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Abstract. This paper deals with the computational analysis of musi-
cal structures by focusing on the use of morphological filters. We first
propose to generalize the notion of melodic contour to a chord sequence
with the chord contour, representing some formal intervallic relations
between two given chords. By defining a semi-metric, we compute the
self-distance matrix of a chord contour sequence. This method allows gen-
erating a self-distance matrix for symbolic music representations. Self-
distance matrices are used in the analysis of musical structures because
blocks around the diagonal provide structural information on a musical
piece. The main contribution of this paper comes from the analysis of
these matrices based on mathematical morphology. Morphological filters
are used to homogenize and detect regions in the self-distance matri-
ces. Specifically, the opening operation has been successfully applied to
reveal the blocks around the diagonal because it removes small details
such as high local values and reduces all blocks around the diagonal to a
zero value. Moreover, by varying the size of the morphological filter, it is
possible to detect musical structures at different scales. A large opening
filter identifies the main global parts of the piece, while a smaller one finds
shorter musical sections. We discuss some examples that demonstrate the
usefulness of this approach to detect the structures of a musical piece and
its novelty within the field of symbolic music information research.

Keywords: Symbolic music information research · Music structure ·
Chord contour · Self-distance matrix · Mathematical morphology

1 Introduction

Mathematical morphology is an algebraic theory that analyzes shapes and is
mostly used in image analysis and understanding. However, this theory is not
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very common yet in the Mathematics and Music community. The fundamental
idea of this theory is to modify the shape, the size or the topological properties
of objects with non-linear and non-reversible transformations. Among the few
existing applications of mathematical morphology to symbolic representations of
music, automatic methods have been developed in Music Information Research
community (MIR) to detect approximate occurrences of musical patterns in
symbolic music databases [12,13]. In this case, mathematical morphology enables
to match almost identical patterns. Moreover, mathematical morphology has also
been used to analyze concept lattices based on musical intervals [2], and basic
operators of mathematical morphology have been adapted to find a musical
meaning, allowing for example extracting harmonic components or to obtain
musical transformations [14].

The main contribution of this paper is to propose a novel method, based
on mathematical morphology, to extract hierarchical musical structures from
the self-distance matrix. This method can be applied to any type of similarity
matrix and to any type of data. In our case, the self-distance matrix is computed
from symbolic music representations, using a generalization of melodic contour
to chord sequences. The purpose of this method is to homogenize the different
regions of the self-distance matrix in order to identify the musical structures.
Two basic morphological operations, the erosion and dilation, have already been
successfully used to detect the repeating patterns longer than a minimum length
into a time-lag matrix (a similar representation as the self-distance matrix) [15].
However, rather than identifying segments as in [15], we demonstrate the use-
fulness of the morphological opening operation in order to identify blocks in the
self-distance matrix. This operation eliminates small details, while flatter and
homogeneous regions are obtained. In addition, it reduces all the blocks around
the diagonal, which correspond to musical sections, to a zero value. We discuss
the form to choose when applying an opening filter to extract information from
the self-distance matrix: a constant square-shaped filter. But the size can also be
adjusted to detect different musical structures. A large opening will identify the
global part of the piece while a smaller one will reveal shorter sections. This idea
is illustrated by detecting different musical structures in Mozart’s Piano Sonata
Alla Turca.

This paper details the above ideas and is organized as follows. Section 2
proposes a method to generate a self-distance matrix from symbolic music rep-
resentations. We introduce the concept of chord contour (Sect. 2.1) as a general-
ization of the usual melodic contour, and then define a distance to compute the
self-distance matrix of a chord contour sequence (Sect. 2.2). Section 3 describes
how to use morphological filters in order to extract musical structures from the
self-distance matrix. After providing a short introduction to mathematical mor-
phology (Sect. 3.1) we then demonstrate the relevant applications of the open-
ing operation in order to identify the main blocks of the self-distance matrix
(Sect. 3.2). Finally, in Sect. 4, we apply our proposed method and illustrate how
morphological filters can be used to extract musical structures at multiple levels
of granularity.
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2 Creating a Self-distance Matrix from Symbolic Music

2.1 Converting Symbolic Music to Sequence Using Chord Contour

Whether for music perception [6,23], music analysis [1] or music theory [5],
melodic contour has become a fundamental tool in the MIR community. This
tool applies on monophonic structures, i.e., musical phrases or motives in which
two notes never sound at once. It is defined by the set of the directions between
consecutive pitches of a melody, +1 and −1 indicating respectively an ascending
and a descending interval. Figure 1a illustrates this idea by representing each
note of a melody by a circle in a time/pitch graph. Melodic contour summarizes
intervallic information and can be used to compare and classify melodic patterns
or to help understand their perception. Considering the importance of melodic
contour, it is not surprising that multiple extensions have been proposed. For
example, two other contours were defined in [3]: the strong contour (melodic
contour of only the notes present on the beat) and the weak contour (strong
contour with extra information if there is a contour variation within the beat).
Moreover, it was proposed in [16,20] to observe the directions at longer range,
i.e., all the directions between the ith and jth pitches, not only between the
ith and (i + 1)th pitches as for the usual melodic contour. To this purpose,
both works used a matrix representation: Morris’s comparison matrix (COM-
matrix) in [16], and combinatorial contour matrix in [20]. In the COM-matrix,
the coefficient at position (i, j) is the pitch direction between notes i and j,
and for the combinatorial contour matrix this coefficient is +1 if the jth note is
higher in pitch than the ith note or 0 otherwise. However, these generalizations
remain in the monophonic context, and they do not handle musical chords.

We propose a generalization of the melodic contour to chord sequences, i.e.,
not restricted to note sequences. In the proposed definition, the direction between
the pitches of two given chords is no longer a number but a matrix, called chord
contour. The coefficient (i, j) of the chord contour is the direction between the
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Fig. 1. Illustration of the melodic contour and the chord contour.
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ith note of the first chord and the jth note of the second chord, where the notes
of the chords are ordered in descending pitch order. Therefore, the chord contour
from an n-note chord to an m-note chord is of size n × m. Figure 1b illustrates
the construction of the chord contour: in this example, the two chords have
two notes, so the corresponding chord contour is a 2 × 2 matrix. The first row
corresponds to the directions from the highest note of the first chord to the notes
of the next chord, and so on. The chord contour sequence of the introduction of
Edvard Grieg’s March of the Dwarfs is graphically represented in Fig. 2. It will
be analyzed in the next sections in order to find the main passages or blocks of
this sequence.

Fig. 2. Representation of the chord contour sequence of the introduction of March of
the Dwarfs. Black, dark gray and light gray pixels map respectively to values of 1, 0
and −1.

2.2 Distance Matrix of a Chord Contour Sequence

In this section, we propose to define a distance between two chord contours. The
main difficulty comes from the fact that chord contours, which are matrices, can
have different sizes. First, we consider two chord contours with the same size. In
this case the Hamming distance will be used. Let A = (ai,j) and B = (bi,j) be
two chord contours of sizes n × m, the Hamming distance d(A,B) between the
matrices A and B is defined as the number of coefficients which differ:

d(A,B) = |{(i, j) ∈ [1...n] × [1...m] | ai,j �= bi,j}|. (1)

If one of the two matrices has more rows (or columns) than the other matrix,
one can reduce it by deleting rows (or columns) in order to get two matrices of
the same size and use the previous formula, with the addition of the number of
deleted rows (or columns). The rows (or columns) to be deleted are those that
minimize the distance between the two matrices. Deleting a row (respectively
a column) corresponds to omitting a note in the first chord (respectively the
second chord). Thus, if A and B are two matrices of size n1 ×m1 and n2 ×m2,
the distance D(A,B) between these two matrices is defined as:

D(A,B) = min
A′,B′

(d(A′, B′)) + |n1 − n2| + |m1 − m2|, (2)

where A′ and B′ are two matrices of size min(n1, n2) × min(m1,m2) such that
A′ (respectively B′) is obtained by removing n1 − min(n1, n2) rows and m1 −
min(m1,m2) columns from A (respectively B). From a mathematical point of
view, the first distance d respects symmetry, identity of indiscernibles, non-
negativity and triangular inequality. It is well defined as a metric on the space of
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matrices with the same size. On the other hand, for the second distance D, the
triangular inequality is lost; hence, it is only a semi-metric in the mathematical
sense. However, since we only make pairwise comparisons, without looking for a
path from one matrix to another one, the triangular inequality is not essential.

In order to visualize the musical structures, the self-similarity matrix was
proposed in [7], as a two-dimensional representation defined by computing the
similarity between any two instants. As stated in [19], self-similarity matrices
have become a major concept in the study of musical structures. In addition, the
dual of self-similarity matrices are self-distance matrices where each coefficient
describes the distance between two elements. Here we will focus on self-distances
matrices, but the same logic can be transcribed on self-similarity matrices. Let
ck be the kth chord contour of the musical piece, i.e., from the kth chord to
the (k + 1)th chord. Then the coefficient of the line i and the column j of the
self-distance matrix is defined by D(ci, cj). Figure 3 displays the self-distance
matrix corresponding to the example of the introduction of March of the Dwarfs
in Fig. 2. Since D is symmetric, the self-distance matrix is a symmetric matrix.
The musical structures can be inferred from the information near the diagonal:
the different blocks around the diagonal framed in red in Fig. 3 represent the
musical sections. It is possible to understand the shape of the self-distance matrix
in comparison to the chord contour sequence: blocks on the diagonal correspond
to sections that are visually identifiable in Fig. 2.

Fig. 3. Self-distance matrix of the introduction of March of the Dwarfs (white = 0,
i.e. low distance and high similarity, black = high distance values and low similarity).
(Color figure online)
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3 Analysis of the Self-distance Matrix Using
Morphological Operations and Filters

In this section, we propose an original method, based on mathematical mor-
phology, to extract meaningful information from the self-distance matrix. This
method can be applied to any type of self-distance or self-similarity matrix and
to any type of data. The purpose of this method is to homogenize the different
regions of the matrix in order to identify the musical structure.

3.1 A Short Introduction to Morphological Filters

Developed in the 1960s s by G. Matheron and J. Serra, Mathematical Morphology
is, in its deterministic component, an algebraic theory developed initially to
analyze shapes, and is widely used in image analysis. In this paper, we will rely
on mathematical morphology defined on functions, typically used to analyze gray
level images, making an analogy between self-distance matrices and images. Only
the useful notions are recalled here, and more details can be found in [4,10,11,
18,21,22]. Let (F ,≤) be a lattice of functions (here we consider functions from
E = Z

n into R
+ to handle self-distance matrices, and the lattice is complete). A

dilation is an operation that commutes with the supremum of the lattice, and an
erosion an operation that commutes with the infimum. Concrete forms of these
operations, which are often used, rely on the notion of structuring element, an
element B of the lattice, which can be considered as a binary relation between
elements of the underlying space E, or as a spatial neighborhood in our analogy
with images, or more generally as a function with bounded support. Dilation ⊕
and erosion � in the complete lattice (F ,≤) are extensions of Minkowski addition
[17] and subtraction [9] in the binary morphological case, and are defined for any
X ∈ F , any structuring element B ∈ F and any x ∈ E:

X⊕B(x) = sup
t∈E

(X(t) + B(x − t)) , X�B(x) = inf
t∈E

(X(t) − B(t − x)) . (3)

Dilation extends bright zones and reduces dark ones, while erosion does the
opposite. The other two fundamental operations result from the composition of
these operators. Indeed, the opening ◦ is the composition of an erosion and a
dilation and the closing • is a dilation followed by an erosion:

X ◦ B = (X � B) ⊕ B, X • B = (X ⊕ B) � B. (4)

Opening and closing are increasing and idempotent operators, hence morpho-
logical filters. They can be used to eliminate small details (having higher values
than their surrounding using opening, and smaller ones using closing) according
to the size and shape of the structuring element. Therefore, by using these filters,
some detailed information may be lost, while more flat and homogeneous regions
are obtained. This property will be used to highlight homogeneous regions in the
self-distance matrix, in order to exhibit the main musical structures, as detailed
in the next section.
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3.2 Application of Mathematical Morphology to the Self-distance
Matrix

We propose to use morphological filters to identify the main blocks of the self-
distance matrix. Blocks along the diagonal provide information on the musical
structure of the piece since low distance values of the self-distance matrix corre-
spond to passages with high similarity. In order to identify larger similar blocks,
locally higher distance values should be removed. The opening operation is par-
ticularly well suited to this situation. To do this, the structuring element has to
be constant and square-shaped in order to preserve the general organization of
the matrix, which exhibits strong vertical and horizontal structures, as well as
squared blocks. By using this operation, it is possible to homogenize the regions
of the self-distance matrix and to reduce the blocks on the diagonal to a zero
value (because the diagonal coefficients are equal to zero due to the identity of
indiscernibles of the metric).

(a) Opening (b) Threshold

Fig. 4. Filtering of the self-distance matrix using a morphological opening (a). As a
comparison, a simple thresholding is shown in (b).

The result of this operation on the self-distance matrix of Fig. 3 with a square
structuring element of size 12 × 12 is represented in Fig. 4a. Blocks on the
diagonal appear in white, which is the minimal value (equal to zero), and we can
easily detect them. To compare this method with simpler methods, thresholding
is shown in Fig. 4b. Here, each coefficient below half of the maximum coefficient
of the matrix is set to zero. However, this method does not detect the main
blocks of the self-distance matrix. The threshold operation acts globally on the
matrix, with the same threshold value applied everywhere. By contrast, opening
is an operator that acts locally on the coefficients of the matrix, depending on
local shape and size of the distance function, not on absolute values, which fits
our filtering objective better.
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The self-similarity matrix, introduced in [7], is also used in audio-based
approaches to the analysis of musical structures. In this case, the values of the
self-similarity matrix are inverted with respect to the self-distance matrix. The
diagonal coefficients are the highest values (equal to one) and the goal is to
remove locally lower values and to reduce the blocks around the diagonal to
the highest value of the matrix. This change can also be handled with the mor-
phological tools because dilation and erosion (respectively opening and closing)
form pairs of dual operators [4]. This means concretely that applying a dilation
(respectively an opening) on a self-distance matrix is equivalent to applying an
erosion (respectively a closing) on a self-similarity matrix, and vice versa.

4 Changing the Shape of the Morphological Filter
to Detect Different Musical Structures

The morphological operations provide new computational tools for the analysis
and identification of the overall structure of a musical piece. Moreover, it is
possible to detect musical structures at different scales, for example to refine
the granularity of the analysis and identify the bars of the piece. This can be
done by changing the size of the structuring element, in order to detect blocks of
different sizes. With a smaller structuring element, it is possible to detect smaller
blocks around the diagonal, representing for instance the bars of the piece, while
a larger one will allow detecting the global musical structure at a bigger scale.

To illustrate the notion of filtering with different structuring elements, we
consider the third movement of the Piano Sonata No.11 in A Major, composed
by Wolfgang Amadeus Mozart and commonly known as Alla Turca or Turkish
Rondo. The structures of the piece are represented in Fig. 5a, where each letter
symbolizes 8 bars. This piece is divided into four main parts represented by red
rectangles and linked with blue rectangles. There are two levels of structure: the
7 colored rectangles (global structure) or the 28 letters (detailed structure). As
seen previously, the structuring element has to be constant and square-shaped,
the only parameter to choose being the size. We applied an opening filter with
a constant square-shaped structuring element of size 3 × 3 and 6 × 6 to the
self-distance matrix (computed using the chord contour sequence). The result of
these opening filters is displayed in Figs. 5b and 5c. For a clearer understanding,
only the diagonal blocks (detected with the flood-fill algorithm) are shown in
black in this figure, i.e., zero value coefficients connected to the diagonal of the
matrix. We computed the novelty score, introduced in [8], of these two opening
diagonals. The novelty score N is the correlation along the diagonal of a matrix
M with the checkerboard kernel C:

N(t) =
L/2∑

i=−L/2

L/2∑
j=−L/2

C(i, j)M(i + t, j + t), (5)
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A A B A’ B A’ C C D D E D’ E D’ C C A A B A’ B A’ C’ C’ F F F’ F”

(a) Musical structures of Alla Turca (W.A. Mozart).

(b) Opening diagonal with a 3 × 3
constant square-shaped structuring el-
ement.

(c) Opening diagonal with a 6 × 6
constant square-shaped structuring el-
ement.

(d) Novelty score of the opening diagonal with a constant square-shaped 3 × 3 (top)
and 6 × 6 (bottom) structuring element.

Fig. 5. Filtering of the self-distance matrix at different scales by the opening operation
in order to obtain different musical structures. (Color figure online)
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where C is the 64 × 64 symmetric matrix defined as

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 · · · −1 1 · · · 1
...

. . .
...

...
. . .

...
−1 · · · −1 1 · · · 1
1 · · · 1 −1 · · · −1
...

. . .
...

...
. . .

...
1 · · · 1 −1 · · · −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Notice that we use the opposite of the checkerboard kernel presented in [8]
because we have a self-distance matrix instead of a self-similarity matrix. This
novelty score allows detecting changes, and therefore the limits of the blocks
to identify. The novelty scores of the two opening diagonals are represented in
Fig. 5d. We also add the boundaries of the musical structures shown in Fig. 5a
with thick dotted lines (boundaries between rectangles) and thin dotted lines
(boundaries between letters). The high value of the novelty score represents
the boundaries of the piece. The novelty score of the opening diagonal with a
3 × 3 structuring element detects the boundaries between the D/D/E/D’/E/D’
and C’/C’ sections. While the novelty score of the opening diagonal with a
6 × 6 structuring element detects the boundaries between the rectangles and
the A/A/B/A’/B/A’ sections. With these two diagonals blocks, it is possible to
detect two different structures of the piece.

Finally, we can adjust the size of the structuring element used to filter the
self-distance matrix depending on the granularity that we want in the analysis
of the musical structures (which enables for example to detect only few very
long passages or a greater number of short passages). By varying the size of the
structuring element, we can computationally grasp the segmentation process at
multiple levels. In fact, every time we increase the size of the structuring element
we force some segments to merge and become a new bigger segment, starting
from few notes segments to the whole piece.

5 Conclusions

This article proposed a new method to visualize a piece of music and analyze
its structures in an automatic way. By focusing on the pitch variations between
the elements of a melodic line (notes) or harmonic progression (chords), we have
proposed an original approach that generalizes the notion of melodic contour to
a sequence of chords, called chord contour. In such a sequence, the pitch vari-
ation is described by matrices, instead of just a number as in the case of the
traditional melodic contour. These matrices characterize a sequence of chords
by using the direction of the pitch variation of the notes from one chord to the
next one. We then introduced a proximity measure between two chord contours
of any sizes with the semi-metric D in order to compute the self-distance matrix
of a chord contour sequence. The self-distance matrix is used to analyze musical
structures by leveraging the fact that the principal blocks around the diagonal
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correspond to the main passages of the piece. The main idea of this paper is
to use filters borrowed from the domain of mathematical morphology in order
to identify these blocks. Mathematical morphology is a relatively new theory in
the MIR community and we are convinced that it can be particularly useful in
connection with the self-distance matrix. These morphological filters have been
used to homogenize and identify well-defined regions of the self-distance matrix
corresponding to musical entities. The opening operation has been successfully
applied to the analysis of the musical structures of a piece because it locally
removes the high values. With a constant square-shaped structuring element, it
reveals the horizontal and vertical blocks of the self-distance matrix. In addi-
tion, the blocks around the diagonal, which correspond to a well-defined musical
structure, all have a zero value. Moreover, by varying the size of the filter, it
is possible to have different filtering levels in the automatic detection of the
underlying structures of the musical piece. By filtering the self-distance matrix
with a large opening, one is able to identify the main global parts of the piece,
while using a smaller morphological filter reveals shorter musical sections. Some
promising results of applying this new method in the field of music automatic
segmentation have been obtained and discussed by presenting a computational
analysis of an excerpt of Edvard Grieg’s March of Dwarfs and of Mozart’s Piano
Sonata Alla Turca.

In this paper, we demonstrated the usefulness of morphological filters to
homogenize musical sections to detect the musical structure. However, homo-
geneity is not the only criteria for music structure analysis, and the other main
approach is based on repetition. Paulus et al. argue that a combined approach
(based on homogeneity, novelty and repetition) provides promising results [19].
Our method does not handle repetition, because the goal of this paper is to
show the application of mathematical morphology for music structures analysis.
Due to the simplicity yet powerful utility of morphological filters, we strongly
believe that this method can be reuse for future algorithms for the homogeneity
step. Moreover, although we have applied this method on symbolic music repre-
sentations with a chord contour sequence, this method can also be applied for
audio-based analysis of musical structures. For future research, we plan to test
this method on a large audio database with annotated structures in a hierarchical
way to validate it experimentally.
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