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Abstract. Errors in Description Logic (DL) ontologies are often
detected when a reasoner computes unwanted consequences. The ques-
tion is then how to repair the ontology such that the unwanted conse-
quences no longer follow, but as many of the other consequences as pos-
sible are preserved. The problem of computing such optimal repairs was
addressed in our previous work in the setting where the data (expressed
by an ABox) may contain errors, but the schema (expressed by an EL
TBox) is assumed to be correct. Actually, we consider a generalization
of ABoxes called quantified ABoxes (qABoxes) both as input for and as
result of the repair process. Using qABoxes for repair allows us to retain
more information, but the disadvantage is that standard DL systems do
not accept qABoxes as input. This raises the question, investigated in
the present paper, whether and how one can obtain optimal repairs if
one restricts the output of the repair process to being ABoxes. In gen-
eral, such optimal ABox repairs need not exist. Our main contribution
is that we show how to decide the existence of optimal ABox repairs in
exponential time, and how to compute all such repairs in case they exist.

1 Introduction

Description Logics (DLs) [2] are a successful family of logic-based knowledge
representation languages, which are employed in various application domains,
but arguably their most prominent success was the adoption of the DL-based
language OWL1 as the standard ontology language for the Semantic Web. A
DL knowledge base (aka ontology) consists of a TBox and an ABox. In the for-
mer, concepts can be used to state terminological constraints as so-called general
concept inclusions (GCIs). For example, the concept ∃parent .(Famous � Rich)
describes individuals that have a parent that is both famous and rich, and the
GCI ∃friend .Famous � Famous states that individuals that have a famous friend
are famous themselves. The expressiveness of a DL depends on which construc-
tors for building concepts are available. The concepts in our example use the
1 https://www.w3.org/OWL/.
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constructors conjunction (�) and existential restriction (∃r.C), which together
with the top concept (�) are the ones available in the DL EL, to which we restrict
our attention here. While being quite inexpressive, EL is nevertheless frequently
used for building ontologies,2 and it has the advantage over more expressive DLs
that reasoning is polynomial w.r.t. EL ontologies. In the ABox, one can relate
named individuals with concepts and with each other. For example, the con-
cept assertion (∃parent .Rich) (BEN ) states that Ben has a rich parent, and the
role assertion friend(BEN , JOHN ) says that Ben has John as friend. If concept
assertions are restricted to employing only concept names, like Famous(JOHN ),
rather than complex concepts, then the ABox is called simple. DL systems pro-
vide their users with inference services that automatically derive implicit conse-
quences such as instance relationships. For example, given the ABox assertions
and the GCI introduced above, we can derive that Ben is famous, i.e., that the
assertions Famous(BEN ) follows from this ontology.

Although DL reasoners are usually sound (i.e., only derive instance relation-
ship that indeed follow from the ontology), a computed consequence may still
be incorrect in the application domain, due to the fact that the modelling of
the domain in the ontology is erroneous. The question is then how to repair the
ontology such that one gets rid of the unwanted consequences, but retains as
many consequences as possible. Classical repair approaches that are based on
removing axioms from the ontology [8,11,15,16,18,19] are not optimal since, by
removing large axioms, one may also lose information that does not contribute
to the unwanted consequence. For example, if the concept assertion for John is
(Famous � Rich)(JOHN ) rather than just Famous(JOHN ), then to get rid of
the consequence Famous(BEN ) we need to remove the whole assertion, and thus
unnecessarily also lose the information that John is rich.

Extending on our previous work in [5,7], we investigated in [3] how to com-
pute optimal repairs in a setting where the ABox may contain errors, but
the TBox is assumed to be a correct EL TBox, and thus remains unchanged.
More precisely, we consider a generalization of ABoxes called quantified ABoxes
(qABoxes) both as input for and as result of the repair process since this allows
us to retain more consequences. Such a qABox is a simple ABox where, how-
ever, some of the individuals are anonymized, which is formally expressed by
existentially quantifying over them. In [3], we introduce two different notions
of repair, depending on which entailment relation between qABoxes is consid-
ered: classical logical entailment or IQ-entailment, where the latter retains as
many instance relationships as possible (but not necessarily answers to conjunc-
tive queries). For the IQ case, we show that optimal IQ-repairs always exist and
can be computed in exponential time. In the worst case, such repairs may be
exponentially large and there may be exponentially many of them. Reusing an
example from the introduction of [3], let us assume that the input ABox con-
tains the information that Ben has a parent, Jerry, that is both rich and famous,
that the TBox contains the GCI Famous � Rich, and that we want to remove
the consequence (∃parent .(Rich � Famous))(BEN ). Using the optimized repair

2 For example, the large medical ontology SnomedCT is an EL ontology.
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approach of [3], we obtain the following qABox as one of the optimal IQ-repairs:
∃{y}.{parent(BEN , y),Rich(y),Famous(JERRY ),Rich(JERRY )}.

The advantage of using qABoxes rather than ABoxes for repair is that more
information can be retained (e.g. the fact that Ben has a rich parent). The
disadvantage is that, though anonymized individuals are part of the OWL stan-
dard, DL systems usually do not accept them as input. Thus, the question arises
whether one can also obtain optimal repairs if one restricts the output of the
repair process to being ABoxes. In the above example, the qABox obtained as an
optimal IQ-repair can actually be expressed by an ABox with complex concept
assertions: {(∃parent .Rich)(BEN ),Famous(JERRY ),Rich(JERRY )}.

However, this is not always the case. As an example, consider the ABox A :=
{parent(BEN , JERRY ),Rich(JERRY )} and the TBox T := {∃parent .Rich �
Famous,Famous � ∃friend .Famous,∃friend .Famous � Famous}, which
together imply that Ben is famous. Assume that Ben wants to get rid of this con-
sequence. The repair approach of [3] yields the following qABox as an optimal IQ-
repair: ∃{x, y}.{parent(BEN , x),Rich(JERRY ), friend(BEN , y), friend(y, y)}.
This qABox retains the information that Ben has a parent (but not that Jerry
is this parent) and that Ben is the starting point of an infinite friend -chain, i.e.,
Ben belongs to the concepts Cn := (∃friend .)n� for all n ≥ 1. The latter is the
reason why this qABox cannot be expressed by an IQ-equivalent ABox, which in
turn is the reason why there is no optimal ABox repair. The culprit is obviously
the cycle friend(y, y). However, such cycles need not always cause problems. In
fact, if we remove the third GCI ∃friend .Famous � Famous from the TBox,
then the following qABox is an optimal IQ-repair:

∃{x, y}.{parent(BEN , x),Rich(JERRY ),
friend(BEN , y), friend(y, y),Famous(y)}.

This qABox can be expressed by an ABox that is IQ-equivalent to it w.r.t.
the given TBox: {(∃parent .�)(BEN ),Rich(JERRY ), (∃friend .Famous)(BEN )}.
The reason is that, due to the existence of a famous friend of Ben, the GCI
Famous � ∃friend .Famous now yields the infinite friend -chain.

These examples demonstrate that optimal ABox repairs may not always exist,
and that it is not obvious to see when they do. The main contribution of the
present paper is that we show how to decide the existence of optimal ABox
repairs in exponential time, and how to compute all such repairs in case they
exist. There may exist exponentially many such repairs, and each one may in
the worst case be of double-exponential size. Our approach for showing these
results roughly proceeds as follows. First, we observe that classical entailment
between a qABox and an ABox coincides with so-called IRQ-entailment, which
is slightly stronger than IQ-entailment by additionally taking role assertions
between named individuals into account. Then, we show that both the canonical
and the optimized IQ-repairs of [3] cannot only be used to obtain all optimal
IQ-repairs, but also to compute all optimal IRQ-repairs. Subsequently, we intro-
duce the notion of an optimal ABox approximation of a given qABox, and prove
that the set of optimal ABox approximations of all optimal IRQ-repairs yields all
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optimal ABox repairs. A given qABox may not have an optimal ABox approx-
imation, but if it does, then this approximation is unique up to equivalence
and of at most exponential size. Then we investigate the problem of deciding
the existence of optimal ABox approximations. The first step is to transfer the
qABox into a specific form, called pre-approximation, which is saturated w.r.t.
the TBox and consists of the original role assertions between named individuals
and for each named individual a a sub-qABox Ba. We prove that the original
qABox has an optimal ABox approximation iff all the named individuals a have
a most specific concept Ca in Ba w.r.t. the TBox. The optimal ABox approxima-
tion is then obtained by replacing each Ba with Ca(a) in the pre-approximation.
We can then use the results stated in [20] to test the existence of the msc in
polynomial time3 and to generate the at most exponentially large msc. Given
that the optimal IRQ-repairs may be of exponential size, this yields the complex-
ity upper bounds for testing the existence and computing optimal ABox repairs
mentioned above. Due to space constraints, we cannot give complete proofs of
all our results. They can be found in [4].

2 Preliminaries

We start with introducing the DL EL as well as TBoxes and (quantified) ABoxes.
Then we consider the entailment relations relevant for this paper.

The name space available for defining EL concepts and ABox assertions is
given by a signature Σ, which is the disjoint union of sets ΣO, ΣC, and ΣR

of object names, concept names, and role names. Starting with concept names
and the top concept �, EL concepts are defined inductively: if C,D are EL
concepts and r is a role name, then C � D (conjunction) and ∃r.C (existential
restriction) are also EL concepts. An EL general concept inclusion (GCI) is of the
form C � D, an EL concept assertion is of the form C(u), and a role assertion
is of the form r(u, v), where C,D are EL concepts, r ∈ ΣR, and u, v ∈ ΣO. An
EL TBox is a finite set of EL GCIs and an EL ABox is a finite set of EL concept
assertions and role assertions. Such an ABox is called simple if all its concept
assertions are of the form A(u) with A ∈ ΣC. A quantified ABox (qABox) is of
the form ∃X.A where X is a finite subset of ΣO and A is a simple ABox, which
we call the matrix of ∃X.A. We call the elements of X variables and the other
object names occurring in A individuals.4 The set of individual names occurring
in ∃X.A is denoted with ΣI(∃X.A), and the set of all object names (including
the variables) with ΣO(∃X.A).

The semantics of the syntactic entities introduced above can either be defined
directly using interpretations, or by a translation into first-order logic (FO). For
the sake of brevity, we choose the latter approach (see [3] for the former). In the
translation, the elements of ΣO, ΣC, and ΣR are respectively viewed as constant
3 The proof for this polynomiality result in [20] is actually incorrect, but we show how

to correct it.
4 The variables correspond to what we have called anonymized individuals in the

introduction, and the individuals to what we have called named individuals.
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symbols, unary predicate symbols, and binary predicate symbols. EL concepts
C are inductively translated into FO formulas φC(x) with one free variable x:

– concept A for A ∈ ΣC is translated into A(x) and � into A(x) ∨ ¬A(x) for
an arbitrary A ∈ ΣC;

– if C,D are translated into φC(x) and φD(x), then C � D is translated into
φC(x) ∧ φD(x) and ∃r.C into ∃y.(r(x, y) ∧ φD(y)), where φD(y) is obtained
from φD(x) by replacing the free variable x by a different variable y.

GCIs C � D are translated into sentences φC�D := ∀x.(φC(x) → φD(x)) and
TBoxes T into φT :=

∧
C�D∈T φC�D. Concept assertions C(u) are translated

into φC(u), role assertions r(u, v) stay the same, and ABoxes A are translated
into the conjunction φA of the translations of their assertions. For a quantified
ABox ∃X.A, the elements of X are viewed as first-order variables rather than
constants, and its translation is ∃�x.φA, where �x is the tuple of the variables in
X in arbitrary order.

Let α, β be (q)ABoxes, concept inclusions, or concept assertions (possibly not
both of the same kind), and T an EL TBox. Then we say that α entails β w.r.t.
T (written α |=T β) if the implication (φα ∧ φT ) → φβ is valid according to the
semantics of FO. Furthermore, α and β are equivalent w.r.t. T (written α ≡T β),
if α |=T β and β |=T α. In case T = ∅, we will sometimes write |= instead of
|=∅. If ∅ |=T C � D, then we also write C �T D and say that C is subsumed by
D w.r.t. T ; in case T = ∅ we simply say that C is subsumed by D. If ∃X.A |=T

C(a), then a is called an instance of C w.r.t. ∃X.A and T . For ABoxes, the
instance relation is defined analogously. Entailment between qABoxes w.r.t. an
EL TBox is NP-complete, but the subsumption and the instance problem are
polynomial [7].

Note that ABoxes are a special case of qABoxes. For simple ABoxes, this is
the case where X = ∅. For general ABoxes, one can express complex concept
assertions by introducing existentially quantified variables (e.g., {(A�∃r.B)(a)}
is equivalent to ∃{x}.{A(a), r(a, x), B(x)}). For this reason, the entailment rela-
tions defined below for qABoxes are also well-defined for ABoxes.

IQ-Entailment. If one is mainly interested in asking instance queries, i.e., in
what kind of instance relations a qABox entails, then the following weaker form
of entailment can be used [3,7]. We say that the qABox ∃X.A IQ-entails the
qABox ∃Y.B w.r.t. the EL TBox T (written ∃X.A |=T

IQ ∃Y.B) if every concept
assertion C(a) entailed w.r.t. T by the latter is also entailed w.r.t. T by the
former. Whenever we compare two qABoxes ∃X.A and ∃Y.B, we follow [7] and
assume without loss of generality that they are renamed apart, which means that
X is disjoint with ΣO(∃Y.B) and Y is disjoint with ΣO(∃X.A), and we further
assume that the two qABoxes speak about the same set of individual names
ΣI := ΣI(∃X.A) ∪ ΣI(∃Y.B).

For the case of an empty TBox, it was shown in [7] that ∃X.A |=∅
IQ ∃Y.B

iff there is a simulation from ∃Y.B to ∃X.A. A simulation from ∃Y.B to
∃X.A is a relation S ⊆ ΣO(∃Y.B) × ΣO(∃X.A) such that (a, a) ∈ S for each
a ∈ ΣI and, for each (u, v) ∈ S, A(u) ∈ B implies A(v) ∈ A and r(u, u′) ∈ B
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implies that there exists an object v′ ∈ ΣO(∃X.A) such that (u′, v′) ∈ S and
r(v, v′) ∈ A. Since checking the existence of a simulation can be done in poly-
nomial time [10], the simulation characterization of IQ-entailment shows that
IQ-entailment between qABoxes can be decided in polynomial time if T = ∅ [7].

Fig. 1. The IQ-saturation rules from [3].

To extend these results to the case of a non-empty TBox, the notion of an
IQ-saturation is introduced in [3]. The saturation rules given in Fig. 1 add new
variables and assertions to the qABox if the existence of a corresponding element
and the validity of the assertion is implied by the TBox. To be more precise,
for each existential restriction ∃r.C occurring in T , a fresh variable xC not
contained in the initial qABox is introduced. When applying the ∃-rule to an
assertion of the form (∃r.C)(t), this variable is always used for the successor
object. As pointed out in [3], IQ-saturation (i.e., the exhaustive application of
the IQ-saturation rules) terminates in polynomial time and generates a qABox
satTIQ(∃X.A), which can be seen as a qABox representation of what is called the
canonical model in [13, Sect. 5.2]. IQ-entailment for qABoxes w.r.t. an EL TBox
is now characterized in [3] as follows.

Theorem 1 ([3]). Let T be an EL TBox and ∃X.A and ∃Y.B qABoxes. Then
the following statements are equivalent:

– ∃X.A |=T
IQ ∃Y.B,

– satTIQ(∃X.A) |=∅
IQ ∃Y.B,

– there is a simulation from ∃Y.B to satTIQ(∃X.A).

Since the IQ-saturation can be computed in polynomial time, this clearly shows
that IQ-entailment for qABoxes w.r.t. an EL TBox can also be decided in poly-
nomial time.

IRQ-Entailment. If we are not only interested in implied concept assertions, but
also in implied role assertions, then IQ-entailment is not sufficient. Instead, we
must use IRQ-entailment. We say that the qABox ∃X.A IRQ-entails the qABox
∃Y.B w.r.t. the EL TBox T (written ∃X.A |=T

IRQ ∃Y.B) if every concept or role
assertion entailed w.r.t. T by the latter is also entailed w.r.t. T by the former.
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It is easy to see that a qABox cannot entail a role assertion involving a vari-
able, and it can only entail a role assertion between individuals if its matrix con-
tains this assertion. This yields the following characterization of IRQ-entailment,
which shows that IRQ-entailment can be decided in polynomial time.

Proposition 2. Let T be an EL TBox and ∃X.A and ∃Y.B qABoxes. Then
the following statements are equivalent:

– ∃X.A |=T
IRQ ∃Y.B,

– ∃X.A |=T
IQ ∃Y.B and r(a, b) ∈ B implies r(a, b) ∈ A for all r ∈ ΣR and

a, b ∈ ΣI.

Since ABoxes consist of concept and role assertions, we obtain the following
characterization of entailment between a qABox and an ABox, which implies
that this entailment can be decided in polynomial time.

Proposition 3. Let T be an EL TBox, ∃X.A a qABox, and B an ABox. Then
∃X.A |=T B iff ∃X.A |=T

IRQ B.

3 Optimal ABox Repairs and Approximations

We first introduce the notion of an optimal repair w.r.t. an entailment relation,
and show that the approaches for computing optimal IQ-repairs described in [3]
can also be used to compute optimal IRQ-repairs. Then, we define optimal ABox
approximations and show some useful properties for them. Finally, we introduce
optimal ABox repairs, and describe how optimal ABox approximations can be
used to obtain them from optimal IRQ-repairs.

3.1 Optimal IQ- and IRQ-Repairs

We start by recalling the definition of optimal repairs given in [3], but consider
IRQ as an additional entailment relation.

Definition 4. Let T be an EL TBox and QL ∈ {IRQ, IQ}.

– An EL repair request is a finite set of EL concept assertions.
– Given a qABox ∃X.A and an EL repair request R, a QL-repair of ∃X.A for R

w.r.t. T is a qABox ∃Y.B such that ∃X.A |=T
QL ∃Y.B and ∃Y.B �|=T C(a)

for all C(a) ∈ R.
– Such a repair ∃Y.B is optimal if there is no QL-repair ∃Z.C of ∃X.A for R

w.r.t. T such that ∃Z.C |=T
QL ∃Y.B and ∃Y.B �|=T

QL ∃Z.C.

Two qABoxes are QL-equivalent if they QL-entail each other, and ∃X.A
strictly QL-entails ∃Y.B if ∃X.A |=T

QL ∃Y.B and ∃Y.B �|=T
QL ∃X.A. We say that

a set R of QL-repairs of ∃X.A for R w.r.t. T QL-covers all QL-repairs of ∃X.A
for R w.r.t. T if for every QL-repair ∃Y.B of ∃X.A for R w.r.t. T there exists
an element ∃Z.C of R such that ∃Z.C |=T

QL ∃Y.B. It is easy to see that such
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a covering set R must contain, up to QL-equivalence, all optimal QL-repairs of
∃X.A for R w.r.t. T , and thus one can obtain from it, up to QL-equivalence,
the set of all optimal QL-repairs of ∃X.A for R w.r.t. T by removing elements
that are strictly QL-entailed by another element. Clearly, this set still QL-covers
all QL-repairs of ∃X.A for R w.r.t. T .

In [3], two ways of computing such a covering set for IQ-repairs are described,
the canonical IQ-repairs and the optimized IQ-repairs (see Proposition 8 and
Theorem 14). Since these covering sets are of at most exponential cardinality,
their elements are of at most exponential size, and IQ-entailment can be decided
in polynomial time, this shows that, up to IQ-equivalence, the set of all optimal
IQ-repairs can be computed in exponential time.

The canonical (optimized) IQ-repairs also yield covering sets for the IRQ case.
The reason is basically that the approaches for constructing them introduced
in [3] do not generate new role assertions between individuals and preserve as
many of them as possible, although this is not required for IQ-entailment.

Proposition 5. Let T be an EL TBox, ∃X.A a qABox, and R an EL repair
request. If R is the set of all canonical or all optimized IQ-repairs obtained from
this input according to the definitions in [3], then R is a set of IRQ-repairs of
∃X.A for R w.r.t. T that IRQ-covers all IRQ-repairs of ∃X.A for R w.r.t. T . In
particular, up to IRQ-equivalence, the set of optimal IRQ-repairs can be computed
in exponential time, and it IRQ-covers all IRQ-repairs of ∃X.A for R w.r.t. T .

Note that, though we have the same covering set R in the IQ and in the IRQ
case, the sets of optimal repairs obtained from it by removing strictly entailed
elements need not coincide since different entailment relations are used during
this removal. Since the requirements for IQ entailment are weaker than for IRQ
entailment, it could be that a qABox may be removed from R in the IQ case,
but must be retained in IRQ case. Also notice that the proposition need not hold
for arbitrary IQ-covering sets. Its proof uses properties of the canonical and the
optimized IQ-repairs that need not hold for arbitrary covering sets.

Example 6. Consider the qABox ∃{x}.A for A = {A(a), r(a, x), r(x, x)}, assume
that the TBox is empty, and that the repair request is {A(a)}. An optimal IQ-
repair ∃{x}.A′ can be obtained from this qABox by removing the assertion A(a)
from A, and this is also an optimal IRQ-repair. However, the ABox {r(a, a)} is
also an optimal IQ-repair since it is IQ-equivalent to ∃{x}.A′, but it is not even
an IRQ-repair since it is not IRQ-entailed by ∃{x}.A.

3.2 Optimal ABox Approximations

Given a qABox we are now interested in finding an ABox that approximates it
as closely as possible in the sense that a minimal amount of information is lost.
In the definition below, we use classical entailment. But note that, according to
Proposition 3, this coincides with IRQ-entailment.
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Definition 7. Given a qABox ∃X.A and an EL TBox T , we call an EL ABox B
an ABox approximation of ∃X.A w.r.t. T if ∃X.A |=T B. The ABox approxi-
mation B of ∃X.A w.r.t. T is optimal if there is no ABox approximation C of
∃X.A w.r.t. T such that C |=T B, but B �|=T C.

Such an optimal ABox approximation need not exist. The qABox ∃{x}.A′

with A′ = {r(a, x), r(x, x)} is an example for this case. In fact, this qABox
entails ((∃r.)n�)(a) for all n ≥ 1, which is not possible for an ABox entailed by
∃{x}.A′ since such an ABox cannot contain role assertions and can contain only
finitely many concept assertions. However, if an optimal ABox approximation
exists, then it is unique up to equivalence. This is an easy consequence of the fact
that the union of two ABox approximations is again an ABox approximation.

Proposition 8. If B1 and B2 are optimal ABox approximations of the qABox
∃X.A w.r.t. the EL TBox T , then B1 and B2 are equivalent w.r.t. T .

Optimal ABox approximations can now be characterized as follows.

Theorem 9. The ABox B is an optimal ABox approximation of ∃X.A w.r.t. T
iff ∃X.A and B are IRQ-equivalent.

Proof. First, assume that ∃X.A and B are IRQ-equivalent w.r.t. T . Then
∃X.A |=T B by Proposition 3, and thus B is an ABox approximation of ∃X.A
w.r.t. T . If C is another ABox approximation of ∃X.A w.r.t. T , then ∃X.A |=T C
by definition, and thus B |=T C due to the assumed IRQ-equivalence. This shows
optimality of B.

Second, assume that B is an optimal ABox approximation of ∃X.A w.r.t. T
that is not IRQ-equivalent with ∃X.A. Then there is either a role assertion that
belongs to A, but not to B, or a concept assertion that is entailed w.r.t. T by
∃X.A, but not by B. Adding this assertion to B yields an ABox B′ that is an
ABox approximation of ∃X.A w.r.t. T . In addition, it satisfies B′ |=T B, but
not B |=T B′, which contradicts the assumed optimality of B. ��

An approach for deciding whether a given qABox has an optimal ABox
approximation, and for computing it in case it exists, will be described in Sect. 4.
But first, we show how optimal ABox approximations can be used to compute
optimal ABox repairs.

3.3 Optimal ABox Repairs

The repair approaches developed in [3] in general yield quantified ABoxes as
output, even if the input is an ABox. We are now interested in producing repairs
that are ABoxes. The approach developed below does not require the input to
be an ABox. It actually assumes that the input is a qABox, which means that
input ABoxes first need to be transformed into equivalent qABoxes.
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Definition 10. Let T be an EL TBox, ∃X.A a qABox, and R an EL repair
request. We call an EL ABox B an ABox repair of ∃X.A for R w.r.t. T if
∃X.A |=T B and B �|=T C(a) for all C(a) ∈ R. The ABox repair B of ∃X.A
for R w.r.t. T is optimal if there is no ABox repair C of ∃X.A for R w.r.t. T
such that C |=T B, but B �|=T C.

Our approach for computing optimal ABox repairs proceeds as follows:
first, we compute the set of all optimal IRQ-repairs of ∃X.A, and then ABox-
approximate the elements of this set. In the following, if we say that R is the set
of optimal IRQ-repairs of a qABox, we mean that, for every optimal IRQ-repair,
R contains one element of its IRQ-equivalence class. Also, for a given qABox
∃Y.B, we define

OappT (∃Y.B) :=
{

{C} for an optimal ABox approx. C of ∃Y.B w.r.t. T ,
∅ if no optimal ABox approx. of ∃Y.B w.r.t. T exists.

Theorem 11. Let ∃X.A be a qABox, T an EL-TBox, R an EL repair request,
and R the set of optimal IRQ-repairs of ∃X.A for R w.r.t. T . Then the set

⋃

∃Y.B∈R

OappT (∃Y.B)

consists of all optimal ABox repairs of ∃X.A for R w.r.t. T up to equivalence.

Proof. First, assume that the ABox C belongs to the union defined in the state-
ment of the theorem. Then ∃X.A |=T

IRQ ∃Y.B |=T C for some qABox ∃Y.B ∈ R
that has C as an optimal ABox approximation. This implies that C does not entail
any of the concept assertions in R (since ∃Y.B does not) and that ∃X.A |=T C.
Thus, C is an ABox repair of ∃X.A for R w.r.t. T . It remains to show that it
is optimal. Assume to the contrary that C′ is an ABox repair of ∃X.A for R
w.r.t. T such that C′ |=T C, but C �|=T C′. Since C and ∃Y.B are IRQ-equivalent
by Theorem 9, this is a contradiction to the fact that ∃Y.B is an optimal IRQ-
repair of ∃X.A for R w.r.t. T since C′ would then be a better IRQ-repair.

Second, assume that the ABox C is an optimal ABox repair of ∃X.A for
R w.r.t. T . Then C is also an IRQ-repair of ∃X.A for R w.r.t. T , and thus
Proposition 5 yields that there is an optimal IRQ-repair ∃Y.B ∈ R such that
∃X.A |=T

IRQ ∃Y.B |=T
IRQ C. We know by Proposition 3 that the second IRQ-

entailment is in fact an entailment, and thus C is an ABox approximation of
∃Y.B. It remains to show that it is optimal. Assume to the contrary that C′ is
an ABox approximation of ∃Y.B such that ∃Y.B |=T C′ |=T C, but C �|=T C′.
But then C′ is an ABox repair of ∃X.A for R w.r.t. T (since ∃Y.B is a repair)
that is better than C, which contradicts our assumption that C is optimal. ��

Once we have developed a method for computing the sets OappT (∃Y.B), this
theorem shows how to compute the set of all optimal ABox repairs of a given
qABox. Such a method will be introduced in the next section. Before doing this,
we want to point out that, in contrast to the set of optimal IRQ-repairs, which
covers all IRQ-repairs, the set of optimal ABox repairs in general does not cover
all ABox repairs.
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Example 12. Consider the ABox A = {A(a), r(a, b), B(b)}, the TBox T =
{B � ∃r.B,∃r.B � B} and the repair request R = {(A � ∃r.B)(a)}. There
are basically three options for IRQ-repairing A: remove A(a), remove B(b),
or remove r(a, b). Since things implied by the TBox must also be taken into
account, these three options yield the following optimal IRQ-repairs of A for
R w.r.t. T :5 B1 = {r(a, b), B(b)} as well as ∃{x}.Bi for i = 2, 3, where
B2 = {A(a), r(a, b), r(b, x), r(x, x)} and B3 = {A(a), B(b), r(a, x), r(x, x)}. Of
these three, B1 is already an ABox, and thus its own optimal ABox approxi-
mation, whereas the other two have no optimal ABox approximation. However,
they have non-optimal ABox approximations, which are not necessarily covered
by B1. For example, {A(a), r(a, b), (∃r.∃r.�)(b)} is an ABox approximation of
∃{x}.B2 and an ABox repair of A for R w.r.t. T , but since it contains A(a), it
is not entailed by B1.

4 Computing Optimal ABox Approximations

In this section, we assume that ∃X.A is a qABox and T an EL TBox. We will
develop an approach for deciding whether ∃X.A has an optimal ABox approxi-
mation w.r.t. T , which in the affirmative case also yields such an optimal approx-
imation.

The first step is to saturate ∃X.A using the IQ-saturation rules of Fig. 1. In
the following, let satTIQ(∃X.A) denote a (fixed) qABox obtained by applying the
IQ-saturation rules exhaustively to ∃X.A. Note that the size of satTIQ(∃X.A)
is polynomial in the size of the input ∃X.A and T , and that ∃X.A and
satTIQ(∃X.A) are IQ-equivalent w.r.t. T by Theorem 1. In addition, it is easy
to see that these two qABoxes contain the same individuals and the same role
assertions between individuals. Thus, they are even IRQ-equivalent w.r.t. T . As
before, we use ΣI to denote set of individuals of ∃X.A.

In the next step, we transform satTIQ(∃X.A) into a new qABox, called pre-
approximation, whose matrix basically consists of the union of ABoxes Ba for
each a ∈ ΣI, extended with the role assertions between individuals in A. Each
ABox Ba contains a as the only individual name, and further contains a fully
anonymized copy of the saturation satTIQ(∃X.A), which is connected with a by
indispensable role assertions.

Definition 13. We call a role assertion r(a, u) in satTIQ(∃X.A) for a ∈ ΣI indis-
pensable if there is no role assertion r(a, b) for b ∈ ΣI such that there is a
simulation from satTIQ(∃X.A) to itself that contains (u, b).

Since an individual always simulates itself, only role assertion r(a, u) where u is a
variable can be indispensable. We are now ready to define the pre-approximation.

5 The IQ-repairs computed by the approaches in [3] would contain more assertions,
which are however redundant for IRQ-entailment w.r.t. T .
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Definition 14. The pre-approximation pre-approxT
IRQ(∃X.A) of ∃X.A w.r.t. T

is defined as the quantified ABox ∃Y.B, where

Y := {u′ |u is an object name occurring in satTIQ(∃X.A) },

B :=
⋃

{Ba | a is an individual name in ΣI }

∪ { r(a, b) | r(a, b) occurs in satTIQ(∃X.A) where a, b ∈ ΣI },

Ba := {A(a) |A(a) occurs in satTIQ(∃X.A) }
∪ { r(a, u′) | r(a, u) occurs in satTIQ(∃X.A) and is indispensable }
∪ {A(u′) |A(u) occurs in satTIQ(∃X.A) }
∪ { r(u′, v′) | r(u, v) occurs in satTIQ(∃X.A) }.

Obviously, the pre-approximation can be computed in polynomial time. In addi-
tion, it is IRQ-equivalent to satTIQ(∃X.A) [4].

Lemma 15. The qABoxes satTIQ(∃X.A) and pre-approxT
IRQ(∃X.A) are IRQ-

equivalent w.r.t. the empty TBox ∅, and thus also w.r.t. T .

Since we already know that ∃X.A and satTIQ(∃X.A) are IRQ-equivalent
w.r.t. T , this shows that ∃X.A is IRQ-equivalent to its pre-approximation w.r.t.
T . Consequently, an ABox C is an optimal ABox approximation of ∃X.A w.r.t.
T iff it is one of the pre-approximation w.r.t. T .

To test whether pre-approxT
IRQ(∃X.A) has an optimal ABox approximation

w.r.t. T , it is sufficient to check whether, for all a ∈ ΣI, the individual a has a
most specific concept in Ba w.r.t. T .

Definition 16. Let C be an EL ABox, T an EL TBox, and a an individual
name. The EL concept C is a most specific concept (msc) of a in C w.r.t. T if
C |=T C(a) and C |=T D(a) implies C �T D for all EL concepts D.

The most specific concept need not exist, but if it does, then it is unique up
to equivalence w.r.t. T . The ABox C := {r(a, a)} is a simple example where
the msc of a does not exist w.r.t. the empty TBox. In fact, C |= (∃r.)n�(a)
for all n ≥ 1, and it is easy to see that no EL concept can be subsumed by
these infinitely many concepts. Note, however, that C has an optimal ABox
approximation since it is itself an ABox. In this case, the pre-approximation is
{r(a, a)} ∪ Ba where Ba = {r(a′, a′)}. There is no role assertion r(a, a′) since
r(a, a) is not indispensable. While a′ does not have an msc in Ba, this is not
what we are interested in. We want to know whether a has one, and the answer
is “yes” since � is an msc of a in Ba. The problem of testing for the existence
of and computing the msc in EL was investigated in [20], where the following
result is stated.

Proposition 17 ([20]). Let C be an EL ABox, T an EL TBox, and a an indi-
vidual name. It can be decided in polynomial time whether a has a most specific
concept in C w.r.t. T , and if the msc exists, then it can be computed in exponen-
tial time.
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The main idea underlying the proof of this proposition (rephrased into the setting
of the present paper) is to unravel the IQ-saturation of C w.r.t. T into a concept
Ck an increasing number k of steps, starting from a. After each step, one tests
whether the ABox {Ck(a)} IQ-entails ∃X.C w.r.t. T , where X consists of the
object names in C different from a. In case this test succeeds, the concept Ck

is the msc of a in C w.r.t. T . This yields an effective test for the existence of
the msc since the following can be shown: there is a polynomial p such that the
entailment test succeeds after at most p(|C|, |T |) steps iff the msc exists.

For example, for the ABox C(1) = {r(a, a)} and the TBox T (1) = ∅, the
0-step unraveling is C

(1)
0 = �, the 1-step unraveling is C

(1)
1 = ∃r.�, the two-

step unraveling is C
(1)
2 = ∃r.∃r.�, etc. It is easy to that there is no k such

that the entailment test succeeds. Thus, it does not succeed for k(C(1), T (1)),
which shows that a does not have an msc. If instead we consider the ABox
C(2) = {A(a), r(a, b), s(a, b), r(b, c), s(b, c), B(c)} w.r.t. T (2) = ∅, then the 0-step
unraveling is C

(2)
0 = A, the 1-step unraveling is C

(2)
1 = A � ∃r.� � ∃s.�, the 2-

step unraveling is C
(2)
2 = A�∃r.(∃r.B �∃s.B)�∃s.(∃r.B �∃s.B), and the 3-step

unraveling is identical to C
(2)
2 . The entailment test succeeds for k = 2. It is easy

to see that, whenever the unraveling becomes stable (which happens if no cycle
in the ABox is reachable from a), then the entailment test succeeds. However,
a reachable cycle in the ABox need not prevent the existence of the msc. For
example, the individual a has the msc ∃r.B in C(3) = {r(a, b), r(b, b), B(b)} w.r.t.
T (3) = {B � ∃r.B}.

As sketched until now, this method for deciding the existence of the msc
does not yield a polynomial-time decision procedure. The reason is that, though
the bound k(C, T ) on the number of steps is polynomial, the unraveled con-
cepts Ck may become exponential even for k ≤ k(C, T ), as can be seen using
an obvious generalization of our example ABox C(2). This problem can be
avoided by employing structure-sharing, which can be realized by represent-
ing the ABoxes {Ck(a)} by IQ-equivalent qABoxes. In our second example, the
ABox {C

(2)
2 (a)} can be represented by the more compact IQ-equivalent qABox

∃{x, y}.{A(a), r(a, x), s(a, x), r(x, y), s(x, y), B(y)} (see the definition of the k-
unraveling in [1] for how such an unraveling with structure sharing can be defined
in general). It is easy to see that the qABoxes representing the ABoxes {Ck(a)}
are of polynomial size. Since IQ-entailment between qABoxes is polynomial, this
yields the polynomiality result stated in the proposition. Note, however, that
the msc obtained this way is still an unraveled concept Ck without structure
sharing, and thus may be of exponential size.

The following theorem shows that existence of the optimal ABox approxima-
tion can be reduced to existence of the msc (see [4] for the proof).

Theorem 18. Let ∃X.A be a qABox with set of individuals ΣI, let T be an
EL TBox, and let Ba for all a ∈ ΣI be the ABoxes introduced in Definition 14.
Then ∃X.A has an optimal ABox approximation w.r.t. T iff, for all individuals
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a ∈ ΣI, the msc of a in Ba w.r.t. T exists. If the latter condition is satisfied and
Ca are these most specific concepts, then the following ABox is an optimal ABox
approximation of ∃X.A w.r.t. T :

{Ca(a) | a ∈ ΣI} ∪ {r(a, b) | r(a, b) occurs in satTIQ(∃X.A) where a, b ∈ ΣI }.

In particular, the existence of an optimal ABox approximation can be tested in
polynomial time and such an optimal approximation can be computed in expo-
nential time if it exists.

5 Computing Optimal ABox Repairs

We can now reap the benefits from the results shown in the previous two sections.
Given a qABox ∃X.A, an EL TBox T , and an EL repair request R, we can com-
pute the set R of optimal IRQ-repairs of ∃X.A for R w.r.t. T in exponential time.
More precisely, by Proposition 5 this set contains at most exponentially many
repairs, each of which has at most exponential size. Theorem 11 then says that
the set of all optimal ABox repairs of ∃X.A for R w.r.t. T (up to equivalence)
consists of the optimal ABox approximations w.r.t. T of those elements of R for
which such an optimal approximation exists. Finally, Theorem 18 shows how to
decide existence of such optimal approximations and how to compute them if
they exist. Since the elements of R are already of exponential size, existence can
be tested in exponential time and the size of the computed approximations is at
most double-exponential.

Theorem 19. Let ∃X.A be a qABox, T an EL-TBox, and R an EL repair
request. Then the existence of an optimal ABox repair of ∃X.A for R w.r.t.
T can be decided in exponential time, and the set of all such repairs can be
computed in double-exponential time. This set contains at most exponentially
many elements, each of which has at most double-exponential size.

If the given qABox does not have an optimal repair or if we are looking for a
repair not covered by an optimal one, our approach can also be used to compute
non-optimal ABox repairs. In fact, consider an optimal IRQ-repair that does not
have an optimal ABox approximation. Then there are individuals a whose msc
in Ba does not exist. Following [17], we can then use the role-depth bounded
msc instead, which is basically obtained by unraveling up to a fixed bound k on
the role-depth (i.e., the maximal nesting of existential restrictions). This way,
we can produce a set of (possibly) non-optimal ABox repairs, which covers all
ABox repairs whose concept assertions satisfy this bound on the role depth.

There are also cases where the existence of the optimal ABox approx-
imation of the optimal IRQ-repairs is guaranteed. In fact, if the qABox is
acyclic and the TBox is cycle-restricted (i.e., there is no concept C such that
C �T ∃r1. · · · ∃rk.C, as defined in [3]), then the optimal IRQ-repairs are acyclic,
which implies that the ABoxes Ba in the pre-approximations are also acyclic.
Consequently, all optimal IRQ-repairs have an optimal ABox approximation. The
following corollary is an easy consequence of this observation.
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Corollary 20. Let ∃X.A be an acyclic qABox, T a cycle-restricted EL-TBox,
and R an EL repair request. Then the set of optimal ABox repairs of ∃X.A for
R w.r.t. T is non-empty, and it IRQ-covers all ABox repairs of ∃X.A for R
w.r.t. T .

6 Conclusion

Traditional repair approaches for DL-based ontologies, which compute maximal
subsets of the ontology that do not have the unwanted consequences, are syntax-
dependent and thus may remove too many consequences. Recently developed
syntax-independent approaches for repairing DL ABoxes [3,5,7] compute opti-
mal repairs that do not lose consequences unnecessarily, but they have the dis-
advantage that they produce quantified ABoxes rather than traditional ABoxes.
In this paper we show how to overcome this problem by developing methods
for computing optimal repairs that are traditional ABoxes. These methods are
based on the computation of optimal IRQ-repairs, by adapting the approaches
in [3] for computing optimal IQ-repairs, and then optimally approximating these
qABoxes with ABoxes.

A perceived disadvantage of our approach could be that optimal ABox repairs
need not exist, and even if they do, they need not cover all ABox repairs. How-
ever, by Corollary 20 this problem does not occur if the ABox is acyclic and
the TBox is cycle-restricted. To see how often this corollary applies in practice,
we checked the 80 large ontologies used in the experiments in [3]: 62 have cycle-
restricted TBoxes, and of those only 7 have cyclic ABoxes. Thus, our Corollary 20
applies to 55 of the 80 ontologies considered in [3].

Another disadvantage could be the potentially double-exponential size of
optimal ABox repairs. However, the first exponential comes from the compu-
tation of the optimal IQ-repairs, and the experiments in [3] indicate that this
exponential blow-up does not occur in practice if the optimized approach for
computing IQ-repairs is used. We do not yet have experimental results regarding
the possible exponential blow-up due to the computation of ABox approxima-
tions, but would be surprised if this happened often in practice.

What is called “repair” in the DL community is closely related to what is
called “contraction” in the Belief Change community. For classical repairs and
also for the gentle repairs of [6], this connection was investigated in [14]. It
would be interesting to see whether this investigation can be extended to our
optimal ABox repairs. The original intention underlying our repair approach is
that the ontology engineer chooses one of the computed optimal repairs as the
new, repaired ABox. Alternatively, one could try to adapt the different repair
semantics employed in inconsistency-tolerant query answering [9,12] from clas-
sical repairs to our optimal repairs.
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