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Abstract. At EUROCRYPT 2021, Beierle et al. presented the first pub-
lic analysis of the GPRS ciphers GEA-1 and GEA-2. They showed that
although GEA-1 uses a 64-bit session key, it can be recovered with the
knowledge of only 65 bits of keystream in time 2%° using 44 GiB of
memory. The attack exploits a weakness in the initialization process of
the cipher that was presumably hidden intentionally by the designers to
reduce its security.

While no such weakness was found for GEA-2, the authors presented an
attack on this cipher with time complexity of about 2*°. The main prac-
tical obstacle is the required knowledge of 12800 bits of keystream used
to encrypt a full GPRS frame. Variants of the attack are applicable (but
more expensive) when given less consecutive keystream bits, or when the
available keystream is fragmented (it contains no long consecutive block).

In this paper, we improve and complement the previous analysis of
GEA-1 and GEA-2. For GEA-1, we devise an attack in which the mem-
ory complexity is reduced by a factor of about 2'* = 8192 from 44 GiB to
about 4 MiB, while the time complexity remains 2%°. Our implementa-
tion recovers the GEA-1 session key in average time of 2.5h on a modern
laptop.

For GEA-2, we describe two attacks that complement the analysis of
Beierle et al. The first attack obtains a linear tradeoff between the num-
ber of consecutive keystream bits available to the attacker (denoted by
£) and the time complexity. It improves upon the previous attack in the
range of (roughly) ¢ < 7000. Specifically, for £ = 1100 the complexity of
our attack is about 2°%, while the previous one is not faster than the 264
brute force complexity. In case the available keystream is fragmented, our
second attack reduces the memory complexity of the previous attack by
a factor of 512 from 32 GiB to 64 MiB with no time complexity penalty.

Our attacks are based on new combinations of stream cipher crypt-
analytic techniques and algorithmic techniques used in other contexts
(such as solving the k-XOR problem).

1 Introduction

GPRS (General Packet Radio Service) is a mobile data standard that was widely
deployed in the early 2000s. The standard is based on the GSM (2G) technology
established by the European Telecommunications Standards Institute (ETSI).
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Encryption is used to protect against eavesdropping between the phone and
the base station, and two proprietary stream ciphers GEA-1 and GEA-2 were
initially designed and used for this purpose.

1.1 First Public Analysis of GEA-1 and GEA-2

Recently, Beierle et al. presented the first public analysis of GEA-1 and GEA-
2, which should ideally provide 64-bit security [2]. Remarkably, the authors
described a weakness in the initialization process of GEA-1, showing that two
of its three internal linear feedback shift registers (LFSRs) can only assume 249
values out of the 264 possible. This led to a practical meet-in-the-middle (MITM)
attack in time complexity 240 and memory complexity 44.5 GiB. The attack only
needs 65 bits of known keystream (24 from the same frame), which can be easily
deduced from the ciphertext assuming knowledge of 65 plaintext bits (that can
be obtained from metadata such as headers). The attack is therefore completely
practical, as demonstrated by the authors. Since the attack recovers the 64-bit
session key, it allows to decrypt the entire GPRS session.

The weakness of GEA-1 is believed to have been intentionally introduced and
hidden by the designers, presumably due to strict export regulations on cryp-
tography that were in effect in 1998 when the cipher was designed. To support
this hypothesis, [2] carried out extensive experiments on random LFSRs which
showed that it is very unlikely that the weakness occurred by chance. In the
followup work [3], Beierle, Felke and Leander showed how to construct such a
weak cipher efficiently.

The initialization weakness of GEA-1 is not present in the stronger cipher
GEA-2 (which also uses a fourth register to produce the output). Yet, the authors
of [2] presented an attack on GEA-2 which showed that it does not provide the
ideal 64-bit security. Specifically, given 12800 bits of keystream used to encrypt
a full GPRS frame, the complexity of the attack is about 24> GEA-2 evaluations
and it requires 32 GiB of memory. It is based on a combination of algebraic and
MITM attacks.

The main challenge in practice is in obtaining the 12800-bit consecutive
keystream, which may require social engineering or additional ad-hoc meth-
ods. Therefore, the authors presented a data-time tradeoff curve showing that
the crossover point for beating exhaustive search is about 1468 consecutive
keystream bits.

A variant of the attack is also applicable in case the known available keystream
used to encrypt a frame is fragmented and contains no long consecutive block. In
particular, given 11300 bits of fragmented keystream, the time complexity of the
attack becomes roughly 2°°, while the memory complexity remains 32 GiB.

Impact of Attacks. The ETSI prohibited the implementation of GEA-1 in
mobile phones in 2013. On the other hand, it is still mandatory to implement
GEA-2 today [10].

Surprisingly, the authors of [2] noticed that modern mobile phones still sup-
ported GEA-1, deviating from the specification. As described in [2], this could
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have severe implications as it opens the door for various types of downgrade
attacks. Consequently, after disclosing this vulnerability, test cases were added to
verify that the support of GEA-1 is disabled by devices before entering the market.

In contrast, ETSI followed the mid-term goal to remove the support of GEA-
2 from the specification. Yet, specification changes require consent of several
parties and may take a long time.

1.2 Owur Results

In this paper, we describe several attacks on GEA-1 and GEA-2 that improve
and complement the ones of [2]. Our attacks are summarized in Table 1.

Attack G1. Attack G1 reduces the memory complexity of the previous attack
on GEA-1 by a factor of about 2'3 = 8192 to 4 MiB, while the time complexity
remains 240 GEA-1 evaluations.! We implemented the attack and executed it
on a modern laptop. Averaged over 5 runs, it recovers the GEA-1 session key in
average time of 2.5h. In comparison, as it is difficult to run the attack of [2] on
a laptop due to its high memory consumption, it was executed on a cluster.
For GEA-2, we present two attacks that focus on scenarios where the attacker
obtains limited data which may be easier to acquire in practice. In general,
the feasibility of assumptions on the available data depend on the exact attack
scenario, and our goal is to describe attacks that optimally utilize this data.

Attack G2-1. Attack G2-1 assumes the attacker obtains ¢ bits of consecutive
keystream. The complexity of this attack is about 264/(¢ — 62) GEA-2 evalua-
tions. For example, given ¢ = 126 (a keystream of moderate length), it already
has a non-negligible advantage by a factor of 64 over exhaustive search. For
¢ = 1100 the complexity of our attack is roughly 2°4, while the previous attack
is not faster than the 254 brute force complexity. In the range ¢ > 7000, the
attack of [2] is more efficient. Our attacks consume a moderately larger amount
of memory than those of [2] (by a factor between 2 and 5, depending on the
variant).

Attack G2-2. Attack G2-2 is mostly interesting when the available keystream is
fragmented. This may occur if (for example) the eavesdropping communication
channel is noisy or not stable, or the attacker only knows parts of the plaintext. In
this scenario, our attack reduces the memory complexity of the previous attack
by a factor of at least 2° = 512 from 23 bytes (32 GiB) to at most 225 bytes
(64 MiB) with no penalty in time complexity. For example, given 11300 bits of
fragmented keystream in a frame, the complexity of the previous attack is about
255 and it requires about 32 GiB of memory. We reduce the memory complexity
to 32 MiB (by a factor of 219). Since the cost of the attack is largely influenced
by its memory complexity, such a reduction is clearly favorable.

! As in [2], we define a GEA-1 evaluation as the number of bit operations required to
generate a 128-bit keystream.
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Table 1. Summery of our attacks.

Cipher | Attack Time Data (bits) Memory | Main technique Section
GEA-1| G1 240 65 4 MiB 3-XOR Sect. 3.4
GEA-2 | G2-1 |264/(¢—62)| £ consecutive 64 GiB 4-XOR Sect. 4.3
GEA-2 | G2-2f 255 11320 fragmented | 32 MiB | Algebraic + MITM | Sect. 4.4

T Specific parameter set for the attack with 11320 bits of fragmented keystream.

Impact of New Attacks. Unlike the work of [2], our work does not have
immediate practical implications. Supposedly, after the measures taken following
the work of [2], GEA-1 should no longer be supported by modern mobile phones.
Regardless, the attack of [2] on GEA-1 is already practical and there is little more
to be gained on this front.

On the other hand, our memory-optimized attack on GEA-1 is still interest-
ing since it shows that the cost of eavesdropping to communication at a large
scale (i.e., simultaneously eavesdropping to several GPRS sessions) is even lower
than predicted by [2]. Indeed, implementing such an attack that requires several
dozens of GiB was not trivial in the early 2000’s, when GEA-1 was in wide use.
With significantly reduced memory consumption, it is much easier to distribute
the attack’s workload among many cheap low-end devices.

As for GEA-2, our attacks provide new and interesting scenarios in which
the cipher can be broken more efficiently than before. These attacks may have
longer-term impact in expediting the removal of GEA-2 from the specification.

Regardless of this work’s practical impact, we view its main contribution as
technical and summarize it below. Analyzing ciphers that have been in wide use
provides additional motivation for this work, yet it is not the only motivation.

1.3 Technical Contributions

GEA-1 and GEA-2 have interesting designs and there is additional insight to
be gained from their analysis. Our techniques build on work that was published
well after GEA-1 and GEA-2 were designed. However, this does not rule out
the possibility that (variants of) these techniques were used (e.g., by intelli-
gence agencies) to break the ciphers in practice. We now overview some of our
techniques.

Optimization and Adaptation of k-XOR Algorithms. In the k-XOR
problem, we are given access to k random functions fi,..., fr and a target
value t, and the goal is to find a k-tuple of inputs (z(*,..., z(*)) such that
A e .. @ fr(z®) = t. Since the outputs of GEA-1 and GEA-2 are cal-
culated by XORing the outputs of their internal registers, using techniques for
solving k-XOR in their cryptanalysis is natural (indeed, the MITM attacks of [2]
essentially solve a 2-XOR problem). However, in our specific case, we wish to
apply additional techniques which are not directly applicable. Consequently, we
optimize and adapt them to obtain our attacks.
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Attack G1. In cryptanalysis of GEA-1, we use the clamping through precomputa-
tion technique, proposed to reduce the memory complexity of k-XOR algorithms
in [4] by Bernstein. Applying the technique naively results in a penalty in time
complexity. Our main observation is that the kK = 3 functions in the correspond-
ing 3-XOR problem are not random, and we show how to exploit a property of
the GEA-1 internal registers to apply the technique with no penalty. Essentially,
the property is that it is possible to efficiently enumerate all internal states of a
register that output a given prefix string.?

Attack G2-1. In Attack G2-1, we attempt to apply Wagner’s k-tree algo-
rithm [17]. For k = 4 it improves upon standard 4-XOR algorithms provided
that the domains of f1, fs, f3, f4 are sufficiently large and many 4-XOR solutions
exist. The algorithm exploits this to efficiently find only one of them. However,
the k-tree algorithm is not directly applicable to GEA-2, as a standard attack
based on 4-XOR can only target a single internal state of GEA-2. Nevertheless,
we show how to adapt a technique developed in [2] (and used in another attack)
which allows to simultaneously target several internal states of the stream cipher.
In our case, this artificially creates more solutions to the 4-XOR problem, and
therefore a variant of the k-tree algorithm is applicable.

Application to the Stream Cipher XOR Combiner. Interestingly, unlike
the other attacks on GEA-2 (including the ones of [2], which exploit the low
algebraic degree of its output), Attack G2-1 does not assume any special property
of the 4 internal GEA-2 registers, whose outputs are XORed to produce the
keystream. The attack is therefore applicable to a generic XOR combiner of 4
stream ciphers with an arbitrary internal structure.

Optimizing Meet-in-the-Middle Attacks by Subspace Decompositions.
A MITM attack is composed of two parts, each iterating over a subspace of vec-
tors. If the vectors of the two subspaces are linearly dependent, we can decompose
them and iterate over their common dependent part in a loop. Each iteration
consists of a MITM attack on smaller independent subspaces, reducing the mem-
ory complexity. This technique is relatively standard (see [1,7,13]), although
typically applied in different settings such as hash function cryptanalysis.

Our attacks use subspace decompositions several times. In a few of these
cases, they are not initially applicable and only made possible in combination
with additional techniques. Specifically, for GEA-1 we use two decompositions
and the second one is made possible by exploiting specific properties of its inter-
nal registers. Attack G2-2 is based on the combined algebraic and MITM (or

2 This property is somewhat related to the sampling resistance property defined in
the context of time-memory tradeoffs for stream ciphers with precomputation [5,6].
However, sampling resistance deals with the complexity of efficiently generating a
single state (specified by some index) that produces an output prefix. On the other
hand, we need to efficiently generate all states with a different efficiency measure.
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2-XOR) attack of [2]. Subspace decomposition is made possible after guessing
the values of carefully chosen linear combinations of variables.

1.4 Structure of the Paper

The rest of this paper is structured as follows. Next, in Sect. 2, we give some
preliminaries. Our attack on GEA-1 is described in Sect. 3, while our attacks on
GEA-2 are given in Sect. 4.

2 Preliminaries

2.1 Description of GEA-1 and GEA-2

We give a short description of the GPRS ciphers GEA-1 and GEA-2, as specified
in [2] (which is currently the only public source for their specification). We only
describe the relevant components for our analysis.

The input to the encryption process of both ciphers consists of a 12800-bit
plaintext (GPRS frame), a 64-bit session key, a direction bit (uplink/downlink),
and a 32-bit IV which is a counter incremented for each frame.

GEA-1. GEA-1 uses three linear feedback shift registers (LFSRs) over Fy,
named A, B and C of lengths 31, 32 and 33, respectively. The registers operate
in Galois mode, namely the bit that is shifted out of a register is XORed to the
bits in a specified set of positions. The output of each register is computed by
a non-linear Boolean function f : F7 — Fy which has an algebraic degree of 4
(see [2] for its specification).

Initialization. The inputs to the GEA-1 initialization process consist of a 64-bit
secret key, a public direction bit, and a 32-bit public IV. The initialization uses
a non-linear feedback shift register (NLFSR) of length 64 to which the inputs
are loaded while clocking the register (refer to [2] for more details).

The NLFSR’s final state is a 64-bit seed. The seed is used to initialize the
registers A, B and C via a linear mapping. The exact details of this mapping are
irrelevant to this paper. However, the weakness of GEA-1 is based on a crucial
property of this mapping (discovered in [2]): the joint 64-bit initial state of the
registers A and C' can only attain 24° values (out of the 2% possible).

We further note that in the event that one of the registers is set to 0 after
initialization, it is reset to a non-zero state. For simplicity, throughout this paper,
we will ignore this unlikely event.

Finally, another property of the initialization that we will use (shown in [2]),
is that given a 96-bit initial state of the registers and the public IV and direction
bits, there is a very simple algorithm that inverts the initialization process and
recovers the session key. This implies that recovering the 96-bit initial state in
the encryption process of a single plaintext (frame) allows to decrypt the entire
session.
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Keystream Generation. After initialization, the cipher starts generating
keystream. The output of each register is calculated by applying f to 7 bits
in specified positions. A keystream bit is computed by XORing the 3 register
outputs. After calculating a keystream bit, each register is clocked once before
producing the next keystream bit.

The feedback positions of each register and the positions which serve as inputs
to f are given in Fig.1 (taken from [2]).

Fig. 1. Keystream generation of GEA-1 and GEA-2. Register D is only present in
GEA-2. Credit: [2].

GEA-2. GEA-2 is built similarly to GEA-1, hence we focus on the differences.
Besides the registers A, B, C, the GEA-2 state consists of a fourth 29-bit register
D (which also uses f to produce the output), as shown in Fig.1. The GEA-2
keystream is generated by XORing the outputs of the 4 registers.

The initialization process of GEA-2 is similar to that of GEA-1, but it makes
use of a longer 97-bit NLFSR which produces a 97-bit seed. The seed is then
used to initialize the state of the 4 registers via a linear mapping. Unlike the
initialization mapping of GEA-1, the mapping of GEA-2 does not seem to have
any noticeable weakness (in particular, one can verify that any pair of registers
can assume all possible states). As for GEA-1, given an initial state and the
public inputs, it is possible to efficiently recover the session key.

2.2 Notation

We describe the notation used throughout this paper.
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For an integer n > 0, let [n] = {1,...,n}. For a vector x € Fy and m € [n],
T[] € F§' denotes the vector composed of the first m bits of . For my, may € [n]
such that my < ma, T, m,) € IFZ"”T"“+1 denotes the vector composed of the
bits of = in position m; up to msg (inclusive).

For a linear transformation 7', we denote by Im(7") its image and by ker(7")
its kernel. For a linear subspace V', we denote by dim(V) its dimension.

GEA-Related Notation. For the register A, we denote by A € F3! its internal
state, and by fa : F3! — {0,1}* the output of A starting from the given internal
state. Typically, we will refer to specific bits of this function. In particular, for
m € N, fA(fl)[m] € [FJ denotes the first m output bits. Analogous notation is
defined for the remaining registers B, C, D.

For v € F3° (which represents an internal state of GEA-1), denote by vp) €
F3? its projection on the register B and by vjac) € F5* its projection on the
registers A and C. We use similar notations for the other GEA-1 registers and
for GEA-2.

2.3 Computation Model and Data Structures

Consistently with [2], the complexity of the attacks on GEA-1 and GEA-2 is
measured in terms of the number of operations required to generate a keystream
of 128 bits.

The algorithms we describe use various lookup tables that support the opera-
tions of inserting and searching for elements. We assume that each such operation
takes unit time (which is a standard assumption when using hash tables). This
complexity of lookup table operations will typically be ignored in the total time
complexity calculation, as for most attacks, it is proportional to the number of
basic operations of evaluating the outputs of GEA registers.> We note that [2]
used a slightly different computational model, but it does not have a significant
impact on the final complexity estimations in our case.

2.4 3-XOR Problem

We define a variant of the well-known 3-XOR, problem that is relevant for this
paper. For simplicity, we assume the parameter n is divisible by 3.

Definition 1 (3-XOR). Given access to 8 random functions fi, fa, f3
]1«?;1/3 — F% and a target t € Fy, find (2,23 20)) € (FS/S)?’ such that
AEW) @ fo(z@) @ f3(z3) =t

We note that in a random function the output of every input is chosen uniformly
at random from the range, independently of the other inputs. Since the 3-XOR

3 An exception is Attack G2-2, where most calculations involve different operations.
For this attack we mainly reuse the analysis of [2].
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problem places an n-bit condition on each triplet (x(l),x(z),x(3)), the average
number of solutions is 237/3 . 27" = 1.

The naive 3-XOR algorithm based on sort-and-match (or meet-in-the-middle)
has time complexity of roughly 227/3. Tt is a major open problem to improve
this complexity significantly.* The naive 3-XOR algorithm also requires 2"/3
words of memory (of length O(n) bits). However, unlike time complexity, we can
significantly improve the memory complexity.

Proposition 1 (3-XOR algorithm using enumeration). Let 7 €
{0,...,n/3} be a parameter. Assume there is an (enumeration) algorithm
that, given t' € F}, enumerates all the (expected number of) 22n/3=T pairs
(@), 23) ¢ (F3/3)2 such that (fo(z®) @ f3(2®)),; = t' in time complea-
ity O(227/3=7) and memory complexity O(2™/3~7). Then, there in an algorithm
that solves 3-XOR in time O(2**/3) and memory O(2™/3~7).

Here, the memory complexity is measured in terms of the number of words of
length O(n) bits.

The 3-XOR algorithm is based on the clamping through precomputation tech-
nique that was proposed to reduce the memory complexity of k-XOR algorithms
in [4] by Bernstein (and subsequently used in several works such as [9,14]). For
3-XOR, the idea is to build a (partial) table for f; that fixes its output prefix to
u € F7 (XORed with t(;]), and loop over all prefixes. Specifically, the algorithm
below establishes the proposition.

1. For all v € F3:
(a) — Initialize a table 77, storing elements in IF;/S.
— For all 2V e IF;/37 if fl(x(l))[T] @ t;) = u, store M at index®
fl(l‘(l)) @®tin 77.
(b) Run the algorithm of Proposition 1 on input ¢ = w. For each pair
(), 23)) returned:
— Search 7; for fo(z(®) @ f3(x®). If a match 2! exists, return
(2, 22 23)) as a solution to 3-XOR.

@ The index f; (a:(l)) @t is the input to the hash function of 7;.

Analysis

Correctness. A 3-XOR solution satisfies fi(z()) @t = fo(x?) @ f3(2), and
therefore if fi(z()) @t = u, then (f2(z?) @ f3(2®));) = u. Thus, for
u= fi(zW) @ty (@,2®) is returned by the enumeration algorithm and
the solution is output.

4 There are algorithms that save factors polynomial in n for some variants of the
problem (e.g. [9,12,14,15]), but these are generally inapplicable in our setting.
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Complezity. For each of the 27 iterations, Step 1.(a) requires O(2"/3) time,
while (by the assumption of Proposition 1) Step 1.(b) requires time O(2%"/3-7).
The total time complexity is thus O(22"/3) as claimed. The probability that
f (x(l))m @ t[r) = u is 277. The number of elements stored in 7; in each iter-
ation is therefore O(2"/3~7) with high probability, and by the assumption of
Proposition 1, this dominates the memory complexity of the algorithm.

Enumeration Algorithm for Proposition 1. Below we describe a simple
enumeration algorithm® for Proposition 1. We do not use this algorithm and it
is only described for the sake of completeness.

1. For all v’ € F3:
(a) — Initialize a table 75, storing elements in Fg/3.
— For all z? ¢ Fg/3, if fg(ar(Q))[T] @t =, store 2 in Tp.
(b) For all #® e F3/% if fo(a®)y = u':
— For all z(? in T3, output (z(®,z2®).

Complexity Analysis. The total time complexity is O(max(2"/3+7 22n/3-7)),
where 227/3~7 represents the expected number of output pairs. The memory
complexity is O(2"/37).

Setting 7 = n/6 optimizes the time complexity of the algorithm. Combined
with Proposition 1, this gives a 3-XOR algorithm with time and memory com-
plexities of O(22"/3) and O(2"/%), respectively.

2.5 4-XOR Problem

We consider the following variant of the 4-XOR, problem. For simplicity, assume
the parameter n is divisible by 4.

Definition 2 (4-XOR). Given access to 4 random functions f1, fa, f3, fa :
F3'* — Fy and a target t € Fy, find (20,2, 2@ 20) € (F/)* such that
filzW) @ fo(z®@) @ f3(2P)) @ fo(a@®) =1t

As we have an n-bit condition on each quartet (m(l), 22 23 21 the average
number of solutions is 24™/4. 27" = 1.

A naive meet-in-the-middle algorithm has time complexity of about 2"/2 and
requires 2"/2 words of memory. It is not known how to substantially improve
its time complexity. On the other hand, the memory complexity of the naive
algorithm can be significantly reduced to 2™/* using a variant of the Schroeppel-
Shamir algorithm [16], which is described in [11] (for the subset-sum problem).

The idea is to enumerate over all u € Fg/ 4, representing the values
F1@) g @ F2(2P) g © ) and f3(2P) g & F1(2™) ),

5 The full 3-XOR algorithm is similar to the 3-SUM algorithm of Wang [18].
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which are equal for a 4-XOR solution. This allows to split the 4-XOR problem
into two 2-XOR problems, each solved by a MITM procedure. The solutions
of the two 2-XOR problems are then merged to give a solution to the original
4-XOR problem.

Wagner’s k-tree algorithm [17] provides an improvement for k&-XOR when the
domains of the functions are larger. For k = 4, if fi, fo, f3, fa : IF;L/ RN Fy, then
the number of expected solutions is 24™/3 .27 = 27/3 and the k-tree algorithm
finds one of them in time and memory complexities of O(2"/%). The high-level
idea is that we only need to enumerate over a single u € IF;L/ % to find a solution
with high probability.

In the general case where f1, fa, f3, f4 : F5 — F3 for n/4 < k < n/3, a full
tradeoff algorithm was devised in [11]. Its time complexity is O(2" %), while its
memory complexity is O(2").

3 Memory-Optimized Attack on GEA-1

In this section we describe our memory-optimized attack on GEA-1. We begin
by describing the findings of [2] regarding the initialization process of GEA-1
in Sect.3.1, and the corresponding attack in Sect.3.2. We then optimize the
memory complexity in two steps. The first step is based on a simple observation
and reduces the memory complexity by a factor of about 2% = 256 to 128 MiB.
The second step further reduces the memory complexity by a factor of about
2° = 32 to 4 MiB. While the additional reduction is only by a factor of 32, it
is clearly non-negligible and technically more interesting. Furthermore, some of
the ideas will be reused in Attack G2-2 on GEA-2.

3.1 Weakness in the GEA-1 Initialization Process

The initialization process of GEA-1 defines an injective mapping M : F$* — F36
which maps the seed to an initial state (A4, B, C'). We can decompose the mapping
according to its projections on the different registers:

My : F3* — F3', Mp : F§* — F3?, M : F3* — F5°.

Further define
My - FS* — FS?

as the projection of M onto (121, C‘)

Crucially, it was observed in [2] that dim(ker(Mac)) = 24, where ideally it
should be 0. This implies that dim(Im(Mac)) = 64 — 24 = 40 and thus the state
(fl, C’) obtained after initialization can only assume 240 values.

Decomposition of the Initialization Mapping. We have dim(Im(Mp)) =
32 and therefore dim(ker(Mp)) = 64 — 32 = 32 (and also dim(ker(Mac)) = 24).
Furthermore, dim(ker(Mpg) Nker(Mac)) = 0.
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Hence, F$* can be decomposed as a direct sum into
F$* = W Bker(Mac) Bker(Mg),

where dim(W M) = 64 — dim(ker(Mac)) — dim(ker(Mp)) = 8.
It will be more convenient to work directly over Im(M) rather than over F§*
(here, we slightly deviate from [2]). Thus, let

B) = {(0,2,0) € F3! x F32 x F33} and UA) = {(z,0,y) € F3! x F32 x F33}.

Define V(M) as the image of W) under M, V(® < U) as the image of
ker(Mac) under M and V) ¢ UME) as the image of ker(Mp) under M. We
have

In(M)=vOBvAave), (1)

where
dim(VM) =8, dim(V®) = 24, dim(V®)) = 32.

The decomposition above implies that every state (A4,B,C) e Im(M)
(obtained after initialization) can be uniquely represented by a triplet

(WD, 6 @) e Y % V@ Y@

such that
( B ) v @@ g3,

2)
Since U[(AC] =0 and v[(B)] =0, then

B=w"av® e v®)E =" eo®)4 and
(A4,0) = (0D & 0@ §v®) 401 = (0D @) aq.

3.2 Basic Meet-in-the-Middle Attack

Below we describe the basic attack of [2] with minor differences and using some-
what different notation. We assume for simplicity that the algorithm is given
as input the consecutive keystream 23y}, and additional keystream that allows
verifying that the initial state (or key) is correctly recovered. However, as noted
in [2], it can be easily adjusted to use only 24 bits from the same frame.

1. For all v ¢ V(1.
(a) Initialize a table Té’(l), storing elements in F32.
(b) For all v® € V) let B = (v(!) ®v@) 5. Store Bin Té’(l) at index
f5(B)3a.
2. For all v(M) € V(1):
(a) For all v® € VO let (4,0) = (v & v(g))[AC Search ’T“ " for
fa(A ) 321 @ fe(C )[32 © 2[3). For each match B:
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— Test the state (A,E,C’), and if the test succeeds, recover and
output the key.

Since the first step is independent of the keystream, in [2] it was performed in
preprocessing.

Testing States. A state (fl, B, C’) is tested by using it to produce more output and
comparing with the (additional) available keystream. Since there are 264 possible
initial states and the attack directly exploits 32 bits of available keystream, the
expected number of states to test is 264732 = 232,

Complexity Analysis. The memory complexity is 2% - 224 = 232 words (dom-

inated by the 28 tables Té’m, each of size 22%) and the time complexity is 240,
dominated by the second step. It is assumed to dominate the complexity of

testing the 232 states.

3.3 Basic Memory-Optimized Attack

In the previous attack the decomposition is only used to obtain a post-filtering
condition. Speciﬁcally, all vectors in V(1) are iterated over independently in both
steps, and v(1) € V(1) determines which small table to access in the second step.
We construct an outer loop over the elements of the common subspace V().
This allows to divide the computation of the previous attack into 28 independent
parts, each using a single small table. We remark that unlike the previous attack,
the small tables are no longer computed during preprocessing. Nevertheless, the
memory-optimized attack seems favorable, as the online complexity is similar to
the previous one, while the memory complexity is reduced. The details of the
algorithm are provided below. It is given as input the keystream z(3z).

1. For all v ¢ V(1.
(a) — Initialize a table 7, storing elements in F32. R
~ For all v® € VP let B = (v @& v@)p. Store B at index
I[B(B )[32 ® z|39) in 7p.
(b) For all v® ¢ VO let (4,C) = (v @ v® )iac). Search Tp for
fa(A ) 32] © fe(C )[32 For each match B:

— Test the state (A,B,C'), and if the test succeeds, recover and
output the key.

Analysis o
Correctness. Let (A, B,C') be the internal state used to produce the keystream.
In particular, it satisfies

F5(B) 391 ® 2391 = fa(A) ) @ fe(C)paay.- (3)
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Consider its decomposition (v @ 3y e VI x V@ x V) such that B =
(v @ 0(2))[31 and (4,C) = (v @ v(g))[AC]. By (3), this state is tested in
Step 1.(b) for the corresponding value of v(!) and the correct key is output.

Complezity. The time complexity of the attack remains 28232 = 240, dominated
by the 28 executions of Step 1.(b). The memory complexity (dominated by each
Tp) is 224 words.

3.4 Attack G1 — Improved Memory-Optimized Attack

We now revisit the previous attack on GEA-1, with the aim of further improving
its memory complexity with only a minor effect on time complexity. Specifically,
similarly to 3-XOR, algorithms, given a prefix string, we would like to devise an
efficient enumeration algorithm for internal states (/1, C') that output this prefix
(fa and fo replace fo and f3 in Definition 1).

For GEA-1 we are only interested in a small fraction of states (A, C) that
can be produced by the initialization process. On the other hand, the standard
enumeration algorithm used in Sect. 2.4 for the 3-XOR problem does not impose
such restrictions and therefore mostly outputs states that are irrelevant for us,
rendering it inefficient for our purpose. Therefore, we need to devise a more
dedicated algorithm.

High-Level Overview of the Attack. The attack is based on an enumeration
algorithm similarly to the 3-XOR algorithm of Sect.2.4. Specifically, Proposi-
tion 2 below is analogous to Proposition 1 for 3-XOR. It isolates the challenge
in improving the memory complexity and allows to design the algorithm in a
modular way.

Let V[fé,] C F$* be the projection of V) in (1) on the registers A and C (since

v[(g,)] =0 for all v®® € V3 the projection does not reduce its dimension). Essen-

tially, the challenge is to enumerate all states (A, C') in the 32-dimensional coset
v[(j‘)C] &) I/[Sé] that produce a given output prefix efficiently with limited memory.

Proposition 2. Let T € [8] be a parameter. Assume there is a state enumeration
algorithm that given a target uw € F5 and a vector v e V) enumerates all

the (expected number of) 23*~7 states (A,C) such that (A,C) @ ”[(jx)c] € V[S%]

and fA(A)m &) fc(é)[T] = u in time complexity 23~ and memory complexity
2™ words of 32 bits. Then, there is a key-recovery attack on GEA-1 in time
complezity 2*° and memory complexity about 224~ 4 2™ words of 32 bits.

Obviously, we would like to have 2™ < 224~7 so the overall memory complexity
is about 2247, . o
Note that if (4,C) = (v &) 4¢ as in the previous attack, then (4, C)&

fu[(j‘)c] € V[Efé] as in the above proposition.
We now describe the key-recovery attack that establishes the proposition.

It is based on the clamping through precomputation technique similarly to the



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 71

3-XOR algorithm of Proposition 1. Yet, it uses the additional constraint on the
states (similarly to the basic GEA-1 attack above). As previously, the attack
directly utilizes a keystream 239

Attack G1
1. For all v € V() and all u € F5:
(a) — Initialize a table 73, storing elements in F32.
~ Forall v® € V@ let B = (v @0v@) 5. If fp(B ) 1B 2 = u,
store B at index fB(B)BQ] D 2[32) in Tp.
(b) — Run the algorithm of Proposition 2 on inputs ) and U.
~ For each state (A, C') returned (satisfying (A, C) Doy ) ac) € ‘/[;g;]
and fa(A)[ @ fo(C )ir = u), search Tp for fa(A)y @fc( )[32]-
For each match B:

e Test the state (/Al, B, C’), and if the test succeeds, recover and
output the key.

Analysis
Correctness. Let (A, B, C) be the internal state used to produce the keystream.
In particular

IB(B )[32 ® 2[39) = fa(4 )[32 @ fo(C )[32

We show that when iterating over v(*) and u satisfying v = fa( A)[ 1D 2 =
fa(A ) ] @ fe(C )[T], this state is tested and thus the key is returned.

Consider the state’s decomposition (v(l) @ 03)) e VI x V@ x V& such
that B = (v @ v®)p and (4,C) = (v @ v(?’))[AC]. For u = f5(B)p ® 21,
B is stored at index fe(B )[32] © 2[39) in Tp.

Since (4,C) @ [A)C] = [(Z)C] € V[S’é] and fa(A )T] @ fo(C )[T] = u, the
enumeration algorithm returns (A, C) and (A, B, C) is tested as claimed.

Complexity. The complexity of all 2877 executions of Step 1.(a) is 2877 - 224 =
23247 < 240 gvaluations of (32 bits of) f5. By Proposition 2, the complexity of all
28+7 executions of Step 1.(b) is 2877.232=7 = 240 (evaluations of f4 and fco) and
it dominates the complexity of the attack. The memory complexity is dominated
by 73 in addition to 2™ of the enumeration algorithm and is 2247 + 2™ words
of 32 bits, as claimed.

Devising a State Enumeration Algorithm. We have reduced the goal to devising
a state enumeration algorithm. If we assume that f4, fo are random functions,
then clearly we cannot produce all solutions required by Proposition 2 in 23277 <
232 time (regardless of the memory complexity), since the size of the domain of

C is 233 (and the number of vectors that satisfy (A, C) @ v(l) € fo)c] is 232).

Our main observation is that the functions fa, fo are not random and we can
utilize their specific properties to devise a dedicated algorithm for GEA-1.
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Proposition 3 (State enumeration algorithm for GEA-1). Fort =5
and m = 7, there is a state enumeration algorithm for GEA-1. Specifically,
given inputs v € V) and u € 3, there is an algorithm that enumerates all
the 240785 = 227 states (A, C) such that (A,C) @v[(j‘)c] € V[fé] and fA(A)[5] ®

fc(C')[5] = u in time complexity 227 using 27 < 2% memory words of 32-bits.

Therefore, Proposition 2 implies that we can recover the key of GEA-1 in
time complexity 20 and memory complexity (slightly more than) 2! 427 words
of 32 bits.® Below we describe the details of the algorithm.

Influence of the State on the Output. We observe that for all registers,
only a subset of the internal state bits influence the first output bits. Specifically,
we will exploit the following property, which is easily deduced from Fig. 1.

Property 1 (Influence of the state on the output).

- fA(fl)[5] only depends on 31 — 5 = 26 bits of A.
- fB(B)[5] only depends on 32 — 7 = 25 bits of B.
- fB(C')[5} only depends on 33 — 11 = 22 bits of C.

Denote these 26 (resp. 25,22) state bit indices of A (resp. B,C) by Ja (resp.
JB,Jc). We note that we use the above property only for registers A and C.

Initial Attempt. An initial idea that exploits Property 1 is to prepare a table
for all possible 222 values of Jo. Then, enumerate over the 22 bits of J4 and
merge the (partial) states according to the linear constraints imposed by V(@)

via the relation (4,C) @ ”[(jx)c*] € V[S%] and the output constraint fa(A);5 ©

fc(é')[5] = wu. While this algorithm satisfies the required time complexity, it
does not give the desired memory saving.

Decomposition by Influential Bits. Let 1A C 48 denote the projec-

[Jadc]
tion of V®) on the 48 influential bits J4 U Jo. Using a computer program, we

caleulated dim (V] ) = dim(V®) = 32.

Recall that we are only interested in states (A, C') that satisfy (A, C )@v[(j‘)c] €
V[f%,], namely contained in the 32-dimensional coset (v(l) b V(?’))[ Ac)- Moreover,
as we are only interested in the first 5 output bits, it is sufficient to consider
only 48-bit partial states in the projected coset (v @& V), ; ., and then
complement them to full 64-bit states (A, C).

Since dim(V[f]i) Jc]) = 32, it is not efficient to iterate over its elements directly,
but the main observation is that we can decompose it according to the bits of
6 Based on this computation, the algorithm requires about 2 MiB of memory. However,

if we use the data structure used in the GEA-1 attack of [2], the memory complexity
would be 4 MiB (which is what we claim).
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Ja and Jo and perform a MITM procedure as in the initial attempt above, but
with less memory.

We restrict the discussion to the 48-bit subspace spanned by J4 U Je (viewed
as unit vectors). Let U(/4) C F4® be the 26-dimensional subspace whose vectors
are zero on the bits of Jo. Define the 22-dimensional subspace U(/¢) similarly.

We have

dlm(V[f] )J

. 3 .
dim(V§, 1)+ dim(U2)) — 48 = 32 + 26 — 48 = 10,

| N U(JA)) >

and similarly, dim(V};”, | nUV)) > 324 22— 48 = 6 (both hold with equality,

as verified by our program). Since dim(U(/4) N U/¢)) = 0, we can decompose

v

4 A C
e =V BVWO BV, (4)

where V(A ¢ UU4) and dim(V ) = 10, while V(©) ¢ U/¢) and dim(V(©)) =
6. Therefore, dim(V®*)) =32 — 10 — 6 = 16.

The additional decomposition allows to divide the computation of the MITM
procedure in the initial attempt above into 2'¢ independent smaller procedures,
one for each v(* € V4. Consequently, the size of the table for J¢ is reduced to
22216 — 96 while we need to enumerate over 226716 = 210 yalues for the bits
of J4 and match with the table on the 5-bit output u. The average number of
matches in the table per v(4) € V#) ig 26+10=5 — 911 "and this matching phase
dominates the complexity (which is 216.211 = 227 as required by Proposition 3).
We give the details below.

State Enumeration Algorithm for GEA-1. Based on the decomposition

given in (4), any partial state (z4,yc) € V[SBA) Je] is decomposed as
(4) (A) <) _ @4 (A
T4 = {5} © o[y B V(7 = {5k B[y, and
_ @) (A) ) _ 4 ()
Yo = Ve B Ve1 O V) T Vel @ Ve

Partial states relevant for the MITM procedure in the coset (/NLCN’) € (v o
V(3))[ JaJe] are similarly decomposed as

i— 0 (4) N CONPAN(CY

A= vy ® o5y @ oz} and C = vig, @ v ® vj).
This is the main decomposition used by the algorithm.

Yet, as the algorithm needs to return full 64-bit states and not partial states,
it will be more convenient to directly work with 64-bit vectors and project them
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to partial states when needed. For this purpose, note that since dim(V[(J?’A) Jc]) =

dim(V®)) = 32, then any 48-bit vector v € V[(J?’)J ] can be uniquely extended
via linear algebra to a 64-bit vector v’ € V[f)c] such that v = v[ Jade]"
Similarly, the subspaces V& V(A V(€ (of V(])] ]) can be uniquely

extended to subspaces V(*) V(A) y(©) (of V[E4)c]) such that V[(J4/)Jc] =

V(4),V[(J’:/}C] = V(A),V[SCAI}C] = V(. Moreover, any v3) € V[(g)] can be

uniquely written as
03D = @) @A) g v(C’)’ (5)

where (v, (A0 (@) e VW) 5 V(A 5 (@),

Details of the State Enumeration Algorithm. We extend the output func-
tions fA(A) and fo(C ) to work with partial states A € F3% and C' € F3?
respectively.

Recall that the state enumeration algorithm receives inputs v € V(1) and

u € IF5 and enumerates all 240-8-5 = 227 states (A, C) such that (A, CA')EBU[(;)C] €

V[ jand fa(A )[5] @ fe(C ) = u. The algorithm is given below.

1. For all o) € V(4.
(a) — Initialize a table 7¢, storing elements in F§*.
~ For all v(©) € V(@) et C' = vy )] ® v[( )] ® v[( |- Store v @) at
index fo(C )[5] @ uin Te.
(b) For all v4) € VA et A = v[(}l] @ [( )] D v /]). Search 7¢ for
fA(/Nl)m. For each match v(C"):

~ Let v®) = v™) g0A) §0(©) and return (A, C) = [A)C] v,

Analysis
Correctness. Let (A,C) be such that (A,C) @ [(j‘)c] € V[gé] and fa(A )[5] @

fc(é’)[5] = u. Then, we can write (4,C) = v[(i)c] ®v3) | where v3) € V[Ejé] and

v3) = ™) @A) o€ asin (5). Then, the partial state (A, C) = (A, C) [Tade]
is considered when iterating over v, and (/1, C') is returned as required.

Complezity. The heaviest step is 1.(b). For each o) e VW) s complexity is
210 for iterating over v(4) € V(A) . The expected number of matches in ¢ is
210.96. 975 = 211 (it is a 5-bit matching). Hence, the total complexity of each
iteration is about 2'', while the total complexity is 2'6 - 211 = 227 as claimed in
Proposition 3. In terms of memory, table 7¢ requires 26 words of 64 bits.
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Implementation. We implemented the attack in C++ and experimentally veri-
fied it on a laptop with an AMD Ryzen-7 5800H processor. The program recov-
ered the GEA-1 session key in 153 min, averaged over 5 runs. As the attack of [2]
was implemented on a cluster, it cannot be directly compared to ours. Neverthe-
less, we give a rough comparison in terms of CPU time: our attack takes 6x time
using 32x less cores which are 1.5x faster. This seems favorable and is possibly
a consequence of the reduced allocated memory fitting in cache.

4 Attacks on GEA-2

In this section we analyze the GEA-2 cipher. We begin by giving an overview of
the attacks of [2], as our attacks reuse some of their techniques.

We then describe a simple attack that is based on the Schroeppel-Shamir
variant for 4-XOR. This attack needs only a small amount of keystream. Its
time complexity is about 2% and it requires roughly 32 GiB of memory. We
subsequently describe Attack G2-1 that improves the simple attack in a scenario
where a longer keystream sequence is available: given a consecutive keystream of
¢ bits, the time complexity is about 264/(¢ — 62), while the memory complexity
is about 64 GiB accessed randomly (and additional 96 GiB of storage accessed
sequentially, which can be eliminated at a small cost).

Finally, we describe Attack G2-2 that targets the initialization of GEA-2.
As we explain, for technical reasons the current results are mostly interesting
in case the attacker obtains a long yet fragmented keystream (not containing a
long window of consecutive known bits). Compared to [2], Attack G2-2 provides
an improvement by a factor of (at least) 2° = 512 in memory complexity in the
considered scenario.

4.1 Previous Attacks on GEA-2

Let (A,B,C’,f)) be an internal state. Since the algebraic degree of the filter
function f is 4, any consequent output bit can be symbolically represented as a
polynomial of algebraic degree 4 over Fy in terms of the 125 bits of (A, B,C, 13),
treated as variables.

Assume we receive the encryption of a fully known GEA-2 frame, thus obtain-
ing 12800 keystream bits. Hence, we can construct a system of 12800 polynomial
equations of degree 4 in 125 variables. Since the registers are independent, the
number of monomials that appear in the polynomials is upper bounded by

1 —&-é (21'9) + <3i1> + (31.2) + (323> = 152682.

Attempting to apply a linearization attack, we replace every monomial in each
polynomial equation with an independent variable and try to eliminate variables
by Gaussian elimination on the 12800 linearized polynomial representations of
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the keystream bits. Unfortunately, the number of variables is much larger than
the 12800 available equations, rendering this straightforward approach useless.

Therefore, [2] considers a hybrid approach in which we guess some variables
in order to reduce the number of monomials. However reducing the number of
monomials to 12800 seems to require guessing at least 58 variables.” Each such
guess requires additional linear algebra computations which make the attack
slower than exhaustive search.

Hybrid with Meet-in-the-Middle. The main idea of [2] is to combine the
hybrid approach with a MITM procedure. More specifically, the idea is to guess
some bits of the internal states of the shorter registers A and D and eliminate
their contribution from the keystream by linearization. Then, perform a MITM
procedure on the registers B and C.

We give a high-level overview of this attack. Let (/Al, B , C , lA)) be an unknown
internal state that produces z[12800]. Guess 11 bits of A and 9 bits of D. This
reduces the number of monomials in the remaining 20 + 20 unknown variables
in these registers to Z?zl (") + (¥) = 12390. By Gaussian elimination, find
12800 —12390 = 410 linear expressions (masks) of length 12800, each eliminating
the contributions of A and D from the keystream. The attack essentially only
needs 64 of these masks.

Next, apply the 64 masks to the keystream to derive a 64-bit masked keystream
(that should depend only on B and C if the initial guess is correct). Finally, per-
form a MITM procedure: for each possible value of B, compute f B(B)[12800] and

apply the 64 masks. Store B indexed by the 64-bit results (after XORing with
the masked keystream) in a table. Then, for each possible value of C’ compute
fe(C )[12800], apply the 64 masks and search the table for the 64-bit value. After
additional tests, a match allows to easily construct the full state of GEA-2 and to
recover the key if the state is correct. In order to perform all these 232 4 233 com-
putations of 64 bits efficiently (without expanding the full 12800-bit output and
applying the 64 masks), the attack first interpolates the symbolic representations
of the 64 masked outputs of B and C' (which are Boolean functions of degree 4).
Then, the fast polynomial evaluation algorithm of [8] is used.

There are two optimizations applied to the attack. The first optimization
uses the observation that degree 4 monomials produced by the 20420 eliminated
variables of A and D are unchanged by the guesses (as they are not multiplied
by any other variable in the original polynomial representations that involve the
guessed variables). This allows to perform the Gaussian elimination only once
on these (240) + (%40) = 9690 linearized variables and reduces the complexity of
the remaining work for computing the 410 masks.

Overall, the 29! performed MITM procedures dominate the time and mem-
ory complexities of the attack, which the authors estimate as (about) 2°* GEA-2
evaluations, and roughly 232 words, respectively.

" The authors of [2] showed how to reduce the number of monomials to 12800 by
guessing 59 variables. We have found a way to do it by guessing only 58 variables,
but this does not have a substantial effect on the attack.
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Shifted Keystreams. The second optimization produces 753 internal state targets
for the attack at different clocks. This allows to reduce the number of guesses
by a factor of (roughly) 753 (after 22°/753 guesses, we expect to hit one of the
internal state targets). Specifically, the idea is to produce from the 12800-bit
keystream 753 shifted consecutive keysteams of length 12047 (keystream i starts
from position ¢). Then, by linear algebra, compute 12047 — 753 + 1 = 11295
masks (linear expressions), each having a constant value on all 753 keystreams.
These 11295 constant bits serve as the keystream input to the previous attack
and allows to simultaneously target all 753 shifted keystreams. Since the effective
keystream size is reduced to 11295, we now have to guess 21 variables instead of
20 to perform linearization, but we are expected to hit one of the targets much
faster. The authors estimate the complexity of this attack by about 2> GEA-2
evaluations. The memory complexity remains roughly 23? words (32 GiB).

The authors also calculated the complexity of the optimized attack when
given less data and estimated that it beats exhaustive search given at least 1468
consecutive keystream bits.

Attack on Fragmented Keystream. We note that the final optimization can only
be applied if the attacker obtains a long sequence of consecutive keystream bits.
On the other hand, assume the attacker obtains a frame in which 11300 bits of
keystream at arbitrary locations are known. In this case, the best attack is the
previous one (without the final optimization) that can be adjusted to work in
slightly higher complexity of 2°° GEA-2 evaluations (instead of 2°%), and 232
words of memory.

4.2 Basic 4-XOR Attack

Our first attack adapts the Schroeppel-Shamir variant for 4-XOR (summarized
in Sect.2.5) to an attack on GEA-2. As in the Schroeppel-Shamir variant, we
partition the functions fa, fB, fo, fp into pairs during the merging process. The
time complexity will be dominated by the pair of registers that has the maximal
number of possible states. In order to optimize the attack, we consider the pairs
(fo, fp) and (fa, fz) to obtain time complexity of about 231+32 = 263 (the
number of internal states of registers A and B). This complexity is very close to
exhaustive search, and we describe it below mainly as an exposition to Attack
G2-1 that follows.

Let 7 < 64 be a parameter. We enumerate over all u € [F5, representing the
values of

fe(O) i ® fo(D)jr @ 27 and fa(A) @ f5(B)i-

These values are equal for the correct state (A B, C’, ﬁ)
We assume that we have a 64-bit keystream z[gy (although the attack can
be applied in additional scenarios).
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1. - Initialize a table 7p, storing elements in F2°.
~ For all D € F¥, store D at index fp(D )[T] in 7p.
2. - Initialize a table 74, storing elements in F3!.

~ For all A e F3!, store A at index fA(A)M in Ty.
3. For each u € F3:

(a) - Inltlahze a table ¢ p, storing pairs in F§* x F57.
~ ForallC e 33, search Tp for fo(C )ir] ©@uD 2[7). For each match
D:

e Let vep = fc(C )[r+1 64) © fp(D )T+1 ,64] © Z[ry1,64]- Store
(C D) at index vep in Zep.
(b) For all B € F32, search T4 for fB( )ir] © u. For each match A:
— Letvap = fa(4 ) (r+1,64]© [B(B ) [r+1,64]- Search vap in Top. For
each match (C, D):
e Test the state (121, E,C,D) and if the test succeeds, recover
and output the corresponding key.

Testing States. A 125-bit state (A, B,C, 15) can be tested by computing more
output bits and comparing them against additional available keystream bits (a
total of 125 bits suffice on average). Since we impose a 64-bit condition on the
125-bit internal state, the expected number of states to test is 2125764 = 261 Ag
the total complexity will be about 23, we consider the testing time as negligible.

Analysis o
Correctness. Fix any (C, D). Then, for

u=fo(C)imn @ fo(D)m ® 21,

fe (C’)[T] Sudz = fD(ﬁ)[T] is searched in 7p and D is retrieved. Therefore,
(C’ 15) is stored at index veop in Top. If (A,E, C’,f)) is the correct state, then

u= fa(A) @ fo(B)p

holds as well, implying that when searching T4 for fp( A)[T] @ u, the state A is
retrieved and vap = fa(4 )T+1 64) © fB(B )[7‘+1 64] is searched in 7o p. Finally,
since vap = vop for the correct state (A7 B, C’, D), then it is tested.

Complezity Analysis. The complexity of generating the outputs D in the first
step and building the table is about 22° (in terms of 7-bit computations of fp).
Similarly, the complexity of the second step for A is about 23!.

For each of the 27 iterations of Step 3, the complexity of generating the
outputs C' in Step 3.(a) is about 233. The expected number of matches in 7p is
229.233.277 = 262-7 (a5 we match on 7 bits), which gives the expected number of
entries in 7o p. For Step 3.(b), the complexity of generating the outputs fp (B) is
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about 232, The expected number of matches in 7y is 231-232.277 = 2637 Over-
all, we estimate the total time complexity per u € F3 by about max(233,263-7)
GEA-2 evaluations (producing a 128-bit keystream). To optimize the time com-
plexity (and minimize memory complexity for this choice), we choose 7 = 30.
This gives total time complexity of 230133 = 263,

The memory complexity of all the 3 tables is 229 4+ 231 + 232 < 233 words.

4.3 Attack G2-1 — Extended 4-XOR Attack

The basic attack requires a short keystream and we would like to optimize it in
case additional keystream data is available to the attacker.

We show how to apply a variant of Wagner’s k-tree algorithm that solves 4-
XOR more efficiently than the Schroeppel-Shamir variant in case there are many
solutions. For this purpose, we use the idea of [2] and combine several (shifted)
keystreams by computing common masks. This allows to combine multiple tar-
gets (internal states at different clocks) for the attack, and has an analogous
(although not identical) effect to enlarging the domains of the functions in the
original 4-XOR problem.

In this attack, the value u € Fj that we iterate over in the loop will represent

the values of the linear masks applied to fo(C) @ fp(D) @ =.

Linear Masks. We assume that we have a keystream of length ¢ > 64 bits
denoted by 2. For convenience, we assume that £ is even. Let ' = (£ — 62)/2,
and for j € [¢'] define shifted streams 2\9) = z(; ;1169 € Fﬁl%‘?. Note that the
last index of z(*) is keystream bit number ¢/ +¢' +62 = ¢, which is the last index
of the stream.

We have £ shifted sequences, each of length ¢/ + 63 bits, and can compute
64 linearly independent masks m(, ... m©4 where m( ¢ IE‘§/+63 such that for
each i € [64], m() - 20) = ¢c() for all j € [¢'], where ¢(¥) € Fy is a constant
independent of j (the symbol - denotes inner product mod 2).

Concretely, define a (¢ — 1) x (¢ + 63)-dimensional matrix (denoted by Z),
where the j'th row is 2 @ 2(). The kernel of this matrix is of dimension (at
least) (¢ + 63) — (¢’ — 1) = 64. The masks are a basis of the kernel and can
be computed by Gaussian elimination. The 64 constants ¢(*) are determined by
application of the 64 masks to 2,

Before describing the attack, we define some additional notation: given the
masks m™®), ... m(%¥ (as an implicit input), and a state A, let

ga(A) = {mD - fa(A) 63 icon € FS?

denote the concatenations of the applications of the 64 masks to the (¢ + 63)-
bit output prefix produced by A. Similar notation is defined for the registers
B,C, D. Finally, let ¢ € F$* denote the concatenation of all the constants ),
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Details of the Algorithm. The algorithm is given as input the keystream z.
Let 7 < 64 be a parameter.

Attack G2-1
1. Given 2y, compute the matrix Z € IE‘;Z ~DX(EH63) Jefined above. Then,

derive the masks m™) ... m©) ¢ Fg/+63 and ¢ € F$* by Gaussian
elimination.
2.~ Initialize a table 7p, storing pairs in F3 x F§*.
For all D € F2°, store (D, gp(D)) at index gD( B )ir) in Tp.
~ Build a similar table Ty for A, storing (A, ga(A)) € F3! x F§* at
index gA(A)[T]
3. — Initialize a sequentlal table (array) 7p, storing elements in F§.
~ Forall B e F32, store gp(B ) in 75 in entry B.
Build a smular table T¢ for C, storing go(C) € FS* in entry C.
4. For each u € F3:
(a) — Initialize a table 7¢p, storing pairs in F3° x F3°.
~ Forall C € F3, retrieve go(C) from 7¢. Search Tp for g (C) (11D
u @ c[;). For each match (D,gp(D)):

e Let vep = 9o(C)ir11,64) © 9D(D)[r41,64) D Clr41,64)- Store
(C', 15) at index vop in Top.
(b) For all B € F32, retrieve g(B) from Tp. Search T4 for gB(B)[T] Du.
For each match (A,AgA (A)): R
~ Let vap = ga(A)r41,64) ©9B(B)[r+1,64)- Search vap in Top. For
each match (C, D):

e Test the state (/1, E, C’, D) If the test succeeds, recover and

output the corresponding key.

Testing a state is done by computing output bits and comparing with 2, at all
indices j € [¢'] (on average, we need to compute about [log¢'] < [log/l] < 14
output bits). We note that the attack involves precomputation of additional
tables 7p,7¢ in order to avoid recomputing the masks in each iteration.

Analysis R . o

Correctness. Fixing (C, D) for u = gc(C’)[T] ©9p (D)7 ®cpr, (O D) is stored at

index vop in Top. If (A B C D) is a state that produced the shifted keystream
2\) for j € [¢'], then for every i € [64],

(g (A) ®QB(B) @gc(é) @QD(D))i =

) (falAd) @ f5(B) ® fo(C) @ fp(D))w163 =
m® 20 = i)

where the final equality holds by the properties of the masks. Equivalently,
c=ga(A) @ g5(B) @ gc(C) & gp(D).
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Specifically,
9c(C)ir) ® g0 (D)) ® ¢1r) = ga(A) () ® g5(B)m.

This implies that if the algorithm iterates over u = gc(é) "] © 9D (lA))m ® cr,
then v4p is searched in 7o p and the key is output.

Complezity. Since there are ¢ shifted keystreams z), then the expected number
of corresponding u € FJ values is about ¢ (assuming ¢ < 27) and hence the
algorithm is expected to recover the key in about 27 /¢ iterations.

In terms of time complexity, computing the masks in Step 1 by naive Gaus-
sian elimination requires time complexity of roughly 3 bit operations. Naively
applying the masks to the outputs of all states of each register and building the
tables Ta, 75, 7c, Ip requires about 64 - (229 + 231 4232 4 233) . ¢ < 240 ¢ bt
operations.

Since for GEA-2 we have ¢ < 12800 < 2!, then the linear algebra com-
plexity is upper bounded by roughly 243 4 25¢ ~ 254 bit operations, which is
247 operations on 128-bit words (an upper bound on the complexity in GEA-2
evaluations).

Choosing 7 = 30 as in the basic attack, the complexity of each iteration
remains about 233 and their total complexity is

233230 /¢ = 254 /(¢ — 62).

Since ¢ < 12800, this term dominates the complexity of the attack.

The memory complexity of the attack is calculated as follows: the matrix Z
requires about ¢2 bits of storage, but this will be negligible. The hash tables
T4 and Tp require about 22 + 23! words of 96 bits. The hash table T¢p
requires memory of about 232 words of 64 bits. Altogether, the hash tables
require memory of about 64 GiB. The sequential tables 7g,7¢ require storage
of 232 4233 = 3. 232 words of 64 bits or 96 GiB.

Note that this attack does not exploit any special property of the internal
GEA-2 shift registers, and is thus applicable to any construction that combines
the outputs of 4 independent stream ciphers by a simple XOR operation.

Recomputation of Masked Outputs. It is possible to eliminate the sequential
tables and recompute the masked outputs for B and C on-the-fly at a modest
penalty in time complexity. For GEA-2, this can be done (for example), with
the fast polynomial evaluation algorithm of [8] (as also used in [2]), exploiting
the low degree representation of the output of its registers.

4.4 Attacks Targeting the GEA-2 Initialization

We consider attacks that target the GEA-2 initialization process. Although this
process does not have a significant weakness as in GEA-1, it linearly maps a
97-bit seed to a 125-bit internal state. Therefore, this state resides in a 97-
dimensional linear subspace. Our previous attacks (and the ones of [2]) do not
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exploit this property and it is interesting to investigate whether it leads to
improved attacks. On the other hand, we note that attacks which target the
initialization process cannot benefit from the optimization that allows targeting
multiple states using a consecutive keystream. While such attacks can target
multiple initial states obtained by different GEA-2 frames using similar ideas,
this requires more data and is therefore less practical.

Exploiting the GEA-2 Initialization. Our goal is to exploit the fact that
the state obtained after initialization resides in a 97-dimensional linear subspace
to optimize attacks of GEA-2. This seems difficult at first, as the linear relations
among the registers are complex and each register (and pair of registers) can
attain all possible values. However, a careful examination will allow optimiza-
tions, as described next.

Note that any valid state obtained after initialization must satisfy 125 —
97 = 28 linear equations (masks). Denote these masks by m® ... m®) | where
m®) € F3% for i € [28]. Let (A B,C D) be a state obtained after initialization,
Then, for all g € [28], m") - (A,B,C,D) =

Suppose we WlSh to eliminate g < 28 varlables from each register of an
unknown state (A, B, C, D). Consider m(l) ..,m9) and for each i € [g], guess
the 3 bits

Therefore, we have g linear equations per register (4¢ in total), and by guessing
the values of 3¢ of them we reduce the dimension of the subspace spanned by any
register by g. We can thus symbolically represent the value of any b-bit register
with only b — g variables, which has an identical effect to guessing g variables
per register. Overall, we have eliminated 4g variables at the cost of guessing 3¢
bits.

Attack G2-2 — Hybrid with Meet-in-the-Middle. The guessing strategy
described above can be used to optimize the hybrid attack on GEA-2, yet it is
still not very efficient. We now show how to use the guessing strategy to improve
the memory complexity of the hybrid with meet-in-the-middle attack of [2] with
no penalty in time complexity. This results in the most efficient attack on GEA-2
given a fragmented keystream.

Assume that we have a frame with 12800 known keystream bits. The analysis
can be easily adjusted to a fragmented keystream with less known bits. Recall
that the goal in this attack is to eliminate the contributions of the two registers
A and D from the keystream, and then perform a meet-in-the-middle attack on
registers B and C.
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D, ..,m® as defined in the guessing strategy. For each i € [9]

Consider m!
guess the 2 bits
@ i 0 7
mi4) A, myp, D.

Moreover, guess additional 2 arbitrary bits of A. This has an identical effect to
guessing 11 bits of A and 9 bits of D, and now the attack of [2] described above
(without exploiting shifted keystreams) is directly applicable.

Optimizing Memory Complexity Using Additional Linear Equations. For each
i € [9], we have

() A @ A @ 3 @ 7
Mgy B®migy - € =myg- A@mip - D, (6)
where the right hand side is known. These 9 linear equations reduce the dimen-
sion of the subspace of states (B, C) relevant to the MITM attack. The main
observation is that we can exploit the reduced dimension of this subspace to save

memory by decomposing it, similarly to the attacks on GEA-1.
Let

UB) = {(2,0) e F32 x F3¥} and U@ = {(0,z) € F32 x F3?}.
In addition, define

VD) = {(z,y) € FP x FP | Vi€ [9] : m{p) - w @ mp) -y =0}
The states relevant for the attack form an affine subspace w & V(BS) | where
w € F32 x F33 depends on the guesses on the right hand side of (6).

We have dim(V(BS)) = 65 — 9 = 56. Moreover, as all relevant subspaces are
in a 65-dimensional subspace,

dim(VED nUu®)y > 56 + 32 — 65 = 23 and dim(V P N U D) > 56 + 33 — 65 = 24

(we chose the masks so both hold with equality, as verified by our program).
Since dim(U®) N U©)) = 0, similarly to the attacks on GEA-1, we can decom-
pose the 56-dimensional subspace V(B as a direct sum

VB —yOy@gye),

where dim(V(V) = 9, dim(V®) = 23, dim(V®)) = 24, such that for any
(B,C) € VB we have B = (v @ U(Q))[B] and C' = (v @v(g))[c].

By considering the affine subspace w @ V(B similarly to the attacks on
GEA-1, this decomposition allows to reduce the memory complexity by a factor
of 24m(V™) — 99 6 about 223 words (it still dominates the memory complexity
of the attack).

Interestingly, our advantage in terms of memory complexity increases as the
number of available keystream bits decreases. This is because more variables are
guessed, implying that dim(V (")) and gdim(V)) (which is the advantage factor
in memory complexity) increase. For example, given 11300 bits of fragmented
keystream, the memory complexity is reduced by a factor of 21°.
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Implementation. We implemented the attack in sage, assuming 11300
keystream bits are available. We executed several iterations, each with a dif-
ferent guess for the linear expressions described above. An iteration took about
50 min to execute on a laptop using a single thread. While our implementation
can be significantly optimized, its main purpose was to verify correctness by
checking that the attack indeed returns the correct state for the correct guess.
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