
Case Study: A CSCL Approach
for Object-Oriented Programming Learning

Leandro Flórez-Aristizábal1(B) and Fernando Moreira2

1 Institución Universitaria Antonio José Camacho, Cali, Colombia
learistizabal@admon.uniajc.edu.co

2 REMIT, IJP, Universidade Portucalense & IEETA, Universidade de Aveiro, Aveiro, Portugal
fmoreira@upt.pt

Abstract. AComputer-Supported Collaborative Learning (CSCL) approach was
designed for the Systems Seminar course of the Systems Engineering program at
University Antonio José Camacho (UNIAJC) in Cali (Colombia) [1]. The purpose
was to make Object-Oriented Programming (OOP) learning not an individual
process but a collective one where students play different roles to solve a software-
based problem (from requirements specification to software development). Based
on the results of the experts’ review made in the previous study, a case study is
now proposed to assess the feasibility of this approach. Eight students took part
of this study following each of the stages proposed in the approach and the results
show that even though this is still a good starting point, some changes need to be
made to achieve better results.

Keywords: Computer-supported collaborative learning · Object-oriented
programming

1 Introduction

Getting a group of people to work together, share understanding and achieve a common
goal is a difficult task [2], especially for educators, since achieving true collaboration
requires activities carefully designed for that purpose. Collaborative Learning (CL) is a
strategy where a group of people learn together by interacting with each other and taking
advantage of one another’s skills and knowledge [3, 4]. Positive Interdependences are
considered the ‘heart’ of collaboration [5] and they basically provide the elements to
assure true collaboration among a group of learners. Some of these interdependences are:
goals (group and individual), defining roles, sharing resources among team members,
giving rewards for work done, creating identity for the team.

This paper presents a case study to validate a CSCL approach presented in [1]
with eight students of the Systems Engineering program of the University Antonio José
Camacho (UNIAJC) in a programming course, through interactive collaborative tools
supported by computers. The paper is structured as follows: Sect. 2 shows related work
on collaborative learning for programming courses. In Sect. 3, the CSCL proposal is
presented. Section 4 presents the case study carried out, Sects. 5 and 6 show the results
and discussion, finally Sect. 6 concludes the study.

© Springer Nature Switzerland AG 2022
T. T. Primo et al. (Eds.): WAVE 2021, CCIS 1425, pp. 55–64, 2022.
https://doi.org/10.1007/978-3-031-07018-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07018-1_5&domain=pdf
http://orcid.org/0000-0002-8628-0327
http://orcid.org/0000-0002-0816-1445
https://doi.org/10.1007/978-3-031-07018-1_5


56 L. Flórez-Aristizábal and F. Moreira

2 Background and Related Work

Several studies discuss about how students in programming courses not always achieve
expected results [6–8] and this may be the consequence of multiple reasons such as lack
of motivation or not appropriate teaching/learning methods [9]. Collaborative Learning
could fill this motivational gap by allowing students to learn from each other as a group.
For this research, the following studies were taken as a starting point for the design and
implementation of an approach presented in [1].

AnObject-OrientedProgramming (OOP)Coursewas redesigned in [10]were knowl-
edgemediationwas carried out through a system calledViLLE, a collaborative education
tool that allow students to work on different type of programming problems. While stu-
dents work, the systems automatically assess their work and give proper feedback when
it is submitted.

The course was redesigned to promote collaboration, active learning and to facilitate
communication between students and their teacher. This system also allowed integrating
surveys in a different way that allowed learners to identify visual, auditory, and com-
municative variables related to the process of OOP learning. The software also provided
tutorials as didactic material and the student has the opportunity to express concerns
about the progress with the system.

The results obtained through this system show that the implementation of the eval-
uations through learning environments favors communication. Researchers were also
able to integrate writing skills to be able to compile the code and test it to identify mis-
takes. The main goal was to promote collaboration among students by using learning
environments that allow cognitive, communicative, and technological development in
the learning process related to OOP. The main component of the study is that it supports
the development of collaborative learning as a process of educational innovation. The
number of students that passed the course increased by more than 20% in both instances
of the redesigned course according to the authors of the study. This study shows one way
to redesign a typical programming course, making good use of available technology to
promote collaboration.

Beck and Chizhik [11], review the principles of cooperative learning, and describes
how these principles were incorporated into a comprehensive set of cooperative learning
activities for a CS1 course. In the activities carried out, roles were assigned to the
members of the group for individual accountability.

The group processing is followed by a whole-class debriefing led by the instructor,
which works in tandem with the group activity to help students improve their under-
standing of the material. The effectiveness of these cooperative learning activities was
assessed in a series of educational research studies which spanned three academic years
and included two different instructors. The results of these study showed statistically
significant benefits from the cooperative learning approach, both overall and for a broad
range of subgroups of students.



Case Study: A CSCL Approach 57

This study gives outstanding examples of how students can collaboratively help
others understand the process of software development and this was considered for our
proposal.

3 Computer-Supported Collaborative Learning Proposal for OOP
Teaching

The CSCL proposal of this study is aimed at students from the Systems Engineer-
ing program at university Antonio José Camacho in Cali (Colombia). The course is
Systems Seminar where students learn the basics of software engineering (algorithms,
system requirements, class diagrams and object-oriented programming). In this course,
the students must follow a series of steps to give possible solutions to common problems.

To make this work collaborative, Positive Interdependencies (PI) were considered
to assure collaboration among students. The PIs that were chosen for this approach are:
Roles, Resources, Identity, Goal, Tasks, and Reward (This is the grade for the activity).
Some strategies proposed by Kaila et al. (2016) were also considered in the design of
this approach.

3.1 Defining Roles

First, students are split into groups of 4 people and all of them must choose a name that
identifies them as a team. Each team member is given a role and their correspondent
responsibilities/resources. The roles are explained in detail in the following section.

Role 1: Requirements Specifier (RS). This student is in charge of defining the require-
ments of the system. The client (teacher) gives the information needed for this work.
The student is allowed to ask as many questions as necessary to gather and specify the
requirements of the system.

Role 2: Class Diagrammer (CD). This student receives the requirements and analyzes
them with the rest of the group to make the necessary changes (add/remove/modify the
requirements proposed by theRS). Then theCDdesigns the class diagramof the solution.

Role 3: Algorithm Designer (AD). This student analyzes the class diagram along with
the rest of the group to make the necessary changes to it (add/remove/modify the classes
proposed by the CD). Then, the AD designs the algorithms of the methods defined in
the class diagram.

Role 4: Solution Developer (SD). This student analyzes the algorithms along with the
rest of the group to make the necessary changes to the algorithms. Then, SD develops
the solution in Java programming language.

The stages to be followed are shown in Fig. 1.



58 L. Flórez-Aristizábal and F. Moreira

Fig. 1. Stages of the proposal

Each role has its purpose in each stage. Sometimes students will work on their own
playing their roles in the corresponding stage with the opportunity to discuss the work
done with the rest of the team. The Interaction Diagram stage is the only one with no
specific role for it, instead, all teammembers will work together to define the interaction
between objects. The idea behind this proposal is to let students build knowledge in
the whole process of developing software, from requirements to the final product. It is
important to highlight that changes proposed by the experts’ in the review done in [1]
will be considered for the case study.

4 Case Study

4.1 Methods

Participants. Eight students at University Antonio José Camacho (Cali, Colombia)
were invited to be part of this case study.According to the proposal previouslymentioned,
each team should have 4 students, each one taking one of the roles proposed for the
activity. One teacher was in charge of moderating the activity and his role was to explain
what the students had to do, how much time was going to be invested and the tasks
assigned to each role.

Students’ Profile.

• Age: All students are between 20 and 23 years old.



Case Study: A CSCL Approach 59

• Gender: 3 Girls and 5 boys
• All students are in 3rd semester of the systems engineering program.

Environment. The activity was carried out in a virtual environment through the ZOOM
platform due to the available features such as breakout rooms to separate students in
isolated virtual spaces and thus ensure that they do their work individually. It also offers
text, video, and voice interaction.

Programming Language. The software must be developed in Java language since this
is the language they are learning in the current semester. The user interface (UI) is
managed using the JOptionPane package through pop-up dialogs given that they have
not yet learned how to create their own UIs.

Problem Statement. A small store is having problems with their inventory because all
the information about products is being kept in a notebook (prices and available units),
and this information must be updated every time a unit is sold or if the price changes.
Sometimes, due to the amount of people buying in the store, the person in charge does
not have enough time to write down the information about all the sells made, so the
notebook remains out of date. A simple system is required so that information about
prices, available units of each product and sells can be easily updated or viewed through
a computer.

Setup and Execution. This process guarantees individual accountability and support
from peers in every stage of the process. This process should be repeated interchanging
roles to ensure that all students develop or strengthen different skills, unfortunately, it
was not possible for the 8 students to be in this activity for 4 consecutive weeks to play
all the roles due to their different commitments with the regular semester and their jobs.

This proposal is based on a 3-h class, and two teams of 4 students were created,
each student with a role. Then, the requirement specifiers (1 per team) were isolated in
a virtual classroom and only the teacher was allowed to talk to them and answer the
questions they ask. This first stage (system requirements) lasts 12 min (Fig. 2).

Zoom

Main Room
CDs, ADs, SDs

Room for Requirements
(Requirements Specification)

Teacher and Requirement Specifiers (RSs)
(12 min.)

Fig. 2. Requirements specification stage



60 L. Flórez-Aristizábal and F. Moreira

Once each RS defined the requirements for his/her team, they were called to the main
virtual classroom. Virtual spaces were created (one for each team). The four members
of each team were invited to join their virtual space to discuss the requirements for 8
min (Fig. 3).

Zoom

Main Room
Teacher

Room for Team 1
(Requirements Analysis)

All team members
(8 min.)

Room for Team 2
(Requirements Analysis)

All team members
(8 min.)

Fig. 3. Requirements analysis

With the requirements specified, all team members remained in their virtual room and
defined the Interaction Diagram of the solution. 15 min were given for this stage.

After that, the RS, AD (algorithm designer) and SD (solution developer) left the
room and only the CD had the task to design the class diagram of the solution (17 min).
If the CD needed help (with conceptual elements of the diagram), only the teacher could
provide it (Fig. 4).

Zoom

Main Room
Teacher

CDs, ADs, SDs

Room for Team 1 
(Class Diagram) 

Class Diagrammer
(17 min.)

Room for Team 2 
(Class Diagram) 

Class Diagrammer
(17 min.)

Fig. 4. Class diagram stage

When the CD’s of each team finished their diagrams, the rest of the teammembers joined
the separated virtual space to discuss the diagram for a period of 8 min. After that time,
only the AD stayed in the room to design the algorithms (35 min) while the rest of the
team members returned to the main classroom. If the AD needed help (with conceptual
elements of the algorithm), only the teacher could provide it (Fig. 5).



Case Study: A CSCL Approach 61

Zoom

Main Room
Teacher

RSs, CDs, SDs

Room for Team 1
(Algorithm Design)

Algorithm Designer
(35 min.)

Room for Team 2 
(Algorithm Design)

Algorithm Designer
(35 min.)

Fig. 5. Algorithm design stage

Finally, all team members joined the AD in the team’s virtual space to discuss the
algorithms for a period of 15 min. When the discussion ended, only the SD stayed in
the team’s virtual room to develop the software solution according to the class diagram
and the algorithms designed in previous stages (Fig. 6).

Zoom

Main Room
Teacher

RSs, CDs, ADs

Room for Team 1
(Software Development)

Solution Developer
(60 min.)

Room for Team 2 
(Software Development)

Solution Developer
(60 min.)

Fig. 6. Software development stage

In this stage, the SD had the possibility to ask for help. All members of the team could
join the SD for a maximum of 3 min to solve issues with the software development, then,
the RS, CD and AD had to leave the room. If the problem was not solved, the SD could
ask for help from the teacher. Help from team members could be requested 3 times
maximum (3 min per request). The development of the software could not last more
than 1 h.



62 L. Flórez-Aristizábal and F. Moreira

The remaining 25 min of the class were invested in analyzing the solutions of each
team and discussing the problems faced in the design process.

5 Results

During the activity, the role of the teacher as moderator was very important to control
the time during the activities and provide help when needed. Students from Team 1 were
very agile during the activity, they even finished some stages before the estimated time,
while students from Team 2 had some troubles not only at an academic level but also
at a technological level because 2 of the team members were having serious problems
with their internet connection, so they could not perform their role as expected, this led
to change some of the rules for this team and provide more time to finish some stages.

At the end of the activity, during the analysis of both solutions, the students of Team 1
presented a well-designed solution with minor flaws. The solution presented by students
from Team 2 had some major issues due to not all students were at the same academic
level and some of them needed more time with their team mates to clear their doubts,
but for the purpose of the activity, and with so limited time for it, it was not possible to
give them more time.

Both teams presented:

• Enough and well written requirements
• Interaction diagram (Team 2 had minor problems with it)
• Class diagram (Team 2 had some conceptual doubts about it that were resolved during
the analysis phase with all team members)

• Algorithms for some methods
• A software based on pop-up dialogs (Team 2 had an issue that could not be resolved
within the given time and sometimes the application was unexpectedly closed).

Before ending the activity, students were asked the following open questions:

• What do you think about breaking down the activities, so each student is in charge of
a particular task?

o All 8 students agreed that having different stages and roles for it strengthen their
skills on a particular stage of the process, so they all think that this is something
valuable for the learning process.

• What would you change about the overall activity?

o 4 out 8 students think that the time for algorithm design and software development
is too long for those who are not in charge of these activities, they felt like they
wanted to do more (requirement specifiers and class diagrammers) but all they
could do was wait for the solution developer to request for help.



Case Study: A CSCL Approach 63

• Do you think this method could improve your understanding of the whole process of
software development? Why?

o All 8 students agreed this could improve their learning methods since they count
on their team mates to support the work they are doing and not rely only on their
knowledge but everyone’s in the team. 5 students expressed their willing to be part
of the whole process (4 weeks) in the future.

6 Discussion

Having the teacher moderate the activity is very important to control time, clear doubts
and make students feel there is someone backing up the process.

While this proposal is promising to take advantage of virtual education, these activ-
ities mediated by technology may be interrupted by technical problems like those
experienced by Team 2.

The results showed that dividing the work by stages and roles, help students master
skills and share knowledge with their peers. Although, the time spent by those not
working on algorithms or programming, must be rethought to take advantage of it.
Before carrying out a new case study, it would be important to improve this approach
with these results and opinions given by students.

7 Conclusions and Future Work

This case study was proposed to continue the approach presented in a previous study.
Taking advantage of the current situationwhere some classes are still being held in virtual
environments, a group of students were invited to take part of this study to validate a
CSCL approach for OOP learning.

First, all recommendations given by experts in the previous study were taken and
applied for this case study, such as decrease time for some stages and adding the
Interaction Diagram stage.

The case study showed that working in the development of a simple software-based
system as a team can be beneficial for learning OOP and strengthen individual and
collective skills during the process, understanding that each team member has individ-
ual accountability, and the efforts of all members are necessary to achieve a common
goal. The implementation of positive interdependences made it easier to guarantee true
collaboration.

While the results of the case study are positive, there are still improvements to be
made and more case studies must be carried out to evaluate the process of the learn-
ers performing different roles each time. Case studies with in-person classes are also
necessary to guarantee that it can be beneficial also without virtual environments.



64 L. Flórez-Aristizábal and F. Moreira

References

1. Flórez-Aristizábal, L., Burbano, C.L., Moreira, F.: Towards a computer-supported collabora-
tive learning approach for an object-oriented programming course. In: Rocha, Á., Adeli, H.,
Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds.) WorldCIST 2021. AISC, vol. 1367,
pp. 163–172. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72660-7_16

2. Häkkinen, P., Järvelä, S.: Sharing and constructing perspectives in web-based conferencing.
Comput. Educ. 47(4), 433–447 (2006). https://doi.org/10.1016/j.compedu.2004.10.015

3. Guerrero, L.A.,Mejías, B., Collazos, C.A., Pino, J.A., Ochoa, S.F.: Collaborative learning and
creative writing. In: Proceedings of First Latin American Web Congress (LA-WEB 2003),
p. 7 (2003)

4. Bagheri, S., Rostami, N.P., Pour Kivy, S., Lahiji, E.R.: Collaborative learning, collaborative
teaching & autonomy : a survey study on English as a second/foreign language. Mod. J. Lang.
Teach. Methods 5(3), 348–356 (2015)

5. Laal, M.: Positive Interdependence in collaborative learning. Procedia - Soc. Behav. Sci. 93,
1433–1437 (2013). https://doi.org/10.1016/j.sbspro.2013.10.058

6. Hanks, B., McDowell, C., Draper, D., Krnjajic, M.: Program quality with pair programming
in CS1. ACM SIGCSE Bull. 36(3), 176–180 (2004). https://doi.org/10.1145/1026487.100
8043

7. Jenkins, T.: On the difficulty of learning to program. In: Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences, pp. 53–58 (2002)

8. Wu, P.: Practice and experience in the application of problem-based learning in computer
programming course. In: Proceedings of ICEIT 2010 - 2010 International Conference on
Technology for Education, vol. 1, no. Iceit, pp. 170–172 (2010). https://doi.org/10.1109/
ICEIT.2010.5607778

9. Nikula, U., Gotel, O., Kasurinen, J.: A motivation guided holistic rehabilitation of the first
programming course. ACM Trans. Comput. Educ. 11(4), 1–38 (2011). https://doi.org/10.
1145/2048931.2048935

10. Kaila, E., Kurvinen, E., Lokkila, E., Laakso, M.-J.: Redesigning an object-oriented program-
ming course. ACM Trans. Comput. Educ. 16(4), 1–21 (2016). https://doi.org/10.1145/290
6362

11. Beck, L., Chizhik, A.: Cooperative learning instructional methods for CS1: design, imple-
mentation, and evaluation. ACM Trans. Comput. Educ. 13(3), 1–21 (2013). https://doi.org/
10.1145/2492686

https://doi.org/10.1007/978-3-030-72660-7_16
https://doi.org/10.1016/j.compedu.2004.10.015
https://doi.org/10.1016/j.sbspro.2013.10.058
https://doi.org/10.1145/1026487.1008043
https://doi.org/10.1109/ICEIT.2010.5607778
https://doi.org/10.1145/2048931.2048935
https://doi.org/10.1145/2906362
https://doi.org/10.1145/2492686

	Case Study: A CSCL Approach for Object-Oriented Programming Learning
	1 Introduction
	2 Background and Related Work
	3 Computer-Supported Collaborative Learning Proposal for OOP Teaching
	3.1 Defining Roles

	4 Case Study
	4.1 Methods

	5 Results
	6 Discussion
	7 Conclusions and Future Work
	References




