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Abstract. Combinatoriality—the property that obtains when unions of
corresponding subsets within tone rows comprise aggregates—takes var-
ious forms, following the canonical operations that relate the constituent
rows to one another: transposition, inversion, retrograde, and/or retro-
grade inversion. The mathematical field of combinatorics presents tools
to answer such basic questions as: How many combinatorial sets exist in
a space of a given size? To how many equivalence classes do they belong?
Such enumeration procedures involve various techniques that have prior
connections to music theory. In the process of answering these questions,
our results reveal further aspects of combinatorial sets. For instance, no
combinatorial n-chords are held invariant by a translation operation with
an odd index. The set of I-invariant n-chords that are P -combinatorial
is equivalent to the set of those that are I-combinatorial, and this set is
precisely the set of all-combinatorial n-chords. Such information sheds
new light on these intriguing structures.

Keywords: Combinatoriality · Serialism · Combinatorics ·
Enumeration

1 Introduction

Combinatoriality in serial music takes various forms, following the canonical
operations that relate constituent tone rows to one another: prime or transposi-
tion (P ), inversion (I), retrograde (R), and/or retrograde inversion (RI). Inver-
sional combinatoriality, or I combinatoriality, is of particular historical signifi-
cance, as it characterizes much of Arnold Schoenberg’s twelve-tone music. Among
the tone rows in his forty-two twelve-tone compositions, thirty-six (85.7%) use
hexachords that produce I combinatoriality. Regarding the basic set of his Vari-
ations for Orchestra, op. 31, Schoenberg writes [13, p. 116]: “the inversion a fifth
below of the first six tones, the antecedent, should not reproduce a repetition of
one of these six tones, but should bring forth the hitherto unused six tones of
the chromatic scale. Thus, the consequent of the basic set...comprises the tones
of this inversion, but, of course, in a different order,” as shown here in Fig. 1.

Specifically, the tone row from Schoenberg’s op. 31 is combinatorial under
the pitch-class operation I5. To maintain the complement relation between the
hexachords, no two pitch classes that relate by I5 can be present in the same
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Fig. 1. Hexachordal I combinatoriality in the Thema to Schoenberg’s Variations for
Orchestra, op. 31, mm. 34–38.

hexachord, as those pitch classes map onto one another under that operation.
Figure 2 depicts the members of the row’s two hexachords as beads in a binary
necklace; the white beads represent the pitch classes of the first hexachord and
the black beads represent those of the second. We note that the necklace balances
across the I5 axis: for each pitch class c of one hexachord, a corresponding pitch
class d = 11c + 5 (mod 12) from the other hexachord exists directly across
the axis. We can represent any partition of the twelve-tone aggregate into I5-
combinatorial hexachords in this way. Therefore, as we find two possible positions
relative to the I5 axis for any one of the six {c, d} pairs, we note that there exist
26 = 64 hexachords that are I5-combinatorial.

Fig. 2. The tone row of Schoenberg’s Variations for Orchestra, op. 31, as a binary
necklace, balanced across the I5 axis (first hexachord in white, second hexachord in
black).

Whereas we find sixty-four Ix-combinatorial hexachords for each one of the
six odd values of x, we note that there exist fewer than 64 × 6 = 384 I-
combinatorial hexachords in total, as some of these hexachords are combinatorial
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under more than one Ix operator. Consulting a standard post-tonal textbook,
such as [16], we count 348 pitch-class sets that have this property and note
that those hexachords belong to nineteen set classes, but how may we arrive at
these numbers computationally? Furthermore, composers in the twentieth cen-
tury make use of additional types of combinatoriality. For example, Milton Bab-
bitt incorporates “all-combinatorial” sets frequently in his compositions. These
sets display all four of the canonical combinatorial types: P , I, R, and RI. How
might we obtain similar results for these other sorts of combinatorial sets or for
combinatorial sets in modular spaces of sizes other than twelve?

The mathematical field of combinatorics presents tools to answer such basic
questions as: How many combinatorial sets of any type exist in a space of a
given size? What are their symmetries? To how many equivalence classes do
they belong? In the process of answering these questions, our results reveal fur-
ther aspects of combinatorial sets. The general notion of combinatoriality is not
limited to serial procedures or to twelve-element aggregates. The defining con-
cepts that it brings together—complementation and equivalence under transla-
tion and reflection—are of broad musical interest, as both are interval-preserving
when the integrant sets are of the same cardinality (per the Generalized Hex-
achord Theorem, see [17]). The concepts manifest in combinatoriality apply to
numerous musical parameters in addition to pitch, such as rhythmic structure.
Further, the procedures we use to study combinatorial structures incorporate
various techniques that have prior connections to music theory (e.g., [3,6], and
[7]), including the enumeration of serial structures, linking this inquiry with the
investigation of other aspects of musical structure. In particular, [4, especially pp.
135–158] presents a detailed enumeration of tone rows in the standard 12-tone
chromatic space; further, [4, p. 161] enumerates 12-tone tropes (following [5])
according to different types of combinatoriality (including P -, I-, R-, RI-, and
all-combinatoriality), though using different combinatorial techniques from those
in the present study.

2 Music-Theoretical and Mathematical Background

In this section, we give basic information that will apply to later sections. Further
detailed information on the mathematical theory of musical serialism, particu-
larly from the perspective of combinatorics, can be found in [4].

Let Z2n be a modular space of elements (typically pitch classes), called the
aggregate. Let S2n be the set of all orderings of the 2n elements of that space.
S2n is of size (2n)!. Call S ∈ S2n a 2n-tone row, where (s0, s1, ..., s2n−1) is the
particular ordering of elements within the row. G is the canonical group of serial
operations with an action on S2n, generated by unit transposition T1 := si �→
si + 1; inversion Ix := si �→ (2n − 1)si + x, where x ∈ Z2n; and order-position
retrograde Rx : si �→ s2n−1−i + x, where x ∈ Z2n. G is of order 8n.

We call an unordered subset N ⊂ Z2n an n-chord if |N | = n. N2n is the set
of all n-chords in Z2n. We call the orbit of N under the action of the group H of
transposition-and-inversion operators, H(N), a set class, following [2]. N2n/H is
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the set of all n-chordal set classes under the action of H on N2n, and N h
2n is the

set of n-chords that are stabilized by the element h ∈ H. N̄ is the complement
of N in Z2n, and we note that

∣
∣N̄

∣
∣ = |N |.

We are concerned with five types of n-chordal combinatoriality: P -, I-, R-,
RI-, and all-combinatoriality.

Definition 1. Given a 2n-tone row S ∈ S2n, where N = {s0, s1, ..., sn−1},
S has the property n-chordal combinatoriality if and only if there exists
some g ∈ G such that N̄ = {g(s0), g(s1), ..., g(sn−1)}. Then, we call N P -
combinatorial if there exists some x ∈ Z12 such that N̄ = Tx(N); N is I-
combinatorial if there exists some x ∈ Z12 such that N̄ = Ix(N); N is R-
combinatorial if there exists some x ∈ Z12 such that N = Tx(N); and N is
RI-combinatorial if there exists some x ∈ Z12 such that N = Ix(N). Finally,
N is all-combinatorial if all four of the preceding statements are true.

Other forms of combinatoriality involve aggregates formed as unions of m > 2
n-chords; in these cases, the relevant space is of size mn. (For example, in Z12,
we may use trichordal combinatoriality, in which the aggregate comprises four
images of a set of cardinality n = 3; see [14,15]). In this study, however, we
consider only the special case of n-chordal combinatoriality that results from the
unions of two n-chords; hence, we observe that such n-chordal combinatoriality
obtains only in spaces with even-parity size.

As all 2n-tone rows are trivially combinatorial under order-position retro-
grade without transposition R0 [1, p. 91], we note that the full set of combinato-
rial n-chords in Z2n is equivalent to N2n itself. Therefore, we distinguish between
particular subsets of N2n: the subsets of P -combinatorial n-chords (N2n(P )), I-
combinatorial n-chords (N2n(I)), R-combinatorial n-chords (N2n(R)), RI- com-
binatorial n-chords (N2n(RI)), and all-combinatorial n-chords (N2n(all)).

Our enumeration incorporates various standard results from the mathemati-
cal fields of combinatorics, group theory, and number theory. Many of our formu-
lae use powers of 2, which we use to count binary strings, as in our example of the
26 I5-combinatorial hexachords as binary necklaces in Sect. 1 above. Concerning
the powers of 2, certain of our results use the 2-adic order of n.

Definition 2. Given a prime number p, the p-adic order of the integer n is
the highest exponent νp such that pνp | n. (If pνp � n, then νp = 0, since p0 = 1.)

The formula n-choose-k counts the number of all k-subsets of an n-set.

Definition 3. Binomial coefficient.

(
n

k

)

=
n!

k!(n − k)!

We use the Möbius μ-function, which eliminates redundancies in reckoning the
sizes of various sets of combinatorial n-chords by incorporating 0 and −1 among
its three coefficients as potential multipliers.
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Definition 4. Möbius µ-function.

μ(n) =

⎧

⎪⎨

⎪⎩

1, if n = 1
0, if n has a square prime factor
(−1)r, if n has r distinct prime factors.

Moreover, we use the Cauchy-Frobenius Lemma (Lemma 1) to determine num-
bers of orbits in the action of a finite group G on a finite set S (e.g., music-
theoretical set classes). Here, Sg is the set of all elements in S that are stabilized
by g ∈ G.

Lemma 1. Cauchy-Frobenius

|S/G| =
1

|G|
∑

g∈G

|Sg|

Finally, we introduce two theorems that relate to each of the cases in the next
section.

Theorem 1.
∣
∣
∣N T2x

2n

∣
∣
∣ =

∣
∣N2gcd(n,x)

∣
∣ .

Proof. As a cyclic group, the action of the group generated by T2x on Z2n,
x ∈ Z2n, partitions Z2n into 2gcd(x, n) orbits of size n/gcd(x, n). Then, an n-set
N ⊆ Z2n is stabilized by T2x if and only if N is formed by a union of gcd(x, n)
of these orbits. Hence, we find

(
2gcd(x,n)
gcd(x/n)

)

possibilities for a T2x-symmetrical

N , which is equivalent to
∣
∣N2gcd(n,x)

∣
∣, as any N2n contains

(
2n
n

)

n-chords by
definition. ��
Theorem 2.

∣
∣
∣N

T2x+1
2n

∣
∣
∣ = 0.

Proof. As a cyclic group, the action of the group generated by T2x+1 on Z2n,
x ∈ Z2n, partitions Z2n into gcd(2x + 1, 2n) orbits of size 2n/gcd(2x + 1, 2n).
Then, an n-set N ⊆ Z2n is stabilized by T2x+1 if and only if N is formed by a
union of gcd(2x + 1, 2n)/2 of these orbits. However, as gcd(2x + 1, 2n)/2 is odd,
it is not possible to write N as the union of gcd(2x + 1, 2n)/2 orbits. ��

3 Results and Applications

3.1 I Combinatoriality

We begin with I combinatoriality, which is the most commonly studied type
because of Schoenberg’s frequent incorporation of it. As such, it serves as a
useful introduction to our applications. We noted in Sect. 1 that 26 = 64 I-
combinatorial hexachords exist for each of the six odd-indexed inversion oper-
ators in Z12, yet we find fewer than 64 · 6 = 384 I-combinatorial hexachords
in total, and that the reason for this discrepancy is the fact that certain hexa-
chords are combinatorial under several different Ix operators. The same situation
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exists in any space Z2n. First, I combinatoriality is possible only under inver-
sion operators with odd indices, as even-indexed inversion operators always hold
two elements of Z2n invariant (for instance, see [16, p. 316]). Then, we find 2n

I-combinatorial n-chords for any odd-indexed inversion operator I2x+1—hence,
∣
∣N2n(I)

∣
∣ ≤ 2nn—but, again, certain of these n-chords are combinatorial under

more than one inversion operator.
Ultimately, per Lemma 1, to reckon the number of set classes to which

the members of the set of N2n(I) belong, we need to determine how many
I-combinatorial n-chords are stabilized by each member of the transposition-
and-inversion group H. (The set classes are orbits in the action of H on N2n(I).)
The following equation, derived from [9], which counts the number of 2n-bead
balanced binary strings that are rotationally equivalent to reversed complement,
determines the number of I-combinatorial N -chords that are stabilized by even-
indexed transposition operators, including T0.

∣
∣
∣N T2x

2n(I)

∣
∣
∣ =

∑

j|gcd(x,n)

∑

k|j
μ(k)2j/kj (1)

As with our observation in Sect. 1 that the number of I-combinatorial n-chords
that are stabilized by any one particular I2x+1 operator is a power of 2, a power
of 2 serves also as the basis of Eq. 1. Then, the Möbius μ-function (Definition 4)
eliminates redundancies from n-chords that are combinatorial under multiple
values of I2x+1. As an example, the following application illustrates the numbers
of I-combinatorial hexachords in Z12 that are stabilized by the identity element
T2x=0.

– For j = 6:

k = 1 : (1 · 26) · 6 = 384

k = 2 : (−1 · 23) · 6 = −48

k = 3 : (−1 · 22) · 6 = −24

k = 6 : (1 · 21) · 6 =
+12
324

– For j = 3:

k = 1 : (1 · 23) · 3 = 24

k = 3 : (−1 · 21) · 3 =
−6
18

– For j = 2:

k = 1 : (1 · 22) · 2 = 8

k = 2 : (−1 · 21) · 2 =
−4
4
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– For j = 1:

k = 1 : (1 · 21) · 1 = 2

It yields 324 T0-symmetric hexachords that are combinatorial under precisely
one inversion operator, eighteen hexachords that are combinatorial under two,
four hexachords that are combinatorial under three, and two hexachords that are
combinatorial under all six odd-indexed inversion operators, for a total of 348,
the size of N12(I). In this way, we may determine the numbers of I-combinatorial
n-chords that are stabilized by any other even-indexed transposition operator.

The next two equations determine the number of I-combinatorial n-chords
that are stabilized by inversion operators with even and odd indices, respectively.

∣
∣
∣N I2x

2n(I)

∣
∣
∣ = 2((n/2ν2(n))+1)/2 (2)

∣
∣
∣N

I2x+1

2n(I)

∣
∣
∣ = 2α(n) −

∣
∣
∣N I2x

2n(I)

∣
∣
∣ , (3)

where

⎧

⎪⎨

⎪⎩

α(0) = 1
α(2n) = α(n) + 2n−1, for n > 0
α(2n + 1) = 2n, for n ≥ 0

The first equation incorporates the 2-adic order of n (Definition 2). The sec-
ond uses the α-function [10], which determines the number of 2n-bead balanced
binary necklaces which are equivalent to their reverse, complement, and reversed
complement. In this case, we note that 2α(n) counts the total number of I-
combinatorial n-chords that are stabilized by both I2x and I2x+1 for a specific
value of x ∈ Zn, so it is necessary to subtract the number of I-combinatorial
n-chords that are stabilized by the even-indexed inversion operator I2x to deter-
mine the number of those stabilized by an odd-indexed inversion operator. For
instance, given n = 6, Eq. 2 yields four I-combinatorial hexachords that are sta-
bilized by an even-indexed inversion operator I2x. For odd-indexed inversions,
Eq. 3 yields eight hexachords for I2x+1, as α(6) = 6; hence, 2α(6)−

∣
∣
∣N I2x

12(I)

∣
∣
∣ = 8.

Table 1 presents a summary of all the values for stabilized hexachords in the
familiar example of n = 6 in Z12. Thus, by Lemma 1, the number of set classes to
which the members of the set N12(I) belong is the average number of hexachords
stabilized by twenty-four members of the transposition and inversion group H,
or nineteen (see Eq. 4).

348 + (2 · 2) + (6 · 2) + 20 + (4 · 6) + (8 · 6)
24

= 19 (4)

Finally, Table 2 shows the results of applying this enumeration to cases in which
n ≤ 12.
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Table 1. Sizes of N h
12(I) for each member h ∈ H.

∣
∣
∣N

T0
12(I)

∣
∣
∣ = 348

∣
∣
∣N

T1
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I0
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I1
12(I)

∣
∣
∣ = 8

∣
∣
∣N

T2
12(I)

∣
∣
∣ = 2

∣
∣
∣N

T3
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I2
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I3
12(I)

∣
∣
∣ = 8

∣
∣
∣N

T4
12(I)

∣
∣
∣ = 6

∣
∣
∣N

T5
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I4
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I5
12(I)

∣
∣
∣ = 8

∣
∣
∣N

T6
12(I)

∣
∣
∣ = 20

∣
∣
∣N

T7
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I6
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I7
12(I)

∣
∣
∣ = 8

∣
∣
∣N

T8
12(I)

∣
∣
∣ = 6

∣
∣
∣N

T9
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I8
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I9
12(I)

∣
∣
∣ = 8

∣
∣
∣N

T10
12(I)

∣
∣
∣ = 2

∣
∣
∣N

T11
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I10
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I11
12(I)

∣
∣
∣ = 8

Table 2. Numbers of I-combinatorial n-chords and their set classes in spaces Z2n,
n ≤ 12.

Space Z2 Z4 Z6 Z8 Z10 Z12 Z14 Z16 Z18 Z20 Z22 Z24

n = 1 2 3 4 5 6 7 8 9 10 11 12
∣
∣N2n(I)

∣
∣ 2 6 20 54 152 348 884 1974 4556 10056 22508 48636

∣
∣N2n(I)/H

∣
∣ 1 2 3 6 10 19 36 70 136 266 528 1043

3.2 P Combinatoriality

P combinatoriality results when the union of two n-chords that relate by trans-
position form an aggregate. Hence, there exists some value(s) of x ∈ Z2n for
which Tx(N) = N̄ . As with I-combinatorial n-chords, our enumeration of P -
combinatorial n-chords derives from the numbers of n-chords that are stabilized
by various members of the transposition-and-inversion group. Equation 5 gives
the number of n-chords that are stabilized by an even-indexed transposition
operator T2x. It incorporates the β-function [8], which determines the number of
2n-bead balanced binary strings that are rotationally equivalent to their com-
plement. ∣

∣
∣N T2x

2n(P )

∣
∣
∣ = β(gcd(n, x)), (5)

where

⎧

⎪⎨

⎪⎩

β(0) = 1
β(2n) = β(n) + 22n, for n > 0
β(2n + 1) = 22n+1, for n ≥ 0

For instance, as gcd(6, 0) = 6 and β(6) = 72, we use Eq. 5 to determine that there
exist 72 P -combinatorial hexachords in Z12 that are stabilized by the identity
element T0.

Regarding the numbers of P -combinatorial n-chords that are stabilized by
inversion operators with even and odd indices, we note the following result, which
accounts for both cases.
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Theorem 3. N Ix

2n(P ) = N Ix

2n(I)

Proof. Assume that Iy(N) = N̄ for some y ∈ Z2n. Then, by definition, there
exists some inversion operation I2x+1, x ∈ Z2n, such that

N̄ = I2x+1(N)
= I2x+1(Iy(N))
= (I2x+1Iy)(N)
= T2x+1−y(N).

As Iy stabilizes N and I2x+1 maps N to N̄ , we observe that 2x + 1 �= y.
Therefore, T2x+1−y �= T0, so N is also P -combinatorial (by definition). By the
same reasoning, the reverse is true: if N is P -combinatorial, then it is also I-
combinatorial. ��
Corollary 1. N2n(all) = N Ix

2n(I)

Proof. Every all-combinatorial n-chord must belong to N Ix

2n(I), x ∈ Z2n, by defi-

nition. The members of N Ix

2n(I) are I-combinatorial, also by definition. Theorem 3
determines further that they are P -combinatorial. As all n-chords are trivially
R-combinatorial, we may combine these facts to ascertain that the members of
N Ix

2n(I) are also RI-combinatorial; hence, they are all-combinatorial. ��

For example, we reckon the numbers of P -combinatorial hexachords that are
stabilized by the twenty-four elements of the usual transposition-and-inversion
group’s action on Z12 (see Table 3).

Table 3. Sizes of N h
12(P ) for each member h ∈ H.

∣
∣
∣N

T0
12(P )

∣
∣
∣ = 72

∣
∣
∣N

T1
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I0
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I1
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T2
12(P )

∣
∣
∣ = 2

∣
∣
∣N

T3
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I2
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I3
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T4
12(P )

∣
∣
∣ = 6

∣
∣
∣N

T5
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I4
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I5
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T6
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T7
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I6
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I7
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T8
12(P )

∣
∣
∣ = 6

∣
∣
∣N

T9
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I8
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I9
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T10
12(P )

∣
∣
∣ = 2

∣
∣
∣N

T11
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I10
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I11
12(P )

∣
∣
∣ = 8

Using Lemma 1, we are able to determine that the 72 P -combinatorial hex-
achords belong to eight set classes. Accordingly, Table 4 gives the numbers of
P -combinatorial n-chords and their set classes for values n ≤ 12.
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Table 4. Numbers of P -combinatorial n-chords and their set classes in spaces of size
Z2n, n ≤ 12.

Space Z2 Z4 Z6 Z8 Z10 Z12 Z14 Z16 Z18 Z20 Z22 Z24

n = 1 2 3 4 5 6 7 8 9 10 11 12
∣
∣N2n(P )

∣
∣ 2 6 8 22 32 72 128 278 512 1056 2048 4168

∣
∣N2n(P )/H

∣
∣ 1 2 2 4 4 8 10 20 30 56 94 180

3.3 R Combinatoriality

Unlike I and P combinatoriality, in which n-chords map to their complements
under some member of the transposition-and-inversion group, R and RI com-
binatoriality result when some h ∈ H exists that maps N to itself. Specifically,
R combinatoriality occurs when h is a transposition operator. As this situation
always obtains for the identity element T0, we observe that all n-chords are triv-
ially R-combinatorial. Instead of powers of 2—as with Eqs. 1, 2, 3, and 5—the
basis for the enumeration of R-combinatorial n-chords is the binomial coeffi-
cient. The formula in Eq. 6 for determining the numbers of n-chords stabilized
by even-indexed transposition operators brings the binomial coefficient together
with the results of Theorem 1.

∣
∣
∣N T2x

2n(R)

∣
∣
∣ =

(
2n/j

n/j

)

, where j = n/gcd(n, x) (6)

For example, using x = 0 in the familiar case of n = 6, we find
(
12
6

)

= 924
R-combinatorial hexachords that are stabilized by T0.

The numbers of R-combinatorial n-chords that are stabilized by inversion
operators derive from the binomial coefficient as well. However, unlike the for-
mula for determining numbers of n-chords stabilized by transposition operators,
the formulae in Eqs. 7 and 8 differentiate between even and odd values of n.

∣
∣
∣N I2x

2n(R)

∣
∣
∣ =

{(
n−1
n/2

)

+
(

n−1
(n/2)−1

)

, if 2 | n

2
(

n−1
(n−1)/2

)

, if 2 � n
(7)

∣
∣
∣N

I2x+1

2n(R)

∣
∣
∣ =

{(
n

n/2

)

, if 2 | n

0, if 2 � n
(8)

An outline of a simple proof follows. Equations 7 and 8 present four cases: (1)
I2x with 2 | n, (2) I2x+1 with 2 | n, (3) I2x with 2 � n, and (4) I2x+1 with 2 � n,
which we take in turn.

1. For any even-indexed inversion in a space of size 2n, where n is even, the
axis of reflection runs through two fixed points: y and y + n. Hence, the
inversionally symmetrical n-chord may exclude both these points as members,
in which case there exist n − 1 points on either side of the axis from which
to choose one half, n/2, of the elements of the n-chord; or the n-chord may
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include both these points as members, in which case there exist n−1 points on
either side of the axis from which to choose one less than one half, (n/2) − 1,
of the elements of the n-chord.

2. For any odd-indexed inversion in a space of size 2n, where n is even, the axis
of reflection fixes no points. Hence, there exist n points on either side of the
axis from which to choose one half, n/2 of the elements of the inversionally
symmetrical n-chord.

3. For any even-indexed inversion in a space of size 2n, where n is odd, the axis of
reflection runs through two fixed points: y and y+n. Hence, the inversionally
symmetrical n-chord must include one or the other—but not both—of these
points as members. In either of the two cases, there exist n − 1 points on
either side of the axis from which to choose one half of the remaining points,
(n − 1)/2, of the elements of the n-chord.

4. For any odd-indexed inversion in a space of size 2n, where n is odd, the
axis of reflection fixes no points. However, for the n-chord to be inversionally
symmetrical, one point must be fixed. Hence, the situation fails.

Along with the Lemma 1, the above equations enable us to determine the num-
bers of set-classes to which the set of R-combinatorial n-chords belong. Table 5
presents this information for cases n ≤ 12.

Table 5. Numbers of R-combinatorial n-chords and their set classes in spaces of size
Z2n, n ≤ 12.

Space Z2 Z4 Z6 Z8 Z10 Z12 Z14 Z16 Z18 Z20 Z22 Z24

n = 1 2 3 4 5 6 7 8 9 10 11 12
∣
∣N2n(R)

∣
∣ 2 6 20 70 252 924 3432 12870 48620 184756 705432 2704156

∣
∣N2n(R)/H

∣
∣ 1 2 3 8 16 50 133 440 1387 4752 16159 56822

3.4 RI Combinatoriality

RI combinatoriality results when an n-chord maps onto itself under an inver-
sion operation. As with R combinatoriality, we determine the numbers of RI-
combinatorial n-chords by using the binomial coefficient. Moreover, the formula
for reckoning the number of RI-combinatorial n-chords that are stabilized by
even-indexed transposition operators (equivalent to the number of 2n-bead bal-
anced binary necklaces that are equivalent to their reverse [11]) also incorporates
the μ-function, which again eliminates redundancies.

∣
∣
∣N T2x

2n(RI)

∣
∣
∣ =

∑

j|gcd(x,n)

∑

k|j
μ(k)wj, (9)

where w =

{(
j/k
j/2k

)

+
(
(j/k)−1

j/2k

)

+
(
(j/k)−1
(j/2k)−1

)

, if 2 | j/k

2
(

(j/k)−1
((j/k)−1)/2

)

, if 2 � j/k
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As was the case with I and P combinatorialities, the set of Ix-stabilized RI-
combinatorial n-chords in any particular space Z2n is the same as it is for R-
combinatoriality.

Theorem 4. N Ix

2n(RI) = N Ix

2n(R)

Proof. We note that any n-chord is R-combinatorial. Therefore, an n-chord is
RI-combinatorial, if and only if it is stabilized by Ix for some x ∈ Z2n. ��
Using these results, we are now ready to apply Lemma 1 to determine the number
of set classes to which the members of N2n(RI) belong. Table 6 provides sample
results for n ≤ 12.

Table 6. Numbers of RI-combinatorial n-chords and their set classes in spaces of size
Z2n, n ≤ 12.

Space Z2 Z4 Z6 Z8 Z10 Z12 Z14 Z16 Z18 Z20 Z22 Z24

n = 1 2 3 4 5 6 7 8 9 10 11 12
∣
∣N2n(RI)

∣
∣ 2 6 8 38 52 216 268 1062 1232 4956 5524 21848

∣
∣N2n(RI)/H

∣
∣ 1 2 2 6 6 20 20 70 70 252 252 924

4 Conclusions

In this study, we have examined combinatorial n-chords using techniques from
the mathematical fields of combinatorics, number theory, and group theory.
Specifically, we have enumerated the sets of P -, I-, R-, and RI-combinatorial
n-chords and their set classes. In the process, our results reveal further aspects
of combinatorial sets. For instance, we note that the number of T2x-symmetric
combinatorial n-chords in a space of size 2n is equivalent to the total number
of combinatorial n-chords in a space of size 2gcd(n, x) (Theorem 1). No com-
binatorial n-chords are held invariant by a translation operation with an odd
index (Theorem 2). The set of I-invariant n-chords that are P -combinatorial is
equivalent to the set of those that are I-combinatorial (Theorem 3), and this set
is precisely the set of all-combinatorial n-chords (Corollary 1). Similarly, the set
of I-invariant n-chords that are R-combinatorial is equivalent to the set of those
that are RI-combinatorial (Theorem 4).

Several avenues exist for future work on combinatorial n-chords and their
spaces. Whereas this study is limited to aggregates formed from unions of two
n-chords, its methodology could be extended to study aggregate formation that
results from unions of m > 2 P -, I-, R-, and RI-combinatorial n-chords. Further,
we can study sets of combinatorial n-chords from other mathematical perspec-
tives that have yielded significant music-theoretical results, such as the Discrete
Fourier Transform or algebraic topology and geometry. Such investigations will
continue to shed new light on these intriguing structures.



60 R. W. Peck

Acknowledgments. The author would like to thank the anonymous referees of this
paper for their valuable comments and suggestions.

References

1. Babbitt, M.: Set structure as a compositional determinant. In: Peles, S., Dembski,
S., Mead, A., Straus, J.N. (eds.) The Collected Essays of Milton Babbitt, pp. 86–
108. Princeton University Press, Princeton (2003)

2. Forte, A.: The Structure of Atonal Music. Yale University Press, New Haven (1973)
3. Fripertinger, H.: Enumeration and construction in music theory. In: Feichtinger,

H.G., Dörfler, M. (eds.) Diderot Forum on Mathematics and Music: Computational
and Mathematical Methods in Music, pp. 179–204. Österreichische Computerge-
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