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Abstract. A set-theoretic of model of musical meter is formalized, building up
from time points to pulses to meters to metric relations. The model of metric rela-
tions formalizeswork onmetric dissonance, and refines the displacement/grouping
taxonomy under current usage.
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1 Introduction

During the 1970’s, mathematical set theory emerged in North America as the predom-
inant method for exploring and communicating the structure of the chromatic 12-note
universe, emphasizing the properties of its chordal and scalar subsets, and the relations
in which they participate [1, 2]. The paradigm was productively transferred onto the
diatonic 7-note universe [3], and eventually onto patterns of musical time, with a focus
on cyclic rhythms in universes of eight or more beats [4–7]. These cycles are implicitly
metric, in the sense that they project at least a unit pulse, and a slower pulse that marks
points of cyclic orientation or renewal. But the metric models are minimal, in the sense
that they track only those two pulses. In the European tradition, meter is deep, project-
ing at least three pulses of different speeds, and sometimes as many as seven [8]. The
predilection in Asia and Africa, as well as in globally circulating popular and electronic
dance music, for cycle-lengths that are powers of 2 or multiples of 6, together with the
propensity to bodily entrain (dance) at a rate that is faster than unit and slower than cycle,
suggests that deep meter is a broader phenomenon [9–11].

Maury Yeston laid the groundwork for a set-theoretic model of deep meter by defin-
ing meter as an inclusion relation between pulses; the transitivity of inclusion invites a
recursive application [12]. Lerdahl and Jackendoff further prepared the terrain by defin-
ing pulses as sets of time points, and by representing meters as dot arrays with a depth
dimension [13]. Using these formulations as a foundation, the first half of this paper pro-
poses a set-theoretic model of deep meter, integrating the perspective of recent studies
in the psychology of metric induction.

The second half of the paper builds amodel of relations between distinct deepmeters.
Metric relations, as defined here, are equivalent to what music theorists commonly refer

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 3–13, 2022.
https://doi.org/10.1007/978-3-031-07015-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07015-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-07015-0_1


4 R. Cohn

to as metric dissonance: the superposition or juxtaposition of distinct, partly incom-
mensurable meters, which have the capacity to scramble patterns of neural activation
[14, 15]. Since the 14th century, metric relations have been associated in Europe with
psychological or semantic states such as difficulty, disorientation, conflict, mental insta-
bility, and yearning for the unattainable [16–19]. Metric relations are the basis of metric
modulations, which are essentially local processes of metric change, and metric form,
patterns of metric change across relatively long stretches of musical time. They thus
are of central concern to musical analysts who recognize rhythm and meter as dynamic
elements of musical structure and experience.

2 A Set Theoretic Model of Meter

The model of metric relations is built up in three stages, each of which converts sets
of the previous stage into elements of the subsequent one. Time points are elements of
pulses, which are elements of meters, which are elements of metric relations.

2.1 Time point and span

The axiomatic elements are time points, which have no properties other than their tem-
poral addresses [20, 21]. Pairs of distinct elements x < y, where < represents temporal
precedence, give rise to time spans, evaluated as (y – x) > 0.

Time points are distinct from the musical events whose onsets mark them [22].
Events and their onsets are res extensae that exist in musical sound. Time points are res
cogitantia that exist in the mind. The correspondence of time points to musical events is
not 1:1. There are musical events, such as grace notes, that do not mark time points [13].
Conversely, there are virtual time points that are unmarked by musical events [23]. The
onsets themselves are smeared across spans, or bins [24], and reduced to points through
the mental operation of quantization [25].

Time-span sizes are mentally assigned rather than prosthetically measured, and give
rise to comparative rather than absolute values. Augustine of Hippo wrote in the 4th

century that “I confidently answer—insofar as a trained ear can be trusted—that this
syllable is single and this double…. It is in you, oh mind of mine, that I measure the
periods of time” [26].1 If two adjacent time spans are brief, our mind spontaneously
determines whether they are equal. If unequal but integrally proportioned, we subitize
the number of concatenated shorter spans that fit the longer span, so long as that number
is small.

2.2 Pulse

Definition 1. A pulse P is an ordered set of time points whose adjacent elements are
separated by a constant value, τ(P), the pulse’s period.

1 Book 11, Chapter 28, paragraph 34.



A Set-Theoretic Model of Meter and Metric Dissonance 5

The constant-value constraint is often referred to as the isochrony property. The
property applies to time points, not to the musical events that mark them, which may
be literally isochronous (if machine-generated), or notionally isochronous (if human-
generated, like a drumbeat), or neither, if the series includes virtual time points (as do
most songs and instrumental compositions). It is important to keep in mind this last
possibility, since it is easy to default to a prototypical conception of a pulse as a parade
of isochronous onsets emitted from a uniform auditory source. Often pulses have gaps,
as when a series of alternating half and quarter notes induces a quarter-note pulse, or
their isochronous onsets are split into multiple streams, as when a quarter-note pulse is
induced by anti-phased half-note pulses in the prototypical rock drummer’s alternation
of bass and snare.

Pulse periods, equivalent to slow frequencies, can be represented by absolute dura-
tions, withHerz ormilliseconds, or by relative duration,with standard symbols, or counts
of beats or measures.

2.3 Meter

Ameter is a set of pulses related by inclusion. It is useful to divide the study of meter into
minimal meters, with exactly two pulses, and deep meters, with three or more pulses.
Minimal meters are to deep meters as intervals are to chords.

2.3.1 Minimal Meter

Definition 2. A minimal meter M is a pair of pulses (P1, P2) such that P1 ⊂ P2. The
definition implies τ(P1) > τ(P2), and thus that P1 is slower and P2 faster.

Theorderingof pulses fromslowest to fastestwill be preserved as themodel develops.
A minimal meter is classified by a function β(M) = τ(P1)

τ(P2)
, which evaluates the ratio

of its constituent pulses. By Definition 1, both pulses are periodic, and by Definition 2,
they are related by inclusion. Thus the time points of P1 are periodic selections of the
time points of P2, and the range of β(M) is the positive numbers >1.

Two classes of minimal meters merit special attention:

Definition 3. A minimal meter M is duple if β(M) = 2, and triple if β(M) = 3.

Definition 4. A minimal meter is normal if it is either duple or triple.

“Normal” designates a class of meters that have historical significance in Europe
and the Americas, and perhaps elsewhere. I intend it as a technical term that implies no
judgement of value.

2.3.2 Deep Meter

Definition 5. A deep meter M is a set of three or more distinct pulses (P1, P2, …, Pk),
ordered from slowest to fastest, such that every pair of pulses forms a minimal meter.
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A deep meter M is classified by a function, β(M) = τ(P1)
τ(P2)

,
τ(P2)
τ(P3)

, . . . ,
τ(Pk−1)
τ(Pk )

whose
range consists of multisets of numbers, each of which classifies an adjacent minimal
meter, ordered from slowest to fastest. Consider for example M’ = (4.5 s, 1.5 s, .75 s,
.375 s, .125 s), which alsomight be notated as (dotted breve,whole, half, quarter, tripleted
eighth) or as (36, 12, 6, 3, 1). This meter has five distinct pulses, hence four adjacent
minimal meters, whose classification is β(M’) = (3 2 2 3).

18th-century European compositional theory stipulates that a meter is defined not
as a list of pulses, but rather as a selection of two orienting pulses: a tactus, or counting
pulse, and a downbeat pulse [27]. In this view, M’ (as defined above) is not yet a meter.
It is, rather, a genus that gives rise to a multitude of specific meters. For example,
depending on which durational values are selected and which pulses are prioritized, M’
could be represented using, among others, the following 18th-century meter signatures:
3
1
,
6
2
,
2
4
,
2
2
,
4
4
,
3
8
,
6
8
, and

12
8
, representing eight distinctmeters. That historical tradition

has left a strong residue in modern textbooks, which classify “meters” according to their
signatures, andmore subtly in theoretical and perceptual research,which often nominates
a single pulse as the tactus [13, 19, 28], implying that a change of tactus, all else invariant,
is a change of meter. The view taken here is that reference pulses are external to a model
of meter. Meter is a system of relations, which need not be directed or oriented. A change
of reference pulse is not a change of meter, and two listeners inducing the same pulses
are hearing the same meter, even if their awareness or bodily response is oriented to
different speeds.

2.3.3 Properties of Deep Meters

Among the properties of deep meters M = (P1, P2, …, Pk) are the following:

Definition 6. The slowest pulse in M, P1, is its span pulse.

Definition 7. The fastest pulse in M, Pk, is its unit pulse.

Definition 8. The cardinality of M is k.

Definition 9. The size of M is the ratio of its unit and span pulses, τ(P1)
τ (Pk )

, which is equal

to the product of the elements in its ordered set β(M),
∏k−1

n=1
τ(Pn)

τ(Pn+1)
.

Definition 10. A meter M is saturated if all elements of β(M) are prime numbers.

If a meter M is saturated, then it has no interior gaps in M which could be filled by
additional pulses. Saturated meters are particularly significant because of our propen-
sity to fill gaps in the pulse spectrum through spontaneous processes of subjective
metricization [28].

Definition 11. A deep meter is normal if each of its adjacent minimal meters is normal;
equivalently, it is classified a multiset of 2’s and 3’s exclusively.
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2.4 Metric Relations

Definition 12. Two saturated meters are related if (1) their unit pulses are identical, xk
= yk, and (2) their span pulses have equal periods, τ(x1) = τ(y1).

Since both conditions are basedon equality, the defined relation inherits the properties
of symmetry, reflexivity, and transitivity proper to equality relations.

The first condition insures that X and Y are drawing from a common universe of
time points. Recall that not all time points of the unit pulse need be onset-marked. A
unit pulse might be a proper superset of two onset-marked pulses in different streams,
or presented at different times.

Since x1 = y1 implies τ(x1) = τ(y1), the two conditions together entail that X and
Y are of equal size. The saturation condition insures that X and Y also have equal
cardinality k, permitting disjoint pairing by shared subscript, and thus by identical or
similar speed.

Definition 13. Given two saturatedmeters P= (P1, P2,…, Pk) andQ= (Q1, Q2,…,Qk)
that are related as in Definition 11, pulses pn and qn are associated, for 1 ≤ n ≤ k.

This term will be central to the work carried out in the next section.

3 Kinds of Metric Relations

In recent North-American scholarship, when two distinct meters of equal cardinality are
combined simultaneously or successively, they are said to create dissonances, which are
partitioned into two principal classes, displacement and grouping [19, 29]. Displace-
ment covers situations often referred to as syncopation, anti-phasing, turning the beat
around, and shadow meter. Grouping covers hemiolas and polymeters. I will substitute
other terms for “grouping” and “displacement,” because both are rooted in properties and
conceptions specific to early-modern Europe,2 and thus introduce impertinent implica-
tions for other repertories. Nevertheless, the following classification of metric relations
draws the boundary at the same location. Grouping dissonances are further distinguished
as simple and complex [31]. Recent work [32–34] identifies and models a third class that
combines aspects of displacement and grouping dissonance; the taxonomy developed
here defines a hybrid genus that is consistent with that work.

I propose classifying metric relations by a procedure whose components are summa-
rized here, and detailed in the remainder of this paper. First, associated pairs of individual
pulses are classified as identical, co-periodic or anti-periodic. Second, metric relations

2 When pulses of the same period but different phases are combined, a displacement model
involves determining (a) which of the two pulses is the source, and (b) whether the copy
is displaced in the positive or negative direction. The determination is sometimes arbitrary
for music that lacks pitch, or whose pitch-combinations don’t adhere to historical European
principles of dissonance regulation. Grouping is avoided because it is not a property of meters,
whose pulses consist of time points that cannot be grouped into “larger time points.” The
conception of slow pulses “grouping” faster ones is based on a malformation that has likely
origins in ancient Greek theories of poetic meter. I elaborate this point in [30].
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are classified as ordered sets of associated pulse-pair classes. Finally, the classes of met-
ric relations are mapped onto three genera, which are equivalent to the three classes
identified in recent literature on metric dissonance: displacement, grouping and hybrid.

3.1 Pulse-Association Classes

Associated pulse pairs (xn, yn) are mapped to one of three classes by a function ϕ(xn,
yn).

Definition 14. If xn = yn, then the pulses are identical, and ϕ(xn, yn) = IDENT.

Definition 15. If xn and yn are not identical, but their periods are equal, then they are
properly co-periodic, and ϕ(xn, yn) = CO-P.

“Properly co-periodic” excludes the trivial case where the pulses are identical; as
with proper inclusion, this licenses one to cut locutionary corners by dropping the adverb.
Pulses that are properly co-periodic share no time points.

Definition 16. If xn and yn have unequal periods, then they are anti-periodic, and
ϕ(xn, yn) = ANTI-P.

3.1.1 Constraints on Associate-Pulse Classes

Definitions 13–15 suggest a reformulation of Definition 11: two saturated meters (X,
Y) are related if ϕ(x1, y1) �= ANTI-P and ϕ(xk, yk) = IDENT. The first constraint is
motivated by the observation that when ϕ(xn, yn) = ANTI-P, then their intersection set
xn

⋂
yn is a slower pulse which is an element of X, Y, or both.

An additional constraint governs associated pulses of intermediate speed: if some
associated pulse-pair is co-periodic, then all slower associated pairs, up to and including
the span pulse, are co-periodic as well. Consider some associate pair {xn, yn} | 1< n< k,
and a slower associate pair, {xm, ym} | m < n. By definition of meters X and Y, xm ⊂ xn
and ym ⊂ yn. Assume now that ϕ(xn, yn) = CO-P. Then xn

⋂
yn = ø. Accordingly,

xm
⋂

ym = ø, and thus ϕ(xm, ym) = CO-P.

3.2 Metric-Relation Classes

The classification system for associated pulse pairs (xn, yn) serves as the basis for
classifying the relation between the meters (X, Y) of which they are elements.

Definition 17. Let (X,Y) be meters related as in Definition 11. Then the relation X R Y
is classified by a function ϕ(X, Y) = (ϕ(x1, y1), ϕ(x2, y2), …, ϕ(xk, yk)), whose image
is a multiset, or string, of pulse-association classes.

If the classification of associated pulses were unconstrained, wewould quickly suffer
a combinatorial explosion of metric-relation classes. Fortunately, the constraints already
adopted, plus one additional one proposedbelow, filter outmost combinations. To review:
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1) All strings end with IDENT;
2) No string begins with ANTI-P;
3) CO-P is preceded only by CO-P.

A fourth constraint is adopted to eliminate redundancy caused by adjacent identity
relations. Since consecutive identity-pairs (IDENT, IDENT)= (IDENT)2 are structurally
no different than a single identity-pair IDENT, they do not profit from independent
investigation. This motivates the mapping in (4), which reduces the cardinality to one
that was already inventoried at a previous level of k.

(4) (IDENT)n → IDENT, for n > 1.

The strings that survive these filters, up to a metric depth of five pulses, are listed
in Table 1, where they are labelled from (a) to (m). Superscripts count consecutive
repetitions of a term. The comments in the final column serve as the basis for assigning
the strings to genera of metric relations in the next sub-section.

Table 1. Metric-Relation Classes ϕ(X, Y) for meters up to a depth of five pulses

k = Label ϕ(X, Y) = Comments

1 (a) IDENT Universal root

2 (b) (CO-P, IDENT) Root of co-periodic genus

3 (c) ((CO-P)2, IDENT) Left-extension of (b)

(d) (IDENT, ANTI-P, IDENT) Root of anti-periodic genus

(e) (CO-P, ANTI-P, IDENT) Root of hybrid genus

4 (f) ((CO-P)3, IDENT) Left-extension of (b)

(g) (IDENT, (ANTI-P)2, IDENT) Internal expansion of (d)

(h) (CO-P, (ANTI-P)2, IDENT) Internal expansion of (e)

(i) ((CO-P)2, ANTI-P, IDENT Left extension of (e)

5 (j) ((CO-P)4, IDENT) Left-extension of (b)

(k) (IDENT, (ANTI-P)3, IDENT) Internal expansion of (e)

(l) ((CO-P)2, (ANTI-P)2, IDENT) Left extension of (h); internal
expansion of (i)

(m) (IDENT, ANTI-P, IDENT, ANTI-P,
IDENT)

Elided concatenation of (d)

3.3 Three Genera of Metric Relations

Through a procedure to be described in this section, the thirteen classes listed in Table 1
reduce to three genera, one of which comes in two species.
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Definition 18. The co-periodic genus consists of strings of the form ((CO-P)a,
(IDENT)b), for a, b ≥ 1.

The co-periodic genus corresponds to what is characteristically referred to as
extended syncopation, anti-phasing, shadow meter, turning the beat around, or displace-
ment dissonance.

Definition 19. The anti-periodic genus consists of strings of the form ((IDENT)a,
(ANTI-P)b, (IDENT)c), for a, b, c ≥ 1.

The anti-periodic genus corresponds to what is referred to as hemiola, polymeter,
and grouping dissonance. If b = 1, as is the usual case, the relation is simple. This is the
hemiola that is familiar fromBaroque cadences in triplemeter, from3-over-2 polymeters,
and from the alternation of ternary and binary subdivisions of half-measures, which arise
characteristically, for example, in Korean pung’mul and Spanish flamenco [8, 35]. If b>

1, the hemiola is complex [31, 36]. This formation involves other co-prime polymeters,
including 4-over-3, 9-over-2, 9-over-8, and so forth.

Definition 20. The hybrid genus consists of strings of the form ((CO-P)a, (ANTI-P)b,
(IDENT)c), for a, b, c ≥ 1.

These are equivalent to the hybrid forms identified in [32–34]. Most of the exam-
ples analyzed in those writings are composed by Johannes Brahms, suggesting that an
alternative label might be the Brahms Genus.

Leaving aside the universal root (a), the only entry in the table that does not fit this
taxonomy is the final one, (m), where a pulse of intermediate speed functions simulta-
neously as the span pulse of a fast simple hemiola and as the unit pulse of a slow simple
hemiola. As this is an elided replication of an existing genus, I am reluctant to establish a
new genus to contain it. Otherwise, I conjecture that the three-fold taxonomy introduced
here exhaustively covers metric relations of yet greater depth (k > 5), which are (in any
case) of diminishing frequency since they approach the limit of the number of pulses
that can be simultaneously tracked or entrained [28].

4 Extensions

This paper has adopted several limitations which could be loosened in future work. First,
saturated meters need not be normal; higher primes could be substituted for 2’s and 3’s
without affecting other aspects of themodel [12]. The simplest case would be anti-metric
5-over-2, as in Holst’s Mars movement from “The Planets,” and the finale of Ravel’s
string quartet. Second, relations among three or more meters, which have been noted
in the analytical literature, could be explored. Figure 1 sketches some of the simplest
possibilities:

(a) Three meters, each pair of which is simply anti-periodic [12].
(b) Three meters, each pair of which is co-periodic. For an example from Schumann,

see [18].
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Fig. 1. Four portraits of multiple metric relations.

(c) Four meters in a product network [4], with anti-periodic pairs on one axis, co-
periodic pairs on the other, and hybrid pairs on both diagonals.

(d) Three meters, two pairs of which are simply anti-periodic in a 3:2 ratio, the third
pair of which is complexly anti-periodic in 4:3 ratio. For examples from Dvorak
and Brahms, see [31].

Theremay be somemotivation to regard (c) and (d) as underlying twoof the identified
genera. For any pairing of meters at opposite vertices of (c), one or both of the meters at
the complementary vertices may be implicitly present, even if not explicitly articulated.
Thus, any binary hybrid metric relation may be viewed as the product of a co-periodic
relation and an anti-periodic one, a quaternary design whose intermediate pulses may
be concealed or under-articulated. Similarly, any binary complex anti-periodic relation
between two pulses may be viewed as the elision of n simple relations, a ternary design
with the n – 1 intermediate terms (Vermittlungen) elided out [36, 37]. Underlying these
structural proposals is a Gestalt hypothesis about cognition: that explicit gaps in a well-
defined structure are imagined to be notionally present. This same hypothesis is invoked
at earlier levels of the model, where it was posited that gapped sets of onset-marked time
points are completed by virtual time points, and that gapped sets of pulses on the speed
continuum are filled (saturated) by processes of subjective metricization.

References

1. Babbitt, M.: Set structure as a compositional determinant. J.Music Theory 5(1), 72–94 (1961)
2. Forte, A.: The Structure of Atonal Music. Yale University Press, New Haven (1973)
3. Clough, J.: Aspects of diatonic sets. J. Music Theory 23(1), 45–61 (1979)
4. Lewin, D.: Generalized Musical Intervals and Transformations. Yale University Press, New

Haven (1987)
5. Morris, R.: Composition with Pitch Classes. Yale University Press, New Haven (1987)



12 R. Cohn

6. Cohn, R.: Transpositional combination of beat-class sets in Steve Reich’s phase-shifting
music. Perspect. New Music 30, 146–177 (1992)

7. Rahn, J.: Turning the analysis around: Africa-derived rhythms and Europe-derived music
theory. Black Music Res. J. 16, 71–89 (1996)

8. Cohn, R.L.: The dramatization of hypermetric conflicts in the Scherzo of Beethoven’s ninth
symphony. Ninet.-Century Music 15, 188–206 (1992)

9. Hesselink, N.: Rhythm and folk drumming (Pung’mul) as themusical embodiment of commu-
nal consciousness in South Korean village society. In: Tenzer, M., Roeder, J. (ed.) Analytical
and Cross-Cultural Studies inWorldMusic, pp. 263–287. Oxford University Press, NewYork
(2012)

10. Tenzer,M.: GamelanGongKebyar: TheArt of Twentieth-CenturyBalineseMusic. University
of Chicago Press, Chicago (2000)

11. Arom, S.: Time structure in the music of Central Africa: periodicity, meter, rhythm and
polyrhythmics. Leonardo 22(1), 91–99 (1989)

12. Yeston, M.: The Stratification of Musical Rhythm. Yale University Press, New Haven (1976)
13. Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press, Cambridge

(1983)
14. Mayville, J.M., Jantzen, K.J., Fuchs, A., Steinberg, F.L., Scott Kelso, J.A.: Cortical and

subcortical networks underlying syncopated and synchronized coordination revealed using
FMRI. Hum. Brain Map. 17(4), 214–229 (2002)

15. Vuust, P., Roepstorff, A., Wallentin, M., Mouridsen, K., Østergaard, L.: It don’t mean a
thing…: keeping the rhythm during polyrhythmic tension activates language areas (Ba47).
Neuroimage 31(2), 832–841 (2006)

16. Aluas, L.F.: The ‘Quatuor Principalia Musicae’: a critical edition and translation with
introduction and commentary. Ph.D. dissertation, Indiana University (1996)

17. DeFord, R.: Tactus, Mensuration, and Rhythm in Renaissance Music. Cambridge University
Press, Cambridge (2015)

18. Malin, Y.: Metric displacement dissonance and romantic longing in the German lied. Music.
Anal. 25(3), 251–288 (2007)

19. Krebs, H.: Fantasy Pieces: Metric Dissonance in the Music of Robert Schumann. Oxford
University Press, New York (1999)

20. Aristotle: Physics, Book 4. Translated by W. D. Ross. Clarendon Press, Oxford (1960)
21. Kramer, J.: The Time of Music. Schirmer Books, New York (1989)
22. Boone, G.M.: Marking Mensural Time. Music Theory Spectrum 22(1), 1–43 (2000)
23. Hasty, C.: Meter as Rhythm. Oxford University Press, New York (1997)
24. Danielsen, A.: Here, there and everywhere: three accounts of pulse in D’Angelo’s ‘left and

right’. In: Danielsen, A. (ed.) Musical Rhythm in the Age of Digital Reproduction. Ashgate,
Burlington, pp. 19–36 (2010)

25. Desain, P., Honing, H.: The formation of rhythmic categories and metric priming. Perception
32(3), 341–365 (2003)

26. Augustine: Confessions and Enchiridion. Translated by Albert Outler. Westminster Press,
Philadelphia (1955)

27. Mirka, D.: Metric Manipulations in Haydn and Mozart: Chamber Music for Strings, 1787–
1791. Oxford University Press, New York (2009)

28. London, J.: Hearing in Time: Psychological Aspects of Musical Meter, 2nd edn. Oxford
University Press, New York (2012)

29. Kaminsky, P: Aspects of harmony, rhythm, and form in Schumann’s Papillo, Carnaval, and
Davidsbündlertänze. Ph.D. dissertation, The University of Rochester (1989)

30. Cohn, R.: An Analytical Model of Musical Meter (2022, in preparation)
31. Cohn, R.: Complex hemiolas, ski-hill graphs and metric spaces. Music. Anal. 20(3), 295–326

(2001)



A Set-Theoretic Model of Meter and Metric Dissonance 13

32. Samarotto, F.P.: ‘The body that beats’: review of Harald Krebs. Fantasy pieces: metrical
dissonance in the music of Robert Schumann. Music Theory Online 6(4) (2000)

33. Chung, M.: A theory of metric transformations. Ph.D. dissertation. University of Chicago
(2008)

34. Popoff, A., Yust, J.: Meter networks: a categorical framework for metrical analysis. J. Math.
Music 16(1), 29–50 (2022)

35. de Cisneros Puig, B.J.: Discovering flamenco metric matrices through a pulse-level analysis.
Anal. Approach. World Music 6(1), 1–24 (2017)

36. Murphy, S.: OnMetre in the Rondo of Brahms’s Op. 25. Music. Anal. 26(3), 323–353 (2007)
37. Leong, D.: Humperdinck and Wagner: metric states, symmetries, and systems. J. Music

Theory 51(2), 211–243 (2007)


	A Set-Theoretic Model of Meter and Metric Dissonance
	1 Introduction
	2 A Set Theoretic Model of Meter
	2.1 Time point and span
	2.2 Pulse
	2.3 Meter
	2.4 Metric Relations

	3 Kinds of Metric Relations
	3.1 Pulse-Association Classes
	3.2 Metric-Relation Classes
	3.3 Three Genera of Metric Relations

	4 Extensions
	References




