
Improving Question Answering Quality
Through Language Feature-Based

SPARQL Query Candidate Validation

Aleksandr Gashkov1 , Aleksandr Perevalov2,3 , Maria Eltsova1 ,
and Andreas Both3,4(B)

1 Perm National Research Polytechnic University, Perm, Russia
2 Anhalt University of Applied Sciences, Köthen, Germany
3 Leipzig University of Applied Sciences, Leipzig, Germany

andreas.both@htwk-leipzig.de
4 DATEV eG, Nuremberg, Germany

Abstract. Question Answering systems are on the rise and on their
way to become one of the standard user interfaces. However, in conver-
sational user interfaces, the information quantity needs to be kept low as
users expect a limited number of precise answers (often it is 1) – similar
to human-human communication. The acceptable number of answers in
a result list is a key differentiator from search engines where showing
more answers (10–100) to the user is widely accepted. Hence, the quality
of Question Answering is crucial for the wide acceptance of such sys-
tems. The adaptation of natural-language user interfaces for satisfying
the information needs of humans requires high-quality and not-redundant
answers. However, providing compact and correct answers to the users’
questions is a challenging task. In this paper, we consider a certain class
of Question Answering systems that work over Knowledge Graphs. We
developed a system-agnostic approach for optimizing the ranked lists of
SPARQL query candidates produced by the Knowledge Graph Question
Answering system that are used to retrieve an answer to a given ques-
tion. We call this a SPARQL query validation process. For the evaluation
of our approach, we used two well-known Knowledge Graph Question
Answering benchmarks. Our results show a significant improvement in
the Question Answering quality. As the approach is system-agnostic, it
can be applied to any Knowledge Graph Question Answering system that
produces query candidates.

Keywords: Question Answering over Knowledge Graphs · Query
Validation · Query Candidate Filtering

1 Introduction

The Web has become the major knowledge source for many people worldwide.
While aiming at efficient knowledge modeling and representation, the Semantic

A. Gashkov and A. Perevalov—Shared first authorship–these authors contributed
equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 217–235, 2022.
https://doi.org/10.1007/978-3-031-06981-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_13&domain=pdf
http://orcid.org/0000-0001-6894-2094
http://orcid.org/0000-0002-6803-3357
http://orcid.org/0000-0003-3792-8518
http://orcid.org/0000-0002-9177-5463
https://doi.org/10.1007/978-3-031-06981-9_13

218 A. Gashkov et al.

Fig. 1. General overview of the Query Validation process. The core component is the
Query Validator intended to filter incorrect query candidates.

Web initiative was proposed and is permanently growing. The objective of this
initiative is to make Web data machine-readable and machine-understandable by
describing concepts, entities, and relations between them [6]. Hence, the Seman-
tic Web may be considered as a giant Knowledge Graph (KG). In this regard,
Knowledge Graph Question Answering (KGQA) systems are actively develop-
ing already for more than a decade [14,16]. These systems are bridging the
gap between Linked Data and end-users by transforming natural-language (NL)
questions into structured queries (e.g., represented as SPARQL1) to make the
information accessible using NL requests.

When answering a question, KGQA systems often generate a ranked list of
SPARQL queries that are considered to be capable of retrieving answers to a
given question. Thereafter, a ranked Top-N of the retrieved answers is shown
to the end-users (often N is 1). Thus, a Query Candidate is a SPARQL query
generated by a KGQA system to retrieve data. An Answer Candidate is a result
of a SPARQL Query Candidate execution which is proposed as a possible answer
to a user. In this paper, we propose a Query Validation (QV) process that is
intended to remove all queries that cannot be resolved to a correct answer from
a query candidates list. This helps to reduce the number of incorrect query
candidates (and therefore, answers) in the output and move the correct ones to
the top of the list. In addition, unanswerable questions should be recognized,
and, hence, an empty output should be presented for such questions (s.t., users
are not confronted with incorrect/guessed answers).

The field of Answer Validation (AV) is well-researched for information
retrieval (IR) and IR-based question answering (QA) and many approaches were
proposed in the last decade [1,5,21,22,30,39,47]. However, there is just a very
limited number of studies on AV and QV in the context of KGQA systems (e.g.,
[9,27]).

In this work, we propose a new system-agnostic QV approach that can deter-
mine whether a query candidate produced by a KGQA system is correct or not
without executing the SPARQL query (see Fig. 1). The approach uses a straight-
forward process of converting a query candidate to NL representation and a fine-
tuned classifier [11] to distinguish between correct and incorrect query candidates
and, therefore, the answers. In Fig. 1, the process is visualized. To demonstrate
the efficiency of the proposed QV approach, we utilize several well-known QA

1 https://www.w3.org/TR/rdf-sparql-query/.

https://www.w3.org/TR/rdf-sparql-query/

Improving QA Quality Through Query Candidate Validation 219

quality metrics, such as Precision@k and NDCG@k (Normalized Discounted
Cumulative Gain) [37]. To tackle the dilemma of how to address the difference
between “guessing” answers versus providing an empty result, we introduce a
new integral metric that takes into account correct, incorrect, and also empty
answer sets. In addition, we consider the quality w.r.t. the unanswerable ques-
tions and the influence of our approach on the corresponding results. Given our
experimental results on one KGQA system, QAnswer [12], and two benchmark-
ing datasets, LC-QuAD 2.0 [17] and RuBQ 2.0 [35], we demonstrate that the
QV approach provides a relative improvement of Precision@1 up to 204.6% (see
Table 2) as well as it is improving other metrics significantly. Moreover, the app-
roach enabled us to obtain almost 50% of correct answers for the unanswerable
questions.

To increase the reproducibility of our work, we performed evaluation of exper-
iments with the Gerbil [43] system that provides standardized shareable links to
the experiments for KGQA systems. We provide the links to the Gerbil experi-
ments, source code, and the experimental data2 (our experimental data is also
shared as an RDF Turtle dataset) as an online appendix. This paper is struc-
tured as follows. In the next section, the related work is presented followed by
Sect. 3 which introduces our approach in detail. Section 4 highlights the used QA
system, QV component, datasets and data preparation process. We describe in
Sect. 5 how experiments were processed in general. Section 6 estimates the qual-
ity of the query validator as well as the impact of the QV process on the QA
quality. Section 7 concludes the paper and outlines future work.

2 Related Work

Techniques that tackle the task of validating the answer were applied mainly in
IR-based QA, which we mentioned in Sect. 1. IR-based QA systems are often
required to rank huge amounts of candidate answers [26], e.g., the incorrect
answer candidates in form of textual paragraphs have to be eliminated by the
AV module. In [34], e.g., the AV process is performed on the basis of Expected
Answer Type, Named Entities Presence, and Acronym Checking (only if a ques-
tion is about an acronym). The authors mention that sometimes AV module is
“too strict”, i.e., it removes also correct answers.

However, the AV and QV processes in KGQA are not well investigated in
the research community. Our previous paper [19] describes the novel approach
for improving the QA quality where answer candidates are filtered just by eval-
uating the NL input (i.e., the user’s question) and output (i.e., the system’s
answer), accordingly, it is a system-agnostic approach. Nevertheless, it requires
well-formed NL answers that are hard to compute automatically.

On the other hand, there appeared recently some approaches to semantic
parsing by treating it as a problem of semantic graph generation and re-ranking
[27,31,45,46]. While Yih et al. [45] introduce grounded query graph candidates
using a staged heuristic search algorithm and employs a neural ranking model for
2 https://doi.org/10.6084/m9.figshare.19434515.

https://doi.org/10.6084/m9.figshare.19434515

220 A. Gashkov et al.

scoring and finding the optimal semantic graph, Yu et al. [46] utilize a hierarchi-
cal representation of KG predicates in their neural query graph ranking model.
A local sub-sequence alignment model with cross-attention is presented in [31].
A slot-matching model to rank query graphs for complex KGQA [27] exploits
the inherent structure of query graphs and uses multiple attention scores to
explicitly compare each predicate in a query graph with the NL question.

Another topic which has being attracted more and more attention of the
research community in recent years is the problem of unanswerable questions
[2,20,23,40,44]. However, most of them deal with Machine Reading Comprehen-
sion, not KGQA. Unfortunately, different classifications of unanswerable ques-
tions (e.g., [2,23,24,44]) consider only the situation in which a (not answered)
question has an answer (an answer that is available, but could not be computed
by the QA-system, for any reason) and do not investigate the case when there
exists no answers to a question, e.g., “What is the capital of Mars?”. These
two cases differ fundamentally for the field of QA, therefore, they need differ-
ent approaches to be resolved. However, to distinguish these two cases is not
important for this paper. Instead, we focus on deciding whether an answer (rep-
resented as query candidate) is correct or not. For this reason, we call all these
questions unanswerable questions.

3 Approach

Our approach is based on the general assumption that a SPARQL query is
expressing a question in a formal representation which can be translated back
to an NL text that should be similar to the original question.

In a KGQA system, the generation of a SPARQL query given a ques-
tion can be considered as a translation from NL to the formal language
(cf. Fig. 1). We consider the direct comparison of SPARQL queries and
NL questions as very challenging, especially for SPARQL over Wikidata
[18] because of non-intuitive URIs naming convention, therefore, we con-
vert SPARQL query candidates to a textual representation. For this purpose,
the labels stored in the KG are used to convert all Semantic Web identi-
fiers (e.g., https://www.wikidata.org/entity/Q84) to their textual representa-
tion (e.g., “London”). We call the process of generating an NL representation
verbalization of a SPARQL query.

In our approach we assume that given a NL question, a KGQA system pro-
duces a list of SPARQL query candidates ranked by a relevance score, computed
internally within the system, i.e., the first query candidate will be used to com-
pute the answer to show to an end-user. The goal of our QV approach is to
ensure that incorrect query candidates are filtered while relying only on the
user’s NL question and the computed SPARQL query candidates of the con-
sidered KGQA system. Hence, our QV process is intended to distinguish query
candidates resulting in correct answers from those that would result in incor-
rect answers. Our approach is system-agnostic and does not require executing
the SPARQL queries. In the following subsections, we describe the approach in
detail.

https://www.wikidata.org/entity/Q84

Improving QA Quality Through Query Candidate Validation 221

Fig. 2. An example of a correct SPARQL query candidate (using Wikidata).

3.1 SPARQL Query Candidates Verbalization

To convert SPARQL query candidates to NL answers, we use a straight-forward
process where only the WHERE clause of the SPARQL query is considered. All
entities and predicates are replaced by their labels, e.g., wd:Q5 is replaced by
its English label “human”. All variable names are kept as they are, e.g., ?o1,
?subject, ?answer. It is worth mentioning that any other modifiers (e.g.,
LIMIT, ORDER BY, GROUP BY) in a query are removed in our current approach
and do not influence the final NL representation3. Finally, all the labels are con-
catenated with each other in the order of appearance with the space separator.

Considering the SPARQL query presented in Fig. 2, our process computes
the following NL representation: “John Denver cause of death ?cause John
Denver place of death ?place”. As many property and entity labels used in
a question are often mirrored in its verbalization, our approach is based on the
assumption that the QV classifier will be capable of determining such query
candidate as a correct one (i.e., the user’s question and the query verbalization
are similar).

3.2 Query Validation Process

The intention of the proposed QV process is as follows: given a query candidates
list, we are aiming at excluding as many incorrect query candidates as possible
while not removing the correct ones. Thus, our approach increases the chances
of showing a correct answer to a user of a QA system. In Fig. 3, several different
QV cases are shown. All the incorrect query candidates were removed by the QV
(e.g., in A′) while the correct ones were left untouched (cf. A′′). In an extreme
case, a query candidates list contains only incorrect items (e.g., in D and E).
In this case, the list should become empty after a perfect QV (cf. D′ and D′′).
Likewise, there could be only correct query candidates in the list (not shown in
Fig. 3). In this (unlikely) case, at least one query candidate should be recognized
as correct by the QV.

3 Measuring the impact on the verbalization regarding the QV results would be part
of additional research.

http://www.wikidata.org/entity/Q5

222 A. Gashkov et al.

Fig. 3. An example of query validation process where a KGQA system proposed 6
ranked query candidates (index: 0–5) for each of the 5 questions (A–E).

3.3 Measures of Query Validation Efficiency

Classification Quality of the Query Validator. To measure the quality of
the query validator, we use the following well-known metrics: True Positive Rate
(TPR/Recall), True Negative Rate (TNR), Balanced Accuracy (BA), Precision,
and F1 score. The metrics are calculated in the machine learning setting for
binary classification [33].

Question Answering Quality. To measure the efficiency of QV process, we
need to take into account two types of situations that may occur – (SA) when a
query candidate list generated by a KGQA system for a given question contains
records with at least one correct query candidate, (SB) when a query candi-
date list contains no correct items. In addition, the questions are divided into
answerable and unanswerable.

The most common way to measure QA quality is to take the answers gener-
ated by the first-ranked query candidate and compare them to the gold standard
answers. In this regard, to measure the efficiency of our QV approach, we use
well-known Precision, Recall, and F1 score metrics calculated in the information-
retrieval setting [37]. The metrics are calculated on the answers obtained before
and after QV process. Thereafter, relative improvement is computed.

As our approach influences the whole query candidate list, the other metrics
that take into account ranking order have to be considered. Therefore, we utilize
Precision@k and NDCG@k [37], where k ∈ [1, n] and n is the number of query
candidates provided by the considered KGQA system.

It is reasonable to use the aforementioned metrics only w.r.t. situation SA

(mentioned at the beginning of this paragraph). While considering situation SB ,
we propose the new metric Answer Trustworthiness Score (formally defined in
Eq. 1 in Sect. 6.2). This metric “gives a reward” (bonus) when a correct answer is
shown to a user, and “punishes” (penalty) the score otherwise. In addition, there

Improving QA Quality Through Query Candidate Validation 223

is a special case when the query candidate list is an empty set, although a correct
answer would be available within the considered data. In this situation, the
metric does not reward or punish the score, as it is considered to be an “honest”
response by the QA system to provide a “don’t know the answer” statement (and
not “guess” an answer). However, if after the QV process the empty answer is
presented to a user (instead of “guessing” an answer), the score will be higher as
no punishment will be done. The intuition behind this metric is that no answer
is better than a wrong answer4. Other relevant statistics should be calculated
over all query candidate sets, such as average position of correct/incorrect query
candidates, the average number of correct/incorrect query candidates in a list.

Finally, unanswerable questions have to be considered. For this class of ques-
tions, the expected response is defined as an empty query candidates list.

4 Material and Methods

To validate our approach, we used the state-of-the-art QA system QAnswer
[12,13,15] and two well-known datasets – RuBQ 2.0 [35] and LC-QuAD 2.0 [17].

4.1 The KGQA System QAnswer

Out of many existing QA systems (e.g., DeepPavlov [10], Platypus [32], Deep-
gAnswer [25] etc.), we have chosen QAnswer because of its portability, acces-
sibility [12] and its following features: robustness, multilingualism, support for
multiple KGs (including Wikidata), and it provides high precision and recall [13].
QAnswer also provides an API to ask a question and receive the corresponding
ranked query candidate list (of a maximum of 60 candidates). The limitations
of QAnswer as described in [13] are not essential to this paper.

4.2 Datasets Overview

QA over KGs is a substantial task that matches a user’s question to a query over
a KG to retrieve the correct answer [38]. After several updates of the DBpedia [3]
KG, many well-known datasets (QALD [42], LC-QuAD 1.0 [41], SimpleDBpedi-
aQA [4] etc.) cannot be utilized on its latest version because a QA system com-
piled for the inundated version has stopped returning valid requests. Moreover,
not all datasets (e.g., CSQA [36]) employ SPARQL as a formal representation
(which is a requirement for our work). Some datasets (e.g., VANiLLa [7]) have a
structure that does not enable to retrieve an answer without ambiguity. There-
fore, it was decided to use the RuBQ 2.0 [35] and LC-QuAD 2.0 [17] datasets
for our purpose on this step of our research.

4 Example: Assuming a user asks for the red or green wire to be cut for defusing a
bomb, then a guessed answer by the QA system might have a devastating result in
real life.

224 A. Gashkov et al.

RuBQ 2.0 Dataset. RuBQ 2.0 is the first Russian dataset for QA over Wiki-
data that consists of 2,910 questions of varying complexity, their machine trans-
lations into English without any post-editing, and annotated SPARQL queries,
which are essential for our approach. Here, we only use the English questions.
There are 2,357 unique entities, namely 1,218 in questions and 1,250 in answers,
as well as 242 unique relations in the dataset. RuBQ 2.0 is split into develop-
ment (580) and test (2,330) subsets in such a way to keep a similar distribution
of query types in both subsets. 510 RuBQ 2.0 questions are unanswerable, which
is a new challenge for KGQA systems to make the task more realistic. The fact
that RuBQ 2.0 contains unanswerable questions was a strong incentive to use
them in our evaluation.

We were not able to utilize the RuBQ 2.0 data split to dev/test parts, as
the number of dev samples is too small for fine-tuning our Query Validator. To
obtain the new split, we joined both parts and divided the entire dataset into
new train/test parts in 80/20 split (see Sect. 4.3).

LC-QuAD 2.0 Dataset. LC-QuAD 2.0 (2nd instance of the Large-Scale Com-
plex Question Answering Dataset) with 30,000 questions, their paraphrases, and
their corresponding SPARQL queries is compatible with both Wikidata and
DBpedia 2018 KGs. This dataset has a good variety and reasonable complexity
levels for questions (e.g., multi-fact questions, temporal questions, and questions
that utilize qualifier information). This dataset consists of 21,258 unique entities
and 1,310 unique relations. LC-QuAD 2.0 contains 10 different types of ques-
tions (such as boolean, dual intentions, fact with qualifiers, and others) spread
over 22 unique templates.

4.3 Data Preparation Process

The process of data preparation is analogous for all datasets considered. It con-
sists of the following steps: (1) processing the questions with the KGQA system
in order to get query candidate lists for each of them, (2) executing SPARQL
queries from the candidate lists on Wikidata in order to get the answer sets, (3)
comparing the answer sets from the query candidates with the “gold standard”
answer sets from the dataset in order to determine whether a query candidate is
correct or not5, (4) transforming query candidates to NL (according to Sect. 3.1).
The sample entry of a resulting dataset in the RDF Turtle format6 is presented
in Fig. 4. The dataset is available in the online appendix.

We summarized the information on the prepared data and divided it into 3
groups (cf. Table 1).

5 A query candidate is considered as correct if F1 score(ypred, ytrue) = 1, where ypred
– is the set of answers obtained with query candidate and ytrue is the “gold standard”
answer set.

6 https://www.w3.org/TR/turtle/.

https://www.w3.org/TR/turtle/

Improving QA Quality Through Query Candidate Validation 225

Fig. 4. The sample example from the prepared dataset in RDF Turtle format. Where
fqaac is a local RDF PREFIX.

Fig. 5. Example of RDF Turtle representation of the query validator output.

Table 1. The statistics of the prepared datasets. The training subset is used only
for training and validation of the QV and is not considered in this table. The testing
subset is used only for the KGQA system evaluation. AQ – answerable questions in
the dataset, uAQ – unanswerable questions in the dataset, Group A – questions where
a correct query candidate is at the first position, Group B – questions where a correct
query candidate is not at the first position, Group C – questions with zero correct query
candidates. QC = Ø – questions that were resolved with an empty query candidates
list (not included in Group C).

Dataset # AQ # uAQ # Group A # Group B # Group C # QC = Ø

RuBQ 2.0 480 102 78 85 419 0

LC-QuAD 2.0 6001 0 958 1288 3733 22

4.4 BERT-Based Query Validator

For the QV classifier, we used the BERT model [11]. As the pre-training process
of this model included next sentence prediction task (NSP)7 [11], we intentionally
fine-tune BERT using the same setting. While providing a question text as a first
sentence and a NL representation of a query candidate as the next one, we follow
the assumption that a question and a text representation form a valid pair. To
create the training data for the QV classifier, we used the prepared data as
follows: to each of the textual questions from the training subset, we assigned
one NL representation of a randomly picked query candidate. As the output of
the QV is a real value p, such as {p ∈ R | 0 ≤ p ≤ 1}, we empirically define
a threshold for assigning a particular class label. The target classification label
T = {t−, t+} equals t+ if and only if the assigned query candidate is considered

7 BERT was consciously trained to understand relationships between two consecutive
sentences if the second sentence follows the first one (e.g., “[CLS] the man went to
[MASK] store [SEP] he bought a gallon [MASK] milk [SEP]) because many impor-
tant downstream tasks such as QA and Natural Language Inference (NLI) are based
on understanding the relationship between two sentences” [11].

226 A. Gashkov et al.

as correct to a given question, otherwise, the target label equals t−. The output
of the classifier is represented in the RDF Turtle data as demonstrated in Fig. 5
on page 9.

5 Experimental Setup

We conduct our experiments as follows. In the first step, the Query Validators
QV are trained separately on the corresponding training subsets Di, where D =
{LC-QuAD,RuBQ}, Di ∈ D8. Hence, the a single input of the query validator
QVDi

is a pair (q, a), where q ∈ Di is the question text and a is the query
candidate transformed to NL. To identify a specific question, we will use qDi,k,
where k is the ID of the question in the dataset Di (e.g., a question with id=1
of the RuBQ 2.0 dataset will be represented by qRuBQ,1).

The output of the target label of the query validator is T = {t−, t+}, where
t− corresponds to the incorrect (q, a) pair (i.e., a is incorrect for q), and t+

corresponds to the correct (q, a) pair. We used a balanced distribution (i.e., t−:
50% to t+: 50%). Table 2 presents the training data statistics of our QV models.
The training data is split into two sets for training and validation (67%/33%)
of the query validator.

In the second step, we apply the QVDi
to the outputs of the QAnswer system.

The outputs have been produced by feeding the questions from the test subset of
Di to the KGQA system (see Step (1) in Sect. 4.3). Thus, the output represents
a ranked query candidate list LDi,q produced for a given question q. LDi

is the
set of the query candidate lists for all q ∈ Di (i.e., LRuBQ is referring to all
candidate lists from questions of the RuBQ 2.0 dataset). LRuBQ,q is a specific
query candidate list of the question q ∈ DRuBQ. Consequently, LRuBQ,q,1 is the
query candidate at position 1 from LRuBQ,q), where 0 ≤ |LDi,q| < n (where n is
the maximum number of available candidates in a list of query candidates) and
|LDi

| = |Di|.
After applying the particular QVs (QVRuBQ and QVLC-QuAD) to LRuBQ and

LLC-QuAD respectively, we obtain new filtered lists of query candidates (i.e.,
L̂RuBQ and L̂LC-QuAD). Hence, if the prediction of QVDi

was t−, then a query
candidate is eliminated from LDi,q. As we track the experimental data using
RDF, we are capable of obtaining such information as: position before filtering
(fqaac:hasPositionBeforeFiltering), is correct (fqaac:qaF1Score = 1) for
each LDi,q. Therefore, we calculate a set of metrics for QA quality as proposed
in Sect. 3.3.

6 Evaluation and Analysis

In this section, we describe the evaluation w.r.t. the two steps described in
Sect. 5. First, we evaluated the quality of the QV itself (i.e., binary classification
quality). Secondly, we evaluated the impact of the QV process on the QA quality.
8 The trained Query Validators are available online;

LC-QuAD: https://huggingface.co/perevalov/query-validation-lcquad,
RuBQ: https://huggingface.co/perevalov/query-validation-rubq.

https://huggingface.co/perevalov/query-validation-lcquad
https://huggingface.co/perevalov/query-validation-rubq

Improving QA Quality Through Query Candidate Validation 227

Table 2. Quality metrics of the trained dataset-specific Query Validators.

Query Validator |t−| |t+| TPR (Recall) TNR BA Precision F1 score

QVRuBQ 9040 9040 0.9805 0.8968 0.9386 0.8874 0.9316

QVLC-QuAD 24045 24045 0.9846 0.9854 0.9850 0.9854 0.9849

Table 3. Evaluation of QA quality improvement using the Gerbil system.

Micro Macro

Precision Recall F1 score Precision Recall F1 score

RuBQ 2.0

Before QVRuBQ 0.0456 0.4910 0.0834 0.4531 0.4469 0.4462

After QVRuBQ 0.1389 0.5000 0.2174 0.4594 0.4562 0.4505

Improvement in % 204.61 1.83 160.67 1.39 2.08 0.96

LC-QuAD 2.0

Before QVLC-QuAD 0.1621 0.2984 0.2100 0.5094 0.5191 0.4982

After QVLC-QuAD 0.3561 0.3679 0.3619 0.5341 0.5495 0.5247

Improvement in % 119.68 23.29 72.33 4.85 5.86 5.32

6.1 Answer Validation Classifier Evaluation

In our task the importance of a false negative prediction is higher than a false
positive one. If the only one correct query candidate from LDi,q is eliminated
by the false negative error, it will inevitably lead to 0% of QA quality, which
is not the case for false positive errors. The results regarding the quality of the
QV are presented in Table 2. With these results we prove that it is possible to
obtain comparable classification quality w.r.t. the well-formed query candidate
verbalizations9. The obtained Recall score shows that the classifier is capable of
avoiding many false negative predictions, which matches our requirements. Thus,
even by using our straight-forward query candidate verbalization method (cf.
Sect. 3.1), the trained QV models can distinguish between correct and incorrect
(q, a) pairs.

6.2 Question Answering Quality Improvement

In the following, the complete evaluation process is described. We applied our
QVs to the outputs of the QAnswer system to remove incorrect query candidates
(cf. Table 1). In the following paragraphs, by the term before the QV, we imply
the original results from the QAnswer system (LDi

). The term after QV implies
the results after applying the QV (L̂Di

).

9 In our previous study, we already compared QV’s quality using different query can-
didate verbalization methods [19].

228 A. Gashkov et al.

Pr
ec

is
io

n@
k

va
lu

e

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60

before after

RuBQ 2.0

Pr
ec

is
io

n@
k

va
lu

e

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60

before after

LC-QuAD 2

k value

N
D

C
G

@
k

va
lu

e

0.0

0.2

0.4

0.6

10 20 30 40 50 60

before after

k value
N

D
C

G
@

k
va

lu
e

0.0

0.2

0.4

0.6

0.8

10 20 30 40 50 60

before after

Fig. 6. Precision@k, NDCG@k before and after Query Validation process

Improvement of General Question Answering Quality. The standard
metrics for QA systems are based on the computed results of the first element
(i.e., in our evaluation, just the first element of QAnswer’s answer candidate list
is used). We used Gerbil10 [29,43] for calculating automatically Micro/Macro
Precision, Recall and F1 score from our computed data in a comparable and
citable form. As the input of the evaluation, the subset of questions was used
where QAnswer was computing at least one correct answer candidate for a ques-
tion q ∈ Group A ∪ Group B (cf. Table 1). The results in Table 311 show an
improvement of up to 204.61% (micro precision improvement w.r.t. RuBQ 2.0)
while the overall macro quality was improved for both datasets. Hence, our app-
roach is capable of improving the answer quality of QA systems w.r.t. the given
metrics.

Improvement w.r.t. Groups A and B. In this paragraph, we demonstrate
the impact of our approach w.r.t. the whole list of query candidates. To do this,
we also selected LDi,q such that they contain at least one correct query candidate
(i.e., Group A ∪ Group B). Thereafter, we measured Precision@k and NDCG@k,
where k ∈ [1, 60] before and after the QV process. Hence, we show the impact of
our approach w.r.t. the different sizes of LDi,q and not considering only the first
query candidate (i.e., LDi,q,1) as done in the previous paragraph. The results
of calculations are presented in Fig. 6. In the charts, we recognize significant
improvement w.r.t. all k values (e.g., 382% w.r.t. Precision@1 (=NDCG@1) on
10 http://gerbil-qa.aksw.org/gerbil/, version 0.2.3.
11 Our results are available online. LC-QuAD 2.0:

http://gerbil-qa.aksw.org/gerbil/experiment?id=202112080001 and
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112080002;
RuBQ 2.0: http://gerbil-qa.aksw.org/gerbil/experiment?id=202112090005 and
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112090006.

http://gerbil-qa.aksw.org/gerbil/
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112080001
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112080002
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112090005
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112090006

Improving QA Quality Through Query Candidate Validation 229

RuBQ 2.0 and 297% on LC-QuAD 2.0 respectively). This tendency is discovered
on both datasets and metrics, thus, showing that the proposed approach is not
a specialized solution for a particular setting. However, this experiment does
not show the impact of our method on the query candidate lists provided by
QAnswer that do not contain correct candidates (i.e., Group C). In the next
subsection, we discuss this aspect in detail.

Improvement w.r.t. Group C. In this paper, we follow the assumption that
no answer is better than a wrong answer (cf. Sect. 3.3). It is driven by the obser-
vation that an incorrect answer might confuse users who would often not be
able to decide if the answer is correct or incorrect. Thus, using our method, we
highlight the possibility that all incorrect query candidates of a question can
be removed from LDi,q. If instead of an incorrect answer produced by a query
candidate, a system should provide an empty answer (i.e., the QA system does
not “guess” but explicitly expresses the missing capabilities to answer the given
question), this will lead to an improved QA quality from users’ perspective. The
“standard” QA metrics (e.g., Precision, NDCG) are not reflecting this behavior.
For example, a QA system that would provide 50% correct answers and 50%
(“guessed”) incorrect answers could have the same scores as a system with 50%
correct results and 50% no answer (i.e., “don’t know the answer”) – which is
not a valid approach from our point of view. To tackle this scenario, we defined
the novel metric Answer Trustworthiness Score (ATS) that takes into account
our initial assumption. If no such metric is used, “guessing an answer” by a QA
system will statistically improve the QA quality. Therefore, we define here the
metric ATS that in particular takes into account the number of questions that
were answered with an empty result:

ATS(Di) =

∑
q∈Di

f(q)
|Di| , where f(q)

⎧
⎪⎨

⎪⎩

+1 if isCorrect(LDi,q,1) = True

0 else if Li,q = Ø
−1 else

(1)

where isCorrect(Li,q,1) = True if and only if for a question d the correct answer
is shown (i.e., for an empty response no answer is shown). The answer is pro-
duced by a query candidate Li,q,1. If an unexpected empty result is shown, then
the second case is triggered. The proposed metric may show a clear improve-
ment regarding unanswerable questions. We propose to the scientific community
to adopt this metric to ensure reasonable QA quality reflection. In addition, we
also analyze such statistics as average correct (j+) and incorrect (j−) query can-
didate position, average number of correct (L+

Di,q
) and incorrect (L−

Di,q
) query

candidates in a list. In Table 4 on page 14 we present the metrics for QA quality
introduced in Sect. 3.3. The results demonstrate a significant difference between
the values before and after QV. The values of the statistics j+ and j− demon-
strate that the positions of the correct and incorrect query candidates were
shifted to the top of the list after QV. The other values of the L+

i,d and L−
i,d

indicate that the numbers of the correct and incorrect query candidates were
decreased after QV. These results are ambiguous, however, the metric proposed

230 A. Gashkov et al.

Table 4. Question answering metrics before and after answer filtering.

metric state RuBQ 2.0 LC-QuAD 2.0

j+
Before QV 16.32 19.63

After QV 9.16 12.93

j−
Before QV 21.98 29.74

After QV 10.28 19.34

L+
Di,q

Before QV 3.12 4.27

After QV 2.55 3.88

L−
Di,q

Before QV 43.49 57.74

After QV 11.95 27.60

ATS(Di)
Before QV -0.31 -0.75

After QV -0.12 -0.71

Table 5. Evaluation of unanswerable questions from RuBQ 2.0 dataset before and
after QV

state # questions

LRuBQ,q = Ø (correct)
Before QV 0

After QV 50

LRuBQ,q �= Ø (incorrect)
Before QV 102

After QV 52

by us is able to disambiguate them. Given our novel metric (ATS(Di)), all the
values are negative. The metric results after QV were improved from −0.75 to
−0.71 for LC-QuAD 2.0 and from −0.31 to −0.12 for RuBQ 2.0 dataset. Negative
values signify that a QA system gives more incorrect answers rather than correct
ones. Thus, the QV process decreased the number of incorrect and increased the
number of correct query candidates, respectively. Hence, the trustworthiness of
the considered system w.r.t. the two analyzed datasets is not good, i.e., users
need to evaluate the results carefully.

Improvement w.r.t. Unanswerable Questions. The unanswerable ques-
tions were intentionally integrated by authors of the RuBQ 2.0 dataset. In this
paragraph, we utilize this subset of questions to see if the proposed approach
improves the performance of the KGQA system regarding unanswerable ques-
tions. The correct response to an unanswerable question q ∈ Di is LDi,q = Ø,
otherwise, the response is incorrect. Such evaluation strategy is also supported
in the original paper [24] of the RuBQ 2.0 authors. Our evaluation results of
the RuBQ 2.0 dataset regarding the contained 102 unanswerable questions are
shown in Table 5. As the QAnswer system’s strategy is to generate a list of
query candidates for any kind of question, none of the results were considered
as correct before QV. After QV, all the query candidates from the respective 50

Improving QA Quality Through Query Candidate Validation 231

lists LRuBQ,q were completely eliminated, and hence 50 unanswerable questions
would have been answered correctly (with an empty answer).

6.3 Discussion and Limitations

We raise several questions for the discussion. Firstly, the validity of our app-
roach is strongly depending on the labels provided by the considered KG. For
the given datasets, it works surprisingly well, however, for a real-world scenario,
additional methods would be required (e.g., integrating synonyms from [28]).
Futhermore, this raises the question if current KGQA benchmarks already rep-
resent the variety of NL questions well enough or would require additional exten-
sions. Secondly, in this work, we consider a query candidate as correct if the F1
score of the expected and computed results is 1. In this regard, the other options
would be to consider a different threshold instead of 1 (e.g., 0.75 or 0.5). The
major point of concern of the strict threshold for the real-valued measure (F1
score) for determining whether a query candidate is correct is that some gold-
standard correct answers sets contain more than one item (e.g., question: “Give
me all post-punk artists”). In this regard, if a query candidate could produce a
query equivalent to “Give me all German post-punk artists”, the result would
be partially correct. Hence, the “is correct” threshold should be adapted according
to the tolerance to the partially correct answers of the evaluation context (i.e.,
in our case, we have zero tolerance to incorrect answers). Thirdly, this evalu-
ation provided in the work may be biased due to the only one KGQA system
was used. Although QAnswer is well-known and used for much research, further
work should cover different KGQA systems as their approaches and capabilities
may vary significantly. Finally, more training techniques of the query validator
should be explored, s.t., the final impact on the QA quality can be increased. At
the moment, there are still additional opportunities for the QV process improve-
ment, considering not only answerable but also unanswerable questions.

7 Conclusions

In this paper, we have proven the impact of our query candidate validation app-
roach. It uses a NL representation of the SPARQL query that is compared by
a trained model with the given question. Our approach takes into account the
verbalized information of concepts, predicates, and instances that are already
defined in a SPARQL query candidate. Hence, we did not create a complete nor
well-formed NL representation of the SPARQL queries. However, the results of
our research show significant QA quality improvements w.r.t. different aspects
that are important for QA systems. In particular, our evaluation includes answer-
able and unanswerable questions as well as it shows that the quality of the query
candidate list can be improved.

As we have shown, our method is capable of improving the quality of QA
systems without knowledge about the implemented approach of a QA system.
Consequently, it might be integrated in the query builder component of QA

232 A. Gashkov et al.

systems, or as a reusable component via the QA framework (e.g., the Qanary
framework [8]) to improve the quality of answers or intermediate candidate lists.
Hence, our main contribution is providing a domain-agnostic method that can be
applied to any knowledge base that provides verbalization (typically available as
predicate rdfs:label), s.t., corresponding KGQA systems increase their quality.

Looking forward, we plan to use different models, verify the presented app-
roach on different systems and benchmarks and check the applicability of the
approach to other languages.

References

1. Abdiansah, A., Azhari, A., Sari, A.K.: Survey on answer validation for Indonesian
question answering system (IQAS). Int. J. Intell. Syst. Appl. 10, 68–78 (2018).
https://doi.org/10.5815/ijisa.2018.04.08

2. Asai, A., Choi, E.: Challenges in information seeking QA: unanswerable questions
and paragraph retrieval. arXiv preprint arXiv:2010.11915 (2020)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC-2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

4. Azmy, M., Shi, P., Lin, J., Ilyas, I.: Farewell freebase: migrating the simpleques-
tions dataset to DBpedia. In: Proceedings of the 27th International Conference on
Computational Linguistics, pp. 2093–2103 (2018)

5. Babych, S., Henn, A., Pawellek, J., Padó, S.: Dependency-based answer validation
for German. In: Petras, V., Forner, P., Clough, P.D. (eds.) CLEF 2011 Labs and
Workshop, Notebook Papers, 19–22 September 2011, Amsterdam, The Nether-
lands. CEUR Workshop Proceedings, vol. 1177. CEUR-WS.org (2011)

6. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001)

7. Biswas, D., Dubey, M., Rony, M.R.A.H., Lehmann, J.: VANiLLa: verbalized
answers in natural language at large scale. CoRR abs/2105.11407 (2021)

8. Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary
– a methodology for vocabulary-driven open question answering systems. In: Sack,
H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC
2016. LNCS, vol. 9678, pp. 625–641. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34129-3 38

9. Both, A., Gashkov, A., Eltsova, M.: Similarity detection of natural-language ques-
tions and answers using the VANiLLa dataset. J. Phys: Conf. Ser. 1886(1), 012017
(2021). https://doi.org/10.1088/1742-6596/1886/1/012017

10. Burtsev, M., et al.: DeepPavlov: open-source library for dialogue systems. In: Pro-
ceedings of ACL 2018, System Demonstrations, pp. 122–127. Association for Com-
putational Linguistics, Melbourne (2018)

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (Long and Short Papers), vol.
1, pp. 4171–4186. Association for Computational Linguistics, Minneapolis (2019).
https://doi.org/10.18653/v1/N19-1423

https://doi.org/10.5815/ijisa.2018.04.08
http://arxiv.org/abs/2010.11915
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-319-34129-3_38
https://doi.org/10.1007/978-3-319-34129-3_38
https://doi.org/10.1088/1742-6596/1886/1/012017
https://doi.org/10.18653/v1/N19-1423

Improving QA Quality Through Query Candidate Validation 233

12. Diefenbach, D., Both, A., Singh, K., Maret, P.: Towards a question answering
system over the semantic web. Semantic Web 11, 421–439 (2020)

13. Diefenbach, D., Giménez-Garćıa, J., Both, A., Singh, K., Maret, P.: QAnswer KG:
designing a portable question answering system over RDF data. In: Harth, A.,
Kirrane, S., Ngonga Ngomo, A.-C., Paulheim, H., Rula, A., Gentile, A.L., Haase,
P., Cochez, M. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 429–445. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-49461-2 25

14. Diefenbach, D., Lopez, V., Singh, K., Maret, P.: Core techniques of question
answering systems over knowledge bases: a survey. Knowl. Inf. Syst. 55(3), 529–569
(2017). https://doi.org/10.1007/s10115-017-1100-y

15. Diefenbach, D., Migliatti, P.H., Qawasmeh, O., Lully, V., Singh, K., Maret, P.:
QAnswer: a question answering prototype bridging the gap between a considerable
part of the LOD cloud and end-users. In: Liu, L., et al. (eds.) The World Wide
Web Conference, WWW 2019, San Francisco, May 13–17, 2019, pp. 3507–3510.
ACM (2019). https://doi.org/10.1145/3308558.3314124

16. Dimitrakis, E., Sgontzos, K., Tzitzikas, Y.: A survey on question answering systems
over linked data and documents. J. Intell. Inf. Syst. 55(2), 233–259 (2019). https://
doi.org/10.1007/s10844-019-00584-7

17. Dubey, M., Banerjee, D., Abdelkawi, A., Lehmann, J.: LC-QuAD 2.0: a large
dataset for complex question answering over Wikidata and DBpedia. In: Ghi-
dini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz, I., Hogan, A., Song, J.,
Lefrançois, M., Gandon, F. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 69–78.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7 5

18. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing
Wikidata to the linked data web. In: Mika, P., Tudorache, T., Bernstein, A., Welty,
C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.)
ISWC 2014. LNCS, vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11964-9 4

19. Gashkov, A., Perevalov, A., Eltsova, M., Both, A.: Improving the question answer-
ing quality using answer candidate filtering based on natural-language features. In:
16th International Conference on Intelligent Systems and Knowledge Engineering
(ISKE 2021) (2021)

20. Godin, F., Kumar, A., Mittal, A.: Learning when not to answer: a ternary reward
structure for reinforcement learning based question answering. In: Proceedings of
the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (Industry Papers), Vol. 2, pp.
122–129. Association for Computational Linguistics, Minneapolis (2019). https://
doi.org/10.18653/v1/N19-2016

21. Gómez-Adorno, H., Pinto, D., Vilariño, D.: A question answering system for
reading comprehension tests. In: Carrasco-Ochoa, J.A., Mart́ınez-Trinidad, J.F.,
Rodŕıguez, J.S., di Baja, G.S. (eds.) MCPR 2013. LNCS, vol. 7914, pp. 354–363.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38989-4 36

22. Grappy, A., Grau, B., Falco, M., Ligozat, A., Robba, I., Vilnat, A.: Selecting
answers to questions from web documents by a robust validation process. In: 2011
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology, vol. 1, pp. 55–62 (2011). https://doi.org/10.1109/WI-IAT.2011.
210

23. Hu, M., Wei, F., Peng, Y., Huang, Z., Yang, N., Li, D.: Read+verify: machine
reading comprehension with unanswerable questions. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp. 6529–6537 (2019)

https://doi.org/10.1007/978-3-030-49461-2_25
https://doi.org/10.1007/s10115-017-1100-y
https://doi.org/10.1145/3308558.3314124
https://doi.org/10.1007/s10844-019-00584-7
https://doi.org/10.1007/s10844-019-00584-7
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.18653/v1/N19-2016
https://doi.org/10.18653/v1/N19-2016
https://doi.org/10.1007/978-3-642-38989-4_36
https://doi.org/10.1109/WI-IAT.2011.210
https://doi.org/10.1109/WI-IAT.2011.210

234 A. Gashkov et al.

24. Korablinov, V., Braslavski, P.: RuBQ: a Russian dataset for question answering
over Wikidata. In: Pan, J.Z., Tamma, V., d’Amato, C., Janowicz, K., Fu, B.,
Polleres, A., Seneviratne, O., Kagal, L. (eds.) ISWC 2020. LNCS, vol. 12507, pp.
97–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8 7

25. Lin, Y., Zhang, M., Zhang, R., Zou, L.: Deep-gAnswer: a knowledge based question
answering system. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds.) APWeb-
WAIM 2021. LNCS, vol. 12859, pp. 434–439. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-85899-5 33

26. Magnini, B., Negri, M., Prevete, R., Tanev, H.: Is it the right answer? Exploiting
web redundancy for answer validation. In: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, pp. 425–432. Association for
Computational Linguistics, Philadelphia (2002). https://doi.org/10.3115/1073083.
1073154

27. Maheshwari, G., Trivedi, P., Lukovnikov, D., Chakraborty, N., Fischer, A.,
Lehmann, J.: Learning to rank query graphs for complex question answering over
knowledge graphs. In: Ghidini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz,
I., Hogan, A., Song, J., Lefrançois, M., Gandon, F. (eds.) ISWC 2019. LNCS, vol.
11778, pp. 487–504. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30793-6 28

28. Miller, G.A.: WordNet: An Electronic Lexical Database. MIT Press (1998)
29. Napolitano, G., Usbeck, R., Ngomo, A.-C.N.: The scalable question answering

over linked data (SQA) challenge 2018. In: Buscaldi, D., Gangemi, A., Reforgiato
Recupero, D. (eds.) SemWebEval 2018. CCIS, vol. 927, pp. 69–75. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00072-1 6

30. Pakray, P., Barman, U., Bandyopadhyay, S., Gelbukh, A.: Semantic answer valida-
tion using universal networking language. Int. J. Comput. Sci. Inf. Technol. 3(4),
4927–4932 (2012)

31. Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention
model for natural language inference. In: Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp. 2249–2255. Association
for Computational Linguistics (2016)

32. Pellissier Tanon, T., de Assunção, M.D., Caron, E., Suchanek, F.M.: Demoing
Platypus – a multilingual question answering platform for Wikidata. In: Gangemi,
A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 111–116. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98192-5 21

33. Powers, D.M.W.: Evaluation: from precision, recall and F-factor to ROC, informed-
ness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

34. Rodrigo, A., Pérez-Iglesias, J., Peñas, A., Garrido, G., Araujo, L.: A question
answering system based on information retrieval and validation. In: CLEF 2010
LABs and Workshops, Notebook Papers (2010)

35. Rybin, I., Korablinov, V., Efimov, P., Braslavski, P.: RuBQ 2.0: an innovated
Russian question answering dataset. In: Verborgh, R., Hose, K., Paulheim, H.,
Champin, P.-A., Maleshkova, M., Corcho, O., Ristoski, P., Alam, M. (eds.) ESWC
2021. LNCS, vol. 12731, pp. 532–547. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77385-4 32

36. Saha, A., Pahuja, V., Khapra, M.M., Sankaranarayanan, K., Chandar, S.: Complex
sequential question answering: towards learning to converse over linked question
answer pairs with a knowledge graph. In: Thirty-Second AAAI Conference on
Artificial Intelligence (2018)

37. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

https://doi.org/10.1007/978-3-030-62466-8_7
https://doi.org/10.1007/978-3-030-85899-5_33
https://doi.org/10.1007/978-3-030-85899-5_33
https://doi.org/10.3115/1073083.1073154
https://doi.org/10.3115/1073083.1073154
https://doi.org/10.1007/978-3-030-30793-6_28
https://doi.org/10.1007/978-3-030-30793-6_28
https://doi.org/10.1007/978-3-030-00072-1_6
https://doi.org/10.1007/978-3-319-98192-5_21
https://doi.org/10.1007/978-3-030-77385-4_32
https://doi.org/10.1007/978-3-030-77385-4_32

Improving QA Quality Through Query Candidate Validation 235

38. Singh, K., et al.: Why reinvent the wheel: let’s build question answering systems
together. In: Proceedings of the 2018 World Wide Web Conference, pp. 1247–1256
(2018)

39. Solovyev, A.: Dependency-based algorithms for answer validation task in Russian
question answering. In: Gurevych, I., Biemann, C., Zesch, T. (eds.) GSCL 2013.
LNCS (LNAI), vol. 8105, pp. 199–212. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40722-2 20

40. Tan, C., Wei, F., Zhou, Q., Yang, N., Lv, W., Zhou, M.: I know there is no answer:
modeling answer validation for machine reading comprehension. In: Zhang, M.,
Ng, V., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2018. LNCS (LNAI), vol. 11108,
pp. 85–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99495-6 8

41. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for
complex question answering over knowledge graphs. In: d’Amato, C., Fernandez,
M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J.
(eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68204-4 22

42. Usbeck, R., Gusmita, R.H., Ngomo, A.N., Saleem, M.: 9th challenge on question
answering over linked data (QALD-9). In: Joint proceedings of the 4th Workshop on
Semantic Deep Learning (SemDeep-4) and NLIWoD4: Natural Language Interfaces
for the Web of Data (NLIWOD-4) and 9th Question Answering over Linked Data
challenge (QALD-9) co-located with 17th International Semantic Web Conference
(ISWC 2018), Monterey, 8th–9th October 2018, pp. 58–64 (2018)

43. Usbeck, R., et al.: GERBIL - general entity annotation benchmark framework. In:
24th WWW Conference (2015)

44. Yen, A.Z., Huang, H.H., Chen, H.H.: Unanswerable question correction in question
answering over personal knowledge base. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, pp. 14266–14275 (2021)

45. Yih, S.W., Chang, M.W., He, X., Gao, J.: Semantic parsing via staged query graph
generation: question answering with knowledge base. In: Proceedings of the Joint
Conference of the 53rd Annual Meeting of the ACL and the 7th International Joint
Conference on Natural Language Processing of the AFNLP (2015)

46. Yu, M., Yin, W., Hasan, K.S., Santos, C.D., Xiang, B., Zhou, B.: Improved neural
relation detection for knowledge base question answering. In: Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Long Papers),
Vol. 1, pp. 1321–1331. Association for Computational Linguistics (2017)

47. Zamanov, I., Kraeva, M., Hateva, N., Yovcheva, I., Nikolova, I., Angelova, G.:
Voltron: a hybrid system for answer validation based on lexical and distance fea-
tures. In: Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015). pp. 242–246. Association for Computational Linguistics, Denver
(2015). https://doi.org/10.18653/v1/S15-2043

https://doi.org/10.1007/978-3-642-40722-2_20
https://doi.org/10.1007/978-3-642-40722-2_20
https://doi.org/10.1007/978-3-319-99495-6_8
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.18653/v1/S15-2043

	Improving Question Answering Quality Through Language Feature-Based SPARQL Query Candidate Validation
	1 Introduction
	2 Related Work
	3 Approach
	3.1 SPARQL Query Candidates Verbalization
	3.2 Query Validation Process
	3.3 Measures of Query Validation Efficiency

	4 Material and Methods
	4.1 The KGQA System QAnswer
	4.2 Datasets Overview
	4.3 Data Preparation Process
	4.4 BERT-Based Query Validator

	5 Experimental Setup
	6 Evaluation and Analysis
	6.1 Answer Validation Classifier Evaluation
	6.2 Question Answering Quality Improvement
	6.3 Discussion and Limitations

	7 Conclusions
	References

