation programme (682815 - TOCNeT).

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 815–844, 2022.
https://doi.org/10.1007/978-3-031-07085-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_28&domain=pdf
http://orcid.org/0000-0002-7553-6606
http://orcid.org/0000-0001-8630-415X
https://doi.org/10.1007/978-3-031-07085-3_28

816 J. Alwen et al.

In this paper we propose CoCoA; a new scheme that allows for T
concurrent updates that are neither damaging nor costly. That is, they
add no cost to future operations yet they only require Ω(log2(n)) com-
munication per user. To circumvent the [Bienstock et al.] lower bound,
CoCoA increases the number of rounds needed to complete all updates
from 2 up to (at most) log(n); though typically fewer rounds are needed.

The key insight of our protocol is the following: in the (non-concurrent
version of) TreeKEM, a delivery server which gets T concurrent update
requests will approve one and reject the remaining T − 1. In contrast,
our server attempts to apply all of them. If more than one user requests
to rotate the same key during a round, the server arbitrarily picks a
winner. Surprisingly, we prove that regardless of how the server chooses
the winners, all previously compromised users will recover after at most
log(n) such update rounds.

To keep the communication complexity low, CoCoA is a server-aided
CGKA. That is, the delivery server no longer blindly forwards packets,
but instead actively computes individualized packets tailored to each
user. As the server is untrusted, this change requires us to develop new
mechanisms ensuring robustness of the protocol.

1 Introduction

End-to-end (E2E) secure cryptographic protocols are rapidly becoming ubiqui-
tous tools in the daily life of billions of people. The most prominent examples
are secure messaging protocols (such as those based on the Double Ratchet)
and E2E encrypted VoIP conference calling protocols. The demands of practical
E2E security are non-trivial; all the more so when the goal is to allow groups
to communicate in a single session. Almost all current (aka. “1st generation”)
E2E protocols for groups are built on top of some underlying black-box 1-on-1
E2E secure protocol [28]. However, this approach seems to unavoidably result in
the complexity of (at least some critical) operations scaling linearly in the group
size n.1 This has resulted in practical limits in the groups sizes for deployed E2E
protocols (to date, often in 10 s or low 100 s and never more than 1000).

Motivated by this, Cohn-Gordon et al. [16] initiated the study of E2E pro-
tocols whose complexity scales logarithmically in n. Starting with this work,
research in the area has focused on a fundamental class of primitives called
Continuous Group Key Agreement (CGKA).2 Intuitively, CGKA is to, say, E2E
secure messaging what Key Agreement is to Public Key Encryption. That is,
CGKA protocols capture many of the challenges involved in building practical
higher-level E2E secure applications (like messaging) while still providing enough
functionality to make building such applications comparatively easy using known
techniques [4]. Thus they present a very useful subject for research in the area.

1 In fact, this holds true even for the few 1st generation E2E protocols designed from
the ground up with groups in mind [22].

2 Also referred to as Group Ratcheting [11] or Continuous Group Key Distribution [13].

CoCoA: Concurrent Continuous Group Key Agreement 817

In a bit more detail, a CGKA protocol allows an evolving set of group mem-
bers to continuously agree on a fresh symmetric key. Every time a new party
joins, or an existing one leaves or refreshes (a.k.a. “updates”) their cryptographic
state, a new epoch begins in the session. Each epoch E is equipped with its own
group key kE which can be derived by all parties that are members of the group
during E. CGKA protocol sessions are expected to last for very long periods of
time (e.g. years). Thus, they must provide a property sometimes referred to as
post compromise forward security (PCFS) [5]. That means that the group key of
a target epoch should look random to an adversary despite having compromised
any number of group members in both earlier and later epochs as long as the
compromised parties either left the group or performed an update between their
compromise and the target epoch.3 In the spirit of distributed E2E security (and
unlike, say, Broadcast Encryption or Dynamic Group Key Agreement) CGKA
protocols must achieve this without the help of trusted group managers or other
specially designated trusted parties.

With a few exceptions discussed below, most CGKA protocols today [3,5,
7,9,16,25] were designed with an asynchronous communication setting in mind
(likely motivated by the application of secure asynchronous messaging). That is,
parties may remain offline for extended periods of time, not ever actually being
online at the same time as each other. Once they do come online, though, they
should be able to immediately “catch up” and even initiate a new epoch (e.g.
by unilaterally adding a new member to the group). To facilitate this, protocols
are designed to communicate via an untrusted network which buffers protocol
packets for parties until they come online again.

The Problem of Coordination. One property the first generation of CGKA pro-
tocols [3,9,16,25] share is that they require all protocol packets to be processed
in exactly the same order by every group member. However, ensuring this level
of coordination can present real challenges in a variety of settings; especially for
large groups (e.g. with 50, 000 members as is targeted by the IETF’s upcoming
E2E secure messaging standard MLS [8]). In particular, it might lead to the
problem sometimes called “starvation” where a client’s packets are constantly
rejected by the group (e.g. when the client is on a slow network connection and
so can never distribute its own packets fast enough).

There do not seem to be any practical solutions to convincingly provide this
level of coordination without significant drawbacks. Implementing the buffer-
ing mechanism via a single server does not automatically address the issue of

3 We note that PCFS is strictly stronger than providing the two more commonly
discussed properties of Forward Security (FS) and Post Compromise Security (PCS).
Indeed, a successful attack on an epoch E may require compromises both before and
after E. Such an attack is neither an FS attack nor a PCS attack. Moreover, literature
usually speaks informally of FS and PCS as separate notions asking that they both
hold. Yet the notions do not necessarily compose. For example, the MLS messaging
standard has both strong FS and PCS properties but significantly worse PCFS [3].
Fortunately, all formal security definitions for CGKA we are aware of do in fact
capture (some variation of) PCFS instead of treating FS and PCS separately.

818 J. Alwen et al.

starvation of clients with a slow connection. Nor is a round-robin “speaking slot”
approach a satisfactory solution (even assuming universal time), as it would
severely impact responsiveness; especially for larger groups. It’s also not just
responsiveness that suffers from a reduction of the rate at which parties can send
new packets to the group. The quality of the security of a session (e.g. the speed
with which privacy is recovered after a group member’s local state is leaked) is also
tightly dependent on the rate at which participants can send out packets. After all,
if a compromised party has not even been able to send anything new to the group
since a compromise, they have no way to update the leaked cryptographic material
to something the adversary cannot simply derive itself.

Concurrency at a High Price. To mitigate this problem the MLS messaging pro-
tocol introduced a new syntax referred to as the “propose-and-commit” (P&C)
paradigm. Since then it was adopted by most second generation CGKA proto-
cols [5,7] as it allows for some degree of concurrency. In particular, group mem-
bers (and even designated external parties) may concurrently propose changes
to the group state e.g. “Alice proposes adding Bob”, “Charlie proposes updating
his keys”, etc. At any point a group member can collect such proposal into a
commit message which is broadcast to the group and actually affects all changes
in the referenced proposals. Note, however, that the commit messages still must
be processed in a globally unique order. Moreover, in each of these protocols
there is a high price being paid for large amounts of concurrency. Namely, the
greater the number of proposals in a single commit message, the less efficient
(e.g. greater packet size) certain future commits will be. In fact, efficiency can
degenerate to the point where (starting from an arbitrary group state) a commit
to Θ(n) proposals can produce a state where the next commit packet is forced
to have size Ω(n); a far cry from the desired O(log(n)).

Lower-Bounds on Communication Complexity. Bienstock et al. [11] showed that
there are limits to what we could hope for in terms of reducing communication
complexity. Specifically, they show that T group members updating concurrently
incurs a communication cost per user in the following round that is linear in T in
any “reasonable” protocol.4 In fact, if all n parties wish to update concurrently
within 2 rounds then this has complexity at least Ω(n2).

1.1 Our Contributions

In this paper (full version in [2]) we propose a new CGKA protocol called CoCoA
(for COncurrent COntinuous group key Agreement) which is designed specifically
to allow for efficient concurrent group operations. In contrast to past CGKA

4 For the lower bound, [11] considered a symbolic model of execution, which only
applies to protocols constructed by using “practical” primitives combined in a “stan-
dard” way. For definitions of what “practical” and “standard” mean in this context
we refer to [11], but we remark, that our protocol and the TreeKEM variants con-
sidered in this work fall into this category.

CoCoA: Concurrent Continuous Group Key Agreement 819

protocols, update operations may require more than 2 rounds (in the worst case
log(n) rounds). However, even when all n users update their keys concurrently
in log(n) rounds, the total communication complexity of any user is only roughly
(log(n))2 (constant size) ciphertexts. This circumvents [11] as their lower-bound
only holds for updates that complete in at most 2 rounds. So, for the price of
more interaction CoCoA can greatly decrease the actual bandwidth consumed.

To emphasize this even more, consider the cost of transitioning from a fully
blanked tree to a fully unblanked one. We believe this to be a particularly inter-
esting case as it captures the transition from any freshly created group into a
bandwidth-optimal one. The faster/cheaper this transition can be completed,
the faster an execution can begin optimal complexity behaviour. TreeKEM [9],
the CGKA scheme used in the MLS messaging protocol, needs n/2 rounds with
receiver complexity, i.e. number of ciphertexts downloaded per user, Ω(n log(n)).
The protocol in [11], in turn, would be able to unblank the whole tree in 2 rounds
with linear sender and recipient communication per user. In contrast, in CoCoA
the tree could be unblanked in 1 round with linear sender cost, but only loga-
rithmic recipient cost. For big groups this difference is very significant.

With such low communication, a user cannot learn all the 2n−1 fresh public-
keys in the distributed group state (usually called “ratchet-tree” or “key-tree”).
Fortunately, for CoCoA, users only need to know the log(n) secret keys and
another 2 log(n) public keys. So in our protocol, users will not have a complete
view of the public state as in previous protocols, but only know the partial state
that is relevant to them. As a consequence, the server no longer acts as a relay but
instead computes packets tailored to the individual receiving user. This comes
with a new challenge that we address in this work: ensuring consistency across
all users is not as straightforward anymore. This is crucial for security, since
users disagreeing e.g. on the set of group members can lead to severe attacks.

Once we take into account operations like adding and removing group mem-
bers, efficiency might degrade (though not to anything worse than past proto-
cols). Nevertheless, in a typical execution we can expect to see far more updates
than adds/removes. In particular, the more updates parties perform the faster
the protocol heals from past compromises so it is generally in users’ interest
to perform updates as regularly as they can. By (greatly) reducing the cost of
updates compared to past CGKA protocols, we allow groups to have quantita-
tively better security for the same amount of communication complexity spent.

In terms of security, we prove CoCoA secure in an “partially active setting”.
A bit more precisely, the adaptive adversary can (repeatedly) leak parties local
states including any random coins they use and query users to generate protocol
messages. As the sever is untrusted, the adversary is allowed to send arbitrary
(potentially malformed) server messages and deviate from the server specifica-
tion. However, as users sign their protocol messages and the adversary does not
get access to signing keys, it is not able to generate such messages by itself. While
the latter is a strong assumption, it is common for such protocols. We discuss
this in more detail in Sect. 5. Note that [25] uses the term partially active to refer

820 J. Alwen et al.

to security against weaker adversaries that have control of the delivery server,
but are not allowed to send arbitrary messages.

Signature Keys. One caveat to the above discussion are signature keys. Apart
from the aforementioned public and secret keys, each group member must know
the signature verification key of each other group member (as these are used to
authenticate packets, amongst other things). In principle, this means that just
distributing n new signature key pairs (as part of n parties updating) already
imposes Ω(n) communication complexity for each group member (regardless of
how many rounds are used or even of concurrency).

However, in practice, there are several mitigating aspects to this problem. As
was observed already during the design of MLS, in some real-world deployments
of CGKAs fresh signature keys may be much harder to come by than simply
locally generating new ephemeral key material. That is because each new signa-
ture key is typically bound to some external identity (like an account name) via
some generic “authenticator” and this binding may be an expensive and slow
process. E.g. a certificate that must be obtained manually from a CA. For this
reason CoCoA (like MLS) explicitly permits lite updates; that is, updates which
refresh all secret key material of the sender except for their signature keys. While
lite updates are clearly not ideal from a security perspective, they do allow for
frequently refreshing the remaining key material without being bogged down by
the cost of certifying fresh signature keys. Moreover, CoCoA (like MLS) derives
authenticity of packets not just from signatures but also by requiring senders to,
effectively, prove knowledge of the previous epoch’s group key. Thus, leaking a
group members’ signing keys does not automatically confer the ability to forge
on their behalf. Indeed, if the victims all perform a lite update, a fresh epoch is
initiated with a secure group key.

1.2 Related Work

The study of CGKA based protocols was initiated by the ART protocol [16],
based on which the first version of MLS [8] was built shortly before transitioning
to TreeKEM [9]. TreeKEM has since been the subject of several security anal-
ysis including [3,4,10,13,17]. More generally, the study of CGKAs has, roughly
speaking, focused on several topics: stronger security definitions, more efficient
constructions, better support for concurrency and new security properties.

Several works have studied CGKA’s supporting varying degrees of concur-
rent operations. Weidner’s Causal TreeKEM [26] explores the idea of updates
re-randomizing key material instead of overwriting it (though it lacks forward
secrecy and a complete security proof). Recently, [30] proposed a decentralized
CGKA protocol; albeit with linear communication complexity. Finally, a paper
by Bienstock et al. [11] studies the trade-off between PCS, concurrency and com-
munication complexity, showing a lower bound for the latter and proposing a
close to optimal protocol in their synchronous model for a fixed group in a weak
security model.

CoCoA: Concurrent Continuous Group Key Agreement 821

A similar security model to the one in our paper can be found in [25]. That
work was the first to require security against an adaptive adversary. The secu-
rity model of [3] is weak but incomparable to our model. Their adversaries must
deliver all packets in the same order to all parties (though not at the same
time or even at all) and they do not learn the coins of corrupt parties. On the
other hand, the adversary may modify and even inject new packets; albeit only
if honest parties would reject the resulting adversarial packet. A different app-
roach to security notions was initiated in [4] where the history graph technique
was introduced to describe the semantics of any given CGKA executions. They
also provided the first black-box construction of secure group messaging from
CGKA (and other primitives). [5] presented the first ideal/real CGKA security
notion. Their notion captures security against powerful adaptive and fully active
adversaries that can corrupt parties at will and even set their random coins.
Finally, building on that work, [7] extend their adversaries to also account for
how corrupt insiders might interact with a (very weak) PKI. The formal notion
was later adapted in [6,21] to capture essentially the same intuition but for the
server-aided CGKA setting. A third approach to defining adaptive and active
security is taken in [10] who use an “event driven” language to define adaptive
security a CGKA. The notion of server-aided CGKA was first formalized in [6].
However, the earlier work of [18] and the concurrent work of [21] both include
(implicit) server-aided CGKAs as well.

The work of [24] initiated the study of post-quantum primitives for CGKA by
building primitives designed for use in TreeKEM (and similar CGKAs). However,
it turned out that their security notion was lacking (e.g. it seems to not allow
for adaptive security of the resulting CGKA) so in a follow up paper [21] a new
(more secure) PQ primitive is proposed along with a novel server-aided CGKA
(proven secure in the classic model) designed to reduce receiver communication
cost. Cremers et al. compared the PCS properties in the multi-group setting of
MLS to the Signal group protocol [17]. In [1] more efficient CGKA constructions
in the multi-group setting are given. In [5] zero-knowledge proofs are used to
improve the robustness of CGKA protocols. The approach was made a bit more
practical in [18] by, amongst other things, introducing tailor-made ZK proofs.
Very recently, [20] initiated the study of membership privacy for CGKAs.

A closely related family of protocols to CGKA are the older Group Key
Exchange (GKE) protocols which allow a fixed group of users to derive a com-
mon key. These can be traced to early publications like [14,23]. In contrast to
CGKA, GKE protocols do not target PCS and are designed for the synchronous
setting. Initial GKE results were followed by a long list of works exploring addi-
tional features; notably, supporting changes to group membership mid-session
(aka. Dynamic GKE) [12,19]. Another notion very related to CGKA are Logical
Key Hierarchies [15,29,31], introduced as a solution to very related primitive of
Multicast Encryption [27]. They allow a changing group of users to maintain a
common key with the help of a trusted group manager.

822 J. Alwen et al.

2 Preliminaries

2.1 Continuous Group-key Agreement

To begin with, we define the notion of continuous group-key agreement (CGKA).
Parties participating in the execution of a CGKA protocol will maintain a local
state γ, allowing them to keep track of a common ratchet tree, to derive a
shared secret. Parties will be able to add and remove users to the execution, and
to rotate the keys along sections of the tree, thus achieving FS and PCS. Our
definition is similar to that of [25], with the main difference that operations do
not need to be confirmed individually by the server. Instead, the stateful server
works in rounds, collects operations into batches and sends them out at the end
of each round (note that setting the batch size equal to 1 would just return the
definition from [25]). Accordingly, a party issuing an operation will no longer be
able to pre-compute its new state should the operation be confirmed.

Definition 1 (Asynchronous Continuous Group-key Agreement]). An
asynchronous continuous group-key agreement (CGKA) scheme is an 8-tuple of
algorithms CGKA = (CGKA.Gen,CGKA.Init,CGKA.Add,CGKA.Rem,CGKA.Upd,
CGKA.Dlv,CGKA.Proc,CGKA.Key) with the following syntax and semantics:

Key Generation: Fresh InitKey pairs ((pk, sk), (ssk, svk)) ← CGKA.Gen(1λ)
consist of a pair of public key encryption keys and a pair of digital signing
keys. They are generated by users prior to joining a group, where λ denotes
the security parameter. Public keys are used to invite parties to join a group.

Initialize a Group: Let G = (ID1, . . . , IDn). For i ∈ [2, n] let pki be an InitKey
PK of party IDi. Party ID1 creates a new group with membership G by running:

(γ, [W2, . . . , Wn]) ← CGKA.Init (G, [pk1, . . . , pkn] , [svk1, . . . , svkn] , sk1)

and sending welcome message Wi for party IDi to the server. Finally, ID1

stores its local state γ for later use.
Adding a Member: A group member with local state γ can add party ID to

the group by running (γ,W, T) ← CGKA.Add(γ, ID, pk, svk) and sending wel-
come message W for party ID and the add message T for all group members
(including ID) to the server.

Removing a Member: A group member with local state γ can remove group
member ID by running (γ, T) ← CGKA.Rem(γ, ID) and sending the remove
message T for all group members (ID) to the server.

Update: A group member with local state γ can perform an update by running
(γ, T) ← CGKA.Upd(γ) and sending the update message T to the server.

Collect and Deliver: The delivery server, upon receiving a set of CGKA
protocol messages T = (T1, . . . , Tk) (including welcome messages) gener-
ated by a set of parties, sends out a round message (γser, (M1, . . . ,Mn)) =
CGKA.Dlv(γser, T), where Mi is the message for user i and γser is the server’s
internal state. Each Mi contains a counter ci indicating whether Mi includes
an update message generated by user i, and which one of the potentially sev-
eral they might have generated.

CoCoA: Concurrent Continuous Group Key Agreement 823

Process: Upon receiving an incoming CGKA message Mi, a party immediately
processes it by running γ ← CGKA.Proc(γ,Mi).

Get Group Key: At any point a party can extract the current group key K
from its local state γ by running K ← CGKA.Key(γ).

2.2 Ratchet Trees

Our protocol builds on TreeKEM, and thus uses the same underlying structure
of a ratchet tree for deriving shared secrets among the group members. A ratchet
tree is a directed binary tree T = (VT, ET), with edges pointing towards the root
node vroot

5 and each user in the group associated to a leaf. We will use the
notation Ti = (V i

T, Ei
T) to refer to the ratchet tree associated to round i.

Tree Structure. Given a node v, we will denote its child by child(v), its left and
right parents respectively as lparent(v), rparent(v), and will write parents(v) =
(lparent(v), rparent(v)). Given a leaf node, we denote its path to the root as
path(v) = (v0 = v, v1, . . . , vk = vroot), where vi = child(vi−1). Similarly, we
denote its co-path as co-path(v) = (v′

1, . . . , v
′
k), where v′

i is the parent of vi not
in path(v). We will often just refer to such a (co-)path as v’s (co-)path. For a user
ID we will denote its associated leaf node by leaf(ID), and accordingly sometimes
refer to leaf(ID)’s (co-)path as just ID’s (co-)path or (co-path(ID)) path(ID).
Given two leaves l, l′, let Int(l, l′) be their least common descendant, i.e. the
first node where their paths intersect. For a node v ∈ T, we set v.isLeaf := true
if v is a leaf of T, and v.isLeaf := false otherwise.

Node States. Each node v has an associated node state γ(v). Sometimes during
the protocol execution, nodes can be marked as blank, meaning that their state
is empty. Blank nodes become unblanked if their state is repopulated at a later
point in time.

The non-blank node state contains: a PKE key-pair (γ(v).sk, γ(v).pk), some-
times written as (skv, pkv) for simplicity; a vector of public keys PKpr called
the predecessor keys which correspond to the public keys of the nodes in the
resolution of v (defined below) in the round right before the current key pkv

was first introduced, see Sect. 3.4; a pair of hash values hv called the parent
hash of v; an identifier corresponding to the party IDv generating the node’s
key pair; a signature σv under the private signing key of IDv; a transcript hash
value, Htrans, committing to the state of IDv at the time of sampling that node’s
key pair (defined below in Sect. 3.3); a confirmation tag value confTag (defined
below in Sect. 3.4); an optional pair of hash values ov = (ov,1, ov,2) correspond-
ing to partial openings of a Merkle commitment sent by the server and encoding
the state of the parent nodes of v; and a set of of so called unmerged leaves
γ(v).Unmerged, or simply Unmerged(v), corresponding to the leaves (and their

5 The non standard direction of the edges here captures that knowledge of (the secret
key associated to) the source node implies knowledge of (the secret key associated
to) the sink node. Note that nodes therefore have one child and two parents.

824 J. Alwen et al.

associated public keys) of the subtree rooted at v whose users have no knowl-
edge of skv (this will be the case, temporarily, for newly added users). In a slight
abuse of notation, given a set of nodes S, we define its set of unmerged nodes to
be Unmerged(S) = ∪v∈SUnmerged(v). Finally, the state of leaves l additionally
contains a signing and verification key-pair (sskl, svkl) corresponding to the user
IDl associated to that leaf. For an internal node v, we will write sskv to refer to
the secret signing key of party IDv.

The secret part of γ(v) consists of skv , and sskv in case v is a leaf. In turn,
the public part, pγ(v), of γ(v) consists of γ(v) minus the secret part. While the
public part of nodes’ states can be accessed by all users, users should only have
partial knowledge of the secret parts. Indeed, the protocol ensures that the secret
part of γ(v) is known only by users whose leaf is in the sub-tree rooted at v; this
is known as the tree invariant.

Looking ahead, parties might end up (through a misbehaving delivery server)
having different views on the state of a given node, and so we will refer to the
view of party IDi of v at round n as γn

i (v).

Resolution and Effective Parents. The set of blank and non-blank nodes in a
ratchet tree gives rise to the resolution of a node v. Intuitively, it is the minimal
set S of non-blank nodes such that for each ancestor v′ of v the set S contains
at least one node on the path from v′ to v. Formally, it is defined as follows.

Definition 2. Let T be a tree with vertex set VT. The resolution Res(v) ⊂ VT

of v ∈ VT is defined as follows:

– If v is not blank, then Res(v) = {v}.
– If v is a blank leaf, then Res(v) = ∅.
– Otherwise, Res(v) = ∪v′∈parents(v)Res(v′)

In a slight abuse of notation, given a set of nodes V , we define the resolution of
V to be Res(V) =

⋃
v∈V Res(v).

Re-keying. Users will often need to sample new keys along their leaves’ paths. This
is done following the MLS specification, through the hierarchical derivation cap-
tured in the algorithm Re-key(v) (Algorithm 1). Given a leaf v, it outputs a list of
seeds and key-pairs for nodes along v’s path. We use Δroot or the expression root
seed to refer to the seed associated to vroot. The algorithm will use two independent
hash functions H1 and H2. These can be easily defined by taking a hash function
H, fixing two different tags x1 and x2 and defining Hi(·) = H(·, xi).

3 The CoCoA Protocol

We start with a high level description of the CoCoA protocol in Sect. 3.1, but
refer the reader to the full version [2] for a more in detail introductory discussion.
Section 3.2 covers users’ states and the key schedule, Sect. 3.3 robustness and the
round hash, Sect. 3.4 the parent hash mechanism (again, more complete in [2]),
and Sect. 3.5 formally defines the protocol procedures.

CoCoA: Concurrent Continuous Group Key Agreement 825

Algorithm 1: Re-key computes new seeds and keys along a path.
Input: A leaf node v in a tree T of depth d.
Output: A vector of hierarchically derived seeds, and another vector of

corresponding keys for all nodes in v’s path to the root.

1 Δ1
$← S(λ) // λ security parameter; S(λ) seed space

2 (sk1, pk1) ← PKE.Gen(H2(Δ1))
3 for i ← 2 to d do
4 Δi = H1(Δi−1)
5 (ski, pki) ← PKE.Gen(H2(Δi))

6 Δ ← (Δ1, . . . , Δd)
7 K ← ((sk1, pk1), . . . , (skd, pkd))
8 return (Δ,K)

3.1 Overview

Concurrent Updates in CGKA. To recover from compromise, CGKA protocols
allow users to refresh the secret key material known to them. Broadly, a user
does this by re-sampling all keys they know (those on the user’s path in the case
of a ratchet tree), encoding them in an update message, and sending this to the
server, which broadcasts it to the other group members. However, it is unclear
how to handle concurrent update attempts by several users.

As a first approach, it seems natural to simply reject all but one update.
Using a fixed rule to determine whose update to implement, however, might lead
to starvation, with users blocked from updating and thus not recovering from
compromise (compare Fig. 1, column (a)). Even if parties that did not update for
the longest time are prioritized, it may take a linear number of update attempts
to fully recover security of the ratchet tree (compare Fig. 1, column (b)).

To amend this issue the MLS protocol introduced the “propose and commit”
paradigm. Roughly, update proposals refresh a user’s leaf key and signal the
intent to perform an update. A commit then allows a user to implement several
concurrent update proposals. While this allows the ratchet tree to fully recover
within two rounds, this comes at the cost of destroying the binary structure of
the tree, as, in order to preserve the tree invariant, nodes not on the path of the
committing party are blanked. In the worst case, this can lead to future updates
having a size linear in the number of parties (compare Fig. 1, column (c)).

The approach we take with the CoCoA protocol is to implement all updates
simultaneously, albeit some of them only partially. Intuitively, while the ratchet
tree might not fully recover immediately, every updating party still makes
progress towards recovery; and after logarithmically many updates of every com-
promised user, security is restored (compare Fig. 1, column (d)).

Updates in the CoCoA Protocol. The main idea in the CoCoA protocol is,
given several concurrent update messages, to apply all of them simultaneously,
while resolving conflicts by means of an ordering of the operations. As a con-
sequence, some updates might only be applied partially. More precisely, the

826 J. Alwen et al.

(a) ND TreeKEM v7

Update 1

Update 2

Update 3

Update 4

...

Update 7

Update 8

(b) ID TreeKEM v7

Update 1

Update 2

Update 3

Update 4

...

Update 7

Update 8

(c) TreeKEM v11 (P&C)

Propose

Commit

(d) CoCoA

Update 1

Update 2

Update 3

Update 4

Fig. 1. Comparison of number of rounds required to recover from corruption for differ-
ent TreeKEM variants, ND stands for “Näıve Delivery”, ID for “Ideal Delivery”. Red
nodes indicate key material known to the adversary. In each round all parties (try to)
update. In columns (a) and (d) update requests are prioritized from left to right. In
column (b) update requests are prioritized from left to right among all parties that did
not update yet. In column (c) all parties propose an update, then the leftmost party
commits. (Color figure online)

protocol parameters contain an ordering ≺. This could be, e.g. the lexicographic
ordering, however, the particular choice does not affect our security results. Then,
given a set of update messages {U1, . . . , Uk}, if a node in the ratchet tree would
be affected by several Ui, the one that is minimal with respect to ≺ takes prece-
dence and replaces its key pair. Consider the example of Fig. 2, in which the
users A,C,G in a group of size 8 concurrently update, with C’s update taking
precedence over the other two. Note that since the updates are concurrent, new
keys get encrypted to keys of the previous round. Assume, e.g., that C and G
were compromised. Then, after the updates, all compromised keys are replaced.
However, only the first three keys in C’s and G’s update paths are secure, while
the new Δroot was encrypted to an old, compromised key and hence is known to

CoCoA: Concurrent Continuous Group Key Agreement 827

Fig. 2. Example; concurrent updates in the CoCoA protocol. The former state of the
ratchet tree (black) is changed by concurrent updates of A (blue), C (green), and
G (red). The ordering is UC ≺ UA ≺ UG. In the updates solid edges correspond to
seeds obtained by hashing, dashed edges to encryptions. (Color figure online)

Table 1. User’s local state γ.

γ.ID An identifier for the party

γ.G The set of current members of the group

γ.ssk The party’s signing key

γ(v) Node state for every v ∈ P(γ.ID), only public part for v ∈ Res(co-path(γ.ID))

γ.Htrans Current value of the transcript hash

γ.appSecret Current round’s application secret

γ.confKey Current round’s confirmation key

γ.initSec Current round’s initialization secret

γ′ Pending state encoding operations not yet confirmed

the adversary. So, while the ratchet tree did not fully recover, it made progress
towards it. In Sect. 5 we discuss the security of CoCoA in more detail.

3.2 Users’ States and the Key Schedule

Each user keeps track solely of the state of nodes on either their path or the
resolution of their co-path; we define P(ID) = path(ID) ∪ Res(co-path(ID)) to be
the set comprising exactly those nodes. More in detail, each user stores a local
state γ, described in Table 1, which gets updated after every round message. We
will write γn to refer to a state corresponding to round n.

Key Schedule. CoCoA’s key schedule for round n is defined via hash function H5

as follows:

γ.epochSecret(n) = H5(γ.initSec(n − 1) || Δroot(n) || Htrans(n))
γ.appSecret(n) = H5(γ.epochSecret(n) || ‘appsecret’)

γ.confKey(n) = H5(γ.epochSecret(n) || ‘confirm’)
γ.initSec(n) = H5(γ.epochSecret(n) || ‘init’)

The epoch secret γ.epochSecret(n) is used to derive all other keys from it; the
application secret γ.appSecret(n) serves as the group key in epoch n and is to

828 J. Alwen et al.

be used in higher level protocols, e.g. secure group messaging; the confirma-
tion key γ.confKey(n) will be used to authenticate next epoch’s protocol mes-
sages through a MAC termed the confirmation tag;6 and the initialization secret
γ.initSec(n) seeds next round’s key schedule, tying it to the current one. Finally,
the transcript hash Htrans(n) encodes the transcript of the execution up until
round n - it is defined in the following section.

3.3 Robustness, Round Hash, and Transcript Hash

In this section we discuss CoCoA’s robustness. We show that two parties accept-
ing messages containing the same round hash value, will transition into consistent
states. We start by defining the concept of a round hash and consistent states.

In the following we assume a fixed rule, that can be locally computed by
the users on input a ratchet tree T and a set of operations that determines a
total ordering of said operations. This ordering ensures all users will compute
the same round hash and also, when applied to adds Ai, determines the free leaf
that the user added by Ai is assigned to.

Definition 3. Let H3 be a hash function, and n a round with associated protocol
messages T = (U,R,A) = ((U1, . . . , Uk), (R1, . . . , Rl), (A1, . . . , Am)), where the
Ui correspond to Update messages; and the Ri and Ai correspond to the packets,
as sent by their issuers, of any remove and add operation, respectively; and let
each vector U,R,A be ordered with respect to the ordering ≺. Let Tn be the
ratchet tree resulting from applying the operations in T with respect to ≺ to
Tn−1, and pγ(v) the public state of v in Tn (note that pγ(v) = blank if the node
is to be blanked as a result of some removal in R). We define the map � taking
nodes in Tn to labels as follows:

�(v) =

{
H3(pγ(v)), if v is a leaf.
H3(�(lparent(v)), �(rparent(v)), pγ(v)), if v is an internal node.

The round hash Hround(n) of n is defined to be Hround(n) = H3 (�(vroot), R,A).

In short, the round hash is essentially a Merkle commitment to the ratchet tree’s
public keys and the round’s dynamic operations. The benefit of this approach
is that every user can verify that the round hash sent by the server faithfully
encodes the operations affecting their local state, by just receiving at most a
logarithmic number of values irrespective of the number of updates (note that a
user will necessarily need to hear about all dynamic operations). In particular,
a user ID receiving the appropriate group operations should have access to the
inputs corresponding to dynamic operations, and to the new keys of nodes in
P(ID). The server does this by sending the user Hround(n), as well as the output

6 This MAC, also present in TreeKEM, is there to mitigate active attacks. The latter
are not reflected in our security model, but we chose to keep it, as it is the main
security mechanism in response to a leaking of signature keys.

CoCoA: Concurrent Continuous Group Key Agreement 829

of openRH, which, on input a user ID, returns a vector of hash values, corre-
sponding to the labels of nodes not in P(ID), but that are parents of a node in
P(ID). Given these values, the user is able to verify the received round message
by running verifyRH, which recomputes Hround(n) with respect to their updated
ratchet tree and compares it to the round hash provided by the server. For a
formal description of both algorithms we refer to the full version of this work [2].

The transcript hash is defined as Htrans(0) = 0, and, for subsequent rounds,
given a verified round hash:

Htrans(n) = H3(Htrans(n − 1)||Hround(n)) .

With this we can define what it means for parties to have consistent states,
which informally requires them to have consistent views of the tree (i.e. agree on
the states of nodes on the intersection of their states), and agree on the group
key, group members, and group history, i.e. on the transcript hash.

Definition 4. Let ID and ID∗ be two group members with states γ and γ∗. They
have consistent states if pγ(v) = pγ∗(v) for all v ∈ P(ID)∩P(ID∗), γ.appSecret =
γ∗.appSecret, and (γ.G, γ.Htrans) = (γ∗.G, γ∗.Htrans).

Note that we only define consistency of states for users who have joined the
group. More in detail, we say that a user ID has (in their view) joined the group
if there exists a query CGKA.Proc(ID, ·) in the execution, where ID accepts the
corresponding round message, i.e. where the state for ID changes (is initialized)
as a result of said query.

3.4 Parent Hash

Ratchet trees in TreeKEM contain so-called parent hashes, which were intro-
duced to the standard in TreeKEM v9, and analyzed and improved by Alwen
et al. [7]. These ensure, on the one hand, that for every node v ∈ T, whoever
sampled skv had knowledge of the secret signing key for some leaf l of the subtree
rooted at v; and on the other, that at the moment this secret was generated it
was not communicated to any user whose leaf is not in this subtree. This pro-
tects against active attacks where a user is added to a malformed group where
the tree invariant is violated, potentially causing him to communicate to a set
of users different to the one he believes to be communicating to.

To adapt parent hash to CoCoA we have to overcome the two issues that (a),
since parties update concurrently, parent hash values can be defined with respect
to keys on the copath that were overwritten by a concurrent update, and (b),
since the resolution of a user’s copath and in turn the corresponding public keys
that are known to the user may change from round to round, the user needs to
be able to verify the authenticity of such keys without having access to the state
of leaves below it. We address the first issue by having users store the public
keys of one previous round: each node state γ(v) now contains an associated list
of predecessor keys, PKpr, containing the public keys corresponding to nodes
in the resolution of v in the epoch when the current key was sampled, and

830 J. Alwen et al.

excluding those that where unmerged at child(v);7 i.e. if the Update sampling
pkv unblanked v, the predecessor keys will be a list, else it will just contain the
previous public key. The second issue we solve by not only signing the parent
hash value of users’ leaves but by introducing a signature at every node in their
update path (that which is sent with the packet containing the new public key
when it is first announced). Last, to ensure consistency between users’ views,
we add two further values to the parent hash and node state: a commitment
to the subtree under the node’s sibling and a commitment to the whole ratchet
tree. We now define more formally the slightly modified parent-hash algorithm,
compatible with our construction, with respect to signature scheme Sig.

As in TreeKEM, parent hash values of a node are updated whenever the key
corresponding to the node is updated. More in detail, let ID compute an Update
U containing new keys for nodes along their path (see full definition in Sect. 3.5),
which get stored in pending state γ′. Parent hashing algorithm PHash.Sig on
input (ID, γ′) first fetches ID’s update path path(vID) = (v0 = vID, v1, . . . , vk =
vroot). For i ∈ {0, . . . , k − 1} let v′

i denote the parent of vi+1 that is not part of
path(vID), and let R = Res(v′

i)\Unmerged(vi+1). Then, we define h1,k = h2,k = 0
, and using hash function H4, compute:

h1,i ← �(v′
i) for i ∈ (k − 1, . . . , 0)

h2,i ← H4(pkvi+1
,PKpr

vi+1
, h2,i+1, {pkv}v∈R) for i ∈ (k − 1, . . . , 0)

σi ← Sig.Sig (γ(ID).ssk,m) for i ∈ (0, . . . , k)

where �(v) is the label of v as in Definition 3 above, PKpr
v ← 0 if v did not have

a key before U , hi = (h1,i, h2,i), and m = (pkvi
,PKpr

vi
, (h1,i, h2,i),Htrans, confTag)

Algorithm PHash.Sig then adds the values (H,Σ) = (h0, . . . , hk, σ0, . . . , σk)
to U , substitutes the parent hash values hi and signatures σi in γ′ by the newly
computed ones, and returns U .

Verification. A user receiving a tree T from the server can verify its authenticity
by running the algorithm PHash.Ver(T). This will be run by users in two different
scenarios: on the one hand, when joining the group, they will verify the whole
ratchet tree (in this case T = T); on the other, when processing a round message
containing one or more Removes, they will verify the received keys for nodes in
the new resolution of their co-path (in this case T is the union of P(IDi) for all
removed IDi). The algorithm runs as follows:

The algorithm first checks that all non-blank nodes in the tree have a com-
plete public state, and that for any internal node v, the associated identifier IDv

is associated to one of the leaves of the sub-tree rooted at v.8 If any of these
checks does not pass, the algorithm aborts. Next, it checks that h2,vroot

, and
then, verifies the following conditions hold:
7 The exclusion of these unmerged leaves responds to the fact that these could corre-

spond to parties added after the state for child(v) was last updated.
8 A user who is already part of the group will have knowledge of the leaf index of each

group member, and can check this without necessarily having a full view of the tree.

CoCoA: Concurrent Continuous Group Key Agreement 831

1. For any non-blank non-leaf node v in T the following equalities hold with
either p and p′ being the left and right parents of v or, if not, with p′ being
the left parent of v and p the right parent, setting p ← lparent(p) if p is blank,
until p is either non-blank or an empty leaf, in which case 0 ← PHash.Ver(T).9

(a) h2,p = H4(pkv,PKpr
v , h2,v, {pkw}w∈R) and h1,p = �(p′) or

(b) h2,p = H4(pkv,PKpr
v , h2,v,PKpr

p′) and Htrans,p = Htrans,p′ .
where R = Res(p′) \ Unmerged(v).

2. Sig.Versvkw((pkw,PKpr
w , hw,Htrans,w, confTagw), σw) = 1 for all w ∈ T .

3.5 The Protocol: CoCoA and Partial Updates

In the description below, we use γ for the state of the party issuing the appro-
priate operation. The ordering used to resolve conflicts caused by concurrent
updates is denoted by ≺.

Initialization. To initialize a group with parties G = {ID1, . . . , IDn}, ID1 cre-
ates a ratchet tree as follows. First, ID1 retrieves the public initialization
keys (pk, svk) = ({pkID1

, . . . , pkIDn
}, {svkID1 , . . . , svkIDn}) of all group members

(including themselves), redefines G ← (G, pk, svk) to include these, and initial-
izes a left-balanced binary tree with n leaves, assigning each pair of keys in
(pk,svk) to a leaf. Let v be ID1’s leaf. They then sample new secrets for v’s
path (Δ,K) ← Re-key(v), store the new keypairs (skj , pkj) in the corresponding
nodes on the created tree and compute and store in γ′ the parent hashes and
signatures for the nodes in path(v): (H,Σ) ← PHash.Sig(ID1, γ

′), where recall
that each σj ∈ Σ is a signature of (pkj , 0, hj ,Htrans, 0) for some vj ∈ path(v)
with hj ∈ H its corresponding new parent hash pair (here PKpr

v and confTag are
set to 0 initially). For every vj ∈ path(v) \ v, let wj be the parent of vj not in
path(v). Then, for each yj,l ∈ Res(wj), ID1 computes ej,l = PKE.Enc(pkyj,l

,Δj),
together with the signature σs

j,l = Sig.Sigsski(ej,l). Next, they send out the initial-
ization message I = (′init′, ID1, G,pk, P, S); where P is the vector with entries
pj = (pkj , hj ,Htrans, σj), one per node in path(ID1); and S is the vector with
entries sj,l = (ej,l, σ

s
j,l), containing all the necessary encryptions and values to

be authenticated, for each vj ∈ path(v). Finally, ID1 erases the seeds Δi, and
sets all internal nodes outside their path in their local tree copy to be blank.

Update. To issue an update, user IDi with state γ and at leaf v, first computes
new secrets along their path (Δ,K) ← Re-key(v), stores the new keys in γ′ and
computes and stores the parent hashes and signatures for the nodes in path(v):
(H,Σ) ← PHash.Sig(IDi, γ

′). Second, they set confTag = MAC.Tag(γ.confKey,
γ.Htrans). For every vj ∈ path(v)\v, let wj be the parent of vj not in path(v) and
let Lj = Res(wj) ∪Unmerged(Res(wj)) be the set of nodes that are either in the

9 The recursion in the second case is needed to account for the possible blank nodes
introduced between p and v as a result of adding to new leaves to accomodate new
parties, so that p and p′ correspond to the parents of v at the time the state of v
was created.

832 J. Alwen et al.

resolution of wj or are leaves that are unmerged at some node in said resolution.
Then, for each yj,l ∈ Lj , IDi computes ej,l = PKE.Enc(pkyj,l

,Δj), together with
the signature σs

j,l = Sig.Sigsski(ej,l, confTag). Next, they send out the update
message U = (IDi, P, S, ci); where P is a vector of entries pj = (pkj , hj ,Htrans,
confTag, σj ,) containing the new public states and necessary authentication val-
ues for each vj ∈ path(v);10 S is the vector with entries sj,l = (ej,l, confTag, σ

s
j,l),

containing all the necessary encryptions and values to be authenticated, for each
vj ∈ path(v); and a counter ci, the number of updates (including this one) sent
by IDi since they last processed a round message. Last, they erase the seeds Δ.

Remove. To remove party IDj , IDi sends out a remove(IDj) plaintext request
together with confTag = MAC.Tag(γ.confKey, γ.Htrans), and a signature σ under
their signing key of the remove message and the confirmation tag. This will have
the effect of blanking the nodes in IDj ’s path. Following a removal, an Update
operation must be issued immediately so that a new group key is created.

Add. Additions of parties work in two rounds. To add party IDj , IDi first sends
a plaintext add request add(IDj , pk, svk) containing IDj ’s public init key pair
(pk, svk), confTag = MAC.Tag(γ.confKey, γ.Htrans) and a signature under IDi’s
signing key of the add request and the confirmation tag. This will allow all group
members to learn the identity of the new party and therefore to encrypt future
protocol messages to them. In the following round, IDi

11 must send IDj a signed
welcome message W = (Hround, γ.Htrans, γ.G, γ.confKey, γ.initSec), encrypted
under pk, allowing them to initialize their state and key schedule, as well as
checking the correctness of the tree sent by the server. Moreover, some user
must send an Update during that round, thus creating a new application secret.

Collect and Deliver. Whenever the server receives an initialization message I, it
just forwards it to all the new group members, initializing its local state γser with
the members of the new group and the public information of the ratchet tree
included in I. For all other messages, it does as follows: given concurrent group
messages T = (U,R,A,W) = (Ua, Rb, Ac,Wd : a ∈ [p], b ∈ [q], c ∈ [r], d ∈ [s])
sent during a round, corresponding to Updates, Removes, Adds, and Welcome
messages, respectively, the delivery server will first check if any two or more
updates come from the same user, deleting all of them except for the one received
last. The server first updates its local copy of the public state of T, stored in
γser, by updating the public keys of nodes refreshed by any Ua, blanking any
nodes affected by any Rb, and adding a public key and identifier to any leaf
newly populated as a result of an Ac; here if two or more operations affect a
given node, the operation that is minimal with respect to ≺ will be the one
10 note that, as in an initialization message, the signature included in each of the pj

does not exactly cover the rest of the elements of pj , but also includes the predecesor
key PKpr at that node. This is not a problem for verification, as this is set to 0 for
new groups, and in any other cases, parties will have access to the key at that node
before they processed said update.

11 an alternative specification could allow any group member online to do this instead.

CoCoA: Concurrent Continuous Group Key Agreement 833

determining the state of the node. A few considerations must be observed here,
which we discuss further below: first, all Removes must precede any Updates,
so that a node is blanked whenever a leaf under it is removed, irrespective of
which Updates take place; second, conflicting Removes take effect simultane-
ously, blanking nodes in both paths; third, new users are added on the left-most
free leaves in the tree according to some fixed rule that the receiving parties can
reproduce locally. Once the server’s view T is updated, it computes the labels
for it, defining T�, and the round hash Hround, as prescribed in Definition 3; and
computes opening vectors Oi ← openRH(IDi,T�) for all group members IDi ∈ G
(note that these will be computed with respect to the set P(IDi) resulting from
(un)blanking nodes as implied by T). Then, it crafts round messages Mi for
each user, containing the following information: first, the vectors R and A or
Removes and Adds; second the vector Oi and the round hash Hround; third, the
public states γ(v) = (pkv,PKpr

v , hv, IDv, σv,Htrans,v, confTagv, ov,Unmerged(v))
at the beginning of the round of the nodes v ∈ Ni = (∪j∈Rid

P(IDj)) \ P(IDi)
where Rid is the set of indices of parties removed by R, i.e., the new nodes on
the resolution of IDi’s and the extra states needed to verify the validity of the
received keys12; and fourth, for each node v ∈ P(IDi) (after the (un)blanking
implied by T) whose keys get rotated as a result of some (winning w.r.t. ≺)
update Ua = (ID, P, S), the server adds uv = (ID, pj) to Mi, where pj ∈ P is the
public state of corresponding to v; if, besides, v ∈ path(IDi) and is the lowest
node in path(IDi) updated by Ua, the server also includes the tuple sj,l ∈ S into
uv, corresponding to the encryption of v’s seed to the node in path(IDi) which
is in the resolution of the co-path of Ua’s author. Last, the server also includes
a counter ci, equal to that of IDi’s update included in Mi if there is one, and 0
otherwise. Finally, for each newly-added IDi, the round message Mi additionally
contains the corresponding W, as well as a copy of the public state of T.

Process. Upon receipt of a round message M containing associated Updates
U = (U1, . . . , Up), Removes R = (R1, . . . , Rq), Adds A = (A1, . . . , Ar), openings
vector O, public states for nodes in N , round hash Hround, and counter c, user
ID processes it as follows. First, if c 	= 0, they check if, from the time they last
processed a round message, they issued an update with counter c, aborting if
not. Next, they check that MAC.Ver(γ.confKey, confTag) = 1 for every update,
remove and add; that for the all update packets Ua the transcript hash value
included with the new public values for a node is the same as γ.Htrans; and that
the associated signature verifies under the public key of the sender (using the
current node key in place of PKpr to verify signatures of updates); and similarly

12 note that the leaves of the sub-tree of T with vertex set Ni correspond to the new
nodes in the resolution of ID that were not part of their state.

834 J. Alwen et al.

abort if any of these verifications does not pass.13 If these checks pass, they copy
their local state γ corresponding to the current round to γ′, incorporating into it
any node states previously stored there as part of the generation of said update
with counter c (this update is empty if c = 0). Then, they update the public
state of nodes needed to verify the round hash, as prescribed by the received
operations: first, for every v ∈ P(ID), they blank v if it is in the path affected
by some Ri and update P(ID) to include its new resolution as follows: they
check that the set of nodes N consists of the nodes outside P(ID) that are in
the paths and resolutions of co-paths of removed users. If more than one user
is removed, it could be that N consists of several disconnected subtrees of T.
For each such subtree T , ID checks that its leaves are all non-blank; that all the
leaves (w.r.t to T) of removed parties as described in R are included in it; and,
finally, that PHash.Ver(γ, T) = 1. Moreover, for each blanked node w (as a result
of M), they will use the received openings for the leaves of T , together with the
received states, to reconstruct the Merkle hash openings ov associated to v and
check that the stored values match these. If all the checks pass, ID incorporates
in γ′ the public states of the nodes in N that belong to the new nodes in P(ID),
together with the received openings for each such node, and aborts otherwise.
Next, if any v in the new P(ID) set is affected by an update Ua, they overwrite
its public key, parent hash value, signature, identifier, transcript hash value, and
confirmation tag to the one set by Ua, and update the unmerged leaves and
predecessor keys appropriate; and else, if corresponding to a newly populated
leaf, determine the corresponding added party from (U,R,A) and add the new
public key and identifier ID∗ to the leaf. If several nodes in their state are affected
by updates, they also check that for every such node in their path, the update
setting a new state for it is the same setting a state for one of its parents. Once
the updating of the public state of T is done, they run verifyRH(γ′,M), aborting
if the output is 0. Once those verifications are passed, for all nodes affected by
some Ui, they decrypt the appropriate seed, derive the new key-pairs from it
as in algorithm Re-key, check that the received public key matches the derived
one, aborting if not, and otherwise, overwrite the public and secret keys with
them; set Unmerged(v) ← ∅, and then Unmerged(v) ← Unmerged(v) ∪ li for each
leaf li that is an ancestor of v corresponding to an added party. After that, they
update γ.G to account for membership changes as per R and A. Finally, they
compute the key schedule for the current round, set γ ← γ′, deleting both the
old key schedule and the old key material from node states, and delete γ′ ← ∅.

If the user is not yet part of the group, M will also contain a welcome message
W = (Hround,Htrans, G, confKey, initSec) together with a copy of the public

13 Observe that this could allow an active adversary to continuously send inconsistent
messages, preventing users from updating. Since this falls outside of our model,
we do not consider it here for simplicity, but note that it could be prevented by
having users process all operations that do verify and compute an updated round
hash, hashing together the received value and the operations that failed verification,
inputting this into the transcript hash instead. This would ensure that parties agree
on the transcript hash if and only if they processed exactly the same operations.

CoCoA: Concurrent Continuous Group Key Agreement 835

Table 2. Comparison of the communication complexity of different CGKA protocols.
For a detailed discussion of the table see Sect. 4. The values x depicted in the last 5
columns are to be understood as O(x). We assume that the ratchet-tree based protocols
start with a fully unblanked tree. †: In the uncoordinated case, the protocol’s recipient
communication is n2 (case (a)) and t2(1+ log(n/t)) (case (b)), respectively. Regarding
the subsequent update cost, while the protocol formally has a worst case subsequent
update cost of log(n), it is only secure in a weak security model. Modifying it to obtain
PCS guarantees similar to the other protocols, e.g. by tainting [25], would lead to future
worst-case update cost of n (case (a)) and t(1 + log(n/t)) (case (b)), respectively.

Protocol type Rounds to heal Cumulative sender Per-user recipient Subsequent per-user

t corruptions communication communication update cost

No coordination Coordination Worst Average

(a) Corrupted parties unknown

Original TreeKEM & variants [3,8,25,26] n n2 log(n) n log(n) n log(n) log(n) log(n)

Propose-commit TreeKEM [8] 2 n2 n n n n

Bienstock et al. [11] 2 n2 n n† log(n)† log(n)

Bidirectional channels [30] 2 n2 n2 n n n

This work �log(n)� + 1 n log2(n) n log2(n) log2(n) log(n) log(n)

(b) Corrupted parties known

Original TreeKEM & variants [3,8,25,26] t t2 log(n) t log(n) t log(n) log(n) log(n)

Propose-commit TreeKEM [8] 2 t2(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t)) t2+(n−t) log(n)
n

Bienstock et al. [11] 2 t2(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t))† log(n)† log(n)

Bidirectional channels [30] 2 tn tn t n n

This work �log(n)� + 1 t log2(n) t log2(n) log(n) · min(t, log(n)) log(n) log(n)

state of the ratchet tree T, allowing the user to initialize their state prior to
executing the instructions above. The newly added user IDi will first check that
G matches the leaf identifiers in T, compute the round hash from T, R and A as
in Definition 3, and check that it matches the received value Hround (and skip
this step when later processing the rest of the round message). If any of these
checks fails, the user immediately aborts. Next, they will initialize their state γ
by setting γ.ID ← IDi, γ.Htrans ← Htrans, γ.G ← G, γ.confKey ← confKey,
and γ.initSec ← initSec. Finally, they set the state γ(l) of the leaf l to contain
the init key with which they were added - note that they will not have at this
point knowledge of the secret keys of any other node, but they will obtain some
as soon as they process any Ua. When doing so, note that for the verification
of the signature they will need to make use of the keys in T. Last, to process
an initialization message I = (′init′, ˜ID, G, P, S), ID verifies the parent hash for
the node public states in P , using PKpr

v = 0 for all nodes v ∈ pathĨD, derives the
keys for ˜ID’s path from S, and creates a ratchet tree with users in G as leaves
and the obtained keys. Last, they initialize the key schedule, with initial value
0 for γ.initSec and Htrans, storing all in the newly created state γ.

Get Group Key. A user with local state γ fetches K = γ.appSecret.

4 Efficiency

In this section we discuss the communication complexity of our protocol and
compare it with other CGKA schemes. We focus on the cost incurred by several

836 J. Alwen et al.

users updating concurrently to recover from compromise, as this is the main
setting we aim to tackle with this work. An overview is given in Table 2.

Considered Setting. Not only does the sequence of operations preceding concur-
rent update operations (in the case of ratchet-tree based CGKA schemes) have
a crucial impact on the resulting communication cost, but also, whether the
participating parties know which of the other parties have been compromised
and when they are planning to update. Among the different settings one could
compare, we restrict our view to the following, quite natural in our opinion.

We consider a group of n users, t of which have been compro-
mised. For ratchet-tree-based protocols we assume that the tree is fully
unblanked/untainted, as this should typically be the case, with Updates being
the most common operation. Our analysis differentiates between the settings (a)
where it is only known that the group has been compromised, but not who the
particular t corrupted users are, and (b) where the set of compromised users is
known to everyone. Note that the former essentially forces every member of the
group to update, while in the latter scenario only the t compromised users have
to act.

The first value we are interested in is the number of rounds of (potentially)
concurrent updates, after which the group key is guaranteed to be secure again.
The second is the cumulative sender complexity (measured over all rounds),
which essentially corresponds to the number of public keys and ciphertexts sent
to the server. Here, we again distinguish between two settings. Namely, whether
the parties act coordinated or not. In the latter case the participating parties are
not aware of whether other parties are concurrently preparing updates/commits,
which, depending on the scheme, potentially leads to the server having to reject
packages. In the former case, on the other hand, they have this knowledge. In
practice, this could be implemented by introducing an additional mechanism,
that requires parties to wait for a confirmation by the server before preparing and
sending update packages. We further track the per-user recipient communication
complexity, again measured as a total over all rounds required to recover from
compromise. The final considered value is the sender communication cost of a
single, non-concurrent, update/commit in a subsequent round. Here, we state
both the cost of the worst-case party as well as the average cost.

In Table 2 we mark schemes that perform substantially better or worse in
one of the categories in green and red, respectively.

The Communication Complexity of CoCoA. We first discuss the number of
rounds required to recover from compromise of t users. As we will show in Sect. 5,
it is sufficientfor the group to recoverthat all corrupted users concurrently update
in
log(n)� + 1 rounds.

Regarding the sender communication complexity, the size of update packages
sent by a user ID to update in the CoCoA protocol is proportional to the size of
the resolution of ID’s co-path, which will be of order log(n) for a fully unblanked

CoCoA: Concurrent Continuous Group Key Agreement 837

tree14. However, this value could be up to linear in a tree with many blanks, as
is the case in TreeKEM and its variants, where blanks (or taints in the case of
TTKEM) degrade communication efficiency. In CoCoA concurrent updates are
merged and thus none are ever rejected by the server. Hence, in the considered
scenario CoCoA in both the coordinated and uncoordinated setting has the same
sender communication complexity of order n log(n)2 (corresponding to n users
sending an update of size log(n) in
log(n)� + 1 many rounds) and t log(n)2

(corresponding to t users sending an update of size log(n) in
log(n)� + 1 many
rounds), for cases (a) and (b) respectively.

With regards to the recipient communication complexity, user ID in our pro-
tocol needs to only receive at most a single ciphertext per update (zero if said
update does not rotate the keys of any node in their state), and never more than
path(ID) =
log(n)� in total. They will also receive at most |P(ID)| public keys
per round.15 Thus in case (a) ID would incur a download cost of order log(n)
per round, and O(log(n)2) across the
log(n)� + 1 rounds. In case (b) only t
parties are updating per round, implying that the per round recipient cost is
of order min(t, log(n)) and the cost over all
log(n)� + 1 rounds is of order
log(n) · min(t, log(n)). Finally, as in CoCoA concurrent updates do not affect
the ratchet tree structure and in particular do not require blanks, the cost of
subsequent updates remains of order log(n).

The Communication Complexity of Other CGKA Schemes. In Table 2 we con-
trast CoCoA to other CGKA schemes. For a more detailed breakdown of theses
values we refer to the full version of this work [2]. The first class of considered
schemes are ratchet-tree based schemes that do not rely on the P&C framework,
as TreeKEM v7 and earlier versions [8], rTreeKEM [3], TTKEM [25], and Causal
TreeKEM [26]16. Further, with TreeKEM v8 [8] and later versions and the pro-
tocol by Bienstock et al. [11] we consider ratchet-tree based protocols following
the P&C paradigm. Finally, we give values for the protocol by Weidner et al. [30]
based on bidirectional channels. We point out that this work targets a different
network model and has thus a different focus than ours.

Summary and Comparison. CoCoA diverges across two different axes from what
could be considered a common paradigm until now. On the one hand, users are
no longer required to keep track of the full state of the ratchet tree, reducing
the recipient communication cost and the storage costs for users, and making
this cost differ substantially from the total amount of upload communication.
Indeed, this is a big change, as this distinction is not really present in previous
14 an additional ciphertext would need to be sent for each unmerged leaf across ID’s

path, but this will not account for much in typical protocol executions.
15 Note that the size of P(ID) grows at most by 1 per every blank node.
16 Causal TreeKEM proposes an interesting idea of re-randomizing node secrets

through a concrete homomorphic operation, instead of re-sampling them. Thus it
actually allows for concurrent updates. However, the presented security statement
still requires updates of every compromised party in different rounds, thus leading
to communication complexity as presented in the table.

838 J. Alwen et al.

works, where the majority of uploaded packets are downloaded by everyone. On
the other hand, we consider a more flexible PCS guarantee that only requires
users to heal after
log(n)� + 1 rounds. This is in contrast to previous works
requiring PCS to hold after a constant number of rounds or only after n rounds.
The effect of allowing concurrent updates to be merged is that, on one hand, the
protocol is agnostic to coordination, i.e., no additional mechanism is needed that
ensures that users do not send update/commit packages that will be rejected by
the server, and, on the other hand, it allows the protocol to handle concurrent
update operations without introducing blanks in the ratchet tree.

The trade-off with TreeKEM versions that precede the P&C paradigm is
clear: we are paying a log(n) factor in sender communication in exchange for
faster PCS that is independent from the number of compromised users. The
comparison with P&C TreeKEM is not as straightforward, as the t compromised
users can heal in only 2 rounds. The main advantage CoCoA over has this
scheme is that it does not introduce blanks in the ratchet tree when handling
concurrent operations, which leads to an improved update cost in subsequent
rounds. However, this comes at the cost of slower healing and a factor of log2(n)
(or roughly log(n) in case (b)) in sender communication cost. We point out that
the P&C framework of TreeKEM allows for more flexibility, e.g. by performing
the required updates in several batches over multiple rounds. The exact trade-off
achieved by such an intermediate approach is hard to quantify, but, again, due to
blanking the cost of future updates will suffer. Finally, CoCoA has the advantage,
over all versions of TreeKEM, of reduced recipient communication complexity
and that users can prepare updates without the need of extra communication
with the server to prevent rejection of said updates.

As a final remark, CoCoA seems to have a slightly worse efficiency than
TreeKEM based protocols predating the P&C paradigm, since it requires slightly
larger sender communication overall. However, as we show in Sect. 5, this is only
the case if fast PCS is required for many users. In fact, a round with a single
update will immediately grant PCS to its sender, just as in TreeKEM. Thus,
CoCoA can be seen as an extension of pre-P&C TreeKEM, which incorporates
the possibility of trading bandwidth for faster collective healing.

5 Security

Given a set of parties whose state has leaked, TreeKEM and related variants
achieve PCS exactly after all of them perform an update. This is still true in our
protocol as long as the updates are applied sequentially. In the case of concur-
rent updates, on the other hand, we show that every corrupted party sending
logarithmically many updates is sufficient.

5.1 Security Model and Safe Predicate

To analyze the security of CoCoA, we essentially use the security model from
[25], which allows the adversary to act partially actively and fully adaptively: in

CoCoA: Concurrent Continuous Group Key Agreement 839

this model, the adversary can adaptively decide which users perform which oper-
ations, and can actively control the delivery server; however it can not issue mes-
sages on behalf of the users. In [25] this is enforced by assuming authenticated
channels. Since in CoCoA the signing of protocol messages is more involved,
parent hash plays an important role also for security against partially active
adversaries, and the server no longer just relays messages, we make the use of
signatures explicit in this work. As we restrict our analysis to partially active
adversaries, the adversary does not get access to signing keys via corruptions.
While this might look artificial, it has importance in practice as discussed in the
introduction, and we still obtain meaningful results in the vein of [25]. Neverthe-
less, we consider the analysis of CoCoA’s security against fully active adversaries
an important question for future work.

Except for explicit signatures, the differences in the setting of concurrent
CGKA to the one of [25] are that 1) users process concurrent messages, 2) no
messages are ever rejected by the server, and 3) the server is allowed to send
arbitrary (potentially malformed) messages. Regarding 2), it is however possible
that messages get lost and even that a user does not process an update they
generated. Whether a user IDi’s update message (and which one) is contained
in a round message Mi, is represented by a counter ci. Finally, regarding 3),
while our security notion is strictly stronger than the one from [25] (where the
server could only forward existing messages), the security of protocols such as
TreeKEM and TTKEM can trivially be upgraded to our notion: This is true
since round messages in these protocols only consist of signed messages and the
adversary does not learn any party’s signing key. In our protocols, in contrast,
the server is assumed to perform some computation on users’ messages, hence it
makes sense to consider a stronger model where this computation is not trusted.

Definition 5 (Asynchronous CGKA Security). The security for CGKA is
modeled using a game between a challenger C and an adversary A. At the begin-
ning of the game, the adversary queries create-group(G) and the challenger
initializes the group G with identities (ID1, . . . , ID�). The adversary A can then
make a sequence of queries, enumerated below, in any arbitrary order. On a
high level, add-user and remove-user allow the adversary to control the struc-
ture of the group, whereas process allows it to control the scheduling of the
messages. The query update simulates the refreshing of a local state. Finally,
start-corrupt and end-corrupt enable the adversary to corrupt the users for
a time period. The entire state and random coins of a corrupted user are leaked
to the adversary during this period, except for the user’s signing key.

1. add-user(ID, ID′): a user ID requests to add another user ID′ to the group.
2. remove-user(ID, ID′): a user ID requests to remove another user ID′ from

the group.
3. update(ID): the user ID requests to refresh its current local state γ.
4. process(M, ID): for some message M and party ID, this action sends M to

ID which immediately processes it.
5. start-corrupt(ID): from now on the entire internal state and randomness of

ID except for the signing key sskID is leaked to the adversary.

840 J. Alwen et al.

6. end-corrupt(ID): ends the leakage of user ID’s internal state and randomness
to the adversary.

7. challenge(q∗): A picks a query q∗ corresponding to anaction a∗ =
update(ID) or the initialization (if q∗ = 0). Let K0 denote the group key
that is sampled during this operation and K1 be a fresh random key. The
challenger tosses a coin b and – if the safe predicate below is satisfied – the
key Kb is given to the adversary (if the predicate is not satisfied the adversary
gets nothing).

At the end of the game, the adversary outputs a bit b′ and wins if b′ = b.
We call a CGKA scheme (Q, ε, t)-CGKA-secure if for any adversary A making
at most Q queries of the form add-user(·, ·), remove-user(·, ·), or update(·)
and running in time t it holds

AdvCGKA(A) := |Pr[1 ← A|b = 0] − Pr[1 ← A|b = 1]| < ε.

In contrast to the security definition of [25], process queries do not point to
specific queries here. Thus, in order to define our safe predicate, we first need to
define what we mean by saying that a party processed another party’s update.

Definition 6. Let ID and ID∗ be two (not necessarily different) users and (γq, T)
← CGKA.Upd(γq−1) an update with associated counter c, generated by ID in
query q. Let R(ID, γq) be the set of round messages M that

(a) are efficiently computable from the public transcript and private states of all
parties,

(b) have counter c for party ID, and
(c) will be accepted by ID in state γq, i.e., CGKA.Proc(γq,M) outputs a new

state γq+1 such that CGKA.Key(γq+1) 	= CGKA.Key(γq).

Then we say that ID∗ processes the update T (or equivalently q) at time q∗ > q
if ID∗ processes some round message M∗ at time q∗ resulting in state γq∗ , and
CGKA.Key(γq∗) ∈ {CGKA.Key(CGKA.Proc(γq,M)) | M ∈ R(ID, γq)}.

As a special case we say that ID∗ processes the single update T (or equivalently
q), if in item (c) additionally the only changes to P(ID) resulting from updates
are due to T .

With this notion in place, we will now define the safe predicate similar to the one
in [25]. In particular, it rules out all trivial winning strategies, while preserving
simplicity by ignoring protocol-specific details such as the relative position of
users within the tree.

Definition 7 (Critical window, safe user). Let ID and ID∗ be two (not nec-
essarily different) users and q∗ ∈ [Q]0 be some update(·) or create-group(·)
query. Let q− < q∗ be maximal such that one of the following holds:

– There exist L :=
log(n)�+1 update queries ai
ID := update(ID) (i ∈ [L]) that

were generated for ID and processed by ID∗ within the time interval [q−, q∗].
If ID∗ does not process L such queries then we set q− = 1, the first query.
We denote the last such update query as qL.

CoCoA: Concurrent Continuous Group Key Agreement 841

– There exists an update query a−
ID := update(ID) that was generated by ID

and processed by ID∗ as a single update within the time interval [q−, q∗]. In
this case, we set qL := q−.

Furthermore, let q+ > qL be the first query that invalidates ID’s current key
(in the view of ID∗), i.e., in query q+, ID processes a (partial) update a+ID :=
update(ID) /∈ {ai

ID}i∈[L]. If ID does not process any such query then we set
q+ = Q, the last query.

We say that the window [q−, q+] is critical for ID at time q∗ in the view of
ID∗. Moreover, if the user ID is not corrupted at any time point in the critical
window, we say that ID is safe at time q∗ in the view of ID∗.

Similar to [25], we define a group key as safe if all the users that ID∗ consid-
ers to be in the group are individually safe, i.e., not corrupted in their critical
windows, in the view of ID∗.

Definition 8 (Safe predicate). Let K∗ be a group key generated in an action
a∗ ∈ {update(ID∗), create-group(ID∗, ·)} at time point q∗ ∈ [Q]0 and let G∗

be the set of users which would end up in the group if query q∗ was processed, as
viewed by the generating user ID∗. Then the key K∗ is considered safe if for all
users ID ∈ G∗ (including ID∗) we have that ID is safe at time q∗ in the view of
ID∗ (as per Definition 7).

Note that the second case in Definition 7 exactly captures the case where
only single updates are accepted in each round. Thus, the security of CoCoA
is strictly stronger than sequential variants of TreeKEM. Further, the bound of

log(n)� + 1 updates as required in Definition 7 is indeed tight, as we show with
an example given in the full version of this work [2].

5.2 Security of CoCoA

Regarding the security of CoCoA we obtain the following.

Theorem 1. If the encryption scheme used in CoCoA is (εEnc, t)-IND-CPA-
secure, the signature scheme is (εSig, t, (n+2 log(n))Q)-UF-CMA-secure, and the
used hash functions are modeled as random oracles, then CoCoA is (Q,O(εEnc ·
(nQ)2 + εSig · n), t)-CGKA-secure.

Due to space limitations we only give a high level overview on the proof, and
refer to the full version of this work [2] for the formal proof. To prove security
of CoCoA, we follow the approach of [25] and consider the graph structure
that is generated throughout the security experiment. A node i in the so-called
CGKA graph is associated with seeds Δi and si := H2(Δi), and a key-pair
(pki, ski) := Gen(si). The edges of the graph, on the other hand, are induced by
dependencies via the hash function H1 or (public-key) encryptions. To be more
precise, an edge (i, j) corresponds to either:

842 J. Alwen et al.

(a) a ciphertext of the form Encpki(Δj); or
(b) an application of H1 of the form Δj = H1(Δi) used in hierarchical derivation.

Naturally, the structure of the CGKA graph depends on the update, add-user
or remove-user queries made by the adversary, and is therefore generated adap-
tively. To argue security of a challenge group key, we consider the subgraph of
the CGKA graph that consists of all ancestors of the node associated to the chal-
lenge group key – the so-called challenge graph. By functionality of the CGKA
protocol, the challenge group key can be derived from any secret key/seed asso-
ciated to a node in the challenge graph. To argue security, none of the secret
keys in the challenge graph must be leaked to the adversary by corruption. We
prove that this is indeed the case for CoCoA if the safe predicate is satisfied. Our
proof follows the ideas from [25], but involves a new combinatorial argument to
establish the upper bound of
log(n)� + 1 updates for healing the state of every
user. Further, the fact that in CoCoA users only keep track of a part of the
ratchet tree substantially complicates the proof of this statement.

In more detail, the proof for the protocol in [25] relies on the property that
every key in the challenge graph must stem from an update that the party ID∗,
who generated the challenge key, processed. This can easily be ensured for proto-
cols keeping track of the full ratchet tree, by forcing parties, who do not agree for
every point in time in the protocol execution on every key associated to a node
in the ratchet tree, into inconsistent states, thus making future communication
between them impossible. Note that this implies the desired property. In this
case, if a user ID, while generating an update, encrypts the seed of a key pk to
some pk′, and later ID∗ encrypts to pk, then ID∗ must have had pk′ in their state
at some point in time, and, in particular, processed the update establishing it.

Unfortunately, while in an execution where the server behaves honestly, this
property would also be true with respect to the relatively simple definition of
processing an update of Definition 6, it is no longer true if we allow an untrusted
server. Since in CoCoA the server might send malformed round messages, this
property turns out to not hold anymore. We overcome this issue by giving a
more involved definition (which is equivalent to Definition 6 in the honest server
setting) of weakly processing an update and then essentially show, in the ROM,
that every key in a user’s state must stem from a weakly processed update.
Further, we show that users that do not agree on the same history of weakly
processed updates transition to inconsistent states. For this we have to show, for
example, that all keys introduced into a user’s state after a change to the resolu-
tion of their copath must have been weakly processed in an earlier round (even
in the case that at this point in time this update did not affect the user’s limited
view of the ratchet tree). To prove these properties we rely on the consistency
mechanisms of transcript hash and parent hash.

With these statements in place we are finally able to show that no key in
the challenge graph is leaked to the adversary, where we use the observation
that this property holding with respect to processing an update as defined in
Definition 6 is implied by it holding with respect to the relaxed definition.

CoCoA: Concurrent Continuous Group Key Agreement 843

Acknowledgements. We thank Marta Mularczyk and Yiannis Tselekounis for their
very helpful feedback on an earlier draft of this paper.

References

1. Alwen, J., et al.: Grafting key trees: efficient key management for overlapping
groups. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 222–
253. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2 8

2. Alwen, J., et al.: Cocoa: Concurrent continuous group key agreement (2022). Cryp-
tology ePrint Archive, Report 2022/251, https://eprint.iacr.org/2022/251

3. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 248–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 9

4. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Modular design of secure group
messaging protocols and the security of MLS. In: Vigna, G., Shi, E. (eds.) ACM
CCS 2021, pp. 1463–1483. ACM Press (2021)

5. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551,
pp. 261–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-
2 10

6. Alwen, J., Hartmann, D., Kiltz, E., Mularczyk, M.: Server-aided continuous group
key agreement. Cryptology ePrint Archive, Report 2021/1456, 2021. https://
eprint.iacr.org/2021/1456

7. Alwen, J., Jost, D., Mularczyk, M.: On the insider security of MLS. Cryptology
ePrint Archive, Report 2020/1327 (2020). https://eprint.iacr.org/2020/1327

8. Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert,
R.: The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-
protocol-11, Internet Engineering Task Force (2020). Work in Progress

9. Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: asynchronous decentralized key
management for large dynamic groups (2018). https://mailarchive.ietf.org/arch/
attach/mls/pdf1XUH6o.pdf

10. Bhargavan, K., Beurdouche, B., Naldurg, P.: Formal Models and Verified Protocols
for Group Messaging: Attacks and Proofs for IETF MLS. Research report, Inria
Paris (2019)

11. Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting
protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 198–
228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 8

12. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group diffie-hellman key
exchange under standard assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 21

13. Brzuska, C., Cornelissen, E., Kohbrok, K.: Cryptographic security of the mls rfc,
draft 11. Cryptology ePrint Archive, Report 2021/137 (2021). https://eprint.iacr.
org/2021/137

14. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution
system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053443

https://doi.org/10.1007/978-3-030-90456-2_8
https://eprint.iacr.org/2022/251
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://eprint.iacr.org/2021/1456
https://eprint.iacr.org/2021/1456
https://eprint.iacr.org/2020/1327
https://mailarchive.ietf.org/arch/attach/mls/pdf1XUH6o.pdf
https://mailarchive.ietf.org/arch/attach/mls/pdf1XUH6o.pdf
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/3-540-46035-7_21
https://doi.org/10.1007/3-540-46035-7_21
https://eprint.iacr.org/2021/137
https://eprint.iacr.org/2021/137
https://doi.org/10.1007/BFb0053443

844 J. Alwen et al.

15. Canetti, R., Garay, J.A., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: a taxonomy and some efficient constructions. In: IEEE INFOCOM 1999,
New York, NY, USA, 21–25 March 1999, pp. 708–716 (1999)

16. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: asynchronous group messaging with strong security guarantees.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1802–
1819. ACM Press (2018)

17. Cremers, C., Hale, B., Kohbrok, K.: The complexities of healing in secure group
messaging: Why cross-group effects matter. In: Bailey, M., Greenstadt, R. (eds.)
USENIX Security 2021, pp. 1847–1864. USENIX Association (2021)

18. Devigne, J., Duguey, C., Fouque, P.-A.: MLS group messaging: how zero-knowledge
can secure updates. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS
2021. LNCS, vol. 12973, pp. 587–607. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-88428-4 29

19. Dutta, R., Barua, R.: Dynamic group key agreement in tree-based setting. In:
Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 101–112.
Springer, Heidelberg (2005). https://doi.org/10.1007/11506157 9

20. Emura, K., Kajita, K., Nojima, R., Ogawa, K., Ohtake, G.: Membership privacy
for asynchronous group messaging. Cryptology ePrint Archive, Report 2022/046
(2022). https://eprint.iacr.org/2022/046

21. Hashimoto, K., Katsumata, S., Postlethwaite, E., Prest, T., Westerbaan, B.: A
concrete treatment of efficient continuous group key agreement via multi-recipient
PKEs. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 1441–1462. ACM Press
(2021)

22. Howell, C., Leavy, T., Alwen, J.: Wickr messaging protocol: technical
paper (2019). https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-
content/uploads/2019/12/WhitePaper WickrMessagingProtocol.pdf

23. Ingemarsson, I., Tang, D., Wong, C.: A conference key distribution system. IEEE
Trans. Inf. Theory 28(5), 714–720 (1982)

24. Hashimoto, K., Katsumata, S., Postlethwaite, E., Prest, T., Westerbaan, B.: A
concrete treatment of efficient continuous group key agreement via multi-recipient
PKEs. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 1441–1462. ACM Press
(2021)

25. Klein, K., et al.: Keep the dirt: tainted TreeKEM, adaptively and actively secure
continuous group key agreement. In: 2021 IEEE Symposium on Security and Pri-
vacy, pp. 268–284. IEEE Computer Society Press (2021)

26. Weidner, M.A.: Group Messaging for Secure Asynchronous Collaboration. Master’s
thesis, University of Cambridge (2019)

27. Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 2

28. Perrin, T., Marlinspike, M.: The Double Ratchet Algorithm (2016). https://signal.
org/docs/specifications/doubleratchet/

29. Wallner, D.M., Harder, E.J., Agee, R.C.: Key management for multicast: Issues
and architectures. Internet Draft (1998). http://www.ietf.org/ID.html

30. Weidner, M., Kleppmann, M., Hugenroth, D., Beresford, A.R.: Key agreement for
decentralized secure group messaging with strong security guarantees. In: Vigna,
G., Shi, E. (eds.) ACM CCS 2021, pp. 2024–2045. ACM Press (2021)

31. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure group communications using key
graphs. In: Proceedings of ACM SIGCOMM, Vancouver, BC, Canada, 31 August–
4 September 1998, pp. 68–79 (1998)

https://doi.org/10.1007/978-3-030-88428-4_29
https://doi.org/10.1007/978-3-030-88428-4_29
https://doi.org/10.1007/11506157_9
https://eprint.iacr.org/2022/046
https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf
https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf
https://doi.org/10.1007/978-3-540-70936-7_2
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
http://www.ietf.org/ID.html

Efficient Schemes for Committing
Authenticated Encryption

Mihir Bellare1 and Viet Tung Hoang2(B)

1 Department of Computer Science and Engineering,
University of California San Diego, La Jolla, USA

mihir@eng.ucsd.edu
2 Department of Computer Science, Florida State University, Tallahassee, USA

tvhoang@cs.fsu.edu

https://cseweb.ucsd.edu/~mihir/, https://cs.fsu.edu/~tvhoang/

Abstract. This paper provides efficient authenticated-encryption (AE)
schemes in which a ciphertext is a commitment to the key. These are
extended, at minimal additional cost, to schemes where the ciphertext
is a commitment to all encryption inputs, meaning key, nonce, associ-
ated data and message. Our primary schemes are modifications of GCM
(for basic, unique-nonce AE security) and AES-GCM-SIV (for misuse-
resistant AE security) and add both forms of commitment without any
increase in ciphertext size. We also give more generic, but somewhat
more costly, solutions.

1 Introduction

Symmetric encryption is the canonical primitive of cryptography, with which
the field is often identified in the popular mind. Over time, the primitive has
evolved. Failures of privacy-only schemes lead to the understanding that the goal
should be authenticated encryption [10,32]. The underlying syntax, meanwhile,
has gone from randomized or counter-based [7] to nonce-based [39,40].

Recent attacks and applications [3,4,25,27,34] motivate another evolution.
Namely, a ciphertext should be a commitment to the key, and beyond that,
possibly even to other or all the inputs to the encryption process.

In this paper we contribute definitions and new schemes for such committing
authenticated encryption. Our schemes combine efficiency, security and practi-
cality attributes that may make them attractive for inclusion in cryptographic
software libraries or for standardization.

Background. In a nonce-based symmetric encryption scheme SE, encryption
takes key K, nonce N , associated data A and message M to deterministically
return a ciphertext C ← SE.Enc(K,N,A,M), with decryption recovering via M
← SE.Dec(K,N,A,C) [39,40]. AE security asks for both privacy and authentic-
ity of the message. In its most basic form, called UNAE (Unique-Nonce AE secu-
rity) this is under the assumption that nonces are unique, meaning never reused
across encryptions [39,40]. MRAE (Misuse-resistant AE security) is stronger,
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 845–875, 2022.
https://doi.org/10.1007/978-3-031-07085-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_29&domain=pdf
http://orcid.org/0000-0002-8765-5573
https://doi.org/10.1007/978-3-031-07085-3_29

846 M. Bellare and V. T. Hoang

asking in addition for best-possible security under any reuse of an encryption
nonce [41].

A central scheme is GCM [36]. It is a government standard [23] and is used in
TLS [42]. Other standardized and widely-used schemes are XSalsa20/Poly1305
and ChaCha20/Poly1305 [15–17]. All these are UNAE-secure. AES-GCM-SIV [28,
43] is a leading MRAE scheme poised for standardization.

For both UNAE and MRAE, proofs are the norm, but the bar is now high: not
only multi-user (mu) security [13]—reflecting that deployment settings like TLS
have millions of users—but with bounds that are good, meaning almost the same
as for the single-user setting. Dedicated analyses show that GCM has such UNAE
security [13,29,35], and likewise for the MRAE security of AES-GCM-SIV [20].
Henceforth when we refer to UNAE or MRAE, it means in the mu setting

Committing security. We formalize, in a systematic way, different notions of
what it means for a ciphertext C ← SE.Enc(K,N,A,M) to be a commitment.
For the purposes of this Introduction, we can confine attention to two notions,
CMT-1 and CMT-4. The primary, CMT-1 notion asks that the commitment be
to the key K. In the game formalizing this, the adversary returns a pair ((K1, N1,
A1,M1), (K2, N2, A2,M2)) satisfying K1 �= K2, and is successful if SE.Enc(K1,
N1, A1,M1) = SE.Enc(K2, N2, A2,M2). Extending this, CMT-4 asks that the
commitment be, not just to the key, but to K,N,A,M , meaning to all the
inputs to SE.Enc. The game changes only in the requirement K1 �= K2 being
replaced by (K1, N1, A1,M1) �= (K2, N2, A2,M2). As a mnemonic, think of the
integer � in the notation CMT-� as the number of inputs of SE.Enc to which we
commit.

Clearly CMT-4 → CMT-1, meaning any scheme that is CMT-4-secure is also
CMT-1-secure, and it is easy to see that the implication is strict. (There exist
CMT-1-secure schemes that are not CMT-4-secure.)

In Sect. 3, we also consider CMT-3, simpler than, but equivalent to, CMT-4;
we give alternative, decryption-based formulations of all these definitions but
show the two equivalent for schemes that, like all the ones we consider, satisfy
the syntactic requirement of tidiness [38]; and finally we extend the notions from
2-way committing security to s-way committing security for a parameter s ≥ 2
which will enter results.

Simple counterexamples show that neither UNAE nor MRAE security imply
even CMT-1-security. And the gap is real: attacks from [4,27,34] show that GCM,
XSalsa20/Poly1305, ChaCha20/Poly1305 and OCB [40] are all CMT-1-insecure.

Prior notions. The notion of key-committing (KC) security, asking that a
ciphertext is a commitment to the key, starts with Abdalla, Bellare and Neven
(ABN) [3], who called it robustness and studied it for PKE and IBE. Their def-
initions were strengthened by Farshim, Libert, Paterson and Quaglia [24]. Now
calling it key-robustness, Farshi, Orlandi and Ro̧sie (FOR) [25] bring it to random-
ized symmetric encryption. Albertini, Duong, Gueron, Kölbl, Luykx and Schmieg
(ADGKLS) [4] and Len, Grubbs and Ristenpart (LGR) [34] consider it for nonce-
based symmetric encryption, giving definitions slightly weaker than CMT-1.

Efficient Committing Authenticated Encryption 847

Grubbs, Lu and Ristenpart (GLR) [27] consider committing to the header
and message. CMT-4 is stronger in that it asks for the commitment to be not
just to these but also to the key and nonce. However, we do not consider or
require what GLR [27] call compact commitment.

Why commit to the key? The canonical method for password-based encryp-
tion (PKCS#5 [31]) uses a symmetric encryption scheme SE, such as GCM, as a
tool. In a surprising new attack, LGR [34] show that absence of key-committing
(KC) security in SE leads to a break of the overlying password-based encryption
scheme. This attack is circumvented if SE is CMT-1-secure.

Broadly, we have seen protocols failing due to absence of key-committing
security in an underlying encryption scheme and then fixed by its being added.
ABN [3] illustrate this when the protocol is PEKS [19]; they also note that when
encryption strives to be anonymous, key-committing security is necessary for
unambiguous decryption. FOR [25] illustrate the issue for an encryption-using
Oblivious Transfer protocol and note that encryption not being key-committing
has lead to attacks on Private Set Intersection protocols [33]. ADGKLS [4]
describe in detail three real-world security failures—the domains are key rota-
tion, envelope encryption and subscribe-with-Google—arising from lack of key-
committing security.

Why commit to everything? CMT-4 is a simple, optimally-strong goal: we
commit to everything. This means all 4 of the inputs to the encryption algo-
rithm: key, nonce, associated data and message. Some motivation comes from
applications; for example, GLR [27] show that committing to header and mes-
sage is needed for an AE scheme to provide message franking, a capability in
messaging systems that allows a receiver to report the receipt of abusive con-
tent. But the larger benefit is to increase ease of use and decrease risk of error
or misuse. An application designer is spared the burden of trying to understand
to exactly which encryption inputs the application needs a commitment; with
CMT-4, she is covered.

Path to schemes. Our starting points are existing AE schemes. Given one
such, call it SE, we will modify it to a CMT-1 scheme SE-1 and then further into
a CMT-4 scheme SE-4. These modifications must of course retain AE security:
for XX ∈ {UN,MR}, if SE is XXAE-secure then so are SE-1,SE-4. The ciphertext
overhead (length of ciphertext in new scheme minus that in old) is kept as small
as possible, and is zero for our primary schemes. Computational overhead will
always be independent of the length of the message.

Proofs of AE security for our schemes are in the multi-user setting, with
bounds as good as those for the starting schemes. This requires significant ana-
lytical effort.

Modern encryption standards are purely blockcipher based, meaning do not
use a cryptographic hash function like SHA256; this allows them to most effec-
tively exploit the AES-NI instructions for speed, and also lowers their real-estate
in hardware. We aim, as much as possible, to retain this. For CMT-1, we succeed,
reaching this without cryptographic hash functions. The extension to CMT-4

848 M. Bellare and V. T. Hoang

Scheme
AE Committing Ciphertext Starts

security security overhead from

CAU-C1 UNAE CMT-1 0 GCM

HtE[CAU-C1, ·] UNAE CMT-4 0 GCM

CAU-SIV-C1 MRAE CMT-1 0 AES-GCM-SIV
HtE[CAU-SIV-C1, ·] MRAE CMT-4 0 AES-GCM-SIV

UtC[SE, ·] UNAE CMT-1 1 block any UNAE SE

HtE[UtC[SE, ·], ·] UNAE CMT-4 1 block any UNAE SE

RtC[SE, ·, ·] MRAE CMT-1 1 block any MRAE SE

HtE[RtC[SE, ·, ·], ·] MRAE CMT-4 1 block any MRAE SE

Fig. 1. Summary of attributes of our schemes. Ciphertext overhead is length of
ciphertext in our scheme minus that in the scheme from which it starts. Computational
overhead is always independent of message length. A “·” as an argument to a transform
refers to some suitable auxiliary primitive discussed in the text.

however requires a function H that we would instantiate via a cryptographic
hash function.

The step from CMT-1 to CMT-4 is done via a general, zero ciphertext-
overhead transform, called HtE, that we discuss next. Figure 1 summarizes the
attributes of the different new schemes that we give and will discuss below.

From CMT-1 to CMT-4 via HtE. We give a generic way to turn a CMT-1
scheme into into a CMT-4 one. (That is, once you can commit to the key, it
is easy to commit to everything.) The transform incurs no ciphertext overhead
and preserves both UNAE and MRAE security. The computational overhead
involves processing only the nonce and associated data, and is independent of
message length.

We now give some detail. Given a symmetric encryption scheme SE-1, and a
function H, our HtE (Hash then Encrypt) transform defines the scheme SE-4 ←
HtE[SE-1,H] in which SE-4.Enc(K,N,A,M) lets L ← H(K, (N,A)) and returns
SE-1.Enc(L,N, ε,M). Here outputs of H have the same length as keys of SE-1.
There is no ciphertext overhead: ciphertexts in SE-4 have the same length as in
SE-1. The computational overhead, namely the computation of H, is independent
of message length. Theorem 1 shows that SE-4 is CMT-4 assuming SE-1 is CMT-1
and H is collision resistant. Theorem 2 shows that if H is a PRF then (1) If
SE-1 is UNAE then so is SE-4, and (2) If SE-1 is MRAE then so is SE-4. All
these results are with good bounds.

We stress that we avoid assuming H is a random oracle; we instead make
the standard-model assumption that it is a collision-resistant PRF. Section 3
discusses instantiations of H based on HMAC [5], SHA256 or SHA3.

CAU schemes. GCM [36] is a UNAE scheme that, due to its standardization [23]
and use in TLS [42], is already widely implemented. Attacks [4,27,34] however
show that it is not CMT-1-secure. Making only a tiny modification to GCM,

Efficient Committing Authenticated Encryption 849

we obtain a new scheme, that we CAU-C1, that is UNAE and CMT-1 secure.
Theorem 3 establishes CMT-1 security of CAU-C1, and Theorem 4 establishes
UNAE security with good mu bounds.

CAU-C1 changes only how the last block GCM block is encrypted so that
the tag is a Davies-Meyer hash. (See Fig. 9.) The locality and minimality of the
change means that it should be easy to modify existing GCM code to obtain
CAU-C1 code, making CAU-C1 attractive for implementation. With regard to
performance, CAU-C1 incurs essentially no overhead; in particular, the ciphertext
size remains the same as in GCM.

We can obtain a UNAE and CMT-4-secure scheme, that we call CAU-C4, by
applying our above-discussed HtE transform to CAU-C1 and a suitable collision-
resistant PRF H. Ciphertext overhead continues to be zero: CAU-C4 ciphertexts
have the same size as CAU-C1, and thus GCM, ones.

With the above, we have obtained CMT-1 and CMT-4 UNAE schemes that
offer minimal overhead, good quantitative security and ease of implementation.
We now turn to MRAE, doing the same. Here our starting point is AES-GCM-SIV
[28,43], a leading MRAE scheme poised for standardization. We give CAU-SIV-C1,
a tiny modification ofAES-GCM-SIV that is MRAE and CMT-1-secure. Theorem 5
establishes CMT-1 security of CAU-SIV-C1, and Theorem 6 establishes MRAE
securitywith goodmubounds.Again, applyingHtE toCAU-SIV-C1 yields aMRAE
and CMT-4 scheme CAU-SIV-C4 that continues to be a small modification of
AES-GCM-SIV. There is no growth in ciphertext size.

Generic transforms. With the four schemes discussed above, we have
obtained CMT-1 and CMT-4 security for both UNAE and MRAE schemes,
with zero ciphertext overhead and almost zero computational overhead.
These schemes however are intrusive, making small modifications to GCM or
AES-GCM-SIV. We now give ways to add committing security via generic trans-
forms that invoke the given scheme only in a blackbox way. The price we will
pay is some ciphertext overhead.

We give a generic transform UtC that takes any UNAE scheme SE and returns
a scheme SE ← UtC[SE,F] that is UNAE and CMT-1-secure. Here F is a commit-
ting PRF, a primitive we introduce that generalizes the notion of a key-robust
PRF from FOR [25]. We build a cheap committing PRF, that we call CX, from
(only) a blockcipher. Proposition 5 proves its security with good bounds. The-
orem 7 establishes CMT-1 security of SE, and also shows that SE inherits the
mu UNAE security of SE without degradation in the bound. Ciphertexts in
SE are one block longer than those in SE. Applying HtE to SE and a suitable
collision-resistant PRF H, we obtain a UNAE CMT-4 scheme, leaving ciphertext
overhead at one block.

UtC however does not preserve MRAE security. We give a second generic
transform, RtC, that takes any MRAE scheme SE and returns a scheme SE ←
RtC[SE,F,H] that is MRAE and CMT-1-secure. Here F as before is a committing
PRF that we set to CX, and H is a collision-resistant PRF that we instantiate
via the Davies-Meyer method. Theorem 8 establishes CMT-1 security of SE, and
also shows that SE inherits the mu MRAE security of SE without degradation

850 M. Bellare and V. T. Hoang

in the bound. Ciphertexts in SE are one block longer than those in SE. Again,
applying HtE to SE yields a MRAE CMT-4 scheme, leaving ciphertext overhead
at one block.

Extensions and remarks. For an integer parameter s ≥ 2, we can extend
CMT-1 to a notion CMTs-1 of multi-input committing security. Here the adver-
sary returns an s-tuple ((K1, N1, A1,M1), . . . (Ks, Ns, As,Ms)) in which K1, . . . ,
Ks are all distinct, and is successful if SE.Enc(K1, N1, A1,M1), . . . ,SE.Enc(Ks,
Ns, As,Ms) are all the same. CMT-4 is likewise extended to CMTs-4. Clearly
CMT-n implies CMTs-n (n ∈ {1, 4}). Our results however consider CMTs-n
(not just CMT-n) and prove bounds on its being violated that degrade quickly
with s. This allows us to give better guarantees for security against partitioning
oracle attacks [34]. Namely, we can show that, with use of one of our CMT-1
schemes, the probability that an attacker can speed up the attack by a factor s
decreases quickly as a function of s.

Related work. We start by noting a few “firsts.” (1) Prior nonce-based com-
mitting schemes were only for UNAE. We are giving the first ones for MRAE.
(2) We give the first schemes that commit to all encryption inputs, meaning
achieve CMT-4. (3) We give the first schemes (our four CAU schemes) that have
zero ciphertext overhead (4) We give analyses of multi-input committing security
with bounds that degrade quickly in the number s of inputs.

FOR [25] take a broad, systematic approach, giving general methods to build
key-committing primitives. Their key-committing encryption schemes however
are randomized rather than nonce-based. Also, they don’t show multi-user secu-
rity with good bounds.

Many of the schemes of GLR [27] are randomized. Their leading nonce-based
scheme, Committing Encrypt-and-PRF (CEP), has a block of ciphertext over-
head, unlike our CAU schemes. CEP also seems to fare somewhat more poorly
than our schemes with regard to performance and extent of software change.
They don’t show good multi-user security.

The DGRW scheme [22] is randomized, not nonce-based. It uses a com-
pression function that is assumed collision resistant and RKA-PRF-secure [9].
Instantiating the latter via Davies-Meyers yields a blockcipher-based scheme, but
speed with AES-NI is reduced because the blockcipher key changes with each
message block. They incur ciphertext overhead, and don’t show good multi-user
security.

It should be noted that GLR [27] and DGRW [22] are targeting and achieving
properties beyond key-commiting security, as needed for message franking. In
particular, their schemes, unlike ours, produce a compact commitment to the
message.

ADGKLS [4] consider nonce-based schemes and give a generic way to add key-
committing security to a UNAE scheme. Their transform uses a pair of collision-
resistant PRFs. UtC generalizes this, using instead our (new) committing PRF
abstraction; instantiation with CX yields efficiency improvements over ADGKLS.
They also give a padding-based key-committing extension of GCM, but, unlike
our CAU-C1, it increases ciphertext size.

Efficient Committing Authenticated Encryption 851

LGR [34] say “our results suggest that future work should design, standard-
ize, and add to libraries, AE schemes designed to be key-committing.” Our
schemes are intended as a response.

2 Preliminaries

Notation and terminology. Let ε denote the empty string. For a string x
we write |x| to refer to its bit length, and x[i : j] is the bits i through j (inclusive)
of x, for 1 ≤ i ≤ j ≤ |x|. By Func(Dom,Rng) we denote the set of all functions
f : Dom → Rng and by Perm(Dom) the set of all permutations π : Dom → Dom.
We use ⊥ as a special symbol to denote rejection, and it is assumed to be
outside {0, 1}∗. In the context that we use a blockcipher E : {0, 1}k × {0, 1}n →
{0, 1}n, the block length of a string x, denoted as |x|n, is max

{
1,

⌈|x|/n
⌉}

. If
X is a finite set, we let x ←$ X denote picking an element of X uniformly at
random and assigning it to x.

Symmetric Encryption. A (nonce-based) symmetric encryption (SE) scheme
SE specifies deterministic algorithms SE.Enc : K×N ×{0, 1}∗×{0, 1}∗ → {0, 1}∗

and SE.Dec : K × N × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥}. Here K,N are the
associated key and nonce spaces. The encryption algorithm takes as input a key
K ∈ K, a nonce N ∈ N , associated data A ∈ {0, 1}∗ and a message M ∈ M,
and returns a ciphertext C ← SE.Enc(K,N,A,M). The decryption algorithm
takes as input K,N,A,C and returns either a message M ∈ {0, 1}∗ or the
special symbol ⊥ indicating invalidity or rejection. The correctness requirement
says that decryption reverses encryption, namely if C ← SE.Enc(K,N,A,M)
then SE.Dec(K,N,A,C) returns M . We assume that there is a ciphertext-length
function SE.len : N → N such that the length of SE.Enc(K,N,A,M) is exactly
SE.len(|M |) bits for all K,N,A,M .

We say that SE is tidy [38] if M ← SE.Dec(K,N,A,C) implies that SE.Enc(K,
N,A,M) returns C. Combining correctness and tidiness means that functions
SE.Enc(K,N,A, ·) and SE.Dec(K,N,A, ·) are the inverse of each other. The
schemes we consider will be tidy.

AE security. Let SE be a symmetric encryption scheme with key space K and
nonce space N . We now define its security as an authenticated encryption (AE)
scheme in the multi-user setting, following the formalization of [13]. The first,
basic requirement, called unique-nonce AE (UNAE), asks for security assum-
ing encryption never repeats a nonce for any given user. The second, advanced
requirement, called misuse-resistant AE (MRAE) drops this condition. Consider
games Greal

SE (A) and Grand
SE (A) in Fig. 2. We define the mrae advantage of an

adversary A as

Advmrae
SE (A) = Pr[Greal

SE (A)] − Pr[Grand
SE (A)] .

To avoid trivial wins, we forbid the adversary from repeating a query to either
its Enc or its Vf oracles. Moreover, if the adversary previously received C ←
Enc(i,N,A,M) then later it is not allowed to query Vf(i,N,A,C). We can

852 M. Bellare and V. T. Hoang

Game Greal
SE (A)

b′ ←$ ANew,Enc,Vf; return b′

New()

v ← v + 1; Kv ←$ K
Enc(i, N, A, M)

If i {∈� 1, . . . , v} return ⊥
C ← SE.Enc(Ki, N, A, M)
Return C

Vf(i, N, A, C)

If i {∈� 1, . . . , v} return ⊥
V ← SE.Dec(Ki, N, A, C); return (V �= ⊥)

Game Grand
SE (A)

b′ ←$ ANew,Enc,Vf; return b′

New()

v ← v + 1

Enc(i, N, A, M)

If i {∈� 1, . . . , v} return ⊥
C ←$ {0, 1}SE.len(|M|)

Return C

Vf(i, N, A, C)

If i {∈� 1, . . . , v} return ⊥
return false

Fig. 2. Games defining misuse-resistance security of a SE scheme SE.

now recover UNAE security by restricting attention to unique-nonce adversaries,
these being ones that never repeat an (i,N) pair across their Enc queries. (That
is, a nonce is never reused for a given user.) We stress that there is no such
restriction on decryption queries. If A is a unique-nonce adversary, then we
write its advantage as Advunae

SE (A) for clarity.

Multi-collision resistance. Let H : Dom → Rng be a function. Let s ≥ 2 be
an integer. An s-way collision for H is a tuple (X1, . . . , Xs) of distinct points in
Dom such that H(X1) = · · · = H(Xs). For an adversary A, define its advantage
in breaking the s-way multi-collision resistance of H as

Advcoll
H,s(A) = Pr[(X1, . . . , Xs) is an s-way collision for H]

where the probability is over (X1, . . . , Xs) ←$ A. When s = 2 we recover the
classical notion of collision resistance.

AXU hashing. Let G : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n be a keyed hash
function. We say that G is c-almost xor universal if for all (M,A) �= (M ′, A′)
and all Δ ∈ {0, 1}n,

Pr
K ←$ {0,1}n

[GK(M, A)⊕GK(M ′, A′) = Δ] ≤ c · max{|M |n + |A|n, |M ′|n + |A′|n}
2n

.

PRFs and PRPs. For a function F : {0, 1}k ×Dom → Rng and an adversary A,
we define the advantage of A in breaking the (multi-user) PRF security of F [6]
as

Advprf
F (A) = 2Pr[Gprf

F (A)] − 1 ,

where game Gprf
F (A) is shown in Fig. 3. For a blockcipher E : {0, 1}k ×{0, 1}n →

{0, 1}n and an adversary A, we define the advantage of A in breaking the multi-
user PRP security of E as

Advprp
E (A) = 2Pr[Gprp

E (A)] − 1 ,

Efficient Committing Authenticated Encryption 853

Game Gprf
F (A)

v ← 0; b ←$ {0, 1}
b′ ←$ ANew,Eval

return (b′ = b)

New()

v ← v + 1
Kv ←$ {0, 1}k

fv ←$ Func(Dom,Rng)

Eval(i, M)

If i {∈� 1, . . . , v} return ⊥
C1 ← F(Ki, M); C0 ← fi(M)
return Cb

Game Gprp
E (A)

v ← 0; b ←$ {0, 1}
b′ ← ANew,Eval

return (b′ = b)

New()

v ← v + 1
Kv ←$ {0, 1}k

πv ←$ Perm({0, 1}n)

Eval(i, M)

If i {∈� 1, . . . , v} return ⊥
C1 ← E(Ki, M); C0 ← πi(M)
return Cb

Fig. 3. Games defining PRF security of F and PRP security of E.

where game Advprp
F (A) is defined in Fig. 3. Mouha and Luykx [37] show that

if we model E as an ideal cipher then for any adversary making q evaluation
queries and p ideal-cipher queries, Advprp

E (A) ≤ (q2 + 2pq)/2k+1.

3 Committing AE Framework

Let SE be a symmetric encryption scheme with key space K and nonce space N .
We define a hierarchy of levels of committing security CMTD-1 ← CMTD-3
↔ CMTD-4, where the “D” indicates these are decryption-based. For each � ∈
{1, 3, 4} we also recast CMTD-� as an encryption-based notion CMT-� that is
simpler but equivalent if SE is tidy. We give relations between the notions, and
then extend all this to s-way committing security for s ≥ 2.

Think of � here as indicating that we commit to the first � inputs of the
encryption algorithm. Since popular schemes, and the ones in this paper in par-
ticular, are tidy, the CMT-� notions become our focus moving forward. The
Introduction had discussed only CMT-1 and CMT-4; here we introduce the
� = 3 notions as simpler than, but equivalent to, the � = 4 ones, something our
results will exploit.

This section concludes with a simple transform, called EtH, that promotes
� = 1 security to � = 4 security with minimal overhead.

What is committed? In asking that a ciphertext C ← SE.Enc(K,N,A,M) be
a committal, the question is, to what? We consider this in a fine-grained way. We
define a function WiC� (What is Committed) that on input (K,N,A,M) returns
the part of the input to which we want the ciphertext to be a commitment. It
is defined as shown in the table in Fig. 4. Thus, when � = 1, we are asking
that we commit to the key; this corresponds to robustness [3], also called key-
robustness [25] or key-committing [4] security. When � = 3, we commit to the
key, nonce and associated data. Finally � = 4 means we commit, additionally, to
the message, and thus to all the inputs of SE.Enc.

854 M. Bellare and V. T. Hoang

Game Gcmtd-�
SE (A)

C, (K1, N1, A1, M1), (K2, N2, A2, M2)
) ←$ A

Require: WiC�(K1, N1, A1, M1) �= WiC�(K2, N2, A2, M2)
Return ((M1 = SE.Dec(K1, N1, A1, C) and M2 = SE.Dec(K2, N2, A2, C))

Game Gcmt-�
SE (A)

(K1, N1, A1, M1), (K2, N2, A2, M2)
) ←$ A

Require: WiC�(K1, N1, A1, M1) �= WiC�(K2, N2, A2, M2)
Return (SE.Enc(K1, N1, A1, M1) = SE.Enc(K2, N2, A2, M2))

� 1 3 4

WiC�(K, N, A,M) K (K, N, A) (K, N, A,M)

CMTD-1 CMTD-3 CMTD-4

CMT-1 CMT-3 CMT-4

Fig. 4. Games defining committing security of a symmetric encryption scheme SE.
Below them are the associated what-is-committed functions WiC�, and then the rela-
tions between the notions. The gray arrows hold for tidy SE.

The D-notions. Let � ∈ {1, 3, 4} be an integer representing the level of com-
mitting security. Consider game Gcmtd-�

SE (A) in Fig. 4, and define the advantage
of adversary A as Advcmtd-�

SE (A) = Pr[Gcmtd-�
SE (A)]. In the game, the adversary

provides a ciphertext C together with a pair of tuples (K1, N1, A1,M1) and
(K2, N2, A2,M2). (No entry of a tuple is allowed to be ⊥.) The adversary wins
if both decryptions of C equal the respective adversary-provided messages. The
game requires that the outputs of the WiC� function on the adversary-provided
tuples be different, precluding a trivial win. The only difference between the
different levels indicated by � is in the value of WiC�(K,N,M,A) as given in the
table. We denote the resulting notions by CMTD-� for � ∈ {1, 3, 4}.

Our CMTD-1 notion is stronger than the key-committing notion in prior
work [4], since we allow the adversary to specify different nonces N1 and N2. In
contrast, the key-committing notion requires the two nonces to be the same.

On the other hand, achieving CMTD-4 security requires processing the asso-
ciated data under a collision-resistant hash function. To see why, note that in
settings where messages are the empty string, a ciphertext is a compact com-
mitment of the associated data.

The E-notions. Let � ∈ {1, 3, 4} be an integer representing the level of com-
mitting security. Consider game Gcmt-�

SE (A) in Fig. 4, and define the advantage
of adversary A as Advcmt-�

SE (A) = Pr[Gcmt-�
SE (A)]. In the game, the adversary

Efficient Committing Authenticated Encryption 855

Game Gcmtd-�
SE,s (A)

(C, (K1, N1, A1, M1), . . . , (Ks, Ns, As, Ms)) ←$ A
Require: WiC�(K1, N1, A1, M1), . . . ,WiC�(Ks, Ns, As, Ms) are all distinct
Return (∀ i : Mi = SE.Dec(Ki, Ni, Ai, Ci))

Game Gcmt-�
SE,s (A)

((K1, N1, A1, M1), . . . , (Ks, Ns, As, Ms)) ←$ A
Require: WiC�(K1, N1, A1, M1), . . . ,WiC�(Ks, Ns, As, Ms) are all distinct
Return (SE.Enc(K1, N1, A1, M1) = · · · = SE.Enc(Ks, Ns, As, Ms))

CMTDs-1 CMTDs-3 CMTD-4

CMTs-1 CMTs-3 CMTs-4

Fig. 5. Games defining s-way committing security of a symmetric encryption scheme
SE for s ≥ 2. Below them are the relations between the notions. The gray arrows hold
for tidy SE.

provides a pair of tuples (K1, N1, A1,M1) and (K2, N2, A2,M2). (No entry of a
tuple is allowed to be ⊥.) The functions WiC� are unchanged. The game returns
true (the adversary wins) if the encryptions of the two tuples are the same. We
denote the resulting notions by CMT-� for � ∈ {1, 3, 4}.

Relations. The bottom of Fig. 4 shows the relations between the notions of
committing security. An arrow A → B, read as A implies B, means that any
scheme SE that is A-secure is also B-secure. A gray arrow means the implication
holds when SE is tidy. The relations in the picture are justified in [8].

Multi-input committing security. The notions above considered an adver-
sary successful if it opened a ciphertext in two different ways (D) or provided
two encryption inputs with the same output (E). We now generalize from “two”
to an integer parameter s ≥ 2, the prior notions being the special case s = 2.
The games, in Fig. 5, are parameterized, as before, with symmetric encryption
scheme SE, but now also with s. Again there are “D” and “E” variants. The func-
tions WiC� remain as in Fig. 4. The advantages of an adversary A are defined as
Advcmtx-�

SE,s (A) = Pr[Gcmtx-�
SE,s (A)] for x ∈ {d, ε} and � ∈ {1, 3, 4}. We denote the

resulting notions by CMTXs-� for X ∈ {D, ε} and � ∈ {1, 3, 4}. Their relations
remain as before and for completeness are also illustrated in Fig. 5.

Why generalize? It is easy to see that CMTX-� implies CMTXs-� for all
s ≥ 2 and X ∈ {D, ε}, meaning if a scheme SE is CMTX-�-secure then it is
also CMTXs-� for all s ≥ 2. So why consider s > 2? The reason is that we can
give schemes for which the bound on adversary advantage gets better as s gets
larger, indeed even decaying exponentially with s. Indeed, one can break CMT-1-
security of the scheme CAU-C1 in Sect. 5 in about 264 operations. However, for

856 M. Bellare and V. T. Hoang

SE.Enc(K, N, A, M)

L ← H(K, (N, A))
C ← SE.Enc(L, N, ε, M)
Return C

SE.Dec(K, N, A, C∗‖T ′)

L ← H(K, (N, A))
M ← SE.Dec(L, N, ε, C)
Return M

Fig. 6. The scheme SE = HtE[SE, H] defined via the Hash-then-Encrypt transform
applied to a symmetric encryption scheme SE and a function H.

any adversary A that spends at most 280 operations, the chance that it can
break CMT3-1 security of CAU-C1 is at most 2−62. This allows us to offer a much
stronger guarantee for situations like the Partitioning Oracle attack [34]. Recall
that here, breaking CMTs-1 security speeds up the time to find the underlying
password used for key derivation by a factor of s. Thus our results say that
despite investing 280 operations, A can at best speed up its password search by
a factor of two.

Discussion. Practical schemes tend to be tidy, and all the ones we consider are,
so, moving forward, we make tidiness an implicit assumption and focus on the E
notions. Our primary focus is (s-way) CMT-1 because this is already non-trivial,
what was targeted in many previous works, and enough for many applications.
Below we give a generic way to promote CMT-1 security to CMT-4 security.

From CMT-1 to CMT-4. We give a way to turn CMT-1 security into CMT-4
security, for both unique-nonce and misuse-resistance security. (That is, if you
can commit to the key, it is easy to commit to everything.) It takes the form
of a transform we call HtE (Hash then Encrypt). The ingredients are a base
symmetric encryption scheme SE with key space {0, 1}k, and a function H :
{0, 1}k × {0, 1}∗ → {0, 1}k. The encryption and decryption algorithms of the
scheme SE = HtE[SE,H] are shown in Fig. 6. The key-space and nonce-space
remain that of SE.

With regard to performance, HtE preserves ciphertext length, meaning we
are promoting CMT-1 to CMT-4 without increase in ciphertext size. The com-
putational overhead, which is the computation of H(K, (N,A)), is optimal,
since achieving CMT-4 requires processing the associated data with a collision-
resistant hash function. In practice, associated data is often short (for example,
IP headers are at most 60B), and thus HtE typically incurs just a constant
computational overhead over the base scheme SE.

With regard to security, intuitively, if H is collision-resistant then the sub-
key L is a commitment to the master key K, the nonce N and the associated
data A. As a result, if the ciphertext is a commitment to the subkey L then it
is also a commitment to (K,N,A). Hence the CMT-1 security of SE implies the
CMT-3 security of SE, and thus, as per the relations in Fig. 4, also its CMT-4
security. Furthermore we will show that HtE preserves both unique-nonce and
misuse-resistance security assuming H is a PRF.

We note that we do not assume H is a random oracle, instead making the
standard-model assumption that it is a collision-resistant PRF.We now give for-

Efficient Committing Authenticated Encryption 857

mal results confirming the intuition above. The following shows that HtE indeed
promotes CMT-1 security to CMT-4 security. The proof is in [8].

Theorem 1. Let SE be an SE scheme with key length k, and let H : {0, 1}k ×
{0, 1}∗ → {0, 1}k be a hash function. Let SE = HtE[SE,H]. Fix an integer s ≥ 2
and let t = �√s . Then given an adversary A, we can construct adversaries B0

and B1 such that

Advcmt-4
SE,s

(A) ≤ max
{
Advcoll

H,t(B0),Advcmt-1
SE,t (B1)

}
.

Each Bi runs A and then runs H on s pairs (nonce, associated data) of A.

The next result shows that HtE preserves both unique-nonce and misuse-
resistance security, provided that H is a good PRF. The proof is in [8].

Theorem 2. Let SE be an SE scheme with key length k, and let H : {0, 1}k ×
{0, 1}∗ → {0, 1}k be a hash function. Let SE = HtE[SE,H]. Then given an
adversary A that makes at most q queries of totally σa bits for (nonce, AD)
pairs and at most B queries per (user, nonce, AD) triples, we can construct
adversaries B and D such that

Advmrae
SE

(A) ≤ Advprf
H (B) + Advmrae

SE (D) .

If A is unique-nonce then so is D, and we can rewrite the bound as

Advunae
SE

(A) ≤ Advprf
H (B) + Advunae

SE (D) .

Adversary B makes at most q queries on at most σa bits. Its running time is about
that of A plus the time to encrypt/decrypt A’s queries. Adversary D makes q
queries of the total length as A, but it makes only B queries per user. Its running
time is about that of A plus O(σa log(B)).

We now discuss the choice of H. If nonce length is fixed, one can instantiate
H(K, (N,A)) via HMAC-SHA256(K‖N‖A)[1 : k] or SHA3(K‖N‖A)[1 : k]. We
stress that if one considers using SHA256(K‖N‖A)[1 : k], one must beware of
the extension attack, to avoid which one should only use this if k = 128 [21].

4 Some Building Blocks

We give building blocks, technical results and information that we will use later.
Some of the results are interesting in their own right, and may have applications
beyond the context of committing AE.

Multi-user PRP/PRF Switching. Lemma 1 below generalizes the classical
PRP/PRF Switching Lemma [12] to the multi-user setting; see [8] for a proof.
If one uses a hybrid argument on the standard single-user PRP/PRF Switching
Lemma, one will obtain a weak bound uB2/2n, where u is the number of users.
If there are Θ(q) users and some user makes Θ(q) queries then this bound is in
the order of q3/2n, whereas our bound is just q2/2n in this case.

858 M. Bellare and V. T. Hoang

Alternatively, if one parameterizes on q only, as in [35], one will end up
with another weak bound q2/2n. In the setting where each user makes approx-
imately B queries, this bound is even weaker than the trivial bound uB2/2n.
Lemma 1 instead uses a different parameterization to obtain a sharp bound
qB/2n. The idea of using both B and q as parameters in multi-user analysis is
first introduced in [20].

Lemma 1 (Multi-user PRP/PRF Switching Lemma). Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher. For any adversary A, if it makes at most q
evaluation queries in total, with at most B queries per user, then

Advprf
E (A) ≤ Advprp

E (A) +
Bq

2n
.

Simplifying UNAE/MRAE proofs. In UNAE/MRAE proofs, an adversary
can adaptively interleave encryption and verification queries. Proofs will be sim-
pler if the adversary is orderly, meaning that (i) its verification queries are made
at the very end, and (ii) each verification query does not depend on the answers of
prior verification queries, but may still depend on the answers of prior encryption
queries. Proposition 1 shows that one can consider only orderly adversaries in
UNAE/MRAE notions with just a small loss in the advantage; see [8] for a proof.
The idea of restricting to orderly adversaries has been used in prior works [11,20].
They show that one can factor an UNAE/MRAE adversary A into two adver-
saries B0 and B1 attacking privacy and authenticity respectively, where B1 is
orderly. Here we instead transform A to another orderly UNAE/MRAE adver-
sary B.

Proposition 1. Let SE be a symmetric encryption scheme such that its cipher-
text is at least τ -bit longer than the corresponding plaintext. For any adversary A
that makes qv verification queries, we can construct another orderly adversary B
of about the same running time such that

Advmrae
SE (A) ≤ Advmrae

SE (B) +
2qv

2τ
.

Adversary B has the same query statistics as A. Moreover, if A is unique-nonce
then so its B, and thus in that case we can rewrite the bound as

Advunae
SE (A) ≤ Advunae

SE (B) +
2qv

2τ
.

For both notions, if every ciphertext of SE is exactly τ -bit longer than its plaintext
then the term 2qv/2τ can be improved to qv/2τ .

Committing AE via collision-resistant hash. Intuitively, from the defi-
nition of committing AE, to achieve this goal, one needs to include the image
of the key under some (multi)collision-resistant hash function in the ciphertext.

Efficient Committing Authenticated Encryption 859

Fig. 7. Illustration of the cascade of the two hash functions H0 and H1.

This connection has been recognized and explored in prior works. For example,
(i) the OPAQUE protocol [30] recommends the use of the Encrypt-then-HMAC
construction, (ii) Albertini et al. [4] suggest using a hash-based key-derivation
function to add key-committing security into legacy AE schemes; and (iii) Dodis
et al. [22] propose a hash-based AE design for Facebook’s message franking. The
definition was recalled in Sect. 2. We now give some new fundamental results.

The Truncated Davies-Meyer construction. A common way to build a
collision-resistant compression function from a blockcipher is the Davies-Meyer
construction. Our paper makes extensive use of this construction to have a cheap
commitment of the key for obtaining committing security. It appears in both the
AE schemes of Sects. 5 and 6. While the collision resistance of the Davies-Meyer
construction is well-known [18], its multi-collision resistance has not been studied
before. Moreover, in our use of Davies-Meyer, we usually have to truncate the
output, and even ordinary collision resistance of truncated Davies-Meyer has not
been investigated.

In particular, let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher. Let m ≤ n
be an integer, and define DM[E,m] : {0, 1}k × {0, 1}n → {0, 1}m via

DM[E,m](X,Y) =
(
EX(Y)⊕Y

)
[1 : m] .

We write DM[E] for the special case m = n (meaning there is no truncation).
Proposition 2 below analyzes the multi-collision resistance of DM[E,m]; see [8]
for a proof. The result is in the ideal-cipher model, that is, the adversary is given
oracle access to both E and its inverse, and the number of ideal-cipher queries
refers to the total queries to these two oracles.

Proposition 2. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher that we will
model as an ideal cipher. Let s ≥ 2 and m ≤ n be integers. For an adversary A
that makes at most p ≤ 2n−1 − s ideal-cipher queries,

Advcoll
DM[E,m],s(A) ≤ 21−m +

(
p

s

)
· 2(1−m)(s−1) .

860 M. Bellare and V. T. Hoang

For the case s = 2 and m = n, our bound is 21−n + p(p − 1)/2n, which slightly
improves the classical bound p(p+1)/2n of Black, Rogaway, and Shrimpton [18].
For a general s, in [8], we show that for an ideal hash function on range {0, 1}m,
there is an attack on the s-way multi-collision resistance of advantage

1
4

·
(

p

s

)
· 2−m(s−1) .

Thus the Truncated Davies-Meyer construction achieves essentially the best pos-
sible multi-collision resistance that we can hope for the output length m.

The Iterative Truncated-Permutation construction. Let E : {0, 1}k×
{0, 1}n → {0, 1}n be a blockcipher. Let r < n be a positive integer, and let
m ≤ 2n be a positive even integer. Let pad : {0, 1}r × {1, 2} → {0, 1}n be a
one-to-one mapping. Define ITP[E, r,m] : {0, 1}k × {0, 1}r → {0, 1}2m via

ITP[E, r,m](K,X) = EK(pad(X, 1))[1 : m/2]‖EK(pad(X, 2))[1 : m/2] .

The ITP construction is used in the key-derivation function of AES-GCM-SIV,
where r = 96 and m = n = 128, and pad(X, i) is the concatenation of X and
an (n− r)-bit encoding of i. For proving the committing security of the variants of
AES-GCM-SIV in Sect. 6, we need to show that in using ITP to derive subkeys, one is
also committing the master key and the nonce to one of the subkeys. Proposition 3
below analyzes the multi-collision resistance of ITP; see [8] for a proof. The anal-
ysis is difficult because ITP was not designed for collision resistance. This result
is in the ideal-cipher model, meaning that the adversary is given oracle access to
both E and E−1, and the number of ideal-cipher queries refers to the total queries
to both oracles. Note that for r ≤ 3n/4 and m = n (which holds for the situation
of AES-GCM-SIV), ITP has birthday-bound security or better.

Proposition 3. Let m, r, n be positive integers such that r < n, and m ≤ 2n is
even. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we will model as
an ideal cipher. Let s ≥ 2 be an integer. For an adversary A that makes at most
p ≤ 2n−3 − s ideal-cipher queries,

Advcoll
ITP[E,r,m],s(A) ≤ 21−m +

4ps

s! · 2(m−2)(s−1)
+

2m/2+1 · ps

s! · 2(m/2+n−r−2)s
.

Compared to the lower bound
(
p
s

) · 2−m(s−1), the ITP construction has some
security degradation due to the last term in the bound of Proposition 3. In [8], we
give an attack that matches this term, implying that the bound of Proposition 3
is tight.

Multi-collision resistance on a cascade. Let c ≥ 2 be an integer. For
each i ∈ {0, . . . , c − 1}, let Hi : Li × Ri → Rngi be a hash function such that
Rngi ⊆ Ri+1. Define the cascade H0 ◦ H1 of H0 and H1 as the hash function H
such that H(X,Y,Z) = H1

(
Z,H0(X,Y)

)
; see Fig. 7 for an illustration. The

cascade H0 ◦ · · · ◦ Hi of H0, . . . , Hi is defined recursively as (H0 ◦ · · · ◦ Hi−1) ◦

Efficient Committing Authenticated Encryption 861

Hi. Cascading appears in AE schemes of Sect. 6 where one first commits the
master key into a subkey, and then includes a commitment of the subkey into the
ciphertext. The following result shows how to bound the multi-collision resistance
of H0 ◦ · · · ◦ Hc−1; see [8] for a proof.

Proposition 4. Let H be the cascade of hash functions H0,H1, . . . , Hc−1 as
above. Let s ≥ 2 be an integer, and let t = � c

√
s . Then for any adversary A, we

can construct adversaries B0, . . . ,Bc−1 such that

Advcoll
H,s(A) ≤ max

{
Advcoll

H0,t(B0), . . . ,Advcoll
Hc−1,t(Bc−1)

}
.

Each adversary Bi runs A, and then runs the cascade of H0, . . . , Hmin{c−2,i} on
the s inputs of A.

5 A Committing Variant of GCM

In this section, we describe a close variant CAU-SIV-C1 of AES-GCM-SIV that
achieves both CMT-1 and unique-nonce security with the same speed and band-
width costs as GCM. In this entire section, let E : {0, 1}k×{0, 1}n → {0, 1}n be a
blockcipher. Following Bellare and Tackmann [14], we consider a generalization
CAU of GCM. This scheme loosely follows the encrypt-then-MAC paradigm,
where the encryption scheme is the CTR mode, and the MAC is the Carter-
Wegman construction via an almost-xor-universal (AXU) hash function. (The
name CAU is a mnemonic for the use of the CTR mode and an AXU hash func-
tion.) In GCM, the function G is instantiated by a 1.5-AXU hash GHASH.

The scheme CAU. We now describe the scheme CAU. Let G : {0, 1}n×{0, 1}∗×
{0, 1}∗ → {0, 1}n be an AXU hash function. Let N = {0, 1}r be the nonce space,
where r < n is an integer. In GCM, n = 128 and r = 96. For a string N ∈ N , we
write pad(N) to refer to N‖0n−r−1‖1. Let τ ≤ n be the tag length. The scheme
CAU[E,G, τ] is specified in Fig. 8; it only accepts messages of at most 2n−r − 2
blocks. See also Fig. 9 for an illustration.

Specification of CAU-C1. The code of CAU-C1[E,G, τ] is shown in Fig. 8. Like
CAU, it only accepts messages of at most 2n−r − 2 blocks. Compared to CAU,
the change occurs in how we derive the tag, as illustrated in Fig. 9. In particular,
in CAU, one obtains the tag by using the Carter-Wegman paradigm, applying
a one-time pad EK(pad(N)) to the output R of the AXU hash. In contrast, in
CAU-C1, we use a different Carter-Wegman flavor, enciphering V ← R⊕pad(N).
However, to ensure committing security, instead of using T ← EK(V)[1 : τ], we
employ the Truncated Davies-Meyer method, outputting T ← DM[E, τ](K,V).

We note that if one instead computes T ← DM[E, τ](K,R) then the resulting
scheme will not have unique-nonce security. In particular, once we obtain a valid
ciphertext C under nonce N and associated data A, the pair (A,C) remains
valid for any nonce N ′, and thus breaking authenticity is trivial. Xor’ing pad(N)
to R ensures that the tag T depends on all of N,A,C.

862 M. Bellare and V. T. Hoang

Enc(K, N, A, M)
// 0 ≤ |Mm| < n and |Mi| = n otherwise
Y ← pad(N); M1 · · · Mm ← M

//Encrypt with CTR mode and IV Y + 1
For i ← 1 to m − 1 do Ci ← Mi⊕EK(Y + i)
Cm ← Mm⊕EK(Y + m)

[
1 : |Mm|]; C ← C1 · · · Cm

//Use Carter-Wegman on G

L ← EK(0n); R ← GL(A, C); T ← Tag(K, Y, R)
Return C‖T

Dec(K, N, A, C‖T)
// 0 ≤ |Cm| < n and |Ci| = n otherwise
Y ← pad(N); C1 · · · Cm ← C

//Decrypt with CTR mode and IV Y + 1
For i ← 1 to m − 1 do Mi ← Ci⊕EK(Y + i)
Mm ← Cm⊕EK(Y + m)

[
1 : |Cm|]; M ← M1 · · · Mm

//Use Carter-Wegman on G

L ← EK(0n); R ← GL(A, C); T ′ ← Tag(K, Y, R)
If T ′ �= T then return ⊥ else return M

Tag(K, Y, R) //CAU

S ← EK(Y)⊕R

Return S[1 : τ]

Tag(K, Y, R) //CAU-C1

V ← Y ⊕R; S ← EK(V)⊕V

Return S[1 : τ]

Fig. 8. The common blueprint for encryption (top) and decryption (middle) of
CAU[E, G, τ] and CAU-C1[E, G, τ]. The two schemes only differ on how they imple-
ment the internal procedure Tag, as shown in the bottom panels.

Farshim, Orlandi, and Roşie [25] also point out that in Encrypt-and-MAC,
if the encryption scheme and the PRF can use the same key, and the PRF is
committing, then the composition has key-committing security. Their result is
however for probabilistic AE, so it does not imply the key-committing security
of CAU-C1.

Discussion. Our CAU-C1 scheme has several merits. (1) The change to CAU is
small, making it easy to modify existing CAU code to get CAU-C1 code. (2) The
speed of CAU-C1 is about the same as CAU for moderate and large messages.
Moreover, the absence of any ciphertext overhead over CAU means there is no
additional bandwidth cost. In contrast, prior proposed solutions [4,22,25,27,30]
have to sacrifice either speed or bandwidth. (3) As we will show later, for short
tag length, CAU-C1 has much better UNAE security than CAU.

It however does have some limitations. (1) Since it requires modifying CAU’s
code, one may not be able to use CAU-C1 in some legacy systems. (2) In the
encryption algorithm of CAU-C1, the blockcipher call for the tag must be com-
puted strictly after all other blockcipher calls are completed. In contrast, in CAU,
all blockcipher calls can be done in parallel. This slowdown can be significant
for tiny messages.

Efficient Committing Authenticated Encryption 863

Fig. 9. A pictorial comparison of the encryption schemes of CAU and CAU-C1. The
two scheme have the same blueprint on the top panel. They however have different
implementations for the internal procedure Tag, illustrated in the bottom panels. Here
the trapezoid MSBτ outputs the τ -bit prefix of the input.

CMT-1 security of CAU-C1. The following Theorem 3 analyzes CMT-1 secu-
rity of CAU-C1; the proof is in [8]. The result is in the standard model, although
it relies on the multi-collision of the truncated Davies-Meyer that is justified in
the ideal-cipher model via Proposition 2.

Theorem 3. Let CAU-C1[E,G, τ] be as above. Let s ≥ 2 be an integer. Then
for any adversary A, we can construct an adversary B such that

Advcmt-1
CAU-C1[E,G,τ],s(A) ≤ Advcoll

DM[E,τ],s(B) .

Adversary B runs A and makes s other calls on E.

864 M. Bellare and V. T. Hoang

Discussion. Note that an adversary can break the two-way CMT-1 security of
CAU-C1[E,G, τ] by using about 2τ/2 operations. If one aims for at least birthday-
bound security and one’s application requires two-way CMT-1 security, we must
not truncate the tag, namely τ must be 128. However, if we only need to resist
the Partitioning-Oracle attack and can tolerate a small speedup in adversarial
password search, we can use, say τ = 96. From Proposition 2, with τ = 96,
for any adversary B that spends at most 264 operations, it can find a 5-way
multi-collision on DM[E, τ] with probability at most 2−60, and thus B can at
best speed up its password searching by a factor of four.

Unique-nonce security of CAU-C1. For the scheme CAU-C1[E,G, τ] to have
unique-nonce security, in addition for the hash G to be AXU, we also need it to
be weakly regular, a notion that we define below.

Let G : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n be a keyed hash function. We
say that G is weakly c-regular if GK(ε, ε) = 0n for every K ∈ {0, 1}n, and for all
Y ∈ {0, 1}n and (A,M) ∈ {0, 1}∗ × {0, 1}∗\(ε, ε),

Pr
K ←$ {0,1}n

[GK(A,M) = Y] ≤ c · (|M |n + |A|n)
2n

.

Why does CAU-C1 need a weakly regular hash function? In CAU-C1, in each
encryption, we encrypt the i-th block of the message by running the blockcipher
on pad(N)+i, and obtain the tag by calling the blockcipher on V ← pad(N)⊕R,
where R is the output of the hash G. The weak regularity of G ensures that these
inputs are different. In contrast, CAU obtains the tag by running the blockcipher
on pad(N), and thus does not need a weakly regular hash.

In [8] we show that the hash function GHASH of GCM is weakly 1.5-regular.
The following result confirms that CAU-C1 has good unique-nonce security. The
proof is in [8].

Theorem 4. Let CAU-C1[E,G, τ] be as above, building on top of a c-AXU,
weakly c-regular hash function G and a blockcipher E : {0, 1}k × {0, 1}n →
{0, 1}n. Then for an adversary A that makes at most q queries of σ blocks and qv

verification queries in total, with at most B blocks per user, we can construct
another B of at most σ + q queries such that

Advunae
CAU-C1[E,G,τ](A) ≤ Advprf

E (B) +
(4c + 2)Bσ + (2c + 2)Bq

2n
+

2qv

2τ
.

The running time of B is about that of A plus the time to use G on A’s messages
and associated data.

On short tags. When the tag length τ is short, CAU-C1 has much better
unique-nonce security than CAU. In particular, Ferguson [26] gives a (single-
user) attack of qv decryption queries, each of � blocks, to break the security of
CAU with advantage qv�/2τ . In contrast, CAU-C1 enjoys a smaller term qv/2τ .

CAU-C4 for CMT-4-security. Applying the HtE transform of Sect. 3, with a
suitable choice of H, to CAU-C1, yields a CMT-4 and UNAE scheme that we call

Efficient Committing Authenticated Encryption 865

CAU-C4. There is no increase in ciphertext size. The computational overhead,
running H on the key, nonce and associated data, is independent of the message
length.

6 A Committing Variant of AES-GCM-SIV

In this section, we describe a close variant CAU-SIV-C1 of AES-GCM-SIV that
achieves both CMT-1 and misuse-resistance security with the same speed and
bandwidth costs as AES-GCM-SIV. In this entire section, let n be an even integer,
and let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, with k ∈ {n, 2n}. We
will consider a generalization CAU-SIV of AES-GCM-SIV that we describe below.
The name CAU-SIV is a mnemonic for the use of (i) the classic SIV paradigm [41]
in achieving misuse-resistance security, (ii) (a variant of) the CTR mode and (iii)
an AXU hash function.

The PRF GMAC+. Like CAU, the scheme CAU-SIV is based on a c-AXU hash.
As shown in [20], the hash function POLYVAL of AES-GCM-SIV is 1.5-AXU. In
CAU-SIV, the AXU hash function is used to build a PRF that Bose, Hoang, and
Tessaro [20] call GMAC+. We begin with the description of this PRF.

For strings X and Y such that |X| < |Y | = n, let X � Y denote the string
obtained by setting the first bit of (0n−|X|‖X)⊕Y to 0. Let r < n be an integer,
and let N = {0, 1}r. Define GMAC+[E,G] : {0, 1}k+n × N × {0, 1}∗ × {0, 1}∗ →
{0, 1}n via

GMAC+[E,G](Kin‖Kout, N,A,M) = E
(
Kout,X

)
,

where X ← N � G(Kin,M,A). See Fig. 11 for an illustration of GMAC+.

The key-derivation function KD1. In each encryption, CAU-SIV derives
subkeys by applying a key-derivation function (which we call KD1) on the given
nonce. Specifically, KD1 is exactly the ITP hash function in Sect. 4 with padding
pad(N, i) = N‖[i]n−r, where [i]n−r denote an (n−r)-bit encoding of an integer i.
The code of KD1 is given in the second-top panel of Fig. 10 for completeness.

CTR mode. CAU-SIV is based on the following variant of the CTR mode. Let
r < n be an integer. (For AES-GCM-SIV, r = 96 and n = 128.) Let add be an
operation on {0, 1}n × {0, 1, . . . , 2n−r − 1} such that

add(X, i) = 1‖X[2 : r]‖(X[r + 1 : n] + i mod 2n−r) .

The encryption and decryption schemes of CTR[E, add] are defined in the bot-
tom panels of Fig. 10. They are essentially the same as the standard CTR mode,
except that they use the add operation instead of the modular addition in
mod 2n.

The scheme CAU-SIV. The scheme CAU-SIV[E,G, add] is described in Fig. 10.
Informally, one first uses KD1 on the given nonce to derive subkeys Kin ∈ {0, 1}n

and Kout ∈ {0, 1}k. One then follows the classic SIV paradigm [41] in building a

866 M. Bellare and V. T. Hoang

Enc(K, N, A, M)

Kin‖Kout ← KD1[E, k + n](K, N)
IV ← Tag(Kin‖Kout, N, A, M)
C ← CTR[E, add].Enc(Kout, M ; IV)
Return C

Dec(K, N, A, C)

Kin‖Kout ← KD1[E, k + n](K, N)
M ← CTR[E, add].Dec(Kout, C)
IV ← Tag(Kin‖Kout, N, A, M)
If IV �= C[1 : n] then return ⊥
Return M

KD1[E, �](K, N)
For i ← 1 to 2�/n do Yi ← EK(N‖[i]n−r)[1 : n/2]
Return Y1‖ · · · ‖Y2�/n

Tag(Kin‖Kout, N, A, M) //GMAC+ or GMAC2

X ← N � G(Kin, M, A); Y ← E Kout, X
)
; Y ← Y ⊕X

Return Y

CTR[E, add].Enc(K, M ; IV)

// 0 ≤ |Mm| < m; other |Mi| = n

M1 · · · Mm ← M

For i = 1 to m − 1 do
Ci ← EK add(IV, i)

)⊕Mi

Cm ← EK add(IV, m)
)[
1 : |Mm|]⊕Mm

Return IV‖C1 · · · Cm

CTR[E, add].Dec(K, C)

// 0 ≤ |Cm| < m; other |Ci| = n

IV‖C1 · · · Cm ← C

For i = 1 to m − 1 do
Mi ← EK add(IV, i)

)⊕Ci

Mm ← EK add(IV, m)
)[
1 : |Cm|]⊕Cm

Return M1 · · · Mm

Fig. 10. The schemes CAU-SIV and CAU-SIV-C1 whose encryption and decryption
schemes are given in the top-left and top-right panels, respectively. Procedure Tag
implements GMAC+ (for CAU-SIV) or GMAC2 (for CAU-SIV-C1); the latter contains
the highlighted code, but the former does not.

misuse-resistant AE scheme: first use the PRF GMAC+ on the triple (N,A,M)
to derive an initialization vector IV, and then run CTR with that particular IV
to encrypt M . However, unlike the standard SIV with key separation, here both
GMAC+ and CTR use E on the same key Kout. There is, however, a domain
separation in the use of the blockcipher: GMAC+ will only run E on an input
whose most significant bit is 0, whereas CTR runs E on inputs of most significant
bit 1.

The CAU-SIV-C1 scheme. We now show how to add CMT-1 security to
CAU-SIV. Recall that CAU-SIV internally uses a PRF GMAC+ that is based on
an AXU, weakly regular hash function G. The scheme CAU-SIV-C1 introduces an
extra xor in GMAC+, resulting in a new PRF construction that we call GMAC2,
and that is the only difference between the two AE schemes. In particular,

GMAC+[E,G](Kin‖Kout, N,A,M) = E
(
Kout,X

)
,

where X ← N � G(Kin,M,A). In contrast, GMAC2 employs the Davies-Meyer
construction to break the invertibility of E, namely,

GMAC2[E,G](Kin‖Kout, N,A,M) = E
(
Kout,X

)⊕X .

Efficient Committing Authenticated Encryption 867

Fig. 11. The GMAC+ construction (left) and its variant GMAC2 (right).

See Fig. 11 for a side-by-side pictorial comparison of GMAC+ and GMAC2. The
code of CAU-SIV-C1 is given in Fig. 10.

The difference of CAU-SIV-C1 and CAU-SIV is tiny, just a single xor. As a
result, the speed and bandwidth costs of CAU-SIV-C1 are about the same as
CAU-SIV for all message sizes. While one must intrusively modify CAU-SIV’s
code to obtain CAU-SIV-C1, since CAU-SIV is new, we anticipate that there will
be very few legacy situations that one cannot adopt CAU-SIV-C1.

Committing Security of CAU-SIV-C1. Theorem 5 below confirms that the
extra xor indeed hardens CAU-SIV-C1, ensuring CMT-1 security. The proof is
in [8]. Intuitively, the synthetic IV of CAU-SIV-C1 is obtained by a two-step
chain of hashing: (i) first use the Iterative Truncated Permutation construction
ITP[E, r, n] to commit the master key K and the nonce N to the n-bit prefix
of the blockcipher subkey Kout, and then (ii) use the Davies-Meyer construction
DM[E] to commit Kout. We show in [8] how this allows the CMT-1 security of
CAU-SIV-C1 to reduce to the multi-collision resistance of ITP[E, r, n] and DM[E],
both of which we justify with good bounds.

Theorem 5. Let SE = CAU-SIV-C1[E,G, add] be as described above, building
on top of a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}k. Let r < n be the nonce
length. Let s ≥ 2 be an integer, and let t =

⌈√
s
⌉
. Then for any adversary A,

we can construct adversaries D0 and D1 such that

Advcmt-1
SE,s (A) ≤ max

{
Advcoll

ITP[E,r,n],t(D0),Advcoll
DM[E],t(D1)

}
.

Each of D0 and D1 runs A and then makes at most 6s other blockcipher calls.

868 M. Bellare and V. T. Hoang

Game Gbind
F,s (A)

(K1, M1, . . . , Ks, Ms) ←$ A // (K1, M1), . . . , (Ks, Ms) must be distinct
For i ← 1 to s do (Pi, Li) ← F(Ki, Mi)
Return (P1 = · · · = Ps)

Fig. 12. Game defining the binding security of a committing PRF F.

Misuse-Resistance Security of CAU-SIV-C1. The following result shows
that CAU-SIV-C1 also has good misuse-resistance security; the proof is in [8].

Theorem 6. Let SE = CAU-SIV-C1[E,G, add] be as described above, building on
top of a c-AXU hash function G and a blockcipher E : {0, 1}k×{0, 1}n → {0, 1}n.
Then for any adversary A that makes at most q queries of totally σ blocks with
at most B blocks per (user, nonce) pair and D queries per user, we can construct
an adversary B of max{6q, σ + q} queries such that

Advmrae
SE (A) ≤ 2 · Advprp

E (B) +
6
√

nDq

23n/4
+

7σB + (2c + 7)qB
2n

.

The running time of B is at most that of A plus the time to encrypt/decrypt the
latter’s queries.

CAU-SIV-C4 for CMT-4-security. Applying the HtE transform of Sect. 3,
with a suitable choice of H, to CAU-SIV-C1, yields a CMT-4 and MRAE scheme
that we call CAU-SIV-C4. There is no increase in ciphertext size. The computa-
tional overhead is independent of the message length.

7 Adding Key-Committing Security to Legacy AE

In this section, we describe two generic methods UNAE-then-Commit (UtC) and
MRAE-then-Commit (RtC) that transform an AE scheme SE into a CMT-1-
secure one. The former preserves unique-nonce security, whereas the latter pre-
serves misuse-resistance security. As a stepping stone, we define a new primitive
that we call committing PRF, which we will describe below.

Committing PRFs. A committing PRF F is a deterministic algorithm, and
associated with a message space M and key space {0, 1}k. It takes as input a key
K ∈ {0, 1}k and a message M ∈ M, and then produces (P,L) ∈ {0, 1}�×{0, 1}λ.
We refer to � as the commitment length of F, and λ as the mask length of F.

We require that F be a good PRF, meaning that its outputs (P,L) are indis-
tinguishable from (P ∗, L∗) ←$ {0, 1}� × {0, 1}λ. In addition, for an adversary A
and an integer s ≥ 2, we define the advantage of A breaking the s-way binding
security of F as Advbind

F,s (A) = Pr[Gbind
F,s (A)], where game Gbind

F,s (A) is defined in
Fig. 12. Informally, a committing PRF is a combination of a PRF and a commit-
ment scheme, where the string P is a commitment of the key K and the message
M .

Efficient Committing Authenticated Encryption 869

Fig. 13. The committing PRF scheme CX[E, pad], illustrated for the case � = λ = 2n
and pad(M, i) is the concatenation of M and an (n − m)-bit encoding of i.

For s = 2, our notion of committing PRF can be viewed as a PRF coun-
terpart of the notion of right collision-resistant PRG in [25]. We however will
give practical instantiations via a blockcipher whereas the construction in [25]
is theoretical, using hardcore predicates.

An efficient committing PRF. We now describe an efficient committing
PRF Counter-then-Xor (CX) that is built on top of a blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n. Here the message space M = {0, 1}m and the key space is
{0, 1}k, with m < n. Let pad denote a one-to-one encoding that turns a pair
(M, i) ∈ {0, 1}m × {1, . . . , 2n−m} into an n-bit string. The commitment length
� ≥ n and the mask length λ satisfy ��/n + �λ/n ≤ 2n−m. The construction
CX[E, pad] is shown in Fig. 13.

The following result shows that CX is a good committing PRF scheme. Part
(a) is a straightforward application of the (multi-user) PRP/PRF Switching
Lemma, with an observation that for each query that A0 makes to CX, it trans-
lates to d = ��/n + �λ/n PRP queries on the blockcipher. For applications in
this paper, d ≤ 5. Part (b) is a direct corollary of Proposition 2, since the first
block of P is obtained from the Davies-Meyer construction DM[E].

Proposition 5. Let CX[E, pad] be as above, and let s ≥ 2 be an integer. Let
d = ��/n + �λ/n.
a) For any adversary A0 making q queries in total with at most B queries per
user, we can construct an adversary B of about the same running time that makes
at most dq queries such that

870 M. Bellare and V. T. Hoang

UtC[F, SE].Enc(K, N, A, M)

(P, L) ← F(K, N)
C ← SE.Enc(L, N, A, M)
Return P‖C

UtC[F, SE].Dec(K, N, A, P ∗‖C)

(P, L) ← F(K, N)
If P ∗ �= P then return ⊥
Else return SE.Dec(L, N, A, C)

Fig. 14. The encryption (left) and decryption (right) schemes of the resulting AE
scheme under the UtC transform.

Advprf
CX[E,pad](A0) ≤ Advprp

E (B) +
d2 · Bq

2n
.

b) For any adversary A1, we can construct another adversary B of about the
same running time and resources such that

Advbind
CX[E,pad],s(A1) ≤ Advcoll

DM[E],s(B) .

The UNAE-then-Commit (UtC) transform. Let SE be an AE scheme with
key space {0, 1}k and nonce space N . Let F be a committing PRF scheme of
message space N and mask length k. The scheme UtC[F,SE] is shown in Fig. 14.
Informally, under UtC, a ciphertext contains a commitment P of the master
key K, ensuring CMT-1 security. The security of UtC[F,SE] is analyzed below;
the proof is in [8].

Theorem 7. Let SE and F be as above. Let s ≥ 2 be an integer.
a) For any adversary A0, we can construct an adversary B0 of about the same
running time and using the same resources as A0 such that

Advcmt-1
UtC[F,SE],s(A0) ≤ Advbind

F,s (B0) .

b) For any adversary A1 of at most B queries per (user, nonce) pair, we can
construct an adversary B1 and B2 such that

Advunae
UtC[F,SE](A1) ≤ Advprf

F (B1) + Advunae
SE (B2) .

The running time of B1 is about that of A1 plus the time to encrypt/decrypt the
queries of A1 via SE, and its queries statistics is the same as A1. Adversary B2

has the same number of queries and the total query length as A1, but it makes
at most B queries per user. It has about the same running time as A1.

Discussion. Albertini et al. [4] also give a generic transform. (An instantiation
of this transform is now deployed in the latest version of the AWS Encryption
SDK, an open-source client-side encryption library [1].) It can be viewed as a
specific instantiation of UtC, in which the committing PRF F is built on top of
two collision-resistant PRFs. One of these two collision-resistant PRFs however

Efficient Committing Authenticated Encryption 871

RtC[F, SE, H].Enc(K, N, A, M)

(P, L) ← F(K, N)
C ← SE.Enc(L, N, A, M)
T ← H(P, C[1 : n])
Return T‖C

RtC[F, SE, H].Dec(K, N, A, T‖C)

(P, L) ← F(K, N)
T ∗ ← H(P, C[1 :n])
If T �= T ∗ then return ⊥
Return SE.Dec(L, N, A, C)

Fig. 15. The encryption (left) and decryption (right) algorithms of the scheme given
by the RtC transform.

may have to provide up to 256-bit output (since this output is used as a key
of the legacy SE), obstructing an obvious instantiation via Davies-Meyer on
AES. As a result, Albertini et al. instantiate them via SHA-256. Not only is
this instantiation slower than our Count-then-Xor construction, but using it in
UtC also requires an additional primitive in addition to AES. In addition, we
realize that UtC achieves CMT-1 security, whereas Albertini et al. only claim
key-committing security.

The MRAE-then-Commit (RtC) transform. Let SE be an AE scheme with
key space {0, 1}λ and nonce space N . Let F be a committing PRF scheme of
message space N , key space {0, 1}k, commitment length �, and mask length λ
(that is also the key length of SE). Assume that each ciphertext in SE is at least
n-bit long. Let H : {0, 1}� × {0, 1}n → {0, 1}n be a collision-resistant PRF. We
can instantiate F via CX, and H via the Davies-Meyer construction. (The PRF
security of this particular choice of H can be trivially obtained from Lemma 1.)
The scheme RtC[F,SE,H] is shown in Fig. 15. Intuitively, RtC creates a two-
step chain of commitments K → P → T , where K is the master key, P is the
commitment generated by F, and T is the hash output, which is a part of the
ciphertext. This leads to an underlying cascade of two hash functions whose col-
lision resistance an adversary has to break in order to break the CMT-1 security
of RtC[F,SE,H]. Thus from Proposition 4, the CMT-1 security of RtC[F,SE,H]
is reduced to the committing security of F and the collision resistance of H. The
proof of the following is in [8].

Theorem 8. Let SE and F be as above.
a) Let s ≥ 2 be an integer, and let t = �√s . For any adversary A0, we can
construct adversaries B0 and B1 such that

Advcmt-1
RtC[F,SE,H],s(A0) ≤ max

{
Advbind

F,t (B0),Advcoll
H,t(B1)

}
.

Each of B0 and B1 runs A0, and then runs RtC[F,SE,H] to encrypt one out of
the s messages that A0 outputs, and then evaluates F on s inputs.
b) For any adversary A1 of at most B queries per (user, nonce) pair and at
most q queries, we can construct adversaries B2, B3, and B4 such that

Advmrae
RtC[F,SE,H](A1) ≤ Advprf

F (B2) + Advmrae
SE (B3) + Advprf

H (B4) +
Bq

2n
.

872 M. Bellare and V. T. Hoang

Adversary B2 has the same query statistics as A1, and its running time is at
most that of A1 plus the time to use RtC to encrypt/decrypt the latter’s queries.
Adversaries B3 and B4 have the same number of queries and the total query
length as A1, but they make only B queries per user. The running time of B3 is
about that of A1 plus the time to run H on q inputs, and B4 has about the same
running time as A1.

Connection to libsodium’s approach. The libsodium library [2] suggests
the following transformation to add key-committing security to an AE
scheme SE. Assume that a ciphertext of SE can be parsed as a concatena-
tion of a tag T and a ciphertext core C∗. Let H : {0, 1}∗ → {0, 1}m be a
cryptographic hash function. To encrypt (N,A,M) under key K, let T‖C∗ ←
SE.Enc(K,N,A,M), let T ∗ ← H(K‖N‖T), and output T ∗‖T‖C∗. To decrypt
(N,A, T ∗‖T‖C∗) with key K, first check if T ∗ = H(K‖N‖T). If they agree then
return SE.Dec(K,N,A, T‖C∗), else return ⊥.

The transform above works for the AE schemes in the libsodium libraries
(namely GCM and ChaChaPoly1305) if we model (i) the hash function H as
a random oracle, (ii) AES as an ideal cipher, and (iii) ChaCha20 permutation
as an ideal permutation. The RtC transform can be viewed as a way to refine
libsodium’s approach to (i) work with a generic AE scheme and (ii) instantiate
the hash function via the Davies-Meyer construction instead of SHA-256. While
the libsodium’s transform is suggested for unique-nonce security, we points out
that RtC also works for misuse-resistance security.

Acknowledgments. We thank the EUROCRYPT 2022 reviewers for their careful
reading and valuable comments. Mihir Bellare was supported in part by NSF grant
CNS-1717640 and a gift from Microsoft. Viet Tung Hoang was supported in part by
NSF grants CNS-2046540 (CAREER), CICI-1738912, and CRII-1755539.

References

1. AWS Encryption SDK 2.0 (2020). https://docs.aws.amazon.com/encryption-sdk/
latest/developer-guide/introduction.html

2. The Sodium cryptography library (Libsodium) (2021). https://libsodium.gitbook.
io/doc

3. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2 28

4. Albertini, A., Duong, T., Gueron, S., Kölbl, S., Luykx, A., Schmieg, S.: How to
abuse and fix authenticated encryption without key commitment. In: 31st USENIX
Security Symposium (2022)

5. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 1

6. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. In: 37th FOCS. IEEE (1996)

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/ introduction.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/ introduction.html
https://libsodium.gitbook.io/doc
https://libsodium.gitbook.io/doc
https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/3-540-68697-5_1

Efficient Committing Authenticated Encryption 873

7. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS. IEEE (1997)

8. Bellare, M., Hoang, V.T.: Efficient schemes for committing authenticated encryp-
tion. Cryptology ePrint Archive (2022). https://ia.cr/2022/

9. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 31

10. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

11. Bellare, M., Ng, R., Tackmann, B.: Nonces are noticed: AEAD revisited. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 235–
265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 9

12. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

13. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 247–276. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 10

14. Bellare, M., Tackmann, B.: Nonce-based cryptography: retaining security when
randomness fails. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 729–757. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 28

15. Bernstein, D.: Chacha, a variant of salsa20. In: Workshop Record of SASC, vol. 8,
pp. 3–5 (2008)

16. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68351-3 8

17. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760 3

18. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 21

19. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

20. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user secu-
rity, faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10820, pp. 468–499. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 18

21. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 26

https://ia.cr/2022/
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-030-26948-7_9
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.1007/978-3-662-49890-3_28
https://doi.org/10.1007/978-3-662-49890-3_28
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-319-78381-9_18
https://doi.org/10.1007/11535218_26

874 M. Bellare and V. T. Hoang

22. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 6

23. Dworkin, M.: Recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC. NIST Special Publication 800–
38D (2007)

24. Farshim, P., Libert, B., Paterson, K.G., Quaglia, E.A.: Robust encryption, revis-
ited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 352–
368. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 22

25. Farshim, P., Orlandi, C., Roşie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symm. Cryptol. 2017(1), 449–473 (2017)

26. Ferguson, N.: Authentication weaknesses in GCM. Manuscript, available in NIST
webpage (2005)

27. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403,
pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 3

28. Gueron, S., Lindell, Y.: Better bounds for block cipher modes of operation via
nonce-based key derivation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017 (2017)

29. Hoang, V.T., Tessaro, S., Thiruvengadam, A.: The multi-user security of GCM,
revisited: Tight bounds for nonce randomization. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) ACM CCS 2018 (2018)

30. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

31. Kaliski, B.: PKCS #5: Password-Based Cryptography Specification Version 2.0.
RFC 2898 (2000). https://datatracker.ietf.org/doc/html/rfc2898

32. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7 20

33. Lambæk, M.: Breaking and fixing private set intersection protocols. Cryptology
ePrint Archive, Report 2016/665 (2016). https://eprint.iacr.org/2016/665

34. Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks. In: Bailey, M.,
Greenstadt, R. (eds.) 30th USENIX Security Symposium. USENIX Association
(2021)

35. Luykx, A., Mennink, B., Paterson, K.G.: Analyzing multi-key security degradation.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 575–605.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 20

36. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30556-9 27

37. Mouha, N., Luykx, A.: Multi-key security: the even-mansour construction revisited.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 209–223.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 10

38. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.

https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-642-36362-7_22
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://datatracker.ietf.org/doc/html/rfc2898
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
https://eprint.iacr.org/2016/665
https://doi.org/10.1007/978-3-319-70697-9_20
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-662-47989-6_10

Efficient Committing Authenticated Encryption 875

257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 15

39. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002 (2002)

40. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM CCS 2001 (2001)

41. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

42. Salowey, J., Choudhury, A., McGrew, D.: AES Galois Counter Mode (GCM) cipher
suites for TLS. RFC 5288 (2008). https://datatracker.ietf.org/doc/html/rfc5288

43. Salowey, J., Choudury, A. McGrew, D.A.: AES Galois Counter Mode (GCM) cipher
suites for TLS. RFC 5288 (2008)

https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/11761679_23
https://datatracker.ietf.org/doc/html/rfc5288

On the Concrete Security
of TLS 1.3 PSK Mode

Hannah Davis1, Denis Diemert2(B), Felix Günther3, and Tibor Jager2

1 University of California San Diego, La Jolla, CA, USA
h3davis@eng.ucsd.edu

2 Bergische Universität Wuppertal, Wuppertal, Germany
denis.diemert@uni-wuppertal.de, tibor.jager@uni-wuppertal.de

3 ETH Zürich, Zürich, Switzerland
mail@felixguenther.info

Abstract. The pre-shared key (PSK) handshake modes of TLS 1.3 allow
for the performant, low-latency resumption of previous connections and
are widely used on the Web and by resource-constrained devices, e.g., in
the Internet of Things. Taking advantage of these performance benefits
with optimal and theoretically-sound parameters requires tight security
proofs. We give the first tight security proofs for the TLS 1.3 PSK hand-
shake modes.

Our main technical contribution is to address a gap in prior tight secu-
rity proofs of TLS 1.3 which modeled either the entire key schedule or com-
ponents thereof as independent random oracles to enable tight proof tech-
niques. These approaches ignore existing interdependencies in TLS 1.3’s
key schedule, arising from the fact that the same cryptographic hash func-
tion is used in several components of the key schedule and the handshake
more generally. We overcome this gap by proposing a new abstraction for
the key schedule and carefully arguing its soundness via the indifferentia-
bility framework. Interestingly, we observe that for one specific configu-
ration, PSK-only mode with hash function SHA-384, it seems difficult to
argue indifferentiability due to a lack of domain separation between the
various hash function usages. We view this as an interesting insight for
the design of protocols, such as future TLS versions.

For all other configurations however, our proofs significantly tighten
the security of the TLS 1.3 PSK modes, confirming standardized param-
eters (for which prior bounds provided subpar or even void guarantees)
and enabling a theoretically-sound deployment.

1 Introduction

The Transport Layer Security (TLS) protocol is probably the most widely-used
cryptographic protocol. It provides a secure channel between two endpoints

Some of this work was done while Hannah Davis was visiting ETH Zurich. Felix
Günther was supported in part by German Research Foundation (DFG) Research Fel-
lowship grant GU 1859/1-1. Tibor Jager was supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme, grant agreement 802823.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, pp. 876–906, 2022.
https://doi.org/10.1007/978-3-031-07085-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_30&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_30

On the Concrete Security of TLS 1.3 PSK Mode 877

(client and server) for arbitrary higher-layer application protocols. Its most
recent version, TLS 1.3 [48], specifies two different “modes” for the initial hand-
shake establishing a secure session key: the main handshake mode based on a
Diffie–Hellman key exchange and public-key authentication via digital signa-
tures, and a pre-shared key (PSK) mode, which performs authentication based
on symmetric keys. The latter is mainly used for two purposes:

Session resumption. Here, a prior TLS connection established a secure chan-
nel along with a pre-shared key PSK, usually via a full handshake. Subsequent
TLS resumption sessions use this key for authentication and key derivation.
For example, modern web browsers typically establish multiple TLS connec-
tions when loading a web site. Using public-key authentication only in an
initial session and PSK-mode in subsequent ones minimizes the number of
relatively expensive public-key computations and significantly improves per-
formance for both clients and servers.

Out-of-band establishment. PSKs can also be established out-of-band, e.g.,
by manual configuration of devices or with a separate key establishment pro-
tocol. This enables secure communication in settings where a complex public-
key infrastructure (PKI) is unsuitable, such as IoT applications.

TLS 1.3 provides two variants of the PSK handshake mode: PSK-only and
PSK-(EC)DHE. The PSK-only mode is purely based on symmetric-key cryp-
tography. This makes TLS accessible to resource-constrained low-cost devices,
and other applications with strict performance requirements, but comes at the
cost of not providing forward secrecy [29], since the latter is not achievable
with static symmetric keys.1 The PSK-(EC)DHE mode in turn achieves for-
ward secrecy by additionally performing an (elliptic-curve) Diffie–Hellman key
exchange, authenticated via the PSK (i.e., still avoiding inefficient public-key sig-
natures). This compromise between performance and security is the suggested
choice for TLS 1.3 session resumption on the Internet.

Concrete Security and Tightness. Classical, complexity-theoretic security proofs
considered the security of cryptosystems asymptotically. They are satisfied with
security reductions running in polynomial time and having non-negligible suc-
cess probability. However, it is well-known that this only guarantees that a suffi-
ciently large security parameter exists asymptotically, but it does not guarantee
that a deployed real-world cryptosystem with standardized parameters—such as
concrete key lengths, sizes of algebraic groups, moduli, etc.—can achieve a cer-
tain expected security level. In contrast, a concrete security approach makes all
bounds on the running time and success probability of adversaries explicit, for
example, with a bound of the form Adv(A) ≤ f(A) · Adv(B), where f is a func-
tion of the adversary’s resources and B is an adversary against some underlying
cryptographic hardness assumption.

The concrete security approach makes it possible to determine concrete
deployment parameters that are supported by a formal security proof. As an

1 See [2,9] for recent work discussing symmetric key exchange and forward secrecy.

878 H. Davis et al.

intuitive toy example, suppose we want to achieve “128-bit security”, that is, we
want a security proof that guarantees (for any A in a certain class of adversaries)
that Adv(A) ≤ 2−128. Suppose we have a cryptosystem with a reduction that
loses “40 bits of security” because we can only prove a bound of f(A) ≤ 240.
This means that we have to instantiate the scheme with an underlying hardness
assumption that achieves Adv(B) ≤ 2−168 for any B in order to upper bound
Adv(A) by 2−128 as desired. Hence, the 40-bit security loss of the bound is
compensated by larger parameters that provide “168-bit security”.

This yields a theoretically-sound choice of deployment parameters, but it
might incur a very significant performance loss, as it requires the choice of larger
groups, moduli, or key lengths. For example, the size of an elliptic curve group
scales quadratically with the expected bit security, so we would have to choose
|G| ≈ 22·168 = 2336 instead of the optimal |G| ≈ 22·128 = 2256. The performance
penalty is even more significant for finite field groups, RSA or discrete loga-
rithms “modulo p”. This could lead to parameters which are either too large for
practical use, or too small to be supported by the formal security analysis of the
cryptosystem. We demonstrate this below for security proofs of TLS.

Even worse, for a given security proof the concrete loss � may not be a con-
stant, as in the above example, but very often � depends on other parameters,
such as the number of users or protocol sessions, for example. This makes it
difficult to choose theoretically-sound parameters when bounds on these other
parameters are not exactly known at the time of deployment. If then a concrete
value for � is estimated too small (e.g., because the number of users is underes-
timated), then the derived parameters are not backed by the security analysis.
If � is chosen too large, then it incurs an unnecessary performance overhead.

Therefore we want to have tight security proofs, where � is a small con-
stant, independent of any parameters that are unknown when the cryptosystem
is deployed. This holds in particular for cryptosystems and protocols that are
designed to maximize performance, such as the PSK modes of TLS 1.3 for session
resumption or resource-constrained devices.

Previous Analyses of the TLS Handshake Protocol and Their Tightness. TLS 1.3
is the first TLS version that was developed in a close collaboration between
academia and industry. Early TLS 1.3 drafts were inspired by the OPTLS design
by Krawczyk and Wee [42], and several draft revisions as well as the final TLS 1.3
standard in RFC 8446 [48] were analyzed by many different research groups,
including computational/reductionist analyses of the full and PSK modes in [19–
21,25]. All reductions in these papers are however highly non-tight, having up
to a quadratic security loss in the number of TLS sessions and adversary can
interact with. For example, [17] explains that for “128-bit security” and plausible
numbers of users and sessions, an RSA modulus of more than 10,000 bits would
be necessary to compensate the loss of previous security proofs for TLS, even
though 3072 bits are usually considered sufficient for “128-bit security” when
the loss of reductions is not taken into account. Likewise, [14] argues that the
tightness loss to the underlying Diffie–Hellman hardness assumption lets these
bounds fail to meet the standardized elliptic curves’ security target, and for
large-scale adversary even yields completely vacuous bounds.

On the Concrete Security of TLS 1.3 PSK Mode 879

Recently, Davis and Günther [14] and Diemert and Jager [17] gave new,
tight security proofs for the TLS 1.3 full handshake based on Diffie–Hellman key
exchange and digital signatures (not PSKs). However, their results required very
strong assumptions. One is that the underlying digital signature scheme is tightly
secure in a multi-user setting with adaptive corruptions. While such signature
schemes do exist [3,16,28,31], this is not known for any of the signature schemes
standardized for TLS 1.3, which are subject to the tightness lower bounds of [4]
as their public keys uniquely determine the matching secret key.

Even more importantly, both [14] and [17] modeled the TLS key schedule or
components thereof as independent random oracles. This was done to overcome
the technical challenge that the Diffie–Hellman secret and key shares need to be
combined in the key derivation to apply their tight security proof strategy, fol-
lowing Cohn-Gordon et al. [11], yet in TLS 1.3 those values enter key derivation
through separate function calls. But neither work provided formal justification for
their modeling, and both neglected to address potential dependencies between the
use of a hash function in the key schedule and elsewhere in the protocol.

Our Contributions. In this paper, we describe a new perspective on TLS 1.3,
which enables a modular security analysis with tight security proofs.

New Abstraction of the TLS 1.3 Key Schedule. We first describe a new
abstraction of the TLS 1.3 key schedule used in the PSK modes (in Sect. 2), where
different steps of the key schedule are modeled as independent random oracles (12
random oracles in total). This makes it significantly easier to rigorously analyze
the security of TLS 1.3, since it replaces a significant part of the complexity of
the protocol with what the key schedule intuitively provides, namely “as-good-
as-independent cryptographic keys”, deterministically derived from pre-shared
keys, Diffie–Hellman values (in PSK-(EC)DHE mode), protocol messages, and
the randomness of communicating parties.

Most importantly, in contrast to prior works on TLS 1.3’s tightness that
abstracted (parts of or the entire) key schedule as random oracles [14,17] to
enable the tight proof technique of Cohn-Gordon et al. [11], we support this new
abstraction formally. Using the indifferentiability framework of Maurer et al. [46]
in its recent adaptation by Bellare et al. [5] that treats multiple random oracles,
in Section 4 we prove our abstraction indifferentiable from TLS 1.3 with only
the underlying cryptographic hash function modeled as a random oracle, and
this proof is tight. This accounts for possible interdependencies between the use
of a hash function in multiple contexts, which were not considered in [14,17].

Identifying a Lack of Domain Separation. A noteworthy subtlety is that, to
our surprise, we identify that for a certain choice of TLS 1.3 PSK mode and hash
function (namely, PSK-only mode with SHA384), a lack of domain separation [5]
in the protocol does not allow us to prove indifferentiability for this case. We
discuss the details of why domain separation is achieved for all but this case in
the full version of this paper [13].

880 H. Davis et al.

This gap could be closed by more careful domain separation in the key sched-
ule, which we consider an interesting insight for designers of future versions of
TLS or other protocols. Concretely, the ideal domain separation method would
be to add a unique prefix or suffix to each hash function call made by the proto-
col. However, existing standard primitives like HMAC and HKDF do not permit
the use of such labels, so this advice is not practical for TLS 1.3 or similar proto-
cols. For these, a combination of labels (where possible) and padding for domain
separation seems advisable, where the padding ensures that the protocol’s direct
hash calls have strictly longer inputs than the internal hash calls in HMAC and
HKDF. We outline this method in more detail in the full version.

Modularization of Record Layer Encryption. Like most of the prior com-
putational TLS 1.3 analyses [17,19,21,25], we use a multi-stage key exchange
(MSKE) security model [24] to capture the complex and fine-grained security
aspects of TLS 1.3. These aspects include cleverly distinguishing between “exter-
nal” keys established in the handshake for subsequent use (by, e.g., application
data encryption, resumption, etc.) and “internal” keys, used within the hand-
shake itself (in TLS 1.3 for encrypting most of the handshake through the proto-
col’s record layer) to avoid complex security models such as the ACCE model [33]
which monolithically treat handshake and record-layer encryption.

As a generic simplification step for MSKE models, we show (in Sect. 5) that
for a certain class of transformations using the internal keys, we can even avoid
the somewhat involved handling of internal keys altogether. We use this to sim-
plify our analysis of the TLS 1.3 handshake (treating the TLS 1.3 record-layer
encryption as such transformation). The result itself however is not specific to
TLS 1.3, but general and of independent interest; it furthermore is tight.

Tight Security of TLS 1.3 PSK Modes. We leverage the new perspective on
the TLS 1.3 key schedule and the fact that we can ignore record-layer encryption
to give our main results: the first tight security proofs for the PSK-only and
PSK-(EC)DHE handshake modes of TLS 1.3.

Evaluation. Finally, we evaluate our new bounds and prior ones from [21] over a
wide range of fully concrete resource parameters, following the approach of Davis
and Günther [14]. Our bounds improve on previous analyses of the PSK-only
handshake by between 15 and 53 bits of security, and those of the PSK-(EC)DHE
handshake by 60 and 131 bits of security across all our parameters evaluated.

Further Related Work and Scope of Our Analysis. Several previous works gave
security proofs for the previous protocol version TLS 1.2 [7,27,33,40,41,44],
including its PSK-modes [44]; all reductions in these works are highly non-tight.

Brzuska et al. [10] recently proposed a stand-alone security model for the
TLS 1.3 key schedule, likewise aiming at a new abstraction perspective on the
latter to support formal protocol analysis. While their treatment focuses solely

On the Concrete Security of TLS 1.3 PSK Mode 881

on the key schedule and only briefly argues its application to a key exchange
security result, it is more general and covers the negotiation of parameters [6,22]
and agile usage of various algorithms.

Our focus is on the TLS 1.3 PSK modes. Hence, our abstraction of the key
schedule and the careful indifferentiability treatment is tailored to that mode
and cannot be directly translated to the full handshake (without PSKs). We are
confident that our approach can be adapted to achieve similar results for the full
handshake, but leave revisiting the results in [14,17] in that way to future work.

Like many previous cryptographic analyses [14,17,19–21,25,33,40] of the
TLS handshake, our work focuses on the “cryptographic core” of the TLS 1.3
PSK handshake modes (in particular, we consider fixed parameters like the
Diffie–Hellman group, TLS ciphersuite, etc.). Our abstraction of the key sched-
ule is designed for easy composition with our tight key exchange proof, and
our indifferentiability treatment is important confirmation of that abstraction’s
soundness. We do not consider, e.g., ciphersuite and version negotiation [22] or
backwards compatibility issues in settings where multiple TLS versions are used
in parallel, such as [34]. We also do not treat the security of the TLS record layer;
instead we explain how to avoid the necessity to do so in order to achieve more
modular security analyses, and we refer to compositional results [17,19,21,24,30]
treating the combined security when subsequent protocols use the session keys
established in an MSKE protocol.

Numerous authenticated key exchange protocols [11,28,31,32,45] were
recently proposed that can be proven (almost) tightly secure. However,
these protocols were specifically designed to be tightly secure and none is
standardized.

2 The TLS 1.3 Pre-shared Key Handshake Protocol

Overview. We consider the pre-shared key mode of TLS 1.3, used in a setting
where both client and server already share a common secret, a so-called pre-
shared key (PSK). A PSK is a cryptographic key which may either be manually
configured, negotiated out-of-band, or (and most commonly) be obtained from a
prior and possibly not PSK-based TLS session to enable fast session resumption.
The TLS 1.3 PSK handshake comes in two flavors: PSK-only, where security is
established from the pre-shared key alone, and PSK-(EC)DHE, which includes
an (finite-field or elliptic-curve) Diffie–Hellman key exchange for added forward
secrecy. Both PSK handshakes essentially consist of two phases (cf. Fig. 1).

1. The client sends a random nonce and a list of offered pre-shared keys to the
server, where each key is identified by a (unique) identifier pskid .2 The server
then selects one pskid from the list, and responds with another random nonce

2 In this work, we do not consider negotiation of pre-shared keys in situations where
client and server share multiple keys, but focus on the case where client and server
share only one PSK and the client therefore offers only a single pskid . However, we
expect that our results extend to the general case as well.

882 H. Davis et al.

and the selected pskid . In PSK-(EC)DHE mode, client and server addition-
ally perform a Diffie–Hellman key exchange, sending group elements along
with the nonces and PSK identifiers. In both modes, the client also sends a
so-called binder value, which applies a message authentication code (MAC) to
the client’s nonce and pskid (and the Diffie–Hellman share in PSK-(EC)DHE
mode) and binds the PSK handshake to the (potential) prior handshake in
which the used pre-shared key was established (see [12,39] for analysis ratio-
nale behind the binder value).

2. Then client and server derive unauthenticated cryptographic keys from the
PSK and the established Diffie–Hellman key (the latter only in (EC)DHE
mode, of course). This includes, for instance, the client and server handshake
traffic keys (htkC and htkS) used to encrypt the subsequent handshake mes-
sages, as well as finished keys (fkC and fkS) used to compute and exchange
finished messages. The finished messages are MAC tags over all previous
messages, ensuring that client and server have received all previous messages
exactly as they were sent.
After verifying the finished messages, client and server “accept” authenticated
cryptographic keys, including the client and server application traffic secret
(CATS and SATS), the exporter master secret (EMS), and the resumption
master secret (RMS) for future session resumptions.

Detailed Specification. For our proofs we will need fully-specified descriptions for
each of the TLS 1.3 PSK and PSK-(EC)DHE handshake protocols. Pseudocode
for these protocols can be found in Fig. 1, where we let (G, p, g) be a cyclic group
of prime order p such that G = 〈g〉.

The two descriptions on the left and right in Fig. 1 show the same protocol,
but they use different abstractions to highlight how we capture the complex way
TLS 1.3 calls its hash function. This one hash function is used in some places
to condense transcripts, in others to help derive session keys, and in still others
as part of a message authentication code. We call this function H, and let its
output length be hl bits so that we have H : {0, 1}∗ → {0, 1}hl . Depending on
the choice of ciphersuite, TLS 1.3 instantiates H with either SHA256 or SHA384
[47]. In our security analysis, we will model H as a random oracle.

On the left-hand side of Fig. 1, we distinguish four named subroutines of
TLS 1.3 which use H for different purposes:

– A message authentication code MAC : {0, 1}hl × {0, 1}∗ → {0, 1}hl , which
calls H via the HMAC function MAC(K,M) := HMAC[H](K,M) where

HMAC[H](K,M) := H((K ‖ 0bl−hl) ⊕ opad) ‖ H((K ‖ 0bl−hl ⊕ ipad) ‖ M))

Here opad and ipad are bl-bit strings, where each byte of opad and ipad is set
to the hexadecimal value 0x5c, resp. 0x36. We have bl = 512 when SHA256
is used and bl = 512 for SHA384. When modeling SHA256 resp. SHA384 as a
random oracle, we keep the corresponding value of bl.

On the Concrete Security of TLS 1.3 PSK Mode 883

Fig. 1. TLS 1.3 PSK and PSK-(EC)DHE handshake modes with (optional) 0-RTT
keys (stages 1 and 2), with detailed key schedule (left) and our representation of the
key schedule through functions TKDFx (right), explained in the text. Centered compu-
tations are executed by both client and server with their respective messages received,
and possibly at different points in time. Dotted lines indicate the derivation of session
(stage) keys together with their stage number. The labels �x are distinct for distinct
index x, see the full version [13] for their definition.

884 H. Davis et al.

Fig. 2. Definition of TKDFfinS
, deriving the ServerFinished MAC.

– Extract,Expand : {0, 1}hl × {0, 1}∗ → {0, 1}hl , two subroutines for extract-
ing and expanding key material in the key schedule, following the HKDF key
derivation paradigm of Krawczyk [36,38]. These functions are defined

• Extract(K,M) := HKDF.Extract(K,M) = MAC(K,M).
• Expand(K,M) := HKDF.Expand(K,M) = MAC(K,M ‖ 0x01).3

Despite the new naming conventions, this abstraction closely mimics the TLS 1.3
standard: MAC, Extract, and Expand can be read as more generic ways of
referring to the HMAC, HKDF.Extract, and HKDF.Expand algorithms [35,36].

The right-hand side of Fig. 1 separates the key derivation functions for each
first-class key as well as the binder and finished MAC values derived. This way
of modeling TLS 1.3 makes it easier to establish key independence for the many
keys computed in the key schedule, as we will see in Sect. 4. We introduce 11
functions TKDFbinder , TKDFETS, TKDFEEMS, TKDFhtkC

, TKDFfinC
, TKDFhtkS

,
TKDFfinS

, TKDFCATS, TKDFSATS, TKDFEMS, and TKDFRMS (indexed by the
value they derive) and use them to abstract away many intermediate computa-
tions. Note that we are not changing the protocol, though: we define each TKDF
function to capture the same steps it replaces.

Take as an example TKDFfinS
, the function used to derive the MAC in the

ServerFinished message. In the prior abstraction, a session would first use the
key schedule to derive a finished key fkS from the hashed transcript and the
secrets PSK and DHE. It would then call MAC, keyed with fkS , to generate
the ServerFinished message authentication code on the hashed transcript and
encrypted extensions. Accordingly, we define TKDFfinS

: {0, 1}hl ×G×{0, 1}hl ×
{0, 1}hl → {0, 1}hl as in Fig. 2. In the protocol, TKDFfinS

takes inputs the pre-
shared key PSK and Diffie–Hellman secret DHE and hash digests h1 = Th(CH ‖
SH) and h2 = Th(CH‖· · ·‖EE), and it outputs a MAC tag for the ServerFinished
message. The remaining key derivation functions are defined the same way; we
give their signatures in the full version [13].

Note that the definition of the 11 functions induces a lot of redundancy as
we derive every value independently and therefore compute intermediate values
(e.g., ES, dES, and HS) multiple times over the execution of the handshake.
However, this is only conceptual. Since the computations of these intermediate
values are deterministic, the intermediate values will be the same for the same
inputs and could be cached.
3 HKDF.Expand [36] is defined for any output length (given as third parameter). In

TLS 1.3, Expand always derives at most hl bits, which can be trimmed from a
hl-bit output; we hence in most places omit the output length parameter.

On the Concrete Security of TLS 1.3 PSK Mode 885

3 Code-based MSKE Model for PSK Modes

We formalize security of the TLS 1.3 PSK modes in a game-based multi-stage
key exchange (MSKE) model, adapted primarily from that of Dowling et al. [21].
We fully specify our model in pseudocode in the full version [13]. We adopt the
explicit authentication property from the model of Davis and Günther [14] and
capture forward secrecy by following the model of Schwabe et al. [49].

3.1 Key Exchange Syntax

In our security model, the adversary interacts with sessions executing a key
exchange protocol KE. For the definition of the security experiment it will be
useful to have a unified, generic interface to the algorithms implementing KE,
which can then be called from the various procedures defining the security exper-
iment to run KE. Therefore, we first formalize a general syntax for protocols.

We assume that pairs of users share long-term symmetric keys (pre-shared
keys), which are chosen uniformly at random from a set KE.PSKS.4 We allow
users to share multiple pre-shared keys, maintained in a list pskeys, and require
that each user uses any key only in a fixed role (i.e., as client or server) to avoid
the Selfie attack [23]. We do not cover PSK negotiation; each session will know
at the start of the protocol which key it intends to use.

New sessions are created via the algorithm Activate. This algorithm takes as
input the new session’s own user, identified by some ID u, the user ID peerid
of the intended communication partner, a pre-shared key PSK, and a role
identifier—initiator (client) or responder (server)—that determines whether the
session will send or receive the first protocol message. It returns the new session
πi

u, which is identified by its user ID u and a unique index i so that a single user
can execute many sessions.

Existing sessions send and receive messages by executing the algorithm Run.
The inputs to Run are an existing session πi

u and a message m it has received.
The algorithm processes the message, updates the state of πi

u, and returns the
next protocol message m′ on behalf of the session. Run also maintains the status
of πi

u, which can have one of three values: running when it is awaiting the next
protocol message, accepted when it has established a session key, and rejected if
the protocol has terminated in failure.

In a multi-stage protocol, sessions accept multiple session keys while run-
ning; we identify each with a numbered stage. A protocol may accept several
stages/keys while processing a single message, and TLS 1.3 does this. In order to
handle each stage individually, our model adds artificial pauses after each accep-
tance to allow the adversary to interact with the sessions upon each stage accept-
ing (beyond, as usual, each message exchanged). When a session πi

u accepts in
stage s while executing Run, we require Run to set the status of πi

u to accepteds

and terminate. We then define a special “continue” message. When session πi
u

4 While our results can be generalized to any distribution on KE.PSKS (based on its
min-entropy), for simplicity, we focus on the uniform distribution in this work.

886 H. Davis et al.

in state accepteds, receives this message it calls Run again, updates its status to
runnings+1 and continues processing from the point where it left off.

3.2 Key Exchange Security

We define key exchange security via a real-or-random security game, a formal-
ization of which can be found in the full version [13].

Game Oracles. In this security game, the adversary A has access to seven ora-
cles: Initialize, NewSecret, Send, RevSessionKey, RevLongTermKey,
Test, and Finalize, as well as any random oracles the protocol defines. The
game begins with a call to Initialize, which samples a challenge bit b. It ends
when the adversary calls Finalize with a guess b′ at the challenge bit. We say
the adversary “wins” the game if Finalize returns true.

The adversary can establish a random pre-shared key between two users by
calling NewSecret.5 It can corrupt existing users’ pre-shared keys via the oracle
RevLongTermKey. The Send oracle creates new protocol sessions and pro-
cesses protocol messages on the behalf of existing sessions. The RevSessionKey
oracle reveals a session’s accepted session key. Finally, the Test oracle servers
as the challenge oracle: it returns the real session key of a target session or an
independent one sampled randomly from the session key space KE.KS[s] of the
respective stage s, depending on the value of the challenge bit b.

Protocol Properties. Keys established in different stages possess different security
attributes, which are defined as part of the key exchange protocol: replayability,
forward secrecy level, and authentication level. Certain stages, whose indices are
tracked in a list INT, produce “internal” keys intended for use only within the
key exchange protocol; these keys may only be Tested at the time of acceptance
of this particular key, but not later. This is because otherwise such keys may be
trivially distinguishable from random, e.g., via trial decryption, due to the fact
that they are used within the protocol. To avoid a trivial distinguishing attack,
we force the rest of the protocol execution to be consistent with the result of such
a Test. That is, a tested internal key is replaced in the protocol with whatever
the Test returns to the adversary (which is either the real internal key or an
independent random key). The remaining stages produce “external” keys which
may be tested at any time after acceptance.

For some protocols, it may be possible that a trivial replay attack can achieve
that several sessions agree on the same session key for stage s, but this is not
5 Our model stipulates that pre-shared keys are sampled uniformly random and hon-

estly. One could additionally allow the registration of biased or malicious PSKs, akin
to models treating, e.g., the certification of public keys [8]. While this would yield
a theoretically stronger model, we consider a simpler model reasonable, because we
expect most PSKs used in practice to be random keys established in prior protocol
sessions. Furthermore, we consider tightness as particularly interesting when “good”
PSKs are used, since low-entropy PSKs might decrease the security below what is
achieved by (non)-tight security proofs, anyway.

On the Concrete Security of TLS 1.3 PSK Mode 887

considered an “attack”. For example, in TLS 1.3 PSK an adversary can always
replay the ClientHello message to multiple sessions of the same server, which
then all derive the same ETS and EEMS keys (cf. Fig. 1). To specify that such a
replay is not considered a protocol weakness, and thus should not be considered
a valid “attack”, the protocol specification may define REPLAY[s] to true for a
stage s. REPLAY[s] is set to false by default.

As we focus on protocols which rely on (pre-authenticated) pre-shared keys,
our model encodes that all protocol stages are at least implicitly mutually
authenticated in the sense of Krawczyk [37], i.e., a session is guaranteed that
any established key can only be known by the intended partner. Some stages
will further be explicitly authenticated, either immediately upon acceptance or
retroactively upon acceptance of a later state. Additionally, the stage at which
explicit authentication is achieved may differ between the initiator and respon-
der roles. For each stage s and role r, the key exchange protocol specification
states in EAUTH[r, s] the stage t from whose acceptance stage s derives explicit
authentication for the session in role r. Note that the stage-s key is not authen-
ticated until both stages s and EAUTH[r, s] have been accepted. If the stage-s
key will never be explicitly authenticated for role r, we set EAUTH[r, s] = ∞.

We use a predicate ExplicitAuth to require the existence of an honest partner
for explicitly authenticated stages upon both parties’ completion of the protocol,
except when the session’s pre-shared key was corrupted prior to accepting the
explicitly-authenticating stage (as in that case, we anticipate the adversary can
trivially forge any authentication mechanism).

Motivated by TLS 1.3, it might be the case that initiator and responder
sessions achieve slightly different guarantees of authentication. While responders
in TLS 1.3 are guaranteed the existence of an honest partner in any explicitly
authenticated stage, initiators cannot guarantee that their partner has received
their final message. This issue was first raised by FGSW [26] and led to their
definitions of “full” and “almost-full” key confirmation; it was then extended
to “full” and “almost-full” explicit authentication by DFW [15]. Our definitions
for responders and initiators respectively resemble the latter two notions most
closely, but we rely on session identifiers instead of “key confirmation identifiers”.

We consider three levels of forward secrecy inspired by the KEMTLS work of
Schwabe, Stebila, and Wiggers [49]: no forward secrecy, weak forward secrecy 2
(wfs2), and full forward secrecy (fs). As for authentication, each stage may
retroactively upgrade its level of forward secrecy upon the acceptance of later
stages, and forward secrecy may be established at different stages for each role.
For each stage s and role r, the stage at which wfs2, resp. fs, is achieved is stated
in FS[r, s,wfs2], resp. FS[r, s, fs], by the key exchange protocol.

The definition of weak forward secrecy 2 states that a session key with wfs2
should be indistinguishable as long as (1) that session has received the relevant
messages from an honest partner (formalized via matching contributive identi-
fiers below, we say: “has an honest contributive partner”) or (2) the pre-shared
key was never corrupted. Full forward secrecy relaxes condition (2) to forbid cor-
ruption of the pre-shared key only before acceptance of the stage that retroac-
tively provides full forward secrecy. We capture these notions of forward secrecy

888 H. Davis et al.

in a predicate Fresh, which uses the log of events to check whether any tested
session key is trivially distinguishable (e.g., through the session or its partnered
being revealed, or forward secrecy requirements violated). With forward secrecy
encoded in Fresh, our long-term key corruption oracle (RevLongTermKey),
unlike in the model of [21], handles all corruptions the same way, regardless of
forward secrecy.

Session and Game Variables. Sessions πi
u and the security game itself maintain

several variables; we indicate the former in italics, the latter in sans-serif font.
The game uses a counter time, initialized to 0 and incremented with any

oracle query the adversary makes, to order events in the game log for later
analysis. When we say that an event happens at a certain “time”, we mean the
current value of the time counter. The list pskeys contains, as discussed above,
all pre-shared keys, indexed by a tuple (u, v, pskid) containing the two users’ IDs
(u using the key only in the initiator role, v only in the reponder role), and a
unique string identifier. The list revpsk, indexed like pskeys, tracks the time of
each pre-shared key corruption, initialized to revpsk(u,v,pskid) ← ∞. (In boolean
expressions, we write revpsk(u,v,pskid) as a shorthand for revpsk(u,v,pskid) �= ∞.)

Each session πi
u, identified by (adversarially chosen) user ID and a unique

session ID, furthermore tracks the following variables:

– status ∈ {runnings, accepteds, rejecteds | s ∈ [1, . . . ,STAGES]}, where STAGES
is the total number of stages of the considered protocol. The status should be
accepteds immediately after the session accepts the stage-s key, rejecteds after
it rejects stage s (but may continue running; e.g., rejecting 0-RTT data), and
runnings for some stage s otherwise.

– peerid . The identity of the session’s intended communication partner.
– pskid . The identifier of the session’s pre-shared key.
– accepted[s]. For each stage s, the time (i.e., the value of the time counter) at

which the stage s key was accepted. Initialized to ∞.
– revealed[s]. A boolean denoting whether the stage s key has been leaked

through a RevSessionKey query. Initialized to false.
– tested[s]. The time at which the stage s key was tested. Initialized to ∞

before any Test query occurs. (In boolean expressions, we write tested[s] as a
shorthand for tested[s] �= ∞.)

– sid [s]. The session identifier for each stage s, used to match honest commu-
nication partners within each stage.

– skey [s]. The key accepted at each stage.
– cid initiator[s] and cid responder[s]. The contributive identifiers for each stage s,

where cidrole [s] identifies the communication part that a session in role role
must have honestly received in order to be allowed to be tested in certain
scenarios (cf. the freshness definition in the Fresh predicate). Unlike prior
models, each session maintains a contributive identifiers for each role; one for
itself and one for its intended partner. This enables more fine-grained testing
of session stages in our model.

On the Concrete Security of TLS 1.3 PSK Mode 889

The predicate Sound captures that variables are properly assigned, in particular
that session identifiers uniquely identify a partner session (except for replayable
stages) and that partnering implies agreement on (distinct) roles, contributive
identifiers, peer identities and the pre-shared key used, as well as the established
session key.

Definition 1 (Multi-stage key exchange security). Let KE be a key
exchange protocol and GMSKE

KE,A be the key exchange security game defined above.
We define

AdvMSKE
KE (t, qNS, qS, qRS, qRL, qT, qRO) := 2 · max

A
Pr

[
GameMSKE

KE,A ⇒ 1
]

− 1,

where the maximum is taken over all adversaries, denoted (t, qNS, qS, qRS, qRL, qT,
qRO)-MSKE-adversaries, running in time at most t and making at most qNS, qS,
qRS, qRL, qT, resp. qRO queries to their respective oracles NewSecret, Send,
RevSessionKey, RevLongTermKey, Test, and RO.

4 Key-Schedule Indifferentiability

In this section we will argue that the key schedule of TLS 1.3 PSK modes,
where the underlying cryptographic hash function is modeled as a random oracle
(i.e., the left-hand side of Fig. 1 with the underlying hash function modeled as a
random oracle), is indifferentiable [46] from a key schedule that uses independent
random oracles for each step of the key derivation (i.e., the right-hand side of
Fig. 1 with all TKDFx functions modeled as independent random oracles). We
stress that this step not only makes our main security proof in Sect. 6 significantly
simpler and cleaner, but also it puts the entire protocol security analysis on a
firmer theoretical ground than previous works. For some background on the
indifferentiability framework, see the full version [13].

In their proof of tight security, Diemert and Jager [17] previously mod-
eled the TLS 1.3 key schedule as four independent random oracles. Davis
and Günther [14] concurrently modeled the functions HKDF.Extract and
HKDF.Expand used by the key schedule as two independent random oracles.
Neither work provided formal justification for their modeling. Most importantly,
both neglected potential dependencies between the use of the hash function in
multiple contexts in the key schedule and elsewhere in the protocol. In partic-
ular, no construction of HKDF.Extract and HKDF.Expand as independent ROs
from one hash function could be indifferentiable, because HKDF.Extract and
HKDF.Expand both call HMAC directly on their inputs, with HKDF.Expand only
adding a counter byte. Hence, the two functions are inextricably correlated by
definition. We do not claim that the analyses of [14,17] are incorrect or invalid,
but merely point out that their modeling of independent random oracles is cur-
rently not justified and might not be formally reachable if one only wants to
treat the hash function itself as a random oracle. This is undesirable because the
gap between an instantiated protocol and its abstraction in the random oracle

890 H. Davis et al.

model can camouflage serious attacks, as Bellare et al. [5] found for the NIST
PQC KEMs. Their attacks exploited dependencies between functions that were
also modeled as independent random oracles but instantiated with a single hash
function.

In contrast, in this section we will show that our modeling of the TLS 1.3
key schedule is indifferentiable from the key schedule when the underlying cryp-
tographic hash function is modeled as a random oracle. To this end, we will
require that inputs to the hash function do not appear in multiple contexts.
For instance, a protocol transcript might collide with a Diffie–Hellman group
element or an internal key (i.e., both might be represented by exactly the same
bit string, but in different contexts). For most parameter settings, we can rule
out such collisions by exploiting serendipitous formatting, but for one choice of
parameters (the PSK-only handshake using SHA384 as hash function), an adver-
sary could conceivably force this type of collision to occur; see the full version [13]
for a detailed discussion. While this does not lead to any known attack on the
handshake, it precludes our indifferentiability approach for that case.

Insights for the Design of Cryptographic Protocols. One interesting insight for
protocol designers that results from our attempt of closing this gap with a careful
indifferentiability-based analysis is that proper domain separation might enable a
cleaner and simpler analysis, whereas a lack of domain separation leads to uncer-
tainty in the security analysis. No domain separation means stronger assump-
tions in the best case, and an insecure protocol in the worst case, due to the
potential for overlooked attack vectors in the hash functions. A simple prefix can
avoid this with hardly any performance loss.

Indifferentiability of the TLS 1.3 Key Schedule. Via the indifferentiability frame-
work, we replace the complex key schedule of TLS 1.3 with 12 independent ran-
dom oracles: one for each first-class key and MAC tag, and one more for com-
puting transcript hashes. In short, we relate the security of TLS 1.3 as described
in the left-hand side of Fig.,1 to that of the simplified protocol on the right side
of Fig. 1 with the key derivation and MAC functions TKDFx and modeled as
independent random oracles. We prove the following theorem, which formally
justifies our abstraction of the key exchange protocol by reducing its security to
that of the original key exchange game.

Theorem 1. Let ROH : {0, 1}∗ → {0, 1}hl be a random oracle. Let KE be the
TLS 1.3 PSK-only or PSK-(EC)DHE handshake protocol described on the left
hand side of Fig. 1 with H := ROH and MAC, Extract, and Expand defined
from H as in Sect. 2. Let KE′ be the corresponding (PSK-only or PSK-(EC)DHE)
handshake protocol on the right hand side of Fig. 1, with H := ROTh and
TKDFx := ROx, where ROTh, RObinder , . . . , RORMS are random oracles with
the appropriate signatures (see the full version [13] for the signature details).
Then,

On the Concrete Security of TLS 1.3 PSK Mode 891

AdvMSKE
KE (t, qNS, qS, qRS, qRL, qT, qRO) ≤ AdvMSKE

KE′ (t, qNS, qS, qRS, qRL, qT, qRO)

+
2(12qS + qRO)2

2hl
+

2q2RO

2hl
+

8(qRO + 36qS)2

2hl
.

We establish this result via three modular steps in the indifferentiability
framework introduced by Maurer, Renner, and Holenstein [46]. More specifically
we will leverage a recent generalization proposed by Bellare, Davis, and Günther
(BDG) [5], which in particular formalizes indifferentiability for constructions of
multiple random oracles.

4.1 Indifferentiability for the TLS 1.3 Key Schedule in Three Steps

We move from the left of Fig. 1 to the right via three steps. Each step introduces
a new variant of the TLS 1.3 protocol with a different set of random oracles by
changing how we implement H, MAC, Expand, Extract, and eventually the
whole key schedule. Then we view the prior implementations of these functions
as constructions of new, independent random oracles. We prove security for
each intermediate protocol in two parts: first, we bound the indifferentiability
advantage against that step’s construction; then we apply the indifferentiability
composition theorem based on [46] given in the full version [13] of this paper to
bound the multi-stage key exchange (MSKE) security of the new protocol.

We give a brief description of each step; all details and formal theorem state-
ments and proofs can be found in the full version [13].

From one random oracle to two. TLS 1.3 calls its hash function H, which
we initially model as random oracle ROH, for two purposes: to hash protocol
transcripts, and as a component of MAC, Extract, and Expand which
are implemented using HMAC[H]. Our eventual key exchange proof needs to
make full use of the random oracle model for the latter category of hashes,
but we require only collision resistance for transcript hashes.
Our first intermediate handshake variant, KE1, replaces H with two new
functions: Th for hashing transcripts, and Ch for use within MAC, Extract,
or Expand. While KE uses the same random oracle ROH to implement Th and
Ch, the KE1 protocol instead uses two independent random oracles ROTh and
ROHMAC. To accomplish this without loss in MSKE security, we exploit some
possibly unintentional domain separation in how inputs to these functions are
formatted in TLS 1.3 to define a so-called cloning functor, following BDG [5].
Effectively, we partition the domain {0, 1}∗ of ROH into two sets DTh and
DCh such that DTh contains all valid transcripts and DCh contains all possible
inputs to H from HMAC. We then leverage Theorem 1 of [5] that guarantees
composition for any scheme that only queries ROCh within the set DCh and
ROTh within the set DTh.
We defer details on the exact domain separation to the full version [13], but
highlight that the PSK-only handshake with hash function SHA384 fails to
achieve this domain separation and consequently this proof step cannot be
applied and leaves a gap for that configuration of TLS 1.3.

892 H. Davis et al.

From SHA to HMAC. Our second variant protocol, KE2, rewrites the MAC
function. Instead of computing HMAC[ROCh], MAC now directly queries a
new random oracle ROHMAC : {0, 1}hl × {0, 1}∗ → {0, 1}hl . Since ROCh was
only called by MAC, we drop it from the protocol, but we do continue to use
ROTh, i.e., KE2 uses two random oracles: ROTh and ROHMAC. The security of
this replacement follows directly from Theorem 4.3 of Dodis et al. [18], which
proves the indifferentiability of HMAC with fixed-length keys.6

From two random oracles to 12. Finally, we apply a “big” indifferentiability
step which yields 12 independent random oracles and moves us to the right-
hand side of Fig. 1. The 12 ROs include the transcript-hash oracle ROTh and
11 oracles that handle each key(-like) output in TLS 1.3’s key derivation,
named RObinder , ROETS, ROEEMS, ROhtkC

, ROCF, ROhtkS
, ROSF, ROCATS,

ROSATS, ROEMS, and RORMS. (The signatures for these oracles are given in
the full version [13].) For this step, we view TKDF as a construction of 11
random oracles from a single underlying oracle (ROHMAC). We then give our
a simulator in pseudocode and prove the indifferentiability of TKDF with
respect to this simulator. Our simulator uses look-up tables to efficiently
identify intermediate values in the key schedule and consistently program the
final keys and MAC tags.

Combining these three steps yields the result in Theorem 1. In the remainder
of the paper, we can therefore now work with the right-hand side of Fig. 1,
modeling H and the TKDF functions as 12 independent random oracles.

5 Modularizing Handshake Encryption

Next will argue that using “internal” keys to encrypt handshake messages on
the TLS 1.3 record-layer does not impact the security of other keys established
by the handshake. In the full version [13], we give a theorem that formulates
our argument in a general way, applicable to any multi-stage key exchange pro-
tocol, so that future analyses of similar protocols might take advantage of this
modularity as well.

Intuitively, we argue as follows. Let KE2 be a protocol that provides multiple
different stages with different external keys (i.e., none of the keys is used in
the protocol, e.g., to encrypt messages), and let KE1 be the same protocol,
except that some keys are “internal” and used, e.g., to encrypt certain protocol
messages. We argue that either using “internal” keys in KE1 does not harm the
security of other keys of KE1, or KE2 cannot be secure in the first place. This
will establish that we can prove security of a variant TLS 1.3 without handshake
encryption (in an accordingly simpler model), and then lift this result to the
actual TLS 1.3 protocol with handshake encryption and the handshake traffic
keys treated as “internal” keys.

6 This requires PSKs to be elements of {0, 1}hl , which is true of resumption keys but
possibly not for out-of-band PSKs.

On the Concrete Security of TLS 1.3 PSK Mode 893

Theorem 2. Let KE1 be the TLS 1.3 PSK-only resp. PSK-(EC)DHE mode with
handshake encryption (i.e., with internal stages KE1.INT = {3, 4}) as specified
on the right-hand side in Fig. 1. Let KE2 be the same mode without handshake
encryption (i.e., KE1.INT = ∅ and AEAD-encryption/decryption of messages
is omitted). Let TransformSend and TransformRecv be the AEAD encryption resp.
decryption algorithms deployed in TLS 1.3 and KTransform = KE1.INT = {3, 4}.
Then we have AdvMSKE

KE1
(t, qNS, qS, qRS, qRL, qT, qRO) ≤ AdvMSKE

KE2
(t + tAEAD ·

qS, qNS, qS, qRS + qS, qRL, qT, qRO), where tAEAD is the maximum time required
to execute AEAD encryption or decryption of TLS 1.3 messages.

For TLS 1.3 this means that we will not consider any security guarantees pro-
vided by the additional encryption of handshake messages. We consider this as
reasonable for PSK-mode ciphersuites, because the main purposes of handshake
message encryption in TLS 1.3 is to hide the identities of communicating parties,
e.g., in digital certificates, cf. [1]. In PSK mode there are no such identities. The
pskid might be viewed as a string that could identify communicating parties,
but it is sent unencrypted in the ClientHello message, anyway, the encryption
of subsequent handshake messages would not contribute to its protection.

6 Tight Security of the TLS 1.3 PSK Modes

In this section, we apply the insights gained in Sects. 4 and 5 to obtain tight
security bounds for both the PSK-only and the PSK-(EC)DHE mode of TLS 1.3.
To that end, we first present the protocol-specific properties of the TLS 1.3 PSK-
only and PSK-(EC)DHE modes such that they can be viewed as multi-stage key
exchange (MSKE) protocols as defined in Sect. 3. Then, we prove tight security
bounds in the MSKE model in Theorem 3 for the TLS 1.3 PSK-(EC)DHE mode
and for the TLS 1.3 PSK-only mode in the full version [13].

6.1 TLS 1.3 PSK-only/PSK-(EC)DHE as a MSKE Protocol

We begin by capturing the TLS 1.3 PSK-only and PSK-(EC)DHE modes, speci-
fied in Fig. 1, formally as MSKE protocols. To this end, we must explicitly define
the variables discussed in Sect. 3. In particular, we have to define the stages
themselves, which stages are internal and which replayable, the session and con-
tributive identifiers, when stages receive explicit authentication, and when stages
become forward secret.

Stages. The TLS 1.3 PSK-only/PSK-(EC)DHE handshake protocol has eight
stages (i.e., STAGES = 8), corresponding to the keys ETS, EEMS, htkS , htkC ,
CATS, SATS, EMS, and RMS in that order. The set INT of internal keys contains
htkC and htkS , the handshake traffic encryption keys. Stages ETS and EEMS
are replayable: REPLAY[s] is true for s ∈ {1, 2} and false for all others.

894 H. Davis et al.

Session and Contributive Identifiers. The session and contributive identifiers for
stages are tuples (labels, ctxt), where labels is a unique label identifying stage s,
and ctxt is the transcript that enters key’s derivation. The session identifiers
(sid [s])s∈{1,...,8} are defined as follows:7

sid [1]/sid [2] =
(
“ETS”/“EEMS”, (CH, CKS†, CPSK)

)
,

sid [3]/sid [4] =
(
“htkC”/“htkS”, (CH, CKS†, CPSK, SH, SKS†, SPSK)

)
,

sid [5]/sid [6]/sid [7] = (“CATS”/“SATS”/“EMS”, (CH, . . . , SPSK, EE, SF)) , and

sid [8] =
(
“RMS”, (CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF, CF)

)
.

To make sure that a server that received ClientHello, ClientKeyShare†, and
ClientPreSharedKey untampered can be tested in stages 3 and 4, even if the
sending client did not receive the server’s answer, we set the contributive iden-
tifiers of stages 3 and 4 such that cidrole reflects the messages that a session in
role role must have honestly received for testing to be allowed. Namely, we let
clients (resp. servers) upon sending (resp. receving) the messages (CH, CKS†, CPSK)
set cid responder[3] = (“htkC”, (CH, CKS†, CPSK)) and cid responder[4] = (“htkS”, (CH,
CKS†, CPSK)). Further, when the client receives (resp. the server sends) the mes-
sage (SH, SKS†, SPSK), they set cid initiator[3] = sid [3] and cid initiator[4] = sid [4]. For
all other stages s ∈ {1, 2, 5, 6, 7, 8}, cid initiator[s] = cid responder[s] = sid [s] is set
upon acceptance of the respective stage (i.e., when sid [s] is set as well).

Explicit Authentication. For initiator sessions, all stages achieve explicit authen-
tication when the ServerFinished message is verified successfully. This hap-
pens right before stage 5 (i.e., CATS) is accepted. That is, upon accepting
stage 5 all previous stages receive explicit authentication retroactively and all
following stages are explicitly authenticated upon acceptance. Formally, we set
EAUTH[initiator, s] = 5 for all stages s ∈ {1, . . . , 8}.

Analogously, responder sessions receive explicit authentication right before
accepting stage 8 via the ClientFinished message; i.e., EAUTH[responder, s] = 8
for all stages s ∈ {1, . . . , 8}.

Forward Secrecy. Only keys dependent on a Diffie–Hellman secret achieve for-
ward secrecy, so all stages s of the PSK-only handshake have FS[r, s, fs] =
FS[r, s,wfs2] = ∞ for both roles r ∈ {initiator, responder}. In the PSK-(EC)DHE
handshake, full forward secrecy is achieved at the same stage as explicit authen-
tication for all keys except ETS and EEMS, which are never forward secret. That
is, for both roles r and stages s ∈ {3, . . . , 8} we have FS[r, s, fs] = EAUTH[r, s].
All keys except ETS and EEMS possess weak forward secrecy 2 upon accep-
tance, so we set FS[r, s,wfs2] = s for stages s ∈ {3, . . . , 8}. Finally, as stages 1
and 2 (i.e., ETS and EEMS) never achieve forward secrecy we set FS[r, s, fs] =
FS[r, s,wfs2] = ∞ for both roles r and stages s ∈ {1, 2}.

7 Components marked with † are only part of the TLS 1.3 PSK-(EC)DHE handshake.

On the Concrete Security of TLS 1.3 PSK Mode 895

6.2 Tight Security Analysis of TLS 1.3 PSK-(EC)DHE

We now come to the tight MSKE security result for the TLS 1.3 PSK-(EC)DHE
handshake.

Theorem 3. Let TLS1.3-PSK-(EC)DHE be the TLS 1.3 PSK-(EC)DHE handshake
protocol (with optional 0-RTT) as specified on the right-hand side in Fig. 1 with-
out handshake encryption. Let G be the Diffie–Hellman group of order p. Let nl
be the length in bits of the nonce, let hl be the output length in bits of H, and
let the pre-shared key space be KE.PSKS = {0, 1}hl . We model the functions H
and TKDFx for each x ∈ {binder , . . . ,RMS} as 12 independent random oracles
ROTh,RObinder , . . . ,RORMS. Then,

AdvMSKE
TLS1.3-PSK-(EC)DHE(t, qNS, qS, qRS, qRL, qT, qRO) ≤ 2q2S

2nl · p

+
(qRO + qS)2 + q2NS + (qRO + 6qS)2 + qRO · qNS + qS

2hl
+

4(t + 4 log(p) · qRO)2

p
.

Remark 1. Our MSKE model from Sect. 3 assumes pre-shared keys to be uni-
formly random sampled from KE.PSKS, where here KE.PSKS = {0, 1}hl . This
matches how pre-shared keys are derived for session resumption, as well as our
analysis of domain separation, which assumes pre-shared keys to be of length hl .

Remark 2. Our bound is easily adapted to any distribution on {0, 1}hl in order
to accommodate out-of-band pre-shared keys that satisfy the length requirement
but do not have full entropy. Expectedly, lower-entropy PSK distributions result
in weaker bounds, due to the increased chance for collisions between PSKs as
well as the adversary guessing a PSK.

Remark 3. In order to deal with small subgroup attacks, note that we assume
that implementations properly validate received key shares by checking for
membership in the appropriate prime-order group. This has to be done explic-
itly for NIST curves (secp256r1, secp384r1, and secp521r1 in TLS 1.3 [48,
Sect. 4.2.8.2]). Curves like x25519 and x448 rule out small subgroup attacks
implicitly, with a mechanism called “clamping”. In our proof we treat Diffie–
Hellman groups as prime-order groups with uniform exponents in Zp, as com-
mon in the cryptographic literature. However, we stress that clamping as in [43]
makes exponents non-uniform over Zp. Hence, we implicitly assume that this
difference in the DH key generation is indistinguishable for the adversary.

6.3 Proof overview

The proof proceeds via a sequence of games in three phases, corresponding to
the three ways for an adversary to win the MSKE security game. We begin
with Game0, the original MSKE game for protocol TLS1.3-PSK-(EC)DHE described
above. In the first phase, we establish that the adversary cannot violate the
Sound predicate. In the second phase, we establish the same for the ExplicitAuth

896 H. Davis et al.

predicate. In the third phase, we ensure that all Test queries return random
keys regardless of the value of the challenge bit b, so long as the Fresh predicate
is not violated. After that, the adversary cannot win the game with probability
better than guessing, rendering its advantage to be 0. We bound the advantage
difference introduced by each game hop; collecting these intermediate bounds
yields the overall bound. For space reasons, we only provide a summary of the
proof in the following and refer to the full version [13] for the full details.

Phase 1: Ensuring Sound

The Sound predicate checks that no more than two sessions can be partnered
in a non-replayable stage, and that any two partnered sessions must agree on
the stage, pre-shared key identifier, the stage-s key, and each others’ identities
and roles. We defined our session identifiers so that the stage-s session identi-
fier contains (1) a label unique to that stage, (2) a unique ClientHello and
ServerHello message, (3) the binder message: a MAC tag authenticating the
ClientHello and pre-shared key, and (4) sufficient information to fix the stage-s
key. (This does not mean the key is computable from the sid ; it is not.)

We then perform three incremental game hops that cause the Finalize oracle
to return 0 in the event of a collision between two Hello messages, binder tags, or
pre-shared keys. We bound the difference in advantage in the first two game hops
via a birthday bound over the number of potentially colliding values (i.e., pairs
of nonces and KeyShares in G for Hello message collisions, and sampled PSK
keys for pre-shared key collisions), and the third hop by a reduction to the colli-
sion resistance of the RObinder random oracle whose advantage in turn is upper
bounded by a birthday bound AdvCR

RObinder
(qRO + qS) ≤ (qRO+qS)

2

2hl
. The resulting

bounds are, in this order: Pr[Game0]−Pr[Game3] ≤ 2q2
S

2nl·p + q2
NS

2hl
+ (qRO+qS)

2

2hl
. As long

as no such collisions occur, each stage-s session identifier uniquely determines
one client session, one server session (for non-replayable stages), one pre-shared
key (and therefore one peer and identifier owning that key), and one stage-s ses-
sion key. At this point, the Sound predicate will always be true unless Finalize
would return 0, so the adversary cannot win by violating Sound.

Phase 2: Ensuring ExplicitAuth

In the second phase of the proof, we change the key-derivation process to avoid
sampling pre-shared keys wherever possible, instead replacing keys and MAC
tags derived from those pre-shared key by uniformly random strings. We then
make the adversary lose if it makes queries that would allow him to detect these
changes and bound that probability; in particular we ensure that the adversary
does not correctly guess a now-random ClientFinished or ServerFinished
MAC tag. Sessions achieve explicit authentication just after verifying their
received Finished message; eliminating possible forgeries hence ensures that
the ExplicitAuth predicate cannot be false without Finalize returning 0. All

On the Concrete Security of TLS 1.3 PSK Mode 897

changes in this phase apply only to sessions whose pre-shared key has not been
corrupted.

Game 4. Our first of six game hops eliminates collisions in the “transcript
hash” function ROTh. We reduce to the collision resistance of ROTh and bound
this advantage with a birthday bound: Pr[Game3] − Pr[Game4] ≤ qRO+6qS

2hl
. (The

factor 6 comes from the up to 6 transcript hashes computed in any Send query.)

Game 5. Our next game forces Finalize to return 0 if the adversary guesses
any uncorrupted pre-shared key in any random oracle query. Since we assume
pre-shared keys are uniformly random, Pr[Game4] − Pr[Game5] ≤ qRO·qNS

2hl
.

Games 6 and 7. In our third game hop, we ask log the stage s key computed in
any session in a look-up table SKEYS under its session identifier. Sessions whose
partners have logged a key can then, in a fourth game hop, copy the key from
SKEYS instead of deriving it. Partnered sessions will always derive the same
key as guaranteed by the Sound predicate, so the adversary cannot detect the
copying and its advantage does not change. In addition to logging and copying
keys, we also log and copy the three MAC tags: binder , finS , and finC using
another look-up table TAGS. Since MAC tags do not have associated session
identifiers, they are logged under the inputs to RObinder , ROSF, resp. ROCF. This
technique is inspired by the work of Cohn-Gordon et al. [11].

Game 8. In preparation for the final step in this phase, our fifth game hop
eliminates uncorrupted pre-shared keys altogether. We postpone the sampling
of the pre-shared key to the RevLongTermKey oracle so that only corrupted
sessions hold pre-shared keys. As a consequence of this change, we can no longer
compute session keys and MAC tags using the random oracles. Sessions will
instead sample these uniformly at random from their respective range. In another
look-up table, they log the RO queries they would have made so that these
queries can be programmed later if the pre-shared key gets corrupted. Queries
to RO before corruption cannot contain the pre-shared key thanks to the previous
game, so we do not have to worry about consistency with past queries. We
also cannot implement the previous games’ check for guessed pre-shared keys
in RO queries until these keys are sampled, so we sample new pre-shared keys
for all uncorrupted identifiers at the end of the game in the Finalize oracle,
then perform the check. The programming of the random oracles is perfectly
consistent with their responses in earlier games, so the adversary cannot detect
when pre-shared keys are chosen in the game and its advantage does not change.

Game 9. The final game in this phase ensures that either ExplicitAuth = true
or Finalize returns 0. In this game, we return 0 from Finalize if any honest
session would accept the first explicitly-authenticated stage (stage 5 (CATS) for
initiators and stage 8 (RMS) for responders) with an uncorrupted pre-shared
key and no honest partner. By the previous game, we established that sessions
with uncorrupted pre-shared keys randomly sample their MAC tags, unless they
copy a cached result in which case the same computation was made by another
session. Thanks to the way we defined our session identifiers, no unpartnered

898 H. Davis et al.

session will copy their MAC tags: the computation of the ServerFinished
MAC tag contains the hash of the stage-5 sid (excluding finS); likewise the
ClientFinished tag contains the hash of the stage-8 sid . Since we ruled out hash
collisions in the first game of the phase, any two sessions computing the same
ServerFinished message are stage-5 partners and any two sessions computing
the same ClientFinished message are stage-8 partners. So any unpartnered ses-
sion with an uncorrupted pre-shared key has a random MAC tag, and the odds
of the adversary guessing such a tag is bounded by qS

2hl
. With the prior two games

not changing the adversary’s advantange, we have Pr[Game5]−Pr[Game9] ≤ qS
2hl

.
We are now guaranteed that any session accepting the stage that achieves

explicit authentication without a corrupted pre-shared key has a partner in that
stage. The Sound predicate guarantees that the partner agrees on the peer and
pre-shared key identities, which is sufficient to guarantee explicit authentication
for all responder sessions. For initiator sessions, we must also note that a partner
in stage 5 will become, upon their acceptance, a partner in stages 6 (SATS) and 7
(EMS), whose sids are identical to that of stage 5 apart from their labels. An
initiator’s stage-5 partner will only accept a ClientFinished message identical
to the one sent by the initiator, at which point they will become a partner also
in stage 8. This ensures that the ExplicitAuth predicate can never be false unless
one of the flags introduced in this phase causes Finalize to return 0.

Phase 3: Ensuring the Challenge Bit is Random and Independent

Our goal in the third and last phase is to ensure that all session keys targeted
by a Test query are uniformly random and independent of the challenge bit b
whenever the Fresh predicate is true. Freshness ensures that no session key can
be tested twice or tested and revealed in the same stage either by targeting the
same session twice or two partnered sessions. It also handles our three levels of
forward secrecy.

We can already establish this for Test queries to sessions in non-forward
secret stages 1 (ETS) and 2 (EEMS). These queries violate Fresh unless the
sessions’ pre-shared keys are never corrupted. Since Game8, all sessions with
uncorrupted pre-shared keys either randomly sample their session keys, or copy
random keys from a partner session. If one of these session keys is tested, it
cannot have been output by another Test or RevSessionKey query without
violating Fresh. Therefore the response to the Test query is a uniformly random
string, independent of all other oracle responses and the challenge bit b.

The remaining stages (3–8) have weak forward secrecy 2 until explicit authen-
tication is achieved, then they have full forward secrecy. These stages’ keys may
be tested even if the session’s pre-shared key has been corrupted, so long as
there is a contributive partner (or, in the case of full forward secrecy, that the
corruption occurred after forward secrecy was achieved). We use one last game
hop to ensure these keys are uniformly random when they are tested.

Game 10. In Game10, we cause the Finalize oracle to return 0 if the adversary
should ever make a random oracle query containing the Diffie–Hellman secret

On the Concrete Security of TLS 1.3 PSK Mode 899

DHE of an honest partnered session whose pre-shared key was corrupted. With-
out such a query, all keys derived from a Diffie–Hellman secret sampled uniformly
at random by the random oracles.

We bound the probability of this event via a reduction BDHE to the strong
Diffie–Hellman problem in group G. (Recall that G has order p and generator g.)
In this problem, the adversary BDHE gets as input a strong DH challenge (A =
ga, B = gb) as well as access to an oracle stDHa for the decisional Diffie–Hellman
(DDH) problem with the first argument fixed. Given inputs C ← gc and W for
any c ∈ Zp, stDHa(C,W) returns true if and only if W = gac = Ca. The goal
of BDHE is to submit Z to its Finalize oracle such that Z = gab.

The reduction BDHE simulates Game10 for the MSKE adversary A. At a high
level, it uses rerandomization to embed its strong DH challenge A, resp. B, into
the key shares of every initiator session, resp. every partnered responder ses-
sion. To embed a challenge A in its key share, a session samples a “randomizer”
τ $←− Zp, and sets its key share to X ← A ·gτ . If A should make an RO query con-
taining the Diffie–Hellman secret associated with two embedded key shares, the
reduction can detect this query with its DDH oracle. It then extracts the solu-
tion to its strong DH challenge from the query’s DH secret, calls the Finalize
oracle, and wins its own game.

There are a few subtleties to the reduction, which requires us to extend the
technique of CCGJJ [11]. Unlike honest executions of the protocol, the reduc-
tion’s simulated sessions with embedded key shares do not know their own secret
Diffie–Hellman exponents. If their pre-shared keys are never corrupted, this does
not matter because session keys and MAC tags are randomly sampled. Cor-
rupted sessions, however, cannot use the random oracles to compute these values
as they would in Game10. Instead, BDHE samples session keys and MAC tags
uniformly at random and uses several look-up tables to program random oracle
queries and maintain consistency between sessions.

With this infrastructure in place, the reduction proceeds in the following
way. Whenever a partnered session with embedded key share would need its
Diffie–Hellman secret, it searches all past RO queries for this secret. It looks
up the initiator’s stored randomizer τ and the responder’s randomizer τ ′. Then
for each guess Z in a past RO query, the reduction queries the strong Diffie–
Hellman oracle on the responder’s key share SKS and C ← Z · g−τ . This query
will return true if the adversary correctly guessed the Diffie–Hellman secret; in
this case the reduction calls Finalize(Z · g−τ · g−τ ′

) and solves its strong DH
challenge. Unpartnered sessions do the same thing, except that the responder has
no randomizer; in response to the strong DH oracle answering true they hence
merely program their session keys instead of calling Finalize. We emphasize
that for tightness, it is crucial to maintain efficiency during this process. We
do so by only checking RO queries whose context matches the hashed protocol
transcript; this ensures BDHE makes at most 2 stDHa queries for each RO query.

After a session chooses its session key or MAC tag, it stores the chosen value,
its transcript, and all known randomizers in a table RndList. When the reduction
answers future RO queries, it will use this table to check if a query contains the

900 H. Davis et al.

Diffie–Hellman secret of an accepted session using the strong DH oracle as above;
if so, they program or call Finalize in the same way.

This reduction solves the strong Diffie–Hellman problem whenever the adver-
sary makes an RO query containing a partnered session’s Diffie–Hellman secret,
so for reduction BDHE with runtime tBDHE , we have Pr[Game9] − Pr[Game10] ≤
AdvstDH

G
(tBDHE , 2qRO). Davis and Günther gave a bound in the generic group

model for the strong DH problem; applying their Theorem 3.3 [14] results in

Pr[Game9] − Pr[Game10] ≤ t2BDHE
p .

At this point in the proof, the adversary A cannot possibly make a RO query
that outputs any tested session key of a forward secret (full or wfs2) stage s.
If the tested session’s pre-shared key is uncorrupted, A cannot make the query
because of Game5. If the session has a contributive partner in stage s, then from
Game10, A cannot make the query because it contains the Diffie–Hellman secret
of a partnered session. If it has accepted with no contributive partner and a
corrupted pre-shared key, then by the guarantees we established in Phase 2, the
corruption must have occurred before forward secrecy and explicit authentication
were achieved.

As a result, the output of any Test query (that does not violate Fresh) is a
random string, sampled by either a session or the RO oracle independently of all
other game variables including the challenge bit b. The adversary therefore has
a probability no greater than 1

2 of winning Game10. Collecting this probability
with the other bounds between games in our sequence gives the proof. ��

6.4 Full Security Bound for TLS 1.3 PSK-(EC)DHE and PSK-only

We can finally combine the results of Sects. 4, 5, and our key exchange bound
above to produce fully concrete bounds for the TLS 1.3 PSK-(EC)DHE and
PSK-only handshake protocols as specified on the left-hand side of Figure 1. This
bound applies to the protocol with handshake traffic encryption and internal keys
when only modeling as random oracle ROH the hash function H.

First, we define three variants of the TLS 1.3 PSK handshake:

– KE0, as defined in Theorem 1 with handshake traffic encryption and one
random oracle ROH. (This is the variant we want to obtain our overall result
for.)

– KE1, as defined in Theorem 1 with handshake traffic encryption and 12 ran-
dom oracles ROTh, RObinder , . . . , RORMS.

– KE2: as defined in Theorem 2, with no handshake traffic encryption and 12
random oracles ROTh, RObinder , . . . , RORMS.

Theorem 1 grants that AdvMSKE
KE0

(t, qNS, qS, qRS, qRL, qT, qRO) ≤ AdvMSKE
KE1

(t,

qNS, qS, qRS, qRL, qT, qRO) + 2(12qS+qRO)
2

2hl
+ 2q2

RO

2hl
+ 8(qRO+36qS)

2

2hl
.

Next, we apply Theorem 2, yielding the bound AdvMSKE
KE1

(t, qNS, qS, qRS, qRL,

qT, qRO) ≤ AdvMSKE
KE2

(t + tAEAD · qS, qNS, qS, qRS + qS, qRL, qT, qRO), where tAEAD

is the maximum time required to execute AEAD encryption or decryption of
TLS 1.3 messages.

On the Concrete Security of TLS 1.3 PSK Mode 901

Theorem 3 then finally and entirely bounds the advantage against the MSKE
security of KE2. Collecting these bounds yields the following overall result for
the MSKE security of the TLS 1.3 PSK-(EC)DHE handshake protocol.

Corollary 1. Let TLS1.3-PSK-(EC)DHE be the TLS 1.3 PSK-(EC)DHE hand-
shake protocol as specified on the left-hand side in Fig. 1. Let G be the Diffie–
Hellman group of order p. Let nl be the length in bits of the nonce, let hl be
the output length in bits of H, and let the pre-shared key space be KE.PSKS =
{0, 1}hl . Let H be modeled as a random oracle ROH. Then,

AdvMSKE
TLS1.3-PSK-(EC)DHE(t, qNS, qS, qRS, qRL, qT, qRO)

≤ 2q2S
2nl · p

+
(qRO + qS)2 + q2NS + (qRO + 6qS)2 + qRO · qNS + qS

2hl

+
4(t + tAEAD · qS + 4 log(p) · qRO)2

p

+
2(12qS + qRO)2 + 2q2RO + 8(qRO + 36qS)2

2hl
.

Table 1. Exemplary concrete advantages of a key exchange adversary with given
resources t (running time), #N (number of pre-shared keys), #S (number of sessions),
and #RO (number of random oracle queries) in breaking the security of the TLS 1.3
PSK handshake protocols. Numbers based on the prior bounds by Dowling et al. [21]
and our bounds for PSK-(EC)DHE and PSK-only (in Corollaries 1 resp. 2). “Target”
indicates the maximal advantage t/2b tolerable for a given bound on t when aiming for
the respective curve’s (or hash function’s, in case of PSK-only mode) bit security level b;
entries in green -shaded cells meet that target. Mode indicates PSK-only mode (with

SHA384) or otherwise PSK-(EC)DHE mode with the given curve secp256r1, x25519
(with SHA256), or secp384r1, x448, secp521r1 (with SHA384).

Adversary resources Security bound

b t #N #S #RO Target Mode DFGS [21] Us (Cor. 1, 2)

128 260 225 235 250 2−68 PSK-only ≈ 2−119 ≈ 2−152

128 280 235 255 270 2−48 PSK-only ≈ 2−59 ≈ 2−112

128 260 225 235 250 2−68 secp256r1 ≈ 2−61 ≈ 2−132

128 280 235 255 270 2−48 secp256r1 1 ≈ 2−92

128 260 225 235 250 2−68 x25519 ≈ 2−57 ≈ 2−128

128 280 235 255 270 2−48 x25519 1 ≈ 2−88

192 260 225 235 250 2−132 secp384r1 ≈ 2−189 ≈ 2−259

192 280 235 255 270 2−112 secp384r1 ≈ 2−108 ≈ 2−219

224 260 225 235 250 2−164 x448 ≈ 2−200 ≈ 2−280

224 280 235 255 270 2−144 x448 ≈ 2−110 ≈ 2−240

256 260 225 235 250 2−196 secp521r1 ≈ 2−200 ≈ 2−280

256 280 235 255 270 2−176 secp521r1 ≈ 2−110 ≈ 2−240

902 H. Davis et al.

For the PSK-only mode, we obtain a similar bound, naturally omitting the
strong Diffie–Hellman and group-element collision terms. Due to space restric-
tions, we only state the final PSK-only bound here and defer further details to
the full version [13].

Corollary 2. Let TLS1.3-PSK be the TLS 1.3 PSK-only handshake protocol as
specified on the left-hand side in Fig. 1. Let nl be the length in bits of the nonce,
let hl be the output length in bits of H, and let the pre-shared key space be
KE.PSKS = {0, 1}hl . Let H be modeled as a random oracle ROH. Then,

AdvMSKE
TLS1.3-PSK(t, qNS, qS, qRS, qRL, qT, qRO)

≤ 2q2S
2nl

+
(qRO + qS)2 + q2NS + (qRO + 6qS)2 + qRO · qNS + qS

2hl

+
2(12qS + qRO)2 + 2q2RO + 8(qRO + 36qS)2

2hl
.

7 Evaluation

Asymptotically, our tighter security bounds improve on prior analysis of TLS 1.3
by a quadratic factor. We evaluate ours and prior bounds over a wide range
of fully concrete resource parameters, following the approach of Davis and
Günther [14]. Table 1 shows exemplary concrete advantages; the full range of
evaluated parameters is given in extended tables in the full version [13], along
with reasoning for how we chose the various ranges of resource parameters. The
tables show that while the prior PSK-(EC)DHE bound by Dowling et al. [21]
meets the target security goals in a number of configurations, there are at least
some settings for all elliptic-curve groups in which the targeted security is not
met. Our bounds do significantly better than the target in all configurations we
considered. The gap for the PSK-only handshake is less significant as the loosest
prior reduction for TLS 1.3 was to the Diffie–Hellman problem.

Overall, our bounds improve on previous analyses of the PSK-only handshake
by 15 to 53 bits of security, and those of the PSK-(EC)DHE handshake by 60
to 131 bits of security, across all our parameters evaluated.

References

1. Arfaoui, G., Bultel, X., Fouque, P.A., Nedelcu, A., Onete, C.: The privacy of
the TLS 1.3 protocol. PoPETs 2019(4), 190–210 (2019). https://doi.org/10.2478/
popets-2019-0065

2. Avoine, G., Canard, S., Ferreira, L.: Symmetric-key authenticated key exchange
(SAKE) with perfect forward secrecy. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS,
vol. 12006, pp. 199–224. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-40186-3 10

3. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 26

https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26

On the Concrete Security of TLS 1.3 PSK Mode 903

4. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 10

5. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs,
oracle cloning and read-only indifferentiability. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 3–32. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2 1

6. Bhargavan, K., Brzuska, C., Fournet, C., Green, M., Kohlweiss, M., Zanella-
Béguelin, S.: Downgrade resilience in key-exchange protocols. In: 2016 IEEE Sym-
posium on Security and Privacy, pp. 506–525. IEEE Computer Society Press
(2016). https://doi.org/10.1109/SP.2016.37

7. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 235–255. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44381-1 14

8. Boyd, C., Cremers, C., Feltz, M., Paterson, K.G., Poettering, B., Stebila, D.:
ASICS: authenticated key exchange security incorporating certification systems. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
381–399. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-
6 22

9. Boyd, C., Davies, G.T., de Kock, B., Gellert, K., Jager, T., Millerjord, L.: Sym-
metric key exchange with full forward security and robust synchronization. In:
ASIACRYPT 2021 (2021). To appear. Available as Cryptology ePrint Archive,
Report 2021/702. https://ia.cr/2021/702

10. Brzuska, C., Delignat-Lavaud, A., Egger, C., Fournet, C., Kohbrok, K., Kohlweiss,
M.: Key-schedule security for the TLS 1.3 standard. Cryptology ePrint Archive,
Report 2021/467 (2021). https://eprint.iacr.org/2021/467

11. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 767–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 25

12. Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and
verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In: 2016
IEEE Symposium on Security and Privacy, pp. 470–485. IEEE Computer Society
Press (2016). https://doi.org/10.1109/SP.2016.35

13. Davis, H., Diemert, D., Günther, F., Jager, T.: On the Concrete Security of TLS
1.3 PSK Mode. Cryptology ePrint Archive (2022). https://eprint.iacr.org/2022/
246

14. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12727,
pp. 448–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78375-
4 18

15. de Saint Guilhem, C., Fischlin, M., Warinschi, B.: Authentication in key-exchange:
definitions, relations and composition. In: Jia, L., Küsters, R. (eds.) CSF 2020
Computer Security Foundations Symposium, pp. 288–303. IEEE Computer Society
Press (2020). https://doi.org/10.1109/CSF49147.2020.00028

16. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures
with tight multi-user security. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711,
pp. 1–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4 1

https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1109/SP.2016.37
https://doi.org/10.1007/978-3-662-44381-1_14
https://doi.org/10.1007/978-3-642-40203-6_22
https://doi.org/10.1007/978-3-642-40203-6_22
https://ia.cr/2021/702
https://eprint.iacr.org/2021/467
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1109/SP.2016.35
https://eprint.iacr.org/2022/246
https://eprint.iacr.org/2022/246
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1007/978-3-030-75248-4_1

904 H. Davis et al.

17. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically sound cryp-
tographic parameters for real-world deployments. J. Cryptol. 34(3), 1–57 (2021).
https://doi.org/10.1007/s00145-021-09388-x

18. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again?
(in)differentiability results for H 2 and HMAC. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 21

19. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 2015, pp. 1197–1210. ACM Press (2015). https://doi.org/10.1145/2810103.
2813653

20. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081 (2016). https://eprint.iacr.org/2016/081

21. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol. J. Cryptol. 34(4), 1–69 (2021). https://doi.org/
10.1007/s00145-021-09384-1

22. Dowling, B., Stebila, D.: Modelling ciphersuite and version negotiation in the TLS
protocol. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 270–288.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7 16

23. Drucker, N., Gueron, S.: Selfie: reflections on TLS 1.3 with PSK. J. Cryptol. 34(3),
1–18 (2021). https://doi.org/10.1007/s00145-021-09387-y

24. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 1193–1204.
ACM Press (2014). https://doi.org/10.1145/2660267.2660308

25. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: the case of the
TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017, pp. 60–75. IEEE (2017)

26. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key
exchange: a formal treatment and implications for TLS 1.3. In: 2016 IEEE Sympo-
sium on Security and Privacy, pp. 452–469. IEEE Computer Society Press (2016).
https://doi.org/10.1109/SP.2016.34

27. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renegotiation. In:
Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 387–398. ACM
Press (2013). https://doi.org/10.1145/2508859.2516694

28. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 4

29. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

30. Günther, F.: Modeling Advanced Security Aspects of Key Exchange and Secure
Channel Protocols. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt,
Germany (2018). http://tuprints.ulb.tu-darmstadt.de/7162/

31. Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenticated
key exchange and signatures with tight security in the standard model. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 670–700. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 23

https://doi.org/10.1007/s00145-021-09388-x
https://doi.org/10.1007/978-3-642-32009-5_21
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
https://eprint.iacr.org/2016/081
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1007/s00145-021-09387-y
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1145/2508859.2516694
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/3-540-46885-4_5
http://tuprints.ulb.tu-darmstadt.de/7162/
https://doi.org/10.1007/978-3-030-84259-8_23

On the Concrete Security of TLS 1.3 PSK Mode 905

32. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated
key exchange, revisited. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12696, pp. 117–146. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77870-5 5

33. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

34. Jager, T., Schwenk, J., Somorovsky, J.: On the security of TLS 1.3 and QUIC
against weaknesses in PKCS#1 v1.5 encryption. In: Ray, I., Li, N., Kruegel, C.
(eds.) ACM CCS 2015, pp. 1185–1196. ACM Press (2015). https://doi.org/10.
1145/2810103.2813657

35. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message
Authentication. RFC 2104 (Informational) (1997). https://doi.org/10.17487/
RFC2104, https://www.rfc-editor.org/rfc/rfc2104.txt, updated by RFC 6151

36. Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). RFC 5869 (Informational) (2010). https://doi.org/10.17487/
RFC5869, https://www.rfc-editor.org/rfc/rfc5869.txt

37. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. Cryp-
tology ePrint Archive, Report 2005/176 (2005). https://eprint.iacr.org/2005/176

38. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 34

39. Krawczyk, H.: A unilateral-to-mutual authentication compiler for key exchange
(with applications to client authentication in TLS 1.3). In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1438–
1450. ACM Press (2016). https://doi.org/10.1145/2976749.2978325

40. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 24

41. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. Cryptology ePrint Archive, Report 2013/339 (2013). https://
eprint.iacr.org/2013/339

42. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: 2016 IEEE Euro-
pean Symposium on Security and Privacy, pp. 81–96. IEEE (2016). https://doi.
org/10.1109/EuroSP.2016.18

43. Langley, A., Hamburg, M., Turner, S.: Elliptic Curves for Security. RFC
7748 (Informational) (2016). https://doi.org/10.17487/RFC7748, https://www.
rfc-editor.org/rfc/rfc7748.txt

44. Li, Y., Schäge, S., Yang, Z., Kohlar, F., Schwenk, J.: On the security of the pre-
shared key ciphersuites of TLS. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 669–684. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0 38

45. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12492, pp. 785–814. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64834-3 27

https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC2104
https://www.rfc-editor.org/rfc/rfc2104.txt
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://www.rfc-editor.org/rfc/rfc5869.txt
https://eprint.iacr.org/2005/176
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1145/2976749.2978325
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://eprint.iacr.org/2013/339
https://eprint.iacr.org/2013/339
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.17487/RFC7748
https://www.rfc-editor.org/rfc/rfc7748.txt
https://www.rfc-editor.org/rfc/rfc7748.txt
https://doi.org/10.1007/978-3-642-54631-0_38
https://doi.org/10.1007/978-3-642-54631-0_38
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-030-64834-3_27

906 H. Davis et al.

46. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

47. National Institute of Standards and Technology: FIPS PUB 180–4: Secure Hash
Standard (SHS) (2012)

48. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Proposed Standard) (2018). https://doi.org/10.17487/RFC8446, https://www.
rfc-editor.org/rfc/rfc8446.txt

49. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp.
1461–1480. ACM Press (2020). https://doi.org/10.1145/3372297.3423350

https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.1145/3372297.3423350

Correction to: Non-Interactive
Zero-Knowledge Proofs with Fine-Grained

Security

Yuyu Wang and Jiaxin Pan

Correction to:
Chapter “Non-Interactive Zero-Knowledge Proofs
with Fine-Grained Security” in:
O. Dunkelman and S. Dziembowski (Eds.): Advances
in Cryptology – EUROCRYPT 2022, LNCS 13276,
https://doi.org/10.1007/978-3-031-07085-3_11

In an older version of this paper, there was an erroneous insertion of an equation on
page 315. This has been removed.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-031-07085-3_11

© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13276, p. C1, 2022.
https://doi.org/10.1007/978-3-031-07085-3_31

http://orcid.org/0000-0002-1198-1903
http://orcid.org/0000-0002-7459-6850
https://doi.org/10.1007/978-3-031-07085-3_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07085-3_31&domain=pdf
https://doi.org/10.1007/978-3-031-07085-3_11
https://doi.org/10.1007/978-3-031-07085-3_31

Author Index

Abram, Damiano I-790
Agarwal, Pratyush III-797
Alagic, Gorjan III-458
Almashaqbeh, Ghada I-759
Alwen, Joël II-815
Amini Khorasgani, Hamidreza III-767
Amzaleg, Dor III-57
Arnon, Gal II-64
Asharov, Gilad I-120
Auerbach, Benedikt II-815
Aung, Khin Mi Mi I-611

Bai, Chen III-458
Bangalore, Laasya II-187
Bellare, Mihir II-845
Beullens, Ward II-95
Bitansky, Nir III-519
Blocki, Jeremiah II-614
Bonnetain, Xavier III-315
Bootle, Jonathan II-275, II-427
Boyle, Elette I-427
Brakerski, Zvika II-157
Branco, Pedro II-157
Brzuska, Chris II-584

Canetti, Ran I-731, I-759
Celi, Sofía II-674
Chakraborty, Suvradip I-272, I-731
Chen, Megan II-336
Chen, Yilei I-645, III-372
Cheon, Jung Hee I-521
Chevalier, Céline II-242
Chiesa, Alessandro II-64, II-275, II-336,

II-427
Chung, Kai-Min III-707
Ciampi, Michele I-65, I-335
Cohen, Ran I-241
Corrigan-Gibbs, Henry II-3
Couteau, Geoffroy II-584
Cui, Ting III-34

Davis, Hannah II-876
de Castro, Leo I-150, I-303
Dey, Sabyasachi III-86

Diemert, Denis II-876
Ding, Lin III-34
Dinur, Itai III-57
Dobraunig, Christoph III-168
Dobson, Samuel II-95
Dodis, Yevgeniy III-737
Doerner, Jack I-241
Don, Jelle III-677
Dong, Xiaoyang III-3
Dos Santos, Bruno Freitas II-127
Döttling, Nico II-157
Ducas, Léo III-643
Duong, Dung Hoang III-582

Eichlseder, Maria III-168
El Housni, Youssef II-367
Erlich, Yaniv I-759
Espitau, Thomas III-222
Esser, Andre III-433

Fehr, Serge III-677
Fleischhacker, Nils II-764
Fouque, Pierre-Alain III-222

Ganesh, Chaya II-397
Gao, Si III-254, III-284
Garai, Hirendra Kumar III-86
Garg, Rachit II-736
Gentry, Craig I-458
Gérard, François III-222
Gershoni, Jonathan I-759
Ghinea, Diana I-96
Ghosal, Riddhi II-706
Ghoshal, Ashrujit II-706
Gilboa, Niv I-427
Goel, Aarushi I-397, II-458
Goyal, Rishab II-736
Goyal, Vipul I-96, III-192
Green, Matthew II-458
Groth, Jens I-365
Grubbs, Paul III-402
Gu, Yanqi II-127
Guan, Jiaxin I-700
Guillevic, Aurore II-367

908 Author Index

Günther, Felix II-876
Guo, Fuchun II-553

Ha, Jincheol I-581
Haitner, Iftach I-180
Halevi, Shai I-458
Hall-Andersen, Mathias I-397, II-458
Haque, Abida I-37
Hazay, Carmit I-303
Heath, David I-3, I-37
Hegde, Aditya I-397
Henzinger, Alexandra II-3
Hoang, Viet Tung II-845
Hu, Yuncong II-427
Huguenin-Dumittan, Loïs III-613
Hulett, James II-520

Ishai, Yuval I-210, I-303, I-427, III-192

Jaeger, Joseph II-706
Jager, Tibor II-876
Jain, Aayush I-670
Jain, Abhishek I-397
Jarecki, Stanislaw II-127
Jawale, Ruta II-520
Jin, Chenhui III-34
Jin, Yu III-34
Joux, Antoine III-582
Jutla, Charanjit S. I-491

Kang, HyungChul I-551
Kaptchuk, Gabriel II-458
Katsumata, Shuichi II-95
Katz, Jonathan III-458
Khurana, Dakshita I-210, I-731, II-520
Kim, Seongkwang I-581
Kim, Yongjune I-551
Kim, Young-Sik I-551
Kitagawa, Fuyuki III-488
Klein, Karen II-815
Kogan, Dmitry II-3
Kolesnikov, Vladimir I-3, I-37
Kondi, Yashvanth I-241
Krawczyk, Hugo II-127
Kumar, Nishant I-731
Küsters, Ralf II-242

Lai, Yi-Fu II-95
Larsen, Kasper Green II-764
Lee, Byeonghak I-581

Lee, Joon-Woo I-551
Lee, Jooyoung I-581
Lee, Keewoo I-521
Lee, Seunghoon II-614
Lee, Yi III-707
Lee, Yongwoo I-551
Libert, Benoît II-488
Lim, Enhui I-611
Lin, Han-Hsuan III-707
Lin, Huijia I-670, III-519
Liu, Qipeng III-372
Liu, Siqi II-275
Liu-Zhang, Chen-Da I-96
Lu, George II-736
Lu, Steve I-37
Lyubashevsky, Vadim I-458

Magri, Bernardo I-272
Majenz, Christian III-458, III-677
Maji, Hemanta K. III-767
Makriyannis, Nikolaos I-180
Malkin, Tal I-759
Manohar, Nathan I-491
Maram, Varun III-402
Maurer, Ueli II-644
May, Alexander III-147, III-433

Nageler, Marcel III-168
Narayanan, Varun III-797
Nguyen, Hai H. III-767
Nguyen, Khoa II-488
Nielsen, Jesper Buus I-272
Nishimaki, Ryo III-488
No, Jong-Seon I-551
Nof, Ariel I-427
Noval, Miguel Cueto II-815
Nowakowski, Julian III-147

Orlandi, Claudio II-397
Orrú, Michele II-427
Ostrovsky, Rafail I-3, I-37, I-65, II-187
Oswald, Elisabeth III-254, III-284

Page, Dan III-284
Pan, Jiaxin II-305
Pancholi, Mahak II-397
Pascual-Perez, Guillermo II-815
Paterson, Kenneth G. III-402
Pathak, Shreya III-797
Pe’er, Itsik I-759

Author Index 909

Persiano, Giuseppe II-34
Peters, Thomas II-488
Phan, Duong Hieu II-34
Pietrzak, Krzyzstof II-815
Pintore, Federico II-95
Plantard, Thomas III-582
Poburinnaya, Oxana I-731, II-187
Polychroniadou, Anitgoni I-150
Portmann, Christopher II-644
Prabhakaran, Manoj I-731, III-797
Prabhakaran, Vinod M. III-797
Preneel, Bart III-115
Pu, Sihang II-157

Qiao, Youming III-582
Qin, Lingyue III-3
Quach, Willy III-737

Ranellucci, Samuel I-180
Rausch, Daniel II-242
Ravi, Divya I-335
Rehan, Mohammad Ali III-797
Ristenpart, Thomas II-674
Rito, Guilherme II-644
Roitburd-Berman, Anna I-759
Rossi, Mélissa III-222

Sahai, Amit I-210, I-670
Sarkar, Santanu III-86, III-147
Schaffner, Christian III-677
Scholl, Peter I-790
Schrottenloher, André III-315
Shah, Akash I-37
Sharma, Nitin Kumar III-86
Shelat, Abhi I-241
Shi, Elaine I-120
Shi, Zhen III-34
Shmueli, Omri III-519
Shoup, Victor I-365
Sibleyras, Ferdinand III-315
Sim, Jun Jie I-611
Simkin, Mark II-764
Siniscalchi, Luisa I-335
Son, Mincheol I-581
Song, Yifan III-192
Spooner, Nicholas II-336
Srinivasan, Akshayaram I-210, II-520
Sullivan, Nick II-674
Sun, Ling III-115

Sun, Siwei III-3
Susilo, Willy II-553, III-582

Takahashi, Akira II-397, III-222
Tan, Benjamin Hong Meng I-611
Tang, Gang III-582
Tessaro, Stefano II-674, II-706, II-782
Tibouchi, Mehdi III-222
Tromer, Eran I-759
Tschudi, Daniel II-397
Tsfadia, Eliad I-180
Tyagi, Nirvan II-674

Vaikuntanathan, Vinod I-303
van Woerden, Wessel III-643
Vaudenay, Serge III-613
Venkitasubramaniam, Muthu I-303
Venkitasubramaniam, Muthuramakrishnan

II-187
Venturi, Daniele I-272

Waldner, Hendrik I-65, I-335
Wallet, Alexandre III-222
Walter, Michael II-815
Wang, Huaxiong I-611
Wang, Meiqin III-115
Wang, Wei III-115
Wang, Xiaoyun III-3
Wang, Yuyu II-305
Waters, Brent II-736
Wee, Hoeteck II-217
Wesolowski, Benjamin III-345
Wichs, Daniel I-700, III-737
Wood, Christopher A. II-674
Wu, Ke I-120
Wu, Xiaodi III-707

Xagawa, Keita III-551

Yakoubov, Sophia I-790
Yao, Li I-645
Yeo, Sze Ling I-611
Yogev, Eylon II-64
Yu, Yang III-222
Yu, Yu I-645
Yung, Moti II-34, II-488

Zhandry, Mark I-700, III-372
Zhang, Jiyan III-34
Zhu, Chenzhi II-782
Zikas, Vassilis I-65
Zweydinger, Floyd III-433

	 Preface
	 Organization
	 Contents – Part II
	Cryptographic Protocols
	Single-Server Private Information Retrieval with Sublinear Amortized Time
	1 Introduction
	1.1 Our Results
	1.2 Overview of Techniques
	1.3 Related Work

	2 Background
	2.1 Standard Definitions
	2.2 Definition of Offline/Online PIR

	3 Two-Server PIR with a Single-Server Online Phase and Sublinear Amortized Time
	Construction 3

	4 Single-Server PIR with Sublinear Amortized Time from DCR, QR, DDH, or LWE
	5 Single-Server PIR with Optimal Amortized Time and Storage from Fully Homomorphic Encryption
	6 Lower Bounds
	6.1 Lower Bound for Adaptive Schemes
	6.2 Lower Bound for Batch PIR with Advice

	7 Conclusion
	References

	Anamorphic Encryption: Private Communication Against a Dictator
	1 Introduction
	2 Related Works
	3 Our Approach
	4 Receiver-Anamorphic Encryption
	4.1 Syntax
	4.2 Modes of Operation
	4.3 Security Notion
	4.4 Properties of the Anamorphic Mode with Normal Encryption
	4.5 Security of the Fully Anamorphic Mode

	5 Constructions
	5.1 Rejection Sampling
	5.2 The Naor-Yung Transform
	5.3 The NY Transform Gives Receive-AM Encryption

	6 Sender-Anamorphic Encryption
	6.1 Sufficient Conditions for Sender-AM with No Shared Key
	6.2 Constructions Based on LWE Encryption Schemes

	7 Conclusion
	References

	A PCP Theorem for Interactive Proofs and Applications
	1 Introduction
	1.1 Main Results
	1.2 A Cryptographic Application to SNARKs

	2 Techniques
	2.1 Towards Transforming IPs to IOPs
	2.2 Local Access to Randomness
	2.3 Index-Decodable PCPs
	2.4 Local Access to Prover Messages
	2.5 Constructing Index-Decodable PCPs
	2.6 Commit-and Prove SNARKs from Index-Decodable PCPs
	2.7 Hardness of Approximation

	References

	Group Signatures and More from Isogenies and Lattices: Generic, Simple, and Efficient
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Non-interactive Zero-Knowledge Proofs of Knowledge in the ROM
	2.2 Accountable Ring Signatures

	3 Generic Construction of Accountable Ring Signature and Dynamic Group Signature
	3.1 Generic Construction of Accountable Ring Signature
	3.2 Accountable Ring Signature to Dynamic Group Signature
	3.3 Tightly Secure Variant

	4 Group-Action-Based Hard Instance Generators and PKEs
	4.1 Group-Action-Based Hard Instance Generator
	4.2 Group-Action-Based PKE

	5 Sigma Protocol for a ``Traceable'' OR Relation
	5.1 From a Group-Action-Based HIG and PKE to Base Traceable or Sigma Protocol
	5.2 From Base to Main Traceable or Sigma Protocol
	5.3 Base Sigma Protocol for the ``Tight'' Relation R-tight

	6 Multi-proof Online Extractable NIZK from Sigma Protocol main traceable OR sigma protocol
	7 Instantiations
	References

	Asymmetric PAKE with Low Computation and communication
	1 Introduction
	2 Key-Hiding One-Time-Key AKE
	2.1 2DH as Key-Hiding One-Time-Key AKE
	2.2 One-Pass HMQV as Key-Hiding One-Time-Key AKE

	3 Protocol OKAPE: Asymmetric PAKE Construction #1
	4 Protocol aEKE: Asymmetric PAKE Construction #2
	5 Concrete aPAKE Protocol Instantiations
	6 Curve Encodings and Ideal Cipher
	A Universally Composable Asymmetric PAKE Model
	B Simulator for Proof of Theorem 3
	References

	Batch-OT with Optimal Rate
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Technical Overview
	2.1 Oblivious Transfer from Homomorphic Encryption
	2.2 Download-Rate Optimal String OT
	2.3 Our Approach: Recrypting the Receiver's Message
	2.4 Dealing with LPN Errors
	2.5 Emulating Small Subgroups

	3 Preliminaries
	3.1 Lattices and Gaussians
	3.2 Distributed GGM-PPRF Correlation

	4 Compression-Friendly Subgroup Emulation via Gaussian Rounding
	5 Rate-1 Circuit-Private Linearly Homomorphic Encryption
	5.1 Construction from DDH

	6 Co-private Information Retrieval
	6.1 Definition

	7 Oblivious Transfer with Overall Rate 1
	7.1 The Protocol
	7.2 Security

	8 Oblivious Matrix-Vector Product and Oblivious Linear Evaluation with Overall Rate 1
	8.1 OLE Protocol

	A Additional Preliminaries
	A.1 UC Security
	A.2 Learning Parity with Noise

	References

	Adaptively Secure Computation for RAM Programs
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Equivocal ORAM
	3 RAM-Efficient Equivocal Encryption
	3.1 Our Construction

	4 Equivocal Garbled RAM
	4.1 Our Construction
	4.2 Putting It Together

	5 Adaptive Zero-Knowledge for RAM
	5.1 Splitable Garbling
	5.2 Our Adaptive UC ZK Protocol

	References

	Optimal Broadcast Encryption and CP-ABE from Evasive Lattice Assumptions
	1 Introduction
	2 Technical Overview
	2.1 Our CP-ABE Schemes
	2.2 On Evasive Lattice Assumptions
	2.3 Additional Related Work

	3 Preliminaries
	3.1 Lattices Background
	3.2 Attribute-Based Encryption

	4 Evasive LWE
	5 Main Constructions
	5.1 Homomorphic Computation on Matrices
	5.2 CP-ABE for NC1 Circuits
	5.3 Optimal Broadcast Encryption
	5.4 CP-ABE for Polynomial-Depth Circuits

	6 Discussion on Evasive LWE
	References

	Embedding the UC Model into the IITM Model
	1 Introduction
	2 A Brief Overview of the UC and IITM Models
	2.1 The UC Model
	2.2 The IITM Model

	3 Embedding the UC Model in the IITM Model
	3.1 Main Conceptual Differences
	3.2 Mapping Protocols
	3.3 UC Security Implies IITM Security
	3.4 UC Composition Implies IITM Composition
	3.5 Capturing Dynamically Generated Machine Code
	3.6 Discussion: Beyond UC Protocols

	4 Impossibility of Embedding the IITM Model into the UC Model
	References

	Zero-Knowledge Proofs
	Zero-Knowledge IOPs with Linear-Time Prover and Polylogarithmic-Time Verifier
	1 Introduction
	1.1 Our Results
	1.2 Related Work on Probabilistic Proofs
	1.3 Related Work on Succinct Arguments

	2 Techniques
	2.1 Approach Overview
	2.2 Construction Overview
	2.3 From Tensor-Queries to Point-Queries in Zero-Knowledge
	2.4 Tensor IOP for R1CS with Semi-honest Verifier Zero Knowledge
	2.5 Hiding Properties of Linear Codes
	2.6 On Bounded-Query Zero Knowledge
	2.7 Linear-Time Succinct Arguments from Linear-Time IOPs

	References

	Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Details

	2 Preliminaries
	2.1 Function Families
	2.2 Sampling Procedure
	2.3 Proof Systems

	3 AC0[2]–Protocol for Linear Languages
	4 Fine-Grained NIZK for Linear Languages
	5 Fine-Grained OR-Proof
	6 Fine-Grained NIZK Proof for Circuit SAT
	7 Fine-Grained NIZK for AC0CM[2] with Short Proofs
	7.1 Definition of Fine-Grained sFHE
	7.2 Construction of Fine-Grained sFHE
	7.3 Generic Construction of NIZK

	8 Fine-Grained Non-Interactive Zap
	8.1 Verifiable Correlated Key Generation
	8.2 Construction of Fine-Grained Non-Interactive Zap

	9 Fine-Grained NIZK in the URS Model
	References

	On Succinct Non-interactive Arguments in Relativized Worlds
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Techniques
	2.1 Linear Code Random Oracles
	2.2 Accumulation Scheme for Low-Degree Random Oracles
	2.3 A Forking Lemma for Linear Code Random Oracles
	2.4 A Zero-Finding Game for Low-Degree Random Oracles
	2.5 SNARKs for Oracle Computations

	3 Preliminaries
	3.1 Notations
	3.2 Non-interactive Arguments in Oracle Models
	3.3 Accumulation Schemes
	3.4 Commitment Schemes

	4 Linear Code Random Oracles
	4.1 Query Transcripts and Partial Oracles
	4.2 Constraints
	4.3 Query Complexity
	4.4 Low-Degree Random Oracles

	5 A Forking Lemma for Linear Code Random Oracles
	6 Oracle Zero-Finding Games
	7 Accumulation Scheme for Low-Degree Random Oracles
	References

	Families of SNARK-Friendly 2-Chains of Elliptic Curves
	1 Introduction
	2 Preliminaries
	2.1 Background on Bilinear Pairings
	2.2 zk-SNARKs
	2.3 SNARK-Friendly Chains

	3 Inner Curves: Barreto–Lynn–Scott (BLS) Curves
	3.1 Parameters with a Polynomial Form
	3.2 Faster Co-factor Multiplication
	3.3 Subgroup Membership Testing: GT
	3.4 Choosing a Curve Coefficient b=1
	3.5 SNARK-Friendly Inner BLS Curves

	4 Outer Curves: Brezing–Weng, Cocks–Pinch
	4.1 Generic BW6 Curve Parameters
	4.2 BW6 with BLS-12
	4.3 BW6 with BLS-24
	4.4 Two-Chains with Inner BLS and Outer Cocks-Pinch
	4.5 Comparison of BW6, CP8 and CP12 Outer Curve Performances

	5 Implementation and Benchmarking
	5.1 SageMath Library: Derive the Curves
	5.2 Our Short-List of Curves
	5.3 Estimated Complexity of a DL Computation in GF(qk)
	5.4 Golang Library: Implement the Short-List Curves
	5.5 Benchmarking

	6 Conclusion
	References

	Fiat–Shamir Bulletproofs are Non-Malleable (in the Algebraic Group Model)
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries
	3 Simulation-Extractability from State-Restoration Unique Response
	3.1 Simulation-Extractability in the AGM
	3.2 From Weak Unique Response to Simulation-extractability
	3.3 Generic Result on Simulation-Extractability

	4 Non-Malleability of Bulletproofs – Arithmetic Circuits
	4.1 Algebraic Simulation
	4.2 State-Restoration Unique Responses

	References

	Gemini: Elastic SNARKs for Diverse Environments
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Techniques
	2.1 Elasticity and a Streaming Model
	2.2 A Modular Construction of Elastic SNARKs
	2.3 An Elastic Realization of the KZG Polynomial Commitment Scheme
	2.4 An Elastic Scalar-Product Protocol
	2.5 Warm-up: An Elastic Non-holographic PIOP for R1CS
	2.6 Elastic Holographic PIOP for R1CS
	2.7 Implementation and Optimizations
	2.8 Evaluation

	References

	Stacking Sigmas: A Framework to Compose -Protocols for Disjunctions
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Technical Overview
	3 Preliminaries
	3.1 Notation
	3.2 -Protocols

	4 Partially-Binding Vector Commitments
	4.1 Partially-Binding Vector Commitments from Discrete Log

	5 Stackable -Protocols
	5.1 Well-Behaved Simulators
	5.2 Properties of Stackable -Protocols
	5.3 Classical Examples of Stackable -Protocols
	5.4 Examples of Stackable ``MPC-in-the-Head'' -Protocols

	6 Self-stacking: Disjunctions with the Same Protocol
	6.1 Extending to Multiple Languages

	References

	One-Shot Fiat-Shamir-Based NIZK Arguments of Composite Residuosity and Logarithmic-Size Ring Signatures in the Standard Model
	1 Introduction
	2 Background and Definitions
	2.1 Hardness Assumptions
	2.2 Correlation Intractable Hash Functions
	2.3 Admissible Hash Functions
	2.4 Trapdoor -protocols
	2.5 R-Lossy Public-Key Encryption with Equivocation
	2.6 Ring Signatures

	3 R-Lossy Encryption Schemes from DCR
	3.1 An Equivocable RBM-Lossy PKE Scheme from DCR
	3.2 A Dense RBM-Lossy PKE Scheme from DCR

	4 Trapdoor -Protocols for DCR-Related Languages
	4.1 Trapdoor -Protocol Showing that a Paillier Ciphertext/Commitment Contains 0 or 1
	4.2 Trapdoor -Protocol Showing that One Out of Many Ciphertexts/Commitments Contains 0

	5 Logarithmic-Size Ring Signatures in the Standard Model from DCR and LWE
	References

	SNARGs for P from Sub-exponential DDH and QR
	1 Introduction
	1.1 Our Results
	1.2 Other Prior Work

	2 Technical Overview
	2.1 Succinct Interactive Arguments for Bounded Space from Succinct Arguments for Batch NP
	2.2 Obtaining a SNARG
	2.3 SNARGs for Bounded Space Non-deterministic Computation

	3 Preliminaries
	3.1 Correlation Intractable Hash Functions
	3.2 Somewhere Extractable (SE) Commitments

	4 Fiat-Shamir for Arguments
	4.1 Round-by-Round Soundness
	4.2 FS-Compatible Arguments
	4.3 From FS-Compatible Arguments to SNARGs

	5 FS-Compatible Arguments for Bounded Space Computations
	5.1 FS-Compatible Batch NP Arguments
	5.2 Bounded-Space Protocol Construction
	5.3 Non-trivial Predicate for Bounded-Space Protocol
	5.4 FS-Compatibility for Bounded-Space Protocol

	6 FS-Compatible Arguments for Non-deterministic Bounded Space
	6.1 Background
	6.2 Interactive Arguments for Bounded Space Non-deterministic Computation
	6.3 Non-trivial Predicate
	6.4 FS-Compatibility W.r.t. Predicate
	6.5 SNARGs for P and Beyond

	References

	Cryptographic Primitives
	Optimal Tightness for Chain-Based Unique Signatures
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Idea
	1.3 Impossibility of Reductions

	2 Definitions
	3 Optimal Analysis for the Chain-Based BLS Scheme
	4 Optimal Tightness for the Chain-Based BLS Scheme
	4.1 Framework of Security Reduction
	4.2 Probability Analysis

	References

	On Building Fine-Grained One-Way Functions from Strong Average-Case Hardness
	1 Introduction
	1.1 Our Contribution: Inbetween Heuristica and Pessiland
	1.2 A Core Abstract Lemma: The Hitting Lemma
	1.3 On the Significance of Our Results
	1.4 Related Work

	2 Preliminaries
	2.1 Notation, Computational Models and Oracles
	2.2 Fine-Grained One-Way Functions
	2.3 Languages
	2.4 Pairwise Independent Hash-Functions

	3 Technical Overview: FGOWFs from Block-Finding Hardness
	3.1 Block-Finding Hardness of L

	4 Overview: No FGOWFs from Average-Case Hardness
	5 Overview: No FG-OWF from Non-Amortizable Hardness
	5.1 Defining the Oracle Distribution T
	5.2 Proving Theorem 16
	5.3 Proving Theorem 17

	6 The Hitting Lemma
	6.1 Proof of the Hitting Lemma – Proof Structure

	References

	On the Multi-user Security of Short Schnorr Signatures with Preprocessing
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 The Generic Group Model
	2.2 The Schnorr Signature Scheme

	3 Single-User Security of Short Schnorr Signatures
	3.1 Discrete Log Problem with Restricted Discrete Log Oracle
	3.2 Security Reduction

	4 Multi-user Security of Short Schnorr Signatures
	4.1 The Multi-user Bridge-Finding Game
	4.2 Security Reduction

	5 Multi-user Security of Short Schnorr Signatures with Key-Prefixing Against Preprocessing Attacks
	5.1 Security of BRIDGE N-Finding Game with Preprocessing
	5.2 Multi-user Security of Key-Prefixed Short Schnorr Signatures with Preprocessing

	6 Multi-user Security of Other Fiat-Shamir Signatures
	References

	Multi-Designated Receiver Signed Public Key Encryption
	1 Introduction
	1.1 Public Key Encryption Security Properties
	1.2 Public Key Encryption for Broadcast
	1.3 Multi-Designated Receiver Signed Public Key Encryption
	1.4 Applications to Secure (Group) Messaging
	1.5 Related Work

	2 Preliminaries
	3 Public Key Encryption for Broadcast Schemes
	3.1 The Security of PKEBC Schemes

	4 A PKEBC Scheme from Standard Assumptions
	4.1 Security Analysis of PKEBC Construction

	5 Multi-Designated Receiver Signed Public Key Encryption Schemes
	5.1 The Security of MDRS-PKE Schemes

	6 A Multi-Designated Receiver Signed Public Key Encryption Scheme from Standard Assumptions
	6.1 Security Analysis of the MDRS-PKE Construction

	References

	A Fast and Simple Partially Oblivious PRF, with Applications
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Group Model
	2.2 Random Oracle Model
	2.3 Non-interactive Zero Knowledge Proofs

	3 Partially Oblivious Pseudorandom Functions
	4 The 3HashSDHI POPRF
	5 Security Analysis
	5.1 Pseudorandomness
	5.2 Request Privacy

	6 Performance Evaluation
	7 Applications
	References

	Hiding in Plain Sight: Memory-Tight Proofs via Randomness Programming
	1 Introduction
	1.1 Our Techniques - An Overview
	1.2 Our Results
	1.3 Paper Outline

	2 Preliminaries
	2.1 Computational Model
	2.2 Cryptographic Background

	3 Adversaries with Access to Random Functions
	4 Multi-challenge Security of Digital Signature Schemes
	4.1 Syntax and Security
	4.2 Multi-challenge Security for Extractable Message Distributions
	4.3 Proof of Theorem 1 (1UFCMAmUFRMA)
	4.4 Applications and Weakly Extractable Variant
	4.5 mSUFCMA Security of RSA-PFDH

	5 AE Security of Encrypt-then-PRF
	5.1 Syntax and Security Definitions
	5.2 Security Result

	6 Chosen Ciphertext Security of Public Key Encryption
	6.1 Left-or-Right CCA Security of PKE
	6.2 Indistinguishable from Random CCA Security of PKE

	References

	Dynamic Collusion Bounded Functional Encryption from Identity-Based Encryption
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work and Future Directions
	1.3 Concurrent Work

	2 Preliminaries
	2.1 Garbled Circuits
	2.2 Identity-Based Encryption

	3 Functional Encryption: Dynamic Bounded Collusion
	3.1 Bounded Collusion FE: Static and Dynamic
	3.2 Upgrading Static to Dynamic Bounded Collusion FE via Weak Optimal Efficiency

	4 Tagged Functional Encryption
	5 Tagged to Weakly Optimal Static Collusion FE
	5.1 Construction
	5.2 Correctness, Efficiency, and Security

	6 Upgrading Collusion Bound for Tagged FE
	7 Building 1-Bounded Collusion Tagged FE from IBE
	7.1 Non-Adaptive 1-Bounded Tagged FE from Garbled Circuits and IBE
	7.2 Upgrading to Adaptive Security

	References

	Property-Preserving Hash Functions for Hamming Distance from Standard Assumptions
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Property-Preserving Hash Functions
	2.2 Lattices

	3 Robust Set Encodings
	3.1 Instantiation

	4 Construction
	4.1 PPH for the Hamming Distance Predicate

	5 Lower Bound
	References

	Short Pairing-Free Blind Signatures with Exponential Security
	1 Introduction
	1.1 A Scheme in the GGM
	1.2 AGM Security and Partial Blindness

	2 Preliminaries
	3 The Weighted Fractional ROS Problem
	3.1 Proof of Theorem 1
	3.2 Proof of Lemma 1
	3.3 Proof of Lemma 2
	3.4 Proof of Lemma 3

	4 Efficient Blind Signatures in the GGM
	4.1 Proof of Theorem 3
	4.2 Proof of Lemma 7

	5 Efficient Blind Signatures in the AGM
	5.1 A Protocol Secure Under the DL Assumption
	5.2 Proof of Lemma 9

	6 Partially Blind Signatures
	References

	Real-World Systems
	CoCoA: Concurrent Continuous Group Key Agreement
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Continuous Group-key Agreement
	2.2 Ratchet Trees

	3 The CoCoA Protocol
	3.1 Overview
	3.2 Users' States and the Key Schedule
	3.3 Robustness, Round Hash, and Transcript Hash
	3.4 Parent Hash
	3.5 The Protocol: CoCoA and Partial Updates

	4 Efficiency
	5 Security
	5.1 Security Model and Safe Predicate
	5.2 Security of CoCoA

	References

	Efficient Schemes for Committing Authenticated Encryption
	1 Introduction
	2 Preliminaries
	3 Committing AE Framework
	4 Some Building Blocks
	5 A Committing Variant of GCM
	6 A Committing Variant of AES-GCM-SIV
	7 Adding Key-Committing Security to Legacy AE
	References

	On the Concrete Security of TLS 1.3 PSK Mode
	1 Introduction
	2 The TLS 1.3 Pre-shared Key Handshake Protocol
	3 Code-based MSKE Model for PSK Modes
	3.1 Key Exchange Syntax
	3.2 Key Exchange Security

	4 Key-Schedule Indifferentiability
	4.1 Indifferentiability for the TLS 1.3 Key Schedule in Three Steps

	5 Modularizing Handshake Encryption
	6 Tight Security of the TLS 1.3 PSK Modes
	6.1 TLS 1.3 PSK-only/PSK-(EC)DHE as a MSKE Protocol
	6.2 Tight Security Analysis of TLS 1.3 PSK-(EC)DHE
	6.3 Proof overview
	6.4 Full Security Bound for TLS 1.3 PSK-(EC)DHE and PSK-only

	7 Evaluation
	References

	Correction to: Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security
	Correction to: Chapter “Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security” in: O. Dunkelman and S. Dziembowski (Eds.): Advances in Cryptology – EUROCRYPT 2022, LNCS 13276, https://doi.org/10.1007/978-3-031-07085-3_11

	Author Index

