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Abstract. In this paper we propose a new fitness function for Evolution-
ary Computation purposes, based on a weighted by neighborhood aver-
age distance between two sequences of points within any metric space. We
will apply this fitness function to the field of Computer-Assisted Com-
position focusing on the problem of thematic bridging, consisting in the
evolutionary creation of a soft set of transitions between two given differ-
ent melodies, the initial and the final one. Several self-adaptive strategies
will be used to perform the search. A symbolic melody will be geno-
typically mapped into a sequence of genes, each of then containing the
information of duration, frequency and time distance to following note.
We will test the implementation of the fitness function by means of two
experiments, showing some of the intermediate melodies generated in a
successful run, and benchmarking every experiment with performance
indicators for any of the three distinct evolutionary strategies imple-
mented. The results prove this novel fitness function to be a quick and
suitable way for individual evaluation in genetic algorithms.

Keywords: Evolutionary computation · Genetic algorithm ·
Computer-assisted composition · Fitness · Neighborhood · Thematic
bridging

1 Introduction

The use of Evolutionary Computation in the field of computer-assisted composi-
tion has been widely addressed through a large variety of evolutionary techniques
[12,17]. In this paper we present a novel fitness function that can be employed on
evolutionary algorithms that need to evaluate the dissimilarity between the geno-
type of individuals with different number of genes. We will focus on the specific
problem of Thematic Bridging [8], conceived as obtaining automatically a set of
smooth transitions from any given initial melody to any given goal melody. To
achieve this, several evolution strategies [6] will be implemented and afterwards
tested in two experiments, measuring the performance indicators for several set-
tings. The evolutionary search, thanks to mutation and crossover operators, will
progressively minimize the dissimilarity of every offspring, until an individual
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reaches the objective genotype of the goal melody. The best individuals of every
offspring will be stored and will create the desired bridging, that could be written
into a musicXML interchange format file.

2 Related Work

The use of evolutionary algorithms in the field of Computer-Assisted Compo-
sition is said to have started at the beginning of the 90’s. In the year 1991,
Horner and Goldberg [8] implemented one of the first applications of the evolu-
tionary algorithms to computer composition, describing an evolutive technique
called Thematic Bridging that is able to produce melodic material as a result
of iterative transitions between two small melodies. The composition is created
by means of human selection and organization of the algorithmically created
melodic material, in a form of an imitative five-voices canon.

Three years later, Biles [3] presented GenJam, a noteworthy application of
genetic computation that generates improvisations in jazz style, keeping the
hierarchical relations between different melodic ideas suggested by the harmonic
chords progression that is playing. At the same time, the system retrieves feed-
back information in real-time from the human player. Other interesting evolutive
designs were proposed by Hartman [7] and Mcintyre [13].

De la Puente et al. [4] introduced GEMUSIC, a tool that creates algorith-
mically melodic lines similar to human compositions, thanks to the implemen-
tation of Evolutionary Grammars. Weinberg et al. [21] described an interactive
evolutive robotic system that collaborates with human players and improvises
while playing on a xylophone. The system detects the musical material played
by the human and evolves it using several fitness functions. Tzimeas et al. [19]
developed the software Jazz Sebastian Bach, a system that evolves melodies orig-
inally composed by J. S. Bach and turns them into a jazzy style. The authors
propose a fitness function called Critical Damped Oscillator that overcomes sev-
eral algorithmic difficulties related to Automatic Fitness Assessment (AFA) or
Interactive Genetic Algorithm (IGA).

De León et al. [16] proposed the characterization of a melody as the result of a
set of rules coming from a fuzzy genetic algorithm, aimed to distinguish if a given
MIDI file contains a melody or not. The figure of the human-expert knowledge
is replaced by a fuzzy genetic system. Sánchez et al. developed MELOMICS
project [15], a sophisticated evolution system able to compose and orchestrate
whole musical pieces.

Scirea et al. presented in [18] the framework MetaCompose, for music com-
position that includes a chord sequence and accompaniment generator, and a
melody generator that uses a novel evolutionary technique combining FI-2POP
and multi-objective optimization. In 2019, Nam YW. and Kim YH. [14] automa-
tized the production of good-quality jazzy melodies by means genetic algorithm,
using a variable-length chromosome and geometric crossover.

Trump proposed in [20] a evolutionary framework for improvisation in which
the improvisation is created by successive sound cells containing a musical con-
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tent transformed by a creative selection. Other interesting approaches were pro-
posed by Almada [1], Arutyunov [2] and Donelly [5].

3 Theoretical Background

3.1 Mathematical Definition of a Melody

As we presented in [10], a melody can be understood as a sequence of points,
M = {xi}n

i=1, where each point xi ∈ R
q is a musical note. The most simple

way to represent a note is using three musical characteristics: the duration, the
frequency and the time distance that could exist until the next note (representing
in this way the possible existence of a silence between this note and the next one).
Thus, a musical note will be expressed by a point within a three-dimensional
metric space x = (x1, x2, x3) ∈ R

3, where the feature x1 expresses the time
duration of the note, x2 expresses the frequency and x3 indicates time duration
of an optional silence until the next note. In order to calculate the time features
x1 and x3 of each note, we will use the relative-duration coefficient δ proposed
in [10]. For the symbolic representation of the frequency in the feature x2 we
will use the MIDI pitch number associated to any musical note.

3.2 Neighbourhood Functions

Neighbourhood functions introduced in [10,11] are the key point of the fitness
function that will be introduced in the following section. When making a com-
parison between two sequences, with the first one having a number of n elements
and the second one having a number of m elements, the aim of the neighbour-
hood function will be to calculate the degree of similarity between any element
i from the first sequence and any element j of the second one.

In this way, when comparing two sequences A and B with very different
number of elements, if a correct function is defined, the first elements of sequence
A will be strongly correlated with the first elements of the sequence B, but very
weakly correlated with the final elements of B. In addition, the ending elements
of sequence A will be weakly correlated with the first elements of the sequence
B, but strongly correlated with the final elements of B. Equation 2 shows the
expression of Gaussian Neighbourhood Functions used in this paper.

f(i, j) =
1√

2πσ2
e−

[
1

2σ2

(
i− (n−1)

(m−1) j
)2]

. (1)

3.3 Fitness Function

We propose a new fitness function for evolutionary music composition based
on the definition of Melodic Dissimilarity proposed in [10]. Let MA =
{x1, . . . ,xn} ∈ R

q and MB = {y1, . . . ,ym} ∈ R
q be two different melodies

constructed by a different number of notes. Let d : Rq × R
q → R be any dis-

tance function on the metric space. Let f(i, j) be any neighborhood function.
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The Neighborhood Average Dissimilarity D from melody MA to melody MB

is defined as

D(MA,MB) =
1

n · m

n∑

i=1

m∑

j=1

f(i, j) · d(xi,yj). (2)

The proposed fitness function of each individual will be constructed by de
absolute difference between the dissimilarity of each individual A with the goal
melody B minus the dissimilarity of the goal melody with itself. Consequently,
the expression for the fitness function is

Ffitness(MA) = |D(MA,MB) − D(MB ,MB)| (3)

Observe how expression (2) does not accomplish any of the requirements of
a distance function. Consequently D(MB ,MB) �= 0, for the most of the cases.

4 Genetic Algorithm

4.1 Genotype Representation

A melody will be represented into an individual. In the genotype, the sequence
of all notes is codified into the sequence of genes. Each gene contains the mini-
mum information of a note. For the following experiments, three different rep-
resentations of an individual genotypes will be used, each of one containing
the required information by any of the evolutionary strategies [3] tested: simple
mutation, uncorrelated mutation with one step size, and Uncorrelated mutation
with n Step Sizes.

Simple Mutation. In this representation, the genotype of every individual is a
sorted array of float numbers in which the three features x1, x2 and x3 of every
note (gene) will be stored by order. The length of the array will be 3× n, where
n is the number of notes of the melody that is coded for each individual. The
representation is as follows

(x1
1, x

1
2, x

1
3, x

2
1, x

2
2, x

2
3, . . . , x

n
1 , xn

2 , xn
3 ) (4)

Uncorrelated Mutation with One Step Size. In this representation, the
genotype of each individual is again a sorted array in which the three features of
every note have been stored, besides three values σ belonging to features of time
duration, pitch and time distance. The length of the genotype will be 3 × n + 3,
being n the number of notes of the melody, and its structure will be the following:

(x1
1, x

1
2, x

1
3, x

2
1, x

2
2, x

2
3, . . . , x

n
1 , xn

2 , xn
3 ;σ1, σ2, σ3) (5)
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Uncorrelated Mutation with n Step Sizes. In addition to the previous
information of time duration, pitch and time distance belonging to each one of
the n notes, this representation will include the sigma value σ corresponding to
each one of this features. In this case, the length of the genotype will be 6 × n
and its structure:

(x1
1, x

1
2, x

1
3, . . . , x

n
1 , xn

2 , xn
3 ;σ1

1 , σ
1
2 , σ

1
3 , . . . , σ

n
1 , σn

2 , σn
3 ) (6)

4.2 Restrictions on the Evolution Strategy

Some constrains will be implemented into the evolutionary strategy aimed to
reduce the space of research. The first restriction is introduced in the mutation
of the MIDI pitch value. The mutated pitch value will be forced to be a integer
number, due to the MIDI mapping of the musical notes is enclosed from 0 to
127, so the algorithm does not consider the possible existence of intervals smaller
than a semitone.

The second constrain is implemented into the possible variation of the
relative-duration Coefficient δ. This feature will be mutated by means of adding
or subtracting a multiple of a minimum-duration figure. The arbitrarily chosen
minimum-duration is a demisemiquaver (thirty-second note), with coefficient
δmin = 0.03125.

4.3 Mutation

The mutation in a specific gene will be done using random resetting, establishing
an uniform mutation probability for every genes. When a gene is randomly cho-
sen for being mutated, the feature represented by this gene into a float number
will be modified adding or subtracting a certain amount, calculated according
to the case that we consider.

Simple Mutation. In the case of simple mutation, the features of duration x1,
pitch x2 and time distance x3 of a selected note i will be modified using these
expressions based on the equations exposed in [6]:

x′i
1 = xi

1 + δmin · �σ1 · N(0, 1)�
x′i

2 = xi
2 + �σ2 · N(0, 1)�

x′i
3 = xi

3 + δmin · �σ3 · N(0, 1)�
(7)

where N(0, 1) is a generator of Gaussian distributed random numbers, centered
in the zero value (mean equal to zero), and with standard deviation equal to 1.
In this case, the values of σ stay constant.



210 B. Mart́ınez-Rodŕıguez

Uncorrelated Mutation with One Step Size. In this kind of mutation, the
values σ1, σ2 and σ3 used to calculate the changes in the features of duration,
pitch, and time distance, are assumed to change randomly for each individual.
Therefore, the mutations on the standard deviations and features xi will be done
by means of the following expressions:

σ′
1 = σ1 · eτ ·N(0,1)

σ′
2 = σ2 · eτ ·N(0,1)

σ′
3 = σ3 · eτ ·N(0,1)

x′i
1 = xi

1 + δmin · �σ1 · N(0, 1)�
x′i

2 = xi
2 + �σ2 · N(0, 1)�

x′i
3 = xi

3 + δmin · �σ3 · N(0, 1)�
(8)

For every mutation of the deviation σj , we should check if the new value is
not too small. To achieve this, we establish a threshold value εj below which σ
can not still decrease, so:

σ′
1 < ε1 ⇒ σ′

1 = ε1

σ′
2 < ε2 ⇒ σ′

2 = ε2

σ′
3 < ε3 ⇒ σ′

3 = ε3

(9)

Uncorrelated Mutation with n Step Sizes. In this case, each one of the xi
j

features of an individual will mutate with a specific deviation σi
j . The mutations

of the deviations and features of a chosen note i will be carried out with these
expressions:

σ′i
1 = σi

1 · eτ ·N(0,1)

σ′i
2 = σi

2 · eτ ·N(0,1)

σ′i
3 = σi

3 · eτ ·N(0,1)

x′i
1 = xi

1 + δmin · �σi
1 · N(0, 1)�

x′i
2 = xi

2 + �σi
2 · N(0, 1)�

x′i
3 = xi

3 + δmin · �σi
3 · N(0, 1)�

(10)

Once again, it is necessary to check if the mutated value of every deviation
σi

j is not smaller than a given threshold ε0.

Mutation Operation Concerning the Number of Notes of a Melody.
Besides mutating the features of duration, frequency and time distance of a
random note from the melody coded on the genotype of each individual, it is
needed to establish a mutation operation to change the number of notes of the
melody, since we want to achieve an evolutionary transition from one initial
melody to a second one, both having conceivably a different number of notes.

Two arbitrary probabilities for insertion and suppression of a note will be
implemented in order to insert a new note in a random position p inside the
genotype, or remove the note located on the position p, respectively.

When inserting a brand new note in a random position of the genotype, there
exist three different possibilities:

– Inserting the note at the beginning of the melody (p = 0): In this case, three
new positions will be inserted at the very beginning of the genotypical array.
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The values of these three new positions will duplicate exactly the three fea-
tures of the prior first note, so the new inserted note will duplicate exactly
the ancient first one.

– Inserting the note at the end of the melody (p = 3 ·n): In this case, three new
positions will be added at the end of the genotypical array. The values of this
positions will duplicate the previous last note of the melody.

– Inserting the note in an intermediate position within the melody (p = k, 0 <
k < 3 · n): In this case, a new note will be inserted between the notes placed
in the positions k − 1 and k. Each one of the three features of the new note
will be calculated as an average value of the corresponding feature from the
two adjacent notes, taking into account the previously specified constraints
of mutation changes in duration and pitch.

In the cases of the genotype related to the representation of Uncorrelated
mutation with one Step Size and Uncorrelated mutation with n Step Sizes, it
will also be necessary to include in the genotypical array one extra position in
case of one Step size, or three extra positions in case os n Step Sizes, in order to
include the new σ values corresponding to the new note.

4.4 Initialization of the Population, Parents Selection and Crossover

The population will be initialized creating a number μ of different individuals,
whose genotypes have been initially cloned from the starting melody one, and
afterwards subjected to a random mutation process.

A number of λ couples of parents will be randomly chosen to generate a new
child from every couple. The recombination operation for the new genotype will
be the uniform crossover, so each gene will be randomly inherited from any of
the parents.

The selection process of survivors for next generation will be guided by
method μ + λ, which involves mixing together the population of parents and
offspring [3], sorting by each individual’s fitness and choosing the best μ
individuals.

4.5 Performance Indicators

For each execution there will be a maximum of 200 generations. Each experi-
ment will be executed 1.000 times for any one of the pre-established setups. The
algorithm will store the following performance indicators [3]:

– SR (Success Rate): Percentage of executions that finish successfully over the
total number of executions.

– MB (Mean Best Fitness): Average of the best fitness value of the population
when execution finishes, successfully or not.

– MBFS (Mean Best Fitness Success): Average of the better fitness value of
the population taking into account only the successful executions.

– AES (Average number of Evaluations to a Solution): Average number of
generations needed to reach a successful execution.

– MST (Mean Success Time): Mean time needed to find a successful execution.
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5 Experiments

5.1 First Experiment

Given initial melody A and goal melody B, use the evolutionary strategies with
fitness function (3) to generate a melodic transition from A to B (Fig. 1).

Fig. 1. Initial and final melodies of the first experiment.

Settings of the algorithm: μ = 20, λ = 200, mutation prob. = 0.15 and note
insertion prob. = 0. Run 1.000 times. Results shown in Table 1 and Fig. 2:

Fig. 2. Some intermediate melodies generated at one successful execution.
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Table 1. Benchmarking indicators for experiment one.

Simple One step n steps

SR 100.00% 100.00% 100.00%

MBFS 0.01904 0.01904 0.01903

MB 0.01904 0.01904 0.01903

AES 43.80 99.60 97.30

MST (ms) 167.86 373.03 378.77

5.2 Second Experiment

Given initial melody A and goal melody B, use the evolutionary strategies with
fitness function (3) to generate a melodic transition from A to B (Fig. 3).

Fig. 3. Initial and final melodies of the second experiment.

Settings of the experiment: μ = 20, λ = 500, mutation prob. = 0.15 and note
insertion prob. = 0.05. Run 1.000 times. Results shown in Table 2 and Fig. 4.

Fig. 4. Some intermediate melodies generated at one successful execution.
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Table 2. Benchmarking indicators for experiment two.

Simple One step n steps

SR 21.30% 34.60% 40.70%

MBFS 0.38764 0.38764 0.38764

MB 0.41251 0.40294 0.40050

AES 55.60 56.50 49.90

MST (ms) 1490.69 1490.53 1331.01

5.3 Results

In Fig. 5 it is possible to compare the performance curves for experiment one and
two, for simple mutation, Uncorrelated mutation with one Step Size and Uncor-
related mutation with n Steps Size. The final benchmarks for the performance
indicators of SR, AES and MST are summarized in Table 3.

Fig. 5. Performance charts for the first and second experiment.
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Table 3. Final performance indicators for the experiments.

SR AES MST

Simp. 1 step n steps Simp. 1 step n steps Simp. 1 step n steps

Exp. #1 100,00% 100,00% 100,00% 43.80 99.60 97.30 167.86 373.03 378.77

Exp. #2 21.30% 34.60% 40,70% 55.60 56.50 49.90 1490.69 1490.53 1331.01

6 Discussion

We have run 1000 executions for each set of experiments one and two, with
a maximum number of 200 offsprings for each execution. The success rate of
experiment one was 100%, due to the melodies not being very distant in terms of
evolutionary search. The success rate of experiment two was 40,7% as the initial
and final melodies where very distant. For the experiment one, the most efficient
mutation was the simple mutation. Nevertheless, Uncorrelated mutation with n
Steps Sizes has been the most efficient in experiment two. All the representations
achieved low values of mean success time (MST) and low average number of
evaluations to a solution (AES).

7 Conclusions

The evolutionary algorithm implemented and tested in the two experiments
has proved to find solutions to the problem of thematic bridging between two
melodies, thanks to the minimization of the novel fitness function proposed in
this paper (3) and based on the Neighborhood Average Dissimilarity (2).

The evolutionary algorithm implemented in the experiments exercise has
been shown to be capable of making transitions between two melodies by mini-
mizing the fitness function proposed in (3), in a quick and useful way for simple
evolutionary composition poruses. Future work will involve the implementation
of more sophisticated evolutionary techniques, widening the rhythmical restric-
tions of the evolutionary algorithm and incorporating the generation of harmonic
chord sequences.
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