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Abstract. This article presents a new way of building a filtered sim-
plicial complex from a music piece and applying persistent homology in
the context of musical analysis. Our approach consists of considering any
musical score as the set of its musical bars, which we see as subsets of
R

3. With this definition, we may consider the Hausdorff distance between
two musical bars, which gives us a point cloud from any score, and that
allows us to build the associated Vietoris-Rips complex. We will then use
barcodes to visualize persistent homology and give an illustration of our
construction on a famous movie music piece.
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1 Introduction

1.1 Persistent Homology

A filtration of a simplicial complex K is a nested sequence of sub-complexes
∅ = K−1 ⊂ K0 ⊂ . . . ⊂ KN = K of K: we call K a filtered complex. A simple
filtration is presented for instance in Fig. 1. Starting from a filtered complex, we
can compute its simplicial homology (over F2) at each time of the filtration,
and persistent homology gives information about inclusions between the various
complexes, as explained in [7]. The associated homology groups H∗(Ks) are
characterized by their dimensions, which are called the Betti numbers. We can
visualize persistent homology on a figure called a barcode, where the horizontal
axis represents progress in the filtration and a bar that starts at time s and ends
at time t corresponds to a generator of H∗(Ks) that is still one for H∗(Kt−1)
but not anymore at time t (see [4]). Barcodes allow us to immediately identify
classes that persist during the filtration. For instance, barcodes associated to
the filtered complex in Fig. 1 are presented in Fig. 2, in degrees 0 and 1.
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Fig. 1. A filtered complex with 6 times of filtration.
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Fig. 2. Barcodes for filtration of Fig. 1 in degree 0 (left) and degree 1 (right).

Persistent homology is commonly used in a recent field known as Topologi-
cal Data Analysis (TDA), where the main idea is to use topological structures
to study and sometimes “recognize” some objects. The general process is sum-
marized in Fig. 3, where in our context the starting object is a musical score.

Starting object Point cloud Filtered complex Barcodes Shape recognition

Fig. 3. Topological Data Analysis process.

1.2 Context and Problematic

TDA via persistent homology was already used in the context of musical analysis
and especially in automatic classification of musical style, as we can see in [2,3,5]
or [1]. The main and common issue is always the following problematic: how
should we associate a filtered complex with a given musical piece?

The papers we cited above have different approaches to try to find a consis-
tent answer to this question, using pitch-class sets complexes, time series or the
Tonnetz. In our work, we chose to consider that a music piece can be represented
by a set of distinct musical bars, which can be thought of as subsets of R3, as
defined in Sect. 2.2. Our starting object is a musical score, from which we will
extract a point cloud of R3 by considering its musical bars and the associated
Hausdorff distance, as presented in Sect. 2.3. To build the filtration, we will use
the Vietoris-Rips method, which is described in Sect. 2.1. Once we obtain a fil-
tered complex, we can compute persistent homology, i.e. barcodes. In Sect. 3,
we will illustrate our approach by giving an analysis of the French movie musi-
cal piece: Comptine d’un autre été: l’Après-midi, by composer Yann Tiersen.
In order to allow musical interpretation, we will be interested in dimension 0
and 1 initially, and we will show that these barcodes, especially in degree 0, can
capture structural information about the piece.

2 Persistent Homology on Musical Bars

2.1 Filtration: The Vietoris-Rips Method

The basic object of a Vietoris-Rips complex is a point cloud, that is, a set of
data points with a metric over it.



Persistent Homology on Musical Bars 351

Definition 1. Let X = {x1, . . . , xn} be a point cloud and ε ≥ 0 be a parameter.
The Vietoris-Rips complex Rε(X) is the simplicial complex with X as its set
of vertices and σ = {x1, . . . , xk} is a k-simplex if and only if its vertices are
pairwise close, that is, when d(xi, xj) ≤ ε for all pairs xi, xj of σ.

Figure 4 shows the classical construction of a Vietoris-Rips complex starting
from a given point cloud X and a parameter ε. For two given parameters ε and ε′

such as ε < ε′, there is the obvious inclusion Rε(X) ↪→ Rε′(X) and so by simply
increasing the parameter ε, we will get a natural sequence of nested simplicial
complexes, that is, a filtered complex. For instance, R0(X) is the 0-dimensional
simplicial complex with n connected components while Rε(X) will have only one
connected component for ε large enough.
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Fig. 4. The Vietoris-Rips method.

Remark 1. For all ε ≥ 0, we have a simplicial complex, but in practice we will
discretize time by choosing a finite number of values for ε. In this paper, we
choose to work with all values of the form ε = tρ, where t ∈ {0, 1, . . . , 100} and
ρ is a fixed constant, so all our filtrations and also barcodes will be at the same
scale, as we will see in Sect. 2.3.

2.2 Musical Bars of a Score

The main idea of our construction is to consider that a musical score S is simply
a set of its musical bars: S = {B1,B1, . . . ,Bn}, where the indexing corresponds
to the musical flow. In this context, our definition of a bar is the following one:

Definition 2. A musical bar is a finite subset B of R3 where an element of B
is called a note characterized by three coordinates:

– the position, which refers to its place in the bar
– the duration, expressed in beats
– the pitch, which is the value of the note in term of its fundamental frequency

Example 1. Here is an example of a musical bar coding. The first two coordinates
are determined by using the meter and the third is coded in midicent, which is
related to the position of the note in a piano. Notice that if there are some rests
in the bar, we can ignore them because the information is already encoded in
the position of the next note.

B = {(0, 1/2, 71), (1, 2, 69), (3, 1, 72)}
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2.3 The Score as a Point Cloud

If X and Y are two non-empty subsets of a metric space (M,d), it is possible to
define a metric dH called the Hausdorff distance between X and Y by:

dH(X,Y ) = max
{

sup
x∈X

d(x, Y ) ; sup
y∈Y

d(X, y)
}

with d(x, Y ) = inf
y∈Y

d(x, y). An illustration of this metric is given in Fig. 5.

X

Ysup
x∈X

d(x, Y )

•

sup
y∈Y

d(X, y)

•

Fig. 5. Calculation of the Hausdorff distance between two metric spaces X (the ellipse)
and Y (the square).

In our case, each musical bar of a score S = {B1, . . . ,Bn} is a subset of R3

so we may naturally consider the Hausdorff distance between Bi and Bj for any
i, j.

Definition 3. Let Bi and Bj be two musical bars. The Hausdorff distance dH

between Bi and Bj is defined by

dH(Bi,Bj) = max
{

max
ni∈Bi

min
nj∈Bj

d1(ni, nj) ; max
nj∈Bj

min
ni∈Bi

d1(ni, nj)
}

where d1(x, y) = ‖x − y‖1 =
∑
i

|xi − yj |.

Following up on Remark 1, we will consider the maximal distance dmax of
all distances for a given score S = {B1, . . . ,Bn} and define ρ = dmax

100 as the
precision we want to work with. We then consider for each t ∈ {0, 1, . . . , 100}
the associated Vietoris-Rips complex Rtρ(S). Furthermore, instead of speaking
about “time t of the filtration”, we will now say that we look at the filtration with
an error margin of t%. Indeed, we think of the presence of an edge between
two musical bars as an indication that they are “similar”, and the parameter t
controls the way in which we choose to make this rigorous; for a small value of
t, there are few edges which means that bars are finely distinguished, while for
t large enough we allow coarser identifications.

We now have a point cloud from any musical score, so we have defined a new
way to associate a filtered complex with a score by considering the Vietoris-Rips
complex of Sect. 2.1. Thus, we are now able to compute persistent homology
(barcodes) and the next section shows an example of a musical analysis using
this approach. Recall the filtration and barcodes from Figs. 1 and 2 respectively;
they correspond to the method we just defined applied to the little score with 4
distinct bars of Fig. 6, which was built arbitrarily to test it.
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Fig. 6. The score from which we build filtration and barcodes of Figs. 1 and 2.

3 Application: Analysis of a Musical Piece

The idea is now to test our approach on a music piece to see in which way
it is useful in the context of musical analysis. As we have already mentioned
in the introduction, we are interested in the barcodes in degree 0 and 1. For
computing homologies, Betti numbers and barcodes, we used our own algorithms
and programs written with the help of the SageMath system (based on Python).

The musical piece we choose to analyse is taken from the soundtrack of
the French movie Le Fabuleux Destin d’Amélie Poulain, directed by Jean-Pierre
Jeunet (2001). The music is the famous Comptine d’un autre été: l’Après-midi
for piano, composed and played by the minimalist composer Yann Tiersen (2001).
The version we took for our analysis is extracted from [6].

The score has 53 muscial bars, some of which are repeated so it only contains
39 distinct bars, and it is split in two parts: actually, the music has 3 different
themes in the first part that are played again one octave higher in the second one.
These 3 themes and their respective structures are presented in Fig. 7. Notice
that there are some repetitions of these themes in the original score, but here
we suppress them in order to work with distinct musical bars only. Moreover,
all the melody is constructed over 4 musical bars that are repeated and which
constitute the musical accompaniment from Fig. 8.

Fig. 7. Part of each theme of Comptine d’un autre été: l’Après-midi. The first one goes
from B5 to B8 and is repeated one octave higher from B22 to B25. The second goes from
B9 to B12, then is repeated with extra notes from B13 to B16 and the whole 8 bars are
played one octave higher from B26 to B33. The third one goes from B17 to B21 and is
repeated one octave higher from B34 to B38, with a slight change in B38 to bring us to
the end of the piece.



354 V. Callet

Fig. 8. The musical accompaniment of Comptine d’un autre été: l’Après-midi. These
4 bars consists of 4 arpeggiated chords Em − G − B − D and are played once at the
beginning of the score without any melody, from B1 to B4.

Fig. 9. Barcodes for Comptine d’un autre été: L’Après-midi in degree 0 (left) and
degree 1 (right).

Let us look at the barcode in degree 0 from Fig. 9: there are several levels
of analysis depending of the error margin we choose to take, and the main idea
of persistent homology is to focus on the largest bars (those which persist),
while the smallest ones can be considered as noise. In our case, there are 2
bars that stand out when we take an error margin larger than 21%, that means
that the corresponding complex has only 2 connected components. One of them
corresponds to the last musical bar B39 of the score, which only consists of the
final chord Em played with whole notes, and the other is a large dimensional
complex where all the musical bars are connected together. This first analysis
shows that the barcode in degree 0 separates the end from the rest of the piece,
which is a start. For t% with t ≤ 8, there are only small bars so we ignore them as
noise. Between 8% and 21%, there are 5, 6 or 7 classes that seem to last and more
precisely, we found that with an error margin of 14%, the associated complex
in the filtration looks like in Fig. 10, which is really remarkable: actually, there
are 6 connected components and if we look at the vertices, we see that each one
corresponds to a theme of the song, except for B8 and B28 which have a slight
different structure than the rest of the first theme.

Fig. 10. The associated complex of Comptine d’un autre été: l’Après-midi with an
error margin of 14%: each component characterizes a theme of the piece.
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We may then conclude that, with a well-chosen error margin, the barcode in
degree 0 captures the structure of this piece by separating its different themes
in the associated complex.

On the other hand, barcode in degree 1 displays 3 different one-dimensional
cycles that are presented in Fig. 11. Note that some edges of these cycles linked
musical bars of one given theme to the same one octave higher, but not system-
atically and for now we are not able to interpret these cycles musically.
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Fig. 11. One-dimensional cycles from Comptine d’un autre été: L’Après-midi that
appear with an error margin of 8% (left) and 26% (middle and right).

4 Conclusion and Prospect

This paper has presented a new method to provide a filtered complex associated
with a musical piece. Moreover, our construction reveals interesting results on
the piece we chose to study. Actually, it shows that there is a way to capture the
global structure of the piece by using barcodes in degree 0. In contrast, barcodes
in degree 1 did not display an obvious musical interpretation, and we plan to
focus on this dimension in our future work. In fact, one-dimensional cycles could
be related to repeating patterns or musical loops in the score, and we are working
on highlighting this interpretation from our construction. We also plan to apply
our approach to a more general and diverse corpus of music data to see in which
way it can capture the global structure of a music piece.
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