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Abstract. Starting from well-known constructions of aperiodic tiling
rhythmic canons by G. Hajós, N.G. de Bruijn and D.T. Vuza, several
generalisations are given. In this way, it is possible to find new aperiodic
canons, that we call extended Vuza canons.
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1 Prelude

Canons in music have a very long tradition; among these, a few cases of tiling
rhythmic canons (i.e. canons such that, given a fixed tempo, at every beat exactly
one voice is playing) have emerged. Only in the last century, stemming from the
analogous problem of factorizing finite abelian groups, aperiodic tiling rhythmic
canons have been studied: these are canons that tile a certain interval of time in
which each voice (inner voice) plays at an aperiodic sequence of beats, and the
sequence of starting beats of every voice (outer voice) is also aperiodic. From
the musical point of view the seminal paper was probably the four-parts article
written by D.T. Vuza between 1991 and 1993 [14–17], while the mathematical
counterpart of the problem was studied also before, e.g. by de Bruijn [5], Sands
[13], etc., and after, e.g. by Coven and Meyerowitz [4], Jedrzejewski [9], Amiot
[1], Andreatta [3], etc.

A thorough theory of the conditions of existence and the structure of aperi-
odic tiling rhythmic canons has not been established yet. In this paper we try
to give a contribution to this fascinating field.
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2 Aperiodic Tiling Canons

We begin fixing some notations and giving the main definitions. In the following,
we conventionally denote the cyclic group of remainder classes modulo n by Zn

and its elements with the integers {0, 1, . . . , n ´ 1}, i.e., identifying each class
with its least non-negative member.

Definition 1. Let A,B Ă Zn. Let us define the application

σ : A ˆ B → Zn, (a, b) �→ a ` b.

We set A ` B „ Im(σ); if σ is bijective, we say that A and B are in direct sum,
and we write

A ⊕ B „ Im(σ).

If Zn “ A ⊕ B, we call (A,B) a tiling rhythmic canon of period n; A is called
the inner voice and B the outer voice of the canon.

Remark 1. It is easy to see that the tiling property is invariant under transla-
tions, i.e., if A is a tiling complement of some set B, also any translate A ` z of
A is a tiling complement of B (and any translate of B is a tiling complement of
A). Thus, without loss of generality, we shall limit our investigation to rhythms
containing 0 and consider equivalence classes under translation.

Definition 2. A rhythm A Ă Zn is periodic (of period z) if and only if there
exists an element z P Zn, z ‰ 0, such that z ` A “ A. In this case, A is also
called periodic modulo z P Zn. A rhythm A Ă Zn is aperiodic if and only if it is
not periodic.

Denote by Φd(x) the cyclotomic polynomial of index d. Then, tiling rhythmic
canons can be characterised as follows.

Lemma 1. Let A be a rhythm in Zn and let A(x) be the characteristic poly-
nomial of A, that is, A(x) “ ∑

kPA xk. Given B Ă Zn and its characteristic
polynomial B(x), we have that

A(x) · B(x) ”
n´1∑

k“0

xk “ xn ´ 1
x ´ 1

“
∏

d � n,d‰1

Φd(x) mod (xn ´ 1) (1)

if and only if A(x) and B(x) are polynomials with coefficients in {0, 1} and
A ⊕ B “ Zn.

As a consequence, for each d � n, with d ą 1, we have

Φd(x) � A(x) or Φd(x) � B(x).
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Definition 3. A tiling rhythmic canon (A,B) in Zn is an aperiodic tiling rhyth-
mic canon if both A and B are aperiodic.

For an extensive discussion on tiling problems, we refer the reader to Amiot
[2]. If we indicate the set {d P N : d � n} by div(n), the following proposition
establishes a polynomial criterion for the aperiodicity of a given rhythm.

Proposition 1. A set A Ă Zn is aperiodic if and only if for all k � n, with
k ‰ n, we have

xn ´ 1
xk ´ 1

ffl A(x),

that is, if and only if for all k P div(n) \ {n} there exists d P div(n) \ div(k) such
that Φd(x) ffl A(x).

The following result, in conjunction with Theorem 2, identifies which are the
periods of aperiodic tiling rhythmic canons.

Theorem 1 (Vuza). Let

– V „ {n P N : n “ p1n1p2n2n3 with gcd (p1n1, p2n2) “ 1 and p1, n1, p2, n2,
n3 ą 1}, and

– H „
{
pα, pαq, p2q2, pqr, p2qr, pqrs : α P N, p, q, r, s distinct primes

}
,

then N
∗ “ V \ H.

The minimum period necessary for an aperiodic canon is 72, and the corre-
sponding pi and ni are:

(p1, n1, p2, n2, n3) “ (2, 2, 3, 3, 2) .

3 Extended Vuza Canons

The canons with periods 72, 108, 120, 144 and 168 have been completely enu-
merated by Vuza [14], Fripertinger [7], Amiot [1], Kolountzakis and Matolcsi
[11].

An exhaustive construction method for aperiodic tiling rhythmic canons is
not known to date; the first method to find some of them was provided by the
following result (see [8] by Hajós, Theorem 1 in [5] by de Bruijn, and Proposition
2.2 in [14] by Vuza).

Theorem 2. Let n “ p1n1p2n2n3 P N such that

1. p1, n1, p2, n2, n3 ą 1 and
2. gcd (p1n1, p2n2) “ 1.

Then Zn admits an aperiodic tiling rhythmic canon.
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Example 1. In the hypotheses of Theorem 2, an example of tiling canon of Zn

with two aperiodic subsets is given by the following construction by F. Jedrze-
jewski (see Theorem 227 in [9]). Indicating with Ik the set {0, 1, . . . , k ´ 1}, let
us call:

A1 “ n3p1n1In2

U1 “ n3p1n1n2Ip2

V1 “ n3n2Ip2

K1 “ {0}

A2 “ n3p2n2In1

U2 “ n3p2n2n1Ip1

V2 “ n3n1Ip1

K2 “ {1, 2, . . . , n3 ´ 1} .

Then taking
A “ A1 ⊕ A2

B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2) ,

we have the canon Zn “ A ⊕ B.

Remark 2. From now on, given p1, n1, p2, n2, and n3, we will denote by A1, A2,
U1, U2, V1, and V2 the sets so called in Example 1.

Many other ways of constructing aperiodic tiling canons are possible, see for
example de Bruijn [5], Vuza [14], Fidanza [6], and Jedrzejewski [9]. These meth-
ods fall into a category treated by F. Jedrzejewski (Theorem 14 in [10]). We
refine his result lifting the hypothesis that p1 and p2 are prime and proving that
B is aperiodic if n3 satisfies a simple arithmetic constraint.

Theorem 3. Let n “ p1n1p2n2n3 P N such that:

1. p1, n1, p2, n2, n3 ą 1;
2. gcd (p1n1, p2n2) “ 1;
3. there is no prime q such that q � n3, but q ffl p1n1p2n2.

Let H be the subgroup H “ n3Ip1n1p2n2 of Zn and let K be a complete set
of cosets representatives for Zn modulo H such that K is the disjoint union
K “ K1 \ K2. Then the pair (A,B) defined by

A “ A1 ⊕ A2

B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2)

is an aperiodic tiling rhythmic canon of Zn.

Proof. The proof that A ⊕ B “ Zn and that the set A is aperiodic is the same
as in Vuza (Proposition 2.2 in [14]). We are left to prove that B is aperiodic.
Consider the characteristic polynomial B(x):

B(x) “ xn3p1n1 ´ 1
xn3n1 ´ 1

xn ´ 1
xn3p1n1n2 ´ 1

K1(x) ` xn3p2n2 ´ 1
xn3n2 ´ 1

xn ´ 1
xn3p2n2n1 ´ 1

K2(x).

Given any h P div(n) \ {n}, we look for a d P div(n) \ div(h) such that Φd(x) ffl
B(x). Let us consider the cases:
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1. if n3p2n2n1 ffl h, then Φn3p2n2n1(x) ffl B(x) since

Φn3p2n2n1(x) � xn ´ 1
xn3p1n1n2 ´ 1

but
Φn3p2n2n1(x) ffl xn3p2n2 ´ 1

xn3n2 ´ 1
xn ´ 1

xn3p2n2n1 ´ 1
K2(x).

In particular, Φn3p2n2n1(x) ffl K2(x) by Lemma 4 of Rédei’s paper [12].
2. if n3p1n1n2 ffl h, then Φn3p1n1n2(x) � B(x) (symmetrically to the previous

case).

There are no other possibilities: in fact, if we had n3p2n2n1 � h and n3p1n1n2 � h,
then h “ αn3p2n2n1 “ βn3p1n1n2 and therefore αp2 “ βp1. Since gcd (p1, p2) “
1, it would follow α “ p1 and β “ p2 and so h “ n, which is a contradiction. �\
Example 2. Consider n “ 216; let p1 “ 2, n1 “ 2, p2 “ 3, n2 “ 3, and n3 “ 6.
Theorem 3 ensures that, defining

A “ 24I3 ⊕ 54I2
B “ (72I3 ⊕ 12I2 ⊕ {0, 106}) \ (108I2 ⊕ 18I3 ⊕ {21, 43, 122, 167}) ,

A ⊕ B “ Z216 and (A,B) is an aperiodic tiling rhythmic canon.

In a first generalization of Theorem 3, rhythm B is the disjoint union of three
sets, one being periodic both modulo n/p1 and modulo n/p2.

Theorem 4. Let n “ p1n1p2n2n3 P N such that:

1. p1, n1, p2, n2, n3 ą 1;
2. gcd (p1n1, p2n2) “ 1;
3. there is no prime q such that q � n3, but q ffl p1n1p2n2.

Let H be the subgroup H “ n3Ip1n1p2n2 of Zn with n “ p1n1p2n2n3, K be
a complete set of cosets representatives for Zn modulo H such that K is the
disjoint union K “ K1 \ K2 \ K3 with K1,K2 ‰ H, and W “ n3n1n2Ip1p2 .
Then the pair (A,B) defined by

A “ A1 ⊕ A2

B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2) \ (W ⊕ K3)

is an aperiodic tiling rhythmic canon of Zn.

Proof. The only case we need to consider is K3 ‰ H (notice that this is possible
only if n3 ą 2). We already know, from Theorem 2 that A is aperiodic; B is
aperiodic too, since

B(x) “ U1(x)V2(x)K1(x) ` U2(x)V1(x)K2(x) ` W (x)K3(x)

and the cyclotomic polynomials Φn3p2n2n1 and Φn3p1n1n2 divide exactly 2 of the
summands on the right hand side.
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We now prove that A ⊕ B “ Zn: to this aim we make use of the following
facts, proven by F. Jedrzejewski (Theorem 14 in [10]):

A1 ` U1 ` V2 “ A1 ` U1 ` U2

A2 ` U2 ` V1 “ A2 ` U2 ` U1.

By an easy check, we see that

U1 ` U2 “ n3n1n2 (p1Ip2 ` p2Ip1) “ n3n1n2Zp1p2 “ W,

and |U1||U2| “ p2p1 “ |W |. This means that

U1 ⊕ U2 “ W.

We obtain that

A ` B “ (A1 ` A2) ` ((U1 ` V2 ` K1) \ (U2 ` V1 ` K2) \ (W ` K3))
“ (A1 ` A2 ` U1 ` V2 ` K1) \ (A1 ` A2 ` U2 ` V1 ` K2)

\ (A1 ` A2 ` W ` K3)
“ (A1 ` A2 ` U1 ` U2 ` K1) \ (A1 ` A2 ` U2 ` U1 ` K2)

\ (A1 ` A2 ` U1 ` U2 ` K3)
“ A1 ` A2 ` U1 ` U2 ` (K1 \ K2 \ K3)
“ A1 ` U1 ` A2 ` U2 ` K.

Again, an easy computation shows that

(A1 ` U1) ` (A2 ` U2) “ n3p1n1Ip2n2 ` n3p2n2Ip1n1

“ n3Ip1n1p2n2

“ H

and so
A ` B “ H ` K “ Zn.

Moreover, since |A||B| “ n “ |H||K|, the sum A ` B is direct. �\
Example 3. Let us go back to n “ 216 with the same choices of p1, n1, p2, n2,
and n3. By Theorem 4, we find a new aperiodic tiling rhythmic canon (A,B)
defining

A “ 24I3 ⊕ 54I2
B “ (72I3 ⊕ 12I2 ⊕ {0, 106}) \ (108I2 ⊕ 18I3 ⊕ {21, 43}) \ (36I6 ⊕ {122, 167}) .

The second generalization of Theorem 3 widens the definitions of sets A1,
A2, V1, and V2. We precede it with a useful lemma.
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Lemma 2. Suppose that a subset S Ď Zn is periodic of period m � n, i.e.
S ` m “ S, and for i “ 0, . . . , k ´ 1 let Si “ {a P S : a ” i mod k} where k is
a divisor of m. Then also the sets Si are periodic of period m for every i.

Proof. It is sufficient to observe that since m is a multiple of k the remainder
classes modulo k are invariant by the translation by m, hence also Si ` m “ Si.

�\
Theorem 5. Let n “ p1n1p2n2n3 P N such that:

1. p1, n1, p2, n2, n3 ą 1;
2. gcd (p1n1, p2n2) “ 1;
3. there is no prime q such that q � n3, but q ffl p1n1p2n2.

Let H be the subgroup H “ n3Ip1n1p2n2 of Zn, and K “ K1 \K2 (with K1,K2 ‰
H) be a complete set of cosets representatives for Zn modulo H. Take

– Ã1 as a complete aperiodic set of coset representatives for Zp2n2 modulo n2Ip2 ;
– Ã2 as a complete aperiodic set of coset representatives for Zp1n1 modulo n1Ip1 ;
– Ṽ 1

1 , . . . , Ṽ j
1 as complete aperiodic sets of coset representatives for Zp2n1 mod-

ulo p2In1 ;
– Ṽ 1

2 , . . . , Ṽ h
2 as complete aperiodic sets of coset representatives for Zp1n2 mod-

ulo p1In2 .

Set K1 “ K1
1 \ · · ·\Kj

1 and K2 “ K1
2 \ · · ·\Kh

2 , where Ks
α “ {

kjs´1`1
α , . . . , kjs

α

}

are non-empty subsets of Kα for α “ 1, 2. Then the pair (A,B) defined by

A “ n3p1n1Ã1 ⊕ n3p2n2Ã2

B “
((

U1 ⊕ n3n1Ṽ
1
2 ⊕

{
k1
1, . . . , k

l1
1

})
\ · · ·

· · · \
(
U1 ⊕ n3n1Ṽ

j
2 ⊕

{
k

lj´1`1
1 , . . . , k

|K1|
1

}))

\
((

U2 ⊕ n3n2Ṽ
1
1 ⊕ {

k1
2, . . . , k

m1
2

})
\ · · ·

· · · \
(
U2 ⊕ n3n2Ṽ

h
1 ⊕

{
kmh´1`1
2 , . . . , k

|K2|
2

}))

is an aperiodic tiling rhythmic canon of Zn.

Proof. We have

– n3p1n1Ã1 ` U1 “ n3p1n1

(
Ã1 ⊕ n2Ip2

)
“ n3p1n1Ip2n2 “ A1 ` U1;

– n3p2n2Ã2 ` U2 “ n3p2n2

(
Ã2 ⊕ n1Ip1

)
“ n3p2n2Ip1n1 “ A2 ` U2;

– A1 ` n3n1Ṽ2 “ n3n1

(
p1In2 ` Ṽ2

)
“ n3n1Ip1n2 “ A1 ` V2;

– A2 ` n3n2Ṽ1 “ n3n2

(
p2In1 ` Ṽ1

)
“ n3n2Ip2n1 “ A2 ` V1.
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For the sake of simplicity, we now give the proof in the case j “ 1 and h “ 1.
The general case is completely analogous. We compute

A ` B “
(
n3p1n1Ã1 ` n3p2n2Ã2

)

`
((

U1 ` n3n1Ṽ2 ` K1

)
\

(
U2 ` n3n2Ṽ1 ` K2

))

“
(
n3p1n1Ã1 ` n3p2n2Ã2 ` U1 ` n3n1Ṽ2 ` K1

)

\
(
n3p1n1Ã1 ` n3p2n2Ã2 ` U2 ` n3n2Ṽ1 ` K2

)

“
(
A1 ` n3p2n2Ã2 ` U1 ` n3n1Ṽ2 ` K1

)

\
(
n3p1n1Ã1 ` A2 ` U2 ` n3n2Ṽ1 ` K2

)

“
(
A1 ` n3p2n2Ã2 ` U1 ` V2 ` K1

)

\
(
n3p1n1Ã1 ` A2 ` U2 ` V1 ` K2

)

“
(
A1 ` n3p2n2Ã2 ` U1 ` U2 ` K1

)

\
(
n3p1n1Ã1 ` A2 ` U2 ` U1 ` K2

)

“ A1 ` A2 ` U1 ` U2 ` (K1 \ K2)
“ A1 ` U1 ` A2 ` U2 ` K

“ Zn.

A cardinality argument analogous to that used in Theorem 4 shows that the
sum is direct.

The proof that A is aperiodic follows from Vuza’s argument (Proposition 2.2
in [14]), as above. Assume now that B is periodic of period a: we can assume
without loss of generality that a “ n/p where p is a prime number. Hypothesis
3. now implies that a is a multiple of n3: but then by Lemma 2 also the sets
Bi “ B X ({i} ` n3Zn) must be periodic of period a. However, the sets Bi are
simply translates of U1⊕n3n1Ṽ2 by elements of K1 or of U2⊕n3n2Ṽ1 by elements
of K2 (remember that also the elements of U1 and U2 are multiple of n3): on
their turn, U1 ⊕ n3n1Ṽ2 and U2 ⊕ n3n2Ṽ1 are indeed periodic resp. of period
n/p1 and n/p2, but since p1 and p2 are coprime no common period smaller than
n is possible. A contradiction follows since we assumed both K1 and K2 to be
non-empty. �\
Remark 3. Note that Theorems 3–5 hold trivially if hypothesis 3. is replaced by
the condition that n3 is prime.
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Example 4. This time we choose n “ 252; let p1 “ 2, n1 “ 7, p2 “ 3, n2 “ 3,
and n3 “ 2. We can take e.g.

Ã1 “ {0, 2, 7}
Ṽ1 “ {0, 10, 17}
K1 “ {0}

Ã2 “ {0, 1, 3, 4, 9, 12, 13}
Ṽ2 “ {0, 1} “ Ip1

K2 “ {1}

obtaining a new canon (A,B) where

A “ 28Ã1 ⊕ 18Ã2

“ {0, 56, 196} ⊕ {0, 18, 54, 72, 162, 216, 234}
B “

(
U1 ⊕ 14Ṽ2 ⊕ K1

)
\

(
U2 ⊕ 6Ṽ1 ⊕ K2

)

“ ({0, 84, 168} ⊕ {0, 14} ⊕ {0}) \ ({0, 126} ⊕ {0, 60, 102} ⊕ {1}) .

Definition 4. We call Vuza canons all the canons obtained using the construc-
tions described in Theorems 2, 3, 4, 5.

It is possible to stretch this type of constructions even further. With the
following theorem, we improve the result of Jedrzejewski (Theorem 21 in [10]).

Theorem 6. Let n “ p1n1p2n2n3 P N such that:

1. p1, n1, p2, n2, n3 ą 1;
2. gcd (p1n1, p2n2) “ 1;
3. there is no prime q such that q � n3, but q ffl p1n1p2n2.

Let H be the subgroup H “ n3Ip1n1p2n2 of Zn. Suppose that L and K are proper
subsets of Zn3 such that L ⊕ K “ Zn3 and K “ K1 \ K2, with K1,K2 ‰ H.
Then the pair (A,B) defined by

A “ A1 ⊕ A2 ⊕ L

B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2)

is an aperiodic tiling rhythmic canon of Zn.

Proof.

A ` B “ (A1 ` A2 ` L) ` ((U1 ` V2 ` K1) \ (U2 ` V1 ` K2))
“ (A1 ` A2 ` L ` U1 ` V2 ` K1) \ (A1 ` A2 ` L ` U2 ` V1 ` K2)
“ (A1 ` A2 ` L ` U1 ` U2 ` K1) \ (A1 ` A2 ` L ` U2 ` U1 ` K2)
“ A1 ` A2 ` L ` U1 ` U2 ` (K1 \ K2)
“ A1 ` U1 ` A2 ` U2 ` L ` K.

The sum is direct because the computation of the cardinality leads to

|A1||A2||U1||U2||L ⊕ K| “ n.
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Aperiodicity of A is immediate from Lemma 2, since A1 `A2 is aperiodic, and B
is the union of the subsets Bi contained in different remainder classes modulo n3,
some of which have a period coprime with the period of the other ones (exactly
as in the previous theorem).

Example 5. Choosing again n “ 216 and the same values for p1, n1, p2, n2, and
n3 as in Example 3, we set L “ {0, 1}, K1 “ {2}, and K2 “ {0, 4}. By Theorem
6, we get that

A “ 24I3 ⊕ 54I2 ⊕ L

B “ (72I3 ⊕ 12I2 ⊕ K1) \ (108I2 ⊕ 18I3 ⊕ K2)

define an aperiodic tiling rhytmic canon.

To prove our next result we take advantage of the equivalent polynomial
formulation of tilings. Using it, in [4] E.M. Coven, and A. Meyerowitz introduced
two sufficient conditions for a rhythm A to be a factor of a tiling rhythmic canon.
To state them we need the following definitions.

Definition 5. RA „ {d : Φd(x) � A(x)} and SA „ {pα P RA : p prime}.
The Coven-Meyerowitz conditions are the following:

T1 |A| “ ∏
pαPSA

p;
T2 for all pα, qβ , rγ , . . . P SA, pαqβrγ · · · P RA, where pα, qβ , rγ , . . . are powers of

distinct primes.

The polynomial approach provides a few new important properties.

Lemma 3. Let A(x), B(x) P N[x] and n P N
∗. Then

A(x)B(x) ”
n´1∑

k“0

xk mod (xn ´ 1) (T0)

if and only if

1. A(x), B(x) P {0, 1} [x], so they are the characteristic polynomials of sets A
and B, and

2. A ⊕ B “ {r1, . . . , rn} Ă Z, with ri ‰ rj mod n for all i, j P {1, . . . , n} with
i ‰ j.

Lemma 4. Let f(x) P Z[x] and n P N
∗. The following are equivalent:

1. f(x) ” ∑n´1
k“0 xk mod (xn ´ 1);

2. (a) f(1) “ n and
(b) for every d � n, with d ą 1, we have Φd(x) � f(x).

Definition 6. Let A be a subset of Zn and let SA “ {
pα, qβ , . . . , rγ

}
. We call

the extension of A any rhythm A whose characteristic polynomial is

A(x) “ Φpα

(
x

n
pαkp

)
Φqβ

(
x

n

qβkq

)
· · · Φrγ

(
x

n
rγ kr

)
.

where kp, kq, . . . , kr are divisors of n such that p ffl kp, q ffl kq, . . . , r ffl kr.
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Note that by definition clearly SA “ SA.

Proposition 2. Let A⊕B “ Zn and let B satisfy condition (T2). Then A⊕B “
Zn, too.

Proof. Since pα is a prime power, then

Φpα

(
x

n
pαkp

)
P {0, 1} [x],

and so A(x) P N[x]. Moreover,

– A(1)B(1) “ n and
– Φd(x) � A(x)B(x) for all d � n, with d ą 1.

By Lemma 4, this means that

A(x)B(x) ”
n´1∑

k“0

xk mod (xn ´ 1) ,

that is, condition (T0) in Lemma 3 holds. Therefore A(x) P {0, 1} [x] and A⊕B “
Zn, that is, A tiles with B. �\

Combining Theorem 6 and Proposition 2, we are able to find new Vuza canons
where L is not a subset of Zn3 .

Theorem 7. Let n “ p1n1p2n2n3 P N such that:

1. p1, n1, p2, n2, n3 ą 1;
2. gcd (p1n1, p2n2) “ 1;
3. there is no prime q such that q � n3, but q ffl p1n1p2n2.

Let H be the subgroup H “ n3Ip1n1p2n2 of Zn. Suppose that L and K are proper
subsets of Zn3 such that L ⊕ K “ Zn3 and K “ K1 \ K2, with K1,K2 ‰ H. Let
L̃ be an extension of L; then the pair (A,B) defined by

A “ A1 ⊕ A2 ⊕ L̃

B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2)

is an aperiodic tiling rhythmic canon of Zn.

Proof. Since, by definition, A1 and A2 coincide with their own extensions, the
extension of A1 ⊕ A2 ⊕ L is A. By Theorem 6, A1 ⊕ A2 ⊕ L ⊕ B “ Zn, therefore
Proposition 2 implies that A ⊕ B “ Zn.

We already know from Theorem 6 that B is aperiodic. To show that A
is aperiodic, consider L̃(x). By hypothesis 3 SL̃ does not contain any maximal
prime power dividing n, as SA1 and SA2 . As a consequence, SA “ SA1 ∪SA2 ∪SL̃

does not contain any such prime power, either. By Proposition 1, A can not be
periodic. �\
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Definition 7. We call extended Vuza canons all the canons obtained using the
constructions of Theorems 6 and 7, possibly combined with those of Theorems 2,
3, 4 and 5.

Example 6. We show now an extended Vuza canon with period n “ 240 (p1 “
2, n1 “ 2, p2 “ 5, n2 “ 3, n3 “ 4). Set L “ I2; then L̃ “ 15I2. Choosing K1 “ {2}
and K2 “ {0}, we obtain the canon

A “ A1 ⊕ A2 ⊕ L̃

“ 16I3 ⊕ 60I2 ⊕ 15I2
B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2)

“ (48I5 ⊕ 8I2 ⊕ {2}) \ (120I2 ⊕ 12I5 ⊕ {0}) .

It is worth noting that it would not be possible to obtain such a canon without
applying Theorem 7.

We include below a table showing the number of Vuza canons and extended
Vuza canons for all the periods n with values between 72 and 280 (Table 1).

As a final comment, one could say that the recipes by Hajós, de Bruijn
and Vuza to generate aperiodic tiling rhythmic canons are deceivingly simple.

Table 1. The number of aperiodic rhythms for non-Hajós values of n from 72 to 280,
generated with the constructions described in Theorems 2–7.

n p1 n1 p2 n2 n3 L #K #A #B

Theorem: 2 6 7 2 3 4 5 6

72 2 2 3 3 2 0 1 3 0 0 6 0 0 0 0

108 2 2 3 3 3 0 1 3 0 0 180 0 72 0 0

120
2 2 3 5 2 0 1 16 0 0 20 0 0 0 0

2 2 5 3 2 0 1 8 0 0 18 0 0 0 0

144

2 2 3 3 4 0 1 3 0 0 2808 1944 3888 0 0

2 2 3 3 4 0, 1 2 0 312 0 0 0 0 0 6

2 2 3 3 4 0, 9 2 0 0 12 0 0 0 0 6

2 2 3 3 4 0, 2 4 0 156 0 0 0 0 0 12

2 4 3 3 2 0 1 6 0 0 12 0 0 48 0

4 2 3 3 2 0 1 6 0 0 6 0 0 30 0

168
2 2 3 7 2 0 1 104 0 0 14 0 0 28 0

2 2 7 3 2 0 1 16 0 0 6 0 0 48 0

180

2 5 3 3 2 0 1 9 0 0 15 0 0 105 0

5 2 3 3 2 0 1 6 0 0 6 0 0 90 0

3 5 2 2 3 0 1 16 0 0 500 0 200 1100 0

5 3 2 2 3 0 1 8 0 0 252 0 72 1728 0

2 2 3 3 5 0 1 3 0 0 45360 77760 158112 0 0

(continued)
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Table 1. (continued)

n p1 n1 p2 n2 n3 L #K #A #B

Theorem: 2 6 7 2 3 4 5 6

200 2 2 5 5 2 0 1 125 0 0 10 0 0 50 0

216

2 4 3 3 3 0 1 6 0 0 180 540 72 216 0 12672 0

2 2 3 3 6 0, 3 8 0 156 0 0 0 0 0 180 540 72 216

2 2 3 3 6 0, 1 2 0 324 0 0 0 0 0 180 72

2 2 3 3 6 0 1 3 0 0 754272 2449440 5832000 0 0

2 2 3 3 6 0, 1, 2 3 0 34992 0 0 0 0 0 6

2 2 3 3 6 0, 2, 4 9 0 10935 0 0 0 0 0 6 12

2 2 3 9 2 0 1 729 0 0 6 12 0 0 54 0

2 2 9 3 2 0 1 27 0 0 6 0 0 162 0

4 2 3 3 3 0 1 6 0 0 252 0 72 5940 0

240

2 4 3 5 2 0 1 32 0 0 20 0 0 20 160 0

2 2 3 5 4 0, 6 4 0 0 588 0 0 0 0 20 20

2 2 3 5 4 0, 2 4 0 7252 0 0 0 0 0 20 20

2 2 3 5 4 0, 15 2 0 0 64 0 0 0 0 20

2 2 3 5 4 0, 3 2 0 1176 0 0 0 0 0 20

2 2 3 5 4 0, 1 2 0 14504 0 0 0 0 0 20

2 2 3 5 4 0 1 16 0 0 13000 9000 18000 94000 0

2 2 5 3 4 0 1 8 0 0 6264 3240 5184 197856 0

2 2 5 3 4 0, 1 2 0 4016 0 0 0 0 0 18

2 2 5 3 4 0, 5 2 0 0 112 0 0 0 0 18

2 2 5 3 4 0, 15 2 0 0 32 0 0 0 0 18

2 2 5 3 4 0, 2 4 0 2008 0 0 0 0 0 12 24

2 2 5 3 4 0, 10 4 0 0 56 0 0 0 0 12 24

2 4 5 3 2 0 1 16 0 0 12 0 0 24 576 0

4 2 3 5 2 0 1 32 0 0 10 0 0 290 0

4 2 5 3 2 0 1 16 0 0 6 0 0 102 0

252

2 7 3 3 2 0 1 27 0 0 21 0 0 315 0

7 2 3 3 2 0 1 9 0 0 6 0 0 618 0

3 7 2 2 3 0 1 104 0 0 980 0 392 5096 0

7 3 2 2 3 0 1 16 0 0 324 0 72 21312 0

2 2 3 3 7 0 1 3 0 0 12830400 71383680 206126208 0 0

264
2 2 3 11 2 0 1 5368 0 0 22 0 0 88 0

2 2 11 3 2 0 1 40 0 0 6 0 0 552 0

270
3 3 2 5 3 0 1 9 0 0 1125 0 450 48825 0

3 3 5 2 3 0 1 6 0 0 288 0 72 48600 0

(continued)
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Table 1. (continued)

n p1 n1 p2 n2 n3 L #K #A #B

Theorem: 2 6 7 2 3 4 5 6

280
2 2 5 7 2 0 1 2232 0 0 14 0 0 112 0

2 2 7 5 2 0 1 480 0 0 10 0 0 170 0

Note: In each column only the rhythms that can be generated by the corresponding
theorem, but not by previous ones are counted. Grey numbers correspond to rhythms
that can be generated also by the choice of parameters in the previous line. When
there is no column (e.g., #A for Theorem 3) all the possible rhythms already appear
in previous columns.

Their basic mechanism can be (and has indeed been) generalised in several ways;
this paper gives a generalisation on its own, but Theorem 7 can certainly still
be improved. Further studies should follow, aiming at lifting the hypotheses
used in the present results and (hopefully) at establishing a systematic theory
of aperiodic tiling rhythmic canons given by all the known constructions, and
eventually of all aperiodic tiling rhythmic canons straightaway.

References

1. Amiot, E.: New perspectives on rhythmic canons and the spectral conjecture. J.
Math. Music 3(2), 71–84 (2009)

2. Amiot, E.: Structures, algorithms, and algebraic tools for rhythmic canons. Per-
spect. New Music 49(2), 93–142 (2011)

3. Andreatta, M.: Constructing and formalizing tiling rhythmic canons: a historical
survey of a “mathemusical” problem. Perspect. New Music 49(2), 33–64 (2011)

4. Coven, E.M., Meyerowitz, A.: Tiling the integers with translates of one finite set.
J. Algebra 212(1), 161–174 (1999)

5. de Bruijn, N.G.: On the factorization of finite abelian groups. Proc. Koninkli-
jke Nederlandse Akademie van Wetenschappen Ser. A Math. Sci. 61(3), 258–264
(1953)

6. Fidanza, G.: Canoni ritmici a mosaico. Università degli Studi di Pisa, Tesi di Laurea
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