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Abstract. In physics, timbre is a complex phenomenon, like color. Musi-
cal timbres are given by the superposition of sinusoidal signals, corre-
sponding to longitudinal acoustic waves. Colors are produced by the
superposition of transverse electromagnetic waves in the domain of visi-
ble light. Regarding human perception, specific timbre variations provoke
effects similar to color variations, for example, a rising tension or a relax-
ation effect. We aim to create a computational framework to modulate
timbres and colors. To this end, we consider categorical groupoids, where
colors (timbres) are objects and color variations (timbre variations) are
morphisms, and functors between them, which are induced by continu-
ous maps. We also sketch some gestural variations of this scheme. Thus,
we try to soften the differences and focus on the similarity of structures.
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1 Introduction

Timbres and colors fascinated musicians, artists, and scientists across centuries
[9,20]. In physics, the complexity of timbre is due to the superposition of sim-
ple components (sinusoidal waves), which can be separated with Helmholtz res-
onators [16]. Timbres can be computationally investigated with Fourier trans-
forms and sonograms, which show the strength of each component (partial) of
the superposition. Colors are also related to the idea of superposition, as proved
by [32] for white light, which can be decomposed in colors through a prism.
The physics involved is quite different: sound involves mechanical longitudinal
waves, while light is made of electromagnetic transverse waves. However, tim-
bres and colors have a main similarity: they are complex signals, made of simple
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superposed wave signals [37]. This suggests a correspondence based on the rela-
tion between sound frequency and spatial frequency of light, but according to
[5], absolute correspondences between these domains are difficult to establish,
so the relativity and the obstructions of this problem could be softened in the
categorical context.

In fact, the point of view of precise measurement can be enriched in sev-
eral ways. Scholars such as Goethe pointed out the importance of perception to
understand colors in the framework of nature and the arts [11]. In addition, both
colors and timbres can be qualitatively rated as, for example, cold, strong, or deli-
cate. Even though different cultures can associate a different (symbolic) meaning
to each color, we can find aspects with certain universality, related to human
perception. Some colors are more instinctively associated with higher or lower
tension: red or yellow raise more attention than light blue or gray. Similarly, spe-
cific orchestral timbres are more awakening than others: a loud1 trumpet sound
is a more effective alarm than a soft flute melody. Some recent studies point out
the importance of a “shared emotion” to associate colors and musical sequences
[33], which also occurs in the framework of classical music listening [8]. On the
other hand, both colors and timbres can be mixed or shaded—as it happens for
painting and orchestration, respectively, transforming a delicate sound (or color)
into a strong sound (or color). In this way, we can draw upon the idea of super-
position and similarity of perception to imagine how we can investigate colors
and timbres, focusing on common aspects through abstraction.2 These aspects
are intensities, mixing, and shadows/nuances. In particular, harmonic choices,
which influence timbre, are also ruled by the idea of superposition.

In this article we introduce fundamental groupoids of color and timbre spaces
and functors between them. These functors could be induced by some classical
(possibly) continuous maps suggested in [5]. This categorical framework [22,
23] could be adequate to express the superposition and similarity principles
to understand the color/timbre relation, complementing analytical approaches.
Categories have already been used to investigate processes and phenomena in
the arts from a bird’s-eye perspective [19,21,30].

This article is structured as follows. In Sect. 2, we review some color spaces,
timbre spaces, and maps between them. In Sect. 3, we offer a categorical enrich-
ment of previous approaches to relate color and timbre. In particular, in Sect. 3.3,
we include a computational example of interaction between color and timbre
paths. Then, Sect. 4 is devoted to a gestural extension of the previous enrich-
ment. In Sect. 5 some conclusions and further possible applications are discussed.
In the Glossary (Sect. 6) we provide definitions of some specialized mathematical
concepts that we mention. We use boldface for these terms.

As a general disclaimer: colors, timbres, and their relationships constitute a
vast topic. This is a position paper (or rather, a working one) aiming to open
the way toward further studies in this field.

1 Loudness in music performance can affect timbre characteristics [6].
2 A first experiment, where participants were asked to associate colors, color bands,

and timbres, confirmed a non-negligible perceptive correlation [26].
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2 Spaces and Mappings: An Overview

2.1 The CIE 1931 Color Space

The CIE model [10] connects the visible spectrum with human perception. It
assigns to each spectrum wavelength λ ∈ [380, 780], measured in nanometres,
three sensitivity level values x(λ), y(λ), and z(λ) corresponding to the kinds of
human cone cells under certain standard conditions. Thus, a spectral distribution
yields, by integration of its product with each color matching function (x, y, or
z), a triple (X,Y,Z) of color coordinates. All these triples amount to the unit
cube [0, 1]3, after normalizing units. We embed this cube in R

3, regarding the
latter as a vector space and a topological space. The vector sum in the cube,
whenever defined, corresponds to color mixing (superposition of light beams).3

If the sum is not in [0, 1]3, one can take an average of vector components to
represent a mixture (with average intensity) for computational purposes.

On the other hand, the standard RGB space is used for screens and pho-
tography, so we need it for experiments. It has red, green, and blue as primary
colors, which give white if superposed. The standard RGB model does not cover
the CIE gamut in principle, for instance, a spectral violet. However, we can
transform CIE to standard RGB by means of an appropriate conversion of CIE
to linear RGB followed by electro-optical transfer. The RGB space has already
been considered for mathematical modeling [34,35]. In particular, [35] proposed
a three-dimensional space of perceived colors, where equivalence classes corre-
spond to perceptual match.

2.2 Timbre Space

As a possible representation of timbres, we can consider the space proposed by
Grey [13], based on the dissimilarity between pairs of musical instrument sounds.

On the other hand, we have the set of all continuous periodic maps. These
maps represent continuous sound waves that can be recovered from their Fourier
series according to Fourier’s and Fejér’s theorems [4, Section 2.4]. It is embedded
in the space of all continuous maps R −→ R, which has the compact-open
topology and is a vector space. Superposition of waves corresponds to addition
of the associated periodic functions, although the result need not be periodic. In
what follows, we take the topological space of continuous periodic maps as our
timbre space, given the structural analogy with the CIE space in the sense that
color/wave superpositions correspond to vector sums.

2.3 Maps Between Timbre and Color

According to [5], a possible correspondence between color and sound can be
based on the idea that a musical octave should match a color octave. A musical

3 We mix colors in printing and painting with the subtractive model, a sort of dual of
the additive one.
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octave is a closed interval of the form [f, 2f ], where f is a fixed sound frequency
in Hertz. Human vision barely ranges through color octave, namely the interval
of wavelengths in nanometres [380, 760], which corresponds to the interval of
spatial frequencies [(1/2)(1/380), 1/380] by means of the assignment λ �→ 1/λ.
Thus, the map λ �→ 760f/λ is a continuous bijection from the color octave
[380, 760] to the musical octave [f, 2f ]. Note that under this logic, the color order
violet-blue-green-yellow-orange-red corresponds to a decreasing pitch frequency.

Since human hearing ranges frequencies in the Hertz interval [20, 20000], and
therefore several octaves, there is not a perfect correspondence between wave-
lengths and frequencies. This suggests reducing the interval [20, 20000] modulo
a chosen octave and then using the previous correspondence. The resulting map
is continuous under the assumption that we identify the endpoints of [380, 760].

There are other possibilities for a correspondence between color and sound.
Some scholars focus on perceived correspondences of pitch classes with classes
of colors [18]. The use of classes can be formalized by means of quotient spaces.
Classes take into account perceptive similarities but not perfect one-to-one asso-
ciations. Other continuous correspondences could associate the transition from
violet to red with an increasing pitch frequency.

The following construction is a possible way to get a continuous4 map from
the timbre space to the CIE color space. First, let us consider the case of a
timbre given by simple FM synthesis [4, Sect. 8.8], namely a periodic5 wave
corresponding to

sin[ωct + I sin(ωmt)], (1)

where ωc = 2πfc, ωm = 2πfm, fc is the carrier frequency, fm is the modulator
frequency, and I is the modulation index. An associated convergent series is

∞∑

n=−∞
Jn(I) sin[(ωc + nωm)t], (2)

where Jn is the nth Bessel function of the first kind. This series expresses the
wave in terms of simple harmonics with frequencies fc + nfm for n ∈ Z. By
factorizing the sign of each negative value of fc +nfm outside of sin[(fc +nfm)t]
we obtain: ∞∑

n=0

an sin(2πfnt). (3)

Thus, given a continuous map h from frequencies to color wavelengths, we
construct (by linearity) the series in the CIE space

∞∑

n=0

anXY Z(h(fn)), (4)

4 We do not have a proof of this continuity.
5 The wave is periodic if the quotient between carrier and modulator frequencies is a

rational number.
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where XY Z(λ) gives the CIE coordinates of the wavelength λ, whenever the
series converges in the CIE space. In general, one could use the Fourier series
[30, p. 1019]:

a0 +
∞∑

n=1

an sin(2πnft + φn) (5)

of the given continuous periodic wave and associate the series (if it converges in
the CIE space)

a0 +
∞∑

n=1

anXY Z(h(nf)), (6)

but it is to be determined whether (1) this procedure coincides with that used
for FM synthesis and (2) the phase φn affects the color quality. These are open
questions. In Sect. 3.3 we exemplify computationally the procedure for the FM
case.

3 Categorical Enrichment

Color and timbre, and their relations, can be recast in a categorical framework,
where we emphasize the color and timbre transitions, rather than the objects
color and timbre themselves.

Each topological space X (like the CIE and timbre space) has an associated
category whose morphisms are invertible, that is, a groupoid. Its objects are
the elements of X and its morphisms are homotopy classes of paths in X. The
composition [τ ] ◦ [σ] of two classes [σ] : x −→ y and [τ ] : y −→ z is the class of
the concatenation στ . The identity on x is the class of the associated constant
map and the inverse of a path σ sends t ∈ [0, 1] to σ(1 − t). This construction
can be generalized to yield higher relations between paths as follows.

3.1 Induced Infinity-Groupoids

Let us consider the singular complex Sing(X), which is a simplicial set and
an ∞-groupoid, under the definitions in Sect. 6. According Proposition 1.9 and
Remark 1.10 from [14], ∞-categories have n-morphisms for each n ≥ 0 and
composition of them, which is associative up to homotopy. Thus, 1-morphism
of Sing(X) is a path in X, and a 2-morphism is a homotopy between two paths
with the same endpoints. Note that the groupoid of X comes from homotopy
classes of 1-morphisms and hence the concatenation of them is associative up
to homotopy equivalence. On the other hand, a 2-morphism can be seen as
a band of intermediate paths between two given ones that connect the same
points. Figure 1 shows examples of 1-morphisms and 2-morphisms in the cases
of the CIE and timbre spaces. More generally, we can define n-morphisms of the
singular complex, which describe the evolution of a single color (timbre), of a
path of colors (timbres), of a homotopy of paths, and so on.

We emphasize the need for higher relations and bands. For example, we can
map the transition light blue→dark blue into the transition light green→dark
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green, creating a band that connects, as different shades, light green with light
blue, and dark green with dark blue.6 If the initial and final points of the band
coincide, we can have the situation described in Fig. 1, where the dark blue
becomes a light blue through different paths: some paths remain in the blue
area, while other ones cross the violet area [27].

Fig. 1. (a) A 1-morphism in the space of colors, a path between two colors, (b) a 2-
morphism in the same space, a band between two color paths, (c) a 1-morphism in the
timbre space, and (d) a 2-morphism in the same space.

3.2 Induced Functors

Given two topological spaces X and Y , which can be the timbre and the CIE
color space respectively, and a continuous map f : X −→ Y there is an induced
natural transformation F : Sing(X) −→ Sing(Y ) that sends a singular n-simplex
σ : Δn −→ X to fσ : Δn −→ Y . According to the definition in Sect. 1.2.7 of

6 This relation is not a proper morphism but it can be achieved by pasting two suit-
able 2-simplices in Sing(X), which is a higher gesture according to [2]. It is also a
hypergesture in the sense of [31].
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[22], which says that a functor between infinity-categories is a natural trans-
formation between the respective simplicial sets, F is a functor from Sing(X) to
Sing(Y ).

Note that F coincides with f on objects and sends a 1-morphism σ in X to
the path fσ in Y .

As any functor between infinity-categories, F preserves the usual categorical
structure (up to homotopy), in the sense that

F ([idx]) = [idf(x)]

whenever x ∈ X and
F ([τ ] ◦ [σ]) = F ([τ ]) ◦ F ([σ])

whenever σ : x −→ y and τ : y −→ z are paths in X. More generally, F preserves
the compositions of higher morphisms in an appropriate sense, but we omit these
technical details. Next, a computational sketch of a functor from timbre to color.

3.3 A Computation of Colors from Timbres

As an example of associations between a timbre path and a color path, let us
consider the progressive enrichment of a simple 440 Hz sine wave with harmonics,
using FM synthesis, and the associated color transition.

More formally, take fc = 440 and fm = 2fc. By regarding the modulation
index I as a parameter in the interval [0, 20], we obtain a continuous7 path in
the timbre space with parametrization (Eq. 1):

sin[ωct + I sin(ωmt)].

The result is a fluctuation in the brilliance of a sort of clarinet sound since
only odd harmonics are present.8 Figure 2 is the corresponding spectrogram of
the timbre path.

To obtain a color path (Fig. 3) we use the procedure in Sect. 2.3 for each
value of I, see Eq. (6). For each new value of the index modulation I, harmonics
vary, reaching a new timbre in Fig. 2. For each new value of I, and thus, for
each timbre point reached, there is a color point reached in Fig. 3. In fact, each
color bar represents a color point in the space of colors. This could mean that
we are using the functor induced by any of the continuous maps from timbres to
colors (Sect. 2.3), according to Sect. 3.2. In Fig. 3, the color squares correspond
to the modulation index I values n/10 for integers n from 0 to 200. There, the
modulation index increases from left to right and from top to bottom. Then one
uses conversion to RGB for screen representation (Sect. 2.1).

7 This defines a continuous map [0, 20] × R −→ R, so the exponential transpose
[0, 20] −→ R

R, which is a path, is continuous.
8 The audio file, in which we identify the increasing modulation index with time (in

seconds), can be accessed from the link https://soundcloud.com/maria-mannone/
fm-path/s-cFJ7kNrqJjs?.

https://soundcloud.com/maria-mannone/fm-path/s-cFJ7kNrqJjs?
https://soundcloud.com/maria-mannone/fm-path/s-cFJ7kNrqJjs?
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The Python codes for the FM path and color path are available at https://
github.com/medusamedusa/color gesture.

The results agree with Caivano’s reflections [5]: the closer the sound to a white
noise, the closer the color to white light, with additive color mixing. The inverse
choice could associate the richness of harmonics (especially in a low-register
orchestral range) with a darker color, more like in painting, with subtractive
color mixing. In the first case, primary colors are red, blue, and green, and their
sum gives white; in the second case, primary colors are red, yellow, and blue,
and their sum gives black. In gestural chromo-similarity (Sect. 4.1), in analogy
with painting we may use the second option (subtractive), see an example in
[27].

Fig. 2. An example of timbre path.
The spectrogram is obtained with Son-
icVisualiser. The darker the color, the
closer the sound to silence.

Fig. 3. Visual color gradient correspond-
ing to the timbre path of Fig. 2. Each
color corresponds to a value of the mod-
ulation index I.

4 Gestural Considerations

We close this paper with some gestural reflections that may enrich the color and
timbre relation theory.

4.1 From Paths to Gestures and Gestural Similarity

Color and timbre paths (or 1-morphisms) are particular cases of gestures [1,2,
7,17,25,28,31], which are informally diagrams (shaped by a digraph) of paths in
a topological space. Continuous maps induce new ones between respective spaces
of gestures, as we explain in Sect. 4.2, so there are correspondences between color
gestures and timbre gestures.

We can talk of gestural similarity if musical sequences (auditory domain)
and simple sketches (visual domain) appear as being produced by the same
generator gesture [24]. This possible definition is supported by the hypothesis of
a supramodal brain [36]. Thus, when gestures in the space of colors and gestures
in the space of timbres show perceptive analogies, we can talk of chromo-gestural
similarity.

https://github.com/medusamedusa/color_gesture
https://github.com/medusamedusa/color_gesture
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4.2 Induced Maps Between Spaces of Gestures

Let Γ be a digraph. A continuous map f : X −→ Y induces a new one9 between
topological spaces of Γ -gestures, namely

Γ � F : Γ � SX → Γ � SY : ((ca)a∈A, (xv)v∈V ) �→ ((fca)a∈A, (f(xv))v∈V ) ,

where Γ � SX (Γ � SY ) is the space of Γ -gestures in X (Y ) (respectively).
As an example, the Attack-Delay-Sustain-Release (ADSR) envelope of a

sound is a gesture shaped by the digraph • → • → • → • → • in the amplitude-
time space. The envelope has a main role in timbre perception. We can transfer
the envelope to the color space by regarding it as an intensity gesture of a single
color. In fact, this remark may raise new questions regarding color envelopes,
and transitions effects from a color to another one.

Color and timbre ramifications, which are gestures, are interesting objects
to study and apply to composition. Shaping the orchestral colors, in particular,
is a distinctive mark of a composer’s style, of a genre, of an epoch. Thus, the
proposed ideas can be developed in terms of machine learning as exploited in
music information retrieval. Vice versa, a creative interface may be developed
starting from the proposed theoretic tools.

Note that the objects and 1-morphisms of the ∞-groupoid Sing(Γ � SX) are
Γ -gestures in X and paths between gestures, respectively. This groupoid allows
one to generalize the idea of timbre paths to transformations between timbres
with different ADSR envelopes (loudness profile over time). We may, for example,
keep the timbre of a musical instrument while changing its envelope, or keep the
envelope and change the timbre, thus performing separate transformations of the
envelope and timbre in terms of spectral superposition. As a final abstraction,
Γ � F induces a functor between ∞-groupoids Sing(Γ � SX) −→ Sing(Γ � SY ),
which would help transfer envelope transitions between the color and timbre
domains.

5 Conclusion

The proposed categorical framework could be a way to understand the relation
between color and timbre, complementing classical approaches from physics. This
framework is based on structural analogies between the perceptual domains of
hearing and vision. It is interesting to ask to what extent categorical models
could be independent from perception and classical models, taking into account
the computational advantages of the latter.

We also proposed a gestural extension of the categorical framework to capture
gestural similarities between the musical and auditory domains.

As a possible, alternative structure to look at, we could consider the Moore
paths as 1-cells, in order to have a strictly associative composition, taking homo-
topies of homotopies for the 2 cells [12]. Given that we are interested in invertible
9 In essence, it is continuous because each component (composition with f for arrows

and f for vertices) is.
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arrows, another suitable structure appears to be the bigroupoid [15], that is, a
weakly-invertible bicategory. Concerning the spaces, we could also consider the
Euclidean space of colors (as RGB) and the Euclidean space of timbres as defined
by Grey [13]. In a (bi)groupoid, all arrows are invertible. In this way, the points
(single colors, single timbres) are 0-cells; the color gestures and timbre gestures
are the paths, the 1-cells; the bands (hypergestures in the sense of [31]) are the
2-cells. Path associativity is verified for equivalence classes of homotopies. The
model of bigroupoid for color and timbre gestures is discussed in detail in [27].

However, we stress the fact that ∞-categories simplify the involved axioms
and computations in higher category, 2- and bi-categories included.

This research could lead to signal processing practical implementations, and
it could provide a theoretical framework to analyze experiments in the domain
of musical timbre. On the creative side, other possible directions may involve the
development of interfaces for composers to manipulate timbres through symbols
and/or color references, and for visual artists to do the inverse.

The possibility of translating structures from one domain to another one,
provided that some cognitive conditions are verified [29], can open scenarios
also for disability studies, where people with visual impairment can benefit from
auditory-accessible interfaces, and people with auditory impairment can bene-
fit from visually-accessible interfaces [5, pp. 128–129]. The reference to gesture
and touch regarding intensity, organization, and time distribution of stimuli can
inspire even more audacious applications for touch-based interfaces for deaf-blind
people.

Thus, a simple question such as “can we join timbres and colors?” can open
the way to striking applications to improve people’s lives.

6 Glossary

Bicategory. In a bicategory, the morphism composition is not associative, but
only associative up to an isomorphism. This notion has been introduced by
Bénabou in 1967 [3]. The objects are the 0-cells, the morphisms are the 1-cells,
and the morphisms between morphisms are the 2-cells.

Bigroupoid. A bigroupoid is a bicategory whose “2-cells are strictly invertible,
and the 1-cells are invertible up to coherent isomorphism” [15].

Compact-Open Topology. The subbasic opens of the compact-open topology
on the space of continuous maps R

R are those of the form

{f : R −→ R continuous | f(K) ⊆ U},

where K is compact (closed and bounded) in R and U is open in R. This makes
R

R an exponential in the category of topological spaces. The fact that Top is
not Cartesian closed does not imply the non-existence of RR.
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Simplicial Category. Denote by [n] the ordered set (ordinal) {0, 1, . . . , n} for
n ∈ N. The simplicial category Δ has as objects all [n] for n ∈ N and as mor-
phisms all order-preserving maps between them.

Standard Simplex (Functor). For each n ∈ N, we define the standard
n-simplex Δn as the set

{(t1, . . . , tn) | 0 ≤ t1 ≤ · · · ≤ tn ≤ 1}.

The standard n-simplex is a subspace of Rn and this construction defines a
standard simplex functor Δ(−) from the simplicial category to the category
of topological spaces, which sends an order-preserving map α : [n] −→ [m] to
the appropriate continuous map Δα : Δn −→ Δm sending the ith vertex (with
n − i zeros) to the α(i)th one. Examples: Δ0 is a singleton, Δ1 is the interval
[0, 1] in R; Δ2 is the triangle with vertices (0, 0), (0, 1), and (1, 1) in R

2; and Δ3

is the tetrahedron with vertices (0, 0, 0), (0, 0, 1), (0, 1, 1), and (1, 1, 1) in R
3.

Simplicial Set. Functor from the opposite Δop of the simplicial category to
the category Set of sets. Example: The singular complex Sing(X) of a topo-
logical space X.

Singular Complex. The singular complex of a topological space X, denoted
by Sing(X), is the simplicial set Top(Δ(−),X), where Δ(−) is the standard
simplex functor. Examples: a 0-simplex of Sing(X) is a point of X, a 1-simplex
of Sing(X) is a path in X.

Infinity-Category. A simplicial set S is a set such that given n ∈ N and k
with 0 < k < n, for each subset {ai | 0 ≤ i ≤ n; i 
= k} of S([n − 1]) satisfying
the identities

di(aj) = dj−1(ai) (i < j; i, j 
= k),

there is an element a ∈ S([n]) such that di(a) = ai for i 
= k. If this property
also holds for k = 0 and k = n, then we say that S is an ∞-groupoid. Example:
The singular complex of a topological space is an ∞-groupoid.

Topological Space of Gestures. Let Γ be a digraph (A, V, d0, d1) and X a
topological space. The space of Γ -gestures in X, denoted by Γ � SX (where �
stands for transversality), is the subspace of the product space (compact-open
topology on XI) (

XI
)A × XV

consisting of all sequences ((ca)a∈A, (xv)v∈V ) such that ca(i) = xdi(a) for i = 0, 1.
We say that such a sequence is a Γ -gesture in X.
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8. Crnjanski, N., Tomaš, D.: Musical perception and visualization. In: Paper Read

at Music and Spatiality. 13th Biennale International Conference on Music Theory
and Analysis (2019)

9. da Vinci, L.: Trattato della pittura. Unione cooperativa editrice, reprint (1890).
https://archive.org/details/trattatodellapit00leon 0

10. Fairman, H.S., Brill, M.H., Hemmendinger, H.: How the CIE 1931 color-matching
functions were derived from wright-guild data. Color. Res. Appl. 22(11), 11–23
(1997)

11. Goethe, J.W.V.: Theory of Colours (Zur Farbenlehre). Cotta’schen Buchhandlung
(1810)

12. Grandis, M.: Higher fundamental groupoids for spaces. Topol. Appl.
129(3), 281–299 (2003). https://www.sciencedirect.com/science/article/pii/
S0166864102001852

13. Grey, J.: Multidimensional perceptual scaling of musical timbres. J. Acoust. Soc.
Am. 61, 1270–1277 (1877)

14. Groth, M.: A short course on ∞-categories. In: Handbook of Homotopy Theory,
chapter 14. Chapman and Hall (2020). https://people.math.rochester.edu/faculty/
doug/otherpapers/groth scinfinity.pdf

15. Hardie, K.A., Kamps, K.H., Kieboom, R.W.: A homotopy bigroupoid of a topo-
logical space. Appl. Categ. Struct. 9, 311–327 (2001)

16. Helmholtz, H.v.: On the Sensations of Tone as a Physiological Basis for the The-
ory of Music (English translation). Longmans, Green (1895). https://archive.org/
details/onsensationston02helmgoog

17. Hughes, J.R.: Generalizing the orbifold model for voice leading. Mathematics
10(6), 939 (2022). https://www.mdpi.com/2227-7390/10/6/939

18. Itoh, K., Sakata, H., Kwee, I., Nakada, T.: Musical pitch classes have rainbow
hues in pitch class-color synesthesia. Nat. Sci. Rep. 7, 17781 (2017) https://www.
nature.com/articles/s41598-017-18150-y
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