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Preface

The 8th Biennial International Conference for Mathematics and Computation in Music
(MCM2022) took place during June 21–24, 2021, at Georgia State University inAtlanta,
Georgia, USA. MCM 2022 continued the pattern, initiated in 2007 at the first MCM
meeting, of biennial international conferences held on alternating sides of the Atlantic:
Berlin in 2007, New Haven in 2009, Paris in 2011, Montreal in 2013, London in 2015,
Mexico City in 2017, and Madrid in 2019.

As the flagship conference of the Society for Mathematics and Computation in
Music (SMCM), MCM 2022 provided a platform for the communication and exchange
of ideas among researchers in mathematics, informatics, music theory, musicology, and
related disciplines. It brought together researchers from around the world who combine
mathematics or computation with music analysis, music cognition, composition, and
performance.

The schedule is available at https://mcm2022.org/. The scientific program featured
28 talks and 10 posters, as well as two panel sessions and two plenary sessions. The
presentations were grouped around the following subjects: Mathematical Scale and
Rhythm Theory: Combinatorial, Graph Theoretic, Group Theoretic, and Transforma-
tional Approaches; Categorical and Algebraic Approaches to Music; Algorithms and
Modeling for Music and Music-Related Phenomena; Applications of Mathematics to
Musical Analysis; Mathematical Techniques and Microtonality.

On the afternoon of June 23, the conference organizers planned a public outreach
event at the Museum of Design Atlanta (MODA). The goals were to (1) engage the
general public in the area of mathematics and computation inmusic, and (2) demonstrate
to actual participants how effective outreach activities can be implemented.

Four concerts took place, the majority by SMCM researchers. On the first evening,
Emmanuel Amiot, Moreno Andreatta, and Giles Baroin presented a public concert-
lecture titled “Music and maths: the geometric match”. The second concert was the
performance Positive and Negative Spaces by the Terminus Ensemble of Contemporary
Music. The third concert was part of the Homage to Jack Douthett, in which there
were performances of Jack’s own compositions for classical guitar by Octavio Alberto
Agustín-Aquino, as well as performances by some of his closest colleagues, and a work
by Thomas Noll that is based on Jack’s research. The final concert was Emilio Lluis
Puebla’s concert-lecture, performing Rachmaninoff’s Faust Piano Sonata Op. 28.

We received 45 submissions of which 27 long papers and 10 short papers were
accepted. All papers were peer reviewed. The submissions came from researchers in 11
countries in North and South America, Europe, and Asia.

We thank the following institutions for providing their infrastructure and human
resources for the organization and promotion of MCM 2022:

• Department of Mathematics and Statistics, Georgia State University
• Society for Mathematics and Computation in Music
• School of Music, Georgia State University

https://mcm2022.org/
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• College of Arts and Sciences, Georgia State University
• Museum of Design Atlanta (MODA)
• Universidad Politécnica de Madrid
• Universidad Nacional Autónoma de México
• Universidad Tecnológica de la Mixteca
• Life University

The event was funded by the National Science Foundation, conference grant
#2207257. Any opinions, findings and conclusions, or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

June 2022 Mariana Montiel
Octavio A. Agustín-Aquino

Francisco Gómez
Jeremy Kastine

Emilio Lluis-Puebla
Brent Milam
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An Afternoon of Math+Music@MODA
(Abstract of Invited Talk)

At the final plenary session of MCM 2019, Paco Gómez discussed the need to promote
our field of research through public outreach. In response, in conjunction with MCM
2022, we hosted an event at the Museum of Design Atlanta (MODA) designed to expose
the general public to our areas of research, as well as to allow the members of our
organization to learn from one another how to implement effective outreach activities in
the future.

The event, called Math+Music@MODA, took place at MODA (see museumofd
esign.org/) on the afternoon of June 23rd, 2022 from 1:30 PM to 4:30 PM. The following
activities were presented:

• JeremyKastine (organizer of the event) presented an activity about composing canons
with monophonic composite texture. Participants learned how this problem can be
formulated in terms of finding maximal cliques of a graph.

• Thomas Noll presented “The Collective Public Fourier Performance.” In this activ-
ity, three participants control Fourier coefficients by holding flags at varying heights,
which are interpreted by mobile devices and processed by a central computer, pro-
ducing a histogram that indicates how loudly each of seven other participants are to
play their assigned note of a diatonic scale.

• PacoGómez presented “Matherhythm or rhythm is a killer,” which puts forwardmath-
ematical content - exact division, division with remainder, greatest common divisor,
Euclid’s algorithm and evenness principle - along with musical content - time span,
pulse, rhythm formation, and timelines -, and shows how those mathematical ideas
can be used as a tool to understand music and also as a principle for composing music.
Participantswere able to performmusic basedon these concepts usingBoomwhackers.

• Luis Nuño presented an activity about his “Harmonic Wheel,” a physical tool that
combines a Tonnetz transformed into a polar grid with a plastic disc containing the
lines that define the major, harmonic and melodic minor scales, together with the
scale degrees and the symbols of the corresponding seventh chords. The Harmonic
Wheel is a powerful and versatile tool for analyzing and composing music, as well as
providing an efficient mnemonic notation.

• Maria Mannone presented an activity about the “CubeHarmonic,” a novel musical
instrument employing the concept of the triad Tonnetz through the physical manipu-
lations of the Rubik’s Cube. Participants experienced this instrument firsthand through
two mobile apps developed by Maria’s colleagues: Takashi Yoshino and Pascal Chiu.

• Gilles Baroin presented a collection of mathemusical virtual reality movies and inter-
active models. Participants used virtual reality headsets to clearly visualize concepts
that would otherwise be difficult to explain and comprehend.

We would like to thank the National Science Foundation and Georgia State Univer-
sity for providing grant funding for this event, as well as the following institutions for

https://www.museumofdesign.org
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providing space and equipment:MODA, FultonCounty Library System, LifeUniversity,
and Atlanta Public Schools.
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A Set-Theoretic Model of Meter and Metric
Dissonance

Richard Cohn(B)

Department of Music, Yale University, New Haven, USA
richard.cohn@yale.edu

Abstract. A set-theoretic of model of musical meter is formalized, building up
from time points to pulses to meters to metric relations. The model of metric rela-
tions formalizeswork onmetric dissonance, and refines the displacement/grouping
taxonomy under current usage.

Keywords: Musical meter · Set theory · Metric dissonance · Syncopation ·
Hemiola · Polymeter

1 Introduction

During the 1970’s, mathematical set theory emerged in North America as the predom-
inant method for exploring and communicating the structure of the chromatic 12-note
universe, emphasizing the properties of its chordal and scalar subsets, and the relations
in which they participate [1, 2]. The paradigm was productively transferred onto the
diatonic 7-note universe [3], and eventually onto patterns of musical time, with a focus
on cyclic rhythms in universes of eight or more beats [4–7]. These cycles are implicitly
metric, in the sense that they project at least a unit pulse, and a slower pulse that marks
points of cyclic orientation or renewal. But the metric models are minimal, in the sense
that they track only those two pulses. In the European tradition, meter is deep, project-
ing at least three pulses of different speeds, and sometimes as many as seven [8]. The
predilection in Asia and Africa, as well as in globally circulating popular and electronic
dance music, for cycle-lengths that are powers of 2 or multiples of 6, together with the
propensity to bodily entrain (dance) at a rate that is faster than unit and slower than cycle,
suggests that deep meter is a broader phenomenon [9–11].

Maury Yeston laid the groundwork for a set-theoretic model of deep meter by defin-
ing meter as an inclusion relation between pulses; the transitivity of inclusion invites a
recursive application [12]. Lerdahl and Jackendoff further prepared the terrain by defin-
ing pulses as sets of time points, and by representing meters as dot arrays with a depth
dimension [13]. Using these formulations as a foundation, the first half of this paper pro-
poses a set-theoretic model of deep meter, integrating the perspective of recent studies
in the psychology of metric induction.

The second half of the paper builds amodel of relations between distinct deepmeters.
Metric relations, as defined here, are equivalent to what music theorists commonly refer

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 3–13, 2022.
https://doi.org/10.1007/978-3-031-07015-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07015-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-07015-0_1


4 R. Cohn

to as metric dissonance: the superposition or juxtaposition of distinct, partly incom-
mensurable meters, which have the capacity to scramble patterns of neural activation
[14, 15]. Since the 14th century, metric relations have been associated in Europe with
psychological or semantic states such as difficulty, disorientation, conflict, mental insta-
bility, and yearning for the unattainable [16–19]. Metric relations are the basis of metric
modulations, which are essentially local processes of metric change, and metric form,
patterns of metric change across relatively long stretches of musical time. They thus
are of central concern to musical analysts who recognize rhythm and meter as dynamic
elements of musical structure and experience.

2 A Set Theoretic Model of Meter

The model of metric relations is built up in three stages, each of which converts sets
of the previous stage into elements of the subsequent one. Time points are elements of
pulses, which are elements of meters, which are elements of metric relations.

2.1 Time point and span

The axiomatic elements are time points, which have no properties other than their tem-
poral addresses [20, 21]. Pairs of distinct elements x < y, where < represents temporal
precedence, give rise to time spans, evaluated as (y – x) > 0.

Time points are distinct from the musical events whose onsets mark them [22].
Events and their onsets are res extensae that exist in musical sound. Time points are res
cogitantia that exist in the mind. The correspondence of time points to musical events is
not 1:1. There are musical events, such as grace notes, that do not mark time points [13].
Conversely, there are virtual time points that are unmarked by musical events [23]. The
onsets themselves are smeared across spans, or bins [24], and reduced to points through
the mental operation of quantization [25].

Time-span sizes are mentally assigned rather than prosthetically measured, and give
rise to comparative rather than absolute values. Augustine of Hippo wrote in the 4th

century that “I confidently answer—insofar as a trained ear can be trusted—that this
syllable is single and this double…. It is in you, oh mind of mine, that I measure the
periods of time” [26].1 If two adjacent time spans are brief, our mind spontaneously
determines whether they are equal. If unequal but integrally proportioned, we subitize
the number of concatenated shorter spans that fit the longer span, so long as that number
is small.

2.2 Pulse

Definition 1. A pulse P is an ordered set of time points whose adjacent elements are
separated by a constant value, τ(P), the pulse’s period.

1 Book 11, Chapter 28, paragraph 34.
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The constant-value constraint is often referred to as the isochrony property. The
property applies to time points, not to the musical events that mark them, which may
be literally isochronous (if machine-generated), or notionally isochronous (if human-
generated, like a drumbeat), or neither, if the series includes virtual time points (as do
most songs and instrumental compositions). It is important to keep in mind this last
possibility, since it is easy to default to a prototypical conception of a pulse as a parade
of isochronous onsets emitted from a uniform auditory source. Often pulses have gaps,
as when a series of alternating half and quarter notes induces a quarter-note pulse, or
their isochronous onsets are split into multiple streams, as when a quarter-note pulse is
induced by anti-phased half-note pulses in the prototypical rock drummer’s alternation
of bass and snare.

Pulse periods, equivalent to slow frequencies, can be represented by absolute dura-
tions, withHerz ormilliseconds, or by relative duration,with standard symbols, or counts
of beats or measures.

2.3 Meter

Ameter is a set of pulses related by inclusion. It is useful to divide the study of meter into
minimal meters, with exactly two pulses, and deep meters, with three or more pulses.
Minimal meters are to deep meters as intervals are to chords.

2.3.1 Minimal Meter

Definition 2. A minimal meter M is a pair of pulses (P1, P2) such that P1 ⊂ P2. The
definition implies τ(P1) > τ(P2), and thus that P1 is slower and P2 faster.

Theorderingof pulses fromslowest to fastestwill be preserved as themodel develops.
A minimal meter is classified by a function β(M) = τ(P1)

τ(P2)
, which evaluates the ratio

of its constituent pulses. By Definition 1, both pulses are periodic, and by Definition 2,
they are related by inclusion. Thus the time points of P1 are periodic selections of the
time points of P2, and the range of β(M) is the positive numbers >1.

Two classes of minimal meters merit special attention:

Definition 3. A minimal meter M is duple if β(M) = 2, and triple if β(M) = 3.

Definition 4. A minimal meter is normal if it is either duple or triple.

“Normal” designates a class of meters that have historical significance in Europe
and the Americas, and perhaps elsewhere. I intend it as a technical term that implies no
judgement of value.

2.3.2 Deep Meter

Definition 5. A deep meter M is a set of three or more distinct pulses (P1, P2, …, Pk),
ordered from slowest to fastest, such that every pair of pulses forms a minimal meter.
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A deep meter M is classified by a function, β(M) = τ(P1)
τ(P2)

,
τ(P2)
τ(P3)

, . . . ,
τ(Pk−1)
τ(Pk )

whose
range consists of multisets of numbers, each of which classifies an adjacent minimal
meter, ordered from slowest to fastest. Consider for example M’ = (4.5 s, 1.5 s, .75 s,
.375 s, .125 s), which alsomight be notated as (dotted breve,whole, half, quarter, tripleted
eighth) or as (36, 12, 6, 3, 1). This meter has five distinct pulses, hence four adjacent
minimal meters, whose classification is β(M’) = (3 2 2 3).

18th-century European compositional theory stipulates that a meter is defined not
as a list of pulses, but rather as a selection of two orienting pulses: a tactus, or counting
pulse, and a downbeat pulse [27]. In this view, M’ (as defined above) is not yet a meter.
It is, rather, a genus that gives rise to a multitude of specific meters. For example,
depending on which durational values are selected and which pulses are prioritized, M’
could be represented using, among others, the following 18th-century meter signatures:
3
1
,
6
2
,
2
4
,
2
2
,
4
4
,
3
8
,
6
8
, and

12
8
, representing eight distinctmeters. That historical tradition

has left a strong residue in modern textbooks, which classify “meters” according to their
signatures, andmore subtly in theoretical and perceptual research,which often nominates
a single pulse as the tactus [13, 19, 28], implying that a change of tactus, all else invariant,
is a change of meter. The view taken here is that reference pulses are external to a model
of meter. Meter is a system of relations, which need not be directed or oriented. A change
of reference pulse is not a change of meter, and two listeners inducing the same pulses
are hearing the same meter, even if their awareness or bodily response is oriented to
different speeds.

2.3.3 Properties of Deep Meters

Among the properties of deep meters M = (P1, P2, …, Pk) are the following:

Definition 6. The slowest pulse in M, P1, is its span pulse.

Definition 7. The fastest pulse in M, Pk, is its unit pulse.

Definition 8. The cardinality of M is k.

Definition 9. The size of M is the ratio of its unit and span pulses, τ(P1)
τ (Pk )

, which is equal

to the product of the elements in its ordered set β(M),
∏k−1

n=1
τ(Pn)

τ(Pn+1)
.

Definition 10. A meter M is saturated if all elements of β(M) are prime numbers.

If a meter M is saturated, then it has no interior gaps in M which could be filled by
additional pulses. Saturated meters are particularly significant because of our propen-
sity to fill gaps in the pulse spectrum through spontaneous processes of subjective
metricization [28].

Definition 11. A deep meter is normal if each of its adjacent minimal meters is normal;
equivalently, it is classified a multiset of 2’s and 3’s exclusively.
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2.4 Metric Relations

Definition 12. Two saturated meters are related if (1) their unit pulses are identical, xk
= yk, and (2) their span pulses have equal periods, τ(x1) = τ(y1).

Since both conditions are basedon equality, the defined relation inherits the properties
of symmetry, reflexivity, and transitivity proper to equality relations.

The first condition insures that X and Y are drawing from a common universe of
time points. Recall that not all time points of the unit pulse need be onset-marked. A
unit pulse might be a proper superset of two onset-marked pulses in different streams,
or presented at different times.

Since x1 = y1 implies τ(x1) = τ(y1), the two conditions together entail that X and
Y are of equal size. The saturation condition insures that X and Y also have equal
cardinality k, permitting disjoint pairing by shared subscript, and thus by identical or
similar speed.

Definition 13. Given two saturatedmeters P= (P1, P2,…, Pk) andQ= (Q1, Q2,…,Qk)
that are related as in Definition 11, pulses pn and qn are associated, for 1 ≤ n ≤ k.

This term will be central to the work carried out in the next section.

3 Kinds of Metric Relations

In recent North-American scholarship, when two distinct meters of equal cardinality are
combined simultaneously or successively, they are said to create dissonances, which are
partitioned into two principal classes, displacement and grouping [19, 29]. Displace-
ment covers situations often referred to as syncopation, anti-phasing, turning the beat
around, and shadow meter. Grouping covers hemiolas and polymeters. I will substitute
other terms for “grouping” and “displacement,” because both are rooted in properties and
conceptions specific to early-modern Europe,2 and thus introduce impertinent implica-
tions for other repertories. Nevertheless, the following classification of metric relations
draws the boundary at the same location. Grouping dissonances are further distinguished
as simple and complex [31]. Recent work [32–34] identifies and models a third class that
combines aspects of displacement and grouping dissonance; the taxonomy developed
here defines a hybrid genus that is consistent with that work.

I propose classifying metric relations by a procedure whose components are summa-
rized here, and detailed in the remainder of this paper. First, associated pairs of individual
pulses are classified as identical, co-periodic or anti-periodic. Second, metric relations

2 When pulses of the same period but different phases are combined, a displacement model
involves determining (a) which of the two pulses is the source, and (b) whether the copy
is displaced in the positive or negative direction. The determination is sometimes arbitrary
for music that lacks pitch, or whose pitch-combinations don’t adhere to historical European
principles of dissonance regulation. Grouping is avoided because it is not a property of meters,
whose pulses consist of time points that cannot be grouped into “larger time points.” The
conception of slow pulses “grouping” faster ones is based on a malformation that has likely
origins in ancient Greek theories of poetic meter. I elaborate this point in [30].
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are classified as ordered sets of associated pulse-pair classes. Finally, the classes of met-
ric relations are mapped onto three genera, which are equivalent to the three classes
identified in recent literature on metric dissonance: displacement, grouping and hybrid.

3.1 Pulse-Association Classes

Associated pulse pairs (xn, yn) are mapped to one of three classes by a function ϕ(xn,
yn).

Definition 14. If xn = yn, then the pulses are identical, and ϕ(xn, yn) = IDENT.

Definition 15. If xn and yn are not identical, but their periods are equal, then they are
properly co-periodic, and ϕ(xn, yn) = CO-P.

“Properly co-periodic” excludes the trivial case where the pulses are identical; as
with proper inclusion, this licenses one to cut locutionary corners by dropping the adverb.
Pulses that are properly co-periodic share no time points.

Definition 16. If xn and yn have unequal periods, then they are anti-periodic, and
ϕ(xn, yn) = ANTI-P.

3.1.1 Constraints on Associate-Pulse Classes

Definitions 13–15 suggest a reformulation of Definition 11: two saturated meters (X,
Y) are related if ϕ(x1, y1) �= ANTI-P and ϕ(xk, yk) = IDENT. The first constraint is
motivated by the observation that when ϕ(xn, yn) = ANTI-P, then their intersection set
xn

⋂
yn is a slower pulse which is an element of X, Y, or both.

An additional constraint governs associated pulses of intermediate speed: if some
associated pulse-pair is co-periodic, then all slower associated pairs, up to and including
the span pulse, are co-periodic as well. Consider some associate pair {xn, yn} | 1< n< k,
and a slower associate pair, {xm, ym} | m < n. By definition of meters X and Y, xm ⊂ xn
and ym ⊂ yn. Assume now that ϕ(xn, yn) = CO-P. Then xn

⋂
yn = ø. Accordingly,

xm
⋂

ym = ø, and thus ϕ(xm, ym) = CO-P.

3.2 Metric-Relation Classes

The classification system for associated pulse pairs (xn, yn) serves as the basis for
classifying the relation between the meters (X, Y) of which they are elements.

Definition 17. Let (X,Y) be meters related as in Definition 11. Then the relation X R Y
is classified by a function ϕ(X, Y) = (ϕ(x1, y1), ϕ(x2, y2), …, ϕ(xk, yk)), whose image
is a multiset, or string, of pulse-association classes.

If the classification of associated pulses were unconstrained, wewould quickly suffer
a combinatorial explosion of metric-relation classes. Fortunately, the constraints already
adopted, plus one additional one proposedbelow, filter outmost combinations. To review:



A Set-Theoretic Model of Meter and Metric Dissonance 9

1) All strings end with IDENT;
2) No string begins with ANTI-P;
3) CO-P is preceded only by CO-P.

A fourth constraint is adopted to eliminate redundancy caused by adjacent identity
relations. Since consecutive identity-pairs (IDENT, IDENT)= (IDENT)2 are structurally
no different than a single identity-pair IDENT, they do not profit from independent
investigation. This motivates the mapping in (4), which reduces the cardinality to one
that was already inventoried at a previous level of k.

(4) (IDENT)n → IDENT, for n > 1.

The strings that survive these filters, up to a metric depth of five pulses, are listed
in Table 1, where they are labelled from (a) to (m). Superscripts count consecutive
repetitions of a term. The comments in the final column serve as the basis for assigning
the strings to genera of metric relations in the next sub-section.

Table 1. Metric-Relation Classes ϕ(X, Y) for meters up to a depth of five pulses

k = Label ϕ(X, Y) = Comments

1 (a) IDENT Universal root

2 (b) (CO-P, IDENT) Root of co-periodic genus

3 (c) ((CO-P)2, IDENT) Left-extension of (b)

(d) (IDENT, ANTI-P, IDENT) Root of anti-periodic genus

(e) (CO-P, ANTI-P, IDENT) Root of hybrid genus

4 (f) ((CO-P)3, IDENT) Left-extension of (b)

(g) (IDENT, (ANTI-P)2, IDENT) Internal expansion of (d)

(h) (CO-P, (ANTI-P)2, IDENT) Internal expansion of (e)

(i) ((CO-P)2, ANTI-P, IDENT Left extension of (e)

5 (j) ((CO-P)4, IDENT) Left-extension of (b)

(k) (IDENT, (ANTI-P)3, IDENT) Internal expansion of (e)

(l) ((CO-P)2, (ANTI-P)2, IDENT) Left extension of (h); internal
expansion of (i)

(m) (IDENT, ANTI-P, IDENT, ANTI-P,
IDENT)

Elided concatenation of (d)

3.3 Three Genera of Metric Relations

Through a procedure to be described in this section, the thirteen classes listed in Table 1
reduce to three genera, one of which comes in two species.
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Definition 18. The co-periodic genus consists of strings of the form ((CO-P)a,
(IDENT)b), for a, b ≥ 1.

The co-periodic genus corresponds to what is characteristically referred to as
extended syncopation, anti-phasing, shadow meter, turning the beat around, or displace-
ment dissonance.

Definition 19. The anti-periodic genus consists of strings of the form ((IDENT)a,
(ANTI-P)b, (IDENT)c), for a, b, c ≥ 1.

The anti-periodic genus corresponds to what is referred to as hemiola, polymeter,
and grouping dissonance. If b = 1, as is the usual case, the relation is simple. This is the
hemiola that is familiar fromBaroque cadences in triplemeter, from3-over-2 polymeters,
and from the alternation of ternary and binary subdivisions of half-measures, which arise
characteristically, for example, in Korean pung’mul and Spanish flamenco [8, 35]. If b>

1, the hemiola is complex [31, 36]. This formation involves other co-prime polymeters,
including 4-over-3, 9-over-2, 9-over-8, and so forth.

Definition 20. The hybrid genus consists of strings of the form ((CO-P)a, (ANTI-P)b,
(IDENT)c), for a, b, c ≥ 1.

These are equivalent to the hybrid forms identified in [32–34]. Most of the exam-
ples analyzed in those writings are composed by Johannes Brahms, suggesting that an
alternative label might be the Brahms Genus.

Leaving aside the universal root (a), the only entry in the table that does not fit this
taxonomy is the final one, (m), where a pulse of intermediate speed functions simulta-
neously as the span pulse of a fast simple hemiola and as the unit pulse of a slow simple
hemiola. As this is an elided replication of an existing genus, I am reluctant to establish a
new genus to contain it. Otherwise, I conjecture that the three-fold taxonomy introduced
here exhaustively covers metric relations of yet greater depth (k > 5), which are (in any
case) of diminishing frequency since they approach the limit of the number of pulses
that can be simultaneously tracked or entrained [28].

4 Extensions

This paper has adopted several limitations which could be loosened in future work. First,
saturated meters need not be normal; higher primes could be substituted for 2’s and 3’s
without affecting other aspects of themodel [12]. The simplest case would be anti-metric
5-over-2, as in Holst’s Mars movement from “The Planets,” and the finale of Ravel’s
string quartet. Second, relations among three or more meters, which have been noted
in the analytical literature, could be explored. Figure 1 sketches some of the simplest
possibilities:

(a) Three meters, each pair of which is simply anti-periodic [12].
(b) Three meters, each pair of which is co-periodic. For an example from Schumann,

see [18].



A Set-Theoretic Model of Meter and Metric Dissonance 11

Fig. 1. Four portraits of multiple metric relations.

(c) Four meters in a product network [4], with anti-periodic pairs on one axis, co-
periodic pairs on the other, and hybrid pairs on both diagonals.

(d) Three meters, two pairs of which are simply anti-periodic in a 3:2 ratio, the third
pair of which is complexly anti-periodic in 4:3 ratio. For examples from Dvorak
and Brahms, see [31].

Theremay be somemotivation to regard (c) and (d) as underlying twoof the identified
genera. For any pairing of meters at opposite vertices of (c), one or both of the meters at
the complementary vertices may be implicitly present, even if not explicitly articulated.
Thus, any binary hybrid metric relation may be viewed as the product of a co-periodic
relation and an anti-periodic one, a quaternary design whose intermediate pulses may
be concealed or under-articulated. Similarly, any binary complex anti-periodic relation
between two pulses may be viewed as the elision of n simple relations, a ternary design
with the n – 1 intermediate terms (Vermittlungen) elided out [36, 37]. Underlying these
structural proposals is a Gestalt hypothesis about cognition: that explicit gaps in a well-
defined structure are imagined to be notionally present. This same hypothesis is invoked
at earlier levels of the model, where it was posited that gapped sets of onset-marked time
points are completed by virtual time points, and that gapped sets of pulses on the speed
continuum are filled (saturated) by processes of subjective metricization.
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Université Paris Saclay/CEA, Orsay, France

franckjed@gmail.com

Abstract. This article contributes to the study of diatonicity in tunings
with N equal divisions of the octave. The new definition we are propos-
ing of a diatonic scale is based on two concepts. The first is well known
since it concerns generated scales studied by Norman Carey and David
Clampitt. The second is much less known. It is based on the sets of pro-
gressive transposition introduced by the French composer Alain Louvier.
From these two concepts, we formulate a new definition of microdiatonic
scales which is entirely characterized by two fundamental parameters.
Then we define the majorness of a scale, by introducing an interval equiv-
alent of the tritone by using limited transposition sets. We conclude this
article by observing that under these conditions diatonicity and major-
ness are two different characters which do not necessarily exist in all
tunings.

Keywords: Diatonic scales · Diatonicity · Diatonic theory · EDO ·
Major scales · Relative minor scales · Microintervals

Is there an analogue to the standard major or minor scales in a given equal
division of the octave with N notes rather than 12? The present article addresses
this question on the basis of mathematical and music-theoretical arguments set
up by the French composer Alain Louvier under the name of modes of progressive
transposition. It explores cross-connections to related work by other authors and
especially with Neo-Riemannian theories. In certain ways, this article takes up
the concepts given around the concept of diatonicity in [11,12] in a simpler but
different form, and consider what the concept of tonality could be. As already
mentioned in the cited article, a historically and theoretically interesting source
to this question is the Wyschnegradsky’s 24 Preludes opus 22 composed in 1916.
Diatonic modelization has been studied by many authors: E. Agmon [1,2], G.
Balzano [3], and M. Broué [4].

In the first section, we study sets of progressive transposition in the light of
David Lewin’s injection number and interval function, and show their unicity.
In the second section, we define and state the properties of microdiatonic scales.
In the third and last section, we introduce a generalized concept of major keys,
based on the existence of a generalized tritone. We also defined a generalized
minor scale for a particular generalized major scale. In most cases, the results
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are based on the uniqueness of scales with certain properties. As we wanted to
distinguish major chords from minor chords, all classes are considered only up
to transposition (and not up to inversion).

1 Progressive Transposition Scales

Introduced by Alain Louvier in [16], sets of progressive transposition are particu-
lar cases of Douthett’s P-Cycles [9,10]. Louvier had a brilliant musical career. In
1968, he won the last annual Prix de Rome for musical composition. He has been
director of the Conservatoire de Paris (1986–1991), where he also taught music
analysis and orchestration (1991–2009). In his paper, he explains how to build
sets of progressive transposition (PT) in the quartertone and thirdtone universe.
More generally, PT-sets are defined in the N -equal division of the octave.

Definition 1. Let 1 < m < N and gcd(m,N) = 1. The set X is a set of
progressive transposition if the transposition of X at level m has only one note
of difference with X,

card(X ∩ Tm(X)) = card(X) − 1

This also means that there exist x, y ∈ ZN , such that Tm(X) = (X\{x}) ∪
{y}. In particular, if X is a PT-set, then X has N different transpositions and
X is not a set of limited transposition.

Most of the properties of PT-sets can be established using the properties of
the injection number and the interval function ifunc, introduced by Lewin in
[15]. Let (S,G, int) be a generalized interval system. The injection number of X
into Y for f, denoted inj(X,Y )(f) is the number of elements x of X such that
f(x) ∈ Y

inj(X,Y )(f) = card{x ∈ X, f(x) ∈ Y } =
∑

x∈X

1(f(x)∈Y )

It is easy to show that if f is a permutation of S, then

inj(X,Y )(f) = card(f(X) ∩ Y )

and
inj(X,Y )(f) = inj(X,Y )(f−1)

If f is the transposition Tn(x) = x + n mod N , since Tn is a bijection, the
injection number is linked to the interval function by the relation

inj(X,Y )(Tn) = card (Tn(X) ∩ Y ) = ifunc(X,Y )(n)

The interval vector is defined for n ∈ ZN by its coordinates,

iv(n) = ifunc(X,X)(n) = card(X ∩ Tn(X))

where the first coordinate is the cardinality of X since ifunc(X,X)(0) = card(X).



16 F. Jedrzejewski

Proposition 1. X is a PT-set if and only if its complement Xc is a PT-set.

Proof. It follows from the property of the injection number that if X is a PT
set at level m,

card(X ∩ Tm(X)) = inj(X,X)(Tm) = card(X) − 1

That implies that a single element x of X is mapped by Tm in the complement
of X. And since Tm is a bijection, card(X) − 1 elements of the complement Xc

are mapped to itself, and one element to X. Thus the complement of X is a
PT set at level m. Conversely, the same reasoning applies to the complement.
Therefore, X is a PT set at level m is an equivalence with Xc is a PT set at
level m, since the complement of Xc is X.

A set of progressive transposition is invariant by transposition. The simple
example is the 12 major (or minor) keys, in the common 12-EDO.

Proposition 2. X is a PT-set if and only if all of its transposition is also PT.

Proof. Let X a PT-set for index m. Then for all n ∈ ZN ,

card(Tn(X) ∩ TmTn(X)) = inj(TnX,TnX)(Tm) = inj(X,X)(T−1
n TmTn)

= inj(X,X)(Tm) = card(X ∩ Tm(X))

thus Tn(X) is a PT-set.

Theorem 1. X is a PT-set for index m if and only if

iv(X)(m) = card(X) − 1

Proof. We have

card(X ∩ Tm(X)) = inj(X,X)(Tm) = ifunc(X,Y )(m) = iv(X)(m)

If X is a PT-set then card(X) − 1 = card(X ∩ Tm(X)) and thus iv(A)(m) =
card(X) − 1. Conversely, if iv(A)(m) = card(X) − 1 then card(X ∩ Tm(X)) =
iv(A)(m) = card(X) − 1 and thus X is a PT-set.

For instance, if N = 12, and m = 7. The major scale X = {0, 2, 4, 5, 7, 9, 11}
has iv(X)(7) = 6 = card(X) − 1.

Let us recall now some common definitions. Well-formed scales have been
introduced by Norman Carey and David Clampitt in [5]. A well-formed scale is
a scale where each generating interval spans a constant number of scale steps.
The term maximally even (ME) was coined John Clough and Jack Douthett [6]
to refer to scales that are subsets of a chromatic scale and in a well-defined sense
are spread out as much as possible within that chromatic (see e.g. [13]). Jack
Douthett’s set is defined as follows. For N, k,m ∈ Z, with N > k and k �= 0, the
J-function on Z is

Jm
N,k(x) =

⌊
Nx + m

k

⌋
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where �x� is the floor function (the greatest integer less than or equal to x) and
the Douthett’s J-set is

Jm
N,k = {Jm

N,k(x), x = 0, 1, ..., k − 1}
We have a characterization of the subclass of ME(N, k) sets, with N > k and
gcd(N, k) = 1 (see e.g. [6, Theorem 3.1, p. 148]). That is the ME sets that are
not degenerated well-formed.

Theorem 2. Let X a subset of ZN with cardinality k prime to N. X is ME
set that is also non-degenerate well-formed, if and only if X is a collection of
successive images of some element x ∈ ZN by the transposition Tn where n
satifies, nk = ±1 mod N .

X = {x, Tn(x), ..., T k−1
n (x)}

Remark 1. ME sets are invariant, under the action of the T/I group. Under
this group, we only consider the case where n is the multiplicative inverse of k,
because, the sets X and

X = {x, T−n(x), ..., T k−1
−n (x)}

belong to the same class. Up to transpositions only (i.e. under the cyclic group),
we have to consider both X and X which are not in the same class.

For each choice of index m, there exists only one class of set of progressive
transposition. More precisely, we have the following result.

Theorem 3. For each generator 1 < m < N −1 such that gcd(m,N) = 1, there
exist a unique class set X (up to transposition) of progressive transposition given
by

X = {x, Tm(x), ..., T k−1
m (x)}

for some element x ∈ ZN and such that

(1) X has k elements,
(2) has N different transpositions,
(3) and Tm(X) have k − 1 notes in common.

Moreover, if k = m, X is well-formed and maximally even.

The set X is often written G(N, k,m) (see for instance [6]). Remark that if
k �= m, the set X is not necessary well-formed (WF). For instance, N = 12,
m = 7 and k = 4, X = {0, 2, 7, 9} is not WF. X is not always maximally even
(ME). For instance, for N = 12, m = 7 and k = 3, X = {0, 2, 7} is not ME.

Example 1. Let N = 12. The integers of ZN coprime with N are {1, 5, 7, 11}.
Thus m takes two values: m = 5 or m = 7 = −5. If m = 7, for x = 5, the set X =
{0, 2, 4, 5, 7, 9, 11} = J5

12,7 corresponds to the white keys of the keyboard (the C
major scale) and its complement Xc = {1, 3, 6, 8, 10} = T1(J1

12,5) corresponds
to the black keys. If m = 5, the situation is dual. For x = 9, the set Y =
{9, T5(9), ...T 4

5 (9)} = {0, 2, 5, 7, 9} = T11(Xc) corresponds to the black keys and
its complement corresponds to the white keys.
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Proof. Since m is coprime to N , the set X = {x, Tm(x), ..., T k−1
m (x)} has N

different transpositions: X is not a set of limited transposition. Moreover, since
the set

Tm(X) = {Tm(x), ..., T k
m(x)}

has with X the intersection

X ∩ Tm(X) = {Tm(x), ..., T k−1
m (x)}

the cardinality #(X ∩ Tm(X)) = k − 1 shows that X is PT. If k = m, X is a
well-formed scale and ME by Theorem2.

1.1 Properties of PT Sets

In the following, we introduce the multiplicative inverse r ∈ Z
×
N of m such that

rm = 1 mod N), u the integer of ZN such that

u = max(−r, r) (1)

and v the integer of ZN given by

v = min{max(r,−r),max(r, 2r),max(−r,−2r)} (2)

Theorem 4. Let 1 < m < N − 1 and gcd(m,N) = 1, X a PT scale of cardinal
k and generator m. X does not have two consecutive notes if and only if k ≤
min(−r, r).

Proof. Let jm be an element of the set X for j = 0, 1, 2, ..., k − 1. For r as
above, the indexes {j, j + r} lead to two consecutive notes{jm, jm + 1} since
rm = 1 mod N . The indexes {j, j − r} also lead to two consecutive notes. Thus
k ≤ min(−r, r).

Corollary 1. Let 1 < m < N − 1 and gcd(m,N) = 1, X a PT scale of cardinal
k and generator m. The complement of X does not have two consecutive notes
if and only if k ≥ u.

Theorem 5. Let 1 < m < N − 1 and gcd(m,N) = 1, X a PT scale of cardinal
k and generator m. X does not have three consecutive notes if and only if k ≤ v.

Proof. Let jm be an element of the set X for j = 0, 1, 2, ..., k−1. For r as above,
the indexes {j, j + r, j +2r} lead to three consecutive notes{jm, jm+1, jm+2}
since rm = 1 mod N . The indexes {j, j − r, j + r} and {j, j − r, j − 2r} also lead
to three consecutive notes. In order to get all the notes in the same set we need
to consider

v = min{max(r,−r),max(r, 2r),max(−r,−2r)}
That is if r > N/2, v = min(r,−2r) and if r < N/2, v = min(−r, 2r), thus we
get

v =

⎧
⎪⎪⎨

⎪⎪⎩

2r if 1 < r ≤ N/3
N − r if N/3 ≤ r < N/2
r if N/2 < r ≤ 2N/3
2N − 2r if 2N/3 ≤ r < N
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1.2 The Case N Prime

If N is prime and N > 2. The generator m takes ϕ(N) = N −1 values, where ϕ is
the Euler totient function. The integers coprime with N are m = 1, 2, 3, 4, ..., N−
1. The first integer m greater that N/2 is (N + 1)/2.

Proposition 3. If N is prime and N > 2, the set X = {j(N + 1)/2, j =
0, 1, ..., (N − 1)/2} has three consecutive notes.

Proof. The three consecutive notes are (m, 3m, 5m), with m = (N + 1)/2. Since
3(N + 1)/2 = (N + 1)/2 + N + 1 = (N + 1)/2 + 1 mod N , and 5(N + 1)/2 =
(N + 1)/2 + N + 2 = (N + 1)/2 + 2 mod N .

Proposition 4. If N is prime and N > 2, the set X = {j(N + 3)/2, j =
0, 1, ..., (N + 1)/2} does not have three consecutive notes.

Proof. Let m = (N + 3)/2. The set X can be decomposed as X = A ∪ B, with

A = {3j, j = 0, 1, 2, ..., (N + 1)/4}
and

B = {3j + m, j = 0, 1, 2, ..., (N − 3)/4}
and thus X does not have three consecutive notes.

If N is prime, the set X = {j(N +3)/2, j = 0, 1, ..., (N +1)/2} is the diatonic
scale in the sense of the next section.

2 Generalized Diatonic Scales

Definition 2. Let 1 < m < N − 1 such that 2m ≥ N + 1 and gcd(m,N) = 1,
a set X is a diatonic scale of generator m if

(1) X has k elements, N different transpositions, X and Tm(X) have m−1 notes
in common,

(2) X does not have three consecutive notes (x, x + 1, x + 2) for some x ∈ ZN .
(3) Xc does not have two consecutive notes (x, x + 1) for some x ∈ ZN .

This definition means that X is a TP scale by (1). (2) means that there is
no three consecutive white keys, and (3) means that there is no two consecutive
black keys. The condition (2m − N) ≥ 1 excludes the dual cases.

Theorem 6. Let 1 < m < N − 1 such that 2m ≥ N + 1 and gcd(m,N) = 1,
a set X is a diatonic scale of k elements and generator m if and only if X is a
TP scale with k elements and generator m

X = {x, Tm(x), ..., T k−1
m (x)}

for some element x ∈ ZN and
u ≤ k ≤ v (3)

The set X is denoted by DiamN .
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For a given N and a given m as above, there is 0 or 1 diatonic scale of
generator m. For instance, for N = 13, the generator m belongs to the set
{7, 8, 9, 10, 11}. For each value m, the triplet (r, u, v) given by Eqs. (1) and (2)
leads to a set of values of k by Eq. (3). For m = 7, there is no diatonic scale since
u > v in the triplet (r, u, v) = (2, 11, 4). For m = 8, (r, u, v) = (5, 8, 8), there
exists a diatonic scale of k = 8 elements,

Dia813 = {0, 1, 3, 4, 6, 8, 9, 11}
and for m = 11, there exists also a diatonic scale of k = 7 elements.

Dia1113 = {0, 1, 3, 5, 7, 9, 11}
The other values of m lead to a triplet with u > v. From these scales, we
can choose a unique diatonic class scale (up to inversion and transposition) by
choosing the smallest m.

Definition 3. The (optimal) diatonic scale DiaN of ZN is the diatonic scale
DiamN obtained for the smallest generator m such that 2m ≥ N + 1.

Example 2. For N = 13, the smallest m is m = 8, Dia13 = Dia813. The smallest
m = 7 is excluded since {0, 7, 1, 8, 2, 9, 3} is not a 7-diatonic scale (it has three
consecutive white keys). For N = 10, there is no diatonic scale. The optimal
diatonic scale always exists as long as N ≥ 12.

Example 3. If N = 18, m ∈ {5, 7, 11, 13}. If m = 11, the ten first multiples 0,
11, 2, 13, 4, etc. form a set

X = {0, 1, 4, 5, 8, 9, 11, 12, 15, 16}
whose complement Xc has two consecutive notes. If m = 13, the eleven first
multiples form a set

Dia18 = {0, 1, 3, 4, 6, 8, 9, 11, 13, 14, 16}
which statifies all the properties of the diatonic scale.

Example 4. If N = 20, m ∈ {3, 7, 9, 11, 13, 17}. If m = 11, the eleven first
multiples 0, 11, 2, 13, 4, etc. form a set

Dia20 = {0, 2, 4, 6, 8, 10, 11, 13, 15, 17, 19}
which has no three consecutive notes and its complement

Diac20 = {1, 3, 5, 7, 9, 12, 14, 16, 18}
has no two consecutive notes. If m = 17, the first 13 elements form a diatonic
scale

X ′ = {0, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19}
which verifies the properties of the diatonic scale. But only Dia1120 verifies the
condition on m (the smallest integer such that 2m > N + 1).
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Proposition 5. The complement of X does not contain two consecutive notes
if and only if Xc ⊂ T1(X).

Proof. If (x, x + 1) ∈ Xc, then T−1(x, x + 1) = (x − 1, x) /∈ X since x is in X.
Thus (x, x + 1) /∈ T1(X). Conversely, since the transpositions are bijections, if
(x, x + 1) ∈ X then T1(x, x + 1) = (x + 1, x + 2) /∈ Xc.

The following table gives the values of r and v for different values of N and
m, and the optimal diatonic scale.

N m r v Diatonic Scale DiaN

12 7 7 7 {0, 2, 4, 6, 7, 9, 11}
13 8 5 8 {0, 1, 3, 4, 6, 8, 9, 11}
14 11 9 9 {0, 2, 4, 5, 7, 8, 10, 11, 13}
15 13 7 8 {0, 1, 3, 5, 7, 9, 11, 13}
16 9 9 9 {0, 2, 4, 6, 8, 9, 11, 13, 15}
17 12 10 10 {0, 2, 4, 6, 7, 9, 11, 12, 14, 16}
18 13 7 11 {0, 1, 3, 4, 6, 8, 9, 11, 13, 14, 16}
19 11 7 12 {0, 1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17}
20 11 11 11 {0, 2, 4, 6, 8, 10, 11, 13, 15, 17, 19}
21 13 13 13 {0, 2, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 20}
22 17 13 13 {0, 2, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19, 21}
23 16 13 13 {0, 2, 4, 6, 8, 9, 11, 13, 15, 16, 18, 20, 22}
24 13 13 13 {0, 2, 4, 6, 8, 10, 12, 13, 15, 17, 19, 21, 23}
25 14 9 16 {0, 1, 3, 4, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 21, 23}
26 19 11 15 {0, 1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 19, 20, 22, 24}
27 19 10 17 {0, 1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 19, 20, 22, 23, 25}
28 15 15 15 {0, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27}
29 17 12 17 {0, 1, 3, 5, 6, 8, 10, 11, 13, 15, 17, 18, 20, 22, 23, 25, 27}
30 19 19 19 {0, 2, 4, 5, 7, 8, 10, 12, 13, 15, 16, 18, 19, 21, 23, 24, 26, 27, 29}
31 17 11 20 {0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29}
32 17 17 17 {0, 2, 4, 6, 8, 10, 12, 14, 16, 17, 19, 21, 23, 25, 27, 29, 31}
33 26 14 19 {0, 1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 19, 20, 22, 24, 26, 27, 29, 31}
34 21 13 21 {0, 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32}
35 24 19 19 {0, 2, 4, 6, 8, 10, 12, 13, 15, 17, 19, 21, 23, 24, 26, 28, 30, 32, 34}
36 19 19 19 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35}

3 Generalized Major and Minor Scales

In the common equal temperament with 12 notes, the tritone plays an important
role in the modulations (changing keys). As a set of limited transposition, and as
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it belongs to the dominant seventh chord and to the diminished seventh chord,
the tritone articulates the change from one key to another. Its unstable character
sets it apart. The unicity of the tritone in major scale characterizes its key.

Proposition 6. Let D be the set of divisors of N minus {1, N}. For d ∈ D, and
k such that N = dk, the set

Ld = {dj, j = 0, 1, ..., k}

and its transposition Tx(Ld) for all x ∈ ZN , are sets of limited transposition.

Example 5. For N = 12, D = {2, 3, 4, 6}. The set L6 = {0, 6} and Tx(L6) =
{x, x + 6} are sets of limited transposition. The sets L4 = {0, 4, 8} and L3 =
{0, 3, 6, 9} are also sets of limited transposition. If N is prime, the set D is empty
and the N -EDO does not have sets of limited transposition.

Proposition 7. Let N = dk. The set Ld has exactly k transpositions.

The following theorem is the engine for changing keys.

Theorem 7. Let D be the set of divisors of N minus {1, N} and X be a set with
N transpositions. Suppose L ⊂ X, L = Tx(Lk) for some x, d ∈ D, and N = dk.
Then L is included in exactly d sets of class X, namely

{X,Tk(X), ..., T d−1
k (X)}

Proof. Since X = L ∪ (X\L) and L is a set of limited transposition

Tkd(X) = Tkd(L) ∪ Tkd(X\L) = L ∪ Tkd(X\L)

thus L ⊂ Tkd(X).

Definition 4. Let D be the set of divisors of N minus {1, N} and d the greatest
element of D, and k such that N = dq, the generalized tritone is the class set
(up to transpositions)

Ld = {dj, j = 0, 1, ..., q − 1}

Proposition 8. Let 1 < m < N−1 and gcd(m,N) = 1, X a PT scale of cardinal
k and generator m. X contains a generalized tritone if and only if k ≥ d(q−1)+1,
where d is the greatest element of D and N = dq.

Proposition 9. Let X be a diatonic scale with generator m in the N universe.
X contains at least one generalized tritone.

Definition 5. Let 1 < m < N − 1 such that 2m ≥ N + 1 and gcd(m,N) = 1,
X is generalized major (or micro-major) scale if

(1) X is a set of progressive transposition,
(2) X does not have three consecutive notes,
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(3) X contains a unique generalized tritone.

Theorem 8. Let m be such that gcd(m,N) = 1, r the solution of rm = 1
mod N and v as above, X a PT set

X = {x, Tm(x), ..., T k−1
m (x)}

of cardinality k. X is a generalized major scale if and only if

d(q − 1) + 1 ≤ k ≤ v (4)

A generalized major scale does not necessarily exist. If N is prime, there is
no generalized tritone and thus no major scale, although there exists a diatonic
scale.

Example 6. If N = 12, m ∈ {5, 7}. The tritone is the class set {0, 6}. Since the
parameters are r = v = 7, X does not have three consecutive notes if and only
if k ≤ 7 and X contains a transposition of the tritone {0, 6} if and only if k > 6.
Therefore the PT set X = {0, 2, 4, 5, 7, 9, 11} contains a unique tritone {5, 11}.
In this case, the major scale is the same as the diatonic scale.

Example 7. If N = 14, m ∈ {9, 11}. The generalized tritone are transpositions
of {0, 7}. If m = 9, r = 11, d = 7 and v = min(r,−2r) = 6. X does not contains
three consecutive notes if and only if k ≤ 6 and X contains a transposition of the
tritone {0, 7} if and only if k > 7. Therefore there is no major scale associated
with m = 9. The scale

X = {0, 3, 4, 7, 8, 9, 12, 13}
with m = 9, k = 8, is well-formed, PT and has a unique tritone, but has three
consecutive notes.

If m = 11, r = 9 and v = min(r,−2r) = 9. k needs to be less or equal 9 and
greater than 7. So the candidates are k = 8 or 9. The set formed by the nine
first multiples of m which is the diatonic scale

3 0 11 8 5 2 13 10 7

contains two generalized tritone and can not be a generalized major scale. Thus

Dia14 = {0, 2, 4, 5, 7, 8, 10, 11, 13}
has 9 elements. For k = 8, the first eight multiples define the major scale with a
unique triton

Maj14 = {0, 2, 5, 7, 8, 10, 11, 13}
Although the scale Maj14 is a PT set, a subset of the diatonic scale, and has
a unique triton, Maj14 is neither maximally even nor well-formed. But it has a
unique triton and no three consectutive notes, which is an important criterion to
keep the major character and avoid the feeling of chromaticism. This example
shows that the choice arises between well-formed set and TP set. Is it more
important for a major scale to be well formed scale or to be a PT set?
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Example 8. If N = 15, m ∈ {2, 4, 7, 8, 11, 13}. The divisors of 15 are {1, 3, 5} so
d = 5 and q = 3. The generalized tritone is {0, 5, 10}. There exists a diatonic
scale for m = 13

Dia15 = {0, 1, 3, 5, 7, 9, 11, 13}
but no major scale. A major scale needs to take 11 multiples of m, thus has
cardinality 11, but in this case X has three consecutive notes, which contredict
the definition.

Example 9. If N = 21, there exists a diatonic scale for m = 13 (or m = 8)

Dia21 = {0, 2, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 20}
but no major scale for same reasons as for N = 15.

3.1 Case N Even

If N is even, we have a graphical representation of these scales. The set {N −
m, (N/2 − 1)m} is a generalized tritone. The major scale with tonic 0 in the N
universe is

MajN = {0,m, 2m, 3m, 4m, ..., (N/2 − 1)m,N − m}
In this case, the diatonic scale is equal to the major scale. Its graphic represen-
tation is in the frame (N − m,N/2) which has the multiples of N − m along the
x-axis and the multiples of N/2 along the y-axis.

0 — N − m
|

(N/2 − 1)m — · · · — 4m — 3m — 2m — m

A linear representation can be obtain if the two first notes {0, N − m} are
added after m on the right of the graph. The two ends of the graph are then
separated by the unique generalized tritone of the major scale. The relative
minor scale has one more generalized tritone {2m, 2m + N/2}

MinN = {0, 2m + N/2, 3m, 4m, 5m, ..., (N/2 − 1)m,N − m}
The note m is replaced by 2m+N/2. The two scales are in the same neighborhood
(differ by only one note).

0 — N − m 2m + N/2
| |

(N/2 − 1)m — · · · — 4m — 3m — 2m

Example 10. If N = 12, m = 7. Maj12 is the C-major scale, and Min12 is the
A-minor scale (harmonic minor scale). If N = 14, we find the previous results.
The relative minor of the major scale based on x = 0 is the scale obtains from
the major scale replacing 11 by 1. Min14 = {0, 1, 2, 3, 5, 8, 10, 13}.
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Abstract. Tonal music is based on major, melodic and harmonic minor scales. In
some cases, the harmonic major scale is also used. In this paper, four additional
heptatonic scale types, derived from them, are considered. The harmonic charac-
teristics of these eight scale types are analyzed by the trichord- and tetrachord-type
vectors, which list, respectively, the number of times each trichord and tetrachord
type is contained in a set type. Then, a novel parsimonious graph is provided,
called 7-Cyclops, which relate those scales by single-semitonal transformations.
On the other hand, their complements are eight pentatonic scales, whose harmonic
characteristics are also analyzed and the corresponding parsimonious graph, called
5-Cyclops, is given. These graphs highlight the cycles of fifths and fourths, which
are the only possible circumferences linking the same scale types in these graphs.
Other parsimonious transformations, like moving one note by a whole tone, are
easily found in these graphs, too. The acoustical relationship between those hepta-
tonic and pentatonic scale types is analyzed by the pentachord-type vector, which
lists the number of times each pentachord type is contained in a set type. With the
inclusion of a musical example, all this information is intended both for theorists
and composers.

Keywords: Parsimonious transformation · Heptatonic scale · Pentatonic scale ·
Cyclops · Trichord-type vector · Tetrachord-type vector · Pentachord-type
vector · Cycle of fifths · Cycle of fourths

1 Introduction

Themajor scale is the basis ofWesternmusic. Although perfectly well known, it is worth
reviewing now some of its main characteristics. It consists of seven notes showing great
acoustical affinity among them, to the extent that they constitute a “complete and versa-
tile” set. Thus, most popular songs – and not so popular – are composed in a major key.
Our musical notation, based on the staff and the key signatures, is ideal for writing music
in major keys. The piano, a crucial musical instrument, is especially suitable for play-
ing in the C major key. The names of the notes are seven – instead of twelve –, precisely
those of theCmajor scale. The termoctave (a Latinword for “eighth”) indicates its exten-
sion (including an ending tonic), whereas the termswhole tone and semitone describe the
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types of intervals between two consecutive notes in it. As well, the quality of the inter-
vals (perfect, major, minor,…) are defined with respect to a major scale. In summary, the
major scale is a cornerstone of music theory and composition.

Other kinds of scales can be directly derived from the major one. Thus, by choosing
any of its notes as the tonic, we obtain seven modes, from which the Aeolian one con-
stitutes the minor scale, which is also prevalent in Western music. In this case, its sixth
and seventh degrees can be natural or altered (raised by a semitone), thus giving rise to
the natural, melodic, and harmonic minor scales.

On the other hand, the complement of a major scale is a major pentatonic one. In
general, pentatonic scales – not only the major pentatonic – have been used since ancient
times bymanydifferent cultures.Although they predominate inEastern countries (China,
Japan, India, Java, etc.), they are also used in several Western styles, such as Classical,
Scottish, Andean, Jazz, etc.

This study is based on the standard twelve-tone chromatic system (Z12) and uses
the nomenclature of Forte names and set classes [1], which here will be called scale
classes. Additionally, the non-inversionally-symmetrical ones are split into two scale
types related by inversion, named “a” and “b”, following [2]. Under these premises, the
major and major pentatonic scales are the most even set types with seven and five notes,
respectively, both possessing an exclusive property: apart from the set types with one or
eleven notes, they are the only set types that can be transformed into the same set types
by a single-semitonal transformation.1 For example, by raising in the C major scale the
note F by a semitone, we obtain the G major scale. This property, in the case of major
scales, gives rise to the order of sharps and flats, as well as the cycle of fifths [3, 4], which
is essential in the theory of modulation, that is, the change from one key to another. In
this respect, given a key, its “nearest” keys are those having one sharp or flat more or
less in their key signatures [5, 6]. This also applies to the minor keys, since they have
the same key signatures as their relative major ones.

A parsimonious transformation is a more general concept, where one or more notes
move by a semitone or a whole tone (in practice, normally no more than two semitones
in total), while sustaining the rest of them [7]. Thus, the Tonnetz is a first representation
of them for major and minor triads, while [7] provides more complex and interesting
graphs. In the nineteenth century, several composers made extensive use of this kind
of transformations and a large number of their works are analyzed in [8]. A different
approach is given in [9], where pitch-class sets are represented in special spaces called
orbifolds. In [10], the “most common” trichords and tetrachords are represented in cyclic
circular graphs calledCyclopes, which allowus to analyze a great number of suchmusical
works in a practical way. In this paper, two novel parsimonious graphs of this kind are
developed for heptatonic and pentatonic scales. In each case, eight scale types are chosen
following specific criteria. As well, an aforementioned result is shown graphically: the
cycle of fifths for the major scales, together with the cycle of fourths for the major
pentatonic ones, are the only possible circumferences connecting pitch-class sets of the
same type in this kind of graphs [3, 4].

1 A transformation of a pitch-class set (in our case, a scale) consisting in raising or lowering one
pitch-class (note) by a semitone, while sustaining the rest of them.
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2 Selection of Heptatonic Scales

Tonalmusic is based onmajor,melodic and harmonicminor scales [5, 6], whose “extend-
ed”Forte names are 7-35, 7-34, and7-32a, respectively. To complete the numerical series,
we can also consider 7-32b (harmonic major) and 7-33 (which we will call “Neapolitan
major”, following [11]). These are the five most even heptatonic scale types, as they
have the least interval-class vectors2 [1], with respect to the lexicographic order. The
most even one is, obviously, the major scale (7-35).

In order to obtain other heptatonic scales related to them, we can simply combine
two groups of four consecutive notes or tetrachords.3 An example of this procedure is
provided by the traditional Indian music, where up to 72 heptatonic scales, called “Me-
lakarta ragas”, are obtained by combining different types of tetrachords [12]. However,
since the total number of heptatonic scale types is 66, some of those ragas are, in fact,
modes of other ragas, the number of different scale types being 36. In any case, both 66
and 36 are too many scale types to develop practical and visually simple graphs relating
them.

Another option is to start with a major scale and raise or lower one or more notes
by a semitone, as done with the natural minor scale to obtain the melodic and harmonic
minor ones. In this case, it seems appropriate to choose the altered notes from the nearest
key signatures.

These two procedures are now used to obtain a “reasonable” number of heptatonic
scale types, which can be of interest both for theorists and composers.

2.1 Combinations of Two Tetrachords

Let us consider the C major scale. It is composed of the tetrachords C – D – E – F and
G – A – B – C, whose “intervallic structures”, in semitones, are the same: 221; and the
interval between the two tetrachords is 2 semitones. So, we can write the full intervallic
structure of Cmajor as 221 2 221; and the tetrachord 221 can be called “major”. As well,
starting from notes D or A in the C major scale, the first four notes give the tetrachord
212, which wewill call “minor”. Similarly, starting fromE or B, we obtain the tetrachord
122, which we will call “Phrygian”. And starting from F, we obtain the tetrachord 222,
which we will call “Lydian”.

Thus, we can obtain different heptatonic scales by combining any two of those tetra-
chords. But, to obtain the harmonic minor or major scales, we need another tetrachord:
the 131, which we will call “harmonic”. Table 1 shows the 25 combinations of these 5
tetrachords, with the resulting intervallic structures and the names and symbols given
here to the corresponding scale types. The less common names are taken from [11] and
all modes of a scale type are given the same name. Note that, in all cases, the interval
between the two tetrachords is such that the starting and ending notes in the scale be the
same; or, in other words, the sum of the semitones in every intervallic structure be 12.

2 The vector listing the number of times each of the 6 dyads (intervals from 1 to 6 semitones) is
contained in a given set type or set class (in our case, scale type or scale class). It characterizes,
to a great extent, the sonority of a set class. In [1], it was called interval vector.

3 The term tetrachord also means “4-note chord”. However, throughout this paper, its right
meaning will easily be determined by the context.
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Table 1. Heptatonic scale types obtained by combining two out of five tetrachords, with their
intervallic structures. Scale symbols: M: major, mm: melodic minor, hm: harmonic minor, hM:
harmonic major, NpM: Neapolitan major, Npm: Neapolitan minor, hL: harmonic Lydian, hh:
double harmonic or Hungarian, WT: whole tone.

1st ↓ 2nd →
Major Minor Phrygian Lydian Harmonic

Major 221 2 221 M 221 2 212 M 221 2 122 mm 221 1 222 NpM 221 2 131 hM

Minor 212 2 221 mm 212 2 212 M 212 2 122 M 212 1 222 mm 212 2 131 hm

Phrygian 122 2 221 NpM 122 2 212 mm 122 2 122 M 122 1 222 M 122 2 131 Npm

Lydian 222 1 221 M 222 1 212 mm 222 1 122 NpM 222 222 WT 222 1 131 hL

Harmonic 131 2 221 hL 131 2 212 hM 131 2 122 hm 131 1 222 Npm 131 2 131 hh

The combination of two Lydian tetrachords gives rise to the whole-tone scale (WT),
which only has six notes, thus being excluded from this study. The rest of the combina-
tions give rise to eight different scale types, which include the five most even and is a
suitable number for developing our graphs. Table 2 shows those scale types with their
extended Forte names, the symbols here used to represent them, their intervallic forms4

[2] starting from the tonic, and their interval-class vectors.

Table 2. Heptatonic scale types considered here. The intervallic forms start from the tonic.

Heptatonic scale Symbol Intervallic form Interval-class vector

7-22 hh 1312131 424542

7-30a Npm 1222131 343542

7-30b hL 2221131 343542

7-32a hm 2122131 335442

7-32b hM 2212131 335442

7-33 NpM 1222221 262623

7-34 mm 2122221 254442

7-35 M 2212221 254361

2.2 Combinations of the Altered Notes from the Nearest Key Signatures

Let us consider again the C major scale. Its two nearest key signatures, both in the
order of the sharps and the flats, introduce the altered notes F�, C�, B�, and E�. Thus,

4 The intervallic form is the sequence of intervals, in semitones, between every two adjacent
pitch classes in a set type (in our case, a scale type), including the interval between the last
and the first ones, or any of its circular shifts. If it starts from a scale tonic, then it matches the
“intervallic structure” previously used in this section.
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using the C major scale with any of those notes either natural or altered, gives rise to
16 combinations, which are shown in Table 3, together with the resulting scales. As
can be seen, we obtain the same eight scale types as with the previous procedure. In
fact, according to [13], they are the ones with a “span” ≤10. Therefore, they will be the
heptatonic scale types considered in this study, which are those listed in Table 2.

Table 3. Heptatonic scales obtained from CM by combining the two nearest altered notes.

Altered Notes - F → F# C → C# F → F# , C → C# 

- CM GM Dmm DM

B → Bb FM Gmm Dhm DhM

E → Eb Cmm GhM DNpM GhL

B → Bb , E → Eb B M Ghm DNpm Dhh

2.3 Harmonic Characteristics of the Selected Heptatonic Scales

To evaluate the harmonic characteristics of the heptatonic scale types considered here,
we can use two generalizations of the interval-class vector: the trichord- and tetrachord-
type vectors, which list, respectively, the number of times each trichord and tetrachord
type is contained in a set type. Table 4 shows these vectors for those scale types, where
each digit corresponds to a chord type in the order established in [2]. Thus, for example,
the first digits from right to left in the trichord-type vector correspond to the augmented,
major,minor, anddiminished triads.And thefirst digits from right to left in the tetrachord-
type vector correspond to the diminished, dominant, half-diminished, and minor seventh
chords. Digits in bold correspond to the trichord and tetrachord types considered in [10].

Table 4. Trichord- and Tetrachord-Type Vectors of the Heptatonic scale types considered here.

Scale Trichord-Type Vector Tetrachord-Type Vector

7-22 111333322-0112212331 000111110220-000110011111111222222-0000011110

7-30a 111212321-3123321321 010001110110-011010011112012101202-2120211110

7-30b 111123212-3213321231 001010110110-011100011110221110022-2210211110

7-32a 022222221-1221224321 000100000110-111212112011011112211-0011101211

7-32b 022222212-1222124231 000100000110-111121221100111121121-0101101121

7-33 111111111-6116611112 011000110000-011110000111111000110-6110630110

7-34 022111111-3333332221 000100000000-211111111111111000110-2222211220

7-35 022002211-3441151330 000000000010-222001122110011000002-1334003110
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3 Parsimonious Graphs for the Selected Heptatonic Scales

Figure 1 is a diagram showing the eight heptatonic scale types considered here, linked
by single-semitonal transformations, and where link crossings are avoided. The arrows
show how to transform the scale types by raising one note by a semitone (or, in the
opposite direction, by lowering one note by a semitone). Note that the major scale is the
only scale type that can be self-transformed, which will give rise to the cycle of fifths.
When a scale class consists of two scale types related by inversion, they are placed next
to each other (7-30a next to 7-30b and 7-32a next to 7-32b). This allows us to clearly
see the relations between them, when they exist, as is the case for 7-32a and 7-32b. As
well, the links connecting two such scale types with others always consist of pairs of
arrows in opposite directions, one for each scale type.

Arabic numerals indicate the initial and final notes referring to the scale tonics, where
1 to 6 stand for perfect or major intervals, which may be altered with � or �, and major
and minor sevenths are denoted by � and 7, respectively. And the Roman numerals
at the middle of the arrows indicate the interval between the scale tonics, in semitones
(letter “O” means zero). For example, Cmm consists of notes (C, D, E�, F, G, A, B) and,
by raising the perfect fourth (4) by a semitone, the new note is the major seventh (�) of
the new scale, a “hM” with tonic C – V semitones, that is, GhM = (G, A, B, C, D, E�,
F�). Or, by lowering in Cmm the major seventh (�) by a semitone, it turns into the tonic
(1) of the “M” scale with tonic C – II, that is, B�M = (B�, C, D, E�, F, G, A). Other
parsimonious transformations can be found in this diagram, particularly those obtained
by moving one note by a whole tone. But this will be explained in Sect. 4.2, together
with the transformations of pentatonic scale types.

Fig. 1. The heptatonic scale types included in Table 2with their single-semitonal transformations.
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This diagram does not include the scale tonics, so it represents the “local relation-
ships” in amore general scale space. Thus, let us now represent the “global relationships”
among all the heptatonic scales considered here (with their tonics). To do this, we group
them into voice-leading zones [8] or, simply, zones ϕ ∈ [0, . . . , 11], which are the equiv-
alence classes defined by the sum of the notes in a scale, modulo 12. For example, CM
= (C, D, E, F, G, A, B) is in the zone ϕ = 0 + 2 + 4 + 5 + 7 + 9 + 11 = 2 (mod 12).
This way, given a scale in the zone ϕ, the one obtained from it by raising one note by a
semitone will be in ϕ + 1. And scales related by pure contrary motion, as CM and Dhm
= (D, E, F, G, A, B�, C�) will be in the same zone (in this case, ϕ = 2). The final result
is given in Fig. 2 in a cyclic circular graph, here called 7-Cyclops, where ϕ is actually an
angular position starting from “12 o’clock” (ϕ = 0 for B�M) and increasing clockwise.
The arrows in Fig. 1 are now substituted by lines whose directions are assumed to be
clockwise and no Roman numerals are used, since the tonics are directly given. Because
7 and 12 are coprime integers, in each zone of the 7-Cyclops there is exactly one scale of
each type. The links between major scales make up the cycle of fifths, which corresponds
to the only possible circumference in this graph (the bold line).

A different circular diagram is given in [9, p. 136], which includes the major (there
called diatonic), melodic minor (there called acoustic and whose tonic is the perfect
fourth of the corresponding melodic minor scale), harmonic minor, and harmonic major
scales, plus three non-heptatonic scales with transpositional symmetry: the whole-tone
(6-35), hexatonic (6-20, also called augmented), and octatonic (8-28, also called half-
step/whole-step diminished), whose intervallic forms starting from the tonic are, respec-
tively, 222222, 131313, and 12121212. To properly allocate all these scales, 36 angular
positions are used, which obviously cannot coincide with the zones considered here, and
the notes that change from one scale to the other are not shown.

Another relevant work is [14]. Based on just intonation and “commatic transition
series”, three groups of heptatonic scales are obtained:

– Hiatal: 7-35, 7-32a, 7-32b, 7-30a, 7-30b, 7-22
– Octatonic: 7-35, 7-34, 7-32a, 7-32b, 7-31a, 7-31b
– Whole-tone: 7-35, 7-34, 7-33, pseudo-whole-tone

where “pseudo-whole-tone” is a whole-tone scale plus one enharmonic note. So, in
[14], this scale and the pair 7-31a/7-31b are added to those in Table 2. As well, the
nomenclature used there for some scale names differs from the one used in this paper.

For each group, the corresponding diagrams for both the local and global relation-
ships are given, although the notes that change from one scale to the other are not
indicated. Finally, the diagrams of the three groups are superimposed, both those with
the local and the global relationships, the latter resulting in a really complex diagram, so
that only the links are shown, but not the scale names. As well, the links between 7-33
and the pair 7-30a/7-30b are not included, since they belong to different groups.

4 Pentatonic Scales

A similar process is now followed for the pentatonic scales.
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Fig. 2. The 7-Cyclops, with the heptatonic scales considered in Table 2.

4.1 Selection of Pentatonic Scales

For consistency with previously selected heptatonic scales, we will select the pentatonic
scales that are their complements. Table 5 shows these scale types with their extended
Forte names, the symbols here used to represent them, their intervallic forms starting
from the tonic, and their interval-class vectors. The scales whose symbols are of the form
“m…P” and “7…P” are derived, respectively, from the minor (mP) and “dominant” (7P)
pentatonic scales, whose intervallic forms, starting from the tonic, are 32232 and 22332.
Note that “mP” is a mode of the major pentatonic scale (MP).

We can also obtain these scale types in a similar way as we did for the heptatonic
scales by using the nearest altered notes. However, because now we cannot use the
concept of key signature as before, we will talk of the nearest modified notes. For
example, starting from the CMP scale, we search for the notes that, by moving by
a semitone, generate other major pentatonic scales. There are just two possibilities:
raising E to F to obtain FMP or lowering C to B to obtain GMP. Thus, considering the
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Table 5. Pentatonic scale types considered here. The intervallic forms start from the tonic.

Pentatonic Scale Symbol Intervallic Form Interval-Class Vector

5-22 mΔ#4P 33141 202321

5-30a mΔP 32241 121321

5-30b Δ#5P 42231 121321

5-32a m#4P 33132 113221

5-32b 7#9P 31332 113221

5-33 7#5P 22422 040402

5-34 7P 22332 032221

5-35 MP 22323 032140

two nearest modified notes, both raising and lowering, we obtain the Table 6, which is
analogous to Table 3 but for the pentatonic scales. As can be seen, again eight different
scale types are obtained, which are precisely those listed in Table 5.

Table 6. Pentatonic scales obtained from CMP by combining the two nearest modified notes.

Modified Notes - E → F A → Bb E → F, A → Bb 

- CMP FMP C7P BbMP
C → B GMP G7P Em#4P G7#9P

G → F# D7P D7#9P D7#5P F#Δ#5P
C → B, G → F# DMP Bm#4P BmΔP BmΔ#4P

Theharmonic characteristics of these scale types are shown inTable 7,which includes
their trichord- and tetrachord-type vectors. This is analogous to Table 4 but for the
pentatonic scales, the same conventions being used here.

Table 7. Trichord- and tetrachord-type vectors of the pentatonic scale types considered here.

Scale Trichord-Type Vector Tetrachord-Type Vector

5-22 000111111-0000001111 000000000010-000000000000000011110-0000000000

5-30a 000100110-1011110101 000000000000-000000000001001000100-0010100000

5-30b 000011001-1101110011 000000000000-000000000000110000010-0100100000

5-32a 000110010-0110101210 000000000000-000000000001000101000-0000001100

5-32b 000110001-0111001120 000000000000-000000000000100110000-0000001010

5-33 000000000-3003300001 000000000000-000000000000000000000-2000210000

5-34 000000000-2111111110 000000000000-000000000000000000000-1110000110

5-35 000000000-1220030110 000000000000-000000000000000000000-0112001000
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4.2 Parsimonious Graphs for the Selected Pentatonic Scales

Figure 3 is a diagram showing the eight scale types considered here, linked by single-
semitonal transformations. Since if two scale types are related by a single-semitonal
transformation, then so are their complements, this figure is completely analogous to
Fig. 1, the same conventions being used here. Note that the major pentatonic scale is
the only scale type that can be self-transformed, which, in this case, will give rise to the
cycle of fourths.

This graph also allows us to easily find other parsimonious transformations, par-
ticularly those obtained by moving one note by a whole tone. They correspond to two
consecutive arrows, where the ending note on the first matches the starting note on the
second one. For example, if in C7�9P= (C, D�, E, G, B�) we raise the major third (3) by
a semitone, it turns into the major second (2) of an “MP” scale; and by raising again this
note by a semitone, it turns into the augmented fourth (�4) of an “m�4P” scale whose
tonic is C + III – III, that is, Cm�4P = (C, E�, F�, G, B�). There are 5 parsimonious
transformations of this kind, the rest of them being: from “7�5P” to the same scale type
through “7P”, from “7P” to “m�P” and “��5P” through “MP”, and from “��5P” to
“m�P” through “MP”. The latter is harder to see because there is, or there may be, a
voice crossing. For example, transforming C��5P = (C, E, F�, G�, B) into C�m�P =
(C�, E, F�, G�, B�) or (C�, E, F�, G�, C) can be done by raising B by a whole tone, which
crosses C. But, in Fig. 3, this must be done by first raising the tonic (C) by a semitone,
giving EMP, and then raising its perfect fifth (B) by a semitone, thus avoiding the voice
crossing. There is, however, a simpler way to find this parsimonious transformation. To
this end, we have to use Fig. 1 and take into account that: 1) the complements of 5-30a,
5-30b, and 5-35 are, respectively, 7-30b, 7-30a, and 7-35; 2) raising/lowering a note
by a semitone in a scale type corresponds to lowering/raising a note by a semitone in
its complement; and 3) if a note of a scale type, by moving by a whole tone, crosses a
voice, it does not produce any voice crossing in its complement. Therefore, the penta-
tonic transformation from “��5P” to “m�P” through “MP”, by raising one note by a
whole tone, corresponds to the heptatonic transformation from “Npm” to “hL” through
“M”, by lowering one note by a whole tone, which is clearly seen in Fig. 1 (note �

lowers to 2, which lowers to �6). Consequently, using the two diagrams, we easily find
all transformations of this kind.

From the local relationships among the pentatonic scales (without the tonics), we can
obtain the global ones (with all the tonics). They are shown in Fig. 4 in a cyclic circular
graph, here called 5-Cyclops. This is analogous to Fig. 2 but for pentatonic scales, the
same conventions being used here. Aswell, in each zone of the 5-Cyclops there is exactly
one scale of each type. But now, the links between major pentatonic scales make up the
cycle of fourths, which also corresponds to the only possible circumference in this graph
(the bold line).

4.3 Relation Between the Selected Heptatonic and Pentatonic Scales

Apart from the complementary relationship between heptatonic and pentatonic scales,
a more acoustical relationship can be found by using a further generalization of the
interval-class vector: the pentachord-type vector, which lists the number of times each
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Fig. 3. The pentatonic scale types included in Table 5with their single-semitonal transformations.

pentachord type (or pentatonic scale type) is contained in a given scale type. Thus,
Table 8 shows the pentachord-type vectors of the heptatonic scale types included in
Table 2 plus the pair 7-31a/7-31b, considered in [14]. Now, each digit corresponds to a
pentatonic scale type in the order established in [2] and those in bold correspond to the
ones considered here. Thus, from left to right, the first digit in bold corresponds to 5–22
and the last nine digits (those after the space) correspond to 5-30a, 5-30b, 5-31a, 5-31b,
5-32a, 5-32b, 5-33, 5-34, and 5-35.

As can be seen, 7-35 contains three 5-35 scale types. This is the maximum number of
5-35 contained in any heptatonic scale type (the rest of the heptatonic scale types – not
only those in the table – contain nomore than two). Aswell, 7-34, 7-33, and 7-22 contain,
respectively, the maximum number of 5-34, 5-33, and 5-22, which are 2, 6 and 2 (in all
other cases, they contain no more than one of each of them). Regarding the pairs of scale
types forming a scale class, we must take into account that the complement of an a-type
is a b-type and vice versa [2]. Then, 7-30a and 7-30b contain, respectively, the maximum
number of 5-30a and 5-30b (that is, the inversions of their complements), which is two (in
all other cases, they contain no more than one of each of them); and they do not contain
their corresponding complements. As well, 7-31a and 7-31b contain, respectively, the
maximum number of 5-31a and 5-31b, which is three (in all other cases, they contain no
more than two) and do not contain their corresponding complements. And, with respect
to 5-32a and 5-32b, it turns out that the heptatonic scale types containing the maximum
number of them are, respectively, 7-31a and 7-31b, which is two (in all other cases,
they contain no more than one). At least, 7-32a and 7-32b contain, respectively, one
5-32a and one 5-32b (again the inversions of their complements) and do not contain
their corresponding complements. Therefore, in all these cases there is, to a greater or
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Fig. 4. The 5-Cyclops, with the pentatonic scales considered in Table 5.

Table 8. Pentachord-Type Vector of several Heptatonic scales.

Scale Pentachord-Type Vector

7-22 0000000001100-000000000000001111111110011112-00000000001100 000011000

7-30a 0000000000100-010001000010001000001010011100-00110001110100 200010110

7-30b 0000000001000-001000100001001000010100011010-00110010111000 020001110

7-31a 0000000000000-000210000000000120000002100000-00002100002100 003021000

7-31b 0000000000000-000120000000000210000001200000-00001200001200 000312000

7-32a 0000000000000-000100000100000010100110001101-10001011010011 102110000

7-32b 0000000000000-000010000100000100100110010011-01000111100011 011201000

7-33 0000000000000-111000000011001000000000000000-00110011001100 110000610

7-34 0000000000000-000110000000000000100000000000-11111111001111 110000121

7-35 0000000000000-000000000100000000000000011000-22111100220011 000000013
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lesser extent, a clear acoustical relationship between each heptatonic scale type and the
inversion of its complement.

5 Example of Musical Analysis

An interesting chromatic excerpt is analyzed in [14]: the Fantasy in C minor, K. 475, by
Mozart, mm. 1–25. The involved scales are determined there, although some of them
are incomplete. With the nomenclature used in this paper, they are

Ghh % FhM % DbM Ebmm FNpm Bbhm B Npm BM % G#Npm

DbhL F#Npm CbhL BhM Bhm GM % % F#Npm–F#hh F#hM % % %

where each scale or a pair linked by a dash lasts one measure, and symbol “%” means
to repeat the previous measure. These scales are represented on the diagram with the
global relationships of the hiatal group [14, Example 27], as it contains most of the scale
types of this excerpt. However, the E�mm scale (measure 6) could not be represented
there, as it does not belong to that group, but to the octatonic and whole-tone groups.
Thus, the scales of mm. 3–7 are then represented on the complex diagramwith the global
relationships of the three groups superimposed [14, Example 30].

For comparison, Fig. 5 shows the same excerpt on the 7-Cyclops, which includes
all the required scales, the initial one being marked with a double line. As can be seen,
although the composition is in C minor, none of the scales Chm, Cmm, or C natural
minor (E�M) are used. Nevertheless, the initial scale, Ghh, includes the C minor chord
and is played starting with C (its fourth mode). Then, the scales move counterclockwise
in the diagram, that is, in the direction of flats (with back and forth movements), until
reachingGM,whose tonic (at the bass) is the dominant of C. However, it does not resolve
to any C minor scale, but to several scales with tonic F�, a tritone away from C, the last
four measures being based on the F� major chord.
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Fig. 5. Mozart, fantasy in C minor, K. 475, mm. 1–25. Analysis with the 7-Cyclops.

6 Conclusions

Eight heptatonic scale types, together with their pentatonic complements, are selected
following specific criteria. Their harmonic characteristics are analyzed and an acoustical
relationship is found between each heptatonic scale type and the inversion of its pen-
tatonic complement. Two novel parsimonious graphs, called 7-Cyclops and 5-Cyclops,
are provided, which relate those heptatonic and pentatonic scales by single-semitonal
transformations. Other parsimonious transformations, like moving one note by a whole
tone, are easily found in them, too. As well, these graphs highlight the cycles of fifths
and fourths, which are the only possible circumferences linking the same set types in
this kind of graphs (apart from the trivial cases of set types with one or eleven notes).
Finally, an example of musical analysis is included, so all this information is expected
to be of interest both for theorists and composers.
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Abstract. The “colored Cube Dance” is an extension of Douthett’s and
Steinbach’s Cube Dance graph, related to a monoid of binary relations
defined on the set of major, minor, and augmented triads. This contri-
bution explores the automorphism group of this monoid action, as a way
to transform chord progressions. We show that this automorphism group
is of order 7776 and is isomorphic to (Z3

4
� D8) � (D6 × Z2). The size

and complexity of this group makes it unwieldy: we therefore provide an
interactive tool via a web interface based on common HTML/Javascript
frameworks for students, musicians, and composers to explore these auto-
morphisms, showing the potential of these technologies for math/music
outreach activities.

Keywords: Cube Dance · Binary relations · Monoid action ·
Interactive software

1 An Algebraic Introduction to the Colored Cube Dance

The Cube Dance is a well-known structure introduced by Douthett and Stein-
bach in their work on parsimonious graphs between triads [4]. Its definition
involves the P1,0 binary relation which relates two pitch-class sets if they differ
by a single pitch class a semitone apart. The Cube Dance is then defined as
the graph having the major, minor, and augmented triads as its vertices and
the set of pairs of triads related by P1,0 as its set of edges. Since the classical
neo-Riemannian P and L operations imply the P1,0 binary relation, some recent
work [7] has investigated an extension of the Cube Dance wherein further refine-
ments of the P1,0 relation are considered. More precisely, three binary relations
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Fig. 1. The colored Cube Dance graph for the binary relations U (color: black/BW:
black), P (color: orange/BW: gray), and L (color: dashed green/BW: dashed gray).
(Color figure online)

U , P, and L are defined on the set of major, minor, and augmented triads as
follows. The notation we adopt for these triads is of the form xs, where x is a
pitch class (the root for major, and minor triads, or any note for augmented
triads), and s is a subscript (‘M’, ‘m’, or ‘aug’) indicating the type of triad.

Definition 1. Let X be the set of the 24 major and minor triads and the four
augmented triads.

– The relation P is the symmetric relation which coincides with the neo-
Riemannian P operation on major and minor triads and is the identity rela-
tion on augmented triads.

– The relation L is the symmetric relation which coincides with the neo-
Riemannian L operation on major and minor triads and is the identity rela-
tion on augmented triads.

– The relation U is the symmetric relation which relates an augmented triad
with a major or minor triad if they are related by the P1,0 relation.

The ‘colored Cube Dance graph’ (Fig. 1) is then defined as the graph having
X as its set of vertices, and the set of pairs of triads related by either U , P,
or L as its set of edges, each edge having a canonically attributed color in the
set {U ,P,L}. From an algebraic point of view, these binary relations generate
a monoid MU,P,L with an action on X, which corresponds in categorical terms
to the definition of a functor S : MU,P,L → Rel, and whose structure has been
investigated in [7].
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Proposition 1. The monoid MU,P,L generated by the relations U , P, and L
contains 40 elements and has the following presentation.

MU,P,L = 〈U ,P,L | P2 = L2 = e, LPL = PLP, U3 = U ,

UP = UL, PU = LU , U2PU2 = PU2PU2P,

(UP)2U2 = P(UP)2U2P, U2(PU)2 = PU2(PU)2P〉
The categorical point of view allows us to consider automorphisms of the

functor S (i.e. automorphisms of the monoid action), whose general definition
has been given in [6,7] and which simplifies in this case as follows.

Definition 2. The automorphism group Aut(S) of the functor S : MU,P,L →
Rel is the group of pairs (N, ν) where N : MU,P,L → MU,P,L is an automor-
phism, and ν is a bijection on X such that we have pRq =⇒ ν(p)N(R)ν(q) for
all R ∈ MU,P,L and (p, q) ∈ X2. Composition is done term-wise.

It should be noted that the normal subgroup of Aut(S) of automorphisms of
the form (id, ν) is isomorphic to the normal subgroup of graph automorphisms
leaving the color of edges invariant. Some of these automorphisms are notably
involved in chord progressions in pop music [1,6]. The computation of the full
automorphism group of the monoid action is therefore of interest, giving tools for
musicians and composers to transform chord progressions in the colored Cube
Dance. We establish its structure in the next Section.

2 The Automorphism Group of the Monoid Action
of MU ,P,L

The automorphism group of the monoid MUPL itself has been determined in [7].

Theorem 1. The automorphism group of the MUPL monoid is isomorphic to
the group D6 × Z2.

Each automorphism N of MUPL is entirely determined by an automorphism
of the subgroup isomorphic to D6 generated by P and L, and by the choice of
the image of U by N in the set {U ,LUL}. The main result of this paper is the
structure of the automorphism group of the monoid action S : MUPL → Rel.

Theorem 2. The automorphism group of the functor S : MUPL → Rel is a
group of order 7776 isomorphic to (Z3

4
� D8) � (D6 × Z2).

Proof. We sketch here the methodology for the proof, leaving the full enumer-
ation of the cases to the reader. We denote by CM the set {CM , EM , A�M}, by
Fm the set {Fm, Am,D�m}, and so on.

Let N be an automorphism of MUPL. Assume for example that N(U) = U .
We then look for the possible bijections ν of X: these will obviously map the
subset {Caug, Gaug,Daug, Faug} onto itself. At this point, we can freely choose
the image of Caug by ν: assume for example that ν(Caug) = Gaug. Since Caug
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Table 1. Graphical representation of the possible automorphisms (N, ν) of the functor
S : MU,P,L → Rel. The mapping of subsets XM is determined by the permutation of
augmented chords, by the image of the generator U by N , and by the action of the
group elements gi in Z3.

N(U) = U N(U) = LUL
Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0 g1 g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0 g1 g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0 g1 g2
g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0 g1 g2
g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0 g1g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0 g1g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0g1 g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0g1 g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0g1g2
g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0g1g2
g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0 g1g2g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0 g1g2g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0g1 g2g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0g1 g2g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0g1g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0g1g2 g3



An Interactive Tool for Composing (with) Automorphisms 45

is related to the elements in CM ∪ Fm by the relation U , it is implied by the
definition of ν and the fact that N(U) = U that CM ∪ Fm should be bijectively
mapped by to the subset GM ∪ Cm. Since the subset CM (resp. Fm) is an
orbit of CM by the subgroup of D6 isomorphic to Z3 generated by LP, we
conclude by the definition of ν that either CM is mapped to GM and Fm to
Cm, or the other way around. Assume the first case, and note that each of
this mapping is entirely determined by the choice of a representative element in
each subset and an element of the subgroup of D6 isomorphic to Z3 generated
by LP. We then have that Cm is mapped to Gm and FM to CM . Since the
elements of Cm are related to Gaug by U , it is implied by the definition of ν
and the fact that N(U) = U that Gaug should be mapped to Daug. Similarly,
we get that Faug should be mapped to Caug. By continuing this enumeration,
we arrive at the graphical representations of automorphisms given in Table 1.
The group of permutations of the set {Caug, Gaug,Daug, Faug} is isomorphic to
D8, and this automatically determines the permutation of the set of subsets
{CM , GM ,DM , FM}. For a given permutation of this set, each element gi is a
group element in Z3 determining how the subsets are mapped, assuming a set
of representative elements has been fixed beforehand. It can then readily be
seen that Aut(S) is isomorphic to (Z3

4
� D8) � (D6 × Z2), a group of order

(34 ∗ 8) ∗ (6 ∗ 2) = 7776. 	


3 An Interactive Interface for Composing (with)
Automorphisms

Contrary to the neo-Riemannian PLR group, the size and complexity of Aut(S)
makes it hard to use with pen and paper, especially for non-mathematicians wish-

Fig. 2. Screenshot of the web interface for manipulating the automorphisms of the
colored Cube Dance.
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ing to explore its potential for transforming chord progressions. In this light, we
have developed a web interface for the concrete manipulation of the elements of
Aut(S), and for their use as chord transformations. A screenshot of this interface
is shown in Fig. 2. It uses common HTML and Javascript frameworks [3], thus
making it runnable on virtually any web browser without the need for compli-
cated software installations. Such frameworks have already been used for other
mathematics/music applications, notably to explore the Tonnetz [5]. The web
interface can directly be used from the corresponding GitHub repository [2] and
the associated source code is freely available.

As shown on Fig. 2, the left part of the interface corresponds to the inter-
active choice of an automorphism of the colored Cube Dance. The middle part
is an interactive colored Cube Dance: alt-clicking on chords adds them to the
current chord progression, which is shown on the right part of the interface,
along with its successive transformation by the selected automorphisms. Each
chord progression can be played back with the corresponding buttons. In the
future, the interface will also feature MIDI capabilities, so that chord progres-
sions could be recorded, transformed, and replayed at will (see [5] for a current
implementation of such capabilities). Following the pattern of Table 1, the user
first selects a mapping of the generators of MUPL, then a permutation of the
augmented chords, and finally a mapping of the major/minor chords through the
mapping of a given representative in each quadrant. Once an automorphism has
been uniquely determined, the user can hover over chords in the middle repre-
sentation of the colored Cube Dance to see how they are mapped by the selected
element of Aut(S). The ‘add to list’ button appends the selected automorphism
to the list on the right, in which the current chord progression is successively
transformed through automorphism composition.

The combination of SVG graphics possibilities in HTML with Javascript
allows one to quickly develop user-friendly interfaces for math/music concepts,
thus showing the potential of these technologies for outreach activities. It is our
hope that the colored Cube Dance web interface will prove useful for students,
musicians, and composers to creatively explore chord transformations via auto-
morphisms.
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Abstract. Combinatoriality—the property that obtains when unions of
corresponding subsets within tone rows comprise aggregates—takes var-
ious forms, following the canonical operations that relate the constituent
rows to one another: transposition, inversion, retrograde, and/or retro-
grade inversion. The mathematical field of combinatorics presents tools
to answer such basic questions as: How many combinatorial sets exist in
a space of a given size? To how many equivalence classes do they belong?
Such enumeration procedures involve various techniques that have prior
connections to music theory. In the process of answering these questions,
our results reveal further aspects of combinatorial sets. For instance, no
combinatorial n-chords are held invariant by a translation operation with
an odd index. The set of I-invariant n-chords that are P -combinatorial
is equivalent to the set of those that are I-combinatorial, and this set is
precisely the set of all-combinatorial n-chords. Such information sheds
new light on these intriguing structures.

Keywords: Combinatoriality · Serialism · Combinatorics ·
Enumeration

1 Introduction

Combinatoriality in serial music takes various forms, following the canonical
operations that relate constituent tone rows to one another: prime or transposi-
tion (P ), inversion (I), retrograde (R), and/or retrograde inversion (RI). Inver-
sional combinatoriality, or I combinatoriality, is of particular historical signifi-
cance, as it characterizes much of Arnold Schoenberg’s twelve-tone music. Among
the tone rows in his forty-two twelve-tone compositions, thirty-six (85.7%) use
hexachords that produce I combinatoriality. Regarding the basic set of his Vari-
ations for Orchestra, op. 31, Schoenberg writes [13, p. 116]: “the inversion a fifth
below of the first six tones, the antecedent, should not reproduce a repetition of
one of these six tones, but should bring forth the hitherto unused six tones of
the chromatic scale. Thus, the consequent of the basic set...comprises the tones
of this inversion, but, of course, in a different order,” as shown here in Fig. 1.

Specifically, the tone row from Schoenberg’s op. 31 is combinatorial under
the pitch-class operation I5. To maintain the complement relation between the
hexachords, no two pitch classes that relate by I5 can be present in the same
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Fig. 1. Hexachordal I combinatoriality in the Thema to Schoenberg’s Variations for
Orchestra, op. 31, mm. 34–38.

hexachord, as those pitch classes map onto one another under that operation.
Figure 2 depicts the members of the row’s two hexachords as beads in a binary
necklace; the white beads represent the pitch classes of the first hexachord and
the black beads represent those of the second. We note that the necklace balances
across the I5 axis: for each pitch class c of one hexachord, a corresponding pitch
class d = 11c + 5 (mod 12) from the other hexachord exists directly across
the axis. We can represent any partition of the twelve-tone aggregate into I5-
combinatorial hexachords in this way. Therefore, as we find two possible positions
relative to the I5 axis for any one of the six {c, d} pairs, we note that there exist
26 = 64 hexachords that are I5-combinatorial.

Fig. 2. The tone row of Schoenberg’s Variations for Orchestra, op. 31, as a binary
necklace, balanced across the I5 axis (first hexachord in white, second hexachord in
black).

Whereas we find sixty-four Ix-combinatorial hexachords for each one of the
six odd values of x, we note that there exist fewer than 64 × 6 = 384 I-
combinatorial hexachords in total, as some of these hexachords are combinatorial
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under more than one Ix operator. Consulting a standard post-tonal textbook,
such as [16], we count 348 pitch-class sets that have this property and note
that those hexachords belong to nineteen set classes, but how may we arrive at
these numbers computationally? Furthermore, composers in the twentieth cen-
tury make use of additional types of combinatoriality. For example, Milton Bab-
bitt incorporates “all-combinatorial” sets frequently in his compositions. These
sets display all four of the canonical combinatorial types: P , I, R, and RI. How
might we obtain similar results for these other sorts of combinatorial sets or for
combinatorial sets in modular spaces of sizes other than twelve?

The mathematical field of combinatorics presents tools to answer such basic
questions as: How many combinatorial sets of any type exist in a space of a
given size? What are their symmetries? To how many equivalence classes do
they belong? In the process of answering these questions, our results reveal fur-
ther aspects of combinatorial sets. The general notion of combinatoriality is not
limited to serial procedures or to twelve-element aggregates. The defining con-
cepts that it brings together—complementation and equivalence under transla-
tion and reflection—are of broad musical interest, as both are interval-preserving
when the integrant sets are of the same cardinality (per the Generalized Hex-
achord Theorem, see [17]). The concepts manifest in combinatoriality apply to
numerous musical parameters in addition to pitch, such as rhythmic structure.
Further, the procedures we use to study combinatorial structures incorporate
various techniques that have prior connections to music theory (e.g., [3,6], and
[7]), including the enumeration of serial structures, linking this inquiry with the
investigation of other aspects of musical structure. In particular, [4, especially pp.
135–158] presents a detailed enumeration of tone rows in the standard 12-tone
chromatic space; further, [4, p. 161] enumerates 12-tone tropes (following [5])
according to different types of combinatoriality (including P -, I-, R-, RI-, and
all-combinatoriality), though using different combinatorial techniques from those
in the present study.

2 Music-Theoretical and Mathematical Background

In this section, we give basic information that will apply to later sections. Further
detailed information on the mathematical theory of musical serialism, particu-
larly from the perspective of combinatorics, can be found in [4].

Let Z2n be a modular space of elements (typically pitch classes), called the
aggregate. Let S2n be the set of all orderings of the 2n elements of that space.
S2n is of size (2n)!. Call S ∈ S2n a 2n-tone row, where (s0, s1, ..., s2n−1) is the
particular ordering of elements within the row. G is the canonical group of serial
operations with an action on S2n, generated by unit transposition T1 := si �→
si + 1; inversion Ix := si �→ (2n − 1)si + x, where x ∈ Z2n; and order-position
retrograde Rx : si �→ s2n−1−i + x, where x ∈ Z2n. G is of order 8n.

We call an unordered subset N ⊂ Z2n an n-chord if |N | = n. N2n is the set
of all n-chords in Z2n. We call the orbit of N under the action of the group H of
transposition-and-inversion operators, H(N), a set class, following [2]. N2n/H is
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the set of all n-chordal set classes under the action of H on N2n, and N h
2n is the

set of n-chords that are stabilized by the element h ∈ H. N̄ is the complement
of N in Z2n, and we note that

∣
∣N̄

∣
∣ = |N |.

We are concerned with five types of n-chordal combinatoriality: P -, I-, R-,
RI-, and all-combinatoriality.

Definition 1. Given a 2n-tone row S ∈ S2n, where N = {s0, s1, ..., sn−1},
S has the property n-chordal combinatoriality if and only if there exists
some g ∈ G such that N̄ = {g(s0), g(s1), ..., g(sn−1)}. Then, we call N P -
combinatorial if there exists some x ∈ Z12 such that N̄ = Tx(N); N is I-
combinatorial if there exists some x ∈ Z12 such that N̄ = Ix(N); N is R-
combinatorial if there exists some x ∈ Z12 such that N = Tx(N); and N is
RI-combinatorial if there exists some x ∈ Z12 such that N = Ix(N). Finally,
N is all-combinatorial if all four of the preceding statements are true.

Other forms of combinatoriality involve aggregates formed as unions of m > 2
n-chords; in these cases, the relevant space is of size mn. (For example, in Z12,
we may use trichordal combinatoriality, in which the aggregate comprises four
images of a set of cardinality n = 3; see [14,15]). In this study, however, we
consider only the special case of n-chordal combinatoriality that results from the
unions of two n-chords; hence, we observe that such n-chordal combinatoriality
obtains only in spaces with even-parity size.

As all 2n-tone rows are trivially combinatorial under order-position retro-
grade without transposition R0 [1, p. 91], we note that the full set of combinato-
rial n-chords in Z2n is equivalent to N2n itself. Therefore, we distinguish between
particular subsets of N2n: the subsets of P -combinatorial n-chords (N2n(P )), I-
combinatorial n-chords (N2n(I)), R-combinatorial n-chords (N2n(R)), RI- com-
binatorial n-chords (N2n(RI)), and all-combinatorial n-chords (N2n(all)).

Our enumeration incorporates various standard results from the mathemati-
cal fields of combinatorics, group theory, and number theory. Many of our formu-
lae use powers of 2, which we use to count binary strings, as in our example of the
26 I5-combinatorial hexachords as binary necklaces in Sect. 1 above. Concerning
the powers of 2, certain of our results use the 2-adic order of n.

Definition 2. Given a prime number p, the p-adic order of the integer n is
the highest exponent νp such that pνp | n. (If pνp � n, then νp = 0, since p0 = 1.)

The formula n-choose-k counts the number of all k-subsets of an n-set.

Definition 3. Binomial coefficient.

(
n

k

)

=
n!

k!(n − k)!

We use the Möbius μ-function, which eliminates redundancies in reckoning the
sizes of various sets of combinatorial n-chords by incorporating 0 and −1 among
its three coefficients as potential multipliers.
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Definition 4. Möbius µ-function.

μ(n) =

⎧

⎪⎨

⎪⎩

1, if n = 1
0, if n has a square prime factor
(−1)r, if n has r distinct prime factors.

Moreover, we use the Cauchy-Frobenius Lemma (Lemma 1) to determine num-
bers of orbits in the action of a finite group G on a finite set S (e.g., music-
theoretical set classes). Here, Sg is the set of all elements in S that are stabilized
by g ∈ G.

Lemma 1. Cauchy-Frobenius

|S/G| =
1

|G|
∑

g∈G

|Sg|

Finally, we introduce two theorems that relate to each of the cases in the next
section.

Theorem 1.
∣
∣
∣N T2x

2n

∣
∣
∣ =

∣
∣N2gcd(n,x)

∣
∣ .

Proof. As a cyclic group, the action of the group generated by T2x on Z2n,
x ∈ Z2n, partitions Z2n into 2gcd(x, n) orbits of size n/gcd(x, n). Then, an n-set
N ⊆ Z2n is stabilized by T2x if and only if N is formed by a union of gcd(x, n)
of these orbits. Hence, we find

(
2gcd(x,n)
gcd(x/n)

)

possibilities for a T2x-symmetrical

N , which is equivalent to
∣
∣N2gcd(n,x)

∣
∣, as any N2n contains

(
2n
n

)

n-chords by
definition. ��
Theorem 2.

∣
∣
∣N

T2x+1
2n

∣
∣
∣ = 0.

Proof. As a cyclic group, the action of the group generated by T2x+1 on Z2n,
x ∈ Z2n, partitions Z2n into gcd(2x + 1, 2n) orbits of size 2n/gcd(2x + 1, 2n).
Then, an n-set N ⊆ Z2n is stabilized by T2x+1 if and only if N is formed by a
union of gcd(2x + 1, 2n)/2 of these orbits. However, as gcd(2x + 1, 2n)/2 is odd,
it is not possible to write N as the union of gcd(2x + 1, 2n)/2 orbits. ��

3 Results and Applications

3.1 I Combinatoriality

We begin with I combinatoriality, which is the most commonly studied type
because of Schoenberg’s frequent incorporation of it. As such, it serves as a
useful introduction to our applications. We noted in Sect. 1 that 26 = 64 I-
combinatorial hexachords exist for each of the six odd-indexed inversion oper-
ators in Z12, yet we find fewer than 64 · 6 = 384 I-combinatorial hexachords
in total, and that the reason for this discrepancy is the fact that certain hexa-
chords are combinatorial under several different Ix operators. The same situation
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exists in any space Z2n. First, I combinatoriality is possible only under inver-
sion operators with odd indices, as even-indexed inversion operators always hold
two elements of Z2n invariant (for instance, see [16, p. 316]). Then, we find 2n

I-combinatorial n-chords for any odd-indexed inversion operator I2x+1—hence,
∣
∣N2n(I)

∣
∣ ≤ 2nn—but, again, certain of these n-chords are combinatorial under

more than one inversion operator.
Ultimately, per Lemma 1, to reckon the number of set classes to which

the members of the set of N2n(I) belong, we need to determine how many
I-combinatorial n-chords are stabilized by each member of the transposition-
and-inversion group H. (The set classes are orbits in the action of H on N2n(I).)
The following equation, derived from [9], which counts the number of 2n-bead
balanced binary strings that are rotationally equivalent to reversed complement,
determines the number of I-combinatorial N -chords that are stabilized by even-
indexed transposition operators, including T0.

∣
∣
∣N T2x

2n(I)

∣
∣
∣ =

∑

j|gcd(x,n)

∑

k|j
μ(k)2j/kj (1)

As with our observation in Sect. 1 that the number of I-combinatorial n-chords
that are stabilized by any one particular I2x+1 operator is a power of 2, a power
of 2 serves also as the basis of Eq. 1. Then, the Möbius μ-function (Definition 4)
eliminates redundancies from n-chords that are combinatorial under multiple
values of I2x+1. As an example, the following application illustrates the numbers
of I-combinatorial hexachords in Z12 that are stabilized by the identity element
T2x=0.

– For j = 6:

k = 1 : (1 · 26) · 6 = 384

k = 2 : (−1 · 23) · 6 = −48

k = 3 : (−1 · 22) · 6 = −24

k = 6 : (1 · 21) · 6 =
+12
324

– For j = 3:

k = 1 : (1 · 23) · 3 = 24

k = 3 : (−1 · 21) · 3 =
−6
18

– For j = 2:

k = 1 : (1 · 22) · 2 = 8

k = 2 : (−1 · 21) · 2 =
−4
4
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– For j = 1:

k = 1 : (1 · 21) · 1 = 2

It yields 324 T0-symmetric hexachords that are combinatorial under precisely
one inversion operator, eighteen hexachords that are combinatorial under two,
four hexachords that are combinatorial under three, and two hexachords that are
combinatorial under all six odd-indexed inversion operators, for a total of 348,
the size of N12(I). In this way, we may determine the numbers of I-combinatorial
n-chords that are stabilized by any other even-indexed transposition operator.

The next two equations determine the number of I-combinatorial n-chords
that are stabilized by inversion operators with even and odd indices, respectively.

∣
∣
∣N I2x

2n(I)

∣
∣
∣ = 2((n/2ν2(n))+1)/2 (2)

∣
∣
∣N

I2x+1

2n(I)

∣
∣
∣ = 2α(n) −

∣
∣
∣N I2x

2n(I)

∣
∣
∣ , (3)

where

⎧

⎪⎨

⎪⎩

α(0) = 1
α(2n) = α(n) + 2n−1, for n > 0
α(2n + 1) = 2n, for n ≥ 0

The first equation incorporates the 2-adic order of n (Definition 2). The sec-
ond uses the α-function [10], which determines the number of 2n-bead balanced
binary necklaces which are equivalent to their reverse, complement, and reversed
complement. In this case, we note that 2α(n) counts the total number of I-
combinatorial n-chords that are stabilized by both I2x and I2x+1 for a specific
value of x ∈ Zn, so it is necessary to subtract the number of I-combinatorial
n-chords that are stabilized by the even-indexed inversion operator I2x to deter-
mine the number of those stabilized by an odd-indexed inversion operator. For
instance, given n = 6, Eq. 2 yields four I-combinatorial hexachords that are sta-
bilized by an even-indexed inversion operator I2x. For odd-indexed inversions,
Eq. 3 yields eight hexachords for I2x+1, as α(6) = 6; hence, 2α(6)−

∣
∣
∣N I2x

12(I)

∣
∣
∣ = 8.

Table 1 presents a summary of all the values for stabilized hexachords in the
familiar example of n = 6 in Z12. Thus, by Lemma 1, the number of set classes to
which the members of the set N12(I) belong is the average number of hexachords
stabilized by twenty-four members of the transposition and inversion group H,
or nineteen (see Eq. 4).

348 + (2 · 2) + (6 · 2) + 20 + (4 · 6) + (8 · 6)
24

= 19 (4)

Finally, Table 2 shows the results of applying this enumeration to cases in which
n ≤ 12.
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Table 1. Sizes of N h
12(I) for each member h ∈ H.

∣
∣
∣N

T0
12(I)

∣
∣
∣ = 348

∣
∣
∣N

T1
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I0
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I1
12(I)

∣
∣
∣ = 8

∣
∣
∣N

T2
12(I)

∣
∣
∣ = 2

∣
∣
∣N

T3
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I2
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I3
12(I)

∣
∣
∣ = 8

∣
∣
∣N

T4
12(I)

∣
∣
∣ = 6

∣
∣
∣N

T5
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I4
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I5
12(I)

∣
∣
∣ = 8

∣
∣
∣N

T6
12(I)

∣
∣
∣ = 20

∣
∣
∣N

T7
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I6
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I7
12(I)

∣
∣
∣ = 8

∣
∣
∣N

T8
12(I)

∣
∣
∣ = 6

∣
∣
∣N

T9
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I8
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I9
12(I)

∣
∣
∣ = 8

∣
∣
∣N

T10
12(I)

∣
∣
∣ = 2

∣
∣
∣N

T11
12(I)

∣
∣
∣ = 0

∣
∣
∣N

I10
12(I)

∣
∣
∣ = 4

∣
∣
∣N

I11
12(I)

∣
∣
∣ = 8

Table 2. Numbers of I-combinatorial n-chords and their set classes in spaces Z2n,
n ≤ 12.

Space Z2 Z4 Z6 Z8 Z10 Z12 Z14 Z16 Z18 Z20 Z22 Z24

n = 1 2 3 4 5 6 7 8 9 10 11 12
∣
∣N2n(I)

∣
∣ 2 6 20 54 152 348 884 1974 4556 10056 22508 48636

∣
∣N2n(I)/H

∣
∣ 1 2 3 6 10 19 36 70 136 266 528 1043

3.2 P Combinatoriality

P combinatoriality results when the union of two n-chords that relate by trans-
position form an aggregate. Hence, there exists some value(s) of x ∈ Z2n for
which Tx(N) = N̄ . As with I-combinatorial n-chords, our enumeration of P -
combinatorial n-chords derives from the numbers of n-chords that are stabilized
by various members of the transposition-and-inversion group. Equation 5 gives
the number of n-chords that are stabilized by an even-indexed transposition
operator T2x. It incorporates the β-function [8], which determines the number of
2n-bead balanced binary strings that are rotationally equivalent to their com-
plement. ∣

∣
∣N T2x

2n(P )

∣
∣
∣ = β(gcd(n, x)), (5)

where

⎧

⎪⎨

⎪⎩

β(0) = 1
β(2n) = β(n) + 22n, for n > 0
β(2n + 1) = 22n+1, for n ≥ 0

For instance, as gcd(6, 0) = 6 and β(6) = 72, we use Eq. 5 to determine that there
exist 72 P -combinatorial hexachords in Z12 that are stabilized by the identity
element T0.

Regarding the numbers of P -combinatorial n-chords that are stabilized by
inversion operators with even and odd indices, we note the following result, which
accounts for both cases.
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Theorem 3. N Ix

2n(P ) = N Ix

2n(I)

Proof. Assume that Iy(N) = N̄ for some y ∈ Z2n. Then, by definition, there
exists some inversion operation I2x+1, x ∈ Z2n, such that

N̄ = I2x+1(N)
= I2x+1(Iy(N))
= (I2x+1Iy)(N)
= T2x+1−y(N).

As Iy stabilizes N and I2x+1 maps N to N̄ , we observe that 2x + 1 �= y.
Therefore, T2x+1−y �= T0, so N is also P -combinatorial (by definition). By the
same reasoning, the reverse is true: if N is P -combinatorial, then it is also I-
combinatorial. ��
Corollary 1. N2n(all) = N Ix

2n(I)

Proof. Every all-combinatorial n-chord must belong to N Ix

2n(I), x ∈ Z2n, by defi-

nition. The members of N Ix

2n(I) are I-combinatorial, also by definition. Theorem 3
determines further that they are P -combinatorial. As all n-chords are trivially
R-combinatorial, we may combine these facts to ascertain that the members of
N Ix

2n(I) are also RI-combinatorial; hence, they are all-combinatorial. ��

For example, we reckon the numbers of P -combinatorial hexachords that are
stabilized by the twenty-four elements of the usual transposition-and-inversion
group’s action on Z12 (see Table 3).

Table 3. Sizes of N h
12(P ) for each member h ∈ H.

∣
∣
∣N

T0
12(P )

∣
∣
∣ = 72

∣
∣
∣N

T1
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I0
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I1
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T2
12(P )

∣
∣
∣ = 2

∣
∣
∣N

T3
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I2
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I3
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T4
12(P )

∣
∣
∣ = 6

∣
∣
∣N

T5
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I4
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I5
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T6
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T7
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I6
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I7
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T8
12(P )

∣
∣
∣ = 6

∣
∣
∣N

T9
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I8
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I9
12(P )

∣
∣
∣ = 8

∣
∣
∣N

T10
12(P )

∣
∣
∣ = 2

∣
∣
∣N

T11
12(P )

∣
∣
∣ = 0

∣
∣
∣N

I10
12(P )

∣
∣
∣ = 4

∣
∣
∣N

I11
12(P )

∣
∣
∣ = 8

Using Lemma 1, we are able to determine that the 72 P -combinatorial hex-
achords belong to eight set classes. Accordingly, Table 4 gives the numbers of
P -combinatorial n-chords and their set classes for values n ≤ 12.
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Table 4. Numbers of P -combinatorial n-chords and their set classes in spaces of size
Z2n, n ≤ 12.

Space Z2 Z4 Z6 Z8 Z10 Z12 Z14 Z16 Z18 Z20 Z22 Z24

n = 1 2 3 4 5 6 7 8 9 10 11 12
∣
∣N2n(P )

∣
∣ 2 6 8 22 32 72 128 278 512 1056 2048 4168

∣
∣N2n(P )/H

∣
∣ 1 2 2 4 4 8 10 20 30 56 94 180

3.3 R Combinatoriality

Unlike I and P combinatoriality, in which n-chords map to their complements
under some member of the transposition-and-inversion group, R and RI com-
binatoriality result when some h ∈ H exists that maps N to itself. Specifically,
R combinatoriality occurs when h is a transposition operator. As this situation
always obtains for the identity element T0, we observe that all n-chords are triv-
ially R-combinatorial. Instead of powers of 2—as with Eqs. 1, 2, 3, and 5—the
basis for the enumeration of R-combinatorial n-chords is the binomial coeffi-
cient. The formula in Eq. 6 for determining the numbers of n-chords stabilized
by even-indexed transposition operators brings the binomial coefficient together
with the results of Theorem 1.

∣
∣
∣N T2x

2n(R)

∣
∣
∣ =

(
2n/j

n/j

)

, where j = n/gcd(n, x) (6)

For example, using x = 0 in the familiar case of n = 6, we find
(
12
6

)

= 924
R-combinatorial hexachords that are stabilized by T0.

The numbers of R-combinatorial n-chords that are stabilized by inversion
operators derive from the binomial coefficient as well. However, unlike the for-
mula for determining numbers of n-chords stabilized by transposition operators,
the formulae in Eqs. 7 and 8 differentiate between even and odd values of n.

∣
∣
∣N I2x

2n(R)

∣
∣
∣ =

{(
n−1
n/2

)

+
(

n−1
(n/2)−1

)

, if 2 | n

2
(

n−1
(n−1)/2

)

, if 2 � n
(7)

∣
∣
∣N

I2x+1

2n(R)

∣
∣
∣ =

{(
n

n/2

)

, if 2 | n

0, if 2 � n
(8)

An outline of a simple proof follows. Equations 7 and 8 present four cases: (1)
I2x with 2 | n, (2) I2x+1 with 2 | n, (3) I2x with 2 � n, and (4) I2x+1 with 2 � n,
which we take in turn.

1. For any even-indexed inversion in a space of size 2n, where n is even, the
axis of reflection runs through two fixed points: y and y + n. Hence, the
inversionally symmetrical n-chord may exclude both these points as members,
in which case there exist n − 1 points on either side of the axis from which
to choose one half, n/2, of the elements of the n-chord; or the n-chord may
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include both these points as members, in which case there exist n−1 points on
either side of the axis from which to choose one less than one half, (n/2) − 1,
of the elements of the n-chord.

2. For any odd-indexed inversion in a space of size 2n, where n is even, the axis
of reflection fixes no points. Hence, there exist n points on either side of the
axis from which to choose one half, n/2 of the elements of the inversionally
symmetrical n-chord.

3. For any even-indexed inversion in a space of size 2n, where n is odd, the axis of
reflection runs through two fixed points: y and y+n. Hence, the inversionally
symmetrical n-chord must include one or the other—but not both—of these
points as members. In either of the two cases, there exist n − 1 points on
either side of the axis from which to choose one half of the remaining points,
(n − 1)/2, of the elements of the n-chord.

4. For any odd-indexed inversion in a space of size 2n, where n is odd, the
axis of reflection fixes no points. However, for the n-chord to be inversionally
symmetrical, one point must be fixed. Hence, the situation fails.

Along with the Lemma 1, the above equations enable us to determine the num-
bers of set-classes to which the set of R-combinatorial n-chords belong. Table 5
presents this information for cases n ≤ 12.

Table 5. Numbers of R-combinatorial n-chords and their set classes in spaces of size
Z2n, n ≤ 12.

Space Z2 Z4 Z6 Z8 Z10 Z12 Z14 Z16 Z18 Z20 Z22 Z24

n = 1 2 3 4 5 6 7 8 9 10 11 12
∣
∣N2n(R)

∣
∣ 2 6 20 70 252 924 3432 12870 48620 184756 705432 2704156

∣
∣N2n(R)/H

∣
∣ 1 2 3 8 16 50 133 440 1387 4752 16159 56822

3.4 RI Combinatoriality

RI combinatoriality results when an n-chord maps onto itself under an inver-
sion operation. As with R combinatoriality, we determine the numbers of RI-
combinatorial n-chords by using the binomial coefficient. Moreover, the formula
for reckoning the number of RI-combinatorial n-chords that are stabilized by
even-indexed transposition operators (equivalent to the number of 2n-bead bal-
anced binary necklaces that are equivalent to their reverse [11]) also incorporates
the μ-function, which again eliminates redundancies.

∣
∣
∣N T2x

2n(RI)

∣
∣
∣ =

∑

j|gcd(x,n)

∑

k|j
μ(k)wj, (9)

where w =

{(
j/k
j/2k

)

+
(
(j/k)−1

j/2k

)

+
(
(j/k)−1
(j/2k)−1

)

, if 2 | j/k

2
(

(j/k)−1
((j/k)−1)/2

)

, if 2 � j/k



Combinatorial Spaces 59

As was the case with I and P combinatorialities, the set of Ix-stabilized RI-
combinatorial n-chords in any particular space Z2n is the same as it is for R-
combinatoriality.

Theorem 4. N Ix

2n(RI) = N Ix

2n(R)

Proof. We note that any n-chord is R-combinatorial. Therefore, an n-chord is
RI-combinatorial, if and only if it is stabilized by Ix for some x ∈ Z2n. ��
Using these results, we are now ready to apply Lemma 1 to determine the number
of set classes to which the members of N2n(RI) belong. Table 6 provides sample
results for n ≤ 12.

Table 6. Numbers of RI-combinatorial n-chords and their set classes in spaces of size
Z2n, n ≤ 12.

Space Z2 Z4 Z6 Z8 Z10 Z12 Z14 Z16 Z18 Z20 Z22 Z24

n = 1 2 3 4 5 6 7 8 9 10 11 12
∣
∣N2n(RI)

∣
∣ 2 6 8 38 52 216 268 1062 1232 4956 5524 21848

∣
∣N2n(RI)/H

∣
∣ 1 2 2 6 6 20 20 70 70 252 252 924

4 Conclusions

In this study, we have examined combinatorial n-chords using techniques from
the mathematical fields of combinatorics, number theory, and group theory.
Specifically, we have enumerated the sets of P -, I-, R-, and RI-combinatorial
n-chords and their set classes. In the process, our results reveal further aspects
of combinatorial sets. For instance, we note that the number of T2x-symmetric
combinatorial n-chords in a space of size 2n is equivalent to the total number
of combinatorial n-chords in a space of size 2gcd(n, x) (Theorem 1). No com-
binatorial n-chords are held invariant by a translation operation with an odd
index (Theorem 2). The set of I-invariant n-chords that are P -combinatorial is
equivalent to the set of those that are I-combinatorial (Theorem 3), and this set
is precisely the set of all-combinatorial n-chords (Corollary 1). Similarly, the set
of I-invariant n-chords that are R-combinatorial is equivalent to the set of those
that are RI-combinatorial (Theorem 4).

Several avenues exist for future work on combinatorial n-chords and their
spaces. Whereas this study is limited to aggregates formed from unions of two
n-chords, its methodology could be extended to study aggregate formation that
results from unions of m > 2 P -, I-, R-, and RI-combinatorial n-chords. Further,
we can study sets of combinatorial n-chords from other mathematical perspec-
tives that have yielded significant music-theoretical results, such as the Discrete
Fourier Transform or algebraic topology and geometry. Such investigations will
continue to shed new light on these intriguing structures.
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Abstract. The Tentamen novae theoriae musicae is a treatise in which
Euler elaborated a new music theory using mathematics. The aim of
this paper is to explain his theoretical system to justify the pleasure of
listening to music and to analyze differences and similarities with other
consonance theories.
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1 Introduction

Since the XVII century, important mathematicians as Euler (1707–1783) and
d’Alembert (1717–1783) worked on music theories. This is obviously not the
result of a “historical chance”. On the contrary, it represents prolongation of a
tradition in which mathematics helps to describe music from an acoustical and
theoretical point of view. Probably the first ancient example is the Pythagorean
scale, defined by Pythagoreans starting from the first four natural numbers and
the observation of the sounds produced by the division of the string of a mono-
chord, determining the ratios of the consonant intervals of octave, fifth and
fourth. Didymus and Ptolemy developed the same idea to describe intervals
as mathematical ratios defining a new musical scale, and Zarlino (1517–1590)
resumed it in Le istitutioni harmoniche [22]. They did not know, but this idea
is totally agree with harmonic series.

After composers as Bach (1685–1750), Handel (1685–1759), Rameau (1683–
1764), Haydn (1732–1809), Mozart (1756–1791), music had a profound change
by abandoning the medieval counterpoint in favor of a new harmony. This change
had to be explained, the western music needed a new theory, and it inspired scien-
tist with a passion for music. Several scientists dedicated workd on it: Descartes
(1596–1650) with Compendium musicae [9], Mersenne (1588–1648) with Har-
monie universelle [17] and Leibniz [16] in several letters.
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Euler wrote severel works on music [12], whose first and best known is Tenta-
men novae theoriae musicae ex certissismis harmoniae principiis dilucide exposi-
tae [11], written in Latin in 1731 and published in 1739. The Tentamen novae
theoriae musicae is a treatise in which Euler elaborated a new music theory using
mathematics. In recent years, interest on this work by Euler has been increasing
[2,3,8,13]. Probably this interest also arises from the important developments
of the Mathematical Music Theory of the last thirty years linked to the Tonnetz
and his generalizations [1,4,6,7,10,20]. The Tonnetz is a 2-dimensional simpli-
cial complex which tiles the Euclidean plane with triangles representing major
and minor triads. This structure today is interesting because is a model for the
neo-Riemannian operations P , L and R, from which generalizations have been
introduced in Mathematical Music Theory [5,15]. A graph similar to the Ton-
netz appeared in a the chapter of Tentamen in order to represent some intervals
of the just intonation in a scheme.

In this paper, we will focus on Euler’s theoretical system to justify the plea-
sure of listening to music. More precisely, we will analyze differences and similar-
ities with other consonance theories. We will start, in Sect. 2, with a historical-
musical context in which Euler lived and his possible musical knowledges. In
Sects. 3 and 4 we summarize and explained the mathematical ideas on sound
and on the pleasure of consonance, described in the first four chapters of the
Tentamen. Finally, in the last section we will analyze his consonance theory by
comparing it with other theories.

2 Some Historical Aspects on Euler’s Musical Interests
and the Birth of the “Tentamen”

In agreement with De Piero [8], we note that Euler’s interests on music began
very early.

The Dissertatio physica de sono, written in 1727 to compete for the chair
of Physics in Basel, is a demonstration of this. In this dissertation the physical
foundations of music are provided; these concepts were taken up and expanded
in the first chapter of Tentamen. The Dissertatio did not allow Euler to obtain
the chair in Basel, but showed the mathematician’s interest in the subject and
laid the foundations for the next and more important essay, already completed
in 1731, and which originally bore the name of Tractatus de musica. De Piero
points out that the news of the writing of this essay is present in a letter that
Euler sent to his teacher Johann Bernoulli on May 25, 1731 from St Petersburg,
where he moved in 1727. In this letter the mathematician showed that he had
designed the entire work and that he wrote most of it, moreover he has not
yet proposed a title, but speaks indefinitely of Systema Musicus. But, in the
reply sent on 11 August 1731, his teacher introduced for the first time the term
Tractatus Musices, a term that led Euler to encode the first title in Tractatus
de Musica, as we learn from the letter sent to Bernoulli on December 20, 1738.
According to De Piero, we believe the title was established before 1738, but we
have the first evidence of it only on that date. However, the work was published
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only in 1739 in St Petersburg, printed by the Academy of Sciences with the
new title Tentamen novae theoriae musicae ex certissimis harmoniae principisis
dilucidae expositae.

Actually, the idea of writing an essay on music dates back to the period
spent in Basel, this can be seen from Euler’s first notebook, which the Swedish
mathematician Gustav Enestroem dated to 17261, therefore one year before the
publication of the Dissertatio. From the notes in the notebook the work, in
its first formulation, should have been titled Musices Theoreticae Systema, and
should have been divided into three sections: De compositiones solius discantus,
De compositione integrorum concertorum, De compositione certarum specierum.

The real reason why Euler gave up on this project, completing another com-
pletely different one, is not known. According to Ferdinand Rudio2 the transfer
of the mathematician to St Petersburg and other kind of works would have
forced him to postpone his musical projects. However, this does not convince
De Piero, because in 1731 Euler already spoke to Bernoulli about his projects,
claiming that he had already conceived the overall plan of the work and that
he had already drawn up most of it. De Piero hypothesizes that at first Euler
started from Dissertatio physica de sono and, once the conceptual foundations
of a physical nature had been laid, he was so passionate about hypothesizing
the drafting of an essay expressly dedicated to composition. However, he also
hypothesizes that Euler may have known that Johann Mattheson was dedicat-
ing himself to a similar essay in the same years3. However, the problem remains
open.

Although Euler wrote about music theory, there are no particular testimonies
of meetings or discussions with musicians. But, according to De Piero [8], during
the period at the Frederick the Great’s court he probably met musicians and
composers such as Carl Philipp Emanuel Bach4, Johann Joachim Quantz5 or
the brothers Carl Heinrich e Johann Gottlieb Graun6. Moreover, in 1747 Johann
Sebastian Bach7 went to the Frederick the Great’s court, who asked him to
compose music on the basis of a theme composed by himself, which will then
be collected in the famous Musical offer. Also in St Petersburg many musicians
as Baldassare Galuppi8 stayed during the reign of Catherine II. According to
De Piero, although there is no direct evidence, a mathematician as interested

1 G. Ernstroem, Bericht an die Eulerkommission der Schweizerschen naturforschen-
den Gesellshaft iber die Eulerchen Manuskripte der Petersburg Akademie, in “Jahres-
bericht der Deutchen Mathematiker-Vereinigung, 22”, 1913, p. 197.

2 See [8] p. 7.
3 This is the essay Grosse General-Bass-Schuule, published in 1731 in Hamburg and

also cited in Tentamen.
4 Carl Philipp Emanuel Bach (1714–1788), composer, p. 45 [21].
5 Johann Joachim Quantz (1697–1773), composer and music theorist, p. 715 [21].
6 Carl Heinreich Graun (1701–1759), Johann Gottlieb Graun (1702 o 1703–1771),

composers, p. 360 [21].
7 Johann Sebastian Bach (1685–1750), composer, pa. 46 [21].
8 Baldassarre Galuppi (1706–1785), known as Buranello, Master of the Ducal Chapel

of San Marco in Venice, stayed there from 1756 to 1768, p. 333 [21].
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in music as Euler and employed in the same court may hardly remain outside
of all this. The only evidence of disquisitions with musicians of the time are
correspondence exchanges. To date, four letters are known: two between Euler
and Giuseppe Tartini9 and two more between the Swiss mathematician and
Jean-Philippe Rameau10.

Reading the Tentamen, however, it is evident that Euler knew very well the
musical theories of that time and of the past. In fact, the conceptual structure
of the work starts from the Pythagorean principles of harmony, influenced by
the writings of Marin Mersenne, René Descartes and Gottfried Wilhelm von
Leibniz. The latter, as librarian and historian of the court of Hannover, provided
consultancy for the staging of the court shows, consequently maintained daily
relationships with musicians and singers and this allowed him to develop very
original and interesting ideas about music. These ideas were not collected in a
specific text, but can be traced in letters sent to mathematicians and theorists.
Euler quoted Leibniz11 as evidence of that any piece of music is composed of the
exponents of only the numbers 2, 3 and 5 since only the numerical ratios based
on such numbers or on the respective multiples produce listening pleasure, while
too complex numerical relationships cannot be perceived as pleasure.

Although he is never mentioned in the Tentamen, Descartes is the author
who most left his mark froma methodological point of view. There are several
points in common between Euler’s essay and that of the French mathematician,
Compendium Musicae, published in Utrecht in 1650. In fact, the Swiss math-
ematician took up the concept according to which the causes of delectare et
movere affectus are to be found in the relationship of duration or time between
sounds and in the relationship between high and low pitches12, and according to
both the perception of pleasure by the hearing is governed by simple arithmetic
ratios, because they are more easily understood.

3 Sound and Hearing

The first principle from which Euler starts, mainly presented in the first chapter
of the Tentamen, is about physical nature and concerns the science of sounds13.
On the other hand this aspect was not addressed by Descartes and, according to
De Piero, this constitutes the most original contribution provided by Euler. For
the Swiss mathematician, sounds are vibrations of the air perceived as multiple

9 Giuseppe Tartini (1692–1770), composer, violinist and music theorist, p. 880 [21].
10 Jean-Philippe Rameau (1683–1764), composer and music theorist, p. 725 [21].
11 L. Euler, Tentamen, chap. X, par.19.
12 R. Descartes, emph Compendium Musicae, Utrecht, 1650, ed. mod. Abregé de

musique, Édition nouvelle, in traduction, presentation and notes by Fr. de Buzon,
Paris, Presses Universitaires de France, 1987. Cf. p. 55: “Media ad finem, vel soni
affectiones duae sunt praecipue: nempe huius differentiae, in ratione durationis vel
temporis, et in ratione intensionis circa acutum aut grave”.

13 We observe that throughout the work, Euler speaks of sound but never of sound
waves.
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by the ears14. Given two sounds, we understand the relation between them by
the ratio of the number of vibrations carried out for one, with the number of
vibrations carried out for the other in the same time. For example, if there were
3 vibrations for the first, while for the second there would be 2 of them, we
know their relation and consequently their order, by observing the ratio of the
numbers 3 and 2 which is 3:2. Then, we observe that Euler obtained the same
ratio introduced in Pythagorean scale and in just intonation for describing the
interval of fifth.

The second principle, introduced in the preface and exposed above all in
the second chapter, invests in the causes of pleasure, questioning why a person
likes or dislikes music. In the preface to the Tentamen, Euler argues that conso-
nances do not depend on human habits. In support of this, he quotes Pythago-
ras, who identified the cause of the pleasure produced by the consonances in the
mathematical relationships of the intervals, although he did not understand how
these relationships are perceived by hearing. Euler notes that European music
is not appreciated by barbarians15 and vice versa. The Basel mathematician
attributes this to the complexity of European musical composition, made up of
various melodic lines that intertwine with each other and which are not easily
distinguishable and noticeable by few trained ears. Again, he observes that in
many countries it is commonly believed that the octave, fifths, fourths, thirds
and sixths are consonant intervals, while tritons, sevenths, seconds and all the
others that can be constituted are dissonant. Euler’s aim is to investigate the
causes of this judgment which he considers universal. Euler therefore proposes
a classification of the degrees of pleasure of consonances based on mathematical
relationships.

4 Pleasure and Consonance

Music is formed by sounds played together that Euler defines consonance. We
observe that it does not distinguish between consonance and dissonance, as his-
torically it has always been used and as it is still usual today, every compound
sound is consonant and may or may not be liked. According to Euler, pleasure
consists in the exact perceptibility of sounds and their relationships: two or more
sounds like when one perceives the relationship that the numbers of the vibra-
tions emitted have between them, vice versa they are dislike when no order is
felt. We perceive pleasure, if from that structure we understand how all the parts
intertwine with each other, and how their actions all converge. For Euler where
there is order, there is perfection, and that the rule or law of the order corre-
sponds to the goal which marks the perfection. The order of sounds primarily
consists on two types: according to the pitch and according to the duration.

As already mentioned, Euler defines sound as successive beats produced in
the air in a certain order, so a sound is distinctly perceived if all the beats from
14 This is clearly the frequency of the sound wave.
15 De Piero hypothesizes that what Euler defines barbarians are populations living

outside Europe.
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the hearing organs are heard and their order is recognized. In general, perception
of order can occur in two ways:

1. when the rule is known;
2. when the rule is not known, but can be deduced by looking the structure.

In music the order is perceived according to this latter way, in fact it is through
listening that the order that sounds have among themselves is understood. Since
the perception of perfection produces pleasure, according to Euler a composition
pleases if the order of the sounds is perceived. It may happen that some people
perceive this order that others do not hear, which is why the same music can
like some and not others.

4.1 Study of Chords with Two Sounds

Given two sounds, their relationship is perceived through the ratios that the
number of hits, emitted at the same time, have between them. From this, Euler
defines the degrees of pleasure.

The first and simplest degree of pleasure is the unison, represented by the
numerical ratio 1 : 1. On the other hand, two sounds having a double ratio,
therefore 1 : 2, are part of the second degree of pleasure. The sounds expressed
with the numerical ratio 1 : 3 and the ratio 1 : 4 belong to the third degree.
In fact, the first is expressed by small numbers, so it is easily perceptible, the
second would apparently seem a more complex ratio, but it is obtained simply
by dividing the ratio 1 : 2 by 2, therefore it is not very difficult to distinguish
from the latter. For this reason Euler believes that both relationships are part of
the third degree of pleasure. Similarly, the ratios 1 : 8, 1 : 16 belong to the fourth
and fifth degree of pleasure, respectively. More generally, the ratio 1 : 2n, n ∈ N,
corresponds to the degree of pleasure n + 1.

If the ratio contains divisors different by 1 and 2, the degree of pleasure is
less. But the degree of pleasure is also estimated by looking at the magnitude
of the numbers: the ratio 1 : 5 is simpler than 1 : 7, although the latter is no
simpler than 1 : 8. For the ratios 1 : p, where p is a prime number, is easy to
determine the degree of pleasure. In fact since 1 : 2 belongs to the second degree
and 1 : 3 to the third one, then 1 : 5 belongs to the fifth and 1 : 7 to the seventh.
More generally, if p is prime, the ratio 1 : p belongs to the degree of pleasure p.

It follows that if the ratio 1 : p refers to the degree m, the ratio 1 : 2p belongs
to the degree m + 1. In fact, multiplying the number p by 2, the perception of
the ratio requires the perception of 1 : p and the division by 2, an operation
that increases the degree of pleasure by one unit. Similarly 1 : 4p belongs to the
degree m + 2. More generally, 1 : (2np) belongs to the degree m + n. Similarly,
the degree of pleasure of the relationship 1 : (pq), with p and q prime numbers,
is equal to p+q−1, since 1 : (pq) is composed by 1 : p and 1 : q. This also applies
to 1 : (PQ) with any positive integer P and Q. Similarly, the ratio 1 : (pqr), with
p, q, r prime, being constituted by 1 : (pq) and 1 : r whose degrees of pleasure are
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p + q − 1 and r respectively, will have degree of pleasure p + q + r − 2. Iterating
the reasoning, the degree of the relationship 1 : (pqrs) will be p + q + r + s − 3,
and so on.

So, if p is prime, the degree of pleasure of 1 : p2 is 2p − 1, and for 1 : p3

is 3p − 2. More generally 1 : pn belongs to the degree of pleasure np − n + 1.
Therefore, since 1 : qm belongs to the degree mq − m + 1, the ratio 1 : (pnqm)
will belong to the degree

np + mq − n − m + 1 (1)

So for any number P , in order to determine the degree of pleasure of a ratio
1 : P we have to represent the ratio in simple factors and the degree will be
obtained by subtracting from their sum the number of factors subtracted by
one. To clarify, Euler also shows the following example.

Example 1. We look for the degree of the ratio 1 : 72.
First we factorize 72, then 72 = 23 · 32. Using the 1, we have 3 · 2 + 2 · 3 +

2 − 3 + 1 = 8.
Therefore the degree of pleasure of the ratio 1 : 72 is 8.

In [12] it is generalized it as the following general formula that Euler does not

write. Given two sounds such that their ratio is
1
P

, we factorize P as

P = pα1
1 · pα2

2 · · · pαn
n .

Then, the degree d(P ) of pleasure of
1
P

is

d(P ) =
n∑

i=1

(αipi − αi) + 1 (2)

4.2 Study of Chords with More Than Two Sounds

At this point, Euler continues his theory by examining relationships between
more than two numbers, that is, he analyzes the degree of pleasure obtained
by more than two sounds. Given two prime numbers p, q, in the ratio of three
numbers such as 1 : p : q we also perceive 1 : p and 1 : q, the perception here is
equal to that of 1 : (pq). Similarly, the ratio of four numbers 1 : p : q : r, where
p, q, r are always prime numbers, belongs to the same degree as 1 : (pqr). Euler
proposes another ex:

Example 2. Suppose we have 4 sounds expressed by the following numbers:
1 : 2 : 3 : 5. The degree of pleasure of these sounds is the same as those expressed
by the ratio 1 : 30, therefore: 2 + 3 + 5 − 3 + 1 = 8.

Therefore they belong to the eighth degree of pleasure.
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Fig. 1. The first ten degree of pleasure in Tentamen, p. 61.

The Swiss mathematician observes that these prime numbers must be all
unequal. In fact, 1 : p : p is perceived exactly as 1 : p. Similarly, to perceive
the relationship 1 : (pr) : (qr) : (ps), only the ratios 1 : p, 1 : q, 1 : r, 1 : s are
needed, it is not necessary to count twice 1 : p and 1 : r. Therefore, the degree
of pleasure is the same as the ratio 1 : pqrs.

At this point Euler determine the universal rule in order to know the degree
of pleasure in perceiving the ratio of several numbers proposed at the same time:
the least common multiple is determined and the 1 is used. Thus, Euler shows
in a table to which degrees correspond all the least common multiples.

Example 3. Let the numbers 72, 80, 100, 112 be consider. Their factorizations
are respectively: 23 · 32, 24 · 5, 22 · 52, 24 · 7. So, the least common multiple is
24 · 32 · 52 · 7 = 25200, and it belongs to the twenty-third degree.

5 Comparison Between Tentamen and Other
Mathematical Consonance Theories

As already mentioned, studies on consonance and dissonance has been central
to music theory since ancient Greece.

But what does it mean consonance and dissonance? Several music theorists
have been investigating to try and answer this question, such as Hindemith [14]
and Tenney [19]. We can observe that there are semantic problems on the terms
consonance and dissonance: we do not have a strict and universal definition of
them. During the history many definitions and different meanings are found.
For instance, only focusing on western music tradition, we observe that major
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and minor thirds and sixths were considered dissonant in antiquity but, in 14th
century, they were accepted as consonant. For Tenney [19], there are five different
forms of the consonance-dissonance conception (CDC).

“Before the rise of polyphonic practice they were used in an essentially
melodic sense, to distinguish degrees of affinity, agreement, similarity, or
relatedness between pitches sounding successively. During the first four
centuries of the development of polyphony they were used to describe an
aspect of the sonorous character of simultaneous dyads, relatively indepen-
dent of any musical context in which they might occur. In the 14th century
the CDC began to change (again) in conjunction with the newly developing
rules of counterpoint, and a new system of interval-classification emerged
which involved the perceptual clarity of the lower voice in a polyphonic
texture) and of the text which it carried). In the early 18th century, ‘conso-
nance’ and ‘dissonance’ came to be applied to individual tones in a chord,
giving rise to a new interpretation of these terms which would eventually
yield results in diametric opposition to all of the earlier forms of the CDC.
Finally-in the mid-19th century-a conception f consonance and dissonance
arose in which ‘dissonance’ was equated with “roughness”, and this had
implications quite different from those of earlier forms of the CDC.”

Without a clear and precise definition of consonance it is difficult to developed
a theory able to explain the nature of consonance and dissonance in musical
perception, because it is not clear what this theory would have to explain. From
this point of view, Euler’s idea of not distinguishing consonance and dissonance
but different levels of consonance may be interesting.

Moreover, consonance is perceived in different way in different cultures. For
all these reasons, we may say that concept of consonance is not universal.

In addition to this, we know that in a musical piece the perception of con-
sonance do not only depends from the individual chords, but also for the chord
sequences. In other terms: the concept of consonance is both local and global.
This problem was known also by Euler indeed, in chapter V, he studied also
the succession of consonance. But he considered the preeminence of pitch over
that of the duration, since that one is measured by the frequencies of vibration,
Euler brings back the evaluation of the musical pleasure to the arithmetic mea-
surement of the proportions related to the sounds. Therefore, he brings back
musical science using the theory of proportions already used in the Ancient
Greece with Pythagoreans and Ptolomy or by Zarlino. Despite the same start-
ing point, there are differences stressing the originality of Euler. Initially, the
theory of the basel mathematician exceeds by far the simple consideration of
the ratios of the frequencies of two sounds. Then, contrary to his predecessors,
who had also founded their theory on the proportions without any explanation,
Euler introduces a philosophical argumentation, in which by the proportions one
arrives at the musical pleasure, via the order and the perfection. As for the Leib-
niz source, one can undoubtedly recognize from it the influence in the distinction
which Euler makes between the two modes of perception of the order.
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Moreover, as we see in Fig. 1, we note that the ratios representing intervals
in just intonation are all included also in Euler’s theory. This is an interesting
point, because the ratios of just intonation are totally agree with the physical
theory of natural harmonics and harmonic series. We note that Euler’s Fig. 1
does not include the ratios 15 : 16 and 32 : 45. This is why his table represents
only the first ten degree of pleasure. It is not specified in the Tentamen, but given
a ratio P : Q, where P,Q ∈ N, P = pα1

1 · pα2
2 · · · pαn

n , and Q = qβ1
1 · pβ2

2 · · · qβm
m ,

we can determine the degree of pleasure d of
P

Q
with the following formula

d =
n∑

i=1

(αipi − αi) +
m∑

j=1

(βjqj − βj) + 1 (3)

Using the formula 3 we have that the degree of pleasure of 15 : 16 is XI, and
that one of 32 : 45 is XIV.

Table 1. Relations between intervals in just intonation and Euler’s degree of conso-
nance

Interval Ratio Degree

Unison 1 : 1 I

Octave 1 : 2 II

Perfect fifth 2 : 3 IV

Perfect fourth 3 : 4 V

Major sixth 3 : 5 VII

Major third 4 : 5 VII

Minor third 5 : 6 VIII

Minor sixth 5 : 8 VIII

Major second 8 : 9 VIII

Minor seventh 9 : 16 IX

Major seventh 8 : 15 X

Minor second 15 : 16 XI

Tritone 32 : 45 XIV

Despite Euler’s theory include the interval ratios of just intonation, we note
some limits in his classification summarized in Table 1. In fact, there are ratios in
the same degree that do not correspond to the same level of consonance, neither
in his time nor in our day. For instance, in the VIII degree we found the ratios
5 : 6 (minor third), 5 : 8 (minor sixths) and 8 : 9 (major second), but the first
two are imperfect consonance, while the last one is a dissonance.
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Conclusions and Future Works

The concept of consonance is not universal in space and time, therefore every
intention of analysis of the first four chapters of Euler’s Tentamen is limited
and incomplete. In this work, our aim has been to analyze the first 4 chapters
of the Tentamen, limiting the concept of consonance as the pleasure of listening
to a single chord. We have found that Euler’s classification include the ratios of
just intonation, but in the same degree of pleasure there are ratios representing
intervals that do not have the same level of consonance. Since consonance also
depends on the succession of chords, it will be interesting analyze the chapters
of Tentamen involved on it.
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Abstract. Drawing inspiration from both the classical Guerino Maz-
zola’s symmetry-based model for first-species counterpoint (one note
against one note) and Johann Joseph Fux’s Gradus ad Parnassum, we
propose an extension for second-species (two notes against one note).

Keywords: Second-species · Counterpoint

1 Introduction

Guerino Mazzola’s counterpoint model, founded on the concepts of

1. strong dichotomy, which encodes the notion of consonance and dissonance,
and

2. counterpoint symmetry, which is the carrier of contrapuntal tension and allows
to deduce the rules of counterpoint,

has been successful in explaining the necessity of regarding the fourth as a disso-
nance and obtaining the general prohibition of parallel fifths and tritone skips as
a theorem. It also allows to define new understandings of consonance and disso-
nance, thereby leading to the concept of counterpoint world, i.e., paradigms for
the handling of two-voice compositions represented as digraphs, whose vertices
are consonant intervals and an arrow connects two of them whenever we have a
valid progression. This, in turn, allows us to morph one world into another. See
the monograph [2] and the treatise [4, Part VII] for a thorough account.

Despite these accomplishments, Mazzola’s model is restricted to the case of
first-species counterpoint, which means that only one note can be placed against
another. Hence, in order to increase the potential of Mazzola’s model for analysis
and composition, it is indispensable to extend it to second-species counterpoint
(i.e., two notes against one) and further. Our approach for a first step in this
direction is to extend the notion of counterpoint interval to a 2-interval, i.e., one
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such that two intervals are attached to a cantus firmus, the first one coming in
the downbeat and the second one in the upbeat.

For our extension, the main idea is that the counterpoint symmetries in this
case do not determine another 2-interval successor, but a first-species interval in
the downbeat. The idea behind this is to blend the species of counterpoint more
easily.

2 General Overview of Mazzola’s Counterpoint Model

Here we quickly survey the key aspects of Mazzola’s counterpoint model (we
refer the reader to [2] and [4, Part VII] for a complete account). We consider the
action of the group −→

GL(Z2k) := Z2k � Z
×
2k

(which we call the group of general affine symmetries) on Z2k, which can be
described in the following manner:

Tu.v(x) = vx + u;

here Tu is the transposition by u, and v is the linear part of the transformation.
We know [1,2] that, for any k > 4, there is at least one dichotomy Δ = (X/Y )

of Z2k such that there is a unique p ∈ −→
GL(Z2k) and

p(X) = Y and p ◦ p = idZ2k
,

which is called the polarity of the dichotomy. The dichotomies with this prop-
erty are called strong, and represent the division of intervals into generalized
consonances X and dissonances Y .

Next we consider the dual numbers

Z2k[ε] =
Z2k[X ]
〈X 2〉 = {x + ε.y : x, y ∈ Z2k, ε2 = 0}

in order to attach to each cantus firmus x the interval y that separates it from
its discantus1. Thus for a strong dichotomy Δ = (X/Y ) we have the consonant
intervals

X[ε] := {c + ε.x : c ∈ Z2k, x ∈ X}
and the dissonant intervals Y [ε] = Z2k \ X[ε]. Considering the group

−→
GL(Z2k[ε]) := {T a+ε.b.(v + ε.w) : a, b, w ∈ Z2k, v ∈ Z

×
2k},

there is a canonical autocomplementary symmetry pc
Δ ∈ −→

GL(Z2k[ε]) such that

pc
Δ(X[ε]) = Y [ε], pc

Δ ◦ pc
Δ = idZ2k[ε],

and leaves the tangent space c + ε.Z2k invariant.
1 The discantus can be understood in the sweeping (x + y) or the hanging (x − y)

orientations, but we will only use the sweeping orientation from this point on.
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With this preamble it is possible to state a classical paradox for first-species
counterpoint theory: all the intervals c + ε.k used in a first-species counter-
point composition or improvisation are consonances. Hence, how can any tension
between the voices arise, if at all? Mazzola’s solution is inspired in the fact [6,
pp. 33–35] that it is not that the point c which is to be confronted against c+k,
but it is the consonant point ξ = c1+ε.k1 who will face a successor η = c2+ε.k2.
The idea is to deform the dichotomy (X[ε]/Y [ε]) into (gX[ε], gY [ε]) through a
symmetry g ∈ −→

GL(Z2k[ε]), such that

1. the interval ξ becomes a deformed dissonance, i.e., ξ ∈ gY [ε],
2. the symmetry pc

Δ is an autocomplementary function of

(gX[ε], gY [ε])

which means that p(gX[ε]) = gY [ε],

and thus we can transit from ξ to a consonance η which is also a deformed
consonance, i.e., η ∈ gX[ε] ∩ X[ε]. Since we wish to have the maximum amount
of choices, we request also that

3. the set gX[ε] ∩ X[ε] is of maximum cardinality among the symmetries that
satisfy conditions 1 and 2.

The elements of this latter set are the admitted successors.

3 Dichotomies of 2-Intervals

For the purposes of the second-species counterpoint, we need now an algebraic
structure such that two intervals can be attached to a base tone. In the spirit of
the model presented in the previous section, we take all the polynomials of the
form2

c + ε1.x + ε2.y ∈ Z2k[X ,Y]
〈X 2,Y2,XY〉 = Z2k[ε1, ε2]

where ε1 ≡ X mod 〈X 2,Y2,XY〉, ε2 ≡ Y mod 〈X 2,Y2,XY〉, c is the cantus
firmus and x, y are the intervals (x is for the downbeat and y is for the upbeat).
An element ξ ∈ Z2k[ε1, ε2] is called a 2-interval. If Δ = (X/Y ) is a strong
dichotomy with polarity p = Tu ◦ v, then

X[ε1, ε2] := Z2k + ε1.X + ε2.Z2k

is an dichotomy in Z2k[ε1, ε2]. We choose this dichotomy because the rules of
counterpoint demand that the interval that comes on the downbeat to be a

2 The original inspiration for using dual numbers in counterpoint was the Zariski
tangent space, thus the definition of the tangent space of a morphism of schemes
can be seen as a cue to use this kind of algebraic structure for second-species. See
[7] for details.
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consonance. A polarity for this dichotomy, which is analogous to the one for the
first-species case, is

pc = T c(1−v)+ε1.u+ε2.u ◦ v

because

pcX[ε1, ε2] = T c(1−v) ◦ v.Z2k + ε1.pX + ε2.pZ2k

= Z2k + ε1.Y + ε2.Z2k

= Y [ε1, ε2]

and it is such that

pc(c + ε1.Z2k + ε2.Z2k) = c + ε1.Z2k + ε2.Z2k,

which means pc fixes the tangent space to cantus firmus c as well.
We also check the following formula for future use:

pc1+c2 = T (c1+c2)(1−v)+ε1.u+ε2.u ◦ v (1)

= T c1(1−v)+c2(1−v)+ε1.u+ε2.u ◦ v

= T c1 ◦ T−vc1 ◦ T c2(1−v)+ε1.u+ε2.u ◦ v

= T c1 ◦ T c2(1−v)+ε1.u+ε2.u ◦ v ◦ T−c1

= T c1 ◦ pc2 ◦ T−c1 .

4 Species Projections

If we represent the polynomial c+ ε1.x+ ε2.y as a column vector, the candidates
to (non-invertible) species projections are

g : Z2k[ε1, ε2] → Z2k[ε1], (2)⎛
⎝

c
x
y

⎞
⎠ 	→

(
s 0 0

sw1 s sw2

) ⎛
⎝

c
x
y

⎞
⎠ +

(
t1
t2

)

= [sc + t1] + ε1.[s(w1c + x + w2y) + t2]

for we want to keep it as simple as possible and that the upbeat of the first
interval to influence the downbeat of the successor, but not its upbeat one. We
do not require the transformation to be bijective for we want it to be able to
swap from second-species to first-species if necessary3.

3 For the converse swap the standard rules of counterpoint suffice: we can arbitrarily
define the third component of the 2-interval. This is coherent with the local appli-
cation of counterpoint rules in Fux’s theory, and also with the particular idea of
projection that stems from the fact that, in order to analyze a fragment, we “disre-
gard” notes on the upbeat [3, pp. 41–43].
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Definition 1. A matrix of the form that appears in a species projection is called
a projection matrix.

Let X[ε1, ε2.y] := Z2k+ε1.X+ε2.y. We might define a counterpoint projection
of a 2-interval ξ = c + ε1.x + ε2.y as one such that

1. the condition c + ε1.x /∈ gX[ε1, ε2.y] holds,
2. the square

Z2k[ε1, ε2]
g−−−−→ Z2k[ε1]

pc

⏐⏐	
⏐⏐	pc

Δ

Z2k[ε1, ε2] −−−−→
g

Z2k[ε1]

(3)

commutes, where
pc

Δ := T c(1−v)+ε1.u ◦ v

is the canonical polarity of (X[ε1]/Y [ε1]), and
3. the cardinality of gX[ε1, ε2.y] ∩ X[ε1] is maximal among the projections with

the previous properties.

The reason for the second requirement is that when it is fulfilled then

pc
Δ(gX[ε1, ε2]) = g(pcX[ε1, ε2]) = gY [ε1, ε2],

thus pc
Δ is an autocomplementary function of gX[ε1, ε2].

5 Algorithm for the Calculation of Projections

As with the first-species case, if for a projection of the form

g = T ε1.t2 ◦ M

where M is a projection matrix, we define

g(t1) = g ◦ T ε1.s−1w1t1+ε2.t1

then the relation
T t1 ◦ g = g(−t1) ◦ T s−1t1+ε2.t1 , (4)

holds, and hence contrapuntal projections can be calculated with cantus firmus
0 and successors can be suitably adjusted [2, Theorem 2.2].

Remark 1. The groups
TZ2k , TZ2k+ε2Z2k

are subgroups of the group of automorphisms of X[ε1] and X[ε1, ε2], respectively.

The following identities are needed for the simplification of the calculation
of contrapuntal symmetries.



80 O. A. Agust́ın-Aquino and G. Mazzola

Lemma 1. For a species projection of the form g = T ε1.t2 ◦ M the following
holds:

(g(t1))(t2) = g(t1+t2),

T t ◦ g(X[ε1, ε2]) = g(−t)(X[ε1, ε2]) and

T t ◦ g(Y [ε1, ε2]) = g(−t)(Y [ε1, ε2]).

Proof. The first identity is straightforward:

(g(t1))(t2) = (g ◦ T ε1.s−1w1t1+ε2.t1)(t2)

= g ◦ T ε1.s−1w1t1+ε2.t1 ◦ T ε1.s−1w1t2+ε2.t2

= g ◦ T ε1.s−1w1(t1+t2)+ε2.(t1+t2)

= g(t1+t2).

For the second identity, note that

(T t ◦ g)(X[ε1, ε2]) = g(−t) ◦ T s−1.t+ε2.t(X[ε1, ε2])

= g(−t)X[ε1, ε2]

using (4) and Remark 1. The case for Y [ε1, ε2] is proved mutatis mutandis. 
�
Remark 2. If we have a species projection of the form g = T z+ε1.t ◦ M , then we
define f = T ε1.t ◦ M and thus g = T z ◦ f . Using Lemma 1, we have

g(X[ε1, ε2]) = (T z ◦ f)(X[ε1, ε2]) = f (−z)(X[ε1, ε2]).

This means that in our discussion it suffices to consider projections whose
translational part has zero non-dual component.

The following pair of results reduce the amount of computations required to
obtain counterpoint projections.

Lemma 2. Let ξ = x + ε1.k, g a species projection, and z ∈ Z2k. If

ξ /∈ g(X[ε1, ε2]) and px
Δ : g(X[ε1, ε2])

∼=−→ g(Y [ε1, ε2])

then

T z(ξ) /∈ (T z ◦ g)(X[ε1, ε2]) and

pz+x
Δ : (T z ◦ g)(X[ε1, ε2])

∼=−→ (T z ◦ g)(Y [ε1, ε2]).

Furthermore,

(T z ◦ g)(X[ε1, ε2]) ∩ X[ε1] = T z(g(X[ε1, ε2]) ∩ X[ε1])

and, in particular,

|(T z ◦ g)(X[ε1, ε2]) ∩ X[ε1, ε2]| = |g(X[ε1, ε2]) ∩ X[ε1, ε2]|.
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Proof. Since T z is a symmetry of g(X[ε1, ε2]), it follows that T z(ξ) /∈
T z(g(X[ε1, ε2])). Now, using (1),

(px+z
Δ ◦ T z ◦ g)(X[ε1, ε2]) = (T z ◦ px

Δ ◦ T−z ◦ T z ◦ g)(X[ε1, ε2])
= (T z ◦ px

Δ ◦ g)(X[ε1, ε2])
= (T z ◦ g)(Y [ε1, ε2]).

From Remark 1 it follows that

(T z ◦ g)(X[ε1, ε2]) ∩ X[ε1, ε2] = (T z ◦ g)(X[ε1, ε2]) ∩ T z(X[ε1, ε2])
= T z(g(X[ε1, ε2]) ∩ X[ε1])

since T z is bijective. 
�
Theorem 1. If ξ = x + ε1.k + ε2.z ∈ X[ε1, ε2] and g = T t1+ε1.t2 ◦ M is any
species projection that satisfies the counterpoint conditions, then there is a species
projection h = T ε1.t ◦ M such that it also satisfies the counterpoint conditions
for ξ. Moreover: in order to verify that the conditions also hold for h, it suffices
to check them for the 2-interval ε1.k + ε2.z, the projection h(x) and the polarity
p0Δ.

Proof. The replacement of g follows from Remark 2. By Lemma 1, we have

(T−x ◦ h)(X[ε1, ε2]) = h(x)(X[ε1, ε2]).

Using Lemma 2 with z = −x, we can verify that h is a counterpoint projection
using h(x) with the interval T−x(ξ) = ε1.k + ε2.z and the polarity p−x+x

Δ = p0Δ.
From Lemma 2 it also follows that

(h(x)(X[ε1, ε2]))) ∩ (X[ε1] = (T−x ◦ h)(X[ε1, ε2])) ∩ X[ε1]

= T−x(h(X[ε1, ε2]) ∩ X[ε1])

which implies that any cardinalities computation we need to perform with h will
be the same than doing them with h(x). 
�

Therefore, we can set t1 = 0 and work with intervals of the form ξ = ε1.y +
ε2.z. For (3) to commute, it is necessary and sufficient that

t2 + su(1 + w2) = u + vt2. (5)

For ε1.y /∈ gX[ε1, ε2.z] we need

y = sp(�) + t2 + sw2z

for some � ∈ X. Hence, for some � ∈ X we have

t2 = y − s(p(�) + w2z). (6)
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Remark 3. Letting w2 = 0 in (5) and (6), they reduce to the first-species case.
Thus, taking s = v and � = y both are satisfied and hence we conclude that
there exists at least one second-species counterpoint projection.

We only need to work with the following set

gX[ε1, ε2.z] =
⋃

x∈Zk

g(x + ε1.X + ε2.z)

=
⋃

x∈Z2k

(sx + ε1.(sw1x + sw2z + t2 + sX))

=
⋃

r∈Z2k

(r + ε1.(w1r + sX + w2sz + t2))

=
⋃

r∈Z2k

(r + ε1.T
w1r+w2sz+t2 ◦ sX)

to calculate the following cardinality

|gX[ε1, ε2.z] ∩ X[ε1, ε2.z]| =
∑

r∈Z2k

|Tw1r+w2sz+t2 ◦ sX ∩ X|.

When (6) holds, this reduces to

|gX[ε1, ε2.z] ∩ X[ε1, ε2.z]| =
∑

r∈Z2k

|Tw1r+y−sp(�) ◦ sX ∩ X|. (7)

From now on we only need to adapt mutatis mutandis Hichert’s algorithm
[2, Algorithm 2.1] to search projections that maximize the intersection.

We must remark that (5) and (6) are perturbations of the conditions to find
the counterpoint symmetries for the first-species case. These, together with (7),
show that the conditions for deducing a counterpoint theorem [2, Theorem 2.3]
hold again, which yields the following result.

Theorem 2. Given a marked strong dichotomy (X/Y ) in Z2k, the 2-interval
ξ ∈ X[ε1, ε2] has at least k2 and at most 2k2 − k admitted successors given by a
single counterpoint projection.

Algorithm 3. Here χ(x, y) is the function that returns the cardinality T x.yX ∩
X.
Input: A strong dichotomy Δ = (X/Y ) and its polarity Tu.v.
Output: The set of counterpoint projections Σy,z ⊆ H for each ε1.y + ε2.z ∈

X[ε1, ε2].
1: for all y ∈ X and z ∈ Z12 do
2: M ← 0, Σy,z ← ∅.
3: for all s ∈ GL(Z2k) do
4: for all � ∈ X do
5: for all w1, w2 ∈ Z2k do
6: t2 ← y − s((v� + u) + w2z).
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7: if t2 + su(1 + w2) = u + vt2 then
8: if w1 = 0 then
9: S ← 2kχ(t2, s).

10: else if w1 ∈ GL(Z2k) then
11: S ← k2

12: else
13: ρ ← gcd(w1, 2k)

14: S ← ρ
∑ 2k

ρ −1

j=0 χ(jρ + t2 + w2z, s).
15: if S > M then

16: Σy,z ←
{

T ε2.t2 ◦
(

s 0 0
sw1 s sw2

)}
.

17: S ← M .
18: else if S = M then

19: Σy,z ← Σy,z ∪
{

T ε.t2 ◦
(

s 0 0
sw1 s sw2

)}
.

20: return Σy,z.

Example 1. The first (valid4) example of second-species counterpoint in the
Gradus ad Parnassum [3, p. 45] is (see Fig. 1)

ξ1 = 2 + ε1.7 + ε2.0, ξ2 = 5 + ε1.4 + ε2.6, ξ3 = 4 + ε1.8 + ε2.3,

ξ4 = 2 + ε1.7 + ε2.0, ξ5 = 7 + ε1.4 + ε2.5, ξ6 = 5 + ε1.9 + ε2.4,

ξ7 = 9 + ε1.3 + ε2.5, ξ8 = 7 + ε1.9 + ε2.4, ξ9 = 5 + ε1.9 + ε2.4,

ξ10 = 4 + ε1.7 + ε2.9, ξ11 = 2 + ε1.0.

Fig. 1. First (valid) example of second-species counterpoint in Fux’s Gradus ad Par-
nassum.

4 The first example is the student’s attempt to write a second-species discantus by
himself, but he makes two mistakes near the end of the exercise, namely the steps
from the sequence 7 + ε1.7 + ε2.4, 5 + ε1.7 + ε2.4, 4 + ε1.7 + ε2.9. They are also
forbidden steps in the projection model!.
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Some counterpoint projections for the successors are

g1 =
(

7 0 0
0 7 0

)
, g2 = T ε1.6 ◦

(
1 0 0
6 1 0

)
, g3 = T ε1.6 ◦

(
7 0 0
6 7 0

)

g4 = g1, g5 = g2, g6 = T ε1.8 ◦
(

5 0 0
8 5 0

)
,

g7 =
(

11 0 0
0 11 8

)
, g8 = g6, g9 = g6, g10 = g1.

Let us examine in little bit more of detail the first transition. Note that
η = 11 + ε1.4 + ε2.11 is a consonance, and that

g1(η) =
(

7 0 0
0 7 0

) ⎛
⎝

11
4
11

⎞
⎠ =

(
5
4

)
,

which justifies the fact that the 2-interval 5+ε1.4+ε2.6 is an admitted successor.

6 Comparison with Fux’s Approach

Fux states the following in relation to second-species counterpoint (emphasis is
our own) [3, p. 41]:

The second species results when two half notes are set against a whole note.
The first of them comes on the downbeat and must always be consonant;
the second comes on the upbeat and it may be dissonant if it moves from
the preceding note and to the following note stepwise. However, if it moves
by a skip, it must be consonant.

We coded5 in Octave the calculation of counterpoint projections for the Fux-
ian (K/D) dichotomy and some more to compare the performance between
“restricted” Fux rules against the projection model. More explicitly, taking a
second-species step

(0 + ε1.k1 + ε2.t1, c2 + ε1.k2)

such that we can proceed (in first-species) from 0 + ε1.k1 to c2 + ε1.k2, we verify
the following cases:

1. the upbeat interval t1 of the first 2-interval is allowed to be dissonant only
when it connects a valid progression of consonances stepwise, i.e., 0 + t1 is
between 0+k1 and c2 +k2 and it is separated at most 2 semitones from them
and

2. if t1 is consonant, we duplicate the cantus firmus and check if (0+ε.k1, 0+ε.t1),
(0 + ε.t1, c2 + ε.k2) and (0 + ε.k1, 0 + ε.k2) are valid first-species steps.

The results appear in Table 1 for cases 1 and 2.
5 https://github.com/octavioalberto/counterpoint.

https://github.com/octavioalberto/counterpoint
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Table 1. Data for comparison of Fux’s model with restrictions for second species
against the projection model.

Number of steps Case 1 Case 2

Total 192 2592

Valid only for Fux model 13 107

Valid only for the projection model 50 1227

Valid in both models 129 1137

We note that the number of cases the projection model cannot explain and
only Fux can is relatively small: they amount to 6.8% and 4.1% for cases 1 and
2, respectively. Thus we can conclude that the vast majority of what is allowed
by Fux’s rules is allowed by the projection model, or that we have successfully
extended Fux’s handling of dissonance and consonance for second species. Even
if this could be ascribed to the fact that the projection model admits 93.229%
and 91.204% of the total of transitions in cases 1 and 2, respectively, it should be
kept in mind that the original one-species model admits 89.671% of the possible
steps between consonant intervals [5, p. 48].

Acknowledgements. We thank the anonymous reviewers whose suggestions signifi-
cantly improved the exposition and clarity of this paper.
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Abstract. Mathemusicians have always producedmodels for understanding, ana-
lyzing or computing music. We are used to visualize some of them on paper, in a
theater or on a computer screen.

Even if they refer to multidimensional spaces (3D-4D), while displaying these
models on a computer screen the viewer ends up with a 2D picture, or a movie.

Planar projection limits the perception, nowadays, in the era of virtual reality,
we propose tools and solutions to better apprehend these models and give the
viewer an improved immersive experience.

Taking advantage ofmethods used in air traffic simulations, we are developing
techniques that we will apply to existing mathemusical visualizations, beginning
with Tonnetze and Hyperspheres.

We herewith introduce two recently revealed mathemusical models that we
have created:

2D: The Shadow Tonnetz, our latest extension of the Tonnetz that keeps trace
of a harmonic path.

4D: The Entangled Hyperspheres, a combination of two Planet-4D models
that enables us to visualize microtonal music.

The images in this paper are extracted from immersive virtual reality world;
during MCM we intend to presented the movies with adapted 3D equipment.

All videos including virtual ones will be available on www.mathemusic.net.

Keywords: Virtual reality · Mathemusic · Visualization

1 Context and Definitions

1.1 Mathemusical Models

At this time, we only focus on models representing musical objects: scales, chords
or pitches expressed by their frequencies and do not intend to embody other musical
parameters such as interpretation, Klangfarbe,…
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We start the voyage by implementing virtual reality for the representations of Z12,
the Tonnetze, musical graphs and original spatial models that we have developed: from
Planet-4D [1] to the Hypersphere of Spectra applied to spectral music [2] which has
been premiered at Ircam Paris in 2012.

The mathematical model behind the Spheres:
All hyperspheres that we employ are topologically equivalent to S3, they are four

dimensional objects, we place the pitches on their 3D surfaces. Thus, the positions of
our objects on the surface are defined by a unitary quaternion that we can interpret,
depending on the usage as:

– Four spatial coordinates q ∈ R4 : q(x, y, z,w) for computing projections,
– two angles q ∈ C × C : q(eiα, eiϑ)

for rotations,
– or a pure quaternion q ∈ H for calculations.

In order to achieve an additional symmetry on Euclidian distances between the 12
pitch classes, our Spheres are scaled differently with respect to the two complex planes:
they are actually “hyper ellipsoids”. Since they are topologically equivalent to S3, we
are used to call them Hyperspheres or Spheres [1]. All possible positions of elementary
objects (pitches) are hence located on the following curve defined as:

F(x) = Qx =
(

1√
3
ei

2xπ
3 ,

1√
2
ei

2xπ
4

)
with x ∈ R+, x < 12;Qx ∈ H.

This apply to equal temperament only; for different tuning systems, the Sphere is
still topologically equivalent to S3, but its radius varies with the pitch, according to the
specific tuning system [3].

1.2 Virtual Reality

Virtual reality (VR) offers a simulated experience to the spectator who is plunged in a
virtual world with the help of a specific headset. A person using virtual reality equipment
is able to look around the artificial world, move inside in it, and interact with virtual
features or items. The realization is commonly made up on VR headsets consisting of a
head-mounted display with two small screens in front of the eyes [5].

Fig. 1. Premiere of the Entangled Hyperspheres during virtuality.
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We were honored to give a keynote lecture during the event Virtuality 2020 which,
due to sanitary conditions, took place virtually at the same time inBuenosAires and Paris
[4]. During this online event, attendees were acting via their avatars, with the ability to
talk to each other’s, and participate to conferences in virtual auditoriums. As displayed
in Fig. 1, the lecturer is on the stage while the attendees sit in a virtual theater.

For this first appearance wemerely hosted a session onMathemusic while displaying
movies on the big screen in the auditorium. Users had the possibility to interact with the
speakers and download the movies.

At this time, we already noticed that movies projected within a virtual environment,
probably due to the context, have a different impact on the user experience. The virtual
world experience provides a better awareness, when compared to a usual remote Zoom®
presentation.

On the other hand, we use our experience in modelling and visualizing air traffic
and airplanes trajectories for applying the virtual reality tools to the mathemusical field.
As in real air traffic simulation, we have to position moving objects in a virtual space;
For detailed explanations on VR features and different techniques, please refer to [5].
On the left image of See Fig. 2, we use VR to examine planned trajectories. In order to
simulate drone traffic, we use a test environment structured as a virtual city [7].

Fig. 2. Air traffic simulation (Neometsys NMS Lab for FC2A, European project), Virtual city
used for drone simulations in civil aviation (Neometsys Lab/Baroin).

1.3 Immersive World Generation

Instead of using a traditional physical camera that produces 2D images, a 360° camera
generates images that may be assembled in an immersive media: In case of a movie,
objects and camera are animated.



When Virtual Reality Helps Fathom Mathemusical Hyperdimensional Models 89

NB: The appellation 360° is a commercial denomination; we mathematicians prefer
the accurate term 4π steradian.

Technically, a 4π sr image is a flat image representing the full 360× 180° 3-D sphere
(S2). It is an extension of the 360° panoramas we are familiar with and accessing with
digital cameras or smartphones. The image is then projected on a sphere around the user:
everything in all directions is hereafter visible to the observer: front to back and straight
up and down. Please refer to Fig. 3 below.

Fig. 3. A 360° projection around the observer featuring Polarized-Tonnetz by H. Seress and G.
Baroin.

2 Methodology

2.1 Tools

As hardware, we are currently using Oculus Quest2® (now sold as “Meta Quest2 by
Facebook®”), any other headset with VR capabilities would be suitable to visualize the
assets.

For the software, Microsoft Excel® and Autodesk 3DSMax® perform the modeling
and calculation of the images. After montage and postprocessing, the movie is finalized
as a specific mp4 video file that is ready to be played in any VR environment.

For interactive applications, we are currently working with the game development
environment Unity®.

As film makers need physical cameras in the real-world, we use virtual cameras
for our computer-generated imagery. These cameras simulate realistically the physical
cameras. They are fully configurable and have the main advantage of being able to be
positioned in places that would be inaccessible in the physical world. Especially in the
case we would like to observe the inside of a hypersphere!
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2.2 VR Techniques

For mathemusical models we currently employ two main techniques, depending on the
subject and on the mathematical dimension where the model is defined:

Monoscopic movie projection in 360°, and Stereoscopic virtual camera:

– Monoscopic, means that the video has one single channel, but the movie is actually
displayed in the headset for both eyes.

– Stereoscopic refers to a video encompassing 2 channels; one for each eye,with slightly
different viewing angles. Stereoscopy gives you the same depth perception as you can
experience while watching a 3D-movie with specific glasses in a theater. A stereo-
scopic movie is produced in a form of a clip where the left eye view is separated
from the right one. Movies can be viewed on a smartphone with a cheap headset that
only separate eyes channels, projected in a theater featuring 3D equipment, or on a
computer powered headset as we do.

2.2.1 Monoscopic Movie Projection in 360°

The monoscopic 360° format was the first to be employed and is nowadays the most
widely used format for immersive video. One can buy 360° cameras for filming the
environment then publish the media, for instance on YouTube 360°®, and play the
movies in a headset.

Mono 360° is typically a rectilinear video container with a 2:1 aspect ratio, that is
projected on a sphere. To understand spherical projection, one can imagine projecting
an existing flat world map, back onto our earth.

Fig. 4. From 2D to spherical environment (Polarized Tonnetz by H. Seress and G. Baroin).

This technique is adapted to representing planar Tonnetze: as in Fig. 4, the source
image is a large representation of the dual of the Tonnetz that we project on the spherical
environment; the image on the right is a simple screen capture of the headset view, the
observer looks straight ahead.
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Since there are theoretically no boundaries in the 2D planes, we map the Tonnetze as
a spherical projection on the sphere surrounding the observer. The Tonnetz image that
were used in the former animations are extended so that the region where the animation
takes place is located in front of the observer. This type of projection gives the impression
of being plunged into an infinite space.Moreover, the intrinsic curvature of the restorative
spherical environment participates to this effect.

2.2.2 Stereoscopic Virtual Camera

As 3D objects cannot be fully depicted in a plane, but only imagined thanks to their
projection, four dimensional models will never be fully graspable in our world. By
projecting a 4D structure to 3D, it is then possible to fathom its 3D shadow. The 3D
projection is then, with the help of VR, viewed in three dimensions, this leads to a closer
perception of the reality of 4D space. Since our 4D models have to be projected to 3D,
the stereoscopic technique is best adapted.

In the virtual environment, the camera is placed at the viewer’s eye level, sometimes
called FPV (first person view, in games phraseology). The mathemusical objects are
constructed and animated in the virtual world.

The user can move freely in a predefined area (for safety reasons) and look around
the animated world in 360°.

For interactive VR, we ought to structure the scenes withing a game engine, such
as Unity® or Unreal Engine® which are the most advanced tools at this point, and
became the standard in this industry. In a game engine, the calculation and rendering are
performed in real-time on a computer connected to the headset, or within the headset if
it features the possibility.

For our applications, in order to have the feeling to be within the Hypersphere, the
virtual camera has to be set near the reference point. This reference point is the user’s
position as formulated in each Planet-4D models [1].

Fig. 5. Left: Virtual camera within TheHypersphere of Chords by G.Baroin. Right: Stereoscopic
output of the scene.
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Among different possible standard rendering formats for VR, we have selected the
“Top/Bottom” configuration. As displayed in Fig. 5, the rendering produces a square
image made of two pictures with 2:1 ratio. While the top part is destinated to the left
eye, the bottom part is intended to the right eye. The decoding software is a VR movie
player in the headset or a computer performing the stereoscopic vision reconstruction.

NB: For 4D objects, the projection to 3D is carried out before displaying the objects.
As we are accustomed to, we perform an orthographic fixed projection from 4D [1].
This transformation is the most user-friendly conversion to 3D and is fairly intelligible,
even for inexperienced viewers.

3 Applications

3.1 2D Space: Virtual Swan Lake

This is an immersive presentation of “Tchaikovsky Swan Lake” theme in the Shadow
Tonnetz.

The Shadow Tonnetz is the latest extension of the Tonnetz visualizations developed
by G.Baroin & I.Khannanov [8]. It has been premiered at the Conservatory of Moscow
during Euromac 2020.

Usual musical graphs, Tonnetz or Cube-Dance, feature chords and their Neo-
Riemanian (P, L,R) or other specific relations only.Our next evolution:Polarized Tonnetz
[9], grants a unique representation to each type of relation between neighbor chords and
thus links visualization to a better musical correlation. In order to enhance the existing
models, the Shadow Tonnetz [8] introduce two quantities defined as Speed and Weight.

Speed, fromapuremathematical point of view, is thefirst-timederivative of a position
(in our case chord coordinates).

Weight, is a concept borrowed from “Activity On Nodes” (AON) graphs, where the
time spent on a node (in this situation a chord), is called Weight.

In order to visualizeSpeed andWeight,weuse a foot-printing technique that emphasis
the most played path and chords. A Hamiltonian harmonic path [11] played regularly
[12] results in a homogeneous trace in space, whereas more usual piece’s traces display
the main points of inertia (Fig. 6).
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Fig. 6. Front and back view as in the headset of Virtual Swan Lake featuring the Shadow-Tonnetz
by I. Khannanov and G. Baroin.

In the left image we can observe the “traces” of the harmonic path in Tchaikovsky’s
Swan Lake within the Shadow Tonnetz.

3.2 4D Space: Entangled Hypersphere

We now propose in virtual reality, the construction of the Entangled Hyperspheres [13],
the accompanying music is [14]. Developed by G. Baroin and S. de Gérando, it enables
visualization of microtonal music on the surface of twoHyperspheres. See below Fig. 7.

The Entangled Hyperspheres, as if its name was predestined, was premiered
simultaneously in Buenos Aires and Paris.

For music in ¼th tone, the timbre harmonies are composed from singular pitches,
a particular case of so-called “all intervals” series calculated algorithmically (world
premiere) [14]. Two acronyms are invented: STIOZ or series all intervals in an octave
and in zigzag, STISMI or series all intervals nested in micro-interval series.

The initial method, imagined by Ivan Wyschnegradsky for two pianos as described
in [15], can be adapted for two orchestra called for instance A and B.

– Orchestra A is tuned at 440 Hz and plays the 12 usual notes (do do#,)
– Orchestra B is tuned at 440 Hz - ¼th tone (427.7 Hz), and plays the 12 additional

notes (do+ do#+,…).
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Fig. 7. Construction of the Entangled Hyperspheres (G. Baroin S. de Gérando 2020).

Since any aggregate of 12 tones can be displayed on the Planet-4D model (see
Hypersphere of Anyset: the first representation of atonal music in hyperspace forWebern
Bagatelle #6 at Ircam Paris), and since the production of 24 tones music is performed
by two synchronized orchestra, the Entangled Hyperspheres is made of two Planet-4D
models:

One represents the notes played by orchestra A, the other displays the music from
orchestraB:Because all 24 tones are on the samecurve on theHypersphere, (seeSect. 1.1,
Mathemusical models), when put together on the same center of view, the two Spheres
become naturally interwoven. As personal choice, we call them entangled.

The challenge was to make both models share the same parameters for space and
time; starting with the positions of the notes on the first sphere, then calculating the
new spherical barycenter that corresponds to the user position taking into account the
24 pitch classes (for details concerning the construction, please refer to [1]).

The quaternionic coordinates of each tempered pitch class in orchestra A being:

Qnt = Qnfn/f0 with Qn =
(

1√
3
ei

2nπ
3 ,

1√
2
ei

2nπ
4

)
, n ∈ [0.11] :

the original coordinates of pitch class n in the Planet-4D Model. fn, f0.
Since orchestra B, is playing one quarter tone above orchestra A, all symbols repre-

senting its pitch classes have to be rotated 1/24th of the whole circle along the chromatic
circle, that is equivalent to adding to each coordinate a constant quaternion qc:

qc =
(

1√
3
ei

π
12 ,

1√
2
ei

2π
12

)
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The quaternionic coordinates of each tempered pitch class in orchestra B are
therefore:

QBn = Qn + qc =
(

1√
3
ei

(8n+1)π
12 +, 1√

2
ei

(6n+1)π
12

)
, n ∈ [0.11] :

the coordinates of pitch class n in the Planet-4D Model. fn, f0:
The new barycenter of the system is therefore the spherical barycenter of all notes

played at the actual time. For detailed calculation of quaternionic spherical barycen-
ter, please refer to “The Entangled Hyperspheres, an innovative approach to visualize
microtonal music” [13].

Fig. 8. Stereoscopic image and VR views for the Entangled Hyperspheres.

In above figure Fig. 8, the stereoscopic image that is produced by the rendering
software. Front and rear views are screenshots casted from the headset onto a computer.

4 Feedback and Future

4.1 Feedback

Beside our personal feelings, we have been able to perform some tests with different
types of users, child, adults, experimented mathemusicians in situation:

For experimented mathemusicians, the VR experience provides a sensation to be
embedded within the model, since the display encompasses the whole viewing field,
we are able to see details that were not seen on computer screens and we can focus on
specific parts of the animation. Thus, the spherical aspect of Tonnetze, tori, spheres, due
to the curvature of the rendering, gives reality to these objects.

To general public, adults with no specific knowledge of music or mathematics, the
immersive impression is also astounding. It is usually the first time they can feel the
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environment, adults have generally some questions about the technique we used while
children are more inclined to let go and enjoy the performance.

Presenting/Teaching:
The observer, immersed in the virtual world, has no perception of the real one. It

is then more challenging to explain or teach as we are used to practice with the help
of a large screen. Moreover, unless we can operate in a real 4π Steradian theater, the
observer follows its own tempo and looks in his own direction. Observers are seldom
coordinated which each other’s: a solution would be synchronizing headsets including
the teacher’s one.

Our primary tests, performed on few subjects corroborates the experiments already
performed by different institutions, see for instance [17].

4.2 Future Developments

VR is a fast evolving field, we are implied in this evolution and will be able to present
improved demonstrations for MCM 2022.

4.2.1 Include Other Models

We intend to employ these tools to visualize other famous models that where already
embedded on the Hypersphere and presented during MCM 2015. For instance,
mathemusical graphs, Cohn’s Regions [18] and Douthett’s Cube Dance [19].

We intend to create virtual images or movies for other eminent 3D and 4D models

– 3D:Mazzola Torus of Thirds [20], Amiot’s Torus of Phases [21], Yust’s Tonnetze and
Zeitnetze [22] Chew’s Spiral [24].

– 4D:Tymoczko’s space as in the Geometry of Music [23].

4.2.2 Add Interactivity

We plan to make an interactive projection of the hyperspheres where the user can pick
out his favorite projection from 4D to 3D. Some development is in progress with other
artists to create interactive performances based on mathematics, music and graphical art.

Adding interactivity will enable the user to select elements, navigate on the model,
or give directives to the software, supervising music changes consequently.

4.2.3 Go to Metaverse®

A space for Mathemusic is actually under construction in the meta universe, Metaverse
by Meta® (Facebook®).

In this virtual space, we intend to host historical and actual mathemusical represen-
tations, other mathemusicians will be able to give me their models that we will integrate
there, other artists will have some space to exhibit their work.
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5 Conclusion

This paper covers our first experiences of embedding our hyperspaces models in a virtual
environment.

We could establish new relations between the geometry and the music thanks to
innovative perception of the models in hyperspaces, within an immersive environment.
The encounters differ from the ones we were used to.

This work, using precalculated time, is a simple step that is to be considered in the
continuity of our research on hyper-dimensional musical spaces in the last 20 years. We
wish to continue collaboration with other fellow mathemusicians to explore new worlds
and seek out new perceptions.
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Abstract. The present paper develops algebraic properties of the SUM-
class system first developed by Richard Cohn and explored by Robert
Cook and Joseph Straus, in the context of David Lewin’s Generalized
Interval System (GIS) concept. Motivated by his observation that har-
monic triads whose pitch classes sum to a given value modulo 12 share
certain voice-leading properties, Cohn defined SUM classes for the 24
consonant (major and minor) triads, and defined transformations on
these equivalence classes. We present the SUM-class system as a quo-
tient GIS structure, and explore the dual quotient GIS implied by Lewin’s
theory for non-commutative GISs, and we generalize to other types of
pitch-class sets (other set-classes).

Keywords: Generalized Interval System · Group homomorphism ·
Quotient group · SUM class

1 Introduction

In the context of consonant triads as pitch-class sets (i.e., major and minor
triads, set-class 3-11), Cohn [1,2], and Cook [3] observed that the total pitch-
class voice-leading interval between triads X and Y remains unchanged when
either is transposed by a major third (4 semitones) in either direction (i.e., by T4

or T8). Cohn also noted that the pitch classes of major-third-related triads sum to
the same value modulo 12. Generalizing to pitch-class sets of a given cardinality,
the following definitions and proposition unify the voice-leading interval and
SUM concepts and motivate the SUM-class definition. In this paper we assume
the usual 12 pitch-class universe and all values are reduced modulo 12.

Definition 1. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be pitch-class sets
of cardinality 1 ≤ n ≤ 12. Let V L(X,Y ) =

∑n
i=1(yi − xi) mod 12. We call

V L(X,Y ) the voice-leading interval from X to Y.

While the sets in this definition are indexed, it turns out that the voice-
leading interval does not depend on this ordering:

Definition 2. Let X be a pitch-class set. SUM(X) =
∑

x∈X(x) mod 12.
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Proposition 1. Let card(X) = card(Y ). V L(X,Y ) = SUM(Y ) − SUM(X).

Proof. V L(X,Y ) =
∑n

i=1(yi − xi) = (y1 − x1) + · · · + (yn − xn) mod 12 =
(y1 + · · ·+ yn)− (x1 + · · ·+xn) = SUM(Y )−SUM(X) (adapted from [1], 286).

Since the proposition shows that the voice-leading interval depends only on
the SUMs, defined in terms of commutative mod 12 addition, the voice-leading
interval from X to Y is a property of the unordered sets. It is evident that
V L(X,Y ) = −V L(Y,X).

Motivated by the above observation, we define SUM classes. For a given n,
let Sn be the set of all pitch-class sets of cardinality n. By Definition 2, for all
sets X ∈ Sn we have a function SUM: Sn �→ Z12 : X �→ SUM(X). The image
of Sn under this function is a subset of Z12, im(Sn). Define the SUM classes
of Sn to be the inverse images of elements in im(Sn). It follows that the SUM
classes partition Sn and are the equivalence classes of the equivalence relation
≡Sn

where X ≡Sn
Y if and only if SUM(X) = SUM(Y ). This is the natural

equivalence relation defined by the function SUM.
More often, one is interested in a refinement of this equivalence relation,

where SUM is restricted to a given set-class (an orbit of the group Tn/In acting
on pitch-class subsets). The set-classes partition the sets Sn, and SUM restricted
to set-class α defines an equivalence ≡α on α. For example, if we take the canon-
ical example of the 24 consonant triads, Forte set-class 3-11, the image of 3-11
under SUM is the set {1, 2, 4, 5, 7, 8, 10, 11}. The inverse images of these eight
elements are the 3-11 SUM classes, which we label with square brackets, [1], [2],
[4], [5], [7], [8], [10], [11]. For example, here SUM class [1] = {C-sharp minor, F
minor, A minor}. E.g., SUM(F minor) = 0 + 5 + 8 = 13 ≡ 1 mod 12.

2 SUM-Class Transformation Groups and Quotient
Generalized Interval Systems

We recall the definition of the Tn/In group: Tn : Z12 �→ Z12 : z �→ n + z;
In : Z12 �→ Z12 : z �→ n − z. The group product is composition of functions,
and TnTm = Tn+m, TnIm = In+m, ImTn = Im−n, ImIn = Tm−n. It follows
that the defining relations in terms of generators are (T1)12 = T0, (Ij)2 = T0,
and TjI0 = I0T12−j ; that is, the group is dihedral of order 24. Extending the
definition of these operations on individual pitch classes to pitch-class sets, we
have a group action on the power set 2Z12 of pitch-class subsets: for all subsets
x, we have T0(x) = x, and for all f, g ∈ Tn/In, f(g(x)) = fg(x). The orbits
are the set-classes, and therefore the group acts transitively on each set-class:
if x, y are in a given set-class, there exists f ∈ Tn/In such that f(x) = y; for
set-classes with 24 elements (i.e., set-classes of sets of cardinality k, 2 < k < 10,
with only the trivial symmetry), the action is simply transitive: f mapping x to
y is unique.

From Lewin [4], 157–158, a simply transitive action of a group G on a set
S is equivalent to a Generalized Interval System (GIS). The triadic GIS for
S = 3-11, G = Tn/In is well known. We seek a GIS structure for the triadic
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SUM-classes. Recalling Cohn’s observation that voice-leading intervals between
triads are invariant under pitch-class transpositions by 4 semitones, consider the
subgroup H = {T0, T4, T8}. H is a normal subgroup of G = Tn/In: since H
commutes with all the transpositions, all that is needed to check is that for all
k, Ik(H) = (H)Ik. (H)Ik = ({T0, T4, T8})Ik = {Ik, Ik+4, Ik+8} and Ik(H) =
Ik({T0, T4, T8}) = {Ik, Ik−4, Ik−8} = {Ik, Ik+8, Ik+4}. Thus, left and right cosets
coincide, and H is normal in G. By the principal theorems of group theory,
the cosets form the quotient group G

H , isomorphic with the image of G under
a homomorphism h with kernel H. The group product for G

H is inherited from
the parent group G = Tn/In in the natural way (demonstrated below). Since
for finite G o( G

H ) = o(G)/o(H), the order of the quotient group here is 24/3
= 8. The equivalence relation ≡3−11 partitioned the 24 harmonic triads into 8
SUM-classes, each with 3 members, and we assert that the quotient group and
the set S of SUM classes form a GIS, a quotient GIS of the original (defined
below).

We reduce the ≡3−11 equivalence classes to the respective sums x, symbolized
[x], but for present purposes in the triadic case it is useful to tabulate them
(writing lower-case letters for minor, upper-case for major): [1] = {c�, f, a},
[2] = {C�, F, A}, [4] = {d, f�, b�}, [5] = {D, F�, B�}, [7] = {e�, g, b}, [8] = {E�,
G, B}, [10] = {e, g�, c}, [11] = {E, A�, C}.

We similarly tabulate and name the elements of G
H , that is, the cosets of

normal subgroup {T0, T4, T8} in Tn/In. To simplify the typography we name the
cosets Tj = TjH, and Ij = IjH, j = 0, 1, 2, 3.

T0 = T0H = {T0, T4, T8}

T1 = T1H = {T1, T5, T9}

T2 = T2H = {T2, T6, T10}

T3 = T3H = {T3, T7, T11}

I0 = I0H = {I0, I4, I8}

I1 = I1H = {I1, I5, I9}

I2 = I2H = {I2, I6, I10}

I3 = I3H = {I3, I7, I11}
The general theory already tells us that G

H is a group with product induced
from the definition of operations in Tn/In, but let us explicitly state the com-
position rules. Given Ti, Tj , Ik, Il ∈ G

H , we have TiTj = T(i+j) mod 4, TiIk =
I(i+k) mod 4, IkTi = I(k−i) mod 4, IkIl = T(k−l) mod 4. Thus, we have relations
(T1)4 = T0, (Ij)2 = T0, and TjI0 = I0T4−j , that is, G

H is dihedral of order 8 (the
homomorphic image of a dihedral group).
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Next we tabulate the group action of G
H on the set S of ≡3−11 SUM classes.

Each element defines a permutation of S, expressed as a product of cycles:

T0 : S → S : ( )

T1 : S → S : ([1] [4] [7] [10]) ([2] [5] [8] [11])

T2 : S → S : ([1] [7]) ([4] [10]) ([2] [8]) ([5] [11])

T3 : S → S : ([1] [10] [7] [4]) ([2] [11] [8] [5])

I0 : S → S : ([1] [11]) ([2] [10]) ([4] [8]) ([5] [7])

I1 : S → S : ([1] [2]) ([4] [11]) ([5] [10]) ([7] [8])

I2 : S → S : ([1] [5]) ([2] [4]) ([7] [11]) ([8] [10])

I3 : S → S : ([1] [8]) ([2] [7]) ([4] [5]) ([10] [11])

This tabulation shows that the group action of G
H on S is simply transitive:

for every ordered pair of elements (s1, s2) in S×S, there exists exactly one g ∈ G
H

such that g(s1) = s2. As noted above, a simply transitive group action on a set S
determines a GIS, so we have GIS1 = ( G

H ,S). It will later be significant to note
that G

H is non-commutative (non-abelian), so GIS1 is a non-commutative GIS.
This procedure holds generally, as demonstrated below, permitting the inclusion
of GIS1 in the class of quotient GISs.

Proposition 2. Let (G, S) be a GIS, with H a normal subgroup in G. Then
the quotient group G

H induces a set S′ of equivalence classes on S, such that G
H

acts simply transitively on S′. That is, ( G
H , S′) is a GIS, and one may call it a

quotient GIS.

Lemma 1. The quotient group G
H induces a set S′ of equivalence classes on S.

Proof. Consider the restriction to H of the action of G on S, H(S) = {h(s)|h ∈
H, s ∈ S}. For all s ∈ S, let σs = H(s). Let S′ = {σs|∀s ∈ S}. S′ defines a
partition of S: All elements of S belong to some σs, since e ∈ H, e(s) = s ∈ σs.
Suppose we have s1 ∈ σs1 and s1 ∈ σs2 . Then for some h ∈ H, s1 = h(s2). Let t
be any element in σs1 , then for some h1 ∈ H, t = h1(s1) = h1h(s2), and t ∈ σs2 .
Thus σs1 = σs2 . Suppose s1 /∈ σs2 , and t ∈ σs1 ∩σs2 . Then there exist h1, h2 ∈ H
such that h1(s1) = t = h2(s2). Then h−1

1 h2(s2) = s1, so s1 ∈ σs2 , contradiction,
and σs1 and σs2 are disjoint. Thus S′ partitions S, and the members of S′ are
equivalence classes of the equivalence relation defined by the partition.

Lemma 2. G
H acts simply transitively on S′.

Proof. Let xH, yH be distinct cosets ∈ G
H (i.e., y−1x /∈ H), and σs ∈ S′. For

any σs ∈ S ′,H(σs) = H(H(s)) = HH(s) = H(s) = σs, by definition, and
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xH(yH(σs)) = xHyH(σs), so G
H acts transitively on S′. Suppose xH(σs) =

yH(σs). Then (yH)−1xH(σs) = σs, but also (yH)−1xH(σs) = y−1HxH(σs) =
y−1xHH(σs) = y−1xH(σs) = y−1x(σs) = σs, implies y−1x ∈ H, contrary to
assumption. For every s, t ∈ S′, there exists xH ∈ G

H such that xH(s) = t (by
definition of S ′), and xH is unique (by the above demonstration). Thus, G

H acts
simply transitively on S′.

( G
H , S′) is therefore a (quotient) GIS.

From Proposition 1 and the definition of the SUM classes, the corollary fol-
lows that the voice-leading interval from any member of [x] to any member of [y]
is y−x (modulo 12). Slightly abusing the notation, we have V L([x], [y]) = y−x.
Recall that the voice-leading intervals are not the intervals of Generalized Inter-
val System GIS1—those are defined by the group action. From Lewin [4], 157,
the interval i from [x] to [y], i = int([x], [y]), is identified with the unique g ∈ G

H
such that g([x]) = [y], whereas by Definition 1 a voice-leading interval is an inte-
ger modulo 12. We are, however, concerned here with voice-leading intervals, the
motivation for S, the set of SUM classes.

For a given GIS (G,S), Lewin ([4], 48) defines an interval-preserving transfor-
mation to be a mapping X : S → S such that for all s, t ∈ S, int(X(s),X(t)) =
int(s, t). Here, int refers to the interval function of the GIS just discussed. Let’s
extend his definition to voice-leading intervals:

Definition 3. If for all SUM classes [x], [y] ∈ S a transformation X on S has
the property V L(X([x]),X([y])) = V L([x], [y]), then X is said to be a voice-
leading-interval-preserving transformation (VL-preserving transformation).

Since V L([x], [y]) = y − x, X is a VL-preserving transformation if and only
if V L(X([x]),X([y])) = y − x. The elements of G

H are transformations of S; are
they VL-preserving?

Proposition 3. The elements of the G
H subgroup T = {T0, T1, T2, T3} are VL-

preserving.

Proof. For j = 0, 1, 2, 3, Tj : S �→ S : [x] �→ [(x + 3j) mod 12]. Then for all
[x], [y] ∈ S, V L(Tj([x]), Tj([y])) = V L([(x + 3j) mod 12], [(y + 3j) mod 12]) =
((y + 3j) − (x + 3j)) mod 12 = (y − x) mod 12 = V L([x], [y]). Therefore, the Tj

are VL-preserving.

The elements of the coset of T as a (normal) subgroup of G
H , I =

{I0, I1, I2, I3}, are not VL-preserving; rather, they are VL-reversing.

Definition 4. If for all SUM classes [x], [y] ∈ S a transformation X on S has
the property V L(X([x]),X([y])) = V L([y], [x]), then X is said to be a voice-
leading-interval-reversing transformation (VL-reversing transformation).

Since V L([x], [y]) = y − x, V L([y], [x]) = x − y, and X is a VL-reversing
transformation if and only V L(X([x]),X([y])) = x − y.
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Proposition 4. The elements of I are VL-reversing.

Proof. For j = 0, 1, 2, 3, Ij : S �→ S : [x] �→ [(3j − x) mod 12]. Then for all
[x], [y] ∈ S, V L(Ij([x]), Ij([y])) = V L([(3j − x) mod 12], [(3j − y) mod 12]) =
((3j − y) − (3j − x)) mod 12 = (x − y) mod 12 = V L([y], [x]). Therefore, the Ij

are VL-reversing.

3 The Dual Quotient Generalized Interval System

Those familiar with Lewin’s theory know that every non-commutative GIS (G,S)
has its dual, with a different group G′, isomorphic to G but with a distinct sim-
ply transitive action on S. The groups G and G′ are subgroups of the group
of all permutations of S, the symmetric group Sym(S), so elements of the two
groups compose with each other within Sym(S). As Lewin demonstrates, the
groups are each other’s commuting groups; as subgroups of Sym(S), each other’s
centralizer subgroup: every element of G commutes with every element of G′. It
follows that they play the role of each other’s group of interval-preserving trans-
formations, as seen in the commutative diagram in Fig. 1. Let f belong to G and
f ′ belong to G′ and let s1, s2, s3, s4 be members of S. The diagram shows that
f and f ′ commute: f ′f(s1) = f ′(s2) = s4 and ff ′(s1) = f(s3) = s4. But this is
equivalent to f ′ preserving the intervals in (G,S) and f preserving the intervals
in (G′, S): int(s1, s2) = int(s3, s4) in (G,S) since f(s1) = s2 and f(s3) = s4, so
in (G,S) int(f ′(s1), f ′(s2)) = int(s1, s2), and thus f ′ satisfies Lewin’s definition
of an interval-preserving transformation. The same demonstration shows that in
(G′, S), int′(f(s1), f(s3)) = int′(s1, s3); f is an interval-preserving transforma-
tion of (G′, S).

f
s1 −→ s2

f ′ ↓ ↓ f ′

s3 −→ s4
f

Fig. 1. Commutativity is equivalent to interval preservation

So much is known, but we are interested here also in voice-leading intervals,
and in the dual of a (non-commutative) quotient GIS. It is known that the dual
to the GIS (Tn/In, 3-11) is the GIS of the action of the full neo-Riemannian
group on 3-11 ([5], 180–181). This group is often referred to as the P -L-R group,
because it is generated by the three contextual inversions: P , which sends a triad
to its Parallel, as C to c, c to C; L, which sends a triad to its Leittonwechsel,
as C to e, e to C; and R, which sends a triad to its Relative, as C to a, a to C
(see Cohn, [6]). One of these generators is redundant: composing RL and taking
it as one generator, of order 12, and taking one of the involutions as the other
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generator, we have a presentation of the group that shows it to be isomorphic
to the order 24 dihedral group, that is, to the Tn/In group: (RL)12 = e, L2 = e
(where e is the identity operation), and (RL)jL = L(RL)12−j . We may therefore
refer to this as the R/L group, and to the (R/L, 3-11) GIS. In this notation, the
parallel structures with the Tn/In and its subgroups are made evident. Music
theorists, who compute relatively easily with P , L, and R, conventionally express
these transformations as compositions of them. In all but one case the minimal
compositions are of length at most 4.

The distinguishing character of the three neo-Riemannian involutions is the
parsimonious voice-leading they entail: all three preserve two common tones, the
remaining tone moving by semitone under P and under L and by two semitones
under R. One might imagine that this GIS is therefore well-suited to addressing
voice-leading considerations, and indeed Cohn [1] treats SUM classes from this
side of the duality (and moreover dives right into the quotient group). See also
Cook [3], chapter 2. Since this is a true duality, one may logically begin from
either side of it. The path chosen here is heuristic, considering that the Tn/In is
perhaps better known and more convenient computationally.

For notational simplicity, set Q = RL: Q transposes major triads by T7, minor
triads by T5. (NB: Music theorists often use right functional orthography in neo-
Riemannian contexts. Since operations from the dual GISs will be composed,
left orthography will be followed here.) The construction of the dual quotient
group and dual quotient GIS2 to GIS1 = ( G

H ,S) again begins with an order 3
cyclic subgroup H ′ = {Q0, Q4, Q8}. H ′ is normal in G′ = R/L, so there exists
the quotient group G′

H′ , of order 8. The group mirrors its dual, reflected in the
notation for the cosets, which are expressed in terms of elements Qj or QjL, for
j = 0, 1, 2, 3, and as compositions of P,L,R. Following Cohn [1], we use X (for
eXchange) for the sets of contextual inversions, Y for the others.

Y0 = {Q0, Q4, Q8} = {E,PL,LP}

Y1 = {Q1, Q5, Q9} = {RL,RP,RPLP}

Y2 = {Q2, Q6, Q10} = {RPRL, (RP )2, LRPR}

Y3 = {Q3, Q7, Q11} = {PLPR,LR,PR}

X0 = {L,Q4L,Q8L} = {L,P, PLP}

X1 = {QL,Q5L,Q9L} = {R,PLR,LPR}

X2 = {Q2L,Q6L,Q10L} = {RLR,RPR,RPLPR}

X3 = {Q3L,Q7L,Q11L} = {PRL,PRP,LRL}
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The composition rules are the same as in G
H , replacing Tj by Yj and Ik by

Xk. The quotient groups are thus isomorphic as groups, but the action of G′
H′ on

S is very different. It is tabulated below, again operations as products of cycles.

Y0 : S �→ S : ( )

Y1 : S �→ S : ([1] [4] [7] [10]) ([2] [11] [8] [5])

Y2 : S �→ S : ([1] [7])([2] [8]) ([4] [10]) ([5] [11])

Y3 : S �→ S : ([1] [10] [7] [4]) ([2] [5] [8] [11])

X0 : S �→ S : ([1] [2]) ([4] [5]) ([7] [8]) ([10] [11])

X1 : S �→ S : ([1] [11]) ([2] [4]) ([5] [7]) ([8] [10])

X2 : S �→ S : ([1]) [8]) ([2] [7]) ([4] [11]) ([5] [10])

X3 : S �→ S : ([1] [5]) ([2] [10]) ([11] [7]) ([8] [4])

Comparing the actions on S of the respective dual groups, one sees that,
of course, the identity operations are the same—Y0 = T0 = 1S—and also
Y2 = T2. These two operations commute with everything in both GIS1 and
GIS2 (central in both quotient groups), so are interval-preserving transforma-
tions (moreover, operations) in both. Y0 and Y2 are also both obviously VL-
preserving in GIS2, but no other elements in G′

H′ are VL-preserving, as inspec-
tion of the tabulation makes clear. In GIS1 the subgroup T was VL-preserving.
In GIS2, in the analogous subgroup Y, the operations Y1 and Y3 are not VL-
preserving. In the coset of Y the eXchange operations do interact cogently with
the voice-leading intervals defined by VL, even though none are VL-preserving:
each exchanges pairs [x], [y] such that for a fixed n, VL([x], [y]) = ±n mod 12.
The tabulation shows that X0 exchanges by ±1, X3 by ±4, X2 by ±7, and
X1 by ±10. This fact motivated Cohn’s notation for his sum-class transfor-
mation group, X1,X4,X7,X10. His Y/X group was not explicitly defined as
a quotient structure, but is precisely the same group as the one derived here:
Yj = Y3j , j = 0, 1, 2, 3,X0 = X1,X1 = X10,X2 = X7,X3 = X4.

In [1], Cohn thematizes his X1 and X10 operations because, just as the four-
fold repetition of the alternation of R with P sends any given triad through an
octatonic cycle, the four-fold repetition of the alternation of X1 with X10 sends
the SUM classes in a cycle matching an octatonic scale: X1([1]) = [2],X10([2]) =
[4],X1([4]) = [5], etc. More significantly, the union of each pair of SUM classes
related by X1 forms a hexatonic region, the four pairs cover the four regions, and
the subgroup formed by the union of the cosets associated with the identity Y0

and with X1 is the hexatonic subgroup, {E,PL,LP, P, L, PLP}. The union of
each pair of SUM classes related by X10 forms a Weitzmann region, the four pairs
cover the four regions, and the union of the cosets associated with the identity
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Y0 and with X10 is the Weitzmann subgroup {E,PL,LP,R,LPR,PLR} (cf.
[2,7]). In [2], Cohn refers to “voice-leading zones” in lieu of SUM classes, and
presents many musical analyses employing them.

Applying Lewin’s general theory, all the elements of G′
H′ commute with all of

those of its dual G
H , all are interval-preserving transformations for GIS1, and vice

versa for elements of G
H with respect to GIS2. In [8], Orvek presents an analysis

of passages from Charles Villiers Stanford’s setting of Keats’s poem La belle
dame sans merci, employing a commutative diagram that relates two chromatic
sequences. The sequences appear during a description of the protagonist’s dream.
The reduction to SUM classes employs a VL-preserving T transformation from
GIS1 commuting with an X transformation from GIS2 that always exchanges
triads at a fixed VL-interval distance. The reduction is shown in Fig. 2, adapted
from ([8], fig. 2.4). Orvek presents a similar analysis, with set-class 3-3, of music
from Nacht in Schoenberg’s Pierrot Lunaire, op. 21. See also Cook’s triadic
analyses of music by César Franck [3].

Fig. 2. A commutative transformational network relating mm. 98–108 (top) and mm.
122–128 (bottom) from Charles V. Stanford, La belle dame sans merci

4 Other Set-Classes

At the outset of this paper, the SUM-class equivalence relation was defined very
generally, and then stated at the level of the asymmetric pitch-class set-classes,
those with 24 members, and that is the level of generality at which we continue.
The question is: is there always a quotient group that acts simply transitively on
the SUM classes for a given asymmetric pitch-class set? The answer, sketched
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below, is yes, but it is not always a quotient of the Tn/In group. The problem is
that, as we will see, some groups acting simply transitively on the SUM classes
must be cyclic (generated by a single element). The quotient group of a dihedral
group is the homomorphic image of that group, so is itself dihedral (except in
the trivial case where the whole group is mapped to the group with one element,
which only applies to the empty set-class and the aggregate Z12, where [0] or
[6], respectively, is the only SUM class). We are also not interested in the other
trivial case, the quotient by the identity subgroup, because there are at most 12
SUM classes. There are three normal subgroups of Tn/In of order 12, the cyclic
subgroup of twelve transpositions, and two dihedral subgroups that contain the
6 even transpositions, one with the 6 inversions of even index, the other with the
6 inversions of odd index. In general, any subgroup H such that o(H) = 1

2o(G)
is normal: you’re either on the bus or off the bus, the bus here being H; there
are just 2 cosets, H and G \ H, and ∀g ∈ G, gH = Hg, since gH = H if and
only if g ∈ H, (if and only if g 	∈ H, gH = G \H). The quotient of Tn/In by any
of the three subgroups is therefore a subgroup of order 2, potentially applicable
to a set-class with just two SUM classes.

The cyclic subgroups are normal, by the earlier argument for {T0, T4, T8}.
We omit the demonstration, but the only dihedral subgroups that are normal
are the two of index 2 discussed above.

Orvek [8] has shown that in the cases of all but one asymmetric trichordal
set-class, the situation is the same as for 3-11, and the order 3 cyclic subgroup
{T0, T4, T8} effects the appropriate equivalence relations on the parent group and
parent set-class. This is because transposing a trichord by any multiple n of 4
semitones adds 3 × 4n = 12n ≡ 0 mod 12 to the sum of the constituent pitch
classes, thus leaves SUM classes fixed. The exception is the 3-4: (015) set class,
which can be seen to admit only SUM classes [0], [3], [6], [9]. (Straus [9] refers to
the exceptions as maverick sets.) The only order 4 quotient group is modulo the
only order 6 normal subgroup, the transpositions of even index. This non-cyclic
(dihedral) four-group has no element that holds SUM classes fixed, thus fails.

The appropriate simply transitive group on 3-4 from which to construct a
quotient that succeeds is an abelian group Tn/J of order 24, isomorphic to
Z12 ×Z2, with the usual order 12 subgroup of transpositions and one contextual
inversion that commutes with all the transpositions. The appropriate inversion
J must hold all four SUM classes globally fixed, since it must be in the subgroup
which is the identity element in the quotient subgroup. There are three possible
choices for J ; whichever choice is made, the other two appear as T4J and T8J . We
may define the contextual inversion to be J such that it inverts about the pitch-
class that is the endpoint of the semitone dyad that is 5 semitones away from the
isolated pitch-class: thus J exchanges {0, 1, 5} ←→ {7, 11, 0}. J is an involution
by definition. It holds SUM classes fixed: a general element of 3-4 in prime form is
{x, x+1, x+5}, x ∈ Z12, in SUM class 3x+6; J({x, x+1, x+5}) = {x, x−1, x−5},
and x + (x − 1) + (x − 5) = x + (x + 11) + (x + 7) = 3x + 18 ≡ 3x + 6 mod 12.
By symmetry, involution J equally preserves the SUM class of inverted forms in
3-4.
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For all n, Tn commutes with J : TnJ({z, z±1, z±5}) = Tn({z, z∓1, z∓5}) =
{n+ z, n+ z ∓1, n+ z ∓5}), and JTn({z, z ±1, z ±5}) = J({n+ z, n+ z ±1, n+
z ± 5}) = {n + z, n+ z ∓ 1, n+ z ∓ 5}. It follows that one may define TnJ := Jn.
Then T0J = J0, and (J0)2 = T0. TnJm = Tn(TmJ) = Tm+nJ = Jm+n; JmJn =
TmJTnJ = TmTnJJ = TmTn = Tm+n. Since Tn/J is abelian, all its subgroups
are normal.

The quotient of Tn/J by normal subgroup H = {T0, T4, T8, J0, J4, J8} is
isomorphic to group Z4, gives rise to the 3-4 SUM classes, and acts simply
transitively on them. Tn/J

H = {H,T1H,T2H,T3H} and the mapping i : Tn/J
H ↔

Z4 : TzH ↔ z, z = 0, 1, 2, 3 is clearly an isomorphism.
The 3-4 SUM classes are:

[0] = {{2, 3, 7}, {6, 7, 11}, {10, 11, 3}, {9, 1, 2}, {1, 5, 6}, {5, 9, 10}}
[3] = {{3, 4, 8}, {7, 8, 0}, {11, 0, 4}, {10, 2, 3}, {2, 6, 7}, {6, 10, 11}}
[6] = {{0, 1, 5}, {4, 5, 9}, {8, 9, 1}, {7, 11, 0}, {11, 3, 4}, {3, 7, 8}}
[9] = {{1, 2, 6}, {5, 6, 10}, {9, 10, 2}, {8, 0, 1}, {0, 4, 5}, {4, 8, 9}}.

The simply transitive action of Tn/J
H on S = {[0], [3], [6], [9]} is:

H : S �→ S : ( )
T1H : S �→ S : ([0][3][6][9])
T2H : S �→ S : ([0][6])([3][9])
T3H : S �→ S : ([0][9][6][3]).

Most (ten) asymmetric tetrachordal set-classes admit quotients by the cyclic
subgroup {T0, T3, T6, T9}, because transposing a tetrachord by any multiple n
of 3 semitones adds 4 × 3n = 12n ≡ 0 mod 12 to the sum of the constituent
pitch classes, so leaves SUM classes fixed. But there are four examples (mav-
ericks), identified in [8], where the quotient group must be cyclic, of order 3
(4-4, 4-14, 4-18: SUM classes {[0], [4], [8]}; 4-13: {[2], [6], [10]}). It is left as an
exercise for the reader to carry out the case of the 4-4: (0125) set-class. In this
case one may take the contextual inversion J to be inversion about the isolated
pitch class, as in J : {0, 1, 2, 5} ↔ {5, 8, 9, 10}, and the normal subgroup is
{T0, T3, T6, T9, J0, J3, J6, J9}.

In the case of pentachords, all asymmetric pentachords admit all 12 possible
sum-classes, (since 5 and 12 are coprime). An example, again left to the reader,
is 5-4: (01236), the pentachord well known from the analysis by Lewin of Stock-
hausen’s Klavierstück III in [11]. In this case a commutative GIS isomorphic to
that employed by Lewin suffices, with a contextual inversion J about a cluster
endpoint furthest from the isolated pitch class, analogous to that for the 3-4
case, and a quotient of order 12 by the subgroup {T0, J}.

For the hexachords, transposing by any multiple of 2 semitones adds 6×2n =
12n ≡ 0 mod 12 to the sum of the constituent pitch classes, thus the sub-
group H = {T0, T2, T4, T6, T8, T10} leaves SUM classes fixed. The quotient four-
group acts simply transitively on the SUM classes of all the asymmetric hexa-
chords except for 6-9, 6-16 (SUM classes [0], [6]) and 6-14, 6-22 (SUM classes
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[3], [9]). These exceptional cases may be realized as quotients of Tn/In by
normal subgroups of order 12: for 6-9 (012357), 6-14 (013458), 6-22 (012468)
we take H = {T0, T2, T6, T8, T10, I1, I3, I5, I7, I9, I11}, and the quotient group
is {H,T1H}. For 6-9, the action of the quotient group on the SUM-classes
S is H : S �→ S : ( ); T1H : S �→ S : ([0][6]). For 6-14 and 6-22, the
action is H : S �→ S : ( ); T1H : S �→ S : ([3][9]). For 6-16 (014568), we
take H = {T0, T2, T4, T6, T8, T10, I0, I2, I4, I6, I8, I10}, and the quotient group is
{H,T1H}, with action H : S �→ S : ( );T1H : S �→ S : ([0][6]).

The treatment of the exceptional cases may be proven generally, including the
commutativity of the ordinary transpositions with the appropriate contextual
inversion, with recourse to Kochavi’s study [10], in which he defines contextual
inversions with respect to an indexing function for the members of the set class.
Since both the parent GIS and the quotient GIS are commutative, there is no
dual involved in the maverick cases.

The set-classes of larger cardinality than 6 may be treated in the same way as
their complements with respect to SUM classes, quotient groups, and quotient
GISs. In the case of a symmetrical set-class, the group acting on its SUM classes
is a cyclic group, but the parent GIS already consists of a cyclic group (the Tn

group or one of its subgroups) acting on the set-class. The quotient group falls
out easily in such cases (see [8]). For example, the GIS for the augmented triad,
set-class 3-12: (048), requires only the cyclic group {T0, T3, T6, T9} acting simply
transitively on the four members. There are just the four SUM classes, [0], [3],
[6], [9], so the required quotient group for the quotient GIS is the trivial one by
the identity subgroup {T0}. Similarly, the GIS for the usual diatonic scale, 7-35:
(013568t), requires the cyclic order 12 Tn group acting simply transitively on
the 12 members of the inversionally symmetric set-class. The usual diatonic set
admits the maximum 12 SUM classes, so again, the trivial quotient of Tn by its
identity subgroup suffices for the quotient GIS.

The focus in this paper has been on mod 12 pitch-class sets, the groups that
define their set-classes, and their quotients, because of the musical application.
Most of these results could be extended to any dihedral group. It may be recalled
that Proposition 2 is completely general: the Generalized Interval Systems and
their quotients may be finite or infinite, and their groups may be of any struc-
ture. Many of Lewin’s examples in [4] are effectively quotient GISs. Hook [12]
defines a GIS homomorphism, equivalent to a quotient GIS, and proves its con-
struction. His treatment is different in that he takes Lewin’s initial intervallic
GIS definition (perhaps more familiar to music theorists), rather than Lewin’s
equivalent formulation in terms of a simply transitive group action on a set, as
has been done here.
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Abstract. Starting from well-known constructions of aperiodic tiling
rhythmic canons by G. Hajós, N.G. de Bruijn and D.T. Vuza, several
generalisations are given. In this way, it is possible to find new aperiodic
canons, that we call extended Vuza canons.
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1 Prelude

Canons in music have a very long tradition; among these, a few cases of tiling
rhythmic canons (i.e. canons such that, given a fixed tempo, at every beat exactly
one voice is playing) have emerged. Only in the last century, stemming from the
analogous problem of factorizing finite abelian groups, aperiodic tiling rhythmic
canons have been studied: these are canons that tile a certain interval of time in
which each voice (inner voice) plays at an aperiodic sequence of beats, and the
sequence of starting beats of every voice (outer voice) is also aperiodic. From
the musical point of view the seminal paper was probably the four-parts article
written by D.T. Vuza between 1991 and 1993 [14–17], while the mathematical
counterpart of the problem was studied also before, e.g. by de Bruijn [5], Sands
[13], etc., and after, e.g. by Coven and Meyerowitz [4], Jedrzejewski [9], Amiot
[1], Andreatta [3], etc.

A thorough theory of the conditions of existence and the structure of aperi-
odic tiling rhythmic canons has not been established yet. In this paper we try
to give a contribution to this fascinating field.
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2 Aperiodic Tiling Canons

We begin fixing some notations and giving the main definitions. In the following,
we conventionally denote the cyclic group of remainder classes modulo n by Zn

and its elements with the integers {0, 1, . . . , n ´ 1}, i.e., identifying each class
with its least non-negative member.

Definition 1. Let A,B Ă Zn. Let us define the application

σ : A ˆ B → Zn, (a, b) �→ a ` b.

We set A ` B „ Im(σ); if σ is bijective, we say that A and B are in direct sum,
and we write

A ⊕ B „ Im(σ).

If Zn “ A ⊕ B, we call (A,B) a tiling rhythmic canon of period n; A is called
the inner voice and B the outer voice of the canon.

Remark 1. It is easy to see that the tiling property is invariant under transla-
tions, i.e., if A is a tiling complement of some set B, also any translate A ` z of
A is a tiling complement of B (and any translate of B is a tiling complement of
A). Thus, without loss of generality, we shall limit our investigation to rhythms
containing 0 and consider equivalence classes under translation.

Definition 2. A rhythm A Ă Zn is periodic (of period z) if and only if there
exists an element z P Zn, z ‰ 0, such that z ` A “ A. In this case, A is also
called periodic modulo z P Zn. A rhythm A Ă Zn is aperiodic if and only if it is
not periodic.

Denote by Φd(x) the cyclotomic polynomial of index d. Then, tiling rhythmic
canons can be characterised as follows.

Lemma 1. Let A be a rhythm in Zn and let A(x) be the characteristic poly-
nomial of A, that is, A(x) “ ∑

kPA xk. Given B Ă Zn and its characteristic
polynomial B(x), we have that

A(x) · B(x) ”
n´1∑

k“0

xk “ xn ´ 1
x ´ 1

“
∏

d � n,d‰1

Φd(x) mod (xn ´ 1) (1)

if and only if A(x) and B(x) are polynomials with coefficients in {0, 1} and
A ⊕ B “ Zn.

As a consequence, for each d � n, with d ą 1, we have

Φd(x) � A(x) or Φd(x) � B(x).
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Definition 3. A tiling rhythmic canon (A,B) in Zn is an aperiodic tiling rhyth-
mic canon if both A and B are aperiodic.

For an extensive discussion on tiling problems, we refer the reader to Amiot
[2]. If we indicate the set {d P N : d � n} by div(n), the following proposition
establishes a polynomial criterion for the aperiodicity of a given rhythm.

Proposition 1. A set A Ă Zn is aperiodic if and only if for all k � n, with
k ‰ n, we have

xn ´ 1
xk ´ 1

ffl A(x),

that is, if and only if for all k P div(n) \ {n} there exists d P div(n) \ div(k) such
that Φd(x) ffl A(x).

The following result, in conjunction with Theorem 2, identifies which are the
periods of aperiodic tiling rhythmic canons.

Theorem 1 (Vuza). Let

– V „ {n P N : n “ p1n1p2n2n3 with gcd (p1n1, p2n2) “ 1 and p1, n1, p2, n2,
n3 ą 1}, and

– H „
{
pα, pαq, p2q2, pqr, p2qr, pqrs : α P N, p, q, r, s distinct primes

}
,

then N
∗ “ V \ H.

The minimum period necessary for an aperiodic canon is 72, and the corre-
sponding pi and ni are:

(p1, n1, p2, n2, n3) “ (2, 2, 3, 3, 2) .

3 Extended Vuza Canons

The canons with periods 72, 108, 120, 144 and 168 have been completely enu-
merated by Vuza [14], Fripertinger [7], Amiot [1], Kolountzakis and Matolcsi
[11].

An exhaustive construction method for aperiodic tiling rhythmic canons is
not known to date; the first method to find some of them was provided by the
following result (see [8] by Hajós, Theorem 1 in [5] by de Bruijn, and Proposition
2.2 in [14] by Vuza).

Theorem 2. Let n “ p1n1p2n2n3 P N such that

1. p1, n1, p2, n2, n3 ą 1 and
2. gcd (p1n1, p2n2) “ 1.

Then Zn admits an aperiodic tiling rhythmic canon.
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Example 1. In the hypotheses of Theorem 2, an example of tiling canon of Zn

with two aperiodic subsets is given by the following construction by F. Jedrze-
jewski (see Theorem 227 in [9]). Indicating with Ik the set {0, 1, . . . , k ´ 1}, let
us call:

A1 “ n3p1n1In2

U1 “ n3p1n1n2Ip2

V1 “ n3n2Ip2

K1 “ {0}

A2 “ n3p2n2In1

U2 “ n3p2n2n1Ip1

V2 “ n3n1Ip1

K2 “ {1, 2, . . . , n3 ´ 1} .

Then taking
A “ A1 ⊕ A2

B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2) ,

we have the canon Zn “ A ⊕ B.

Remark 2. From now on, given p1, n1, p2, n2, and n3, we will denote by A1, A2,
U1, U2, V1, and V2 the sets so called in Example 1.

Many other ways of constructing aperiodic tiling canons are possible, see for
example de Bruijn [5], Vuza [14], Fidanza [6], and Jedrzejewski [9]. These meth-
ods fall into a category treated by F. Jedrzejewski (Theorem 14 in [10]). We
refine his result lifting the hypothesis that p1 and p2 are prime and proving that
B is aperiodic if n3 satisfies a simple arithmetic constraint.

Theorem 3. Let n “ p1n1p2n2n3 P N such that:

1. p1, n1, p2, n2, n3 ą 1;
2. gcd (p1n1, p2n2) “ 1;
3. there is no prime q such that q � n3, but q ffl p1n1p2n2.

Let H be the subgroup H “ n3Ip1n1p2n2 of Zn and let K be a complete set
of cosets representatives for Zn modulo H such that K is the disjoint union
K “ K1 \ K2. Then the pair (A,B) defined by

A “ A1 ⊕ A2

B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2)

is an aperiodic tiling rhythmic canon of Zn.

Proof. The proof that A ⊕ B “ Zn and that the set A is aperiodic is the same
as in Vuza (Proposition 2.2 in [14]). We are left to prove that B is aperiodic.
Consider the characteristic polynomial B(x):

B(x) “ xn3p1n1 ´ 1
xn3n1 ´ 1

xn ´ 1
xn3p1n1n2 ´ 1

K1(x) ` xn3p2n2 ´ 1
xn3n2 ´ 1

xn ´ 1
xn3p2n2n1 ´ 1

K2(x).

Given any h P div(n) \ {n}, we look for a d P div(n) \ div(h) such that Φd(x) ffl
B(x). Let us consider the cases:
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1. if n3p2n2n1 ffl h, then Φn3p2n2n1(x) ffl B(x) since

Φn3p2n2n1(x) � xn ´ 1
xn3p1n1n2 ´ 1

but
Φn3p2n2n1(x) ffl xn3p2n2 ´ 1

xn3n2 ´ 1
xn ´ 1

xn3p2n2n1 ´ 1
K2(x).

In particular, Φn3p2n2n1(x) ffl K2(x) by Lemma 4 of Rédei’s paper [12].
2. if n3p1n1n2 ffl h, then Φn3p1n1n2(x) � B(x) (symmetrically to the previous

case).

There are no other possibilities: in fact, if we had n3p2n2n1 � h and n3p1n1n2 � h,
then h “ αn3p2n2n1 “ βn3p1n1n2 and therefore αp2 “ βp1. Since gcd (p1, p2) “
1, it would follow α “ p1 and β “ p2 and so h “ n, which is a contradiction. �\
Example 2. Consider n “ 216; let p1 “ 2, n1 “ 2, p2 “ 3, n2 “ 3, and n3 “ 6.
Theorem 3 ensures that, defining

A “ 24I3 ⊕ 54I2
B “ (72I3 ⊕ 12I2 ⊕ {0, 106}) \ (108I2 ⊕ 18I3 ⊕ {21, 43, 122, 167}) ,

A ⊕ B “ Z216 and (A,B) is an aperiodic tiling rhythmic canon.

In a first generalization of Theorem 3, rhythm B is the disjoint union of three
sets, one being periodic both modulo n/p1 and modulo n/p2.

Theorem 4. Let n “ p1n1p2n2n3 P N such that:

1. p1, n1, p2, n2, n3 ą 1;
2. gcd (p1n1, p2n2) “ 1;
3. there is no prime q such that q � n3, but q ffl p1n1p2n2.

Let H be the subgroup H “ n3Ip1n1p2n2 of Zn with n “ p1n1p2n2n3, K be
a complete set of cosets representatives for Zn modulo H such that K is the
disjoint union K “ K1 \ K2 \ K3 with K1,K2 ‰ H, and W “ n3n1n2Ip1p2 .
Then the pair (A,B) defined by

A “ A1 ⊕ A2

B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2) \ (W ⊕ K3)

is an aperiodic tiling rhythmic canon of Zn.

Proof. The only case we need to consider is K3 ‰ H (notice that this is possible
only if n3 ą 2). We already know, from Theorem 2 that A is aperiodic; B is
aperiodic too, since

B(x) “ U1(x)V2(x)K1(x) ` U2(x)V1(x)K2(x) ` W (x)K3(x)

and the cyclotomic polynomials Φn3p2n2n1 and Φn3p1n1n2 divide exactly 2 of the
summands on the right hand side.
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We now prove that A ⊕ B “ Zn: to this aim we make use of the following
facts, proven by F. Jedrzejewski (Theorem 14 in [10]):

A1 ` U1 ` V2 “ A1 ` U1 ` U2

A2 ` U2 ` V1 “ A2 ` U2 ` U1.

By an easy check, we see that

U1 ` U2 “ n3n1n2 (p1Ip2 ` p2Ip1) “ n3n1n2Zp1p2 “ W,

and |U1||U2| “ p2p1 “ |W |. This means that

U1 ⊕ U2 “ W.

We obtain that

A ` B “ (A1 ` A2) ` ((U1 ` V2 ` K1) \ (U2 ` V1 ` K2) \ (W ` K3))
“ (A1 ` A2 ` U1 ` V2 ` K1) \ (A1 ` A2 ` U2 ` V1 ` K2)

\ (A1 ` A2 ` W ` K3)
“ (A1 ` A2 ` U1 ` U2 ` K1) \ (A1 ` A2 ` U2 ` U1 ` K2)

\ (A1 ` A2 ` U1 ` U2 ` K3)
“ A1 ` A2 ` U1 ` U2 ` (K1 \ K2 \ K3)
“ A1 ` U1 ` A2 ` U2 ` K.

Again, an easy computation shows that

(A1 ` U1) ` (A2 ` U2) “ n3p1n1Ip2n2 ` n3p2n2Ip1n1

“ n3Ip1n1p2n2

“ H

and so
A ` B “ H ` K “ Zn.

Moreover, since |A||B| “ n “ |H||K|, the sum A ` B is direct. �\
Example 3. Let us go back to n “ 216 with the same choices of p1, n1, p2, n2,
and n3. By Theorem 4, we find a new aperiodic tiling rhythmic canon (A,B)
defining

A “ 24I3 ⊕ 54I2
B “ (72I3 ⊕ 12I2 ⊕ {0, 106}) \ (108I2 ⊕ 18I3 ⊕ {21, 43}) \ (36I6 ⊕ {122, 167}) .

The second generalization of Theorem 3 widens the definitions of sets A1,
A2, V1, and V2. We precede it with a useful lemma.
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Lemma 2. Suppose that a subset S Ď Zn is periodic of period m � n, i.e.
S ` m “ S, and for i “ 0, . . . , k ´ 1 let Si “ {a P S : a ” i mod k} where k is
a divisor of m. Then also the sets Si are periodic of period m for every i.

Proof. It is sufficient to observe that since m is a multiple of k the remainder
classes modulo k are invariant by the translation by m, hence also Si ` m “ Si.

�\
Theorem 5. Let n “ p1n1p2n2n3 P N such that:

1. p1, n1, p2, n2, n3 ą 1;
2. gcd (p1n1, p2n2) “ 1;
3. there is no prime q such that q � n3, but q ffl p1n1p2n2.

Let H be the subgroup H “ n3Ip1n1p2n2 of Zn, and K “ K1 \K2 (with K1,K2 ‰
H) be a complete set of cosets representatives for Zn modulo H. Take

– Ã1 as a complete aperiodic set of coset representatives for Zp2n2 modulo n2Ip2 ;
– Ã2 as a complete aperiodic set of coset representatives for Zp1n1 modulo n1Ip1 ;
– Ṽ 1

1 , . . . , Ṽ j
1 as complete aperiodic sets of coset representatives for Zp2n1 mod-

ulo p2In1 ;
– Ṽ 1

2 , . . . , Ṽ h
2 as complete aperiodic sets of coset representatives for Zp1n2 mod-

ulo p1In2 .

Set K1 “ K1
1 \ · · ·\Kj

1 and K2 “ K1
2 \ · · ·\Kh

2 , where Ks
α “ {

kjs´1`1
α , . . . , kjs

α

}

are non-empty subsets of Kα for α “ 1, 2. Then the pair (A,B) defined by

A “ n3p1n1Ã1 ⊕ n3p2n2Ã2

B “
((

U1 ⊕ n3n1Ṽ
1
2 ⊕

{
k1
1, . . . , k

l1
1

})
\ · · ·

· · · \
(
U1 ⊕ n3n1Ṽ

j
2 ⊕

{
k

lj´1`1
1 , . . . , k

|K1|
1

}))

\
((

U2 ⊕ n3n2Ṽ
1
1 ⊕ {

k1
2, . . . , k

m1
2

})
\ · · ·

· · · \
(
U2 ⊕ n3n2Ṽ

h
1 ⊕

{
kmh´1`1
2 , . . . , k

|K2|
2

}))

is an aperiodic tiling rhythmic canon of Zn.

Proof. We have

– n3p1n1Ã1 ` U1 “ n3p1n1

(
Ã1 ⊕ n2Ip2

)
“ n3p1n1Ip2n2 “ A1 ` U1;

– n3p2n2Ã2 ` U2 “ n3p2n2

(
Ã2 ⊕ n1Ip1

)
“ n3p2n2Ip1n1 “ A2 ` U2;

– A1 ` n3n1Ṽ2 “ n3n1

(
p1In2 ` Ṽ2

)
“ n3n1Ip1n2 “ A1 ` V2;

– A2 ` n3n2Ṽ1 “ n3n2

(
p2In1 ` Ṽ1

)
“ n3n2Ip2n1 “ A2 ` V1.
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For the sake of simplicity, we now give the proof in the case j “ 1 and h “ 1.
The general case is completely analogous. We compute

A ` B “
(
n3p1n1Ã1 ` n3p2n2Ã2

)

`
((

U1 ` n3n1Ṽ2 ` K1

)
\

(
U2 ` n3n2Ṽ1 ` K2

))

“
(
n3p1n1Ã1 ` n3p2n2Ã2 ` U1 ` n3n1Ṽ2 ` K1

)

\
(
n3p1n1Ã1 ` n3p2n2Ã2 ` U2 ` n3n2Ṽ1 ` K2

)

“
(
A1 ` n3p2n2Ã2 ` U1 ` n3n1Ṽ2 ` K1

)

\
(
n3p1n1Ã1 ` A2 ` U2 ` n3n2Ṽ1 ` K2

)

“
(
A1 ` n3p2n2Ã2 ` U1 ` V2 ` K1

)

\
(
n3p1n1Ã1 ` A2 ` U2 ` V1 ` K2

)

“
(
A1 ` n3p2n2Ã2 ` U1 ` U2 ` K1

)

\
(
n3p1n1Ã1 ` A2 ` U2 ` U1 ` K2

)

“ A1 ` A2 ` U1 ` U2 ` (K1 \ K2)
“ A1 ` U1 ` A2 ` U2 ` K

“ Zn.

A cardinality argument analogous to that used in Theorem 4 shows that the
sum is direct.

The proof that A is aperiodic follows from Vuza’s argument (Proposition 2.2
in [14]), as above. Assume now that B is periodic of period a: we can assume
without loss of generality that a “ n/p where p is a prime number. Hypothesis
3. now implies that a is a multiple of n3: but then by Lemma 2 also the sets
Bi “ B X ({i} ` n3Zn) must be periodic of period a. However, the sets Bi are
simply translates of U1⊕n3n1Ṽ2 by elements of K1 or of U2⊕n3n2Ṽ1 by elements
of K2 (remember that also the elements of U1 and U2 are multiple of n3): on
their turn, U1 ⊕ n3n1Ṽ2 and U2 ⊕ n3n2Ṽ1 are indeed periodic resp. of period
n/p1 and n/p2, but since p1 and p2 are coprime no common period smaller than
n is possible. A contradiction follows since we assumed both K1 and K2 to be
non-empty. �\
Remark 3. Note that Theorems 3–5 hold trivially if hypothesis 3. is replaced by
the condition that n3 is prime.
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Example 4. This time we choose n “ 252; let p1 “ 2, n1 “ 7, p2 “ 3, n2 “ 3,
and n3 “ 2. We can take e.g.

Ã1 “ {0, 2, 7}
Ṽ1 “ {0, 10, 17}
K1 “ {0}

Ã2 “ {0, 1, 3, 4, 9, 12, 13}
Ṽ2 “ {0, 1} “ Ip1

K2 “ {1}

obtaining a new canon (A,B) where

A “ 28Ã1 ⊕ 18Ã2

“ {0, 56, 196} ⊕ {0, 18, 54, 72, 162, 216, 234}
B “

(
U1 ⊕ 14Ṽ2 ⊕ K1

)
\

(
U2 ⊕ 6Ṽ1 ⊕ K2

)

“ ({0, 84, 168} ⊕ {0, 14} ⊕ {0}) \ ({0, 126} ⊕ {0, 60, 102} ⊕ {1}) .

Definition 4. We call Vuza canons all the canons obtained using the construc-
tions described in Theorems 2, 3, 4, 5.

It is possible to stretch this type of constructions even further. With the
following theorem, we improve the result of Jedrzejewski (Theorem 21 in [10]).

Theorem 6. Let n “ p1n1p2n2n3 P N such that:

1. p1, n1, p2, n2, n3 ą 1;
2. gcd (p1n1, p2n2) “ 1;
3. there is no prime q such that q � n3, but q ffl p1n1p2n2.

Let H be the subgroup H “ n3Ip1n1p2n2 of Zn. Suppose that L and K are proper
subsets of Zn3 such that L ⊕ K “ Zn3 and K “ K1 \ K2, with K1,K2 ‰ H.
Then the pair (A,B) defined by

A “ A1 ⊕ A2 ⊕ L

B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2)

is an aperiodic tiling rhythmic canon of Zn.

Proof.

A ` B “ (A1 ` A2 ` L) ` ((U1 ` V2 ` K1) \ (U2 ` V1 ` K2))
“ (A1 ` A2 ` L ` U1 ` V2 ` K1) \ (A1 ` A2 ` L ` U2 ` V1 ` K2)
“ (A1 ` A2 ` L ` U1 ` U2 ` K1) \ (A1 ` A2 ` L ` U2 ` U1 ` K2)
“ A1 ` A2 ` L ` U1 ` U2 ` (K1 \ K2)
“ A1 ` U1 ` A2 ` U2 ` L ` K.

The sum is direct because the computation of the cardinality leads to

|A1||A2||U1||U2||L ⊕ K| “ n.
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Aperiodicity of A is immediate from Lemma 2, since A1 `A2 is aperiodic, and B
is the union of the subsets Bi contained in different remainder classes modulo n3,
some of which have a period coprime with the period of the other ones (exactly
as in the previous theorem).

Example 5. Choosing again n “ 216 and the same values for p1, n1, p2, n2, and
n3 as in Example 3, we set L “ {0, 1}, K1 “ {2}, and K2 “ {0, 4}. By Theorem
6, we get that

A “ 24I3 ⊕ 54I2 ⊕ L

B “ (72I3 ⊕ 12I2 ⊕ K1) \ (108I2 ⊕ 18I3 ⊕ K2)

define an aperiodic tiling rhytmic canon.

To prove our next result we take advantage of the equivalent polynomial
formulation of tilings. Using it, in [4] E.M. Coven, and A. Meyerowitz introduced
two sufficient conditions for a rhythm A to be a factor of a tiling rhythmic canon.
To state them we need the following definitions.

Definition 5. RA „ {d : Φd(x) � A(x)} and SA „ {pα P RA : p prime}.
The Coven-Meyerowitz conditions are the following:

T1 |A| “ ∏
pαPSA

p;
T2 for all pα, qβ , rγ , . . . P SA, pαqβrγ · · · P RA, where pα, qβ , rγ , . . . are powers of

distinct primes.

The polynomial approach provides a few new important properties.

Lemma 3. Let A(x), B(x) P N[x] and n P N
∗. Then

A(x)B(x) ”
n´1∑

k“0

xk mod (xn ´ 1) (T0)

if and only if

1. A(x), B(x) P {0, 1} [x], so they are the characteristic polynomials of sets A
and B, and

2. A ⊕ B “ {r1, . . . , rn} Ă Z, with ri ‰ rj mod n for all i, j P {1, . . . , n} with
i ‰ j.

Lemma 4. Let f(x) P Z[x] and n P N
∗. The following are equivalent:

1. f(x) ” ∑n´1
k“0 xk mod (xn ´ 1);

2. (a) f(1) “ n and
(b) for every d � n, with d ą 1, we have Φd(x) � f(x).

Definition 6. Let A be a subset of Zn and let SA “ {
pα, qβ , . . . , rγ

}
. We call

the extension of A any rhythm A whose characteristic polynomial is

A(x) “ Φpα

(
x

n
pαkp

)
Φqβ

(
x

n

qβkq

)
· · · Φrγ

(
x

n
rγ kr

)
.

where kp, kq, . . . , kr are divisors of n such that p ffl kp, q ffl kq, . . . , r ffl kr.
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Note that by definition clearly SA “ SA.

Proposition 2. Let A⊕B “ Zn and let B satisfy condition (T2). Then A⊕B “
Zn, too.

Proof. Since pα is a prime power, then

Φpα

(
x

n
pαkp

)
P {0, 1} [x],

and so A(x) P N[x]. Moreover,

– A(1)B(1) “ n and
– Φd(x) � A(x)B(x) for all d � n, with d ą 1.

By Lemma 4, this means that

A(x)B(x) ”
n´1∑

k“0

xk mod (xn ´ 1) ,

that is, condition (T0) in Lemma 3 holds. Therefore A(x) P {0, 1} [x] and A⊕B “
Zn, that is, A tiles with B. �\

Combining Theorem 6 and Proposition 2, we are able to find new Vuza canons
where L is not a subset of Zn3 .

Theorem 7. Let n “ p1n1p2n2n3 P N such that:

1. p1, n1, p2, n2, n3 ą 1;
2. gcd (p1n1, p2n2) “ 1;
3. there is no prime q such that q � n3, but q ffl p1n1p2n2.

Let H be the subgroup H “ n3Ip1n1p2n2 of Zn. Suppose that L and K are proper
subsets of Zn3 such that L ⊕ K “ Zn3 and K “ K1 \ K2, with K1,K2 ‰ H. Let
L̃ be an extension of L; then the pair (A,B) defined by

A “ A1 ⊕ A2 ⊕ L̃

B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2)

is an aperiodic tiling rhythmic canon of Zn.

Proof. Since, by definition, A1 and A2 coincide with their own extensions, the
extension of A1 ⊕ A2 ⊕ L is A. By Theorem 6, A1 ⊕ A2 ⊕ L ⊕ B “ Zn, therefore
Proposition 2 implies that A ⊕ B “ Zn.

We already know from Theorem 6 that B is aperiodic. To show that A
is aperiodic, consider L̃(x). By hypothesis 3 SL̃ does not contain any maximal
prime power dividing n, as SA1 and SA2 . As a consequence, SA “ SA1 ∪SA2 ∪SL̃

does not contain any such prime power, either. By Proposition 1, A can not be
periodic. �\
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Definition 7. We call extended Vuza canons all the canons obtained using the
constructions of Theorems 6 and 7, possibly combined with those of Theorems 2,
3, 4 and 5.

Example 6. We show now an extended Vuza canon with period n “ 240 (p1 “
2, n1 “ 2, p2 “ 5, n2 “ 3, n3 “ 4). Set L “ I2; then L̃ “ 15I2. Choosing K1 “ {2}
and K2 “ {0}, we obtain the canon

A “ A1 ⊕ A2 ⊕ L̃

“ 16I3 ⊕ 60I2 ⊕ 15I2
B “ (U1 ⊕ V2 ⊕ K1) \ (U2 ⊕ V1 ⊕ K2)

“ (48I5 ⊕ 8I2 ⊕ {2}) \ (120I2 ⊕ 12I5 ⊕ {0}) .

It is worth noting that it would not be possible to obtain such a canon without
applying Theorem 7.

We include below a table showing the number of Vuza canons and extended
Vuza canons for all the periods n with values between 72 and 280 (Table 1).

As a final comment, one could say that the recipes by Hajós, de Bruijn
and Vuza to generate aperiodic tiling rhythmic canons are deceivingly simple.

Table 1. The number of aperiodic rhythms for non-Hajós values of n from 72 to 280,
generated with the constructions described in Theorems 2–7.

n p1 n1 p2 n2 n3 L #K #A #B

Theorem: 2 6 7 2 3 4 5 6

72 2 2 3 3 2 0 1 3 0 0 6 0 0 0 0

108 2 2 3 3 3 0 1 3 0 0 180 0 72 0 0

120
2 2 3 5 2 0 1 16 0 0 20 0 0 0 0

2 2 5 3 2 0 1 8 0 0 18 0 0 0 0

144

2 2 3 3 4 0 1 3 0 0 2808 1944 3888 0 0

2 2 3 3 4 0, 1 2 0 312 0 0 0 0 0 6

2 2 3 3 4 0, 9 2 0 0 12 0 0 0 0 6

2 2 3 3 4 0, 2 4 0 156 0 0 0 0 0 12

2 4 3 3 2 0 1 6 0 0 12 0 0 48 0

4 2 3 3 2 0 1 6 0 0 6 0 0 30 0

168
2 2 3 7 2 0 1 104 0 0 14 0 0 28 0

2 2 7 3 2 0 1 16 0 0 6 0 0 48 0

180

2 5 3 3 2 0 1 9 0 0 15 0 0 105 0

5 2 3 3 2 0 1 6 0 0 6 0 0 90 0

3 5 2 2 3 0 1 16 0 0 500 0 200 1100 0

5 3 2 2 3 0 1 8 0 0 252 0 72 1728 0

2 2 3 3 5 0 1 3 0 0 45360 77760 158112 0 0

(continued)
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Table 1. (continued)

n p1 n1 p2 n2 n3 L #K #A #B

Theorem: 2 6 7 2 3 4 5 6

200 2 2 5 5 2 0 1 125 0 0 10 0 0 50 0

216

2 4 3 3 3 0 1 6 0 0 180 540 72 216 0 12672 0

2 2 3 3 6 0, 3 8 0 156 0 0 0 0 0 180 540 72 216

2 2 3 3 6 0, 1 2 0 324 0 0 0 0 0 180 72

2 2 3 3 6 0 1 3 0 0 754272 2449440 5832000 0 0

2 2 3 3 6 0, 1, 2 3 0 34992 0 0 0 0 0 6

2 2 3 3 6 0, 2, 4 9 0 10935 0 0 0 0 0 6 12

2 2 3 9 2 0 1 729 0 0 6 12 0 0 54 0

2 2 9 3 2 0 1 27 0 0 6 0 0 162 0

4 2 3 3 3 0 1 6 0 0 252 0 72 5940 0

240

2 4 3 5 2 0 1 32 0 0 20 0 0 20 160 0

2 2 3 5 4 0, 6 4 0 0 588 0 0 0 0 20 20

2 2 3 5 4 0, 2 4 0 7252 0 0 0 0 0 20 20

2 2 3 5 4 0, 15 2 0 0 64 0 0 0 0 20

2 2 3 5 4 0, 3 2 0 1176 0 0 0 0 0 20

2 2 3 5 4 0, 1 2 0 14504 0 0 0 0 0 20

2 2 3 5 4 0 1 16 0 0 13000 9000 18000 94000 0

2 2 5 3 4 0 1 8 0 0 6264 3240 5184 197856 0

2 2 5 3 4 0, 1 2 0 4016 0 0 0 0 0 18

2 2 5 3 4 0, 5 2 0 0 112 0 0 0 0 18

2 2 5 3 4 0, 15 2 0 0 32 0 0 0 0 18

2 2 5 3 4 0, 2 4 0 2008 0 0 0 0 0 12 24

2 2 5 3 4 0, 10 4 0 0 56 0 0 0 0 12 24

2 4 5 3 2 0 1 16 0 0 12 0 0 24 576 0

4 2 3 5 2 0 1 32 0 0 10 0 0 290 0

4 2 5 3 2 0 1 16 0 0 6 0 0 102 0

252

2 7 3 3 2 0 1 27 0 0 21 0 0 315 0

7 2 3 3 2 0 1 9 0 0 6 0 0 618 0

3 7 2 2 3 0 1 104 0 0 980 0 392 5096 0

7 3 2 2 3 0 1 16 0 0 324 0 72 21312 0

2 2 3 3 7 0 1 3 0 0 12830400 71383680 206126208 0 0

264
2 2 3 11 2 0 1 5368 0 0 22 0 0 88 0

2 2 11 3 2 0 1 40 0 0 6 0 0 552 0

270
3 3 2 5 3 0 1 9 0 0 1125 0 450 48825 0

3 3 5 2 3 0 1 6 0 0 288 0 72 48600 0

(continued)
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Table 1. (continued)

n p1 n1 p2 n2 n3 L #K #A #B

Theorem: 2 6 7 2 3 4 5 6

280
2 2 5 7 2 0 1 2232 0 0 14 0 0 112 0

2 2 7 5 2 0 1 480 0 0 10 0 0 170 0

Note: In each column only the rhythms that can be generated by the corresponding
theorem, but not by previous ones are counted. Grey numbers correspond to rhythms
that can be generated also by the choice of parameters in the previous line. When
there is no column (e.g., #A for Theorem 3) all the possible rhythms already appear
in previous columns.

Their basic mechanism can be (and has indeed been) generalised in several ways;
this paper gives a generalisation on its own, but Theorem 7 can certainly still
be improved. Further studies should follow, aiming at lifting the hypotheses
used in the present results and (hopefully) at establishing a systematic theory
of aperiodic tiling rhythmic canons given by all the known constructions, and
eventually of all aperiodic tiling rhythmic canons straightaway.
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Abstract. In physics, timbre is a complex phenomenon, like color. Musi-
cal timbres are given by the superposition of sinusoidal signals, corre-
sponding to longitudinal acoustic waves. Colors are produced by the
superposition of transverse electromagnetic waves in the domain of visi-
ble light. Regarding human perception, specific timbre variations provoke
effects similar to color variations, for example, a rising tension or a relax-
ation effect. We aim to create a computational framework to modulate
timbres and colors. To this end, we consider categorical groupoids, where
colors (timbres) are objects and color variations (timbre variations) are
morphisms, and functors between them, which are induced by continu-
ous maps. We also sketch some gestural variations of this scheme. Thus,
we try to soften the differences and focus on the similarity of structures.

Keywords: Color · Timbre · Topology · Category theory · Gestures
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1 Introduction

Timbres and colors fascinated musicians, artists, and scientists across centuries
[9,20]. In physics, the complexity of timbre is due to the superposition of sim-
ple components (sinusoidal waves), which can be separated with Helmholtz res-
onators [16]. Timbres can be computationally investigated with Fourier trans-
forms and sonograms, which show the strength of each component (partial) of
the superposition. Colors are also related to the idea of superposition, as proved
by [32] for white light, which can be decomposed in colors through a prism.
The physics involved is quite different: sound involves mechanical longitudinal
waves, while light is made of electromagnetic transverse waves. However, tim-
bres and colors have a main similarity: they are complex signals, made of simple
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superposed wave signals [37]. This suggests a correspondence based on the rela-
tion between sound frequency and spatial frequency of light, but according to
[5], absolute correspondences between these domains are difficult to establish,
so the relativity and the obstructions of this problem could be softened in the
categorical context.

In fact, the point of view of precise measurement can be enriched in sev-
eral ways. Scholars such as Goethe pointed out the importance of perception to
understand colors in the framework of nature and the arts [11]. In addition, both
colors and timbres can be qualitatively rated as, for example, cold, strong, or deli-
cate. Even though different cultures can associate a different (symbolic) meaning
to each color, we can find aspects with certain universality, related to human
perception. Some colors are more instinctively associated with higher or lower
tension: red or yellow raise more attention than light blue or gray. Similarly, spe-
cific orchestral timbres are more awakening than others: a loud1 trumpet sound
is a more effective alarm than a soft flute melody. Some recent studies point out
the importance of a “shared emotion” to associate colors and musical sequences
[33], which also occurs in the framework of classical music listening [8]. On the
other hand, both colors and timbres can be mixed or shaded—as it happens for
painting and orchestration, respectively, transforming a delicate sound (or color)
into a strong sound (or color). In this way, we can draw upon the idea of super-
position and similarity of perception to imagine how we can investigate colors
and timbres, focusing on common aspects through abstraction.2 These aspects
are intensities, mixing, and shadows/nuances. In particular, harmonic choices,
which influence timbre, are also ruled by the idea of superposition.

In this article we introduce fundamental groupoids of color and timbre spaces
and functors between them. These functors could be induced by some classical
(possibly) continuous maps suggested in [5]. This categorical framework [22,
23] could be adequate to express the superposition and similarity principles
to understand the color/timbre relation, complementing analytical approaches.
Categories have already been used to investigate processes and phenomena in
the arts from a bird’s-eye perspective [19,21,30].

This article is structured as follows. In Sect. 2, we review some color spaces,
timbre spaces, and maps between them. In Sect. 3, we offer a categorical enrich-
ment of previous approaches to relate color and timbre. In particular, in Sect. 3.3,
we include a computational example of interaction between color and timbre
paths. Then, Sect. 4 is devoted to a gestural extension of the previous enrich-
ment. In Sect. 5 some conclusions and further possible applications are discussed.
In the Glossary (Sect. 6) we provide definitions of some specialized mathematical
concepts that we mention. We use boldface for these terms.

As a general disclaimer: colors, timbres, and their relationships constitute a
vast topic. This is a position paper (or rather, a working one) aiming to open
the way toward further studies in this field.

1 Loudness in music performance can affect timbre characteristics [6].
2 A first experiment, where participants were asked to associate colors, color bands,

and timbres, confirmed a non-negligible perceptive correlation [26].
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2 Spaces and Mappings: An Overview

2.1 The CIE 1931 Color Space

The CIE model [10] connects the visible spectrum with human perception. It
assigns to each spectrum wavelength λ ∈ [380, 780], measured in nanometres,
three sensitivity level values x(λ), y(λ), and z(λ) corresponding to the kinds of
human cone cells under certain standard conditions. Thus, a spectral distribution
yields, by integration of its product with each color matching function (x, y, or
z), a triple (X,Y,Z) of color coordinates. All these triples amount to the unit
cube [0, 1]3, after normalizing units. We embed this cube in R

3, regarding the
latter as a vector space and a topological space. The vector sum in the cube,
whenever defined, corresponds to color mixing (superposition of light beams).3

If the sum is not in [0, 1]3, one can take an average of vector components to
represent a mixture (with average intensity) for computational purposes.

On the other hand, the standard RGB space is used for screens and pho-
tography, so we need it for experiments. It has red, green, and blue as primary
colors, which give white if superposed. The standard RGB model does not cover
the CIE gamut in principle, for instance, a spectral violet. However, we can
transform CIE to standard RGB by means of an appropriate conversion of CIE
to linear RGB followed by electro-optical transfer. The RGB space has already
been considered for mathematical modeling [34,35]. In particular, [35] proposed
a three-dimensional space of perceived colors, where equivalence classes corre-
spond to perceptual match.

2.2 Timbre Space

As a possible representation of timbres, we can consider the space proposed by
Grey [13], based on the dissimilarity between pairs of musical instrument sounds.

On the other hand, we have the set of all continuous periodic maps. These
maps represent continuous sound waves that can be recovered from their Fourier
series according to Fourier’s and Fejér’s theorems [4, Section 2.4]. It is embedded
in the space of all continuous maps R −→ R, which has the compact-open
topology and is a vector space. Superposition of waves corresponds to addition
of the associated periodic functions, although the result need not be periodic. In
what follows, we take the topological space of continuous periodic maps as our
timbre space, given the structural analogy with the CIE space in the sense that
color/wave superpositions correspond to vector sums.

2.3 Maps Between Timbre and Color

According to [5], a possible correspondence between color and sound can be
based on the idea that a musical octave should match a color octave. A musical

3 We mix colors in printing and painting with the subtractive model, a sort of dual of
the additive one.
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octave is a closed interval of the form [f, 2f ], where f is a fixed sound frequency
in Hertz. Human vision barely ranges through color octave, namely the interval
of wavelengths in nanometres [380, 760], which corresponds to the interval of
spatial frequencies [(1/2)(1/380), 1/380] by means of the assignment λ �→ 1/λ.
Thus, the map λ �→ 760f/λ is a continuous bijection from the color octave
[380, 760] to the musical octave [f, 2f ]. Note that under this logic, the color order
violet-blue-green-yellow-orange-red corresponds to a decreasing pitch frequency.

Since human hearing ranges frequencies in the Hertz interval [20, 20000], and
therefore several octaves, there is not a perfect correspondence between wave-
lengths and frequencies. This suggests reducing the interval [20, 20000] modulo
a chosen octave and then using the previous correspondence. The resulting map
is continuous under the assumption that we identify the endpoints of [380, 760].

There are other possibilities for a correspondence between color and sound.
Some scholars focus on perceived correspondences of pitch classes with classes
of colors [18]. The use of classes can be formalized by means of quotient spaces.
Classes take into account perceptive similarities but not perfect one-to-one asso-
ciations. Other continuous correspondences could associate the transition from
violet to red with an increasing pitch frequency.

The following construction is a possible way to get a continuous4 map from
the timbre space to the CIE color space. First, let us consider the case of a
timbre given by simple FM synthesis [4, Sect. 8.8], namely a periodic5 wave
corresponding to

sin[ωct + I sin(ωmt)], (1)

where ωc = 2πfc, ωm = 2πfm, fc is the carrier frequency, fm is the modulator
frequency, and I is the modulation index. An associated convergent series is

∞∑

n=−∞
Jn(I) sin[(ωc + nωm)t], (2)

where Jn is the nth Bessel function of the first kind. This series expresses the
wave in terms of simple harmonics with frequencies fc + nfm for n ∈ Z. By
factorizing the sign of each negative value of fc +nfm outside of sin[(fc +nfm)t]
we obtain: ∞∑

n=0

an sin(2πfnt). (3)

Thus, given a continuous map h from frequencies to color wavelengths, we
construct (by linearity) the series in the CIE space

∞∑

n=0

anXY Z(h(fn)), (4)

4 We do not have a proof of this continuity.
5 The wave is periodic if the quotient between carrier and modulator frequencies is a

rational number.
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where XY Z(λ) gives the CIE coordinates of the wavelength λ, whenever the
series converges in the CIE space. In general, one could use the Fourier series
[30, p. 1019]:

a0 +
∞∑

n=1

an sin(2πnft + φn) (5)

of the given continuous periodic wave and associate the series (if it converges in
the CIE space)

a0 +
∞∑

n=1

anXY Z(h(nf)), (6)

but it is to be determined whether (1) this procedure coincides with that used
for FM synthesis and (2) the phase φn affects the color quality. These are open
questions. In Sect. 3.3 we exemplify computationally the procedure for the FM
case.

3 Categorical Enrichment

Color and timbre, and their relations, can be recast in a categorical framework,
where we emphasize the color and timbre transitions, rather than the objects
color and timbre themselves.

Each topological space X (like the CIE and timbre space) has an associated
category whose morphisms are invertible, that is, a groupoid. Its objects are
the elements of X and its morphisms are homotopy classes of paths in X. The
composition [τ ] ◦ [σ] of two classes [σ] : x −→ y and [τ ] : y −→ z is the class of
the concatenation στ . The identity on x is the class of the associated constant
map and the inverse of a path σ sends t ∈ [0, 1] to σ(1 − t). This construction
can be generalized to yield higher relations between paths as follows.

3.1 Induced Infinity-Groupoids

Let us consider the singular complex Sing(X), which is a simplicial set and
an ∞-groupoid, under the definitions in Sect. 6. According Proposition 1.9 and
Remark 1.10 from [14], ∞-categories have n-morphisms for each n ≥ 0 and
composition of them, which is associative up to homotopy. Thus, 1-morphism
of Sing(X) is a path in X, and a 2-morphism is a homotopy between two paths
with the same endpoints. Note that the groupoid of X comes from homotopy
classes of 1-morphisms and hence the concatenation of them is associative up
to homotopy equivalence. On the other hand, a 2-morphism can be seen as
a band of intermediate paths between two given ones that connect the same
points. Figure 1 shows examples of 1-morphisms and 2-morphisms in the cases
of the CIE and timbre spaces. More generally, we can define n-morphisms of the
singular complex, which describe the evolution of a single color (timbre), of a
path of colors (timbres), of a homotopy of paths, and so on.

We emphasize the need for higher relations and bands. For example, we can
map the transition light blue→dark blue into the transition light green→dark
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green, creating a band that connects, as different shades, light green with light
blue, and dark green with dark blue.6 If the initial and final points of the band
coincide, we can have the situation described in Fig. 1, where the dark blue
becomes a light blue through different paths: some paths remain in the blue
area, while other ones cross the violet area [27].

Fig. 1. (a) A 1-morphism in the space of colors, a path between two colors, (b) a 2-
morphism in the same space, a band between two color paths, (c) a 1-morphism in the
timbre space, and (d) a 2-morphism in the same space.

3.2 Induced Functors

Given two topological spaces X and Y , which can be the timbre and the CIE
color space respectively, and a continuous map f : X −→ Y there is an induced
natural transformation F : Sing(X) −→ Sing(Y ) that sends a singular n-simplex
σ : Δn −→ X to fσ : Δn −→ Y . According to the definition in Sect. 1.2.7 of

6 This relation is not a proper morphism but it can be achieved by pasting two suit-
able 2-simplices in Sing(X), which is a higher gesture according to [2]. It is also a
hypergesture in the sense of [31].
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[22], which says that a functor between infinity-categories is a natural trans-
formation between the respective simplicial sets, F is a functor from Sing(X) to
Sing(Y ).

Note that F coincides with f on objects and sends a 1-morphism σ in X to
the path fσ in Y .

As any functor between infinity-categories, F preserves the usual categorical
structure (up to homotopy), in the sense that

F ([idx]) = [idf(x)]

whenever x ∈ X and
F ([τ ] ◦ [σ]) = F ([τ ]) ◦ F ([σ])

whenever σ : x −→ y and τ : y −→ z are paths in X. More generally, F preserves
the compositions of higher morphisms in an appropriate sense, but we omit these
technical details. Next, a computational sketch of a functor from timbre to color.

3.3 A Computation of Colors from Timbres

As an example of associations between a timbre path and a color path, let us
consider the progressive enrichment of a simple 440 Hz sine wave with harmonics,
using FM synthesis, and the associated color transition.

More formally, take fc = 440 and fm = 2fc. By regarding the modulation
index I as a parameter in the interval [0, 20], we obtain a continuous7 path in
the timbre space with parametrization (Eq. 1):

sin[ωct + I sin(ωmt)].

The result is a fluctuation in the brilliance of a sort of clarinet sound since
only odd harmonics are present.8 Figure 2 is the corresponding spectrogram of
the timbre path.

To obtain a color path (Fig. 3) we use the procedure in Sect. 2.3 for each
value of I, see Eq. (6). For each new value of the index modulation I, harmonics
vary, reaching a new timbre in Fig. 2. For each new value of I, and thus, for
each timbre point reached, there is a color point reached in Fig. 3. In fact, each
color bar represents a color point in the space of colors. This could mean that
we are using the functor induced by any of the continuous maps from timbres to
colors (Sect. 2.3), according to Sect. 3.2. In Fig. 3, the color squares correspond
to the modulation index I values n/10 for integers n from 0 to 200. There, the
modulation index increases from left to right and from top to bottom. Then one
uses conversion to RGB for screen representation (Sect. 2.1).

7 This defines a continuous map [0, 20] × R −→ R, so the exponential transpose
[0, 20] −→ R

R, which is a path, is continuous.
8 The audio file, in which we identify the increasing modulation index with time (in

seconds), can be accessed from the link https://soundcloud.com/maria-mannone/
fm-path/s-cFJ7kNrqJjs?.

https://soundcloud.com/maria-mannone/fm-path/s-cFJ7kNrqJjs?
https://soundcloud.com/maria-mannone/fm-path/s-cFJ7kNrqJjs?
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The Python codes for the FM path and color path are available at https://
github.com/medusamedusa/color gesture.

The results agree with Caivano’s reflections [5]: the closer the sound to a white
noise, the closer the color to white light, with additive color mixing. The inverse
choice could associate the richness of harmonics (especially in a low-register
orchestral range) with a darker color, more like in painting, with subtractive
color mixing. In the first case, primary colors are red, blue, and green, and their
sum gives white; in the second case, primary colors are red, yellow, and blue,
and their sum gives black. In gestural chromo-similarity (Sect. 4.1), in analogy
with painting we may use the second option (subtractive), see an example in
[27].

Fig. 2. An example of timbre path.
The spectrogram is obtained with Son-
icVisualiser. The darker the color, the
closer the sound to silence.

Fig. 3. Visual color gradient correspond-
ing to the timbre path of Fig. 2. Each
color corresponds to a value of the mod-
ulation index I.

4 Gestural Considerations

We close this paper with some gestural reflections that may enrich the color and
timbre relation theory.

4.1 From Paths to Gestures and Gestural Similarity

Color and timbre paths (or 1-morphisms) are particular cases of gestures [1,2,
7,17,25,28,31], which are informally diagrams (shaped by a digraph) of paths in
a topological space. Continuous maps induce new ones between respective spaces
of gestures, as we explain in Sect. 4.2, so there are correspondences between color
gestures and timbre gestures.

We can talk of gestural similarity if musical sequences (auditory domain)
and simple sketches (visual domain) appear as being produced by the same
generator gesture [24]. This possible definition is supported by the hypothesis of
a supramodal brain [36]. Thus, when gestures in the space of colors and gestures
in the space of timbres show perceptive analogies, we can talk of chromo-gestural
similarity.

https://github.com/medusamedusa/color_gesture
https://github.com/medusamedusa/color_gesture
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4.2 Induced Maps Between Spaces of Gestures

Let Γ be a digraph. A continuous map f : X −→ Y induces a new one9 between
topological spaces of Γ -gestures, namely

Γ � F : Γ � SX → Γ � SY : ((ca)a∈A, (xv)v∈V ) �→ ((fca)a∈A, (f(xv))v∈V ) ,

where Γ � SX (Γ � SY ) is the space of Γ -gestures in X (Y ) (respectively).
As an example, the Attack-Delay-Sustain-Release (ADSR) envelope of a

sound is a gesture shaped by the digraph • → • → • → • → • in the amplitude-
time space. The envelope has a main role in timbre perception. We can transfer
the envelope to the color space by regarding it as an intensity gesture of a single
color. In fact, this remark may raise new questions regarding color envelopes,
and transitions effects from a color to another one.

Color and timbre ramifications, which are gestures, are interesting objects
to study and apply to composition. Shaping the orchestral colors, in particular,
is a distinctive mark of a composer’s style, of a genre, of an epoch. Thus, the
proposed ideas can be developed in terms of machine learning as exploited in
music information retrieval. Vice versa, a creative interface may be developed
starting from the proposed theoretic tools.

Note that the objects and 1-morphisms of the ∞-groupoid Sing(Γ � SX) are
Γ -gestures in X and paths between gestures, respectively. This groupoid allows
one to generalize the idea of timbre paths to transformations between timbres
with different ADSR envelopes (loudness profile over time). We may, for example,
keep the timbre of a musical instrument while changing its envelope, or keep the
envelope and change the timbre, thus performing separate transformations of the
envelope and timbre in terms of spectral superposition. As a final abstraction,
Γ � F induces a functor between ∞-groupoids Sing(Γ � SX) −→ Sing(Γ � SY ),
which would help transfer envelope transitions between the color and timbre
domains.

5 Conclusion

The proposed categorical framework could be a way to understand the relation
between color and timbre, complementing classical approaches from physics. This
framework is based on structural analogies between the perceptual domains of
hearing and vision. It is interesting to ask to what extent categorical models
could be independent from perception and classical models, taking into account
the computational advantages of the latter.

We also proposed a gestural extension of the categorical framework to capture
gestural similarities between the musical and auditory domains.

As a possible, alternative structure to look at, we could consider the Moore
paths as 1-cells, in order to have a strictly associative composition, taking homo-
topies of homotopies for the 2 cells [12]. Given that we are interested in invertible
9 In essence, it is continuous because each component (composition with f for arrows

and f for vertices) is.
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arrows, another suitable structure appears to be the bigroupoid [15], that is, a
weakly-invertible bicategory. Concerning the spaces, we could also consider the
Euclidean space of colors (as RGB) and the Euclidean space of timbres as defined
by Grey [13]. In a (bi)groupoid, all arrows are invertible. In this way, the points
(single colors, single timbres) are 0-cells; the color gestures and timbre gestures
are the paths, the 1-cells; the bands (hypergestures in the sense of [31]) are the
2-cells. Path associativity is verified for equivalence classes of homotopies. The
model of bigroupoid for color and timbre gestures is discussed in detail in [27].

However, we stress the fact that ∞-categories simplify the involved axioms
and computations in higher category, 2- and bi-categories included.

This research could lead to signal processing practical implementations, and
it could provide a theoretical framework to analyze experiments in the domain
of musical timbre. On the creative side, other possible directions may involve the
development of interfaces for composers to manipulate timbres through symbols
and/or color references, and for visual artists to do the inverse.

The possibility of translating structures from one domain to another one,
provided that some cognitive conditions are verified [29], can open scenarios
also for disability studies, where people with visual impairment can benefit from
auditory-accessible interfaces, and people with auditory impairment can bene-
fit from visually-accessible interfaces [5, pp. 128–129]. The reference to gesture
and touch regarding intensity, organization, and time distribution of stimuli can
inspire even more audacious applications for touch-based interfaces for deaf-blind
people.

Thus, a simple question such as “can we join timbres and colors?” can open
the way to striking applications to improve people’s lives.

6 Glossary

Bicategory. In a bicategory, the morphism composition is not associative, but
only associative up to an isomorphism. This notion has been introduced by
Bénabou in 1967 [3]. The objects are the 0-cells, the morphisms are the 1-cells,
and the morphisms between morphisms are the 2-cells.

Bigroupoid. A bigroupoid is a bicategory whose “2-cells are strictly invertible,
and the 1-cells are invertible up to coherent isomorphism” [15].

Compact-Open Topology. The subbasic opens of the compact-open topology
on the space of continuous maps R

R are those of the form

{f : R −→ R continuous | f(K) ⊆ U},

where K is compact (closed and bounded) in R and U is open in R. This makes
R

R an exponential in the category of topological spaces. The fact that Top is
not Cartesian closed does not imply the non-existence of RR.
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Simplicial Category. Denote by [n] the ordered set (ordinal) {0, 1, . . . , n} for
n ∈ N. The simplicial category Δ has as objects all [n] for n ∈ N and as mor-
phisms all order-preserving maps between them.

Standard Simplex (Functor). For each n ∈ N, we define the standard
n-simplex Δn as the set

{(t1, . . . , tn) | 0 ≤ t1 ≤ · · · ≤ tn ≤ 1}.

The standard n-simplex is a subspace of Rn and this construction defines a
standard simplex functor Δ(−) from the simplicial category to the category
of topological spaces, which sends an order-preserving map α : [n] −→ [m] to
the appropriate continuous map Δα : Δn −→ Δm sending the ith vertex (with
n − i zeros) to the α(i)th one. Examples: Δ0 is a singleton, Δ1 is the interval
[0, 1] in R; Δ2 is the triangle with vertices (0, 0), (0, 1), and (1, 1) in R

2; and Δ3

is the tetrahedron with vertices (0, 0, 0), (0, 0, 1), (0, 1, 1), and (1, 1, 1) in R
3.

Simplicial Set. Functor from the opposite Δop of the simplicial category to
the category Set of sets. Example: The singular complex Sing(X) of a topo-
logical space X.

Singular Complex. The singular complex of a topological space X, denoted
by Sing(X), is the simplicial set Top(Δ(−),X), where Δ(−) is the standard
simplex functor. Examples: a 0-simplex of Sing(X) is a point of X, a 1-simplex
of Sing(X) is a path in X.

Infinity-Category. A simplicial set S is a set such that given n ∈ N and k
with 0 < k < n, for each subset {ai | 0 ≤ i ≤ n; i 
= k} of S([n − 1]) satisfying
the identities

di(aj) = dj−1(ai) (i < j; i, j 
= k),

there is an element a ∈ S([n]) such that di(a) = ai for i 
= k. If this property
also holds for k = 0 and k = n, then we say that S is an ∞-groupoid. Example:
The singular complex of a topological space is an ∞-groupoid.

Topological Space of Gestures. Let Γ be a digraph (A, V, d0, d1) and X a
topological space. The space of Γ -gestures in X, denoted by Γ � SX (where �
stands for transversality), is the subspace of the product space (compact-open
topology on XI) (

XI
)A × XV

consisting of all sequences ((ca)a∈A, (xv)v∈V ) such that ca(i) = xdi(a) for i = 0, 1.
We say that such a sequence is a Γ -gesture in X.
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Abstract. The paper extends the transformational approach to pair-
wise well-formed (PWWF) modes, represented as words over a 3-letter
alphabet. In particular it addresses open problems arising from an earlier
approach (Noll, T and D. Clampitt. 2018. “Kaleidoscope substitutions
and pairwise well-formed modes: Major-Minor duality transformationally
revisited”, Journal of Mathematics and Music. 12(3)), wherein kaleido-
scope transformations were shown to generate PWWF modes, but it was
not yet shown that all PWWF modes could be so generated. This gap
is filled. A further problem is that the kaleidoscope transformations are
not closed under composition. The final section introduces a new con-
struction for the generation of PWWF words/modes, transformations of
words on a 4-letter alphabet. A strongly-supported conjecture is that
these transformations form a monoid.

Keywords: Pairwise well-formed scales · Kaleidoscope
transformations · Diatonic and syntonic modes · Sturmian morphisms ·
Algebraic combinatorics on words

1 Motivation

The present paper revisits some open issues arising from [8], where its authors—
Noll and Clampitt—propose a quite convoluted transformational approach to the
study of pairwise well-formed modes for a brief introduction to PWWF scales
see [3]. This concept builds upon the more elementary concept of well-formed
modes, and the transformational modeling of the pairwise well-formed modes
builds upon an earlier transformational modeling of the well-formed modes in
terms of Sturmian morphisms (see [7] or [5] for the mathematical foundations
of this approach and see [4] for the music-theoretical application).

The mathematical objects under investigation are words, which encode modal
interval species in terms of their step interval patterns. The underlying alphabet
for these words consists of as many letters as there are different step intervals
in the mode. For the encoding of the Glarean modes Ionian, Dorian, Phrygian
etc., only two different letters are needed. One—say a—for the major second
and another—say b—for the minor second.
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The step interval patterns of the pairwise well-formed modes consist of three
different step intervals, which leads to their study in terms of three-letter-words,
i.e., words which are made of the three letters a, b, c. The attribute pairwise
refers to the projections of a given three-letter-word to the two-letter words,
which arise whenever two letters (a pair) out of the three letters are identified
with one another. This happens, for example, when the word acbacab is pro-
jected to aabaaab, where every instance of c is replaced by an instance of a. The
condition of well-formedness must be satisfied by all these projections. Recall
that a two-letter word is well-formed if it is conjugate to a Christoffel word.
Roughly speaking, this means that the modes, which exemplify these words
through their scale step patterns, behave like the diatonic modes. They need to
be well-formedly generated, i.e., their generating interval must be stable in that
all its instances have the same span in the sense of step-counting.

A prominent example is Zarlino’s major mode (modo sintonico diatonico)
(see Fig. 1) with the step interval pattern acbacab whose diatonic and syntonic
projections πc→a(acbacab) = aabaaab and πc→b(acbacab) = abbabab both satisfy
the condition of well-formedness (for a detailed investigation of this example see
[9]).

Fig. 1. Zarlino’s major scale (just intonation major) as a PWWF mode

Most of the new ideas of the present article emerged from the investigation of
a self-similar manifestation of Zarlino’s major mode alongside with its syntonic
and diatonic projections within a regular 41-tone system. In Z41 one finds specific
realizations of all three modes: syntonic, diatonic and major (=syntonic diatonic)
and the last is also a superposition of the the latter two:

Mode Syntonic Diatonic Major

Generic step pattern a b b a b a b a a b a a b a a c b a c a b

Specific steps in Z41 (7, 5, 5, 7, 5, 7, 5) (7, 7, 3, 7, 7, 7, 3) (7, 6, 4, 7, 6, 7, 4)

The central subject of the investigations in [8] is the concept called kaleido-
scope substitution, which characterizes a certain subclass of substitutions on a



142 T. Noll and D. Clampitt

monoid A∗ of words on the three-letter alphabet A = {a, b, c}. And the kaleido-
scope transformations are meant to generate all these step-interval patterns as
images f(abc) of the starting word abc. Under this perspective each pairwise well-
formed mode gains a three-fold division on the form f(a)|f(b)|f(c) into three
interval species. The motivation for the usage of the term kaleidoscope is born of
the idea to lift the very definition of Pairwise Well-Formedness to the transfor-
mational language. The comparison of these transformations with some patterns
in a system of mirrors (a kaleidoscope) is based upon the observation that these
3-fold divisions are not just analogues to the 2-fold authentic and plagal divisions
of the well-formed modes, but rather compound configurations thereof. And this
extends to the transformations: Kaleidoscope transformations arise somehow by
gluing together two Sturmian morphisms, which themselves are closely related
to each other. One difficulty of the paper arises from the fact that—unlike the
Sturmian morphisms—the kaleidoscope transformations do not form a group or
monoid. To control their extension requires a troublesome engagement with gen-
erative grammars. On the one hand, it is desirable to overcome this difficulty
and to reformulate the entire approach in a more elegant way. Section 5 is dedi-
cated to such a project. On the other hand the paper leaves—despite its length of
nearly 40 pages—a crucial argumentative gap. The authors indeed show, that for
every kaleidoscope transformation κ the images κ(abc) are pairwise well-formed
modes. But what they claim and do not explicitly demonstrate is that every
pairwise well-formed word w can actually be expressed as an image w = κ(abc)
of a suitable kaleidoscope transformation. Sections 2, 3, 4 and 5 of the present
paper deal with the task to close this gap. Section 4 bridges the two parts and
brings forward a new idea about the construction of specific PWWF scales from
specific instances of their syntonic and diatonic projections.

2 Letter Frequencies and Periods in Pairwise
Well-Formed Words

We consider the three-letter alphabet A = {a, b, c}. Let A∗ and {a, b}∗ denote
the monoids of words in the three letters a, b, c and the two letters a, b, respec-
tively. Three-letter-words can be reduced to two-letter-words by means of letter
projections:

Definition 2.1. Let x, y and z denote the three different letters of A. Let πx→y :
A∗ → {y, z}∗ denote the substitution which is induced by the projection of the
letter x to the letter y: πx→y(x) = y, πx→y(y) = y, πx→y(z) = z. The three
letters x, y and z are called the abandoned, receiving and uninvolved letters,
respectively. Let further Exy : A∗ → A∗ denote the substitution which is induced
by the exchange of the letters x and y.

In particular, we consider the three projections

πc→b, πc→a, πc→a ◦ Ebc : {a, b, c}∗ → {a, b}∗.

We consider the set of all non-singular pairwise well-formed (PWWF) words
over the 3-letter alphabet {a, b, c}.
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Definition 2.2. A word w ∈ A∗ is called pairwise well-formed (PWWF), if all
three projections πc→b(w), πc→a(w), and πc→a(Ebc(w)) are well-formed, i.e., if
they are standard words (images of ab under compositions of G,D, and E) or
conjugates thereof. πc→b(w) is called the syntonic and πc→a(w), πc→a(Ebc(w))
are called the first and second diatonic projections of w, respectively.

It is known from [2] that with the single exception of the word abacaba (or some
variant with permuted letters) pairwise well-formedness implies that precisely
two of the three letters have the same multiplicity. Thus—excluding the singular
case—but without further loss of generality, we may restrict our investigation
to the set Ω ⊂ {a, b, c}∗ of all PWWF words w, satisfying |w|b = |w|c, and in
the rest of this article all instances of the term pairwise well-formed should be
understood as non-singular pairwise well-formed.

Consider a PWWF word w ∈ Ω. The two letter projections u = πc→b(w)
and v = πc→a(w) are called the syntonic and (first) diatonic projections of w,
respectively. Their well-formedness implies that the multiplicities |u|b and |v|b
of the letter b are both co-prime with the word length n = |w| and so we may
consider their inverses p = |u|−1

b and q = |v|−1
b mod n. The two natural numbers

p and q (i.e., the smallest positive representatives of the residue classes |u|−1
b and

|v|−1
b mod n) are called the authentic periods of the words u and v respectively.

The numbers n − p and n − q are called their plagal periods, accordingly.

Proposition 2.3. For every PWWF word w ∈ Ω precisely one of the following
properties holds: Either the authentic period of the diatonic projection is twice
the authentic period of the syntonic projection: q = 2p or the plagal period of the
diatonic projection is twice the plagal period of the syntonic projection: n − q =
2(n − p).

Proof. From the initial assumption |w|b = |w|c we may conclude that |u|b = 2|v|b
and hence (taking into account that n must be odd) we see that

p = |u|−1
b = (2|v|b)−1 = 2−1q mod n, i.e., q = 2p mod n.

We also observe that

n − q = n − 2p mod n = 2n − 2p mod n = 2(n − p)mod n.

Precisely one of the two equations, either q = 2p or n − q = 2(n − p) holds
also in natural numbers (rather than only mod n), depending whether q < n − q
or n − q < q.

The usage of the term period for these inverse letter multiplicities p and q or
their n-complements n − p and n − q is motivated by the desire to represent
certain syntonic and diatonic projections as images under Sturmian morphisms.

Definition 2.4. A PWWF word shall be called pairwise morphic, if its syntonic
and diatonic projections are morphic (i.e. images f(ab) under suitable Sturmian
morphisms f ∈ St). A pairwise morphic word w is said to be authentic if the
authentic period of the diatonic projection is twice the authentic period of the
syntonic projection, otherwise it is said to be plagal.
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This distinction between authentic and plagal pairwise morphic words turns
out to be equivalent to the distinction between special and non-special Sturmian
morphisms for their projections.

Proposition 2.5. A pairwise morphic word is authentic iff its (syntonic and
diatonic) projections are images f(ab) under special Sturmian morphisms f ∈
〈G,D〉. In other words, it is plagal iff its projections are images f(E(ab)) = f(ba)
under non-special Sturmian morphisms f ◦ E with f ∈ 〈G,D〉.
Proof. In the case of a special Sturmian morphisms f with

det(Mf ) = det

( |f(a)|a |f(b)|a
|f(b)|a |f(b)|b

)
= |f(a)|a|f(b)|b − |f(b)|a|f(a)|b = 1

the primary period |f(a)| is the multiplicative inverse mod n = |f(ab)| of the
secondary letter multiplicity |f(ab)|b, because

|f(a)||f(ab)|b = (|f(a)|a + |f(a)|b)(|f(a)|b + |f(b)|b)
= |f(a)|a|f(a)|b + |f(a)|a|f(b)|b + |f(a)|2b + |f(a)|b|f(b)|b
= 1 + |f(a)|b(|f(a)|a + |f(b)|a + |f(a)|b + |f(b)|b)
= 1 + |f(a)|b|f(ab)| = 1mod n.

Analogously, one shows that the secondary period |f(a)| is the multiplicative
inverse of the primary letter multiplicity |f(ab)|a.

In Definition 2.6, Proposition 2.7, and Corollary 2.8 we restrict our attention
to standard morphisms. The corollary restates a finding from [8], namely that
the syntonic and first diatonic projections are “in sync” in the sense that one
of them is a standard morphism iff the other one is. It follows further from
proposition 6.16 in [8] that in this case the second diatonic projection is also
morphic. All this motivates the following definition.

Definition 2.6. For a given PWWF word w′ we call the pairwise morphic con-
jugate w, whose syntonic projection πc→b(w) is a standard word, the associated
standard conjugate of w′.

In the sequel we will assume that the standard conjugate w of a PWWF word
ends either on ab or ba. To achieve this one may – without loss of generality –
chose the word Ecb(w) instead.

Proposition 2.7. The standard conjugate w of a PWWF word is the unique
conjugate of the form w = vab or w = vba, for which v is a palindrome.

Proof. Palindromicity implies a literal correspondence between the elements of
v and its reverse ṽ. In the very middle of v (which is of odd length) there must
be an instance of either b (when |w|b is even) or c (when |w|b = |w|c is odd).
Due to the strict alternation of bs and cs within v, the palindromicity property
of πc→b(v) still holds in v itself, (as cs then correspond to cs and bs to bs). The
uniqueness of this property among the conjugates of w follows from the fact
that the central words πc→b(v) and πc→a(v) are the only palindromic factors of
length n − 2 in w (seen as a cyclic word).
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Corollary 2.8. For the standard conjugate w of a PWWF word both projections
πc→b(w) (syntonic) and πc→a(w) (first diatonic) are standard (either both special
or both non-special).

Proof. Suppose that w = vab or w = vba for a palindrome v. Therefore both
projections πc→b(v) and πc→a(v) are central words and the suffix either ab or ba
is shared by πc→b(w) and πc→a(w)

It is our goal to show that the standard conjugate w of any given PWWF word
takes the particular form w = κf (cba) for a suitable kaleidoscope substitution
κf . This substitution will be obtained from the particular standard morphism f ,
which generates the syntonic projection of w. But before having a closer look at
the syntonic and diatonic morphisms in the subsequent section, we have a look
at another type of projection, namely the deletion of all instances of the letter c
see also [11]:

Definition 2.9. For any word w ∈ A∗, let w̃ ∈ {a, b}∗ denote the reduction
of w to the word in the letters a and b, which remains after the deletion of all
instances of the letter c in w.

Proposition 2.10. If w ∈ Ω is a PWWF word (with |w|b = |w|c) ending on
the letter b, we can express its (first) diatonic projection by virtue of πc→a(w) =
G(w̃).

Proof. The diatonic projection v = πc→a(w) is of the form v = ae1bae2b . . . aekb,
where k = |w|b. And the exponents of a satisfy e1, . . . ek ≥ 1,
because in w every corresponding factor contains an instance of c. And
for w̃ we have w̃ = ae1−1bae2−1b . . . aek−1b, accordingly. And obviously:
G(ae1−1bae2−1b . . . aek−1b) = ae1bae2b . . . aekb.

Corollary 2.11. If w ∈ Ω is a PWWF word (with |w|b = |w|c) its reduction w̃
is (non-degenerate) WF.

Proof. Let w′ denote a conjugate of w, which is ending on the letter b. Then
w̃′ = G−1(πc→a(w′)) must be well-formed, because πc→a(w′) is well-formed. And
hence, πc→a(w) must also be well-formed.

3 Syntonic and Diatonic Morphisms Revisited

Definition 3.1. A Sturmian morphism f is called proto-syntonic, iff the letter
b occurs in f(b) an even number of times, i.e. iff |f(b)|b is even. A Sturmian
morphism f is called proto-diatonic, iff the letter a occurs in f(a) an even number
of times, i.e. iff |f(a)|a is even.

Definition 3.2. A Sturmian morphism g is called syntonic, iff it is conjugate to
a standard morphism of the form f · G, for a proto-syntonic standard morphism
f . A Sturmian morphism g is called diatonic, iff it is conjugate to a standard
morphism of the form G · f for a proto-diatonic standard morphism f .
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Proposition 3.3. In a syntonic morphism f the multiplicity |f(a)|b of the letter
b in the image f(a) is odd.

Proof. The incidence matrix Mf is of the form

Mf =
(

r s
t 2u

)
·
(

1 1
0 1

)
=

(
r r + s
t t + 2u

)
.

Hence Mf can only be in GL2(Z) if t = |f(a)|b is odd.

Proposition 3.4. Any given PWWF word w ∈ Ω is conjugate to a PWWF
word w′, whose diatonic projection is of the form πc→a(w′) = f(ab) for a suitable
diatonic standard morphism f .

Proof. We may choose a conjugate w′ of w such that v = πc→a(w′) = f(ab) for a
standard morphism f . And we know (Proposition 2.3) that |f(a)| must be even.

And therefore the left column of the incidence matrix Mf =
( |f(a)|a |f(b)|a

|f(a)|b |f(b)|b
)

of f must add up to an even number. And from applying Proposition 2.10 to
the incidence matrices we conclude that Mf must be of the form

Mf =
(

1 1
0 1

)
·
(

r′ s
t u

)
=

(
r′ + t s + u

t u

)
.

And when (r′ + t) + t = r′ + 2t is even, r′ must be even itself. Hence, Mf is
the incidence matrix of a diatonic standard morphism.

Definition 3.5. (Graham construction) Consider a syntonic standard mor-
phism f : {a, b}∗ → {a, b}∗. From the two-letter word w = f(ab) =
wnwn−1 . . . w2w1 of length n we construct the three-letter word w≺ of the same
length by replacing every other instance of the letter b with the letter c (starting
with b on the right): w≺ = vnvn−2 . . . v2v1 ∈ {a, b, c}∗:

vk :=

⎧⎨
⎩

a if wk = a,
b if wk = b and |wk . . . w1|b is odd
c if wk = b and |wk . . . w1|b is even.

The (r, r, s)-partitioning of w≺, with r = |f(a)| and s = n − 2r, defines a
substitution κf : A∗ → A∗, namely

κf (c) = vn . . . vn−r, κf (b) = vn−r−1 . . . vn−2r, κf (a) = vn−2r−1 . . . v1.

The substitution κf shall be called the standard kaleidoscope substitution
derived from f .

Proposition 3.6. Consider the standard conjugate w of a PWWF word and let
f denote the associated standard morphism for which πc→b(w) = f(ab). And let
κf denote the associated kaleidoscope substitution. Then f is a syntonic standard
morphism in the sense of Definition 3.2 and w = κf (cba).
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Proof. In accordance with Corollary 2.8 the first diatonic projection is the image
of a standard morphism, i.e. πc→a(w) = g(ab). In accordance with Proposition
3.4, this is a diatonic standard morphism in the sense of Definition 3.2. In accor-
dance with propositions 7.1 and 7.2 in [8] we can conclude that the standard
morphism f is also a syntonic morphism in the sense of Definition 3.2, and
therefore proposition 8.2. in [8] implies that w itself is of the form w = κf (cba).

To exemplify our finding it is useful to inspect two particularly small instances
of PWWF words:

Remark 3.7. To make the exceptions abc and bcabc in [8] was unnecessary.

First we consider (the conjugate of abc) w = bca. u = πc→b(bca) = bba
and v = πc→a(bca) = baa. |u|b = 2 with |u|−1

b = 2 mod 3 and |v|b = 1 with
|v|−1

b = 1 mod 3. And in fact 2 · 2 = 1 mod 3. This is a plagal division, because
2 · (3 − 2) = (3 − 1) holds in natural numbers. The syntonic mode is b|ba with
the syntonic incidence matrix

Mu =
(

0 1
1 1

)
=

(
0 1
1 0

)
·
(

1 1
0 1

)
=

(
0 1
1 2 · 0

)
· R

and the diatonic mode is ba|a with the diatonic incidence matrix

Mv =
(

1 1
1 0

)
=

(
1 1
0 1

)
·
(

0 1
1 0

)
= R ·

(
2 · 0 1
1 0

)
.

Both matrices have determinant −1 in accordance with the plagal divisions.
Now consider w = bcabc. u = πc→b(bcabc) = bbabb and v = πc→a(bcabc) =

baaba. ub = 4 with u−1
b = 4 mod 5 and vb = 2 with v−1

b = 3 mod 5. And in fact
2 · 4 = 3 mod 5. This is a plagal division, because 2 · (5 − 4) = (5 − 3) holds
in natural numbers. The syntonic mode is b|babb with the syntonic incidence
matrix

Mu =
(

0 1
1 3

)
=

(
0 1
1 2

)
·
(

1 1
0 1

)
=

(
0 1
1 2 · 1

)
· R

and the diatonic mode is ba|aba with the diatonic incidence matrix

Mv =
(

1 2
1 1

)
=

(
1 1
0 1

)
·
(

0 1
1 1

)
= R ·

(
2 · 0 1
1 1

)
.

Also here, both matrices have determinant −1 in accordance with the plagal
divisions.

4 Specific PWWF Superpositions of Specific Syntonic
and Diatonic Modes

A conclusion of the above findings is the possibility to construct specific PWWF
words as superpositions of specific syntonic and diatonic WF words. To illustrate
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this, we inspect the three types of PWWF words of length 7. Table 1 collects all
three types of PWWF words of length 7 through their kaleidoscope transforma-
tions and displays their corresponding syntonic and diatonic projections along
with the decomposition of their incidence matrices.

Table 1. Three types of PWWF words of length 7 with their syntonic and diatonic
projections and incidence matrices.

w b|c||bacbc ac|ba||cab baa|aca||a
πc→b b|bbabbb ab|babab baa|abaa(

0 1

1 5

)
=

(
0 1

1 4

)
· R

(
1 2

1 3

)
=

(
1 1

1 2

)
· R

(
2 3

1 1

)
=

(
2 1

1 0

)
· R

πc→a ba|baaba aaba|aab aaabaa|a(
1 3

1 2

)
= R ·

(
0 1

1 2

) (
3 2

1 1

)
= R ·

(
2 1

1 1

) (
5 1

1 0

)
= R ·

(
4 1

1 0

)

The left side of Fig. 2 conveys the essential combinatorics of the various
types of well-formedly and ill-formedly generated scales with up to seven tones
per octave. Each of the concentric circular rings represents the circular one-
parameter-family of generated scales of a fixed cardinality n = 2, 3, 4, 5, 6, 7.
Each generator 0 ≤ g < 1 is represented by an angle, like the phase of a complex
number. The angles are measured counterclockwise and the zero-angle corre-
sponds to the right side of the horizontal middle line. The gray zones within
these circular rings represent all g, generating specific well-formed scales of the
same type. Each type (=zone) is labeled with a ratio k

n , where n denotes the
number of scale steps per octave and k the shared number of steps per each
instance of the generator. White zones represent generators of ill-formed n-note
scales. The axial mirror symmetry along the horizontal middle line exemplifies
the redundancy between the generators g and co-generators 1 − g Thus, the
six gray zones within the outer circle ring, represent essentially three types of
well-formed seven-note scales (such as listed in Table 1). The same arrangement
of well-formed and ill-formed phase-zones for generated 7-note scales have been
transferred, both to the horizontal and vertical coordinate axes of the square
on the right side of Fig. 2. Each point of that square thus represents a pair
(f, g) consisting of two well-formed modes of the same cardinality. Gray or col-
ored rectangles represent families of such pairs, where both of these modes are
well-formed. The colored rectangles represent precisely the zones of syn-diatonic
pairs. Each point in a colored rectangle represents a possible superposition of a
specific syntonic and a specific diatonic mode.
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Fig. 2. Types of PWWF 7-note scales and their superpositions.

The specific heights of Zarlino’s modo sintonico diatonico are h(a) = Log2( 98 ),
h(c) = Log2( 109 ), h(b) = Log2( 1615 ). The augmented prime c − b has height h(c −
b) = Log2( 2524 ). It is the superposition of the syntonic and diatonic scales with
the following step sizes:

adia = 1
7 + 4

7Log2( 2524 ) ∼ 0.176511, bdia = 1
2 (1 − 5a1) ∼ 0.0587233

asyn = 2a − adia ∼ 0.163339, bsyn = 2c − adia ∼ 0.127496.

5 Supersymmetries: Exploring a Refined Graham
Construction

The term Graham Construction (see also Definition 3.5) has recently been men-
tioned in [1] with reference to the early paper [6]. In Definition 3.5 it refers to
a method for turning binary words into ternary words by replacing every other
instance of one of the two letters by a third one. The present section relies upon
a further refinement of this basic idea.

An obstacle for a full appreciation of the kaleidoscope transformations in
[8] is the fact, that they are not closed under composition. This closing section
presents an improved approach, where this obstacle can be overcome.
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While the letters b and c form a symmetric pair in accordance with the
Graham construction of the kaleidoscope transformations from syntonic mor-
phisms, the behavior of the letter a appears to be more autonomous. A higher
amount of symmetry can therefore be achieved by adding a companion let-
ter d to the letter a. This new letter can be identified with a whenever it
comes to the consideration of a PWWF mode, but it can still have a differ-
ent transformational behavior. The following example shall illustrate this idea.
Concatenating the substitution κ(b) = ba, κ(c) = ca, κ(a) = bac with
itself yields: κ2(b) = babac, κ2(c) = cabac, κ2(a) = babacca. The image
κ(bca) = bacabac is a PWWF word. But the image κ2(bca) = babaccabacbabacca
is not. In particular, the alternating order of the occurrences of the letters
b and c is violated. Also modifications of this substitution, such as κ(b) =
ca, κ(c) = ba, κ(a) = cab lead to analogous violations. In this case we have
κ2(b) = bacab, κ2(c) = cacab, κ2(a) = bacabca with the non-PWWF image
κ2(bca) = bacabcacabbacabca.

There is a possibility to overcome this obstacle by considering suitable trans-
formations on 4-letter words. To understand the underlying idea we recall the
following property of the kaleidoscope transformations: Consider a PWWF word
w and a kaleidoscope substitution κ such that w = κ(bca) in the sense of [8].
Further suppose that κ is obtained from the Graham construction applied to a
syntonic standard morphism f on words on the letters a and b. (i.e. the syn-
tonic projection of w is of the form πc→b(w) = f(ab). In this case we observe
that κ(c) = E(bc)(κ(b)), where E(bc) denotes the letter exchange automorphism
between b and c on {a, b, c}∗. This is an immediate consequence of (1) the Gra-
ham construction, namely to replace ever other instance of b with and instance
of c, (2) that f(a) is a prefix of f(b) and (3) that |f(a)|b is odd (Proposition
3.3). To introduce a fourth letter d as a symmetric companion to the letter a in
substitutions ξ, requires two kinds of decisions:

1. Which instances of a in ξ(b), ξ(c) and ξ(a) shall be replaced by d?
2. How should ξ(d) be defined?

Before answering the first question for ξ(b) and ξ(a) in Definition 5.1, we may
already extend the equation κ(c) = E(bc)(κ(b)) to

ξ(c) := E(bc)(ad)(ξ(b)), ξ(d) := E(bc)(ad)(ξ(as)).

In other words, the images ξ(c) and ξ(d) are essentially the same as ξ(b) and
ξ(a), but with all instances of b being exchanged with c (and vice versa), and all
instances of a being exchanged with d (and vice versa). The following definition
refines definition 8.1. from [8]:

Definition 5.1 (Two-fold Graham construction). Consider a syntonic stan-
dard morphism f : {a, b}∗ → {a, b}∗. From the two-letter word w = f(ab) =
w1w2 . . . wn of length n we construct the four-letter word w≺ of the same length
by replacing every other instance of the letter b with the letter c (starting from c)
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and all immediately following instances of the letter a with d: w≺ = v1v2 . . . vn ∈
{a, b, c, d}∗:

vk :=

⎧⎪⎪⎨
⎪⎪⎩

c if wk = b and |w1 . . . wk|b is odd.
d if wk = a and |w1 . . . wk|b is odd.
b if wk = b and |w1 . . . wk|b is even.
a if wk = a and |w1 . . . wk|b is even.

With the help of the (r, r, s)-partitioning of w≺, with r = |f(a)| and s = n−2r,
we define the associated supersymmetry σf : {a, b, c, d}∗ → {a, b, c, d}∗ by virtue
of:

σf (c) = v1 . . . vr, σf (b) := E(bc)(ad)(σf (c)),
σf (a) = v2r+1 . . . vn, σf (d) := E(bc)(ad)(σf (a)).

Definition 5.2. For any substitution f : {a, b, c, d}∗ → {a, b, c, d}∗, let wf :=
πd→a(f(cba)) denote its associated three-letter-trace.

The following proposition follows from the construction of the supersymme-
tries:

Proposition 5.3. Consider a syntonic standard morphism f . Then the word
wσf

is PWWF.

The major motivation for the present section is the following Result. For a
proof and further exploration of this proposition see [10].

Proposition 5.4. Consider two syntonic standard morphisms f, g : {a, b}∗ →
{a, b}∗ together with their associated supersymmetries σf and σg. Write f =
f ′ · E · G with the associated proto-syntonic standard morphism f ′. Then we
obtain for the concatenation σf · σg = σf ′g. In particular, this concatenation is
a supersymmetry as well.
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Abstract. In this paper we introduce methods to model brief audio sig-
nals with cubic splines, presupposing a fundamental frequency f0. The
signal is broken up into cycles using zero-crossings, and each cycle is
modeled with a C2 cubic interpolating spline based on some target num-
ber of interpolation points. We reduce the data in the model by reducing
the number of key cycles which are used to generate intermediate cycles
by the method of interpolation of B-spline coefficients, or cycle interpo-
lation.

Keywords: Spline · Audio · Signal · Interpolation · Cycle

1 Introduction

1.1 Motivation and Background

The modeling project which we summarize in this paper has grown out of col-
laboration on the research and software project UPISketch [2], which provides a
framework for graphical manipulation of sound. The UPISketch software makes
use of splines to form models of curves drawn by the user. These graphical
gestures are translated through the spline model into musical gestures which
modulate elements such as pitch, or fundamental frequency. The spline repre-
sentation can be thought of as a discrete set of B-spline coefficients, which is an
intermediary between the graphical and musical gestures. In this paper we focus
on the modeling of timbre with splines, through the evolution of cycles. The
notion of cycles, instead of periods, is meant to imply that we expect that real-
istic waveforms will be at best almost periodic, but not exactly. So, the B-spline
coefficients will form a discrete representation of timbre.

The use of piecewise polynomials, or splines, to model audio signals has its
origins in the familiar piecewise linear audio generators such as square, triangle
and sawtooth waveforms. Higher degree piecewise polynomial models, in partic-
ular cubic splines, were used as the basis for waveforms in Nick Collins’ work [3],
in which a single cycle, or period, of the waveform can be manipulated by the

Supported by DigiPen Institute of Technology.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 155–167, 2022.
https://doi.org/10.1007/978-3-031-07015-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07015-0_13&domain=pdf
https://doi.org/10.1007/978-3-031-07015-0_13


156 M. Klassen

movement of control points. Collins developed software which provides the user
with the ability to modulate the timbre of the resulting waveform by moving
control points. Additionally, Collins uses the analogy of key-framing from ani-
mation to “morph” the shape of successive cycles between two key cycles. Our
approach is similar but begins with the approximation of a brief audio sample
with interpolating cubic splines. In this way the goal is to start with something
which models a recorded sound quite closely, but might also be used for synthesis.

In addition to timbral shaping, B-splines have been used in the modeling
of envelopes for f0 synthesis, or fundamental frequency, as in [4]. The authors
say in their introduction: “While B-splines have been widely used in computer
graphics, very few applications can be found in the field of sound processing”.
We propose that it is computationally feasible to model audio signals at the
cycle level, especially for short segments with a perceived f0 in the lower end
of the audible frequency range, say below 1000 Hz. Although it would also be
reasonable to model the envelope with B-splines, in this paper we extract the
maximum amplitude value per cycle, from the original audio sample, and apply
this as a normalization factor to the B-spline model of each cycle.

As in Collins’ work, we also take some motivation from animation with key
framing. In this approach, the cycle plays the role of one frame in animation,
so we have key cycles which are used to generate the intermediate cycles. Both
the choice of interpolation points to represent a key cycle, and the choice of the
key cycles, affect the amount of data used to define, and the quality of, the final
model. Another analogy with animation is useful: the key frames might come
from an artist’s imaginative drawing, or they might come from motion capture
data. In the same way, one key cycle might come from some idea or model of
timbre, or it might come from one cycle which is captured from a particular
audio recording. In this paper we explore mostly the latter case.

The spline models of audio data that we propose can also be considered from
a few other perspectives:

1. They are low resolution models, since they can be used to reconstruct an
audio signal from a smaller set of data.

2. They are time domain models, differing from typical compression models
which work with frequency bands.

3. They are locally computable models, which means that the reconstruction of
an approximation of the full resolution signal can be computed from a smaller
amount of data, the B-spline coefficients, which give a local representation of
the audio signal.

This reduction of data, from the original samples, happens in two basic direc-
tions: first in the use of some fraction of the number of samples per cycle as
interpolation points, and second in the use of some fraction of the cycles as key
cycles. Low resolution audio models may also be of interest in realtime rendering
of audio where prioritization and level of detail can be important.

A word about regularity: Both for the placement of interpolation points in
one cycle, and the selection of key cycles, we begin by choosing regularly spaced
points and cycles. This is partly in order to make these choices work nicely
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together. For example, if the interpolation points are not of the same number and
regularly spaced, from cycle to cycle, then interpolation between cycles becomes
much more difficult. There are many schemes, to be considered later, which
attempt to take into account the amount of variation in one cycle, changes in
local curvature, and other properties which suggest that a non-regular placement
of interpolation points would be more optimal.

First, we construct the basic model of an audio sample, cycle by cycle. This
means that there is no cycle interpolation. Then we summarize various tech-
niques for doing the cycle interpolation, and follow this by some observations
on problems that arise in this process. Finally, we point to further development
and questions.

2 The Basic Model

The basic model consists of a cubic spline on each cycle which is used to recom-
pute the same number of samples in the original audio file on each cycle. This
preserves any irregularity in lengths of cycles, which is expected. We now describe
more details in the context of a basic reference example. An important point is
that we consider the original audio data as forming a piecewise linear function
of time, so that we can compute the value at any time, not just at samples or
integer points. This also allows us to work with zero crossings between samples
using linear interpolation.

For a reference sample we have used a guitar pluck with f0 approximately
440 Hz recorded at standard CD quality (sample rate 44100 Hz and bit depth
16). The file has length 60184 samples, or about 1.37 s. Our first step is to
determine all zero-crossings in the audio sample, which we treat as a piecewise
linear function of time measured in samples. The zero-crossings are typically
not integer points. We will refer to the audio signal values x(t) for time values
t at or between samples. The user chooses a fundamental frequency f0 which
then determines an approximate period or cycle length. The choice of such f0
might be based on spectral analysis or prior knowledge of the audio sample, for
instance a recorded instrument sound. This f0 “guess” is then used iteratively
to compute the end of the next cycle by choosing the closest zero crossing. This
way cycles are defined using zero crossings closest to the period length guess.
In the reference example, we choose to use f0 = 220, one octave below the
supposed 440 (guitar pluck on first string fifth fret). This can be seen as a useful
guess from the shape of the audio signal graph. With f0 = 220 there are 1531
zero-crossings, of which 302 are used as cycle endpoints. The average number of
samples per cycle is quite steady with mean value very close to 200. However,
there are some problems that inevitably show up with this method. First, it may
be that the evolution of cycles based on zero crossings leads to discontinuities
or abrupt changes in cycle shape. We will illustrate this with cycle number 181
in the reference example. Second, it may be that the model improves by keeping
the cycle lengths fixed, say at the average value, rather than mimicking the
original cycle lengths. We will return to these questions in the context of cycle
interpolation.
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Continuing with the basic model, once the cycles are determined by the
sequence of zeros zi, i = 0, . . . , p, we do a cubic B-spline fit to the audio sample
data. To specify this spline function, say f(t), we need to make various choices.
Many of these choices are for reasons of simplicity, but may be revisited or
subject to change later. The degree d = 3 is the natural and most common
default for spline modeling in almost any context. It allows us to achieve second
order derivative continuity for the smallest cost. (For details on splines, bases,
and knot sequences, we refer to [1]).

When working with one particular cycle, it is useful to normalize the interval
to [0, 1]. A cubic spline on [0, 1] is a sequence of cubic polynomials pi(t) on some
connected sequence of k subintervals [ui, ui+1] which can be given by a sequence
of breakpoints 0 = u0 < u1 < u2 < · · · < uk−1 < uk = 1. Rather than work with
an explicit polynomial sequence, we use a B-spline basis for the vector space
of all such splines f(t) which have continuous second derivative on the interval
[0, 1]. The sequence of k subintervals can be chosen to have uniform length as
a reasonable starting point. The dimension of the vector space V of C2 cubic
polynomial splines on the sequence of k subintervals is then n = k + 3. This
means that each cubic spline function f(t) is a linear combination of n basis
functions:

f(t) = c0B0(t) + · · · + cn−1Bn−1(t).

To solve for such an f as an interpolating spline, we need n points (t, s)
with inputs t ∈ [0, 1] and outputs x(t) ∈ [−1, 1] obtained from the audio data
function. There are many possible B-spline bases for this vector space V , which
can be specified by a choice of knot sequence, which is a non-decreasing sequence
of numbers which includes the subinterval breakpoints u1, . . . , uk−1 and another
d+1 = 4 values on either end. With these conditions we write the knot sequence
as t = {t0, . . . , tN} where t0 ≤ t1 ≤ t2 ≤ t3 ≤ 0, and 1 ≤ tN−3 ≤ tN−2 ≤ tN−1 ≤
tN .

We prefer to use the following knot sequence t which encodes some informa-
tion at the endpoints of the cycle:

t = {t0, . . . , tN} = {0, 0, 0, 0,
1
k

,
2
k

, . . . ,
k − 1

k
, 1, 1, 1, 1}.

Writing the B-spline basis functions associated to t as

B0(t),B1(t), . . . ,Bn−1(t)

we note that B0(0) = 1 and Bn−1(1) = 1, and all the other basis splines vanish
at both 0 and 1. Since each cycle is defined based on endpoints which are zeros,
we set c0 = cn−1 = 0 and solve for the other n − 2 coefficients for each cycle.
In order to approximate the audio data in one cycle, we find an interpolating
cubic spline which matches the (piecewise linear) audio data function x(t) at
n − 2 = k + 1 specified points. Using the interval [0, 1] we choose the k − 1
subinterval breakpoints (ui, i = 1, . . . , k − 1) and then add two more points at
the middle of the first and last subintervals. Since we do not have derivative
information for the audio data, this placement will help to approximate the
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derivatives at the ends. These choices are summarized below as the list of data
for each spline which represents the model on an interval between two zero
crossings:

– degree d = 3
– number of subintervals k
– subinterval sequence: [ui, ui+1] = [ ik , i+1

k ], i = 0, . . . , k − 1
– knot sequence: t = {t0, . . . , tN} = {0, 0, 0, 0, 1

k , 2
k , . . . , k−1

k , 1, 1, 1, 1}
– dimension of vector space V of B-spline functions: n = k + 3 = N − 3
– B-spline basis functions: B0(t),B1(t), . . . ,Bn−1(t)
– interpolating spline: f(t) = c1B1(t) + · · · + cn−2Bn−2(t) (c0 = cn−1 = 0)
– input values: s0 = 0, s1 = 1

2k , si = ui−1, i = 2, . . . , n−2, sn−2 = 1− 1
2k , sn−1 =

1
– target (signal) values: x(s0), x(s1), . . . , x(sn−1)

Now we can define the basic model to be the sequence of zero crossings zj ,
j = 0, . . . , p and the sequence of spline functions fj(t) on the interval [zj , zj+1].
We also refer to each of these splines and their associated data as one “cycle”
Cj , so that the basic model is the sequence of cycles Cj for j = 0, . . . , p − 1.
Further, let the B-spline coefficients for cycle Cj be cji , i = 0, . . . , n − 1.

The B-spline functions can be defined with divided differences as:

Bd
i (t) = (−1)d+1(ti+d+1 − ti)[ti, ti+1, . . . , ti+d+1](t − x)d+

or using the (de Boor-Cox) recursion formula as

Bd
i (t) =

t − ti
ti+d − ti

Bd−1
i (t) +

ti+d+1 − t

ti+d+1 − ti+1
Bd−1
i+1 (t)

with base case:

B0
i (t) =

{
1, ti ≤ t < ti+1

0, elsewhere .

We compute values of the B-spline functions, or of the interpolating spline f ,
with nested linear interpolation, known as the de Boor algorithm:

– (Stage zero): Set c0i = ci for i = 0, . . . , N − d − 1.
– For t ∈ [td, tN−d) set J to be the index so that t ∈ [tJ , tJ+1).
– (Stage p): For p = 1, . . . , d, for i = J − d + p, . . . , J : set

cpi =
t − ti

ti+d−(p−1) − ti
cp−1
i +

ti+d−(p−1) − t

ti+d−(p−1) − ti
cp−1
i−1

– f(t) = cdJ .

Note: to solve for the coefficients ci, i = 0, . . . , n− 1, we set up the interpolation
problem as a linear system by requiring that f agrees with the audio output data
at each of the n input values. Since the input values are evenly distributed, we are
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guaranteed a unique solution, according to the Schoenberg-Whitney Theorem on
B-spline interpolation (see [5]).

If we compute the basic model for the reference example with f0 = 220 and
k = 47 (d = 3, and dimension n = 50) the model takes about 83 s to compute
on a mac laptop in our implementation with JUCE. This model uses about 1/4
of the original samples in the audio file and matches the signal very closely. In
terms of audio quality, this model is close enough to the original to say that
there are no obviously noticeable artifacts, or distortion.

It is not our intention to present this as a model of data compression, but
rather as a starting point to understand how cycles evolve in time during the
course of a brief audio sample, and to investigate whether it is possible to simu-
late this evolution through artificial means which use a smaller set of data. The
fact that the model is an adequate representation of an original audio sample
can be thought of in the way that the position of a human figure can be approx-
imately captured by sensors which measure the positions of a number of points
on the surface of the figure in 3D space.

3 Cycle Interpolation

First, we should specify what it means to interpolate between two cycles, each
represented by an interpolating cubic spline, as in the basic model. Keeping the
assumption that all cycles still have a common basis of n B-splines, the first
obvious approach is to linearly interpolate between pairs of B-spline coefficients
with the same index. But it is also reasonable to consider using quadratic or cubic
splines. In all of these cases we will refer to this set of splines as meta-splines.
In order to distinguish these from the splines used to generate each cycle in the
basic model, we refer to the latter as cycle-splines. The cycle-splines then are
modeling the timbre of the audio signal, whereas the meta-splines are controlling
the evolution of the timbre, or the way in which one cycle morphs between key
cycles.

Second, it is natural to use an approximation of the envelope of the audio
signal which is being modeled. Since we are already partitioning into cycles,
it is straightforward to extract the maximum absolute value in each cycle, then
when computing a cycle-spline to normalize the B-spline coefficients so that they
produce the same maximum.

There should be one meta-spline per B-spline coefficient of the cycle-splines.
For example, if we are interpolating between key cycles Cj1 and Cj2 , then to
compute the first B-spline coefficient cj0 of cycle Cj , with j1 < j < j2, we use
meta-spline g0(t). This meta-spline will have inputs and targets set proportion-
ally to match the sequence of key cycles.

This means that if g0(tj1) = cj10 and g0(tj2) = cj20 then we compute for some
tj between tj1 and tj2 :

cj0 = g0(tj).

Note that in forming the meta-splines it may be that we do not place the inputs
for interpolation in a uniform sequence. This arises naturally when we choose to
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place key cycles more densely near the beginning than at the end, for instance
when modeling an audio sample which has a more varied attack phase and a
much less varied sustain and release phase, or tail.

We can now define the Cycle Interpolation Model to be given by the data:

– key cycles Cj0 , . . . , Cjq−1

– B-spline coefficients of key cycle Cjr : cjri , i = 0, . . . , n − 1
– meta-splines gi(t) with target values cji , j = j0, . . . , jq−1

– max values for envelope αi, i = 0, . . . , p − 1
– cycle zeros zi, i = 0, . . . , p

Two important things are still to be determined: 1) how to determine the form
of the meta-splines, and 2) how to choose the key cycles.

Regarding the choice of meta-splines: If we use degree 1, or simply linear
interpolation between corresponding B-spline coefficients, then the effect is sim-
ilar to a cross-fade between two key cycles. As Collins points out, this is not just
a cross-fade between B-spline coefficients (or control points) but with no other
special conditions it is also a cross-fade between audio sample values. But since
we are allowing for varying cycle lengths zi+1 − zi and we are also normalizing
by the envelope values, the result is not strictly a cross-fade. For simplicity and
computational speed we have mostly used the linear case, but it is interesting
to also note some properties of the cubic case.

It is tempting to use both cubic meta-splines and also cubic cycle-splines, if
for no other reason than elegance and consistency. But there are a few pitfalls.
There are limits to the practical computation of linear systems used in solving for
each interpolating spline. In the case of cycle-splines this dimension is n = k+3,
the dimension of the vector space of splines. In the case of the meta-splines the
dimension is equal to q, the number of key cycles. If we have say 300 cycles, as
with the reference example, and we choose to use half of these as key cycles,
then we have dimension q = 150 which can be prohibitively large for running
experiments with modeling. Fortunately, we are interested in models with fewer
key cycles. Another pitfall is that there can be too much variation in the cubic
spline model which fits the key cycle data, especially if there are long gaps
between key cycles, as may be the case in the tail of a signal. This suggests that
there may be reason to explore other types of spline models for the meta-splines.

We also note a type of duality that arises when using cubic splines as both
meta-splines and cycle-splines. In particular, the number of meta-splines is n,
which is also the dimension for cycle-splines, and the number of cycle-splines
is q which is also the dimension of the meta-splines. When generating the out-
put audio data from a model, the spline function fj(t) is evaluated Nj times
according to the number of samples per cycle Nj . Similarly, when producing
intermediate B-spline coefficients for non-key cycles, the spline function gi(t) is
evaluated Q times according to the total number of cycles Q to be generated by
the model. Since we are interested in models which depend on a small amount
of data, this can lead to some special cases. Suppose, although Nj typically
varies, that it is constant: Nj = N for all j. Additionally, suppose that q = n,
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and that Q = N , and further that fi = gi for all i. This means our model is
generated by one set of cubic splines which play the dual roles of cycle-splines
and meta-splines. Since Q = N , the number cycles coincides with the number
of samples per cycle, and we only need to evaluate each spline at the appropri-
ate points once. This assumes that the intermediate cycles are represented by
uniform subdivision of the interval [0, 1], just as the samples in one cycle are. It
also implies that each meta-spline has the value zero at the ends, since this is
required for the cycle-splines. If a cycle interpolation model satisfies all of the
above requirements, we call it a reflexive model.

Next, we consider different choices of key cycles.

Regular Cycle Interpolation

The first approach is to use regularly spaced key cycles, which we call regular
cycle interpolation. If the entire set of cycles is Ci, i = 0, . . . , p−1, then we specify
some positive integer m and choose cycles Cjm as key cycles, j = 0, . . . , r, with
rm ≤ M − 1 and r maximal. There are two variations on this regular cycle
interpolation, the first of which is to insist on the last cycle also being included.
This allows for the obvious cycle interpolation between Crm and Cp−1. The
second variation is to not include the last cycle as key, and to simply use Crm

repeatedly for the final cycles. In this case, it useful to still follow the envelope
of the original audio signal, as indicated above.

Exponential Cycle Interpolation

In order to focus more closely on the attack phase of a short audio sample, such
as the reference example, it makes sense to choose more key cycles near the
beginning and fewer towards the end, or tail. One useful sequence is to have key
cycle indices 0 and then 2i: 0, 1, 2, 4, 8, ... which we refer to as exponential cycle
interpolation.

Fibonacci Cycle Interpolation

Similar to exponential, but a slightly denser pattern is 0, 1, 2, 3, 5, 8, ..., which we
call Fibonacci cycle interpolation using the recursion ki+1 = ki + ki−1.

These are some of the first types of sequences of key cycles that we found
natural or useful. In the next section we discuss some of the problems that arise
with cycle interpolation.

4 Problems with Cycle Interpolation

There are various problems which can cause spectral deficiencies or audio
artifacts with cycle interpolation. We discuss two of these here: missing sub-
harmonics, and cycle shape discontinuities.

Missing sub-harmonics:

This is a natural defect of cycle interpolation, since it is not a priori designed to
follow the sub-harmonic oscillatory pattern of an original audio waveform, but
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Fig. 1. Spectrum for reference example

rather to fill in the non-key cycles artificially with B-spline interpolation. This
can be observed with the reference example. In Fig. 1 is a spectral analysis of a
portion of the reference example using Audacity software.

Next, in Fig. 2, is a similar plot for the model using the Fibonacci cycle
interpolation with 15 key cycles. Although the frequency guess 220 Hz and higher
harmonics are well represented, the sub-harmonic 110 Hz is markedly absent.
There are various ways to attempt to address this issue. Rather than delving
into DSP post-processing, we prefer in this paper to first attempt to work with
the spline model. This is a good opportunity to make a simple adjustment to
the model which is surprisingly cheap and effective. We can represent the sub-
harmonic with a quadratic spline, represented in the same basis as the cubic
cycle-splines. This requires simply solving for a spline on one cycle of the form
A(1 − t)t where A > 0 represents the appropriate amplitude borrowed from the
spectrum of the original waveform. We then mimic a sinusoid on successive cycles
by alternating between A and −A. The B-spline coefficients of this “parabolic
sinusoid” can be added directly to the B-spline coefficients of each cycle-spline.
Note that this method preserves the allowance of varying cycle lengths as well.
The resulting spectrum is shown in Fig. 3.

This example brings up a point about audio rendering and mixing with spline
models. Given several spline models, which are to be mixed, one can do the
mixing prior to the final rendering, as long as the B-spline bases are consistent.
This can lead to a significant reduction in computation. By consistent we mean
that the models have the same degree d and the same number of subintervals
per cycle k. These could be constant, or could vary but still agree per cycle. The
two models do not need to have the same key cycles, but if they do there will
be a greater reduction in computation.
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Fig. 2. Spectrum of model without sub-harmonic

Fig. 3. Spectrum of model with sub-harmonic

Cycle shape discontinuities:

The next type of problem is due to the inherent inaccuracies which occur when
attempting to break up an audio sample into cycles. This is illustrated in the
reference example, with f0 = 220 Hz (guess at fundamental frequency). With the
help of our visualization software for cycle interpolation (written with JUCE)
we note that a problem occurs in the region around cycle 180. There are 8
prominent stationary points in each cycle starting at cycle 70. The last of these
is a relative minimum occurring just before the right endpoint of each cycle,
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which we will call feature A. We can see that feature A begins to drift upwards
in cycles 100 through 170, then finally transitions above the time axis by cycle
182. This is illustrated in Fig. 4 around cycle 180. This behavior of the graph is
part of the natural evolution of the shape of the curve but it is a problem for
cycle interpolation. We will call this problem a shape discontinuity, meaning an
abrupt change in the shape of consecutive cycles. This is not a property of the
original waveform, just of the cycle interpolation model. The original waveform
has a smooth progression of cycles, but these cycles are not always best defined
by zero crossings.

It is worth noting that this poses no problem for the basic model (without
cycle interpolation) since the cycles are each modeled independently. In fact, in
the basic model, the cycles could be assigned almost any sequence of lengths and
cause no problems. It is also worth noting that the reference example has only
one instance of an obvious shape discontinuity of this type.

To see the effect on cycle interpolation, we illustrate in Fig. 5 a graph which
also includes the model (in blue) with regular cycle interpolation value m = 5.
The shape discontinuity causes the B-spline coefficients of the model to change
drastically between key cycles. It is no surprise that this causes audible artifacts
in the resulting audio.

There are a few ways to mitigate this problem by adjusting the model. The
most obvious is to add key cycles at and around the transition point, for instance
by adding key cycles 178 through 182. This method does cause reduction in the
audible artifacts, but does not really solve the problem which stems from the
shape discontinuity. Another approach is to release the waveform at an earlier
point from its obligation to match any more key cycles from the original wave-
form. In other words, this approach removes rather than adds key cycles. One
obvious result is that the tail produced by the model will differ significantly from
the original, but this may have a small effect on the outcome. For instance, if we
use the Fibonacci cycle interpolation model for the reference example, the initial
sequence is: 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 301, with 14 key cycles. If we
remove the last two then the tail produced by the model is based on cycle 144,
and has only 12 key cycles. If these key cycles use about 1/3 of the samples
per cycle (say k = 63) then we have a good model which removes most of the
audible artifacts. The data in this model can be further reduced by setting the
cycle length to a constant, say 200 samples. If we use the simplest type of meta-
splines (linear interpolation) then the data can be measured by the number of
floats needed to reconstruct the model as a fraction of the original audio data.
We include in the model the normalization value of one float per cycle. In this
case the percent of the original data stored in the model is about 0.183%.

We have found that cycle interpolation has the potential to form good models
of recorded sounds with a small fraction of the original sampled data. There are
interesting problems which occur in representing sub-harmonics and avoiding
errors inherent in the process of breaking up audio signals into cycles. We are
encouraged by the results so far and look forward to seeing these techniques used
in the design of new sounds in UPISketch.
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Fig. 4. Shape discontinuity near cycle 180

Fig. 5. Cycle interpolation near cycle 180

5 Future Work

There are many aspects to explore in more detail. A few of these are:

1) From the sound design perspective, use cycle interpolation together with
randomization, or cellular automata, to explore new timbres.
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2) Investigate how shape discontinuities arise when cycle interpolation is applied
to various musical instrument samples.

3) Use cycle interpolation to model phones for concatenative speech synthesis.
4) Reduce the data in cycle interpolation further, taking into account the pri-

oritization of interpolation points based on discrete curvature.
5) Address the shape discontinuity problem by allowing cycles to be defined at

points which are not zero-crossings.
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Abstract. This paper presents an algorithm for the time-scaled
repeated pattern discovery problem in symbolic music. Given a set of
n notes represented as geometric points, the algorithm reports all time-
scaled repetitions in the point set. The idea of the algorithm is to use an
onset-time-pair representation of music, which reduces the musical prob-
lem of finding repeated patterns to the geometric problem of detecting
maximal point sets where all points are located on one line. The algo-
rithm works in O(n4 log n) time, which is almost optimal because the
size of the output can be Θ(n4). We also experiment with the algorithm
using real musical data, which shows that when suitable heuristics are
used to restrict the search, the algorithm works efficiently in practice and
is able to find small sets of potentially interesting repeated patterns.

Keywords: Music pattern discovery · Transposition and time-scaling
invariance · Geometric algorithms

1 Introduction

In this paper we consider the problem of finding repetitions in Western, equal
tempered, polyphonic music. Various kinds of repetitions are frequent both in
pop and in classical music. For example, already the structure of a pop song is
often based on repetitions such as the usual ABABCBB structure. However, here
we concentrate on repetitions taking place at the note level. In classical music
one can find various forms of such repetitions, e.g., themes, motifs, imitations,
drones, pedals and Alberti basses. Heinrich Schenker [14] stated already in 1954,
that repetitions form the basis for music as an art. In general, repetitions make
it easier for listeners to detect and remember musical ideas [10].

As the musical repetitions tend to appear in different pitches (different per-
ceived height), it is important to apply transposition invariance in the searching
process. If the repetitions are searched for in monophonic music, i.e., music with
just one voice, or within a single voice, string-based algorithms can be used effi-
ciently for the task (see e.g. [1,3,4]). Combining transposition invariance with
polyphonic music – where repetitions may be scattered around distinct instru-
ment or voices – makes a complex problem setting for which solutions based on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 168–179, 2022.
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Table 1. A taxonomy of musical pattern matching and repeated pattern discovery
problems that shows the gap filled by this paper. The table shows associated literature
and the best known solutions for the problems.

Problem Time complexity

Exact pattern matching

Plain O(nm) [15]

Time-scaled O(n2m) [5]

Time-warped O(n(m + log n)) [5]

Partial pattern matching

Plain O(nm log m) [15]

Time-scaled O(n2m2 log n) [7]

Time-warped O(n2m2 log n) [8]

Repeated pattern discovery

Plain O(n2 log n) [11]

Time-scaled O(n4 log n) (new)

Time-warped O(n2 log n) [6]

linear string representations are not sufficient but a geometric point set (pitch-
against-time) representation can be used effectively [11]. Furthermore, the data
may be acquired by converting audio data into symbolic form where any voice
information is lost during the process. In the sequel, we shall concentrate on the
more general and complex problem and, therefore, use the point set represen-
tation. An example of the point set representation with real musical repetitions
that are transposed and time-scaled is given in Fig. 5.

Let us denote by S a two-dimensional point set that represents a musical
work (or several musical works concatenated one after another). The number
of points in S is denoted by n. If a pattern in S is moved vertically or hori-
zontally, it is transposed or time-shifted, respectively. A translated pattern may
be both transposed and time-shifted; we call this the plain case. Moreover, a
translated pattern may also be time-warped, in which case the translated points
are time-shifted by some order-preserving, individual amount. Time-scaling is
a special case of time-warping where time-shifting is applied using a universal
multiplication factor to the onset times of the points.

The problem of finding repeating musical patterns is closely related to the
musical pattern matching problem where the occurrences of a pattern P of m
points are searched for in S. The matching may be exact or partial, meaning
that all or only some of the points in P have to appear in a match, corre-
spondingly. There are algorithms for the pattern matching problem for the plain
translated case [13,15], time-scaled case [5,7,13] and time-warped case [5,8]. For
the repeated pattern finding problem, there are algorithms for the plain [11] and
time-warped case [6], but to our best knowledge there is no published algorithm
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for the time-scaled case which is discussed in this paper. Table 1 summarizes the
literature and the best known time complexities for all these problems.

Rather interestingly, time-scaled problems seem to be harder than time-
warped problems, although the invariance needed for the latter problems is
stronger [9]. The reason for this is that we can use dynamic programming to
efficiently solve time-warped problems that consists of independent subprob-
lems. However, it seems difficult to use a dynamic programming based approach
in time-scaled problems because they have a global scaling factor that affects all
subproblems.

As stated above, time-scaling is actually a special case of time-warping. How-
ever, the stronger the invariance, the more false positives the searching algo-
rithms produce, i.e., using a time-warping algorithm for our problem would
require a separate post-processing phase to filter out the vast majority of time-
warped but non-time-scaled occurrences. We expect this to be much more tedious
and time consuming than what we present in this paper.

The paper is organized as follows: In Sect. 2, we define the time-scaled
repeated pattern discovery problem, show a lower bound for the output size
of the algorithm, and present a simple algorithm for the problem. In Sect. 3,
we describe our O(n4 log n) algorithm for the problem and discuss heuristics
that can be used with the algorithm. In Sect. 4, we study the efficiency of the
algorithm and the effect of the heuristics. Finally, in Sect. 5, we present our
conclusions.

2 Problem Definition

The input for the problem is a two-dimensional point set S that consists of n real-
valued points. Each point p ∈ S corresponds to a musical note: the coordinates
p.x and p.y denote the onset time and pitch of the note, respectively.

Given a real number α (time-scaling factor) and a real-valued vector v (trans-
lation vector), let

MTTP(α, v) = {p | p ∈ S, (αp.x + v.x, p.y + v.y) ∈ S}

denote a maximal time-scaled translatable pattern which corresponds to a
repeated time-scaled pattern in music. For example, if α = 2, the duration
of each note is doubled in the repetition.

The problem discussed in this paper is to create an algorithm that discovers
and reports all MTTPs in a point set. However, to make the problem more
meaningful, we have two restrictions in the search. First, we only report patterns
where α ≥ 1 because if α �= 1, any pattern can be represented in two ways using
scaling factors α and 1/α. In addition, we only consider patterns that have two
points with different x values. If this is not the case, the problem would not be
well-defined because there would be an infinite number of possible (α, v) pairs.

Note that if α = 1, MTTP(α, v) corresponds to a two-dimensional maximal
translatable pattern MTP(v) that can be found using the SIA algorithm [11].
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Fig. 1. Example point set

2.1 Example

As an example, consider a point set

S = {(1, 1), (2, 2), (3, 1), (4, 3), (6, 2)},

shown in Fig. 1. In this case the patterns are as follows:

– MTTP(3/2, (0,−1)) = {(2, 2), (4, 3)}
– MTTP(5/3, (−4, 0)) = {(3, 1), (6, 2)}
– MTTP(2, (0, 1)) = {(1, 1), (2, 2), (3, 1)}
– MTTP(5/2, (−4,−1)) = {(2, 2), (4, 3)}
– MTTP(3, (−8, 0)) = {(3, 1), (4, 3)}
– MTTP(3, (0, 0)) = {(1, 1), (2, 2)}
– MTTP(5, (−4, 0)) = {(1, 1), (2, 2)}

Note that there are two ways to produce the patterns {(2, 2), (4, 3)} and
{(1, 1), (2, 2)} using two distinct (α, v) combinations.

2.2 Lower Bound

Next we show that the size of the output of the algorithm can be Θ(n4), which
means that any algorithm for the problem requires Ω(n4) time in the worst case.

Consider a point set

S = {(1, 1), (2, 1), (3, 1), . . . , (n, 1)}
where each note has the same pitch. There are Θ(n4) ways to select four distinct
points p1 < p2 < q1 < q2 such that p2 − p1 ≤ q2 − q1. In each such case we have
found two points p1 and p2 with distinct x values that have a repetition (points
q1 and q2) with scaling a ≥ 1, which means that the algorithm reports them.
In addition, for fixed p1 and p2, each repetition has a distinct pair (α, v), so p1
and p2 are reported separately for each case. Thus, we have found a construction
where the size of the output is Θ(n4).
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2.3 Simple Algorithm

Before presenting our actual algorithm, an interesting question is what would
be a simple brute force algorithm for the problem.

Even creating such an algorithm is not trivial, but one possible idea is to
go through all subsets of four points p1, p2, q1, q2 ∈ S where p1.x < p2.x and
q1.x < q2.x. If p2.y − p1.y = q2.y − q1.y, we have found a potential repeating
pattern and can define

α = (q2.x − q1.x)/(p2.x − p1.x)

and
v = (q1.x − ap1.x, q1.y − p1.y).

This corresponds to a nonempty pattern MTTP(α, v), which will be reported
if α ≥ 1 and the pattern contains two points with different x values. Note that
the algorithm can generate a pair (α, v) several times and should only process
the first occurrence.

This algorithm works in O(n5 log n) time, because there are O(n4) subsets
of four points, and for each subset it takes O(n log n) time to go through the
points in S and find the points that belong to the corresponding pattern. The
algorithm can be used to process small data sets, but there is no obvious way to
improve it.

3 Algorithm Description

In this section, we describe an O(n4 log n) time algorithm for the time-scaled pat-
tern discovery problem. The algorithm uses the onset-time-pair representation
presented in [6], and it reduces the problem of finding time-scaled repetitions
into the problem of finding all maximal point sets where the points are located
on one line.

The algorithm forms for each possible transposition a set Ci (“canvas”) which
consists of point pairs in S whose pitch interval is i. Since each point pair in a
canvas has a constant pitch interval, it is enough to encode the onset times of the
pair: (x1, x2) ∈ Ci means that there are two points in S with onset times x1 and
x2 and interval i. Now, a maximal set of points on the same line corresponds to
a a maximal time-scaled translatable pattern (MTTP) whose time-scaling factor
is the slope of the line (see Fig. 2).

More formally, given a set S of n points, the algorithm creates a collection
of sets where each set is of the form

Pi = {(a, b) | a ∈ S, b ∈ S, b.y − a.y = i},

i.e., it contains all note pairs (a, b) whose interval b.y −a.y is a constant i. Then,
the algorithm generates for each set Pi an onset-time-pair representation

Ci = {(a.x, b.x) | (a, b) ∈ Pi}.
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whose each point consists of x coordinates of a note pair in Pi. This represen-
tation is useful when finding time-scaled repetitions, because each repetition
corresponds to a set of points that are on the same line. Thus, the remaining
problem is to detect all such maximal point sets.

Let us assume that a set Ci consists of k notes. We can find all maximal point
sets in O(k2 log k) time as follows. We go through all point pairs p1, p2 ∈ Ci where
p1.x < p2.x and p1.y < p2.y, and calculate for each such pair two values: a slope

s =
p2.y − p1.y

p2.x − p1.x

of the line defined by the points, and an offset

z = p1.y − p1.x · s,

which corresponds to the y coordinate where the line would intersect with the y
axis. Then, the triples (s, z, p1) and (s, z, p2) are added to a list. After processing
all O(k2) point pairs, we sort the list in O(k2 log k) time, and after that, all points
that are on the same line are next to each other in the list and we can detect
them in O(k2) time.

Note that there is a direct correspondence between the parameters of a max-
imal translatable pattern and the parameters of a line in the onset-time-pair
representation. Each pattern with parameters (α, v) corresponds to a line in
Cv.y so that the slope of the line is s = α and offset of the line is z = v.x.

Since the total number of points in Ci sets is O(n2), the algorithm works in
O(n4 log n) time.

3.1 Example

Consider again the point set

S = {(1, 1), (2, 2), (3, 1), (4, 3), (6, 2)},

shown in Fig. 1. Let us focus on repetitions whose interval is 1 which can be
found by creating the sets

P1 = {((1, 1), (2, 2)), ((1, 1), (6, 2)), ((2, 2), (4, 3)),
((3, 1), (2, 2)), ((3, 1), (6, 2))}

and
C1 = {(1, 2), (1, 6), (2, 4), (3, 2), (3, 6)}.

In this case, the points (1, 2), (2, 4) and (3, 6) are on the same line (Fig. 2)
with slope 2 and offset 0. This point set corresponds to

MTTP(2, (0, 1)) = {(1, 1), (2, 2), (3, 1)}.
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Fig. 2. Points (1, 2), (2, 4) and (3, 6) are on the same line in the onset-time-pair repre-
sentation C1. This corresponds to MTTP(2, (0, 1)).

3.2 Filtering Repetitions

Since the algorithm typically produces a large number of repetitions, we can add
heuristics (based on musical knowledge) to improve the results of the algorithm
(see e.g. [1,2,12]). In this paper, we consider the following heuristics:

Inter-onset-Intervals. The inter-onset-intervals between two consecutive
notes in a musical pattern cannot be large. Thus, when processing a set Ci in the
algorithm, we can choose a constant maxd and only consider pairs p1, p2 ∈ Ci

where
p2.x − p1.x < maxd

and
p2.y − p1.y < maxd.

This heuristic can improve the running time of the algorithm, because it can
be applied when generating point pairs for the onset-time-pair representation.

Pattern Properties. Most of the patterns found by the algorithm are usually
short, while musically interesting repetitions are likely longer. For this reason,
we can choose a constant minn and only report patterns that have at least minn

notes.
In addition, notes in musically interesting patterns typically have several

different pitches, so we can choose a constant minp and only report patterns
that have at least minp different pitches.

Scaling Factors. Since we are interested in time-scaled repetitions, we can
focus on repetitions where α �= 1. When combined with other heuristics, this
can greatly reduce the number of patterns reported by the algorithm.
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Fig. 3. Efficiency of the algorithm for maxd values 2t, 4t and 8t where t denotes the
number of ticks in a beat.

4 Experiments

In this section, we study the efficiency and usefulness of our algorithm on real
musical data. We have implemented the algorithm in C++, and verified that it
produces correct results. The implementation is available in our GitHub reposi-
tory (https://github.com/c-brahms/time-scaled-repeated).

The data set used in the experiments consists of 48 MIDI files: 24 preludes and
fugues from the first book of Bach’s Das wohltemperierte Klavier. We converted
each file into a point set where onset times are MIDI time values (ticks) and
pitches are MIDI note numbers. The number of note events in a file ranges from
about 400 to 2500.

We conducted the experiments using a 1.8 GHz Intel Core i7 computer in a
Linux environment. In all experiments we searched for patterns where α �= 1,
i.e., time-scaling is used in the repetition.

4.1 Efficiency

In the first experiment, we measured the running time of the algorithm for each
file. It turned out that the general algorithm without the maxd parameter would
be too slow for processing the files, so we only consider tests where the maxd

parameter is used. The other filtering parameters only control the reporting after
the search, so they do not affect the efficiency of the algorithm.

Figure 3 shows the results of the experiment. Three maxd values were used:
2t, 4t and 8t where t denotes the number of ticks in a beat. As expected, the
greater the maxd value, the slower the algorithm. In most cases, the processing
time was less than two seconds, and the maximum processing time was 67 s for
the largest input when the value maxd = 8t was used.

The experiment shows that the algorithm can process real music files effi-
ciently. While the time complexity O(n4 log n) of the algorithm could indicate
that it is of limited practical use, the maxd parameter considerably improves the
practical efficiency of the algorithm. On the other hand, if the maxd parameter
is not used, the algorithm can only be used for small inputs.

https://github.com/c-brahms/time-scaled-repeated
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Fig. 4. The number of notes and discovered patterns in each file (maxd = 4, minn = 8,
minp = 5).

4.2 Pattern Discovery

In the second experiment, we examined the patterns discovered by the algorithm.
In this experiment, we used parameters maxd = 4, minn = 8, and minp = 5,
i.e., the maximum inter-onset-interval is 4 ticks and the pattern must have at
least 8 notes and 5 distinct pitches. We chose the parameters so that they filter
musically interesting patterns and produce a sufficient number of results.

Figure 4 shows the results of the experiment. The x axis shows the number
of notes in each file, and the y axis shows the number of discovered patterns. In
most cases, the number of discovered patterns is small and it would be possible
to check them all manually.

In almost all discovered patterns, the scaling factor α is one of 4/3, 3/2, 2,
3, and 4. This is not surprising because there are no tempo changes in our data
set, and such scaling factors are also expected in real musical repetitions. This
suggests that in some cases we could also only focus on finding repetitions whose
scaling factors belong to a constant set and achieve an O(n2 log n) time algorithm
by using a standard pattern discovery algorithm several times. However, such a
search would not find repetitions with unexpected scaling factors.

While the used heuristics reduce the number of results, it seems that most of
the discovered patterns are still not musically interesting. A possible additional
heuristic would be to somehow restrict the intervals between consecutive pattern
notes. However, it seems to be difficult to add such a heuristic to the algorithm
because the intervals are ignored in the onset-time-pair representation which is
the main building block of the algorithm.
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Fig. 5. An extract of the choir parts of J.S. Bach’s Mass in B minor (Credo in unum
Deum) and the corresponding, synchronized point set representation where each note-
on is represented by a point. The theme is introduced in the beginning of the movement.
In the depicted measures the fireworks start: the theme has four partly overlapping
occurrences in different keys. Our algorithm detects also the repetition in the bass
voice (continued beyond the illustrated area) although it has twice the duration of the
other occurrences.

5 Conclusions

In this paper, we have presented an O(n4 log n) time algorithm for solving the
time-scaled repeated pattern discovery problem in symbolic music. The presented
algorithm is more efficient than an O(n5 log n) time brute force approach, and it
is almost an optimal algorithm because any algorithm for the problem requires
Θ(n4) time.

Our algorithm can be seen as a missing piece in the taxonomy of pattern
matching and discovery algorithms in symbolic music. Exact and time-warped
algorithms have been proposed for both pattern matching and discovery, but
time-scaled algorithms have only been used in pattern matching. Like in pattern
matching, the time-scaled problem is the most difficult also in pattern discovery.

Based on our experiments, our algorithm can be quite efficient in practice
when some heuristics are used to filter interesting musical patterns. While there
are theoretical constructions where the output size is Θ(n4), the number of
interesting patterns in actual musical data is much smaller and we can find them



178 A. Laaksonen et al.

efficiently by implementing the algorithm so that it avoids creating patterns that
are not musically meaningful.

It is an interesting question whether the O(n4 log n) time complexity of the
algorithm could be improved. Since we use onset-time-pair representations and
reduce the problem to a geometric problem of detecting all maximal sets of
points that are on the same line, one way to that end would be to solve the
geometric problem more efficiently. The problem at hand is somewhat easier
than the general geometric problem: while the total number of points in onset-
time-pair representations is O(n2), the number of distinct x and y values is only
O(n). In the future, we will study if we can use this observation to improve the
algorithm and process the points in groups that have the same x or y coordinate.
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Abstract. SIA is a fundamental algorithm in symbolic musical pattern
discovery, which reports all maximal translatable patterns in a point
set. The original SIA algorithm requires O(kn2 logn) time and O(kn2)
space, where n is the number of points in the data set, and k is the
number of coordinates in each point. In this paper, we present a sweepline
algorithm that shares the running time of SIA but requires only O(kn)
space, enabling to process of larger data sets without running out of
memory. Since SIA is the first step in many pattern discovery tasks, our
new algorithm can have a broad impact. For example, we discuss the
problem of finding all occurrences of maximal translatable patterns with
specific properties. We also compare the algorithms in practice and show
that reduced memory usage can benefit real data sets.

Keywords: Pattern discovery · SIA algorithms · Memory usage

1 Introduction

This paper revisits the nearly 20-year-old musical pattern discovery algorithm
SIA, [14] which detects all maximal translatable patterns (MTPs) in a geometric
point set S corresponding to music data (see Fig. 1). The versatile algorithm has
thence seen various modifications for many focal music retrieval applications
(see, e.g., [1–5,7–13,15]). When the algorithm was published, its O(kn2 log n)
time complexity was a more restrictive factor than its O(kn2) space complexity,
where n and k are the number of points and the number of coordinates in each
point. However, the speed of processors has increased over time, emphasizing
the importance of the memory consumption of the algorithm.

We aim to redesign the SIA algorithm to require remarkably less space than
the original algorithm. Our new, seepline-based algorithm only needs O(kn)
space, which significantly improves the original O(kn2) space complexity. The
original algorithm is based on sorting a vector table that consists of O(n2) vec-
tors, but it turns out that we can avoid this by using a binary heap structure
that only contains a small number of vectors at a time.

An extension of SIA is the SIATEC algorithm [14] which finds all occurrences
of MTPs and classifies them in translationally equivalence classes (TECs) in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 180–191, 2022.
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Fig. 1. Two excerpts from Schubert’s song cycle Winterreise (song Rast, measures 51
and 57), in common music notation (above) and the corresponding geometric point set
representation (below) where each note is represented as a point whose x coordinate is
the onset time and y coordinate is the pitch. The two representations are synchronized,
i.e., the points below are matched with the corresponding notes above. The maximal
translatable pattern (MTP) is illustrated as filled circles: all these points in the first
excerpt can be translated to a point in the second extract by using the same translation
vector (two instances of the translation vector are shown as examples).

O(kn3) time. Also, in this case, the original space complexity of the algorithm is
O(kn2), but we can improve it using our new method. For example, if we want
to report all distinct patterns that have specific properties, we can create an
algorithm that works in O(k(n + t)) space where t denotes the total number of
points in reported patterns. Such an algorithm is useful when t is small compared
to n2, saving a significant amount of memory.

Many algorithms in the literature are based on SIA and SIATEC and can
benefit from our sweepline method. For example, the COSIATEC and SIATEC-
Compress algorithms [11,13] greedily compute a compressed encoding of a point
set that, in some cases, may be improved by using set-covering techniques [5,12].
Although general-purpose compression algorithms may also be adapted to this
end, COSIATEC has been shown to outperform them [10]. Moreover, many
studies have extended the SIA framework, such as similar techniques in musical
pattern matching [8,9,15], finding distinctive musical patterns [3], improving the
precision of the discovery [1,2], finding repeated structures in audio music [4],
and including the time-warping invariance for the pattern discovery problem [7].
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Fig. 2. An example data set that consists of n = 4 points. One of the MTPs in this
set is ((2, 1), (4, 2)) that can be translated using the vector (1, 3).

The structure of the rest of the paper is as follows: In Sect. 2, we define
the problem that the SIA algorithm solves and describe the original algorithm.
Section 3 presents our sweepline algorithm that produces the same results as SIA
but only requires a small amount of memory. In Sect. 4, we show how we can
create a SIATEC style algorithm that benefits from the new way to calculate
MTPs. Finally, in Sect. 5, we present our conclusions.

2 Background

We represent a musical work as a point set D of n points. Each point consists of
k coordinates. In a typical setting, k = 2 and the coordinates denote a musical
note’s onset time and pitch. We assume that the points have some order and can
be accessed using the notation D[1],D[2], . . . ,D[n].

Given two points a, b ∈ D, the translation vector v = b − a translates the
point a to the point b. A maximal translatable pattern (MTP) is defined as

MTP(v,D) = {d | d ∈ D, d + v ∈ D}

which means that each MTP is a maximal set of points in D that can be trans-
lated using a vector v so that they still belong to D. In music, each MTP corre-
sponds to a potential repetition of a melody or other musical pattern.

A typical task in musical pattern discovery is to find all nonempty MTPs in
a point set. To avoid reporting each pattern twice, we here only consider MTPs
such that the translation vector v satisfies v > −v. For example, the vectors
(1,−2) and (−1, 2) correspond to the same MTP and only the first vector is
reported because (1,−2) > (−1, 2). Note that we use the lexicographic order to
compare points and vectors throughout the paper.

As an example, let us consider the following data set of n = 4 points

D = {(2, 1), (3, 4), (4, 2), (5, 5)}

(shown in Fig. 2). Our goal is to find the following MTPs:

– MTP((1,−2),D) = {(3, 4)}
– MTP((1, 3),D) = {(2, 1), (4, 2)}
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– MTP((2, 1),D) = {(2, 1), (3, 4)}
– MTP((3, 4),D) = {(2, 1)}
For example, the vector (1, 3) translates the points (2, 1) and (4, 2) because
(2, 1) + (1, 3) = (3, 4) and (4, 2) + (1, 3) = (5, 5). In this case, the total number
of points in MTPs is 6 and in general the number of points can be calculated
using the formula n(n − 1)/2.

The SIA algorithm [14] can construct all MTPs for a data set. The usual way
to implement the algorithm is as follows. The algorithm first sorts D and then
creates a vector table

V = {(D[j] − D[i], i) | 1 ≤ i < j ≤ n}
whose each element consists of a translation vector and an index to the point
that can be translated using that vector. Then, the algorithm sorts V , after
which all points that belong to the same MTP are next to each other. Finally,
the algorithm scans V from left to right and reports the discovered MTPs.

In our example point set, the sorted vector table is

V = {((1,−2), 2), ((1, 3), 1), ((1, 3), 3),
((2, 1), 1), ((2, 1), 2), ((3, 4), 1)}

revealing the MTPs corresponding to the vectors (1,−2), (1, 3), (2, 1), and (3, 4).
The number of elements in the vector table is O(n2), and each element

requires O(k) space. Thus, the algorithm works in O(kn2 log n) time1 and O(kn2)
space.

3 Sweepline Algorithm

Our goal is to reimplement SIA to use a smaller amount of memory. So, we
cannot create a vector table or use another data structure having a quadratic
number of elements. We will adopt the sweepline based idea of the P2 algorithm
[15] to go through efficiently the contents of a lexicographically sorted vector
table without actually creating the table. P2 was designed for the problem of
finding all partial matches of a musical pattern in a data set.

The idea is to use a binary heap data structure supporting two operations:

– add(x): add an element x to the heap
– fetch(): return and remove the smallest element

Both the operations work in logarithmic time.
We create a heap whose each element is an index pair (a, b) where a < b.

Each pair (a, b) corresponds to the translation vector D[b] −D[a]. The elements
in the heap are ordered so that (a, b) < (c, d) exactly when (D[b] − D[a], a, b) <
(D[d] − D[c], c, d) lexicographically, i.e., translation vectors determine the order
of the elements but they are not stored in the heap.
1 The logarithmic factor comes from the need of sorting the O(n2) vectors.
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We initialize an empty heap by adding, for i = 1, 2, . . . , n − 1, an element

(i, i + 1)

to the heap. Each such element corresponds to a sweepline. After that, on each
step we fetch the smallest element (a, b) from the heap and process it. If b < n,
we then add a new element

(a, b + 1)

to the heap, which means that the corresponding sweepline proceeds, and other-
wise, we do not add any new elements. Finally, we stop when the heap is empty.
Using this algorithm, we can go through all point pairs in the order of their
translation vectors using only a small amount of memory, as the total number
of elements in the heap is O(n).

3.1 Correctness and Analysis of the Algorithm

Let us denote by H the set of elements in the heap, and by H the set of (unpro-
cessed) elements still to be added to the heap. Moreover, min{S} denotes the
minimum element in set S. An index pair (a, b − 1) is the predecessor of (a, b)
and any pair (a, b − i), where i ≥ 1, is an ancestor of (a, b).

As the heap always returns the index pair whose translation vector is mini-
mal, the points translatable by the same translation vector are returned one after
another2 from the heap. Formally, the algorithm works correctly if the following
holds:

1. Each index pair (a, b) is added to the heap at some point,
2. No index pair (a, b) is added twice to the heap,
3. min{H} ≤ min{H} holds at all time.

Let us next consider these one by one.

1. Initially, the heap consists of index pairs (i, i + 1), for i = 1, 2, . . . , n − 1.
Let us assume that at some point the heap contains a pair (j, j + k), where
1 ≤ j ≤ n − 1, and 1 ≤ k ≤ n − j + 1, and argue that the pair (j, j + k + 1),
where j + k < n, will be added to the heap at some point. We fetch one
element from the heap on each step, and at some point (j, j+k) becomes the
returned one. At this point, the algorithm adds (j, j + k+ 1) to the heap. So,
all pairs are added to the heap at some point.

2. Assume that (a, b) is the smallest index pair that is added twice to the heap.
Initially each index pair in the heap is distinct. Then, since (a, b) is added
after removing (a, b− 1), this would mean that (a, b− 1) is also added twice,
which is a contradiction. Thus, the algorithm adds no pair twice to the heap.

2 Thus, counting multiplicity of a translation vector can be done by observing how
many times each translation vector is returned in a row.



On the Memory Usage of SIA 185

3. Obviously min{H} < min{H} holds after the initialization. It remains to
be shown that no updating iteration (fetching the smallest element and
adding another one) of the heap can break its soundness. Let us make a
counter-assumption that after an iteration there is an element (a, b) ∈ {H} <
min{H}. Due to the construction of the algorithm, we know that its prede-
cessor was not the one that was fetched from the heap, that is, either this
very predecessor or some other ancestor of the element resides in the heap.
Thus, (a, b) > min{H}, which contradicts the counter-assumption.

Theorem 1. Our sweepline algorithm works correctly.

Proof. A direct consequence of using the heap and that 1, 2 and 3 above hold.
��

Let us next compare SIA and our sweepline algorithm. In SIA, the vector
table V consists of elements of the form (D[b] −D[a], a). In our algorithm, each
such element corresponds to an element (a, b) that is first added to the heap
and later fetched from the heap. Since we always fetch the smallest element, the
processing order of the elements is the same in both algorithms. Thus, our new
algorithm correctly finds all MTPs like the SIA algorithm.

Our algorithm works in O(kn2 log n) time because it processes O(n2) ele-
ments and adds each element to the heap and later removes it. Since the algo-
rithm first adds n− 1 elements to the heap and then always fetches one element
and adds at most one element, the total number of elements in the heap is
always at most n− 1 and the algorithm needs O(kn) space. Thus, our sweepline
algorithm has the same time complexity as SIA, but uses much less space.

3.2 Example

As an example, consider again the data set

D = {(2, 1), (3, 4), (4, 2), (5, 5)},

shown in Fig. 2. In this case, the heap initially consists of the elements

{(2, 3), (1, 2), (3, 4)}.

The smallest element is (2, 3), which is removed and a new element (2, 4) is
added to the heap. After that, the heap has the elements

{(1, 2), (3, 4), (2, 4)},

the smallest element (1, 2) is removed, and a new element (1, 3) is added to the
heap. This process continues until all elements have been generated.
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4 Classifying Patterns

Two patterns A and B are called translationally equivalent (A ≡ B) if there is
a vector v such that

{x + v | x ∈ A} = B.

For example,
{(2, 1), (4, 2)} ≡ {(3, 4), (5, 5)},

because we can choose v = (1, 3). Given a pattern P ∈ D, its translational
equivalence class (TEC) consists of all translationally equivalent patterns in D:

TEC(P,D) = {X | P ≡ X,X ∈ D}

4.1 Finding All TECs

Next we consider the problem of finding the TEC of each MTP in a data set.
For example, in our data set

D = {(2, 1), (3, 4), (4, 2), (5, 5)}

the TEC of MTP((1,−2),D) is

{{(2, 1)}, {(3, 4)}, {(4, 2)}, {(5, 5)}}

and the TEC of MTP((1, 3),D) is

{{(2, 1), (4, 2)}, {(3, 4), (5, 5)}}.

A classical algorithm for solving the problem is SIATEC [14] which works in
O(kn3) time and uses O(kn2) space. Next we show how our new algorithm can
be used to discover TECs using less memory.

Now that we can generate all MTPs, the remaining task is to determine for
each pattern P the class TEC(P,D). This can be done using a pattern matching
algorithm (e.g. P1 [15]) that finds all occurrences of P in D in O(knm) time
and O(k(n + m)) space, where m is the number of points in P . Since the total
number of points in MTPs is O(n2) and the number of points in a pattern is
O(n), the TECs of all MTPs are generated in O(kn3) time and O(kn) space.
Thus, this new algorithm works as fast as SIATEC but requires only a small
amount of memory.

4.2 Finding Distinct TECs

We may also require that each distinct TEC must be generated only once. For
example, in our data set {(2, 1)} and {(3, 4)} are distinct MTPs, but they belong
to the same TEC, so we may not want to generate a TEC for both of them. In
particular, the original SIATEC algorithm guarantees that each generated TEC
is distinct. While the number of distinct TECs is usually smaller than the number
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of MTPs, it turns out that it is more difficult only to generate the distinct TECs
than to generate the TEC of each MTP.

We can uniquely represent a TEC by choosing one of its patterns P and
creating a normalized pattern

P ′ = {d − x | d ∈ P}
where x is the smallest point in P . For example, patterns {(2, 1), (3, 4)}
and {(4, 2), (5, 5)} belong to the same TEC and their normalized pattern is
{(0, 0), (1, 3)}. Note that the normalized pattern always contains the point whose
all coordinates are zero, which can be removed to create a more compact repre-
sentation.

To only generate distinct TECs, we can use a trie data structure that keeps
track of the TECs found so far. We need the following operations:

– add(P ′): add P ′ to the data structure
– check(P ′): check if P ′ is in the data structure

A trie supports both the operations in O(m log n) time where m is the number
of points in P ′. Since the total number of points in MTPs is O(n2), the trie
requires O(kn2) space. Thus, using our new algorithm and a trie, we can find all
distinct TECs in O(kn3) time and O(kn2) space, like in the SIATEC algorithm.

In this setting, it may seem that our new algorithm does not help much. While
we can generate all MTPs and find all distinct TECs using a small amount of
memory, we still need a quadratic amount of memory for storing the represen-
tatives of the TECs to avoid reporting any TEC more than once. However, in
practice, we often do not want to report all TECs but only some of them: a
selection of musically interesting patterns. For this reason, while generating the
MTPs, we can filter patterns that look interesting and find TECs only for them.

Consider a situation where filtering is used and the number of points in inter-
esting patterns is t. Here we need only O(kt) space for storing the representatives
of distinct TECs, and the total memory usage of the algorithm is O(k(n + t)).
Thus, the benefit of using our new algorithm is that memory is only needed for
the patterns that are actually reported after filtering, not for all possible MTPs.
In practice t can be much smaller than the number of points in all MTPs.

5 Experiments

We have implemented both the original SIA algorithm and our sweepline algo-
rithm using C++ and verified that they produce the same results. Our implemen-
tations are available in our GitHub repository https://github.com/c-brahms/sia-
memory.

Next, we describe the results of two experiments where we study the efficiency
of the algorithms and the effect of filtering when searching for patterns. In both
the experiments, we used a data set based on the preludes and fugues from
the first book of Bach’s Das wohltemperierte Klavier, concatenated one after
another. The total number of notes in the data set is 40,000.

https://github.com/c-brahms/sia-memory
https://github.com/c-brahms/sia-memory
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Fig. 3. The efficiency of the algorithms. The original algorithm is faster for small data
sets, but it becomes slow for larger data sets because of its high memory usage.

Fig. 4. The number of notes in patterns, length ranging in [1, 500]. Most of the patterns
are short and the number of patterns decreases as a function of the pattern length.

5.1 Efficiency

In the first experiment, we compared the running times of the algorithms. We
conducted the experiment in a Linux environment on a laptop computer with a
1.8 GHz Intel Core i7 processor and 4 GB RAM.

We created test inputs where n is between 1,000 and 40,000 and each input
contains n first notes of the data set. The algorithm was given the test input,
and it counted and printed the number of MTPs. In each test, we ran both
algorithms five times and calculated the averages of their running times.

Figure 3 shows the results of the experiment. When n is small, the original
SIA algorithm is about twice as fast as our algorithm. However, when n gets
larger, the original algorithm becomes slow and our algorithm is more efficient.
In our environment, the new algorithm runs faster when n ≥ 32,000.

The probable reason for the results of the experiment is that SIA runs out of
memory and begins to use swap memory which is slow. The number of pairs in
the vector table is n(n−1)/2 and each element is a pair of two values (2 ·4 bytes
in our implementation). Thus, the memory needed for the vector table when
n = 32,000 is about 4 GB which equals the amount of RAM in our environment.
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For the largest input n = 40,000 the running times of SIA and the sweepline
algorithm are 430 and 230 s, respectively. The running time of the sweepline
algorithm seems to be stable at about n2c seconds where c = 1/(7 · 106).

5.2 Filtering Patterns

In the second experiment, we studied the effect of filtering while generating the
patterns. When generating distinct TECs, filtering can reduce the memory usage
because the number of patterns stored in the memory becomes smaller. We focus
on filtering based on the pattern length.

We used the entire data set of n = 40,000 notes in the experiment and
calculated for each k = 1, 2, . . . , n − 1 the number of notes in MTPs whose
length is k. Figure 4 shows the distribution of notes for k between 1 and 500. For
example, there are 818,553 MTPs of length 5, so the number of notes for k = 5
is 5 · 818,553 = 4,092,765.

The total number of notes in all MTPs is n(n− 1)/2. In this data set, 5.5%,
25.8% and 70.1% of the notes belong to MTPs where k ≤ 10, k ≤ 100 and
k ≤ 500, respectively. As Fig. 4 shows, there is a peak in the distribution for
small pattern lengths, and after that the number of notes slowly decreases when
the pattern length increases.

If we use our algorithm and only report distinct TECs of patterns with
specific lengths, this can significantly reduce the memory usage of the search.
For example, if we only report MTPs whose length is between 10 and 100, we
only need memory for about 20% of all notes in MTPs.

Also other filtering methods could be used. For instance, a technique that
only focuses on patterns with musically interesting properties can reduce memory
usage even further. A topic for future research would be to evaluate the results
with different filtering methods to find ways to reduce the memory usage of the
algorithm without ruling out potentially interesting patterns.

6 Conclusions

In this paper, we redesigned the SIA algorithm so that it uses much less space.
Our new sweepline algorithm reduces the space complexity from O(kn2) to
O(kn) allowing the procession of large data without running out of memory.
Our new algorithm can be used to create a SIATEC style algorithm that requires
O(k(n + t)) space where t is the number of points in reported patterns.

The reduced memory usage of our algorithm is important both in theory and
practice. Our experiment shows that the original SIA algorithm performs poorly
on large data sets when it runs out of memory and needs to use swap memory
to store the vector table. However, our new algorithm only requires a small
amount of memory and has a stable running time also when working with large
data sets. Since the SIA algorithm family is used in various music information
retrieval applications, they can also benefit from our sweepline algorithm.



190 A. Laaksonen and K. Lemström

In our experiment, we had 4 GB of RAM and SIA becomes slow when n ≈
32,000. If we had more RAM, the algorithm would probably perform better but
still become slow when the size of the vector table exceeds the amount of RAM.
For example, for 8 GB and 16 GB of RAM, the input size where the algorithm
runs out of memory would be about 45,000 and 64,000, respectively.

Could it be possible to improve the SIA algorithm further? At least it seems
difficult to improve the time complexity O(kn2 log n) or space complexity O(kn)
of the algorithm. Any algorithm that reports translation vectors in sorted order
(like both algorithms discussed in this paper) also solves the Sorting X + Y
problem [6] (with k = 2), and it is conjectured that this problem cannot be
solved faster than in O(n2 log n) time. In theory, however, there could be a
possibility to dispose the logarithmic factor of the time complexity if the MTPs
could somehow be discovered without sorting the translation vectors. Moreover,
it does not seem easy to reduce the space complexity without affecting the time
complexity.

However, a way to improve the practical performance of the algorithm could
be to use parallel features of modern processors, such as vector instructions and
multiple threads. This could be especially useful in applications where only a
small number of patterns are reported and the output size is not large.
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Abstract. In previous works, the authors presented a measure of sim-
ilarity between melodies by identifying them with sequences of ordered
vectors and using a clustering process based on fuzzy logics. Along the
same line, we propose a measure of musical similarity between fragments
of digital audio. We present the SpectroMap algorithm that allows us to
detect the local maxima of the audio spectrogram representation (also
known as constellation map) and we compared the similarity between
different maps belonging to different audio excerpts. As a result, it is
obtained a value that represents the resemblance between two musical
products. This procedure could be used as a non-subjective tool in auto-
matic plagiarism detection. To illustrate this method, three experiments
have been carried out comparing different versions famous pop songs.
The results point to the usefulness of the method, although this should
be contrasted with an analysis of the human perception of this similarity.

Keywords: Fuzzy clustering · Similarity · Plagiarism

1 Introduction

In past editions of Mathematics and Computation in Music (MCM) we have
presented a method to estimate the similarity between different characteristics
of symbolic music (melody, rhythm, harmony, tunning) [9,10]. In 2019 we pre-
sented Mercury, a computer framework in which techniques from fuzzy clustering
were implemented to Computer-Assisted Musical Composition. This saved, to
a certain extent, the uncertainty/inaccuracy inherent in any kind of music [7].
Despite the use of software, the approach has always been from the point of view
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of symbolic music, never from the pure treatment of sound. In this paper we pro-
pose to extend the applicability of the techniques showed in [9] to comparison
of digital audio, based on some attributes of the spectrogram representation.

To achieve our goal, it is necessary to previously process the audio. For this,
we have designed an algorithm, which we have called SpectroMap, for filtering
local maxima (peaks) of the spectrograms. Once this filtering process has been
carried out, we obtain the constellation map or fingerprint [12] of the audio
fragment. Constellation map can be easily incorporated into the similarity cal-
culations implemented in Mercury, thus obtaining a non-subjective numerical
value of similarity between digital audio fragments.

The assessment of the similarity in the conditions described above can be
considered as an important element to take into account for the detection of
plagiarism. We do not mean to say that the subjective and perceptual part is not
important, but if the calculation of similarity between two musical productions
is automated, a high value of similarity between them should alert us. In this
case, we could also conduct the traditional and pertinent tests [4] to evaluate
the existence or not of plagiarism.

We present some examples of similarity estimation between different versions
of the same song, using both the spectrogram filtering methods and the similarity
calculation methods implemented in Mercury over three different corpora, one
for each reference song. The results obtained, beyond giving a ranking of which
version is most similar to the original, also provide information about possible
compositional interrelationships between the different versions.

2 Theoretical Background

2.1 Clustering Methods

Clustering methods are aimed to create groups of elements within an initial data
set, so that the elements included in each group can be considered similar to each
other. Unlike the classification methods, in which the elements are assigned with
a pre-existing class, in the clustering methods the different classes or subgroups
in which the data set is going to be divided have to be defined beforehand the
execution of the analysis phase. The clustering procedure will consist of finding
a partition of a data set X that satisfies certain grouping criteria. Following the
criteria exposed in [6], given a data set, we will call element to each minimum
unit of information belonging to it. Each element will have associated a total of
q scalar magnitudes called characteristics or attributes. The term cluster (also
group or class) will be used to designate each of the c groupings made from
the data set. In hard clustering, it is understood that the elements that belong
to a certain cluster share properties or characteristics with each other and are
differentiable from the elements belonging to another cluster. In fuzzy clustering
this distinction is no longer so clear. The term centroid denotes the central point
of each of the clusters. The set of n data is

X = {x1,x2, . . . ,xn} ⊂ R
q. (1)
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where each xi ∈ R
q, will be a point of q characteristics belonging to a metric

space q-dimensional R
q. The index i will designate the i-th element xi; the

number xik will designate the value of the k-th characteristics of xi. The total
amount of characteristics q is known as the dimensionality of the data set X,
and it will have to be a finite and integer number greater than zero.

2.2 Hard and Soft Partitions

In [1] and [2] we find the necessary theoretical fundaments to define the different
types of partitioning of a data set. Suppose that X is a finite set of n elements
such that X = {x1, x2, . . . , xn} and we want to distribute the elements of the set
X in a number c of subsets C = {C1,C2, . . . ,Cc} with 2 ≤ c ≤ n. This family
of subsets {Cj : 1 ≤ j ≤ c} ⊂ X will be a partition of type hard if:

c⋃

j=1

Cj = X, Cj ∩ Ck = ∅, 1 ≤ j �= k ≤ c. (2)

The matrix U = [uij ] will represent the membership coefficients of each
element xi to each subset Cj .

2.3 K-Means Clustering

The k-means algorithm, first described by [8], is one of the most widely used
clustering methods. It can be classified as a non-hierarchical partitioning method
of clustering, in which the data set is divided into a number k of groups, each with
a centroid called mean. This algorithm requires setting the number of clusters
k in advance, as well as perform a previous initialization of the groups. The
grouping results obtained will depend deterministically both on the number of
clusters and on the initialization performed, so to trust the results it will be
convenient to repeat the procedure with different initializations.

As we have seen, the operation of the algorithm has two main phases: the
initialization phase and the iteration phase. In the first phase, each of the n
elements will be randomly assigned to one of the k clusters. Is it possible to
formulate the k-means algorithm as an optimization problem of an objective
function that will be minimized under given convergence conditions [3].

Definition 1. Let X = {x1,x2, . . . ,xn} ⊂ R
q be a data set of n elements. The

k-means objective function Jw : M c × R
cq → R

+ is defined as

JW (U,v) =
n∑

i=1

c∑

j=1

uij(dij)2. (3)

where dij = d(xi,vj) is a distance function calculated between the element i and
the centroid j; v = (v1,v2, . . . ,vc) ∈ R

cq,vj ∈ R
q∀j is the set of centroids from
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the clusters; vj is the centroid of the cluster uj ∈ U, 1 ≤ j ≤ c; and the matrix
U = [uij ] ∈ Mcp is the belonging matrix to a hard partition, accomplishing

uij ∈ [0, 1],
c∑

j=1

uij = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ c. (4)

2.4 Fuzzy C-Means Clustering (FCM)

The fuzzy c-means algorithm supposes a generalization of the functions described
in 3, transforming them into an infinite family of functions. The first of these
generalizations was made in [5], later formulated by [1] as an extension of the
well known k-means algorithm.

Definition 2. Let X = {x1,x2, . . . ,xn} ⊂ R
q be a data set of n items. The

fuzzy objective function c-means Jw : Mfc × R
cq → R

+ is defined as

Jλ(U,V ) =
n∑

i=1

c∑

j=1

uλ
ij(dij)2. (5)

where U ∈ Mfc is a fuzzy partition of X, and V = (v1,v2, . . . ,vc) ∈ R
cq, vj ∈

R
q is the set of centroids associated to the clusters uj , 1 ≤ j ≤ c; and dij =

d(xi,vj) is any distance function in R
q; uij is the membership coefficient of the

element xi to the cluster j; and finally λ ∈ [1,∞) is the weight exponent, or
fuzziness degree of the process.

The function originally proposed by [5] is obtained by setting λ = 2 and
selecting the Euclidean distance d(ij) = deuc(ij). It was later generalized by [1]
into the following family of functions {Jλ|1 ≤ λ < ∞}. We can now see that the
objective functions have the distance weighted by the membership coefficients
uij . Since Mfc is a fuzzy partition, the coefficients uij ∈ [0, 1].

The fuzzy clustering process will be achieved through an iterative optimiza-
tion of the objective function Jλ, updating in each iteration both the membership
coefficients uij and the centroids vj by following the expressions (see [1]):

uij =

(
c∑

k=1

[
d(xi,vj)
d(xi,vk)

] 2
λ−1

)−1

, vj =
( n∑

i=1

uλ
ijxi

)
/

n∑

i=1

uλ
ij . (6)

The matrix U = (uij), 1 ≤ i ≤ n, 1 ≤ j ≤ c is now a fuzzy partition of X,
built by the membership coefficients uij . The fuzzy partition verifies

c∑

j=1

uij = 1, 1 ≤ i ≤ n. (7)
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In what follows we will show the implementation of the fuzzy c-means clus-
tering algorithm proposed by Bezdek in [1]:

step 1. Fix a number of clusters m, 2 ≤ m < n. Choose any inner product
norm metric for R

q; fix λ, 1 ≤ λ < ∞. Initialize U (0).
step 2. Calculate the fuzzy centroids {v

(k)
j } with U (k) and expression (6).

step 3. Update U (k) using expression (6) and {v
(k)
j }.

step 4. Compare U (k) to U (k+1) using a convenient matrix norm, being ε ∈
(0, 1) and arbitrary termination criterion. If ‖ U (k+1) − U (k) ‖≤ ε then
stop, otherwise set k = k + 1 and return to step 2.

A Dissimilarity Based on FCM Algorithm

Definition 3. Let T A = {x1, . . . ,xn} ⊂ R
q and T B = {y1, . . . ,ym} ⊂ R

q be
two data sets, where n > m. Let d : R

q × R
q → R be a distance function. Let uij

be the final membership coefficients calculated with FCM algorithm, using data
set T A as data to be partitioned and T B as initial set of centroids. The average
dissimilarity D from the data set T A to the data set T B is defined by

D(T A,T B) =
1

n · m

n∑

i=1

m∑

j=1

uijd(xi,yj) . (8)

It is noteworthy that dissimilarity D does not consider the possible natural
order that could exist in both data sets, achieving a partition of T A without
any special weight to the elements whose degree of neighbourhood is stronger.

2.5 Fuzzy Ordered C-Means Clustering (FOCM)

In [9] and [11] we presented FOCM, an improvement of the FCM algorithm in
which the order of both data set and centroids sequences were taken into account
during the partition process. Instead of partitioning a data set X with a given
set of c centroids belonging to C categories, let us consider the possibility to
implement the partition process introducing the order of the elements in the
fuzzy partition process. For that purpose, let us consider two sequences S A and
S B with different number of elements. Sequence S A will be the ordered data
set to be partitioned, and sequence S B will represent the initial set of centroids.

In FOCM, the Neighbourhood Functions will provide higher weights of com-
parison to the pair of elements of the sequences that share closer positions in the
order of each sequence. At the same time, they will decrease the contribution to
the global dissimilarity to those pair of elements that are ordinally distant.

The purpose of FOCM is to modify the algorithm FCM so the natural order
of both data set sequence S A = {x1, . . . ,xn} and centroids sequence S B =
{y1, . . . ,ym}, with, n < m, is considered during the partition process.

FOCM algorithm works as follows: for every step in which the fuzzy partition
U has been calculated, the coefficients uij will be multiplied by a weight by
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means of a specific neighbourhood function f(i, j). For accomplishing with de
convergence criterion, the matrix should be normalized as follows into Ũ

ũij =
uijf(i, j)

m∑
k=1

uikf(i, k)
. (9)

step 1. Set {v
(0)
j } = {yj}. Let m,n be the number of notes of S B and S A,

respectively. Choose any convenient neighbourhood function.
step 2. Choose any inner product norm metric for R

q, and fix λ ≥ 1. Calculate
the initial Ũ (0) using (6), (9) and {v

(0)
j }.

step 3. Calculate the fuzzy cluster centers {v
(k)
j } with Ũ (k) and the equation

(6).
step 4. Update Ũ (k) using the equations (6), (9) and {v

(k)
j }.

step 5. Compare Ũ (k) to Ũ (k+1) using a convenient matrix norm; being ε ∈
(0, 1) and arbitrary termination criterion. If ‖ Ũ (k+1) − Ũ (k) ‖≤ ε then
stop; otherwise set k = k + 1 and return to step 3.

There is a big number of possible neighbourhood functions (Gaussian, Tri-
angular, Exponential, Sigmoidal, etc.) [9]. In this paper we have chosen the
Gaussian neighbourhood function, i.e.

fG(i, j) = Ae− 1
2σ2 [i+1− (n−1)·(j−1)

(m−1) ]2 . (10)

2.6 Definition of a Dissimilarity Based on FOCM Clustering

Using the FOCM algorithm, in [9] was defined a dissimilarity between any pair
of sequences with different number of elements.

Definition 4. Let S A = {x1, . . . ,xn} ⊂ R
q and S B = {y1, . . . ,ym} ⊂ R

q

be two sequences, where n > m. Let d : R
q × R

q → R be a distance function.
Let uij be the final membership coefficients calculated with FOCM algorithm,
using sequence S A as data to be partitioned and sequence S B as initial set of
centroids. The average dissimilarity D̃ from the sequence S A to the sequence
S B is defined by

D̃(S A,S B) =
1

n · m

n∑

i=1

m∑

j=1

ũijd(xi,yj). (11)

In what follows we show the utility of expression (11) for evaluating de dis-
similarity between songs or music compositions.
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3 A Comparison of Musical Products Based on FOCM

Establishing an objective measurement for calculating the dissimilarity between
musical products like pop, rock songs or classical music compositions, can be very
useful as a tool for automatic plagiarism detection. Our approach for comparing
two musical products will consist of: selecting the digital audio excerpts to be
compared; extracting the constellation map (proposed in [12]) from the spectro-
gram of each excerpt; calculating the FOCM dissimilarity between constellation
maps of both excerpts, with Eq. 11, taking into account that a constellation map
is a sequence of points formed by time and frequency.

3.1 FFT Process

With the aim of implementing a fingerprint extraction for a given musical signal
Xt, we have designed an algorithm that computes a global peak detection over
the spectrogram associated to give us its constellation map. Let NFFT and NO

be the length of the Fast Fourier Transform (FFT) window and the number of
elements to overlap between segments respectively, we first compute the spec-
trogram of the signal (Stfa), by using the Hamming window, in order to get the
(time, frequency, amplitude) vectors by considering these two parameters. Such
representation contains the amplitude spatial information to analyze. Our engine
search determines whether a time-frequency point can be considered locally rele-
vant according to its neighbourhood. Then, the detection is processed regarding
a required band. Let {Ti}n

i=1 and {Fj}m
j=1 be the time and frequency bands of

the spectrogram with the amplitude of the event, we can reformulate the spec-
trogram Stfa = (Ti)n

i=1 = (Fj)m
j=1 as its rows and columns representations (Figs.

1 and 2).

Fig. 1. Example of waveform from an excerpt of a pop song.
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Fig. 2. Spectrogram visualization of the previous excerpt.

3.2 Peak Detection Algorithm

As part of the engine search, we define two windows φdT

T and φdF

F to process
the local pairwise comparisons with a respective length of dT and dF , whose
functionality is to extract a number of elements of the band and return the local
maximum. We can describe the time-band window mechanism with length of
0 < dT ≤ n and structure Ti = (T 1

i , ..., Tn
i ) as

φdT

T (Ti) =
(
max {T k

i , ..., T k+dT
i }

)

1≤k≤n−dT −1
, 1 ≤ i ≤ n. (12)

When we group all the values we drop those elements that have equal index
to avoid duplicates. We can group the window of each band to create the set:

ΦdT

T = {φdT

T (Ti)}n
i=1. (13)

This way, we get the topologically prominent elements per each feature vec-
tor. With 12, it is easy to note that even though there are n − dT − 1 matches,
the window φdT

T (Ti) may contain a smaller number of elements whenever dT > 2.
Depending of how restrictive we need to be, we can proceed with just one of the
bands or combine them to create a more stringent search since it is returned only
if the peaks that are prominent in both directions. Finally, the algorithm merges
all the band-dependent peaks 13, to give us the total number of spatial points
that determines the audio fingerprint. Our engine search, SpectroMap, processes
audio signals in order to return an output file with the (time, frequency, ampli-
tude) peaks detected. The algorithm works in these steps:

step 1. Decide the window to use and set the parameters NFFT and NO.
step 2. Read the audio file to get its amplitude vector and its sample rate.
step 3. Compute the spectrogram through the associated Fourier transforma-

tions.
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step 4. Set a fixed window length (dT , dF or both) for the pairwise comparisons.
step 5. Choose the settings to proceed with the peak detection over a selected

band or a combination of both.
step 6. Create an identification matrix which consists in a binary matrix with

the same shape as the spectrogram with the position of the highlighted
prominences.

step 7. Extract such elements and create a file with the (time, frequency, ampli-
tude) vectors.

Regarding the step 5, authors highly recommend to select both bands to
perform the peak detection since the output is more filtered and spatially con-
sistent. For the remainder steps, its choice is a personal decision that depends
on the scope of the research (Fig. 3).

Fig. 3. Spectrogram and result of peak detection algorithm.

3.3 Constellation Map

As it was previously explained, the constellation map is obtained by means of
the filtering of local maximum (peak detection) using the algorithm SpectroMap.
The sequence of peaks is created by sorting each peak by its appearance time.

Definition 5. A Constellation Map is the sequence MA = {x1, . . . ,xn} ⊂ R
2

where each xi ∈ R
2 is an observable defined by 2 features: time and frequency.

Each element has been sorted by its appearance time (Fig. 4).
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Fig. 4. Example of constellation map generated from an audio excerpt.

3.4 Calculation of the Dissimilarity Based on FOCM

Using the FOCM algorithm, we can define a dissimilarity between any pair of
constellation maps.

Definition 6. Let MA = {x1, . . . ,xn} ⊂ R
2 and MB = {y1, . . . ,ym} ⊂ R

2 be
two constellation maps, where n > m. Let d : R

2×R
2 → R be a distance function.

Let uij be the final membership coefficients calculated with FOCM algorithm,
using constellation map MA as data to be partitioned and constellation map
MB as initial set of centroids. The average dissimilarity D̃ between this two
constellation is defined by

D̃(MA,MB) =
1

n · m

n∑

i=1

m∑

j=1

ũij · d(xi,yj). (14)

The expression (14) allows us to evaluate the musical plagiarism between any
two given excerpts of digital audio.

4 Experiments

To illustrate the applicability of this method, we have designed three experiments
to estimate the similarity between different versions of three different pop songs.
We have chosen the songs: Someone Like You, by Adele; When I was your man,
by Bruno Mars; All of me, by John Legend. This selection is convenient for
creating the three different corpora, since there are numerous and different covers
available on YouTube. The videos have been downloaded, and the digital audio
has been extracted in wav format at 44.100 Hz and 16 bits, selecting the same
fragment of the song. With this excerpts we have created three experimental
corpora. For each corpora we will calculate the similarities using the method
explained in the previous section: applying the SpectroMap algorithm and Eq. 14.
In Tables 1, 3 and 5 are shown the audio sources used in each experiment. For
each corpora, we will compare the different versions with each other and with
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the original, in order to sort them from greater to lesser similarity. The results
obtained are shown in Tables 2, 4 and 6.

For experiment No. 1, according to the data shown in the Table 2, the closest
resemblance to the official one is the version by the artist jordan (8.21). However,
the leo, imy2 and masha versions are more similar to each other than to the
official version. This fact could indicate a notable influence between these three
artists. The version farthest from the official one is that of leo (13.62). Once this
result is obtained, we listen to the version and verify that the artist has made
a version in rock style of Adele’s theme, effectively far removed in perceptual
terms from the original version. The furthest versions are those of nursera and
leo (22.85). Again, if we listen to both versions, the auditory difference is evident,
since both versions represent antagonistic musical styles.

The results for experiment No. 2 are shown in the Table 4. The closest resem-
blance to the official one is the live version by the same artist John Legend
(1.311), due to the big similarity of tempi between two versions. The versions of
artist smith and imy2 are more similar to the live version. The artist closest to
the official version is scaccia (1.326). The version farthest from the official one
is of stewart (13.62).

In experiment No. 3 (Table 6). The closest resemblance to the official song
is the cover by artist scaccia (2.099), that is also the closest to the live version
(1.935). The farthest version from the official one is of leroy (2.927).

Table 1. Audio sources used in the first experiment for song Someone like you

Artist YouTube url

Adele Oficial Video (oficial) https://www.youtube.com/watch?v=hLQl3WQQoQ0

Adele Live Performance (britawards) https://www.youtube.com/watch?v=qemWRToNYJY

Angelina Jordan (jordan) https://www.youtube.com/watch?v=nU9TA70fXro

Nursera Yener (nursera) https://www.youtube.com/watch?v=Z9iylN-IiUA

Masha (masha) https://www.youtube.com/watch?v=0EwSEsSvxGY

imy2 (imy2) https://www.youtube.com/watch?v=qIuPgPyTNKE

Leo Moracchioli (leo) https://www.youtube.com/watch?v=pkbbd3fhcMw

Table 2. Dissimilarities calculated between different covers from experiment No. 1

Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim.

leo imy2 5.405 jordan brit 9.693 oficial brit 10.270 leo oficial 13.620

leo masha 5.416 oficial masha 9.698 imy2 brit 10.455 leo jordan 14.392

imy2 masha 5.603 brit jordan 9.778 oficial imy2 12.759 nursera brit 14.440

masha imy2 5.658 brit masha 9.788 jordan imy2 13.568 nursera masha 17.487

oficial jordan 8.212 jordan nursera 9.831 oficial leo 13.586 nursera imy2 21.603

oficial nursera 9.680 leo brit 10.998 imy2 jordan 13.608 nursera leo 22.847

https://www.youtube.com/watch?v=hLQl3WQQoQ0
https://www.youtube.com/watch?v=qemWRToNYJY
https://www.youtube.com/watch?v=nU9TA70fXro
https://www.youtube.com/watch?v=Z9iylN-IiUA
https://www.youtube.com/watch?v=0EwSEsSvxGY
https://www.youtube.com/watch?v=qIuPgPyTNKE
https://www.youtube.com/watch?v=pkbbd3fhcMw


A Proposal to Compare the Similarity Between Musical Products 203

Table 3. Audio sources used in the second experiment for song When I was your man

Artist YouTube url

Bruno Mars Oficial Version (bmo) https://www.youtube.com/watch?v=ekzHIouo8Q4

Bruno Mars Live performing (bml) https://www.youtube.com/watch?v=gY4GZgZK9H0

Alexander Stewart (stewart) https://www.youtube.com/watch?v=j d3gq5JCAc

Sam Smith (smith) https://www.youtube.com/watch?v= ZaLIiV7c7Y

imy2 (imy2) https://www.youtube.com/watch?v=uBh 7PBy8cg

Stephen Scaccia (scaccia) https://www.youtube.com/watch?v=Nhm0MHQKYDY

Table 4. Dissimilarities calculated between different covers from experiment No. 2

Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim.

smith bml 1.018 bmo scaccia 1.326 smith imy2 1.427 smith scaccia 1.571

stewart smith 1.262 scaccia bml 1.335 bml imy2 1.430 imy2 stewart 1.615

imy2 bml 1.264 imy2 bmo 1.340 bml bmo 1.466 bmo smith 1.651

bmo bml 1.311 imy2 smith 1.398 bml scaccia 1.495 scaccia stewart 1.766

imy2 scaccia 1.324 stewart bml 1.425 scaccia smith 1.554 stewart bmo 2.042

Table 5. Audio sources used in the third experiment for song All of me

Artist YouTube url

John Legend Oficial Video (jlo) https://www.youtube.com/watch?v=450p7goxZqg

John Legend Live Performance (jll) https://www.youtube.com/watch?v=s18cJqrBIOk

Leroy Sanchez (leroy) https://www.youtube.com/watch?v=Im6 k-UMJeo

Luciana Zogbi (zogbi) https://www.youtube.com/watch?v=39 OmBO9jVg

Stephen Scaccia (scaccia) https://www.youtube.com/watch?v=07McLNDuffo

Scott Hoying (hoying) https://www.youtube.com/watch?v=d0GR60bul4M

Table 6. Dissimilarities calculated between different covers from experiment No. 3

Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim.

scaccia jll 1.935 jlo jll 2.191 jll hoying 2.309 hoying jlo 2.832

jll scaccia 1.989 leroy hoying 2.210 jll leroy 2.316 leroy jlo 2.917

scaccia jlo 2.099 scaccia hoying 2.211 scaccia zogbi 2.662 zogbi hoying 2.969

jlo scaccia 2.137 hoying scaccia 2.270 zogbi scaccia 2.686 zogbi leroy 3.196

scaccia leroy 2.142 leroy jll 2.273 jlo zogbi 2.722 zogbi leroy 3.196

5 Conclusions

The fuzzy logic-based procedures that were implemented for computer-assisted
music composition in Mercury software can be used for automatic assessment of
music plagiarism from digital audio files.

The Internet and social networks offer an excellent platform for the dissem-
ination of musical content. However, plagiarism detection requires automatic
tools that allow quickly and effectively discriminate those versions that may be
suspicious in terms of their resemblance to others. Beyond the legal and ethical

https://www.youtube.com/watch?v=ekzHIouo8Q4
https://www.youtube.com/watch?v=gY4GZgZK9H0
https://www.youtube.com/watch?v=j_d3gq5JCAc
https://www.youtube.com/watch?v=_ZaLIiV7c7Y
https://www.youtube.com/watch?v=uBh_7PBy8cg
https://www.youtube.com/watch?v=Nhm0MHQKYDY
https://www.youtube.com/watch?v=450p7goxZqg
https://www.youtube.com/watch?v=s18cJqrBIOk
https://www.youtube.com/watch?v=Im6_k-UMJeo
https://www.youtube.com/watch?v=39_OmBO9jVg
https://www.youtube.com/watch?v=07McLNDuffo
https://www.youtube.com/watch?v=d0GR60bul4M
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aspects, this resemblance can be useful for the performers or authors themselves,
who can discover their own and other influences in other artists.
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International University of La Rioja (UNIR), Logroño, La Rioja, Spain
brian.martinez@unir.net

http://www.brianmartinez.es

Abstract. In this paper we propose a new fitness function for Evolution-
ary Computation purposes, based on a weighted by neighborhood aver-
age distance between two sequences of points within any metric space. We
will apply this fitness function to the field of Computer-Assisted Com-
position focusing on the problem of thematic bridging, consisting in the
evolutionary creation of a soft set of transitions between two given differ-
ent melodies, the initial and the final one. Several self-adaptive strategies
will be used to perform the search. A symbolic melody will be geno-
typically mapped into a sequence of genes, each of then containing the
information of duration, frequency and time distance to following note.
We will test the implementation of the fitness function by means of two
experiments, showing some of the intermediate melodies generated in a
successful run, and benchmarking every experiment with performance
indicators for any of the three distinct evolutionary strategies imple-
mented. The results prove this novel fitness function to be a quick and
suitable way for individual evaluation in genetic algorithms.

Keywords: Evolutionary computation · Genetic algorithm ·
Computer-assisted composition · Fitness · Neighborhood · Thematic
bridging

1 Introduction

The use of Evolutionary Computation in the field of computer-assisted composi-
tion has been widely addressed through a large variety of evolutionary techniques
[12,17]. In this paper we present a novel fitness function that can be employed on
evolutionary algorithms that need to evaluate the dissimilarity between the geno-
type of individuals with different number of genes. We will focus on the specific
problem of Thematic Bridging [8], conceived as obtaining automatically a set of
smooth transitions from any given initial melody to any given goal melody. To
achieve this, several evolution strategies [6] will be implemented and afterwards
tested in two experiments, measuring the performance indicators for several set-
tings. The evolutionary search, thanks to mutation and crossover operators, will
progressively minimize the dissimilarity of every offspring, until an individual
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 205–217, 2022.
https://doi.org/10.1007/978-3-031-07015-0_17
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reaches the objective genotype of the goal melody. The best individuals of every
offspring will be stored and will create the desired bridging, that could be written
into a musicXML interchange format file.

2 Related Work

The use of evolutionary algorithms in the field of Computer-Assisted Compo-
sition is said to have started at the beginning of the 90’s. In the year 1991,
Horner and Goldberg [8] implemented one of the first applications of the evolu-
tionary algorithms to computer composition, describing an evolutive technique
called Thematic Bridging that is able to produce melodic material as a result
of iterative transitions between two small melodies. The composition is created
by means of human selection and organization of the algorithmically created
melodic material, in a form of an imitative five-voices canon.

Three years later, Biles [3] presented GenJam, a noteworthy application of
genetic computation that generates improvisations in jazz style, keeping the
hierarchical relations between different melodic ideas suggested by the harmonic
chords progression that is playing. At the same time, the system retrieves feed-
back information in real-time from the human player. Other interesting evolutive
designs were proposed by Hartman [7] and Mcintyre [13].

De la Puente et al. [4] introduced GEMUSIC, a tool that creates algorith-
mically melodic lines similar to human compositions, thanks to the implemen-
tation of Evolutionary Grammars. Weinberg et al. [21] described an interactive
evolutive robotic system that collaborates with human players and improvises
while playing on a xylophone. The system detects the musical material played
by the human and evolves it using several fitness functions. Tzimeas et al. [19]
developed the software Jazz Sebastian Bach, a system that evolves melodies orig-
inally composed by J. S. Bach and turns them into a jazzy style. The authors
propose a fitness function called Critical Damped Oscillator that overcomes sev-
eral algorithmic difficulties related to Automatic Fitness Assessment (AFA) or
Interactive Genetic Algorithm (IGA).

De León et al. [16] proposed the characterization of a melody as the result of a
set of rules coming from a fuzzy genetic algorithm, aimed to distinguish if a given
MIDI file contains a melody or not. The figure of the human-expert knowledge
is replaced by a fuzzy genetic system. Sánchez et al. developed MELOMICS
project [15], a sophisticated evolution system able to compose and orchestrate
whole musical pieces.

Scirea et al. presented in [18] the framework MetaCompose, for music com-
position that includes a chord sequence and accompaniment generator, and a
melody generator that uses a novel evolutionary technique combining FI-2POP
and multi-objective optimization. In 2019, Nam YW. and Kim YH. [14] automa-
tized the production of good-quality jazzy melodies by means genetic algorithm,
using a variable-length chromosome and geometric crossover.

Trump proposed in [20] a evolutionary framework for improvisation in which
the improvisation is created by successive sound cells containing a musical con-
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tent transformed by a creative selection. Other interesting approaches were pro-
posed by Almada [1], Arutyunov [2] and Donelly [5].

3 Theoretical Background

3.1 Mathematical Definition of a Melody

As we presented in [10], a melody can be understood as a sequence of points,
M = {xi}n

i=1, where each point xi ∈ R
q is a musical note. The most simple

way to represent a note is using three musical characteristics: the duration, the
frequency and the time distance that could exist until the next note (representing
in this way the possible existence of a silence between this note and the next one).
Thus, a musical note will be expressed by a point within a three-dimensional
metric space x = (x1, x2, x3) ∈ R

3, where the feature x1 expresses the time
duration of the note, x2 expresses the frequency and x3 indicates time duration
of an optional silence until the next note. In order to calculate the time features
x1 and x3 of each note, we will use the relative-duration coefficient δ proposed
in [10]. For the symbolic representation of the frequency in the feature x2 we
will use the MIDI pitch number associated to any musical note.

3.2 Neighbourhood Functions

Neighbourhood functions introduced in [10,11] are the key point of the fitness
function that will be introduced in the following section. When making a com-
parison between two sequences, with the first one having a number of n elements
and the second one having a number of m elements, the aim of the neighbour-
hood function will be to calculate the degree of similarity between any element
i from the first sequence and any element j of the second one.

In this way, when comparing two sequences A and B with very different
number of elements, if a correct function is defined, the first elements of sequence
A will be strongly correlated with the first elements of the sequence B, but very
weakly correlated with the final elements of B. In addition, the ending elements
of sequence A will be weakly correlated with the first elements of the sequence
B, but strongly correlated with the final elements of B. Equation 2 shows the
expression of Gaussian Neighbourhood Functions used in this paper.

f(i, j) =
1√

2πσ2
e−

[
1

2σ2

(
i− (n−1)

(m−1) j
)2]

. (1)

3.3 Fitness Function

We propose a new fitness function for evolutionary music composition based
on the definition of Melodic Dissimilarity proposed in [10]. Let MA =
{x1, . . . ,xn} ∈ R

q and MB = {y1, . . . ,ym} ∈ R
q be two different melodies

constructed by a different number of notes. Let d : Rq × R
q → R be any dis-

tance function on the metric space. Let f(i, j) be any neighborhood function.
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The Neighborhood Average Dissimilarity D from melody MA to melody MB

is defined as

D(MA,MB) =
1

n · m

n∑

i=1

m∑

j=1

f(i, j) · d(xi,yj). (2)

The proposed fitness function of each individual will be constructed by de
absolute difference between the dissimilarity of each individual A with the goal
melody B minus the dissimilarity of the goal melody with itself. Consequently,
the expression for the fitness function is

Ffitness(MA) = |D(MA,MB) − D(MB ,MB)| (3)

Observe how expression (2) does not accomplish any of the requirements of
a distance function. Consequently D(MB ,MB) �= 0, for the most of the cases.

4 Genetic Algorithm

4.1 Genotype Representation

A melody will be represented into an individual. In the genotype, the sequence
of all notes is codified into the sequence of genes. Each gene contains the mini-
mum information of a note. For the following experiments, three different rep-
resentations of an individual genotypes will be used, each of one containing
the required information by any of the evolutionary strategies [3] tested: simple
mutation, uncorrelated mutation with one step size, and Uncorrelated mutation
with n Step Sizes.

Simple Mutation. In this representation, the genotype of every individual is a
sorted array of float numbers in which the three features x1, x2 and x3 of every
note (gene) will be stored by order. The length of the array will be 3× n, where
n is the number of notes of the melody that is coded for each individual. The
representation is as follows

(x1
1, x

1
2, x

1
3, x

2
1, x

2
2, x

2
3, . . . , x

n
1 , xn

2 , xn
3 ) (4)

Uncorrelated Mutation with One Step Size. In this representation, the
genotype of each individual is again a sorted array in which the three features of
every note have been stored, besides three values σ belonging to features of time
duration, pitch and time distance. The length of the genotype will be 3 × n + 3,
being n the number of notes of the melody, and its structure will be the following:

(x1
1, x

1
2, x

1
3, x

2
1, x

2
2, x

2
3, . . . , x

n
1 , xn

2 , xn
3 ;σ1, σ2, σ3) (5)
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Uncorrelated Mutation with n Step Sizes. In addition to the previous
information of time duration, pitch and time distance belonging to each one of
the n notes, this representation will include the sigma value σ corresponding to
each one of this features. In this case, the length of the genotype will be 6 × n
and its structure:

(x1
1, x

1
2, x

1
3, . . . , x

n
1 , xn

2 , xn
3 ;σ1

1 , σ
1
2 , σ

1
3 , . . . , σ

n
1 , σn

2 , σn
3 ) (6)

4.2 Restrictions on the Evolution Strategy

Some constrains will be implemented into the evolutionary strategy aimed to
reduce the space of research. The first restriction is introduced in the mutation
of the MIDI pitch value. The mutated pitch value will be forced to be a integer
number, due to the MIDI mapping of the musical notes is enclosed from 0 to
127, so the algorithm does not consider the possible existence of intervals smaller
than a semitone.

The second constrain is implemented into the possible variation of the
relative-duration Coefficient δ. This feature will be mutated by means of adding
or subtracting a multiple of a minimum-duration figure. The arbitrarily chosen
minimum-duration is a demisemiquaver (thirty-second note), with coefficient
δmin = 0.03125.

4.3 Mutation

The mutation in a specific gene will be done using random resetting, establishing
an uniform mutation probability for every genes. When a gene is randomly cho-
sen for being mutated, the feature represented by this gene into a float number
will be modified adding or subtracting a certain amount, calculated according
to the case that we consider.

Simple Mutation. In the case of simple mutation, the features of duration x1,
pitch x2 and time distance x3 of a selected note i will be modified using these
expressions based on the equations exposed in [6]:

x′i
1 = xi

1 + δmin · �σ1 · N(0, 1)�
x′i

2 = xi
2 + �σ2 · N(0, 1)�

x′i
3 = xi

3 + δmin · �σ3 · N(0, 1)�
(7)

where N(0, 1) is a generator of Gaussian distributed random numbers, centered
in the zero value (mean equal to zero), and with standard deviation equal to 1.
In this case, the values of σ stay constant.
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Uncorrelated Mutation with One Step Size. In this kind of mutation, the
values σ1, σ2 and σ3 used to calculate the changes in the features of duration,
pitch, and time distance, are assumed to change randomly for each individual.
Therefore, the mutations on the standard deviations and features xi will be done
by means of the following expressions:

σ′
1 = σ1 · eτ ·N(0,1)

σ′
2 = σ2 · eτ ·N(0,1)

σ′
3 = σ3 · eτ ·N(0,1)

x′i
1 = xi

1 + δmin · �σ1 · N(0, 1)�
x′i

2 = xi
2 + �σ2 · N(0, 1)�

x′i
3 = xi

3 + δmin · �σ3 · N(0, 1)�
(8)

For every mutation of the deviation σj , we should check if the new value is
not too small. To achieve this, we establish a threshold value εj below which σ
can not still decrease, so:

σ′
1 < ε1 ⇒ σ′

1 = ε1

σ′
2 < ε2 ⇒ σ′

2 = ε2

σ′
3 < ε3 ⇒ σ′

3 = ε3

(9)

Uncorrelated Mutation with n Step Sizes. In this case, each one of the xi
j

features of an individual will mutate with a specific deviation σi
j . The mutations

of the deviations and features of a chosen note i will be carried out with these
expressions:

σ′i
1 = σi

1 · eτ ·N(0,1)

σ′i
2 = σi

2 · eτ ·N(0,1)

σ′i
3 = σi

3 · eτ ·N(0,1)

x′i
1 = xi

1 + δmin · �σi
1 · N(0, 1)�

x′i
2 = xi

2 + �σi
2 · N(0, 1)�

x′i
3 = xi

3 + δmin · �σi
3 · N(0, 1)�

(10)

Once again, it is necessary to check if the mutated value of every deviation
σi

j is not smaller than a given threshold ε0.

Mutation Operation Concerning the Number of Notes of a Melody.
Besides mutating the features of duration, frequency and time distance of a
random note from the melody coded on the genotype of each individual, it is
needed to establish a mutation operation to change the number of notes of the
melody, since we want to achieve an evolutionary transition from one initial
melody to a second one, both having conceivably a different number of notes.

Two arbitrary probabilities for insertion and suppression of a note will be
implemented in order to insert a new note in a random position p inside the
genotype, or remove the note located on the position p, respectively.

When inserting a brand new note in a random position of the genotype, there
exist three different possibilities:

– Inserting the note at the beginning of the melody (p = 0): In this case, three
new positions will be inserted at the very beginning of the genotypical array.
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The values of these three new positions will duplicate exactly the three fea-
tures of the prior first note, so the new inserted note will duplicate exactly
the ancient first one.

– Inserting the note at the end of the melody (p = 3 ·n): In this case, three new
positions will be added at the end of the genotypical array. The values of this
positions will duplicate the previous last note of the melody.

– Inserting the note in an intermediate position within the melody (p = k, 0 <
k < 3 · n): In this case, a new note will be inserted between the notes placed
in the positions k − 1 and k. Each one of the three features of the new note
will be calculated as an average value of the corresponding feature from the
two adjacent notes, taking into account the previously specified constraints
of mutation changes in duration and pitch.

In the cases of the genotype related to the representation of Uncorrelated
mutation with one Step Size and Uncorrelated mutation with n Step Sizes, it
will also be necessary to include in the genotypical array one extra position in
case of one Step size, or three extra positions in case os n Step Sizes, in order to
include the new σ values corresponding to the new note.

4.4 Initialization of the Population, Parents Selection and Crossover

The population will be initialized creating a number μ of different individuals,
whose genotypes have been initially cloned from the starting melody one, and
afterwards subjected to a random mutation process.

A number of λ couples of parents will be randomly chosen to generate a new
child from every couple. The recombination operation for the new genotype will
be the uniform crossover, so each gene will be randomly inherited from any of
the parents.

The selection process of survivors for next generation will be guided by
method μ + λ, which involves mixing together the population of parents and
offspring [3], sorting by each individual’s fitness and choosing the best μ
individuals.

4.5 Performance Indicators

For each execution there will be a maximum of 200 generations. Each experi-
ment will be executed 1.000 times for any one of the pre-established setups. The
algorithm will store the following performance indicators [3]:

– SR (Success Rate): Percentage of executions that finish successfully over the
total number of executions.

– MB (Mean Best Fitness): Average of the best fitness value of the population
when execution finishes, successfully or not.

– MBFS (Mean Best Fitness Success): Average of the better fitness value of
the population taking into account only the successful executions.

– AES (Average number of Evaluations to a Solution): Average number of
generations needed to reach a successful execution.

– MST (Mean Success Time): Mean time needed to find a successful execution.
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5 Experiments

5.1 First Experiment

Given initial melody A and goal melody B, use the evolutionary strategies with
fitness function (3) to generate a melodic transition from A to B (Fig. 1).

Fig. 1. Initial and final melodies of the first experiment.

Settings of the algorithm: μ = 20, λ = 200, mutation prob. = 0.15 and note
insertion prob. = 0. Run 1.000 times. Results shown in Table 1 and Fig. 2:

Fig. 2. Some intermediate melodies generated at one successful execution.



A New Fitness Function for Evolutionary Music Composition 213

Table 1. Benchmarking indicators for experiment one.

Simple One step n steps

SR 100.00% 100.00% 100.00%

MBFS 0.01904 0.01904 0.01903

MB 0.01904 0.01904 0.01903

AES 43.80 99.60 97.30

MST (ms) 167.86 373.03 378.77

5.2 Second Experiment

Given initial melody A and goal melody B, use the evolutionary strategies with
fitness function (3) to generate a melodic transition from A to B (Fig. 3).

Fig. 3. Initial and final melodies of the second experiment.

Settings of the experiment: μ = 20, λ = 500, mutation prob. = 0.15 and note
insertion prob. = 0.05. Run 1.000 times. Results shown in Table 2 and Fig. 4.

Fig. 4. Some intermediate melodies generated at one successful execution.
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Table 2. Benchmarking indicators for experiment two.

Simple One step n steps

SR 21.30% 34.60% 40.70%

MBFS 0.38764 0.38764 0.38764

MB 0.41251 0.40294 0.40050

AES 55.60 56.50 49.90

MST (ms) 1490.69 1490.53 1331.01

5.3 Results

In Fig. 5 it is possible to compare the performance curves for experiment one and
two, for simple mutation, Uncorrelated mutation with one Step Size and Uncor-
related mutation with n Steps Size. The final benchmarks for the performance
indicators of SR, AES and MST are summarized in Table 3.

Fig. 5. Performance charts for the first and second experiment.
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Table 3. Final performance indicators for the experiments.

SR AES MST

Simp. 1 step n steps Simp. 1 step n steps Simp. 1 step n steps

Exp. #1 100,00% 100,00% 100,00% 43.80 99.60 97.30 167.86 373.03 378.77

Exp. #2 21.30% 34.60% 40,70% 55.60 56.50 49.90 1490.69 1490.53 1331.01

6 Discussion

We have run 1000 executions for each set of experiments one and two, with
a maximum number of 200 offsprings for each execution. The success rate of
experiment one was 100%, due to the melodies not being very distant in terms of
evolutionary search. The success rate of experiment two was 40,7% as the initial
and final melodies where very distant. For the experiment one, the most efficient
mutation was the simple mutation. Nevertheless, Uncorrelated mutation with n
Steps Sizes has been the most efficient in experiment two. All the representations
achieved low values of mean success time (MST) and low average number of
evaluations to a solution (AES).

7 Conclusions

The evolutionary algorithm implemented and tested in the two experiments
has proved to find solutions to the problem of thematic bridging between two
melodies, thanks to the minimization of the novel fitness function proposed in
this paper (3) and based on the Neighborhood Average Dissimilarity (2).

The evolutionary algorithm implemented in the experiments exercise has
been shown to be capable of making transitions between two melodies by mini-
mizing the fitness function proposed in (3), in a quick and useful way for simple
evolutionary composition poruses. Future work will involve the implementation
of more sophisticated evolutionary techniques, widening the rhythmical restric-
tions of the evolutionary algorithm and incorporating the generation of harmonic
chord sequences.
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Abstract. This paper is the first in a series of two papers on mathemat-
ical models of tonal function. In this first paper, we present a mathemat-
ical model of tonal function whose scope is limited to classic music from
the common practice period. After a formalization of some harmonic ele-
ments (pitch classes, chords, arrangements, voicings, voice leadings), the
model of tonal function is described. Our model is based on voice lead-
ings and the tonal function is defined in terms of them. A combinatorial
optimization algorithm is used to determine the tonal function. In this
work, only chords with the same number of voices are considered. The
general case was left for the second paper of the series; in the second
paper the model of tonal function is generalized.

Keywords: Tonal function · Voice-leadings · Chord progressions ·
Matrix algebra · Distance functions · Nabla distance · Optimal
voice-leadings · Chord classification · Characteristic polynomials

1 What Is Tonal Function?

This paper is the first in a series of two papers about mathematical models of
tonal function presented at the Mathematics and Computation in Music 2022
conference [23]. In this paper we present a mathematical model of tonal function
(also called harmonic function) in the context of classical and jazz music. In
this paper basic concepts and formalization are introduced and a mathematical
model of tonal function for chords with the same number of voices is presented.
In the second paper [20], the case where chord do not have the same number of
voices is examined. Furthermore, our model of tonal function is applied to the
study of modulation.

Several models—both mathematical and musical—have been presented by a
number of authors in the past few years. The concept of tonal function was first
introduced by Hugo Riemannn in his 1893 work Vereinfachte Harmonielehre [22]
(Harmony simplified in its English version). According to Hyer [14], Riemannn
borrowed the term from mathematics. Riemannn coined the names for the three
main tonal functions, tonic, dominant, and subdominant functions. His theory
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soon gained popularity and was much used in composition, pedagogy of harmony,
and music analysis. About a half century later, the Viennese school of harmony,
led by figures such as Simon Sechter and Heinrich Schenker and later Arnold
Schoenberg, created the scalar degree theory, which put more emphasis on the
use of Roman numeral, the figure bass, and the relation of chords to the tonal
center within a harmonic progression; see Watson [24].

Riemann’s theory of harmony has undergone many extensions and revisions
since its initial formulation, which have guaranteed its use in today’s musical
practice. For example, authors such as Lewin [17], Hyer [13], and Cohn [6,7]
have formulated a neo-Riemannian theory where the operations between chords
originally defined by Riemann are extended and refined to a larger set of oper-
ations resulting in a definition of tonal function capable of dealing with music
from the extended common practice. See [11] for a survey on those extensions
of Riemann’s theory.

Strange as it may seem, there are not many formal and precise definitions
of tonal function in the literature and yet some of them seem not to fully cap-
ture the essence of this musical phenomenon; in particular, there are very few
mathematical definitions of tonal function. Riemann’s definition is laid out in
terms of a theory of consonance and dissonance and also in terms of operations
on chords [22]. The resulting theory of harmony as we know it today is a mix-
ture of Riemann’s theory and the theories by the Viennese school. However, the
definition of tonal function seems to be vague in many cases. For instance, in the
classical textbook Harmony by Walter Piston [18]—a textbook used by many
generations of harmony students —, we find the following definition of tonal
function.

Tonality, then, is not merely a matter of using just the tones of a particular
scale. It is more a process of setting forth the organized relationship of
these tones to one among them which is to be the tonal center. Each scale
degree has its part in the scheme of tonality, its tonal function.

Table 1. Scalar degree characteristics of
tonal function [21].

Function Triggers Associates Dissonances

T 1 and 3 5 and 6 5 (if 6

present)

and 7

SD 4 and 6 1 and 2 1 (if 2

present)

and 3

T 5 and 7 2 4 and 6

This definition is somewhat vague
and similar ones can be found in
other textbooks on harmony. About
the adequacy of the very term “func-
tion”, Kopp [15] for example contends
that, “the meaning of the word has
proved adaptable to support a wide
variety of statements concerning har-
mony.” and discuss the semantics of
the word “function.” In this paper, we
will present a definition of harmonic
function based on voice-leadings.

A more complete definition is given in the project Open Music Theory [3],
which in turns follows Quinn’s definition of tonal function [21]. The definition
given therein classifies chords on scalar degrees I, III, and VI as tonic chords;
II and IV as subdominant chords; and V and VII as dominant chords. The
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characteristics of the scale degrees are then added to his definition. Tonic’s char-
acteristic scale degrees are 1, 3, 5, 6, and 7, (which result from take the scale
degrees of the tonic’s chords), subdominant’s characteristic scale degrees are
1, 2, 3, 4, and 6, and, finally, dominant ones are 2, 4, 5, 6, and 7. Some authors
do not agree with this chord classification and expand it by assigning VI to
subdominant and III to dominant.

Quinn further refines this chord classification and introduces the categories of
functional triggers, functional associates, and functional dissonances; see Table 1.
These categories were created based on the degree of stability of the chord notes
with respect to the tonal center; other authors such as Harrison [12] or Cohn [8]
have proposed similar classifications. Cohn [8] can be considered as a precedent
of the work presented here (his sum-class transformations, for example).

Tonal function has been studied from many standpoints. Carpenter [5] exam-
ined how a musical idea can be shaped through tonal function; Caplin [4] in turn
looked into the historical perspectives on the relation between tonal function and
metrical accent; Dudeque [9] investigated Schoenberg’s concept of tonal function;
Agust́ın-Aquino and Mazzola [1] presented a theory of modulation that includes
a definition of harmonic function.

The paper is organized as follows. In Sect. 2, a mathematical formalization of
the basic concepts related to chords and voice leadings through matrix algebra is
presented. This section is a review of the formalization presented by the authors
in [19]. For the present work such review will be needed to establish terminology
and results. In Sect. 3 an algorithm to find optimal voice leadings (the Hungarian
algorithm) is described and a procedure to classify chords according to its tonal
function is presented. This procedure is based on optimal voice leadings. The
paper comes to an end with a conclusion section.

2 Basic Concepts

2.1 Pitch Classes and Chords

In this section we present a formalization of the most fundamental musical con-
cepts. We start off by considering the range of audible frequencies, the interval
(20, 2 · 104) (measured in Hz). For the sake of completeness, this interval will
be extended to the real line. This has the advantage of being closed under the
sum and product of frequencies. The space of frequencies will be denoted by Φ.
The principle of octave equivalence will be applied here and therefore an equiv-
alence relation ∼ between frequencies is defined. We write x ∼ y if and only if
x = 2k ·y, for some integer k. This relation identifies all the pitches that are apart
any number of octaves as just one pitch. We further assume that the octave is
evenly divided into 12 parts, that is, we assume equal temperament.

Given a fixed pitch class [k], we define the circle of fifths LCk/∼ as the set
of classes

LCk/∼ =
{

[k],
[
k · 2

7
12

]
,
[
k · 2

14
12

]
,
[
k · 2

21
12

]
, . . . ,

[
k · 2

77
12

]}
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This definition is illustrated in Fig. 1 where the pitch k was set to A. Then, the
circle of fifths was built up from it by multiplying the previous pitch by 2

7
12 , the

distance of a fifth in terms of frequency.
A chord X is an unordered collection of classes of pitches taken from

LCk/ ∼. In Western tonal music, in addition to the pitches, chords are described
by specifying two more features, namely, the root and the quality. The root is
the lowest pitch in any voicing of the chord (see the definition of arrangement
below); the quality refers to labels given to chords to describe different variants
of a the same chord. For example, a dominant seventh chord on F is the chord
composed by F-A-C-E�, in that order. The root of this chord is F and the quality
dominant seventh. This label tells us that the first three notes form a major triad
and that E must flat so that there is minor seventh between F and E. Usually,
quality of chords is shown by using several symbols such as m or lowercase for
minor chords, + for augmented chords, etc. Notice that when the root and the
quality are introduced, the pitches are then ordered.

Fig. 1. The circle of fifths

A chord progression is a
sequence of chords. As such,
chords in a progression are pre-
sented in the order in which they
appear in the piece of music.
A natural way to deal with
chord progression is to represent
them as matrices whose entries
are classes of pitches. If P ∈
Mm×n(LCk/∼) is a chord pro-
gression of length n, then each
chord is a vector of m notes and
there are n chords in the progres-
sion. We can arrange the notes of
the chord progression in a matrix
as follows.

P =

⎛
⎜⎝

[θ11] . . . [θ1n]
...

. . .
...

[θm1] . . . [θmn]

⎞
⎟⎠ (1)

To fix ideas, let consider the 2-note chord progression {F, A} to {E, G}, which
from now on will be notated as {F, A}=⇒{E, G}. Its matrix representation is

P =
(

[F ] [E]
[A] [G]

)
.

Let Φ+ be the set of positive frequencies. A voicing of a chord is a mapping
VX from Mm×1(LCk/∼) to Mm×1(Φ+). This mapping takes a given pitch class
to a note. Indeed,

VX

⎛
⎜⎝

⎛
⎜⎝

[θ1j ]
...

[θmj ]

⎞
⎟⎠

⎞
⎟⎠ =

⎛
⎜⎝

φ1j

...
φmj

⎞
⎟⎠ (2)
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where φij ∈ [θij ], for i = 1, . . . ,m and j = 1, . . . , n. Following with the previ-
ous example, a voice leading for the chord progression could be (among other
possibilities)

VX

((
[F ]
[A]

))
=

(
F4
A4

)

For ease of reading, we will notate the frequencies by their standard names
instead of their numerical values. Therefore, we will write A4 instead 440 Hz.

An arrangement of a chord progression is a mapping defining which notes
of the chords are chosen for each voicing. Formally, it is a mapping
ψ : Mm×n(LCk/ ∼) → Mm×n(Φ+) written as

ψ

⎛
⎜⎝

⎛
⎜⎝

[θ11] . . . [θ1n]
...

. . .
...

[θm1] . . . [θmn]

⎞
⎟⎠

⎞
⎟⎠ =

⎛
⎜⎝

φ11 . . . φ1n

...
. . .

...
φm1 . . . φmn

⎞
⎟⎠ (3)

where φij ∈ [θij ], for i = 1, . . . , m and j = 1, . . . , n. From now on, arrangements
will be notated as (φ1, . . . , φn) −→ (φ′

1, . . . , φ
′
n), that is, as bijections between

sequences of notes; compare this notation to that of chord progressions above.
For the chord progression {F, A}=⇒{E, G}, AC could take on, among others,

the form of

AC

((
[F ] [E]
[A] [G]

))
=

(
F4 E4
A4 G4

)

2.2 The Nabla Distance

The space of frequencies can be enriched by defining a metric on it. A metric
space requires the concept of distance, in our case the distance between two
notes. It is a well-known fact that our ears measure the distance in terms of
ratios of frequencies. In the following, we will formalize the concept of distance
between notes. Given two frequencies α, β ∈ Φ+, a metric Δ : (Φ+)2 → R is
defined as the following application:

Δ(α, β) =

∣∣∣∣∣
∫ β

α

Ω

φ
dφ

∣∣∣∣∣ (4)

where Ω is a constant such that
∣∣∣∫ 2

1
Ω
φ dφ

∣∣∣ = 12; see [2] for a relationship between
this constant and the definition of cents.

By working out the integral above, this distance can be expressed as
Δ(α, β) =

∣∣∣Ω ln
(

α
β

)∣∣∣. The actual value of the constant is Ω = 12 · |log2(e)|. This
value was found under the assumption of equal temperament (equal division of
the octave into 12 equal parts). The Δ function does hold the three properties
of a metric, namely: positivity, Δ(α, β) ≥ 0; symmetry, Δ(α, β) = Δ(β, α); and
the triangle inequality Δ(α, β) ≤ Δ(α, γ) + Δ(γ, β).

The pair (Φ+,Δ) is called the musical metric space. This metric can be
extended to the space of pitch classes by just taking the minimum of the elements



A Mathematical Model of Tonal Function 223

in each pitch class. For two classes [θ], [τ ] in LCk/∼, the distance between them,
notated by Δ̃, is defined as

Δ̃([θ], [τ ]) = min {Δ(α, β) |α ∈ [θ], β ∈ [τ ]} (5)

See the work [10] of Forte for more information on distance functions. For exam-
ple, Δ(C5, E4) = 8 and Δ(C4, E5) = 16, but

Δ̃([C], [E]) = min {Δ(α, β) |α ∈ [C], β ∈ [E]} = 4

Notice that the maximum value the distance Δ̃ can take is 6.
Let P ∈ Mm×n(LCk/∼) be a chord progression such that P = ([pij ]), for

i = 1, . . . ,m and j = 1, . . . , n. Consider σ, an element in the symmetric group Sm

defined over the set of indices {1, 2, . . . ,m}. Then, we define E(P ), the exten-
sion of P , as those matrices B = (bij) in Mm×n(LCk/∼) such the following two
conditions hold:

1. For some values of j, [pij ] = [bij ], for all i = 1, . . . ,m;
2. For the rest of values of j, [pij ] = [bσk(i)j ], for all i = 1, . . . ,m, where σk is a

permutation in Sm.

These conditions state that a column in B is either the same column in P or
a permutation of some column of P . E(P ) is the set of such matrices. Consider
again the matrix associated to the chord progression {F, A}=⇒{E, G}. Then,
the extension of P is

E(P ) =
{(

[A] [G]
[F ] [E]

)
,

(
[A] [E]
[F ] [G]

)
,

(
[F ] [G]
[A] [E]

)
,

(
[F ] [E]
[A] [G]

)}

E(P ) has cardinal (m!)n.
Next, we need to define the distance that a voice travels through a given

chord progression. We will use the symbol ∇̃ to define the distance of a chord
progression P . Then, ∇̃(P ) is defined as follows:

∇̃(P ) =
m∑

i=1

n−1∑
j=1

Δ̃([θij ], [θi(j+1)]) (6)

The value of ∇̃(P ) is the sum of all the distances between consecutive notes
of a voice over all voices in the chord progression.

The operator nabla can also be defined for the set E(P ) as follows:
∇̃(E(P )) =

{
∇̃(B) |B ∈ E(P )

}
. Notice that ∇̃(P ) is a real value and ∇̃(E(P ))

a set of values. Let us compute ∇̃(P ) for the chord progression {E, C}=⇒{F,
A}. Indeed, ∇̃(P ) =

∑m
i=1

∑n−1
j=1 Δ̃([θij ], [θi(j+1)]) = Δ̃([E], [F ]) + Δ̃([C], [A]) =

1 + 3 = 4 Actually, we do not need to consider all the matrices in E(P ) to
compute ∇̃(E(P )). It is enough to choose those where the first column is not
rearranged. The nabla distances of the matrices in E(P ) are
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∇̃
((

[C] [A]
[E] [F ]

))
= 1 + 3 = 4, ∇̃ =

((
[C] [F ]
[E] [A]

))
= 5 + 5 = 10,

The nabla of the extension of P is ∇̃(E(P )) =
{

∇̃(B) |B ∈ E(P )
}

= {4, 10}.

A chord progression is said to be optimal if ∇̃(P ) = min
{

∇̃(E(P ))
}

. In
our example, the chord progression {E, C}=⇒{F, A} was optimal as the nabla
distance attained the minimum at that progression.

Analogously, the nabla distance can be defined for arrangements; it will be
notated by ∇ (without tilde). If A = (φij) ∈ Mm×n(Φ+) is an arrangement,
then the formal definition of ∇ is ∇(A) =

∑m
i=1

∑n−1
j=1 Δ(φij , φi(j+1)).

An arrangement A is said to be optimal if ∇(A) = ∇̃(E(PA)), where PA is
the chord progression associated to A. Let us consider two arrangements asso-
ciated to the chord progression {E, C}=⇒{F, E}, say, A1:(E4, C4)−→(F4, E4)
and A2:(E4, C4)−→(F5, E5). Let us find which one is optimal by computing
their nabla distances. We have ∇(A1) = Δ(E4, F4) + Δ(C4, E4) = 1 + 4 = 5
and ∇(A2) = Δ(E4, F5) + Δ(C4, E5) = 13 + 16 = 29. Therefore, the first
arrangement is the optimal one.

From now on, we will simplify and omit the square brackets for the pitch
classes. The context will clearly disambiguate pitch classes from particular notes.

3 A Mathematical Model of Tonal Function

In this section, we introduced the polynomial criterion to classify a chord
according to its tonal function given a tonal center. The chord will be classified
into three categories, namely, tonic T , subdominant SD, and dominant D; the
tonal center will be denoted by TC. For now, we will assume that the number
of voices in all chords is the same and constant. Let us fix a tonal center TC for
the rest of this discussion.

3.1 Voice Optimization

Given a chord X, there always exists an optimal voice leading linking X to TC.
This optimal voice leading yields a matrix link L = (Δ̃ij), for i, j = 1, . . . , n,
where n is the number of voices (which is constant) and Δ̃ij are the nabla
distances between all the classes of X and TC. To fix ideas, let the number of
voices n be equal to 4 and TC = (C,E,G,B) ∈ P(LCk/ ∼) be C major seventh.
Suppose we wish to determine the tonal function of V 7; in order to do so, we
have to examine the chord progression P = V 7 −→ IΔ1. The corresponding
matrix along with the matrix link are

1 Δ here denotes the major seventh chord, not the nabla distance. The symbol is the
same, but the context determines its meaning without confusion.
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P =

⎛
⎜⎜⎝

F B
D G
B E
G C

⎞
⎟⎟⎠ ; L =

⎛
⎜⎜⎝

6 2 1 5
3 5 2 2
0 4 5 1
4 0 3 5

⎞
⎟⎟⎠

We now apply a combinatorial optimization algorithm to matrix L. The algo-
rithm is called the Hungarian method [16], which was developed by Ameri-
can mathematician Harold Kuhn in 1955. This algorithm solves the assignment
problem in polynomial time. The reason to apply it here is because the optimiza-
tion of a voice leading between two chords can be interpreted as an assignment
problems of agents and tasks; it can furthermore be interpreted as a matching
problem in weighted bipartite graphs in which the sum of the edges is minimum.
Here follows a description of the Hungarian algorithm and an example of it; the
input in our case is the link matrix L = (Δ̃ij).

Hungarian Algorithm

Step 1. For each row i in L, i = 1, . . . , n, select the minimum value
minj=1,...,n{Δ̃ij} and subtract it from each element in said row. This will
make the minimum entry in each row equal to 0.

Step 2. For each column j in L, j = 1, . . . , n, select the minimum value
mini=1,...,n{Δ̃ij} and subtract it from each element in said column. At this
point, the minimum value of each row and column is equal to 0.

Step 3. Draw lines through the rows and columns containing a 0 entry so the
the minimum number of lines is drawn. The maximum amount of lines that
can be drawn is n, the number of chord’s voices.

Step 4. If in Step 3 n lines were drawn, then an optimal assignment is possi-
ble. Select the 0 entry for each zero and replace it with the original values.
This assignment yields the optimum assignment of voice leadings between
the two chords. Exit the algorithm. Otherwise, if fewer than n lines were
drawn, then go to Step 5.

Step 5. This step is divided into three cases: Find the entries in the matrix
not covered by any line and compute minimum entry. Then, (1) Subtract
the minimum entry from those entries that are not crossed out; (2) Find the
entries in the matrix covered by one line. Leave them unchanged; (3) Find
the entries in the matrix covered by two lines. Sum the minimum entry to
each entry. Then, go back to Step 3.

The output of the Hungarian algorithm on matrix L is a new optimized link
matrix L∗. Applying this algorithm to the previous chord progression, we arrive
at the matrix shown on the next page
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⎛
⎜⎜⎝

6 2 1 5
3 5 2 2
0 4 5 1
4 0 3 5

⎞
⎟⎟⎠

Step 1−−−−→

⎛
⎜⎜⎜⎝

5 1 0 4
1 3 0 0
0 4 5 1
4 0 3 5

⎞
⎟⎟⎟⎠

Step 2−−−−→

⎛
⎜⎜⎜⎝

5 1 0 4
1 3 0 0
0 4 5 1
4 0 3 5

⎞
⎟⎟⎟⎠

Steps 3−−−−→

⎛
⎜⎜⎜⎝

5 1 0 4
1 3 0 0
0 4 5 1
4 0 3 5

⎞
⎟⎟⎟⎠

Step 4−−−−→

⎛
⎜⎜⎜⎝

– – 0 −−
– – – 0
1 – – –
– 2 – –

⎞
⎟⎟⎟⎠

In Step 3, we obtained 4 zeros, which is the number of voices; of the two
possible zeros in column 3, the horizontal line correspond to the first one . After
Step 4 is executed, the optimal voice leading corresponds to those zeros. In this
case, that voice leading is B −→ B,G −→ G,F −→ E and D −→ C.

In general, the solution to this optimization problem need not be unique
and the Hungarian algorithm returns all of the solutions. The correctness of the
algorithm ensures that the order and the particular zeros chosen in Step 3 always
lead to an optimal solution.

Out of the solutions output by the Hungarian algorithm, an optimal voice
leading P ∗ between the chord X and the tonal center TC is constructed. The
notes of the voice leading can be rearranged so that the optimal values for the
voice leading appear on the main diagonal of the associated link matrix. Such
link matrix is denoted by L∗. Carrying on with our example, the rearrangement
of the voice leading and the link matrix are

P ∗ =

⎛
⎜⎜⎝

F E
D C
B B
G G

⎞
⎟⎟⎠ ; L∗ =

⎛
⎜⎜⎜⎝

1 5 6 2
2 2 3 5
5 1 0 4
3 5 4 0

⎞
⎟⎟⎟⎠

Notice that the rearrangement is not unique.
It is straightforward to conclude that the trace of L∗ is precisely ∇(ψ(P ∗)),

that is, the distance of the optimal voice leading.

3.2 Cadence Endomorphisms and Chord Classification

For a chord X, let us call v(X) a voicing. The mapping that takes any voicing
of X to the optimal voice leading to the tonal center is a rearrangement of the
notes in X. Let us consider L∗ = (aij), i, j = 1, . . . , n, where n is the number
of voices in chord X. We can define an endomorphism—to be called cadence
endomorphism—, Cad : Φn −→ Φn that transform the original voicing into
the optimal one, that is, Cad(v(X)) = TC, where TC is the given tonal center.
In order to define Cad, for each note i in X, let bij be defined as follows: (1)
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bij = aij if note i is lower or equal than note j; (2) bij = −aij if note i is higher
than note j. In case (1) the voice leading goes down or does not change whereas
in case (2) the voice leading goes up. Denote by s the quantity 2

1
12 , a semitone

or half-tone in an equal division of the octave. Then, the endomorphism matrix
for Cad, MCad, is given by

MCad =

⎛
⎜⎜⎜⎝

sb11 0 · · · 0
0 sb22 · · · 0
...

...
. . .

...
0 0 · · · sbnn

⎞
⎟⎟⎟⎠ =

⎧
⎨
⎩

sbij , if i = j

0, if i 	= j

Let PCad(λ) be the characteristic polynomial associated to this endomor-
phism. The roots of PCad(λ) are precisely sb11 , . . . , sbnn and such polynomial
can be written as PCad(λ) =

∏n
i=1(s

bii − λ). The exponents of those roots can
be negative, positive, or zero. Below there is a classification of cadence endo-
morphisms according to the sign of the exponents. This classification serves as
a means to define the tonal function in very general settings such as musical
spaces with chords with a high number of voices; more will be discussed in the
second paper.

Cadence endomorphism classification criteria:

• Positive-definite endomorphisms: when all the exponents are positive;
• Negative-definite endomorphisms: when all the exponents are nega-

tive;
• Mixed-definite endomorphisms: when some exponents are positive and

others are negative, and there is no zero exponents;
• Positive-semidefinite endomorphisms: when all the exponents are

either positive or zero;
• Negative-semidefinite endomorphisms: when all the exponents are

either negative or zero;
• Mixed-semidefinite endomorphisms: when some exponents are either

positive or negative or zero, and the three cases occur.

When the exponents are either all positive or all negative, we say that the
exponents are polarized.

Examining classical music in the common practice period and assuming that
chords have a constant number of voices equal to three or four, we are ready to
put forward our definition. Our definition captures the voice movement to move
from a given chord to a fixed tonal center. By the model we have built, such
movement conforms with the signs of the exponents of the characteristic poly-
nomial of the cadence endomorphism. According to the sign of the exponents,
the tonal function is determined as follows.
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Chord classification criteria

• Dominant chords: A chord X is a dominant chord if all the exponents
are negative or zero having at least two negative exponents;

• Weak dominant chords: A chord X is a weak dominant chord if there
is just one positive exponent, two or more negative exponents, and the rest
of the exponents are zero;

• Subdominant chords: A chord X is a subdominant chord if all the expo-
nents are positive or zero having at least two positive exponents;

• Weak subdominant chords: A chord X is a weak subdominant chord if
there is just one negative exponent, two or more positive exponents, and
the rest of the exponents are zero;

• Tonic chords: A chord X is a tonic chord if all the exponents are zero
except one, which can be either negative or positive.

In the example above, the main diagonal of the cadence endomorphism
matrix is s−1, s0, s0, s−2 since F goes to E and D to C in the optimal voice
leading. Therefore, the chord (G,B,D, F ) is a dominant chord with respect to
the tonal center (C,E,G,B).

If the tonal center is set as the major seventh chord CΔ, then Table 2 shows
the tonal function for the main 4-note chords in the scale of C major computed
by our method.

Table 2. Four-note chords and their tonal function

Function Chords

Tonic CΔ, Am7 Em7, CΔsus2, CΔsus4

Dominant G7, B◦7, G7sus4, Dm7sus2, Em7sus4

Subdominant Dm7, FΔ, Dm7sus4, Am7sus2

4 Conclusions

A mathematical model of tonal function has been presented in this paper. It is
based on voice leadings and captures the way a chord moves towards the tonal
center. The movement has to be optimal (hence, the Hungarian algorithm) and
the voices have to move in the same direction (either up or down). We contend
this definition explains more precisely and deeply the tonal function, especially
as found in classical music during the common practice period. Our model allows
for generalization and can also be used for other kinds of music traditions such
as jazz music or music from the extended common practice (further development
is given in the second paper of this series).

Some of the definitions of tonal function reviewed in the introduction are not
actually such insofar as they describe the tonal function and classify chords, but
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they do not explain or justified satisfactorily the classification. Some authors
resort to the “ear” (this chord as a dominant chord because the ear feels it that
way) while others—like Schenberg himself—rely on a theory of consonance and
dissonance, which it is known it cannot explain tonal function in all music genres,
especially jazz music and extended common practice.

In the second part of this series we address the problem of having chords with
different number of voices and also how modulation works within this model.

Acknowledgements. We thank the reviewers for the extremely lucid and valuable
comments they provided us with.
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(II): Modulation
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Abstract. This work is the second part of a research into mathematical
models of tonal function. In the first paper, we presented a mathematical
model based on optimal voice leadings for chords with the same number
of notes. We gave several examples for classical music in the common
practice period. In this second paper, we generalize the model to jazz
music and music from the extended common practice and we remove the
constraint on the number of voices, allowing the classification of chords
with a different number of notes. Furthermore, modulation within this
mathematical model is also explored and a classification of modulation
between major and minor scales is constructed.

Keywords: Tonal function · Voice-leadings · Nabla distance ·
Optimal voice-leadings · Cadence endomorphisms · Characteristic
polynomials · Modal interchange · Modulation

1 Introduction

This is the second paper of a series of two where mathematical models of tonal
function are examined. In the first paper [5], a review of the tonal function
concept was carried out, followed by a mathematical formalization of musical
elements, which was needed for the designing of a mathematical model of the
tonal function. Contrary to many definitions of tonal function based on theo-
ries of consonance and dissonance, ours is grounded on optimal voice leadings
between chords and the tonal center. Given a tonal center, the function of a chord
is determined by the length of the optimal voice leading between the given chord
and the given tonal center and how the voices in that voice leading move (the
polarization of the exponentes in the characteristic polynomial). In the previous
paper, we applied our model to music having chords with the same number of
notes, which mainly corresponds to diatonic music such as classical music from
the common practice, folk music, among others. In this work, we will gener-
alize our mathematical model to chords with a variable number of voices and
will apply to music traditions such as jazz music and music from the extended
common practice.
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In the first paper, we reviewed the definition of tonal function in classical
music mainly and found that in general the definitions available were vague. How
is the conceptualization of tonal function in other music traditions such as jazz
music, for example? In jazz music—one of the musical styles where harmony is
central—, it seems that a conceptual, comprehensive definition of tonal function
also lacks. Certainly, there are many definitions in the literature and textbooks,
but most of them establish the tonal function without elucidating its roots.
In his 2004 paper [8] Jazz harmony: a progress report, Stover [8] reviews three
important jazz textbooks, namely, Mulholland and Hojnacki’s The Berklee Book
of Jazz Harmony [4], David Berkman The Jazz Harmony Book [1], and Dariusz
Terefenko’s Jazz Theory: From Basic to Advanced Study [9]. In the first book,
tonal function is described as “the relationship of a chord to its tonal center”
(page 1). In Berkman’s book, the three classical tonal functions are first described
and then a series of concentric circles are built out of this core, from which all
the rest of chords are classified. Moving through these circles is done through
chord transformations (this patently resonates with neo-Riemannian theory). In
the third book, Terefenko provides a definition of tonal function in terms of
hierarchy of chords (page 54), but again that hierarchy is described in detailed,
but not its derivation. Worth mentioning is the book by Russell [7] The Lydian
Chromatic Concept of Tonal Organization where the author describes the tonal
function as an interaction of harmonic forces and tonal gravity (page 3 and
following). Russell’s theory implies is a deeper and more comprehensive of tonal
function.

The paper is organized as follows. In Sect. 2, the theory about how to deal
with chords with different number of voices is developed. In Sect. 3, we exam-
ined an interesting phenomenon that arises in our model: chords may have two
functions depending on their voice movement; this chords are said to have a
dual tonal function. In Sect. 4, chord classification by our model is discussed; in
particular, it is examined how the direction of the voice may influence the tonal
function. In Sect. 5, the idea of optimal voice leading applied to determining
the tonal function is now extended to modulation. Two tonalities are related
through the optimal voice leading linking them. A classification of modulation
is thus proposed. The paper ends with a conclusion section where we discuss the
implications and reach of our model.

2 Tonal Function in Chords with Different Number
of Voices

In this section, we will examine the case in which the number of voices is not
the same in both chords. To that end, we will have to extend the Hungarian
algorithm to deal with infinity arithmetic. To fix ideas, assume that X is a chord
with fewer voices than the tonal center TC. The point where the previous ideas
fail is when computing the distance between both chords. Let us now define
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the empty class in the space of pitches as the class without pitches; it will
be denoted by [ø]. The distance from the empty class to any other class [α] is
obtained by taking the limit

lim
β→0

∣
∣
∣
∣
∣

∫ β

α

Ω

φ
dφ

∣
∣
∣
∣
∣
= +∞

where Ω = 12 · |log2(e)|. Consequently, Δ̃([α], [ø]) = ∞. For our purposes, we
assume the following convention regarding operations with infinity

Convention: Given any real number k, the result of the operation ∞ − (∞ − k)
is k.

Assuming this convention, we have the following expression for the difference of
distances Δ̃([α], [ø]) − Δ̃([β], [ø]) is:

Δ̃([α], [ø]) − Δ̃([β], [ø]) = ∞ − ∞ = 0

The Hungarian algorithm with this infinity arithmetic will be called the
extended Hungarian algorithm.

To illustrate how the tonal function in this new context, we will next calculate
the tonal function of the chord X = (G,B,D) being TC = (C,E,G,B) the tonal
center. Note that the first chord have fewer classes than the second chord.

P =

⎛

⎜
⎜
⎝

[∅] B
D G
B E
G C

⎞

⎟
⎟
⎠

−→ L =

⎛

⎜
⎜
⎝

∞ ∞ ∞ ∞
3 5 2 2
0 4 5 1
4 0 3 5

⎞

⎟
⎟
⎠

Step 1−−−−→

⎛

⎜
⎜
⎜
⎝

0 0 0 0
1 3 0 0
0 4 5 1
4 0 3 5

⎞

⎟
⎟
⎟
⎠

Step 2−−−−→

⎛

⎜
⎜
⎜
⎝

0 0 0 0
1 3 0 0
0 4 5 1
4 0 3 5

⎞

⎟
⎟
⎟
⎠

Step 3−−−−→

⎛

⎜
⎜
⎜
⎝

0 0 0 0
1 3 0 0
0 4 5 1
4 0 3 5

⎞

⎟
⎟
⎟
⎠

Step 4−−−−→

⎛

⎜
⎜
⎝

– – – ∞
– – 2 –
0 – – –
– 0 – –

⎞

⎟
⎟
⎠

The voice leading between both chords turns out to be D −→ E,B −→
B,G −→ G and [ø]−→ C. Notice that in this optimal voice leading the class [ø]
lands on C. According to the classification given earlier, the chord X = (G,B,D)
is a subdominant chord with respect to the tonal center TC = (C,E,G,B) since
two voices are kept constant and two voices move up. Notice that the appearance
of a voice as in [ø]−→ C is considered as a voice moving up.

Having taken the presence of infinite into account, some formal issues arise.
In the previous example, one of the exponents is +∞. The associated cadence
endomorphism Cad will have an entry s+∞, which makes no sense. It would
seem that there is no cadence endomorphism in this case, but that is not so. It
is possible to construct a cadence endomorphism MCad that maps X onto TC.
In our example such endormorphism is
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MCad : Φ4 −→ Φ4, MCad · ψ(X) = ψ(TC)

MCad =

⎛

⎜
⎜
⎝

w1 φ4/φ1 0 0
w2 s0 0 0
w3 0 s0 0
w4 0 0 s2

⎞

⎟
⎟
⎠

where ψ(X) and ψ(TC) are voicings of X and TC, respectively, and w1 . . . , w4

are arbitrary parameters to be determined. Let φ1, φ2, φ3 be the notes in the
arrangement corresponding to the chords in the voice leading; in our exam-
ple, those notes correspond to the classes G,B,D, respectively. Furthermore,
let φ4, φ5 be the notes corresponding to C and E, respectively. If MCad is the
endomorphism taking (0, φ3, φ2, φ1) to (φ4, φ5, φ2, φ1) = (φ4, s

2φ3, s
0φ2, s

0φ1),
then the matrix expression of the cadence endomorphism is:

⎛

⎜
⎜
⎝

φ4

φ1

φ2

φ5

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

w1 φ4/φ1 0 0
w2 s0 0 0
w3 0 s0 0
w4 0 0 s2

⎞

⎟
⎟
⎠

·

⎛

⎜
⎜
⎝

0
φ1

φ2

φ3

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

φ4

s0φ1

s0φ2

s2φ3

⎞

⎟
⎟
⎠

Therefore, there are infinite endomorphisms that output the same optimal voice
leading.

Let us examine what happens when the number of voices decreases. Take, for
example, the chord X = (C,E,G,B	) and set TC = (F,A,C) as tonal center.
Below we have the execution of the Hungarian algorithm on this chord and tonal
center.

P =

⎛

⎜
⎜
⎝

B	 [ø]
G C
E A
C F

⎞

⎟
⎟
⎠

−→ L =

⎛

⎜
⎜
⎝

∞ 2 1 5
∞ 5 2 2
∞ 4 5 1
∞ 0 3 5

⎞

⎟
⎟
⎠

Step 1−−−−→

⎛

⎜
⎜
⎝

∞ − 1 1 0 4
∞ − 2 3 0 0
∞ − 1 3 4 0

∞ 0 3 5

⎞

⎟
⎟
⎠

Step 2−−−−→

⎛

⎜
⎜
⎝

1 1 0 4
0 3 0 0
1 3 4 0
2 0 3 5

⎞

⎟
⎟
⎠

Step 3−−−−→

⎛

⎜
⎜
⎜
⎝

1 1 0 4
0 3 0 0
1 3 4 0
2 0 3 5

⎞

⎟
⎟
⎟
⎠

Step 5−−−−→

⎛

⎜
⎜
⎜
⎝

1 1 0 4
0 3 0 0
1 3 4 0
2 0 3 5

⎞

⎟
⎟
⎟
⎠

Step 4−−−−→

⎛

⎜
⎜
⎝

– – 0 –
∞ – – –
– – – 0
– 0 – –

⎞

⎟
⎟
⎠

Reading off the voice leading from the last matrix above, it yields the voice lead-
ing B	 −→ A,E −→ F,C −→ C and G −→ [ø]. This last voice leading makes
the note G in the chord X disappear. Similarly to the previous case, the dis-
appearance of a voice is considered as a voice moving down. As for the tonal
function, two voices move down, two voices stay the same, and just one voice
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move up. Therefore, (C,E,G,B	) is a weak dominant chord with respect to the
tonal center (F,A,C).

In the case of fewer voices in the tonal center, the issue of infinity does not
occur. The infinity in the last matrix in the example actually corresponds to −∞
since the C disappears in the voice leading. Therefore, the entry s−∞, which is
interpreted as lim

K→−∞
sK , is zero. The characteristic polynomial of the above

endomorphism is PCad(λ) = −λ(s−1 − λ)(s1 − λ)(s0 − λ).

3 Dual Tonal Function

The mathematical model proposed here is based on optimal voice leadings. In
all models of tonal function—mathematical or otherwise—we are aware of, the
tonal function is always unique. A chord cannot take on two different func-
tions. However, in our model that is not always the case. Certain chords may
have a dual tonal function that will depend on whether the voices move up or
down in the optimal voice leading. Some of the definitions found in the liter-
ature do not take into account how the voices move and therefore miss this
subtle point. The lack of uniqueness in our model is due to the fact that the
optimal voice leading need not be unique. Let us illustrate this point with
an example. Consider the scale of C major and within it the 4-note chord
D minor seventh (D,F,A,C); the tonal center is CΔ, the chord (C,E,G,B).
Let us apply the Hungarian algorithm to find the optimal voice leading.

P =

⎛

⎜
⎜
⎝

C B
A G
F E
D C

⎞

⎟
⎟
⎠

−→ L =

⎛

⎜
⎜
⎝

1 5 4 0
2 2 5 3
6 2 1 5
3 5 2 2

⎞

⎟
⎟
⎠

Step 1−−−−→

⎛

⎜
⎜
⎝

1 5 4 0
0 0 3 1
5 1 0 4
1 3 0 0

⎞

⎟
⎟
⎠

Step 2−−−−→

⎛

⎜
⎜
⎝

1 5 4 0
0 0 3 1
5 1 0 4
1 3 0 0

⎞

⎟
⎟
⎠

Steps 3 and 4−−−−−−−−→

⎛

⎜
⎜
⎝

1 5 4 0
0 0 3 1
5 1 0 4
1 3 0 0

⎞

⎟
⎟
⎠

Step 5−−−−→

⎛

⎜
⎜
⎝

0 4 4 0
0 0 4 2
4 0 0 4
0 2 0 0

⎞

⎟
⎟
⎠

Step 3 and 4−−−−−−−−→

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 =

⎛

⎜
⎜
⎜
⎝

0 4 4 0
0 0 4 2
4 0 0 4
0 2 0 0

⎞

⎟
⎟
⎟
⎠

S2 =

⎛

⎜
⎜
⎜
⎝

0 4 4 0
0 0 4 2
4 0 0 4
0 2 0 0

⎞

⎟
⎟
⎟
⎠

There are two optimal solutions, S1 and S2. The voice leadings associated to
those solutions are:

S1 = C −→ C,A −→ B,F −→ G,D −→ E

S2 = C −→ B,A −→ G,F −→ E,D −→ C
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The first voice leading yields a positive-definite endomorphism, that is, all
the voices move up and therefore the tonal function of that chord with this voice
leading is subdominant. However, all the voices in the second voice leading go
down and according to our classification this chord is a dominant chord. Chords
with two tonal functions are called dual chords.

The optimal voice leading need not be unique also in the case of a dif-
ferent numbers of voices. In the example given above, where the number of
voices increased, we computed the optimal voice leading between the chord
X = (G,B,D) and the tonal center TC = (C,E,G,B). The solution obtained
then was D −→ E,B −→ B,G −→ G and [ø]−→ C. The algorithm actually
returns another solution, which is
D −→ C,B −→ B,G −→ G and [ø]−→ E. Similar example can be found for the
case in which the number of voices decreases.

4 Chord Classification

For the first example, let us fix the number of voices in the chord as 3 (the case
is many musical traditions). Let C major be the tonal center. Table 1 shows the
tonal functions of the chords in the scale computed by our model.

Table 1. Three-note chords and their tonal function

Function Chords

Tonic C, Am Em, Csus2, Csus4

Subdominant G, B◦

Dominant Dm, F

Surprisingly enough, the functions of dominant and subdominant seemed to
be swapped, but there is no mistake. For example, in the case of the voice leading
(G,B,D) −→ (C,E,G) the optimal voice leading consists of two voices moving
up, B −→ C,D −→ E, which is subdominant function. However, if we consider
the dominant seventh chord instead of just the chord on the fifth degree of the
scale, then the voice leading (G,B,D, F ) −→ (C,E,G,B) does have dominant
function. Its optimal voice leading is

G −→ G,B −→ B,D −→ C,F −→ E

where all the voices either stay constant or move down. Compare this table to
the table of 4-note chords given in the first paper of this series [5].

5 Modulation

The study of tonal function through optimal voice leadings can be extended to
the study of modulation. Instead of dealing with a variable number of voices in
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the chords, we simply consider the whole scale and apply the same techniques to
compute the distance between the original tonality and the target tonality. As
we will see later, this procedure will produce a classification of the modulations
similar to that of chords. To illustrate this idea, suppose we wish modulate from
C major to F major. By applying the same procedure as in obtaining the tonal
function, we arrive at:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B E
E A
A D
D G
G C
C F
F B	

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−→ L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

5 2 3 4 1 6 1
0 5 2 3 4 1 6
5 0 5 2 4 4 1
2 5 0 5 2 4 4
3 2 5 0 5 2 3
4 3 2 5 0 5 2
1 4 3 2 5 0 5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Step 1−−−−→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 1 2 3 0 5 0
0 5 2 3 4 1 6
5 0 5 2 4 4 1
2 5 0 5 2 4 4
3 2 5 0 5 2 3
4 3 2 5 0 5 2
1 4 3 2 5 0 5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Step 2−−−−→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 1 2 3 0 5 0
0 5 2 3 4 1 6
5 0 5 2 4 4 1
2 5 0 5 2 4 4
3 2 5 0 5 2 3
4 3 2 5 0 5 2
1 4 3 2 5 0 5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Step 3−−−−→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 1 2 3 0 5 0
0 5 2 3 4 1 6
5 0 5 2 4 4 1
2 5 0 5 2 4 4
3 2 5 0 5 2 3
4 3 2 5 0 5 2
1 4 3 2 5 0 5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Step 4−−−−→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

– – – – – – 0
0 – – – – – –
– 0 – – – – –
– – 0 – – – –
– – – 0 – – –
– – – – 0 – –
– – – – – 0 –

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The voice leading keeps all the voices except B, which is taken to B	, as one
would expect.

As in the case of chords, an endomorphism mapping the original tonality
onto the target tonality can be defined. The endomorphism matrix will consist
of a diagonal matrix with entries of the form sλ where λ are the minima output
by the Hungarian algorithm along with sign given by the direction of the voice
movement (positive if it moves up; negative otherwise).

Let us give a more complicated example to illustrate this model of
modulation. Take C major (C,D,E, F,G,A,B) and G	 major (G	,A	,B	,
C	,D	,E	, F ). The Hungarian algorithm outputs two solutions S1, S2 (we save
the computations at this moment as they are not needed for our point):

S1 :C −→ C�,D −→ E	,E −→ F�, F −→ F,

G −→ G�,A −→ B	,B −→ B

S2 :C −→ B	,D −→ C�,E −→ E	, F −→ F,

G −→ F�,A −→ G�,B −→ B

In S1 all the voices move up whereas in S2 all the voices move down. Again,
we can state that the modulation from C major to G	 major possess a dual
character as it is possible to go from the former to the latter in two manners.

Mimicking the chord classification given in the first paper, it is possible to
classify modulations according to how the original tonality is converted into the
target tonality. This is given in terms of the exponents of the endomorphism
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associated to the optimal voice leading. The modulation classification criteria
are as follows.

Modulation classification criteria

• Dominant modulation: A modulation is said a tonic modulation if all
the exponents are negative or zero having at least two negative exponents;

• Weak dominant modulation: A modulation is weak dominant if there
is just one positive exponent, two or more negative exponents, and the rest
of the exponents are zero;

• Subdominant modulation: A modulation is said a subdominant modu-
lation if all the exponents are positive or zero having at least two positive
exponents;

• Weak subdominant modulation: A modulation is weak subdominant if
there is just one negative exponent, two or more positive exponents, and
the rest of the exponents are zero;

• Tonic modulation: A modulation is said a tonic modulation if all the
exponents are zero except one, which can be either negative or positive.

6 Conclusions

In these two papers we have presented a mathematical model of tonal function
based on optimal voice leadings. Unlike other tonal function models based on
theories of consonance/dissonance (Riemann’s models [6]) or on operations on
chords (neo-Riemannian theory [2,3]), our model is based on the optimal voice
leading from a chord to a fix tonal center. Once the optimal leading is constructed
(via the Hungarian algorithm), the manner in which the voices move towards the
tonal center is key to deciding the final tonal function of the chord. Essentially,
if most of the voices stay constant, then the tonal function assigned is tonic.
If most of the voices move down, then the chord has dominant function; and
finally, if most of the voices move up, then the chord has subdominant. Certain
chords has no tonal function in the sense they do not fall in the categories
for tonal function defined here. Those chords without a clear tonal function
have several voices moving down and up at the same time (in our terminology,
their associate endormorphisms are either mixed-definite or mixed-semidefinite).
Moreover, some chords may have two functions depending whether the voices
move up or down when approaching the tonal center, the so-called dual chords.
This subtle distinction is new in tonal function classification (to the best of our
knowledge).

Furthermore, our model of tonal function allows broader generalization and
applicability. For instance, the tonal function of chords of different numbers of
voices can always be determined (via the extended Hungarian algorithm) and
therefore the chord classification criteria can be extended to an arbitrary number
of voices. This is due to the fact that the model is purely based on voice leadings.
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Chords such as polychords, quartal chords, or 9th, 11th, 13th chords can be
classified under our model. The model presented here can easily be applied to
music from the extended common practice such as pandiatonicism or twelve-tone
serialism. In particular, we contend that our model is especially suitable for the
analysis of jazz music.

The idea of classifying chords according to their optimal voice leadings can
be abstracted away to scales and modes. This classification provides an insight
into the relationship between tonalities. The modulation between two tonalities
is understood both in terms of the new tonal center but also in terms of the
optimal voice leading linking both tonalities. In this paper, we only looked into
major and minor scales, but as future work we intend to consider modulation
between two arbitrary scales, even if they have different number of notes (which
our model can handle).
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Abstract. Musical chords and chord relations can be described through
mathematics. Abstract permutations can be visualized through the
Rubik’s cube, born as a pedagogical device [7,21]. Permutations of notes
can also be heard through the CubeHarmonic, a novel musical instru-
ment. Here, we summarize the basic ideas and the state of the art of the
physical implementation of CubeHarmonic, discussing its conceptual lift-
ing up to the fourth dimension, with the HyperCubeHarmonic (HCH).
We present the basics of the hypercube theory and of the 4-dimensional
Rubik’s cube, investigating its potential for musical applications. To gain
intuition about HCH complexity, we present two practical implementa-
tions of HCH based on the three-dimensional development of the hyper-
cube. The first requires a laptop and no other devices; the second involves
a physical Rubik’s cube enhanced through augmented and virtual reality
and a specifically-designed mobile app. HCH, as an augmented musical
instrument, opens new scenarios for STEAM teaching and performing,
allowing us to hear the “sound of multiple dimensions.”

Keywords: Rubik’s cube · Hypergeometry · Permutations · Chords ·
Tonnetz · Mobile

1 Introduction

Pythagoras advanced joint knowledge of mathematics and music. In the Mid-
dle Ages, they were part of the Quadrivium. Today, their exchanges are lead-
ing to a flourishing research field [20]. Classic examples of interactions between
mathematics and music are the permutations of pitches as well as entire musi-
cal sequences, as in Mozart’s dice game. Here, we connect (hyper)geometry,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 240–252, 2022.
https://doi.org/10.1007/978-3-031-07015-0_20
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combinatorics, and music, presenting the general idea of the HyperCubeHar-
monic (HCH). It is a development of the CubeHarmonic (CH) [11], that gener-
ates chords according to faces’ rotations. The CH is a novel musical instrument
inspired by the Rubik’s cube and the abstract pitch spaces (a family of repre-
sentations including the tonnetz).1 The core idea of CH is the following:

– each facet is a note within an octave;
– each face is a chord (with nine notes, and some of them can be repeated);
– rotating the cube, the initial chords are scrambled.

For reasons of clarity of sound and simplicity, the reproduced sounds corre-
spond to the notes on the top face of the cube. A cycle of rotations corresponds
to a cycle of chords. In fact, we can investigate chord-preserving symmetries of
the Rubik’s cube. For example, the cube’s rotational symmetry allows cyclical
chord progressions. We notice that the symmetry of harmonically-played chords
is bigger than the symmetry of melodically-played chords. In fact, a rotated face
corresponds to the same sound of an un-rotated face if the notes are played
simultaneously.

A simplification of the unscrambled cube has one pitch for all the facets
in each face; twisting the cube, new chords are obtained. From the point of
view of music theory, we can see CH as a tangible application of slot-machine
transformations.2 CH involves a topic of mathematical music theory, the tonnetz
[20], a lattice of pitches and musical chords, which is first cut and glued to be
adapted to the cube, and then twisted (and cut again) according to the performed
rotations.

The first concept of CubeHarmonic (called CubHarmonic in [12, p. 20.1.2])
is a 4 × 4 × 4 cube, used for a 4-part harmony. Twisting this cube, new chord
sequences are obtained. However, all current physical CH prototypes [10,11]
use a 3 × 3 × 3 cube. With a 3-part harmony, the performer can still enjoy a
considerable amount of combinations, with the advantages of easiness in cube’s
scrambling.

The very first implementation of the CH was realized by M. Mannone through
a giant Rubik’s cube and sound modules, allowing the user/performer to play
each note separately or simultaneously,3 see Fig. 1. It is described in [10]. The
disadvantage of size was overcome by IM3D+ use [8], as described below.

The 3 × 3 × 3 prototype built at the Tohoku University,4 see Fig. 2, needs
only a few markers (LC coils) for 3D motion tracking [11], while a 4 × 4 × 4
cube would present more technical issues regarding physical motion capture.
1 The tonnetz is a lattice constituted by notes and their connections as chords [20].

The CH has been thought by M. Mannone during her studies at IRCAM in 2013,
and then first described in [12].

2 In music theory, slot-machine transformations are permutations. If we have three
discs with three notes in each of them, they give a sequence of 3-note chords. Rotating
the discs, the chord changes. For example, the vertical sequence 0 − 1 − 2 becomes
1 − 2 − 0 after a rotation of one of the discs [1].

3 Video: https://tinyurl.com/3j5csh36.
4 Video: https://www.youtube.com/watch?v=r wNpQnsWhg.

https://tinyurl.com/3j5csh36
https://www.youtube.com/watch?v=r_wNpQnsWhg
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In fact, in the current CH prototype, the IM3D+ platform [8] allows motion
tracking through battery-less and wireless small lightweight identifiable passive
sensors modifying a magnetic field (Fig. 2). If these sensors are embedded in
HCH, more degrees of freedom are allowed: seven more Rubik’s cubes and all
their intertwined rotations.

The CH and HCH have a good potential not only as music instruments but
also as teaching tools for STEAM (Science, Technology, Engineering, Art, and
Mathematics) education [3] in the domain of mathematics [9,14,15], because
of their specific features described in Sects. 2 and 3. In fact, HCH joins the
abstraction of hypergeometry with the tangibility of a physical tool and the
resources of computer visualization.

Fig. 1. First implementation of CubeHarmonic, from [10].

Fig. 2. IM3D+ (left) and CubeHarmonic (right) [11].

Other independently-developed applications of music to the Rubik’s cube are
described in a NIME article [16] and in a TED tutorial [19]. The TED tutorial
concerns a similar theoretical idea, without however mentioning chord sequences
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or proposing the development of a physical instrument. Moreover, the tutorial
dates back to November 2015, while the book where the CubeHarmonic had
first been described [12] was submitted to Springer in September 2015. The
article [16], published one year after the book [12], proposes a new device, with
a random choice of pitch, to be used as a controller. However, the starting idea
of CH is theoretical, and its implementation is physical and tangible. Also, in
CH [10,11] some musical features, such as the possibility to manipulate overall
loudness and pitch changes according to hands’ movements, are all implemented,
creating crossmodal effects. These features will be added to future versions of
HCH as well.

HCH is inspired by the multidimensional geometry, and it will allow the
transformation of the instrument’s structure during performance, besides adding
more parameters to the existing system. This results in an innovative instrument
which enables rich manipulations of tones and other musical parameters while
making notes, melodies, chords, and timbre transitions interactive and appre-
ciably tangible. Thus, the HCH should allow musicians to hear the “sound of
multiple dimensions,” by extending a customizable physical cube into additional
dimensions in virtual reality. An object living in the 4 dimensions cannot be
completely realized in our 3-dimensional world. However, augmented reality will
help us gain intuition about this research.

Thus, we discuss the theory behind 4-dimensional Rubik’s cube and its poten-
tial for musical application. Then, we present two first implementations. The first
one implements a real hyper-Rubik’s cube and allows the user/musician to play
it; it is based on MathematicaTM , and requires only a laptop. The second one
exploits a physical cube and a mobile device. Thus, HCH can be totally mobile,
because it does not require any platform. However, if small sensors are embedded
in the corners of the cube, it can be used jointly with the former technology for
CH, adding more degrees of freedom—and thus, more potential features. HCH
can exploit all resources of musical mobile connectivity (both via cables, MIDI
to computer or to sound interface, and wireless with bluetooth), and it has a
potential as a controller.

The mathematical idea is described in Sect. 2; the implementations in Sect. 3;
discussions on potentialities and further developments are proposed in Sect. 4.

2 Mathematical Concepts

2.1 Ars Combinatoria, Permutations, and the Rubik’s Cube

Gottfried Wilhelm von Leibniz defined as ars combinatoria5 the technique of
ideas’ symbolization through geometric and algebraic signs and their recom-
bination and organization in all possible ways, finalized to create a universal
map of concepts [4]. Then, the computational resources of ars combinatoria
inspired artistic applications through the centuries, in music, visual arts, and
literature [27]. Well-known examples include musical dice games (Musikalische

5 It had been called ars magna by Ramon Llull [4].
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Würfelspiele), which allowed to compose musical pieces from random combi-
nations of pre-composed musical fragments—see some works by Llull, Haydn,
and Mozart [1,17]. Mathematically, combinatorics is based on group theory. A
group is constituted by a set and an operation such as the combination of two
elements of a group gives an element of the same group. The operation veri-
fies closure, associativity, identity, and invertibility [18]. A permutation group
is a group whose elements are the permutations, and whose operations are the
permutation compositions.

Invented as a pedagogical device to teach permutations, the Rubik’s cube,
thanks to its colorful aesthetic appeal and manipulative attractiveness, became
one of the best-sold toys and games. The design of the Rubik’s cube is based
on permutation groups. The facets are the set, and their possible permutations
(moves) constitute the group operations. Sets of moves are the subgroups of the
Rubik’s cube, and all possible moves belong to this group [26].

2.2 The Hypercube

Our hypercube has four dimensions; it is a tesseract and it can be developed with
eight cubes in three dimensions [23,24]. The cubes are regarded to be located
oppositely on the four axes of the Cartesian coordinates in a hyperspace. Hyper-
cubes sparkled the interest of music theorists; hypergeometry led to dynamic
visualizations of symmetries in musical pieces [2,5]. The famous way to under-
stand the hypercube is extending the relation between 2D and 3D to 3D and
4D. For example, a square (2D) moving in the space (3D) for a length equal to
its side and reaching another square, spans the space of a cube (3D). A cube,
moving in space (4D) and reaching another cube, spans the space of a hypercube
(4D). In short, a dimensionally-lifted square gives a cube, and a dimensionally-
lifted cube gives a hypercube. Figure 3a shows a cube and its central projection,
and Fig. 3b presents a hypercube through its center projection. Fig. 3c illustrates
the expansion of a hypercube with eight cubes on a hypersurface; this structure

(a) A cube and its representation via a cen-
tral projection [25]. (b) Hypercube center

projection [25].
(c) Hypercube 3D
development [22].

Fig. 3. Some representations of cube and hypercube.
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has been used in Daĺı’s painting Crucifixion (Corpus Hypercubus) [6]. The idea
of hypercube also inspired music-tech applications, not related with the Rubik’s
cube; as an example, see the Sound-reactive cube.6

2.3 The Hyper-Rubik’s Cube

As the next step, we imagine that each cube of the hypercube is a Rubik’s cube.
Fig. 4 shows a 3D projection of a 4D Rubik’s cube, and its constitutive eight
cubes. In this subsection, we assume that all faces of each cube are painted the
same color, for simplicity. However, we can paint them more generally: different
colors to different subcubes or to different facets.

Fig. 4. Development of the Hyper Rubik’s cube. Image from [25].

The traditional Rubik’s cube has 27 subcubes; the center cube is not colored
(ideally, it is in the inner core of the cube, where there is the rotational mech-
anism), and the other cubes are partially colored (according if they are corner,
lateral, or central pieces). The colored pieces are “faces × facets” = 6 × 9 = 54.
It can be shown [25] that the hyper-Rubik’s cube contains overall 81 small 4-
cubes; one of the cubes is at the center and it is not colored, while the remain-
ing 80 are partially colored. The colored subcubes in a 4-Rubik’s cube are:
cubes × subcubes = 8 × 27 = 216. For the people in 3D, the subcube at the
center of each cube is hidden so the value is 26. However, for the people in 4D,
the center can be observed, maybe. This is the reason why we are considering 27
rather than 26. A rotation on one cube provokes some rotation of the adjacent
cubes. According to [13,25], while in 3D an axis of rotation is a line, in 4D it
6 https://www.youtube.com/watch?v=PmsCRypjMRI.

https://www.youtube.com/watch?v=PmsCRypjMRI
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is a plane. E.g., the rotation matrix Rx,y(θ) with respect to the (x− y)-plane is
given in Eq. (1); because there are six planes of rotations, there are six rotation
matrices.

Rx,y(θ) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

⎞
⎟⎟⎠ (1)

We refer to the smallest cluster of subcubes to be rotated simultaneously as a
block. In the case of Rubik’s cube, a block is a prism of 3 × 3 × 1 subcubes.
Similarly, for hyper-Rubik cube, a block is a hyperprism consisting of 3 × 3 ×
3 × 1 small hypercubes. The operation to rotate a block is described in [25].

2.4 The Hyper-Rubik’s Cube with Music: The HyperCubeHarmonic

If we have 8 different Rubik’s cubes, we have more degrees of freedom to be
used musically. For example, all cubes could contain the same notes, but with
different timbres. Alternatively, each cube can play the same note, or there can
be different notes for different squares. A different choice of musical layers could
lead, for example, to rhythm-combination controllers. We can choose to play all
cubes together or just one after the other. In any case, eight cubes remind one
of the mentioned 3D-development of the hypercube.

If each cube is a CH, adding more cubes means adding degrees of freedom,
that is, more musical resources to the instrument. Figure 5 shows the concept of
HCH. For the geometric discussion, see [24]. In the 3× 3× 3 Rubik’s cube used
for CH, each facet is a single note; in HCH each cube of the tesseract is a CH.
Thus, higher geometric dimensions allow higher musical complexity.

Fig. 5. The concept of HyperCubeHarmonic
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3 First Implementations

To have a grasp of the musical potentialities of the Rubik’s hypercube, we present
here two implementations.

3.1 Implementation 1

As a first computational implementation, for the sake of simplicity we put the
same note on each one of the eight cubes (e.g., creating a scale C-D-E-F-G-
A-B-C octave), visually identifying each note and cube with a color. In this
way, the result of each rotation will straightforwardly be visualized and heard.
This implementation, coded in MathematicaTM by T. Yoshino, can be accessed
online.7

Fig. 6. MathematicaTM rendition of the unscrambled HyperCubeHarmonic. Pink: C4;
Orange: D4; Green: E4; White: F4; Yellow: G4; Blue: A4; Red: B4; Violet: C5. (Color
figure online)

Figure 6 shows a screenshot of this implementation. The sound(s) of each
cube can be heard pressing the round buttons. The table on the right contains
the commands for the rotations: the black triangle indicates a rotation angle
of π/2, the black square of π, and the black inverted triangle of −π/2. As an
example, Figs. 7 and 8 show the result of a rotation of −π of the y-column and
x-row. Our video shows how this app works.8

7 http://random-walk.org/PrototypeHyperCH.nb.
8 https://youtu.be/wB8VoCKHrmc.

http://random-walk.org/PrototypeHyperCH.nb
https://youtu.be/wB8VoCKHrmc
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Fig. 7. HyperCubeHarmonic with the highlighted rotation.

Fig. 8. Musical effect of the rotation of Fig. 7.

3.2 Implementation 2

We can also simplify the HCH 3D projection and develop a manipulative device
used together with an app. The user/performer has a physical device, a Rubik’s
cube with embedded sensors, and a mobile with the specific app coded in Unity.
The physical cube is the “Go Cube,”9 which contains embodied, inner sensors
transmitting information about the position to a mobile app. The mobile app
(Fig. 9a) has been specifically coded by P. Chiu for HCH, working for Android
and iOS mobile operative systems. In this app, the cubes are considered as
independent; this is why they are not distinguished by colors.

The Go Cube + app system implements an IoT (internet of things, connected
smart-objects) approach. The app screen shows, in real time, the position of the
facets of the real cube, and other additional seven cubes. The user can select
specific cubes to create a local rotation. In doing so, we do the simplification
of independent cubes. In future releases, these rotations will be related between
them according to the hypercube’s geometrical constraints [25].

Even if the physical cube is scrambled, the cube(s) in the app can be reset
to the unscrambled state. Thus, HCH does not require the ability to solve the
Rubik’s cube to be played. The musical parameters in the current prototype are

9 https://getgocube.com/.

https://getgocube.com/
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(a) Opening the app. (b) Selection of one cube.

(c) All cubes are selected and par-
tially scrambled.

(d) Long-tapping on it, we can
scramble only one cube.

Fig. 9. HCH mobile app

the same pitches with different timbres: each cube has a different timbre. Sounds
come from the sampled orchestral sounds.10

The top face of each cube is the one which sounds. If the rotation does not
involve the top face, the sound does not change. HCH development is still ongo-
ing, to enhance sound-movement correspondence and use easiness. Next devel-
opments will include rhythms and sound effects, to make the performance richer.
Our video11 shows how the app prototype works, with the original (unedited)
sound. A single tap enables a cube to play (Fig. 9b). As default, all cubes are
moving (Fig. 9c), but a long-tap on one cube disables scrambling for the other
cubes, letting them keep the same notes (Fig. 9d).

4 Discussion and Conclusions

From a theoretical idea, the CubeHarmonic has been little by little shaped
into a working musical instrument. We described the idea of CH and its 4-
dimensional development, including two computational implementations. The
presented extension to the fourth dimension broadens the scenarios in musical
applications and conceptual developments. One of the proposed implementations
10 https://philharmonia.co.uk/resources/sound-samples/.
11 https://youtu.be/p5i6 uzIips.

https://philharmonia.co.uk/resources/sound-samples/
https://youtu.be/p5i6_uzIips
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of HCH has already been used in musical setups such as multi-instrument impro-
visations.12 We are planning to join both prototypes to use a physical cube as a
controller for the Mathematica app with the real HyperCubeHarmonic (Fig. 10).

Fig. 10. The logo of HyperCubeHarmonic project.

The main advantage of the presented simplified implementation of HCH with
respect to CH is the portability. Also, it can be connected (through the mobile)
wireless with bluetooth, or through Sonobus software, allowing a stable stream
transmission, ideal for remote collaborative performances. HCH could also be
used as a MIDI controller if the input is transmitted to an audio interface. The
use of sequencers such as Bitwig, Mulab, or Ableton will allow HCH playing
recordings. Further developments may include a detailed user study, and the
application of HCH concept to other Rubik’s Platonic Solids.

Connectivity of HCH makes it suitable for remote STEAM teaching [3,9]. In
fact, HCH might have a potential in both mathematical and musical education,
as it makes complex abstract objects tangible, by manipulating their parameters
interactively. HCH can be creatively used to generate chords in correspondence
of non-intuitive Rubik’s hypercube rotations. In particular, students could recog-
nize and master combinations of rotations along with their inverse through their
musical effect. A classroom network of connected HCH might allow the teacher
to give feedback on students’ learning. The hour of math could be turned into
an HCH orchestra rehearsal!

The progressive addition of multiple cubes as in HCH could help enhance
creativity, mixing timbres and developing motor abilities, through the com-
mon ground of hearing and movement. Finally, HCH, through its multi-sensory
modalities, might hopefully help students with visual or hearing impairments
learn mathematics and solve the Rubik’s cube.
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Abstract. Mathematical Morphology provides powerful tools for image
processing, analysis and understanding. In this paper, we apply these
tools to analyze scores, that are image-like representations of Music. To
do that, we consider chroma rolls, a representation of scores similar to
piano rolls that use chromas instead of pitches. Endowing this represen-
tation with a lattice structure, one can define Mathematical Morphology
operators, and setting a group structure to the Time-Frequency plane
allows us to use the notion of structuring element. We show throughout
some examples that this relates with the notion of pitch-class set and
chord progressions, and we analyze two Chopin’s Nocturnes with this
technique.

Keywords: Mathematical Morphology · Harmonic analysis ·
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1 Introduction

Mathematical Morphology is a theory for the analysis and processing of geomet-
rical structures that intersects with several domains such as Topology, Lattice
Theory or Integral Geometry [6,9]. It has been developed in the second half
of the 20th century and it has been extensively used for analyzing images. Fol-
lowing this approach, we will show that Mathematical Morphology operators
may be useful for analyzing image-like representations of Music such as scores.
In particular, we will focus on harmonic analysis and we will take as support a
two-dimensional representation of the score closely related to the standard piano
roll: the chroma roll.

There are already a few applications of Mathematical Morphology to
Music [3,4], and [5] on this topic that use piano rolls. This paper extends these
earlier works in terms of both representations of music and types of operators.
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There are several frameworks where Mathematical Morphology may be
applied; in its deterministic form, we need to have a complete lattice as alge-
braic structure. We will ask a bit more, intending to make it possible to work
with structuring elements: the lattice will then consist of functions with a group
as domain and a complete lattice as codomain. Moreover, since we will make
abstraction of the dynamics of the score, we will select as codomain the lattice
({0, 1},≤), and then we will be able to identify functions with subsets of the
group through the characteristic function.

In this paper, we will start by presenting the algebraic framework of the
Time-Frequency plane based on Group Theory. Then, we will present the Math-
ematical Morphology basics that we will use in this work. Finally, we will propose
some applications of Mathematical Morphology operators to extract harmonic
information. As a particular case, we will focus on Chopin’s Nocturnes since they
are well adapted to this task.

2 Algebraic Framework

Since we want to model scores, our domain is the Cartesian product of a set
modeling time and a set modeling frequency. We require these sets to be groups in
order to have a notion of translation; this will lead to straightforward definitions
of the morphological operators.

We recall that the translation action of a group (G,+) on itself is the function

T : G × G → G
(g, x) �→ Tgx = x + g

. (1)

In the following sections, we present the corresponding groups we chose for
modeling time and frequency, that lead to a time-frequency representation of a
score.

2.1 Time Group

There are several groups that may model the time: if we express it in seconds
we can choose (R,+); if we consider the time inside a MIDI file it will be useful
to use (Z,+) where each unit is a tick; if we consider an audio signal we may
also use (Z,+) where each unit is a sample.

When we measure the time inside a score, one can choose several units:
among others, we may use either the bar, the beat or the tatum1. We choose
to measure the time inside a score in bars. Letting d ∈ N be the ratio between
the duration of a bar and the duration of the tatum, we model the time inside a
score measured in bars by the group ( 1dZ,+), where 1

dZ = {n
d ∈ Q : n ∈ Z}. This

group is a subgroup of (Q,+) but is isomorphic to (Z,+) using the isomorphism

1 This name was introduced in [1] for calling the maximal note duration such that all
the note durations in the score are integer multiples of it. For a deeper discussion
about it and its relation with the notion of GCD (Greatest Common Divisor) see [7].
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φ :
(
1
dZ,+

) → (Z,+), n
d �→ n. Nevertheless, it is interesting to use it rather than

(Z,+) because measuring the time in multiples of tatum is far less practical that
doing it in bars.

2.2 Frequency Groups

For considering the frequency inside a score, we may use the notion of pitch.
Usually, pitch is measured in semitones and may be modeled by the set Z where
each number corresponds to the MIDI number of a note (for instance, the number
60 corresponds to C4).

This frequency group is interesting for analyzing melodies but, when con-
sidering harmony, it would be preferable to work with the set Z12 of chromas.
Then, we use this set with the translation action of (Z12,+). In order to make
the distinction between chromas and translations, we will use letters for the
chromas (C, C�, ..., B) and numbers for the chroma shifts (0, 1, ..., 11), even
if chromas have an associated number for computations and are considered as
elements of Z12.

2.3 Time-Frequency Groups

Now that we have set the models for time and frequency, we can couple them
by means of the direct product and have a time-frequency representation of
scores. We then work with the group ( 1dZ × Z12,+) and the action on itself. A
score may then be conceived as a subset of the time-frequency plane; piano roll
representations are a good way of visualizing this, but they are subsets of 1

dZ×Z;
since we want to work with the time-frequency plane 1

dZ × Z12, we call chroma
roll a subset of it. The way of getting a chroma roll from a score is the following:
we take the piano roll representation of the score that we call S ⊆ 1

dZ × Z and
we say that its chroma roll representation is the set π(S) ⊆ 1

dZ × Z12, where
π : Z → Z12, n �→ n is the canonical projection from Z to Z12. See Fig. 1 for an
illustration of a chroma roll.

Now that we have an image-like representation of the music with a base group
structure, we are able to define some Mathematical Morphology operators that
allow us to extract harmonic features of the score.

(a) Score (b) Chroma roll

Fig. 1. Chroma roll representation of a score
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3 Mathematical Morphology

Let us now introduce some basic but useful tools of Mathematical Morphology.
We start by the two basic operators, which are the erosion and the dilation.

3.1 Erosion and Dilation

Erosion and dilation are defined in the context of complete lattices. A good intro-
duction to these operators where all the subsequent definitions and propositions
may be found is [2].

Definition 1. Let (L1,≤1) and (L2,≤2) be two complete lattices, and ∧1,∧2

(respectively ∨1,∨2) the associated infimum (respectively supremum).
An operator ε : L2 → L1 is called an erosion if

∀X2 ⊆ L2 ,
∧

1
ε(X2) = ε

(∧

2
X2

)
. (2)

An operator δ : L1 → L2 is called a dilation if

∀X1 ⊆ L1 ,
∨

2
δ(X1) = δ

(∨

1
X1

)
. (3)

An important property of these operators is that they are increasing2 and
then preserve the order.

Whereas this is the most general definition for erosion and dilation, it is
an implicit definition. In order to have an explicit type of erosion and dilation
(the one with structuring elements), we choose as lattice the power set of a
group (G,+). The next proposition provides an explicit definition these types of
operators.

Proposition 1. Let (G,+) be an additive group. Let T : G × G → G, (x, g) �→
Tgx = x+g be the translation action of (G,+) on itself. We note the translation
of a set A ⊆ G by an element g ∈ G by TgA = {Tga ∈ G : a ∈ A} ⊆ G. Let
B ⊆ G and B̌ = {−b ∈ G : b ∈ B}, where −b is the inverse element of b.

We consider the complete lattice (P(G),⊆). Then, the operators

εB : P(G) → P(G)
A �→ εB(A) = {x ∈ G : TxB ⊆ A}

(4)

and δB : P(G) → P(G)
A �→ δB(A) = {x ∈ G : TxB̌ ∩ A �= ∅}

(5)

are respectively an erosion and a dilation.
We use the following notations: ∀A ⊆ G,

εB(A) = A  B δB(A) = A ⊕ B .

The set B is called structuring element. The operators εB and δB are called
respectively binary erosion and binary dilation with structuring element B.
2 ψ : L1 → L2 is said to be increasing if ∀X, Y ∈ L1, X ≤1 Y ⇒ ψ(X) ≤2 ψ(Y ).
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We notice that for each choice of B we have a different erosion and a different
dilation, so, what we actually have is a family of erosions and dilations.

The next property exposes an analogous way of defining these operators
making use of union and intersection.

Proposition 2. Using the notations from Proposition 1,

A  B =
⋂

x∈B̌

TxA A ⊕ B =
⋃

x∈B

TxA . (6)

Some interesting properties of these erosions and dilations are shown in the
next proposition.

Proposition 3. Let (G,+) be a group. We have

1. ∀A ⊆ G, ∀B1, B2 ⊆ G, B1 ⊆ B2,
(a) εB1(A) ⊇ εB2(A)
(b) δB1(A) ⊆ δB2(A).

2. ∀A ⊆ G, ∀B ⊆ G,

(A ⊕ B)c = Ac  B̌ (A  B)c = Ac ⊕ B̌ , (7)

where Ac = {x ∈ G : x /∈ A} is the complementary set of A.

Combining these operators, new morphological operators arise, in particular
opening and closing.

3.2 Opening and Closing

As erosion and dilation, opening and closing have a general definition in the
context of complete lattices. A good introduction to these operators is [8].

Definition 2. Let (L,≤) be a lattice. Let ψ : L → L an operator. We say that

1. ψ is an opening if it is increasing, anti-extensive3 and idempotent4;
2. ψ is a closing if it is increasing, extensive5 and idempotent (see footnote 4).

Since they are idempotent and increasing, openings and closings are mor-
phological filters. Idempotence is particularly useful since it ensures that several
applications of the same operator do not change the result (as do a lot of other
filters). This can be thought as a guarantee of filtering all that we want to filter
at once.

A particular case of openings and closings are the compositions of erosions
and dilations with respect to a structuring element, as shown in the next propo-
sition.

3 ∀X ∈ L, ψ(X) ≤ X.
4 ψ2 = ψ.
5 ∀X ∈ L, X ≤ ψ(X).
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Proposition 4. Let (G,+) be a group. Let B ⊆ G. Let εB and δB be respectively
the erosion and dilation with respect to the structuring element B. Then,

1. γB � δB ◦ εB is an opening.
2. ϕB � εB ◦ δB is a closing.

We use the following notations: ∀A ⊆ G,

γB(A) = A ◦ B ϕB(A) = A • B .

There are many other morphological operators, but in this paper we will only
expose a last one: the hit-or-miss transform.

3.3 Hit-or-miss Transform

The hit-or-miss transform is defined as follows.

Definition 3. Let (G,+) be a group. Let C,D ⊆ G with C ∩ D = ∅. Then, the
hit-or-miss transform of A ⊆ G with respect to the structuring elements C and
D is defined by

A � (C,D) = (A  C) ∩ (Ac  D). (8)

An interesting way of seeing the hit-or-miss transform is given in the next
remark and will be the one in which we will think when applying it to Music.

Remark 1. Using the notations from Definition 3,

A � (C,D) = {p ∈ G : TpC ⊆ A ⊆ TpD
c} . (9)

We may then think the hit-or-miss transform as a pattern matching trans-
formation with an internal condition (TpC ⊆ A) and an external condition
(A ⊆ TpD

c); we want to find structures that are bigger than C but smaller
than Dc.

4 Applications

Now that we have some Mathematical Morphology operators, let us give some
applications. We propose the two following linked steps: first, we consider the
lattice formed by the power set of the group (Z12,+) ordered by inclusion. Then,
we extend it with time information to be able to analyze a score. We show that
Z12 structuring elements correspond to pitch-class sets, and 1

dZ×Z12 structuring
elements correspond to chord progressions.

4.1 Mathematical Morphology on Z12

Musical chords may be identified with subsets of Z12. We can identify two subsets
by the fact that they are both major chords and this is modeled in mathematical
terms by the concept of equivalence relation, in this case ∀A,B ⊆ Z12, A ∼ B ⇔
∃p ∈ G such that TpA = B. Mathematical Morphology comes in handy for
analyzing this fact as shown in the following.
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Erosion as a Structure Detector. Let us focus first in the way we can use
erosion to detect chord types; if we want to detect, for instance, major chords, we
may erode a score with the major chord structure as illustrated in the following
example.

Example 1. Let us consider the following chords:

Fmaj = {C,F,A} Fmaj7 = {C,E �,F,A} F◦ = {F,A �,B} .

We consider the structuring element maj = {0, 4, 7}. Then,

Fmaj  maj = {F} Fmaj7  maj = {F} F◦  maj = ∅ .

We see that erosion may be used as a detector: it detects the presence of a major
chord with root F in Fmaj and Fmaj7 and shows that there is no major chord
in F◦. The fact that we got the chroma F after the erosion is because the zero
corresponds to the root in the structuring element; it serves as a reference.

An interesting case is when we deal with chords that have non trivial
stabilizer6 in Z12. An example is the diminished seventh chord: if we erode
the chord D◦7 = {D,F,A �,B} by the diminished seventh structuring element
dim7 = {0, 3, 6, 9} it remains unchanged, i.e.:

D◦7  dim7 = D◦7 . (10)

This points out the fact that the diminished seventh chord may be built on each
of its notes or, equivalently, that any of its notes may be considered the root. In
Messiaen’s terminology, it has a limited number of transpositions equal to the
cardinal of the quotient group

Z12�Stab(D◦7) = {C + dim7,C � + dim7,D + dim7} , (11)

which in this case is 3.

Opening as a Simplification. Let us consider now opening in the same case
that in Example 1; we have:

Fmaj ◦ maj = Fmaj Fmaj7 ◦ maj = Fmaj F◦  maj = ∅ .

We see that opening simplifies chords containing a major chord (removing
the seventh in the case of Fmaj7) and removes all the chords that do not contain
a major chord. This illustrates why they are called filters (Fig. 2).

6 The stabilizer of a subset A ⊆ Z12 is defined by Stab(A) = {n ∈ Z12 : TnA = A}
and is a subgroup of Z12.
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(a) Structuring el-
ement maj

(b) Fmaj (c) Fmaj7 (d) F◦

Fig. 2. Chords and structuring element represented in Z12.

Hit-or-miss Transform as a Pattern Detector. Hit-or-miss transform is
closely related to erosion; indeed, ∀A,B ⊆ G,

A  B = A � (B, ∅) . (12)

In addition, the second structuring element plays an interesting role: if we
want to know to which major and minor scales does the Fmaj chord belong, we
may proceed as in the following example.

Example 2. Let us consider the structuring elements

majorScale = {0, 2, 4, 5, 7, 9, 11} minorScale = {0, 2, 3, 5, 7, 8, 10} .

Then, we have

Fmaj � (∅,majorScalec)) = {C,F,B �} Fmaj � (∅,minorScalec) = {D,G,A} .

This shows that the F major chord is present in the C, F and B � major scales
and in the D, G and A minor scales.

It is interesting to note that the major and (natural) minor scales are equiv-
alent in the sense that one is the translation of the other. However, the reference
note is not the same and thus gives different results.

Until now, we have used the hit-or-miss transform with one of its struc-
turing elements being the empty set. Let us show an example where we use
both constraints for detecting a range of chords that hold both bigger-than and
smaller-than constraints.

To detect whether a chord X is a dominant-like chord of some major scale, i.e.
it contains the dominant third Dom3M = {7, 11} and all its notes are contained
in the major scale, the hit-or-miss transform can be used as follows:

X � (Dom3M,majorScalec) . (13)

This is illustrated in the following example with three choices of X among
the 4096 possible combinations7.

7 This number comes from the number of subsets of Z12 that is equal to 212.
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Example 3. We consider the following chords:

Emaj = {E,G �,B} Dmaj7(5) = {C,D,F �} Amaj7�9 = {C �,E,G,A,B �} .

Then, we have

– Emaj � (Dom3M,majorScalec) = {A},
– Dmaj7(5) � (Dom3M,majorScalec) = {G},
– Amaj7�9 � (Dom3M,majorScalec) = ∅,

which shows that Emaj is a dominant-like chord of the A major scale, Dmaj7(5)

is a dominant-like chord of the G major scale and Amaj7�9 is not a dominant-like
chord of any major scale.

As a last application of the hit-or-miss transform, we may use it to detect
any chord type C ⊆ Z12 by choosing the structuring elements C and Cc.

4.2 Mathematical Morphology on Chroma Rolls

We now go one step further, and illustrate how Mathematical Morphology oper-
ators can be useful to analyze scores represented as chroma rolls by using the
group ( 1dZ × Z12,+) and the lattice

(P (
1
dZ × Z12

)
,⊆)

.

Supremum Windowing for Collapsing Harmony. When analyzing har-
monically a score, we should make decisions about which notes do we keep and
which ones do we discard. Also, we should decide how to handle notes spread
in time: usually, we consider that several notes that do not coexist at the same
time but are close enough to each other are related because they are part of
the same chord, like in the case of arpeggios. To take such configurations into
account, we propose a pre-processing step to modify the chroma rolls such that
they become more representative of the harmony of the piece.

It is clear that the composer’s own style and particularities could lead to
different rules. In this paper, as an example, we focus on Chopin’s Nocturnes
since they are a good illustration of our purpose. The proposed pre-processing
method consists in taking only the left hand, since the harmony is concentrated
there, and applying what we call a supremum windowing.

The supremum windowing is a way of collapsing several notes into the same
chord by taking the supremum. Its formula is presented in the next definition.

Definition 4. Let S ⊆ 1
dZ × Z12. Let χS ∈ {0, 1} 1

dZ×Z12 be the characteristic
function of S. The supremum windowing of S with window length L ∈ Q and
hop size H ∈ Q is the subset of H

d Z × Z12 with characteristic function

W
(L,H)
∞ [S] : H

d Z × Z12 → {0, 1}
(t, c) �→ sup{χS(t + x, c) : x ∈ [0, L)}

. (14)

Figure 3 shows the supremum windowing of the left hand of Chopin’s Noc-
turne Op. 9 No. 2.
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(a) Original score

(b) Resulting chroma roll (c) Windowed chroma roll

Fig. 3. Score, chroma roll and its supremum windowed version of the first 8 bars of the
left hand of Chopin’s Nocturne Op. 9 No. 2 (dynamics, expressions and other features
are not considered).

Chord Type Detection. Let us now describe some applications of Mathe-
matical Morphology operators for the detection of chord types in scores. We can
extend all that we have done in the one-dimensional case to the two dimensional
case; for instance, if we want to detect major chords, we may use an erosion
with structuring element {0} × maj. This is done for the (supremum windowed)
chroma roll of the Nocturne Op. 9 No. 2 of Chopin in Fig. 4.

(a) Chroma roll (b) Erosion of the chroma roll

Fig. 4. Chroma roll of the Nocturne Op. 9 No. 2 of Chopin and its erosion by the
structuring element {0} × maj.

We may also apply a process analogous to the one in Example 2 to detect
tonality and modulations throughout the score. This is illustrated in Fig. 5 in
the case of the first 24 bars of the Chopin’s Nocturne Op. 48 No. 1 after supre-
mum windowing with length and hop size equal to 1

2 of the bar. We apply a
hit-or-miss transform with C = ∅ and D = ({0} × minorHarmScale)c, where
minorHarmScale = {0, 2, 3, 5, 7, 8, 11} is the structuring element corresponding
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to the harmonic minor scale. We notice several parts that are clearly in C minor
and a part around bars 6 to 8 that is in G minor.

(a) Chroma roll (b) Hit-or-miss transform with struc-
turing elements C = ∅ and D =
({0} × minorHarmScale)c

Fig. 5. Hit-or-miss transform of the chroma roll of the first 24 bars of the Chopin’s
Nocturne Op. 48 No. 1 for detecting potential harmonic minor scales.

Chord Progression Detection. Extending structuring elements with a time
component allows us to detect chord progressions. For instance, we may detect
authentic cadences using the structuring element V-I =

({− 1
h} × {2, 7, 11}) ∪({0} × {0, 7}), where 1

h models the harmonic rhythm. Here, the interval {0, 7}
guarantees that we recover both the major and minor I degree, and we set the
timestamp of the dominant chord {2, 7, 11} to − 1

h because we want it to precede
the tonic (and thus the minus sign). This way, the result of the erosion provides
the time and the chroma corresponding to the I chord. Figure 6 illustrates this
for the 24 first bars of the Nocturne Op. 9 No. 2 with h = 4.

(a) Structuring element of V-I (b) Erosion of the chroma roll with structur-
ing element V-I

Fig. 6. Erosion of the chroma roll of Chopin’s Nocturne Op. 9 No. 2 by the V-I struc-
turing element.

5 Conclusions

Throughout this paper, we have seen that Mathematical Morphology, based
on Group Theory, may be very useful for analyzing Music scores. This frame-
work provides efficient tools for harmonic analysis that are lightweight and well
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adapted to harmonic considerations. The use of chroma rolls ensures that we
do not have disposition problems in the chords. While simple, the proposed
examples illustrate the power of the proposed approach.

It is interesting to notice that we have only used erosion-like operators (ero-
sion, opening and hit-or-miss); this is because we focused on the analysis part.
Other operators such as dilations and closing could be used for composition; for
instance, a dilation reproduces a particular structure from a reference note.

Several paths can be followed for extending these operators to more complex
lattices; for instance, if we consider the amplitude range in a score by using
dynamics, morphological operators acting on functions can be leveraged. Also,
we can change the base groups; for example if we want to analyze MIDI files,
we may use (Z,+), and we may even apply these tools on signal operators such
as the Short-Time Fourier Transform. In future works, we will also go deeper
in the creation of an automatic analyzer that implements morphological tools
based on the equivalence between chord structure and structuring element. We
intend to provide a deterministic framework for the study of harmony at large
scale.
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Abstract. This paper deals with the computational analysis of musi-
cal structures by focusing on the use of morphological filters. We first
propose to generalize the notion of melodic contour to a chord sequence
with the chord contour, representing some formal intervallic relations
between two given chords. By defining a semi-metric, we compute the
self-distance matrix of a chord contour sequence. This method allows gen-
erating a self-distance matrix for symbolic music representations. Self-
distance matrices are used in the analysis of musical structures because
blocks around the diagonal provide structural information on a musical
piece. The main contribution of this paper comes from the analysis of
these matrices based on mathematical morphology. Morphological filters
are used to homogenize and detect regions in the self-distance matri-
ces. Specifically, the opening operation has been successfully applied to
reveal the blocks around the diagonal because it removes small details
such as high local values and reduces all blocks around the diagonal to a
zero value. Moreover, by varying the size of the morphological filter, it is
possible to detect musical structures at different scales. A large opening
filter identifies the main global parts of the piece, while a smaller one finds
shorter musical sections. We discuss some examples that demonstrate the
usefulness of this approach to detect the structures of a musical piece and
its novelty within the field of symbolic music information research.

Keywords: Symbolic music information research · Music structure ·
Chord contour · Self-distance matrix · Mathematical morphology

1 Introduction

Mathematical morphology is an algebraic theory that analyzes shapes and is
mostly used in image analysis and understanding. However, this theory is not
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very common yet in the Mathematics and Music community. The fundamental
idea of this theory is to modify the shape, the size or the topological properties
of objects with non-linear and non-reversible transformations. Among the few
existing applications of mathematical morphology to symbolic representations of
music, automatic methods have been developed in Music Information Research
community (MIR) to detect approximate occurrences of musical patterns in
symbolic music databases [12,13]. In this case, mathematical morphology enables
to match almost identical patterns. Moreover, mathematical morphology has also
been used to analyze concept lattices based on musical intervals [2], and basic
operators of mathematical morphology have been adapted to find a musical
meaning, allowing for example extracting harmonic components or to obtain
musical transformations [14].

The main contribution of this paper is to propose a novel method, based
on mathematical morphology, to extract hierarchical musical structures from
the self-distance matrix. This method can be applied to any type of similarity
matrix and to any type of data. In our case, the self-distance matrix is computed
from symbolic music representations, using a generalization of melodic contour
to chord sequences. The purpose of this method is to homogenize the different
regions of the self-distance matrix in order to identify the musical structures.
Two basic morphological operations, the erosion and dilation, have already been
successfully used to detect the repeating patterns longer than a minimum length
into a time-lag matrix (a similar representation as the self-distance matrix) [15].
However, rather than identifying segments as in [15], we demonstrate the use-
fulness of the morphological opening operation in order to identify blocks in the
self-distance matrix. This operation eliminates small details, while flatter and
homogeneous regions are obtained. In addition, it reduces all the blocks around
the diagonal, which correspond to musical sections, to a zero value. We discuss
the form to choose when applying an opening filter to extract information from
the self-distance matrix: a constant square-shaped filter. But the size can also be
adjusted to detect different musical structures. A large opening will identify the
global part of the piece while a smaller one will reveal shorter sections. This idea
is illustrated by detecting different musical structures in Mozart’s Piano Sonata
Alla Turca.

This paper details the above ideas and is organized as follows. Section 2
proposes a method to generate a self-distance matrix from symbolic music rep-
resentations. We introduce the concept of chord contour (Sect. 2.1) as a general-
ization of the usual melodic contour, and then define a distance to compute the
self-distance matrix of a chord contour sequence (Sect. 2.2). Section 3 describes
how to use morphological filters in order to extract musical structures from the
self-distance matrix. After providing a short introduction to mathematical mor-
phology (Sect. 3.1) we then demonstrate the relevant applications of the open-
ing operation in order to identify the main blocks of the self-distance matrix
(Sect. 3.2). Finally, in Sect. 4, we apply our proposed method and illustrate how
morphological filters can be used to extract musical structures at multiple levels
of granularity.
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2 Creating a Self-distance Matrix from Symbolic Music

2.1 Converting Symbolic Music to Sequence Using Chord Contour

Whether for music perception [6,23], music analysis [1] or music theory [5],
melodic contour has become a fundamental tool in the MIR community. This
tool applies on monophonic structures, i.e., musical phrases or motives in which
two notes never sound at once. It is defined by the set of the directions between
consecutive pitches of a melody, +1 and −1 indicating respectively an ascending
and a descending interval. Figure 1a illustrates this idea by representing each
note of a melody by a circle in a time/pitch graph. Melodic contour summarizes
intervallic information and can be used to compare and classify melodic patterns
or to help understand their perception. Considering the importance of melodic
contour, it is not surprising that multiple extensions have been proposed. For
example, two other contours were defined in [3]: the strong contour (melodic
contour of only the notes present on the beat) and the weak contour (strong
contour with extra information if there is a contour variation within the beat).
Moreover, it was proposed in [16,20] to observe the directions at longer range,
i.e., all the directions between the ith and jth pitches, not only between the
ith and (i + 1)th pitches as for the usual melodic contour. To this purpose,
both works used a matrix representation: Morris’s comparison matrix (COM-
matrix) in [16], and combinatorial contour matrix in [20]. In the COM-matrix,
the coefficient at position (i, j) is the pitch direction between notes i and j,
and for the combinatorial contour matrix this coefficient is +1 if the jth note is
higher in pitch than the ith note or 0 otherwise. However, these generalizations
remain in the monophonic context, and they do not handle musical chords.

We propose a generalization of the melodic contour to chord sequences, i.e.,
not restricted to note sequences. In the proposed definition, the direction between
the pitches of two given chords is no longer a number but a matrix, called chord
contour. The coefficient (i, j) of the chord contour is the direction between the
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Fig. 1. Illustration of the melodic contour and the chord contour.
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ith note of the first chord and the jth note of the second chord, where the notes
of the chords are ordered in descending pitch order. Therefore, the chord contour
from an n-note chord to an m-note chord is of size n × m. Figure 1b illustrates
the construction of the chord contour: in this example, the two chords have
two notes, so the corresponding chord contour is a 2 × 2 matrix. The first row
corresponds to the directions from the highest note of the first chord to the notes
of the next chord, and so on. The chord contour sequence of the introduction of
Edvard Grieg’s March of the Dwarfs is graphically represented in Fig. 2. It will
be analyzed in the next sections in order to find the main passages or blocks of
this sequence.

Fig. 2. Representation of the chord contour sequence of the introduction of March of
the Dwarfs. Black, dark gray and light gray pixels map respectively to values of 1, 0
and −1.

2.2 Distance Matrix of a Chord Contour Sequence

In this section, we propose to define a distance between two chord contours. The
main difficulty comes from the fact that chord contours, which are matrices, can
have different sizes. First, we consider two chord contours with the same size. In
this case the Hamming distance will be used. Let A = (ai,j) and B = (bi,j) be
two chord contours of sizes n × m, the Hamming distance d(A,B) between the
matrices A and B is defined as the number of coefficients which differ:

d(A,B) = |{(i, j) ∈ [1...n] × [1...m] | ai,j �= bi,j}|. (1)

If one of the two matrices has more rows (or columns) than the other matrix,
one can reduce it by deleting rows (or columns) in order to get two matrices of
the same size and use the previous formula, with the addition of the number of
deleted rows (or columns). The rows (or columns) to be deleted are those that
minimize the distance between the two matrices. Deleting a row (respectively
a column) corresponds to omitting a note in the first chord (respectively the
second chord). Thus, if A and B are two matrices of size n1 ×m1 and n2 ×m2,
the distance D(A,B) between these two matrices is defined as:

D(A,B) = min
A′,B′

(d(A′, B′)) + |n1 − n2| + |m1 − m2|, (2)

where A′ and B′ are two matrices of size min(n1, n2) × min(m1,m2) such that
A′ (respectively B′) is obtained by removing n1 − min(n1, n2) rows and m1 −
min(m1,m2) columns from A (respectively B). From a mathematical point of
view, the first distance d respects symmetry, identity of indiscernibles, non-
negativity and triangular inequality. It is well defined as a metric on the space of
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matrices with the same size. On the other hand, for the second distance D, the
triangular inequality is lost; hence, it is only a semi-metric in the mathematical
sense. However, since we only make pairwise comparisons, without looking for a
path from one matrix to another one, the triangular inequality is not essential.

In order to visualize the musical structures, the self-similarity matrix was
proposed in [7], as a two-dimensional representation defined by computing the
similarity between any two instants. As stated in [19], self-similarity matrices
have become a major concept in the study of musical structures. In addition, the
dual of self-similarity matrices are self-distance matrices where each coefficient
describes the distance between two elements. Here we will focus on self-distances
matrices, but the same logic can be transcribed on self-similarity matrices. Let
ck be the kth chord contour of the musical piece, i.e., from the kth chord to
the (k + 1)th chord. Then the coefficient of the line i and the column j of the
self-distance matrix is defined by D(ci, cj). Figure 3 displays the self-distance
matrix corresponding to the example of the introduction of March of the Dwarfs
in Fig. 2. Since D is symmetric, the self-distance matrix is a symmetric matrix.
The musical structures can be inferred from the information near the diagonal:
the different blocks around the diagonal framed in red in Fig. 3 represent the
musical sections. It is possible to understand the shape of the self-distance matrix
in comparison to the chord contour sequence: blocks on the diagonal correspond
to sections that are visually identifiable in Fig. 2.

Fig. 3. Self-distance matrix of the introduction of March of the Dwarfs (white = 0,
i.e. low distance and high similarity, black = high distance values and low similarity).
(Color figure online)
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3 Analysis of the Self-distance Matrix Using
Morphological Operations and Filters

In this section, we propose an original method, based on mathematical mor-
phology, to extract meaningful information from the self-distance matrix. This
method can be applied to any type of self-distance or self-similarity matrix and
to any type of data. The purpose of this method is to homogenize the different
regions of the matrix in order to identify the musical structure.

3.1 A Short Introduction to Morphological Filters

Developed in the 1960s s by G. Matheron and J. Serra, Mathematical Morphology
is, in its deterministic component, an algebraic theory developed initially to
analyze shapes, and is widely used in image analysis. In this paper, we will rely
on mathematical morphology defined on functions, typically used to analyze gray
level images, making an analogy between self-distance matrices and images. Only
the useful notions are recalled here, and more details can be found in [4,10,11,
18,21,22]. Let (F ,≤) be a lattice of functions (here we consider functions from
E = Z

n into R
+ to handle self-distance matrices, and the lattice is complete). A

dilation is an operation that commutes with the supremum of the lattice, and an
erosion an operation that commutes with the infimum. Concrete forms of these
operations, which are often used, rely on the notion of structuring element, an
element B of the lattice, which can be considered as a binary relation between
elements of the underlying space E, or as a spatial neighborhood in our analogy
with images, or more generally as a function with bounded support. Dilation ⊕
and erosion � in the complete lattice (F ,≤) are extensions of Minkowski addition
[17] and subtraction [9] in the binary morphological case, and are defined for any
X ∈ F , any structuring element B ∈ F and any x ∈ E:

X⊕B(x) = sup
t∈E

(X(t) + B(x − t)) , X�B(x) = inf
t∈E

(X(t) − B(t − x)) . (3)

Dilation extends bright zones and reduces dark ones, while erosion does the
opposite. The other two fundamental operations result from the composition of
these operators. Indeed, the opening ◦ is the composition of an erosion and a
dilation and the closing • is a dilation followed by an erosion:

X ◦ B = (X � B) ⊕ B, X • B = (X ⊕ B) � B. (4)

Opening and closing are increasing and idempotent operators, hence morpho-
logical filters. They can be used to eliminate small details (having higher values
than their surrounding using opening, and smaller ones using closing) according
to the size and shape of the structuring element. Therefore, by using these filters,
some detailed information may be lost, while more flat and homogeneous regions
are obtained. This property will be used to highlight homogeneous regions in the
self-distance matrix, in order to exhibit the main musical structures, as detailed
in the next section.
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3.2 Application of Mathematical Morphology to the Self-distance
Matrix

We propose to use morphological filters to identify the main blocks of the self-
distance matrix. Blocks along the diagonal provide information on the musical
structure of the piece since low distance values of the self-distance matrix corre-
spond to passages with high similarity. In order to identify larger similar blocks,
locally higher distance values should be removed. The opening operation is par-
ticularly well suited to this situation. To do this, the structuring element has to
be constant and square-shaped in order to preserve the general organization of
the matrix, which exhibits strong vertical and horizontal structures, as well as
squared blocks. By using this operation, it is possible to homogenize the regions
of the self-distance matrix and to reduce the blocks on the diagonal to a zero
value (because the diagonal coefficients are equal to zero due to the identity of
indiscernibles of the metric).

(a) Opening (b) Threshold

Fig. 4. Filtering of the self-distance matrix using a morphological opening (a). As a
comparison, a simple thresholding is shown in (b).

The result of this operation on the self-distance matrix of Fig. 3 with a square
structuring element of size 12 × 12 is represented in Fig. 4a. Blocks on the
diagonal appear in white, which is the minimal value (equal to zero), and we can
easily detect them. To compare this method with simpler methods, thresholding
is shown in Fig. 4b. Here, each coefficient below half of the maximum coefficient
of the matrix is set to zero. However, this method does not detect the main
blocks of the self-distance matrix. The threshold operation acts globally on the
matrix, with the same threshold value applied everywhere. By contrast, opening
is an operator that acts locally on the coefficients of the matrix, depending on
local shape and size of the distance function, not on absolute values, which fits
our filtering objective better.
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The self-similarity matrix, introduced in [7], is also used in audio-based
approaches to the analysis of musical structures. In this case, the values of the
self-similarity matrix are inverted with respect to the self-distance matrix. The
diagonal coefficients are the highest values (equal to one) and the goal is to
remove locally lower values and to reduce the blocks around the diagonal to
the highest value of the matrix. This change can also be handled with the mor-
phological tools because dilation and erosion (respectively opening and closing)
form pairs of dual operators [4]. This means concretely that applying a dilation
(respectively an opening) on a self-distance matrix is equivalent to applying an
erosion (respectively a closing) on a self-similarity matrix, and vice versa.

4 Changing the Shape of the Morphological Filter
to Detect Different Musical Structures

The morphological operations provide new computational tools for the analysis
and identification of the overall structure of a musical piece. Moreover, it is
possible to detect musical structures at different scales, for example to refine
the granularity of the analysis and identify the bars of the piece. This can be
done by changing the size of the structuring element, in order to detect blocks of
different sizes. With a smaller structuring element, it is possible to detect smaller
blocks around the diagonal, representing for instance the bars of the piece, while
a larger one will allow detecting the global musical structure at a bigger scale.

To illustrate the notion of filtering with different structuring elements, we
consider the third movement of the Piano Sonata No.11 in A Major, composed
by Wolfgang Amadeus Mozart and commonly known as Alla Turca or Turkish
Rondo. The structures of the piece are represented in Fig. 5a, where each letter
symbolizes 8 bars. This piece is divided into four main parts represented by red
rectangles and linked with blue rectangles. There are two levels of structure: the
7 colored rectangles (global structure) or the 28 letters (detailed structure). As
seen previously, the structuring element has to be constant and square-shaped,
the only parameter to choose being the size. We applied an opening filter with
a constant square-shaped structuring element of size 3 × 3 and 6 × 6 to the
self-distance matrix (computed using the chord contour sequence). The result of
these opening filters is displayed in Figs. 5b and 5c. For a clearer understanding,
only the diagonal blocks (detected with the flood-fill algorithm) are shown in
black in this figure, i.e., zero value coefficients connected to the diagonal of the
matrix. We computed the novelty score, introduced in [8], of these two opening
diagonals. The novelty score N is the correlation along the diagonal of a matrix
M with the checkerboard kernel C:

N(t) =
L/2∑

i=−L/2

L/2∑
j=−L/2

C(i, j)M(i + t, j + t), (5)
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A A B A’ B A’ C C D D E D’ E D’ C C A A B A’ B A’ C’ C’ F F F’ F”

(a) Musical structures of Alla Turca (W.A. Mozart).

(b) Opening diagonal with a 3 × 3
constant square-shaped structuring el-
ement.

(c) Opening diagonal with a 6 × 6
constant square-shaped structuring el-
ement.

(d) Novelty score of the opening diagonal with a constant square-shaped 3 × 3 (top)
and 6 × 6 (bottom) structuring element.

Fig. 5. Filtering of the self-distance matrix at different scales by the opening operation
in order to obtain different musical structures. (Color figure online)
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where C is the 64 × 64 symmetric matrix defined as

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 · · · −1 1 · · · 1
...

. . .
...

...
. . .

...
−1 · · · −1 1 · · · 1
1 · · · 1 −1 · · · −1
...

. . .
...

...
. . .

...
1 · · · 1 −1 · · · −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Notice that we use the opposite of the checkerboard kernel presented in [8]
because we have a self-distance matrix instead of a self-similarity matrix. This
novelty score allows detecting changes, and therefore the limits of the blocks
to identify. The novelty scores of the two opening diagonals are represented in
Fig. 5d. We also add the boundaries of the musical structures shown in Fig. 5a
with thick dotted lines (boundaries between rectangles) and thin dotted lines
(boundaries between letters). The high value of the novelty score represents
the boundaries of the piece. The novelty score of the opening diagonal with a
3 × 3 structuring element detects the boundaries between the D/D/E/D’/E/D’
and C’/C’ sections. While the novelty score of the opening diagonal with a
6 × 6 structuring element detects the boundaries between the rectangles and
the A/A/B/A’/B/A’ sections. With these two diagonals blocks, it is possible to
detect two different structures of the piece.

Finally, we can adjust the size of the structuring element used to filter the
self-distance matrix depending on the granularity that we want in the analysis
of the musical structures (which enables for example to detect only few very
long passages or a greater number of short passages). By varying the size of the
structuring element, we can computationally grasp the segmentation process at
multiple levels. In fact, every time we increase the size of the structuring element
we force some segments to merge and become a new bigger segment, starting
from few notes segments to the whole piece.

5 Conclusions

This article proposed a new method to visualize a piece of music and analyze
its structures in an automatic way. By focusing on the pitch variations between
the elements of a melodic line (notes) or harmonic progression (chords), we have
proposed an original approach that generalizes the notion of melodic contour to
a sequence of chords, called chord contour. In such a sequence, the pitch vari-
ation is described by matrices, instead of just a number as in the case of the
traditional melodic contour. These matrices characterize a sequence of chords
by using the direction of the pitch variation of the notes from one chord to the
next one. We then introduced a proximity measure between two chord contours
of any sizes with the semi-metric D in order to compute the self-distance matrix
of a chord contour sequence. The self-distance matrix is used to analyze musical
structures by leveraging the fact that the principal blocks around the diagonal
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correspond to the main passages of the piece. The main idea of this paper is
to use filters borrowed from the domain of mathematical morphology in order
to identify these blocks. Mathematical morphology is a relatively new theory in
the MIR community and we are convinced that it can be particularly useful in
connection with the self-distance matrix. These morphological filters have been
used to homogenize and identify well-defined regions of the self-distance matrix
corresponding to musical entities. The opening operation has been successfully
applied to the analysis of the musical structures of a piece because it locally
removes the high values. With a constant square-shaped structuring element, it
reveals the horizontal and vertical blocks of the self-distance matrix. In addi-
tion, the blocks around the diagonal, which correspond to a well-defined musical
structure, all have a zero value. Moreover, by varying the size of the filter, it
is possible to have different filtering levels in the automatic detection of the
underlying structures of the musical piece. By filtering the self-distance matrix
with a large opening, one is able to identify the main global parts of the piece,
while using a smaller morphological filter reveals shorter musical sections. Some
promising results of applying this new method in the field of music automatic
segmentation have been obtained and discussed by presenting a computational
analysis of an excerpt of Edvard Grieg’s March of Dwarfs and of Mozart’s Piano
Sonata Alla Turca.

In this paper, we demonstrated the usefulness of morphological filters to
homogenize musical sections to detect the musical structure. However, homo-
geneity is not the only criteria for music structure analysis, and the other main
approach is based on repetition. Paulus et al. argue that a combined approach
(based on homogeneity, novelty and repetition) provides promising results [19].
Our method does not handle repetition, because the goal of this paper is to
show the application of mathematical morphology for music structures analysis.
Due to the simplicity yet powerful utility of morphological filters, we strongly
believe that this method can be reuse for future algorithms for the homogeneity
step. Moreover, although we have applied this method on symbolic music repre-
sentations with a chord contour sequence, this method can also be applied for
audio-based analysis of musical structures. For future research, we plan to test
this method on a large audio database with annotated structures in a hierarchical
way to validate it experimentally.
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Abstract. The spectral information of a pitch-class set or distribution
relates to its interval content and what Ian Quinn calls its harmonic
qualities, the magnitudes of a discrete Fourier transform of a pitch-class
vector. The spectrum is invariant with respect to transposition and inver-
sion, but the existence of Z-related sets, which have equivalent spectra
but are not related by transposition or inversion, means that the spec-
trum is not a complete description of a set class. We show how to isolate
transposition-invariant phase information using products of Fourier coef-
ficients. We describe some of the mathematical features of these coeffi-
cient products and show how they encode aspects of tonality, and can be
useful for analyzing non-tonal music with an example from Takemitsu’s
“Air” for solo flute.

1 Pitch-Class Set Theory and Homometry

Allen Forte [6] originally defined set-class equivalence as equivalence of inter-
val vectors, but subsequently reconsidered, using transpositional and inversional
equivalence instead [7]. Forte’s original definition is known in mathematics as
homometry, and, as Amiot [3] has shown, can also be defined as equivalence
of spectra. The spectrum is obtained by taking the characteristic function of a
pitch class set and considering just the sizes of the coefficients of its discrete
Fourier transform (DFT). Ian Quinn [8] refers to the spectrum as a point in
quality space. Transpositions and inversions are homometric, but not vice versa.
Therefore Forte’s original definition of set class was stronger than his later one.
The difference between them consists of what he calls “Z-related” sets, sets that
are homometric but not related by transposition or inversion. With the excep-
tion of hexachords, the Z-relation is somewhat rare for ordinary pitch-class sets,
but we can identify many more examples if we consider pitch-class multisets [9]
or real-valued characteristic functions, in which case the set of all distributions
homometric to a given one is a multi-dimensional torus, the orbit of the so-called
spectral units group [3, chapter 4].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 279–291, 2022.
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While the spectrum therefore provides much of the important information
about a pitch-class set, it is not a complete description. Since the DFT is a lossless
transformation, that means that there is transposition-invariant information in
the phases of the DFT coefficients. In the first section we show that special
coefficient products (specifically with coefficients whose indices sum to twelve)
are transposition invariant, and therefore the phases of these include the desired
non-spectral information. We then show the importance of these non-spectral
set class properties for characterizing tonal sets, and offer an example analysis
in a non-tonal context.

2 Products of DFT Coefficients

2.1 Definitions

Recall that any complex number z can be described by its magnitude |z| ∈ R+

and its phase arg(z) ∈ R/2πZ:

C � z = |z|ei arg(z).

As mentioned in the preamble, it can be shown that homometry is exactly the
equality of all Fourier coefficient magnitudes; Since these are invariant under
transposition and inversion, it remains to consider the phases for non-homometry
related information. Indeed, phase increases by a constant quantity under trans-
position and changes signum under inversion.

In the following, we normalize phase modulo 12 (or more generally, n, the
cardinality of the chromatic aggregate) by setting

ϕk = arg(âk) Φk =
12
2π

ϕk =
6
π

arg(âk)

where âk =
∑

x∈X e−2iπkx/12 is the kth Fourier coefficient of pitch-class set X.
It was noticed in [14] that many pitch-class sets in tonal context satisfy an

improbable equation:

Φ5 ≈ Φ3 + Φ2. (�)

This is an exact equality for diatonic scales, fifths, and several other prominent
tonal collections. Notice however that the opposite equality (Φ5 ≈ −Φ3 − Φ2)
yields for a pentatonic scale (thus allowing a way, Fourier-wise, to tell pentatonic
and diatonic scales apart, although the magnitude of all their Fourier coefficients
except the 0th are equal). It yields, up to a small error, for major and minor
triads.

This is an intriguing feature, since Φ, a complex logarithm, is anything but
a linear map; also a comprehensive computation shows that for most pc-sets,
equation (�) is quite incorrect.1

1 For 80% of pc-sets, the error is larger than 10%.



Non-spectral T-Invariant Information 281

For the sequel of this paper, we will rephrase it: since Φ5 = −Φ7 (a gen-
eral feature of Fourier coefficients of characteristic, or in general real-valued,
functions) we can state instead

Φ7 + Φ3 + Φ2 ≈ 0 (mod 12)

or by exponentiation

exp (i(Φ7 + Φ3 + Φ2)π/6) = eiΦ7π/6eiΦ3π/6eiΦ2π/6 ≈ e0 = 1

or even better, multiplying by the magnitudes of the relevant Fourier coefficients
to rebuild them anew, â2â3â7 ≈ |â2â3â7|, meaning

â2â3â7 is (almost) real positive.

We can then state a general definition, where 2 + 3 + 7 = 12 is replaced by
an integer partition:

Definition 1. Let n be the cardinality of the chromatic aggregate and
k1, k2 . . . kr be an integer partition of n, i.e. the ki are positive integers.2 Then
âk1 âk2 . . . âkr

is a (regular) coefficient product.3

It is coherent for a given pitch-class set if its value for that set is real positive,
approximately coherent if it is close to real positive. For short, if the context is
clear we will say that a pc-set is coherent if its (regular) product is coherent.

As will be seen later on, the more general case of real-valued regular products
(positive or negative) is notable. We will call such a product aligned.

Without spoilers, with partition 2 + 3 + 7 = 12 we have coherent products for
all single notes, dyads, diatonic scales, major sevenths; approximate coherence
for major or minor triads; and aligned products for pentatonic scales.

A trivial but illuminating example of coherent product, for which we thank
an anonymous reviewer, is any partition of the type n = k + (n − k), since for
any pc-set we get akan−k = |ak|2 ≥ 0. In this case, Proposition 3 retrieves that
transposed or inverted pc-sets are homometric.

2.2 Features

Proposition 1. Singletons are coherent for all regular products.

Proof. Let a ∈ Zn be a pitch-class. Then we get for the kth Fourier coefficient
of A = {a} âk = e−2ikπa/n hence

âk1 âk2 · · · = e−2ik1πa/ne−2ik2πa/n · · · = e−2i(k1+k2+... )πa/n = e−2inπa/n = 1.

2 Not necessarily distinct.
3 The qualification “regular” distinguishes these from an arbitrary product, but since

non-regular products are of no evident interest, we will typically omit the qualifier.
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As we will see this a special case of Proposition 3, A being a transposition of {0}
for which any product is trivially regular.

Lemma 1. The argument of the sum (or mean) of two complex numbers with
equal magnitude is the mean value of their arguments.

Remark.
There is a catch here. Since arguments are defined modulo a whole circle

(2π, 12, or n, depending on normalization), half-arguments are defined modulo
half the circle (π, 6, a tritone).

However, out of these two opposite directions, the appropriate one is the
mean value which directs the interior of the angles between the two complex
numbers, see Fig. 1. In other words, both complex vectors and their sum/mean
must lie in the same half-plane.

Proposition 2. If A,B are disjoint and homometric, and coherent with respect
to some coefficient product, then A ∪ B is aligned with respect to that product.

Proof. Let âk = |ak|eiϕk be the kth Fourier coefficient for A and similarly b̂k =
|b̂k|eiψk for B. Then since A,B are homometric, |âk| = |b̂k|. Hence for C = A∪B,
one gets

ĉk = âk + b̂k = |âk|(eiϕk + eiψk
)

= |âk| cos
ϕk − ψk

2
ei

ϕk+ψk
2

hence the sum of the phases (taken modulo 2π) is
∑ ϕk + ψk

2
=

1
2
(∑

ϕk +
∑

ψk

)
= 0 mod π.

Fig. 1. Sum and phase of two complex numbers with the same length.

For instance for the diatonic partition 2+3+7 = 12, reunions of homometric
dyads are coherent (though most products are 0). Counter-examples would be
for instance the chromatic dyad (01) for partition 3 + 4 + 5 = 12: in this case

â3â4â5 = 1 −
√

3 < 0.

and the product is aligned, but not coherent.
Both properties (coherent/aligned) are invariant by transposition and inver-

sion. More precisely,
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Proposition 3. Coefficient products are transposition-invariant.
Inversion negates the imaginary part of a coefficient product, while the real

part is inversion-invariant.

Proof. For transposition let us have two pc-sets in Zn such that B = A + τ .
Denoting their Fourier coefficients by âk, b̂k we derive

b̂k = âke−2iπkτ/n

and hence

b̂k1 b̂k2 . . . b̂kr
= âk1 âk2 . . . e−2iπk1τ/ne−2iπk2τ/n . . .

= âk1 âk2 . . . e−2iπ(k1+k2+... )τ/n

= âk1 âk2 . . . e−2iπnτ/n = âk1 âk2 . . . âkr

whenever k1 + k2 + · · · = n.

The inversion A �→ −A just changes the signs of all phases, conjugating all
Fourier coefficients, which leaves the real part invariant and inverts the imaginary
part. For other inversions A �→ τ −A, notice it is the previous inversion combined
with a transposition.

It follows easily that any inversionally symmetric pc-set has aligned product. We
can be more specific in the following case:

Proposition 4. For generated scales a regular product is aligned, the sign
depending on a product of sines.

Proof. According to the last proposition we can assume that the generated scale
begins on 0:

A = {0, f, 2f, 3f, . . . (d − 1)f} if the generator is f and the cardinality d.

Then we compute âk =
∑d−1

j=0 e−2iπkjf/n, a geometric sum:

âk =
e−2iπdkf/n − 1

e−2iπkf/n − 1
=

e−iπdkf/n(e−iπdkf/n − e+iπdkf/n)

e−iπkf/n(e−iπkf/n − e+iπkf/n)
= e−i(d−1)kfπ/n sin(dkfπ/n)

sin(kfπ/n)
.

Hence, depending on the sign of the sines quotient, the phase is either
ϕk = −(d − 1)fkπ/n or ϕk = −(d − 1)fkπ/n + π, or in normalized format

Φk = − (d − 1)fk

2
or − (d − 1)fk

2
+

n

2
.

Then for any partition n = k1+k2+. . . , the sum of the − (d − 1)fki

2
is a multiple

of n/2 and so is the sum of all phases, meaning that the coefficient product is
real.
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These two cases are exemplified by the diatonic and pentatonic scales in 12-tET,
which are fifth- (or fourth-) generated: n = 12, f = 5 (or 7), and d = 5 or 7.
The sine in the denominator is sin(kfπ/n) = sin(5kπ/12), which is positive for
k = 2, negative for k = 3, 7; and the numerator sin(dkfπ/n) = sin(52kπ/12) =
sin(π/12) or sin(5 × 7kπ/12) = − sin(π/12), hence the result.

NB: generally, albeit random pc-sets usually do not satisfy coherence, the
previous propositions help us understand informally why man-made music may:
it is not uncommon to compose using pc-sets built up from small units or bricks,
like dyads, symmetric tetrachords, bits of generated scales, or pc-sets close to
these, etc.

3 Example: Tonal Pitch-Class Distributions

Pitch-class distributions of tonal music have a number of regular features observ-
able through the DFT, in particular high magnitudes of the fifth and third coef-
ficients [15]. Phases of the fifth and third coefficients can be used to estimate the
key of a passage [14]. Tonal distributions also have a clearly observable regular-
ity in one of the coefficient products, â2â3â7. This means that the pitch-class
watermarks of tonal music include not only the spectral features relating to inter-
vallic content (diatonicity and triadicity) but also at least this one non-spectral
feature, determined by the phases of â2, â3, and â5.

Figure 2 shows all of the coefficient products for a windowed analysis of Bach’s
3-part inventions, excluding those with duplicated coefficients.4 Only the inven-
tions in 4/4 are included, and the distributions are taken over all four-beat
windows in the piece. In addition to always being the largest coefficient product
in all but one case (no. 3), the â2â3â7 values also are most consistent in phase,
staying close to the positive real axis. Despite being small, the imaginary values
also reliably distinguish mode, with the two minor mode pieces (numbers 4 and
9) having the only consistently positive imaginary values.

In Fig. 2 we observe that when the average coefficient product is reliably dis-
tinct from the origin, it is usually also approximately coherent, with the main
exceptions being in one product, â3â4â5. This might be explained by the lim-
ited macroharmony tonal music, where macroharmony is Tymoczko’s term for
“the total collection of notes used over moderate spans of musical time” [10, p.
4]. Specifically, tonal music usually deals with a limited number of pitches in
circulation at a time, so it is impossible to differentially weight all twelve pitch
classes. Rather, the composer chooses a limited set of pitches (the macrohar-
mony) and differentially weights these according to their status in the key and
chord, and omits the rest. We therefore expect to see a pitch-class distribution
with a “floor.” We can model such distributions by imagining starting with the

4 For example, â5â5â2 or â4â4â4. These are also regular coefficient products and can
have interesting applications, but we focus instead on products of three unique coef-
ficients here.
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Fig. 2. Average values of coefficient products from common-time Bach three-part
inventions. We take averages over all four-beat windows. Standard errors, shown with
bars, are corrected for overlap.

full space of distributions with values balanced around zero and normalized to
lie between −1 and 1, then applying a clipping filter to eliminate negative values:

x �→
{

x for x > 0
0 otherwise

.

This is the product of identity by a step function, and can also be expressed as
(x + |x|)/2.

In the space of continuous maps on (say) [−1, 1], with hermitian norm f �→√∫ 1

−1
f2, we get a decent quadratic approximation to this map with x �→ (3 +

16x + 15x2)/32, as can be seen in Fig. 3.
Given some distribution in the full space, then, the corresponding clipped

distribution will differ primarily by the addition of a positive quadratic term.
The DFT of this quadratic term will consist of the products of coefficients in
the original distribution, and adding these to the coefficients of the original
distribution will push all coefficient products in the direction of coherence.

For instance, if we take the sum of pitch classes from a large number of major-
key pieces transposed to C major we get a pitch-class distribution like the one in
Fig. 4 (here we use the distribution obtained in [1], but very similar ones could
be taken from many other studies). We can approximately resynthesize this from
just its two largest Fourier coefficients, â3 and â5, by taking a sum of these and
applying the clipping filter. The result is similar to the original distribution, in
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1
32(15x

2+16x+3)

{ x >0
0 x ≤0

–1 1

1

x

Fig. 3. The clipping function and its best quadratic approximation.

particular recovering an â2 similar to the one in the original distribution. The
main difference is that the derived distribution has an â4 which is suppressed in
the original distribution. These â2 and â4 components of the derived distribu-
tion are attributable to the squared term in the quadratic approximation of the
clipping function.5

We might interpret the data in Fig. 2, then, with the claim that the entire
pitch-class distribution is determined roughly by â3, â4, and â5, plus the
assumption of limited macroharmony. The limited macroharmony (clipping) fil-
ter accounts for the observed values of â1 and â2, which make coherent products
with the other coefficients (â1â4â7 and â2â3â7).
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Fig. 4. On the left, a major-key pitch-class distribution from [1], the sum of its 3rd
and 5th Fourier coefficients, and the clipping filter applied to this. On the right, the
spectra of these.

The coefficient products â3â4â5 and â2â3â7 both involve the third and fifth
coefficients. We might contrast coherence/incoherence in these two products by
considering how intervals that are farther apart in â3 and â5, tritones and semi-
tones, appear in sets that are otherwise relatively concentrated in these dimen-
sions. Figure 5 shows the â3/â5 phase space, a toroidal space where the coor-
dinates are phases of different DFT coefficients [2,11]. There are two relatively

5 A complication here is that there are two contributors to â2 in the quadratic term,
â3â7 and â5â5, and the latter is larger in the distribution derived using the clipping
filter. In the original distribution, the phase of â2 is closer to that of â3â7 than â5â5.
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parsimonious ways to connect semitones and tritones, along SW-NE or NW-SE
diagonals. The former is associated with diatonic semitones and tritones, the
latter with chromatic semitones and tritones along the minor-thirds axis. ([11]
refers to these as “intervallic axes.”) We suggest the term “blues tritone” for
NW-SE orientation because it could result from adding blue notes to a penta-
tonic scale. If pitch classes tend to cluster around a diatonic SW-NE diagonal, it
will have a positive â2â3â7 and negative â3â4â5, which is what we observe in the
Bach inventions. If, on the other hand, they cluster around a chromatic/octatonic
NW-SE diagonal, we will see the opposite pattern, a negative â2â3â7 and pos-
itive â3â4â5. This pattern, although it can involve equally large values of |â3|
and |â5|, would be rarely observed in eighteenth-century tonal pitch-class dis-
tributions. We will use the term “diatonic” to refer to the first type of set, and
“anti-diatonic” the latter type.

Fig. 5. Different kinds of semitones and tritone in â3/â5 phase space associated with
positive real â2â3â7 (diatonic semitone and tritone) and positive real â3â4â5 (chromatic
semitone and blues tritone). (Color figure online)

The following example shows that these non-spectral distinctions between
diatonic and anti-diatonic material remain salient for twentieth composers in
non-tonal contexts.

4 Example: All-Interval Tetrachords and Takemitsu

The all-interval tetrachords (AITs), set classes (0146) and (0137), are a unique
instance of small-cardinality Z-related sets, and as such are of particular interest
for musically exploring non-spectral properties of set types. The four AIT set
types occupy unique locations in â1â2â9 and â2â3â7 spaces. These are products
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that do not involve â4 or â8, which means that the eight-note chromatic com-
plement of a tetrachord is equal to its four-note octatonic complement (because
the octatonic is nil on all coefficients). Therefore the AIT pairs (0137)-(0256)
and (0146)-(0467), which are octatonic complements, behave like ordinary com-
plements in these spaces, with equal magnitude and opposite phases. This spe-
cial relationship between AITs and the octatonic relates to the CUP property
explored by Childs [5] and Capuzzo’s Q-operations [4].

The differences in â2â3â7 explain how the AITs differ in quality despite
their equivalent intervallic content. The imaginary dimension is associated with
the major/minor contrast. Inversion reverses the sign of the imaginary part, so
(0137) and (0467) have the same real part in â2â3â7, but opposite imaginary
part. The “major” (0467) and (0256) have negative imaginary values. The real
dimension distinguishes whether the thirds and fifth are arranged to imply a dia-
tonic semitone and tritone (positive) or a chromatic semitone and blues tritone
(negative). The (0137) tetrachords are distinguished by their triadic subset and
the (0146)s by the distinctive non-diatonic subset, (014).

Takemitsu’s solo flute piece, “Air,” uses an all-interval tetrachord as its
principal motive, and the major/minor and diatonic/anti-diatonic contrasts of
â2â3â7 space are important to the harmonic language of the piece. Figure 6 shows
a parsing of the first 14 measures, and Fig. 7 plots these in â2â3â7 space. The
central thematic role of (0467) is immediately apparent in its prominent state-
ment in the opening and in m. 6. The opening gesture also defines a larger set,
(014578), which is similar to (0467) in â2â3â7: it is close in phase, and slightly
farther from the origin. This larger set returns in m. 9. Altogether, this estab-
lishes a departure-return script in which the principal motive alternates with
harmonically contrasting material.

Octatonic and whole-tone material are essential to Takemitsu’s harmonic
methods even though complete octatonic and whole-tone collections never
appear. These collections are special in that they have â2 = â3 = â5 = 0.
This makes them useful to create a kind of negative space: while adding a
complete octatonic or whole-tone collection has no effect on â2â3â7, adding
an incomplete collection has the effect of negating the missing pitch class(es),
which may be understood as a kind of partial complementation [12]. The set
(024689), for example, is a whole-tone collection plus an “anti-semitone” (the
added note and omitted note are a semitone apart): (02468t)\t ∪ 9. The set
type (023468), directly following it, similarly, is a whole-tone collection plus
“anti-fifth”: (02468t)\t ∪ 3. The next set, (0346), is a diminished seventh plus
an anti-fifth, and is therefore has the same â2â3â7 value. Whereas dyads are
always on the real axis in a coefficient product space, anti-dyads are always on
the imaginary axis.

Takemitsu’s first contrast juxtaposes the principal motive with these two
whole-tone-plus-anti-dyad collections, which neutralize the diatonic element, and
highlight major/minor contrasts on the imaginary axis. In particular, the large
minor value of (024689) contrasts with the large major value of the principal
motive.
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Fig. 6. Meas. 1–14 of Takemitsu’s Air for solo flute, with important 4–6 note sets
identified.

Fig. 7. Pitch-class sets from Air in â2â3â7 space. Diamonds show the AITs. Dots and
squares show set types that appear in the passage.

The second contrast takes us into the anti-diatonic region through the use of
octatonic collections. This is the first place where Takemitsu uses the contrast-
ing AITs, as well as a transposition of the initial (0467). These combine into
larger octatonic sets, the octatonic complement of (034) in m. 7 and the octa-
tonic complement of (046) in m. 8. The entire two measures constitute a single
hexachord, which is the octatonic complement of (04). The two pentachords are
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equivalent in â2â3â7 phase to two sets that we have already heard (the principal
motivic hexachord in m. 1, and the first contrasting hexachord in m. 2). Their
combination, however, introduces a new anti-diatonic element. As if to under-
score the point, Takemitsu restates this anti-diatonic octatonic hexachord more
compactly in m. 10, immediately after repeating the head motive in m. 9.

The last gesture uses a pitch-class set that is harder to easily characterize, yet
Takemitsu communicates a sense of return with the rhythmic broadening, the
clear phrase break, and the return to the high G�/A� that marked the registral
goal of the basic idea in mm. 1 and 9. The â2â3â7 value is consistent with this:
it is large and close in phase to (0467) and (014578).

5 Conclusion

Coefficient products were first discovered empirically in [13,14], in the form of
coherent â2â3â7 in tonal distributions, which were at first difficult to explain. The
present study reveals some of the general properties of coefficient products and
why we might observe coherent products in distributions from real music. While
Fourier coefficients are mathematically independent in principle, the constraints
on real distributions mean that they are not always independent in practice. In
tonal distributions, the presence of significant â2 may actually be a mathematical
artifact of â5, â3, and limited-macroharmony constraints. At the same time, a
significant â4 coefficient may actually be concealed by similar artifacts.

We have also revealed a potential wealth of other applications of coefficient
products, including analysis of Z-related sets, post-tonal music, and distinguish-
ing anti-diatonic sets, particularly those like the pentatonic that share a large
|â5| with diatonic sets.
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Abstract. Jonathan Bernard’s trichordal folding operations relate tri-
chords with a maximum of shared interval content. This paper generalizes
this to any cardinality of chord, focusing on the case of tetrachordal fold-
ing. A tetrachordal folding holds one trichordal subset fixed and inverts
another around a shared dyad, so that the two tetrachords share five
interval classes and two trichordal subsets. These operations generalize
naturally from pitch space to pitch-class space and to set classes. The
last section of the paper demonstrates the analytical application of tetra-
chordal folding networks on Morton Feldman’s “For Stephan Wolpe.”

Keywords: Pitch-class set theory · Folding · Interval content ·
Morton Feldman

1 Trichordal Folding

In his work on Edgar Varése, Jonathan Bernard [2] defines “infolding” and
“unfolding” operations that relate trichords of different types. He uses a
successive-interval notation which I will adopt here, generalizing over transposi-
tion. The following definition is essentially Bernard’s, with some new notation.

Definition 1. Let a pitch-space trichord A be given by successive intervals
(a1, a2), for a1, a2 ∈ Z, then there are four unfolding operations.

unf1a(A) = (a1, a1 + a2)
unf1b(A) = (a1 + a2, a1)
unf2a(A) = (a1 + a2, a2)
unf2b(A) = (a2, a1 + a2)

(1)

There are also two infolding operations.

infa(A) =

{
(a1, a2 − a1), if a1 ≤ a2

(a2, a1 − a2), if a2 ≤ a1

infb(A) =

{
(a2 − a1, a1), if a1 ≤ a2

(a1 − a2, a2), if a2 ≤ a1

(2)

Altogether these are the complete set of folding operations.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 292–303, 2022.
https://doi.org/10.1007/978-3-031-07015-0_24
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Figure 1 shows an example of these operations, which we can interpret as
taking any one note from the trichord and inverting it around one of the other
two notes (hence the six possibilities). The a and b versions of each operation are
clearly always going to be related by inversion, so we can immediately simplify
these operations by generalizing over inversions, as Bernard [2] does. Therefore if
we consider unfolding and infolding as a relation, folding, we immediately have:

Proposition 1. Folding is a symmetrical relation.

Proposition 2. If A = (a1, a2) is in the folding relation with B, then so is the
inversion of A, (a2, a1).

Fig. 1. Examples of unfoldings and infoldings of a chord.

This study pursues generalizations and applications of Bernard’s idea taking
the key feature to be that folding operations always preserve all the intervals
of the set except at most one. These operations therefore express the minimum
possible change in interval content (as represented for pitch-class sets, e.g., by
Forte’s interval vector [4]). While Definition 1 follows Bernard in defining fold-
ings in pitch space (using intervals in Z), I will be primarily interested in the
generalization to pitch-class sets defined below. Most of the results in this section
and the next nonetheless apply in both domains.

The next section will generalize folding operations to tetrachords and higher
cardinalities with these priorities in mind, and the third section applies tetra-
chordal folding networks to an analysis of Morton Feldman’s “For Stephan
Wolpe.”

For a trichord, (a1, a2), there are three possible ways to exchange one interval
with a new one specified in Definition 1. Either we exchange a2 for 2a1+a2 (unf1),
a1 for a1 + 2a2 (unf2), or a1 + a2 for ±(a2 − a1) (inf).

Notice that sets will be generalized over transposition throughout this study
(hence the use of interval strings to define them) but not necessarily over inver-
sion or octave equivalence. However, it is possible to transfer all of the definitions
of foldings to pitch or pitch-class sets proper (not generalized over transposition)
by fixing the transposition of the fixed dyad (or fixed trichord, in the case of
tetrachordal foldings below), as the illustration in Fig. 1 does.

In Bernard’s applications of the folding operation the most important feature
is that they are defined on interval strings, so he can interpret them as operating
on trichords in pitch space. However they easily generalize to operations of set-
classes. To do so, we reconceive the operations as acting on ordered sets as in [7],
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relaxing the assumption that order is conferred by registral position and allowing
a1 and a2 to take negative values. Bernard’s distinction between “unfolding” and
“infolding” then becomes less meaningful, and we rename the operations simply
as foldings indexed by the order position of the moving note followed by the
order position of the note it is inverted around. Hence:

Definition 2. There are six trichordal folding operations defined on interval
strings, (a1, a2), with a1, a2 ∈ Z12. These are defined as in Definition 1, but
with sums taken modulo 12, as fold21 = unf1a, fold31 = unf1b, fold23 = unf2a,
fold13 = unf2b, fold12 = infa, fold32 = infb,

Definition 3. Two trichordal set classes, A and B, relate by folding, or A �
B if any pitch-space representatives of A and B relate by one of the folding
operations from Definition 1.

Proposition 3. If two set classes, A and B, are related by folding, A � B, then
for any pitch-space representative of A, there is a pitch-space representative of
B that relates to it by folding.

Proof. It suffices to show that applying transposition, inversion, octave shift, or
permutation to A results in the same operation applied to B (and possibly a
change of the exact unfolding or infolding relation). The first two are straight-
forward. Octave shift refers to adding or subtracting multiples of 12 to/from
individual pitches. For instance, replacing (a1, a2) with (a1, a2 + 12) (last note
moves up by octave). This clearly will simply induce some octave shift in B.
Finally, given a permutation on A we can apply the same permutation to the
indices of the folding operation and leave B unchanged. ��

Figure 2 displays the network of trichordal set classes relating by � using a
2-dimensional parameterization of the interval vector. I chose the parameteriza-
tion arbitrarily with the goal of disambiguating all of the set classes and avoiding
crossing edges. In addition this parameterization shows the symmetry of the net-
work under the M5 automorphism of Z12 [8] by having the horizontal dimension
dependent only on #ic1 and #ic5.

Note that we could extend the network in Fig. 2 to include doubled ic1 and ic5
dyads, (001) and (005). However, other doubled dyads, whole tone chords, and
diminished triads cannot exist in the same network. More generally, the sets in
a given network have to have the same minimal embedding equal temperament.
A whole-tone chord has 6-tET as a minimal embedding ET, and a doubled
minor third, (003), has 4-tET as a minimal ET. This is because the interval of a
semitone (or fourth or fifth, etc.) can never be produced by sums and differences
of intervals in a smaller minimal embedding universe. This applies in pitch space
as well as pitch-class space. For instance, the pitch-space chord (5,5) does not
interact with the chords that have 12-tET as their minimal universe, even though
its pitch-class equivalent (2,5) does.
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Fig. 2. Trichordal folding network.

2 Tetrachordal Folding

Bernard [1,2] explores the possibility of extending the folding operations to tetra-
chords, but his definition is far too loose, resulting in an unwieldy number of
relations. If our goal is to preserve the property of maximizing similarity of
interval content, however, an effective generalization is ready at hand. In the
trichordal foldings, we hold one dyad constant while moving the third note so as
to preserve one of the intervals it makes with the other two notes, by inverting
it. This process guarantees that two of the three intervals will remain the same.
This immediately generalizes to tetrachords: hold three of the notes constant,
and choose another trichordal subset containing the fourth note. Invert this tri-
chordal subset around the dyad it shares with the first trichord. Then exactly
one note moves, preserving two of the trichordal subsets (up to inversion), and
by extension, five of the six intervals.

This definition of tetrachordal folding makes a useful and manageable rela-
tion. The possibilities are listed in Table 1 and Fig. 3 provides an example on a
set in pitch space. The choice of two out of four trichordal subsets leads to twelve
possible folding relations, which can be reduced to six by inversional equivalence.
We can immediately see that the properties of trichordal folding described in the
previous section generalize to tetrachordal folding, including Propositions 1, 2,
and 3.

A similar generalization to larger sets is immediately evident, but there is an
important caveat. For a set of size n, when we choose two (n − 1) subsets, their
intersection (of size n − 2) must be inversionally symmetrical for the operation
to be well defined. For n − 2 = 1, 2 this is guaranteed, but for n ≥ 5 it becomes
a significant restriction, more so for larger n. Interestingly for n = 5 in 12-tET
all set classes have at least one inversionally symmetrical trichordal subset, so
pentachordal folding operations are worth exploring, but I will pursue this no
further at present.
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Table 1. Tetrachordal folding operations on an intervallically defined set (a1, a2, a3),
permuted to keep all the intervals positive for a3 > a1 and a1 > a3 respectively.

Operation Definition Operation Definition Interval change

fold2(13) (a2, a1, a3) fold4(13) (a3, a1, a2) (a2 + a3) → (a1 + a3)

fold3(24) (a1, a3, a2) fold1(24) (a2, a3, a1) (a1 + a2) → (a1 + a3)

fold1(23) (a2, a1, a3 − a1) fold4(23) (a3 − a1, a1, a2) (a1 + a2 + a3) → |a3 − a1|
or (a2, a3, a1 − a3) or (a1 − a3, a3, a2)

fold1(34) (a2, a3, a1 + a2) fold2(34) (a1 + a2, a3, a2) (a1) → (a1 + 2a2 + a3)

fold3(12) (a2, a1, a2 + a3) fold4(12) (a2 + a3, a1, a2) (a3) → (a1 + 2a2 + a3)

fold3(14) (a1, a3 − a1, a1 + a2) fold2(14) (a1 + a2, a3 − a1, a2) (a2) → |a3 − a1|
or (a3, a1 − a3, a2 + a3) or (a2 + a3, a1 − a3, a3)

Fig. 3. An example of tetrachordal folding operations on an open-position dominant
seventh chord in pitch space.

Figure 4 shows the network of tetrachordal folding operations on non-
degenerate tetrachords without doublings. Again, I choose an arbitrary param-
eterization that disambiguates all of the set classes, avoids crossing edges, and
shows the M5 automorphism as a mirror symmetry around a vertical axis. Note
that the network is not planar, so it is impossible to eliminate all crossing edges.
It is also impossible to disambiguate all of the set classes based on the interval
vector alone, because of the all-interval tetrachords (0146) and (0137), which
have the same interval vector. Therefore, I also include (in the horizontal dimen-
sion) a count of two trichord types, the major/minor triad (037) and its M5
partner (014). This means that edges representing the same change of interval
classes are not always exactly the same distance in the horizontal dimension.

The tetrachordal folding operations always preserve two out of four trichordal
subsets and five out of six intervals by design. A natural question is whether they
are the only such operations. In pitch space, this is in fact the case, but not in
pitch-class space.

Proposition 4. Two tetrachordal pitch sets A and B, not related by transposi-
tion or inversion, are related by a folding operation if and only if they share two
trichord types (generalized over inversion) as subsets and five interval types.

Proof. The forward implication (only if) is true by construction. It is only nec-
essary to prove the converse.
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Fig. 4. Tetrachordal folding network.

Assume then that A has trichordal subsets, α and β, and B has subsets of the
same types, and the two sets share five interval types. Let B′ be either B itself
or an inversion of B that contains α, and let β′ be the subset of B′ related to β
by transposition and/or inversion. Either β′ = Tτ (β) for some interval τ or β′ =
Iσ(β) for some inversional index σ. For both cases, let α have the interval series
(a1, a2) and A be (a1, a2, a3) such that β is (a2, a3). Note that there is no loss of
generality through free choice of permutation (allowing, e.g., that a1, a2, a3 can
take negative values).

By construction, β′ must share a dyad with α; let this be an interval b.
The first possibility is that β′ shares the same dyad with α as β, and b = a2,
which means that the five intervals shared by A and B, a1, a2, a3, a1 + a2, and
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a2 +a3, and the one belonging only to A, a1 +a2 +a3, are all potentially unique.
Otherwise, there is a redundancy in the interval β′ shares with α. Either b = (a1

or a1 + a2) (as a subset of α) = (a3 or a2 + a3) (as a subset of β′), or a1 = a2

or a1 + a2 = a2.
First consider the last two possibilities. If a1 = a2, then α is symmetrical.

Transpose or invert B′ to map β′ onto β. α and its transposition or inversion will
still have a common dyad, so the sets will relate by a flip of α. If b = a1+a2 = a2,
then a1 = 0 and α has a doubled note. Freely choosing between the doubled
notes, this situation then coincides with the regular b = a2 scenario.

For the remaining possibilities first assume that β′ = Tτ (β). If b = a2 �= a1

then B′ = A, contradicting the premise. For all of the other possibilities, we
can find an additional inversion of β that shares a dyad with β′, or an inversion
of α sharing a dyad with α. (I leave it to the reader to work out the details.)
Therefore A � B.

Finally assume that B′ =Iσ(β). For b = a2 �= a1 we have A � B. For a1 = a3

or a1 + a2 = a2 + a3, we have that α is an inversion of β, and hence also A � B.
In the remaining two cases we violate the interval-sharing premise. Consider
b = a1 + a2 = a3; B then has two copies of a2 whereas A has two copies of
a1 + a2, in addition to the other distinct intervals 2a2 ∈ B and 2(a1 + a2) ∈ A.
The remaining case b = a1 = a2 + a3 is essentially the same swapping the roles
of a3 and a1. ��

An interesting consequence of this proof is in the last condition: it is possible
for two tetrachords to share two trichordal subsets but not five intervals, in
which case they are not directly related by folding, specifically when there is
some duplicated interval in the one set and a different duplicated interval in the
other. An example would be (0135) and (0136), which each have (013) and (025)
subsets, but the first has an (024) subset with two copies of ic2 and an ic4, and
the other an (036) subset with two copies of ic3 and an ic6.

This proof only holds in pitch space. Most of it transfers to pitch-class space,
except one conclusion: it is possible for β′ to overlap α in the interval that makes
a2 and be a non-trivial transposition of β if a2 is a tritone. Therefore, when
dealing with set classes, there is one operation that is not a folding but has the
same properties of preserving five intervals and two trichord types. Specifically,
for a tetrachord containing a tritone, transpose one of the notes not belonging
to it by tritone. This preserves both intervals with the tritone, and just changes
one, the interval between the two non-tritone notes.

We can also generalize this to other cardinalities, as T-shift. Specifically:

Definition 4. Let pitch-class set A of size n have a Tx-symmetrical subset of
size n−2. A T-shift of A fixes a size n−1 subset that includes the Tx-symmetrical
subset, and moves the remaining note by some multiple of x.

Figure 4 shows the T-shift operations on tetrachords not equivalent to fold-
ings with dashed lines.

This motivates the following, which I leave as conjectures.
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Conjecture 1. Let A and B be pitch sets of cardinality n. Then A and B share
two subsets of cardinality n − 1 and

(
n
2

) − 1 intervals if and only if they relate
by a folding operation.

Conjecture 2. Let A and B be pitch-class sets of cardinality n. Then A and B
share two subsets of cardinality n − 1 and

(
n
2

) − 1 intervals if and only if they
relate by a folding operation or a T-shift operation.

3 Application to Morton Feldman’s “For Stephan Wolpe”

The first 12 minutes of Morton Feldman’s work for chorus and vibraphones, “For
Stephan Wolpe,” repeat a single progression of ten chords in four-part chorus
with small variations, primarily in rhythm, transposition, and voicing (changing
the registral ordering and octaves of the notes without changing the set type),
reflecting his concept of “crippled symmetry” [3,5]. The set classes that Feldman
uses exist in a relatively compact region of the folding network, as shown in Fig. 5.
Successive chords are usually two or three steps apart, the only exception being
both progressions involving the exceptional (0057) chord. If we skip over this
chord then the entire progression is in steps of 2 or 3.

The special property of these progressions is that exactly one trichord is
shared between successive chords in all cases except the last progression, (0136)-
(0135), which share two. In almost all cases the shared trichord is (015) – here
again the exception is the penultimate (0136) chord. This shares an (016) with
the preceding (0156) and (013) and (025) with the following (0135). Figure 5
shows regions defined by shared trichords between the chord types that Feldman
uses.

The first version of the progression, given in Fig. 6 is representative, con-
taining the voicings used most frequently in all subsequent versions of the pro-
gression. Although the trichordal subsets are never voiced in exactly the same
way from one chord to the next, they usually involve a single octave adjustment
so that individual intervals are preserved in their exact pitch distance. In par-
ticular, the characteristic 4-semitone interval of (015) is almost always present,
usually as E-G� or B-D�. The 7-semitone interval ties together instances of (027),
(016), and (015), and the 14-semitone interval ties together (027) and (025). The
final chord, which changes the voicing and transposition of the initial (0135) but
preserves its bass note, serves as a kind of summary of the whole progression,
including all of these intervals.

The second half of the piece regularizes the rhythm and leaves behind the
ten-chord progression in favor of a series of repeated three-chord progressions.
These are organized into eight phrases by means of the punctuating vibraphone
passages. The first six phrases explore small regions of the tetrachord network,
as shown in Fig. 7. Adjacent chords in this section are often related directly by
folding and never by more than two links in the network (with the exception of
the last chord of phrase 6, an isolated whole-tone chord which does not occur
in the network). The first four phrases rely exclusively on chords with (014)
subsets.
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Fig. 5. Tetrachordal folding network for the first part of Feldman’s “For Stephan
Wolpe.” Shaded regions show significant shared trichords.

Fig. 6. The first (and representative) version of the chord progression that defines the
first half of Feldman’s “For Stephan Wolpe” in graph notation. Pitch-space intervals
shared between successive chords are highlighted. Colors selectively indicate member-
ship in different trichordal subsets, with blue for (015), red for (016), gold for (025).
(Color figure online)
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Fig. 7. Tetrachordal folding network for the first six phrases of the second part of
Feldman’s “For Stephan Wolpe.”

A distinct shift happens in the second-to-last phrase, which is considerably
longer than any other, at 27 measures with repeats. Now adjacent chords are
2–4 steps apart except for two instances where (0135) and (0235) are adjacent.
The progression includes isolated extreme chords, (0123) and (0127), along with
(0257), which is more connected with other chords in the passage though it is
never directly adjacent to (0247) in the progression. Figure 8 shows these chords
in the tetrachordal folding network along with those of the last phrase. The
last phrase continues to focus on progressions between chords that are 2–4 steps
apart, but overall relies upon a more connected set of chords, excluding (0123)
and (0257). The central harmony of phrases 1–6, (0125), returns in this last
phrase after being absent for all of the penultimate phrase.

The tetrachordal folding networks thus help us circumnavigate some of the
usual problems of analysis and form in Feldman’s late music. Hanninen [6], for
example, points out that pervasive repetition and lack of textural changes in
these pieces inhibits segmentation. While this description appears to character-
ize the second half of “For Stephan Wolpe” well, a closer look at the use of chord
types and their arrangement in the folding network reveals a more definite plan
in distinct stages. A relatively limited subnetwork first expands, and then moves
back towards a region familiar from the first part of the piece. At the last stage,
Feldman also returns to progression types familiar from the first part, charac-
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Fig. 8. Tetrachordal folding network for the last two phrases of the second part of
Feldman’s “For Stephan Wolpe.”

terized by larger distances in the network. At the same time, the chord palette
expands to the far reaches of the network. The piece thus exhibits a cogent form
that combines principles of return and terminal expansion.

4 Conclusion

Folding operations, a generalization of Bernard’s [2] unfolding and infolding
operations, can be defined on sets of any size, and can operate in pitch-space
or pitch-class space, with or without generalizations over inversion. Networks of
these operations are useful for mapping out distances between chord-types based
on interval and subset content. The application to tetrachords in Feldman’s “For
Stephan Wolpe” shows that distances in these networks are musically meaning-
ful and that chord types limited to connected subnetworks can be composition-
ally useful. Feldman’s manipulation of distances between adjacent chords and
connectedness and location of his subnetworks illustrate his sensitivity to these
properties, and reveals a shape to this piece that is not immediately apparent
on its rather simple and static surface.
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Abstract. In this paper we extend the ubiquitous music information
retrieval technology of the quantized chromagram (or chroma feature)
to propose a continuous chromagram, an octave-reduced spectrogram
that logarithmically reduces the frequencies of a sound spectrum onto a
half-open interval [a, 2a) we call a chroma octave. We prove that for any
real number r > 1, any two logarithmically reduced spectrograms onto
intervals of reduction [a1, ra1) and [a2, ra2) with a1 �= a2 are equivalent
up to logarithmic scaling and rotation. In the case r = 2 this proof shows
why all chroma octaves bounded by both the upper and lower frequencies
of the sound spectrum in question yield essentially the same continuous
chromagram. We then propose a family of pseudometrics on sound spec-
tra and discuss potential applications to analysis and composition.

Keywords: Continuous chromagram · Generalized octave reduction ·
Pseudometric spaces

1 Introduction

1.1 Pitch and Chroma

Although nowhere near as slippery a notion as timbre, pitch-relative to its cen-
trality in theoretical discourse-can easily be taken for granted definitionally.
Depending on who was asked and when, pitch has been variously defined as
“that attribute of auditory sensation by which sounds are ordered on the scale
used for melody in music” [1], “that attribute of sensation whose variation is
associated with musical melodies” [2], “[that which] can be reliably matched
by adjusting the frequency of a pure tone of arbitrary amplitude” [3], or “a
subjective measure [of] relative highness or lowness” [4].

Whatever definition one prefers, pitch in the most abstract clearly merits
a continuous rather than a discrete understanding. Shepard’s [5] foundational
results on the perceptual representation of pitch suggested that the pitch p
of a sound can be decomposed into values of chroma c and tone height h:
p = 2c · 2h, where c is any real number [0, 1) and h is any integer in order
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 307–318, 2022.
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for the decomposition to be unique. Patterson [6] later generalized Shepard’s
two-dimensional representation of pitch into a two-dimensional representation
of frequency: f = 2c · 2h, where once again c is any real number [0, 1) and h is
any integer in order for the decomposition to be unique. And recent neuroscience
[4] suggests that such two-dimensional representations are compatible with the
tonotopic organization of pitch in human auditory cortex.

Wakefield [7] presented an ad hoc method for producing chroma-time repre-
sentations of sounds in the context of analyzing the resonance of an individual
human singing voice before subsequently [8] presenting limited formalization of
his ad hoc method. Building on the models of Shepard [5] and Patterson [6], in
this paper we provide a non-ad hoc formalization of a continuous chromagram,
an octave-reduced spectrogram that sums all amplitudes found in a sound spec-
trum onto a half-open interval [a, 2a) we call a chroma octave. Working from
any sound spectrum, our formalization generalizes the notion of octave reduction
to any interval of logarithmic reduction and fosters the formulation of pseudo-
metric spaces of sound spectra for measuring distances between musical sounds.
After presenting illustrative technical aspects of our theoretical apparatus, we
conclude with brief discussions of potential applications of the present work to
analysis and composition as well as future directions for continued exploration
of chroma perception.

1.2 Motivations

There are a number of reasons for the consideration of continuous chromagrams.
Firstly, the 12-bin equal quantization of frequency underlying chromagrams (also
known as chroma features) in most music information retrieval applications does
a disservice to the reality of musical diversity. As musical inquiry more broadly
begins to come to terms with how to expand its purview, continuous models of
chroma provide a natural basis for consideration of musical traditions with differ-
ent underlying pitch structures than twelve-tone equal partitions of 2:1 octaves.

Secondly, chroma-time representations naturally erase boundaries between
timbre and pitch in the consideration of the aggregate quality of a sound. Compu-
tational models of chord spacing and chord quality may embrace the possibility
of pitch percepts of spectral components other than those of fundamentals. Con-
tinuous chromagrams privilege only those octave equivalence classes with more
amplitude than others. In light of pitch’s longstanding status as a fertile field of
inquiry and more recent explorations of timbre using multidimensional models,
considering them holistically is attractive from the perspective of perceptually
informed theorizing.

Thirdly, chroma-time representations represent a possibility for new and
broader directions in the theoretical exploration of parsimony. Fundamental
frequencies are obvious places to listen for pitch percepts but they are by no
means the only frequencies that a listener might perceive as pitches, especially
in harmonically rich polyphonic timbres. To this end, the continuous chroma-
gram facilitates thinking about chromatic parsimony in the very literal sense of
chroma and can provide new directions for analysis and composition of musical
sounds.
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2 Continuous Chromagrams

2.1 Illustration and Definition

Fig. 1. The ending of the tag of Vocal Spectrum’s arrangement of “Go the Distance”
as represented through a continuous chromagram and via staff notation. A recording
may be accessed at https://youtu.be/DNmW4t22v0s?t=201. (Color figure online)

Figure 1 presents a representative example of a continuous chromagram con-
textualized by staff notation as well as the recording of the excerpt in question.
This continuous chromagram presents the ending of the tag to “Go the Distance”
from the 1997 Disney film Hercules as arranged by the international champion
barbershop quartet Vocal Spectrum and is discussed further in Sect. 4.1. In the
meantime, it will suffice to present foundational notions for defining and under-
standing continuous chromagrams in general.

https://youtu.be/DNmW4t22v0s?t=201
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Logarithmically Reduced Spectra. Let n,N ∈ R with 0 < n < N and
let f : [n,N ] → R represent a sound spectrum. Choose a reduction parameter
r ∈ R with r > 1 and suppose a ∈ R satisfies n ≤ a < ra ≤ N . We define the
logarithmically reduced spectrum g : [a, ra) → R by

g(x) :=
∑

{y∈[n,N ] : ∃k∈Z

s.t. x=rky}

f(y), for x ∈ [a, ra), (1)

where [a, ra) is the interval of reduction. In particular, [a, 2a) yields a spectrum
reduced onto a chroma octave, while [a, ra) for r ≈ 2 reduces onto a chroma
pseudo-octave. For r = 2 the logarithmically reduced spectrum may be said to
be octave reduced in the conventional musical sense. If the chosen r �= 2 we
define the process of producing the associated logarithmically reduced spectrum
as generalized octave reduction.

Logarithmically Reduced Spectrograms and Continuous Chroma-
grams. Implicit in the above formulation of logarithmically reduced spectra
is the elimination of time variance. In practice, this would tend to stem from
either only looking at one minuscule temporal window or taking the average of
the spectrum over some time interval that ideally does not feature too many tran-
sients. In computational work on a cappella singing, for instance, one might well
compute continuous chromagrams in the middle of sustained chords where vowels
and formants are most stable. Incorporating time into our formulation of loga-
rithmically reduced spectra is nonetheless worthwhile because of the number of
applications which motivate working with transients and/or other phenomenon
where time variance matters strongly.

Suppose [0, T ] ⊂ R for some T ∈ R represents time. Let f : [n,N ]×[0, T ] → R

represent a time variant sound spectrum. For a chosen reduction parameter r
and interval of reduction [a, ra) as defined above, we define the logarithmically
reduced spectrogram g : [a, ra) × [0, T ] → R by

g(x, t) :=
∑

{y∈[n,N ] : ∃k∈Z

s.t. x=rky}

f(y, t), for x ∈ [a, ra), t ∈ [0, T ]. (2)

For r = 2, g is a continuous chromagram providing a chroma-time represen-
tation of a sound analogous to the frequency-time representation of a conven-
tional spectrogram but with the amplitudes of all frequencies sharing a chroma
value summed onto a single representative in the chroma octave. Continuous
in this context is therefore used to contrast with the conventional chromagram
(or chroma feature), which can most accurately be described as a quantized
chromagram since it reduces amplitudes into twelve logarthmically equal bins
corresponding to the twelve chroma of twelve-tone equal temperament.
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2.2 Invariance to Interval of Reduction

We next present a proof justifying why one’s choice of interval of reduction
in producing a logarithmically reduced spectrum does not essentially change
the result. For quantized chromagrams the bins are almost always determined in
relation to a fixed reference frequency such as A4 = 440 Hz using the convenience
of multiplying by powers of 12

√
2. In the case of logarithmically reduced spectra,

on the other hand, there are no structural a priori assumptions that would
motivate the choice of any particular interval of reduction absent any more
specific context. One may nonetheless choose any appropriately bounded interval
of reduction for a given sound spectrum and produce the same logarithmically
reduced spectrum up to logarithmic scaling and rotation.

Theorem 1. For a fixed reduction parameter r > 1, let g and h be logarithmi-
cally reduced spectra with intervals of reduction [a1, ra1) and [a2, ra2), respec-
tively and with a1 �= a2. Then g and h are equivalent up to logarithmic scaling
and rotation.

Proof. Without loss of generality, we will assume that a1 < a2. (Otherwise, swap
the roles of g and h in what follows.)

We will consider the following two cases separately and prove the Theorem
separately for each case:

1. Case 1: there exists some m ∈ N such that a2
a1

= rm; and
2. Case 2: there does not exist any m ∈ N such that a2

a1
= rm.

Proof of the Theorem for Case 1: Suppose that a2
a1

= rm for some m ∈ N. We
claim that h can be written in terms of g as

h(x) = g(r−mx) for x ∈ [a2, ra2). (3)

Before verifying Eq. 3, we need to check that the expression on the right-hand
side of Eq. 3 is well-defined; that is, we need to check that r−mx ∈ [a1, ra1) if
x ∈ [a2, ra2), otherwise it would not make sense to apply g to r−mx as shown
on the right-hand side of Eq. 3 (since g is defined only on [a1, ra1) a priori).

Indeed, if x ∈ [a2, ra2) then a2 ≤ x and thus, using the equality a2
a1

= rm, we
conclude a1 = r−ma2 ≤ r−mx. Furthermore, the inclusion x ∈ [a2, ra2) implies
x < ra2 and thus, using the equality a2

a1
= rm, we conclude r−mx < r−m(ra2) =

r · r−ma2 = ra1. Combining these results, we see that a1 ≤ r−mx < ra1. Since
our choice of x ∈ [a2, ra2) was arbitrary, we conclude that r−mx ∈ [a1, ra1) for
all x ∈ [a2, ra2) and hence that the right-hand side of Eq. 3 is indeed well-defined.

So, now we proceed to verify the equality in Eq. 3. We compute, for x ∈
[a2, ra2), that

g(r−mx) =
∑

{y∈[n,N ] : ∃k∈Z

s.t. r−mx=rky}

f(y) =
∑

{y∈[n,N ] : ∃k∈Z

s.t. x=rk+my}

f(y) =
∑

{y∈[n,N ] : ∃l∈Z

s.t. x=rly}

f(y) = h(x).
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Therefore, Eq. 3 indeed holds. Equation 3 states, in other words, that h is
obtained from g by a logarithmic scaling (by r−k). In this case, no rotation
is necessary in order to obtain h from g.

Proof of the Theorem for Case 2: Suppose that there does not exist any m ∈ N

with a2
a1

= rm. Let m0 := min
{

m ∈ Z : rm > a2
a1

}
. That is, m0 is the unique

integer such that rm0a1 ∈ [a2, ra2). So, a2 ≤ rm0a1 < ra2. We claim that h can
be written in terms of g as

h(x) =

{
g(r1−m0x) if x ∈ [a2, r

m0a1)
g(r−m0x) if x ∈ [rm0a1, ra2).

(4)

Before verifying Eq. 4, we need to check that the expressions on the right-hand
side of Eq. 4 are well-defined; that is, we need to check that r1−m0x ∈ [a1, ra1)
if x ∈ [a2, r

m0a1) and that r−m0x ∈ [a1, ra1) if x ∈ [rm0a1, ra2), otherwise it
would not make sense to apply g to those values as shown on the right-hand side
of Eq. 4 (since g is defined a priori only on [a1, ra1)):

– First suppose that x ∈ [a2, r
m0a1). Then a2 ≤ x and thus, using the inequality

rm0a1 < ra2, we conclude a1 = r−m0(rm0a1) < r−m0ra2 = r1−m0a2 ≤
r1−m0x. Furthermore, the inclusion x ∈ [a2, r

m0a1) implies x < rm0a1 and
thus r1−m0x < r1−m0rm0a1 = ra1. Combining these results, we conclude that
a1 ≤ r1−m0x < ra1, i.e., r1−m0x ∈ [a1, ra1).

– Next, suppose that x ∈ [rm0a1, ra2). Then rm0a1 ≤ x and thus a1 =
r−m0(rm0a1) ≤ r−m0x. Furthermore, the inclusion x ∈ [rm0a1, ra2) implies
x < ra2 and thus, using the inequality a2 ≤ rm0a1, we conclude r−m0x <
r−m0ra2 = r1−m0a2 ≤ r1−m0(rm0a1) = ra1. Combining these results, we
conclude that a1 ≤ r−m0x < ra1, i.e., r−m0x ∈ [a1, ra1).

Now that we have shown that the right-hand side of Eq. 4 is well-defined, we
now proceed to verify the equality. We first verify it for x ∈ [a2, r

m0a1) and then
verify it for x ∈ [rm0a1, ra2).

If x ∈ [a2, r
m0a1), then

g(r
1−m0x) =

∑

{y∈[n,N] : ∃k∈Z

s.t. r1−m0x=rky}

f(y) =
∑

{y∈[n,N] : ∃k∈Z

s.t. x=rk+m0−1y}

f(y) =
∑

{y∈[n,N] : ∃l∈Z

s.t. x=rly}

f(y) = h(x),

and so Eq. 4 holds for x ∈ [a2, r
m0a1). On the other hand, if x ∈ [rm0a1, ra2),

then

g(r−m0x) =
∑

{y∈[n,N ] : ∃k∈Z

s.t. r−m0x=rky}

f(y) =
∑

{y∈[n,N ] : ∃k∈Z

s.t. x=rk+m0y}

f(y) =
∑

{y∈[n,N ] : ∃l∈Z

s.t. x=rly}

f(y) = h(x),

and so Eq. 4 holds for x ∈ [rm0a1, ra2).
Therefore, Eq. 4 indeed holds for all x ∈ [a2, ra2). Equation 4 states, in

other words, that h is obtained from g by a logarithmic scaling of, separately,
[a2, r

m0a1) by r1−m0 and of [rm0a1, ra2) by r−m0 . This can be equivalently
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thought of as a rotation of [rm0a1, ra2) ⊂ [a2, ra2) to be immediately to the left
of [a2, r

m0a1) while scaled logarithmically followed by a logarithmic scaling of
the new full interval down until it precisely overlays [a1, ra1). 	


For the reduction parameter r = 2, this proof justifies why any two chroma
octaves bounded by both the upper and lower frequencies of the sound spectrum
in question yield essentially the same continuous chromagram. Additionally, the
proof’s independence of reduction parameter r demonstrates how our notion of
a continuous chromagram can be extended to intervals other than the octave
in the process we defined as generalized octave reduction. Consider for instance
a recording of monophonic music composed using the Bohlen-Pierce scale (BP
scale) which repeats at the tritave (the frequency ratio 3:1) rather than the 2:1
octave and performed by a timbre such as the clarinet whose spectrum con-
sists overwhelmingly of odd harmonics outside of higher registers. A continuous
chromagram of such a sound signal onto a chroma octave such as [200, 400)
Hz could be arguably unhelpful at best in understanding the music relative to
its compositional structure. Choosing a chroma tritave of [200, 600) Hz instead
would make for a more parsimonious mapping between the representation and
the compositional structure. Logarithmically reduced spectrograms additionally
offer new possibilities for investigating musical sounds with inharmonic timbres.
Indeed, generalized octave reduction of sound spectra onto intervals of reduction
[a, ra) with r �= 2 would represent a logical choice for exploring sounds such as
chords of tones with stretched or compressed partials produced by Slaymaker [9]
and Mathews [10] as well as the consonant nonoctaves used as illustrations by
Sethares [11]. As the above proof has shown, such generalized octave reductions
may also pick any interval of reduction within the bounds of the sound spectrum
in question and obtain the same result up to logarithmic scaling and rotation.

2.3 Computational Implementations

A tension between the terms continuous and chromagram is inevitable in sig-
nal processing applications which necessarily entail sampling. Continuous may
thus be understood in computational implementations as referring to the high-
est resolution possible via one’s spectral analysis of a given signal. In a con-
text of either continuous chromagrams or generalized octave reduction, one may
observe two limitations of the fast Fourier transform (FFT) for spectral anal-
ysis. Because its linear frequency bins result in logarithmic increases in resolu-
tion in higher octaves, the logarithmic reduction of fibers to their image in the
chroma octave (or other interval) sums amplitudes unevenly. The presence of a
zero-frequency/DC term in the spectrum violates one of the hypotheses of our
previous theorem (namely that the spectrum is defined on [n,N ] for n > 0). A
Python implementation of a continuous chromagram generated via the FFT (and
thus bearing the two aforementioned limitations) is freely available on Github
[12]. For future work, the constant-Q transform-oft-maligned for its lack of total
invertibility although extendible to least-squares invertibility [13]-may address
both of these limitations at once.
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3 Pseudometric Spaces of Sound Spectra

One application of continuous chromagrams and generalized octave reduction is
to measuring the similarity or dissimilarity of musical sounds. If comparisons
based on octave reduction in the usual sense measure distances between chords
in a notes-on-a-page sense, then comparisons based on continuous chromagrams
instead measure distances along the logarithmically reduced chroma helix [4].
We present as an illustration a family of pseudometrics arising from the theory
of Lp, metric, and pseudometric spaces [14,15] on sets of sound spectra and then
observe how it can be used to derive metric spaces of sound spectra. This family is
by no means the only potentially fruitful source of pseudometrics for comparing
musical sounds. Among myriad options, one could for instance imagine adapting
earth mover’s distance-based similarity analysis (EMDSA) [16] to pseudometric
comparisons of sound spectra.

3.1 Lp Pseudometrics

Suppose n,N ∈ R with 0 < n < N . Let r ∈ R satisfy r > 1, and suppose
a ∈ R satisfies n ≤ a < ra ≤ N. For a function f : [n,N ] → R, define its
logarithmically reduced function f̂ : [a, ra) → R by

f̂(x) :=
∑

{y∈[n,N ] : ∃k∈Z

s.t. x=rky}

f(y), for x ∈ [a, ra).

Lp pseudometrics with p ∈ [1,∞). Let p ∈ [1,∞).
The Lp norm || · ||Lp([a,ra)) on the vector space

Lp([a, ra)
)

:=

{
g : [a, ra) → R | g is Lebesgue-measurable and

∫ ra

a

|g(x)|p dx < ∞
}
,

where two functions which are equal almost everywhere are considered to define
the same element of Lp

(
[a, ra)

)
, is defined by

||g||Lp([a,ra)) :=
(∫ ra

a

|g(x)|p dx

) 1
p

. (5)

The metric dLp([a,ra)) on Lp
(
[a, ra)

)
induced from || · ||Lp([a,ra)) is

dLp([a,ra))(g1, g2) := ||g1 − g2||Lp([a,ra)) (6)

for g1, g2 ∈ Lp
(
[a, ra)

)
. From Eq. 6 we may define on the set S̃p

[a,ra)

(
[n,N ]

)
:={

f : [n,N ] → R|f̂ ∈ Lp
(
[a, ra)

)}
an associated pseudometric d̃S̃p

[a,ra)([n,N ]) by

d̃S̃p
[a,ra)([n,N ])(f1, f2) := dLp([a,ra))(f̂1, f̂2) (7)
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for f1, f2 ∈ S̃p
[a,ra)

(
[n,N ]

)
; we refer to d̃S̃p

[a,ra)([n,N ]) as an Lp pseudometric.

Lp pseudometric with p = ∞. One may obtain for p = ∞ a pseudometric
d̃S̃∞

[a,ra)([n,N ]) in the same manner as for the above Lp pseudometrics by replacing

the instances of the integral
∫ ra

a
|g(x)|pdx with the essential supremum

ess supx∈[a,ra)|g(x)|
and leaving the rest of the formulation essentially unchanged [14,15,17].

3.2 Metrics Induced from Pseudometrics

If X̃ is any set and d̃ is a pseudometric on X̃, one can canonically obtain a
corresponding metric space as follows [15,18]. Put the equivalence relation ∼ on
X̃ given by x ∼ y if d̃(x, y) = 0. If one lets X be the set of equivalence classes
of X̃ under this equivalence relation and defines d([x], [y]) := d̃(x, y) for the
equivalence classes [x] and [y] of x and y respectively, then d is a well-defined
metric on X, and thus (X, d) is a metric space. This may be applied, for each
p ∈ [1,∞], to the pseudometric space

(
S̃p
[a,ra)

(
[n,N ]

)
, d̃S̃p

[a,ra)([n,N ])

)
, with the

aforementioned equivalence relation ∼, to produce a metric on the set

Sp
[a,ra)

(
[n,N ]

)
:=

({
f : [n,N ] → R|f̂ ∈ Lp

(
[a, ra)

)} /
∼

)
,

i.e., on the set of spectra being reduced into Lp
(
[a, ra)

)
wherein two spectra

are considered to be equivalent if their logarithmically reduced spectra are equal
almost everywhere on [a, ra).

3.3 Comparing Time Variant Spectra

Pseudometric measures of similarity or dissimilarity can be extended analo-
gously to our generalized octave reduction apparatus to account for time vari-
ance as follows. If we consider logarithmically reduced spectrograms of the
form f : [n,N ] × [0, T ] → R, then analogously to above, for p ∈ [1,∞) one
may yield metrics and pseudometrics by replacing the instances of the integral∫ ra

a
|g(x)|pdx with ∫ T

0

∫ ra

a

|g(x, t)|p dx dt

and leaving the rest of the formulation essentially unchanged.

4 Applications

4.1 Visualizations of Musical Sounds

Returning to Fig. 1, the color-coded arrows provide a temporal reference while
the equal-tempered letter names are for reference within the chroma octave
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[200, 400) ‘Hz’. The ordinate is labeled as ‘Hz’ because these are not frequen-
cies corresponding to single pitches but rather representatives of their chroma
within that chroma octave. This continuous chromagram visualization highlights
the salience of several prominent spectral components beyond the four sung fun-
damental frequencies. These components stem from the combination of formant
spread and formant tuning [19] compounded with precise vertical intonation to
maximize the production of ring [20].

This illustration demonstrates how continuous chromagrams can facilitate
new framings of parsimonious voice-leading. ‘Above’ the lead’s sustained A�, for
instance, we can observe a veritable thicket of chroma across which it would
not be unreasonable to trace smooth voice-leading trajectories. The perceptual
implications of such trajectories are not to be overstated until they might be
validated by ecologically valid experiments on listening. In the meantime, if we
listen again we can find that this chroma-time representation can not only rep-
resent such phenomena but also (and perhaps even more importantly) facilitate
new ways of listening.

4.2 Creative and Theoretical Possibilities

Continuous chromagrams, generalized octave reduction, and the various pseu-
dometrics we have presented also have further, more speculative applications.
Among these are creative sonic practices and possibilities for future theorizing.
One elegant formulation of a compositional constraint could easily stem from
the fact that there are infinitely many sounds in the fiber of any logarithmically
reduced spectrum.

Remark 1. Suppose that we are given a function g : [a, ra) → R. Let us construct
a function f : [n,N ] → R such that g is the logarithmically reduced version of
f , i.e.,

∑

{y∈[n,N ] : ∃k∈Z

s.t. x=rky}

f(y) = g(x), for x ∈ [a, ra). (8)

For each x ∈ [n,N ], let x̃ denote the unique number in [a, ra) such that x = 2kx̃
for some k ∈ Z. Then,

f(x) :=
g(x̃)

|{y ∈ [n,N ] : ∃k ∈ Z s.t. x = rky}| (9)

is one such function, where the vertical bars denote cardinality.

Although it is by construction impossible to regain the information lost
through the process of logarithmically reducing a sound spectrum, this does
not mean that one could not generate sounds from a logarithmically reduced
spectrogram. From a musical perspective, a sort of chromatic (in the sense of
chroma) minimalism could stem from treating none of pitch, timbre or rhythm
alone as a basis for structural repetition and instead repeating the entire image
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of fibers within the chroma octave of a continuous chromagram. Another possible
compositional constraint derived from logarithmically reduced spectra would be
to limit oneself to sounds all equidistant under a given metric or pseudometric,
giving at once many more possibilities than similar constraints on dots-on-a-page
representations of musical similarities while also posing substantial limitations on
the timbral possibilities for the sounds in question. In entirely acoustic contexts
such constraints are probably more readily posited than realized. Nonetheless,
through the use of digital tools speculative applications of chromatic (again in
the sense of chroma) thinking might well prove musically rewarding.

One additional compositional approach motivated by our exploration of gen-
eralized octave reduction is in following with Slaymaker [9], Mathews [10], and
Sethares [11] in designing timbres based on non-octave intervals. If we, for
instance, sought to produce a given number of discrete amplitudes in an

[
a, 7

4a
)

interval of reduction through purely additive synthesis in just intonation, we
would necessarily want to think differently both in terms of relationships between
spectral components and in terms of where they lie to begin with than if we
were reducing to the chroma octave [a, 2a). In a similar vein, composers inter-
ested in historical keyboard temperaments might analogously consider limita-
tions imposed on an

[
a,

√
5a

)
interval of reduction if they wished to partake in

contemporary meantone composition.
Finally, another theoretical possibility would be to use logarithmically

reduced spectra to quantitatively characterize spectral aggregates. Recent work
by Kahrs [21] on the music of Gubaidulina explored “dissonance” in relationship
to distance from white noise using the relatively common music information
retrieval measures of spectral centroid and spectral flatness. One can imagine
how entropy-related or otherwise probabilistic measurements of sound signals
derived from logarithmically reduced spectra could extend these notions of dis-
tance from noise as possibilities for both analysis and composition. It is our hope
that these illustrations of the possibilities afforded by logarithmically reduced
spectra and logarithmically reduced spectrograms will begin a conversation that
sheds light on further future prospects.
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Abstract. N2D3P9 is a mathematical function which was developed
to help in designing the Sagittal microtonal music notation. Given a
rational number n

d
representing a pitch (relative to some tonic note),

N2D3P9 estimates its rank in popularity among all rational pitches in
musical use. A low value of N2D3P9 indicates that the ratio is used
often, and so should have a simple accidental symbol, while a high value
indicates that the ratio is used rarely and so can have a more complex
symbol if necessary. It may also be useful in designing rational scales or
tunings.

Keywords: Microtonal · Just intonation · Sagittal notation

1 Background on Sagittal Notation

Outside the hegemony of standard musical tuning, a huge frontier of alternative
tuning systems is rife for exploration. For however many musicians one may
find who are interested in microtonality, one may find as many (if not more)
alternative tunings, which boast a wide variety of strengths, weaknesses, and
special characteristics. Some of these tunings deviate from standard tuning in
diametrically opposed manners. And while each tuning offers its own unique
wealth of potential for new musical expression, the flip side of this coin is that
each tuning also poses a unique challenge when it comes to notating it.

Historically, the microtonal community has been defined by fracturing, on
multiple levels, from top to bottom, from ethos to practice. A family of deviants
deviates even from itself. This effect had held true with regards to problems of
notation, where we’ve seen a proliferation of tuning-specific notations. Some-
times a more popular tuning may even boast multiple of these custom-tailored
notations, locked in to separate particular ways of interpreting the tuning. This
sort of fracturing poses a problem for the breed of microtonalist who is interested
in writing and/or performing music that samples from across the full spectrum of
possibilities. Learning microtonal concepts, assembling microtonal instruments,
and mastering microtonal ear-training is trouble enough, without also having to
learn many different notation systems.

This problem is not easily solved however. It wasn’t until the early 2000’s
that the two-person team of George Secor and Dave Keenan, with input from
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 319–330, 2022.
https://doi.org/10.1007/978-3-031-07015-0_26
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many others on the Yahoo Tuning group, began chipping away at the myriad of
math and design challenges required to produce a single, unified notation system
that was both powerful and flexible enough to work well for any microtonal
tuning. This collaboration blossomed into what we now know as the Sagittal
microtonal notation system [1].

Sagittal is the world’s first pitch notation system to be designed from the
ground-up to extend conventional notation in a way that works well for all types
of microtonal music, and in particular the two most popular types: just into-
nation (JI), and equal divisions of the octave (EDOs). Of course, the
latter category includes equal divisions of the octave other than the standard
12. Sagittal introduces a cohesive set of new symbols, each representing a differ-
ently sized pitch alteration, and thereby extends the conventional pitch notation
beyond what can be accomplished using only the Pythagorean nominals A, B,
C, D, E, F, and G, plus the sharp and flat symbols.

Sagittal’s central design begins with the assumption that musical pitch is
interpreted as ratios of frequency. In the case in JI, these ratios are exact, and in
EDOs and other tunings, they are approximate, but Sagittal works just as well
either way.

Sagittal then returns to the historical roots of conventional notation by treat-
ing the sequence of Pythagorean nominals plus sharps and flats as the notation
for a chain of perfect fifths, i.e. the frequency ratio 3

2 (or its approximation).
And octave shifts work as normal. This conventionally-notated chain of fifths
thereby forms the backbone for Sagittal notation, allowing for the notation of
any 3-limit pitch, or in other words, any pitch whose ratio contains only prime
factors of 2 and 3, such as 4

3 , 9
8 , 27

16 , 128
81 , etc. For any other pitch, that is, one

with prime factors above 3, such as 5, 7, or 11, a Sagittal symbol is available
which represents the pitch alteration necessary to reach from one of these 3-limit
pitches to a nearby higher-limit pitch.

For example, there is a Sagittal symbol which enables the notation of pitches
with a single 5 in their prime factorization; using it, the pitch 10

9 is notated as a
deviation from 9

8 , or 5
3 from 27

16 , or 9
5 from 16

9 . In all three of these cases, the pitch
alteration that the Sagittal symbol represents is the same small frequency ratio of
81
80 (please check this for yourself, if you are unfamiliar with these relationships).
Small ratios of this sort are known in the microtonal community as commas.

The 81
80 comma used in the previous examples to notate pitches with single 5’s

in their ratios is quite important, and is well-known—even outside the microtonal
community—as the syntonic comma. There is another Sagittal symbol, then,
that enables of notation of pitches with a single 7 in their ratio, e.g. allowing for
the notation of 8

7 as deviation from 9
8 , etc. This comma’s ratio is 64

63 , and this one
is also reasonably well-known. The reason these two commas are well-known is
due to their importance: they allow for the notation of the most popular pitches
beyond the 3-limit backbone of conventional notation.

While there are yet other Sagittal symbols that allow for the notation of
various combinations of 5’s and 7’s, such as 10

7 , 25
24 , or 35

32 , and there are Sagittal
symbols that allow for notating pitches with 11’s in them, or various combina-
tions of 11’s with 5’s and 7’s, as the prime numbers themselves get higher and
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higher, and the count of these higher primes increases, the interest in musical
pitches decreases, and with it goes the demand for symbols to notate them. In
other words, almost every microtonalist needs to be able to notate pitches like 5

4
and 7

6 , but almost no one writes or performs music with ratios like 37
23 or 729

625 . So,
Sagittal offers symbols that notate the former pitches exactly, while the latter
can be only be notated using (very close) approximations.

Any microtonal pitch system like Sagittal, in order to be well-crafted, should
offer an economical set of symbols to its users: the minimum set able to work
cohesively to notate the most desired pitches in microtonal music. In the early
days of Sagittal’s design, the choice of which symbols to include and which not
to include was informed by a combination of usage data, mathematical formulae,
and first-hand knowledge from years of experience in the microtonal community.
But it was not until the design for the final tier of Sagittal symbols was having
its commas assigned, i.e. providing Sagittal symbols to satisfy the most obscure
and microtonal of the microtonal community’s needs, that it was decided that
the best way forward was to consolidate the data, formulae, and knowledge
into a proprietary semi-objective metric. This metric would compare every pitch
ratio, classified by its prime factorization with the factors of 2 and 3 removed—
those two simplest primes already being covered by conventional notation, as
discussed above—and it would rank them by popularity, to determine which
were the most important to provide notational symbols for. This metric is what
became N2D3P9.

2 A Preliminary Pop Culture Reference

N2D3P9, or Entoo-Deethree-Peenine, is a fictional character in the Star Wars
franchise. In an alternative timeline, the young Anakin Skywalker assembles the
droid N2D3P9 from the parts of three other droids: R2D2, C3P0 and NR-N99.

We’re only joking, but we hope this helps with remembering and pronouncing
the name. In actuality, the name “N2D3P9” is an abbreviation of key components
of its formula, as described below.

3 Formula

Before describing how to calculate N2D3P9, we define three simpler terms that
are used in its formula:

1. 2, 3-free ratios, which are also known as “5-rough” ratios. Because factors
of 2 and 3 in pitch ratios are already notated by changing octaves or moving
along the chain of fifths (... B�� F� C� G� D� A� E� B� F C G D A E B F�
C� G� D� A� E� B� F�� ...), N2D3P9 only operates on ratios that have had
their factors of 2 and 3 removed. For example, there are various numbers of
factors of 2 and 3 in the following ratios: 16

15 , 10
9 , 6

5 , 5
4 , 27

20 , 45
32 , 64

45 , 40
27 , 8

5 , 5
3 , 9

5 , 15
8 ,

but when their factors of 2 and 3 are removed, they all reduce to 1
5 or 5

1 , and
so they can all be notated using the same microtonal accidental, pointing
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either up or down, combined with different letters and sharps or flats. We
say that 1

5 or 5
1 is the 2, 3-removed or 2, 3-free form of these pitch ratios,

and because 1
5 and 5

1 use the same accidental pointing either up or down,
and because N2D3P9 only operates on ratios whose numerator is larger than
their denominator (superunison ratios), 5

1 can represent this entire 2, 3-
equivalent pitch ratio class or 2, 3-equivalence-class for the purpose of
notation design.

2. The copfr function, which stands for “count of prime factors with repeats”.
It applies to any positive integer. For example 175 has the prime factorization
5×5×7, which has three factors including the repeat of 5, so copfr(175) = 3.
Conventionally, copfr(1) = 0. copfr is also called the “prime omega” or “big
omega” function, Ω.

3. The prime-limit function, which is also known as gpf, which stands
for “greatest prime factor”. prime-limit(175) = 7. Some authors leave
prime-limit(1) undefined; we avoid the question because we define
N2D3P9(11 ) ≡ N2D3P9(31 ) = 1. This is because the ratios in the equiva-
lence class represented by the 2, 3-removed 1

1 actually have a prime limit of
3.

Now we can give the formula for N2D3P9(nd ) as:

N2D3P9(
n

d
) =

n

2copfr(n)
× d

3copfr(d)
× prime-limit(nd)

9
(1)

N2D3P9(
1
1
) = 1. (2)

Note that where
n = 5n5 × 7n7 × 11n11 × ... (3)

we have
2copfr(n) = 2n5 × 2n7 × 2n11 × ... (4)

and so
n

2copfr(n)
= (52 )n5 × ( 72 )n7 × ( 112 )n11 × ... (5)

and similarly
d

3copfr(d)
= (53 )d5 × ( 73 )d7 × ( 113 )d11 × ... (6)

These can be described respectively as “product of half prime factors of
the numerator (with repeats)” and “product of one-third prime factors of the
denominator (with repeats)”. So we can describe the procedure for calculating
N2D3P9(nd ) as:

Take the prime factorization of the numerator and divide all the primes
by 2, then multiply it out again. Do the same with the denominator but
divide the primes by 3 instead of 2. Multiply these two results together then
multiply by the prime limit of the ratio and divide by 9.
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N2D3P9 can also be written more succinctly as:

N2D3P9(
n

d
) =

nd · gpf(nd)
2Ω(n)3Ω(d)+2

(7)

where nd is established in music theory as a ratio’s “product complexity” or
Benedetti height.

The division by 9 does not affect the ranking, but it has the convenient
effect that N2D3P9 values are almost the same as the ranks they produce when
applied to all 2, 3-free superunison ratios. Putting it another way, there are
approximately N 2, 3-free pitch ratios with N2D3P9 ≤ N .

For example, N2D3P9(775 ) = 7
2 × 11

2 × 5
3 × 11

9 ≈ 39, suggesting there are
approximately 38 other 2, 3-free pitch ratios more popular than 77

5 . There are
actually about 4% fewer than that on average. In this case there are 36.

4 Justification

Why should we believe that N2D3P9 accurately ranks the popularity of 2, 3-
equivalent pitch classes?

N2D3P9 was developed (or discovered) rather late in the development of
Sagittal notation. The Sagittal designers previously relied on actual ratio usage
data from the Huygens-Fokker Foundation’s scale archive [2], kindly provided
by Manuel Op de Coul.

All scales in the archive were treated equally, as there was no information
about their relative importance. Each occurrence of a pitch ratio in a scale
was counted as one vote for that ratio. Then the ratios were grouped into 2, 3-
equivalent pitch classes and a single figure obtained for each 2, 3-free superunison
ratio (representing the class). There were 29,403 votes, allocated to 820 2, 3-free
ratios.

Like the frequency of use of letters in an alphabet, when sorted in order of
decreasing popularity, the ratios obeyed an approximate Zipf’s law distribution,
with the Nth most popular ratio having votes proportional to approximately
N−1.37. This meant that about half the ratios had only one vote each, and three
quarters of them had 3 votes or less. Such low numbers of votes meant that the
data on the less popular ratios was vulnerable to “historical noise”. In other
words, the position of such a ratio in the list might not be a good predictor of
its relative frequency of use in the future.

In the early stages of Sagittal design, when allocating symbols for the most
popular ratios, the designers could rely on the Scala archive data, but when they
moved on to less popular ratios they needed some “less noisy” way to rank them.

Keenan and Blumeyer found that N2D3P9 is a psychoacoustically plausible
function of a ratio’s prime factorization that:

a. ranks 10 of the 11 most popular ratio classes in exactly the same way as the
archive data, and

b. ranks all 820 ratio classes in a way that has a low sum of squared errors in
their ranks, relative to the archive data, and
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c. is sufficiently simple, having only two parameters, that it cannot be overfitting
the data, and should therefore serve to average out the historical noise in the
ranking of the less popular ratios, including ratios that do not occur in the
archive at all.

However, their approach was not able to consider “all” possible psychoa-
coustic reasons for a ratio’s popularity. For example, N2D3P9 does not evaluate
whether some member of a 2, 3-equivalence-class might be very close in pitch to
some member of another 2, 3-equivalence-class, such as 65

64 being very close to 1
1

(Figs. 1 and 2).

Fig. 1. Most common 2, 3-equivalent pitch classes by Scala archive occurrences.
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Fig. 2. N2D3P9 predicted occurrences of 2, 3-equivalent pitch classes, versus actual
Scala archive occurrences.

5 Development/Discovery

From May to August 2020, a collaborative effort [3] to find this function was
carried out by members of the Sagittal forum, led by Sagittal co-creator Dave
Keenan and Douglas Blumeyer. Many functions besides N2D3P9 were considered
before selecting it as the best function for its purpose.

Estimation of pitch ratio popularity is possible because it correlates with
numeric simplicity. N2D3P9 is most useful when comparing ranks of more com-
plex ratios, because usage data about such ratios is sparse. By fitting a function
to the statistical usage data which is available for simpler ratios, N2D3P9 enables
the extension of the patterns found in these simpler ratios.

Rather than attempt to fit functions to the exact counts of votes for each
ratio, the functions were fit to the rank indices of each ratio; in other words,
a function only needed to sort ratios the same as the actual data, and within
each rank position it was unimportant how close its estimate of votes was. In
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technical parlance, the goal was to maximize the Spearman’s rank coefficient
between the estimated ranks and the actual ranks. For purposes of comparing
competing functions, maximizing Spearman’s rank coefficient could be simplified
to minimizing the sum of squared differences between the ranks. But because
fitting to the simpler ratios which had more votes is more important, a Zipf’s-law
weighting was applied to the ranks by taking their reciprocals before calculating
their squared differences. A fractional ranking strategy was used to ensure that
stretches of the data with tied vote counts did not distort the measurement.

The overall strategy, then, was to minimize this weighted rank error, while
also minimizing the complexity of the function, to avoid overfitting. An ear-
lier notational popularity ranking function for 2, 3-removed-ratios, that had
been used by the creators of Sagittal was sopfr (sum of prime factors with
repetition). It does a remarkably good job of estimating the rank of pitch ratios
given how simple it is. However the weighted sum of squared errors that sopfr
gives for the Scala stats is about 0.026, while N2D3P9 reduces that to about
0.010. Functions giving sums of squares as low as 0.008 were found, however,
these functions were so complex that they probably were fitting to noise in the
Scala stats instead of to the true nature of musical pitch. An informal “chunk”
metric was devised to compare function complexity in terms of ability to fit
to the data, with considered functions ranging from one chunk sopfr to eight
chunks; the winning function N2D3P9 has five chunks.

Several techniques were used to find and decide on N2D3P9 as the best 2,
3-removed-ratio notational-popularity rank-estimation function. Initial observa-
tions about shortcomings of sopfr, such as its failure to differentiate balanced
ratios from their imbalanced equivalents—such as 11

5 versus 55
1 —or those with

different prime limits such as 13
5 and 11

7 , despite those pairs of ratios exhibiting
remarkably different actual ranks in the Scala stats, formed the basis of the inves-
tigation. Psychoacoustic plausibility of functions was used as a top-down guide
for experimentation. Optimization tools such as Excel’s Evolutionary Solver [4]
were used to navigate toward ideal values for each parameter. The approach
that was finally successful was a brute-force approach implemented by Dou-
glas Blumeyer, whereby nearly 2 billion functions combined out of constituent
“submetrics” were checked automatically. In the end, one of the functions on
the short-list generated from the brute-force checker was recognized as being
re-writable in a much simpler form with parameter values rounded to whole
numbers without doing much damage to its sum-of-squares, and thus N2D3P9
was born.

After deciding upon N2D3P9, the Sagittal forum members checked the ratios
for the existing Sagittal symbols against it, to see how well they’d been served
by the Scala archive stats and the earlier sopfr metric. Each symbol in Sagittal’s
JI notations has a default value, or primary comma, which for our purposes

is a rational number between 1 and
√

319

230 ≈ 1.040404 exclusive, that by mul-
tiplication, takes us from some 3-smooth ratio (notated using standard music
notation) to a nearby 5-rough ratio. This allows the symbol to exactly notate
all the ratios in the corresponding 2, 3-equivalence-class. For example, the most
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important such comma is 81
80 (the “1/5-comma”), whose symbol is an upward

pointing left-half-arrow “/|”, which takes us from 24

34 (A�) to 1
5 (A�/|). Based on

N2D3P9, it was found that only a couple of these commas should be changed
(these were among the rarest-used symbols in Sagittal). This was as expected;
N2D3P9 was developed primarily in order to add new accent marks to Sagittal,
to enable it to exactly notate even rarer JI pitches than it already does (Table 1).

Table 1. Top 100 2, 3-equivalent pitch ratio classes by N2D3P9.

2, 3-equivalent

pitch

class
ratio

N2D3P9 N2D3P9
rank

Scala
archive
rank

Scala
archive
occurrences

{1}2,3 1 1 1 7624

{5}2,3 1.39 2 2 5371

{7}2,3 2.72 3 3 3016

{25}2,3 3.47 4 4 1610

{7/5}2,3 4.54 5 5 1318

{11}2,3 6.72 6 6 1002

{35}2,3 6.81 7 7 875

{125}2,3 8.68 8 8 492

{13}2,3 9.39 9 10 447

{49}2,3 9.53 10 9 463

{11/5}2,3 11.2 11 11 339

{25/7}2,3 11.34 12 14 312

{13/5}2,3 15.65 13 16 205

{11/7}2,3 15.69 14 12 324

{49/5}2,3 15.88 15 15 246

{17}2,3 16.06 16 13 318

{55}2,3 16.81 17 24 119

{175}2,3 17.01 18 17 168

{19}2,3 20.06 19 18 166

{625}2,3 21.7 20 21 143

{13/7}2,3 21.91 21 20 145

{65}2,3 23.47 22 50 40

{77}2,3 23.53 23 25 111

{245}2,3 23.82 24 19 165

{49/25}2,3 26.47 25 23 134

{17/5}2,3 26.76 26 26 108

(continued)
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Table 1. (continued)

2, 3-equivalent

pitch

class
ratio

N2D3P9 N2D3P9
rank

Scala
archive
rank

Scala
archive
occurrences

{25/11}2,3 28.01 27 47 42

{125/7}2,3 28.36 28 33 62

{23}2,3 29.39 29 22 136

{91}2,3 32.86 30 57 30

{343}2,3 33.35 31 31 70

{19/5}2,3 33.43 32 27 97

{13/11}2,3 34.43 33 29 89

{121}2,3 36.97 34 42.5 46

{17/7}2,3 37.46 35 40 50

{25/13}2,3 39.12 36 52.5 34

{77/5}2,3 39.21 38 28 92

{55/7}2,3 39.21 38 34 61

{35/11}2,3 39.21 38 35.5 55

{85}2,3 40.14 40 78 20

{275}2,3 42.01 41 147 7

{875}2,3 42.53 42 76 21

{29}2,3 46.72 43 32 67

{19/7}2,3 46.8 44 37.5 52

{23/5}2,3 48.98 45 44 45

{95}2,3 50.14 46 72 23

{143}2,3 51.64 47 66 26

{31}2,3 53.39 48 30 80

{3125}2,3 54.25 49 52.5 34

{91/5}2,3 54.77 51 68 25

{65/7}2,3 54.77 51 102.5 11

{35/13}2,3 54.77 51 102.5 11

{49/11}2,3 54.9 53 54 33

{343/5}2,3 55.58 54 55.5 31

{119}2,3 56.19 55 252.5 3

{325}2,3 58.68 56 604.5 1

{385}2,3 58.82 57 37.5 52

{17/11}2,3 58.87 58 35.5 55

{1225}2,3 59.55 59 41 47

(continued)
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Table 1. (continued)

2, 3-equivalent

pitch

class
ratio

N2D3P9 N2D3P9
rank

Scala
archive
rank

Scala
archive
occurrences

{169}2,3 61.03 60 86 14

{121/5}2,3 61.62 61 147 7

{77/25}2,3 65.35 62 63 27

{125/49}2,3 66.17 63 63 27

{25/17}2,3 66.9 64 134.5 8

{23/7}2,3 68.57 65 47 42

{17/13}2,3 69.57 66 47 42

{125/11}2,3 70.02 67 147 7

{133}2,3 70.19 68 329 2

{625/7}2,3 70.89 69 113 10

{115}2,3 73.47 70 604.5 1

{19/11}2,3 73.54 71 55.5 31

{37}2,3 76.06 72 42.5 46

{49/13}2,3 76.68 73 147 7

{29/5}2,3 77.87 74 59.5 28

{455}2,3 82.15 75 186.5 5

{539}2,3 82.35 76 186.5 5

{1715}2,3 83.37 77 76 21

{25/19}2,3 83.56 78 79.5 19

{143/5}2,3 86.06 80 217.5 4

{65/11}2,3 86.06 80 164 6

{55/13}2,3 86.06 80 90 13

{121/7}2,3 86.27 82 164 6

{19/13}2,3 86.91 83 45 44

{187}2,3 88.31 84 217.5 4

{31/5}2,3 88.98 85 68 25

{91/25}2,3 91.28 86 329 2

{55/49}2,3 91.5 87 39 51

{605}2,3 92.43 88 94.5 12

{343/25}2,3 92.63 89 68 25

{41}2,3 93.39 90 72 23

{119/5}2,3 93.66 92 123.5 9

{85/7}2,3 93.66 92 – 0

{35/17}2,3 93.66 92 217.5 4

(continued)
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Table 1. (continued)

2, 3-equivalent

pitch

class
ratio

N2D3P9 N2D3P9
rank

Scala
archive
rank

Scala
archive
occurrences

{125/13}2,3 97.8 94 604.5 1

{275/7}2,3 98.03 95.5 102.5 11

{175/11}2,3 98.03 95.5 147 7

{425}2,3 100.35 97 329 2

{169/5}2,3 101.71 98 329 2

{121/25}2,3 102.7 99 217.5 4

{43}2,3 102.72 100 58 29
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Abstract. This paper outlines an open-source development project dedicated to
the performance of microtonal music, specifically Easley Blackwood’s Twelve
Microtonal Etudes (1980). Despite the piece’s fixed format, Blackwood stated a
specific desire to have the work performed live. This project incorporates multiple
elements to this effect, including a standalone software synthesizer and a web
application. The paper details prior efforts for microtonal performance on tradi-
tional keyboard instruments by Joel Mandelbum and Robert Hasegawa, describes
the emergent issues inherent in such endeavors to translate between standard per-
formance practices and microtonal tunings, and proposes methods that will allow
for the accurate and easily replicable performance of Blackwood’s etudes. The
software synthesizer, proposed as a pedagogical design project for computer sci-
ence students at the University of Central Florida, is currently under active devel-
opment. The web application, available at the project website, includes source
code and documentation for the use of future development teams.

Keywords: Microtonal · Equal temperament · Easley Blackwood ·
Performance · Keyboard · Gesture

1 Introduction

Easley Blackwood’s Twelve Microtonal Etudes (1980) [1] are a unique case in the world
of electronic music. The pieces, each in a different equal-tempered tuning, were created
as a fixed-format collection, performed and recorded by Blackwood on the Polyfusion
Series 2000 Synthesizer between March 1979 and July 1980, but unlike most works
in this genre, the pieces also subsist in a printed score published in 1982 [2], offering
analysts an opportunity to investigate with relative confidence the novel harmonic struc-
tures that Blackwood composed. Upon the rerelease of the recordings for a 1994 album,
Blackwood noted his desire to hear new interpretations of the work by other performers
[3]; his prefatory notes to the score indicate the same sentiment but also warn of the dif-
ficulties of the task since the pieces are not performable on standard instruments. While
occasional arrangements of the collection have appeared over the years, the full work has
seemingly never received a live performance despite having a complete score dedicated
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to this task. Blackwood provides a roadmap for the performance of these works, but he
does not include a detailed set of directions or instructions that can lead us to a satisfying
destination.

This situation creates a remarkable circumstance for Blackwood’s work since it is, at
once, a static entity in its original fixed form and a potential space for dynamic interpre-
tation. The problems with such an enterprise are well known. The musical score itself is
not easily performable due to a lack of available microtonal instruments; neither is the
music simple to arrange with its unorthodox set of accidentals (see Fig. 1). Addition-
ally, finding an adequate number of performers who are willing and able to learn such
complex notation schemes is a significant undertaking. The current project sets out to
resolve the performance issues of this work through a multifaceted strategy involving
musical analysis, gestural interpretation, and software development. The aim is to create
a procedure for the performance of these works that is not only functional but also able to
be easily replicated. To this goal, the project is completely open-source from the outset.

Fig. 1. Easley Blackwood, Twelve Microtonal Etudes, “21 Notes,” mm. 1–6

This paper offers a set of first steps toward this goal. We will first outline some other
microtonal performance practices that align with Blackwood’s vision. These methods
can serve as inspiration for the project’s efforts.Wewill then detail the parts of the current
project that are required to achieve a full performance ofBlackwood’s etudes, focusing on
two applications: a software synthesizer that provides native support for equal-tempered
microtonal playback and MIDI keyboard mapping and a web application that replicates
some of this functionality for a general audience. Through these development elements,
we intend to produce a full performance of Blackwood’s etudes, living up to his stated
aspirations for the work.

2 Examining Some Keyboard Mappings for Microtonal Music

While keyboards with hexagonal layouts (such as the MicroZone from Starr Labs or the
novel Lumatone devised by Siemen Terpstra) have received a great deal of support in
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recent years due to their accommodation of microtonal scales and tunings, the cost and
unconventionality of these instruments leaves little opportunity for their widespread use
among performing keyboardists. Notably, the Polyfusion synthesizer used for Black-
wood’s etude recordings is not a dedicated instrument for microtonal performance—it
uses a four-octave keyboard with a traditional twelve-tone organization—but its size,
complicated design, and rarity make it an uncommon instrument for most keyboard
players to have on hand. The traditional keyboard allowed Blackwood to use standard
gestures that would have been natural to him as a concert pianist, but it also required
a translation of the non-twelve-tone tunings into the common twelve-tone layout. The
etudes, composed in equal temperaments using between thirteen and twenty-four notes
per octave, necessitate a keyboard mapping that either (a) denies gestural octave equiv-
alence by using a one-to-one correspondence of notes to keys or (b) leaves out certain
notes of a tuning to maintain a sense of commonality with standard twelve-tone orienta-
tions. The choice is between having an unfamiliar note layout (and therefore unfamiliar
gestures) or not having all the notes immediately available without changing the map-
ping. While the first of these options may seem to be a reasonable compromise since it
would allow performance of fully “chromatic” music in any of the equal temperaments
under consideration, the latter option, leaving out some notes to preserve gestural prac-
tices (and some basic intervallic relationships) has a rich tradition in the performance
practice of microtonal music. To examine this practice more closely, I’d like to consider
two pieces written for traditional keyboards tuned in nineteen-tone equal temperament.

Arranging nineteen tones with roughly even distribution within a single octave has
been practiced at least since Guillaume Costeley’s experiments in the sixteenth century
[4]. Figure 2 provides the most common notation scheme for this tuning, represented as
a circle of perfect fifths and as a nineteen-tone chromatic pitch-class circle. Note that the
perfect fifth in this tuning is roughly 695 cents and the chromatic step interval roughly 63
cents. These constructive intervals cause a number of notes to lie “between the cracks”
of pitch perception when attempting to perform in a given key or a traditional scale.
Additionally, as discussed by Julian Hook [5], among others, the notation of nineteen-
tone equal temperament does not follow the canonical enharmonic equivalence relation
of twelve-tone equal temperament. For instance, the note names “C-sharp” and “D-flat”
refer to different pitch classes in this system while still having functions similar to their
counterparts in twelve-tone tuning. Table 1 provides basic tuning information (given in
approximate cent values rounded to the nearest whole number) for a single octave of
nineteen-tone equal temperament.

A number of modern compositions make use of this notation scheme, adapting the
tuning for use on traditional keyboard layouts. Joel Mandelbaum’s 1961 collection of
Nine Preludes for Two Pianos in 19-Tone Equal Temperament [6] uses retuned twelve-
note keyboards that share the set of frequencies assigned to the black keys, the F-
sharp major pentatonic collection, but the pianos utilize different tunings for the white
keys. Figure 3 provides Mandelbaum’s mapping and notation scheme for two pianos
in nineteen-tone equal temperament, displaying the notes on the nineteen-tone pitch-
class circle and how they are oriented on the two keyboards. Notably, both pianos use
a maximally even distribution of twelve notes in the nineteen-tone space, ensuring the
closest possible approximation to twelve-tone equal temperament. This circumstance
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(a)                     (b)

Fig. 2. The circle of fifths and the chromatic pitch-class circle for nineteen-tone tuning

Table 1. Notation and tuning of nineteen-tone equal temperament

Pitch class Note name Cents from C (approximate)

0 C-natural 0

1 C-sharp/D-double-flat 63

2 C-double-sharp/D-flat 126

3 D-natural 189

4 D-sharp/E-double-flat 253

5 D-double-sharp/E-flat 316

6 E-natural 379

7 E-sharp/F-flat 442

8 F-natural 505

9 F-sharp/G-double-flat 568

10 F-double-sharp/G-flat 632

11 G-natural 695

12 G-sharp/A-double-flat 758

13 G-double-sharp/A-flat 821

14 A-natural 884

15 A-sharp/B-double-flat 947

16 A-double-sharp/B-flat 1011

17 B-natural 1074

18 B-sharp/C-flat 1137
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suits Mandelbaum’s compositional choices quite well, especially for his sixth prelude
which explores twelve-tone serialism in the nineteen-tone tuning. However, the unusual
note names for the white keys of Piano II may cause some unwanted performance issues
as a pianist would have to retrain certain associations when reading the music. The
gestural motions of the pianist using this mapping are likely to be similar to those of
traditional performance practice due to the maximally even distribution, but the process
of learning the piece with such an unfamiliar notation scheme could prove laborious (or
could at least cause an unnecessary difficulty).

Fig. 3. Mandelbaum’s mapping for two pianos in nineteen-tone equal temperament

The mapping used in Robert Hasegawa’s Due Corde [7], while quite similar, rec-
tifies the atypical note-name-to-key associations from Mandelbaum. Figure 4 provides
Hasegawa’s mapping for two pianos in nineteen-tone equal temperament, introduced to
him by Jon Wild. This piece not only uses a maximally even distribution of notes for
both pianos but also maintains traditional associations between notes and keys for both
pianos. The notes of Piano I are the same chosen byMandelbaum, but Piano II aligns the
flat note names with their traditionally corresponding keys. The pianos share the notes
of the F major pentatonic. This mapping allows for both easy readability and familiar
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gestures when offering the work to a performer, alleviating many of the performance
issues that arise when dealing with microtonal music.

Fig. 4. Hasegawa’s (and Wild’s) mapping for two pianos in nineteen-tone equal temperament

From this brief examination of tuning practices for nineteen-tone microtonal music,
it seems that a successful mapping requires both readability and gestural familiarity
to promote easy performance. Applying this concept to Blackwood’s etudes is slightly
more involved due to the number of different tunings, the complications of his notation,
and the sheer scope of the work, but these mappings by Mandelbaum and Hasegawa
highlight some of the steps that need to be taken in order to achieve this feat.

3 An Open-Source Project for Microtonal Music Software

The current development project takes a multifaceted approach to resolving these issues
of performing Blackwood’s works. The project will ultimately include three novel ele-
ments: (1) an open-source, cross-platform softsynth that allows for front-end remapping
of MIDI keyboard input, (2) a score that translates chosen mappings to traditional nota-
tion for ease of reading and reproduction, and (3) an online application for practice
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and demonstration during the rehearsal and development process. This section briefly
outlines the first two elements before detailing completed work on the final element.

The first of these elements, a software synthesizer capable of microtonal output and
MIDI keyboard remapping, will be the first point of contact for performers, so the main
concerns for its development are ease of use and functionality. The program itself was
proposed as a pedagogical design project for senior Computer Science majors at the
University of Central Florida. The program (see Fig. 5) requests a base frequency (in
Hz) and the cardinality of the tuning (the number of notes per octave) to generate a single
octave of frequencies, which can then bemapped to a keyboard representation.Mappings
and parameters are fully adjustable in a popup window. The program includes multiple
oscillators to generate instrument sounds that replicate Blackwood’s timbres (which are
also fully adjustable for fine tuning), allowing the program to bypass compatibility issues
with virtual studio technologies and digital audio workstations. The key mappings can
be customized through nodes and lines drawn between frequencies and keys and can also
be saved for future use. While these remapping, tuning, and generation abilities exist in
prior efforts, they are often split between programs. This open-source endeavor combines
and simplifies these functionalities for an easily replicable performance practice.

Fig. 5. User interface for a software synthesizer capable of microtonal output andMIDI keyboard
remapping

The second element of this project, a reworked score that provides traditional nota-
tion and instructions for performers, introduces some interesting difficulties that are
worth mentioning here. The purpose of this element is to offer an easy method for
trained pianists to recreate the musical output while avoiding the difficulties of learning
a completely new system ofmusical notation. SinceBlackwood’s general attitude toward
composition with microtonal tunings is to incorporate elements of tonal structure [8],
his score allows for preset mappings of the synthesizer program that utilize maximally
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even distributions of notes in most cases, much like Mandelbaum’s and Hasegawa’s
mappings, which would provide (at least nominally) a sense of gestural simplicity or
familiarity. Therefore, the only choices to be made are how to organize Blackwood’s
voices, only a single musical line each, into performable keyboard parts that contain
associated material fitting into a single mapping. There are moments, as in the second
theme of the etude “19 Notes,” where distributions are far more chromatic in nature, as
mentioned by Hook [5] in his examination of the piece. From the density of notes in the
score, the piece is conceivably performable by only four keyboard players, but moments
of dense chromaticism problematize the organization of players and potentially require
adjustments to this number.

The final element of this project is crucial to early stage demonstration and for the
purposes of executing and testing mapping possibilities and gestural ideas for score and
part production. The novel online application for this project replicates basic design
elements of the softsynth, including microtonal mapping (see Fig. 6), but allows anyone
with a web browser to test out microtonal keyboard mappings and their effect on gestural
performance. The browser application allows users to set a reference frequency, the
number of notes within one octave of the chosen tuning, and the basic wave type (sine,
square, triangle, or some other synthesized options).While the application removes some
levels of flexibility due to the web format, specifically the adjustable instrument sounds,
it provides plug-and-play ability with a MIDI keyboard through the Web MIDI API [9],
meaning that anyone who loads the page with a keyboard plugged into their computer
can control the output exactly as the standalone program would. Without a MIDI device,
users can still type on the computer keyboard or click on the screen to activate notes
and test sound combinations. The ultimate goal of this application is to test arrangement
options for Blackwood’s piece and to offer an introduction to interested performers and
organizers. Further information about the application, including all source code and
documentation, is available at the project website [10].

Fig. 6. Portion of the user interface for a web application capable of microtonal output and MIDI
keyboard remapping

4 Conclusion

This project is in the first year of a three-year development schedule, including time for
score/part production, fine tuning/debugging, and rehearsal/implementation. Progress
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thus far has produced a functional standalone program, a web application, and exten-
sive documentation for potential adaptations by future teams. Notably, many sections of
Blackwood’s score (including the opening of the etude in nineteen-tone equal temper-
ament) can be reproduced reliably by the web application in its current state, allowing
effective demonstrations of the project’s potential. Our goal is to produce a full perfor-
mance of the work that can be reproduced with minimal effort, using a single cross-
platform application with an associated score that requires little in terms of preparation
beyond rehearsal. The hope is to live up to Blackwood’s stated desire to replicate his
music in a live format.
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Abstract. This paper explores the classification of metric types using
different feature representations. Using weighted timepoint, DFT, and
autocorrelation, we train feedforward neural networks to distinguish
allemandes, courantes, sarabandes, and gavottes in the Yale-Classical
Archives Corpus. Autocorrelation and DFT models perform better than
a baseline, with DFT consistently better by a small amount.

Keywords: Discrete Fourier transform · Autocorrelation · Meter
classification · Metric types · Neural networks

Music theorists typically define meter as an abstract hierarchy, either as a hier-
archical accent pattern on an underlying pulse stream [9] or a containment
hierarchy of timespans [17]; see [5]. This is sufficient to represent musical time
signatures, but musical practice also recognizes metrical types with the same
time signatures and/or metrical hierarchies, for which these kinds of theories are
therefore too abstract. Traditional dance meters of eighteenth-century Western
Europe are a convenient example of this: Metric types which sometimes share
metrical hierarchies are nonetheless distinguishable in practice. In this paper
we explore the classification of allemandes, courantes, sarabandes, and gavottes
using machine learning methods and three feature representations, a baseline
weighted timepoint representation, autocorrelation, and discrete Fourier trans-
form (DFT). Autocorrelation may be understood as an interval-based represen-
tation, while DFT is a periodicity-based representation.

After a review of both techniques and a discussion on the corpus preparation,
we report on three feedforward neural networks models trained on data from the
Yale Classical Archives Corpus [16] using the three representations and evaluated
the models based on their ability to classify the four different baroque dance
types.

1 Procedure

1.1 DFT

The DFT transfers a signal from the time domain to the frequency domain. With
a discrete time-domain signal represented as a vector X = (x1, x2, . . . ) of length
N , the DFT is a complex-valued vector, F (X), defined by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fk(X) =
N−1∑

n=0

aje
−i2πkn/N =

N−1∑

j=0

xj(cos(2πkj/N) + i sin(2πkj/N)) (1)

Each place in the DFT vector, k, represents a periodic function of period
N/k. We are only interested in the size of each of these, so we take the norm of
each component, |Fk(X)| (eliminating the phase) and divide by |F0(X)| so that
all values range from 0 to 1. The DFT is an orthogonal transform; each of the
Fk(X) for 1 ≤ k ≤ N/2 is independent of the others.1 Therefore, it partitions the
total weight of the time-domain signal into all the possible frequencies dividing
the fixed period N . When k divides N of these will coincide with traditional
metrical periodicities. The DFT has been used for meter detection in audio
signals [7,11] and it has been used in music analysis to relate meter to form [4]
and to describe rhythmic canons in Steve Reich’s music [18,19].

1.2 Autocorrelation

Autocorrelation is a correlation of a signal with itself at every possible lag value.
It acts like a rhythmic interval vector, listing the weighted number of occurrences
of each rhythmic interval (temporal distance between onsets). More precisely the
autocorrelation is a vector R(X) defined by

Rk(X) =
1

σ2
X

N−1∑

i=0

(xi − x̄)(xi+k − x̄) (2)

A number of studies demonstrate the use of autocorrelation to identify meter in
symbolic (score or MIDI) data [3,12,14,15] and audio [6].

Autocorrelation is closely related to the DFT. Specifically, it can be under-
stood as squaring the signal in the frequency domain by appealing to the convo-
lution theorem; see [2]. To make this precise, accounting for the normalization
in Eq. 2, define X ′ as the zero-mean version of X, i.e. X ′ = X − x̄. This affects
only the zeroth DFT coefficient. Then

R(X) =
1

σ2
X N

F (|F (X ′)|2) (3)

The function (1/N)F (X) is the inverse Fourier transform, so this means that
after removing the phase information autocorrelation returns the data to the
time domain. The autocorrelation is therefore a vector of time intervals, whereas
the DFT is a vector of frequencies, but otherwise contain essentially the same
information.

1 For k > N/2, Fk(X) and FN−k(X) have equal magnitude and opposite phase for a
real-valued signal, X, by the aliasing principle.
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1.3 Corpus and Data Preparation

The Yale Classical Archives Corpus (YCAC) is comprised of “salami slices” of
MIDI performance data [16]. A slice occurs everywhere that a new note is intro-
duced, or a note ceases to sound. We isolated pieces in the YCAC by Bach with
“allemandes,” “courante,” “sarabande,” or “gavotte” in the title. This proce-
dure found 76 pieces, consisting of 45,344 pitch slices altogether (Table 1). In an
attempt to emphasize newly introduced notes [13], notes that were contained
in the immediately prior slice were removed. Sarabandes and courantes are in
triple meters, usually 3/4, and allemandes and gavottes are in duple meter, usu-
ally 4/4 and 2/2. Each dance style also has a corresponding rhythmic character:
sarabandes accent beat 2, gavottes have long pick ups (starting half-way through
a measure), allemandes have quick, sixteenth note pick-ups, and courantes fre-
quently contain metric ambiguities.

Table 1. Corpus

Allemandes Sarabande Gavotte Courante Total

Piece count 24 22 8 22 76

Total slices 16,833 9,249 4,014 15,068 45,344

Ave. slices per piece 701 429 502 685 2,317

Length in ♩ 4,228 2,924 1,366 4,981 13,468

1.4 Weighting, Windowing, and Training

Perceptual theories of meter finding (e.g. [9,10]) often claim that a variety of
musical features influence meter induction by imparting “phenomenal accent”
to time points. We devised a relatively simple weighting scheme on slices based
on three factors: the number of notes, duration, and bass notes. Recall that
notes are removed if they occur in a preceding slice, so the first factor counts
the number of new pitches introduced at a given time point. The duration factor
represents the assumption that slices of longer duration will tend to have more
metrical weight (“agogic accent”). We include a weighting parameter, δ, which
we multiply by the duration of each slice in quarter notes. The register factor
reflects the assumption that new bass notes will tend to be metrically weighted.
We define a bass note as the lowest note within γ quarter notes before or after
the given onset time. We add a constant, τ , for any slice where a bass note
occurs. There are thus has three adjustable parameters, δ, γ, and τ . Figure 1
shows a sample score fragment with calculated weights for selected slices with
(δ, γ, τ) set to (1, 2, 3). During the training process we tuned the parameters to
assess their impact.

We transformed the extracted chord slices to time-series data, encoding each
score as an array dividing the full duration of the piece into 32nd notes. We placed
the rhythmic weight for each slice in the time-series array at its corresponding
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Fig. 1. Sample score with selected slices, showing the data structure and time-point
weighting procedure with (δ, γ, τ) = (1, 2, 3).

onset position, and put zeros elsewhere. Table 1 shows the number of quarter
notes in each of the four metric types. To prevent wraparound for the DFT,
windows were zero-padded with 96 additional 0s at the end of each vector.

For each metric type, we extracted 1,000 random windows, each 12 quarter
notes in length. Our corpus thus consisted of 4,000 time-series windows and
4,000 corresponding labels identifying the correct metric type. We separated
950 samples of each type for training data, leaving 200 windows, 50 windows of
each metric type, for evaluating the models. We fed the three inputs – baseline
weights, autocorrelations, and DFTs – into the same neural network architecture:
an input layer of 192, and 2 hidden layers of 30 and 10 neurons respectively each
using relu activation [1]. We also used the Adam optimization algorithm [8]. The
models were trained with 10 epochs on the training corpus (of 3,800 windows),
repeated for each different tuning of weighting parameters (δ, γ, τ).

2 Results

Table 2 reports the evaluation scores as categorical accuracy, the percent of cor-
rect predictions based on the input. We found, as in [12], that adjusting the
weighting parameters (δ, γ, τ) only alters predictions modestly and with no obvi-
ous trends. Even eliminating the duration weightings (δ) and bass note weight-
ings (τ) entirely does not reduce performance, except in one case (eliminating
both features in the autocorrelation condition). Therefore, in the DFT condition,
where identification was the best, it appears to be based entirely on the basic
rhythm and number of new pitches.

Excluding trials with 0-weighted features, the autocorrelation models ranged
from 66%–77% with an average of 72% accuracy, and the DFT models ranged
from 70%–80% with an average of 75% accuracy. Both models performed consis-
tently around the same level with the DFT model modestly better. The control
averaged 46% accuracy. The confusion matrix in Table 3 shows that gavottes were
better classified than all other types, probably because there were fewer gavottes
in the data set, so the classifier was more likely to be trained on excerpts from
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Table 2. Categorical accuracy predictions

δ 1 0 1 2 3 4 5 6 0 1 2 3 4 5 6

τ 0 1 2 3 4 5 6 1 0 1 2 3 4 5 6

γ = 2

Control .51 .47 .47 .47 .41 .40 .40 .49 .47 .48 .48 .51 .49 .48 .47 .47 .40 .40 .47 .44 .46

DFT .80 .78 .80 .72 .68 .70 .73 .77 .78 .76 .79 .74 .76 .77 .79 .78 .75 .74 .75 .69 .73

Autocorr. .75 .73 .71 .71 .70 .74 .75 .73 .73 .71 .73 .72 .72 .69 .74 .73 .66 .73 .69 .69 .70

γ = 3

Control – .49 .48 .44 .50 .47 .44 .50 .49 .56 .45 .50 .49 .44 – .49 .52 .44 .47 .43 .40

DFT – .79 .75 .75 .76 .76 .74 .80 .79 .79 .75 .75 .80 .81 – .79 .75 .74 .75 .74 .71

Autocorr – .72 .73 .76 .76 .77 .76 .73 .72 .77 .73 .70 .71 .74 – .72 .73 .72 .75 .74 .72

the same piece used in the test, and although these would not have been exactly
the same window, they may have had similar traits.

Table 3. Confusion matrix for DFT/autocorrelation, all with (δ, γ, τ) = (6, 3, 1).

Allemande Courante Gavotte Sarabande Accuracy (n = 50)

Allemande 38/34 6/7 0/2 6/7 76%/68%

Courante 4/9 32/35 3/2 11/4 64%/70%

Gavotte 0/0 0/5 50/44 0/1 100%/92%

Sarabande 2/5 7/7 0/4 41/34 82%/68%

Fig. 2. Average DFT values for each metric type at (δ, γ, τ) = (6, 3, 1).

Figure 2 shows the average DFTs for (δ, γ, τ) = (6, 3, 1) from which we can
infer some of the differences that the classifier may have relied on to distinguish
metric types.2 The main differences are that allemandes are generally flat down
to the sixteenth-note level, meaning that higher metrical levels were not very
2 We include only even values here, because the zero padding produces distracting

artifacts in the odd coefficients.
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salient in these pieces. Higher metrical levels were better detected in sarabandes
and gavottes, but differences relating to distinctions between duple and triple
meter (in coefficients 6, 8, and 12) are weak at best. Therefore, the classifier is
likely relying more on the salience of different metrical levels rather than differ-
ences between the duple and triple metrical hierarchies that would be emphasized
in traditional metric theory.
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Abstract. This article presents a new way of building a filtered sim-
plicial complex from a music piece and applying persistent homology in
the context of musical analysis. Our approach consists of considering any
musical score as the set of its musical bars, which we see as subsets of
R

3. With this definition, we may consider the Hausdorff distance between
two musical bars, which gives us a point cloud from any score, and that
allows us to build the associated Vietoris-Rips complex. We will then use
barcodes to visualize persistent homology and give an illustration of our
construction on a famous movie music piece.

Keywords: Musical bars · Filtered complex · Persistent homology ·
Barcodes · Musical analysis

1 Introduction

1.1 Persistent Homology

A filtration of a simplicial complex K is a nested sequence of sub-complexes
∅ = K−1 ⊂ K0 ⊂ . . . ⊂ KN = K of K: we call K a filtered complex. A simple
filtration is presented for instance in Fig. 1. Starting from a filtered complex, we
can compute its simplicial homology (over F2) at each time of the filtration,
and persistent homology gives information about inclusions between the various
complexes, as explained in [7]. The associated homology groups H∗(Ks) are
characterized by their dimensions, which are called the Betti numbers. We can
visualize persistent homology on a figure called a barcode, where the horizontal
axis represents progress in the filtration and a bar that starts at time s and ends
at time t corresponds to a generator of H∗(Ks) that is still one for H∗(Kt−1)
but not anymore at time t (see [4]). Barcodes allow us to immediately identify
classes that persist during the filtration. For instance, barcodes associated to
the filtered complex in Fig. 1 are presented in Fig. 2, in degrees 0 and 1.
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4 1

2

3

4 1

2

3

4 1

2

3

4 1
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3

4 1
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3
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Fig. 1. A filtered complex with 6 times of filtration.
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Fig. 2. Barcodes for filtration of Fig. 1 in degree 0 (left) and degree 1 (right).

Persistent homology is commonly used in a recent field known as Topologi-
cal Data Analysis (TDA), where the main idea is to use topological structures
to study and sometimes “recognize” some objects. The general process is sum-
marized in Fig. 3, where in our context the starting object is a musical score.

Starting object Point cloud Filtered complex Barcodes Shape recognition

Fig. 3. Topological Data Analysis process.

1.2 Context and Problematic

TDA via persistent homology was already used in the context of musical analysis
and especially in automatic classification of musical style, as we can see in [2,3,5]
or [1]. The main and common issue is always the following problematic: how
should we associate a filtered complex with a given musical piece?

The papers we cited above have different approaches to try to find a consis-
tent answer to this question, using pitch-class sets complexes, time series or the
Tonnetz. In our work, we chose to consider that a music piece can be represented
by a set of distinct musical bars, which can be thought of as subsets of R3, as
defined in Sect. 2.2. Our starting object is a musical score, from which we will
extract a point cloud of R3 by considering its musical bars and the associated
Hausdorff distance, as presented in Sect. 2.3. To build the filtration, we will use
the Vietoris-Rips method, which is described in Sect. 2.1. Once we obtain a fil-
tered complex, we can compute persistent homology, i.e. barcodes. In Sect. 3,
we will illustrate our approach by giving an analysis of the French movie musi-
cal piece: Comptine d’un autre été: l’Après-midi, by composer Yann Tiersen.
In order to allow musical interpretation, we will be interested in dimension 0
and 1 initially, and we will show that these barcodes, especially in degree 0, can
capture structural information about the piece.

2 Persistent Homology on Musical Bars

2.1 Filtration: The Vietoris-Rips Method

The basic object of a Vietoris-Rips complex is a point cloud, that is, a set of
data points with a metric over it.
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Definition 1. Let X = {x1, . . . , xn} be a point cloud and ε ≥ 0 be a parameter.
The Vietoris-Rips complex Rε(X) is the simplicial complex with X as its set
of vertices and σ = {x1, . . . , xk} is a k-simplex if and only if its vertices are
pairwise close, that is, when d(xi, xj) ≤ ε for all pairs xi, xj of σ.

Figure 4 shows the classical construction of a Vietoris-Rips complex starting
from a given point cloud X and a parameter ε. For two given parameters ε and ε′

such as ε < ε′, there is the obvious inclusion Rε(X) ↪→ Rε′(X) and so by simply
increasing the parameter ε, we will get a natural sequence of nested simplicial
complexes, that is, a filtered complex. For instance, R0(X) is the 0-dimensional
simplicial complex with n connected components while Rε(X) will have only one
connected component for ε large enough.

• ••

• •
• • •

• • ε•

• •
• • •

• ••

• •
• • •

Fig. 4. The Vietoris-Rips method.

Remark 1. For all ε ≥ 0, we have a simplicial complex, but in practice we will
discretize time by choosing a finite number of values for ε. In this paper, we
choose to work with all values of the form ε = tρ, where t ∈ {0, 1, . . . , 100} and
ρ is a fixed constant, so all our filtrations and also barcodes will be at the same
scale, as we will see in Sect. 2.3.

2.2 Musical Bars of a Score

The main idea of our construction is to consider that a musical score S is simply
a set of its musical bars: S = {B1,B1, . . . ,Bn}, where the indexing corresponds
to the musical flow. In this context, our definition of a bar is the following one:

Definition 2. A musical bar is a finite subset B of R3 where an element of B
is called a note characterized by three coordinates:

– the position, which refers to its place in the bar
– the duration, expressed in beats
– the pitch, which is the value of the note in term of its fundamental frequency

Example 1. Here is an example of a musical bar coding. The first two coordinates
are determined by using the meter and the third is coded in midicent, which is
related to the position of the note in a piano. Notice that if there are some rests
in the bar, we can ignore them because the information is already encoded in
the position of the next note.

B = {(0, 1/2, 71), (1, 2, 69), (3, 1, 72)}
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2.3 The Score as a Point Cloud

If X and Y are two non-empty subsets of a metric space (M,d), it is possible to
define a metric dH called the Hausdorff distance between X and Y by:

dH(X,Y ) = max
{

sup
x∈X

d(x, Y ) ; sup
y∈Y

d(X, y)
}

with d(x, Y ) = inf
y∈Y

d(x, y). An illustration of this metric is given in Fig. 5.

X

Ysup
x∈X

d(x, Y )

•

sup
y∈Y

d(X, y)

•

Fig. 5. Calculation of the Hausdorff distance between two metric spaces X (the ellipse)
and Y (the square).

In our case, each musical bar of a score S = {B1, . . . ,Bn} is a subset of R3

so we may naturally consider the Hausdorff distance between Bi and Bj for any
i, j.

Definition 3. Let Bi and Bj be two musical bars. The Hausdorff distance dH

between Bi and Bj is defined by

dH(Bi,Bj) = max
{

max
ni∈Bi

min
nj∈Bj

d1(ni, nj) ; max
nj∈Bj

min
ni∈Bi

d1(ni, nj)
}

where d1(x, y) = ‖x − y‖1 =
∑
i

|xi − yj |.

Following up on Remark 1, we will consider the maximal distance dmax of
all distances for a given score S = {B1, . . . ,Bn} and define ρ = dmax

100 as the
precision we want to work with. We then consider for each t ∈ {0, 1, . . . , 100}
the associated Vietoris-Rips complex Rtρ(S). Furthermore, instead of speaking
about “time t of the filtration”, we will now say that we look at the filtration with
an error margin of t%. Indeed, we think of the presence of an edge between
two musical bars as an indication that they are “similar”, and the parameter t
controls the way in which we choose to make this rigorous; for a small value of
t, there are few edges which means that bars are finely distinguished, while for
t large enough we allow coarser identifications.

We now have a point cloud from any musical score, so we have defined a new
way to associate a filtered complex with a score by considering the Vietoris-Rips
complex of Sect. 2.1. Thus, we are now able to compute persistent homology
(barcodes) and the next section shows an example of a musical analysis using
this approach. Recall the filtration and barcodes from Figs. 1 and 2 respectively;
they correspond to the method we just defined applied to the little score with 4
distinct bars of Fig. 6, which was built arbitrarily to test it.
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Fig. 6. The score from which we build filtration and barcodes of Figs. 1 and 2.

3 Application: Analysis of a Musical Piece

The idea is now to test our approach on a music piece to see in which way
it is useful in the context of musical analysis. As we have already mentioned
in the introduction, we are interested in the barcodes in degree 0 and 1. For
computing homologies, Betti numbers and barcodes, we used our own algorithms
and programs written with the help of the SageMath system (based on Python).

The musical piece we choose to analyse is taken from the soundtrack of
the French movie Le Fabuleux Destin d’Amélie Poulain, directed by Jean-Pierre
Jeunet (2001). The music is the famous Comptine d’un autre été: l’Après-midi
for piano, composed and played by the minimalist composer Yann Tiersen (2001).
The version we took for our analysis is extracted from [6].

The score has 53 muscial bars, some of which are repeated so it only contains
39 distinct bars, and it is split in two parts: actually, the music has 3 different
themes in the first part that are played again one octave higher in the second one.
These 3 themes and their respective structures are presented in Fig. 7. Notice
that there are some repetitions of these themes in the original score, but here
we suppress them in order to work with distinct musical bars only. Moreover,
all the melody is constructed over 4 musical bars that are repeated and which
constitute the musical accompaniment from Fig. 8.

Fig. 7. Part of each theme of Comptine d’un autre été: l’Après-midi. The first one goes
from B5 to B8 and is repeated one octave higher from B22 to B25. The second goes from
B9 to B12, then is repeated with extra notes from B13 to B16 and the whole 8 bars are
played one octave higher from B26 to B33. The third one goes from B17 to B21 and is
repeated one octave higher from B34 to B38, with a slight change in B38 to bring us to
the end of the piece.
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Fig. 8. The musical accompaniment of Comptine d’un autre été: l’Après-midi. These
4 bars consists of 4 arpeggiated chords Em − G − B − D and are played once at the
beginning of the score without any melody, from B1 to B4.

Fig. 9. Barcodes for Comptine d’un autre été: L’Après-midi in degree 0 (left) and
degree 1 (right).

Let us look at the barcode in degree 0 from Fig. 9: there are several levels
of analysis depending of the error margin we choose to take, and the main idea
of persistent homology is to focus on the largest bars (those which persist),
while the smallest ones can be considered as noise. In our case, there are 2
bars that stand out when we take an error margin larger than 21%, that means
that the corresponding complex has only 2 connected components. One of them
corresponds to the last musical bar B39 of the score, which only consists of the
final chord Em played with whole notes, and the other is a large dimensional
complex where all the musical bars are connected together. This first analysis
shows that the barcode in degree 0 separates the end from the rest of the piece,
which is a start. For t% with t ≤ 8, there are only small bars so we ignore them as
noise. Between 8% and 21%, there are 5, 6 or 7 classes that seem to last and more
precisely, we found that with an error margin of 14%, the associated complex
in the filtration looks like in Fig. 10, which is really remarkable: actually, there
are 6 connected components and if we look at the vertices, we see that each one
corresponds to a theme of the song, except for B8 and B28 which have a slight
different structure than the rest of the first theme.

Fig. 10. The associated complex of Comptine d’un autre été: l’Après-midi with an
error margin of 14%: each component characterizes a theme of the piece.
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We may then conclude that, with a well-chosen error margin, the barcode in
degree 0 captures the structure of this piece by separating its different themes
in the associated complex.

On the other hand, barcode in degree 1 displays 3 different one-dimensional
cycles that are presented in Fig. 11. Note that some edges of these cycles linked
musical bars of one given theme to the same one octave higher, but not system-
atically and for now we are not able to interpret these cycles musically.

11

13

33

29

5

9

26

35

5

9

29

37

Fig. 11. One-dimensional cycles from Comptine d’un autre été: L’Après-midi that
appear with an error margin of 8% (left) and 26% (middle and right).

4 Conclusion and Prospect

This paper has presented a new method to provide a filtered complex associated
with a musical piece. Moreover, our construction reveals interesting results on
the piece we chose to study. Actually, it shows that there is a way to capture the
global structure of the piece by using barcodes in degree 0. In contrast, barcodes
in degree 1 did not display an obvious musical interpretation, and we plan to
focus on this dimension in our future work. In fact, one-dimensional cycles could
be related to repeating patterns or musical loops in the score, and we are working
on highlighting this interpretation from our construction. We also plan to apply
our approach to a more general and diverse corpus of music data to see in which
way it can capture the global structure of a music piece.
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Abstract. We develop a geometric analog of musical harmony from the
group law of the affine parabola. First, we associate musical notes and
intervals with points of a parabola. Immediately, we can define the usual
affine and linear transformations for musical chords in module theory.
Subsequently, we show that the actions of the groups T/I in PK-nets,
PLR, UTTs, and JQZ behave identically to the circle space. Then,
we propose to recreate the Planet-4D model, the study of musical dis-
tance and the DFT for subsets of points on the parabola. We believe
that we have an innovative and motivational perspective to approach
the parabola in a musical meaning.

Keywords: Parabola · Group law · Pitch-class set theory · Affine
transformations · Neo-Riemannian theory · Music Fourier space

1 Introduction

Due to the cyclical nature of musical objects, the circle is a conventional locus
to represent them. However, it is possible to define for a parabola P the finite
ring geometric structure P(Z/nZ) that behaves similarly to the classical circular
pitch class space. We will see that the harmony of the circle is a kind of base
layer to the harmony of the parabola. Thus, inspired by the isomorphic structure
P(Z/nZ) ∼= (Z/nZ,+) proved in [15], we will bijectively associate each point of
the affine parabola y = x2 with a musical note or interval of the chromatic scale.

2 The Group Law on the Parabola

Let Λ be a commutative ring with unity. The group law on the parabola P(Λ) =
{y = x2 : x, y ∈ Λ} is defined by taking a fixed point as a neutral element (the
vertex of the parabola) which we denote by N = (xN , x2

N ) = (0, 0). Now, let
P = (xP , x2

P ) and Q = (xQ, x2
Q) be any two points on the parabola P. The sum

P ⊕ Q = R = (xR, x2
R) is the point of intersection with the parabola of the

line parallel to PQ passing through vertex N . Algebraically, the addition of the
group of points is given by

P ⊕ Q = (xP , x2
P ) + (xQ, x2

Q) = (xP + xQ, (xP + xQ)2). (1)
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https://doi.org/10.1007/978-3-031-07015-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07015-0_30&domain=pdf
http://orcid.org/0000-0002-9672-9087
https://doi.org/10.1007/978-3-031-07015-0_30


Formal Structures of a Harmony in the Parabola 357

The proof of the group axioms in Definition (1) can be found in Lemmermeyer
[15, p. 42] (see Shirali [18, pp. 31−32] for a general definition whose neutral
element is any point on P).

3 Harmonic Polygons over a Parabola

For abstract musical purposes, we are interested in associating points to
notes and intervals of the chromatic scale. Thus, we have P(Z12) =
{(0, 0), (1, 1), (2, 4), (3, 9), (4, 4), (5, 1), (6, 0), (7, 1), (8, 4), (9, 9), (10, 4), (11, 1)}.

Fig. 1. Neo-Riemannian function PR, transposition by an interval of seven semitones
+(7, 1), transform C-minor triad (blue polygon) to G-minor triad (red polygon). (Color
figure online)

In Fig. 1 we describe harmonic progressions by drawing polygons on the
parabola. From a geometric and metaphorical perspective, the abscissa is the
base layer of the harmony in the circle Z12, while the ordinate is the har-
monic layer which belongs to the parabola. We could express this idea as
(x, y) = (circle,parabola). Therefore, the y-coordinate can be understood as
a harmony added or attached to the harmony of the circle that corresponds
to the x-coordinate. For example, the C-minor triad in the circle harmony
x = {C,E�,G} has the parabolic layer y = {C,A,C�}. With this interpreta-
tion we also have two sets of intervals: between the notes of the ordinates and,
between the layers of the circle and the parabola. Furthermore, this point of
view allows the algoritmic composition if we consider affine transformations, e.g.
y = 2x2 + 1, where the C-minor triad in the parabola varies to y = {C�,G,D�}.

4 The Ring and Field Law on the Parabola

For the rest of the analogous definitions we need a richer structure than a group.
Thus, to the group P(Zn) we can also equip the structure of a finite ring with
unity by the multiplication operation

P ∗ Q = (xP , x2
P ) ∗ (xQ, x2

Q) = (xP · xQ, x2
P · x2

Q). (2)
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Proposition 4.1. The set of points (P(Zn),⊕, ∗) with addition and multiplica-
tion defined by (1) and (2) forms a commutative ring with unity point (1, 1).

The proof of Proposition 4.1 is straightforward if the projection on the x-
axis is established also for the multiplication. Definition (2) follows from the
geometric operation [15, p. 56] which equip a field for the parabola over Q,
and we are considering the ring OP(Q) of such rational field. Take the fixed
point M = (1, 1). Let us draw a line between two points P and Q and see
the intersection point R with the y-axis. Then, let us choose the intersection
S = P ∗Q of the line through R and M over P(Q). This field structure can extend
the possibility of also modeling continuous spaces from a physical perspective of
music if we take P(R).

5 Parabola over a Module and Affine Transformations

Since P(Zn) forms a commutative ring by Definitions (1) and (2), we can observe
it as a module over itself P(Zn)P(Zn) or a module with scalar action [n] ∈ Zn

given by · : Λ × P(Λ) −→ P(Λ), ([n], P ) �−→ [n] · P = P ⊕ P ⊕ P ⊕ · · · ⊕ P
︸ ︷︷ ︸

[n]-times

.

Proposition 5.1. The points of the parabola over Zn with addition and scalar
action form a Zn-module P(Zn).

The proof of Proposition 5.1 is straightforward. With this structure on
the parabola P(Z12), we can transform D-major triad into D-aug triad under
a morphism that takes ((2, 4), (6, 0), (9, 9)) �→ ((2, 4), (6, 0), (10, 4)), i.e., ϕ :
(P,Q,R) �→ (P,Q, [2]Q − P ). In fact, we can rewrite all affine homomorphisms
common in music theory. For instance, following [3], symmetries of consonance
and dissonance in counterpoint, e.g. e(2,4)[5]((3, 9)) = (5, 1). If we consider the
ring structure, we can represent counterpoint intervals as linear polynomials in
P(Z12)[X], for example a minor third (7, 1) ⊕ (3, 9)X.

6 Group Actions over Parabolic Music

The musical groups T/I [10], PLR [6,7,9] and UTTs [13] can act in the usual way
on sets of points of the musical parabola P(Z12). Consider first the elements in
the T/I group that reveal underlying symmetries between notes of chords in PK-
nets [17]. Transposition of a note Q of the parabola is defined as TP (Q) = P ⊕Q,
while inversions is given by IP (Q) = −Q⊕P . Thus, rewriting the musical PK-net
analysis in [17, p. 36], we have
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In the context of Neo-Riemannian theory, the composition PR acts on the
E-minor chord as a {(4, 4), (7, 1), (11, 1)} �→ {(7, 1), (10, 4), (2, 4)}. In fact, it can
be generalized on a simplicial Tonnetz model [5,22] as it is observed in Fig. 1.
Suppose we have an unfolded space K[2, 4, 6], then

PR · {(4, 4), (6, 0), (10, 4)} �→ {(6, 0), (8, 4), (0, 0)}.

Similarly, we can reinterpret the uniform triadic transformation of E-major
triad to the A-minor triad:

((4, 4),+)
U=(−,(5,1),(10,4))−−−−−−−−−−−−→ ((9, 4),−).

Another group action, in this case non-contextual, that we can use for P(Z12)
is JQZ [14] redefining J = I(7,1), Q = I(11,1) and, Z = I(4,4). Then,

ZJZ · {(5, 1), (8, 4), (0, 0)} �→ {(1, 1), (5, 1), (8, 4)}.

On the other hand, it would be interesting to explore algebraic or formal rela-
tionships in a three-dimensional Tonnetz [12] or in a Cube Dance [8].

7 Parabolic Planet-8D and Metric

The points of a parabola behave similarly to their numerical analogues as we
can observe in the conmutative diagrams below. For a field K = Q, R, or C

and a ring R = Z, Zn, following [15, p. 42], the morphisms φx and ψx can be
understood as an injection into y = x2, or as a geometrical projection on the
x-axis. This properties would allow us to define a metric that emulates voice
leading definitions [19] or the related problems for a multi-set metric [11].

P(K) P(R) (x, x2) (x mod n, x2 mod n)

K R (x) (x mod n)

φ−1
x ψ−1

xφx ψx
.

Now let us define the following isomorphism through the decomposition into
direct sums of groups: P(Z12) ∼= Z12

∼= Z3

⊕

Z4
∼= P(Z3)

⊕ P(Z4).



360 E. A. Delgado Vega

One of the models for visualization of harmonic relationships between pitch
classes is Planet-4D [4]. We see the formal possibility of reconstructing the model
in a space of four complex dimensions C

2 ×C
2. We define the same isomorphism

of the direct product of cyclic groups and roots of unity but modified over the
points of the parabola under multiplication. Thus, we have the isomorphisms

P(Z3) ∼= {(1, 1), (e
2πi
3 , e

−2πi
3 ), (e

−2πi
3 , e

2πi
3 )}.

P(Z4) ∼= {(1, 1), (i,−1), (−1, 1), (−i,−1)}.

Consider the F note associated with the element (2, 1) ∈ Z3×Z4. Then, on the
parabolic planet we have (2, 1) ∼= (2, 1, 1, 1) ∼= (e

−2πi
3 , e

2πi
3 , i,−1). The bijection

of an element of the direct product P(Z3) × P(Z4) to return to the parabola
P(Z12) is defined in imitation of [2] by sending the points (P,Q) �→ 4P − 3Q.

8 The Discrete Fourier Transform in a Parabolic World

The importance of Discrete Fourier Transform for the mathematical music the-
ory is due to the fact that it helps to reveal hidden periodic qualities behind
subsets of rhythms and scales [1]; even analyze harmony from a geometric per-
spective [20,21]. The DFT is built over a space of distributions C

Zn . The ana-
log for points Pi of the parabola is defined by the function P(Z12) → C

2n,
f �→ (

f(P0), f(P1), . . . , f(Pn−1)
)

. Thus, we define the DFT of a subset of points
P ⊂ P (Zn) as the transformation of its characteristic function

FP = ̂fk =
∑

xP ,x2
P ∈P

(

e
−2πikxP

n , e
−2πikx2

P
n

)

. (3)

Note that in the Definition (3) the sum is parabolic. For example, let P =
{C,E�,G�,B��}, the fourth Fourier coefficient of P produces ̂f4 = (1, 1)+(1, 1)+
(1, 1) + (1, 1) = (4, 4). It is immediate to rewrite the convolution product for a
set of points of a parabola, which mathematically describes musical operations
such as multiplication of Boulez chords, intervallic content or rhythmic canons.
Let f, g be characteristic functions, i.e., f = (P0, P1, . . . , Pn−1), of subsets P and
Q, respectively. The circular convolution is given by

f ∗ g(k) =
nP Q−1
∑

nP Q=0

f(k − nPQ)g(nPQ), (4)

for all k ∈ Z12. Note that nPQ is the indexed position of the points in f, g. It
follows analogously from (3) and (4) the identity that relates convolution and
DFT for each k, f̂ ∗ g(k) = ̂f(k)ĝ(k).
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9 Conclusions

We have seen that musical harmony can be represented as polygons in a parabola.
Although the geometry of the parabola, seen as a layer on top of the harmony of
the circle, operates analogously in analytic approaches, it is possible to extend
this perspective to layers defined by other equations maintaining a base formal
structure, even with more dimensions, e.g. two ellipses whose integral points are
isomorphic to the direct product Z3 × Z4. In that sense, the arithmetic and geo-
metric aspects of the affine transformations on P(Zn) and other curves can serve
as a locus to generate musical ideas embedded in a mathematical environment.
With regard to future research, the development of new geometric approaches to
music theory can inspire technological and computational advances [16], which
might also lead to new software developments for teaching and composition.
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Abstract. This paper presents a web application for visualizing the
tonality of a piece of music—the organization of its chords and scales—at
a high level of abstraction and with coordinated playback. The applica-
tion applies the discrete Fourier transform to the pitch-class domain of
a user-specified segmentation of a MIDI file and visualizes the Fourier
coefficients’ trajectories. Since the coefficients indicate different musi-
cal properties, such as triadicity and diatonicity, the application isolates
aspects of a piece’s tonality and shows their development in time. The
aim of the application is to bridge a gap between mathematical music
theory, musicology, and the general public by making the discrete Fourier
transform as applied to the pitch-class domain accessible without requir-
ing advanced mathematical knowledge or programming skills up front.

Keywords: Web application · Visualization · Discrete Fourier
transform · Tonality · MIDI

1 Introduction

Music analysis requires a high degree of expertise to derive insights about latent
tonal structures in a composition. Mathematical music theory provides analytical
tools by generalizing from concrete pieces to more abstract concepts and defini-
tions. For example, many interesting musical entities can be described as subsets
of cyclic groups, such as chords, scales, and repeating rhythms. In recent years
it became increasingly popular among music theorists to study such entities by
applying the discrete Fourier transform (DFT) to the pitch domain [3,10,12], in
contrast to the time domain to which the DFT is most commonly applied (e.g.,
in signal processing and music information retrieval). For a general description of
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this method’s mathematical details and music-theoretical interpretations see for
instance [2]. This usage of the DFT essentially maps subsets of cyclic groups to
six complex numbers (i.e., the Fourier coefficients 1 to 6) and many interesting
properties, such as evenness [1,4], balancedness [7], and diatonicity [13], can be
identified and studied with the Fourier coefficients.

Since the DFT can be applied to music in symbolic formats (e.g., MIDI)
without prior interpretation of the musical material by a music theorist, it is
well suited for distant-reading approaches in corpus studies, such as the com-
parison of different pieces’ tonal organization at a high level of abstraction [13].
However, this requires advanced mathematical and computational skills, which
often hinders music historians, students, and enthusiasts from engaging with it.
Harnessing the power of such complex methods thus remains restricted to only
a small group of researchers.

This paper presents the open-source web application midiVERTO which
addresses this problem and aims to bridge the intradisciplinary methodological
divide between mathematical music theory, musicology, and the general public.
The application enables its users to visualize the tonality of a piece of music
viewed through the lens of the DFT without the requirement to understand its
formal details. The app thus contributes to an exchange of knowledge and tech-
niques for music analysis between experts and a broader audience. In this spirit,
we continue the work by Thomas Noll [8] and Jennifer Harding [5] to make DFT
analyses of musical entities more easily accessible and reproducible for a broader
readership, especially students.

2 midiVERTO: Features and Technical Details

A screenshot of the application is shown in Fig. 1.1. Apart from a welcome page
(“Home”) and a step-by-step tutorial (“Docs”), the application features an inter-
face consisting of four parts (“Analysis”): an input-output menu on the left, two
visualization panels in the center, and a control menu at the bottom.

To visualize the tonal content of a piece encoded in MIDI format, a user
can upload the MIDI file and select a duration value that is used to segment
the music. For instance, a value of a quarter note leads to a division into many
quarter-note segments. Durations can be specified either in note values or in
seconds. The application then creates two interlinked visualizations. Note that
the user-specified segmentation is only relevant for the visualization in the lower
panel. For the one in the upper panel, a fixed segmentation is used to avoid
unnecessarily long computation times.

The first visualization shows six wavescapes [11]. These are triangular plots
closely related to keyscapes [9] and pitch scapes [6]. The k-th wavescape shows
the values of the k-th Fourier coefficient in time and at different time scales.
Magnitudes of the Fourier coefficients are indicated by opacity and their phases
are shown according to a circular color mapping described below, together with
the second visualization. The bottom of a wavescape corresponds to the respec-
tive coefficient’s values for each segment. All other horizontal slices take groups
1 The app is accessible at https://dcmlab.github.io/midiVERTO.

https://dcmlab.github.io/midiVERTO
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Fig. 1. Screenshot of the web application midiVERTO with three components: input-
output on the left, visualizations in the center, and control options at the bottom.

of segments into account. The higher the slice, the more segments are consid-
ered. The high levels of the k-th wavescape thus show the values of the k-th
Fourier coefficient on large time scales, and the tip of each triangle represents
the value of the respective Fourier coefficient for the pitch-class content of the
entire piece. The coefficients have different interpretations, for instance triadicity
and diatonicity for the third and fifth coefficients, respectively [13].

In contrast to the wavescape visualization, which is static, the second visual-
ization is dynamic and coordinated with the playback of the MIDI file. For each
of the six Fourier coefficients, a unit disk in the complex plane is shown and each
angle is assigned a color in a circular color mapping. We call these disks Fourier
coefficient spaces. Each disk shows the positions of prototypical pitch-class sets
to provide orientation in the space. Those are sets that have high magnitudes in
the respective coefficient, such as augmented triads in the third and diminished
seventh chords in the fourth coefficient.

Each time point of the uploaded piece is assigned to six complex numbers.
Similar to the wavescape visualization, the coefficient-space visualization can
show values according to different time scales, but in contrast to wavescapes
only with respect to one time scale at a time. A time scale corresponds to the
length of a sliding window over segments and this length can be set by the
user in the input-output menu. For each sliding window, all contained pitch
classes are summed into one 12-dimensional pitch-class count vector which is
subsequently normalized (L1 norm) and mapped under the Fourier transform.
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The normalization ensures that all coefficients’ values are contained inside the
unit circle. Very short window lengths tend to distribute the segments of the piece
more evenly throughout the disks. In contrast, long window lengths collapse the
segments into a small area, and even into a single point if the window covers the
entire piece (i.e., the topmost point of a wavescape). Therefore, it is beneficial
to try different window lengths in order to identify an appropriate level of detail
for the concrete piece under analysis, for instance one where the piece moves
along smooth paths in some coefficient spaces.

The user can play, pause, and skip through the MIDI file using the control
menu at the bottom of the app. While the piece is being played, the coefficient
values of the current sliding window are displayed as white dots in the coefficient
spaces. The control menu contains additional options, such as for hiding the
prototypical pitch-class sets and for the adjustment of the visualizations’ sizes
and layouts. A user can also manually input pitch-class multisets or distributions
into midiVERTO. Those can be either typed into a text field in the input-output
menu or played through an external MIDI controller, such as a keyboard or music
notation software. This feature can be particularly useful to compare specific
chords and scales of interest, for example in educational contexts.

midiVERTO was developed as a purely browser-based application in order
to minimize maintenance requirements and to facilitate a wide adoption by the
community. That is, no installation is required and no server application needs to
be maintained since the application is entirely client-based. This also allows the
application to run across platforms and lowers the entry barrier for users that
might not be confident with technical installation instructions. The application is
written in javascript using the libraries react for state management, material-ui
for adaptive interface design, and Canvas API and SVG markup for visualization.
The source code is publicly available on Github under a GPL3 licence, and the
Github Pages service is used to deploy the application.2

3 A Brief Case Study

To showcase midiVERTO’s capabilities, we use the main theme of the musical
Phantom of the Opera by A. L. Webber with a resolution of an 8th note and
a window length of 300 times the resolution.3 Each point thus represents a
length of 37.5 whole notes. With these parameters, several important aspects
of the piece’s global tonality are visualized intuitively in the wavescapes and
the Fourier coefficient spaces. The wavescapes 3 and 5 have the strongest colors
among all 6, indicating that diatonic scales as well as (augmented) triads play
and important role for the overall harmonic organization of the piece. Therefore,
we focus only on these two Fourier coefficients (see Fig. 2).

On the lower levels of the 3rd wavescape, the colors blue – green – yellow
– pink (–green–) pink change in regular time intervals, following the primary
key changes of the piece. Tracing this sequence of colors in the third coefficient
2 Source code available at https://github.com/DCMLab/midiVERTO.
3 MIDI file taken from https://bitmidi.com/uploads/6508.mid.
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Fig. 2. Visualizations of the 3rd and the 5th Fourier coefficient for the Phantom of the
Opera theme (resolution: 8th note, time window: 300 × resolution = 37.5 whole notes).
The unit disks are labeled with their prototypes: augmented triads are denoted with
a +, hexatonic scales by two contained pitch classes (e.g., H2,3 = {2, 3, 6, 7, 10, 11}),
singleton pitch classes by a representative, and diatonic scales by their key signatures.
(Color figure online)

space, we observe that these colors correspond to the hexatonic scales H1,2,
H2,3, H0,3, and H0,1, respectively (in clockwise direction; see figure caption for
explanation of notation). The overall harmonic trajectory of the piece thus moves
in descending minor thirds, and at the end it briefly moves across the plane to
its hexatonic pole (the green interruption in the pink area).

The color progression on the lower levels of the 5th wavescape is roughly
orange/red - green - pink, showing that the initial, middle, and final parts of
this piece modulate through different keys. Note that the red and pink areas
are adjacent to each other but opposite to the green area, again showing a
symmetrical organization in terms of keys. Analogous observations can be made
by following the path in the 5th coefficient space, because the window size of
300 eighth notes is adjusted to the required abstraction level.

4 Conclusion

Interactive applications like midiVERTO can help to promote mathematical
tools for music analysis among a broader audience, such as music theorists, stu-
dents, and practitioners. They can guide musical intuition and lead to new ways
of hearing without the need of studying a complex methodology up front. Fur-
thermore, they can spark interest, generate curiosity, and inspire to learn more



368 D. Harasim et al.

about the inner workings of techniques such as the DFT. Moreover, we expect
that the application will enable scholars and students of music to employ this
powerful method in their work and teaching, and for public engagement. Beyond
purely music-theoretical contexts, the application is also suited to teach and
study visualization techniques for complex cultural data in the Digital Human-
ities and Cultural Analytics.

Acknowledgments. We thank Martin Rohrmeier for his support and guidance as
well as Jason Yust and Cédric Viaccoz for their valuable comments in the development
process of the web application.
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Abstract. Motivated through recent applications of quantum theory
to the music-theoretical conceptualisation of tonal attraction, the paper
recapitulates basic facts about quantum wave functions over the finite
configuration space Zn, and proposes a particular musical application.

After an introduction of position and momentum operators, the
Fourier transform as well as the translation and ondulation operators,
particular attention is plaid to the Quantum Harmonic Oscillator via its
Hamilton operator and its eigenstates. In this setup the time develop-
ment of chosen wave functions is applied to the control of moving sound
sources in a Spatialisation scenario.

Keywords: Quantum theory · Music theory · Pitch class profiles

1 Motivation

A new quantum-theoretical approach to the study of musical tones (c.f.
[2,7,9]) motivates the present attempt for an integration of other mathematical
approaches into this new line of investigation. These new ideas may possibly open
productive theoretical links between statistical approaches to music cognition on
the one hand and structural mathematical approaches to music on the other. Up
to now connections between these two areas are not yet highly sought-after and
both areas suffer from deficiencies, which exhibit a remarkable complementary:
Statistical approaches treat histograms of and transition matrices between pos-
sible musical events as these were already fully valid models of musical reality,
while mathematicians build nice but somewhat empty spaces of musical objects,
wherein no events actually happen. Under the quantum perspective pitch class
profiles are interpreted as probability density functions of underlying quantum
wave functions, which may inhabit the “empty” spaces of the mathematical
music theorists. And this entails the possibility to gain explanatory power for
the constitution of empirically derived pitch class profiles from these wave func-
tions alongside with the Hermitian and unitary operators acting on them, and
last not least from the Schrödinger equation. Needless to say, that these wave
functions are not intended to be interpreted in a literal physical way. The wave
functions are defined on spaces of musical tones or higher musical objects, not
in physical space.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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The starting point for the new quantum-theoretical approach in [9] (and
follow up papers [2,7]) is the modelling of tonal attraction by means of a suit-
able match of the Krumhansl-Kessler pitch class profiles. It turns out that the
circle-of-fifths ordering of the twelve pitch classes allows to build such a match
from a continuous wave function on R/Z exemplifying cosine-similarity. The
present study is further motivated by a potential conceptual bifurcation within
the quantum-theoretical framework. We observed, that there is an alternative
possibility to match the Krumhansl-Kessler pitch class profiles, namely by start-
ing from a Gaussian wave function on R, which represents the ground state of a
quantum harmonic oscillator.

Fig. 1. Three attraction kernels p(x) = |ψ(x)|2 of the Krumhansl-Kessler experimental
data for C major (centered at tone C of the quint group), obtained from their respective
wave functions ψ(x). Solid: Gaussian wave packet, dashed: deformed cosine similarity,
dotted: default cosine similarity.

In search of an analogy to the situation in physics we would view the (contin-
uous) circle or line of fifths in the role of a configuration space for the “position
representation” of wave functions φ. And consequently the question is on the
table what the musical meaning of the associated “momentum representation”
might be. We reflect about this question with the awareness that the Fourier
Transform, which mediates between the two representations, already plays a
productive role in recent approaches to the study of pitch classes and pitch class
profiles (see [1,12–16]), for example. But while we deal with the Fourier Trans-
form φ̂ of wave functions φ we would categorize the objects of study in these
investigations as Fourier Transforms ̂|φ|2 of probability density functions |φ|2. A
second conceptual difference in these investigations consists in the finite configu-
ration space Z12 as opposed to R/Z or R. But this difference is not an obstacle for
an integration. The quantization result in [7] actually provides confidence into
the suitability of the finite-dimensional approach also from within the quantum
approach. Therefore, the most straight-forward first step towards an integration
of the pre-established Fourier approach into the new quantum approach consists
in the study and musical interpretation of wave functions on Zn. And particular
attention has to be paid to the role of phases. And we approach this project
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with the idea in mind to encode the parameter of tone width together with the
parameter of tone height (as studied by David Clampitt and the first author
in [3]) which is further inspired by Martin Ebeling’s proposal to model musical
tones on the complex plane [5].

The present poster is intended as a preparatory “mathe-musical warmup”
with the purpose to get the Quantum theory on Z7 and/or Z12 at our fingertips.
Here we postpone the search for answers to the motivating questions in favour
of a plain sailing musical playground, where every wave function with moderate
parameters and its time development for a given Energy operator can be realised
and musically explored. In this scenario the parameters of amplitude and phase
are interpreted in terms of the loudnesses and angular positions of a cycle of
sound sources in a spatialisation scenario.

2 Quantum Theory on Zn

The mathematical foundations of quantum theory in n dimensions have been
thoroughly investigated in recent years. We draw upon [4,6,10,11]. In this section
we recapitulate elementary knowledge.

Quantum states are described in terms of wave functions ψ : Zn → C, which
we will identify with vectors ψ ∈ C

n. In the position representation the residue
classes 0, ..., n − 1 ∈ Zn denote positions, while they denote momenta in the
momentum representation.

Fig. 2. Representation of a wave function over Z12. The lengths of the twelve needles
represent amplitudes and their directions represent phases.

Linear operators F : Cn → C
n are represented through n × n-matrices with

complex coefficients, accordingly. The can represent active and passive transfor-
mations (i.e. active transformations of the wave functions themselves or passive
coordinate transformations of one and the same wave function).

We start with the consideration of the position operator Q. Following [4] we
define it as a diagonal n × n matrix Qa with the n diagonal entries and eigen-
values {−a(n−1)

2 , . . . , a(n−1)
2 }. The indices j ∈ {− (n−1)

2 , . . . , (n−1)
2 } are centered

around 0 and are integers for odd n and half-integers for even n. The real scaling
factor a > 0 is a length unit.
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Qa = a ·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−n−1
2 0 . . . 0 . . . 0 0

0 −n−1
2 + 1 . . . 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . n−1

2 − 1 0
0 0 . . . 0 . . . 0 n−1

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The normalized eigenstates of Qa are the ‘δ-functions” with precisely one
non-vanishing coordinate, i.e.

ϕ−n−1
2

= (1, 0, . . . , 0),
ϕ−n−1

2 +1 = (0, 1, 0, . . . , 0),
. . .

ϕ0 = (0, . . . , 0, 1, 0, . . . , 0),
. . .

ϕn−1
2

= (0, . . . , 0, 1).

The exponential M = exp( 2πi
n Q) is known as the associated Modulation- or

Undulation operator. M is an unitary operator and its n eigenvalues are either
the n-th roots of unity or the odd 2n-th root of unity. The determinant det(M)
is either 1 or −1. The latter happens, when n is even and n−1

2 the half of an odd
number. The Fourier transform mediates between the position representation
and the momentum representation of the wave functions, and it is therefore
considered to be a passive transformation. Let ω(k) = exp(2πik

n ), k = 0, . . . , n−1
denote the n’th root of unity. They form the coefficients of the Fourier transform:

F =
1√
n

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ω(0) ω(0) . . . ω(0) . . . ω(0) ω(0)
ω(0) ω(−1) . . . ω(−k) . . . ω(2) ω(1)
. . . . . . . . . . . . . . . . . . . . .

ω(0) ω(−k) . . . ω(−k2) . . . ω(2k) ω(k)
. . . . . . . . . . . . . . . . . . . . .

ω(0) ω(2) . . . ω(2k)) . . . ω(−4) ω(−2)
ω(0) ω(1) . . . ω(k) . . . ω(−2) ω(−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

F is a unitary operator, satisfying F ∗ = F−1. Its eigenvalues are i,−1,−i, 1.
Their multiplicities depend on n and can be characterized in terms of the residue
n mod 4 (see [10], p. 273).

The vectors F · ϕk are the momentum representations of the position eigen-
states. Analogously we have a momentum operator P , and a basis of associated
eigenstates φ0, φ1, . . . φn−1, which in the momentum representation take the sim-
ple form ‘δ-functions”

F · φ0 = (1, 0, . . . , 0), F · φ1 = (0, 1, 0, . . . , 0), . . . , F · φn−1 = (0, . . . , 0, 1)
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and the momentum operator in the momentum representation takes the diagonal
form

F · P · F ∗ =

⎛

⎜

⎜

⎝

0 0 . . . 0
0 1 . . . 0

. . . . . . . . . . . .
0 0 . . . n − 1

⎞

⎟

⎟

⎠

.

The position representations of the eigenstates of P are the exponential circle
functions:

φ0 = 1√
n
(1, 1, . . . , 1),

φ1 = 1√
n
(1, ω1, ω2, . . . , ωn−1),

. . .
φk = 1√

n
(1, ωk, ω2k, . . . , ωk(n−1)),

. . .
φn−1 = 1√

n
(1, ω−1, ω−2, . . . , ω1).

The exponential T = exp(− 2πi
n P ) is known as the Translation operator. T is a

permutation matrix, and hence orthogonal (and hence unitary). Its n eigenvalues
are the n-th roots of unity. The determinant det(T ) is either 1 (for odd n) and
−1 (for even n).

T =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 . . . 0 0 1
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1 0

⎞

⎟

⎟

⎟

⎟

⎠

.

T and M generate the Heisenberg group.

3 Exploring the Finite Quantum-Harmonic Oscillator

In the context of an ongoing investigation the authors found a suitable definition
for a tonal attraction kernel in terms of a Gaussian wave function (as a possible
alternative to the deformed cosine kernel in [9]). This finding brings the quantum
harmonic oscillator into the spotlight of interest, whose ground state is a Gaus-
sian. The mentioned investigations assume a continuous configuration space R.
But in connection with the already established Fourier approach in music theory
it seems worthwhile to explore this important and well-studied physical exam-
ple also in the finite-dimensional scenario. Although there is no analogue to
the Schrödinger Equation, several constructions can be based on the study of
Eigenvalues and Eigenfunctions. We start by inspecting the Hamilton operator
H = 1

2 (P 2 + a2Q2) with parameter a (abstractly) measuring the impact of the
potential energy against the normalised kinetic energy P 2. The excited states
ξ0, . . . , ξn−1 can be obtained as the eigenfunctions of H and they can be ordered
in accordance with the raising positive real eigenvalues of H. We observed in the
case n = 7, that the choice of symmetric position eigenvalues (to both sides of 0)
ensures that the excited states are also eigenfunctions of the Fourier transform
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F , which in turn motivates the inspection of a finite analogue for the Bargmann
transformation (e.g. [8], Sect. 14.4), where the excited states ξk are chosen as a
basis and are mapped to the associated monomials z �→ zk : C → C. Figure 2
shows the first excited state ξ1 for the case n = 12.

The Hamilton-Operator gives rise to the unitary time evolution operator
U(t) = exp(−iHt) and allows the study and musical exploration of the time
developments of individual wave functions. A crucial open problem for their
interpretation in the music theoretical context of pitch class profiles (n = 12)
or scale degree profiles (n = 7) is the interpretation of the phases. On the one
hand, building on [9] it seems plausible to interpret the pitch class profiles as
probability density functions of underlying wave functions. On the other hand,
this would imply that the established application of the finite Fourier-Transform
to pitch class profiles, is not the quantum-theoretical change of perspective from
the position to the momentum representation. While these questions need to be
addressed in future investigations, it is useful to explore the finite wave functions
and their time developments in practical musical experiments.

An auspicious musical application of the time development of finite quan-
tum wave functions is the control of sound sources in a spatialisation scenario.
The dimension n of the wave function is the number of sound sources, which
are supposed to move in a horizontal plane. As an illustration I will show some
experiments with the Max/MSP library Spat1 in combination with Mathemat-
ica2. The time development of a given wave function is encoded in a textfile
and using a Coll -Object in connection with a metronome at control rate, the
Max/MSP-patch interprets the magnitudes and phases at every time stamp in
terms of distances and azimuths of the individual sound sources. The Spatialisa-
teur calculates the resulting outputs for the available arrangement of a circle of
loudspeakers. In conjunction with our poster presentation we will demonstrate
this scenario through the usage of a binaural synthesis instead of the multi-
channel version. A five-dimensional application is part of a musical piece (of the
first author) entitled The Backside of the Stroboscope which is dedicated to Jack
Douthett.
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Abstract. In [10], Anatol Vieru proposed a compositional technique
based on an algorithmic manipulation of periodic sequences in Z12. This
technique was translated in mathematical terms in ([3,4,8]). Two math-
ematical problems arose starting from the so called Vieru’s sequence
V : period of primitives and proliferation of values. In this paper we
announce, providing only the sketch of the proofs, the solution of these
questions in a purely algebraic way.

Introduction

In the Book of Modes [10], the romanian composer Anatol Vieru collects periodic
sequences by iteratively applying a finite sum operator starting from the constant
sequence (6) on Z12, corresponding to the triton interval. Then he decodes from
each sequence a musical aspect, giving rise to a composition: Zone d’Oubli.

This was the starting point for a prolific math-music research area ([1–4,8]).
Vieru highlighted two remarkable phenomena about the particular sequence (so
called Vieru’s sequence):

V = (2, 1, 2, 4, 8, 1, 8, 4) ∈ Z12

originated from the initial sequence (2, 1) corresponding to Messiaen’s second
mode of limited transpositions. Vieru repeatedly applied to V the operator Σ8

(see Eq. 1). He noticed that in the obtained sequences the period tends to increase
and it is always a power of 2. Moreover the values 4 and 8 tend to proliferate
among the coefficients of the sequences (recovering in some cases more than
99% of the coefficients [4]). In [4] the authors faced the problem using the Fit-
ting Lemma and explicit computations, providing the main reference for this
work, but leaving open the two problems. In a recent article submitted to a
mathematical journal, we completely solved these questions. The main new idea
consists in linking periodic sequences to binomial coefficients, which have been
studied using Kummer’s Theorem [7] and the generalisation of Lucas’ Theorem
([5,6]). In this paper, we announce these results providing only a sketch of the
proofs.
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1 Anatol Vieru’s Periodic Sequence: A New
Formalization

Let us recall some definitions.
A sequence f ∈ Z

N

m := (Z/mZ)N is called periodic if there exists j ≥ 1 such
that θj(f) = f where θ is the shift operator defined by

θ(f)(n) := f(n + 1) ∀n ∈ N.

The minimal j ≥ 1 satisfying this condition is called the period of f and
it is denoted it by τ(f) (we use the notation (a0, . . . , an−1) for a sequence of
period n). The set Pm :=

⋃
j≥1 ker(θj − id) of all periodic sequences over Zm is

a Zm-module with point-wise sum and multiplication.
Let us consider on Pm the operators Δ := θ − id (discrete derivation) and

Σc for c ∈ Zm (discrete integration) defined as

Σcf(n) :=

{
c if n = 0
f(n − 1) + Σcf(n − 1) if n > 0.

(1)

We will write Σ instead of Σ0 to keep the notation clean. We denote by (c) the
constant sequence (i.e., periodic sequence of period 1) having all entries equal to
c ∈ Zm. Hence Σcf = Σf + (c) and Δ(Σcf) = f for every f ∈ Pm and c ∈ Zm.
Observe that in particular Σc(f1 + f2) = Σf1 + Σcf2 for any f1, f2 ∈ Pm and so
Σs

c (f1 + f2) = Σsf1 + Σs
cf2 for any s ≥ 1.

Given the constant sequence f = (c) with c �= 0, we have: Σf(0) =
0, Σf(1) = c and iterating Σf(n) = nc so Σf = (0, c, 2c, . . . , (m − 1)c) has
period m. More generally one has:

Lemma 1. If (c) is a constant sequence in Pm, then Σs(c)(n) ≡m c
(
n
s

)
.

The period never decreases when applying Σ. Indeed the following holds:

Lemma 2. Given f ∈ Pm of period τ , let us denote by tr(f) :=
∑τ−1

i=0 f(i). For
each c ∈ Zm the period of Σcf is hτ where h is the minimum positive integer
such that h · tr(f) ≡ 0 mod m.

We say that a periodic sequence f ∈ Pm is nilpotent (resp. idempotent)
if there exists n ≥ 1 such that Δnf = 0 (resp. Δnf = f). These two kinds
of sequences are called resp. reducible and reproducible sequences in [2]. The
nilpotency (resp. idempotency) index of f is the minimal n satisfying the previ-
ous condition. We denote by NΔ

m and IΔ
m the Zm-submodules of nilpotent resp.

idempotent sequences.

Example 1. 1. Consider the sequence f = (0, 1, 2, 3) ∈ P4. We have:

Δf = θf − f = (1, 2, 3, 0) − (0, 1, 2, 3) = (1)
Δ(1) = θ(1) − (1) = (1) − (1) = (0).

Hence f is nilpotent with nilpotency index 2.
2. The sequence g = (2, 1) ∈ P3 is idempotent of idempotency index 1, since:

Δg = θg − g = (1, 2) − (2, 1) = (2, 1) = g.
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2 Decomposing Pm

We use three decompositions: the decomposition into primes, the decomposition
in nilpotent and idempotent parts and lastly the decomposition of nilpotent
sequences using constants.

2.1 Decomposition with Primes

Given m ∈ N, m ≥ 2 with prime factorization m =
∏t

i=1 p�i
i , the group isomor-

phism Z/mZ → ⊕t
i=1 Z/p�i

i Z gives rise to an isomorphism of abelian groups
(see [2, Th. 5])

Pm −→
t⊕

i=1

P
p

�i
i

f �−→(fpi
)1≤i≤t

where fpi
is the projection of f in P

p
�i
i

and we will call it the pi-part of f . Its
inverse is given by the Chinese remainder theorem.

Lemma 3. ([2, Prop. 6, Prop. 13]) Following the previous notation, f is nilpo-
tent (resp. idempotent) if and only if its pi-part fpi

is nilpotent (resp. idempotent)
for any 1 ≤ i ≤ t. The nilpotency (resp. idempotency) index coincides with the
maximum of the nilpotency (resp. idempotency) indices of fpi

and the period
τ(f) = lcm{τ(fpi

)}1≤i≤t.

Example 2. Since Z/12Z 
 Z/3Z⊕ Z/4Z, we obtain P12 
 P3 ⊕ P4 and Vieru’s
sequence V = (2, 1, 2, 4, 8, 1, 8, 4) decomposes as:

V3 = (2, 1) ∈ P3, V2 = (2, 1, 2, 0, 0, 1, 0, 0) ∈ P4.

2.2 Decomposition in Nilpotent and Idempotent Part

Let us recall [4, Prop. 1] that, by the Fitting Lemma, Pm = IΔ
m ⊕ NΔ

m . The
primes decomposition and Lemma 3 imply the following isomorphisms:

Pm =
t⊕

i=1

IΔ

p
�i
i

⊕ NΔ

p
�i
i

IΔ
m =

t⊕

i=1

IΔ

p
�i
i

NΔ
m =

t⊕

i=1

NΔ

p
�i
i

.

Thus we can always reduce to study sequences on Zp� .

Lemma 4. If f ∈ Pp� , then:

1. [4, Th. 3] f ∈ NΔ
p� if and only if τ(f) = pt for t ∈ N;

2. if f ∈ NΔ
p� with period pt and nilpotency index η, then η ≤ �pt.
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2.3 Decomposition of Nilpotent Sequences Using Constants

The nilpotent sequences decompose in sums of primitives of constant sequences:

Lemma 5. A nilpotent sequence f ∈ NΔ
m of nilpotency index η can be written

in a unique way as
f = c0 + Σ1c1 + · · · + Ση−1cη−1

for suitable constants c0, . . . , cη−1 ∈ Zm.

Applying the previous decompositions to Vieru’s sequence

V = (2, 1, 2, 4, 8, 1, 8, 4) ∈ P12

we find the 2-part V2 = (2, 1, 2, 0, 0, 1, 0, 0) ∈ P4 and the 3-part V3 = (2, 1) ∈ P3.
In this case V2 is nilpotent of index 5 while V3 is idempotent with index 1.

Therefore the nilpotent and idempotent components are:

Ṽ2 = (6, 9, 6, 0, 0, 9, 0, 0) ≡ (−3) · V2 mod 12, Ṽ3 = (8, 4) ≡ 4 · V3 mod 12.

Vieru repeatedly used the operator Σ8 applied to V = Ṽ2 + Ṽ3 in order to
generate new periodic sequences. Since Σ8Ṽ3 = Ṽ3, we get

Σs
8V = ΣsṼ2 + Σs

8Ṽ3 = ΣsṼ2 + Ṽ3. (2)

Thus we are reduced to study the operator Σ applied to the nilpotent sequence
V2 in P4. In particular the period of Σs

8V in P12 coincides with the period of
ΣsV2 in P4. Since Σ8Ṽ3 = Ṽ3 = (8, 4), the proliferation of the values 8, 4 in Σs

8V
in P12 is equivalent to the proliferation of the value 0 in ΣsV2 in P4.

Finally, the last decomposition provided by Lemma 5 gives V2 = (2)+Σ(3)+
Σ2(2) + Σ3(3) + Σ4(2).

3 Unveiling the Period and the Proliferation of Values

3.1 Period of the Primitives of Vieru’s Sequence

The study of the period is based on the following lemma:

Lemma 6. For every s ∈ N, the sequence Σs(2) ∈ P4 has period 2ks while
Σs(3) ∈ P4 has period 2ks+1 where ks := �log2(s) + 1 is the number of figures
in the representation of s in base 2.

Proof. We prove the statement for the primitives of (3) proceeding by induction
on the primitive index s. As observed before Lemma 1, the period of Σ(3) is
4 = 2k1+1. Suppose the statement true for s, let us prove it for s + 1.

– If ks+1 = ks, it is possible to show that tr(Σs(3)) = 0 using Kummer’s
Theorem [7]. By Lemma 2 one obtains

τ(Σs+1(3)) = τ(Σs(3)) = 2ks = 2ks+1 .
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– If ks+1 = ks + 1, again by Kummer’s Theorem one gets tr(Σs(3)) = 2. By
Lemma 2 one obtains

τ(Σs+1(3)) = 2 · τ(Σs(3)) = 2 · 2ks = 2ks+1 = 2ks+1 .

Reducing (2) ∈ P4 to (1) ∈ P2 via the isomorphism 2Z/4Z ∼−→ Z/2Z the
previous argument proves the statement.

The following result solves completely the problem of the period of Vieru’s
sequence V = (2, 1, 2, 4, 8, 1, 8, 4).

Theorem 1. The period of ΣsV is 2ks+3+1 (with ks+3 is the number of figures
of s+3 in base 2). Notice that the period changes whenever s = 2r −3 for r ≥ 2.

Proof. As previously observed, the period of ΣsV coincides with the period of
ΣsV2. The period of the sequences

ΣsV2 = Σs(2) + Σs+1(3) + Σs+2(2) + Σs+3(3) + Σs+4(2)

clearly divides the least common multiple of the periods of its summands, which
coincides with the period of Σs+3(3). Using the previous theorem and Lemma 2,
an accurate analysis permits to prove that they are in fact equal.

3.2 Proliferation of Values

Let us study the proliferation of 0 in ΣsV2 with s ≥ 1. This will allow us to
evaluate the number of 4, 8 in the primitives of Vieru’s sequence V . Rather than
the absolute value of occurrences inside the period, it is much more interesting
to study the ratio with respect to the period. In [4], the authors explicitly com-
puted the first 61 primitives of V and they remarked that “at level 61 of period
128, more than 90% of the elements belong to the set {4, 8}. This percentage
dramatically decreases in the following level which is the last one having period
equal to 128”. The level 61 above corresponds to s = 59 and it has period 128
by Theorem 1, as confirmed by the computation in [4].

Lemma 7. Let us denote by z(s) the number of zeros in the sequence Σs−3V2

inside its period. Then for every r ≥ 3 the following inequalities hold:

z(2r − 1) < z(2r − 2) = 2r+1 − 8.

More precisely, one has:

Σ2r−5V2 = (0, . . . , 0
︸ ︷︷ ︸
2r−5

, 2, 3, 1, 0, 0, 0, . . . , 0
︸ ︷︷ ︸
2r−1−4

, 2, 2, 0, 0, 0, . . . , 0
︸ ︷︷ ︸
2r−1−5

, 2, 1, 3, 0, 0).

Proof. The proof is based on Kummer’s Theorem [7] and on the generalization
of Lucas’ Theorem proved by Davis and Webb in [5, Th. 1]. The second state-
ment is proved by a component-wise analysis. In the under-braced positions all
summands of V2 are equal to zero by Kummer’s Theorem. The remaining 14
coefficients can be explicitly computed using Davis and Webb result.
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The following result solves completely the problem of the proliferation of
{4, 8} in Vieru’s sequence V = (2, 1, 2, 4, 8, 1, 8, 4).

Theorem 2. The ratio between the number of {4, 8} in the primitives of
Σ2r−5

8 V (with r ≥ 3) and their period is 2r+1−8
2r+1 , which tends to 1 for r → ∞.

More precisely, Σ2r−5
8 V is equal to:

(8, 4, 8, 4, . . . , 8
︸ ︷︷ ︸

2r−5

, 10, 11, 1, 8, 4, 8, 4, 8, 4, . . . , 4
︸ ︷︷ ︸

2r−1−4

, 2, 10, 8, 4, 8, 4, 8, 4, . . . , 8
︸ ︷︷ ︸

2r−1−5

, 10, 5, 7, 8, 4).

Proof. Since the number of {4, 8} in Σ2r−5
8 V coincides with the number of zeros

in Σ2r−5V2, the first part of the statement follows from the previous lemma and
Theorem 1. The explicit form for Σ2r−5

8 V follows from the previous lemma and
Eq. (2), where

Σ2r−5 Ṽ2 ≡ (−3) · Σ2r−5V2 mod 12.

Remark 1. It is nice to compare the formula of Theorem 2 for r = 3, 4, 6 with
the explicit computation of the corresponding levels 5, 13, 61 provided in [4, App.
A].

4 Recursive Formulas for the Number of {4, 8} in Σs−3
8 V

In the last days we proved a recursive formula for the number z(s) of zeroes
in the (s − 3)-primitive of V2 in P4. The number z(s) coincides also with the
number of {4, 8} in Σs−3

8 V in P12. We chose this shift by −3 in order to have
all sequences of the same period 2r+2 when 2r ≤ s < 2r+1. In this interval of
primitives, one can compute the percentage of {4, 8} as z(s)/2r+2.

We need first to introduce a tuple dr of integers. Denote by wt(�) the Ham-
ming weight of �, i.e. the number of 1’s in the binary expansion of �. Then we
set

dr(m) = 2wt(2r+2r−1−1−m)+1.

We will be mainly interested in the values of dr(m) when 2r + 2r−2 + 3 ≤ m <
2r + 2r−1 − 1. For brevity we write

dr := (dr(m))2r+2r−2+3≤m<2r+2r−1−1.

For dr the following equalities hold:

d5 = (4, 8, 4, 4) and dr+1 = (2 × dr, 4, 2r−1, 2r−2, 2r−2, dr) ∀r ≥ 5.

We can now enunciate the recursive formula. Define:

ui := 2r−i i = 1, 2, 3

t := s − u1 2r ≤ s < 2r+1

(c1, c2, c3, c4) := 2r−3(12, 8, 10, 11)

(c′
1, c

′
2, c

′
3, c

′
4) := 2r−3(12, 10, 11, 12).
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The initial condition for the recursive formula is the 25-tuple (z(s))s for 25 ≤
s < 26:

(32, 48, 64, 88, 64, 80, 88, 92, 64, 80, 88, 104, 92, 104, 108, 94,

78, 88, 96, 108, 96, 104, 108, 110, 102, 108, 112, 118, 114, 118, 120, 64).

In this interval, the period of the sequences Σs−3
8 V is constantly equal to 128.

For 2r ≤ s < 2r+1 with r ≥ 6, the 2r-tuple (z(s))s concides with:

( 2z(t), . . . , 2z(t)
︸ ︷︷ ︸

2r−2−1

, z(t− u3) + c1, . . . , z(t− u3) + c4
︸ ︷︷ ︸

4

, 2z(t) − dr(s), . . . , 2z(t) − dr(s)
︸ ︷︷ ︸

2r−2−4

,

z(t− u2) + c′
1, . . . , z(t− u2) + c′

4
︸ ︷︷ ︸

4

, z(t− u1) + 2r+1, . . . , z(t− u1) + 2r+1

︸ ︷︷ ︸

2r−1−4

, 2z(t− u1)
︸ ︷︷ ︸

1

).

Let us recall that t = s − 2r−1 and so in the tuple above the first coefficient
is computed using s = 2r, the second one using s = 2r + 1, the last one using
s = 2r+1 − 1.
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Abstract. We considered musical note frequencies of the 88 keys of the
piano and found that they are Benford distributed. We extended our
focus beyond the 88 keys and found the connection to Benford holds
for the lowest note measuring at 16.35 Hertz (Hz) to the highest note of
7902.13 Hz. We next investigated whether the distribution holds within
specific types of music. We found that classical music such as a random
sample of songs from the Romantic period adhere to the Benford distri-
bution while modern music such as a random sampling of songs from the
2000s do not. We also coined a term called “Naturalness” to assess how
well a song adheres to the Benford distribution.

Keywords: Benford distribution · Logarithmic distribution of first
digits · Classical music

1 Introduction

Greek mathematician and scientist Pythagoras said: “There is geometry in the
humming of strings, there is music in the spacing of the strings”. Ever since
Pythagoras demonstrated that there were simple numerical ratios that produced
all the intervals necessary to create a musical scale, there have been countless
connections made between mathematics and music [1]. Counting, rhythm, keys,
intervals, patterns, symbols, harmonies, time signatures, overtones, tone, pitch
and even the notations of composers are all connected to mathematics [2]. This
paper introduces yet another connection: musical note frequencies are Benford
distributed.

For this paper, we first considered the formula for frequency of music notes
and showed that it is a sequence whose limit is Benford. Next, we considered
the 88 keys of the piano and their note frequencies in Hertz. Figure 5 provides
the 88 frequencies. We also compared a collection of classical songs from the
Romantic period of music and compared them to a random selection of songs
from the 2000s. We downloaded the classical music MIDI files from http://www.
kunstderfuge.com and the modern songs from bitmidi.com and freemidi.com.
Each of these websites provide a resource for music files. We used R to extract
the notes used in each song. We found that the 88 keys of the piano are Benford
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distributed. When we extend our focus and look at notes beyond those found on a
piano, we find that those frequencies are even closer to the Benford distribution.
When comparing the works from the Romantic period to the songs of the 2000s,
we find that Romantic period works are much more Benford. This paper will
proceed as follows: first, we will provide a summary of Benford’s Law. Then we
will present our analysis and results of the distribution of note frequencies. Next,
we will discuss what conclusion can be made based on our analysis as well as
possible future steps.

1.1 What is Benford’s Law

Benford’s Law began as the empirical observation from Newcomb in 1881 that
distribution for first digits in any set of numbers is not uniform or symmetric
[3]. Specifically, the frequency of 1s is higher than the frequency of 2s and so
on. This observation was later supported by Benford in 1938 with a data set
of over 20,000 numbers from naturally occurring data sets such as the atomic
weights of elements [4]. He was able to show that the probability of a digit being
d(d = 1, 2, · · · , 9) was equal to

Prob(d) = log10(1 +
1
d
)

This was then named Benford’s Law. The first digit probabilities follow the
specific distribution shown in Fig. 1.

Fig. 1. Distribution of Benford’s law

The Benford distribution has been found in many collections of numerical
data across various fields of natural and social sciences [5] and even in music [6].
This paper further explores its connection to music. To measure how far a song
deviates from Benford, we use a measure for Delta found in Berger and Hill’s
An Introduction to Benford’s Law. [7]

Δ = 100 · (max)9d=1|Prob(D1 = d) − log10(1 +
1
d
)|
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where D1 denotes the first digit of a number, D2 denotes the second and so on.
For example, D1(2568) = 2 while D2(2568) = 5

The Δ values simply measure how well a data set adheres to the Benford
distribution in that if Δ = 0, it is perfectly Benford. Essentially, it compares the
frequency of each digit with that of the corresponding digit in the Benford dis-
tribution. The largest deviation becomes the Δ value for the set. One limitation
of this method is that the digit d = 1, ..., 9 that determines the Δ significantly
affects whether a χ2 test of Goodness of Fit is rejected. For example, a Δ of
4.72 creates a p-value of 0.69 if the Δ results from the first digit. A Δ of 4.72
creates a p-value of 0.007 if it results from the seventh digit. This means that we
would fail to reject that our observed distribution is Benford if the Δ is from the
first digit while we would reject if the same Δ was found in the seventh digit. A
future paper address this issue creating a classification system for determining
the “Benfordness” of a song.

Not all data sets follow a Benford distribution. One of the criteria for those
that do is that it is a naturally occurring data set and one that is not subjective
or artificially derived. Because of this, we have determined that the closer a
dataset or song adheres to Benford the more “naturalness” it has. We do not
quantify this quality as good or bad or leading to a more popular or less popular
song. It is merely a measure to assess the music.

2 Numeric Proof

We used the formula fn = 440 · (2)
n−69
12 to find the frequency in Hertz of piano

keys. This formula corresponds to the note values assigned by MIDI. Note 69 is
the A above middle C so it has a frequency 440 Hz, while middle C is assigned
note 60 and has a frequency of 261.63. The sequence of frequencies is Benford. Its
deviation (Δ) from Benford goes to 0 as N→ ∞ Figs. 2, 3, 4 show that as N→ ∞
or the number of notes increases the distribution of the first digit gets more and
more Benford. The deviation from Benford measured with Δ gets closer to 0
(Figs. 6 and 7).

Table 1. Individual probabilities for each digit and Δ for each value of N

N P(d = 1) P(d = 2) P(d = 3) P(d = 4) P(d = 5) P(d = 6) P(d = 7) P(d = 8) P(d = 9) Δ

10 0 0.275 0.45 0.275 0 0 0 0 0 31.51

100 0.24 0.16 0.15 0.12 0.09 0.08 0.07 0.05 0.04 6.11

1000 0.3 0.178 0.125 0.097 0.079 0.066 0.058 0.051 0.046 0.19

10000 0.301 0.1756 0.1251 0.097 0.0791 0.0671 0.058 0.0511 0.0459 0.05
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Fig. 2. The first 10 values of the note
frequency formula

Fig. 3. The first 100 values of the note
frequency formula

Fig. 4. The first 1000 values of the note
frequency formula

Fig. 5. The first 10000 values of the
note frequency formula

As seen in Table 1, for every natural number m, and d1 ∈ 1, 2, ..., 9 and all
dj ∈ 1, 2, ..., 9, j ≥ 2

lim
N→∞

total#1 ≤ n ≤ N : Dj(fn) = djforj = 1, 2, ..., 9
N

= log(1 + (
m∑

j=1

10m−jdj)−1)

where fn = 440 · (2)
n−69
12 and Dj is the first digit of a number corresponding

to j = 1, 2, ..., 9. Thus, by definition fn or the sequence of note frequencies is
Benford.

3 Piano Note Frequencies

Next, we focused on just the 88 keys of a piano. For piano note frequencies, we
also performed a Chi-squared test, Pearson correlation and looked at Euclidean
distance. All of these measures provide even more justification for piano note fre-
quencies being Benford distributed. The Chi-Squared p-value for null hypothesis
of no difference between the distributions is 0.9755. Thus, we fail to reject the
null and conclude that the distribution of the first digit of piano note frequencies
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Fig. 6. Piano note frequency distribution

is no different from the Benford distribution. Pearson correlation test indicates
that there is a correlation between the distribution of the first digit of piano note
frequencies and the Benford distribution. The correlation is 0.97 with a p-value
< 0.001. The normalized Euclidean distance is measured as follows:

d∗ =

√∑9
i=1(bi − ei)

√∑8
i=1 b2i + (1 − e9)

The closer the statistic is to 0 the more similar the distributions are. The
Euclidean distance in this instance is 0.055 indicating there is no difference
between the distribution of the first digit of piano note frequencies and the Ben-
ford distribution.

4 Application

In an attempt to apply what we have noticed about the distribution of piano
note frequencies, we compared a sample of music from two different time periods
in music history.

Wilcoxon rank sum test shows that there is a significant difference between
the median delta value of the Romantic period and that of the 2000 s with a
p-value of 0.04. The paper Benford’s Law in Music History showed that Western
music became more Benford as it moved through history from the Medieval
period to the Romantic [8]. One theory as to why this is the case is that Medieval
music is known for mostly monophonic chants used in sacred worship [1]. Over
time, music became more complex down through the Romantic period which is
known for the imagination and virtuosity of its composers. The modern music
time period did not maintain this trend as shown in the figure. Our sample of
modern songs was less Benford than the songs from the Romantic period. This
might be due to the often repetitive nature of modern music, but more research
is needed.
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Fig. 7. Comparison of the romantic period to modern music

5 Conclusion

In conclusion, this paper shows that the frequency of musical notes is Benford
distributed. Further, classical music such as the works of the Romantic period is
more Benford distributed than our collection of modern music. Previous research
has shown that music became more Benford as it progressed through history.
[8] This trend did not continue through to modern music or music created after
World War I. This may be because of the repetition in many modern songs
or because of the vast differences found in types of modern music. It may be
possible to find trends within specific genres such as Rock or Jazz.

Further research is needed to determine whether how “Benford” a song is will
reflect in its popularity. It may even be possible to find some sort of correlation
between a song that is Benford distributed and how well or poorly it performs
on the charts or in awards programs.

These results cannot be used to quantify what makes a song more popular
or more enjoyable. It merely speaks to how well it adheres to the Benford distri-
bution. Since piano note frequencies have a deviation from Benford of Δ = 4.55,
we may perhaps conclude that songs near the same Delta value are more “nat-
ural”. It is possible that it reflects a human component to the music. Thus, we
are conducting research in comparing AI created music versus music created by
composers. If this holds true, using the Benford distribution may be useful as a
first step in identifying digitally manipulated audio recordings just as it is used
as a first step in identifying tax fraud or assess the quality of data sets [5].
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Abstract. Motivated by the empirically pleasing sound of E�7sus4 as a
substitution for G7 in the II–V–I progression Dm7–G7–CM7, we advo-
cate for the use of this chord and four other uncommon four-note chord
substitutions in jazz, taking Schönberg’s schwebend as justification and
explaining the details of our MATLAB code for analyzing a four-note
chord’s “diatonic citizenship.”
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1 Introduction

Jazz musicians often speak of chord extensions and substitutions as lending
different “colors” to their playing. This paper takes a small step towards artic-
ulating these “colors” in a mathematically precise way. We hypothesize that
perceived “color” is a function of external diatonic context (“In what scales
does this chord live?”) and internal intervallic structure (“What intervals does
this chord contain?”). Our computer-generated chord diagrams elucidate both
of those features. For each chord, a 12-tone ring illustrates its intervals; and
underneath the 12-tone ring, we list the scales where the chord “lives.” We refer
to this collection of scales as the chord’s diatonic citizenship.

We propose extending the practice of altered chords in jazz to what we call
alternative altered chords. Section 2 summarizes the use of altered chords in jazz
and concludes with our definition of alternative altered chords. Section 3 pro-
vides theoretical justification for the use of these alternative altered chords from
Schönberg’s work [5]. In Sect. 4, we describe our MATLAB code for determining
a four-note chord’s diatonic citizenship. Section 5 lists the alternative altered
chords and their diatonic citizenship, and Sect. 6 outlines future directions.

2 Motivation

Here is a II–V–I progression, ubiquitous in jazz, in C major:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Dm7

D

F

A

C

G7

D

FG

B

CM7

G
E

B C

Comping and improvising over a II–V–I progression are among the first skills
an aspiring jazz musician learns. After gaining familiarity with this progression,
the musician graduates to playing the G altered scale over the G7 chord, rather
than playing the G mixolydian scale. G mixolydian is the fifth mode of the C
major scale (G, A, B, C, D, E, F), and G altered is the seventh mode of the A�

melodic minor scale (G, A�, A�, B, D�, D�, F). In jazz, the essential chord tones
of a seventh chord are the 1, 3, and 7. An altered G7 chord is created by altering
any non-essential chord tone in G7, i.e. adding combinations of the �9, �9, �5,
or �5 to combinations of the 1, 3, or 7 of G7. Below are common examples of
altered G7 chords.

G7�5 D�

FG

B

Fø E�

C�

F
A�

D�7

D�

F
A�

C�

An altered G7 chord represents a compromise between

(i) creating chromatic voice-leading opportunities between Dm7 and CM7,
which is accomplished by plugging the semitonal gaps in the C major scale;

(ii) preserving the dominant function of G7 by retaining its essential chord tones
G, B, and F; and

(iii) maintaining at least one common tone between each pair of chords (har-
monisches Band, [5]).

Let us turn to an example lacking (ii) and (iii). Consider the following II–V–I
in C major, with E�7sus4 substituted for G7.

Dm7

D

F

A

C

E�7sus4 E�

D�

A�

B�

CM7

G
E

B C
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E�7sus4 consists of exactly the �9, �9, �5, and �5 of G7, with none of the
essential G7 chord tones. Notice how E�7sus4 plugs four out of the five semitonal
gaps left by the C major scale, which form a G� major pentatonic scale (G�, A�,
B�, D�, and E�). There are five four-note chords available to us from this scale:
E�7sus4, and four others that lie outside the G altered scale—that is, outside
the usual source for G altered chords.

Definition 1. Let the tonic be C major. Then an alternative altered chord
is one of the five four-note chords drawn from the notes G�, A�, B�, D�, and E�.

(Each alternative altered chord has no intersection with the C major scale. Note
that only one of the five chords, E�7sus4, could be considered a traditional altered
chord, since it lives in the G altered scale.) This definition can be transposed.
For example, if the tonic is G major, then to find the source of alternative altered
chords to substitute for D7, begin a major pentatonic scale a tritone away from
G: D�, E�, F, A�, and B�.

3 Theoretical Framework

The empirically pleasing sound of substituting E�7sus4 for G7 in the context of
a C major II–V–I progression suggests that our arsenal of altered chords could
be extended to include those chords which only satisfy (i), and neither (ii) nor
(iii), from the list of compromises in Sect. 2. As Schönberg writes in [5], pg. 133:
“Quite certainly there are harmonic means, which at present have just not been
theoretically determined, whose capacity for forming cadences or, far more, for
admitting them, is just as great as that of IV, II, V and I.”

If we were to use only triads, the V in a II–V–I would be necessary to solidify
the key. We don’t hear the B of C major without the V triad: II (D-F-A), V
(G-B-D), I (C-E-G). But since jazz employs seventh chords, our key is already
determined by the notes in the II (D-F-A-C) and the I (C-E-G-B). Thus we
can dispense with key determination, connecting the two chords II and I via
one chord that lies completely outside the key, using this external chord as
“chromatic glue.” Here is what we mean by the claim that E�7sus4 (E�-A�-B�-
D�) serves as “chromatic glue” between Dm7 and CM7: E�7sus4 links D to C
via D�, and A to G via A�; and as the movements C to B and F to E are already
chromatic, the B� and E� serve to add momentary diversions.

On the subject of V substitutions, Schönberg brings up the III and the VII. He
writes in [5], pg. 134: “First of all, looking for a substitute for V, we shall consider
the suitability of III.” Then he offers pros and cons of this substitution: It shares
two common tones with I, a drawback; but it contains the leading tone, and it
creates a nice root progression. “Yet, it is not commonly used; hence, we shall not
use it much either, but shall remember why we do not: chiefly because it is not
commonly used. That means, it could be used.” He also considers substituting
VII for V: “It does indeed determine the key, it does lead to the closing chord;
but it, too, is not in common practice today, and so we shall disregard it.”
While his discussion only concerns diatonic substitutions, we include it as part
of the theoretical justifcation for using alternative altered chords, because it
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demonstrates Schönberg’s acute awareness of the idiom rules are made to be
broken: There is nothing inherently wrong with using an uncommon substitution.
Indeed, the narrative arc of [5] involves establishing rules and discarding them.

As final justification for the alternative altered chords, which will be enumer-
ated in Sect. 5, we quote Schönberg at length: “A piece can also be intelligible
to us when the relationship to the fundamental is not treated as basic; it can
be intelligible even when the tonality is kept, so to speak, flexible, fluctuating
(schwebend). Many examples give evidence that nothing is lost from the impres-
sion of completeness if the tonality is merely hinted at, yes, even if it is erased.
And [...] the analogy with infinity could hardly be made more vivid than through
a fluctuating, so to speak, unending harmony, through a harmony that does not
always carry with it a certificate of domicile and passport carefully indicating
country of origin and destination” ([5], pp. 128–129, emphasis added).

So, our five alternative altered chords, the five four-note chords lying entirely
outside C major, contribute this schwebend quality in a way that standard G7
altered chords (drawn from the G altered scale, containing at least one essential
chord tone of G7, hence overlapping with the C major scale) cannot. We propose
the V in a II–V–I jazz progression be replaced by a chord that merely serves as
“chromatic glue,” departing from the tonic entirely, losing any trace of dominant
chord function, and maintaining no common tones between chords.

4 Methodology

Restrictions. We impose the following limitations on this investigation.

(A) We assume our II–V–I progression is in the key of C major. So, we are
looking for G7 substitutions beyond those residing in the G altered scale (or
the A� melodic minor scale). The reader can transpose our C major results
to II–V–I progressions in other major keys.

(B) For choice of scale, we restrict our attention to major, melodic minor, har-
monic minor, and harmonic major, since these are the scales most commonly
associated with the jazz tradition, and since each scale in this four-scale cycle
can be changed to the next by altering just one semitone (the third or the
sixth note in the scale).

(C) We will be concerned with four-note chords, also known as tetrachords, for
the simple reason that these are more easily playable on guitar (the author’s
instrument) than extensions of higher cardinality.

MATLAB Code Overview. We modifed the MATLAB code [3], which was
described briefly in [2] and in greater detail in [4] (in the context of a random
walk on a graph that generates modulation excercises for guitar). First, we build
a large matrix, chordsModesKeysScalesRoots, containing all four-note combi-
nations in 12-TET major, melodic minor, harmonic minor, and harmonic major.

1 M=[2 2 1 2 2 2 1]; % major intervals

2 m=[2 1 2 2 2 2 1]; % melodic minor intervals
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3 hm=[2 1 2 2 1 3 1]; % harmonic minor intervals

4 hM=[2 2 1 2 1 3 1]; % harmonic Major intervals

5 scaleMatrix =[M; m; hm; hM];

6 scaleMatrix2=cat(2,scaleMatrix ,scaleMatrix);

7 n=0;

8 chordsModesKeysScalesRoots =[];

9 for K=0:11 % goes through keys

10 for s=1:4 % goes through scales

11 for i=1:7 % goes through modes

12 for j=(i+1):i+6

13 for k=(j+1):i+6

14 for l=(k+1):i+6

15 n=n+1;

16 int1=sum(scaleMatrix2(s,i:j-1)); %------------

17 int2=sum(scaleMatrix2(s,j:k-1)); % four intervals

18 int3=sum(scaleMatrix2(s,k:l-1)); %

19 int4=sum(scaleMatrix2(s,l:i+6)); %------------

20 note1=mod(K+sum(scaleMatrix2(s,1:i))- ...

21 scaleMatrix2(s,i) ,12); %------------

22 note2=mod(note1+int1 ,12); % four notes

23 note3=mod(note2+int2 ,12); %

24 note4=mod(note3+int3 ,12); %------------

25 % now write this data into the matrix:

26 chordsModesKeysScalesRoots(end+1,:)=[int1 ,

27 int2 , int3 , int4 , % four intervals

28 i, % mode

29 K, % key

30 s, % scale

31 note1 , note2 , note3 , note4]; % four notes

32 end end end end end end

The matrix chordsModesKeysScalesRoots turns out to have dimensions 6720×
11. Each row contains a chord built from the scale interval vectors M, m, hm, and
hM. For example, row 222 of chordsModesKeysScalesRoots is

[2 2 3 5 5 0 2 7 9 11 2]

where the numbers [2 2 3 5] describe the intervals in the chord, the num-
bers [5 0 2] describe a mode (5), key (C), and scale (melodic minor) where
this chord can be found, and the numbers [7 9 11 2] describe the notes: G, A,
B, D. As another example, row 4437 of chordsModesKeysScalesRoots is

[5 2 2 3 5 7 4 2 7 9 11]

where the numbers [5 2 2 3] describe the intervals in the chord, the num-
bers [5 7 4] describe a mode (5), key (G), and scale (harmonic major) where
this chord can be found, and the numbers [2 7 9 11] describe the notes: D, G,
A, B. These examples show there are duplicate chord entries—as there should be,
since the same note combinations can arise in multiple modes, keys, and scales.
Next we build a smaller matrix grouping together the chords that are equal up



Altered Chord Alternatives 395

to permutation. (The only permutations appearing are circular shifts, due to the
nature of the construction of the matrix chordsModesKeysScalesRoots.)

1 sameChordNotes =[];

2 m=0;

3 for i=1: size(chordsModesKeysScalesRoots ,1)

4 % ^runs down rows of chordsModesKeysScalesRoots

5 if ismember(i,sameChordNotes)==0

6 % ^checks if row number has already been assigned

7 n=0; % resets sameChordNotes column to 0

8 m=m+1; % increments sameChordNotes row

9 for j=i:size(chordsModesKeysScalesRoots ,1)

10 % ^checks all chords after current index

11 for k=0:3

12 if isequal(chordsModesKeysScalesRoots(j ,[8:11]) , ...

13 circshift(chordsModesKeysScalesRoots(i ,[8:11]) ,k))==1

14 % ^checks if the notes are the same up to shift

15 n=n+1;

16 sameChordNotes(m,n)=j;

17 end end end end end

The matrix sameChordNotes turns out to have dimensions 393 × 32, meaning
that there are 393 possible four-note chords in all keys of 12-TET drawn from
the major, melodic minor, harmonic minor, and harmonic major scales (and that
the same chord appears in at most 32 rows in chordsModesKeysScalesRoots).
Each row of sameChordNotes lists the rows of chordsModesKeysScalesRoots
that contain the same chord. For example, row 30 of sameChordNotes is:

[37 82 107 136 177 222 247 276 1137 1182 1207 1236 1277 1322 ...

1347 1376 3922 3947 3976 4017 4342 4367 4396 4437 0 0 0 0 0 0 ]

This is the row of sameChordNotes dedicated to (permutations of)
the chord G-A-B-D, which is why it lists the rows 222 and 4437 of
chordsModesKeysScalesRoots that we displayed earlier.

To create the lists of “diatonic citizenship” in Sect. 5, we wrote addi-
tional code that takes four notes as input, looks up their information in
sameChordNotes and chordsModesKeysScalesRoots, and returns all the keys
and scales where the four-note chord lives, formatted for LATEX . We also wrote
code that turns MATLAB output into vector graphics by way of PSTricks. Due
to space limitations, we must omit this code. It is available upon request.

5 Results

Let us look at all five tetrachords that completely plug the semitonal gaps in the
C major scale. (There is more than one possible name for each chord. Names
below were assigned for convenience.) Beneath each chord, we list its diatonic
citizenship, adopting italicized abbreviations for scale types: M for the major
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scale, m for the melodic minor scale, hm for the harmonic minor scale, and hM
for the harmonic major scale. For chord types, we use “M” for major triads
and “m” for minor triads. Diatonic citizenship was determined according to the
MATLAB code and scale restrictions in Sect. 4.

G�M(9)

D�

G�

A�

B�

C�/D�
M

C�/D�
m

F�/G�
M

F�/G�
hM

BM Bm

E�m(11) E�

G�

A�

B�

C�/D�
M

C�/D�
m

D�/E�
m

D�/E�
hm

F�/G�
M

BM

E�m7 E�

D�

G�

B�

C�/D�
M

C�/D�
m

F�/G�
M

A�/B�
hm

BM BhM

E�7sus4 E�

D�

A�

B�

C�/D�
M

C�/D�
m

F�/G�
M

G�/A�
M

G�/A�
m

G�/A�
hm

G�/A�
hM

BM

A�7sus4

D�

E�

G�

A�

C�/D�
M

C�/D�
m

C�/D�
hm

C�/D�
hM

EM
F�/G�

M
F�/G�

m

BM

Recall that we are interested in widening the palette of available “colors” in
altered chords, where the vague notion of “color” could refer to a chord’s internal
intervallic structure or to its external diatonic context. First, regarding internal
intervallic structure: Note that all of these alternative altered chords lack the tri-
tone interval present in a V7 chord; and the seconds and fourths in these chords
generally outnumber the major and minor thirds.

Second, regarding external diatonic context: Observe that the use of any
of these alternative altered chords could be framed as temporary modulation
from the key of C major into C�/D� major, C�/D� melodic minor, B major, or
F�/G� major—keys that are adjacent to C major (C�/D�, B), or directly across
the circle of fifths (F�/G�). Therefore we may say that substituting alternative
altered chords for G7 in the II–V–I progression Dm7–G7–CM7, as opposed to
substituting the usual altered chords drawn from the G altered scale, maximizes
Schönberg’s schwebend, in the sense that C�/D� major, C�/D� melodic minor, B
major, and F�/G� major share fewer notes with C major than the G altered scale
(which is G�/A� melodic minor) shares with C major.
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In conclusion, refering to the itemized list of compromises in Sect. 2, we advo-
cate for V7 substitutions in jazz that let (i), chromatic voice leading, take prece-
dence over (ii), preservation of the V7’s dominant function, as well as over (iii),
maintaining common tones between two chords. As Schönberg writes in [5], “har-
monic usage is often created by coincidences of voice leading” (pg. 115).

6 Future Directions

Composition. By losing the essential chord tones of G7, the substitutions we
propose effectively erase the V in the II–V–I cadence in C major. How would
jazz sound if every V were replaced with these alternative altered chords? Do we
need to preserve the essential chord tones of G7? (Recall that the essential chord
tones are the 1, 3, and 7—so, the G, B, and F.) In other words, do we really need
the V in a II–V–I, or do we just need a chord that adds tension by temporarily
transporting us from the tonic while also serving as the chromatic glue between
the II and the I? We will rewrite a few jazz standards using our alternative
altered chords instead of dominant seventh chords, and we will disseminate the
recordings online. Our code could be easily modified to investigate additional
scales (e.g. octatonic), or to map out four-note chords in 31-TET and other
non-standard tuning systems. We look forward to collaborating with microtonal
guitarists on this front.

Analysis. This work is part of our long-term goal of applying the rich ideas in
[1] and [6] to the jazz tradition. Specifically, we hope to explore the voice-leading
dance of nearly even tetrachords—instead of nearly even triads—in and around
(perfectly even) diminished seventh chords—instead of augmented triads—by
analyzing examples from well-known jazz recordings, quantifying notions of
“color” in chromatic harmony along the way.
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Abstract. We expand information segmentation to include additional
properties of music geometry. We establish a distinct metric for invariant
chord structure (harmonic consistency) and models for conjunct melodic
motion and acoustic consonance. We combine these with centricity to
form a unified measure of music geometry. Using geometric predictors
and the LSQOP method, we classify music/non-music with comparable
results to AI/ML, between 76% and 92% f-score.

Keywords: Music geometry · Information geometry · Harmonic
consistency · Harmonic leading · Centricity · Dissonance ·
Consonance · Time-geometry · Qcurve · Quant-curve · Music
retrieval · Music detection · LSQOP

1 Introduction

Music information retrieval (MIR) dominates audio classification, rhythm,
melody, genre and emotion (MER) [19]. MIR began with self-similarity [8],
but focuses now on neural networks (NN, CNN, RNN) [10] and support vec-
tor machines (SVM) [20]. Artificial intelligence (AI) and machine learning (ML)
have proven successful with f-score as high as 85% [12,14]; however, AI/ML is
burdened by data availability, supervision and labeling. This also means pre-
processing (e.g. CUSUM, MLR, GLR, KCD [5,11]) is a major factor in finding
valid segments to process.

We use Tymoczko’s properties of music [23] as the basis for geometric audio
segmentation. Therefore, we further develop sufficient models for these prop-
erties as segmentation estimators [22]. If we combine geometrically segmented
(time/geometry) audio curves of the same class such as music, we arrive at prin-
cipal curves, which are the foundation for testing geometric variance (i.e. classi-
fying audio). Using a technique called LSQOP we will demonstrate classification
for music and non-music, comparable to AI/ML [9,15].
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2 QCurve Transform

Steinmetz and Gethner developed centricity segmentation via three parameter
Gamma and geodesic likelihood [1,2,22]. The following sections expand this by
modeling additional properties where the result is what we call time/geometry,
or qcurve.

Definition 1. (QCurve) A qcurve is a time series consisting of positive unitary
measures of musical geometry.

3 Harmonic Consistency

Harmonic consistency states “harmonies in a passage of music, whatever they
may be, tend to be structurally similar to one another [23].”

Definition 2 (Musical Structure). Let K12 = (V,E), V = {0, 1, · · · , 11} be a
complete graph with vertices labeled {0 = C, 1 = C#, · · · , 11 = B}. Every dis-
tinct edge and cycle Cr 3 ≤ r ≤ 12 having non-crossing edges in the embedded
K12 is a musical structure.

Definition 3. Two non-empty sets of musical frequencies are similar if infor-
mation gain due to geometric consistency is zero, or very small, such that dis-
tance D(θ(i),θ(i+1)) ≤ ε where ε is a fixed positive value. D(·) is dependent on
probabilities p(x1 |θ(i)), p(x2 |θ(i+1)) from [22].

Definition 3 expands on Cont’s idea of similarity [3] except here, we depend
on geometric divergence. There are trivial, but useful mapping between vertices
of a 12-gon and Z12 using the complex unit circle zs = f(s) = eiπ(15−s)/6,
s ∈ Z12. Assume musical frequency k ∈ R, where T : R → Z such that
T (k) = {0, 1, 2, . . . , 11} (i.e. pitch class). We define St(ki, kj) as shortest dis-
tance between Z12 elements, or integer separation between frequencies. Due to
chroma, there exists a distinct, linearly independent, invariant Euclidian dis-
tance for every 12-tone musical frequency pair, therefore frequencies of identical
integer separation are similar, which we will prove.

Because s = f−1(z) = 6 arg(z)
π and f−1(a) = f−1(b) ⇒ 6 arg(f(a))

π =
6 arg(f(b))

π ⇒ a = b, f is injective. Let γ be inner angle difference between com-
plex arguments. Due to injectivity, integer separation is modeled γ = γi − γj =
St (k1,k2)π

6 .

Lemma 1. Every pair of musical frequencies ki, kj has invariant Euclidian dis-
tance

2 sin

(
St(ki, kj)π

12

)
. (1)

Proof. Let zi, zj ∈ C, zi �= zj . We define magnitude | · | ≡ || · ||2. Due to the law
of cosines |zi − zj |2 = |zi|2 + |zj |2 − 2 |zi||zj | cos(θ). Since |z| = 1, |zi − zj |2 =
2(1 − cos(θ)). If γi = arg(zi), γj = arg(zj), then by the dot product

θ = cos−1(cos(γi)cos(γj) + sin(γi)sin(γj)).
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Substituting the angle and replacing identities gives |zi − zj |2 = 2(1 −
cos(γi)cos(γj) + sin(γi)sin(γj)). Multiply by 1

4 and substitute haversine

|zi − zj |2
4

=
1 − cos(γi − γj)

2
⇒ |zi − zj | = 2 sin(

γi − γj

2
).

Constrained to the positive domain and substituting γ leaves

2 sin

(
St(ki, kj)π

12

)
= |zi − zj |.

Since rotation is unitary, all distinct pairs of musical frequencies have invariant
Euclidian distance of this form. �	

Lemma 1 is chroma-agnostic, linearly dependent, dyad similarity, but remov-
ing homogeneity makes all dyad pairs linearly independent under this mapping,
therefore

tone distance = δt(ki, kj) = 2 sin

(
St(ki, kj)π

12

)
+ St(ki, kj). (2)

Tone distance is symmetric δt(ki, kj) = δt(kj , ki), invariant under rotation and
satisfies triangle inequality. Because ki = kj implies δt(ki, kj) = 2 · sin(0) +
0 = 0, (2) is a metric space. It follows frequencies are similar if and only if,
tone distance are equivalent. Path distance = Pδ(F(i)) is defined as the sum of
tone distance, assuming frequencies F(i) = {kj}n

j=1. Using logical reduction and
brute force search, we find no duplicate path distances among all 12-tone chords.
Temporally, inverse harmonic consistency = HC−1 = σ(H) ≤ Mh = 18.24,
where σ is standard deviation, H = {Pδ(F(i))}∞

i=1 and F(i) are sequential. Given
no discernable notes, noise, or silence HC−1 = Mh.

4 Harmonic Leading

Harmonic leading is the combined measure of harmonic consistency, voice leading
and conjunct melodic motion (CMM). CMM is the tendency for “melodies to
move by short distances from note to note [23].” Due to [4] musical metric
distance Δ(k1, k2) can be leveraged assuming P ∈ R

m×n, whose columns are
frequencies sorted in ascending order with P ij = 0, when m differs. From this,
we approximate conjunct melodic motion

∇(P ) =

∣∣∣∣∣∣
n−1∑
j=1

m∑
i=1

min{Δ(P ij ,P i(j+1))}
∣∣∣∣∣∣ , (3)

which also dampens overfit1. Assuming σ(·) = stddev, f = frame count and
Δ(·) ≤ Mv = 6 [4]

harmonic leading = 1 − σ(H) + ∇(P)
Mv(f − 1) + Mh

. (4)

1 Harmonic leading overfit is defined as acoustically perceivable chord transposition,
or inversion.
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As a side note, we tested harmonic leading on Harte’s 16 songs [13] with mod-
erate success of 58% f-score, but we were unable to match HCDF retrieval. We
recommend an HCDF quantifier experiment using our information framework,
which we leave as an open problem.

5 Consonance

Definition 4. Acoustic consonance is the inverse of dissonant contributions
between 20 and 250 Hz of center frequency, within critical band β [7,17,18].

Given F (k) = |FFT |, we select τ = |k−argmaxx [F (k) · F (k + x)] |, x ≤ 250
which implies

congruence score = Cτ (k) =
1

max{|F |}
k+β/2∑

x=k−β/2

F (x) fτ (x), (5)

correlating fτ (x) = max{F}/2 [ cos(2πx/τ) + 1]. We center on kc : |kc − k| ≤
β/2, selecting kj : F (kj) ≥ max(F )

4 and observe C =
{|Cτj (kj)|

}n

j=1
converge to

a block wave as dissonant contribution increases. Therefore,

1 − consonance = dissonance =
max(C)

2Md

n∑
j=1

D · Cj , (6)

where max dissonance = Md ≈ 10 and D = sgn
[
cos( 2πj

s )
]
+ 1 over bandwidth

s ≤ β. β is displacement between the two loudest frequencies in critical band.

6 LSQOP

Qcurves are synthesized using [22] and combinations of AC = acoustic conso-
nance, C = centricity, HL= harmonic leading and MG = music geometry.

MG = 1 − 2
π

cos−1

(
U · V√
3 ||V ||

)
(7)

is overlap between ideal U = (1, 1, 1) and measured vector V = (AC,
C, HL). We observe ordinal separation between qcurves of differing classes,
exposing an opportunity to train principal qcurves as a model for varia-
tion. Figure 1 illustrates least squares ortho projector (LSQOP) method,
assuming input audio qcurve q(x), principal qcurve trend-line segments
{p0, p1}(music), {p2, p3}(non-music) and arbitrary point d = (x, q(x)). There
exist x1 = p0 + Resp1−p0(d − p0) and x2 = p1 + Resp3−p2(d − p2) assuming
Res(·) implies vector resolute. P = (0,1)(0,1)T

(0,1)T (0,1)
, a1 = ||P d||, a2 = ||Px1|| and

a3 = ||Px2||, yields ratio

m(x) =

⎧⎪⎨
⎪⎩

1 a1 > a2

0 a1 < a3 or a3 > a2
||a1−a3||
||a2−a3|| otherwise.

(8)
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Fig. 1. Classification of audio qcurve q(x), contrasted with trend lines from trained
principal qcurves for music (top) and non-music (bottom).

Musical probability M = E[m(x)] has binary pass/fail M ≥ ε with expectation
E[·] and non-negative musical threshold ε ≤ 1. Threshold varies depending on
curve training.

7 Evaluation and Analysis

Verification of LSQOP and time/geometry involved classification experiments
with GTZAN [24], TUT-17 (parts 1&2) [16], SWS1 (used by [6,21]), SWS2
(music), SWS3 (non-music) and SWS4 (non-music) data. The database con-
tains 1556 music and 1441 non-music, totaling 2776 files. Custom data were
created to fool LSQOP due to abnormal accuracy on GTZAN (100%) and TUT
(92%). Custom data contains random quality, sample rate, content, size and
non-thematic clips from samplefocus.com, partnersinrhyme.com, bensound.com,
freemp3cloud.com and BBC Sound Effects. Custom non-music sets contain sev-
eral categories (e.g. people, urban, construction, natural, office, animals, house-
hold, video games, military/war, etc.). Custom music sets are spread (mostly)
even across several genres with famous, lesser known artists, synthesised and
“poor” quality.

We performed three tests using LSQOP for music/non-music classification.
The first and second test measures accuracy on all 2997 files. In the first we
process the starting 10s of each file and in the second we process [.2, 3]s random
samples from each file. Assuming notation (score/segment) (see [22]), (MG/HL)
was effective with non-random samples at 96.4% accuracy for music and 70.78%
classifying non-music. (MG/AC) was effective on random samples with 80%
accuracy for music and 78% for non-music.

Table 1 is the result of an information retrieval (IR) exercise involving
requests for music/non-music from a database (not all tests shown). Small ran-
domly populated datasets are drawn from the entire clip database and each set
is guaranteed to carry (roughly) equally distributed music and non-music. The
results here are f-scores between 76% and 92%, averaging around 81.6%.
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Table 1. Classification on randomly constructed subsets of the database. M =
Music, N = Non-music, n = Num Random Samples, p = Precision, r = Recall, f
= FScore. Training data shorthand: A ≡ (SWS2/SWS4), B ≡ (SWS2/TUT), C ≡
GTZAN/SWS[1–3]. This table was inspired by [13].

Quantifier Mn Mp Mr Mf Nn Np Nr Nf

MG-C 10s 28 86% 92% 89% 28 93% 87% 90%

(AC/C)-B 10s 27 80% 92% 86% 27 92% 79% 85%

(MG/AC)-A 6s 22 100% 80% 89% 22 86% 100% 92%

8 Conclusions

We showed how 12-tone chroma-agnostic frequency pairs are mapped to a dis-
tinct, linearly independent, invariant measure of harmonic distance as a metric
space. We provided a unique measure of musical chords (path distance) and dis-
cussed how to quantify harmonic consistency over successive frames. By combin-
ing this idea with work in voice leading we modeled conjunct melodic motion as
harmonic leading. We then developed a straightforward approximation of acous-
tic consonance using psychoacoustic theory. From these measures we devised a
unified score for musical geometry and showed how principal qcurves combined
with LSQOP is effective in retrieval with consistent f-scores between 76% and
92%, averaging 81.6%.

Individually, the proposed musical property models have independent value
for measuring structural content and acoustic quality analysis. The success of
LSQOP is clear, but optimal time/geometry combinations require further exper-
iments. Because audio data were successfully used to train accurate results
against other audio, this opens the question of ideal data for use in widespread
classification. We must also consider the disparity between music and non-music
success, which itself can present a challenge to blind classification using the same
geometric properties for music and non-music.
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Abstract. In this paper, we use pitch-class vector embeddings to study
scale relationships between composers. Recent research in natural lan-
guage processing (NLP) has used machine learning to derive vector
representations-known as embeddings—for words based on their co-
occurrence.Borrowing fromNLP,weuse theword2vec algorithm to encode
windowsofpitch-classes,orpitch-classvectors, ofmusic.Weshowthatthese
embeddings not only replicate the well-known theoretical circle of fifths,
but can also capture stylistic nuances between composers’ use of scales.
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1 Introduction

In Natural Language Processing (NLP), the word2vec algorithm is a technique
for deriving vector representations-known as embeddings-for words by iterat-
ing through a corpus [7]. Embeddings contain information about the syntactic
placement and the semantic similarity of words. In symbolic music research,
recent studies have explored musical embeddings for chords [6], and motivic
fragments [1], as well as applications for harmonic tension [8], and music gen-
eration [2]. In this paper, we used word2vec to derive scale embeddings from
pitch-class collections of different composers and compare embeddings between
and within their styles.

2 Methodology: Word2vec, Encoding Procedure,
and Training

2.1 Word2vec Algorithm

As said, the aim of the word2vec model is to generate dense vector representa-
tions (embeddings) for words based on their co-occurrence. Each unique word
in a corpus is represented with a corresponding vector, with words that occur
near one another in the corpus having similar embedding vectors. Since words
with semantic similarity have similar syntactic placement, they also have similar
embedding vectors (whether or not they not co-occur). In this paper, we used the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Montiel et al. (Eds.): MCM 2022, LNAI 13267, pp. 405–410, 2022.
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skip-gram version of word2vec: given a corpus W of words w with surrounding
context-words c, the algorithm maximizes the likelihood of surrounding words:

arg max
θ

∏

w∈W

∏

c∈C

P (c|w; θ) (1)

where vc and vw are vector representations of words v and c respectively and C
is the set of all contexts, the probability P (c|w; θ) is calculated with the softmax
function:

P (c|w; θ) =
exp(vcvw)∑

cᵀ∈C exp(vcᵀvw)
(2)

2.2 Encoding Procedure

As the word2vec algorithm is designed to parse words in a corpus, we needed
both a corpus and a method for encoding musical objects as words-our musical
vocabulary. For the corpus, we used the Yale Classical Archives Corpus, hence-
forth YCAC [11]. The YCAC is a spreadsheet of 13,769 midi files of works by
571 composers. Each midi file is parsed into “slices” containing the set of vertical
pitches at any new pitch onset, time points T as quarter-note offsets from the
beginning of the score, and other metadata.

For each piece, we extracted pitch classes using a sliding windowing proce-
dure. Where a piece at, at+x, . . . , aT consists of slices A at corresponding time
points T , a window of length m is a subsequence st = at, at+x, . . . , at≤t+m. Each
piece therefore contained T − m windows, with each window consisting of m
adjacent slices. Pitch classes in a window were then encoded as fixed-length,
pitch-class vectors PC = {pc0, pc1, ..., pc11} ∈ {0, 1}11 where the pitch class
with subscript 0=C, subscript 1=C#/Db, etc. Present pitch classes in a win-
dow were represented as 1, and absent pitches were represented as 0, i.e. the
C-major scale, for example, is represented as {1,0,1,0,1,1,0,1,0,1,0,1}. In NLP,
this encoding method is also known as one-hot encodings. Note that since our
methodology had no concept of tonic, pitch-class vectors represented multiple
scales simultaneously: C major and A natural minor have the same collection
and were represented identically. This is a significant simplification of scale and
should not be taken as the end goal. Rather, the work here represents a crude
proof-of-concept where future work might use weighted pitch-class vectors to
distinguish pitch-class salience [3].

We then windowed pieces for four well-represented composers in the cor-
pus: Mozart, Liszt, Saint-Saens, and Debussy (Table 1). To find an appropriate
window length, we approximated the standard 7-diatonic-pitch scale by aver-
aging the number of notes per window for windows of length 2–10 quarter
notes (Fig. 1). Reflecting the historical narrative that chromaticism progressively
increased over time, Mozart and Liszt use fewer pitches per window than Debussy
and Saint-Saëns. Given the results of Fig. 1, window size m was set to 6 quarter-
note beats for Mozart and Liszt and 5 for Saint-Saëns and Debussy.

Table 2 shows the total number of windows for each composer and the percent
of major/natural minor and harmonic minor collections for each. 27% of windows
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Table 1. Sampled yale classical archives corpus data.

Composer No. of pieces in YCAC No. of notes Avg. notes per piece

Mozart 882 3,865,439 4,382.58

Liszt 125 806,025 6,448.2

Saint-Saëns 72 504,663 6,913.19

Debussy 39 170,773 4,378.79
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Fig. 1. Average number of notes with different window sizes, where window size is in
quarter-note beats.

in the Mozart model were categorized as diatonic collections, whereas this was
between 10%–14% for the other three composers, reflecting a larger variety of
pitch-class collections for Liszt, Saint-Saëns, and Debussy. For a closer look, we
looked at the top 5 most frequent pitch-class vectors for each composer (Table 3).
Diatonic collections occupied the majority of positions in the table. For Liszt and
Debussy, the most frequent pitch-class vector was the aggregate (all 12 pitches
in a vector). In fact, the aggregate pitch-class vector for Liszt was more frequent
than the next four diatonic sets combined. For Saint-Saëns, the most common
pitch-class collection was an empty vector. These results show that Liszt and
Debussy cycle through pitch classes at a faster notated rate than the others and
that Saint-Saëns often has longer durations with no new pitch classes introduced.

Table 2. Frequency and percent of diatonic collections in windows.

Composer Total no. of windows Total major Total harmonic minor % diatonic

Mozart 464,229 98,490 11,806 27%

Liszt 82,179 6,442 2,282 11%

Saint-Saëns 40,643 4,645 1,093 14%

Debussy 13,923 1,931 125 15%

2.3 Model Parameters

Using the Gensim Python library, word2vec was then used to find embeddings
for the resulting set of pitch-class vectors, mapping pitch-class vectors onto scale
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Table 3. Top 5 frequent pitch-class vectors and their respective frequency sorted by
composer.

Composer #1 frequent #2 frequent #3 frequent #4 frequent #5 frequent

Mozart C maj: 18,347 Bb maj: 17,580 D maj: 17,395 G maj: 16,189 Eb maj: 15,055

Liszt All PCs: 3,187 F# maj: 927 C maj: 798 E maj: 726 A maj: 620

Saint-Saëns No PCs: 1,067 C maj: 921 Eb maj: 853 All PCs: 689 E maj: 588

Debussy All PCs: 487 E maj: 352 C maj: 258 A maj: 207 F maj: 186

embeddings. The scale embeddings here were set to 25 = 32 dimensions. If a
pitch-class vector c was within 6 beats of pitch-class vector w, it was included as
a context pitch-class vector for w, notated as “Context Windows” and “Target
Windows.” For each target window, Word2vec maximizes the probability (using
negative sampling) of context windows within 6 beats. We trained four models,
one on each of the four composers, where each model iterated over the composer-
corpus 20 times.

3 Properties of Embeddings

3.1 The Circle of Fifths According to the Mozart Model

Given the high dimensionality of embeddings, we used t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) to visualize the embeddings in a 2-dimensional
space [10]. The left side of Fig. 2 shows the Mozart model’s scale embeddings plot-
ted in 2 dimensions. This figure resonates with music-theoretical claims about
the circle of fifths (COF). The COF is a metric for scale distance: the further a
scale on the COF, the more distant it is [5]. However, not all fifth-adjacent scales
are equidistant. For example, A major is much closer to D major than it is to E
major. This was likely the effect of absolute key: Mozart wrote more frequently
in D major than in A major, and since pieces often modulated to their dominant
in the classical period, A was drawn closer to D.

Including harmonic minor scales and clustering embeddings with euclidean
distances still captured the COF (right side of Fig. 2). Each color in the figure
are quadrants on the circle of fifths. There is only one minor scale–C# minor
(marked with an asterisk)–located far away from its relative major.

3.2 Composer Embeddings Correlated with the Circle of Fifths

Calculating the cosine distance from C major to each other major scale for each
of the four models resulted in Fig. 3. Beside the embedding distances, we plotted
the distances according to the COF (normalized). COF distances were calculated
based on a unit circle with 12 equidistant points from the center, measured with
both angular and Euclidean metrics. Notably, each model in Fig. 3 makes an
arch, signifying that distance from C gets further around the COF until reaching
its diametrically opposed point (F#/Gb). The models roughly approximate the
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Fig. 2. Mozart model: major scale embeddings clustered with t-SNE (left) and
major/minor scale embeddings clustered k-hierarchical clustering (right).

COF distances, and correlations also values also verify this claim. Correlations
with the angular and Euclidean COF distances are, respectively, Mozart(.84, .9),
Liszt(.78, .86), Saint-Saëns(.89, .94), and Debussy(.94, .96).

Fig. 3. Cosine distances from C-major scale embedding.

Examining Fig. 3 further reveals stylistic differences between composers. The
Mozart model is relatively flat after two steps around the COF–approximately
around .68. If we were to generalize this to other keys, this restates a well-known
intuition: in the style of Mozart, fifths surrounding the tonic key are the most
likely to be modulation goals. Despite having commensurate note-average-per-
window values (Fig. 1), the Liszt model correlated less with the COF than the
Mozart model (or any of the models, for that matter). This reveals his stylistic
tendency to modulate to third-related keys [4,9]: Fig. 3 shows that Ab major–a
scale 4 flats away on the COF–is closer to C than any other scale besides scales
with keys with a single flat (F) or sharp (G).

Surprisingly, the Debussy model had a higher correlation with the COF
(angular and Euclidean) than any of the other models. This could represent
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the disentangling of the tonic-dominant key-relationship dichotomy: whereas
other composers consistently modulate to fifth-related scales, drawing their fifth-
related embeddings close together, the dominant’s relationship is weighted less
in Debussy’s music.

4 Conclusion

We have shown that scale embeddings, encoded as pitch-class vectors, capture
style-specific musical intuition about scale relationships within common-practice
art music. The composers modeled here treat scales differently, resulting in
nuanced distances between embeddings. Future avenues for research should first
more accurately encode pitch-classes to correspond with scale-degree salience,
and might then study the relationship between chord and scale embeddings, and,
perhaps, how this interaction changes between and within composers over time.
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motifs. In: Montiel, M., Gómez-Martin, F., Agust́ın-Aquino, O.A. (eds.) Inter-
national Conference on Mathematics and Computation in Music, pp. 325–332.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-21392-3 26

2. Brunner, G., Wang, Y., Wattenhofer, R., Wiesendanger, J.: JamBot: Music theory
aware chord based generation of polyphonic music with LSTMs. In: 2017 IEEE
29th International Conference on Tools with Artificial Intelligence, pp. 519–526.
IEEE (2017)

3. Chiu, M.: Macroharmonic progressions through the discrete fourier transform: an
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