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Abstract. Motivated through recent applications of quantum theory
to the music-theoretical conceptualisation of tonal attraction, the paper
recapitulates basic facts about quantum wave functions over the finite
configuration space Zn, and proposes a particular musical application.

After an introduction of position and momentum operators, the
Fourier transform as well as the translation and ondulation operators,
particular attention is plaid to the Quantum Harmonic Oscillator via its
Hamilton operator and its eigenstates. In this setup the time develop-
ment of chosen wave functions is applied to the control of moving sound
sources in a Spatialisation scenario.
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1 Motivation

A new quantum-theoretical approach to the study of musical tones (c.f.
[2,7,9]) motivates the present attempt for an integration of other mathematical
approaches into this new line of investigation. These new ideas may possibly open
productive theoretical links between statistical approaches to music cognition on
the one hand and structural mathematical approaches to music on the other. Up
to now connections between these two areas are not yet highly sought-after and
both areas suffer from deficiencies, which exhibit a remarkable complementary:
Statistical approaches treat histograms of and transition matrices between pos-
sible musical events as these were already fully valid models of musical reality,
while mathematicians build nice but somewhat empty spaces of musical objects,
wherein no events actually happen. Under the quantum perspective pitch class
profiles are interpreted as probability density functions of underlying quantum
wave functions, which may inhabit the “empty” spaces of the mathematical
music theorists. And this entails the possibility to gain explanatory power for
the constitution of empirically derived pitch class profiles from these wave func-
tions alongside with the Hermitian and unitary operators acting on them, and
last not least from the Schrödinger equation. Needless to say, that these wave
functions are not intended to be interpreted in a literal physical way. The wave
functions are defined on spaces of musical tones or higher musical objects, not
in physical space.
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The starting point for the new quantum-theoretical approach in [9] (and
follow up papers [2,7]) is the modelling of tonal attraction by means of a suit-
able match of the Krumhansl-Kessler pitch class profiles. It turns out that the
circle-of-fifths ordering of the twelve pitch classes allows to build such a match
from a continuous wave function on R/Z exemplifying cosine-similarity. The
present study is further motivated by a potential conceptual bifurcation within
the quantum-theoretical framework. We observed, that there is an alternative
possibility to match the Krumhansl-Kessler pitch class profiles, namely by start-
ing from a Gaussian wave function on R, which represents the ground state of a
quantum harmonic oscillator.

Fig. 1. Three attraction kernels p(x) = |ψ(x)|2 of the Krumhansl-Kessler experimental
data for C major (centered at tone C of the quint group), obtained from their respective
wave functions ψ(x). Solid: Gaussian wave packet, dashed: deformed cosine similarity,
dotted: default cosine similarity.

In search of an analogy to the situation in physics we would view the (contin-
uous) circle or line of fifths in the role of a configuration space for the “position
representation” of wave functions φ. And consequently the question is on the
table what the musical meaning of the associated “momentum representation”
might be. We reflect about this question with the awareness that the Fourier
Transform, which mediates between the two representations, already plays a
productive role in recent approaches to the study of pitch classes and pitch class
profiles (see [1,12–16]), for example. But while we deal with the Fourier Trans-
form φ̂ of wave functions φ we would categorize the objects of study in these
investigations as Fourier Transforms ̂|φ|2 of probability density functions |φ|2. A
second conceptual difference in these investigations consists in the finite configu-
ration space Z12 as opposed to R/Z or R. But this difference is not an obstacle for
an integration. The quantization result in [7] actually provides confidence into
the suitability of the finite-dimensional approach also from within the quantum
approach. Therefore, the most straight-forward first step towards an integration
of the pre-established Fourier approach into the new quantum approach consists
in the study and musical interpretation of wave functions on Zn. And particular
attention has to be paid to the role of phases. And we approach this project
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with the idea in mind to encode the parameter of tone width together with the
parameter of tone height (as studied by David Clampitt and the first author
in [3]) which is further inspired by Martin Ebeling’s proposal to model musical
tones on the complex plane [5].

The present poster is intended as a preparatory “mathe-musical warmup”
with the purpose to get the Quantum theory on Z7 and/or Z12 at our fingertips.
Here we postpone the search for answers to the motivating questions in favour
of a plain sailing musical playground, where every wave function with moderate
parameters and its time development for a given Energy operator can be realised
and musically explored. In this scenario the parameters of amplitude and phase
are interpreted in terms of the loudnesses and angular positions of a cycle of
sound sources in a spatialisation scenario.

2 Quantum Theory on Zn

The mathematical foundations of quantum theory in n dimensions have been
thoroughly investigated in recent years. We draw upon [4,6,10,11]. In this section
we recapitulate elementary knowledge.

Quantum states are described in terms of wave functions ψ : Zn → C, which
we will identify with vectors ψ ∈ C

n. In the position representation the residue
classes 0, ..., n − 1 ∈ Zn denote positions, while they denote momenta in the
momentum representation.

Fig. 2. Representation of a wave function over Z12. The lengths of the twelve needles
represent amplitudes and their directions represent phases.

Linear operators F : Cn → C
n are represented through n × n-matrices with

complex coefficients, accordingly. The can represent active and passive transfor-
mations (i.e. active transformations of the wave functions themselves or passive
coordinate transformations of one and the same wave function).

We start with the consideration of the position operator Q. Following [4] we
define it as a diagonal n × n matrix Qa with the n diagonal entries and eigen-
values {−a(n−1)

2 , . . . , a(n−1)
2 }. The indices j ∈ {− (n−1)

2 , . . . , (n−1)
2 } are centered

around 0 and are integers for odd n and half-integers for even n. The real scaling
factor a > 0 is a length unit.
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The normalized eigenstates of Qa are the ‘δ-functions” with precisely one
non-vanishing coordinate, i.e.

ϕ−n−1
2

= (1, 0, . . . , 0),
ϕ−n−1

2 +1 = (0, 1, 0, . . . , 0),
. . .

ϕ0 = (0, . . . , 0, 1, 0, . . . , 0),
. . .

ϕn−1
2

= (0, . . . , 0, 1).

The exponential M = exp( 2πi
n Q) is known as the associated Modulation- or

Undulation operator. M is an unitary operator and its n eigenvalues are either
the n-th roots of unity or the odd 2n-th root of unity. The determinant det(M)
is either 1 or −1. The latter happens, when n is even and n−1

2 the half of an odd
number. The Fourier transform mediates between the position representation
and the momentum representation of the wave functions, and it is therefore
considered to be a passive transformation. Let ω(k) = exp(2πik

n ), k = 0, . . . , n−1
denote the n’th root of unity. They form the coefficients of the Fourier transform:

F =
1√
n
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⎟

⎠

F is a unitary operator, satisfying F ∗ = F−1. Its eigenvalues are i,−1,−i, 1.
Their multiplicities depend on n and can be characterized in terms of the residue
n mod 4 (see [10], p. 273).

The vectors F · ϕk are the momentum representations of the position eigen-
states. Analogously we have a momentum operator P , and a basis of associated
eigenstates φ0, φ1, . . . φn−1, which in the momentum representation take the sim-
ple form ‘δ-functions”

F · φ0 = (1, 0, . . . , 0), F · φ1 = (0, 1, 0, . . . , 0), . . . , F · φn−1 = (0, . . . , 0, 1)
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and the momentum operator in the momentum representation takes the diagonal
form

F · P · F ∗ =

⎛

⎜

⎜

⎝

0 0 . . . 0
0 1 . . . 0

. . . . . . . . . . . .
0 0 . . . n − 1

⎞

⎟

⎟

⎠

.

The position representations of the eigenstates of P are the exponential circle
functions:

φ0 = 1√
n
(1, 1, . . . , 1),

φ1 = 1√
n
(1, ω1, ω2, . . . , ωn−1),

. . .
φk = 1√

n
(1, ωk, ω2k, . . . , ωk(n−1)),

. . .
φn−1 = 1√

n
(1, ω−1, ω−2, . . . , ω1).

The exponential T = exp(− 2πi
n P ) is known as the Translation operator. T is a

permutation matrix, and hence orthogonal (and hence unitary). Its n eigenvalues
are the n-th roots of unity. The determinant det(T ) is either 1 (for odd n) and
−1 (for even n).

T =

⎛
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⎝

0 0 0 . . . 0 0 1
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .
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⎞

⎟

⎟

⎟

⎟

⎠

.

T and M generate the Heisenberg group.

3 Exploring the Finite Quantum-Harmonic Oscillator

In the context of an ongoing investigation the authors found a suitable definition
for a tonal attraction kernel in terms of a Gaussian wave function (as a possible
alternative to the deformed cosine kernel in [9]). This finding brings the quantum
harmonic oscillator into the spotlight of interest, whose ground state is a Gaus-
sian. The mentioned investigations assume a continuous configuration space R.
But in connection with the already established Fourier approach in music theory
it seems worthwhile to explore this important and well-studied physical exam-
ple also in the finite-dimensional scenario. Although there is no analogue to
the Schrödinger Equation, several constructions can be based on the study of
Eigenvalues and Eigenfunctions. We start by inspecting the Hamilton operator
H = 1

2 (P 2 + a2Q2) with parameter a (abstractly) measuring the impact of the
potential energy against the normalised kinetic energy P 2. The excited states
ξ0, . . . , ξn−1 can be obtained as the eigenfunctions of H and they can be ordered
in accordance with the raising positive real eigenvalues of H. We observed in the
case n = 7, that the choice of symmetric position eigenvalues (to both sides of 0)
ensures that the excited states are also eigenfunctions of the Fourier transform
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F , which in turn motivates the inspection of a finite analogue for the Bargmann
transformation (e.g. [8], Sect. 14.4), where the excited states ξk are chosen as a
basis and are mapped to the associated monomials z �→ zk : C → C. Figure 2
shows the first excited state ξ1 for the case n = 12.

The Hamilton-Operator gives rise to the unitary time evolution operator
U(t) = exp(−iHt) and allows the study and musical exploration of the time
developments of individual wave functions. A crucial open problem for their
interpretation in the music theoretical context of pitch class profiles (n = 12)
or scale degree profiles (n = 7) is the interpretation of the phases. On the one
hand, building on [9] it seems plausible to interpret the pitch class profiles as
probability density functions of underlying wave functions. On the other hand,
this would imply that the established application of the finite Fourier-Transform
to pitch class profiles, is not the quantum-theoretical change of perspective from
the position to the momentum representation. While these questions need to be
addressed in future investigations, it is useful to explore the finite wave functions
and their time developments in practical musical experiments.

An auspicious musical application of the time development of finite quan-
tum wave functions is the control of sound sources in a spatialisation scenario.
The dimension n of the wave function is the number of sound sources, which
are supposed to move in a horizontal plane. As an illustration I will show some
experiments with the Max/MSP library Spat1 in combination with Mathemat-
ica2. The time development of a given wave function is encoded in a textfile
and using a Coll -Object in connection with a metronome at control rate, the
Max/MSP-patch interprets the magnitudes and phases at every time stamp in
terms of distances and azimuths of the individual sound sources. The Spatialisa-
teur calculates the resulting outputs for the available arrangement of a circle of
loudspeakers. In conjunction with our poster presentation we will demonstrate
this scenario through the usage of a binaural synthesis instead of the multi-
channel version. A five-dimensional application is part of a musical piece (of the
first author) entitled The Backside of the Stroboscope which is dedicated to Jack
Douthett.

References

1. Amiot, E.: Music Through Fourier Space. Discrete Fourier Transform in Music
Theory, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45581-5

2. Blutner, R., beim Graben, P.: Gauge models of musical forces. J. Math. Music
15(1), 17–36 (2021). https://doi.org/10.1080/17459737.2020.1716404

3. Clampitt, D., Noll, T.: Modes, the height-width duality, and Handschin’s tone
character. Music Theor. Online, 17(1) (2011). http://www.mtosmt.org/issues/mto.
11.17.1/mto.11.17.1.clampitt and noll.html

4. De La Torre, A.C., Goyeneche, D.: Quantum mechanics in finite-dimensional
Hilbert space. Am. J. Phys. 71(1), 49–54 (2003)

1 https://forum.ircam.fr/projects/detail/spat/.
2 https://www.wolfram.com/mathematica/.

https://doi.org/10.1007/978-3-319-45581-5
https://doi.org/10.1080/17459737.2020.1716404
http://www.mtosmt.org/issues/mto.11.17.1/mto.11.17.1.clampitt_and_noll.html
http://www.mtosmt.org/issues/mto.11.17.1/mto.11.17.1.clampitt_and_noll.html
https://forum.ircam.fr/projects/detail/spat/
https://www.wolfram.com/mathematica/


Quantum-Musical Explorations on Zn 375
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