
Supervised Knowledge Aggregation
for Knowledge Graph Completion

Patrick Betz(B), Christian Meilicke, and Heiner Stuckenschmidt

University of Mannheim, Mannheim, Germany
{patrick,christian,heiner}@informatik.uni-mannheim.de

Abstract. We explore data-driven rule aggregation based on latent fea-
ture representations in the context of knowledge graph completion. For
a given query and a collection of rules obtained by a symbolic rule learn-
ing system, we propose end-to-end trainable aggregation functions for
combining the rules into a confidence score answering the query. Despite
using latent feature representations for rules, the proposed models remain
fully interpretable in terms of the underlying symbolic approach. While
our models improve the base learner constantly and achieve competitive
results on various benchmark knowledge graphs, we outperform current
state-of-the-art with respect to a biomedical knowledge graph by a sig-
nificant margin. We argue that our approach is in particular well suited
for link prediction tasks dealing with a large multi-relational knowledge
graph with several million triples, while the queries of interest focus on
only one specific target relation.

1 Introduction

Knowledge graphs (KGs) represent structured knowledge in form of (subject,
relation, object) facts. As KGs quite frequently suffer from missing data, the
goal in link prediction or knowledge graph completion (KGC) is to predict new
facts given an incomplete KG. While a vast amount of research is centered around
knowledge graph embedding (KGE) models (e.g., [1,34]), rule-based approaches
remain competitive in terms of performance [33]. They are fully interpretable as
predictions are made by human-understandable symbolic rules and they easily
allow for encoding domain knowledge into the overall model pipeline (e.g., [37]).

KGs are heavily used in the biomedical domain [11,18,25] in conjunction
with general semantic web technologies to provide large linked data sources and
ontologies such as Bio2RDF [2] and Hetionet[16]. These sources can be utilized
for downstream tasks such as predictive diagnosis and processing KGs in the
biomedical domain can differ from general KGC benchmark datasets. While the
KGs may contain a substantial amount of relations, only one particular tar-
get relation might be of interest. The challenge is then to exploit the remain-
ing graph context effectively, for instance, guiding models to exploit long-range
dependencies while only providing supervision for the target relationships. For
example, in the drug repurposing problem on the Hetionet dataset, we seek to

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 74–92, 2022.
https://doi.org/10.1007/978-3-031-06981-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-06981-9_5

Supervised Knowledge Aggregation for Knowledge Graph Completion 75

find treatable diseases for given compounds by answering queries with respect to
the target relationship Compound-treats-Disease. The remaining relations in the
KG such as Compound-binds-Gene or Disease-associates-Gene affect the eval-
uation scheme of the task only by their usefulness in regard to predicting the
target relationship correctly.

KGE models are not interpretable, which is an important aspect in general
and has even higher relevance in the biomedical domain. They have shown to
perform worse when long-range dependencies need to be utilized [19]. Path-based
methods, on the other hand, are specifically tailored towards utilizing graph con-
text that exceeds one-hop neighbourhoods and indeed, the neuro-symbolic model
PoLo [18] is shown to be effective on the Hetionet KG. By using reinforcement
learning agents are trained to perform policy-based walks and are additionally
guided by logical rules. However, the model can only process cyclical rules and
it has been shown empirically that more specific types, i.e., rules containing con-
stants, are necessary for achieving results on-par with state-of-the-art models
[20,21] in the context of KGC.

In this work, we first employ the simple rule learner AnyBURL [20,21]. We
mine knowledge in the form of logical rules from the biomedical KG and find that
a simple aggregation baseline already outperforms the current state-of-the-art.
We then seek to improve the performance further by improving the aggregation
of the mined rules. We formulate the problem as data-driven and aim to learn the
aggregation from the training data. We propose a novel aggregator with a strong
inductive bias, which we call the sparse aggregator, that generalizes the stan-
dard aggregation functions by using latent feature representations. We suggest
to train the sparse aggregator by using black-box optimization [27,29,32] and
directly optimize the mean-rank on the training KG. Furthermore, we propose
a simple scaling scheme to reduce the variance of the gradients which improves
the performance. Finally, we experiment with a more complex model based on
a modified self-attention encoder [10], which we call the dense aggregator.

We find that the sparse aggregator improves the base performance of Any-
BURL in all our experimental settings and outperforms current state-of-the-art
[18] on the biomedical KG. We also present results on three standard KG bench-
marks, where we achieve competitive results. Finally, we demonstrate that the
sparse aggregator remains fully interpretable even though it uses latent feature
representations.1

2 Related Work

A KGE model is specified by a scoring function which outputs raw triple confi-
dences and the models are trained by using likelihood based loss functions such
as cross-entropy. A seminal model in the family of translation based models is
TransE [4]. RESCAL [26] is based on tensor products and is extended by ComplEx
[40] towards expressing asymmetric relations. Many alternative KGE models exist,
for instance based on convolutional neural networks or graph-convolutions [9,41].
1 The project repository and code can be found at this URL.

https://github.com/Nzteb/latent-rules

76 P. Betz et al.

We refer to the studies in [33,46] for a more comprehensive overview. KGE models
achieve strong performances in the field of KGC and are efficient to use, however,
their predictions are in general hard to interpret which can be of specific interest
depending on the respective target domain. This gives rise to symbolic learning
where predictions can be pinned to human-understandable rules.

Symbolic rule learning for larger sized KGs is introduced in [13,14] who pro-
pose to learn closed connected rules and improved over inductive logic program-
ming systems in terms of scalability and performance. This type of rule learning
is outperformed by RuleN [22], the predecessor of the AnyBURL system [20,21],
which achieves results that are competitive to the state-of-the-art in the context
of KGC. More recent approaches focus on differentiable rule learning [7,45] by
representing rules as chained TensorLog [7] operators. An unsupervised approach
based on the rulesets from AnyBURL is proposed in [28]. Rules are clustered
by calculating the Jaccard index for every possible rule pair. Subsequently, the
rules are aggregated using noisy-or aggregation. In the context of multi-modal
KGE models, rules are used as features in [15] where feature weights are trained
jointly in a product-of-experts scoring function consisting of different modalities.

Symbolic representations in form of rules are also used in the context of neuro-
symbolic learning where the logical inference procedure is relaxed into fuzzy-logic
formulations and not only the learning but also the application of rules is made
differentiable. In [12], forward chaining is formulated to be differentiable and
[31] relax backward chaining in Prolog by introducing Neural Theorem Provers
which are further improved towards efficiency and flexibility in [23,24]. Please
note that these models have not yet shown to be scalable towards KGs with a
comparable size as used in this work.

Path-based methods traverse the graph starting from an entity and with
sequential transitions to neighbouring nodes. Transitions are made by agents
guided by stochastic policies which are learned within a reinforcement learning
framework. This is applied to perform triple classification in [44] and extended
towards query answering in MINERVA [8]. Finally, PoLo extends these approaches
by enabling to inject rules learned by an external system [18] or given from domain
knowledge and applies the approach to the drug repurposing problem.

3 Rule-Based Knowledge Graph Completion

3.1 Preliminaries

A KG is a collection of (s, p, o) triples where s and o are entities while p is a
relation. The KG forms a graph with relations represented as directed edges from
s to o. In the context of KGC s is also called the head of the triple and o is called
its tail. Models for KGC are concerned with predicting missing information in
the KG, typically by answering queries of the form (s, p, ?) and (?, p, o). These
queries are answered by scoring a set of candidates which allows to derive a
ranking. Training a model takes place on a training set Ktrain while a validation
set and a test set are used for the evaluation. A common form of evaluating KG
models is by calculating ranking based metrics on the respective evaluation set.

Supervised Knowledge Aggregation for Knowledge Graph Completion 77

The joint mean-rank is the average rank a model assigns to the true candidates
when forming queries (s, p, ?) and (?, p, o) from all triples in the respective
evaluation set. The mean reciprocal rank (MRR) takes the inverse 1

ranki
of the

ranks and therefore lies in [0, 1]. The standard procedure is to filter the rankings
with known triples from the remaining sets before calculating final ranks [4].

3.2 AnyBURL

AnyBURL [21] is a rule learning approach based on sampling paths from a given
knowledge graph. These paths are generalized into rules by replacing constants
with variables. The first edge in the path results into the head of the rule and
the remaining edges yield the body of the rule. As edges in the graph represent
relations a rule is composed of a set of non-grounded or partly grounded triples.
AnyBURL is applicable to large datasets and can mine a large number of rules
within a short period of time. We abstain from a more detailed description of the
learning algorithm and refer to the respective publication. In the following, we
briefly review the most relevant rule types AnyBURL learns and demonstrate
how they are aggregated to create predictions.

Similar to related approaches, AnyBURL learns closed connected rules [14]
also termed cyclic rules [21]. Here cyclic means the head variables X and Y which
are connected by the target relation in the head of the rule are also connected via
an alternative path represented by the body of the rule. These rules exclusively
contain variables and we will give an example from the Hetionet KG in the follow-
ing. Consider the rule CtD(X,Y) ← PCiC(X,A) ∧ PCiC(A,B) ∧ CtD(B, Y).
The rule is mined by AnyBURL and expresses with a certain confidence that a
disease Y might be treated (CtD) with compounds which belong to the same
pharmacological class (PCiC) as other compounds that are known to treat Y.
We define the confidence of a rule as the number of body groundings that lead
to a true prediction divided by the number of all body groundings estimated
on the training data. Further examples for cyclical rules are given by Rule (R1)
and (R2), discussed in Sect. 4.1.

Another rule type is given by acyclic rules with only one variable and con-
stants, i.e., entities in the KG, at the remaining slots. AnyBURL is restricted in
its default setting, which we used in our experiments, to learn rules of this type
with only one body atom. The rule citizen(X,UK) ← bornIn(X,London) is an
example. It expresses that someone born in London is (probably) a UK citizen.

3.3 Knowledge Aggregation

Let us assume we are given a query (s, p, ?),2 a possible candidate answer c, and
the set of rules Rc := {r1, ..., rk} generating c, hence, all the rules that fired
for the candidate. Note that Rc depends on the particular query but we do not
reference this separately for brevity.

The chosen type of rule aggregation defines how the associated rule confi-
dences conf(r1), ..., conf(rk) are aggregated into a score ψ. This score can be
2 All derivations throughout the work are equivalent for the head/subject direction.

78 P. Betz et al.

interpreted as the standalone confidence for the candidate representing a true
answer or it can be used to generate a ranking in regard to multiple candidate
answers to (s, p, ?). The default aggregation in AnyBURL is max-aggregation:

ψMax(c) := max {conf(r1), ..., conf(rk)}. (1)

Potential ties in a ranking are resolved by comparing the respective candidates
by their second strongest rule. Another common aggregation technique, which
usually performs worse, is noisy-or aggregation:

ψNO(c) := 1 −
k∏

i=1

(
1 − conf(ri)

)
. (2)

In terms of restrictiveness, noisy-or and max-aggregation are placed on opposite
ends of the spectrum which can be seen easily by comparing Eqs. (1) and (2).
Whereas only one rule determines the final score in max-aggregation, every single
rule contributes when choosing noisy-or aggregation. The former is based on
the underlying assumption that all rules are fully dependent, while the latter
assumes rules to be mutually independent. Both assumptions are clearly wrong.
Moreover, the score of noisy-or increases in the number of rules fired, e.g., it also
increases when many rules with low confidences are added to the input rule set.
These observation inspire the sparse aggregator presented in Sect. 5.

4 Supervised Knowledge Aggregation

4.1 Challenges

The full version of AnyBURL mines a large number of rules. For example, on the
Hetionet KG it learns more than 40k rules for the target relation. Additionally,
|Rc| can be large, that is, a single candidate for a query might be generated by
hundreds of rules which need to be aggregated. Two main additional characteris-
tics cause the difficulty of the aggregation problem: varying rule set cardinalities
and rule redundancy.

Different Rule Set Cardinalities. As mentioned above the number of rules that
generate a candidate answer, i.e., |Rci | for some candidate ci, can be large.
However, this may depend strongly on the given candidate and it is also possible
that only a few rules fired. This leads to the natural question of how to compare,
for instance, a candidate for which only one strong rule fired to another candidate
which was generated by multiple rules with lower confidences.

Rule Redundancies. Many of the mined rules are dependent in the sense that
they fire for similar reasons. When an aggregation method does not take into
account these redundancies, it will overestimate the final score whenever multiple
similar rules generated a candidate. Let us consider the following two rules:

speaks(A,B) ← lives(A,C) ∧ cityOf(C,D) ∧ hasLanguage(D,B) (R1)
speaks(A,B) ← lives(A,C) ∧ locatedIn(C,D) ∧ hasLanguage(D,B) (R2)

Supervised Knowledge Aggregation for Knowledge Graph Completion 79

While the rules are not identical, they are partly redundant. The second rule
does not provide much more additional evidence if we knew already that the
first rule generated a candidate. Noisy-or aggregation would simply treat both
rules as independent and overestimate the final score, while max-aggregation
would ignore one of the rules which might be the better choice in this example.
However, ignoring all rules except of the strongest rule will underestimate the
final score whenever a candidate is generated by different rules which represent
independent knowledge.

Note that often there is no schema available that contains the knowledge that
cityOf is more specific than locatedIn, nor can this knowledge be derived from
the given knowledge graph which is usually incomplete and noisy. Thus, it is not
possible to filter out redundant rules. Moreover, in many cases the dependencies
are less clear-cut. Think, for example, about replacing the lives relation by the
diedIn relation in Rule (R1) or Rule (R2).

4.2 Supervised Rule Aggregation

We emphasized the challenges of rule aggregation in the last section. The goal of
this work is to investigate if a data-driven view that utilizes supervision on the
training KG can be beneficial for making a step towards solving the problem.
We will introduce a formal perspective in the following paragraph and in the
next section the respective aggregation models will be presented.

Given a KG, Ktrain = {(si, pi, oi)}N
i=1, let Sp be the set of rules that were

mined for relation p, i.e., all rules mined with relation p in the rule head. Let
P(Sp) be the power set. Using the definitions from above, for a query (s, p, ?), one
possible candidate answer c, and the set of rules Rc that generated the candidate,
we have that Rc ∈ P(Sp). For supervised rule aggregation, we seek to learn the
parameters Θ of an aggregation function fΘ with signature fΘ : P(Sp) → R by
minimizing a loss criterion L(Θ) :=

∑
Lqj (Θ) which is the sum of all individual

losses for the queries qj that can be formed from Ktrain.
The aggregation function takes as input the subset of rules Rc that generated

c and outputs a real-valued score which we interpret as the confidence for the
candidate being a true answer. In the definition fΘ is parameterized globally
over relations, however, the question of parameter sharing between relations
is a modeling decision and we will argue that it might be beneficial to not
share parameters. Furthermore, we will in the following sections inject a strong
inductive bias into f by using the rule confidences as an additional input which
we omitted for brevity in the formal treatment above.

5 Latent-Based Aggregation

When viewing the problem as data-driven, a possibility would be to proposition-
alize the data, i.e., define a binary feature for every rule which is one if the rule
fired for a particular candidate and zero otherwise. We could then train a simple
discriminative model on Ktrain. However, this model would not take into account

80 P. Betz et al.

rule dependencies and, more importantly, for many relations such as the target
relation of the Hetionet KG, the number of rules exceeds the number of triples.
Such a model is therefore not applicable as the candidates could be perfectly
separated in the feature space without learning anything useful. Therefore, we
choose an implicit feature representation over an explicit one by encoding rules
with latent representations while assigning a strong inductive bias to our model
in form of the rule confidences.

5.1 Sparse Aggregation

The two aggregation techniques introduced in Sect. 3.3 make two opposing
assumptions which are both permanently violated in the data as we discussed. In
the next paragrahs, we present the sparse aggregator which uses more rules for
the final confidence calculation than max-aggregation but it uses less rules than
noisy-or aggregation while also being able to represent rule redundancies. In fact,
when we set the latent input dimensionality to one, we recover max-aggregation
wheres a larger dimensionality leads to a behavior closer to noisy-or. Further-
more, our formulation enables to learn the parameters on the KG, i.e., we can
utilize the whole training set.

We encode rules with latent feature vectors x ∈ R
d where d is the dimen-

sionality. For a query (s, p, ?), a candidate answer c, and the k rules Rc that
generated the candidate, let xj ∈ R

d be the latent representation of rule rj

and let v ∈ [0, 1]k be the confidence vector of the k rules, i.e., vj = conf(rj).
We first normalize the latent vectors with the SoftMax function such that each
vector sums to one. Subsequently, we multiply the normalized vectors with the
respective rule confidence. Define the normalized vector multiplied with its con-
fidence as

x∗
j := SoftMax(xj) · vj , (3)

where vj ∈ [0, 1] and x∗
j ∈ [0, 1]d. Subsequently, we apply the Max operator over

the rules, that is, row-wise over the columns of the stacked matrix X∗ ∈ [0, 1](d,k)

s := Max(X∗), (4)

where s ∈ [0, 1]d, i.e., s has the same dimensionality as each of the latent input
vectors. It is important to note that only one single rule can contribute to a
single entry of s due to the Max operator. Finally, we calculate the final score ψ
for the candidate c by using the noisy-or product,

ψ(c) := 1 −
d∏

i=1

(1 − si). (5)

The derived expression for ψ can be differentiated approximately with respect
to the latent features by using automatic differentiation frameworks.3 We will
now discuss some important properties of this aggregation function.
3 The common gradient approximation for the Max function is, e.g., ∇max(y1, y2) =

[1, 0] for y1 > y2 and [0, 1] otherwise.

Supervised Knowledge Aggregation for Knowledge Graph Completion 81

At Most d Rules Can Contribute to the Final Score. This follows from the fact
that the Max function is taken over rules, i.e., for every row of X∗ only one
rule is considered and there exist d rows. We mentioned in the previous sections
that hundreds of rules can fire for one candidate, with max-aggregation only
regarding one rule and noisy-or aggregation using all the rules for the final score.
With the sparse aggregator, we can balance this value by setting d accordingly,
for instance, for the Hetionet dataset we set d = 10.

When We Set d = 1, We Recover Simple Max-Aggregation. To see this, for d = 1
we have that x·

j = 1 · vj = conf(rj), therefore, s = max{conf(r1), ..., conf(rk)}
with ψ(c) = 1 − 1 − conf(rmax) = conf(rmax) where rmax is the rule with the
highest confidence. This property is ensured by the use of the SoftMax function
as it normalizes a single value to 1 which would not be the case for alternative
functions such as Sigmoid.

Potentially we can recover noisy-or aggregation by setting d = |Sp|, and
enforcing the matrix of all latent vectors to be the identity matrix, however, the
goal is to learn to select a small strong subset of rules for a particular query. In
the training stage, we aim to learn the latent representations by optimizing a
loss criterion which will be discussed in the next section.

5.2 Optimizing Mean-Rank Using Black-Box Optimization

With the sparse aggregator we can easily represent rule redundancies by assign-
ing similar latent features to redundant rules, reducing their joint influence
on the score. In general, our model is closer to a discrete model than many
machine learning or deep learning models. For instance, the SoftMax normaliza-
tion restricts the updates of any learning algorithm to be a re-distribution of the
rule confidences instead of a clear fitting of the data.

Our choice of supervised machine learning is not for the sake of it. Framing
the model as purely discrete would result in an unfeasible search. For instance,
only restricting the values to lie within {0, 1} (without the SoftMax) would result
in a search space with 2|Sp|·d possible configurations for one relation p.

Fortunately, there exists recent work in machine learning that bridges the
gap between continuous and discrete problems such as combinatorial optimiza-
tion [3,27,29]. It has been demonstrated that these approaches can be applied
to ranking-based metrics as they can be written as combinatorial optimization
problems [32]. Using such a metric suits our problem because the model is not
designed to fit the data tightly. Note that also rules with high confidences can
fire for candidates which do not exist in the KG. A ranking metric can ignore
these possible distortions as soon as the true candidate is ranked relatively high.

To that end, we define the loss criterion L(Θ) on the training data to be the
mean-rank where Θ represents the latent features. For a given query q = (s, p, ?)
on the training data, let ψ be the vector of scores calculated according to Eq. (5)
with ψ(c∗) being the score for the true candidate c∗. The remaining scores belong
to query candidates ci that were generated by at least one rule and (s, p, ci) does
not appear in Ktrain, that is, we exclusively filter with the training set. Note

82 P. Betz et al.

that conceptually these candidates can also be viewed as negative examples.
We treat the maximum number of these negative candidates, sorted according
to their ranking in max-aggregation, as a hyperparameter denoted by top-n.
Moreover, let rk(ψ) be the vector of ranks and define rkc∗ to be the rank of the
true candidate. The mean-rank of the training data is simply the mean of ranks
of the true candidates for the individual queries, therefore, the individual query
loss is Lq(rk;Θ) = rkc∗. For applying gradient-based optimization, we need to
calculate dLq

dΘ . From the chain rule, we obtain

dLq

dΘ
=

dψ

dΘ

dLq

dψ
, (6)

where dψ
dΘ can directly be calculated using auto-differentiation libraries as men-

tioned in the previous section. For dLq

dψ we use black-box differentiation according
to [32] and calculate

dLq

dψ
= − 1

λ

[
rk(ψ) − rk

(
ψ + λ · dLq

drk

)]
, (7)

where dLq

drk is a vector which is one at the entry of the true candidate and zero
otherwise which follows from the definition of the query loss above. In practice
during the forward pass, we obtain the scores ψ for the query and calculate the
ranks. Subsequently, in the backward pass, the scores are perturbed to ψ

′
=

ψ + λ · dLq

drk and the new ranks are calculated leading to (7).
Consider the inner expression rk(ψ)−rk

(
ψ

′
) in Eq. (7) and let us only focus

on the entry of the true candidate. Let’s assume its rank is #50 before and #1
after the perturbation. Then we obtain − 49

λ which is in absolute terms magni-
tudes stronger compared to a case where the true candidate only improved by a
few ranks. We seek to reduce this variance by scaling the gradient in accordance
to the true candidate, in particular we compute

dLq

dψ
= − 1

λ

[
rk(ψ) − rk

(
ψ

′)] 1
rkc∗ − 1

, (8)

that is, we track the rank of the true candiate and scale the gradient with a
proportional factor. This ensures a constant signal strength independent of the
original position, for instance, in the example above we obtain − 49

λ
1

50−1 = − 1
λ .

5.3 Dense Aggregation

In the previous sections, we presented a data-driven perspective on knowledge
aggregation and proposed a model based on latent features which has a strong
inductive bias. We can relax this restriction and exploit the fact that language
model architectures (e.g. [10,17,42]) are well calibrated for processing latent
representations. In particular, we use a self-attention based architecture [10] that
processes the input representations and outputs real-valued query confidences.

Supervised Knowledge Aggregation for Knowledge Graph Completion 83

When dropping positional encodings, self-attention based architectures can be
applied off-the-shelf on item set problems with varying input lengths.

Precisely, we use a slightly modified version of the PyTorch implementation
of the BERT encoder [10]. The latent inputs {x1, ...,xk} are fed into the encoder
receiving the hidden representations {h1, ...,hk} with same dimensionality. The
modification that we implement affects how the self-attention is applied. We sort
the inputs according to the rule confidences and we let the j’th rule only attend
to the j − 1 rules with higher confidence. This reduces the possible distraction
that can be caused from many weak input rules towards the high-confident rules.
For the aggregation, we use simple average pooling on the hidden representations
and feed the resulting vector into a fully connected linear layer which outputs
one final score. The aggregator is termed dense aggregator as every rule in the
input set contributes to the final score.

The model is expensive to train and, on average, it is inferior to the sparse
aggregator in terms of performance although we were not able to explore a large
part of the hyperparameter space due to runtime considerations. The model is
also not practical in more general terms, however, we are merely interested in the
question if this model can learn specific aspects of the data which are hidden from
the other models. To investigate this, we evaluate a joint model of the sparse and
dense aggregators. We tune weights βsparse and βdense = 1−βsparse per relation
and direction on the validation set for discovering potential differences between
the two models. To make sure that these differences are significant, we restrict
βsparse to lie in {0,1}. This setting will be denoted by D+S in the experimental
section. It is not applicable to Hetionet where only one target relation exists.

6 Experiments

In the following we describe experiments for a specific biomedical KG and three
benchmark KGs commonly used in the field of KGC. We are mainly interested
in the question how our learnable aggregation compares to baseline aggregation
functions and to other models that have a similar degree of explainability.

6.1 Datasets

The Hetionet network combines knowledge from a large amount of biomedical
studies into a KG containing 47k typed entities and 2.24 million triples with 24
possible relations [16]. We focus on the task of drug repurposing, i.e., finding new
use cases for existing compounds. In the Hetionet KG this is expressed by answer-
ing queries of the form CtD(X, ?) where the relation CtD means Compound-
treats-Disease. It is discussed in [18] that Hetionet significantly differs from other
benchmark KG’s, for instance exhibiting a higher average node degree. More-
over, while the dataset is of considerable size, the target relationship appears in
only 755 facts which highlights the challenge of exploiting graph context without
having strong supervision. We use the train, valid, and test splits according to
the public documentation of [18].

84 P. Betz et al.

Table 1. Summary statistics.

Dataset Entities Relations Triples

Hetionet 47,031 24 2,250,197

FB15k-237 14,505 237 310,116

WNRR 40,559 11 93,003

CoDEx-M 17,050 51 206,205

We further evaluate our approach on three general benchmark KGs. FB15k-
237 [39] and WNRR [9] are frequently used in the field of KGC and Codex-M
was designed with the goal to be more challenging than previous benchmarks
[36]. For these datasets we use the common train, valid, and test splits. Table 1
shows summary statistics for the KGs.

6.2 Experimental Settings

For the Hetionet KG we mostly focus on the comparisons in [18]. That is, we com-
pare to the interpretable models PoLo [18], MINERVA [8], and pLogicNet [30]
and we also include the KGE results presented in [18] for the models TransE [4],
ComplEx [40], ConvE [9] and RESCAL [26]. Furthermore, we include the Hit-
tER [6] no-context model implementation of the libKGE library for which we
run the hyperparameter search provided by the library with 15 trials. We also
include the RotatE [38] results from the TorchDrug library.

For the remaining KGs we additionally add the rule-based methods
DRUM [35] and Neural-LP [45] if results are available. We abstain from a com-
prehensive comparison against KGE but we include the results from the official
libKGE library and the underlying work about training KGE models [5,34] to
put our approach in the context of strong KGE models trained under a well-
tested and unified codebase. Moreover, the results for HittERnc are based on
[19] and we also add the results of the recent model M2GNN proposed in [43].

For all the datasets, we mine rules on the training splits of the KGs using
AnyBURL and subsequently we learn the aggregation functions on the same
training sets while utilizing the valid sets for hyperparameter search and early
stopping. We train the sparse aggregator on the mean-rank on the training data
using the scaled gradients. The dense aggregator is trained on a standard cross-
entropy loss, i.e., maximizing the likelihood of the training data while using
negative examples. The sparse aggregator does not share parameters between
relations, that is, queries for different relations can be treated independently
and hyperparameters could be searched relation-wise. For the sake of simplicity,
we train the model globally, however, we save checkpoints per epoch and pick
for every relation in head and tail direction the checkpoint that results in the
highest MRR on the valid set. For the Hetionet KG this is not necessary as
only one target relation exists and only tails are predicted. Hyperparameter
configurations and further training details can be found in AppendixA.

Supervised Knowledge Aggregation for Knowledge Graph Completion 85

Table 2. Filtered MRR in tail direction for Hetionet. The results for the learnable aggre-
gators are averages over 5 runs. The first, middle and last part represents embedding-
based models, interpretable models, and the results of this work, respectively.

Approach h@1 h@3 h@10 MRR

TransE [4] 0.099 0.199 0.444 0.205

ComplEx [40] 0.152 0.285 0.470 0.250

ConvE [9] 0.100 0.225 0.318 0.180

RESCAL [26] 0.106 0.166 0.377 0.187

HittERnc 0.316 0.517 0.740 0.453

RotatE 0.185 0.282 0.403 0.257

CompGCN [41] 0.172 0.318 0.543 0.292

pLogicNet [30] 0.225 0.364 0.523 0.333

MINERVA[8] 0.264 0.409 0.593 0.370

PoLo [18] 0.314 0.428 0.609 0.402

PoLo (pruned) 0.337 0.470 0.641 0.430

Max 0.272 0.444 0.642 0.398

Noisy-or 0.377 0.509 0.642 0.472

Dense 0.306 0.514 0.701 0.441

Sparse 0.380 0.525 0.694 0.490

6.3 Results

Table 2 shows results on the test set for the filtered MRR and filtered hits@k in
tail direction for the drug repurposing problem and Table 3 shows results for the
test sets of the joint MRR and joint hits@k on the remaining datasets.

On the Hetionet dataset, the sparse aggregator improves the recent state-
of-the-art [18] of the interpretable models by 4.3, 5.5, 5.3, and 6% points for
the metrics hits@1, hits@3, hits@10, and MRR, respectively. Interestingly, the
noisy-or baseline already outperforms the state-of-the-art by a significant margin.
Noteworthy, the sparse aggregator improves AnyBURL’s max-aggregation by
9.2% points for the MRR and shows improvements of 1.8% points over noisy-or.
The dense aggregator, on the other hand, performs significantly worse except
for the hits@10 metric. Despite outperforming the previous models, it does not
improve over the noisy-or baseline.

For the remaining datasets the sparse aggregator outperforms the inter-
pretable methods and improves over the best AnyBURL baseline (note that
noisy-or performs rather poor on these datasets) in all settings although the
improvement is only marginal for the WNRR dataset. However, improvements
of 2.3% points on FB15k-237 and 2% points on Codex-m are considered to be
quite substantial in the KGC literature. Interestingly, the setting D+S which
is explained in Sect. 5.3 achieves strong results on WNRR and Codex-M. This
suggests that, despite being inferior overall, the dense aggregator captured some
aspects of the data which are hidden from the sparse aggregator. We investigated
this further and found that the dense aggregator is sensitive to negative signals.

86 P. Betz et al.

Table 3. Results for FB15k-237, WNRR and Codex-M for the joint filtered MRR.
The first, middle and last part of the table represents embedding-based models, inter-
pretable models, and the results of this work, respectively. The results for Dense and
Sparse are averages over 3 runs.

FB15k-237 WNRR Codex-M

Approach h@1 h@10 MRR h@1 h@10 MRR h@1 h@10 MRR

TransE 0.221 0.497 0.312 0.053 0.520 0.228 0.223 0.454 0.303

ComplEx 0.253 0.536 0.347 0.438 0.547 0.475 0.262 0.476 0.337

ConvE 0.248 0.521 0.338 0.411 0.505 0.442 0.239 0.464 0.318

RESCAL 0.263 0.541 0.355 0.439 0.517 0.467 0.244 0.456 0.317

HittERnc 0.268 0.549 0.361 0.437 0.531 0.469 0.262 0.486 0.339

RotatE 0.240 0.522 0.333 0.439 0.553 0.478 – – –

M2GNN 0.275 0.565 0.362 0.444 0.572 0.485 – – –

pLogicNet 0.237 0.524 0.332 0.398 0.537 0.441 – – –

MINERVA 0.217 0.456 0.293 0.413 0.513 0.448 – – –

DRUM [35] 0.255 0.516 0.343 0.425 0.586 0.486 – – –

Neural-LP [45] – 0.362 0.240 0.371 0.566 0.435 – – –

Max 0.246 0.506 0.331 0.457 0.572 0.497 0.247 0.450 0.316

Noisy-or 0.247 0.494 0.329 0.391 0.559 0.446 0.218 0.427 0.289

Dense 0.245 0.510 0.335 0.466 0.587 0.507 0.261 0.465 0.331

Sparse 0.266 0.526 0.352 0.459 0.574 0.499 0.266 0.467 0.335

D+S 0.267 0.527 0.354 0.469 0.593 0.511 0.273 0.476 0.342

For instance, when adding rules with low confidences to an input set, the score
of the dense aggregator might decrease. This behavior cannot be expressed by
the sparse aggregator or the presented baselines which might open up interesting
further directions.

Finally, Figs. 1 and 2 compare the sparse aggregator under different training
settings. Figure 1 shows test results for five runs on Hetionet when using the
scaled gradients proposed in Sect. 5 and the default formulation. Training with
the scaled gradients leads to lower variance and higher average performance.
Figure 2 compares mean-rank training with using a standard cross-entropy loss
on Codex-M.

7 Interpretability

In the following we discuss an example for a query where the sparse aggregator
generates a ranking that differs significantly from the ranking suggested by the
rule with the highest confidence. Moreover, in contrast to noisy-or where all
rules that fired contribute to the score, by setting d = 10 our model selects a
compact subset of 10 rules of which we can further pick the ones with the highest
impact. This procedure also resembles how a potential user can interact with the
aggregation system. We use an example with short rules for the sake of simplicity.

Supervised Knowledge Aggregation for Knowledge Graph Completion 87

scaled non-scaled
0.45

0.47

0.49

0.51

M
R
R

ta
il

Fig. 1. MRR in tail direction for five
runs on Hetionet when training under
the scaled/non-scaled gradient.

1 5 10 15 20 25 30

0.3

0.31

0.32

0.33

M
R
R

Fig. 2. Valid MRR per epoch on
Codex-M for Mean-Rank training (�)
and ordinary Cross-Entropy loss (+).

The target query asks for new diseases to which the compound Methotrexate
(DB00563) can be applied. Our method ranks the correct answer systemic lupus
erythematosus first, an autoimmune disease in which the body’s immune system
mistakenly attacks healthy tissue in many parts of the body.

To illustrate this example, we have chosen the eight rules with the highest
confidences and depicted their normalized values for each of the ten dimensions
side by side on the left part of Fig. 3. Different rules can be distinguished by their
color and position within the group of bars that reflects the value of a specific
dimension. Note that the most confident rule that created a candidate for the
query had a confidence of 0.357, while the #1 candidate proposed by our method
received a score of 0.806. This is caused by the fact that the rules that recited
this candidate differ significantly with respect to their latent features. There are
several dimension (in particular 5,6, 8 and 9), where we learned a significantly
higher value for that specific rule compared to all other rules. This means at the
same time that a large fraction of the overall power of this rule is assumed to
be independent from the other rules and increases the overall score. If the rules
had similar values in most of the dimensions, the resulting score would be close
to the score of the maximum strategy.

A domain expert, who wants to understand why a certain candidate is ranked
at #1, is probably interested in a small set of rules that had the highest influence
on the prediction. These are obviously the rules that dominate in some of the
dimensions. To quantify their contribution we computed for each rule the sum
of values over all dimensions taking only those dimension into account where
the rule received the maximal value compared to the other rules. The resulting
scores are depicted on the right part of Fig. 3. This means that rules r229 and
r264 are the most important two rules. Let us take a closer look at these rules
and their meaning:

r229 CtD(X,Disease::DOID:9074) <= CtD(X,Disease::DOID:7148) - If a
compound can be used as treatment for rheumatoid arthritis (DOID:7148), it
might also be applied to treat the disease lupus erythematosus (DOID:9074).

88 P. Betz et al.

0

0.1

0.2

0.3

x∗
1,r x∗

2,r x∗
3,r x∗

4,r x∗
5,r x∗

6,r x∗
7,r x∗

8,r x∗
9,r x∗

10,r

r 1
9
0

r 1
9
1

r 2
2
9

r 2
3
4

r 2
5
6

r 2
6
4 r 3
2
1

r 3
2
7

Fig. 3. Rule features when searching new treatments for Methotrexate.

Since Methotrexate is known to been used for rheumatoid arthritis, lupus
erythematosus is predicted by the rule.

r264 CtD(Compound::DB00563,Y) <= DlA(Y,Anatomy::UBERON:0000043) - If
a disease is diagnosed to affect a tendon (UBERON:0000043), that disease
might be treated with Methotrexate (DB0056). Since Methotrexate is known
to been used in such a context, it is predicted by the rule.

These two rules fire for different reasons. The first rule is based on observing that
two different ailments which both correspond to autoimmune diseases are likely
treatable by the same compound. The second rule focuses on a specific body
part, the tendon, which – if afflicted by a disease – can often be treated with
Methotrexate. In almost all cases tendons are either ruptured (no drug required)
or inflamed which makes them treatable by Methotrexate. Figure 3 shows that our
approach is capable to learn that these two rules are not redundant. It increases
the score of a candidate that is proposed by both rules, which is in our case lupus
erythematosus, a disease which can affect tendons and for which compounds have
been applied that have also been applied to rheumatoid arthritis.

8 Conclusion

We showed empirically that simple rule learning approaches achieve strong
results on the task of drug repurposing. We presented learnable knowledge aggre-
gation in form of latent rule aggregation. To our best knowledge, this is a novel
approach that differs fundamentally from symbolic and latent approaches pro-
posed so far for KGC. In particular, we presented an aggregation function, the
sparse aggregator, which can be learned on the training set and we proposed to
employ black-box optimization. We found empirically that the sparse aggregator
improves over baseline aggregation techniques. It is on-par with standard KGE
methods and is state-of-the-art on the Hetionet dataset, while still maintaining
interpretability. The sparse model learns how to aggregate rules as positive evi-
dence, however, it is not capable to learn that a rule or a combination of rules
makes a prediction less likely. It might thus be beneficial to incorporate negative
evidence into the model which opens up directions for future research.

Supervised Knowledge Aggregation for Knowledge Graph Completion 89

A Experimental Details

A.1 Model Input

On the highest abstraction level, our models take as input a list of rules and
output a real-valued score. More precisely, for a query q = (s, p, ?) (same in head
direction) we collect the top n answer candidates ci proposed by AnyBURL,
that is, the candidates that were generated by at least one rule. For each of
these candidates the respective list of rules defines the model input. Then, the
descriptions of the main text apply. Finally, we obtain a vector of scores and
likewise a ranking in regard to all candidate answers ci. At test time, this ranking
can directly be used for the evaluation. At training time, we distinguish the
true answer/candidate c∗ and the remaining candidates c′ which we filter with
the training set, i.e., we exclude a c′ �= c∗ if a triple (s, p, c′) exists in train.
For a ranking loss we can now calculate the query loss of q as explained in
Sect. 5.2. For some arbitrary loss function such as cross-entropy, c∗ defines the
true candidate and the remaining candidates c′ define the reference candidates
or pseudo negative candidates.

A.2 Hyperparameters

For all the experiments, we use a max top-n = 100, the Adagrad optimizer, and
a batch-size of 256. Training is performed by using early stopping based on the
validation set. LibKGE based configuration files for the experiments are provided
in the supplementary materials.

Sparse Aggregator. The hyperparameters that we are concerned with are
dropout on the latent features, the latent dimension d, and the learning rate
lr. For Hetionet we set d = 10, dropout = 0.15 and lr = 0.9. On Fb15k-237 we
set d = 40, dropout = 0.4, and lr = 0.02. For WNRR we set d = 50, dropout = 0.4
and lr = 0.03. For Codex-m we set d = 40, dropout = 0.4 and lr = 0.02. For all
the experiments we use a value of 5 for lambda when training on the mean-rank
loss.

Dense Aggregator. The dense aggregator follows in its architecture the
PyTorch BERT encoder with the modification as explained in Sect. 5.3. We use
4 heads and 4 layers throughout all the experiments. The feed-forward dimen-
sionality within the encoder is 256. For Hetionet we use d = 20, dropout = 0.15
and lr = 0.01. For the remaining datasets we use d = 56, dropout = 0.15, and
lr = 0.005. We set the maximal number of rules per input list to 50 for the dense
aggregator for all the experiments.

A.3 Rule Sets

The base data for our experiments are the rules learned with AnyBURL. These
are processed in a pre-processing pipeline to generate the inputs for the aggre-
gators as explained above. For all the datasets we exclude AC2 rules and rules

90 P. Betz et al.

with an empty body. This leaves the AnyBURL performance mostly unchanged
but we report newest AnyBURL results reported by the authors.

For WNRR rules are mined for 3600 s and we set the maximum length for
cyclical rules equal to 5 as suggested in the AnyBURL documentation. All the
learned rules are processed for training the models on this dataset. For the
remaining datasets the default AnyBURL parameters are used. Here, we prune
the learned rulesets slightly and only process rules that had at least 5 (10) true
predictions for sparse (dense). On Hetionet rules are learned for 1000 s for dense
and sparse. On Fb15k-237 rules are learned for 3600 (500) s for sparse (dense).
Finally, on Codex-M rules are learend for 1000 (500) s for sparse (dense).

References

1. Ali, M., et al.: Bringing light into the dark: a large-scale evaluation of knowledge
graph embedding models under a unified framework. IEEE Trans. Pattern Anal.
Mach. Intell., 1–1 (2021). https://doi.org/10.1109/TPAMI.2021.3124805

2. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF:
towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform.
41(5), 706–716 (2008)

3. Betz, P., Niepert, M., Minervini, P., Stuckenschmidt, H.: Backpropagating through
Markov logic networks. In: Proceedings of 15th International Workshop on Neural-
Symbolic Learning and Reasoning, vol. 2986, pp. 67–81. CEUR (2021)

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Neural Information Processing
Systems (NIPS), pp. 1–9 (2013)

5. Broscheit, S., Ruffinelli, D., Kochsiek, A., Betz, P., Gemulla, R.: LibKGE-a knowl-
edge graph embedding library for reproducible research. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 165–174 (2020)

6. Chen, S., Liu, X., Gao, J., Jiao, J., Zhang, R., Ji, Y.: Hitter: hierarchical trans-
formers for knowledge graph embeddings. In: Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing (EMNLP) (2020)

7. Cohen, W., Yang, F., Mazaitis, K.R.: TensorLog: a probabilistic database imple-
mented using deep-learning infrastructure. J. Artif. Intell. Res. 67, 285–325 (2020)

8. Das, R., et al.: Go for a walk and arrive at the answer: Reasoning over paths
in knowledge bases using reinforcement learning. arXiv preprint arXiv:1711.05851
(2017)

9. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 32, pp. 1811–1818 (2018)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Long and Short Papers), vol. 1, June
2019

11. Dörpinghaus, J., Jacobs, M.: Semantic knowledge graph embeddings for biomed-
ical research: data integration using linked open data. In: SEMANTICS
Posters&Demos (2019)

https://doi.org/10.1109/TPAMI.2021.3124805
http://arxiv.org/abs/1711.05851

Supervised Knowledge Aggregation for Knowledge Graph Completion 91

12. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif.
Intell. Res. 61, 1–64 (2018)

13. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE. VLDB J. 24(6), 707–730 (2015)

14. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule
mining under incomplete evidence in ontological knowledge bases. In: Proceedings
of the 22nd International Conference on World Wide Web, pp. 413–422 (2013)

15. Garćıa-Durán, A., Niepert, M.: KBLRN: end-to-end learning of knowledge base
representations with latent, relational, and numerical features. UAI (2018)

16. Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge priori-
tizes drugs for repurposing. Elife 6, e26726 (2017)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. In: Neural Computa-
tion, vol. 9, pp. 1735–1780. MIT Press (1997)

18. Liu, Y., Hildebrandt, M., Joblin, M., Ringsquandl, M., Raissouni, R., Tresp, V.:
Neural multi-hop reasoning with logical rules on biomedical knowledge graphs. In:
Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 375–391. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77385-4 22

19. Meilicke, C., Betz, P., Stuckenschmidt, H.: Why a naive way to combine symbolic
and latent knowledge base completion works surprisingly well. In: 3rd Conference
on Automated Knowledge Base Construction (2021)

20. Meilicke, C., Chekol, M.W., Fink, M., Stuckenschmidt, H.: Reinforced anytime
bottom up rule learning for knowledge graph completion (2020)

21. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up
rule learning for knowledge graph completion. In: Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence (IJCAI). IJCAI/AAAI Press
(2019)

22. Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.:
Fine-grained evaluation of rule- and embedding-based systems for knowledge graph
completion. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 3–20.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6 1

23. Minervini, P., Bošnjak, M., Rocktäschel, T., Riedel, S., Grefenstette, E.: Differen-
tiable reasoning on large knowledge bases and natural language. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5182–5190 (2020)

24. Minervini, P., Riedel, S., Stenetorp, P., Grefenstette, E., Rocktäschel, T.: Learning
reasoning strategies in end-to-end differentiable proving. In: International Confer-
ence on Machine Learning, pp. 6938–6949. PMLR (2020)

25. Mohamed, S.K., Nounu, A., Nováček, V.: Drug target discovery using knowledge
graph embeddings. In: Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, pp. 11–18 (2019)

26. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on
multi-relational data. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th
International Conference on Machine Learning, pp. 809–816. Omnipress (2011)

27. Niepert, M., Minervini, P., Franceschi, L.: Implicit MLE: backpropagating through
discrete exponential family distributions. In: NeurIPS (2021)

28. Ott, S., Graf, L., Agibetov, A., Meilicke, C., Samwald, M.: Scalable and inter-
pretable rule-based link prediction for large heterogeneous knowledge graphs (2020)

29. Pogančić, M.V., Paulus, A., Musil, V., Martius, G., Rolinek, M.: Differentiation of
blackbox combinatorial solvers. In: International Conference on Learning Repre-
sentations (2020)

30. Qu, M., Tang, J.: Probabilistic logic neural networks for reasoning. In: International
Conference on Learning Representations (2020)

https://doi.org/10.1007/978-3-030-77385-4_22
https://doi.org/10.1007/978-3-030-00671-6_1

92 P. Betz et al.

31. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Advances in Neu-
ral Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, pp. 3788–3800 (2017)

32. Roĺınek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., Martius, G.:
Optimizing rank-based metrics with blackbox differentiation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7620–7630 (2020)

33. Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph
embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov.
Data (TKDD) 15(2), 1–49 (2021)

34. Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old dog new tricks! on
training knowledge graph embeddings. In: International Conference on Learning
Representations (2020)

35. Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: end-to-end dif-
ferentiable rule mining on knowledge graphs. In: Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Sys-
tems, NeurIPS 2019, Vancouver, BC, Canada, pp. 15321–15331 (2019)

36. Safavi, T., Koutra, D.: CoDEx: a comprehensive knowledge graph completion
benchmark. In: Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pp. 8328–8350. Association for Computational
Linguistics, November 2020

37. Sola, D., Meilicke, C., van der Aa, H., Stuckenschmidt, H.: A rule-based recom-
mendation approach for business process modeling. In: La Rosa, M., Sadiq, S.,
Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 328–343. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79382-1 20

38. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by
relational rotation in complex space. In: International Conference on Learning
Representations (2019)

39. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space
Models and Their Compositionality, pp. 57–66 (2015)

40. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: Balcan, M., Weinberger, K.Q. (eds.) Proceed-
ings of the 33nd International Conference on Machine Learning. JMLR Workshop
and Conference Proceedings, vol. 48, pp. 2071–2080. JMLR.org (2016)

41. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-
relational graph convolutional networks. In: International Conference on Learning
Representations (2020)

42. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 6000–6010 (2017)

43. Wang, S., et al.: Mixed-curvature multi-relational graph neural network for knowl-
edge graph completion. In: Proceedings of the Web Conference 2021, pp. 1761–1771
(2021)

44. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method
for knowledge graph reasoning. arXiv preprint arXiv:1707.06690 (2017)

45. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowl-
edge base reasoning. In: Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems, NeurIPS 2017,
Long Beach, US (2017)

46. Zhang, J., Chen, B., Zhang, L., Ke, X., Ding, H.: Neural, symbolic and neural-
symbolic reasoning on knowledge graphs. AI Open 2, 14–35 (2021)

https://doi.org/10.1007/978-3-030-79382-1_20
http://arxiv.org/abs/1707.06690

	Supervised Knowledge Aggregation for Knowledge Graph Completion
	1 Introduction
	2 Related Work
	3 Rule-Based Knowledge Graph Completion
	3.1 Preliminaries
	3.2 AnyBURL
	3.3 Knowledge Aggregation

	4 Supervised Knowledge Aggregation
	4.1 Challenges
	4.2 Supervised Rule Aggregation

	5 Latent-Based Aggregation
	5.1 Sparse Aggregation
	5.2 Optimizing Mean-Rank Using Black-Box Optimization
	5.3 Dense Aggregation

	6 Experiments
	6.1 Datasets
	6.2 Experimental Settings
	6.3 Results

	7 Interpretability
	8 Conclusion
	A Experimental Details
	A.1 Model Input
	A.2 Hyperparameters
	A.3 Rule Sets

	References

