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Abstract. We expand information segmentation to include additional
properties of music geometry. We establish a distinct metric for invariant
chord structure (harmonic consistency) and models for conjunct melodic
motion and acoustic consonance. We combine these with centricity to
form a unified measure of music geometry. Using geometric predictors
and the LSQOP method, we classify music/non-music with comparable
results to AI/ML, between 76% and 92% f-score.

Keywords: Music geometry · Information geometry · Harmonic
consistency · Harmonic leading · Centricity · Dissonance ·
Consonance · Time-geometry · Qcurve · Quant-curve · Music
retrieval · Music detection · LSQOP

1 Introduction

Music information retrieval (MIR) dominates audio classification, rhythm,
melody, genre and emotion (MER) [19]. MIR began with self-similarity [8],
but focuses now on neural networks (NN, CNN, RNN) [10] and support vec-
tor machines (SVM) [20]. Artificial intelligence (AI) and machine learning (ML)
have proven successful with f-score as high as 85% [12,14]; however, AI/ML is
burdened by data availability, supervision and labeling. This also means pre-
processing (e.g. CUSUM, MLR, GLR, KCD [5,11]) is a major factor in finding
valid segments to process.

We use Tymoczko’s properties of music [23] as the basis for geometric audio
segmentation. Therefore, we further develop sufficient models for these prop-
erties as segmentation estimators [22]. If we combine geometrically segmented
(time/geometry) audio curves of the same class such as music, we arrive at prin-
cipal curves, which are the foundation for testing geometric variance (i.e. classi-
fying audio). Using a technique called LSQOP we will demonstrate classification
for music and non-music, comparable to AI/ML [9,15].
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2 QCurve Transform

Steinmetz and Gethner developed centricity segmentation via three parameter
Gamma and geodesic likelihood [1,2,22]. The following sections expand this by
modeling additional properties where the result is what we call time/geometry,
or qcurve.

Definition 1. (QCurve) A qcurve is a time series consisting of positive unitary
measures of musical geometry.

3 Harmonic Consistency

Harmonic consistency states “harmonies in a passage of music, whatever they
may be, tend to be structurally similar to one another [23].”

Definition 2 (Musical Structure). Let K12 = (V,E), V = {0, 1, · · · , 11} be a
complete graph with vertices labeled {0 = C, 1 = C#, · · · , 11 = B}. Every dis-
tinct edge and cycle Cr 3 ≤ r ≤ 12 having non-crossing edges in the embedded
K12 is a musical structure.

Definition 3. Two non-empty sets of musical frequencies are similar if infor-
mation gain due to geometric consistency is zero, or very small, such that dis-
tance D(θ(i),θ(i+1)) ≤ ε where ε is a fixed positive value. D(·) is dependent on
probabilities p(x1 |θ(i)), p(x2 |θ(i+1)) from [22].

Definition 3 expands on Cont’s idea of similarity [3] except here, we depend
on geometric divergence. There are trivial, but useful mapping between vertices
of a 12-gon and Z12 using the complex unit circle zs = f(s) = eiπ(15−s)/6,
s ∈ Z12. Assume musical frequency k ∈ R, where T : R → Z such that
T (k) = {0, 1, 2, . . . , 11} (i.e. pitch class). We define St(ki, kj) as shortest dis-
tance between Z12 elements, or integer separation between frequencies. Due to
chroma, there exists a distinct, linearly independent, invariant Euclidian dis-
tance for every 12-tone musical frequency pair, therefore frequencies of identical
integer separation are similar, which we will prove.

Because s = f−1(z) = 6 arg(z)
π and f−1(a) = f−1(b) ⇒ 6 arg(f(a))

π =
6 arg(f(b))

π ⇒ a = b, f is injective. Let γ be inner angle difference between com-
plex arguments. Due to injectivity, integer separation is modeled γ = γi − γj =
St (k1,k2)π

6 .

Lemma 1. Every pair of musical frequencies ki, kj has invariant Euclidian dis-
tance

2 sin

(
St(ki, kj)π

12

)
. (1)

Proof. Let zi, zj ∈ C, zi �= zj . We define magnitude | · | ≡ || · ||2. Due to the law
of cosines |zi − zj |2 = |zi|2 + |zj |2 − 2 |zi||zj | cos(θ). Since |z| = 1, |zi − zj |2 =
2(1 − cos(θ)). If γi = arg(zi), γj = arg(zj), then by the dot product

θ = cos−1(cos(γi)cos(γj) + sin(γi)sin(γj)).
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Substituting the angle and replacing identities gives |zi − zj |2 = 2(1 −
cos(γi)cos(γj) + sin(γi)sin(γj)). Multiply by 1

4 and substitute haversine

|zi − zj |2
4

=
1 − cos(γi − γj)

2
⇒ |zi − zj | = 2 sin(

γi − γj

2
).

Constrained to the positive domain and substituting γ leaves

2 sin

(
St(ki, kj)π

12

)
= |zi − zj |.

Since rotation is unitary, all distinct pairs of musical frequencies have invariant
Euclidian distance of this form. �	

Lemma 1 is chroma-agnostic, linearly dependent, dyad similarity, but remov-
ing homogeneity makes all dyad pairs linearly independent under this mapping,
therefore

tone distance = δt(ki, kj) = 2 sin

(
St(ki, kj)π

12

)
+ St(ki, kj). (2)

Tone distance is symmetric δt(ki, kj) = δt(kj , ki), invariant under rotation and
satisfies triangle inequality. Because ki = kj implies δt(ki, kj) = 2 · sin(0) +
0 = 0, (2) is a metric space. It follows frequencies are similar if and only if,
tone distance are equivalent. Path distance = Pδ(F(i)) is defined as the sum of
tone distance, assuming frequencies F(i) = {kj}n

j=1. Using logical reduction and
brute force search, we find no duplicate path distances among all 12-tone chords.
Temporally, inverse harmonic consistency = HC−1 = σ(H) ≤ Mh = 18.24,
where σ is standard deviation, H = {Pδ(F(i))}∞

i=1 and F(i) are sequential. Given
no discernable notes, noise, or silence HC−1 = Mh.

4 Harmonic Leading

Harmonic leading is the combined measure of harmonic consistency, voice leading
and conjunct melodic motion (CMM). CMM is the tendency for “melodies to
move by short distances from note to note [23].” Due to [4] musical metric
distance Δ(k1, k2) can be leveraged assuming P ∈ R

m×n, whose columns are
frequencies sorted in ascending order with P ij = 0, when m differs. From this,
we approximate conjunct melodic motion

∇(P ) =

∣∣∣∣∣∣
n−1∑
j=1

m∑
i=1

min{Δ(P ij ,P i(j+1))}
∣∣∣∣∣∣ , (3)

which also dampens overfit1. Assuming σ(·) = stddev, f = frame count and
Δ(·) ≤ Mv = 6 [4]

harmonic leading = 1 − σ(H) + ∇(P)
Mv(f − 1) + Mh

. (4)

1 Harmonic leading overfit is defined as acoustically perceivable chord transposition,
or inversion.
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As a side note, we tested harmonic leading on Harte’s 16 songs [13] with mod-
erate success of 58% f-score, but we were unable to match HCDF retrieval. We
recommend an HCDF quantifier experiment using our information framework,
which we leave as an open problem.

5 Consonance

Definition 4. Acoustic consonance is the inverse of dissonant contributions
between 20 and 250 Hz of center frequency, within critical band β [7,17,18].

Given F (k) = |FFT |, we select τ = |k−argmaxx [F (k) · F (k + x)] |, x ≤ 250
which implies

congruence score = Cτ (k) =
1

max{|F |}
k+β/2∑

x=k−β/2

F (x) fτ (x), (5)

correlating fτ (x) = max{F}/2 [ cos(2πx/τ) + 1]. We center on kc : |kc − k| ≤
β/2, selecting kj : F (kj) ≥ max(F )

4 and observe C =
{|Cτj (kj)|

}n

j=1
converge to

a block wave as dissonant contribution increases. Therefore,

1 − consonance = dissonance =
max(C)

2Md

n∑
j=1

D · Cj , (6)

where max dissonance = Md ≈ 10 and D = sgn
[
cos( 2πj

s )
]
+ 1 over bandwidth

s ≤ β. β is displacement between the two loudest frequencies in critical band.

6 LSQOP

Qcurves are synthesized using [22] and combinations of AC = acoustic conso-
nance, C = centricity, HL= harmonic leading and MG = music geometry.

MG = 1 − 2
π

cos−1

(
U · V√
3 ||V ||

)
(7)

is overlap between ideal U = (1, 1, 1) and measured vector V = (AC,
C, HL). We observe ordinal separation between qcurves of differing classes,
exposing an opportunity to train principal qcurves as a model for varia-
tion. Figure 1 illustrates least squares ortho projector (LSQOP) method,
assuming input audio qcurve q(x), principal qcurve trend-line segments
{p0, p1}(music), {p2, p3}(non-music) and arbitrary point d = (x, q(x)). There
exist x1 = p0 + Resp1−p0(d − p0) and x2 = p1 + Resp3−p2(d − p2) assuming
Res(·) implies vector resolute. P = (0,1)(0,1)T

(0,1)T (0,1)
, a1 = ||P d||, a2 = ||Px1|| and

a3 = ||Px2||, yields ratio

m(x) =

⎧⎪⎨
⎪⎩

1 a1 > a2

0 a1 < a3 or a3 > a2
||a1−a3||
||a2−a3|| otherwise.

(8)
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Fig. 1. Classification of audio qcurve q(x), contrasted with trend lines from trained
principal qcurves for music (top) and non-music (bottom).

Musical probability M = E[m(x)] has binary pass/fail M ≥ ε with expectation
E[·] and non-negative musical threshold ε ≤ 1. Threshold varies depending on
curve training.

7 Evaluation and Analysis

Verification of LSQOP and time/geometry involved classification experiments
with GTZAN [24], TUT-17 (parts 1&2) [16], SWS1 (used by [6,21]), SWS2
(music), SWS3 (non-music) and SWS4 (non-music) data. The database con-
tains 1556 music and 1441 non-music, totaling 2776 files. Custom data were
created to fool LSQOP due to abnormal accuracy on GTZAN (100%) and TUT
(92%). Custom data contains random quality, sample rate, content, size and
non-thematic clips from samplefocus.com, partnersinrhyme.com, bensound.com,
freemp3cloud.com and BBC Sound Effects. Custom non-music sets contain sev-
eral categories (e.g. people, urban, construction, natural, office, animals, house-
hold, video games, military/war, etc.). Custom music sets are spread (mostly)
even across several genres with famous, lesser known artists, synthesised and
“poor” quality.

We performed three tests using LSQOP for music/non-music classification.
The first and second test measures accuracy on all 2997 files. In the first we
process the starting 10s of each file and in the second we process [.2, 3]s random
samples from each file. Assuming notation (score/segment) (see [22]), (MG/HL)
was effective with non-random samples at 96.4% accuracy for music and 70.78%
classifying non-music. (MG/AC) was effective on random samples with 80%
accuracy for music and 78% for non-music.

Table 1 is the result of an information retrieval (IR) exercise involving
requests for music/non-music from a database (not all tests shown). Small ran-
domly populated datasets are drawn from the entire clip database and each set
is guaranteed to carry (roughly) equally distributed music and non-music. The
results here are f-scores between 76% and 92%, averaging around 81.6%.
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Table 1. Classification on randomly constructed subsets of the database. M =
Music, N = Non-music, n = Num Random Samples, p = Precision, r = Recall, f
= FScore. Training data shorthand: A ≡ (SWS2/SWS4), B ≡ (SWS2/TUT), C ≡
GTZAN/SWS[1–3]. This table was inspired by [13].

Quantifier Mn Mp Mr Mf Nn Np Nr Nf

MG-C 10s 28 86% 92% 89% 28 93% 87% 90%

(AC/C)-B 10s 27 80% 92% 86% 27 92% 79% 85%

(MG/AC)-A 6s 22 100% 80% 89% 22 86% 100% 92%

8 Conclusions

We showed how 12-tone chroma-agnostic frequency pairs are mapped to a dis-
tinct, linearly independent, invariant measure of harmonic distance as a metric
space. We provided a unique measure of musical chords (path distance) and dis-
cussed how to quantify harmonic consistency over successive frames. By combin-
ing this idea with work in voice leading we modeled conjunct melodic motion as
harmonic leading. We then developed a straightforward approximation of acous-
tic consonance using psychoacoustic theory. From these measures we devised a
unified score for musical geometry and showed how principal qcurves combined
with LSQOP is effective in retrieval with consistent f-scores between 76% and
92%, averaging 81.6%.

Individually, the proposed musical property models have independent value
for measuring structural content and acoustic quality analysis. The success of
LSQOP is clear, but optimal time/geometry combinations require further exper-
iments. Because audio data were successfully used to train accurate results
against other audio, this opens the question of ideal data for use in widespread
classification. We must also consider the disparity between music and non-music
success, which itself can present a challenge to blind classification using the same
geometric properties for music and non-music.
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