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Abstract. We develop a geometric analog of musical harmony from the
group law of the affine parabola. First, we associate musical notes and
intervals with points of a parabola. Immediately, we can define the usual
affine and linear transformations for musical chords in module theory.
Subsequently, we show that the actions of the groups T/I in PK-nets,
PLR, UTTs, and JQZ behave identically to the circle space. Then,
we propose to recreate the Planet-4D model, the study of musical dis-
tance and the DFT for subsets of points on the parabola. We believe
that we have an innovative and motivational perspective to approach
the parabola in a musical meaning.
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1 Introduction

Due to the cyclical nature of musical objects, the circle is a conventional locus
to represent them. However, it is possible to define for a parabola P the finite
ring geometric structure P(Z/nZ) that behaves similarly to the classical circular
pitch class space. We will see that the harmony of the circle is a kind of base
layer to the harmony of the parabola. Thus, inspired by the isomorphic structure
P(Z/nZ) ∼= (Z/nZ,+) proved in [15], we will bijectively associate each point of
the affine parabola y = x2 with a musical note or interval of the chromatic scale.

2 The Group Law on the Parabola

Let Λ be a commutative ring with unity. The group law on the parabola P(Λ) =
{y = x2 : x, y ∈ Λ} is defined by taking a fixed point as a neutral element (the
vertex of the parabola) which we denote by N = (xN , x2

N ) = (0, 0). Now, let
P = (xP , x2

P ) and Q = (xQ, x2
Q) be any two points on the parabola P. The sum

P ⊕ Q = R = (xR, x2
R) is the point of intersection with the parabola of the

line parallel to PQ passing through vertex N . Algebraically, the addition of the
group of points is given by

P ⊕ Q = (xP , x2
P ) + (xQ, x2

Q) = (xP + xQ, (xP + xQ)2). (1)
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The proof of the group axioms in Definition (1) can be found in Lemmermeyer
[15, p. 42] (see Shirali [18, pp. 31−32] for a general definition whose neutral
element is any point on P).

3 Harmonic Polygons over a Parabola

For abstract musical purposes, we are interested in associating points to
notes and intervals of the chromatic scale. Thus, we have P(Z12) =
{(0, 0), (1, 1), (2, 4), (3, 9), (4, 4), (5, 1), (6, 0), (7, 1), (8, 4), (9, 9), (10, 4), (11, 1)}.

Fig. 1. Neo-Riemannian function PR, transposition by an interval of seven semitones
+(7, 1), transform C-minor triad (blue polygon) to G-minor triad (red polygon). (Color
figure online)

In Fig. 1 we describe harmonic progressions by drawing polygons on the
parabola. From a geometric and metaphorical perspective, the abscissa is the
base layer of the harmony in the circle Z12, while the ordinate is the har-
monic layer which belongs to the parabola. We could express this idea as
(x, y) = (circle,parabola). Therefore, the y-coordinate can be understood as
a harmony added or attached to the harmony of the circle that corresponds
to the x-coordinate. For example, the C-minor triad in the circle harmony
x = {C,E�,G} has the parabolic layer y = {C,A,C�}. With this interpreta-
tion we also have two sets of intervals: between the notes of the ordinates and,
between the layers of the circle and the parabola. Furthermore, this point of
view allows the algoritmic composition if we consider affine transformations, e.g.
y = 2x2 + 1, where the C-minor triad in the parabola varies to y = {C�,G,D�}.

4 The Ring and Field Law on the Parabola

For the rest of the analogous definitions we need a richer structure than a group.
Thus, to the group P(Zn) we can also equip the structure of a finite ring with
unity by the multiplication operation

P ∗ Q = (xP , x2
P ) ∗ (xQ, x2

Q) = (xP · xQ, x2
P · x2

Q). (2)
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Proposition 4.1. The set of points (P(Zn),⊕, ∗) with addition and multiplica-
tion defined by (1) and (2) forms a commutative ring with unity point (1, 1).

The proof of Proposition 4.1 is straightforward if the projection on the x-
axis is established also for the multiplication. Definition (2) follows from the
geometric operation [15, p. 56] which equip a field for the parabola over Q,
and we are considering the ring OP(Q) of such rational field. Take the fixed
point M = (1, 1). Let us draw a line between two points P and Q and see
the intersection point R with the y-axis. Then, let us choose the intersection
S = P ∗Q of the line through R and M over P(Q). This field structure can extend
the possibility of also modeling continuous spaces from a physical perspective of
music if we take P(R).

5 Parabola over a Module and Affine Transformations

Since P(Zn) forms a commutative ring by Definitions (1) and (2), we can observe
it as a module over itself P(Zn)P(Zn) or a module with scalar action [n] ∈ Zn

given by · : Λ × P(Λ) −→ P(Λ), ([n], P ) �−→ [n] · P = P ⊕ P ⊕ P ⊕ · · · ⊕ P
︸ ︷︷ ︸

[n]-times

.

Proposition 5.1. The points of the parabola over Zn with addition and scalar
action form a Zn-module P(Zn).

The proof of Proposition 5.1 is straightforward. With this structure on
the parabola P(Z12), we can transform D-major triad into D-aug triad under
a morphism that takes ((2, 4), (6, 0), (9, 9)) �→ ((2, 4), (6, 0), (10, 4)), i.e., ϕ :
(P,Q,R) �→ (P,Q, [2]Q − P ). In fact, we can rewrite all affine homomorphisms
common in music theory. For instance, following [3], symmetries of consonance
and dissonance in counterpoint, e.g. e(2,4)[5]((3, 9)) = (5, 1). If we consider the
ring structure, we can represent counterpoint intervals as linear polynomials in
P(Z12)[X], for example a minor third (7, 1) ⊕ (3, 9)X.

6 Group Actions over Parabolic Music

The musical groups T/I [10], PLR [6,7,9] and UTTs [13] can act in the usual way
on sets of points of the musical parabola P(Z12). Consider first the elements in
the T/I group that reveal underlying symmetries between notes of chords in PK-
nets [17]. Transposition of a note Q of the parabola is defined as TP (Q) = P ⊕Q,
while inversions is given by IP (Q) = −Q⊕P . Thus, rewriting the musical PK-net
analysis in [17, p. 36], we have
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In the context of Neo-Riemannian theory, the composition PR acts on the
E-minor chord as a {(4, 4), (7, 1), (11, 1)} �→ {(7, 1), (10, 4), (2, 4)}. In fact, it can
be generalized on a simplicial Tonnetz model [5,22] as it is observed in Fig. 1.
Suppose we have an unfolded space K[2, 4, 6], then

PR · {(4, 4), (6, 0), (10, 4)} �→ {(6, 0), (8, 4), (0, 0)}.

Similarly, we can reinterpret the uniform triadic transformation of E-major
triad to the A-minor triad:

((4, 4),+)
U=(−,(5,1),(10,4))−−−−−−−−−−−−→ ((9, 4),−).

Another group action, in this case non-contextual, that we can use for P(Z12)
is JQZ [14] redefining J = I(7,1), Q = I(11,1) and, Z = I(4,4). Then,

ZJZ · {(5, 1), (8, 4), (0, 0)} �→ {(1, 1), (5, 1), (8, 4)}.

On the other hand, it would be interesting to explore algebraic or formal rela-
tionships in a three-dimensional Tonnetz [12] or in a Cube Dance [8].

7 Parabolic Planet-8D and Metric

The points of a parabola behave similarly to their numerical analogues as we
can observe in the conmutative diagrams below. For a field K = Q, R, or C

and a ring R = Z, Zn, following [15, p. 42], the morphisms φx and ψx can be
understood as an injection into y = x2, or as a geometrical projection on the
x-axis. This properties would allow us to define a metric that emulates voice
leading definitions [19] or the related problems for a multi-set metric [11].

P(K) P(R) (x, x2) (x mod n, x2 mod n)

K R (x) (x mod n)

φ−1
x ψ−1

xφx ψx
.

Now let us define the following isomorphism through the decomposition into
direct sums of groups: P(Z12) ∼= Z12

∼= Z3

⊕

Z4
∼= P(Z3)

⊕ P(Z4).
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One of the models for visualization of harmonic relationships between pitch
classes is Planet-4D [4]. We see the formal possibility of reconstructing the model
in a space of four complex dimensions C

2 ×C
2. We define the same isomorphism

of the direct product of cyclic groups and roots of unity but modified over the
points of the parabola under multiplication. Thus, we have the isomorphisms

P(Z3) ∼= {(1, 1), (e
2πi
3 , e

−2πi
3 ), (e

−2πi
3 , e

2πi
3 )}.

P(Z4) ∼= {(1, 1), (i,−1), (−1, 1), (−i,−1)}.

Consider the F note associated with the element (2, 1) ∈ Z3×Z4. Then, on the
parabolic planet we have (2, 1) ∼= (2, 1, 1, 1) ∼= (e

−2πi
3 , e

2πi
3 , i,−1). The bijection

of an element of the direct product P(Z3) × P(Z4) to return to the parabola
P(Z12) is defined in imitation of [2] by sending the points (P,Q) �→ 4P − 3Q.

8 The Discrete Fourier Transform in a Parabolic World

The importance of Discrete Fourier Transform for the mathematical music the-
ory is due to the fact that it helps to reveal hidden periodic qualities behind
subsets of rhythms and scales [1]; even analyze harmony from a geometric per-
spective [20,21]. The DFT is built over a space of distributions C

Zn . The ana-
log for points Pi of the parabola is defined by the function P(Z12) → C

2n,
f �→ (

f(P0), f(P1), . . . , f(Pn−1)
)

. Thus, we define the DFT of a subset of points
P ⊂ P (Zn) as the transformation of its characteristic function

FP = ̂fk =
∑

xP ,x2
P ∈P

(

e
−2πikxP

n , e
−2πikx2

P
n

)

. (3)

Note that in the Definition (3) the sum is parabolic. For example, let P =
{C,E�,G�,B��}, the fourth Fourier coefficient of P produces ̂f4 = (1, 1)+(1, 1)+
(1, 1) + (1, 1) = (4, 4). It is immediate to rewrite the convolution product for a
set of points of a parabola, which mathematically describes musical operations
such as multiplication of Boulez chords, intervallic content or rhythmic canons.
Let f, g be characteristic functions, i.e., f = (P0, P1, . . . , Pn−1), of subsets P and
Q, respectively. The circular convolution is given by

f ∗ g(k) =
nP Q−1
∑

nP Q=0

f(k − nPQ)g(nPQ), (4)

for all k ∈ Z12. Note that nPQ is the indexed position of the points in f, g. It
follows analogously from (3) and (4) the identity that relates convolution and
DFT for each k, f̂ ∗ g(k) = ̂f(k)ĝ(k).
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9 Conclusions

We have seen that musical harmony can be represented as polygons in a parabola.
Although the geometry of the parabola, seen as a layer on top of the harmony of
the circle, operates analogously in analytic approaches, it is possible to extend
this perspective to layers defined by other equations maintaining a base formal
structure, even with more dimensions, e.g. two ellipses whose integral points are
isomorphic to the direct product Z3 × Z4. In that sense, the arithmetic and geo-
metric aspects of the affine transformations on P(Zn) and other curves can serve
as a locus to generate musical ideas embedded in a mathematical environment.
With regard to future research, the development of new geometric approaches to
music theory can inspire technological and computational advances [16], which
might also lead to new software developments for teaching and composition.
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