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Abstract. Drawing inspiration from both the classical Guerino Maz-
zola’s symmetry-based model for first-species counterpoint (one note
against one note) and Johann Joseph Fux’s Gradus ad Parnassum, we
propose an extension for second-species (two notes against one note).
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1 Introduction

Guerino Mazzola’s counterpoint model, founded on the concepts of

1. strong dichotomy, which encodes the notion of consonance and dissonance,
and

2. counterpoint symmetry, which is the carrier of contrapuntal tension and allows
to deduce the rules of counterpoint,

has been successful in explaining the necessity of regarding the fourth as a disso-
nance and obtaining the general prohibition of parallel fifths and tritone skips as
a theorem. It also allows to define new understandings of consonance and disso-
nance, thereby leading to the concept of counterpoint world, i.e., paradigms for
the handling of two-voice compositions represented as digraphs, whose vertices
are consonant intervals and an arrow connects two of them whenever we have a
valid progression. This, in turn, allows us to morph one world into another. See
the monograph [2] and the treatise [4, Part VII] for a thorough account.

Despite these accomplishments, Mazzola’s model is restricted to the case of
first-species counterpoint, which means that only one note can be placed against
another. Hence, in order to increase the potential of Mazzola’s model for analysis
and composition, it is indispensable to extend it to second-species counterpoint
(i.e., two notes against one) and further. Our approach for a first step in this
direction is to extend the notion of counterpoint interval to a 2-interval, i.e., one
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such that two intervals are attached to a cantus firmus, the first one coming in
the downbeat and the second one in the upbeat.

For our extension, the main idea is that the counterpoint symmetries in this
case do not determine another 2-interval successor, but a first-species interval in
the downbeat. The idea behind this is to blend the species of counterpoint more
easily.

2 General Overview of Mazzola’s Counterpoint Model

Here we quickly survey the key aspects of Mazzola’s counterpoint model (we
refer the reader to [2] and [4, Part VII] for a complete account). We consider the
action of the group −→

GL(Z2k) := Z2k � Z
×
2k

(which we call the group of general affine symmetries) on Z2k, which can be
described in the following manner:

Tu.v(x) = vx + u;

here Tu is the transposition by u, and v is the linear part of the transformation.
We know [1,2] that, for any k > 4, there is at least one dichotomy Δ = (X/Y )

of Z2k such that there is a unique p ∈ −→
GL(Z2k) and

p(X) = Y and p ◦ p = idZ2k
,

which is called the polarity of the dichotomy. The dichotomies with this prop-
erty are called strong, and represent the division of intervals into generalized
consonances X and dissonances Y .

Next we consider the dual numbers

Z2k[ε] =
Z2k[X ]
〈X 2〉 = {x + ε.y : x, y ∈ Z2k, ε2 = 0}

in order to attach to each cantus firmus x the interval y that separates it from
its discantus1. Thus for a strong dichotomy Δ = (X/Y ) we have the consonant
intervals

X[ε] := {c + ε.x : c ∈ Z2k, x ∈ X}
and the dissonant intervals Y [ε] = Z2k \ X[ε]. Considering the group

−→
GL(Z2k[ε]) := {T a+ε.b.(v + ε.w) : a, b, w ∈ Z2k, v ∈ Z

×
2k},

there is a canonical autocomplementary symmetry pc
Δ ∈ −→

GL(Z2k[ε]) such that

pc
Δ(X[ε]) = Y [ε], pc

Δ ◦ pc
Δ = idZ2k[ε],

and leaves the tangent space c + ε.Z2k invariant.
1 The discantus can be understood in the sweeping (x + y) or the hanging (x − y)

orientations, but we will only use the sweeping orientation from this point on.
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With this preamble it is possible to state a classical paradox for first-species
counterpoint theory: all the intervals c + ε.k used in a first-species counter-
point composition or improvisation are consonances. Hence, how can any tension
between the voices arise, if at all? Mazzola’s solution is inspired in the fact [6,
pp. 33–35] that it is not that the point c which is to be confronted against c+k,
but it is the consonant point ξ = c1+ε.k1 who will face a successor η = c2+ε.k2.
The idea is to deform the dichotomy (X[ε]/Y [ε]) into (gX[ε], gY [ε]) through a
symmetry g ∈ −→

GL(Z2k[ε]), such that

1. the interval ξ becomes a deformed dissonance, i.e., ξ ∈ gY [ε],
2. the symmetry pc

Δ is an autocomplementary function of

(gX[ε], gY [ε])

which means that p(gX[ε]) = gY [ε],

and thus we can transit from ξ to a consonance η which is also a deformed
consonance, i.e., η ∈ gX[ε] ∩ X[ε]. Since we wish to have the maximum amount
of choices, we request also that

3. the set gX[ε] ∩ X[ε] is of maximum cardinality among the symmetries that
satisfy conditions 1 and 2.

The elements of this latter set are the admitted successors.

3 Dichotomies of 2-Intervals

For the purposes of the second-species counterpoint, we need now an algebraic
structure such that two intervals can be attached to a base tone. In the spirit of
the model presented in the previous section, we take all the polynomials of the
form2

c + ε1.x + ε2.y ∈ Z2k[X ,Y]
〈X 2,Y2,XY〉 = Z2k[ε1, ε2]

where ε1 ≡ X mod 〈X 2,Y2,XY〉, ε2 ≡ Y mod 〈X 2,Y2,XY〉, c is the cantus
firmus and x, y are the intervals (x is for the downbeat and y is for the upbeat).
An element ξ ∈ Z2k[ε1, ε2] is called a 2-interval. If Δ = (X/Y ) is a strong
dichotomy with polarity p = Tu ◦ v, then

X[ε1, ε2] := Z2k + ε1.X + ε2.Z2k

is an dichotomy in Z2k[ε1, ε2]. We choose this dichotomy because the rules of
counterpoint demand that the interval that comes on the downbeat to be a

2 The original inspiration for using dual numbers in counterpoint was the Zariski
tangent space, thus the definition of the tangent space of a morphism of schemes
can be seen as a cue to use this kind of algebraic structure for second-species. See
[7] for details.
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consonance. A polarity for this dichotomy, which is analogous to the one for the
first-species case, is

pc = T c(1−v)+ε1.u+ε2.u ◦ v

because

pcX[ε1, ε2] = T c(1−v) ◦ v.Z2k + ε1.pX + ε2.pZ2k

= Z2k + ε1.Y + ε2.Z2k

= Y [ε1, ε2]

and it is such that

pc(c + ε1.Z2k + ε2.Z2k) = c + ε1.Z2k + ε2.Z2k,

which means pc fixes the tangent space to cantus firmus c as well.
We also check the following formula for future use:

pc1+c2 = T (c1+c2)(1−v)+ε1.u+ε2.u ◦ v (1)

= T c1(1−v)+c2(1−v)+ε1.u+ε2.u ◦ v

= T c1 ◦ T−vc1 ◦ T c2(1−v)+ε1.u+ε2.u ◦ v

= T c1 ◦ T c2(1−v)+ε1.u+ε2.u ◦ v ◦ T−c1

= T c1 ◦ pc2 ◦ T−c1 .

4 Species Projections

If we represent the polynomial c+ ε1.x+ ε2.y as a column vector, the candidates
to (non-invertible) species projections are

g : Z2k[ε1, ε2] → Z2k[ε1], (2)⎛
⎝

c
x
y

⎞
⎠ 	→

(
s 0 0

sw1 s sw2

) ⎛
⎝

c
x
y

⎞
⎠ +

(
t1
t2

)

= [sc + t1] + ε1.[s(w1c + x + w2y) + t2]

for we want to keep it as simple as possible and that the upbeat of the first
interval to influence the downbeat of the successor, but not its upbeat one. We
do not require the transformation to be bijective for we want it to be able to
swap from second-species to first-species if necessary3.

3 For the converse swap the standard rules of counterpoint suffice: we can arbitrarily
define the third component of the 2-interval. This is coherent with the local appli-
cation of counterpoint rules in Fux’s theory, and also with the particular idea of
projection that stems from the fact that, in order to analyze a fragment, we “disre-
gard” notes on the upbeat [3, pp. 41–43].
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Definition 1. A matrix of the form that appears in a species projection is called
a projection matrix.

Let X[ε1, ε2.y] := Z2k+ε1.X+ε2.y. We might define a counterpoint projection
of a 2-interval ξ = c + ε1.x + ε2.y as one such that

1. the condition c + ε1.x /∈ gX[ε1, ε2.y] holds,
2. the square

Z2k[ε1, ε2]
g−−−−→ Z2k[ε1]

pc

⏐⏐	
⏐⏐	pc

Δ

Z2k[ε1, ε2] −−−−→
g

Z2k[ε1]

(3)

commutes, where
pc

Δ := T c(1−v)+ε1.u ◦ v

is the canonical polarity of (X[ε1]/Y [ε1]), and
3. the cardinality of gX[ε1, ε2.y] ∩ X[ε1] is maximal among the projections with

the previous properties.

The reason for the second requirement is that when it is fulfilled then

pc
Δ(gX[ε1, ε2]) = g(pcX[ε1, ε2]) = gY [ε1, ε2],

thus pc
Δ is an autocomplementary function of gX[ε1, ε2].

5 Algorithm for the Calculation of Projections

As with the first-species case, if for a projection of the form

g = T ε1.t2 ◦ M

where M is a projection matrix, we define

g(t1) = g ◦ T ε1.s−1w1t1+ε2.t1

then the relation
T t1 ◦ g = g(−t1) ◦ T s−1t1+ε2.t1 , (4)

holds, and hence contrapuntal projections can be calculated with cantus firmus
0 and successors can be suitably adjusted [2, Theorem 2.2].

Remark 1. The groups
TZ2k , TZ2k+ε2Z2k

are subgroups of the group of automorphisms of X[ε1] and X[ε1, ε2], respectively.

The following identities are needed for the simplification of the calculation
of contrapuntal symmetries.
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Lemma 1. For a species projection of the form g = T ε1.t2 ◦ M the following
holds:

(g(t1))(t2) = g(t1+t2),

T t ◦ g(X[ε1, ε2]) = g(−t)(X[ε1, ε2]) and

T t ◦ g(Y [ε1, ε2]) = g(−t)(Y [ε1, ε2]).

Proof. The first identity is straightforward:

(g(t1))(t2) = (g ◦ T ε1.s−1w1t1+ε2.t1)(t2)

= g ◦ T ε1.s−1w1t1+ε2.t1 ◦ T ε1.s−1w1t2+ε2.t2

= g ◦ T ε1.s−1w1(t1+t2)+ε2.(t1+t2)

= g(t1+t2).

For the second identity, note that

(T t ◦ g)(X[ε1, ε2]) = g(−t) ◦ T s−1.t+ε2.t(X[ε1, ε2])

= g(−t)X[ε1, ε2]

using (4) and Remark 1. The case for Y [ε1, ε2] is proved mutatis mutandis. 
�
Remark 2. If we have a species projection of the form g = T z+ε1.t ◦ M , then we
define f = T ε1.t ◦ M and thus g = T z ◦ f . Using Lemma 1, we have

g(X[ε1, ε2]) = (T z ◦ f)(X[ε1, ε2]) = f (−z)(X[ε1, ε2]).

This means that in our discussion it suffices to consider projections whose
translational part has zero non-dual component.

The following pair of results reduce the amount of computations required to
obtain counterpoint projections.

Lemma 2. Let ξ = x + ε1.k, g a species projection, and z ∈ Z2k. If

ξ /∈ g(X[ε1, ε2]) and px
Δ : g(X[ε1, ε2])

∼=−→ g(Y [ε1, ε2])

then

T z(ξ) /∈ (T z ◦ g)(X[ε1, ε2]) and

pz+x
Δ : (T z ◦ g)(X[ε1, ε2])

∼=−→ (T z ◦ g)(Y [ε1, ε2]).

Furthermore,

(T z ◦ g)(X[ε1, ε2]) ∩ X[ε1] = T z(g(X[ε1, ε2]) ∩ X[ε1])

and, in particular,

|(T z ◦ g)(X[ε1, ε2]) ∩ X[ε1, ε2]| = |g(X[ε1, ε2]) ∩ X[ε1, ε2]|.
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Proof. Since T z is a symmetry of g(X[ε1, ε2]), it follows that T z(ξ) /∈
T z(g(X[ε1, ε2])). Now, using (1),

(px+z
Δ ◦ T z ◦ g)(X[ε1, ε2]) = (T z ◦ px

Δ ◦ T−z ◦ T z ◦ g)(X[ε1, ε2])
= (T z ◦ px

Δ ◦ g)(X[ε1, ε2])
= (T z ◦ g)(Y [ε1, ε2]).

From Remark 1 it follows that

(T z ◦ g)(X[ε1, ε2]) ∩ X[ε1, ε2] = (T z ◦ g)(X[ε1, ε2]) ∩ T z(X[ε1, ε2])
= T z(g(X[ε1, ε2]) ∩ X[ε1])

since T z is bijective. 
�
Theorem 1. If ξ = x + ε1.k + ε2.z ∈ X[ε1, ε2] and g = T t1+ε1.t2 ◦ M is any
species projection that satisfies the counterpoint conditions, then there is a species
projection h = T ε1.t ◦ M such that it also satisfies the counterpoint conditions
for ξ. Moreover: in order to verify that the conditions also hold for h, it suffices
to check them for the 2-interval ε1.k + ε2.z, the projection h(x) and the polarity
p0Δ.

Proof. The replacement of g follows from Remark 2. By Lemma 1, we have

(T−x ◦ h)(X[ε1, ε2]) = h(x)(X[ε1, ε2]).

Using Lemma 2 with z = −x, we can verify that h is a counterpoint projection
using h(x) with the interval T−x(ξ) = ε1.k + ε2.z and the polarity p−x+x

Δ = p0Δ.
From Lemma 2 it also follows that

(h(x)(X[ε1, ε2]))) ∩ (X[ε1] = (T−x ◦ h)(X[ε1, ε2])) ∩ X[ε1]

= T−x(h(X[ε1, ε2]) ∩ X[ε1])

which implies that any cardinalities computation we need to perform with h will
be the same than doing them with h(x). 
�

Therefore, we can set t1 = 0 and work with intervals of the form ξ = ε1.y +
ε2.z. For (3) to commute, it is necessary and sufficient that

t2 + su(1 + w2) = u + vt2. (5)

For ε1.y /∈ gX[ε1, ε2.z] we need

y = sp(�) + t2 + sw2z

for some � ∈ X. Hence, for some � ∈ X we have

t2 = y − s(p(�) + w2z). (6)
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Remark 3. Letting w2 = 0 in (5) and (6), they reduce to the first-species case.
Thus, taking s = v and � = y both are satisfied and hence we conclude that
there exists at least one second-species counterpoint projection.

We only need to work with the following set

gX[ε1, ε2.z] =
⋃

x∈Zk

g(x + ε1.X + ε2.z)

=
⋃

x∈Z2k

(sx + ε1.(sw1x + sw2z + t2 + sX))

=
⋃

r∈Z2k

(r + ε1.(w1r + sX + w2sz + t2))

=
⋃

r∈Z2k

(r + ε1.T
w1r+w2sz+t2 ◦ sX)

to calculate the following cardinality

|gX[ε1, ε2.z] ∩ X[ε1, ε2.z]| =
∑

r∈Z2k

|Tw1r+w2sz+t2 ◦ sX ∩ X|.

When (6) holds, this reduces to

|gX[ε1, ε2.z] ∩ X[ε1, ε2.z]| =
∑

r∈Z2k

|Tw1r+y−sp(�) ◦ sX ∩ X|. (7)

From now on we only need to adapt mutatis mutandis Hichert’s algorithm
[2, Algorithm 2.1] to search projections that maximize the intersection.

We must remark that (5) and (6) are perturbations of the conditions to find
the counterpoint symmetries for the first-species case. These, together with (7),
show that the conditions for deducing a counterpoint theorem [2, Theorem 2.3]
hold again, which yields the following result.

Theorem 2. Given a marked strong dichotomy (X/Y ) in Z2k, the 2-interval
ξ ∈ X[ε1, ε2] has at least k2 and at most 2k2 − k admitted successors given by a
single counterpoint projection.

Algorithm 3. Here χ(x, y) is the function that returns the cardinality T x.yX ∩
X.
Input: A strong dichotomy Δ = (X/Y ) and its polarity Tu.v.
Output: The set of counterpoint projections Σy,z ⊆ H for each ε1.y + ε2.z ∈

X[ε1, ε2].
1: for all y ∈ X and z ∈ Z12 do
2: M ← 0, Σy,z ← ∅.
3: for all s ∈ GL(Z2k) do
4: for all � ∈ X do
5: for all w1, w2 ∈ Z2k do
6: t2 ← y − s((v� + u) + w2z).
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7: if t2 + su(1 + w2) = u + vt2 then
8: if w1 = 0 then
9: S ← 2kχ(t2, s).

10: else if w1 ∈ GL(Z2k) then
11: S ← k2

12: else
13: ρ ← gcd(w1, 2k)

14: S ← ρ
∑ 2k

ρ −1

j=0 χ(jρ + t2 + w2z, s).
15: if S > M then

16: Σy,z ←
{

T ε2.t2 ◦
(

s 0 0
sw1 s sw2

)}
.

17: S ← M .
18: else if S = M then

19: Σy,z ← Σy,z ∪
{

T ε.t2 ◦
(

s 0 0
sw1 s sw2

)}
.

20: return Σy,z.

Example 1. The first (valid4) example of second-species counterpoint in the
Gradus ad Parnassum [3, p. 45] is (see Fig. 1)

ξ1 = 2 + ε1.7 + ε2.0, ξ2 = 5 + ε1.4 + ε2.6, ξ3 = 4 + ε1.8 + ε2.3,

ξ4 = 2 + ε1.7 + ε2.0, ξ5 = 7 + ε1.4 + ε2.5, ξ6 = 5 + ε1.9 + ε2.4,

ξ7 = 9 + ε1.3 + ε2.5, ξ8 = 7 + ε1.9 + ε2.4, ξ9 = 5 + ε1.9 + ε2.4,

ξ10 = 4 + ε1.7 + ε2.9, ξ11 = 2 + ε1.0.

Fig. 1. First (valid) example of second-species counterpoint in Fux’s Gradus ad Par-
nassum.

4 The first example is the student’s attempt to write a second-species discantus by
himself, but he makes two mistakes near the end of the exercise, namely the steps
from the sequence 7 + ε1.7 + ε2.4, 5 + ε1.7 + ε2.4, 4 + ε1.7 + ε2.9. They are also
forbidden steps in the projection model!.
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Some counterpoint projections for the successors are

g1 =
(

7 0 0
0 7 0

)
, g2 = T ε1.6 ◦

(
1 0 0
6 1 0

)
, g3 = T ε1.6 ◦

(
7 0 0
6 7 0

)

g4 = g1, g5 = g2, g6 = T ε1.8 ◦
(

5 0 0
8 5 0

)
,

g7 =
(

11 0 0
0 11 8

)
, g8 = g6, g9 = g6, g10 = g1.

Let us examine in little bit more of detail the first transition. Note that
η = 11 + ε1.4 + ε2.11 is a consonance, and that

g1(η) =
(

7 0 0
0 7 0

) ⎛
⎝

11
4
11

⎞
⎠ =

(
5
4

)
,

which justifies the fact that the 2-interval 5+ε1.4+ε2.6 is an admitted successor.

6 Comparison with Fux’s Approach

Fux states the following in relation to second-species counterpoint (emphasis is
our own) [3, p. 41]:

The second species results when two half notes are set against a whole note.
The first of them comes on the downbeat and must always be consonant;
the second comes on the upbeat and it may be dissonant if it moves from
the preceding note and to the following note stepwise. However, if it moves
by a skip, it must be consonant.

We coded5 in Octave the calculation of counterpoint projections for the Fux-
ian (K/D) dichotomy and some more to compare the performance between
“restricted” Fux rules against the projection model. More explicitly, taking a
second-species step

(0 + ε1.k1 + ε2.t1, c2 + ε1.k2)

such that we can proceed (in first-species) from 0 + ε1.k1 to c2 + ε1.k2, we verify
the following cases:

1. the upbeat interval t1 of the first 2-interval is allowed to be dissonant only
when it connects a valid progression of consonances stepwise, i.e., 0 + t1 is
between 0+k1 and c2 +k2 and it is separated at most 2 semitones from them
and

2. if t1 is consonant, we duplicate the cantus firmus and check if (0+ε.k1, 0+ε.t1),
(0 + ε.t1, c2 + ε.k2) and (0 + ε.k1, 0 + ε.k2) are valid first-species steps.

The results appear in Table 1 for cases 1 and 2.
5 https://github.com/octavioalberto/counterpoint.

https://github.com/octavioalberto/counterpoint


A Projection-Oriented Mathematical Model for Second-Species Counterpoint 85

Table 1. Data for comparison of Fux’s model with restrictions for second species
against the projection model.

Number of steps Case 1 Case 2

Total 192 2592

Valid only for Fux model 13 107

Valid only for the projection model 50 1227

Valid in both models 129 1137

We note that the number of cases the projection model cannot explain and
only Fux can is relatively small: they amount to 6.8% and 4.1% for cases 1 and
2, respectively. Thus we can conclude that the vast majority of what is allowed
by Fux’s rules is allowed by the projection model, or that we have successfully
extended Fux’s handling of dissonance and consonance for second species. Even
if this could be ascribed to the fact that the projection model admits 93.229%
and 91.204% of the total of transitions in cases 1 and 2, respectively, it should be
kept in mind that the original one-species model admits 89.671% of the possible
steps between consonant intervals [5, p. 48].
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