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Abstract. In this paper, we use pitch-class vector embeddings to study
scale relationships between composers. Recent research in natural lan-
guage processing (NLP) has used machine learning to derive vector
representations-known as embeddings—for words based on their co-
occurrence.Borrowing fromNLP,weuse theword2vec algorithm to encode
windowsofpitch-classes,orpitch-classvectors, ofmusic.Weshowthatthese
embeddings not only replicate the well-known theoretical circle of fifths,
but can also capture stylistic nuances between composers’ use of scales.
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1 Introduction

In Natural Language Processing (NLP), the word2vec algorithm is a technique
for deriving vector representations-known as embeddings-for words by iterat-
ing through a corpus [7]. Embeddings contain information about the syntactic
placement and the semantic similarity of words. In symbolic music research,
recent studies have explored musical embeddings for chords [6], and motivic
fragments [1], as well as applications for harmonic tension [8], and music gen-
eration [2]. In this paper, we used word2vec to derive scale embeddings from
pitch-class collections of different composers and compare embeddings between
and within their styles.

2 Methodology: Word2vec, Encoding Procedure,
and Training

2.1 Word2vec Algorithm

As said, the aim of the word2vec model is to generate dense vector representa-
tions (embeddings) for words based on their co-occurrence. Each unique word
in a corpus is represented with a corresponding vector, with words that occur
near one another in the corpus having similar embedding vectors. Since words
with semantic similarity have similar syntactic placement, they also have similar
embedding vectors (whether or not they not co-occur). In this paper, we used the
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skip-gram version of word2vec: given a corpus W of words w with surrounding
context-words c, the algorithm maximizes the likelihood of surrounding words:

arg max
θ

∏

w∈W

∏

c∈C

P (c|w; θ) (1)

where vc and vw are vector representations of words v and c respectively and C
is the set of all contexts, the probability P (c|w; θ) is calculated with the softmax
function:

P (c|w; θ) =
exp(vcvw)∑

cᵀ∈C exp(vcᵀvw)
(2)

2.2 Encoding Procedure

As the word2vec algorithm is designed to parse words in a corpus, we needed
both a corpus and a method for encoding musical objects as words-our musical
vocabulary. For the corpus, we used the Yale Classical Archives Corpus, hence-
forth YCAC [11]. The YCAC is a spreadsheet of 13,769 midi files of works by
571 composers. Each midi file is parsed into “slices” containing the set of vertical
pitches at any new pitch onset, time points T as quarter-note offsets from the
beginning of the score, and other metadata.

For each piece, we extracted pitch classes using a sliding windowing proce-
dure. Where a piece at, at+x, . . . , aT consists of slices A at corresponding time
points T , a window of length m is a subsequence st = at, at+x, . . . , at≤t+m. Each
piece therefore contained T − m windows, with each window consisting of m
adjacent slices. Pitch classes in a window were then encoded as fixed-length,
pitch-class vectors PC = {pc0, pc1, ..., pc11} ∈ {0, 1}11 where the pitch class
with subscript 0=C, subscript 1=C#/Db, etc. Present pitch classes in a win-
dow were represented as 1, and absent pitches were represented as 0, i.e. the
C-major scale, for example, is represented as {1,0,1,0,1,1,0,1,0,1,0,1}. In NLP,
this encoding method is also known as one-hot encodings. Note that since our
methodology had no concept of tonic, pitch-class vectors represented multiple
scales simultaneously: C major and A natural minor have the same collection
and were represented identically. This is a significant simplification of scale and
should not be taken as the end goal. Rather, the work here represents a crude
proof-of-concept where future work might use weighted pitch-class vectors to
distinguish pitch-class salience [3].

We then windowed pieces for four well-represented composers in the cor-
pus: Mozart, Liszt, Saint-Saens, and Debussy (Table 1). To find an appropriate
window length, we approximated the standard 7-diatonic-pitch scale by aver-
aging the number of notes per window for windows of length 2–10 quarter
notes (Fig. 1). Reflecting the historical narrative that chromaticism progressively
increased over time, Mozart and Liszt use fewer pitches per window than Debussy
and Saint-Saëns. Given the results of Fig. 1, window size m was set to 6 quarter-
note beats for Mozart and Liszt and 5 for Saint-Saëns and Debussy.

Table 2 shows the total number of windows for each composer and the percent
of major/natural minor and harmonic minor collections for each. 27% of windows
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Table 1. Sampled yale classical archives corpus data.

Composer No. of pieces in YCAC No. of notes Avg. notes per piece

Mozart 882 3,865,439 4,382.58

Liszt 125 806,025 6,448.2

Saint-Saëns 72 504,663 6,913.19

Debussy 39 170,773 4,378.79
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Fig. 1. Average number of notes with different window sizes, where window size is in
quarter-note beats.

in the Mozart model were categorized as diatonic collections, whereas this was
between 10%–14% for the other three composers, reflecting a larger variety of
pitch-class collections for Liszt, Saint-Saëns, and Debussy. For a closer look, we
looked at the top 5 most frequent pitch-class vectors for each composer (Table 3).
Diatonic collections occupied the majority of positions in the table. For Liszt and
Debussy, the most frequent pitch-class vector was the aggregate (all 12 pitches
in a vector). In fact, the aggregate pitch-class vector for Liszt was more frequent
than the next four diatonic sets combined. For Saint-Saëns, the most common
pitch-class collection was an empty vector. These results show that Liszt and
Debussy cycle through pitch classes at a faster notated rate than the others and
that Saint-Saëns often has longer durations with no new pitch classes introduced.

Table 2. Frequency and percent of diatonic collections in windows.

Composer Total no. of windows Total major Total harmonic minor % diatonic

Mozart 464,229 98,490 11,806 27%

Liszt 82,179 6,442 2,282 11%

Saint-Saëns 40,643 4,645 1,093 14%

Debussy 13,923 1,931 125 15%

2.3 Model Parameters

Using the Gensim Python library, word2vec was then used to find embeddings
for the resulting set of pitch-class vectors, mapping pitch-class vectors onto scale
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Table 3. Top 5 frequent pitch-class vectors and their respective frequency sorted by
composer.

Composer #1 frequent #2 frequent #3 frequent #4 frequent #5 frequent

Mozart C maj: 18,347 Bb maj: 17,580 D maj: 17,395 G maj: 16,189 Eb maj: 15,055

Liszt All PCs: 3,187 F# maj: 927 C maj: 798 E maj: 726 A maj: 620

Saint-Saëns No PCs: 1,067 C maj: 921 Eb maj: 853 All PCs: 689 E maj: 588

Debussy All PCs: 487 E maj: 352 C maj: 258 A maj: 207 F maj: 186

embeddings. The scale embeddings here were set to 25 = 32 dimensions. If a
pitch-class vector c was within 6 beats of pitch-class vector w, it was included as
a context pitch-class vector for w, notated as “Context Windows” and “Target
Windows.” For each target window, Word2vec maximizes the probability (using
negative sampling) of context windows within 6 beats. We trained four models,
one on each of the four composers, where each model iterated over the composer-
corpus 20 times.

3 Properties of Embeddings

3.1 The Circle of Fifths According to the Mozart Model

Given the high dimensionality of embeddings, we used t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) to visualize the embeddings in a 2-dimensional
space [10]. The left side of Fig. 2 shows the Mozart model’s scale embeddings plot-
ted in 2 dimensions. This figure resonates with music-theoretical claims about
the circle of fifths (COF). The COF is a metric for scale distance: the further a
scale on the COF, the more distant it is [5]. However, not all fifth-adjacent scales
are equidistant. For example, A major is much closer to D major than it is to E
major. This was likely the effect of absolute key: Mozart wrote more frequently
in D major than in A major, and since pieces often modulated to their dominant
in the classical period, A was drawn closer to D.

Including harmonic minor scales and clustering embeddings with euclidean
distances still captured the COF (right side of Fig. 2). Each color in the figure
are quadrants on the circle of fifths. There is only one minor scale–C# minor
(marked with an asterisk)–located far away from its relative major.

3.2 Composer Embeddings Correlated with the Circle of Fifths

Calculating the cosine distance from C major to each other major scale for each
of the four models resulted in Fig. 3. Beside the embedding distances, we plotted
the distances according to the COF (normalized). COF distances were calculated
based on a unit circle with 12 equidistant points from the center, measured with
both angular and Euclidean metrics. Notably, each model in Fig. 3 makes an
arch, signifying that distance from C gets further around the COF until reaching
its diametrically opposed point (F#/Gb). The models roughly approximate the
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Fig. 2. Mozart model: major scale embeddings clustered with t-SNE (left) and
major/minor scale embeddings clustered k-hierarchical clustering (right).

COF distances, and correlations also values also verify this claim. Correlations
with the angular and Euclidean COF distances are, respectively, Mozart(.84, .9),
Liszt(.78, .86), Saint-Saëns(.89, .94), and Debussy(.94, .96).

Fig. 3. Cosine distances from C-major scale embedding.

Examining Fig. 3 further reveals stylistic differences between composers. The
Mozart model is relatively flat after two steps around the COF–approximately
around .68. If we were to generalize this to other keys, this restates a well-known
intuition: in the style of Mozart, fifths surrounding the tonic key are the most
likely to be modulation goals. Despite having commensurate note-average-per-
window values (Fig. 1), the Liszt model correlated less with the COF than the
Mozart model (or any of the models, for that matter). This reveals his stylistic
tendency to modulate to third-related keys [4,9]: Fig. 3 shows that Ab major–a
scale 4 flats away on the COF–is closer to C than any other scale besides scales
with keys with a single flat (F) or sharp (G).

Surprisingly, the Debussy model had a higher correlation with the COF
(angular and Euclidean) than any of the other models. This could represent
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the disentangling of the tonic-dominant key-relationship dichotomy: whereas
other composers consistently modulate to fifth-related scales, drawing their fifth-
related embeddings close together, the dominant’s relationship is weighted less
in Debussy’s music.

4 Conclusion

We have shown that scale embeddings, encoded as pitch-class vectors, capture
style-specific musical intuition about scale relationships within common-practice
art music. The composers modeled here treat scales differently, resulting in
nuanced distances between embeddings. Future avenues for research should first
more accurately encode pitch-classes to correspond with scale-degree salience,
and might then study the relationship between chord and scale embeddings, and,
perhaps, how this interaction changes between and within composers over time.
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