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Abstract. This paper presents an algorithm for the time-scaled
repeated pattern discovery problem in symbolic music. Given a set of
n notes represented as geometric points, the algorithm reports all time-
scaled repetitions in the point set. The idea of the algorithm is to use an
onset-time-pair representation of music, which reduces the musical prob-
lem of finding repeated patterns to the geometric problem of detecting
maximal point sets where all points are located on one line. The algo-
rithm works in O(n*logn) time, which is almost optimal because the
size of the output can be ©(n*). We also experiment with the algorithm
using real musical data, which shows that when suitable heuristics are
used to restrict the search, the algorithm works efficiently in practice and
is able to find small sets of potentially interesting repeated patterns.
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1 Introduction

In this paper we consider the problem of finding repetitions in Western, equal
tempered, polyphonic music. Various kinds of repetitions are frequent both in
pop and in classical music. For example, already the structure of a pop song is
often based on repetitions such as the usual ABABCBB structure. However, here
we concentrate on repetitions taking place at the note level. In classical music
one can find various forms of such repetitions, e.g., themes, motifs, imitations,
drones, pedals and Alberti basses. Heinrich Schenker [14] stated already in 1954,
that repetitions form the basis for music as an art. In general, repetitions make
it easier for listeners to detect and remember musical ideas [10].

As the musical repetitions tend to appear in different pitches (different per-
ceived height), it is important to apply transposition invariance in the searching
process. If the repetitions are searched for in monophonic music, i.e., music with
just one voice, or within a single voice, string-based algorithms can be used effi-
ciently for the task (see e.g. [1,3,4]). Combining transposition invariance with
polyphonic music — where repetitions may be scattered around distinct instru-
ment or voices — makes a complex problem setting for which solutions based on
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Table 1. A taxonomy of musical pattern matching and repeated pattern discovery
problems that shows the gap filled by this paper. The table shows associated literature
and the best known solutions for the problems.

Problem ‘ Time complexity

Exact pattern matching

Plain O(nm) [15]
Time-scaled | O(n?m) [5]
Time-warped | O(n(m + logn)) [5]
Partial pattern matching
Plain O(nmlogm) [15]
Time-scaled | O(n*m?logn) [7]
Time-warped | O(n*m?logn) [8]

Repeated pattern discovery
Plain O(n*logn) [11]
Time-scaled | O(n*logn) (new)

Time-warped | O(n?logn) [6]

linear string representations are not sufficient but a geometric point set (pitch-
against-time) representation can be used effectively [11]. Furthermore, the data
may be acquired by converting audio data into symbolic form where any voice
information is lost during the process. In the sequel, we shall concentrate on the
more general and complex problem and, therefore, use the point set represen-
tation. An example of the point set representation with real musical repetitions
that are transposed and time-scaled is given in Fig. 5.

Let us denote by S a two-dimensional point set that represents a musical
work (or several musical works concatenated one after another). The number
of points in S is denoted by n. If a pattern in S is moved vertically or hori-
zontally, it is transposed or time-shifted, respectively. A translated pattern may
be both transposed and time-shifted; we call this the plain case. Moreover, a
translated pattern may also be time-warped, in which case the translated points
are time-shifted by some order-preserving, individual amount. Time-scaling is
a special case of time-warping where time-shifting is applied using a universal
multiplication factor to the onset times of the points.

The problem of finding repeating musical patterns is closely related to the
musical pattern matching problem where the occurrences of a pattern P of m
points are searched for in S. The matching may be ezxact or partial, meaning
that all or only some of the points in P have to appear in a match, corre-
spondingly. There are algorithms for the pattern matching problem for the plain
translated case [13,15], time-scaled case [5,7,13] and time-warped case [5,8]. For
the repeated pattern finding problem, there are algorithms for the plain [11] and
time-warped case [6], but to our best knowledge there is no published algorithm
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for the time-scaled case which is discussed in this paper. Table 1 summarizes the
literature and the best known time complexities for all these problems.

Rather interestingly, time-scaled problems seem to be harder than time-
warped problems, although the invariance needed for the latter problems is
stronger [9]. The reason for this is that we can use dynamic programming to
efficiently solve time-warped problems that consists of independent subprob-
lems. However, it seems difficult to use a dynamic programming based approach
in time-scaled problems because they have a global scaling factor that affects all
subproblems.

As stated above, time-scaling is actually a special case of time-warping. How-
ever, the stronger the invariance, the more false positives the searching algo-
rithms produce, i.e., using a time-warping algorithm for our problem would
require a separate post-processing phase to filter out the vast majority of time-
warped but non-time-scaled occurrences. We expect this to be much more tedious
and time consuming than what we present in this paper.

The paper is organized as follows: In Sect.2, we define the time-scaled
repeated pattern discovery problem, show a lower bound for the output size
of the algorithm, and present a simple algorithm for the problem. In Sect. 3,
we describe our O(n*logn) algorithm for the problem and discuss heuristics
that can be used with the algorithm. In Sect.4, we study the efficiency of the
algorithm and the effect of the heuristics. Finally, in Sect.5, we present our
conclusions.

2 Problem Definition

The input for the problem is a two-dimensional point set S that consists of n real-
valued points. Each point p € S corresponds to a musical note: the coordinates
p.z and p.y denote the onset time and pitch of the note, respectively.

Given a real number « (time-scaling factor) and a real-valued vector v (trans-
lation vector), let

MTTP(a,v) ={p|p € S, (ap.x +v.x,py+v.y) € S}

denote a mazimal time-scaled translatable pattern which corresponds to a
repeated time-scaled pattern in music. For example, if « = 2, the duration
of each note is doubled in the repetition.

The problem discussed in this paper is to create an algorithm that discovers
and reports all MTTPs in a point set. However, to make the problem more
meaningful, we have two restrictions in the search. First, we only report patterns
where o > 1 because if a # 1, any pattern can be represented in two ways using
scaling factors o and 1/c. In addition, we only consider patterns that have two
points with different x values. If this is not the case, the problem would not be
well-defined because there would be an infinite number of possible («, v) pairs.

Note that if « = 1, MTTP(«, v) corresponds to a two-dimensional maximal
translatable pattern MTP(v) that can be found using the SIA algorithm [11].
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Fig. 1. Example point set

2.1 Example

As an example, consider a point set
S = {(L 1)7 (27 2)3 (3, 1)7 (47 3)a (67 2)},

shown in Fig. 1. In this case the patterns are as follows:

- MTTP(3/2, (0, —1)) = {(2, 2), (4, 3)}

- MTTP(5/3,(—4,0)) = {(3,1),(6,2)}

B MTTP(27 ( ) 1)) = {(17 1)7 (27 2)a (37 1)}
- MTTP(5/23 (747 *1)) = {(2’ 2)7 (4v 3)}
- MTTP(37 (*83 O)) - {(37 1)3 (4ﬂ 3)}

- MTTP(3,(0,0)) = {(1,1),(2,2)}

- 1\/[TTP(57 (—4, O)) = {(1, 1), (2, 2)}

Note that there are two ways to produce the patterns {(2,2),(4,3)} and
{(1,1),(2,2)} using two distinct (c,v) combinations.

2.2 Lower Bound

Next we show that the size of the output of the algorithm can be ©(n?), which
means that any algorithm for the problem requires £2(n?) time in the worst case.
Consider a point set

S = {(1’ 1)7 (27 1)7 (37 1)7 R (nv 1)}

where each note has the same pitch. There are ©(n?) ways to select four distinct
points p; < p2 < q1 < g2 such that p2 — pl < g2 — ¢l. In each such case we have
found two points p; and ps with distinct x values that have a repetition (points
¢1 and ¢o) with scaling a > 1, which means that the algorithm reports them.
In addition, for fixed p; and ps, each repetition has a distinct pair (a,v), so p;
and py are reported separately for each case. Thus, we have found a construction
where the size of the output is ©(n?).
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2.3 Simple Algorithm

Before presenting our actual algorithm, an interesting question is what would
be a simple brute force algorithm for the problem.

Even creating such an algorithm is not trivial, but one possible idea is to
go through all subsets of four points p1,ps2,q1,92 € S where p;.x < po.x and
q-x < go.x. If po.y — p1.y = ¢2.y — q1.y, we have found a potential repeating
pattern and can define

o= (q2.x — q1.2)/(p2.x — p1.%)

and
v=(q1.¢ — ap1.x, 1.y — P1.Y).

This corresponds to a nonempty pattern MTTP(«, v), which will be reported
if & > 1 and the pattern contains two points with different x values. Note that
the algorithm can generate a pair (o, v) several times and should only process
the first occurrence.

This algorithm works in O(n®logn) time, because there are O(n?) subsets
of four points, and for each subset it takes O(nlogn) time to go through the
points in S and find the points that belong to the corresponding pattern. The
algorithm can be used to process small data sets, but there is no obvious way to
improve it.

3 Algorithm Description

In this section, we describe an O(n? log n) time algorithm for the time-scaled pat-
tern discovery problem. The algorithm uses the onset-time-pair representation
presented in [6], and it reduces the problem of finding time-scaled repetitions
into the problem of finding all maximal point sets where the points are located
on one line.

The algorithm forms for each possible transposition a set C; (“canvas”) which
consists of point pairs in S whose pitch interval is 7. Since each point pair in a
canvas has a constant pitch interval, it is enough to encode the onset times of the
pair: (z1,22) € C; means that there are two points in .S with onset times 7 and
r9 and interval i. Now, a maximal set of points on the same line corresponds to
a a maximal time-scaled translatable pattern (MTTP) whose time-scaling factor
is the slope of the line (see Fig. 2).

More formally, given a set S of n points, the algorithm creates a collection
of sets where each set is of the form

Pi={(a,b) |a € S,be S by—ay=i},

i.e., it contains all note pairs (a,b) whose interval b.y — a.y is a constant i. Then,
the algorithm generates for each set P; an onset-time-pair representation

C; = {(a.z,b.x) | (a,b) € B;}.
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whose each point consists of x coordinates of a note pair in P;. This represen-
tation is useful when finding time-scaled repetitions, because each repetition
corresponds to a set of points that are on the same line. Thus, the remaining
problem is to detect all such maximal point sets.

Let us assume that a set C; consists of k notes. We can find all maximal point
sets in O(k? log k) time as follows. We go through all point pairs p;, p» € C; where
p1-x < p2.x and p1.y < p2.y, and calculate for each such pair two values: a slope

_p2Yy—n-y
P2.Z — pP1.2

S

of the line defined by the points, and an offset

Z2=p1Yy —p1-T- 8,

which corresponds to the y coordinate where the line would intersect with the y
axis. Then, the triples (s, z,p1) and (s, 2z, p2) are added to a list. After processing
all O(k?) point pairs, we sort the list in O(k? log k) time, and after that, all points
that are on the same line are next to each other in the list and we can detect
them in O(k?) time.

Note that there is a direct correspondence between the parameters of a max-
imal translatable pattern and the parameters of a line in the onset-time-pair
representation. Each pattern with parameters («,v) corresponds to a line in
Cy.y so that the slope of the line is s = a and offset of the line is z = v.z.

Since the total number of points in C; sets is O(n?), the algorithm works in
O(n*logn) time.

3.1 Example

Consider again the point set

S = {(L 1)7 (27 2)7 (Sa 1)’ (47 3)a (6’ 2)}»

shown in Fig.1. Let us focus on repetitions whose interval is 1 which can be
found by creating the sets

and

C = {(L 2)7 (17 G)a (274)7 (37 2)’ (3’6)}'

In this case, the points (1,2), (2,4) and (3,6) are on the same line (Fig.2)
with slope 2 and offset 0. This point set corresponds to

MTTP(2,(0,1)) = {(1,1),(2,2), (3,1)}.
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Fig. 2. Points (1,2), (2,4) and (3,6) are on the same line in the onset-time-pair repre-
sentation C;. This corresponds to MTTP(2, (0, 1)).

3.2 Filtering Repetitions

Since the algorithm typically produces a large number of repetitions, we can add
heuristics (based on musical knowledge) to improve the results of the algorithm
(see e.g. [1,2,12]). In this paper, we consider the following heuristics:

Inter-onset-Intervals. The inter-onset-intervals between two consecutive
notes in a musical pattern cannot be large. Thus, when processing a set C; in the
algorithm, we can choose a constant mazy and only consider pairs pi,ps € C;
where

P2.T — P1.& < MaAxg

and
P2y — p1.y < maxq.

This heuristic can improve the running time of the algorithm, because it can
be applied when generating point pairs for the onset-time-pair representation.

Pattern Properties. Most of the patterns found by the algorithm are usually
short, while musically interesting repetitions are likely longer. For this reason,
we can choose a constant min,, and only report patterns that have at least min,,
notes.

In addition, notes in musically interesting patterns typically have several
different pitches, so we can choose a constant min, and only report patterns
that have at least min, different pitches.

Scaling Factors. Since we are interested in time-scaled repetitions, we can
focus on repetitions where o # 1. When combined with other heuristics, this
can greatly reduce the number of patterns reported by the algorithm.
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Fig. 3. Efficiency of the algorithm for maxg values 2t, 4t and 8t where t denotes the
number of ticks in a beat.

4 Experiments

In this section, we study the efficiency and usefulness of our algorithm on real
musical data. We have implemented the algorithm in C++, and verified that it
produces correct results. The implementation is available in our GitHub reposi-
tory (https://github.com/c-brahms/time-scaled-repeated).

The data set used in the experiments consists of 48 MIDI files: 24 preludes and
fugues from the first book of Bach’s Das wohltemperierte Klavier. We converted
each file into a point set where onset times are MIDI time values (ticks) and
pitches are MIDI note numbers. The number of note events in a file ranges from
about 400 to 2500.

We conducted the experiments using a 1.8 GHz Intel Core i7 computer in a
Linux environment. In all experiments we searched for patterns where o # 1,
i.e., time-scaling is used in the repetition.

4.1 Efficiency

In the first experiment, we measured the running time of the algorithm for each
file. It turned out that the general algorithm without the maxy4 parameter would
be too slow for processing the files, so we only consider tests where the maxy
parameter is used. The other filtering parameters only control the reporting after
the search, so they do not affect the efficiency of the algorithm.

Figure 3 shows the results of the experiment. Three maxy values were used:
2t, 4t and 8t where t denotes the number of ticks in a beat. As expected, the
greater the maxy value, the slower the algorithm. In most cases, the processing
time was less than two seconds, and the maximum processing time was 67s for
the largest input when the value maxy; = 8t was used.

The experiment shows that the algorithm can process real music files effi-
ciently. While the time complexity O(n*logn) of the algorithm could indicate
that it is of limited practical use, the maz, parameter considerably improves the
practical efficiency of the algorithm. On the other hand, if the max, parameter
is not used, the algorithm can only be used for small inputs.
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Fig. 4. The number of notes and discovered patterns in each file (maxq = 4, min, = 8,
min, = 5).

4.2 Pattern Discovery

In the second experiment, we examined the patterns discovered by the algorithm.
In this experiment, we used parameters maxq = 4, min, = 8, and min, = 5,
i.e., the maximum inter-onset-interval is 4 ticks and the pattern must have at
least 8 notes and 5 distinct pitches. We chose the parameters so that they filter
musically interesting patterns and produce a sufficient number of results.

Figure 4 shows the results of the experiment. The x axis shows the number
of notes in each file, and the y axis shows the number of discovered patterns. In
most cases, the number of discovered patterns is small and it would be possible
to check them all manually.

In almost all discovered patterns, the scaling factor « is one of 4/3, 3/2, 2,
3, and 4. This is not surprising because there are no tempo changes in our data
set, and such scaling factors are also expected in real musical repetitions. This
suggests that in some cases we could also only focus on finding repetitions whose
scaling factors belong to a constant set and achieve an O(n? logn) time algorithm
by using a standard pattern discovery algorithm several times. However, such a
search would not find repetitions with unexpected scaling factors.

While the used heuristics reduce the number of results, it seems that most of
the discovered patterns are still not musically interesting. A possible additional
heuristic would be to somehow restrict the intervals between consecutive pattern
notes. However, it seems to be difficult to add such a heuristic to the algorithm
because the intervals are ignored in the onset-time-pair representation which is
the main building block of the algorithm.
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Fig.5. An extract of the choir parts of J.S. Bach’s Mass in B minor (Credo in unum
Deum) and the corresponding, synchronized point set representation where each note-
on is represented by a point. The theme is introduced in the beginning of the movement.
In the depicted measures the fireworks start: the theme has four partly overlapping
occurrences in different keys. Our algorithm detects also the repetition in the bass
voice (continued beyond the illustrated area) although it has twice the duration of the
other occurrences.

5 Conclusions

In this paper, we have presented an O(n*logn) time algorithm for solving the
time-scaled repeated pattern discovery problem in symbolic music. The presented
algorithm is more efficient than an O(n®logn) time brute force approach, and it
is almost an optimal algorithm because any algorithm for the problem requires
O(n*) time.

Our algorithm can be seen as a missing piece in the taxonomy of pattern
matching and discovery algorithms in symbolic music. Exact and time-warped
algorithms have been proposed for both pattern matching and discovery, but
time-scaled algorithms have only been used in pattern matching. Like in pattern
matching, the time-scaled problem is the most difficult also in pattern discovery.

Based on our experiments, our algorithm can be quite efficient in practice
when some heuristics are used to filter interesting musical patterns. While there
are theoretical constructions where the output size is ©(n?), the number of
interesting patterns in actual musical data is much smaller and we can find them
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efficiently by implementing the algorithm so that it avoids creating patterns that
are not musically meaningful.

It is an interesting question whether the O(n*logn) time complexity of the
algorithm could be improved. Since we use onset-time-pair representations and
reduce the problem to a geometric problem of detecting all maximal sets of
points that are on the same line, one way to that end would be to solve the
geometric problem more efficiently. The problem at hand is somewhat easier
than the general geometric problem: while the total number of points in onset-
time-pair representations is O(n?), the number of distinct x and y values is only
O(n). In the future, we will study if we can use this observation to improve the
algorithm and process the points in groups that have the same x or y coordinate.
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