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Preface

The 41st Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Eurocrypt 2022, was held in Trondheim, Norway. Breaking tradi-
tion, the conference started on the evening of Monday, May 30, and ended at noon on
Friday, June 3, 2022. Eurocrypt is one of the three flagship conferences of the Interna-
tional Association for Cryptologic Research (IACR), which sponsors the event. Colin
Boyd (NTNU, Norway) was the general chair of Eurocrypt 2022 who took care of all
the local arrangements.

The 372 anonymous submissionswe received in the IACRHotCRP systemwere each
reviewed by at least three of the 70 Program Committee members (who were allowed
at most two submissions). We used a rebuttal round for all submissions. After a lengthy
and thorough review process, 85 submissions were selected for publication. The revised
versions of these submissions can be found in these three-volume proceedings.

In addition to these papers, the committee selected the “EpiGRAM: Practical Gar-
bled RAM” by David Heath, Vladimir Kolesnikov, and Rafail Ostrovsky for the best
paper award. Two more papers— “On Building Fine-Grained One-Way Functions from
Strong Average-Case Hardness” and “Quantum Algorithms for Variants of Average-
Case Lattice Problems via Filtering” received an invitation to the Journal of Cryptology.
Together with presentions of the 85 accepted papers, the program included two invited
talks: The IACR distinguished lecture, carried by Ingrid Verbauwhede, on “Hardware:
an essential partner to cryptography”, and “Symmetric Cryptography for Long Term
Security” by María Naya-Plasancia.

We would like to take this opportunity to thank numerous people. First of all, the
authors of all submitted papers, whether they were accepted or rejected. The Program
Committee members who read, commented, and debated the papers generating more
than 4,500 comments(!) in addition to a large volume of email communications. The
review process also relied on 368 subreviewers (some of which submitted more than one
subreivew). We cannot thank you all enough for your hard work.

A few individuals were extremely helpful in running the review process. First and
foremost, Kevin McCurley, who configured, solved, answered, re-answered, supported,
and did all in his (great) power to help with the IACR system. Wkdqn Brx! We are
also extremely grateful to Gaëtan Leurent for offering his wonderful tool to make paper
assignment an easy task. The wisdom and experience dispensed by Anne Canteaut,
Itai Dinur, Bart Preneel, and François-Xavier Standaert are also noteworthy and helped
usher the conference into a safe haven. Finally, we wish to thank the area chairs—Sonia
Belaïd, Carmit Hazay, Thomas Peyrin, Nigel Smart, and Martijn Stam. You made our
work manageable.

Finally, we thank all the peoplewhowere involved in the program of Eurocrypt 2022:
the rump session chairs, the session chairs, the speakers, and all the technical support
staff in Trondheim. We would also like to mention the various sponsors and thank them
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for the generous support. We wish to thank the continuous support of the Cryptography
Research Fund for supporting student speakers.

May 2022 Orr Dunkelman
Stefan Dziembowski
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Hardware: An Essential Partner to Cryptography

Ingrid Verbauwhede

KU Leuven, Leuven, Belgium

Abstract. Cryptography is a beautiful branch of mathematics, its
aim being to provide information security. To be useful in prac-
tical applications, cryptography is mapped to hardware or soft-
ware, with software ultimately running also on hardware processors.
This presentation covers multiple aspects of this relation between

hardware and cryptography. The goal is to provide insights to the cryp-
tographer, so that more efficient and secure algorithms and protocols are
designed.

– Hardware provides the means to accelerate the computationally
demanding operations, as is currently the case for the newgeneration of
post-quantum algorithms. [We will illustrate this with some numbers.]

– A very nice aspect of cryptography is that it reduces what needs to be
kept secret to the keys, while the algorithms can be publicly known. As
a consequence, the hardware is responsible to keep the key(s) secret.
Side-channel, fault-attacks and other physical attacks make this a chal-
lenging task. [We could show some recent results in fault and laser
attacks.] [We can also illustrate this with PUFs to generate secret keys.]

– “Provable Secure” mathematical countermeasures against physical
attacks rely on models on how the hardware behaves. Unfortunately,
the models are often the weak link between theory and practice and
it results in broken implementations. [We will illustrate this with
successful attacks on several provably secure masking schemes.]

– Hardware also provides essential building blocks to security.
Protocols rely on nonces and freshness from random numbers.
Generating full entropy random numbers is a challenge. [We
can illustrate this with the challenges of designing TRNGs].

– We will end with some trends in hardware that can benefit cryptogra-
phy. [We will show tricks on how cheap noise can be generated e.g.
for learning with error problems.] [Or how light weight crypto should
be adapted to the not-so-perfect random but very light weight random
number generators.] [What to dowith process variations in deep submi-
cron technologies, or with ultra low-power approximate computing.]

We can conclude that hardware is an essential partner to
cryptography to provide the promised information security.



Symmetric Cryptography for Long Term Security

María Naya-Plasencia

Inria, Paris, France

Abstract. Symmetric cryptography has made important advances in
recent years, mainly due to new challenges that have appeared, requiring
some newdevelopments.During this talkwewill discuss these challenges
and developments, with a particular emphasis on quantum-safe symmet-
ric cryptography and latest results, providing the details of some particu-
larly interesting cases. We will also discuss some related open problems.
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Abstract. Garbled RAM (GRAM) is a powerful technique introduced
by Lu and Ostrovsky that equips Garbled Circuit (GC) with a sublinear
cost RAM without adding rounds of interaction. While multiple GRAM
constructions are known, none are suitable for practice, due to costs that
have high constants and poor scaling.

We present the first GRAM suitable for practice. For computational
security parameter κ and for a size-n RAM that stores blocks of size
w = Ω(log2 n) bits, our GRAM incurs amortized O(w · log2 n · κ) com-
munication and computation per access. We evaluate the concrete cost
of our GRAM; our approach outperforms trivial linear-scan-based RAM
for as few as 512 128-bit elements.

Keywords: MPC · Garbled circuits · Oblivious RAM · Garbled RAM

1 Introduction

Secure multiparty computation (MPC) allows mutually untrusting parties to
compute functions of their combined inputs while revealing nothing but the
outputs. MPC protocols traditionally consider functions encoded as circuits.
While this does not limit expressivity, it does limit efficiency: many interesting
computations are best expressed as RAM programs, not as circuits, and the
reduction from RAM programs to circuits is expensive.

Fortunately, we can combine MPC with oblivious RAM (ORAM). ORAM is
a technology that allows a client to outsource an encrypted database to a server;
the client can then access the database while both (1) incurring only sublin-
ear overhead and (2) hiding the access pattern from the server. By running an
ORAM client inside MPC, we can augment circuits with random access memory.
This powerful combination allows us to run RAM programs inside MPC.

Garbled Circuit (GC) is a foundational and powerful MPC technique that
allows two parties to achieve secure computation while consuming only constant
rounds of interaction. One party, the GC generator G, “encrypts” the circuit
and sends it to the other party, the GC evaluator E. E is given an encryption of
each party’s input and steps through the circuit gate-by-gate under encryption.
At each gate, E propagates encryptions of input wire values to encryptions of
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output wire values. Once E finishes, E and G can jointly decrypt the output
wire values, revealing the circuit output.

It is natural to consider adding RAM to GC while preserving GC’s constant
rounds. However, the constant round requirement means that adding RAM to
GC is seemingly more difficult than adding RAM to interactive protocols. Nev-
ertheless, it is possible to run an ORAM client inside the GC and to let E play
an ORAM server. This technique is called Garbled RAM (GRAM) [LO13].

While GRAM constructions are known [LO13,GHL+14,GLOS15,GLO15],
none are suitable for practice: existing constructions simply cost too much. All
existing GRAMs suffer from at least two of the following problems:
– Use of non-black-box cryptography. [LO13] showed that GRAM can be

achieved by evaluating a PRF inside GC in a non-black-box way. Unfortu-
nately, this non-black-box cryptography is extremely expensive, and on each
access the construction must evaluate the PRF repeatedly. [LO13] requires
a circular-security assumption on GC and PRFs. Follow-up works removed
this circularity by replacing the PRF with even more expensive non-black-box
techniques [GHL+14,GLOS15].

– Factor-κ blowup. Let κ denote the computational security parameter. In
practical GC, we generally assume that we will incur factor κ overhead due
to the need to represent each bit as a length-κ encoding (i.e. a GC label).
However, existing GRAMs suffer from yet another factor κ. This overhead
follows from the need to represent GC labels (which have length κ) inside
the GC such that we can manipulate them with Boolean operations. The GC
labels that encode a GC label together have length κ2. In practice, where we
generally use κ = 128, this overhead is intolerable.

– High factor scaling. Existing GRAMs operate as follows. First, they give an
array construction that leaks access patterns to E. This leaky array already
has high cost. Then, they compile this array access into GRAM using off-the-
shelf ORAM. This compilation is problematic: off-the-shelf ORAMs require
that, on each access, E access the leaky array a polylogarithmic (or more)
number of times. Thus, existing GRAMs incur multiplicative overhead from
the composition of the leaky array with the ORAM construction.

Prior GRAM works do not attempt to calculate their concrete or even asymp-
totic cost, other than to claim cost sublinear or polylogarithmic in n. In the
full version of this paper, we (favorably to prior work) estimate their cost: for a
GRAM that stores 128-bit blocks, the best prior GRAM breaks even with trivial
linear-scan based GRAM when the RAM size reaches ≈ 220 elements. As noted,
our analysis discounts many potentially expensive steps of prior constructions,
giving an estimate favorable to them. In particular, this conservative estimate
indicates that by the time it is worthwhile to use existing GRAM, each and every
access requires a 4GB GC.

1.1 Contribution

We present the first practical garbled RAM. Our GRAM, which we call Epi-
GRAM, uses only O(w · log2 n · κ) computation and communication per access.
EpiGRAM circumvents all three of the above problems:
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– No use of non-black-box cryptography. Our approach routes array ele-
ments using novel, yet simple, techniques. These techniques are light-weight,
and non-black-box cryptography is not required.

– No factor-κ blowup. While we, like previous GRAMs, represent GC labels
inside the GC itself, we give a novel generalization of existing GC gates that
eliminates the additional factor κ overhead.

– Low polylogarithmic scaling. Like previous GRAMs, we present a leaky
construction that reveals access patterns to E. However, we do not compile
this into GRAM using off-the-shelf ORAM. Instead, we construct a custom
ORAM designed with GC in mind. Our GRAM minimizes use of our leaky
construction. The result is a highly efficient technique.

In the remainder of this paper we:

– Informally and formally describe the first practical GRAM. For an array with
n elements each of size w such that w = Ω(log2 n), the construction incurs
amortized O(w · log2 n · κ) communication and computation per access.

– Prove our GRAM secure by incorporating it in a garbling scheme [BHR12].
Our scheme handles arbitrary computations consisting of AND gates, XOR
gates, and array accesses. Our scheme is secure under a typical GC assump-
tion: a circular correlation robust hash function [CKKZ12].

– Analyze EpiGRAM’s concrete cost. Our analysis shows that EpiGRAM
outperforms trivial linear-scan based RAM for as few as 512 128-bit elements.

2 Technical Overview

In this section, we explain our construction informally but with sufficient detail
to understand our approach. This overview covers four topics:

– First, we explain a problem central to GRAM: language translation.
– Second, we informally explain our lazy permutation network, which is a con-

struction that efficiently solves the language translation problem.
– Third, as a stepping stone to our full construction, we explain how to con-

struct leaky arrays from the lazy permutation network. This informal con-
struction securely implements an array with the caveat that we let E learn
the array access pattern.

– Fourth, we upgrade the leaky array to full-fledged GRAM: the presented
construction hides the access pattern from E.

2.1 The Language Translation Problem

For each GC wire xi the evaluator E holds one of two κ-bit strings: either Xi,
which encodes a logical zero, or Xi ⊕Δ, which encodes one. Meanwhile, G holds
each such Xi and the global secret Δ. We refer to the wire-specific value Xi as
the language of that wire, and to the pair 〈Xi,Xi⊕xiΔ〉 jointly held by G and E
as the GC encoding, or the garbling, of xi. We present this notation formally in
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Sect. 4.4. To produce a garbled gate that takes as input a particular wire value
xi, G must know the corresponding language Xi. Normally this is not a problem:
the structure of the circuit is decided statically, and G can easily track which
languages go to which gates.

However, consider representing an array as a collection of such garbled labels.
That is, there are n values xi where E holds Xi ⊕xiΔ. Suppose that at runtime
the GC requests access to a particular index α. We could use a static circuit
to select xα, but this would require an expensive linear-cost circuit. A different
method is required to achieve the desired sublinear access costs.

Instead, suppose we disclose α to E in cleartext – we later add mechanisms
that hide RAM indices from E. Since she knows α, E can jump directly to the
αth wire and retrieve the value Xα ⊕ xαΔ. Recall, to use a wire as input to
a gate, G and E must agree on that wire’s language. Unfortunately, it is not
possible for G to predict the language Xα: α is computed during GC evaluation
and, due to the constant round requirement, E cannot send messages to G.

Therefore, we instead allow G to select a fresh uniform language Y . If we can
convey to E the value Y ⊕xαΔ, then G will be able to garble gates that take the
accessed RAM value as input, and we can successfully continue the computation.

Thus, our new goal is to translate the language Xα to the language Y .
Mechanically, this translation involves giving to E the value Xα ⊕ Y . Given
this, E simply XORs the translation value with her label and obtains Y ⊕ xαΔ.
Keeping the circuit metaphor, providing such translation values to E allows her
to take two wires – the wire out of the RAM and the wire into the next gate –
and to solder these wires together at runtime. However, the problem of efficiently
conveying these translation values remains.

In the full version of this paper, we discuss natural attempts at solving
the language translation problem. Translation can be achieved by a linear-
sized gadget (suggesting dynamic conversion is possible), or by a non-black box
PRF [LO13] (suggesting the ability to manipulate languages inside the GC). Our
lazy permutation network (discussed next) achieves dynamic language transla-
tion more cheaply, but its underpinnings are the same: the network carefully
manipulates languages inside the GC.

2.2 Lazy Permutations

Recall that our current goal is to translate GC languages. Suppose that the
GC issues n accesses over its runtime. Further suppose that the GC accesses
a distinct location on each access – in the end we reduce general RAM to a
memory with this restriction. To handle the n accesses, we wish to convey to E
n translation values Xi ⊕Yj where Yj is G’s selected language for the jth access.

What we need then is essentially a permutation on n elements that routes
between RAM locations (with language Xi) and accesses (with language Yj).
However, a simple permutation network will not suffice, since at the time of
RAM access j, the location of each subsequent access will, in general, not yet
be known. Therefore, we need a lazy permutation whereby we can decide and
apply the routing of the permutation one input at a time. We remind the reader
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NodeA NodeB NodeC

NodeD

C0
C1
C2
C3

D0
D1
D2
D3

C3 D2
D3

C2

⊕

D1

B3

[[B3]]

[[D1]][[0]]

Fig. 1. An internal node of our lazy permutation network, realizing a “garbled switch”.
We depict the fourth access to this switch. The encoded input uses language B3. The
first encoded input bit is a flag that indicates to proceed left or right. Our objective
is to forward the remaining input to either the left or right node. Each node stores
two oblivious stacks that hold encodings of the unused languages of the two children.
We conditionally pop both stacks. In this case, the left stack is unchanged whereas
the right stack yields D1, the next language for the target child. Due to the pop, the
remaining elements in the right stack move up one slot. By XORing these values with
an encoding of the input language, then opening the resulting value to E, we convert
the message to the language of the target child, allowing E to solder a wire to the child.

that we assume that E knows each value α. I.e., we need only achieve a lazy
permutation where E learns the permutation.

Given this problem, it may now be believable that algorithms and data struc-
tures exist such that the total cost is O(κ · n · polylog(n)), and hence only
amortized O(κ · polylog(n)) per access. Indeed we present such a construction.
However, our solution requires that we apply this lazy permutation to the GC
languages themselves, not to bits stored in the RAM. Thus, we need a logic
in which we can encode GC languages: E must obliviously and authentically
manipulate GC languages. GC gives us these properties, so we can encode lan-
guages bit-by-bit inside the GC. I.e., for a language of length w, we would add
w GC wires, each of which would hold a single bit of the language.

Unfortunately, this bit-by-bit encoding of the languages leads to a highly
objectionable factor κ blowup in the size of the GC: the encoding of a length-w
language has length w ·κ. We later show that the factor κ blowup is unnecessary.
Under particular conditions, existing GC gates can be generalized such that we
can represent a length-w language using an encoding of only length w. These
special and highly efficient GC gates suffice to build the gadgetry we need. We
formalize the needed gate in Sect. 5.1.

The ability to encode languages inside the GC is powerful. Notice that since
we can dynamically solder GC wires, and since wires can hold languages needed
to solder other wires, we can arrange for E to repeatedly and dynamically lay
down new wiring in nearly arbitrary ways.
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With this high level intuition, we now informally describe our lazy permu-
tation network. Let n be a power of two. Our objective is to route between the
languages of n array accesses and the languages of n array elements.

G first lays out a full binary tree with n leaves. Each node in this tree is
a GC with static structure. However, the inputs and outputs to these circuits
are loose wires, ready to be soldered at runtime by E. At runtime, seeking to
read array element xα with language Xα into a wire with language Y , E begins
at the root of the tree, which holds a GC encoding of the target language Y .
(Note, G knows the target language Y of the j-th access, and can accordingly
program the tree root.) Based on the GC encoding of the first bit of α, E is able
to dynamically decrypt a translation value to either the left or the right child
node. Now, E can solder wires to this child, allowing her to send to the child
circuit both the encoding of Y and the remaining bits of α. E repeatedly applies
this strategy until she reaches the αth leaf node. This leaf node is a special
circuit that computes C(x) = x ⊕ Xα and then reveals the output to E.1 Since
we have pushed the encoding of Y all the way to this leaf, E obtains Y ⊕ Xα,
the translation value that she needs to read xα.

In yet more detail, each internal node on level k of the tree, which we infor-
mally call a garbled switch, is a static circuit with 2log n−k loose sets of input
wires. Each node maintains two oblivious stacks [ZE13]. The first stack stores
encodings of the languages for the 2log n−k−1 loose input wires of the left child,
and the second stack similarly stores languages for the right child (see Fig. 1).
On the j-th access and seeking to compute Yj ⊕Xα, E dynamically traverses the
tree to leaf α (recall, we assume E knows α in cleartext), forwarding an encoding
of Yj all the way to the αth leaf. At each internal node, she uses a bit of the
encoding of α to conditionally pop the two stacks, yielding an encoding of the
language of the correct child. The static circuit uses this encoding to compute a
translation value to the appropriate child.

By repeatedly routing inputs over the course of n accesses, we achieve a lazy
permutation. Crucially, the routing between nodes is not decided until runtime.

This construction is affordable. Essentially the only cost comes from the
oblivious stacks. For a stack that stores languages of length w, each pop costs
only O(w · log n) communication and computation (Sect. 5.2). Thus, the full
lazy permutation costs only O(w · n · log2 n) communication, which amortizes
to sublinear cost per access. We describe our lazy permutation network in full
formal detail in Sect. 5.3.

Our lazy permutation networks route the language of each RAM slot to
the access where it is needed, albeit in a setting where E views the routing
in cleartext. Crucially, the lazy permutation network avoids factor κ additional
overhead that is common in GRAM approaches. To construct a secure GRAM,
we build on this primitive and hide the RAM access pattern.

1 Our actual leaf circuit is more detailed. See Sects. 2.4 and 5.3.
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2.3 Pattern-Leaking (Leaky) Arrays

As a stepping stone to full GRAM, we informally present an intermediate array
which leaks access patterns. For brevity, we refer to it as leaky array. This con-
struction handles arbitrary array accesses in a setting where E is allowed to
learn the access pattern. We demonstrate a reduction from this problem to our
lazy permutation network.

We never formally present the resulting construction. Rather, we explain the
construction now for expository reasons: we decouple our explanation of cor-
rectness from our explanation of obliviousness. I.e., this section builds a correct
GRAM that leaks the access pattern to E. The ideas for this leaky construction
carry to our secure GRAM (Sect. 2.4).

Suppose the GC wishes to read index α. Recall that our lazy permutation
network is a mechanism that can help translate GC languages: E can dynam-
ically look up an encoding of the language Xα. However, because the network
implements a permutation, it alone does not solve our problem: an array should
allow multiple accesses to the same index, but the permutation can route each
index to only one access. To complete the reduction, more machinery is needed.

To start, we simplify the problem: consider an array that handles at most
n accesses. We describe an array that works in this restricted setting and later
upgrade it to handle arbitrary numbers of accesses.

Logical Indices → One-Time Indices. The key idea is to introduce a level
of indirection. While the GC issues queries via logical indices α, our array stores
its content according to a different indexing system: the content for each logical
index α is stored at a particular one-time index p. As the name suggests, each
one-time index may be written to and read at most once. This limitation ensures
compatibility with a lazy permutation: since each one-time index is read only
once, a permutation suffices to describe the read pattern. We remark that this
reduction from general purpose RAM to a permuted read order was inspired by
prior work on efficient RAM for Zero Knowledge [HK21].

Each one-time index can be read only once, yet each logical index can be
read multiple times. Thus, over the course of n accesses, a given logical index
might correspond to multiple one-time indices.

Neither party can a priori know the mapping between logical indices and one-
time indices. However, to complete an access the GC must compute the relevant
one-time index. Thus, we implement the mapping as a recursively instantiated
index map.2 The index map is itself a leaky array where each index α holds the
corresponding one-time index p. We are careful that the index map is strictly
smaller than the array itself, so the recursion terminates; when the next needed
index map is small enough, we instantiate it via simple linear scans.

A leaky array with n elements each of size w and that handles at most n
accesses is built from three pieces:

1. A block of 2n GC encodings each of size w called the one-time array. We
index into the one-time array using one-time indices.

2 Recursive index/position maps are typical in ORAM constructions, see e.g. [SvS+13].
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2. A size-2n lazy permutation π̃ where each leaf i stores the language for one-
time array slot i.

3. The recursively instantiated index map.

Let {|xi|} denote the GC encoding of bitstring xi where G holds Xi and E holds
Xi ⊕ xiΔ (see also Sect. 4.4). Suppose the parties start with a collection of n
encodings {|x0|}, ..., {|xn−1|} which they would like to use as the array content.
The parties begin by sequentially storing each value {|xi|} in the corresponding
one-time index i. The initial mapping from logical indices to one-time indices
is thus statically decided: each logical index i maps to one-time index i. The
parties recursively instantiate the index map with content {|0|}, ..., {|n − 1|}.

When the GC performs its j-th access to logical index {|α|}, we perform the
following steps:

1. The parties recursively query the index map using input {|α|}. The result is
a one-time index {|p|}. The parties simultaneously write back into the index
map {|n + j|}, indicating that α will next correspond to one-time index n + j.

2. The GC reveals p to E in cleartext. This allows E to use the lazy permutation
network π̃ to find a translation value for the pth slot of the one-time array.

3. E jumps to the pth slot of the array and translates its language, soldering
the value to the GC and completing the read. Note that the GC may need to
access index α again, so the parties perform the next step:

4. The parties write back to the (n + j)-th slot of the one-time array. If the
access is a read, they write back the just-read value. Otherwise, they write
the written value.

In this way, the parties can efficiently handle n accesses to a leaky array.

Handling More than n Accesses. If the parties need more than n accesses,
a reset step is needed. Notice that after n accesses, we have written to each of
the 2n one-time indices (n during initialization and one per access), but we have
only read from n one-time indices. Further notice that on an access to index α,
we write back a new one-time index for α; hence, it must be the case that the n
remaining unread one-time array slots hold the current array content.

Going beyond n accesses is simple. First, we one-by-one read the n array
values in the sequential logical order (i.e. with α = 0, 1, .., n − 1), flushing the
array content into a block {|x0|}, ..., {|xn−1|}. Second, we initialize a new leaky
array data structure, using the flushed block as its initial content. This new
data structure can handle n more accesses. By repeating this process every n
accesses, we can handle arbitrary numbers of accesses.

Summarizing the Leaky Array. Thus, we can construct an efficient garbled
array, which leaks access patterns. Each access to the leaky array costs amortized
O(w · log2 n · κ) bits of communication, due to the lazy permutation network.
We emphasize the key ideas that carry over to our secure GRAM:

– We store the array data according to one-time indices, not according to logical
indices. This ensures compatibility with our lazy permutation network.
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– We recursively instantiate an index map that stores the mapping from logical
indices to one-time indices.

– We store the GC languages of the underlying data structure in a lazy permu-
tation network such that E can dynamically access slots.

– Every n accesses, we flush the current array and instantiate a fresh one.

2.4 Garbled RAM

In Sect. 2.3 we demonstrated that we can reduce random access arrays to our
lazy permutation network, so long as E is allowed to learn the access pattern.
In this section we strengthen that construction by hiding the access patterns,
therefore achieving secure GRAM.

Note that this strengthening is clearly possible, because we can simply employ
off-the-shelf ORAM. In ORAM, the server learns a physical access pattern, but
the ORAM protocol ensures that these physical accesses together convey no
information about the logical access pattern. Thus, we can use our leaky array
to implement physical ORAM storage, implement the ORAM client inside the
GC, and the problem is solved.

We are not content with this solution. The problem is that our leaky array
already consumes O(log2 n) overhead, due to lazy permutations. In ORAM,
each logical access is instantiated by at least a logarithmic number of physical
reads/writes. Thus, compiling our leaky array with off-the-shelf ORAM incurs
at least an additional O(log n) multiplicative factor. In short, this off-the-shelf
composition is expensive.

We instead directly improve the leaky array construction (Sect. 2.3) and
remove its leakage. This modification incurs only additive overhead, so our
GRAM has the same asymptotic cost as the leaky array: O(w · log2 n · κ) bits
per access.

The key idea of our full GRAM is as follows: In regular ORAM, we assume
that the client is significantly weaker than the server. In our case, too, the GC –
which plays the client – is much weaker than E – who plays the server. However,
we have a distinct advantage: the GC generator G can act as a powerful advisor
to the GC, directly informing most of its decisions.

More concretely, our GRAM carefully arranges that the locations of almost
all of the physical3 reads and writes are decided statically and are independent
of the logical access pattern. Thus, G can a priori track the static schedule and
prepare for each of the static accesses. Our GRAM incurs O(log2 n) physical
reads/writes per logical access. However, only a constant number4 of these reads
cannot be predicted by G, as we will soon show.

Each physical read/write requires that G and E agree on the GC language
of the accessed element. For each statically decided read/write, this agreement
3 I.e. reads and writes to the lowest level underlying data structure, where access

patterns are visible to E.
4 To be pedantic, if we account for recursively instantiated index maps, each map

incurs this constant number of unpredictable reads, so there are total a logarithmic
number of unpredictable reads.
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is reached trivially. Therefore, we only need our lazy permutation network for
reads that G cannot predict. There are only a constant number of these, so we
only need a constant number of calls to the lazy permutation network.

Upgrading the Leaky Array. We now informally describe our GRAM. Our
description is made by comparison to the leaky array described in Sect. 2.3.

In the leaky array, we stored all 2n one-time indices in a single block. In
our GRAM, we instead store the 2n one-time indices across O(log n) levels of
exponentially increasing size: each level i holds 2i+1 elements, though some levels
are vacant. As we will describe later, data items are written to the smallest level
and then slowly move from small levels to large levels. Each populated level of
the GRAM holds 2i one-time-indexed data items and 2i dummies. Dummies are
merely encodings of zero. Each level of the GRAM is stored shuffled. The order
of items on each level is unknown to E but, crucially, is known to G. This means
that at all times G knows which one-time index is stored where and knows which
elements are dummies.

In the leaky array, E was pointed directly to the appropriate one-time index.
In our GRAM, we need to hide the identity of the level that holds the appropriate
index. Otherwise, since elements slowly move to larger levels, E will learn an
approximation of the time at which the accessed element was written. Hence we
arrange that E will read from each level on each access. However, all except one
of these accesses will be to a dummy, and the indices of the accessed dummies
are statically scheduled by G. More precisely, G a priori chooses one dummy on
each populated level and enters their addresses as input to the GC. The GC
then conditionally replaces one dummy address by the real address, then reveals
each address to E. (Note that G does not know which dummy goes unaccessed
– we discuss this later.)

In the leaky array and when accessing logical index α, we used the index map
to find corresponding one-time index p. p was then revealed to E. In our GRAM,
it is not secure for E to learn one-time indices corresponding to accesses. Thus,
we introduce a new uniform permutation π of size 2n that is held by G and
secret from E. Our index map now maps each index {|α|} to the corresponding
permuted one-time index {|π(p)|}. We can safely reveal π(p) to E – the sequence
of such revelations is indistinguishable from a uniform permutation.

In the leaky array, we used the lazy permutation network π̃ to map each
one-time index p to a corresponding GC language. Here, we need two changes:

1. Instead of routing p to the metadata corresponding to p, we instead route
π(p) to the metadata corresponding to p. G can arrange for this by simply
initializing the content of the lazy permutation in permuted order.

2. We slowly move one-time indexed array elements from small levels to large
levels (we have not yet presented how this works). Thus, each one-time index
no longer corresponds to a single GC language. Instead, each one-time index
now corresponds to a collection of physical addresses. Moreover, each time
we move a one-time index to a new physical address, it is crucial to security
that we encode the data with a different GC language. Fortunately, we ensure
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that G knows the entire history of each one-time index. Thus, he can garble
a circuit that takes as input the number of accesses so far and outputs the
current physical address and GC language.
We place these per-one-time-index circuits at the leaves of a lazy permutation
network.

Remark 1 (Indices). Our GRAM features three kinds of indices:

– Logical indices α refer to simple array indices. The purpose of the GRAM is
to map logical indices to values.

– Each time we access a logical index, we write back a corresponding value to a
fresh one-time index p. Thus, each logical index may correspond to multiple
one-time indices. The mapping from logical indices to one-time indices is
implemented by the recursively instantiated index map.

– One-time indices are not stored sequentially, but rather are stored permuted
such that we hide access patterns from E. A physical address @ refers to the
place where a one-time index p is currently held. Because we repeatedly move
and permute one-time indices, each one-time index corresponds to multiple
physical addresses. The mapping from one-time indices to physical addresses
is known to G and is stored in a lazy permutation network.

In the leaky array and on access j, we write back an element to one-time
index n + j. In our GRAM, we similarly perform this write. We initially store
this one-time index in the smallest level. Additionally, the parties store a fresh
dummy in the smallest level. After each write, the parties permute a subset
of the levels of RAM using a traditional permutation network. The schedule
of permutations – see next – is carefully chosen such that the access pattern
is hidden but cost is low. Over the course of n accesses, the n permutations
together consume only O(n · log2 n) overhead.

The Permutation Schedule. Recall that we arrange the RAM content into
O(log n) levels of exponentially increasing size. After each access, G applies a
permutation to a subset of these levels. These permutations prevent E from
learning the access pattern.

Recall that on each access, E is instructed to read from each populated level.
All except one of these reads is to a dummy. Further recall that after being
accessed once, a one-time index is never used again. Thus, it is important that
each dummy is similarly accessed at most once. Otherwise, E will notice that
doubly-accessed addresses must hold dummies.

Since we store only 2i dummies on level i, level i can only support 2i accesses:
after 2i accesses it is plausible that all dummies have been exhausted. To con-
tinue processing, G therefore re-permutes the level, mixing the dummies and real
elements such that the dummies can be safely reused. More precisely, on access
j we collect those levels i such that 2i divides j. Let k denote the largest such i.
We concatenate each level i ≤ k together into a block of size 2k+1 and permute
its contents into level k + 1 (this level is guaranteed to be vacant). This leaves
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each level i ≤ k vacant and ready for new data to flow up. Now that the data
has been permuted, it is safe to once again use the shuffled dummies, since they
are shuffled and each is given a new GC language.

As a security argument, consider E’s view of a particular level i over all 2i

accesses between permutations. Each such access could be to a dummy or to a
real element, but these elements are uniformly shuffled. Hence, E’s view can be
simulated by uniformly sampling, without replacement, a sequence of 2i indices.

Remark 2 (Permutations). Our RAM features three kinds of permutations:

– π̃ is a lazy permutation whose routing is revealed to E over the course of n
accesses. The lazy permutation allows E to efficiently look up the physical
address and language for the target one-time index.

– π is a uniform permutation chosen by G whose sole purpose is to ensure that
π̃ does not leak one-time indices to E. Let π′ denote the actual routing from
RAM accesses to one-time indices. E does not learn π′, but rather learns
π̃ = π′ ◦ π. Since π is uniform, π̃ is also uniform.

– π0, ..., πn−1 is a sequence of permutations chosen by G and applied to levels
of GRAM. These ensure that the physical access pattern leaks nothing to E.

Accounting for the Last Dummy per Access. One small detail remains.
Recall that on each access, G statically chooses a dummy on each of the O(log n)
levels. E will be pointed to each of these dummies, save one: E will not read the
dummy on the same level as the real element. The identity of the real element
is dynamically chosen, so G cannot know which dummy is not read. The parties
must somehow account for the GC language of the unread dummy to allow E
to proceed with evaluation. (We expand on this need in a moment.)

This accounting is easily handled by a simple circuit Chide . Chide takes as
input an encoding of the real physical address and outputs an encoding of the
language of the unaccessed dummy.

We now provide more detail (which can be skipped at the first reading)
explaining why E must recover an encoding of the language of the unaccessed
dummy. Suppose the real element is on level j. G selects O(log n) dummy lan-
guages Di for this access, and E reads one label in each language Di�=j , and
reads the real value. To proceed, G and E must obtain the real value in some
agreed language, and this language must depend on all languages Di (since G
cannot know which dummy was not read). Therefore, Dj must be obtained and
used by E as well. In even more detail, in the mind of G, the “output” lan-
guage includes the languages Di XORed together; to match this, in addition to
XORing all labels she already obtained, E XORs in the encoding of the missing
dummy language. The validity of this step relies heavily on Free XOR [KS08].

The High Level Procedure. To conclude our overview, we enumerate the
steps of the RAM. Consider an arbitrary access to logical index α.
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1. E first looks up α’s current one-time index p by consulting the index map.
The index map returns an encoding of π(p) where π is a uniform permutation
that hides one-time indices from E.

2. The GC reveals π(p) to E in cleartext such that she can route the lazy
permutation π̃. E uses π̃ to route the current RAM time to a leaf circuit that
computes encodings of the appropriate physical address @ and GC language.
Let � denote the RAM level that holds address @.

3. A per-access circuit Chide is used to compute (1) encodings of physical
addresses of dummies on each populated level i 	= � and (2) the GC lan-
guage of the dummy that would have been accessed on level �, had the real
element been on some other level.

4. The GC reveals addresses to E and E reads each address. E XORs the results
together. (Recall, dummies are garblings of zero.) Each read value is a GC
label with a distinct language. To continue, G and E must agree on the lan-
guage of the resulting GC label. G can trivially account for the GC language
of each dummy except for the unaccessed dummy. E XORs on the encoded
language for the accessed element and the encoded language for the unac-
cessed dummy. This allows E to solder the RAM output to the GC such that
computation can continue.

5. Parties write back an encoding either of the just-accessed-element (for a read)
or of the written element (for a write). This element is written to the smallest
level. Parties also write a fresh dummy to the smallest level.

6. G applies a permutation to appropriate RAM levels.
7. After the nth access, E flushes the RAM by reading each index without

writing anything back, then initializes a new RAM with the flushed values.

We formalize our GRAM in Sect. 5.4.

3 Related Work

Garbled RAM. [LO13] were the first to achieve sublinear random access in
GC. As already mentioned, their GRAM evaluates a PRF inside the GC and
also requires a circular-security assumption.

This circularity opened the door to further improvements. [GHL+14] gave
two constructions, one that assumes identity-based-encryption and a second that
assumes only one-way functions, but that incurs super-polylogarithmic over-
head. [GLOS15] improved on this by constructing a GRAM that simultaneously
assumes only one-way functions and that achieves polylog overhead. Both of
these works avoid the [LO13] circularity assumption, but are expensive because
they repeatedly evaluate cryptographic primitives inside the GC.

[GLO15] were the first to achieve a GRAM that makes only black-box use
of crypto-primitives. Our lazy permutation network is inspired by [GLO15]: the
authors describe a network of GCs, each of which can pass the program control
flow to one of several other circuits. In this way they translate between GC
languages. Our approach improves over the [GLO15] approach in several ways:
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– The [GLO15] GRAM incurs factor κ blowup when passing messages through
their network of GCs. Our lazy permutation network avoids this blowup.

– [GLO15] uses a costly probabilistic argument. Each node of their network
is connected to a number of other nodes; this number scales with the sta-
tistical security parameter. The authors show that the necessary routing can
be achieved at runtime with overwhelming probability.5 This approach uses
a network that is significantly larger than is needed for any particular rout-
ing, and most nodes are ultimately wasted. In contrast, our lazy permutation
network is direct. Each node connects to exactly two other nodes, and all
connections are fully utilized over n accesses.

– [GLO15] compile their GRAM using off-the-shelf ORAM, incurring multi-
plicative overhead between their network of GCs and the ORAM. We build
a custom RAM that makes minimal use of our lazy permutation network.

In this work, we focus on RAM access in the standard GC setting. A number
of other works have explored other dimensions of GRAM, such as parallel RAM
access, adaptivity, and succinctness [CCHR16,CH16,LO17,GOS18].

Practical GC and ORAM. Due to space, we defer discussion of works in the
areas of practical GC and ORAM to the full version of this paper.

4 Preliminaries, Notation, and Assumptions

4.1 Common Notation

– G is the circuit generator. We refer to G as he/him.
– E is the circuit evaluator. We refer to E as she/her.
– We denote by 〈x, y〉 a pair of values where G holds x and E holds y.
– κ is the computational security parameter (e.g. 128).
– We write x � y to denote that x is defined to be y.
– c= is the computational indistinguishability relation.
– x ← y denotes that variable x is assigned to value y; x can later be reassigned.
– We generally use n to denote the number of elements and w to denote the

bit-width of those elements.
– [x] denotes the natural numbers 0, ..., x − 1.

Our construction is a garbling scheme [BHR12], not a protocol. I.e., our con-
struction is merely a tuple of procedures that can be plugged into GC protocols.
However, it is often easier to think of G and E as participating in a semi-honest
protocol. Thus, we often write that the parties “send messages”. We make two
notes about this phrasing:

– We will never write that E sends a message to G: all information flows from
G to E. In this way, we preserve the constant round nature of GC.

– ‘G sends x to E’ formally means that (1) our garbling procedure appends x
to the GC and (2) our evaluation procedure extracts x from the GC.

5 The [GLO15] probabilistic argument requires that indices be accessed randomly. I.e.,
the [GLO15] leaky array cannot be used except by plugging it into ORAM.
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4.2 Cryptographic Assumptions

We use the Free XOR technique [KS08], so we assume a circular correlation
robust hash function H [CKKZ12,ZRE15]. In practice, we instantiate H using
fixed-key AES [GKWY20].

4.3 Garbling Schemes

A garbling scheme [BHR12] is a method for securely computing a class of circuits
in constant rounds. A garbling scheme is not a protocol; rather, it is a tuple of
procedures that can be plugged into a variety of protocols.

Definition 1 (Garbling Scheme). A garbling scheme for a class of circuits
C is a tuple of procedures:

(Gb,En,Ev ,De)

where (1) Gb maps a circuit C ∈ C to a garbled circuit C̃, an input encoding
string e, and an output decoding string d; (2) En maps an input encoding string
e and a cleartext bitstring x to an encoded input; (3) Ev maps a circuit C, a
garbled circuit C̃, and an encoded input to an encoded output; and (4) De maps
an output decoding string d and encoded output to a cleartext output string.

A garbling scheme must be correct and may satisfy any combination of obliv-
iousness, privacy, and authenticity [BHR12]. We include formal definitions of
these properties in the full version of this paper. Our scheme satisfies each defi-
nition and hence can be plugged into GC protocols.

4.4 Garblings and Sharings

We work with two kinds of encodings of logical values: ‘garblings’ and simple
XOR shares. Garblings correspond to the traditional notion of garbled labels;
i.e., a garbling is a length-κ value held by each party.

Recall from Sect. 2 that we manipulate languages inside the GC. This is why
we work also with simple XOR sharings: we use XOR sharings to encode and
move languages inside the GC. We define notation for both types of shares, and
we emphasize the compatibility of garblings and sharings.

Garblings are Free XOR-style garbled circuit labels [KS08]. G samples a
uniform value Δ ∈ {0, 1}κ−11. I.e., Δ is uniform except that the least significant
bit is one. Δ is global to the entire computation. A garbling of x ∈ {0, 1} is
a tuple 〈X,X ⊕ xΔ〉, where the first element (here, X) is held by G, and the
second by E.

Definition 2 (Garbling). Let x ∈ {0, 1} be a bit. Let X ∈ {0, 1}κ be a bit-
string held by G. We say that the pair 〈X,X ⊕ xΔ〉 is a garbling of x over
(usually implicit) Δ ∈ {0, 1}κ−11. We denote a garbling of x by writing {|x|}:

{|x|} � 〈X,X ⊕ xΔ〉
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Definition 3 (Sharing). Let x,X ∈ {0, 1} be two bits. We say that the pair
〈X,X ⊕ x〉 is a sharing of x. We denote a sharing of x by writing �x�:

�x� � 〈X,X ⊕ x〉
We refer to G’s share X as the language of the garbling (resp. sharing).

Except in specific circumstances, we use uniformly random languages both for
garblings and for sharings.

Note, XOR is homomorphic over garblings [KS08] and sharings:

{|a|} ⊕ {|b|} = {|a ⊕ b|} �a� ⊕ �b� = �a ⊕ b�

We extend our garbling and sharing notation to vectors of values. That is, a
garbling (resp. sharing) of a vector is a vector of garblings (resp. sharings):

{|a0, ..., an−1|} � ({|a0|}, ..., {|an−1|}) �a0, ..., an−1� � (�a0�, ..., �an−1�)

Remark 3 (Length of garblings/sharings). Garblings are longer than sharings.
I.e., let x ∈ {0, 1} be a bit. Then {|x|} is a pair of length-κ strings held by G and
E. Meanwhile, �x� is a pair of bits held by G and E.

Remark 4 (Sharings contain garblings). Notice that the space of sharings con-
tains the space of garblings. Indeed, this will be important later: we will in
certain instances reinterpret a garbling {|x|} as a sharing �xΔ�. This will allow
us to operate on the garbling as if it is a sharing.

We frequently deal with values that are known to a particular party. We write
xG (resp. xE) to denote that x is a value known to G (resp. to E) in cleartext.
E.g., {|xE |} indicates a garbling of x where E knows x.

Operations on Sharings/Garblings.

– {|x|} �→ �x�. Recall that G ensures that the least significant bit of Δ is one.
Suppose each party takes the least significant bit of his/her part of {|x|}:

lsb({|x|}) = lsb(〈X,X ⊕ xΔ〉) � 〈lsb(X), lsb(X ⊕ xΔ)〉
= 〈lsb(X), lsb(X) ⊕ x · lsb(Δ)〉 = 〈lsb(X), lsb(X) ⊕ x〉 = �x�

That is, if both parties compute lsb on their parts of a garbling, the result
is a valid sharing of the garbled value. This idea was first used to implement
the classic point and permute technique.

– �x� �→ xE and {|x|} �→ xE . G can open the cleartext value of a sharing by
sending his share to E. Similarly, we can open a garbling by first computing
lsb (see above) and then opening the resulting share.

– xG �→ �x� and xG �→ {|x|}. G can easily introduce fresh inputs. Specifically,
let x be a bit chosen by G and unknown to E. The parties can construct
〈x, 0〉 = �x�. Similarly, the parties can construct 〈xΔ, 0〉 = {|x|}.

– {|x|} · {|y|} �→ {|x · y|}. Garblings support AND gates. This operation can be
implemented using two ciphertexts [ZRE15] (or 1.5 ciphertexts [RR21]).
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Fig. 2. Interface to the procedure G-permute which permutes n values using a permu-
tation π chosen by G. For power of two n, permuting n garbled values each of length w
costs w · (n log n−n+1) ·κ bits of communication via a permutation network [Wak68].

– xG · {|y|} �→ {|x · y|}. It is possible to instantiate a cheaper AND gate if G
knows in cleartext one of the arguments. This operation can be implemented
using one ciphertext [ZRE15].

– {|xE |} · �y� �→ �x · y�. This novel operation scales a vector of sharings by a
garbling whose cleartext value is known to E. Section 5.1 gives the procedure.

– {|x|} · yG �→ �x · y�. This operation follows simply from the above scaling
procedure. See Sect. 5.1.

4.5 Oblivious Permutation

We permute garbled arrays using permutations chosen by G. A permutation on
n = 2k width-w elements can be implemented using w(n log n − n + 1) AND
gates via a classic construction [Wak68]. Since G chooses the permutation, we
can use single ciphertext AND gates and implement the permutation for only
w · (n log n − n + 1) · κ bits. Figure 2 lists the interface to this procedure.

5 Approach

In this section we formalize the approach described in Sect. 2. Our formalism
covers four topics:

– Section 5.1 formalizes our generalized GC gates. These gates allow us to avoid
the factor-κ blowup that is common to prior GRAMs.

– Section 5.2 uses these new gates to modify an existing pop-only stack con-
struction [ZE13]. Our modified pop-only stacks leak their access pattern to
E but can efficiently store GC languages.

– Section 5.3 uses pop-only stacks to formalize our lazy permutation network.
– Section 5.4 builds on the lazy permutation network to formalize our GRAM.

We package the algorithms and definitions in this section into a garbling
scheme [BHR12] that we call EpiGRAM. EpiGRAM handles arbitrary circuits
with AND gates, XOR gates, and array accesses, and is defined as follows:

Construction 1. (EpiGRAM). EpiGRAM is a garbling scheme (Definition
1) that handles circuits with four kinds of gates:
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– XOR gates take as input two bits and output the XOR of the two inputs.
– AND gates take as input two bits and output the AND of the two inputs.
– ARRAY gates are parameterized over power of two n and positive integer w.

The gate outputs a zero-initialized array of n elements each of width w.
– ACCESS gates take as input (1) an array A, (2) a (log n)-bit index α, (3) a

w-bit value y to store in the case of a write, and (4) a bit r that indicates if
this is a read or write. The gate outputs A[α]. As a side effect, A is mutated:

A[α] ←
{

y if r = 0
A[α] otherwise

The garbling scheme procedures are defined as follows:

– En and De are standard; formally, our scheme is projective [BHR12], which
allows us to implement En and De as simple maps between cleartext and
encoded values. We formalize En and De in the full version of this paper.

– Ev and Gb each proceed gate-by-gate through the circuit. For each XOR gate,
each procedure XORs the inputs [KS08]. For each AND gate, the procedures
compute the half-gates approach [ZRE15]. For each ARRAY gate, Gb (resp.
Ev) invokes G’s (resp. E’s) part of the array initialization procedure (Fig. 9).
For each ACCESS gate, Gb (resp. Ev) invokes G’s (resp. E’s) part of the
array access procedure (Fig. 10).

In the full version of this paper, we prove lemmas and theorems that together
imply the following result:

Theorem 1 (Main Theorem). If H is a circular correlation robust hash func-
tion, then EpiGRAM is a correct, oblivious, private, and authentic garbling
scheme. For each ACCESS gate applied to an array of n elements each of size
w = Ω(log2 n), Gb outputs a GC of amortized size O(w · log2 n · κ) and both Gb
and Ev consume amortized O(w · log2 n · κ) computation.

5.1 Avoiding Factor κ Blowup

Recall from Sect. 2 that we avoid the factor-κ overhead that is typical in GRAMs.
We now give the crucial operation that enables this improvement.

Our operation scales a vector of κ sharings by a garbled bit whose value is
known to E. The scaled vector remains hidden from E. The operation computes
{|xE |} · �y� �→ �x · y� for y ∈ {0, 1}κ (see Fig. 3). Crucially, the operation only
requires that G send to E κ total bits. While this presentation is novel, the
procedure in Fig. 3 is a simple generalization of techniques given in [ZRE15].
This generalization allows us to scale an encoded GC language of length w (when
w = c · κ for some c) for only w bits. This is how we avoid factor-κ blowup.

Formally, we have a vector space where the vectors are sharings and the
scalars are garblings whose value is known to E. Vector space operations cannot
compute arbitrary functions of sharings, but they can arbitrarily move sharings
around. These data movements suffice to build our lazy permutation network.

Given Fig. 3, we can also compute {|x|} · yG �→ �x · y� for y ∈ {0, 1}κ:
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Fig. 3. Scaling a shared κ-bit vector by a garbling where E knows in cleartext the
scalar. Scaling a κ-bit sharing requires that G send to E κ bits. We prove the construc-
tion secure when G’s share of the vector �y� is either (1) a uniform bitstring Y or (2) a
bitstring zΔ for z ∈ {0, 1}. The latter case arises when G introduces a garbled input.

– Procedure {|x|} · yG:
• Parties compute �x� = lsb({|x|}). Let 〈X,X ⊕ x〉 = �x�.
• G introduces inputs {|X|}, �y� and �X · y�.
• Parties compute {|X|} ⊕ {|x|} = {|X ⊕ x|}. Note that E knows X ⊕ x.
• Parties compute (using Fig. 3) and output:

{|X ⊕ x|} · �y� ⊕ �X · y� = �(X ⊕ x) · y� ⊕ �X · y� = �x · y�

This procedure is useful in our lazy permutation network and in the Chide circuit.

5.2 Pop-only Oblivious Stacks

Our lazy permutation network uses pop-only oblivious stacks [ZE13], a data
structure with a single pop operation controlled by a garbled bit. If the bit is
one, then the stack indeed pops. Otherwise, the stack returns an encoded zero
and is left unchanged. Typically, both the data stored in the stack and the access
pattern are hidden. For our purposes, we only need a stack where the stored data
is hidden from E, but where E learns the access pattern.

[ZE13] gave an efficient circuit-based stack construction that incurs only
O(log n) overhead per pop. This construction stores the data across O(log n)
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Fig. 4. Interface to stack procedures stack -init (top) and pop (bottom). For a stack of
size n with width-w entries, parties locally initialize using O(w · n) computation; each
pop costs amortized O(w · log n) communication and computation.

levels of exponentially increasing size; larger levels are touched exponentially
less often than smaller levels, yielding low logarithmic overhead.

If E is allowed to learn the access pattern, we can implement the [ZE13]
construction where the stack holds arbitrary sharings, not just garblings. This
is done by replacing AND gates – which move data towards the top of the stack
– with our scaling gate (Fig. 3). Since we simply replace AND gates by scaling
gates, we do not further specify. A modified stack with n elements each of width
w costs amortized O(w · log n) bits of communication per pop.

Construction 2 (Pop-only Stack). Let x0, ..., xn−1 be a n elements such that
xi ∈ {0, 1}w. Stack(x0, ..., xn−1) is a pop-only stack of elements x0, ..., xn−1.
Pop-only stacks support the procedures stack- ¯init and pop (Fig. 4).

5.3 Lazy Permutations

Recall from Sect. 2 that our lazy permutation network allows E to look up an
encoded physical address and an encoded language for the needed RAM slot.
The network is a binary tree where each inner node holds two pop-only oblivi-
ous stacks. Each inner node forwards messages to its children. Once a message
is forwarded all the way to a leaf, the leaf node interprets the message as (1)
an encoding of the current RAM time and (2) an encoding of an output lan-
guage. This leaf node accordingly computes encodings of the appropriate physical
address and language, then translates these to the output language. The encoded
address and language are later used to allow E to read from RAM.

Inner Nodes and Implementation of Garbled Switches. For simplicity of
notation, let level 0 denote the tree level that holds the leaves; level log n holds
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Fig. 5. Procedure for inner nodes of a lazy permutation network, implementing garbled
switches.

the root. Consider an arbitrary inner node i on level k. This node can 2k times
receive a message �m� of a fixed, arbitrary length. On each message, the node
strips the first κ bits from the message and interprets them as the garbling of a
bit {|d|}. d is a direction indicator: if d = 0, then the node forwards the remaining
message to its left child; otherwise it forwards to its right child. Over its lifetime,
the inner node forwards 2k−1 messages to its left child and 2k−1 messages to its
right child. Crucially, the order in which a node distributes its 2k messages to
its children is not decided until runtime.

Each of the 2k messages are sharings with a particular language. I.e., the jth
message �mj� has form 〈Lj , Lj ⊕ mj〉 where each language Lj is distinct. The
node must convert each message to a language next expected by the target child.

Assume that a particular node has so far forwarded � messages to its left
child and r messages to its right child. Let Lb

a denote the bth input language for
node a. Note that the current language is thus L�+r

i and the language expected
by the left (resp. right) child is L�

2i (resp. Lr
2i+1).

To forward mj based on d, the node computes the following translation value:

�
d̄ · L�

2i ⊕ d · Lr
2i+1

�
= �L

(d̄�+dr)
2i+d � (1)
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Fig. 6. Procedure for leaf nodes of a lazy permutation network.

To compute the above, node i maintains two oblivious pop-only stacks (see
Sect. 5.2) of size 2k−1. The first stack stores, in order, sharings of the 2k−1

languages for the left child. The second stack similarly stores languages for the
right child. By popping both stacks based on {|d|}, the node computes Eq. (1).
Figure 5 specifies the formal procedure for inner nodes.

Leaf Nodes. Once a message has propagated from the root node to a leaf, we
are ready to complete a lookup. Each leaf node of the lazy permutation network
is a static circuit that outputs the encoding of a physical address and a language.

As the parties access RAM, G repeatedly permutes the physical storage to
hide the access pattern from E. Each one-time index p has O(log n) different
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Fig. 7. Lazy permutation network initialization. When initializing with leaves that
store languages of length w, G sends to E a GC of size O(w · n · log2 n) bits.

physical addresses and languages; the needed address and language depends
on how many accesses have occurred. Thus, each leaf node must conditionally
output one of O(log n) values depending on how many accesses have occurred.

G chooses all permutations and storage languages before the first RAM
access. Hence, G can precompute metadata indicating which one-time index
will be stored where and with what language at which point in time:

Definition 4 (Storage Metadata). Consider a one-time index p. The stor-
age metadata Mp for one-time index p is a sequence of log n three-tuples:

Mp � (tpi ,@
p
i , L

p
i )[i∈log n]

where each tpi is a natural number that indicates a point in time, @p
i is a physical

address, and Lp
i is a uniform language. Each time ti ≤ ti+1.

In our construction, each one-time index p may have fewer than log n correspond-
ing physical addresses. G pads storage metadata by repeating the last entry until
all log n slots are filled. G uses the storage metadata for each one-time index to
configure each leaf. Figure 6 specifies the procedure for leaf nodes.
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Fig. 8. Procedure to route one value through a lazy permutation network.

Putting the Network Together. We now formalize the top level lazy per-
mutation network. To instantiate a new network, G and E agree on a size n and
a width w and G provides storage metadata, conveying the information that
should be stored at the leaves of the network. From here, G proceeds node-by-
node through the binary tree, fully garbling each node. E receives all such GCs
from G, but crucially she does not yet begin to evaluate. Instead, she stores the
GCs for later use, remembering which GCs belong to each individual node.

Recall that G selects a uniform permutation π that prevents E from viewing
the one-time index access pattern: when the GC requests access to one-time
index p, E is shown π(p). Now, let us consider the ith access to the network. At
the time of this access, a garbled index {|π(p)|} is given as input by the parties.
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G selects a uniform language Y to use as the output language, and the parties
trivially construct the sharing �Y �. The parties then concatenate the message
�mi� � {|π(p)|}, {|T |}, �Y � where T is the number of RAM writes performed so far.
Let Li

0 denote the ith input language for the root node 0. The parties compute
�Li

0� ⊕ �mi� and G sends his resulting share, giving to E a valid share of mi

with language configured for the root node. E now feeds this value into the tree,
starting from the root node and traversing the path to leaf π(p). Note that G
does not perform this traversal, since he already garbled all circuits.

Each inner node strips off one garbled bit of π(p). This propagates the
message to leaf π(p). Finally, the leaf node computes the appropriate physi-
cal address and language for one-time index p and translates them to language
Y . Let Y ⊕(@p ·Δ,Lp) denote E’s output from the leaf node. The parties output:

〈Y, Y ⊕ (@p · Δ,Lp)〉 = �@p · Δ,Lp� = {|@p|}, �Lp�

Thus, the parties successfully read an address and a language from the network.

Construction 3. (Lazy Permutation Network). Let n be a power of two. A
size-n lazy permutation network π̃ is a two-tuple consisting of:

1. Sharings of the input languages to the root node �L
j∈[n]
0 �.

2. 2n − 2 stacks belonging to the n − 1 inner nodes, s�
i∈[n−1] and sr

i∈[n−1].

Here, each input language L
j∈[n]
0 and each language stored in each stack is an

independently sampled uniform string. Lazy permutation networks support ini-
tialization (Fig. 7) and routing of a single input (Fig. 8).

5.4 Our GRAM

We formalize our GRAM on top of our lazy permutation network:

Construction 4. (GRAM). Let n – the RAM size – be a power of two and let
w – the word size – be a positive integer. Let x0, ..., xn−1 be n values such that
xi ∈ {0, 1}w. Then Array(xi∈[n]) denotes a size-n GRAM holding the content
xi∈[n]. Concretely, a GRAM is a tuple consisting of:

1. A timer T denoting the number of writes performed so far.
2. A sequence of languages X held by G and used as the languages for the per-

muted RAM content. Each language has length w · κ, sufficient to encode a
single garbled word.

3. A size-2n uniform permutation π held by G.
4. A sequence of n + 1 uniform permutations π0, ..., πn held by G and used to

permute the physical storage. These hide the RAM access pattern from E.
5. A size-2n lazy permutation π̃.
6. A recursively instantiated RAM called the index map that maps each logical

index α to π(p): the (permuted) one-time index where α is currently saved.
For each recursive RAM of size n, we instantiate the index map with word
size w = 2(log n + 1). To bound the recursion, we use a linear-scan based
RAM when instantiating a index map that stores only O(w · log2 n) bits.
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Fig. 9. RAM initialize.

7. log n + 2 levels of physical storage where level i is a garbling of size w · 2i+1.
Each level i is either vacant or stores 2i real elements and 2i dummies. The
physical storage is permuted according to permutations π0, ..., πn.

8. A garbling of size 2w called the stash. Parties write back to the stash; on each
access, items are immediately moved from the stash into a level of storage.

GRAMs support initialization (Fig. 9) and access (Fig. 10).

Our top level garbling scheme is defined with respect to this data structure;
EpiGRAM makes explicit calls to array-init (Fig. 9) and access (Fig. 10).

We call attention to G-schedule, shuffle, flush, and hide:

– G-schedule is a local procedure run by G where he plans ahead for the next
n accesses. Specifically, G selects uniform permutations on storage, chooses
uniform languages with which to store the RAM content, and computes the
storage metadata Mp for each one-time index p ∈ [2n]. The full version of
this paper gives the explicit interface to G-schedule.

– shuffle describes how G permutes levels of storage. By doing so, we ensure
that the revealed physical addresses give no information to E. shuffle is a
straightforward formalization of the permutation schedule given in Sect. 2.4
and is formalized in the full version of this paper.
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Fig. 10. RAM access.
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Fig. 11. flush is a helper procedure used to reset the array after n accesses. flush
recovers the n array elements and places them into a contiguous block.

– After each n-th access, we invoke flush (Fig. 11) to reinitialize GRAM. We
also mention that our proof of correctness defines correctness of the GRAM
data structure with respect to flush: a GRAM is valid if we can flush and
recover its content.

– On each access, hide picks a dummy on each storage level, the conveys to
E (1) a physical address on each level of storage and (2) a sharing of the
language of the unaccessed dummy. The precise procedure is formalized in
the full version of this paper.

With these four helper procedures defined, we formalize GRAM initialization
(Fig. 9) and GRAM access (Fig. 10). Initialization is straightforward, and GRAM
access is a formalization of the high level procedure given in Sect. 2.4.

6 Evaluation

In this section, we analyze EpiGRAM’s performance. We leave implementa-
tion and low-level optimization as important future work.

To estimate cost, we implemented a program that modularly computes the
communication cost of each of EpiGRAM’s subcomponents. E.g., a permutation
network on n width-w elements uses w · (n log n − n + 1) ciphertexts [Wak68].

Figure 12 fixes the word size w to 128. That is, each RAM slot stores 128
garbled bits. We plot the estimated communication cost as a function of n. For
comparison, we also plot the cost of a linear scan; a linear scan on n elements of
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Fig. 12. Estimated concrete communication cost of our GRAM. We fix the word
size w = 128 and plot per-access amortized communication as a function of n. For
comparison we include an estimate of [LO13]’s performance (our estimate is favorable
to [LO13], see the full version for our analysis).

width w and while using [ZRE15] AND gates can be achieved for (slightly more
than) 2 ·w · (n−1) ciphertexts. We also plot the function 215 log2 n bytes, a close
approximation of EpiGRAM’s cost for w = 128.

Figure 12 clearly demonstrates EpiGRAM’s low polylogarithmic scaling.
Note that our communication grows slightly faster than the function 215 log2 n.
This can be explained by the fact that we fixed a relatively low and constant
word size w = 128; recall that to achieve O(log2 n) scaling, we must choose
w = Ω(log2 n). Still, our cost is closely modeled by O(log2 n).

EpiGRAM is practical even for small n. The breakeven point with trivial
GRAM (i.e., GRAM implemented by linear scans) is only n = 512 elements.
Even non-garbled ORAMs have similar breakeven points. For example, Circuit
ORAM [WCS15] gives the breakeven point w = 128, n = 128. At n = 220,
EpiGRAM consumes ≈ 200× less communication than trivial GRAM.
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Abstract. A recent line of work, Stacked Garbled Circuit (SGC),
showed that Garbled Circuit (GC) can be improved for functions that
include conditional behavior. SGC relieves the communication bottleneck
of 2PC by only sending enough garbled material for a single branch out
of the b total branches. Hence, communication is sublinear in the circuit
size. However, both the evaluator and the generator pay in computation
and perform at least factor log b extra work as compared to standard GC.

We extend the sublinearity of SGC to also include the work performed
by the GC evaluator E; thus we achieve a fully sublinear E, which is
essential when optimizing for the online phase. We formalize our app-
roach as a garbling scheme called GCWise: GC WIth Sublinear Evaluator.

We show one attractive and immediate application, Garbled PIR, a
primitive that marries GC with Private Information Retrieval. Garbled
PIR allows the GC to non-interactively and sublinearly access a pri-
vately indexed element from a publicly known database, and then use
this element in continued GC evaluation.

1 Introduction

Garbled Circuit (GC) is a foundational cryptographic technique that allows two
parties to jointly compute arbitrary functions of their private inputs while reveal-
ing nothing but the outputs. GC allows the parties to securely compute while
using only constant rounds of communication. The technique requires that one
party, the GC generator G, send to the other party, the GC evaluator E, a large
“encryption” of a circuit that expresses the desired function. We refer to these
circuit encryptions as GC material. The bandwidth consumed when sending GC
material is typically understood to be the GC bottleneck.

A. Shah—Work partially done while at Microsoft Research, India.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13275, pp. 37–64, 2022.
https://doi.org/10.1007/978-3-031-06944-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06944-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-06944-4_2


38 A. Haque et al.

Stacked Garbling [HK20a,HK21] – or Stacked GC, SGC – is a recent GC
improvement that reduces bandwidth consumption for functions with conditional
behavior. We review SGC in Sect. 3.1. In SGC, G sends material proportional
to only the single longest branch, not to the entire circuit. Thus, SGC achieves
sublinear communication for certain circuits.

Unfortunately, SGC’s improved communication comes at the cost of increased
computation. Let b denote the number of branches. The parties each incur
at least O(b log b) computation, as compared to O(b) when using standard
GC [HK21].

In this work, we focus on improving the SGC computation cost of E. We
mention two reasons why it is sensible to focus on E.

– Weak E. First, G and E may have different computational resources. We
argue that E will often have weaker hardware. GC offers built-in protection
against malicious E, but more sophisticated and expensive techniques are
needed to protect against malicious G, see e.g., [WRK17]. Thus, the more
trusted party should play G to avoid the cost of these techniques.
We argue that in many natural scenarios, the more trusted party (e.g., a
server, or a bank), is also computationally more powerful than the less trusted
one (e.g., bank’s client, a cell phone, an IoT device).
In such scenarios, E will have weaker hardware, and E’s computational power
will be the bottleneck.

– Online/offline 2PC. Second, GC naturally allows to offload most work to
an offline phase (i.e., before function inputs are available): G can construct
and transmit the GC in advance. However, E can only evaluate once inputs
become available in an online phase. Thus, E’s computation is essentially the
only cost in the online phase.

1.1 Our Contribution

We show that GC conditional branching can be achieved while incurring only
sublinear communication and sublinear computation cost for E. More precisely,
for a conditional with b branches, our construction requires that G send to
E material of size Õ(

√
b) and E uses Õ(

√
b) computation. Our G uses Õ(b)

computation. Importantly, the entire online phase has only Õ(
√

b) cost.
Our construction is formalized and proved secure as a garbling

scheme [BHR12] assuming one-way functions. (To compose our technique with
Free-XOR-based schemes, we need a stronger circular correlation-robust hash
function [CKKZ12].) Since it is a garbling scheme, our construction can be
plugged into GC protocols. We name our garbling scheme GCWise, for GC WIth
Sublinear Evaluator.

Our construction can be immediately used to build an efficient Garbled PIR,
described next in Sect. 1.2. Garbled PIR allows the GC to non-interactively and
sublinearly access a privately indexed element from a publicly known database,
and then use this element in continued GC evaluation.
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1.2 Garbled PIR

Our construction is best applied when the target conditional has high branch-
ing factor. We mention an interesting application where high branching factor
naturally arises.

Suppose G and E agree on a public database with elements (x0, ..., xn−1).
They wish to include the database as part of their GC computation by reading
one of its elements. Namely, suppose the GC computes a garbled index i that
is known to neither party. The parties wish to efficiently recover the value xi

inside the GC such that the value can be used in further computation. Such
a capability is essentially Private Information Retrieval (PIR), but where the
selected index and the value are compatible with GC. One can view this as the
GC playing the PIR receiver and G and E jointly playing the PIR sender. We
emphasize that G and E must publicly agree on the contents of the database,
but they do not learn which element is accessed. For completeness, we include
the following formal definition of Garbled PIR:

Definition 1 (Garbling Scheme with PIR (Garbled PIR)). A garbling
scheme [BHR12] G is considered a garbling scheme with PIR if its circuits may
include the following Gpir gates:

Gpir [x0, ..., xn−1](i) �→ xi

Here Gpir is parameterized by the public constant array [x0, ..., xn−1], and the
gate input i is computed inside the evaluated circuit.

Constructing Garbled PIR from conditional branching. Efficient Garbled
PIR can be immediately constructed from conditional branching. In particular,
we define n conditionally composed circuits C0, ..., Cn−1 such that each circuit Ci

takes no inputs and outputs the constant xi.
We thus obtain Garbled PIR incurring only Õ(

√
n) communication and

Õ(
√

n) E computation.
Our Garbled PIR can be upgraded to store private data by using one non-

black-box PRF call per access. Indeed, each xi can be stored masked with Fk(i);
the GC simply accesses the i-th position, unmasks the computed PRF, and
proceeds with subsequent GC evaluation.

Comparison with Garbled RAM (GRAM). It is important (and easy) to
see that GRAM, introduced by [LO13], does not solve the problem of efficient
Garbled PIR. Indeed, GRAM performance is amortized over a sequence of RAM
queries. A single GRAM access will require players to jointly build and then
access a superlinear data structure, a far more expensive task than a simple linear
scan. Thus GRAM does not imply Garbled PIR with sublinear communication
and E computation.

1.3 Compact 2PC and Garbled PIR

For functions with conditional behavior, we achieve communication and compu-
tation for one of the parties that is sublinear in the size of the function descrip-
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tion (i.e., function’s circuit size). We find it convenient to assign a name to this
property. We call this double sublinearity compactness.

For example, Sect. 1.2 describes a compact Garbled PIR, and our garbling
scheme GCWise allows to achieve compact 2PC.

1.4 High-Level Intuition for Our Approach

Let b denote the number of branches in a conditional. Rather than sending
garbled material for each conditional branch, our G randomly organizes the
branches into Õ(

√
b) buckets and stacks the branches inside each bucket. Each

bucket contains Õ(
√

b) branches, with the constraint that each branch appears
at least once (with overwhelming probability). For each bucket, G stacks the
material for that bucket’s branches and sends the SGC to E. This achieves
sublinear Õ(

√
b) communication.

To achieve E’s sublinear computation, we ensure that E needs to only con-
sider a single bucket, one (possibly of several) that contains the active branch.
E processes only the Õ(

√
b) circuits in this single bucket.

The GC simply reveals to E the ID of the active bucket and the IDs of the
inactive branches in it. E then unstacks the active branch material and evaluates
using the remaining material.

The above description elides many details. For instance, we must route GC
wire labels to 1-out-of-b circuits while maintaining sublinear communication and
E computation. Additionally, we must ensure that E does not learn the identity
of the active branch. We present a detailed overview of our approach in Sect. 4.

2 Related Work

Stacked Garbling. The most closely related works are those that developed
Stacked Garbled Circuit (SGC) [Kol18,HK20b,HK20a,HK21], a GC primitive
that reduces the communication cost of branching. We review the SGC technique
in Sect. 3.1.

Our construction builds on SGC. Like prior work, we also achieve communi-
cation sublinear in the number of branches. However, we also achieve sublinear
evaluation: our construction is compact. Prior SGC techniques are not compact.

Online-offline MPC. MPC of large functions can be expensive, and is unac-
ceptable for certain time-sensitive (e.g., real-time) applications. One often-
acceptable solution to this is to take advantage of the idle time before MPC
inputs are available (the offline phase) by performing input-independent com-
putation and data transfers. This often dramatically reduces the cost of the
online phase.

MPC with preprocessing, aka online/offline MPC, is widely seen as a central
setting for MPC, and is considered in many lines of work and protocol fami-
lies, such as SPDZ [DPSZ12,BNO19]. Our protocol is the first one to achieve
sublinear online phase for GC.



Garbled Circuits with Sublinear Evaluator 41

Other Garbled Circuit Optimizations. Originally, GCs required G send to
E four ciphertexts per fan-in two gate.

This number of needed ciphertexts has been improved by a long line of works.
While our emphasis is sublinear cost branching, not the efficiency of individual
GC gates, we review such works for completeness.

– [NPS99] introduced garbled row-reduction (GRR3), which reduced the cost
to three ciphertexts per gate.

– Much later, [KS08a] introduced the Free XOR technique which allows XOR
gates to be computed without extra ciphertexts.

– [PSSW09] introduced a polynomial interpolation-based technique that uses
only two ciphertexts per gate (GRR2).

– While GRR3 is compatible with Free XOR, GRR2 is not. This opened the
door to further improvements: [KMR14] generalized Free XOR into “fleXOR”,
a technique that uses heuristics to mix GRR2 with Free XOR and GRR3.

– [ZRE15] superceded prior improvements with their half-gates technique. Half-
gates consumes only two ciphertexts per AND gate and compatible with Free
XOR. [ZRE15] also gave a matching lower bound in a model that seemed
difficult to circumvent.

– Very recently – and quite suprisingly – [RR21] found a new approach outside
the [ZRE15] lower bound model. Their technique requires only 1.5 ciphertexts
per AND gate and is compatible with Free XOR.

This line of work improves the cost of individual gates; in contrast to our
work, the total cost remains proportional to the circuit size.

Garbled RAM (GRAM). Most GC constructions operate in the circuit model
of computation, rather than using Turing machines or RAM machines. Excep-
tions include the line of work on garbling schemes for RAM programs: Gar-
bled RAM (GRAM) [LO13], outsourced RAM [GKK+12], and the TM model
of [GKP+13]. RAM-based 2PC is motivated by the prohibitively expensive cost
of generic program-to-circuit unrolling.

GRAM and our Garbled PIR are incomparable: while GRAM achieves sub-
linear RAM, its costs are amortized. Meanwhile, Garbled PIR is less expressive,
but achieves sublinear cost without amortization.

Private Information Retrieval (PIR). Private information retrieval (PIR),
introduced by Chor et al. [CGKS95,CKGS98], allows a client to retrieve an
item from a public database stored at a server without revealing which item is
requested. The communication complexity of PIR is sublinear in the size n of
the database, and the computation of the server is linear in n. [KO97] designed a
PIR scheme with communication O(nε) for an arbitrary constant ε; subsequent
works achieved polylogarithmic communication.

We achieve Garbled PIR; i.e., private information retrieval that is compatible
with GC (Sect. 1.2).
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Table 1. Table of notation.

Symbol Denotation

κ Computational security parameter (e.g., 128)
C Function/circuit
Ĉ Garbled circuit on C (usesˆsymbol)
x, y Small Latin letters for plain inputs/outputs
X,Y Capital Latin letters for garbled inputs/outputs
G GC Generator (he/him)
E GC Evaluator (she/hers)
b Number of conditional branches
�, i Number of buckets � indexed by i

m, j Number of elements in a bucket indexed by j (bucket size)
α Active branch ID
β Active bucket ID
γ The index of active instance for Cα in active bucket Bβ (see Sect. 5.1)
n Number of gates in a branch
S Pseudorandom seed
K Encryption key

Compact 2PC from Fully Homomorphic Encryption (FHE). The break-
through work on FHE by Gentry [Gen09] and Brakerski and Vaikuntanathan
[BV11] can be used to achieve compact 2PC. Using FHE, one party encrypts its
input and sends it to the other party. The other party then computes the func-
tion homomorphically over these encrypted inputs and its own inputs. Hence,
the communication and computation complexity of one of the parties is pro-
portional to the size of its inputs and is independent of the size of the circuit.
Despite concrete improvements, e.g., [BV11,GSW13], FHE remain expensive in
practice, compared to GC.

3 Preliminaries

This section reviews stacked garbling [HK20a,HK20b] and introduces basic nota-
tion and concepts needed to understand our approach.

Notational Preliminaries. For an integer n, we use [n] to denote the set
{0, 1, . . . , n − 1}. PPT stands for probabilistic polynomial time. The base two
logarithm of x is denoted log x. We use c= to show two distributions are computa-
tionally indistinguishable. Table 1 lists various naming conventions used through-
out this work.
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3.1 Reducing GC Communication

A recent line of works showed that GC communication can be asymptotically
improved for circuits with conditional behavior. This line began with ‘Free
If’ [Kol18]. To reduce communication, Kolesnikov decoupled the circuit topol-
ogy from the garbled circuit material. The topology is the circuit description,
describing how the gates are laid out as a graph. The material is the collection
of encrypted truth tables that support secure evaluation

Free If only works when G knows the identity of the active conditional branch
but ensures that E does not learn the active branch.

Building on the topology-decoupling idea, Heath and Kolesnikov showed
improvements both when only E knows the active branch [HK20b] and when
neither player knows the active branch [HK20a]. Both [HK20b] and [HK20a]
consume communication proportional to only the program’s longest execution
path rather than to the entire circuit.

By using these stacked garbling techniques (sometimes called stacked garbled
circuit, SGC), we need not send separate material for each conditional branch.
Instead, a single stacked (via bitwise XOR) string of material can be sent for all
branches. After receiving the stacked material, E is given enough information
to efficiently and locally reconstruct the material for each inactive branch. This
allows her to unstack (again, by bitwise XORing) the material for the single
active branch. E can then correctly execute the active branch. By stacking the
branch material, SGC greatly reduces bandwidth consumption.

[HK20b] Review. Like [HK20a], we target secure computation in the setting
where neither party knows the active branch. Thus, our setting is closest to
[HK20a]. While our approach is for general 2PC, our construction is more closely
related to that of [HK20b], which was used to improve GC-based zero knowl-
edge proofs [JKO13,FNO15]. The core idea given by [HK20b] does not require
the ZK setting; it simply requires that the GC evaluator E knows the identity
of each active conditional branch. Hence, we elide the ZK details and present
the [HK20b] technique as one for secure 2PC.

For reference, Table 1 lists variables used to describe circuits and GCs.
Consider b branches C0, . . . , Cb−1 and let α denote the index of the active

branch. Let E know α. The [HK20b] approach is as follows: G selects b PRG seeds
S0, . . . , Sb−1 and uses each respective seed to derive all randomness used while
constructing a garbling of the respective branch. Let Ĉ0, . . . , Ĉb−1 denote the b
resultant GC materials (i.e., the collections of encrypted truth tables). Before
[HK20b], each of these b materials would be sent to E, requiring communication
proportional to the number of branches.

[HK20b] improves over this as follows: G pads the shorter materials with
extra 0s until each material has the same length. G computes Ĉ ← ⊕

i Ĉi and
sends Ĉ to E. G additionally conveys to E each seed Si�=α corresponding to the
b − 1 inactive branches.1 If E were to obtain all GC seeds, she could use them

1 [HK20b] use oblivious transfer to convey these seeds, but they can also be encrypted
according to the active branch GC labels in a GC gadget.
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to learn all circuit labels. This would not be secure since this would allow E
to decrypt intermediate circuit values. However, it is secure to send seeds to
E, so long as each seed is not used in an active branch [HK20b]. We ensure
this is secure by using garbled gadgets to enforce that no inactive branch holds
semantic values on its wires. Hence, there are no wire labels for E to illegally
decrypt.

E uses the b − 1 seeds to reconstruct the materials Ĉi�=α and then computes
Ĉα ← Ĉ ⊕ (

⊕
i�=α Ĉi), unstacking the active branch material. E uses this active

branch material and the appropriate input labels (which are conveyed separately)
to evaluate the active branch.

Although we consider the setting where neither E nor G know the active
branch, we leverage the above technique: we also stack GC material and reveal
to E to the stacked index of the active branch. Crucially, our approach decouples
the stacked index of the active branch from its index in the program. Thus,
learning the former does not break security by revealing the identity of the
active branch. We discuss our approach further in Sect. 4.

3.2 Universal and Set-Universal Circuits

To evaluate a circuit C inside the GC, E must both hold the material Ĉ and
know the topology for that circuit. However, we need to ensure that the differing
topology across branches does not leak the identity of the active branch. This
leakage can be prevented by using universal circuits (UC). A UC can hide the
structure of the evaluated circuit.

A UC can emulate any circuit with size up to a parameterized maximum
number of gates n. A UC takes as input the description of the desired circuit C
encoded as a programming string c. On input x and programming string c that
encodes C, a UC U computes U(c, x) = C(x).

Valiant [Val76] achieved the first UC construction, which was of size
O(n log n). More recent works have improved the constant overhead of UC con-
structions. The current best construction [LYZ+20] achieves UCs of size 3n log n.
A simpler construction with size O(n log2 n) also exists and is better for small
n [KS08b].

We note that UCs do not directly solve our compactness problem, since in
addition to the garbled UC itself we must convey a garbling of the UC program-
ming string. This programming string is proportional to the size of the UC. In
general, b programming strings are needed to encode the possibility of evaluating
any branch. Nevertheless, UCs are core to our approach.

Set-Universal Circuits. When we handle conditional branching, we know stat-
ically that the active branch is an element from the small set of circuits in the
conditional. Thus, using a general purpose UC that emulates any size n circuit
is overkill. Set-universal circuits [KKW17] construct a single circuit that can
emulate any circuit from a specific set of circuits S. A set-universal circuit can
be less costly than a full universal circuit.
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Note that for Garbled PIR (Sect. 1.2), the relevant set-universal circuit is
incredibly simple: each “circuit” in Garbled PIR simply outputs a constant value.
Hence, all such circuits already share a fixed topology and the set-universal
topology is trivially constructed without overhead.

3.3 Garbled Circuit Formalization

Our approach achieves compact 2PC by using garbled circuits (GCs).
Yao [Yao86] first introduced garbled circuits, with subsequent works like Lin-
dell and Pinkas [LP09] and Bellare, Hoang, and Rogaway [BHR12] formalizing
the syntax, methods, and proofs. Garbled circuit techniques are often formalized
as garbling schemes, not as protocols. We take the same approach, formalizing
our technique as a garbling scheme in the framework given by [BHR12]. In prac-
tice, the parties G and E run these algorithms as part of a protocol that uses
the scheme as a black box. We present the [BHR12] garbling scheme definitions.

Definition 2 (Garbling Scheme). A garbling scheme G is a tuple of algo-
rithms:

G = (Gb,En,De,Ev, ev)

such that:

1. (Ĉ, e, d) ← Gb(1κ, C): Gb maps a function C : {0, 1}� → {0, 1}m to a triple
(Ĉ, e, d) such that De(d, ·) ◦ Ev(C, Ĉ, ·) ◦ En(e, ·) = C. We often make garbling
randomness explicit via pseudorandom seed S: (Ĉ, e, d) ← Gb(1κ, C;S)

2. X ← En(e, x): En maps a cleartext input x ∈ {0, 1}� to garbled labels X by
looking up labels from the encoding string e according to x.

3. y ← De(d, Y ): De maps garbled output labels Y to the cleartext output y by
comparing values in Y to values in the decoding string d.

4. Y ← Ev(C, Ĉ,X): Ev securely evaluates a circuit C using its garbled material
Ĉ and garbled input X.

5. y ← ev(C, x): ev evaluates the function C on input x in cleartext and is used
to evaluate correctness. We sometimes instead write C(x) for simplicity.

We formally define the security notions of a garbling scheme and show that
our construction satisfies them in Sect. 6.

Projectivity. Our scheme only considers Boolean values and is projec-
tive [BHR12]. In a projective garbling scheme, each circuit wire is associated
with two labels that respectively encode zero and one. Projective schemes enjoy
simple definitions for En and De that map between GC labels and cleartext bits.

The encoding string e is a list of 2n tokens e = (X0
0 ,X1

0 , . . . , X0
n−1,X

1
n−1),

two for each bit of an input x ∈ {0, 1}n. For a given x = (x0, . . . , xn−1), En(e, x)
selects a subvector (Xx0

0 , . . . , X
xn−1
n−1 ) for the encoding. Similarly, the decryption

De compares output labels to the content of the decoding string d and outputs
appropriate cleartext values.
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3.4 Circuit Syntax

Traditionally, Boolean circuits refer to a collection of gates with specified con-
nections. Unfortunately, this notion does not make explicit the function’s con-
ditional behavior. Therefore, we follow [HK20a] and instead refer to the above
notion as a netlist. Our garbling scheme (Sect. 5.3) handles conditionals built
from a vector of netlists.

A circuit C is a vector of constituent netlists C0, . . . , Cb−1. As in [HK20a],
we leave the syntax of netlists unspecified. This allows us to plug different low-
level garbling techniques into our construction, even if the technique uses novel
gates. The only restriction we place on netlists is that given a vector of netlists
C0, . . . , Cb−1, it is possible to construct a universal netlist (see Sect. 3.2) that can
be programmed (e.g., by part of its input) as any branch Ci. By convention,
the first 	log b
 bits of input to a conditional are condition bits that encode the
active branch ID α. Semantically, on input (α, x), the conditional outputs Cα(x).

Sequentially composed conditionals. It is often useful to sequentially compose
multiple circuits, e.g., the output of one conditional is fed as input to another.
While our syntax does not directly handle sequential composition, such handling
can be easily laid on top of our approach, see e.g., [HK20a]. Thus, the fact that
we do not further discuss sequential composition simplifies presentation but does
not limit expressivity.

Nesting conditionals. We do not handle nested conditionals: it is not clear how to
express a universal circuit that captures arbitrary explicit conditional branching.
We note that in many cases it is possible to efficiently rewrite nested conditionals
as a single top-level conditional via safe program transformations.

4 Technical Overview

In this section, we present our construction at a high level. Formal algorithms
and proofs are in Sects. 5 and 6. Consider b conditionally composed circuits Ci∈[b].
We call these circuits branches. Let α denote the index of the active branch, i.e.,
the branch whose output appears at the end of the conditional. Suppose that
neither G nor E knows α. Our goal is to securely compute and propagate the
output of Cα while using communication and E computation sublinear in the
number of branches.

Standard stacked garbling. To recap Sect. 3.1, in standard SGC [HK20a], G con-
structs for each branch Ci a garbling Ĉi from a seed Si and then sends to E the
stacked garbling

⊕
i Ĉi. At runtime, the GC conveys to E each seed Si�=α (via

a garbled gadget programmed by G). E uses these seeds to garble each inactive
branch and constructs the value

⊕
i�=α Ĉi. This value allows her to unstack the

material for the active branch:
(

⊕

i

Ĉi

)

⊕
⎛

⎝
⊕

i�=α

Ĉi

⎞

⎠ = Ĉα
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She uses the resultant material to correctly evaluate the active branch Cα.
Unfortunately, the above procedure is not compact: E must garble each

branch, so her work is linear in b. We adopt a different strategy.

G’s handling. Instead of stacking all b garblings into a single stack of garbled
material, G constructs multiple stacks. Specifically, he considers a sublinear num-
ber � = Õ(

√
b) of buckets, each of which is simply a collection of some of the

branches. G fills each bucket with m = Õ(
√

b) branches via a garbled gadget
called the bucket table (see Sect. 5.1). The bucket table ensures that each branch
appears at least once with overwhelming probability. For each bucket Bi, G gar-
bles the m constituent branches using m distinct seeds and stacks the resultant
material. G separately sends to E the stacked material for each bucket Bi. At
runtime, E will consider only one of these buckets. Since the considered bucket
holds only Õ(

√
b) branches, E’s work is sublinear in b.

Terminology. In our construction, a particular branch may be stacked more than
once. Indeed, each branch may appear in multiple buckets and even multiple
times within the same bucket. Each copy of a branch is called an instance. There
are more instances than there are branches and (with overwhelming probability)
there exists at least one instance of each branch. All instances in the same bucket
are called siblings.

E need not evaluate all instances: many are dummies that prevent E from
learning the active branch ID. At runtime, E will evaluate a garbling of exactly
one instance of branch Cα. We call this evaluated instance the active instance.
The active instance resides in a bucket that we call the active bucket ; we denote
the active bucket ID by β.

E’s handling of buckets. Recall that the GC computes the value α and that
E holds stacked material for each bucket. The garbled material for the active
instance is in the active bucket Bβ . We proceed as follows: The GC reveals to E
the following information via the bucket table:

1. The identity of the active bucket β.
2. The identity of the active instance’s m − 1 siblings: i.e., which inactive

branches are in Bβ .
3. The m − 1 seeds used to garble the active instance’s siblings.

E, crucially, is not given information about any inactive buckets Bi�=β and is
not told the identity of the active instance. We show that the above information
can be compactly and securely computed by our carefully arranged bucket table
gadget (see Sect. 5.1).

With this information, E garbles each sibling instance and unstacks the active
instance’s material. Crucially, our bucket table ensures that the branches within
a single bucket are sampled with replacement, so even learning that branch Cj

is a sibling of the active instance does not allow E to rule out the fact that Cj

might be the active branch. From here, we would like E to evaluate the active
instance. However, one important problem remains: to evaluate, E needs both
the active instance’s material (which she has) and the active branch topology.
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As discussed so far, E cannot learn this topology, since this would immediately
imply the identity of the active branch.

Universal topology. To avoid the above problem, we ensure each branch Ci uses
the same topology. We achieve this by expressing each branch as the program-
ming of a universal circuit (UC) (see Sect. 3.2). Since each branch has the same
topology, E can evaluate the active branch without learning its identity.

This raises a question: Why not instead simply use one UC to directly express
the conditional instead of stacking garbled material? The crucial problem with
using UCs for conditional branching is that E must somehow obtain a garbled
programming string corresponding to the active branch. Standard techniques for
conveying 1-out-of-b programming strings require communication proportional
to b, and so are not compact.

In our approach, programming strings are sent efficiently: G incorporates
the programming string directly into each garbling. Thus, when E unstacks,
she obtains a garbling with the proper programming for the active branch, but
without learning the active branch ID and without needing to consider all b
possible functions.

Summary of our approach.

– G and E agree on a circuit U that is universal to each branch Ci.
– G considers Õ(

√
b) buckets and fills each bucket with Õ(

√
b) branch IDs.

– For each instance, G accordingly programs U and garbles programmed U . For
each bucket, G stacks the Õ(

√
b) materials.

– G sends Õ(
√

b) materials to E. The materials include the stacked garbling for
each bucket and the garbled gadgets, including the bucket table. The bucket
table tells E how to unstack the active instance.

– E evaluates the bucket table and learns the active bucket, the identities of
the siblings of the active instance, and seeds for these siblings.

– E considers only the active bucket, garbles the siblings, unstacks the active
instance material, and evaluates the active instance.

By running the above high-level procedure, E evaluates a conditional with b
branches, but while using only Õ(

√
b) communication and computation. The

technique does require a garbled bucket table gadget (and a demultiplexer and
multiplexer gadget), but we show that the gadgets can be constructed with size
sublinear in the number of branches. Hence, G and E obliviously execute a
conditional while using only sublinear communication and E computation: we
achieve compact 2PC.

5 Our Construction

In this section, we present our technique in detail. We start by describing the
bucket table gadget. Then we introduce our multiplexer (mux) and demultiplexer
(demux) gadgets. One key idea (similar to SGC) is different parts of the circuit



Garbled Circuits with Sublinear Evaluator 49

are garbled with different seeds. This creates the problem that different circuit
wires are associated with two different GC labels. Garbling even the same circuit
starting from a different seed will result in different GC wire labels: we say
that different GCs have different vocabularies. The mux/demux gadgets handle
a problem of vocabulary translation needed to evaluate one out of many different
garbled circuits.

Finally, we combine our gadgets and the high level ideas from Sect. 4 into a
garbling scheme [BHR12]. Section 6 then proves this garbling scheme is secure.

5.1 Bucket Table Gadget

In this section, we formalize the bucket table gadget, which is the garbled gadget
that tells E the information needed to evaluate the active branch Cα. Given
a garbled encoding of the branch id α, the bucket table gives the following
information to E:

– The active bucket’s identity, β.
– The identity of the siblings of Cα in Bβ .
– m − 1 seeds corresponding to the garbling of each sibling.
– A bucket key Kβ corresponding to the active bucket. Each bucket’s garbling is

encrypted by a distinct key that ensures E can only view the active bucket’s
garbling.

To implement the bucket table using only sublinear work, we use a key
insight: we only need to sample enough randomness for one bucket as we can
reuse this sampled randomness across buckets.

In our bucket table gadget, we sample m uniform offsets δi ∈ [b]. These m
offsets comprise the choices of branches for each bucket. Specifically, we place
each branch id (δi + j) mod b at the ith index of bucket Bj . That is, we use
the same m random offsets for each bucket but apply a deterministic per-bucket
linear shift. Figure 2 depicts the assignment of branches to buckets. As the ran-
dom choices are made with replacement, a branch may appear more than once
in a bucket. This approach is similar to a technique used to achieve PIR with
sublinear online time [CK20].

Besides assigning branches to buckets, the bucket table also samples m gar-
bling seeds Si and � encryption keys Kj uniformly at random. Each seed Si will
be used to garble the ith branch in every bucket Bj . Key Kj will be used to
encrypt the stacked material corresponding to bucket Bj (see Sect. 5.3).

At runtime, the bucket table takes as argument a garbling of the active
branch id α and computes, based on the list δi, the identity of the active bucket
β and an index γ within the active bucket that holds the active instance. In
this procedure, we must ensure that E learns no information about α. Since our
bucket table will often include multiple instances corresponding to active branch
Cα, we must choose among these instances uniformly. Moreover, we must make
this choice using work sublinear in the number of branches. We define the bucket
table procedure below:
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1. Identify each instance of the active branch Cα. To perform this in sublinear
time, iterate over the list of offsets δi∈[m] and build a list instances of those
indices i for which some bucket holds a garbling of Cα at position i. The
instances list can be built by computing

γi = (α − δi) mod b, for i ∈ [m].

If γi ∈ [�], then set instances[i] = 1, indicating that there is a bucket that holds
an instance of Cα at a position corresponding to γi; else set instances[i] = 0 to
indicate that there does not exist a bucket id j such that (δi + j) mod b = α.

2. Select a single active instance by uniformly sampling among the non-zero
indices of instances. This can be achieved as follows (1) Compute the hamming
weight HW(instances), (2) Select a large uniform value r (this can be done
outside the GC by G), (3) Compute t = r mod HW(instances) which, for
r � HW(instances) is statistically indistinguishable from uniform, and (4)
Linearly scan the list δi to select the tth non-zero index of instances which is
denoted by γ. Select the value δγ via a linear scan over each δi.

3. Identify the active bucket β ← (α − δγ) mod B. The index of the active
instance within the active bucket is γ.

4. Compute each sibling yi�=γ = δi�=γ +β, each sibling seed Si�=γ , and the bucket
key Kβ : each of these values is computed by linearly scanning lists of offsets
δi∈[m], garbling seeds Si∈[m], and encryption keys Kj∈[�] respectively, with
respect to β and γ.

Let Cbt denote the circuit that computes the above procedure. To summarize,
Cbt takes as input the active branch id α and outputs the active bucket id β ∈ [�],
the index of active instance in that bucket γ ∈ [m], the siblings of the active
instance yi�=γ , the seeds Si�=γ , and the encryption key Kβ . Observe that Cbt has
size Õ(� + m) as it only consists of linear scans of lists of length � and m.

Let BT.Gb denote the procedure that takes as input lists of offsets δi∈[m],
garbling seeds Si∈[m], encryption keys Kj∈[�], the GC vocabulary for the possible
active branch labels γ̂ and constructs a garbled circuit Ĉbt for circuit Cbt. Let
BT.Ev denote the evaluation procedure that takes as input the garbled circuit
Ĉbt and an encoding of the active branch id α̂ and outputs Cbt(α).

We define an additional subprocedure ProcBkt which G uses to sample nec-
essary random values used in the bucket table. Specifically, ProcBkt samples (1)
samples the m offsets δi∈[m], (2) assigns branches to each of the buckets, (3)
samples the m garbling seeds Si∈[m], and (4) samples � encryption keys Kj∈[�].
ProcBkt is described in Fig. 1. In Lemma 1, we prove that by setting � and m
to Õ(

√
b), all branches appear with overwhelming probability. Hence, the size of

circuit Cbt is Õ(
√

b).

Lemma 1. If � = Õ(
√

b) and m = Õ(
√

b), then the bucket table (Fig. 1) places
each branch Cη (for η ∈ [b]) into a bucket with overwhelming probability.
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Fig. 1. Procedure to construct bucket table, ProcBkt.

Table 2. The Bucket Table assigns branches to buckets. Each branch id (δi +j) mod b
is placed at index i of bucket Bj .

Bucket B0 δ0 . . . δi . . . δm−1

...
Bucket Bj δ0 + j . . . δi + j . . . δm−1 + j
...
Bucket B�−1 δ0 + � − 1 . . . δi + � − 1 . . . δm−1 + � − 1

All arithmetic operations are in Zb.

Proof. Let m =
√

bκ and � =
√

b. We analyze the probability that branch η ∈ [b]
does not belong to any of the � buckets Bj∈[�]. Let γj = η − δj mod b, where
j ∈ [m]. Since each δj is uniform at random,

Pr[γj /∈ [�]] = 1 − �

b
.

Moreover, since each δj is independent:

Pr[η /∈ B1 ∧ · · · ∧ η /∈ B�] = Pr[γ1 /∈ [�] ∧ · · · ∧ γm /∈ [�]]

=
(

1 − �

b

)m

=

(

1 −
√

b

b

)√
bκ

=
1
eκ

= negl(κ).

�

5.2 Demultiplexer and Multiplexer

The bucket table allows E to unstack material for the active instance γ in the
active bucket β, but it does not suffice to route inputs to (resp. outputs from)
the active instance. E needs more information to evaluate the active branch Cα.

In general, the conditional composition of b branches can occur in the middle
of a circuit, with sequentially composed circuits occurring before and after the
conditional. To route input and output GC labels to enter and exit the condi-
tional, we design an additional demultiplexer (demux) and multiplexer (mux)
gadget.
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The demux and mux map the vocabulary of the surrounding circuit (i.e., the
circuit that holds the conditional branch) to the vocabulary of each instance.
Both the demux and mux operate at the level of a particular bucket: they trans-
late the vocabulary of the surrounding circuit to the vocabulary of one instance
in that bucket. Thus, the demux and mux are compact, since their size is pro-
portional to the number of elements in a bucket. We can reuse the same demux
and mux across all buckets, and hence our vocabulary translation for the full
conditional is compact.

The demultiplexer computes the following function for each input wire to the
conditional x and each bucket index i:

demux(x, i, γ) =

{
x if i = γ

⊥ otherwise

where ⊥ indicates that the demultiplexer makes no promise if the instance is
inactive. In other words, the demultiplexer delivers valid labels to the active
instance, but not to any inactive instance. In the GC, the demux is an encrypted
truth table that maps each input label X to a corresponding label Xi for each
ith instance. The truth table is encrypted by the GC labels that encode γ such
that E can only decrypt valid input labels for the active instance Xγ , and not
for any inactive instance.

Similarly, the multiplexer computes the following simple function that selects
outputs from the active instance

mux(y1, ..., yb, γ) = yγ

In the GC, the mux is, again, built by encrypted truth tables that map each
output label from each ith instance Yi to an output label for the surrounding
circuit Y . Again, this truth table is encrypted according to GC labels that encode
γ such that E can only translate outputs labels Yγ of the active instance, not
any inactive instance.

Both the demultiplexer and multiplexer can be built as simple garbled gad-
gets that use encrypted truth tables, like techniques used in [HK20a]. However,
one crucial observation ensures both gadgets are compact: it is sufficient to sam-
ple only m total garbling seeds Si. These same m seeds can be reused across the
� buckets. Because the buckets reuse the seeds and every circuit uses the same
universal topology, there are only m total vocabularies: each ith garbling in a
given bucket is garbled starting from the ith seed Si, so the ith circuits across
all buckets share the same vocabulary. This fact means that the demultiplexer
(resp. multiplexer) need only translate to (resp. from) m different vocabularies,
and so is compact.

Our construction uses four procedures:

– demux.Gb garbles the demux. It takes as arguments (1) the input vocabulary
for each ith instance ei and (2) the GC label vocabulary for the active instance
id γ. It outputs (1) the input vocabulary from the overall conditional e and (2)
a garbled circuit Ĉdem that encodes the demux procedure. demux.Gb samples
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the input encoding string e uniformly, with the exception that each pair of
labels for a given label have differing least significant bits.

– demux.Ev evaluates the demux. It takes as arguments (1) a GC Ĉdem, (2) GC
labels that encode the active branch id γ, and (3) surrounding circuit inputs
X. It outputs inputs for the active instance Xγ .

– mux.Gb garbles the mux. It takes as arguments (1) the output vocabulary for
each ith instance di and (2) the GC label vocabulary for the active instance
id γ. It outputs (1) the output vocabulary from the overall conditional d and
(2) a garbled circuit Ĉmux that encodes the mux procedure. mux.Gb samples
the output decoding string d uniformly, with the exception that each pair of
labels for a given label have differing least significant bits.

– mux.Ev evaluates the mux. It takes as arguments (1) a GC Ĉmux, (2) GC
labels that encode the active branch id γ, and (3) GC output labels from the
active instance Yγ . It outputs output labels for the overall conditional Y .

5.3 Our Garbling Scheme

Following our syntax from Definition 2, we construct our garbling scheme
GCWise:

Construction 1 (GCWise Garbling Scheme). Let Base be an underlying gar-
bling scheme that satisfies the GC properties of correctness, obliviousness, pri-
vacy, authenticity, and sequential composability (see Sect. 3.3). Then GCWise
is the five tuple of algorithms:

(GCWise.Gb,GCWise.En,GCWise.De,GCWise.Ev,GCWise.ev)

as defined in Fig. 2.

Construction 1 supports compact 2PC for conditional circuits. Specifically,
for a conditional with b branches each with n gates, GCWise.Gb outputs a mate-
rial of size Õ(

√
b · n) and GCWise.Ev runs in Õ(

√
b · n) time.

Construction 1 is the relatively straightforward formalization of our tech-
nique as explained in Sect. 4. The key algorithmic details arise from our garbled
gadgets, particularly the bucket table, and were formalized in Sects. 5.1 and 5.2.

We note some of the interesting details of Construction 1:

– Our garbling scheme is projective [BHR12]. As discussed in Sect. 3.3, a pro-
jective garbling scheme has a simplified input and output vocabulary, so we
can use standard algorithms to implement GCWise.En and GCWise.De. We
simply reuse the encoding and decoding algorithms of Base.

– Our algorithms GCWise.Gb and GCWise.Ev formalize the core of our approach
as explained in Sect. 4.

– Notice that we call Base.Gb with an additional seed argument. Recall from
Definition 2 that this denotes that we configure the randomness of the pro-
cedure with an explicit seed.
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– Our scheme passes the universal circuit U to both Base.Gb and Base.Ev. In
the former case we write U [Ci] to denote that Gb hardcodes the programming
string inputs based on Ci. This ensures that the garbled material Ĉi includes
the garbled programming string for the UC. In the latter case, therefore, E
can evaluate U without knowing Cα.

6 Security

In this section, we first introduce the security notions of a garbling
scheme [BHR12], then formally prove that Construction 1 satisfies these notions.

Informally, the GC security notions are as follows:

– Privacy: (Ĉ,X, d) reveals no more about x than C(x). Formally, there must
exist a simulator Simpr that takes the input (1κ, C, C(x)) and produces an
output that is indistinguishable from (Ĉ,X, d).

– Obliviousness: (Ĉ,X) reveals no information about x. Formally, there must
exist a simulator Simob that takes input (1κ, C) and produces an output that
is indistinguishable from (Ĉ,X).

– Authenticity: Given only (Ĉ,X) no adversary should be able to produce Y ′ �=
Ev(Ĉ,X) such that De(d, Y ′) �= ⊥ except with negligible probability.

The games for privacy and obliviousness are illustrated in Fig. 3.

Definition 3 (Correctness). For C ∈ {0, 1}∗, κ ∈ N, and x ∈ {0, 1}n, and
(Ĉ, e, d) ← Gb(1κ, C):

De(d,Ev(C, Ĉ,En(e, x))) = C(x).

Definition 4 (Obliviousness). A garbling scheme G is oblivious if for all λ
large enough, there exists a polynomial-time simulator Sim such that for any
PPT adversary A:

Pr[ObvSimA
G,Sim(1κ) = 1] ≤ negl(κ).

Definition 5 (Privacy). A garbling scheme G is private if for all λ large
enough, there exists a polynomial-time simulator Sim such that for any PPT
adversary A:

Pr[PrivSimA
G,Sim(1κ) = 1] ≤ negl(κ).

Definition 6 (Authenticity). A garbling scheme G is authentic if for all
sufficiently large λ and for any polynomial time adversary A:

Pr[A wins AuthGame(1λ)] ≤ negl(κ)
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Fig. 2. Our garbling scheme GCWise. Recall from Sect. 3.4 that our scheme considers
the conditional composition of b netlists. Let U be a circuit universal to C0, ..., Cb−1;
U [Ci] denotes hardcoding the programming string of U according to the circuit descrip-
tion Ci. Since GCWise is a projective garbling scheme [BHR12], procedures GCWise.En
and GCWise.De are standard constructions that implement straightforward mappings
between cleartext Boolean values and GC labels (see Sect. 3.3). The semantic function
GCWise.ev gives the straightforward semantics of a conditional and is defined as follows:
GCWise.ev(C0, ..., Cb−1, α, x) �→ Cα(x). Our construction uses our three garbled gadgets:
the bucket table BT (see Sect. 5.1) as well as the demux and mux (see Sect. 5.2). Our
scheme is parameterized over an underlying garbling scheme Base which we use to
handle the individual conditional branches.
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Fig. 3. Games for ObvSimA
G,Sim and PrivSimA

G,Sim. The steps in boxes only apply to
ObvSim, and the highlighted steps only apply to PrivSim. Unmarked text means the
steps appear in both games.

Fig. 4. Game for AuthGameAG .
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Sequential Composability. As explained in Sect. 3.4, we do not directly manage
the low level handling of individual gates. We instead adopt an approach given
by [HK20a], where we leave the handling of netlists to a parameterized under-
lying garbling scheme. Arbitrary garbling schemes are not candidates for the
underlying scheme because they do not export the format of their GC labels.
To interface with the underlying scheme, we need to build garbled gadgets such
that we can route wire labels into and out of conditional branches. Therefore, we
define a concept of sequentially composable garbling schemes, a weakening of the
strong stackability property given by [HK21]. Informally, sequential composabil-
ity requires the garbling scheme to export the format of its labels such that they
can be directly manipulated (i.e., used as PRF keys) by higher level garbling
schemes. A sequentially composable scheme is projective and has a color and
key function colorPart and keyPart. Many traditional garbling schemes, such as
the classic 4-row Yao scheme, or the more recent half-gates [ZRE15], are sequen-
tially composable or can be trivially adjusted (in a formal sense, meaning that
only syntactic changes are needed) to meet the requirements.

As with [HK20a], we use the output labels of the underlying scheme as keys in
subsequent garbled gadgets. We explain these gadgets in Sect. 5.2, but basically,
they are implemented as garbled rows. The keyPart procedure gives us a key for
each label. The colorPart procedure tells us the bits to instruct E as to which
garbled row to decrypt. We ‘split’ each output label into a key and a color.

Definition 7 (Sequential Composability). A garbling scheme is sequen-
tially composable if:

1. The scheme is projective, including with respect to decoding. I.e., the output
decoding string d is a vector of pairs of labels, and the procedure De(d, Y ) is a
simple comparison that, for each output label Yi ∈ Y , computes the following
output bit:

⎧
⎪⎨

⎪⎩

0 if Yi = d0i
1 if Yi = d1i
⊥ otherwise

2. There exists an efficient deterministic procedure colorPart that maps bitstrings
to {0, 1} such that for all projective label pairs X0,X1 ∈ d:

colorPart(X0) �= colorPart(X1)

for the projective label pairs of the garbling scheme.
3. There exists an efficient deterministic function keyPart that maps bitstrings

to {0, 1}κ. Let k be the concatenation of the result of applying keyPart to each
label in the output decoding string d. Let R ∈$ {0, 1}|k| be a uniform string:

k
c= R
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Note that the definition discusses the output decoding string d. Normally,
d is used at the final layer of the GC to reveal outputs to E. This is not our
intent here. We will not reveal the underlying scheme’s d to E. Rather, we use d
as a hook by which our garbling scheme can syntactically manipulate the labels
of the underlying scheme to glue the output of the underlying scheme with the
next layer of gates.

Free XOR [KS08a] based schemes (e.g., [ZRE15]) might appear to violate
sequential composability: in Free XOR, each pair of internal wire labels is related
by single global constant. Note, Free XOR-based schemes must not use the
global constant as an offset for the output decoding string d, since otherwise the
scheme would clearly fail to satisfy privacy (Definition 5). To resolve this issue,
Free XOR-based schemes usually apply a hash function H to break correlation
between labels inside the De function. To meet the letter of Definition 7, we
simply push these hash function calls into the Ev function. Thus, these schemes
effectively do generate output labels that are indistinguishable from uniformly
random strings (i.e., that meet requirement 3 of Definition 7). This syntactic
reinterpretation does not imply semantic change in [KS08a,ZRE15].

6.1 Proofs

In this section, we prove that GCWise satisfies the above garbled circuit security
notions. Recall that Base is the underlying garbling scheme used to handle the
content of individual branches. Our theorems have the form “If Base satisfies
property X and sequential composability (Definition 7), then GCWise satisfies
property X.” The additional assumption of sequential composability is needed
to so our garbling scheme can manipulate the GC labels of Base. Specifically,
the sequential composability property allows us to use the colorPart and keyPart
procedures to construct encrypted truth tables.

We first prove a lemma that our scheme is itself sequentially composable.
This lemma can be used to embed GCWise inside a higher level scheme such that,
for example, many conditionals can be sequentially composed (see discussion in
Sect. 3.4).

Lemma 2. GCWise is sequentially composable (Definition 7).

Proof. The sequential composability of our scheme follows trivially from the
definition of mux.Gb (Sect. 5.2). This procedure samples a uniform projective
decoding string d with the constraint that the least significant bit of each label
pair differs. Thus, we can use the least significant bit of each label as its color
and the remaining bits as the key. �

We next prove our scheme satisfies the properties of correctness, authenticity,
obliviousness, and privacy. By satisfying these properties we ensure that our
scheme can be securely plugged into GC protocols that use garbling schemes as
a black box.

Theorem 1. If the underlying garbling scheme Base is correct and sequentially
composable then GCWise is correct.
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Proof. Correctness follows from (1) the discussion in Sect. 4, (2) the correct-
ness of Base, and (3) the correctness of our garbled gadgets, as implied by the
sequential composability of Base.

Let C0, ..., Cb−1 be a vector of arbitrary circuits. Each branch Ci is garbled
using Base. By construction, the Ci is stacked in buckets, and E obtains the
material only for the active branch Cα.

Going in steps, the bucket table (Sect. 5.1) first reveals to E the information
needed to extract material for the active instance:

– The identity of the active bucket, β.
– The identity of the siblings of Cα in Bβ .
– m − 1 seeds corresponding to the garbling of each sibling.
– A bucket key Kβ corresponding to the active bucket.

E uses this information to decrypt and unstack the material Ĉα and properly
translate the encoding into the encoding for Ĉα.

The demux gadget routes GC label inputs to the active branch. The demux
is implemented as a garbled gadget that properly translates the encoding of the
input. Now, since E holds a GC for the UC U (programmed as Cα) and holds
inputs Xγ , she can evaluate. As Base is correct, this yields the appropriate output
labels Yγ . Finally, the mux properly translates the output; this translation table
can be correctly constructed thanks to the sequential composability of Base.
Therefore, GCWise is correct. �
Theorem 2. If Base is oblivious and sequentially composable then GCWise is
oblivious.

Proof. By construction of a simulator Sobv.
The goal of the simulator is to produce a tuple (C, Ĉ′,X ′) such that:

(C, Ĉ′,X ′) c= (C, Ĉ,X)

where Ĉ and X arise in the real world execution.
Our simulator uses Base’s obliviousness simulator as a black box. There is one

crucial detail in this use: we have carefully ensured that there is only one univer-
sal topology U . Hence, the call to Base.Sobv(1κ,U) indistinguishably simulates
any of the conditional branches.

Our definition of Sobv closely matches the definition of Ev (Fig. 2). Specifi-
cally, Sobv proceeds as follows:

– Simulate the input string X by drawing uniform bits. This is trivially indistin-
guishable from real, since our input encoding string e is also chosen uniformly.

– Parse X as (α̂,X ′).
– Simulate the bucket table and its garbled material Ĉbt by calling a modular

simulator Simbt(α̂) (described later). Let (β, γ, γ̂, (Bβ \ γ), Si∈[m]\γ ,Kβ) be
the simulated output.
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– Simulate each stack of material Mj �=β by a uniform string. This is indistin-
guishable from real: E obtains the decryption key Kβ , but does not obtain
any decryption key Kj �=β , so in the real world she cannot decrypt. Simulating
the active bucket is more nuanced.

– Simulate the demultiplexer and its garbled material Ĉdemux via a modular
simulator Simdemux(γ̂, X ′) (described later). Let Xγ be the simulated output.

– Proceed by garbling each of the (simulated) m−1 siblings as described in Ev.
Stack each material into Mβ .

– Simulate the material for the active instance by calling Base’s obliviousness
simulator: Ĉα ← Base.Sobv(1κ,U). Stack Ĉ into Mβ to complete the simula-
tion of Mβ . We argue indistinguishability shortly.

– Evaluate the active instance normally: Yγ ← Base.Ev(U , Ĉα,Xγ).
– Simulate the multiplexer and its garbled material Ĉmux via a modular simu-

lator Simdemux(γ̂, Yγ) (described later).
– Output all simulated GC material.

First, note that the simulated stacked material for the active bucket Mβ

is indistinguishable from real. This is because (1) the materials for the m − 1
siblings are generated by garbling, which matches the real world and hence
are clearly indistinguishable, and (2) the material for the active instance Ĉα is
generated by Base’s obliviousness simulator. By assumption, Base is oblivious,
so this additional simulated material is indistinguishable from real.

Now, the above simulation refers to three modular simulators for our GC
gadgets: Simbt, Simdemux, and Simmux. Each of these gadgets are implemented
from typical GC techniques: namely, encrypting output values by masking the
output value with a PRF applied to the correct input value. These techniques are
simple and well known, so we do not fully flesh out these component simulators.
However, there are two important points which we must address.

Simulation of information revealed by the bucket table. The bucket table
gadget reveals information in cleartext to E: E sees the active bucket ID β and
the active instance id γ. These values must be simulated.

We argue that Simbt (1) can simulate β by uniformly sampling a value from [�]
and (2) can simulate γ by uniformly sampling a value from [m]. This simulation
is valid because in the real world (1) we sample each offset value δi uniformly
at random, and (2) we uniformly choose the active instance from the set of all
candidate instances (see discussion in Sect. 5.1). This means that a given branch
ID is equally likely to reside in each bucket. Moreover, we sample among each
of these instances uniformly, so each bucket is equally likely to be the active
bucket. Hence uniformly sampling β and γ is a good simulation.

Security of using a PRF on labels from Base. Our multiplexer gadget
(Sect. 5.2) takes as input output labels from the underlying scheme Base. Our
multiplexer is a typical gadget that encrypts garbled rows using a PRF. Hence,
we must be careful: we use output labels from Base as PRF keys. To simulate,
the PRF definition requires PRF keys to be chosen uniformly. Here is where we
make use of sequential composability (Definition 7). Sequential composability
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insists that all output labels, even jointly, are uniformly random. Thus, we can
use the output labels as PRF keys without breaking the security of the PRF.

GCWise is oblivious. �
Theorem 3. If Base is oblivious and sequentially composable then GCWise is
private.

Proof. By construction of a simulator Sprv.
By Theorem 2, GCWise is oblivious, so there exists an obliviousness simulator

Sobv. Sprv first runs Sobv(1κ, C) and obtains (C, Ĉ′,X ′). From here, Sprv must
simulate an output decoding string d′ such that

(Ĉ,X, d) c= (Ĉ′,X ′, d′)

Sprv computes Y ′ ← Ev(C,M ′,X ′, t). Now, Sprv constructs d′ in a straight-
forward manner: for each wire y, Sprv fills one of the two labels in d′ with Y ′

at position y such that decoding the label results in cleartext output y. The
other label is set to be uniform with the restriction that its least significant bit
differs from Y ′. This simulation is indistinguishable from the real execution. The
simulated d′ decodes the true output y and is indistinguishable from d. �
Theorem 4. If the underlying garbling scheme Base is oblivious and sequen-
tially composable then GCWise is authentic.

Proof. Authenticity (Fig. 4) demands that an adversary A with only Ĉ and X
cannot construct a garbled output Y ′ that is different from the one allowed by
X and Ĉ, i.e., where Y ′ �= Ev(Ĉ,X) and De(d, Y ) �= ⊥, except with negligible
probability.

Our authenticity proof is like existing GC proofs, e.g., [ZRE15].
Authenticity follows from the definition of the privacy simulator Sprv, from

our choice of output decoding string d, and from De. Assume, to reach a contra-
diction, that a polytime A can indeed forge a proof. We demonstrate that such
an adversary allows a privacy distinguisher. Specifically, on input (Ĉ,X, d) the
distinguisher (1) evaluates the GC normally to obtain Y , (2) forges an output
Y ′ by invoking A, and (3) outputs 1 if and only if Y �= Y ′ and both Y and Y ′

successfully decode.
If we give to this distinguisher a circuit garbling produced by Sprv, the dis-

tinguisher will output one with negliglible probability. Indeed, A must guess
Y ′ �= Y that successfully decodes. However, for each bit in d, Sprv uniformly
samples the inactive decoding string. Thus A must simply guess such a value,
since these uniformly drawn values are independent of the adversary’s view. This
only succeeds with probability 1

2κ .
Hence, if the A can succeed on a real garbling with non-negligible probability,

then we indeed have distinguisher. But GCWise is private, so the distinguisher
should not exist, and we have a contradiction.

GCWise is authentic. �
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Abstract. Typical approaches for minimizing the round complexity of
multiparty computation (MPC) come at the cost of increased communi-
cation complexity (CC) or the reliance on setup assumptions. A notable
exception is the recent work of Ananth et al. [TCC 2019], which used
Functional Encryption (FE) combiners to obtain a round optimal (two-
round) semi-honest MPC in the plain model with a CC proportional to
the depth and input-output length of the circuit being computed—we
refer to such protocols as circuit scalable. This leaves open the question
of obtaining communication efficient protocols that are secure against
malicious adversaries in the plain model, which we present in this work.
Concretely, our two main contributions are:

1) We provide a round-preserving black-box compiler that compiles a
wide class of MPC protocols into circuit-scalable maliciously secure MPC
protocols in the plain model, assuming (succinct) FE combiners.

2) We provide a round-preserving black-box compiler that compiles
a wide class of MPC protocols into circuit-independent—i.e., with a CC
that depends only on the input-output length of the circuit—maliciously
secure MPC protocols in the plain model, assuming Multi-Key Fully-
Homomorphic Encryption (MFHE). Our constructions are based on a
new compiler that turns a wide class of MPC protocols into k-delayed-
input function MPC protocols (a notion we introduce), where the func-
tion that is being computed is specified only in the k-th round of the
protocol.

As immediate corollaries of our two compilers, we derive (1) the
first round-optimal and circuit-scalable maliciously secure MPC, and
(2) the first round-optimal and circuit-independent maliciously secure
MPC in the plain model. The latter MPC achieves the best to-date
CC for a round-optimal malicious MPC protocol. In fact, it is even
communication-optimal when the output size of the function being eval-
uated is smaller than its input size (e.g., for boolean functions). All of
our results are based on standard polynomial time assumptions.
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1 Introduction

Secure multiparty computation (MPC) [23,42] allows different parties to jointly
evaluate any circuit over private inputs in such a way that each party learns
the output of the computation and nothing else. Many improvements in this
area have led to better protocols in terms of complexity assumptions and round
complexity in the case of malicious adversaries1 [5,12,13,23,24,27–30,37,38,41].

Recently, the design of round-optimal MPC has attracted a lot of atten-
tion. Concretely, for semi-honest adversaries, two rounds are necessary for secure
MPC in the plain model (as any one-round protocol is trivially broken). A lower
bound was matched by [6,21], where the authors present a two-round MPC pro-
tocol in the semi-honest model from standard assumptions. Note that the above
lower bound holds even when a correlated-randomness setup is assumed. The
works [6,9,16,21,34] show that the same bound holds even for maliciously secure
MPC, assuming a trusted correlated-randomness setup. However, Garg et al. [18]
proved that in the plain model four rounds are necessary for maliciously secure
MPC with a black-box simulator. This four-round lower-bound was matched by
several constructions for a range of common (polynomial) complexity assump-
tions [4,11,25]. Notwithstanding, a common drawback in all the above construc-
tions is that their communication complexity is proportional to the size (of the
description) of the circuit being evaluated. For malicious adversaries, under the
assumption that parties have access to correlated randomness, Quach et al. [39]
proved that it is possible to design a two-round circuit-scalable MPC proto-
col that is secure against malicious adversaries under the learning with errors
assumption (LWE). Also in the correlated randomness model, Morgan et al. [33]
showed that it is possible to construct a two-round circuit-independent2 two-
party computation protocol in which only one party gets the output, by relying
only on LWE.3

In the case of semi-honest adversaries (without a setup) the works of Ananth
et al. [1] and Quach et al. [39] proposed a round-optimal (two-round) circuit-
scalable MPC protocol under standard assumptions. Interesting, and most
related to our results, Ananth et al. [1] obtained their result by leveraging a
connection between round-optimal semi-honest MPC and functional encryp-
tion combiners. However, their construction does not achieve security against

1 A malicious adversary attacks the protocol following an arbitrary probabilistic
polynomial-time strategy. Unless stated differently, when we talk about the secu-
rity of an MPC protocol against semi-honest or malicious adversaries we assume
that up to n − 1 parties can be corrupted, where n is the number of parties.

2 We stress that in our work the size of the circuit is always related to the security
parameter via a polynomial p. We use the term circuit-independent for MPC pro-
tocols whose communication complexity depend on the security parameter, the size
of the input and output, and does not depend on p. The same argument holds for
circuit-scalable MPC protocols.

3 In the communication model used in [33] in each round only one party can speak.
Hence they obtain the best possible security guarantees in such a communication
model.
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malicious adversaries. The mentioned results raise the following important open
question:

Is there a round-optimal maliciously MPC protocol secure against dishonest
majority4 in the plain model based on standard complexity assumptions
that achieves circuit-scalability, i.e. has a communication complexity that
depends only on the depth of the circuit being evaluated and its input and
output length?

As the first of our two main contributions, we answer the above question
in the affirmative by extending the investigation of the relation between FE
combiners and MPC to the malicious setting. This completes the landscape of
circuit-scalable and round-optimal maliciously secure MPC in the plain model.
More concretely, we provide a round-preserving black-box compiler that com-
piles a wide class of MPC protocols into circuit-scalable protocols assuming any
succinct FE combiner (see below). Such FE combiners are known to exist based
on the learning with errors assumption. We next investigate whether our result
can be strengthened to achieve circuit-independent MPC:

Is there a round-optimal and circuit-independent maliciously secure MPC
protocol in the plain model from standard (polynomial) complexity assump-
tions?

Although the connection between MPC and FE does not seem to help here,
we still answer the above question in the affirmative. Concretely, we propose a
round-preserving black-box compiler that compiles a wide class of MPC proto-
cols5 into a circuit-independent protocol assuming the existence of any compact
Multi-Key Fully-Homomorphic Encryption (MFHE) scheme that enjoys perfect
correctness. Informally, the compactness property, here, requires that the size of
the ciphertexts and the size of the description of the encryption and decryption
algorithms depend only on the input-output size of the function being computed.

For the special case of constant parties, the MFHE scheme required for
our compiler exists based on perfect correct FHE [32], which, in turn, can
be instantiated from the LWE assumption [10]. Hence our result yields the
first circuit-independent round-optimal malicious MPC in the plain model for a
constant number of parties—and therefore specifically to the first two-party-
computation protocol—based on standard polynomial-time assumptions. For
the case of arbitrary many parties, to our knowledge, compact MFHE is only
known to exist based on the Ring-LWE and the Decisional Small Polynomial
Ratio (DSPR) assumption [32]. Hence, under these assumptions, we obtain a
circuit-independent round-optimal MPC protocol for arbitrary many parties.
Deriving compact MFHE for arbitrary many parties—and hence also a circuit-
independent round-optimal MPC—from standard polynomial-time assumptions
(e.g., LWE) is an interesting open problem.
4 Unless otherwise specified, all our results are proved secure in the dishonest majority

setting.
5 We require the first 2 rounds of the MPC protocol to be independent from the inputs.
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We highlight that all our constructions require the input protocol to achieve
a special notion called k-delayed-input function, which we introduce in this work.
Informally, in a k-delayed-input function protocol each party has two inputs: 1) a
private input (known at the beginning of the protocol) and 2) the function to be
computed whose description is needed only to compute the rounds k, k+1, . . . . A
k-delayed-input function protocol guarantees that the adversary does not learn
more than what it can infer from the evaluation of the function f on the honest
parties’ input, where f can be adversarially (and adaptively) chosen.

We further show how to turn any MPC protocol that does not require the
input to compute the first k−1 rounds into a k-delayed-input function protocol.

1.1 Related Work

Functional encryption (FE) [8,35,40] is a primitive that enables fine-grained
access control over encrypted data. In more detail, a FE scheme is equipped
with a key generation algorithm that allows the owner of a master secret key to
generate a secret key skf associated with a circuit f . Using such a secret key skf

for the decryption of a ciphertext ct ← Enc(msk, x) yields only f(x). In other
terms, the security of a functional encryption scheme guarantees that no other
information except for f(x) is leaked.

A functional encryption combiner allows for the combination of many FE
candidates in such a way that the resulting FE protocol is secure as long as any
of the initial FE candidates is secure. Ananth et al. [1] show how to construct an
FE combiner, based on the learning with errors (LWE) assumption, that enjoys
the property of succinctness and decomposability (we elaborate more on the
latter property in the next section). The property of succinctness states that 1)
the length of each secret key is related to the depth and the length of the output
of the circuit being evaluated and 2) the encryption complexity is proportional
to the depth of the circuit being evaluated and to the length of the message
being encrypted.

Given such a succinct FE combiner and an �-round semi-honest MPC (not
necessarily communication efficient), Ananth et al. show how to obtain an �-
round circuit-scalable MPC protocol that is secure against semi-honest adver-
saries. Given that such a combiner —as well as a round optimal semi-honest
MPC—can be constructed from LWE, this result can be instantiated from the
LWE assumption. In [2] the authors also explore the relation between MFHE
and MPC and, among other results, the authors also show how to obtain a
circuit-independent MPC protocol that is secure against semi-malicious adver-
sary assuming Ring LWE, DSPR and 2-round OT.6 Cohen et al. [15] proposed a
round-optimal circuit-scalable MPC protocol which tolerates adaptive corruption
(i.e., the identities of the corrupted parties can be decided during the protocol
execution). The security of this protocol is proven in the correlated-randomness

6 We recall that a semi-malicious adversary behaves like a semi-honest adversary with
the exception that it decides the randomness and the input used to run the protocol.
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model under the adaptive LWE assumption and secure erasures (alternatively,
sub-exponential indistinguishability obfuscation).

We recall that it is not possible to achieve security with adaptive corrup-
tion (with black-box simulation) in the plain model with a constant number of
rounds [19]. For this reason, our work focuses on static corruption only.

1.2 Overview of Our Results

In this work we provide two main results which close the gap between
communication-efficient and round-optimal maliciously secure MPC. We present
two compilers that amplify existing protocols in terms of their communication
complexity while preserving their round complexity, which results in the first
class of maliciously secure MPC protocols that are communication-efficient and
round-optimal.

From FE Combiners to Circuit-Scalable MPC. The first is a round
optimal MPC protocol that 1) is secure against malicious adversaries, 2) tolerates
arbitrary many parties, 3) is secure under standard polynomial time assumptions
and 4) is circuit-scalable, i.e., has a communication complexity proportional to
the depth of the circuit and the length of the input and output of the circuit
being evaluated.7 In summary, we prove the following theorem.

Theorem 1 (informal). If there exists a 3-delayed-input function �-round MPC
protocol Π that is secure against malicious adversaries and a succinct FE com-
biner, then there exists an �-round MPC protocol Π ′ that is secure against mali-
cious adversaries whose communication complexity depends only on the security
parameter, the depth, the input length and the output length of the circuit being
evaluated, and that makes black-box use of Π.

We argue that the four-round protocols proposed in [4,11] can be turned into
3-delayed-input function protocols, which in turn implies that we can obtain a
circuit-scalable round optimal MPC protocol from the LWE assumption, since
the maliciously-secure four-round OT that the protocol of [11] relies on can also
be instantiated using LWE [17]. This allows us to prove the following corollary.

Corollary 1 (informal). If the LWE assumption holds, then there exists a round
optimal MPC protocol that is secure against malicious adversaries whose com-
munication complexity depends only on the security parameter, the depth, the
input length and the output length of the circuit being evaluated.

7 All our result are with respect to black-box simulation.
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From Circuit-Independent MPC. For the second contribution we show how
to combine an MPC protocol with a perfectly correct, compact MFHE scheme
to obtain a circuit-independent MPC protocol. The notion of MFHE extends
the notion of Fully-Homomorphic Encryption (FHE) to the multi-party setting
by allowing each party to generate a public-secret key pair. All the ciphertexts
generated using the public keys of the MFHE scheme can be homomorphically
combined to obtain a single ciphertext, which can be decrypted only using all the
secret keys. The output of our compiler is a circuit-independent round-optimal
MPC protocol that supports min{n0, n1} parties where n0 and n1 is the num-
ber of parties supported by the input MPC protocol and the MFHE scheme
respectively. Our second contribution can be summarized as follows.

Theorem 2 (informal). If there exists a 2-delayed-input function �-round MPC
protocol Π that is secure against malicious adversaries which supports n0 num-
ber of parties and a perfectly correct, compact MFHE scheme that supports n1

number of parties, then there exists an �-round MPC protocol Π ′ that is secure
against malicious adversaries whose communication complexity depends (poly-
nomially) only on the security parameter, the input length and the output length
of the circuit being evaluated, and that makes black-box use of Π and supports
min{n0, n1} number of parties.

Additionally, it is possible to improve the above result and to obtain a pro-
tocol whose communication complexity is only linear in the length of the inputs
(and polynomially in the length of the output and the security parameter), by
relying on pseudorandom generators (PRGs). Hence, we obtain an MPC pro-
tocol that is optimal in terms of round and communication complexity for all
the functions whose input-size is bigger than the output-size (e.g., boolean func-
tions).

Given that a MFHE scheme for a constant number of parties can be instanti-
ated from LWE and that a scheme for arbitrary many parties can be instantiated
from Ring-LWE and DSPR [32] we obtain the following additional corollary.

Corollary 2 (informal). If the LWE assumption holds (resp. Ring LWE and
DSPR hold and any of the assumptions DDH, QR, Nth Residuosity, LWE
hold, or malicious-secure OT exists), then there exists a round optimal circuit-
independent MPC protocol for a constant (resp. arbitrarily) number of parties
that is secure against malicious adversaries.

For completeness we have included a comprehensive comparison of our results
with existing round-optimal MPC protocols proven secure in the plain model,
under standard polynomial-time complexity assumptions in Table 1.

2 Technical Overview

Our treatment advances the state of the art in communication-efficient and
round-optimal MPC. Toward this goal, we combine and substantially extend
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Table 1. Communication complexity of two-round semi-honest secure and four-round
maliciously secure n-party protocols in the plain- and all-but-one corruption model,
with black-box simulation, based on polynomial-time assumptions. We denote by |f |
and d the size and depth of the circuit representing the MPC functionality f , respec-
tively. Lin and Lout denote, respectively, the input and output lengths of the circuit
and piO stands for probabilistic indistinguishability obfuscation. We recall that we can
replace 4-round maliciously secure OT with either DDH, QR, Nth Residuosity, or LWE.

Communication complexity Assumptions Adversarial model Rounds

[1,39] poly(λ, n, d, Lin, Lout) LWE Semi-honest 2

[6,21] poly(λ, n, |f |) Semi-honest OT Semi-honest 2

[16] poly(λ, n, d, Lin, Lout) piO and lossy

encryption

Semi-honest 2

[20] poly(λ, n, |f |) Bilinear Maps Semi-honest 2

[25] poly(λ, n, |f |) QR Malicious 4

[4] poly(λ, n, |f |) DDH/QR/ Nth

Residuosity

Malicious 4

[11] poly(λ, n, |f |) Malicious 4-round

OT

Malicious 4

[2] poly(λ, n, Lin, Lout) Ring LWE and

DSPR and 2-round

OT

Semi-malicious 2

This work poly(λ, n, d, Lin, Lout) LWE Malicious 4

This work� poly(λ, n, Lin, Lout) LWE Malicious 4

This work poly(λ, n, Lin, Lout) Ring LWE and

DSPR and malicious

4-round OT

Malicious 4

�Constant number of parties only.

several recent techniques in the literature of FE and MFHE as well as delayed-
input MPC. In this section, to assist the reader better navigate through the
many technical challenges and details of our result and evaluate its novelty, we
review the main technical challenges and our approach to tackling them.

From FE Combiners to Circuit-Scalable MPC. Towards our construction
of circuit-scalable MPC, we rely on the recent work of Ananth et al. [1]. In order
to build a better intuition for our final solution, we briefly recap their compiler
here.

The main building blocks of that compiler are an �-round semi-honest secure
MPC protocol and a succinct decomposable FE combiner. The property of
decomposability requires the functional key for f to be of the form (skf

1 , . . . , skf
n),

and the master secret key needs to be (msk1, . . . ,mskn), where ski and mski are
the secret key and master secret key produced by the i-th FE candidate.

Compiler of Ananth et al. [1]. The construction of Ananth et al. [1] is very
intuitive, and roughly works as follows. The MPC protocol computes the function
g which takes n inputs, one for each party Pi with i ∈ [n]. The input of each
party consists of a master secret key mski, a value xi and a randomness ri. The
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function g uses the n master secret keys to compute an encryption of x1, . . . , xn

using the randomness r1, . . . , rn.
Let xi be the input of the party Pi with i ∈ [n]. Each party Pi samples a

master secret key mski for the FE combiner, a random string ri and runs the
MPC protocol Π using (mski, xi, ri) as an input. In parallel, Pi computes the
secret key skf

i and sends it to all the parties (we recall that skf
i can be computed

by party Pi due to the decomposability property of the FE combiner). Let ct

be the output of Π received by Pi, and let (skf
1 , . . . , skf

i−1, sk
f
i+1, . . . , sk

f
n) be the

keys received from all the other parties, then Pi runs the decryption algorithm
of the FE combiner on input (skf

1 , . . . , skf
n) and ct thus obtaining f(x1, . . . , xn).

Given that the MPC protocol computes a function g whose complexity is
poly(λ, d, Lin) and the size of each one of the secret keys sent on the chan-
nel is poly(λ, d, Lout) the final protocol has a communication complexity of
poly(λ, n, d, Lin, Lout), where λ is the security parameter, d is the depth of f ,
Lin is the length of the input of f and Lout is the output length of f (we recall
that this is due to the succinctness of the FE combiner).

Achieving Malicious Security. Starting from the above approach, we now show
how to obtain a circuit-scalable MPC protocol in the case of malicious adversaries
(instead of semi-honest) in the plain model.

As a first approach one can try to simply replace the semi-honest MPC
protocol with a maliciously secure one. Unfortunately, this does not work as a
corrupted party P �

j might create an ill formed master secret key mskj (i.e., mskj

is not generated accordingly to the setup procedure of the j-th FE candidate)
and sample rj according to an arbitrary strategy. However, we note that the
second problem is straightforward to solve as we can modify the function g,
evaluated by the MPC protocol Π, in such a way that it uses the randomness
r1 ⊕ · · · ⊕ rn to compute the encryption ct (we note that in this case each party
needs to sample a longer ri compared to the semi-honest protocol described
earlier).

To solve the first problem, we follow a similar approach. Each party Pi inputs
an additional random value rSetupi to the MPC protocol and the function g is
modified such that it generates the master secret keys using the randomness R =
rSetup1 ⊕· · ·⊕rSetupn and outputs to the party Pi the ciphertext ct.8 Unfortunately,
this approach is not round preserving, as the knowledge of the master secret key
mski, which becomes available only in the end of the execution of Π, is required
to generate the secret key skf

i . Hence, if Π requires �-rounds, our final protocol
would consist of �+1 rounds as each party Pi needs to send its functional secret
key skf

i in the (� + 1)-th round.
Besides this, the described protocol is also still not secure, since a corrupted

party P �
j might generate an ill formed secret key skf

j , that could decrypt ct
incorrectly, yielding an incorrect output for the honest parties. However, we
can prove that this protocol protects the inputs of the honest parties. That

8 R is parsed as n strings and each of the strings is used to generate a different master
secret key.
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is, it achieves privacy with knowledge of outputs (PKO) [26,36]. This notion
guarantees that the input of the honest parties are protected as in the standard
definition of secure MPC, but the output of the honest parties might not be the
correct one (e.g., the adversary can force the honest party to output a string of
its choice).

Round Preserving Construction: Privacy with Knowledge of Outputs. The first
step towards our final construction is to adapt the above idea in such a way that
the round complexity of the resulting protocol is kept down to �, while achieving
a somewhat reduced security, namely privacy with knowledge of outputs [26].
Looking ahead, in the following paragraph, we discuss how to elevate this to full
security. For simplicity, we describe our protocol considering only two parties P0

and P1 and consider as a building block an MPC protocol Π which consists of
(� = 4)-rounds (which is optimal). The protocol then can be trivially extended
to the case of n-parties and an arbitrary � ≥ 4 as we show in the technical part
of the paper.

For our construction we need the first two rounds of Π to be independent of
the inputs (i.e., the input is required only to compute the last two rounds in our
simplified example). Assuming that the parties have access to a simultaneous
broadcast channel where every party can simultaneously broadcast a message to
all other parties, our compiler works, at a high level, as follows (we refer to Fig. 1
for a pictorial representation).

In the first step, the parties run two instances of Blum’s coin tossing pro-
tocol [7]. In the first instance the party P0 acts as the sender and in the other
instance the party P1 acts as the sender. In more detail, each party Pi commits
to two random strings in the first round c0i := com(r0i ; ρ0i ) and c1i := com(r1i ; ρ1i )
and sends, in the second round, ri

1−i to P1−i.9 Then Pi uses the randomness
Ri := ri

0 ⊕ ri
1 to generate a master secret key mski, and uses it to compute the

secret key skf
i which it sends in the fourth round.

In parallel, P0 and P1 execute the MPC protocol Π that evaluates
the function g′. The function g′ takes the inputs of each party, where
the input corresponding to party Pi (for each i ∈ {0, 1}) is of the form(
xi, (r0i ; ρ0i , r

1
i ; ρ1i , r

i
1−i, ri, ), (c01, c

1
1, c

0
2, c

1
2)

)
. In more detail, the input of each

party Pi corresponds to its actual input xi, all the commitments generated (by
P0 and P1) in the first round, the message ri

1−i received in the second round
from P1−i and the randomness used to generate the commitments c0i , c

1
i . The

function g′ checks that 1) the commitments (c01, c
1
1, c

0
2, c

1
2) (that are part of the

inputs of the two parties) are the same, 2) the value r1−i
i sent in the second

round by the party Pi is committed in c1−i
i for each i ∈ {0, 1} and 3) the ran-

domness used to generate the commitments is correct. If all these checks are
successful then g′ outputs a ciphertext ct = Enc((mski)i∈{0,1}, (x0, x1); r0 ⊕ r1)
for the FE combiner computed using the randomness r0 ⊕ r1. We highlight that
the check that the commitments generated outside of the MPC protocol are gen-
erated correctly is not possible in the standard security definition of MPC. To

9 Note that only the committed message is sent, not the randomness ρ1−i
i .
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perform these checks we require the underlying MPC to achieve our new notion
of k-delayed-input function, which we explain in the end of this section.

Upon receiving the output of g′ (evaluated by Π), Pi computes the output
running the decryption algorithm of the FE combiner. Using this approach we
guarantee that: 1) the ciphertext ct is honestly computed using honestly gener-
ated master secret keys and randomnesses, 2) each party can compute its own
master secret key already in the third round so that a functional key can be
generated and output in the last round and 3) the value ri

1−i that Pi receives in
the second round corresponds to the value used in the commitment ci

1−i (hence,
the master secret key that Pi obtains as part of the output of Π is consistent
with the master secret key it has created outside of Π).

Unfortunately, we can only prove that the above protocol preserves the pri-
vacy of the inputs of the honest parties, but the output computed by the honest
parties might still be incorrect. This is due to the fact that a corrupted party
can generate an ill formed secret key skf

i and send it to the honest parties. We
finally note that it might look like our approach yields to malleability attacks
(i.e., the adversary might bias its commitments using honest-parties commit-
ments). Intuitively, such attacks are prevented since we require the adversary to
provide the correct opening as part of the input to the MPC protocol. Hence,
we delegate to the MPC the prevention of any such malleability attacks.

From PKO to Full Security. The next step is to elevate PKO security to full
security. To achieve this, we utilize the PKO-secure to fully-secure compiler of
Ishai et al. [26] to turn the above described protocol into a protocol that achieves
standard security in a black-box way.

Besides achieving privacy with knowledge of outputs, our protocol also only
realizes single-output functionalities instead of multi-output functionalities. In
this case, we can also rely on existing compilers to make our protocol supporting
multi-output functionalities [3,31].

We note that we can apply those compilers only if they are 1) round-
preserving and 2) do not increase the communication complexity by more than
a factor of poly(λ). For the sake of completeness we formally argue that this is
indeed the case and refer the interested reader to the full version [14].

From to Circuit-Independent MPC. To obtain a circuit-independent MPC
protocol, we combine a multi-key fully-homomorphic encryption scheme (MFHE)
with a (non-necessarily communication-efficient) MPC protocol Π.

Let us first briefly recall MFHE: A MFHE scheme consists of four algorithms:
(1) a setup algorithm Setup that allows for the generation of public-secret key
pairs; (2) an encryption algorithm Enc that takes as input a public key and a
message and outputs a ciphertext; (3) an evaluation algorithm Eval that takes
as input a list of public keys PK, a set of ciphertexts CT (generated using the
list of public keys PK) and a function f , and outputs a ciphertexts ct that
contains the evaluation of f on input the messages encrypted in the list CT;
(4) a decryption algorithm Dec that on input all the secret keys, associated
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Fig. 1. FEi, with i ∈ {0, 1}, denotes a functional encryption candidate. The master
secret key for the combiner corresponds to the master secret keys of FE0 and FE1.
A secret key for the combiner required to evaluate the function f is generated by
combining a secret key for FE0 (skf0 ) and a secret key for FE1 (skf1 ). Dec denotes the
decryption algorithm of the combiner which takes as input a combined secret key for
the function f and a ciphertext ct generated accordingly to a combined master secret
key represented by (msk0,msk1). mpcki , with i ∈ {0, 1} and k ∈ [4], represents the k-th
message of the MPC protocol Π computed by Pi. The protocol Π evaluates a function
g′(x′

0, x
′
1) where x′

i = {xi, (r
0
i , ρ

0
i , r

1
i , ρ

1
i , r

i
1−i, ri), (c

0
0, c

1
0, c

0
1, c

1
1)} with i ∈ {0, 1}. The

function g checks if the commitments that are part of the two inputs x′
0, x

′
1 are the

same and if cbi has been computed accordingly to the message rbi and the randomness ρb
i

for each i, b ∈ {0, 1}. If the check is successful, then g computes two master secret keys
msk0 and msk1 using respectively the randomnesses r10 ⊕ r11 and r00 ⊕ r01, and computes
an encryption ct of x0||x1 for the FE combiner using those master secret keys and the
randomness r0 ⊕ r1. The output of Π for Pi consists of mpcouti = ct.

with the public keys of PK, and the ciphertext ct outputs the decryption of ct.
Additionally, we require the MFHE scheme to be compact, i.e. we require the
size of the keys, the ciphertexts and the description of the algorithms Enc and
Dec to dependent only on the input-output size of f .

Once again, to keep the description simple and to focus on the core ideas, we
stick to the two-party case and refer to Sect. 6 for the description of the protocol
that supports arbitrary many parties. We provide a pictorial description of our
protocol in Fig. 2.

At a high level, our compiler works as follows. Let xi be the secret input of
the party Pi with i ∈ {0, 1}. Each party Pi runs the setup algorithm using the
randomness ri thus obtaining a private-secret key pair (pki, ski) and encrypts
its input using Enc with some randomness r′

i, obtaining cti. Then Pi sends the
public key together with its encrypted input and the first message of the MPC
protocol Π to party P1−i. Upon receiving pk1−i and ct1−i from Pi−1, Pi runs
the evaluation algorithm on input pk0, pk1, f, ct0, ct1, obtaining ct′i. At this point
Pi keeps executing the protocol Π on input xi which consists of the randomness
used to generate the MFHE keys, the randomness used to generate cti, the list
of all the ciphertexts (received and generated) CT = (ct0, ct1) and the evaluated
ciphertext ct′i. The function g computed by the MPC protocol Π does the fol-
lowing: 1) checks that both P0 and P1 have input the same list of ciphertexts CT,
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Fig. 2. (Setup,Enc,Dec,Eval) represents a MFHE scheme. The MPC protocol checks
that the cipthertexes ct0 and ct1 are in the domain of Enc and that both parties have
input the same list of cipthertexes ct0, ct1. Then the MPC protocol decrypts ct′0 and
ct′1 and if the decrypted values corresponds to the same value y then the protocol
outputs y.

2) for each i ∈ {0, 1} it uses the randomness ri and r′
i to check that pki and cti

are in the domain of the setup and of the encryption algorithm. If these checks
are successful, then the function g decrypts ct′0 and ct′1 using the secret keys
(sk0, sk1) (which can be generated using the randomnesses r0, r1) thus obtaining
y0 and y1. If y0 = y1 then g outputs y, otherwise it outputs ⊥.

In a nutshell, we use Π to check that all ciphertexts and public keys have
been generated correctly and that all the parties have obtained an encryption
of the same value when running the MFHE evaluation algorithm. As in the
circuit-scalable compiler described before, the check that the public keys and
ciphertexts outside of the MPC protocol are generated correctly is not possible in
the standard security definition of MPC. To perform these checks we require the
underlying MPC protocol to achieve our new notion of k-delayed-input function.
The protocol that we have just described is circuit-independent since the size of
the public keys and the ciphertexts depends only on the input-output size of f
and the protocol Π evaluates a function g whose description size depends only
on the input-output size of f and the description of the circuits for Enc and Dec.

The communication complexity of this protocol is poly(λ, n, Lin, Lout), where
Lin is the input-size and Lout is the output size of the function being evaluated.

We can slightly modify the protocol above to achieve a communication com-
plexity of O(Lin) + poly(λ, n, Lout). To do that, we rely on a folklore technique
to reduce the size of the ciphertexts of the MFHE scheme using pseudoran-
dom generators (PRGs). In more detail, instead of providing an encryption of
the input xi under the MFHE scheme, each party Pi encrypts a short seed
si of a PRG PRG using the FHE scheme, i.e. Enc(pki, si; rs

i ), and sends this
encryption along with the value wi = PRG(si) ⊕ xi to the other party. The size
of the resulting message is then O(Lin) + poly(λ). The party Pi, upon receiv-
ing (Enc(pk1−i, s1−i; rs

1−i), w1−i) computes Enc(pk1−i,PRG(s1−i)), using homo-
morphic operations, Enc(pk1−i, wi−1) by encrypting w1−i using pk1−i, and then
homomorphically XORs the resulting ciphertexts to receive Enc(pk1−i, x1−i).
This ciphertext can now be used to run the evaluation algorithm and compute
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Enc(pk0, pk1, f(x0, x1)). The parties now check that the ciphertexts (w0, w1) are
well formed by running the MPC protocol, exactly as in the previous protocol.

k-Delayed-Input Function MPC. As already mentioned in the description of
the compilers, we need to rely on an MPC protocol Π that needs the input of the
parties only to compute the last two rounds (three in the case of the construction
of Fig. 2). Indeed, for the protocol of Fig. 1 for example, the input of each party
consists of its actual input, the randomness used to generate its commitments,
and all the commitments that it has seen (even those generated by the adver-
sary). We note that many existing MPC protocols (e.g., [4,6,11]) indeed do not
require the input to compute the first two rounds. However, the fact that the
input of the honest parties might be adversarially influenced (e.g., in our pro-
tocol some commitments are generated from the adversary) makes it impossible
to rely on the standard security notion achieved by such MPC protocols. This is
because the standard security notion of MPC requires the inputs of the honest
parties to be specified before the real (ideal) world experiment starts. Therefore,
the honest parties cannot choose an input that depends on (for example) the
first two messages of the protocol, and is, therefore, adversarially influenced.

However, we observe that even if Pi needs to provide all the commitments
it has received as part of its input to Π, we do not care about protecting the
privacy of this part of Pi’s input, we just want to achieve a correct evaluation of
Π. That is, these commitments could be thought of as being hardwired in the
function evaluated by the MPC protocol Π.

To capture this aspect, we consider a more general notion called k-delayed-
input function, where the input of each party consists of two parts, a private
input x and a function f . The private part x is known at the beginning of the
protocol, whereas the function f does not need to be known before the protocol
starts and it is needed only to compute the rounds k, k + 1, . . . of the protocol.
We want to guarantee that in the real-world experiment the adversary does not
learn more than what it could infer from the output of f , even in the case where
it chooses the function f . Equipped with an MPC protocol that satisfies such
a definition, we can modify our constructions by letting the parties specify the
function that needs to be computed. For example, in the case of the protocol of
Fig. 1, the function will contain, in its description, the set of commitments sent
in the first round and the messages r10, r

2
1 and uses these values to check that the

opening of the commitments are valid with respect to (r10, r
2
1) and only in this

case returns a ciphertext for the FE protocol.
To construct a k-delayed-input function protocol, we use a standard 2n-party

�-round MPC protocol Π, where the first k−1 rounds can be computed without
requiring any input, and a one-time MAC. We refer to the technical part of the
paper for more details on how this construction works.
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3 Preliminaries

We denote the security parameter with λ ∈ N. A randomized algorithm A is
running in probabilistic polynomial time (PPT) if there exists a polynomial p(·)
such that for every input x the running time of A(x) is bounded by p(|x|). We
use “=” to check equality of two different elements (i.e. a = b then...) and “:=”
as the assigning operator (e.g. to assign to a the value of b we write a := b).
A randomized assignment is denoted with a ← A, where A is a randomized
algorithm and the randomness used by A is not explicit. If the randomness is
explicit we write a := A(x; r) where x is the input and r is the randomness.
When it is clear from the context, to not overburden the notation, we do not
specify the randomness used in the algorithms unless needed for other purposes.

3.1 Functional Encryption

Definition 3.1 (Functional Encryption [8,35,40]). Let C = {Cλ}λ∈N be a
collection of circuit families (indexed by λ), where every C ∈ Cλ is a polynomial
time circuit C : Xλ → Yλ. A (secret-key) functional encryption scheme (FE) for
the circuit family Cλ is a tuple of four algorithms FE = (Setup,KeyGen,Enc,Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ
and generates a master secret key msk. It also outputs the randomness r that
has been used to generate the master secret key.

KeyGen(msk, C): Takes as input the master secret key msk and a circuit C ∈ Cλ,
and outputs a functional key skC .

Enc(msk, x): Takes as input the master secret key msk, a message x ∈ Xλ to
encrypt, and outputs a ciphertext ct.

Dec(skC , ct): Is a deterministic algorithm that takes as input a functional key
skC and a ciphertext ct and outputs a value y ∈ Yλ.

A scheme FE is (approximate) correct, if for all λ ∈ N, msk ←
Setup(1λ), C ∈ Cλ, x ∈ Xλ, when skC ← KeyGen(msk, C), we have
Pr [Dec(skC ,Enc(msk, x)) = C(x)] ≥ 1 − negl(λ).

In this work, we define the setup algorithm in such a way that it also outputs
the randomness r that has been used to generate the master secret key. This has
no effects on the security definition of the scheme since the master secret key
msk and the randomness r both remain in the control of the challenger.

Definition 3.2 (Single Key Simulation Security of FE [1]). Let FE be
a functional encryption scheme, C = {Cλ}λ∈N a collection of circuit families
indexed by λ. We define the experiments RealDFEC and IdealDFEC in Fig. 3.
A functional encryption scheme FE is single key simulation secure, if for
any polynomial-time adversary A = (A1,A2,A3), there exists a PPT simu-
lator S and a negligible function negl such that: |Pr[RealFE(1λ,A) = 1] −
Pr[IdealFE(1λ,A,S) = 1]| ≤ negl(λ).
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Fig. 3. Single Key Simulation Security of FE

The succinctness definition provided in [1] requires some restrictions on the
circuit size of the encryption algorithm, as well as on the size of the functional
key. In our work, we also require a bounded circuit size for the setup algorithm
and we refer to this notion as strong succinctness.

Definition 3.3 (Strong Succinctness). A functional encryption scheme
FE = (Setup,KeyGen,Enc,Dec) for a circuit class C containing circuits C that
take inputs of length �in bits, outputs strings of length �out bits and are of depth
at most d is succinct if the following holds:

– The size of the circuit for Setup(1λ) is upper bounded by poly(λ, d, �in) for
some polynomial poly.

– Let msk ← Setup(1λ), then the size of the circuit for Enc(msk, ·) is upper
bounded by poly(λ, d, �in, �out) for some polynomial poly.

– The functional key skC ← KeyGen(msk, C) is of the form (C, aux) where
|aux| ≤ poly(λ, d, �out, n) for some polynomial poly.

3.2 Decomposable Functional Encryption Combiner

In this section, we recap the notion of a decomposable functional encryption
combiner (DFEC) as introduced by Ananth et al. [1]. In this definition, we rely
on the definition of a functional encryption scheme, introduced before (Sect. 3.1).

Definition 3.4 (Decomposable Functional Encryption Combiner). Let
C = {Cλ}λ∈N be a collection of circuit families (indexed by λ), where every
C ∈ Cλ is a polynomial time circuit C : Xλ → Yλ and let {FEi}i∈[n] be the
description of n FE candidates. A decomposable functional encryption com-
biner (DFEC) for the circuit family Cλ is a tuple of five algorithms DFEC =
(Setup,Partition,KeyGen,Enc,Dec):

Setup(1λ, {FEi}i∈[n]): Takes as input a unary representation of the security
parameter λ and the description of n FE candidates {FEi}i∈[n] and gener-
ates a master key mski for each FE candidate mski ← FE.Setupi(1λ) and
outputs msk := {mski}i∈[n].
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Fig. 4. Single Key Simulation Security of DFEC

Partition(n,C): Takes as input the number of parties n and a circuit C and
outputs (C1, . . . , Cn), where each Ci is a circuit of depth polynomial in the
depth of C.

KeyGen(msk, {FEi}i∈[n], (C1, . . . , Cn)): Takes as input the master secret key
msk, the description of n FE candidates {FEi}i∈[n] and a partitioned cir-
cuit (C1, . . . , Cn), and generates a functional key skCi

for each FE candidate
skCi

← FE.KeyGeni(mski, Ci) and outputs skC := {skCi
}i∈[n].

Enc(msk, {FEi}i∈[n], x): Takes as input the master secret key msk, the description
of n FE candidates {FEi}i∈[n], a message x ∈ Xλ to encrypt, and outputs a
ciphertext ct.

Dec(skC , {FEi}i∈[n], ct): Is a deterministic algorithm that takes as input a func-
tional key skC , the description of n FE candidates {FEi}i∈[n] and a ciphertext
ct and outputs a value y ∈ Yλ.

A scheme DFEC is (approximate) correct, if for all λ ∈ N, msk ←
Setup(1λ, {FEi}i∈[n]), C ∈ Cλ, x ∈ Xλ, when skC ← KeyGen(msk, C), we have

Pr [Dec(skC ,Enc(msk, x)) = C(x)] ≥ 1 − negl(λ).

To ensure that all the algorithms of the functional encryption combiner are
still polynomial in the security parameter λ and the number of parties n, we
introduce the notion of polynomial slowdown.

Definition 3.5 (Polynomial Slowdown [1]). A decomposable functional
encryption combiner DFEC = (Setup,Partition,KeyGen,Enc,Dec) satisfies poly-
nomial slowdown, if the running time of all its algorithms are at most poly(λ, n),
where n is the number of FE candidates that are being combined.

The definition of single key simulation security of a functional encryption
combiner should capture the case that if at least one of the FE candidates is
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secure, then the combiner is also secure. In the case of decomposability we give
the adversary even more power by letting it choose a set I of all the corrupted
candidates, which contains all but one party.

Definition 3.6 (Single Key Simulation Security of DFEC [1]). Let DFEC
be a decomposable functional encryption combiner, C = {Cλ}λ∈N a collection of
circuit families indexed by λ and {FEi}i∈[n] n FE candidates of which at least one
is guaranteed to be secure. We define the experiments RealDFEC and IdealDFEC

in Fig. 4. A decomposable functional encryption combiner DFEC is single key
simulation secure, if for any polynomial-time adversary A = (A1,A2,A3) there
exists a PPT simulator S and a negligible function negl such that:

|Pr[Real
DFEC

(1
λ

, {FEi}i∈[n], C, A) = 1] − Pr[Ideal
DFEC

(1
λ

, {FEi}i∈[n], C, A, S) = 1]| ≤ negl(λ) .

Definition 3.7 (Strong Succinctness). A decomposable FE combiner
DFEC = (Setup,Partition,KeyGen,Enc,Dec) for a circuit class C containing cir-
cuits C that take inputs of length �in bits, outputs strings of length �out bits and
are of depth at most d is succinct if for every set of succinct FE candidates
{FEi}i∈[n], the following holds:

– For the circuit of Setup(1λ, {FEi}i∈[n]) it holds that Setup(1λ, {FEi}i∈[n]) ≤
poly(λ, n, d, �in).

– Let msk ← Setup(1λ, {FEi}i∈[n]). For the circuit of Enc(msk, {FEi}i∈[n], ·) it
holds that Enc(msk, {FEi}i∈[n], ·) ≤ poly(λ, d, �in, �out, n) for some polynomial
poly.

– The functional key skC ← KeyGen(msk, {FEi}i∈[n], (C1, . . . , Cn)), with
(C1, . . . , Cn) = Partition(n,C), is of the form (C, aux) where |aux| ≤
poly(λ, d, �out, n) for some polynomial poly.

3.3 Multi Key Fully Homomorphic Encryption

Definition 3.8 (Multi-Key Fully Homomorphic Encryption [32]). Let
C = {Cλ}λ∈N be a collection of circuit families (indexed by λ), where every C ∈ Cλ

is a polynomial time circuit C : Xλ → Yλ and n the number of participating
parties. A multi-key fully homomorphic encryption (MFHE) for the circuit family
Cλ is a tuple of four algorithms MFHE = (Setup,Enc,Eval,Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ
and generates a public key pk and a secret key sk.

Enc(pk, x): Takes as input a public key pk and a message x ∈ Xλ to encrypt,
and outputs a ciphertext ct.

Eval(C, (pki, cti)i∈[�]): Takes as input a circuit C, � different public keys pki and
ciphertexts cti and outputs a ciphertext ct.

Dec({ski}i∈[n], ct): Is a deterministic algorithm that takes as input n secret keys
{ski}i∈[n] and a ciphertext ct and outputs a value y.
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A scheme MFHE is perfectly correct, if for all λ ∈ N, i ∈ [n], � ≤ n, rSetupi ←
{0, 1}λ

, rEnci ← {0, 1}λ, (pki, ski) ← Setup(1λ; rSetupi ), C ∈ Cλ, xi ∈ Xλ, we have

Pr
[
Dec({ski}i∈[n],Eval(C, (pki,Enc(pki, xi; rEnci ))i∈[�])) = C(x1, . . . , x�)

]
= 1.

For n = 1 multi-key FHE is equivalent to FHE. In the introductory paper of
López-Alt, Tromer, and Vaikuntanathan [32], the setup algorithm also outputs
an evaluation key together with the public and secret key. In our work we assume
that the information of the evaluation key is contained in the public key.

Definition 3.9 (IND-CPA security of MFHE). A multi-key fully homo-
morphic encryption scheme MFHE = (Setup,Enc,Eval,Dec) is secure, if for any
PPT adversary A, it holds that

∣
∣
∣
∣ Pr

[
A(pk,Enc(pk, x0)) = 1

∣
∣
∣
∣
(pk, sk) ← Setup(1λ)
(x0, x1) ← A(pk)

]

− Pr
[
A(pk,Enc(pk, x1)) = 1

∣
∣
∣
∣
(pk, sk) ← Setup(1λ)
(x0, x1) ← A(pk)

] ∣
∣
∣
∣ ≤ negl(λ).

Besides the security of a multi-key FHE scheme, we also need to define what
it means for a multi-key FHE scheme to be compact.

Definition 3.10 (Compactness). A multi-key FHE scheme MFHE =
(Setup,Enc,Eval,Enc,Dec) for a circuit class C and n participating parties is
called compact, if |ct| ≤ poly(λ, n), where ct := Eval(C, (pki, cti)i∈[�]) with � ≤ n
and with the description of the circuits Setup,Enc and Dec being polynomial in
the security parameter λ.

We note that this definition implies that public- and secret-key pairs are also
independent from the size of the circuit. We assume familiarity with the notion of
negligible functions, symmetric encryption, digital signatures and commitments
and refer to the full version [14] for the formal definitions.

3.4 Secure Multiparty Computation

The security of a protocol (with respect to a functionality f) is defined by
comparing the real-world execution of the protocol with an ideal-world eval-
uation of f by a trusted party. More concretely, it is required that for every
adversary A, which attacks the real execution of the protocol, there exist
an adversary S, also referred to as a simulator, which can achieve the same
effect in the ideal-world. In this work, we denote an �-round MPC protocol as
π = (π.Next1, . . . , π.Next�, π.Out), where π.Nextj , with j ∈ [�] denotes the next-
message function that takes as input all the messages generated by π in the
rounds 1, . . . , j − 1 (that we denote with τj−1) the randomness and the input of
the party Pi and outputs the message msgj,i. Additionally, we assume that all
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the parties run the same next message function algorithms (the only difference
is the randomness and the input provided by each party). π.Out denotes the
algorithm used to compute the final output of the protocol. We assume that
readers are familiar with standard simulation-based definitions of secure multi-
party computation in the standalone setting. For self-containment we provide the
definition in the full version [14] and refer to [22] for a more detailed treatment.

In this work we also consider a relaxed notion of security known as privacy
with knowledge of outputs [26,36]. In this the input of the honest parties is
protected in the standard simulation based sense, but the output of these parties
might be incorrect. To formalize this notion we need to slightly modify the ideal
execution as follows.

1. Send inputs to the trusted party: The parties send their inputs to the
trusted party, and we let x′

i denote the value sent by Pi.
2. Ideal functionality sends output to the adversary: The ideal func-

tionality computes (y1, . . . , yn) := f(x1, . . . , xn) and sends {yi}i∈I to the
adversary A.

3. Output of the honest parties: The adversary S sends either a continue
or abort message or arbitrary values {y′

i}i∈[n]\I to the ideal functionality. In
the case of a continue message the ideal functionality sends yi to the party
Pi, in the case of an abort message every uncorrupted party receives ⊥ and
in the case that the ideal functionality receives arbitrary values {y′

i}i∈[n]\I it
forwards them to the honest parties.

4. Outputs: S outputs an arbitrary function of its view, and the honest parties
output the values obtained from the trusted party.

The interaction of S with the trusted party defines a random variable
IdealPKOf,S(z)(k,x) as above.

Having defined the real and the ideal world, we now proceed to define our
notion of security.

Definition 3.11 Let λ be the security parameter. Let f be an n-party random-
ized functionality, and π be an n-party protocol for n ∈ N.

We say that π securely realizes f with knowledge of outputs in the presence of
malicious adversaries if for every PPT adversary A there exists a PPT adver-
sary S such that for any I ⊂ [n] the following ensembles are computational
indistinguishable:

{Realπ,A(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ , {IdealPKOf,S(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ .

4 k-Delayed-Input Function MPC

In this section, we introduce the new notion of k-Delayed-Input Function. The
classical simulation-based definition of secure MPC requires that the function to
be computed is known at the beginning of the real (and ideal) world experiment,
before the protocol starts. In our construction we are not in this setting, as we
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need an MPC protocol in which the parties can influence the function to be
computed by giving an extra input mid-protocol. Concretely, in our protocols,
the function computed by the MPC protocol becomes fully defined in the third
round (i.e., for the circuit-scalable construction the function incorporates the
commitments and the random values sent in the second round).

To capture this, we devise a variant of secure MPC where each party Pi has
two inputs xi and f , where 1) the input xi is known at the beginning of the
real (ideal) world experiment (as in the standard definition of MPC) but 2) the
input f can be any function and it becomes known only in the k-th round. In
this setting we want to guarantee that if all the honest parties input the same
function f , then the adversary either learns the output of f or nothing at all.
More formally, we require the input of the honest parties to be protected in the
standard simulation based manner for the case where the ideal world evaluates
the function f .

A strawman’s approach for such a protocol would be to rely on an �-round
MPC protocol that does not require the input of the parties to compute the first
k−1 rounds with k ≤ �−1. We call such protocols delayed-input protocols. More
precisely, one could consider a delayed-input MPC protocol Π for the universal
function g where g takes a pair of inputs from each party Pi denoted with (x, f)
and returns f(x1, . . . , xn).

Unfortunately, it is not guaranteed that this approach works since the stan-
dard security definition of MPC does not capture the scenario in which an input
f for an honest party is chosen adaptively based on the first k − 1 rounds of the
protocol. Therefore, even if all the honest parties follow the naive approach we
have just described and use the function f as their input, the adversary might
be able compute the output of a function f̃ 
= f . It should be noted that the
description of the computed function can be part of the output as well, hence,
the honest parties will notice that the wrong function has been computed and
will reject the output. However, the adversary might have gained much more
information from the evaluation of f̃ than it would have gotten by evaluating f .

Syntax & Correctness. Before defining the real and ideal execution, we need to
define the syntax of an �-Round k-Delayed-Input Function MPC protocol and its
correctness. An �-Round k-Delayed-Input Function MPC protocol is defined as
Π = (Next1, . . . ,Next�,Out). The next message function Next1 takes as an input
the security parameter in unary form, the input of the party, its randomness and
a parameter m that represents the size of the function that will be computed, and
returns the first message of the protocol. The next-message function Nextj , with
j ∈ [k−1] takes as input all the messages generated by Π in the rounds 1, . . . , j−1
(that we denote with τj−1) the input and the randomness of Pi and outputs the
message msgj,i. The next message function Nextj with j ∈ {k, . . . , �} takes the
input of the party Pi, a function f (together with τk−1) and the randomness of
Pi, and returns the message msgj,i. To compute the final output, each party Pi

runs Out on input τ�, its input and randomness. We now define the correctness
and the security property that a k-delayed-input function protocol must satisfy.
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Definition 4.1 (Perfect Correctness for �-Round k-Delayed-Input
Function MPC Protocols). For any λ,m ∈ N, for any inputs (x1, . . . , xn) ∈
({0, 1}λ)n and for any set of functions {fγ}γ∈[n] with |fγ | = m for all γ ∈ [n],
it must hold for all i ∈ [n] that

– if f1 = · · · = fn then Pr [(Out(τ�, xi, ri) 
= f(x1, . . . , xn)] = 0,
– if there exists α, β ∈ [n] s.t. fα 
= fβ then Pr [(Out(τ�, xi, ri) 
= ⊥] = 0,

where msg1,i ← Next1(1λ, xi,m; ri), msgc,i ← Nextc(τc−1, xi; ri) and msgj,i ←
Nextj(τj−1, xi, fi; ri) where ri ← {0, 1}λ, c ∈ {1, . . . , k − 1} and j ∈ [k, . . . , �].

We now proceed to defining the security of k-delayed-input function proto-
cols, by describing how the real and the ideal world look like.

The Real Execution. Let us denote x = (x1, . . . , xn) where xi denotes the input
of the party Pi. In the real execution the n-party protocol Π is executed in the
presence of an adversary A. The honest parties follow the instructions of Π. The
adversary A takes as input the security parameter λ, the size of the function m,
the set I ⊂ [n] of corrupted parties, the inputs of the corrupted parties, and
an auxiliary input z. A sends all messages in place of corrupted parties and
may follow an arbitrary polynomial-time strategy. At round k − 1, A picks a
function f and sends it to the honest parties. Then each honest party Pi uses f to
compute the rounds k, k+1, . . . , � of Π. The adversary A continues its interaction
with the honest parties following an arbitrary polynomial-time strategy. The
interaction of A with a protocol Π defines a random variable RealDIF-MPC

Π,A(z),I(k,x)
whose value is determined by the coin tosses of the adversary and the honest
players. This random variable contains the output of the adversary (which may
be an arbitrary function of its view), the outputs of the uncorrupted parties as
well as the function f chosen by the adversary. We let RealDIF-MPC

Π,A(z),I denote the
distribution ensemble {RealDIF-MPC

Π,A(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ .

The Ideal Execution

– Send inputs to the trusted party: Each honest party Pi sends xi to the
ideal functionality. The simulator sends {xj}j∈I and f to the ideal function-
ality.

– Ideal functionality sends output to the adversary: The ideal func-
tionality computes (y1, . . . , yn) := f(x1, . . . , xn) and sends {yi}i∈I to the
simulator S and f to Pi for each i ∈ [n] \ I.

– Output of the honest parties: The simulator S sends either a continue or
abort message to the ideal functionality. In the case of a continue message the
ideal functionality sends yi to the party Pi, in the case of an abort message
every uncorrupted party receives ⊥.

– Outputs: S outputs an arbitrary function of its view, and the honest parties
output the values obtained from the trusted party.
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The interaction of S with the trusted party defines a random variable
IdealDIF-MPC

S(z),I (k,x) as above. Having defined the real and the ideal world, we
now proceed to define our notion of security.

Definition 4.2 (k-Delayed-Input Function MPC). Let λ be the secu-
rity parameter. We say that a protocol Π satisfying Definition 4.1 is k-
delayed-input function in the presence of malicious adversaries if for every PPT
adversary A attacking in the real world (as defined above) there exists an expected
PPT ideal-world adversary S restricted to query the ideal functionality with the
same function f that will appear in the real world experiment output such that
for any I ⊂ [n] the following ensembles are computational indistinguishable

{RealDIF-MPC
Π,A(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ , {IdealDIF-MPC

S(z),I (k,x)}k∈N,〈x,z〉∈{0,1}∗ .

Remark 4.3. We note that Definition 4.2 is very similar to the standard notion
of MPC. Indeed, our ideal world can be thought of as the ideal world of the
standard definition of MPC for the case where the parties want to evaluate the
universal function. We also note that in the ideal world there is no notion of
rounds, hence it is not immediately clear how to translate what happens in the
real world (where the function f is adaptively chosen in the k-th round by the
adversary) into the ideal world (where the ideal world adversary has all the
information it needs from the beginning of the experiment). The way we break
this asymmetry between the ideal and the real world is exactly by restricting the
power of the simulator (i.e., the power of the ideal-world adversary) depending
on an event that happens in the real world. In our specific case, we require
the admissible simulators (i.e., the admissible ideal world adversaries) to be
those that query the ideal world functionality using the same function that will
appear in the output of the real world experiment. We note that without this
requirement this definition becomes useless since the simulator might query the
ideal functionality using a function f̃ that is different from the function f used in
the real world, which would allow the simulator to learn more about the honest
parties’ inputs then it would have by querying the ideal functionality with the
function f .

Fig. 5. Description of the function g.

From MPC Protocols to k-Delayed-Input Function MPC Protocols.
To construct an n party �-round k-Delayed-Input Function MPC protocol
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ΠDIF, we rely on a 2n party �-round MPC protocol Π that does not require
the input to compute the first k − 1 rounds and a one-time MAC scheme
MAC = (Setup,Auth,Verify). In our protocol ΠDIF, each party Pi controls two
parties of Π. One party uses the private input and a MAC key (which is known
from the beginning) as its input and the other party uses the function f (received
at the end of round k − 1) authenticated with the MAC key as its input. The
MPC protocol Π then checks that the functions are authenticated accordingly
to the MAC key and that they are all equal. If this check is successful, Π evalu-
ates the function f over the secret inputs of the parties. Finally, the individual
outputs of the function evaluation are returned to one of the two parties of Π
controlled by the party Pi. To show that the described protocol ΠDIF is indeed
k-delayed-input function, we rely on the security of the MPC protocol Π and
the unforgeability of the MAC. The security of the MPC protocol Π ensures
that the private inputs of the parties are protected and the unforgeability of the
MAC is used to enforce that the correct function is used in the protocol exe-
cution. Intuitively, if, by contradiction, there exists an adversary that manages
to evaluate the function f̃ instead of f then we would be able to construct a
reduction to the security of the MAC since the only condition in which Π does
not output ⊥ is the one in which all the parties input the same authenticated
function f . If there exists an adversarial strategy that makes Π parse f as f̃ ,
then it must be that f̃ has been authenticated using the MAC key of an honest
party. We can extract such a forgery using the simulator of Π (that extracts the
input from the parties declared as corrupted).

Now, we describe the construction more formally. Let Π be a 2n-party
MPC protocol that realizes the 2n-input function g described in Fig. 5 with
the property that it needs the input of the parties only to compute the rounds
k, k+1, . . . , � with 0 ≤ k ≤ �−1 where � ∈ N represents the round complexity of
Π. In our k-Delayed-Input Function MPC protocol ΠDIF, each party Pi emulates
two parties P 0

i and P 1
i of Π. Let xi be the private input of Pi, then Pi performs

the following steps.

1. Run Setup to sample a MAC key ki.
2. Run the party P 0

i using the input (xi, ki) and P 1
i until the round k − 1.10

3. Upon receiving the function fi compute τi ← Auth(ki, fi) and run P 1
i using

the input (fi, τi).
4. When the protocol Π is finished, Pi outputs the output obtained by P 0

i .

Theorem 4.4. Let Π be a 2n-party �-round MPC protocol that securely realizes
the function f of Fig. 5 and that requires the input only to compute the rounds
k, k + 1, . . . , � with 0 ≤ k ≤ � − 1 and let MAC = (Setup,Auth,Verify) be a one-
time secure MAC scheme, then the protocol ΠDIF described above is an n-party
�-round k-Delayed-Input Function MPC protocol.

The proof for this theorem can be found in the full version [14].
10 We recall that P i

0 and P i
1 do not need to use the input to compute the first k − 1

rounds, nonetheless we can specify the input of P 1
i at the very beginning of the

protocol.
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5 Our Compiler: Circuit-Scalable MPC

In this section we prove our main theorems on how to construct a circuit-scalable
MPC protocol that realizes any functionality f with privacy with knowledge of
outputs. We refer to Sect. 2 for a simplified description of the protocol for the
two-party case and to Fig. 6 for the formal description of our compiler. Our
construction makes use of the following cryptographic tools:

– An �-round k-delayed-input function MPC protocol ΠM = (ΠM.Next1, . . . ,
ΠM.Next�,Π

M.Out) (not necessarily communication efficient) with k ≥ 3. In
the description of our compiler we assume, without loss of generality, that
ΠM is 3-delayed-input function.11

– A strong succinct single-key simulation secure decomposable FE combiner
DFEC = (DFEC.Setup,DFEC.Enc,DFEC.KeyGen,DFEC.Dec,DFEC.Partition)
for n FE candidates.

– A non-interactive computationally hiding commitment scheme Com.

Theorem 5.1. Let DFEC be a single-key simulation secure decomposable FE
combiner with circuit size csSetup for the setup algorithm DFEC.Setup, circuit
size csct for the encryption algorithm DFEC.Enc and functional key size ssk,
let Com be a commitment scheme and let ΠM be the �-round MPC protocol
k-delayed-input function protocol described in Sect. 4 that realizes Cct

,Setup,i,Ri
Setup

(Fig. 7), then ΠFE is an �-round MPC protocol that realizes the single-output
functionality C with knowledge of outputs which has communication complexity
poly(λ, n, csSetup, csEnc, ssk).

We refer to the full version [14] for the formal proof of the theorem.
The following theorem follows immediately from Theorem 5.1 and the defi-

nition of strong succinct FE combiners.

Theorem 5.2. Let DFEC be a succinct single-key simulation secure decompos-
able FE combiner, then ΠFE is a circuit-scalable secure MPC protocol that real-
izes any single-output functionality with knowledge of outputs.

In the full version [14], we give more details on how our compiler can be
instantiated, which leads to the following theorem.

Theorem 5.3. If the LWE assumption holds, then there exists a round optimal
(4-round) circuit-scalable MPC protocol that realizes any single-output function-
ality with knowledge of outputs.

By relying on the compilers proposed in [3,26,31] we can turn our proto-
col into one that computes any function under the standard simulation based
definition of MPC.
11 Any k′-delayed-input function MPC with k′ > 3 can be turned into a 3-delayed-

input function MPC protocol since the function received in round 2 can be ignored
up to round k′ − 1.
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Fig. 6. Description of the protocol ΠFE that securely realizes any functionality with
knowledge of outputs.

6 Our Compiler: Circuit-Independent MPC

We now show how to construct a communication efficient MPC protocol that
realizes any single-output functionality f . We refer to Sect. 2 for a simplified
description of the protocol for the two-party case and to Fig. 8 for the formal
description of our compiler We make use of the following tools:
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Fig. 7. Circuit Cct
comSetup,i,R

i
Setup

.

– An �-round k-delayed-input function MPC protocol ΠM = (ΠM.Next1, . . . ,
ΠM.Next�,Π

M.Out) (not necessarily communication efficient) with k ≥ 2.
– A multi-key fully homomorphic encryption scheme MFHE = (Setup,
Enc,Eval,Dec) for n keys.

Theorem 6.1. Let MFHE be a multi-key fully homomorphic encryption scheme
with circuit size csSetup for the setup algorithm MFHE.Setup, circuit size csEnc for
the encryption algorithm MFHE.Enc, circuit size csDec for the decryption algo-
rithm MFHE.Dec and ciphertext size sct, let ΠM be the �-round MPC protocol
k-delayed-input function protocol that realizes the circuit CDec

cti,Ki (Fig. 9), then
ΠFHE is an �-round MPC protocol that securely realizes the single-output func-
tionality C with communication complexity poly(λ, n, csSetup, csEnc, csDec, sct).

We refer to the full version [14] for the formal proof.
Due to Theorem 6.1 and the definition of a compact multi-key FHE scheme

we have the following.

Theorem 6.2. Let MFHE be a compact multi-key FHE scheme, then ΠFHE is
a circuit-independent secure MPC protocol that realizes any single-output func-
tionality.

We can easily modify ΠFHE to obtain a protocol ΠFHE′
which has a com-

munication complexity of O(Lin) + poly(λ, n, Lout). The protocol ΠFHE′
works

exactly as ΠFHE with the following differences. Every party Pi encrypts a short
seed si of a PRG PRG using the FHE scheme, i.e. Enc(pki, si; rs

i ), and sends
it together with the value wi = PRG(si) ⊕ xi to all the other parties Pj with
j ∈ [n]\{i}. The party Pi, upon receiving (Enc(pkj , s; rs

j ), wj) from all the other
parties Pj with j ∈ [n] \ {i}, computes Enc(pkj ,PRG(sj)), using homomorphic
operations, Enc(pkj , wj) by encrypting wj using pkj , and then homomorphically
XORs the resulting ciphertexts to receive Enc(pkj , xj). This ciphertext can now
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Fig. 8. The protocol ΠFHE that securely realizes f .

Fig. 9. Circuit CDec
cti,Ki

be used to run the evaluation algorithm and compute Enc({pkj}, f(x1, . . . , xn)).
The parties now check that the ciphertexts {wj}j∈[n] are well formed by running
the MPC protocol as described in Fig. 9.

Theorem 6.3. Let MFHE be a compact multi-key FHE scheme, then ΠFHE′
is

a secure MPC protocol with communication complexity O(Lin) + poly(λ, n, Lout)
that realizes any single-output functionality.

Due to [3,31,32] we can claim the following.

Corollary 6.4. If the LWE and DSPR assumptions hold and any of the DDH,
QR, Nth Residuosity or LWE assumption hold, or there exists a malicious-secure
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OT, then there exists a round optimal (4-round) circuit-independent MPC pro-
tocol that realizes any functionality.
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Abstract. Byzantine agreement is a fundamental primitive in cryptog-
raphy and distributed computing, and minimizing its round complexity is
of paramount importance. It is long known that any randomized r-round
protocol must fail with probability at least (c · r)−r, for some constant
c, when the number of corruptions is linear in the number of parties,
t = θ(n). On the other hand, current protocols fail with probability at
least 2−r. Whether we can match the lower bound agreement probability
remains unknown.

In this work, we resolve this long-standing open question. We present
a protocol that matches the lower bound up to constant factors. Our
results hold under a (strongly rushing) adaptive adversary that can cor-
rupt up to t = (1 − ε)n/2 parties, and our protocols use a public-key
infrastructure and a trusted setup for unique threshold signatures. This
is the first protocol that decreases the failure probability (overall) by a
super-constant factor per round.

1 Introduction

Byzantine agreement (BA) is an essential building block and an extensively
studied problem in distributed protocols: it allows a set of n parties to achieve
agreement on a common value even when up to t of the parties may arbitrarily
deviate from the protocol. BA was first formalized in the seminal work of Lam-
port et al. [LSP82], and since then, it has been the subject of a huge line of work
(e.g. [DS83,PW96,FM97,CL99,KK06]).

A crucial efficiency metric for distributed protocols is their round complex-
ity. That is, the number of synchronous communication rounds that are needed
for a protocol to terminate. As shown by Dolev and Strong [DS83], any deter-
ministic protocol for BA requires at least t + 1 rounds. Fortunately, the seminal
results of Ben-Or [Ben83] and Rabin [Rab83] show that such limitation can be
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circumvented by the use of randomization. In this regime, there are protocols
that achieve expected constant number of rounds [FM97,KK06].

It is also known that any r-round randomized protocol must fail with prob-
ability at least (c · r)−r, for some constant c, when the number of corruptions,
t = θ(n), is linear in the number of parties [KY84,CMS89,CPS19].

The seminal work of Feldman and Micali (FM) [FM97] introduced an uncon-
ditional protocol, secure up to t < n/3 corruptions, that achieves agreement
in O(r) rounds except with probability 2−r. Assuming an initial trusted setup
and for the case of binary input domain, the protocol requires 2r rounds to
achieve the same agreement probability. Despite the extensive line of works
[FG03,KK06,CM19,MV17,ADD+19] improving different parameters of the
original FM protocol, the agreement probability was not improved until the very
recent work of Fitzi, Liu-Zhang and Loss [FLL21], which showed a binary BA
protocol that uses a trusted setup and requires r+1 rounds to achieve agreement
except with probability 2−r.

To the best of our knowledge, up to date, there is no r-round protocol that
fails with probability less than 2−r after r rounds.

It is therefore natural to ask whether one can achieve a protocol that increases
the agreement probability by more than a constant per round, hopefully match-
ing the known lower bounds. Concretely, we ask whether one can achieve a
round-optimal Byzantine agreement given a target probability of error; alterna-
tively achieving the optimal probability within a fixed number of rounds r:

Is there an r-round BA protocol that achieves agreement except with proba-
bility (c · r)−r, for some constant c, and secure up to some t = θ(n) corruptions?

We answer this question in the affirmative. We show an optimal protocol up to
constants. Concretely, our protocol achieves the optimal agreement probability
and simultaneous termination1 within 3r + 1 rounds and is secure against a
strongly rushing adaptive adversary that can corrupt any t = (1− ε)n/2 parties,
for any constant ε > 0, assuming a public-key infrastructure (PKI) setup and a
trusted setup for unique threshold signatures.

Note that, to the best of our knowledge, this is the first protocol that
decreases the failure probability (overall) by a super-constant factor per round.
No previous r-round protocol achieved less than 2−r failure probability, even for
any setup assumptions, and even against a static adversary corrupting up to any
fraction t = θ(n) of parties.

1.1 Technical Overview

We give an overview of the main techniques used in our protocol.

Expand-and-Extract. Our starting point is the recent work by Fitzi, Liu-
Zhang and Loss [FLL21], where the authors provide a new elegant way to design
round-efficient BA protocols, called Expand-and-Extract.
1 All parties simultaneously terminate in the same round.
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The Expand-and-Extract iteration paradigm consists of three steps. The first
step is an expansion step, where an input bit is expanded into a value with range
�, via a so-called Proxcensus protocol. This protocol guarantees that the outputs
of honest parties lie within two consecutive values (see Definition 2).

The second step is a multi-valued coin-flip, and the last step is an extraction
technique, where the output bit is computed from the coin and the output of
Proxcensus. The steps are designed such that parties are guaranteed to reach
agreement except with probability 1/�, assuming that the coin returns a com-
mon uniform �-range value. See Sect. 3 for a recap.

Our main technical contribution is a new Proxcensus protocol that expands the
input bit into � = (c · r)r values in 3r rounds, for any t = (1− ε)n/2 corruptions,
for some constant c that depends on ε. Combining this with a 1-round coin-flip
protocol [CKS05,LJY14], which can be instantiated using a trusted setup for
unique threshold signatures, the desired result follows.

Round-Optimal Proxcensus. The protocol starts by positioning the honest
parties into one of the extremes of a large interval [0,M ] of natural values (for
some large value M specified below). If the input of party Pi is xi = 0, then Pi

positions himself in value 0, and if the input is xi = 1, then Pi positions himself
in the value v = M .

The protocol then proceeds in iterations of 3 rounds each. At each iteration,
each party Pi distributes its current value within the interval, and updates its
value according to some deterministic function f . Importantly, each iteration
guarantees that the values between any two honest parties get closer (overall)
by a super-constant factor. Concretely, we achieve a protocol in which, after any
sufficiently large number L of iterations, the distance between any two honest
values is roughly at most L. By setting the initial range to M ≈ LL+1 values, we
can group every L consecutive values into batches, to obtain a total of roughly
LL batches, which will constitute the output values for the Proxcensus protocol.

To handle this high number of values, we will need to devise two ingredients:
a mechanism that limits the adversary’s cheating capabilities, and a function f
that allows the iteration-outputs of the honest parties to get closer, even when
the function is evaluated on sets of values that are different (in a limited way).

Cheating-Limitation Mechanism. We specify a mechanism that, for each party ˜P ,
allows honest parties to decide at a specific iteration whether to take into account
the value received from ˜P or not. This mechanism provides two guarantees. First,
if there is an honest party Pi that takes into account the value received from
˜P , and another honest party Pj that does not, then ˜P is necessarily corrupted
and all honest parties will ignore ˜P ’s values in all future iterations. Second, if
all honest parties consider the value received by ˜P , then ˜P actually distributed
the same consistent value to all honest parties.

These two guarantees have the effect that any corrupted party can cause
differences between the values taken into consideration by honest parties at
most once. That is, the amount of discrepancy between any two honest parties
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depends on the actual number of corrupted parties that actively cheated in that
iteration.

In order to implement such a mechanism, we introduce a modification of
the well-known graded broadcast [FM97] primitive, which we denote conditional
graded broadcast. In this primitive, the sender has an input to be distributed,
and every recipient holds an input bit bi. The primitive then achieves the same
properties as graded broadcast, but with a few differences. When all honest
parties have as input bi = 0, then the output of all honest parties has grade 0
(we call this property “no honest participation”). Moreover, even when a subset
of honest parties have bi = 0, graded consistency is achieved. See Definition 3
for more details and Sect. 4 for a construction.

The mechanism can then be implemented as follows. Each party Pi keeps
track of a set of corrupted parties C that it identified as corrupted. At each
iteration, Pi distributes its current value xi via a conditional graded broadcast;
Pi only considers those values that have grade 1 or 2 to update its value via the
function f , and ignores the values with grade 0. On top of that, Pi updates its
local set C with those parties that sent grade 0 or 1 (these parties are guaranteed
to be corrupted by the graded broadcast primitive). Moreover, Pi sets bi = 0 in
any future conditional graded broadcast from any sender in C.

Observe that if a dishonest sender ˜P distributes values such that an honest
party Pi takes into account the value from ˜P (Pi receives grade at least 1), and
another honest party Pj does not consider ˜P ’s value (Pj gets grade 0), then nec-
essarily ˜P is corrupted, and all honest parties add ˜P to their corrupted sets (this
is because Pj got grade 0, so graded broadcast guarantees that no honest party
gets grade 2). It follows by “no honest participation” that all values from ˜P will
be ignored in future iterations. Moreover, if all honest parties take into account
the value from ˜P , it means no honest party received grade 0, and therefore all
parties obtain the same value (with grade 1 or 2). Note that in this case, ˜P can
still distribute values that are considered in further iterations; however it did
not cause discrepancies in the current iteration.

Deterministic Function f . With the above mechanism, we reach a situation
where at each iteration it, the set of values considered by different honest parties
Pi and Pj differ in at most lit values, where lit is the number of corrupted parties
that distributed grade 1 to a party and grade 0 to the other party.

In order to compute the updated value, Pi discards the lowest and the highest
t−c values from the set of considered values (those with grade at least 1), where
c represents the number of values received with grade 0. Then, the new value is
computed as the average of the remaining values.

Observe that because those c parties (that sent grade 0) are corrupted, then
among the n−c parties at most t−c are corrupted. This implies that the updated
value is always within the range of values from honest parties. Moreover, if the
adversary doesn’t distribute different values at an iteration, the honest parties’
updated values will be the same, and will never diverge again.



100 D. Ghinea et al.

With technical combinatorial lemmas (see Lemmas 6 and 7), we will show
that with this deterministic update function, the distance between any two hon-
est parties’ updated values decreases by a factor proportional to the number of
corrupted parties lit. After L iterations, and bounding the sum of lit terms by
the corruption threshold t, we will show that the distance between honest values
is bounded by M · (n−2t

t · L)−L + L. Hence, by grouping every 2L consecutive
values, we will be able to handle approximately (n−2t

t · L)L = ( 2ε
1−ε · L)L values

in Proxcensus within 3L rounds when t = (1−ε)n/2. See more details in Sect. 5.

1.2 Related Work

The literature on round complexity of Byzantine agreement is huge, and differ-
ent protocols achieve different levels of efficiency depending on many aspects,
including the setup assumptions, the corruption threshold, input domain, etc.

In the following, we focus on the round-complexity of binary BA protocols,
noting that these can be extended to multivalued BA using standard techniques
[TC84], at the cost of an additional 2 rounds in the t < n/3 case, and 3 rounds
in the t < n/2 case. Some of the constructions also use an ideal 1-round coin-flip
protocol with no error nor bias, which can be instantiated using a trusted setup
for unique threshold signatures [CKS05,LJY14].

Feldman and Micali [FM97] gave an unconditional protocol for t < n/3 with
expected constant number of rounds. This protocol achieves agreement in O(r)
rounds except with probability 2−r. Assuming an ideal coin, the protocol achieves
the same agreement probability within (the smaller number of) 2r rounds for
binary inputs.

Fitzi and Garay [FG03] gave the first expected constant-round protocol for
t < n/2 assuming a PKI, under specific number-theoretic assumptions. This
result was later improved by Katz and Koo [KK06], where they gave a pro-
tocol relying solely on a PKI. Assuming threshold signatures, Abraham et al.
[ADD+19] extended the above results to achieve the first expected constant-
round BA with expected O(n2) communication complexity, improving the com-
munication complexity by a linear factor. These protocols can be adapted to
achieve in O(r) rounds agreement except with probability 2−r. The concrete effi-
ciency was improved by Micali and Vaikuntanathan [MV17], where the authors
achieve agreement in 2r rounds except with probability 2−r, assuming an ideal
coin for binary inputs.

Recently, Fitzi, Liu-Zhang and Loss [FLL21] generalized the Feldman and
Micali iteration paradigm, and gave improvements in the concrete efficiency of
fixed-round protocols, assuming an ideal coin. For binary inputs, the protocols
incur a total of r+1 rounds for t < n/3, and 3

2r for t < n/2, to achieve agreement
except with probability 2−r.

A line of work focused on achieving round-efficient solutions for broadcast,
the single-sender version of BA, in the dishonest majority setting [GKKO07,
FN09,CPS20,WXSD20,WXDS20].

Karlin and Yao [KY84], and also Chor, Merritt and Shmoys [CMS89] showed
that any r-round randomized protocol must fail with probability at least (c·r)−r,
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for some constant c, when the number of corruptions, t = θ(n), is linear in the
number of parties. This bound was extended to the asynchronous model by
Attiya and Censor-Hillel [AC10].

Protocols with expected constant round complexity have probabilistic termi-
nation, where parties (possibly) terminate at different rounds. It is known that
composing such protocols in a round-preserving fashion is non-trivial. Several
works analyzed protocols with respect to parallel composition [Ben83,FG03],
sequential composition [LLR06], and universal composition [CCGZ16,CCGZ17].

Cohen et al. [CHM+19] showed lower bounds for Byzantine agreement with
probabilistic termination. The authors give bounds on the probability to termi-
nate after one and two rounds. In particular, for a large class of protocols and a
combinatorial conjecture, the halting probability after the second round is o(1)
(resp. 1/2 + o(1)) for the case where there are up to t < n/3 (resp. t < n/4)
corruptions.

2 Model and Definitions

We consider a setting with n parties P = {P1, P2, . . . , Pn}.

2.1 Communication and Adversary Model

Parties have access to a complete network of point-to-point authenticated chan-
nels. The network is synchronous, meaning that any message sent by an honest
party is delivered within a known amount of time. In this setting, protocols are
typically described in rounds.

We consider an adaptive adversary that can corrupt up to t parties at any
point in the protocol’s execution, causing them to deviate arbitrarily from the
protocol. Moreover, the adversary is strongly rushing: it can observe the messages
sent by honest parties in a round before choosing its own messages for that
round, and, when an honest party sends a message during some round, it can
immediately corrupt that party and replace the message with another of its
choice.

2.2 Cryptographic Primitives

Public-Key Infrastructure. We assume that all the parties have access to a
public key infrastructure (PKI). That is, parties hold the same vector of pub-
lic keys (pk1, pk2, . . . , pkn), and each honest party Pi holds the secret key ski

associated with pki.2

A signature on a value v using secret key sk is computed as σ ← Signsk(v); a
signature is verified relative to public key pk by calling Verpk(v, σ). For simplicity,
we assume in our proofs that the signatures are perfectly unforgeable. When

2 This is a bulletin-board PKI, where the keys from corrupted parties can be chosen
adversarially. See [BCG21] for a nice discussion.
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replacing the signatures with real-world instantiations, the results hold except
with a negligible failure probability.

Coin-Flip. Parties have access to an ideal coin-flip protocol CoinFlip that gives
the parties a common uniform random value (in some range depending on the
protocol of choice). This value remains uniform from the adversary’s view until
the first honest party has queried CoinFlip. Such a primitive can be achieved
from a trusted setup of unique threshold signatures [CKS05,LJY14].

2.3 Agreement Primitives

Byzantine Agreement. We first recall the definition of Byzantine agreement.

Definition 1 (Byzantine Agreement). A protocol Π where initially each
party Pi holds an input value xi ∈ {0, 1} and terminates upon generating an
output yi is a Byzantine agreement protocol, resilient against t corruptions, if
the following properties are satisfied whenever up to t parties are corrupted:

– Validity: If all honest parties have as input x, then every honest party out-
puts yi = x.

– Consistency: Any two honest parties Pi and Pj output the same value yi = yj.

Proxcensus. Relaxations of Byzantine agreement have been proposed in the
past, where the output value is typically augmented with a grade, indicating
the level of agreement achieved in the protocol (see e.g. [FM97]). Proxcensus
[CFF+05,FLL21] can be seen as a generalization of these primitives, where the
grade is an arbitrary but finite domain. We consider a simplified version of the
definition of Proxcensus [FLL21], to the case where the input is binary.

Definition 2 (Binary Proxcensus). Let � ≥ 2 be a natural number. A proto-
col Π where initially each party Pi holds an input bit xi ∈ {0, 1} and terminates
upon generating an output yi ∈ {0, 1, . . . , � − 1} is a binary Proxcensus proto-
col with � slots, resilient against t corruptions, if the following properties are
satisfied whenever up to t parties are corrupted:

– Validity: If all honest parties input xi = 0 (resp. xi = 1), then every honest
party outputs yi = 0 (resp. yi = � − 1).

– Consistency: The outputs of any two honest parties Pi and Pj lie within two
consecutive slots. That is, there exists a value v ∈ {0, 1, . . . , � − 2} such that
each honest party Pi outputs yi ∈ {v, v + 1}.

Conditional Graded Broadcast. Graded broadcast [FM97,KK06,Fit03] is a
relaxed version of broadcast. The primitive allows a sender to distribute a value
to n recipients, each with a grade of confidence.

In our protocols, it will be convenient to have a slightly modified version of
graded broadcast, where each party Pi has an additional bit bi, which intuitively
indicates whether Pi will send any message during the protocol. There are two
main differences with respect to the usual graded broadcast definition. First, if
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all honest parties have bi = 0 as input, then all honest parties output some value
with grade 0. Second, we require the usual graded consistency property in the
dishonest sender case even when any subset of honest parties have bi = 0.

Definition 3. A protocol Π where initially a designated party Ps (called the
sender) holds a value x, each party Pi holds a bit bi, and each party Pi terminates
upon generating an output pair (yi, gi) with gi ∈ {0, 1, 2}, is a conditional graded
broadcast protocol resilient against t corruptions if the following properties hold
whenever up to t parties are corrupted:

1. Conditional Validity: If Ps is honest and each honest party has bi = 1, then
every honest party outputs (x, 2).

2. Conditional Graded Consistency: For any two honest parties Pi and Pj:
– |gi − gj | ≤ 1.
– If gi > 0 and gj > 0, then yi = yj.

3. No Honest Participation: If all honest parties input bi = 0, then every honest
party outputs (⊥, 0).

Assuming a public-key infrastructure, conditional gradecast can be achieved
up to t < n/2 corruptions in 3 rounds (see Sect. 4).

3 Expand-and-Extract Paradigm

In this section we briefly recap the Expand-and-Extract paradigm, introduced
by Fitzi, Liu-Zhang and Loss [FLL21].

The Expand-and-Extract paradigm consists of three steps. The first step is
an expansion step, where parties jointly execute an �-slot binary Proxcensus
protocol Prox�. That is, each party Pi has as input bit xi, and obtains an output
zi = Prox�(xi) ∈ {0, 1, . . . , � − 1}. At this point, the outputs of honest parties
satisfy validity and consistency of Proxcensus.

The second step is a multi-valued coin-flip. Let ci ∈ {0, 1, . . . , � − 2} denote
the coin value that the parties obtain.

The last step is a cut, where the output bit is computed from the coin ci and
the output zi of Proxcensus, simply as yi = 0 if zi ≤ ci, and yi = 1 otherwise
(Fig. 1).

Fig. 1. Party Pi outputs a slot-value in {0, . . . , �−1}, and the coin can “cut” the array
of slots in any of the � − 2 intermediate positions (indicated with dotted lines). If the
obtained value lies on the left of the cut made by ci (indicated with a red line), the
output is yi = 0. Otherwise, the output is yi = 1.

Assuming that the coin is ideal (no error and no bias), i.e. returns a common
uniform value in the range {0, 1, . . . , � − 2}, it is easy to see that parties reach
agreement except with probability 1/(� − 1):
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– If all honest parties have input xi = 0, then after the first step the output of
Proxcensus is zi = 0, and the final output is yi = 0 no matter what the coin
value is. Similarly, if the input is xi = 1, then zi = � − 1 and the output is
yi = 1 because the largest coin value is � − 2.

– Moreover, since honest parties lie in two adjacent slots after the invocation of
Prox�, there is only one possible coin value (out of � − 1) that lead to parties
having different inputs.

We formally describe the protocol below.

Protocol Π�
EE(Pi)

Let � ≥ 2 be a natural number. The protocol is described from the point of view
of party Pi, with input bit xi ∈ {0, 1}.

1: zi = Prox�(xi)
2: ci = CoinFlip
3: if zi ≤ ci then
4: Output 0
5: else
6: Output 1
7: end if

Theorem 1 ([FLL21]). Let t < n. Let Prox� be an �-slot Proxcensus protocol,
and CoinFlip be an (� − 1)-valued ideal Coin-Flip protocol, secure up to t cor-
ruptions. Then, protocol Π�

EE achieves binary Byzantine Agreement against an
adaptive, strongly rushing adversary with probability 1 − 1

�−1 .

4 Conditional Graded Broadcast

We describe our conditional graded broadcast protocol below, which is based on
previous graded broadcast protocols [MV17,FLL21].

The protocol takes three rounds. The rounds are executed only if the input
bit is bi = 1. In the first round, the sender distributes its input signed. Then,
when each party receives a value from the sender, it adds its own signature and
echoes the pair of signatures along with the value to all parties. The third round
consists of simply echoing all received pairs to every other party.

At the end of the third round, every party executes the output determination
phase (this is executed irrespective of the value of bi). A party outputs with grade
2 if it received from each of a total of n − t parties a set of n − t signatures on a
value v, and no signature on any other value v′ �= v. Note that if an honest party
outputs v with grade 2, then it is guaranteed that every honest party received
at least one set of n − t signatures on v, and no echo signature on any v′ �= v in
the second round. This constitutes exactly the condition to output grade 1. In
any other case, the output is (⊥, 0).
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Protocol cGBC(Ps)

Code for sender Ps with input x

1: if bs = 1 then
2: Round 1: Compute σ = Signsks

(x), and send (x, σ) to all the parties.
3: end if

Code for party Pi

1: if bi = 1 then
2: Round 2: Upon receiving (x′, σs) with valid signature from Ps, compute

σi = Signski
(x) and send (x, σs, σi) to all the parties.

3: Round 3: Forward all valid tuples received in the previous round to all
parties. Let Σj be the set of valid signature tuples received from party Pj .

4: end if

Code for party Pi: Output Determination We say that a set of valid signa-

tures Σ on v is consistent if it contains valid signatures on v from at least n − t
distinct parties.

1: if at least n − t consistent signature sets Σj on v have been received from
distinct parties, and no valid tuple (v′, σs, σj) on any v′ �= v was received at
any previous round then

2: Output (v, 2).
3: else if at least one consistent set Σ for v has been received, and no valid

tuple (v′, σs, σ) on v′ �= v was received at round 2 then
4: Output (v, 1).
5: else
6: Output (⊥, 0).
7: end if

We show that cGBC(Ps) is a conditional gradecast protocol in a sequence of
lemmas.

Theorem 2. Assuming a PKI infrastructure, cGBC(Ps) is a 3-round condi-
tional graded broadcast protocol resilient against t < n/2 corruptions.

Lemma 1. cGBC(Ps) satisfies conditional validity.

Proof. Let x be the input of the sender. If the sender is honest and all honest
parties have as input bi = 1, then the sender sends its input to all parties, who
then forward a signature on this value to everyone. Therefore, all parties collect
a signature set on x of size at least n − t and forward all these. At the end of
round 3, they all collect at least n − t consistent signature sets. Further note
that since the sender is honest, no honest party can collect a tuple (x′, σs, σ)
containing a valid signature from the sender for any other value x′ �= x.

Lemma 2. cGBC(Ps) satisfies conditional graded consistency.

Proof. We first show that if an honest party Pi outputs (yi, gi) = (v, 2), then
every honest party Pj outputs (yj , gj) with yj = yi and gj ≥ 1.
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Since gi = 2, Pi received n − t > t consistent signature sets Σk for the same
value yi. As at least one of these sets is sent by an honest party, Pj received at
least one consistent Σk on yi. Moreover, Pj does not receive any tuple (y′, σs, σ)
with valid signatures for any value y′ �= yi at round 2. This is because Pi did
not receive any such tuple (y′, σs, σ) on y′ �= yi at round 3.

It remains to show that there cannot be two honest parties Pi and Pj that
output yi and yj �= yi, both with grade 1. In this case, Pi received a set of n − t
signatures on yi. This implies that there was at least one honest party that sent a
tuple (yi, σs, σ) with valid signatures at round 2. Therefore, at the end of round
2, Pj received this tuple and could not have output yj with grade 1.

Lemma 3. cGBC(Ps) satisfies no honest participation.

Proof. Assume that bi = 0 for every honest party Pi. Since the honest parties
do not send any messages at Round 1, and a consistent signature set Σ requires
at least n − t > t signatures, no party receives any consistent signature set.
Therefore, every honest party outputs (⊥, 0).

5 Round-Optimal Proxcensus

In this section, we introduce a round-optimal Proxcensus protocol, for any t <
(1−ε)n/2, for constant ε > 0. The protocol achieves a super-exponential number
of slots with respect to the number of rounds.

5.1 Protocol Description

The protocol is deterministic and runs for L iterations of 3 rounds each.
At the start of the protocol, parties position themselves into a large set

[0,M ] of integer values, which we denote as mini-slots. (M =
(

n−2t
t

)L · LL+1 to
be exact.)

If the input of party Pi is xi = 0, then Pi positions himself in the mini-slot
v = 0, and if the input is xi = 1, then Pi positions himself in the mini-slot
v = M .

At each iteration, each party Pi invokes an instance of conditional graded
broadcast (see Definition 3 and Sect. 4 for a construction) to distribute the cur-
rent mini-slot value. Given the outputs of these graded broadcasts, each party
deterministically updates its mini-slot value (within [0,M ]). Each iteration guar-
antees that the mini-slot values between any two honest parties get closer. Our
process guarantees that after any number L ≥ 1−ε

ε of iterations, the honest mini-
slot values differ in at most 2L positions. To achieve that the honest parties lie
within two consecutive final slots, each final slot will group every 2L consecutive
mini-slots. The final number of slots will then be � = M

2L = 1
2

(

n−2t
t

)L · LL.

Cheating Limitation Mechanism. At the core of our efficient Proxcensus
protocol lies a mechanism to limit the adversary’s cheating capabilities.
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Each party Pi (locally) keeps track of a set of parties C that it identified
as corrupted. The mechanism allows Pi to select parties from whom Pi should
take into account their value, with two guarantees: For any corrupted party ˜P , it
holds that 1) if there are honest parties Pi and Pj such that Pi takes into account
the value received from ˜P but Pj does not, then all honest parties identify ˜P

as corrupted and no honest party will further consider the values from ˜P in the
rest of the protocol. And 2) if all honest parties consider their respective received
values from ˜P , then it is guaranteed that the received values are the same. These
two properties heavily limit the adversary’s capabilities in influencing the output
value.

We show how to implement this mechanism. At each iteration it, parties
distribute a value via conditional graded broadcast, and Pi takes into account
values with grade 1 or 2, but does not take into account values with grade 0.
On top of that, Pi updates its set C adding all parties from whom it received a
value with grade 0 or 1 (these are clearly corrupted, since Conditional Graded
Validity ensures that honest parties distribute grade 2). Moreover, Pi does not
participate in any conditional graded broadcast invocation where the sender is
a party in C.

The effect of this is as follows. Consider the case where a corrupted sender
˜P distributes (possibly different values) to some honest parties Pi and Pj , such
that Pi takes into account the value received from ˜P , but Pj does not. In this
case, Pi received grade 1 and Pj received grade 0, and both parties add ˜P to
their respective corrupted sets. This implies that no honest party will participate
in any following conditional graded broadcast from ˜P (this is because by Condi-
tional Graded Consistency no honest party received grade 2), and therefore all
parties obtain grade 0 by the No Honest Participation property of conditional
graded broadcast in the following iterations. Moreover, if ˜P ’s value is taken into
account by all honest parties, this implies that all honest parties receive grade at
least 1, and therefore Graded Consistency ensures that all honest parties receive
the same value.

It follows that any corrupted party can cause differences between the values
taken into consideration by honest parties at most once.

Mini-Slot Update Function. In order to compute the updated mini-slot value,
Pi discards the lowest and the highest t − c values from the values received with
grade at least 1, where c represents the number of values received with grade 0.
Then, the new value is computed as the average of the remaining values. Note
that all those c parties with grade 0 are actually corrupted, and among the
n − c parties there are at most t − c corrupted. This implies that the updated
value is always within the range of values from honest parties. In particular, if
the adversary doesn’t send different values at an iteration, the honest parties’
updated values are exactly the same, and will never diverge again.

Let lit be the number of corrupted parties that are identified for the first
time by every honest party at iteration it. We will show that the distance
between any two honest parties’ updated values decreases essentially by a factor
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of lit
n−2t+

∑
it
i=1 li

. After L iterations, the values from honest parties will have

distance at most M · tL

LL · 1
(n−2t)L

+ L = 2L. See Lemmas 6 and 7.
We formally describe the protocol below.

Protocol OptimalProxL

Initialization

1: � = � 1
2

· (
n−2t

t

)L · LL� // Protocol achieves � + 1 slots in Proxcensus

2: M = 	(n−2t
t

)L · LL+1
 // Auxiliar number of minislots

Code for party Pi with input xi ∈ {0, 1}
v0 = xi · M
C0 = ∅ (the set of parties P has identified as corrupted)

1: for it = 1 . . . L do
2: Participate in cGBC(Pi) as the sender with input vit−1 and bi = 1. More-

over, participate in all instances of cGBC(Pj) as a receiver as well, with
input bi = 0 if Pj ∈ Cit−1, and otherwise with input bi = 1.

3: Let (vj , gj) be the output obtained in the instance of graded broadcast
cGBC(Pj) where Pj is the sender.

4: C0
it = {Pj | gj = 0}; C1

it = {Pj | gj = 1}
5: Let Vit be the multiset containing the values vj with grade gj ≥ 1.
6: Let Tit be the multiset obtained by discarding the lowest and highest

t − |C0
it| values of Vit.

7: vit =
⌊∑

v∈Tit
v

|Tit|

⌋

8: Cit = Cit−1 ∪ C0
it ∪ C1

it

9: end for
10: Output � vL·�

M
�

We now prove that OptimalProx is an optimal Proxcensus for any t = (1−ε)n
2

in a sequence of lemmas. The claim on the round complexity follows from the fact
that the protocol runs for L iterations, and each iteration involves an instance
of parallel graded conditional broadcast, which takes 3 rounds.

Theorem 3. Let ε > 0 be a constant, and let L ≥ 1−ε
ε and � = 	 1

2

(

2ε
1−ε

)L

LL

be natural numbers. Assuming a PKI infrastructure, OptimalProxL is a 3L-round
Proxcensus protocol with � + 1 slots, resilient against t = (1 − ε)n

2 corruptions.

Let us denote by Cit,P the (local) set of parties that P identified as corrupted
at iteration it. We denote C∩

it =
⋂

P honest Cit,P to be the set of corrupted parties
discovered by all honest parties up to iteration it. Then, lit = |C∩

it \ C∩
it−1|

represents the number of corrupted parties that are newly discovered by every
honest party exactly at iteration it. These contain the parties that can cause
differences in the updated mini-slot values obtained by honest parties.

Let us denote by Uit the set of updated mini-slot values vit computed by
honest parties at iteration it ≥ 1. Additionally, let U0 = {0,M}.
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Lemma 4. At every iteration it, Tit ⊆ [min Uit−1,max Uit−1] for every honest
party.

Proof. Let Pi be an honest party. Note that its local set C0
it only contains parties

from whom Pi obtained grade 0. Conditional Graded Validity implies that these
parties are corrupted (all instances with honest senders output grade 2 at all
iterations, and no honest party stops participating in any of these instances).

Therefore, c = |C0
it| ≤ t. The values in Vit are sent by the parties in P \ C0

it,
and hence |Vit| = n − c. These values contain all values in Uit−1 sent by the (at
least) n − t honest parties, and the values from at most t − c corrupted parties.

Therefore, the multiset Tit, obtained by discarding the highest and the lowest
t − c values within Vit, contains only values within [minUit−1,max Uit−1].

Lemma 5. OptimalProxL achieves Validity.

Proof. We assume that every honest party starts with input b. Then, U0 =
{b·M}, and from Lemma 4 we obtain that UL ⊆ U0 and hence the set containing
the value vL computed by every honest party is UL = {b · M}. Therefore, each
honest party outputs vL·�

M = b·M ·�
M = b · �.

Lemma 6. Let P and P ′ denote two honest parties, and let vit and v′
it be

their respective updated mini-slot values (computed in line 7 of the protocol) at
iteration it. Then,

|vit − v′
it| ≤ lit

n − 2t +
∑it

i=1 li
· (max Uit−1 − min Uit−1) + 1.

Proof. Since vit = 	avg Tit
 , where avg Tit =
∑

v∈Titv

|Tit| , it is enough to show:

|avg Tit − avg T ′
it| ≤ lit

n − 2t +
∑it

i=1 li
· (max Uit−1 − min Uit−1).

(The last additive term “+1” in the theorem statement accounts for the floor
operation.)

Fix iteration it. Consider the values that are received with grade at least 1
by P or P ′. It will be convenient to arrange these values in an increasing order
in an array A. The array contains exactly k = n− c values, where c = |C0

it ∩ C′0
it|

is the number of values that both P and P ′ discard (they both receive grade 0).
Within this array of values, we denote by I1 (resp. I2) the set of indices

containing the values that were received with grade 0 by P (resp. P ′) and grade
1 by P ′ (resp. P ).

We then denote the resulting array T 1 (resp. T 2) created by 1) substituting
the values at indices in I1 (resp. I2) in A by the special symbol ⊥ and afterwards
2) further substituting the lowest and highest (t − c) + |I1| (resp. (t − c) + |I2|)
values also by ⊥.
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It is easy to see that T 1 (resp. T 2) was created using the exact same process
as in the protocol and contains exactly the same values as the multiset Tit (resp.
T ′
it), but conveniently arranged in an array.

Let s = t − c. Assuming that |I1| ≥ |I2| (the argument holds symmetrically
when |I2| ≥ |I1|), the technical combinatorial Lemma 8 and Lemma 4 imply
that:

|avg T 1 − avg T 2| = |avg Tit − avg T ′
it|

≤ |I1|
k − 2s + |I1| · (max Uit−1 − min Uit−1)

≤ lit
k − 2s + lit

· (max Uit−1 − min Uit−1)

≤ lit

n − 2t +
∑it

i=1 li
· (max Uit−1 − min Uit−1),

where in the second inequality we used that |I1| ≤ lit
3, and in the last inequality

we used that k − 2s + lit = n − 2t + c + lit, and the fact that c ≥ |C∩
it−1| =

∑it−1
i=1 li (any corrupted party in C∩

it−1 that is identified as corrupted by all
honest parties distributes a grade 0 to all honest parties by the No Honest
Participation property of conditional graded broadcast).

Lemma 7. OptimalProxL achieves Consistency.

Proof. Lemma 4 implies that the honest parties’ outputs are within 	 �
M min UL


and 	 �
M max UL
. Then, to prove that the honest parties’ outputs lie within two

consecutive slots, it is enough to show that �
M (max UL − min UL) ≤ 1.

By iteratively applying Lemma 6, and using the fact that U0 = {0,M} and
lit

n−2t+
∑

it
i=1 li

< 1 for any it ≤ L, we obtain:

max UL − min UL ≤ M ·
L

∏

it=1

lit

n − 2t +
∑it

i=1 li
+ L

≤ M ·
L

∏

it=1

lit · 1
(n − 2t)L

+ L

≤ M · tL

LL
· 1
(n − 2t)L

+ L,

where the last step follows from inequality of arithmetic and geometric means,
and the fact that the sum of identified corrupted parties is at most t:

(

L
∏

it=1

lit

)
1
L

≤ l1 + l2 + · · · + lL
L

≤ t

L
=⇒

L
∏

it=1

lit ≤ tL

LL

3 Note that x
x+a

≤ x+b
x+a+b

for any positive real numbers x, a and b.
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Then, we bound �
M (max UL − min UL) as follows:

�

M
(max UL − min UL) ≤ � · 1

LL

(

t

n − 2t

)L

+
�

M
· L

≤ � · 1
LL

(

t

n − 2t

)L

+
�

(

n−2t
t

)L · LL+1
· L

≤ � · 1
LL

(

t

n − 2t

)L

+ � · 1
LL

·
(

t

n − 2t

)L

= 2� · 1
LL

(

t

n − 2t

)L

≤ � · �−1 = 1,

where in the last inequality we used that � ≥ 1, which follows from the fact that
t = (1 − ε) · n

2 and L ≥ 1−ε
ε .

6 Technical Combinatorial Lemma

In this section we prove the technical combinatorial lemma that allows to prove
that the updated mini-slot values from honest parties get closer by the required
amount, as stated in Lemma 6.

Consider an array A of k values sorted by increasing order and a number
s < k/2. Further consider the array T 1 created as follows: T 1 has some of the
values missing in indices from a fixed set I1 and then the lowest and highest
s − |I1| values are removed. Similarly, consider the array T 2 created in the same
way, but with indices in I2. See Fig. 2 for an example.

Let b be the maximum value among those remaining in array T 1 or T 2, and
let a be the minimum value. Then, the following combinatorial lemma states that
the averages of the remaining values in T 1 and T 2 differ in at most a fraction

max(|I1|,|I2|)
k−2s+max(|I1|,|I2|) of b − a.

Fig. 2. An example of A, T 1, and T 2, for k = 10, s = 4, I1 = {2, 5, 7}, and I2 = {6}.

Lemma 8. Let A = [A0, A1, . . . , Ak−1] denote an array where A0 ≤ A1 ≤
· · · ≤ Ak−1. Let s < k/2 and let I1, I2 ⊆ {0, 1, . . . , k − 1} denote two sets of
indices such that |I1 ∪ I2| ≤ s. Consider the arrays T 1 = [T 1

0 , T 1
1 , . . . , T 1

k−1] and
T 2 = [T 2

0 , T 2
1 , . . . , T 2

k−1] constructed as follows: for j ∈ {1, 2}, we first set T j
i to
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Ai if i /∈ Ij and otherwise to ⊥, and afterwards we replace the lowest and the
highest non-⊥ (s − |Ij |) values in T j by ⊥. Then,

|avg {T 1
i �= ⊥}i∈[0,k−1] − avg {T 2

i �= ⊥}i∈[0,k−1]|

≤ max (|I1|, |I2|)
k − 2s + max (|I1|, |I2|) (b − a),

where b = max{T j
i �= ⊥}j∈{1,2},i∈[0,k−1] and a = min{T j

i �= ⊥}j∈{1,2},i∈[0,k−1].

Proof. Let m1 := |I1| and m2 := |I2|. Without loss of generality, we assume that
m1 ≥ m2, meaning that T 1 contains at least as many non-⊥ values as T 2.
Let

v1 := avg {T 1
i �= ⊥}i∈[0,k−1] =

1
|{T 1

i �= ⊥}|
∑

{i:T 1
i �=⊥}

T 1
i ,

v2 := avg {T 2
i �= ⊥}i∈[0,k−1] =

1
|{T 2

i �= ⊥}|
∑

{i:T 2
i �=⊥}

T 2
i .

We first note that the number of non-⊥ values in T 1 is:

|{T 1
i �= ⊥}| = k − 2(s − m1) − m1 = k − 2s + m1.

Similarly, |{T 2
i �= ⊥}| = k − 2s + m2.

We then obtain the following:

v1 − v2 =

∑

{i:T 1
i �=⊥} T 1

i

k − 2s + m1
− v2 =

∑

{i:T 1
i �=⊥} T 1

i − (k − 2s + m1) · v2

k − 2s + m1

=

∑

{i:T 1
i �=⊥} T 1

i − (k − 2s + m2) · v2 − (m1 − m2) · v2

k − 2s + m1

=

∑

{i:T 1
i �=⊥} T 1

i − ∑

{i:T 2
i �=⊥} T 2

i − (m1 − m2) · v2

k − 2s + m1
. (1)

Analyzing the Term
∑

{i:T 1
i �=⊥} T 1

i . In order to analyze this sum, it will be
convenient to look at the values in T 1

i within three regions, separated by the
indices start = s − m2 and end = k − (s − m2) − 1. Note that by construction,
at least the lowest and the highest s − m2 indices in T 2 contain ⊥ as its value.

– Indices i < start. In this region, T 2
i = ⊥. Moreover, since the values are

ordered increasingly and {T 2
i �= ⊥} �= ∅, we can bound any non-⊥ value

T 1
i = Ai ≤ Astart ≤ min{T 2

j �= ⊥}.
– Indices i > end. Similarly as above, T 2

i = ⊥. Moreover, any non-⊥ value
T 1

i = Ai ≥ Aend ≥ max{T 2
j �= ⊥}.
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– Indices start ≤ i ≤ end. Here non-⊥ values in T 1 and T 2 are within the
values Astart and Aend. In this region, we define the sets of subindices where
exactly either T 1 or T 2 contain non-⊥ values. That is, M1 := {start ≤ i ≤
end : T 1

i = ⊥ and T 2
i �= ⊥} and M2 := {start ≤ i ≤ end : T 1

i �= ⊥ and T 2
i =

⊥}.

We can then express the sum of values in T 1 as:

∑

{i:T 1
i �=⊥}

T 1
i =

∑

{i<start:T 1
i �=⊥}

T 1
i +

∑

{start≤i≤end:T 1
i �=⊥}

T 1
i +

∑

{end<i:T 1
i �=⊥}

T 1
i

=
∑

{i<start:T 1
i �=⊥}

T 1
i +

∑

{end<i:T 1
i �=⊥}

T 1
i +

∑

{i:T 2
i �=⊥}

T 2
i −

∑

i∈M1

T 2
i +

∑

i∈M2

T 1
i ,

since
∑

{start≤i≤end:T 1
i �=⊥} T 1

i =
∑

{i:T 2
i �=⊥} T 2

i −∑

i∈M1 T 2
i +

∑

i∈M2 T 1
i (Fig. 3).

Fig. 3. In the example from Fig. 2, start = 3 and end = 6. The brackets show how we
split the indices of T 1 and T 2.

Using Eq. (1), we have:

|v1 − v2| =
1

k − 2s + m1
· |d|,

where

d =
∑

{i<start:T 1
i �=⊥}

T 1
i −

∑

i∈M1

T 2
i +

∑

{end<i:T 1
i �=⊥}

T 1
i +

∑

i∈M2

T 1
i −(m1−m2) ·v2. (2)

In order to upper bound |d|, we find bounds for each of the summands.

Bounds for
∑

{i<start:T 1
i �=⊥} T 1

i . In this region, any summand T 1
i satisfies: a =

min{T j
i �= ⊥}j∈{1,2} ≤ T 1

i ≤ Astart.
Within this region of indices, the first s − m1 indices have ⊥ as their value (by
construction of T 1). Therefore, the number of summands is

|{i < start : T 1
i �= ⊥}| = start − (s − m1) − l = (m1 − m2 − l),

where l = |{s − m1 ≤ i < start : T 1
i = ⊥}|.



114 D. Ghinea et al.

Therefore, we have:

(m1 − m2 − l) · a ≤
∑

{i<start:T 1
i �=⊥}

T 1
i ≤ (m1 − m2 − l) · Astart. (3)

Bounds for
∑

{end<i:T 1
i �=⊥} T 1

i . Similarly, in this region, any summand T 1
i sat-

isfies Aend ≤ T 1
i ≤ max{T j

i �= ⊥}j∈{1,2} = b.
Since the last s − m1 indices have ⊥ as their value:

|{end < i : T 1
i �= ⊥}| = k − (s − m1) − 1 − end − h = m1 − m2 − h,

where h = |{end < i ≤ k − (s − m1) − 1 : T 1
i = ⊥}|.

Therefore, we have:

(m1 − m2 − h) · Aend ≤
∑

{end<i:T 1
i �=⊥}

T 1
i ≤ (m1 − m2 − h) · b. (4)

Bounds for
∑

i∈M1 T 2
i . From the definition of M1, any index i ∈ M1 satisfies

start ≤ i ≤ end. Moreover, any summand T 2
i , i ∈ M1, satisfies that Astart ≤

T 2
i ≤ Aend.

By construction of T 1
i , we have that |{T 1

i = ⊥ : s − m1

≤ i ≤ k − (s − m1) − 1}| = m1. This is because T 1 has 2(s − m1) + m1 indices
with ⊥ in total, including the lowest and highest s − m1 indices.
It follows that |{start ≤ i ≤ end : T 1

i = ⊥}| = m1 − l − h.
Then, |M1| = |{start ≤ i ≤ end : T 1

i = ⊥}| − c = m1 − l − h − c, where c is the
number of indices start ≤ i ≤ end such that T 1

i = T 2
i = ⊥. We obtain that

(m1 − l − h − c) · Astart ≤
∑

i∈M1

T 2
i ≤ (m1 − l − h − c) · Aend. (5)

Bounds for
∑

i∈M2 T 1
i . The bounds are derived similarly as in the previous

case. Any index i ∈ M2 satisfies start ≤ i ≤ end, and any summand T 1
i ,

i ∈ M2, satisfies that Astart ≤ T 1
i ≤ Aend.

By construction of T 2
i , we have that |{T 2

i = ⊥ : start ≤ i ≤ end}| = m2.
Then, |M2| = |{start ≤ i ≤ end : T 2

i = ⊥}|−c = m2−c, where c is the number
of indices start ≤ i ≤ end such that T 1

i = T 2
i = ⊥. We obtain that

(m2 − c) · Astart ≤
∑

i∈M2

T 1
i ≤ (m2 − c) · Aend. (6)

Bounds for (m1 − m2) · v2. Since v2 is the average of the non-⊥ values in T 2,
Astart ≤ min{T 2

i �= ⊥} ≤ v2 ≤ max{T 2
i �= ⊥} ≤ Aend. Then, we have

(m1 − m2) · Astart ≤ (m1 − m2) · v2 ≤ (m1 − m2) · Aend. (7)

Upper Bounding |d|. In order to upper bound |d|, we distinguish two cases.
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– v1 ≥ v2. Here, |d| = d. By using the inequalities (3) to (7) in Eq. (2) and
simplifying the terms, we obtain that:

|d| ≤ c · (Astart − Aend) + m2 · (Aend − b)
+h · (Astart − b) + m1 · (b − Astart) ≤ m1 · (b − a),

where in the last inequality we used that c, h,m1,m2 ≥ 0 and a ≤ Astart ≤
Aend ≤ b.

– v1 ≤ v2. In this case, |d| = −d. By using the inequalities (3) to (7) in Eq. (2)
and simplifying the terms, we obtain that:

|d| ≤ c · (Astart − Aend) + l · (a − Aend) +
m2 · (a − Astart) + m1 · (Aend − a) ≤ m1 · (b − a),

where in the last inequality we used that c, l,m1,m2 ≥ 0 and a ≤ Astart ≤
Aend ≤ b.

It follows that |d| ≤ m1 · (b − a), and therefore |v1 − v2| ≤ m1
k−2s+m1

· (b − a),
which concludes the proof.

7 Putting It All Together

By instantiating the Proxcensus protocol from Theorem 3 in the Expand-and-
Extract iteration paradigm from Theorem 1, we achieve the desired result.

Theorem 4. Let ε > 0 be a constant. Assuming a PKI infrastructure and an
ideal 1-round Coin-Flip protocol, there is a (3r + 1)-round Byzantine agreement

protocol that achieves agreement except with probability at most
[

	 1
2

(

2ε
1−εr

)r



]−1

and is resilient against t = (1 − ε)n/2 corruptions, for any r ≥ 1−ε
ε .

Note that one can instantiate the 1-round ideal coin-flip from a trusted setup
of unique threshold signatures (see [CKS05,LJY14]).

7.1 Comparison to Previous Protocols

We add a comparison to previous protocols in Fig. 4 for our setting with an ideal
1-round Coin-Flip. Our protocol achieves a lower failure probability when the
number of honest parties is high. We therefore depict how the failure probability
decreases with the number of rounds in three regimes: t < n/10, t < n/3 and
t = 0.49n. In each of the regimes, we compare our protocol with the two more
efficient known protocols.

Our figures show that in the regimes t < n/10 and t < n/3, our proto-
col achieves a lower failure probability than the previous protocols [FM97] and
[FLL21] after a few tens of rounds. Concretely, after 6 (resp. 27) rounds com-
pared to [FLL21], and 4 (resp. 13) rounds compared to [FM97]. On the other
hand, when t = 0.49n, our protocol achieves a lower failure probability only after
more than 200 rounds, compared to previous solutions [MV17,FLL21].
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Fig. 4. Comparison to previous protocols.

7.2 Open Problems

Our results leave a number of very exciting open problems.

Improving Constants. We leave open whether one can get similar results for
the optimal threshold t < n/2. In a similar direction, our protocol is optimal up
to constants, i.e. it achieves the optimal agreement probability for an r-round
protocol within c · r rounds for some constant c. It would be interesting to see
whether one can match the exact constants obtained from the known lower
bounds.
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Setup Assumptions. Another exciting direction would be to see whether sim-
ilar results can be achieved from weaker setup assumptions. In particular, it
would be interesting to see whether one can instantiate an ideal common-coin
from plain PKI, or even with specific number-theoretic assumptions, within a
constant (or even linear in r) number of rounds.

Early Termination. Finally, another interesting open question is to investigate
whether one can leverage our protocols to achieve early termination. That is, a
protocol that in expectation terminates in a constant number of rounds, but in
the worst case it still achieves the optimal agreement probability.

Communication Complexity. Our protocol incurs a communication complex-
ity of O(n4(κ + r log(r))) bits, where κ is the size of a signature and r is the
number of rounds. Using threshold signatures for the (conditional) graded broad-
cast primitive, we can save a linear factor n. It remains open to explore solutions
with improved communication.
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Abstract. Cleve’s celebrated lower bound (STOC’86) showed that a de
facto strong fairness notion is impossible in 2-party coin toss, i.e., the cor-
rupt party always has a strategy of biasing the honest party’s outcome
by a noticeable amount. Nonetheless, Blum’s famous coin-tossing proto-
col (CRYPTO’81) achieves a strictly weaker “game-theoretic” notion of
fairness—specifically, it is a 2-party coin toss protocol in which neither
party can bias the outcome towards its own preference; and thus the hon-
est protocol forms a Nash equilibrium in which neither party would want
to deviate. Surprisingly, an n-party analog of Blum’s famous coin toss
protocol was not studied till recently. The work by Chung et al. (TCC’18)
was the first to explore the feasibility of game-theoretically fair n-party
coin toss in the presence of corrupt majority. We may assume that each
party has a publicly stated preference for either the bit 0 or 1, and if the
outcome agrees with the party’s preference, it obtains utility 1; else it
obtains nothing.

A natural game-theoretic formulation is to require that the honest
protocol form a coalition-resistant Nash equilibrium, i.e., no coalition
should have incentive to deviate from the honest behavior. Chung et al.
phrased this game-theoretic notion as “cooperative-strategy-proofness”
or “CSP-fairness” for short. Unfortunately, Chung et al. showed that
under (n − 1)-sized coalitions, it is impossible to design such a CSP-fair
coin toss protocol, unless all parties except one prefer the same bit.

In this paper, we show that the impossibility of Chung et al. is in
fact not as broad as it may seem. When coalitions are majority but not
n − 1 in size, we can indeed get feasibility results in some meaningful
parameter regimes. We give a complete characterization of the regime
in which CSP-fair coin toss is possible, by providing a matching upper-
and lower-bound. Our complete characterization theorem also shows that
the mathematical structure of game-theoretic fairness is starkly different
from the de facto strong fairness notion in the multi-party computation
literature.
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1 Introduction

Coin toss protocols, first proposed by Blum [9], are at the heart of cryptography
and distributed computing. Imagine that Murphy and Mopey simultaneously
solve the same long-standing open problem in cryptography, and they both sub-
mit a paper with identical results to EUROCRYPT’22. The program committee
of EUROCRYPT’22 decide to recommend Murphy and Mopey to merge their
papers. Now, Murphy and Mopey want to toss a coin to elect one of them to
present the result at EUROCRYPT’22. How can Murphy and Mopey accom-
plish this task remotely? Clearly, we can use Blum’s coin toss protocol. Murphy
and Mopey each commit to a random bit, and post the commitment to a public
bulletin board (e.g., a blockchain). They then each open their commitments. If
the XOR of the two opened bits is 1, Murphy wins; else, Mopey wins. If either
player aborts any time during the protocol or does not provide a valid opening
for its commitment, it automatically forfeits and the other player wins. Although
not explicitly stated in his ground-breaking paper [9], Blum’s protocol actually
achieves a natural, game-theoretic notion of fairness. Since both players want
to get elected, we may assume that the winner obtains utility 1, and the loser
obtains utility 0. Observe that a rational player who aims to maximize its utility
has no incentive to deviate from the honest protocol. Any deviation (including
aborting or opening the commitment wrongly) would cause it to lose.

Although this game-theoretic notion of fairness is very natural, it seems to
have been overlooked in the subsequent long line of work on multi-party compu-
tation (MPC) [21,39,40]. Specifically, the MPC line of work instead switched to
considering a strictly stronger notion of fairness henceforth called unbiasability.
Unbiasability requires that an adversary controlling a corrupt coalition cannot
bias the outcome of the coin toss whatsoever. Blum’s protocol actually does not
satisfy this strong, unbiasability notion: a player can indeed bias the outcome
in Blum’s protocol, although the bias would never be in its own favor. This
unbiasability notion has been thoroughly explored in the cryptography litera-
ture. It is well-known that in general, if the majority of the players are honest,
then unbiasability is indeed attainable [7,12,21,37]. On the other hand, the cel-
ebrated lower bound of Cleve [15] shows that if half or more of the players are
corrupt, unbiasability is impossible—in particular, this lower bound applies to
the two-party case where one party can be corrupt.

Despite Cleve’s lower bound, the fact that Blum’s protocol can achieve mean-
ingful fairness in the two-party case is thought provoking. A natural question
arises:

can we achieve game-theoretically fair coin toss in the multi-party setting
in the presence of a majority coalition?

Somewhat surprisingly, this question was not explored till the very recent work
of Chung et al. [14].

Imagine that each player has a publicly stated preference for either the bit 0
or 1. If the coin toss outcome agrees with the player’s preference, it obtains utility
1; else it obtains nothing. This formulation can have interesting applications. For
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example, imagine that n parties in a blockchain protocol want to jointly elect a
random block proposer among two possible candidates, and users have different
preferences among the two depending on which one they are geographically closer
to. Another example is where n investors who have invested money into a crowd-
funding smart contract want to randomly choose a kick-starter to fund among
two candidates, and each player may have a different preference in mind.

In many applications, the preference profiles are public. For example, suppose
some blockchain community wants to randomly choose among two governance
proposals. Here, the voters are public figures/community leaders whose affilia-
tions, opinions, and past forum posts are publicly known. In general, when the
voters’ identities/reputations are known to the public and identities do not come
for free, voters’ preferences are usually public. Another example is games where
players must put in stake to play. For example, suppose n players play binary
roulette on a blockchain. Here, their preferences are made explicit by their public
bets which they cannot lie about.

Chung et al. suggested the following natural formulations of game theoretic
fairness for multi-party coin toss, both of which would equate to Blum’s notion
in the 2-party special case:

– CSP-fairness: Cooperative-strategy-proofness (or “CSP-fairness” for short)
requires that no coalition can increase its own expected utility, no matter
how it deviates from the prescribed protocol. In this way, the honest protocol
forms a coalition-resistant Nash equilibrium, and no profit-seeking coalition
of players would be incentivized to deviate from this equilibrium.

– Maximin fairness: Another natural notion is called maximin fairness, which
requires that no coalition can harm any honest party (no matter how the coali-
tion deviates from the prescribed protocol). More precisely, for any (compu-
tational) strategy adopted by a coalition of players, the expected utility of
any honest party is at most negligibly apart from its utility in an all-honest
execution. As motivated by Chung et al. [14], maximin fairness guarantees
that no coalition aiming to monopolize the eco-system by harming and driv-
ing away small individual players has incentives to deviate; moreover, no
defensive individual aiming to protect itself in the worst-case scenario has
incentives to deviate.

Unfortunately, Chung et al. [14] showed very broad lower bounds which
seem to crush our original hope of using game-theoretic fairness to circumvent
Cleve’s impossibility [15] in the corrupt majority setting. Specifically, Chung et
al. proved that unless all parties except one have the same preference, it would
be impossible to realize either CSP-fair coin toss or maximin-fair coin toss.

1.1 Our Results and Contributions

It may seem that Chung et al.’s results have put a pessimistic closure to this
direction. However, upon more careful examination, their lower bound proofs
implicitly assume that all but one parties can be corrupt and form a coalition.
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It is not immediately clear whether the impossibility would still hold if majority
but not n − 1 parties are corrupt. We therefore revisit the question originally
posed by Chung et al., i.e., whether one can rely on game-theoretic fairness to
overcome Cleve’s impossibility for coin toss protocols in the corrupt majority
setting. Specifically, we focus on the following refinement of the question:

Can we achieve game-theoretically fair coin toss under for majority but not
necessarily (n − 1)-sized coalitions?

In this paper, we give a complete characterization of the landscape of game-
theoretically fair coin toss, including for the CSP-fair and the maximin-fair
notions. At a very high level, we show the following results:

– For CSP-fairness, the pessimistic view of Chung et al. [14] poorly reflects
the actual state of affairs. In contrast, we show that under a broad range
of parameter regimes, CSP-fairness is possible in the presence of a majority
coalition; moreover, we give a complete characterization of the parameter
regimes under which CSP-fairness is possible.

– For maximin-fairness, we show that the pessimistic view of Chung et al. indeed
applies quite broadly. Roughly speaking, we show that except for the cases
when all parties but one prefer the same outcome, or when exactly half of
the players are corrupt, maximin-fairness is impossible to attain. We fully
characterize maximin fairness as well.

Note that in cases when there is an honest individual with an opposite prefer-
ence as the coalition, maximin-fairness would directly imply CSP-fairness. This
partly explains why maximin-fairness is harder to attain than CSP-fairness.

Our work sheds new light on the intriguing mathematical structure of game-
theoretic fairness, which differs fundamentally from the mathematical structure
of the de facto unbiasability notion that is widely adopted in the cryptography
literature. Since coin toss protocols [9] have been the cornerstone of the long line
of work on multi-party computation protocols, we hope that our work can inspire
future work in the exciting space of “game theory meets multi-party protocols”
in general. We now give more formal statements of our results.

CSP Fairness. For CSP fairness, we design a new protocol and explore for which
range of parameters the upper bound holds. In addition, we generalize the lower
bound proof of Chung et al. [14], and give the range of parameters in which
impossibility holds. Our upper- and lower-bounds tightly match in their stated
parameter regimes. Therefore, our two main results jointly provide a complete
characterization of CSP fairness. It is worth noting that our upper bound holds
in the presence of a malicious coalition that may deviate from the prescribed
protocol arbitrarily to increase its own gain; whereas our lower bound holds for
a fail-stop coalition whose only possible deviation is to have some of its players
abort from the protocol. This makes both the upper- and lower-bound stronger.

Our results can be summarized with the following theorem statements—
below, let n0 be the number of players that prefer 0 (also called 0-supporters),
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and let n1 be the number of players that prefer 1 (also called 1-supporters).
Throughout the paper, without loss of generality, we may assume that n1 ≥ n0 ≥
1 since the other direction is symmetric. Additionally, we assume n0 + n1 > 2,
since for 2-parties, we can just run Blum’s coin toss.

Theorem 1.1 (Upper bound). Assume the existence of Oblivious Transfer
(OT), and without loss of generality, assume that n1 ≥ n0 ≥ 1, and n0 +n1 > 2.
There exists a CSP-fair coin toss protocol which tolerates up to t-sized non-
uniform p.p.t. coalitions where

t :=

⎧
⎪⎨

⎪⎩

n1 − � 1
2n0�, if n1 ≥ 5

2n0;
� 2
3n1 − 1

6n0� + � 1
2n0� + 1 = n1 + 1, if n1 = n0 = odd;

� 2
3n1 − 1

6n0� + � 1
2n0�, otherwise.

(1)

Our upper bound holds even when the coalition may deviate arbitrarily from the
prescribed protocol to increase its gain.

Theorem 1.2 (Lower bound). Without loss of generality, assume that n1 ≥
n0 ≥ 1 and n0 +n1 > 2. There does not exist a CSP-fair n-party coin toss which
tolerates coalitions of size t + 1 or greater where t is same as Eq. (1).

Further, this lower bound holds even for fail-stop coalitions whose only pos-
sible deviations are aborting from the honest protocol, and it holds even allowing
computational hardness assumptions and restricting the coalition to be computa-
tionally bounded.

Previously, the work of [14] shows possibility only for the case where where
n0 = 1 or n1 = 1 and t = n0 + n1 − 1. Moreover, it showed that it is impossible
to tolerate n0 + n1 − 1 corruptions only for the case where both n0, n1 ≥ 2 (i.e.,
there are at least two parties among the set of 0-supporters and at least two
parties among the set of 1-supporters).

Observe that the optimal resilience parameter t (specified in Eq. (1)) is a
function of n0 and n1. Intriguingly, its dependence as a function of n0 and
n1 changes when n1 = 5

2n0. This intriguing phase transition partly suggests
that the mathematical structure of game theoretic fairness is starkly different the
classical notion of unbiasability. The reason for this phase transition is related
to the concrete techniques we adopt to prove our theorems. We will explain why
this phase transition occurs as we describe our protocol to help the reader gain
intuition (see Remark 2.4 of Sect. 2.1 for more explanations). Note also that
the transition has a continuous boundary, i.e., at exactly n1 = 5

2n0, the two
expressions n1 − � 1

2n0� and � 2
3n1 − 1

6n0� + � 1
2n0� are equal (to 2n0).

Maximin Fairness. The work of [14] shows that maximin fairness is possible
against t ≤ n − 1 corruptions only when all but one of the parties are interested
in the same outcome. We next show that this is essentially the only interesting
setting which does not behave as in the crypto settings. We show that even when
allowing a more liberate security threshold, we cannot push the barriers much
further than relying on an honest majority. We show the following possibility
and its complementary impossibility result:
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Theorem 1.3. Without loss of generality, assume that the number of 1-
supporters n1 is at least the number of 0-supporters, n0, and assume that
n0 + n1 > 2. Then:

– For n0 ≥ 2, there does not exist a maximin-fair n-party coin toss proto-
col which tolerates more than � 1

2 (n0 + n1)� number of fail-stop adversaries.
Moreover, there exists a (statistically-secure) maximin-fair n-party coin toss
protocol which tolerates up to � 1

2 (n0 + n1)� − 1 malicious corruptions.
– For the special case where n0 = 1, we show that there does not exist a

maximin-fair n party coin toss protocol which tolerates more than � 1
2n1� + 1

number of (semi-malicious) players. Assuming Oblivious Transfer, there
exists a maximin fair-coin tossing protocol tolerating up to � 1

2n1� malicious
corruptions.

Public Verifiability. Our positive results are achieved in a model that allowed
public verifiability. In particular, the output of the protocol can be com-
puted from messages that were sent over the broadcast medium (e.g., a public
blockchain), and therefore also external observers, i.e., parties that do not take
part of the computation, can also learn the output. Such public verifiability is
often needed in blockchain and decentralized smart contract applications.

1.2 Related Work

Game Theory Meets Cryptography. Although game theory [27,33] and multi-
party computation [21,39] originated from different academic communities, some
recent efforts have investigated the connections of the two areas (e.g., see the
excellent surveys by Katz [28] and by Dodis and Rabin [17]). At a high level,
this line of work focuses on two broad classes of questions.

First, a line of works [1,3,5,24,29,34] explored how to define game-theoretic
notions of security (as opposed to cryptography-style security notions) for dis-
tributed computing tasks such as secret sharing and secure function evaluation.
Earlier works in this space considered a different notion of utility than our work.
Utility functions are often defined with the following assumptions regarding play-
ers’ perference: players prefer to compute the function correctly; they prefer to
learn others’ secret data, and prefer that other players do not learn their own
secrets. In light of such utility functions, earlier works in this space explored
whether we can design protocols such that rational players will be incentivized
to follow the honest protocol. Inspired by this line of work, Garay et al. propose
a new paradigm called Rational Protocol Design (RPD) [19], and this paradigm
was developed further in several subsequent works [18,20] (we will comment on
the relationship of our notion and RPD shortly).

Second, another central question is how cryptography can help traditional
game theory. Classical works in game theory [27,33] assumed the existence of a
trusted mediator. Therefore, recent works considered how to realize this trusted
mediator using cryptography [6,16,23,26].
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It is well-understood that the notion of Nash equilibrium may predict unsta-
ble outcomes since it may rely on empty threats. Our CSP notion adopts the
(coalition-resistant) Nash equilibrium paradigm and therefore it does not elimi-
nate the issue of empty threats. In other words, for a CSP-fair protocol, it could
be that a player threatens to deviate from the honest protocol (possibly at a
harm to itself), making other players reconsider their strategies too. A couple
works proposed new notions in the context of computationally bounded agents,
aiming to eliminate empty threats. Gradwohl, Livne and Rosen [22] suggested a
notion called computational threat-free Nash equilibrium, which can be viewed
as a relaxation of the classical notion of subgame perfect equilibrium for com-
putationally bounded agents. This work does not consider coalition resistance.
Pass and shelat [35] suggest a new notion called renegotiation-safe equilibrium,
which they show to be incomparable to Nash equilibrium. Their work captures
some notion of coalition resistance in the sense that coalitions do not want
to renegotiate to strategies that are themselves resilient to future renegotia-
tions. Our protocol is not a threat-free Nash/renegotiation safe under the same
resilience parameter—it is interesting to study what resilience parameters our
protocol can tolerate under these notions. In fact, Threat-Free Nash and Rene-
gotiation Safety have not been explored in a coalition setting before. It would
also be an interesting future direction to explore the (in)feasiblity of threat-free
or renegotiation-safe notions in the context of multi-party coin toss.

Recent Efforts. More recently, there has been renewed interest in the connec-
tion of game theory and cryptography, partly due to the success of decentralized
blockchains. Besides the work of Chung et al. [14] which provided direct inspira-
tion of our work, the recent work of Chung, Chan, Wen, and Shi [13] suggested an
alternative formulation of game-theoretically fair multi-party coin toss. Specifi-
cally, they consider the task of electing a leader among n players, where everyone
is competing to get elected. Therefore, if a user gets elected, its utility is 1, else
its utility is 0. Their formulation can be viewed as tossing an n-way dice whereas
our formulation and that of Chung et al. consider a binary coin. Intriguingly,
for the leader election formulation, it is indeed possible to achieve CSP-fairness
under any number of corruptions, and thus Chung et al. [13] focus on under-
standing the round complexity of such protocols. Chung et al. also explore how
to define approximate notions of game-theoretic fairness in a distributed pro-
tocol context, and they point out that further subtleties exist in defining an
approximate notion, and thus they suggest new notions called sequential CSP
fairness and sequential maximin fairness. These technicalities only pertain to
approximate notions with non-negligible slack, and are not relevant for us since
we consider (1-negligible)-fairness.

Other recent works, also inspired by blockchain applications, consider a finan-
cial fairness notion through the use of collateral and penalities [2,8,30–32]. In
comparison, the protocols in this paper can ensure game theoretic fairness even
without the use of collateral or penalties if applied in blockchain contexts.
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Relationship to RPD. Chung, Chan, Wen, and Shi [13] also show a connection
between their approximate game-theoretic notion and the elegant RPD notion by
Garay et al. [18–20]. The same connection also applies to our notion. More specif-
ically, the RPD framework models a meta-game, i.e., a Stackelberg game between
the protocol designer and an attacker: the designer first picks a protocol Π, then
the attacker can decide which coalition to corrupt and its strategy after exam-
ining this protocol Π. They want a solution concept that achieves a subgame
perfect equilibrium in this Stackelberg meta-game, but consider classical-style
utility functions related to breaking privacy or correctness. Essentially, Chung
et al. [13] showed that the CSP-fairness notion can be an equivalent interpreta-
tion in the RPD framework if we alter their utility notion accordingly to match
our notion. We refer the readers to Chung et al. [13] for a detailed statement
and proof of this equivalence.

Other Related Works. Finally, we can also circumvent Cleve’s impossibility of
strongly fair (i.e., unbiasable) coin toss under corrupt majority by introducing a
trusted setup, or introducing non-standard cryptographic assumptions such as
Verifiable Delay Functions [10,11]. In this paper, we focus on the plain model
without trusted setup, without any common reference string (CRS), and standard
cryptographic hardness assumptions.

2 Technical Overview

2.1 Upper Bound

Glimpse of Hope. In light of the pessimistic view of Chung et al. [14], we start
with a relatively simple protocol that gives us a glimpse of hope. As a special case,
consider the scenario when n0 = n1 = 2—recall that for b ∈ {0, 1}, nb denotes
the number of players that prefer b (also called b-supporters). In this case, there
is a very simple protocol that achieves CSP-fairness against any coalition of
at most 2 players. Imagine that we elect one 0-supporter and one 1-supporter
arbitrarily as two representatives each preferring 0 and 1, respectively. We now
have the two representatives duel with each other using Blum’s coin toss, where
if the b-supports aborts then the protocol outputs 1 − b for b ∈ {0, 1}. A simple
argument proves that this protocol satisfies CSP-fairness:

– If a coalition controls only 1 player, it makes no sense to deviate whether or
not the corrupt player is elected representative.

– If the coalition controls 2 players with opposing preferences, then the coalition
is indifferent to the outcome and has no incentive to deviate.

– Finally, if the coalition controls 2 players with the same preference, then one
of the two will be elected as representative, and the representative should not
have incentive to deviate (whereas the non-representative’s behavior has no
influence to the outcome).
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This very simple teaser already shows that Chung et al. [14]’s impossibility
proof does not hold when there is no (n − 1)-sized coalition. Moreover, it also
shows that this notion is weaker than cryptographic fairness, as there is no honest
majority and still there is a possibility result.

Warmup Protocol for a Semi-malicious Coalition. Unfortunately, the approach
taken by the above teaser protocol for n0 = n1 = 2 does not easily generalize to
larger choices of n0 and n1. We next give a warmup protocol that is somewhat
more sophisticated, but it suggests a more general paradigm which inspires our
final upper bound result. Chung et al. [14] gave a protocol against a coalition of
size up to n1 players for n0 = 1, thus we only consider n0 ≥ 2 in our construction.
For simplicity, we start with the semi-malicious model [4], i.e., the coalition is
restricted to the following two types of deviations:

1. It can abort from the protocol in some round, after looking at the honest
messages of that round. Moreover, once a player has aborted, it stops partic-
ipating from that point on.

2. The coalition can choose its random coins to be used in each round after
inspecting the honest messages of that round.

Besides these two possible deviations, the coalition would otherwise follow the
protocol faithfully.

The HalfToss Sub-protocol. Consider the following sub-protocol called
HalfTossb[k] where b ∈ {0, 1}, and k is a threshold parameter whose purpose
will become clear shortly. At a very high level, the sub-protocol chooses a ran-
dom coin for the group of players that invoke this sub-protocol. Later on, this
HalfTossb protocols will be executed twice: first among the 0-supporters and all
the 1-supporters act as silent observers; and then among the 1-supporters where
the 0-supporters act as silent observers. We use HalfToss0 and HalfToss1 to dis-
tinguish the two instances. Henceforth, let Pb ⊂ [n] denote the set of b supporters
for b ∈ {0, 1}. The final coin would be the XOR of the coins of the two groups.

Protocol 2.1: HalfTossb[k] sub-protocol (semi-malicious version)

Sharing Phase.

1. Each b-supporter i ∈ Pb chooses a random bit coini
$←{0, 1}. It then uses

(k + 1)-out-of-n Shamir secret sharing3 to split the coin coini into nb

shares, denoted {[coini]j}j∈Pb
, respectively. Player i then sends [coini]j

to each player j ∈ Pb over a private channel.
2. If a b-supporter has not aborted, post a heartbeat message to the broad-

cast channel. At this moment, the active set Ob is defined to be the set of
all b-supporters that indeed posted a heartbeat to the broadcast channel.
Each player i ∈ [Pb] computes si := ⊕j∈Ob

[coinj ]i where [coinj ]i is the
share player i has received from player j.

Reconstruction Phase.
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1. Every b-supporter i ∈ Pb posts the reconstruction message (i, si) to the
broadcast channel.

2. If at least k+1 number of b-supporters posted a reconstruction message,
then reconstruct the final secret s using Shamir secret sharing. Specifi-
cally, interpret each reconstruction message of the form (j, sj) as jointly
defining some polynomial f such that f(j) = sj and the reconstructed
secret s := f(0). Output s.

3. Else if fewer than k + 1 number of b-supporters posted a reconstruction
message, output ⊥.

Properties of the HalfToss Sub-protocol. The HalfTossb[k] sub-protocol satisfies
the following properties:

– Binding. The sharing phase uniquely defines a secret s, such that the recon-
struction phase either succeeds and outputs s, or it fails and outputs ⊥.

– Knowledge threshold. If at least k+1 number of b-supporters are corrupt, then
the coalition can control the outcome of the coin toss. Specifically, during the
sharing phase, the coalition will know the coini value for every honest i, and
thus it can choose the coalition’s coin values accordingly to program the
outcome to its own liking.
On the other hand, if at most k number of b-supporters are corrupt, then
the coin value s that the sharing phase binds to is uniform and independent
of the coalition’s view in the sharing phase (i.e., the coalition is completely
unaware of this random coin value).

– Liveness threshold. If the coalition controls at least nb − kb number of b-
supporters, it can cause the reconstruction to fail and output ⊥.
On the other hand, if the coalition controls fewer than nb − k number of
b-supporters, then the reconstruction phase must succeed.

Our Warmup Protocol. Our warmup protocol makes use of two instances of the
HalfTossb sub-protocol among the 0-supporters and 1-supporters, respectively.
The two instances are parametrized with the thresholds k0 and k1—we shall
first describe the protocol leaving k0 and k1 unspecified, we then explain how to
choose k0 and k1 to get CSP fairness.

Protocol 2.2: Warmup protocol with semi-malicious security

Sharing phase.

1. (0-supporters participate, 1-supporters observe). Run the sharing phase
of HalfToss0[k0].

2. (1-supporters participate, 0-supporters observe). Run the sharing phase
of HalfToss1[k1].

Reconstruction Phase.
0 For concreteness, in (k+1)-out-of-n secret sharing, a subset of k parties learn nothing

about the secret while each subset of k + 1 can reconstruct the secret.



130 K. Wu et al.

1. (0-supporters participate, 1-supporters observe). Run the reconstruction
phase of HalfToss0[k0], and let its outcome be s0 if reconstruction is
successful. In case the reconstruction outputs ⊥, then let s0 := 0.

2. (1-supporters participate, 0-supporters observe). Run the reconstruction
phase of HalfToss1[k1]. If the reconstruction phase outputs ⊥, then out-
put 0 as the final coin value. Else let s1 be the reconstructed value, and
output s0 + s1 as the final coin value.

Choosing the Thresholds k0 and k1. Suppose we want to have a CSP-fair protocol
for coalitions of size at most t. Let t0 and t1 denote the number of corrupted
0-supporters and 1-supporters, respectively. Our idea is to choose the thresholds
k0 and k1 in light of n0, n1, and t, such that the following conditions are satisfied
(and recall that we assume without loss of generality that n1 ≥ n0):

(C1) The coalition cannot control both coin values s0 and s1. That is, for either
b ∈ {0, 1}, if the coalition controls at least kb +1 number of b-supporters, then
because it is subject to the corruption budget t, the coalition must control
at most k1−b number of (1 − b)-supporters, such that the coin value s1−b is
uniform and independent of the coalition’s view at the end of the sharing
phase.

(C2) If the coalition can control the s1 coin, i.e., it controls at least k1+1 number
of 1-supporters, then it cannot hamper the reconstruction of the coin s0 due to
the corruption budget. That is, the coalition must control at most n0 −k0 −1
number of 0-supporters.

(C3) If the coalition controls at least n1 − k1 number of 1-supporters such that
it can cause the reconstruction of s1 to fail, then the coalition must prefer 1
or is indifferent to the outcome. In other words, denoting by tb the number
of corrupted b-supporters and letting t1 ≥ n1 − k1 then we have two cases:
(a) if n1 − k1 ≥ n0, then this implies that the coalition prefers 1 (since
t0 ≤ n0 ≤ n1 − k1 ≤ t1) and there is no new constraint; otherwise (b) if
n1 − k1 < n0, then we simply require that t ≤ 2t1. This implies that t0 ≤ t1
(and the coalition prefers 1 or is indifferent) since t = t0 + t1.

If parameters k0, k1, t satisfy the following constraints, then they satisfy the
above conditions.

Paramete Constraints 5.1 (semi-malicious version).
Assume: 0 ≤ k0 ≤ n0, 0 ≤ k1 ≤ n1

(C1) t ≤ k0 + k1 + 1,
(C2) t ≤ k1 + 1 + n0 − k0 − 1 = n0 + k1 − k0,
(C3) if n1 − k1 < n0, then t ≤ 2(n1 − k1).

Given the above constraints and the parameters n0, n1, and t, if a feasible
solution for k0 and k1 exists, the above warmup protocol (parametrized with the
feasible solution k0 and k1) would be CSP-fair against t-sized coalitions. The
reasoning is as follows.
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– First, due to condition (C3), it never makes sense for the coalition to prevent
the reconstruction of the s1 coin (in which case 0 would be the declared
output). If the coalition controls enough 1-supporters such that it is capable
of failing the reconstruction of s1, then it either prefers 1 or is indifferent.

– Henceforth we may assume that s1 is successfully reconstructed. Now, due to
condition (C1), there are two cases: 1) either the value of s1 is uniform and
independent of the coalition’s view at the end of the sharing phase, or; 2) the
coalition can control the value of s1.
In the former case, since the coin s1 is assumed to be successfully recon-
structed, the final outcome must be random. It is important that s1 is recon-
structed at the very end, after s0 is reconstructed. Otherwise, this argument
will not hold, since the coalition may examine the reconstructed s1 value, and
then decide whether to abort the reconstruction of s0. In the latter case, due
to conditions (C1) and (C2), it must be that s0 is uniform and independent of
the coalition’s view at the end of the sharing phase, and moreover, the coali-
tion cannot hamper the reconstruction of s0. In this case, the final outcome
s0 ⊕ s1 must be random, too.

Optimal Resilience for the Warmup Protocol. Given n0 and n1, we may ask
what is the optimal resilience for this warmup protocol? Solving for the optimal
resilience is equivalent to solving for the maximum t such that there exists a
feasible solution for k0 and k1 given the above constraints. It turns out that t
is maximized under the following choices of k0 and k1, depending on n0 and n1

where n1 ≥ n0 ≥ 1:

Case k0 k1 t

If n1 ≥ 5
2
n0 �n0

2
� n1 − n0 n1 − � 1

2
n0�

Otherwise �n0
2

� � 2
3
n1 − 1

6
n0� � 2

3
n1 − 1

6
n0� + �n0

2
�

Remark 2.4. The intuition for the phase transition at n1 = 5
2n0 follows from

the implications of the different constraints. In particular, when n1 ≥ 5
2n0, then

to corrupt a coalition that prefers 0, the adversary does not have to corrupt too
many parties, and the conditions are easily satisfied. If the coalition prefers 1,
then Condition (C3) does not add any constraint. In that case t is maximized
subject to only the constraints corresponding to Condition (C1) and (C2). When
n1 < 5

2n0, then it is possible that a coalition corrupting majority parties prefers
0. Therefore, we need to maximize t under the three constraints corresponding
to Condition (C1), (C2) and (C3).

In Appendix A, we visualize the choice of t as a function of n0 and n1, to help
understand the intriguing mathematical structure of game-theoretic fairness in
multi-party coin toss.
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A Corner Case of n0 = n1 = odd. It turns out that the above solution for t
is optimal (even for semi-malicious coalitions) in light of our lower bound in
Sect. 5, except for the corner case n0 = n1 = odd. This is because the above
conditions (C1), (C2) and (C3) are slightly too stringent—in cases when the
adversary corrupts exactly the same number of 0-supporters and 1-supporters,
the coalition is actually indifferent (i.e., have no preference). In such cases, the
coalition is allowed to bias the coin towards either direction, and therefore we
do not need the above conditions to hold. Taking this corner case into account,
we obtain that the number of corruptions that can be tolerated is:

Case k0 k1 t

If n1 ≥ 5
2
n0 �n0

2
� n1 − n0 n1 − � 1

2
n0�

If n1 = n0 = odd �n0
2

� � 1
2
n1� n1 + 1

Otherwise �n0
2

� � 2
3
n1 − 1

6
n0� � 2

3
n1 − 1

6
n0� + �n0

2
�

The final protocol against malicious coalition who may deviate arbitrarily
from the prescribed protocol is described in Sect. 4.

2.2 Lower Bound

Our lower bound techniques are inspired by that of Chung et al. [14], who proved
that there is no CSP-fair n-party coin toss protocol for n ≥ 3 even against fail-
stop coalitions, unless all parties except one prefer the same bit.

We may assume n1 ≥ n0 ≥ 2, since the corner cases where n0 = 1 has already
been treated by Chung et al. [14]. Our idea is to partition the players into three
partitions denoted S1, S2, and S3, respectively. We may assume that there is
an ordering for the identities of all parties and that the preferences are public.
Then:

– S1 runs the code of the first α0 number of 0-supporters, and the first α1

number of 1-supporters.
– S2 runs the code of the next (n0 − 2α0) number of 0-supports and the next

(n1 − 2α1) number of 1 supporters.
– S3 runs the code of the next (last) α0 number of 0-supporters and the last

α1 number of 1-supporters.

This means that each party Si internally emulates the execution of all parties it
runs; all messages that are sent between theses parties are dealt internally by Si

and all messages that are sent between parties that are controlled by different Si,
Sj are sent as a message from Si to Sj (with a clear labeling that states which
message is intended to which internal party). The idea of the lower bound is to
show that as long as α0, α1 and t satisfy a set of conditions defined with respect
to n0, n1, then for any n-party protocol Π achieving CSP-fairness against any
non-uniform fail-stop coalition of size t, its corresponding three-party coin-toss
protocol must satisfy the following properties:
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(LBC1) Lone-wolf condition: a fail-stop coalition controlling S1 (or S3) alone
adopting any non-uniform p.p.t. strategy cannot bias the output
towards either direction by a non-negligible amount.

(LBC2) Wolf-minion condition: a fail-stop coalition controlling S1 and S2 (or
S2 and S3), adopting any non-uniform p.p.t. strategy, cannot bias the
output towards 1 by a non-negligible amount.

(LBC3) T2-equity condition: Consider an honest execution of the protocol
conditioned on the fact that S2 has its randomness fixed to T2, and
let f(T2) denote the expected outcome (where the probability is taken
over S1 and S3’s randomness). T2-equity condition states that there
exists a negligible function negl(·) such that for all but negl(λ) fraction
of T2, |f(T2) − 1/2| is negligible.

We use Π to denote both the n-party CSP-fair protocol and the three-party
coin toss protocol when the context is clear. The following generalized theorem
is implicit in Chung et al. [14]’s lower bound proof—the full proof is available in
the full version.

Theorem 2.5 (Generalized Theorem 21 of Chung et al. [14]). There is no
protocol Π among three super nodes S1, S2 and S3 such that Π satisfies the
above lone-wolf condition (LBC1), the wolf-minion condition (LBC2), and the
T2-equity condition (LBC3) simultaneously.

If we can figure out the constraints that the parameters α0, α1 and t should
satisfy, such that for any coin toss protocol among n0 number of 0-supporters
and n1 number of 1-supporters that achieves CSP fairness against a coalition of
size up to t, it’s corresponding three-party coin toss protocol (after partition with
respect to α0 and α1 as specified), must satisfy the lone-wolf condition (LBC1),
the wolf-minion condition (LBC2), as well as the T2 equity condition (LBC3)
simultaneously. Then by Theorem 2.5, we can show that there is no coin toss
protocol that can achieve CSP fairness against a coalition of size up to t. The
constraint system is shown in Sect. 5 with proofs that the constraint system
implies the three conditions.

3 Definitions

The Model. In an n-party coin toss protocol, n players interact through pair-
wise private channels as well as a public broadcast channel. We assume that all
communication channels are authenticated, i.e., messages always carry the true
sender’s identity. Without loss of generality, we assume the players are num-
bered 1, 2, . . . , n, respectively. We assume that the network is synchronous and
the protocol proceeds in rounds. Each player has a publicly stated preference
for either the bit 0 or the bit 1. We call the vector of players’ preferences as
the preference profile, denoted as P. At the end of the protocol, the coin toss
outcome is defined as a deterministic, polynomial-time function over the set of
public messages posted to the broadcast channel. The utility function that we
consider is defined as follows:
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The utility function: If the outcome agrees with a player’s preference,
the player obtains utility 1; else it obtains 0.
The utility of a coalition A ⊂ [n] is the sum of the utilities of all coalition
members.

The protocol execution is parametrized with a security parameter λ, and we may
assume that n is polynomially bounded in λ. We assume that the coalition A
(also called the adversary) may perform a rushing attack: in any round r, it can
wait for honest players (i.e., those not in A) to send messages, and then decide
what round-r messages the corrupt players in A want to send.

Correctness. We let σ∗ = (σ∗
1 , . . . , σ

∗
n) denote the strategy (the code) of the all

honest execution. That is, σ∗
i can be viewed as the code that party Pi is supposed

to run according to the protocol specifications. We say that the protocol is correct
if, unless all players have the same preference (in which case we can simply
output the preferred bit with probability 1), the coin toss outcome is some fixed
b ∈ {0, 1} with probability at most 1/2 ± negl(λ) for some negligible function
negl(·).

Notations. For a coalition A ⊂ [n], we let UA denote the utility of the coalition.
We let σ∗ = (σ∗

1 , . . . , σ
∗
n) denote the strategy (the code) of the all honest exe-

cution. For a coalition A ⊂ [n], we denote by UA(σA, σ∗
−A) the expected utility

of all members in A where the members of A follow some σA and the members
that are not in A follow the honest strategy σ∗

−A. We denote by UA(σ∗
A, σ∗

−A) the
expected utility of all members in A where all parties follow the honest strategy.
All executions are considered with respect to some utility function and some
public preference profile P.

CSP Fairness. Recall that in CSP fairness we require that no coalition can
increase its own expected utility no matter how it deviates from the prescribed
strategy. This is formalized as follows:

Definition 3.1 (CSP-fairness [14]). We say that a coin toss protocol σ∗ satis-
fies cooperative-strategy-proofness (or CSP-fairness) against any for t-sized coali-
tions with respect to a preference profile P, iff for all A ⊆ [n] of cardinality
at most t, any non-uniform probabilistic polynomial-time (p.p.t.) strategy σ′

A

adopted by the coalition A, there is a negligible function negl(·), such that1

UA(σ′
A, σ∗

−A) ≤ UA(σ∗
A, σ∗

−A) + negl(λ) .

1 Like earlier works [1,3,5,14,18–20,24,29,34,36], our CSP-fair notion considers the
deviation of a single coalition. Such a definitional approach is standard and dominant
in the game theory literature, and the philosophical motivation is that the honest
protocol would then become an equilibrium such that no coalition (of a certain size)
would be incentivized deviate. In fact, many earlier works (including the standard
Nash equilibrium notion) would even consider deviation of a single individual rather
than a coalition.
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Note that in this definition, if the coalition controls the same number of 0-
supporters and 1-supporters, then we allow it to bias the output arbitrarily
since it has no preference.

Maximin Fairness. Maximin fairness requires that no coalition can harm any
honest party. This is formalized as follows:

Definition 3.2. We say that a coin-toss protocol σ∗ satisfies maximin fairness
for t-sized coalitions with respect to a preference profile P, iff for any p.p.t.
adversary A controlling at most t parties, there exists a negligible function negl(·)
such that, in an execution of the protocol involving the adversary A, the expected
utility of any honest party i is at least Ui(σ∗) − negl(λ), where Ui(σ∗) is the
expected utility of party i in an honest execution of the protocol with respect to
P.

4 Upper Bound

Our starting point is the warmup protocol for semi-malicious adversary, as pre-
sented in Sect. 2.1, which leads to the following optimal resilience:

Case k0 k1 t
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A Corner Case of n0 = n1 = odd. It turns out that the above solution for t
is optimal (even for semi-malicious coalitions) in light of our lower bound in
Sect. 5, except for the corner case n0 = n1 = odd. This is because the above
conditions (C1), (C2) and (C3) are slightly too stringent—in cases when the
adversary corrupts exactly the same number of 0-supporters and 1-supporters,
the coalition is actually indifferent (i.e., have no preference). In such cases, the
coalition is allowed to bias the coin towards either direction, and therefore we
do not need the above conditions to hold. Taking this corner case into account,
we obtain that the number of corruptions that can be tolerated is:
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Due to our lower bound in Sect. 5, the above resilience parameter is optimal
for CSP fairness, even for semi-malicious corruptions.
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4.1 Our Final Protocol for Malicious Coalitions

We now present our final construction ensures CSP-fairness against malicious
coalitions that may deviate arbitrarily from the prescribed protocol.

Maliciously Secure HalfTossb Sub-Protocol. To lift the warmup protocol
to malicious security, the main challenge is how to realize a counterpart of the
HalfTossb protocol for the malicious corruption model. Recall that in the semi-
malicious model, we relied on the players themselves to send heartbeats to iden-
tify which players have aborted. In this malicious model, we can no longer rely
on such self-identification because players can lie. In a corrupt majority model,
we also cannot easily take majority vote to determine who remains online and
honest.

Our final solution relies on MPC with identifiable abort [21,25] which can
be accomplished assuming the existence of Oblivious Transfer (OT). Recall that
in MPC with identifiable abort, either the players successfully evaluate some
ideal functionality, or if the protocol aborted, then all honest players receive
the identity of an offending player. The idea is that the honest players can now
kick out the offending player and retry, until the protocol succeeds in producing
output.

Specifically, we will replace our earlier HalfTossb[k] sub-protocol with the
following maliciously secure counterpart, in which the b-supporters participate
and the (1 − b)-supporters observe.

Protocol 4.1: HalfTossb[k] sub-protocol with malicious security
Sharing phase.

1. Initially, define the active set O := Pb. Repeat the following until success:
(a) The active set O use MPC with identifiable abort to securely com-

pute the ideal functionality Fb,O
sharegen[k] to be described below (Func-

tionality 4.2:).
(b) If the protocol aborts, then every honest player obtains the identity

of a corrupt player j∗ ∈ O. Remove j∗ from O.
2. At this moment, each player i ∈ O has obtained the tuple

(vk, [s]i, [r]i, [com]i, σi, σ
′
i) from Fb,O

sharegen[k].

Vote phase.

1. Each player posts vk to the broadcast channel — henceforth this is also
called a vote for vk. Let vk′ be the verification key that has gained the
most number of votes, breaking ties arbitrarily.

2. If vk′ has not gained at least k + 1 votes, declare that the vote phase
failed and return. Else, if vk′ = vk, then player i posts [com]i and σi to
the broadcast channel.

3. Everyone gathers all ([com]j , σj) pairs posted to the broadcast channel
such that σj is a valid signature of [com]j under vk′. If there are at least
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k + 1 such tuples and all shares [com]j reconstruct uniquely to the value
com, then record the reconstructed commitment com. Else we say that
the vote phase failed.

Reconstruction phase.

1. If the vote phase failed, output the reconstructed value ⊥. Else, continue
with the following.

2. For each player i ∈ O, if vk′ = vk, then post to the broadcast channel
the tuple ([s]i, [r]i, σ′

i).
3. Every player does the following: gather all tuples ([s]j , [r]j , σ′

j) posted
to the broadcast channel such that σ′

j is a valid signature for ([s]j , [r]j)
under vk′. If all such ([s]j , [r]j) tuples reconstruct to a unique value
(s, r) and moreover, (s, r) is a valid opening of com, then output the
reconstructed value s. Else output ⊥ as the reconstructed value.

Functionality 4.2: The Fb,O
sharegen[k] ideal functionality

1. Sample (sk, vk) ← Sig.KeyGen(1λ) where Sig := (KeyGen,Sign,Vf)
denotes a signature scheme.

2. Sample s
$← {0, 1}, and randomness r ∈ {0, 1}λ, let com := Commit(s, r).

3. Use a (k + 1)-out-of-|O| Shamir secret sharing scheme to split the terms
(s, r) and com into |O| shares, denoted {[s]i, [r]i, [com]i}i∈O, respectively.
Let σi := Sig.Sign(sk, [com]i) and σ′

i := Sig.Sign(sk, ([s]i, [r]i)) for i ∈ O.
4. Each player in O receives the output (vk, [s]i, [r]i, [com]i, σi, σ

′
i).

The maliciously secure HalfTossb[k] protocol satisfies the following properties:

– Binding. If the vote phase does not fail, then the messages on the broadcast
channel in the sharing and vote phases uniquely define a coin s �= ⊥ such
that reconstruction must either output s or ⊥.

– Knowledge threshold. We now have a computationally secure version of the
knowledge threshold property.

• If at least k + 1 number of b-supporters are corrupt, then the coalition
can bias coin values s that the sharing and vote phases uniquely bind to
(assuming that the voting phase did not fail). Specifically, if the coalition
controls k + 1 number of b-supporters, it can decide whether to abort
Fb,O

sharegen[k] after seeing the corrupt players’ shares {[s]j}j∈A where A ⊂
[n] denotes the coalition. If it controls max(k + 1, nb/2) number of b-
supporters, it can control the verification key vk′ and thus alter the coin
s the sharing and vote phases bind to as well.

• If fewer than k+1 number of b-supporters are corrupt, then the coalition’s
view at the end of the voting phase is computationally independent of
the coin value s that the sharing and vote phases bind to. More formally,
either the vote phase fails, or there exists a p.p.t. simulator Sim such that:

(s, viewA) ≈c (Uniform,Sim(1λ))
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where s denotes the unique coin value that the sharing phase and vote
phases bind to, viewA denotes the coalition’s view at the end of the vote
phase, Uniform denotes a random bit sampled from {0, 1}, and ≈c denotes
computational indistinguishability.

– Liveness threshold. If the coalition controls at least min(nb −k, nb/2) number
of b-supporters, it can cause the reconstruction to output ⊥. On the other
hand, if the coalition controls fewer than min(nb − k, nb/2) number of b-
supporters, then the reconstruction phase must succeed.

In comparison with the earlier semi-malicious version, the knowledge thresh-
old and liveness threshold property now become weaker. One relaxation is the
computational security relaxation in the knowledge threshold property whereas
previously in the semi-malicious version, the property was information theoretic.
Another relaxation is that the thresholds for the two properties have changed.
Now, the coalition may be able to control the coin value and hamper reconstruc-
tion with a smaller threshold.

Final Protocol. Our final protocol is described as follows:

Protocol 4.3: Final protocol with malicious security

Sharing phase.

1. 0-supporters run the sharing phase of HalfToss0[k0].
2. 1-supporters run the sharing phase of HalfToss1[k1].

Vote phase. (The order of the two instances is important.)

1. 1-supporters run the vote phase of HalfToss1[k1].
2. 0-supporters run the vote phase of HalfToss0[k0].

Reconstruction Phase. (The order of the two instances is important.)

1. 0-supporters run the reconstruction phase of HalfToss0[k0], and let its
outcome be s0 if reconstruction is successful. In case the reconstruction
outputs ⊥, then let s0 := 0.

2. 1-supporters run the reconstruction phase of HalfToss1[k1]. If the recon-
struction phase outputs ⊥, then output 0 as the final coin value. Else let
s1 be the reconstructed value, and output s0 + s1 as the final coin value.

In the above, the order of the two instances in the vote and reconstruction phases
is important due to a similar reason as in the semi-malicious version.

Setting aside the computational security issue for the time being (which can
be formally dealt with using a standard computational reduction argument), in
light of the properties for our maliciously secure HalfTossb sub-protocol, we can
now rewrite the earlier (C1), (C2), (C3) conditions as follows (recall that t0 and
t1 are number of corrupted 0-supporters and 1-supporters, respectively):
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(C1∗) The coalition cannot control both s0 and s1, i.e., the coin values the sharing
and vote phases of HalfToss0[k0] and HalfToss1[k1] bind to (assuming that
it did not fail), respectively. This means that if the coalition controls at
least kb+1 number of b-supporters, then it does not have enough corruption
budget to control k1−b + 1 number of (1 − b)-supporters.

(C2∗) If the coalition controls the s1 coin, i.e., it controls at least k1+1 number of
1-supporters, then it cannot hamper the reconstruction of the coin s0
due to the corruption budget. That is, the coalition must control fewer
than min(n0 − k0, n0/2) number of 0-supporters.

(C3∗) If the coalition controls at least min(n1−k1, n1/2) number of 1-supporters
such that it can cause the reconstruction of s1 to fail, then the coalition
must prefer 1 or is indifferent to the outcome—in other words, either
n0 ≤ t1 or t ≤ 2t1 (t0 ≤ t1 and so t = t0 + t1 ≤ 2t1).

These conditions can be rewritten as the following expressions:

Paramete Constraints 4.4 (malicious version).
Assume: 0 ≤ k0 ≤ n0, 0 ≤ k1 ≤ n1

(C1∗) t ≤ k0 + k1 + 1,
(C2∗) t < k1 + 1 + min(n0 − k0, n0/2),
(C3∗) if min(n1 − k1, �n1

2 �) < n0, then t ≤ 2 · min(n1 − k1, �n1
2 �).

One can verify that any k0, k1, t that satisfy (C1∗), (C2∗), (C3∗) must also
satisfy the earlier conditions (C1), (C2) and (C3). This means that the new
malicious version of the protocol cannot tolerate more corruptions than the semi-
malicious version. Intriguingly, it turns out that there exists a choice of k0 and
k1 that maximizes t for conditions (C1), (C2) and (C3), such that the same
(k0, k1, t) also satisfy (C1∗), (C2∗), and (C3∗). This means that our maliciously
secure protocol can achieve the same resilience parameter as the semi-malicious
version.2 More specifically, there exists a choice satisfying k0 = �(n0 − 1)/2� and
k1 ≥ �n1/2� such that t is maximized for conditions (C1), (C2) and (C3). One
can then verify that as long as k0 = �(n0 − 1)/2� and k1 ≥ �n1/2�, a feasible
solution (k0, k1, t) for conditions (C3), (C2) and (C3) would also be a feasible
solution for conditions (C1∗), (C2∗), and (C3∗).

Just like the earlier semi-malicious setting, the above constraints (C1∗),
(C2∗), and (C3∗) are in fact slightly too stringent; thus, for the special case
n0 = n1 = odd, the resulting solution of t would have a gap of 1 away from
optimal. This gap can be bridged by observing that if the same number of 0-
supporters and 1-supporters are corrupt, the coalition would then be indifferent,
and it would be fine if the coalition could bias the coin towards either direction.

The formal proof of the following theorem (Theorem 1.1 in the introduction) is
available in the full version.

2 Note that since our lower bound holds even for fail-stop adversaries, only when the
malicious version matches the resilience of the semi-malicious version can it be tight.
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Theorem 4.5 (Upper bound). Assume the existence of Oblivious Transfer
(OT), and without loss of generality, assume that n1 ≥ n0 ≥ 1, and n0 +n1 > 2.
Protocol 4.3: is CSP-fair coin toss protocol which tolerates up to t-sized non-
uniform p.p.t. malicious coalitions where

t :=

⎧
⎪⎨

⎪⎩

n1 − � 1
2n0�, if n1 ≥ 5

2n0;
� 2
3n1 − 1

6n0� + � 1
2n0� + 1 = n1 + 1, if n1 = n0 = odd;

� 2
3n1 − 1

6n0� + � 1
2n0�, otherwise.

5 Lower Bound

5.1 Parameter Constraints

We now show that, if the parameters α0, α1 and t satisfy the following con-
straints, then for any coin toss protocol among n0 number of 0-supporters and
n1 number of 1-supporters that achieves CSP fairness against a coalition of size
up to t,3 it’s corresponding three-party coin toss protocol (after partition with
respect to α0 and α1 as specified), must satisfy the lone-wolf condition (LBC1),
the wolf-minion condition (LBC2), as well as the T2 equity condition (LBC3)
simultaneously.

Paramete Constraints 5.1 (Constraint system for lower bound proof).
Non-negative Lone-wolf Wolf-minion T2-equity

0 ≤ α0 ≤ 1
2
n0 α1 + 1 ≤ n0 n0 − α0 < n1 − α1 1 ≤ α0

0 ≤ α1 ≤ 1
2
n1 α0 + 1 ≤ n1 n0 + n1 − α0 − α1 ≤ t 1 ≤ α1

α0 + α1 ≤ t 3 ≤ t
2α0 + 1 ≤ t 1 ≤ n0 + n1 − 2α0 − 2α1 ≤ t
2α1 + 1 ≤ t

In the above set of conditions, the first set (i.e., non-negative) makes sure that
the number of 0-supporters and 1-supporters in each partition is non-negative.
The next three sets of conditions are required to prove the corresponding three
conditions, respectively. We show how the conditions lead to this set of parameter
constraints in Sect. 5.2. Then, given any fixed n0 and n1, it suffices to solve for
the best partition strategy (i.e., choice of α0 and α1) that minimizes t, and this
minimal choice of t gives rise to our lower bound in light of Theorem 2.5. We
explore that in Sect. 5.3. It turns out that the minimal t value satisfying the
above constraint system coincides with our upper bound stated in Eq. (1).

5.2 Constraint System Implies the Lone-Wolf, Wolf-Minion,
and T2-Equality Conditions

Below we focus on proving that the three lower bound conditions hold provided
the constraint system.
3 Our main lower bound theorem, i.e., Theorem 1.2, states the impossibility for coali-

tions of size t+1 or greater. For convenience, in this section, we switch the notation
to t rather than t + 1.
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Lemma 5.2 (Generalized lone-wolf lemma). Let Π be a protocol that is CSP-
fair against any non-uniform p.p.t., fail-stop coalition of size t. If α0, α1 and t
satisfy the non-negative and lone-wolf constraints in Parameter Constraints 5.1,
then Π satisfies the lone-wolf condition (LBC1).

Proof. Suppose for the sake of contradiction that the long-wolf condition is vio-
lated, i.e., there exists a non-uniform p.p.t. fail-stop adversary A corrupting only
S1 (the same argument holds for S3) that can bias the output towards b ∈ {0, 1}
by a non-negligible amount. We show that then Π is not CSP fair against t
fail-stop adversaries. There are two cases:

– If αb > α1−b then S1 (resp. S3) prefers b. The number of parties in S1 is
α0 + α1. According to the lone-wolf constraints in Parameter Constraints 5.1
we have that α0+α+1 ≤ t and thus this coalition is supposed to be tolerated.

– If αb ≤ α1−b, consider the following coalition in the CSP-fair protocol. The
coalition corrupts S1 and in addition α1−b + 1 − αb number of b-supporters
outside S1. From the lone-wolf constraint in Parameter Constraints 5.1, we
have that nb ≥ α1−b+1. This implies that the number of b-supporters outside
S1 is nb −αb ≥ α1−b +1−αb. Then, this coalition consists of α1−b number of
(1 − b)-supporters and α1−b + 1 number of b-supporters. From the lone-wolf
constraint in Parameter Constraints 5.1 we have that 2α1−b + 1 ≤ t. Then,
this coalition contains less than t parties and it prefers b. If there exists a
fail-stop adversary in the three-party protocol that controls S1 and can bias
towards b, then this coalition in the CSP-protocol can also bias towards b.
Note that the additional parties in the coalition that are outside of S1 act
honestly and are used just to change the preference of the coalition, i.e., it is
enough to consider the existence of a fail-stop adversary that corrupts only
one party in the corresponding three-party protocol.

��
Lemma 5.3 (Generalized wolf-minion lemma). Let Π be a protocol that is
CSP-fair against any non-uniform p.p.t., fail-stop coalition of size t. If α0, α1

and t satisfy the non-negative and wolf-minion constraints in Parameter Con-
straints 5.1, then Π satisfies the wolf-minion condition (LBC2).

Proof. The non-negative constraints make sure that the number of parties in S1,
S2 and S3 are non-negative, as S2 contains (n0−2α0) number of 0-supporters and
(n1 − 2α1) number of 1-supporters. If the wolf-minion constrains hold, then the
coalition of S1 and S2 (or S3 and S2) prefers 1 since in total it contains n0 − α0

number of 0-supporters and n1−α1 number of 1-supporters and according to the
constraints, n1 −α1 > n0 −α0. Moreover, the number of parties in this coalition
is n1 + n0 − α0 − α1, which is at most t according to the condition. Therefore,
any fail-stop adversary corrupting S1 and S2 (or S3 and S2) cannot bias the
output towards 1 by a non-negligible amount, according to the CSP fairness of
Π against t fail-stop adversaries. This means that the protocol Π satisfies the
wolf-minion condition. ��
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Lemma 5.4 (Generalized T2-equity lemma). Let Π be a protocol that is CSP-
fair against any non-uniform p.p.t., fail-stop coalition of size t. If α0, α1 and
t satisfy the non-negative and the T2-equity constraints in Parameter Con-
straints 5.1, then protocol Π satisfies the T2-equity condition (LBC3). That is,
for all but a negligible fraction of S2’s randomness T2, |f(T2) − 1

2 | is negligible.

Proof. By correctness of the protocol, ET2 [f(T2)] = 1
2 . Note that T2 consists of

the randomness of all players in S2, we can view T2 as a vector {tQ}Q∈S2 where
tQ is player Q’s randomness. For any fixed party Q in S2, consider a protocol ΠQ

that is same with Π except that Q aborts at the very beginning of the protocol
and all other parties behave honestly. Let gQ(T2) be the expected output of ΠQ

conditioned on S2’s randomness T2.

Claim 5.5. For any Q ∈ S2, |ET2 [g
Q(T2)] − 1

2 | is negligible.

Proof. Suppose for the sake of contradiction that the claim is not true. Then
this single aborting party Q can bias the outcome of Π towards b ∈ {0, 1} by a
non-negligible amount. This violates the CSP-fairness of the n-party protocol:
Consider a coalition that consists of the Q party and two b-supporters. This
coalition prefers the coin b, and can bias towards it by having Q abort at the
very beginning of the protocol Π. Note that according to T2-equity constraints
in Parameter Constraints 5.1, αb ≥ 1, which implies that there are at least two
b-supporters outside S2. Moreover, the size of the coalition is 3, and thus we
require that t ≥ 3. ��
Claim 5.6. For any Q in S2, for all but a negligible fraction of T2, |gQ(T2) −
f(T2)| is also negligible.

Proof. Note that for all but a negligible fraction of T2, |ET2 [g
Q(T2) − f(T2)]| =

|ET2 [g
Q(T2)] − ET2 [f(T2)]| = |ET2 [g

Q(T2)] − 1
2 | is negligible. Suppose that there

exists a non-negligible fraction of T2 such that f(T2) − gQ(T2) is positive and
non-negligible, then there must also exists a non-negligible fraction of T2 such
that gQ(T2) − f(T2) is positive and non-negligible. This indicates that for a
non-negligible fraction of T2, Q can bias the output of Π towards 1 (or 0) by a
non-negligible amount by aborting at the beginning of the protocol.

Suppose that S2 prefers 1 (the same argument holds if S2 prefers 0). Con-
sider an adversary A∗ that receives a polynomial p(·) as an advice where p(·) is
chosen such that for a non-negligible fraction of T2, gQ(T2) − f(T2) ≥ 1/p(λ).
A∗ corrupts S2 and acts as follows:

– A∗ randomly samples a T2.
– A∗ repeats the following for p2(λ) times: A∗ samples T1 and T3 for S1 and

S3 and simulates an honest execution with the randomness T1, T2, T3. A∗

also simulates an execution in which Q always aborts at the beginning of the
protocol. Then A∗ gets estimates of g̃Q(T2) and f̃(T2).

– If g̃Q(T2) > f̃(T2), A∗ instructs Q to abort at the very beginning of the
protocol. Otherwise it follows the honest execution.
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Note that for any T2 such that gQ(T2)−f(T2) ≥ 1
p(λ) , by the Chernoff bound,

except with a negligible probability, it must be that g̃Q(T2) > f̃(T2). Therefore,
A∗ can bias the output of Π towards 1 by a non-negligible amount. This breaks
the CSP fairness of Π since, according to the T2-equity constraint in Parameter
Constraints 5.1, S2, which contains n0 + n1 − 2α0 − 2α1 contains parties which
is at most t, and it prefers 1. Therefore, for all but a negligible fraction of T2,
|gQ(T2) − f(T2)| is negligible. ��

For any fixed Q ∈ S2, for any pair of T2 and T ′
2 that only differ in Q’s

randomness, it must be that gQ(T2) = gQ(T ′
2). Let � denote the length of T2, we

have:

Claim 5.7. For any fixed i ∈ [�], for all but a negligible fraction of T2, |f(T2)−
f(T̃ i

2)| is negligible, where T̃ i
2 is same as T2 except with the i-th bit flipped.

Proof of Claim 5.7. Suppose that the i-th bit is contributed by party Q ∈ S2.
For any polynomial p(·), define badp

1 to be the event |f(T2) − gQ(T2)| ≥ 1
p(λ) ,

and badp
2 to be the event |f(T̃ i

2) − gQ(T̃ i
2)| ≥ 1

p(λ) . Since for all but a negligible
fraction of T2, |f(T2)−gQ(T2)| is negligible, the probability that badp

1 happens is
negligible. The probability that badp

2 happens is also negligible. Thus by a union
bound, the probability that both badp

1 and badp
2 do not happen is 1 − negl(λ)

for some negligible function negl(·). This indicates that for any polynomial p(·),
|f(T2) − f(T̃i)| ≤ |f(T2) − gQ(T2)| + |f(T̃ i

2) − gQ(T̃ i
2)| ≤ 2

p(λ) with probability
1 − negl(λ). The claim thus follows. ��
Claim 5.8. Pick a random T2 and a random T ′

2. Then except with a negligible
probability over the random choice of T2 and T ′

2, |f(T2) − f(T ′
2)| is negligible.

Proof. Pick a random T2 and a random T ′
2, we define hybrids T i, i = 0, . . . , �+1

as follows:
T i = {t1, . . . , ti, t

′
i+1, . . . , t

′
�},

where ti is the i-th bit of T2 and t′i is the i-th bit of T ′
2. Then, T 0 = T ′

2 and
T � = T2. For any fixed polynomial p(·), define badp

i to be the event that |f(T i)−
f(T i+1)| ≥ 1

p(λ) . Note that the marginal distribution of T i is uniform, for any
polynomial p(·), the probability that badp

i happens is negligible over the choice of
T2 and T ′

2, according to Claim 5.7. Therefore, for any p(·), by the union bound,
the probability that none of badp

i happens is 1 − negl(λ) for some negligible
function negl(·). Observe that for any fixed polynomial p(·), if none of the events
badp

i happen, then |f(T2) − f(T ′
2)| ≤ �+1

p(λ) by triangle inequality. Hence, for
any random T2 and any random T ′

2, |f(T2) − f(T ′
2)| is negligible except with a

negligible probability over the random choices over T2 and T ′
2. ��

Together with the fact that ET2 [f(T2)] = 1
2 , we have that for all but a neg-

ligible fraction of T2, |f(T2) − 1
2 | is negligible. Otherwise if for some polynomial

p(·), q(·), there exists 1/p(λ) fraction of T2 such that f(T2) − 1
2 ≥ 1/q(λ), then
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there must exist 1/p′(λ) fraction of T2 such that 1
2 − f(T2) ≥ 1/q′(λ) for some

polynomial p′(·), q′(·). Then for any random T2 and T ′
2, with a non-negligible

probability, |f(T2)− f(T ′
2)| ≥ 1/q(λ)+1/q′(λ), which violates the above conclu-

sion. To conclude, for all but a negligible fraction of T2, |f(T2)− 1
2 | is negligible.

��

5.3 Minimizing t Subject to Constraints

The full proof of the following lemma is available in the full version.

Lemma 5.9 (Solving the constraint system and minimizing t). For Parameter
Constraint 5.1, the parameter t is minimized when α0 and α1 are chosen as
follows, and the corresponding t is:

Case α0 α1 t

n1 ≥ 5
2
n0, n0 ≥ 2 � 1

2
n0� n0 − 1 n1 − � 1

2
n0� + 1

2 ≤ n0 < n1 < 5
2
n0 � 1

2
n0� � 1

3
n1 + 1

6
n0� − 1 � 1

2
n0� + � 2

3
n1 − 1

6
n0� + 1

2 ≤ n0 = n1 � 1
2
n0� � 1

2
n0� − 1 2� 1

2
n0� + 1

Note that for the case t = 2� 1
2n0� + 1, this expression is equal to � 2

3n1 −
1
6n0� + � 1

2n0� + 1 when n0 = n1 is even, and is equal to n0 + 2 when n0 = n1 is
odd.

6 Complete Characterization of Maximin Fairness

In this section we give a complete characterization of the maximin fairness
defined by Chung et al. [14]. Intuitionally, maximin fairness requires that a cor-
rupted coalition cannot harm the expected reward of any honest party, compared
to an all-honest execution. This definition is formalized in Definition 3.2.

6.1 Lower Bound

Unlike CSP-fairness, maximin-fairness is impossible under a broad range of
parameters. More specifically, we prove the following theorem, which says that
unless n0 = 1 and n1 = odd, for maximin fairness, we cannot tolerate fail-stop
coalitions of half of the parties or more. The special case n0 = 1 and n1 = odd is
slightly more subtle. Chung et al. [14] showed that for the special case n0 = 1, it
is indeed possible to achieve maximin fairness against all but one fail-stop cor-
ruptions. We prove that for n0 = 1, we cannot tolerate semi-malicious coalitions
that are majority in size.

Theorem 6.1 (Lower bound for maximin fairness). Without loss of generality,
assume that n1 ≥ n0 ≥ 1 and n0+n1 > 2. Then there does not exist a maximmin-
fair n-party coin toss protocol that can:
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tolerate fail-stop coalition of size t ≥ � 1
2
(n0 + n1)� for n0 ≥ 2

tolerate semi-malicious coalition of size t ≥ � 1
2
n1� + 1 for n0 = 1

Proof Sketch. For the case where n0 ≥ 2, we show that if there exists a
coin toss protocol that achieves maximin-fairness against � 1

2 (n0 + n1)� fail-stop
adversaries, then we can construct a two-party protocol that violates Cleve’s
lower bound [15]. Consider any preference profile that contains at least two
0-supporters and in which n1 ≥ n0. Then, we partition the 0-supporters and 1-
supporters as evenly as possible into two partitions, and the two party protocol is
simply an emulation of the n-party protocol with respect to this preference pro-
file. Each party internally emulates the execution of all parties it runs in the outer
protocol, in a similar manner as in Sect. 5. Since n1 ≥ n0 ≥ 2, each partition
must contain at least one 0-supporter and at least one 1-supporter. By maximin
fairness, if either partition is controlled by a non uniform p.p.t. adversary A, it
should not be able to bias the outcome towards either 0 or 1 by a non-negligible
amount—otherwise if A was able to bias the coin towards b ∈ {0, 1}, it would be
able to harm an individual b-support in the other partition. Now, if we view the
coin toss protocol as a two-party coin toss protocol between the two partitions,
the above requirement would contradicts Cleve’s impossibility result [15].

For the case where n0 = 1, the proof is similar to that of the CSP-fairness.
We partition the players into three partitions: S1 and S3 each contains half
of 1-supporters and S2 contains the single 0-supporter. We can show that if a
coin toss protocol is maximin-fair against � 1

2n1� + 1 fail-stop adversaries, then
it should satisfy the wolf-minion condition, the lone-wolf condition and the T2-
equity condition simultaneously. The full proof is available in the full version.

��

6.2 Upper Bound

As mentioned, except for the special case n0 = 1 and n1 = odd, for maximin
fairness, we cannot hope to tolerate half or more fail-stop corruptions. However,
if majority are honest, we can simply run honest-majority MPC with guaranteed
output delivery [21,37].

Therefore, the only non-trivial case is when n0 = 1 and n1 = odd. Chung
et al. [14] showed that for n0 = 1, there is a maximin-fair coin toss protocol
against up to (n − 1) fail-stop adversaries. Here, we construct a maximin-fair
coin toss protocol tolerates exactly half or fewer malicious corruptions.

In our protocol, first, the single 0-supporter commits to a random coin,
and moreover, the 1-supporters jointly toss a coin s1 such that the outcome is
secret shared among the 1-supporters. Only if �n1/2� number of 1-supporters get
together, can they learn s1, influence the value of s1, or hamper its reconstruc-
tion later. Next, the 1-supporters reconstruct the secret-shared coin s1. If the
reconstruction fails, the reconstructed value is set to a canonical value s1 := 0.
Finally, the single 0-supporter opens its commitment and let the opening be s0.
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If the single 0-supporter aborts any time during the protocol, the outcome is
declared to be 1. Else, the outcome is declared to be s0 + s1. More formally, the
protocol is as below.

Protocol 6.2: Protocol for maximin-fairness: special case when
n0 = 1 and n1 = odd

1. The single 0-supporter randomly choose s0
$←{0, 1} and compute the

commitment com = Commit(s0, r) with some randomness r ∈ {0, 1}λ.
It then sends the commitment com to the broadcast channel. If the 0-
supporter fails to send the commitment, set s0 = ⊥.

2. The 1-supporters run an honest-majority MPC with guaranteed output
delivery to toss a coin s1. Each player i ∈ P1 (the set of 1-supporters)
receives s̃i as the output of the MPC.

3. Every 1-supporter i ∈ P1 posts the output s̃i it receives to the broadcast
channel. Let s1 be the majority vote. If no coin gains majority vote, set
s1 = 0.

4. The 0-supporter opens its coin s0. If it fails to open the coin correctly,
set s0 = ⊥.

5. If s0 = ⊥, output 1. Otherwise, output s0 ⊕ s1.

Observe that if the single 0-supporter is honest, then we need to make sure
that the coalition cannot bias the coin towards either direction; however, in this
case, since the 0-supporter is guaranteed to choose a random coin and open it
at the end, this can be ensured. If, on the other hand, the single 0-supporter
is corrupt, then we only need to ensure that the coalition cannot bias the coin
towards 0. We may therefore assume that the single 0-supporter does not abort
because otherwise the outcome is just declared to be 1. Further, in this case, the
coalition only has budget to corrupt �n1/2� number of 1-supporters, which means
that we have honest majority in 1-supporters. Therefore, if the 0-supporter does
not abort, then the outcome will be a uniformly random coin.

This gives rise to the following theorem. The full proof to the theorem is
available in the full version.

Theorem 6.2 (Upper bound for maximin fairness). Assume the existence of
Oblivious Transfer. Without loss of generality, assume that n1 ≥ n0 ≥ 1 and
n0 + n1 > 2. There exists a maximin-fair n-party coin toss protocol among
n0 players who prefer 0 and n1 players who prefer 1, which tolerates up to t
malicious adversaries where

t :=

{
� 1
2 (n0 + n1)� − 1, if n0 ≥ 2,

� 1
2n1�, if n0 = 1.

(2)
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A Visualization of the Resilience Parameter

We visualize the choice of t as a function of n0 and n1, to help understand
the mathematical structure of game-theoretic fairness in multi-party coin toss
(Fig. 1).
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Abstract. In this work, we present a lightweight construction of ver-
ifiable two-party function secret sharing (FSS) for point functions and
multi-point functions. Our verifiability method is lightweight in two ways.
Firstly, it is concretely efficient, making use of only symmetric key oper-
ations and no public key or MPC techniques are involved. Our perfor-
mance is comparable with the state-of-the-art non-verifiable DPF con-
structions, and we outperform all prior DPF verification techniques in
both computation and communication complexity, which we demonstrate
with an implementation of our scheme. Secondly, our verification proce-
dure is essentially unconstrained. It will verify that distributed point
function (DPF) shares correspond to some point function irrespective of
the output group size, the structure of the DPF output, or the set of
points on which the DPF must be evaluated. This is in stark contrast
with prior works, which depend on at least one and often all three of
these constraints. In addition, our construction is the first DPF verifica-
tion protocol that can verify general DPFs while remaining secure even
if one server is malicious. Prior work on maliciously secure DPF verifi-
cation could only verify DPFs where the non-zero output is binary and
the output space is a large field.

As an additional feature, our verification procedure can be batched
so that verifying a polynomial number of DPF shares requires the exact
same amount of communication as verifying one pair of DPF shares. We
combine this packed DPF verification with a novel method for packing
DPFs into shares of a multi-point function where the evaluation time,
verification time, and verification communication are independent of the
number of non-zero points in the function.

An immediate corollary of our results are two-server protocols for PIR
and PSI that remain secure when any one of the three parties is malicious
(either the client or one of the servers).

1 Introduction

Function secret sharing (FSS), first introduced by Boyle, Gilboa, and Ishai [2],
is a cryptographic primitive that extends the classical notion of secret-sharing
a scalar value to secret sharing a function. FSS allows a party to secret-share
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a function f : D → G and produce function shares k0 and k1. These shares
have several useful properties. Firstly, viewing either share alone computationally
hides the function f . Secondly, the function shares can be evaluated at points in
the domain D to produce additive shares of the output of f . In other words, for
x ∈ D, we have k0(x) + k1(x) = f(x).

A point function f : D → G is defined by a single point (α, β) ∈ D × G such
that f(α) = β and for all γ �= α we have f(γ) = 0. We will often denote the
point function f defined by (α, β) as fα,β . Distributed point functions (DPFs),
first introduced by Gilboa and Ishai [9], are a special case of FSS that supports
point functions. Boyle, Gilboa, and Ishai [3] gave an efficient construction of a
distributed point function.

An FSS construction is immediately applicable to the problem of constructing
two-server protocols, where a client interacts with two servers that are assumed
to not collude. Despite the simplicity of point functions, DPFs give rise to a rich
class of two-server protocols, including private information retrieval (PIR) [3],
private set intersection (PSI) [6], Oblivious-RAM [8], contact-tracing [7], and
many more [1,13]. These two-server protocols often have a similar structure.
For example, a simple, semi-honest PIR construction from a DPF begins with
a client generating DPF shares for the function fi,1, where i is the query index,
and the servers begin with identical copies of a database of size N . The client
sends one function share to each server, and the servers evaluate the share on
each index i ∈ [N ] to obtain a secret sharing of a one-hot vector. The servers
then take the inner product with their copy of the database to obtain an additive
share of the ith element, which is returned to the client.

Verifiable DPF. A crucial barrier that must be overcome in order for many
applications to be deployed in the real world is achieving some form of malicious
security. For the two-server model, this often means verifying that the client’s
inputs are well-formed in order to ensure that the client does not learn unau-
thorized information about the servers’ database or modify the database in an
unauthorized way. A DPF scheme that supports this well-formedness check is
called a verifiable DPF (VDPF).

In addition to constructing DPFs, the work of Boyle et al. [3] also constructs
VDPFs that are secure when the servers are semi-honest; a malicious server
is able to learn non-trivial information about the client’s chosen point (α, β)
through the verification procedure. Even to achieve semi-honest security, the
VDPF protocol of [3] requires a constant-sized MPC protocol (consisting of sev-
eral OLEs) to be run between the servers to verify the DPF. The recent work of
Boneh, Boyle, Corrigan-Gibbs, Gilboa, and Ishai [1] achieves maliciously secure
VDPFs when β ∈ {0, 1} and the output group has size at least 2λ, but they do
not extend their protocol to support general β values or smaller output groups.
They also require a constant sized MPC (also a few OLEs) to be run between
the servers to verify a single DPF share. More detail on these protocols is given
in Sect. 1.2. These works leave open the problem of constructing a maliciously-
secure VDPF for general β values, which we solve in this work.
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Distributed Multi-Point Functions. While DPFs result in a surprisingly rich class
of two-server protocols, in many applications [6,7] it is desirable to have FSS for
functions with more than one nonzero point. We call these multi-point functions
(MPFs) (see Sect. 4.2 for more details). Naively, this requires constructing a DPF
for each nonzero point. To evaluate the naive MPF share the servers must perform
a DPF evaluation for each nonzero point in the function. In other words, if a func-
tion contains t non-zero points and the servers wish to evaluate the MPF share at η
points, then they must perform t·η DPF evaluations. This clearly wastes a tremen-
dous amount of work, since we know that for each of the t DPF shares, at most one
of the η evaluation points will map to a non-zero value, and yet each share is eval-
uated the full η times. To maintain efficient FSS for these multi-point functions, it
is clear that a more efficient manner of batching DPF shares is required. Further-
more, the naive verifiable DMPF construction is simply a concatenation of many
verifiable DPF shares, which means the complexity of the verification procedure
grows linearly in t. Prior works have left open the problem of constructing DMPF
shares with evaluation time and verification complexity sublinear in the number
of nonzero points, which we solve in this work.

1.1 Our Contributions

Lightweight Verifiable DPF. We give a lightweight construction of a verifiable
DPF, which admits a very efficient way to verify that DPF shares are well-formed.
This construction is light-weight in two ways. First, it’s performance is compara-
ble with the state-of-the-art non-verifiable DPF constructions (within a factor of
2 in both communication and computation), as we show in Sect. 5. In addition, we
strictly outperform all prior DPF verification methods in both communication and
computation. These verification methods often have strictly stronger or incompa-
rable constraints, such as remaining secure when the servers are semi-honest or
only verifying if β ∈ {0, 1}. Unlike all other DPF verification methods [1,3], we
do not make use of any public key operations or arithmetic MPC; for a security
parameter λ, our verification procedure is a simple exchange of 2λ bits.

Second, the constraints on the verification procedure are essentially non-
existent. We can verify that a DPF share is well-formed regardless of output field
size, regardless of the value of the non-zero output element, and regardless of the
set of evaluation points the servers choose. This is in stark contrast to prior works
[1,3], which depend on at least one and often all of these constraints, as we describe
in Sect. 1.2. Our method is able to verify that there is at most one non-zero value
in any set of outputs of the DPF share, even if the set is adversarially chosen.

Efficient Batched Verification. Another novel feature of our verification proce-
dure is efficient batching. When verifying any polynomial number of shares in
our VDPF scheme, the communication for the verification procedure remains
only an exchange of 2λ bits. This is because our verification procedure for a
single pair of VDPF shares is to check if two 2λ-bit strings are equal (we explain
how these strings are generated in Sect. 3), so the two servers are able to check if
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many pairs of 2λ-bit strings are equal by simply hashing all strings down into a
single pair of 2λ-bit strings. This batching requires no additional computational
overhead beyond hashing the strings together. Furthermore, this means that the
communication to verify VDPF shares from many different clients is bounded
at 2λ bits, and, to our knowledge, this is the first efficient cross-client batched
VDPF verification procedure of its kind.

Verifiable FSS for Multi-Point Functions. Another immediate consequence of
our batched verification procedure is verifiable FSS for multi-point functions. Our
VDMPF scheme goes beyond the naive construction, which is to simply generate
a pair of VDPF shares for each non-zero point in the multi-point function. As
mentioned above, when using this naive method for an MPF with t non-zero
points, a sever evaluating the MPF at η points needs to perform t · η VDPF
evaluations. We show how a simple application of Cuckoo-hashing can reduce
the number of VDPF evaluations to 3η regardless of the value of t. This is
at the cost of the client needing to produce and send roughly 2× the number
of VDPF shares as in the naive case, where these VDPF shares are at most
the same size as in the naive case. For even moderately sized t (e.g. t > 30)
this provides a tremendous savings in the overall computation time. Due to our
batched verification, the communication between the two servers never grows
beyond 2λ bits.

Ultimately, we will show the following two theorems.

Theorem 1 (Verifiable DPF (informal)). There exists a verifiable DPF for
any point function f : {0, 1}n → G that remains secure even when one server is
malicious. For security parameter λ, the runtime of share generation is O(nλ),
and the size of a function share is O(nλ). For any x ∈ {0, 1}n, the runtime of
share evaluation O(nλ). For the verification procedure with η outputs, additional
runtime is O(ηλ) and the communication between the two servers is O(λ).

Theorem 2 (Verifiable DMPF (informal)). There exists is a verifiable
DMPF for multi-point functions f : [N ] → G with at most t non-zero evalua-
tion points that remains secure even when one server is malicious. For security
parameter λ and a number of hash table buckets m = O(tλ + t log(t)), the run-
time of share generation is O (mλ log(N/m)). The runtime of share evaluation
is O(λ log(N/m)). For the verification procedure with η outputs, the additional
runtime is O(ηλ) and the communication between the two servers is O(λ).

We implement our VDPF and VDMPF schemes and present benchmarks in
Sect. 5.

Applications. As a direct result of our verifiable FSS construction, we obtain sev-
eral protocols in the two-server model that are secure against any one malicious
corruption. More specifically, our verifiable DPF directly results in a maliciously-
secure two-server PIR scheme and our verifiable DMPF directly results in a
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maliciously-secure two-server PSI scheme. We exclude the presentation of the
constructions due to space constraints and because these protocol follow imme-
diately from our constructions. We give these constructions in the full version.

1.2 Related Work

The most relevant related work is the verifiable DPF constructions of Boyle,
Gilboa, and Ishai [3] and the subsequent work of Boneh, Boyle, Corrigan-Gibbs,
Gilboa, and Ishai [1]. We begin with an overview of the DPF construction of
[3], then discuss the semi-honest verification protocols presented in [3]. We also
briefly discuss the malicious verification procedure in [1], which handles the case
where β ∈ {0, 1} and the DPF output space is a large field.

Overview of the Boyle et al. [3] Construction. The DPF construction of Boyle
et al. [3] is a function secret sharing scheme for point functions in the two-server
model. As described in Sect. 2.2, a distributed point function scheme allows a
client to run an algorithm (k0, k1) ← Gen(1λ, fα,β), where fα,β : {0, 1}n → G is
a point function. This client can then send k0 to a server S0 and send k1 to a
server S1. A single share kb completely hides the function fα,β ; it completely
hides the location and value of the non-zero point, but not necessarily the fact
that fα,β is a point function. For any x ∈ {0, 1}n, the servers are able to compute
yb = Eval(b, kb, x), such that y0 + y1 = fα,β(x).

The construction of [3] begins with the observation that a point function
differs from the zero function (the function that outputs zero on every input)
on at most a single point. Therefore, they begin with the following protocol to
share the zero function. The zero function can be shared by giving each server
an identical copy of a PRF along with an additional bit that indicates if the
output should be negated. The servers S0 and S1 can then evaluate their PRF
on the same input x, then server S1 negates the output. The scheme will produce
outputs from the same input x that sum to zero, making this a secret sharing of
the zero function.

We can then instantiate this PRF using the GGM [10] construction, where
the PRF is evaluated by expanding a tree of PRGs, and the output of the PRF
is a leaf of this tree. Each input to the PRF will arrive at a unique leaf and will
have a distinct path through the tree. To turn this zero function into a point
function, we need to puncture a single path in this tree. In other words, we need
to ensure that there is exactly one path in the tree where the values at the GGM
nodes differ. For a point function fα,β , the path through the tree and the location
of the leaf corresponds to α, and the value at the leaf corresponds to β. Since all
other paths will have matching nodes, they will result in matching leaves, which
become additive shares of zero. The GGM nodes along the punctured path will
differ, which will result in this path terminating in leaves that do not match. We
will discuss in Sect. 3 how to arrange operations at the final level to turn this one
specific mismatched pair into additive shares of the desired non-zero output β.
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As we traverse the tree, we maintain the following invariant. If we are along
the punctured path (the path leading to the leaf at position α), the PRG seeds
should differ. If we are not along the punctured path, then the PRG seeds should
be the same. At each level in the tree, we need to ensure that as soon as we
diverge from the punctured path, the seeds will match again, bringing us back
to the zero-function state. To achieve this, a correction operation is applied at
each GGM node as we traverse the tree. One of the core contributions of [3] is a
method to achieve this correction operation. We make use of the same correction
operation and exploit its useful properties to obtain our VDPF construction.
More details are provided in Sect. 1.3.

Verification Procedure of [3]. We will now provide a high-level overview of the
verification procedures for the DPF construction of [3]. One of the main features
of these verification procedures is that they view the DPF as a black-box. With
this view, the task becomes taking a secret-shared vector y = y0+y1 of length N
and verifying that the shared values are non-zero in at-most one location. There
are several different protocols presented in [3] to achieve this, although all follow
a basic template. These verification procedures all begin by sampling a linear
sketching matrix L from a distribution L with N columns and a small constant
number of rows. Each server Sb multiplies their share yb by L to obtain a short
vector zb. The servers then run a simple MPC procedure is run to verify that z0
and z1 are well-formed. These verification procedures are only secure when the
servers are semi-honest.

To give an example, the verification for β ∈ {0, 1} with an output field F

begins by defining a matrix L ∈ F 3×N . Each column j of L is defined to be
L1,j = rj , L2,j = sj , and L3,j = rjsj , where rj and sj are sampled uniformly at
random over F. The two servers begin with PRG seeds to locally generate this
L matrix. The servers then locally compute L · yb = zb, which is a secret sharing
of three elements z1, z2, and z3. Finally, the servers run an MPC protocol to
check if z3 = z1z2. In [3], it is shown that the probability this check passes if y
is not the zero-vector or a unit vector is at most 2/|F|. For security parameter
λ, this means that |F| must be at least 2λ+1; all verification procedures given in
[3] require that |F| must be O(2λ).

To obtain a verification for a general β, we can simply take the protocol
for β ∈ {0, 1} and slightly modify the verification procedure to account for a
β �= β2. In particular, the servers run the same protocol as above, but the
final MPC check now verifies that β · z3 = z1z2. The client provides a secret-
sharing of β to the servers to allow them to compute shares of the product β ·z3.
We conclude this description by noting that this construction is vulnerable to
additive attacks, where a malicious server can learn non-trivial information about
the client’s point (α, β).

Verification Procedure of [1]. We now briefly describe the maliciously secure
verification procedure of [1]. Recall that this approach verifies if DPF shares are
well formed and if β ∈ {0, 1}. At a high level, this approach is an extension of
the check for binary β described above with checksum values added to defend
against additive attacks from a malicious server. Instead of sending a single
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DPF share corresponding to the point (α, β), this VDPF scheme consists of
two DPF shares: one defined by the original point (α, β) and the other defined
by the point (α, κ · β), where κ is a uniformly random element of the output
field F. Intuitively, the purpose of this κ value is to defend against a malicious
server learning information about the non-zero point by applying additive shifts
to candidate α locations. However, the value κ must also be included in the
sketching checks in order to verify the consistency of the two DPF shares. This
task is prone to error. For example, if the servers were simply given shares of κ
directly, then a malicious server could learn if β was 0 if it applied an additive
shift to κ and the verification still passed. This would occur because both β
and κ · β are 0 when β is 0. The overcome this, the method of [1] embeds the
κ value in an OLE correlation that the client sends to the servers. We omit
the details, but we note that, at the time of this writing, there is no published
method to extend this binary check to a general check in the same way as in [3].
We conclude this description by summarizing the complexity of this approach.
The computational overhead of the verification includes evaluating the second
DPF share that encodes the checksum, as well as sampling the sketching matrix.
Then the sketching matrix must be multiplied by the output DPF vectors, which
is a constant number of length N inner-products. The communication of the
verification procedure consists of 4 elements of F sent by each server over two
rounds of communication.

1.3 Technical Overview

We now give a brief technical overview of our verification methods.

Our DPF Verification Procedure. In our work, we observe that the correction
operation of [3] is limited in a way that is useful for us. In particular, the cor-
rection operation is designed to correct at most one difference per level. With
this observation, we can construct a simple verification procedure by extending
the GGM tree by one level. This level takes each leaf in the original tree and
produces two children: a left leaf and a right leaf. The left leaves can all be
equivalent to the parent, while the right leaves should all correspond to a zero
output. This means that all pairs of right leaves in the two DPF shares should be
equal. Since the correction word can only correct one difference, if all the right
leaves are the same, then there can be at most one difference in the previous
level, meaning that all but one of the left leaves must be the same. The location
of the differing left leaf is the α value, and the value produced by the differing
leaves is the β value. All other left leaves will be equal, thus corresponding to the
zero output. Since the DPF evaluation is completely deterministic, the α and β
values that define the point function can be deterministically extracted from any
pair of DPF shares that pass this verification check, meaning that regardless of
the method a malicious client uses to generate the DPF shares, if the verification
check passes then the servers have the guarantee that the shares encode a DPF
defined by this (α, β) pair.



Lightweight, Maliciously Secure Verifiable Function Secret Sharing 157

Furthermore, the servers need only check that all of their right leaves (which
they can hash down into a single string of length 2λ) are equal, meaning that
if the DPF shares are well formed the servers’ messages to each other are per-
fectly simulatable. Therefore, this verification method introduces zero additional
privacy risk to an honest client even when one of the servers is malicious. This
security extends to verifying a polynomial number of DPF shares from the same
client or different clients, since an equality check that will always pass for honest
clients will not leak information about the honest clients’ choices of α and β.

For more details and intuition about this approach, see Sect. 3.

Multi-point Function Packing. A natural application of our packed verification
technique is to verify multi-point functions, since the communication for the
verification will not increase as the number of non-zero points grows. As discussed
above, the naive construction of a multi-point function with t non-zero points
requires time linear in t for each evaluation. This is prohibitively expensive for
applications where the servers must evaluate the DMPF at many points. To
avoid this linear scaling of the evaluation time, we observe that in the list of
tuples (α1, β1), . . . , (αt, βt) all of the α values are unique. Therefore, for each
evaluation point x, the output of at most one of the DPFs will be nonzero,
which occurs if x = αi. This means that our DMPF evaluation algorithm only
needs to guarantee that the evaluation point x will be evaluated on the DPF
with αi = x if this point is nonzero in the MPF.

Towards this goal, we have the client insert the values α1, . . . , αt into a
Cuckoo-hash table. At a high level, a Cuckoo-hash table is defined by a list
of m buckets and κ = O(1) of hash functions h1, . . . , hκ (in our case we use
κ = 3). Each hash function has an output space that is {1, . . . , m}, and each
element α inserted in the table is at an index i = hj(α) for some 1 ≤ j ≤ κ.

The client constructs a DMPF share from this Cuckoo-hash table by creating
a DPF share for each bucket in the table. The empty buckets will hold a DPF
that shares the zero function, and the buckets that hold an index αi hold a DPF
that shares fαi,βi

. The domain of this DPF can be the same as the domain of
the MPF, so the index of this non-zero point is simply αi. The client then sends
these m DPF shares to the server along with the hash functions defining the
Cuckoo-hash table. To evaluate a point x on these shares, the servers simply
hash x with each of the κ hash functions to get κ candidate buckets. If x = αi

for one of the non-zero points in the MPF, the guarantee is that αi is in one
of these buckets, so the servers evaluate only these κ DPFs at x then sum the
result. This is an MPF evaluation procedure with a runtime that does not grow
with the number of non-zero points in the MPF. In Sect. 4, we discuss a variant
of this method that allows the domain of the DPFs for Cuckoo-hash buckets to
shrink as the number of nonzero points grows, further speeding up evaluation
time.

To maintain client privacy, we must ensure that the Cuckoo-hash table does
not leak information about the client’s choice of α1, . . . , αt values. The only infor-
mation that is leaked from the Cuckoo-hash table is that the client’s choice of
non-zero indices did not fail to be inserted in this Cuckoo-hash table. Therefore,
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we must choose parameters for the Cuckoo-hash table such that the probability
of failure is at most 2−λ for security parameter λ. For a fixed κ, the failure prob-
ability of a Cuckoo-hash table shrinks as the number of buckets m increases.
For κ = 3 and λ = 80, we get an upper bound on the number of buckets as
m ≤ 2t for nearly all practical values of t. Therefore, for less than a 2× growth
in the client computation and the client-server communication, we can achieve
this significant improvement in the servers’ evaluation time.

To verify that these DMPF shares are well-formed, we can simply put ver-
ifiable DPF shares in the buckets. Since the DPF verification method can be
packed, the communication between the two servers never grows beyond the 2λ
equality check, and the security against a malicious server is maintained. Our
only sacrifice is in the verification of the number of nonzero points in the DMPF.
The naive approach would allow the servers to verify that there are at most t
nonzero points in the MPF, while the Cuckoo-hashing approach only allows the
servers to verify that there are at most m nonzero points in the MPF. However,
as we mentioned, for nearly all settings of t we get m ≤ 2t, and we believe this
gap is acceptable for many applications.

2 Background

2.1 Notation

Let T be a complete binary tree with 2n leaves. If we index each leaf from 0 to
2n − 1, let v

(n)
α be the leaf at index α ∈ {0, 1}n. Let v

(i)
α be the node at the ith

level of T such that v
(n)
α is in the subtree rooted at v

(i)
α . We will sometimes refer

to v
(i)
α as the ith node along the path to α.
For a finite set S, we will denote sampling a uniformly random element x as

x
$←− S.
For n ∈ N, we denote the set [n] := {1, . . . , n}.
We will denote a set of n-bit strings as either {xi}L

i=1 or simply as x if the
length is not relevant or clear from context.

For a parameter λ, we say that a function negl(λ) is negligible in λ if it shrinks
faster than all polynomials in λ. In other words, for all polynomials poly(λ), there
exists a λ′ such that for all λ > λ′ we have negl(λ) < poly(λ).

2.2 Function Secret Sharing

In this section, we give a high level definition of function secret sharing and
distributed point functions. A function secret sharing scheme takes a function
f : D → R and generates two function shares f0 and f1. These function shares
can be evaluated a points x ∈ D such that fb(x) = yb and y0 +y1 = y = f(x). In
other words, when evaluated at an input x the function shares produce additive
secret shares of the function output. It is currently an open problem to construct
an efficient FSS scheme where the function is split into more than two shares [4].
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Definition 1 (Function Secret Sharing, Syntax & Correctness [2,3]).
A function secret sharing scheme is defined by two PPT algorithms. These

algorithms are parametrized by a function class F of functions between a domain
D and a range R.

– FSS.Gen(1λ, f ∈ F) → (k0, k1)
The FSS.Gen algorithm takes in a function f ∈ F and generates two FSS keys
k0 and k1.

– FSS.Eval(b, kb, x ∈ D) → yb

The FSS.Eval algorithm takes in an x ∈ D and outputs an additive share
yb ∈ R of the value y = f(x). In other words, y0 + y1 = y = f(x).

We now give the basic security property that an FSS scheme must satisfy.

Definition 2 (FSS Security: Function Privacy [2,3]). Let FSS be a function
secret sharing scheme for the function class F , as defined in Definition 1. For
any f, f ′ ∈ F , the following should hold:

{kb | (k0, k1) ← FSS.Gen({0, 1}, f)} ≈c

{k′
b | (k′

0, k
′
1) ← FSS.Gen({0, 1}, f ′)}, for b ∈ {0, 1}

In words, the marginal distribution of one of the FSS keys computationally hides
the function used to compute the share.

We now give the definition of a distributed point function (DPF) in terms of
the FSS definitions above. We begin by defining a point function.

Definition 3 (Point Function). A function f : D → R is a point function if
there is α ∈ D and β ∈ R such that the following holds:

fα,β(x) =
{

β x = α
0 x �= α

Throughout this work, we will be interested in point functions with domain
D = {0, 1}n and range R = G for a group G.

Definition 4 (Distributed Point Function). Let Fn,G be the class of point
functions with domain D = {0, 1}n and range R = G. We call an FSS scheme
a Distributed Point Function scheme if it supports the function class F .

3 Lightweight, Verifiable DPF

3.1 Definitions

We begin by defining a verifiable DPF. We define correctness and security for a
batched evaluation, since the verification procedure operates is defined over a set
of outputs. The procedure ensures that at-most one of these outputs is non-zero.
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Definition 5 (Verifiable DPF, denoted VerDPFn,G). A verifiable distributed
point function scheme VerDPFn,G supports the function class F of point func-
tions f : {0, 1}n → G. It is defined by three PPT algorithms. Define VerDPF :=
VerDPFn,G.

– VerDPF.Gen(1λ, fα,β) → (k0, k1)
This is the FSS share generation algorithm. It takes in a function fα,β and
generates two shares k0 and k1.

– VerDPF.BVEval(b, kb, {xi}L
i=1) →

(
{y

(xi)
b }L

i=1, πb

)
This is the verifiable evaluation algorithm, denoted BVEval for batch verifiable
evaluation. It takes in a set of L inputs {xi}L

i=1, where each xi ∈ {0, 1}n, and
outputs a tuple of values. The first set of values are the FSS outputs, which
take the form y

(xi)
b for i ∈ [L] satisfying y

(xi)
0 + y

(xi)
1 = f(xi). The second

output is a proof πb that is used to verify the well-formedness of the output.
– VerDPF.Verify(π0, π1) → Accept/Reject

For some pair of VerDPF keys (k0, k1), the VerDPF.Verify algorithm takes in
the proofs π0 and π1 from (yb, πb) ← BVEval(b, kb, {xi}L

i=1) and outputs either
Accept or Reject. The output should only be Accept if y0 +y1 defines the truth
table of some point function, which occurs if it is non-zero in at most one
location.

Correctness for a verifiable DPF is defined in the same way as correctness for
any FSS scheme, as in Definition 1. To verify that the entire share is well-formed,
the BVEval algorithm can be run on the whole domain. We give a more efficient
algorithm for evaluating our verifiable DPF on the whole domain in Algorithm
3, which uses techniques from Boyle et al. [3] to save a factor of n on the overall
runtime.

We now define security for a verifiable DPF. Note that we are only interested
in detecting a malformed share when the evaluators are semi-honest. However,
we do require that even a malicious evaluator does not learn any information
about the shared function; in other words, we require that the verification process
does not compromise the function privacy of an honestly generated DPF share
if one of the evaluators is malicious.

Definition 6 (Verifiable DPF Share Integrity, or Security Against
Malicious Share Generation). Let VerDPF := VerDPFn,G, and let kb be
the (possibly maliciously generated) share received by server Sb. For an adver-
sarially chosen set of inputs {xi}η

i=1, let ({y
(xi)
b }η

i=1, πb) ← VerDPF.BVEval(b,
kb, {xi}η

i=1). We say that VerDPF is secure against malicious share generation
if the the following holds with all but negligible probability over the adversary’s
choice of randomness. If VerDPF.Verify(π0, π1) outputs Accept, then the values
y
(xi)
0 + y

(xi)
1 must be non-zero in at most one location.

Definition 7 (Verifiable DPF Function Privacy, or Security Against a
Malicious Evaluator). Let VerDPF := VerDPFn,G support the class of point
functions F with domain {0, 1}n and range G. For a set of function inputs x,
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define the distribution representing the view of server Sb for a fixed function
f ∈ F .

ViewVerDPF(b, f,x) :={
(kb, π1−b)

∣∣∣∣ (k0, k1) ← VerDPF.Gen(1λ, f),
( , π1−b) ← VerDPF.BVEval(1 − b, k1−b,x)

}

We say that VerDPF maintains function privacy if there exists a PPT simulator
Sim such that for any adversarially chosen x the following two distributions are
computationally indistinguishable for any f ∈ F .

{
(kb, π1−b) | (kb, π1−b) ← ViewVerDPF(b, f,x)

}
≈c{

(k∗, π∗) | (k∗, π∗) ← Sim(1λ, b, n,G,x)
}

3.2 Our Construction

In this DPF scheme, the shares of the point function are k0 and k1. Each key
kb contains a starting seed s

(0)
b that defines the root of a GGM-style binary

tree, where at each node there is a PRG seed that is expanded into two seeds
that comprise the left and the right child of that node. However, the seeds that
define the left and right children are not the direct output of the PRG; instead,
we apply a correction operation to the PRG output in order to maintain the
required property of these trees, which we call the “DPF invariant.”

In addition to the PRG seed, each node is associated with a control bit, which
is one additional bit of information that is updated along with the seed during
the correction operation. This control bit is used in the correction operation,
and its purpose is to maintain the DPF invariant.

Definition 8 (DPF Invariant). Let DPF = DPFn,G, and let

(k0, k1) ← DPF.Gen(1λ, fα,β)

for α ∈ {0, 1}n. Each key kb defines a binary tree Tb with 2n leaves, and each
node in the tree is associated with a PRG seed and a control bit.

For a fixed node location, let s0, t0 be the seed and control bit associate with
the node in T0, and let s1, t1 be the seed and control bit associated with the node
in T1. The DPF invariant is defined as the following:

s0 = s1 and t0 = t1 if the node is not along the path to α.

t0 �= t1 if the node is along the path to α.

In our construction, it is also very likely that s0 �= s1 if the node is along the
path to α, but this requirement is not necessary for the invariant.

From this invariant, we maintain that at each level there is exactly one place
in which the two trees differ, which is the node in that level corresponding to
the path to α. At the final level, all of the 2n leaves in both trees will be the
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Algorithm 1. VerDPFn,G node expansion, denoted NodeExpand. This algorithm
describes generating the child nodes from the parent node in the DPF tree.
Input: PRG G : {0, 1}λ → {0, 1}2λ+2

Seed s ∈ {0, 1}λ, control bit t ∈ {0, 1}.
Correction word cw = (sc, t

L
c , tR

c ).
1: Expand (sL, tL, sR, tR) ← G(s)
2: s′

0 ← correct(sL, sc, t) and t′
0 ← correct(tL, tL

c , t)
3: s′

1 ← correct(sR, sc, t) and t′
1 ← correct(tR, tR

c , t)
Output: (s′

0, t
′
0), (s

′
1, t

′
1)

same, except at position α. We can define deterministic transformations on the
values at the leaves such that leaves with the same value produce additive shares
of zero. These transformations are each determined by the control bit, and sym-
metry in the control bits results in symmetric application of these deterministic
operations. At the leaf where the values differ, the invariant tells us that the
control bits will differ, and we can take advantage of this asymmetry to produce
additive shares of β at this pair of leaves.

In order to maintain the invariant in Definition 8, we perform a correction
operation at each node as we traverse the tree. Each level of the tree is associated
with a correction word. At each node, we perform the PRG expansion defined
in Definition 9, then apply the correction operation define in Definition 10 to
compute the seeds and control bits for the left and right children.

Definition 9 (VerDPF PRG Expansion [3]). Let s ∈ {0, 1} be a seed for the
PRG G : {0, 1}λ → {0, 1}2λ+2. Define the PRG expansion of the seed s as follows:

sL||tL||sR||tR ← G(s)

where sL, sR ∈ {0, 1}λ and tL, tR ∈ {0, 1}.

Definition 10 (VerDPF Correction Operation [3]). The VerDPF correction
operation

correctG : G × G × {0, 1} → G

is defined as follows:

correctG(ξ0, ξ1, t) =
{

ξ0 if t = 0
ξ0 + ξ1 if t = 1

When G is not defined, the group G is taken to be Z
�
2 for some positive integer 
.

In particular, this makes the group addition operation the component-wise XOR
of ξ0 and ξ1.

From the node expansion described in Algorithm 1, it becomes clear what
the correction word must be in order to maintain that only one pair of nodes
differ at each level of the tree. In particular, if the bit xi disagrees with αi, the
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corresponding bit of α, then the correction word must ensure that seeds and
controls bits in the next level match. We define the correction word generation
algorithm in Algorithm 2.

Algorithm 2. VerDPFn,G correction word generation, denoted CWGen.

Input: PRG G : {0, 1}λ → {0, 1}2λ+2

Left seed s0, left control bit t0.
Right seed s1, right control bit t1.
Bit x of the input.

1: Expand (sL
b , tL

b , sR
b , tR

b ) ← G(sb) for b ∈ {0, 1}.
2: if x = 0 then Diff ← L, Same ← R � Set the right children to be equal.
3: else Diff ← R, Same ← L � Set the left children to be equal.

4: sc ← sSame
0 ⊕ sSame

1

5: tL
c ← tL

0 ⊕ tL
1 ⊕ 1 ⊕ x � Ensure that the left control bits are not equal iff x = 0.

6: tR
c ← tR

0 ⊕ tR
1 ⊕ x � Ensure that the right control bits are not equal iff x = 1.

7: cw ← sc||tL
c ||tR

c

8: s′
b ← correct(sDiff

b , sc, t
(i−1)
b ) for b ∈ {0, 1}.

9: t′
b ← correct(tDiff

b , tDiff
c , tb) for b ∈ {0, 1}.

Output: cw, (s′
0, t

′
0), (s

′
1, t

′
1)

Intuitively, our construction takes advantage of the fact that the correction
words in the DPF construction of Boyle et al. can only correct at most one
difference in each level. In our construction, we extend the GGM tree by one
level, extending the DPF evaluation to all of the left children. In addition, at the
final level we replace the PRG with a hash function H sampled from a family
H that is collision-resistant and correlation-intractable for an XOR correlation
defined below. We then have the servers check that all of their right children are
the same by hashing all right children and exchanging the hash value.

In an honest pair of function shares, the trees should only differ at one node
at each level, and in the final level the only difference should be in one of the
left children. The collision resistance of the hash function ensures that any dif-
ference in the second-to-last level will result in a difference in the right children.
This forces the correction word to correct these right children in order for the
consistency check to pass. Since the correction word can correct at most one
difference in the right children, this will guarantee that all other right children
are the same because their parents are the same, which, in turn, implies that all
corresponding left children are the same.

As discussed above, it is straightforward to turn matching leaf nodes into
additive shares of zero, although we will have to generate the final control bit
slightly differently in this final level to ensure that this conversion is performed
correctly. In particular, we generate these control bits deterministically from the
seeds, which ensures that matching seeds will result in matching control bits. For
the non-zero output, we will have the honest client generate the function shares
until the control bits at the non-zero point are different. If a malicious client
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samples shares such that these bits are the same, this will simply correspond to
a different choice of β.

To securely instantiate the final level of the tree, our hash function family
must be collision resistant, which will ensure that a difference in the previous
level will translate to a difference in the children. We will also require the hash
function to be secure against a similar, but incomparable, correlation, which we
call XOR-collision resistance. Intuitively, satisfying this definition will ensure
that each correction seed will only be able to correct one difference in the right
children.

Definition 11 (XOR-Collision Resistance). We say a function family F
is XOR-collision resistant if no PPT adversary given a randomly sampled f ∈
F can find four values x0, x1, x2, x3 ∈ {0, 1}λ such that (x0, x1) �= (x2, x3),
(x0, x1) �= (x3, x2), and f(x0) ⊕ f(x1) = f(x2) ⊕ f(x3) �= 0 with probability
better than some function negl(λ) that is negligible in λ.

To satisfy this definition, our hash function output has length 4λ, since we must
defend against a birthday-attack where the adversary is searching for a colliding
4-tuple. We expand on this more in the full version. With a hash function satis-
fying this definition, we will be able to argue that if an adversary can construct
invalid VerDPF keys that pass the consistency check, then this adversary has
found either a collision or an XOR-collision in the hash function.

We define the VerDPF key in Definition 12. The full verifiable DPF construc-
tion is given in Fig. 1.

Definition 12 (VerDPF Function Share). Let VerDPFn,G be our verifiable
DPF scheme. Let λ be the security parameter. A function share contains the
following elements.

– Starting seed s(0) ∈ {0, 1}λ.
– Correction words cw1, . . . , cwn, where each cwi ∈ {0, 1}λ × {0, 1} × {0, 1}.
– One additional correction seed cs ∈ {0, 1}4λ, which corrects differences in the

final level. Corrections to the control bits are not necessary at the final level.
– A final output correction group element ocw ∈ G.

Lemma 1 (VerDPF Correctness). The VerDPF scheme defined in Fig. 1
defines a correct verifiable DPF scheme.

Proof. If we ignore the last level of the DPF expansion, our DPF is essentially
the same as the DPF construction of Boyle et al. [3]. The only difference is the
way the final control bits are generated. The control bits for the nodes that
correspond to zero outputs will be the same, since the seeds for these leaves will
also be the same. In the key generation, the seeds are sampled such that the
control bits for the leaf at position α will differ, allowing the selective XOR of
the final correction word. Since the correct operation is deterministic, the nodes
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Fig. 1. Verifiable distributed point function VerDPFn,G.
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Algorithm 3 . VerDPF.FDEval. The verifiable full-domain evaluation function
for our verifiable DPF construction. The hash functions H and H′ are as in
Figure 1.
Input: b ∈ {0, 1} and VerDPF key kb.
1: Parse the VerDPF key (s(0), {cwi}n

i=1, cs, ocw) ← kb.
2: Let s ← s(0) and t ← b
3: Define nodes ← {(s, t)}
4: for i from 1 to n do
5: Define nodes′ ← {}
6: for (s, t) in nodes do
7: (s′

0, t
′
0), (s

′
1, t

′
1) ← NodeExpand(G, s, t)

8: nodes′.append((s′
0, t

′
0))

9: nodes′.append((s′
1, t

′
1))

10: nodes ← nodes′

11: Define y ← {} and π ← cs
12: for i from 1 to N do
13: (s, ) ← nodes[i].
14: π̃ ← H(i||s)
15: t ← LSB(s)
16: y.append

(
(−1)b · correctG(convert(s), ocw, t)

)

17: π ← π ⊕ H′(π ⊕ correct(π̃, cs, t))

Output: (y, π)

with matching seeds and control bits will produce shares of zero. This can be
seen below, where we set s0 = s1 and t0 = t1.

yb = (−1)b · correctG(convert(sb), ocw, tb) = −1 · y1−b

For the leaf at position α, we have that t0 �= t1. Here, the output values will
be a secret sharing of β. For simplicity, we write gb = convert(sb).

ocw = (−1)t1 [β − g0 + g1]
y0 + y1 = correctG(g0, ocw, t0) + correctG(g1, ocw, t1)

= g0 − g1 + (−1)t0 · ocw = g0 − g1 + β − g0 + g1 = β

where we get that (−1)t0 · ocw = β − g0 + g1 from t0 �= t1.

3.3 VDPF Security Proof

We will now prove that the verifiable DPF construction given in Fig. 1 is secure.
We will focus on proving the following theorem.

Lemma 2 (Detection of Malicious Function Shares). Except with prob-
ability negligible in the security parameter λ, no PPT adversary A can generate
VerDPF keys (k∗

0, k
∗
1) ← A(1λ) where the final level uses a hash function H ← H

sampled from a family H of collision-resistant and XOR-collision-resistant hash
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functions such that the following holds. For an adversarially chosen set of eval-
uation points {xi}L

i=1, let (yb, πb) ← VerDPF.BVEval(b, k∗
b , {xi}L

i=1) such that
Accept ← VerDPF.Verify(π0, π1) passes but y0 + y1 is nonzero in more than one
location.

Proof. The approach to proving this theorem will be to focus on the final level
of the GGM tree. At the second-to-last level, each server has a set of seeds
{s

(xi)
0 }L

i=1 and {s
(xi)
1 }L

i=1. The servers also have the same correction seed cs. Let
π̃
(x)
b ← H(x||s(x)b ), let t

(x)
b ← LSB(s(x)b ), and let π

(x)
b ← correct(π̃(x)

b , cs, t
(x)
b ). The

bulk of this proof is covered by the following lemma.

Lemma 3. For L ≥ 2, let x := {xi}L
i=1. Suppose there exists two distinct inputs

u, v ∈ x such that s
(u)
0 �= s

(u)
1 and s

(v)
0 �= s

(v)
1 . If H is sampled from a collision-

resistant and XOR-collision-resistant family, then no PPT adversary can find a
correction seed cs such that for all x ∈ x we will have π

(x)
0 = π

(x)
1 .

Proof. Suppose for contradiction that there exists two inputs u, v ∈ x such that
s
(u)
0 �= s

(u)
1 and s

(v)
0 �= s

(v)
1 and for all x ∈ x we have π

(x)
0 = π

(x)
1 . By collision-

resistance, we have that π̃
(u)
0 �= π̃

(u)
1 and π̃

(v)
0 �= π̃

(v)
1 . In order to get π

(u)
0 = π

(u)
1

and π
(v)
0 = π

(v)
1 , we need the following:

cs = π̃
(u)
0 ⊕ π̃

(u)
1 = π̃

(v)
0 ⊕ π̃

(v)
1 �= 0

From the XOR-collision-resistance of H, in order to get this equality we must
have one of the following two cases.

– Case (i): π̃
(u)
0 = π̃

(v)
0 and π̃

(u)
1 = π̃

(v)
1

– Case (ii): π̃
(u)
0 = π̃

(v)
1 and π̃

(u)
1 = π̃

(v)
0

We can show that any one of these four equalities violates the collision-resistance
of H. Suppose we have H(u||s(u)b ) = π̃

(u)
b = π̃

(v)
b′ = H(v||s(v)b′ ) for any b, b′ ∈ {0, 1}.

Since u �= v, any equality between these hash outputs violates the collision
resistance of H.

Therefore, no value of cs will result in π
(x)
0 = π

(x)
1 for all x ∈ x.

From the collision resistance of H′, if the proofs produced by the BVEval

algorithm match, then π
(x)
0 = π

(x)
1 for all x ∈ x. From Lemma 3, this implies

that there is at most one u ∈ x such that s
(u)
0 �= s

(u)
1 , and for all x ∈ x such that

x �= u, we have s
(x)
0 = s

(x)
1 .

Define α = u for the unique u such that s
(u)
0 �= s

(u)
1 . If no such u exists (which

occurs if all outputs are zero), set u = x1. Define

β = correctG
(
convert(s(u)0 ), ocw, t

(u)
0

)
− correctG

(
convert(s(u)1 ), ocw, t

(u)
1

)
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Note that this β is well-defined for any s
(u)
b and t

(u)
b . For all other x �= u,

observing that t
(x)
b = LSB(s(x)b ) implies the following:

s
(x)
0 = s

(x)
1 =⇒ t

(x)
0 = t

(x)
1 =⇒ correctG

(
convert(s(x)0 ), ocw, t

(x)
0

)

= correctG
(
convert(s(x)1 ), ocw, t

(x)
1

)

=⇒ y
(x)
0 + y

(x)
1 = 0

Since s
(x)
0 = s

(x)
1 for all x �= u, y0 + y1 defines the truth table of fα,β . Therefore,

the construction in Fig. 1 satisfies Definition 6.

Lemma 4 (VerDPF Function Privacy). The VDPF construction VerDPF sat-
isfies Definition 7.

Proof. All elements of a VerDPF key are computationally indistinguishable from
random elements. The starting seed is randomly sampled from {0, 1}λ. Each
correction word is XOR’d with the output of a PRG where the seed is not known
to the evaluator, and hence is also indistinguishable from random. Finally, the
inclusion of the correct proof from the other party does not add any information,
since the evaluator holding the share kb can locally compute the correct proof
π1−b = πb. Therefore, the simulator Sim can set all elements of the key k∗ to be
randomly sampled elements, then compute ( , π∗) ← VerDPF.BVEval(b, k∗,x) to
output (k∗, π∗) ≈c (kb, π1−b).

Combining Lemma 2 and Lemma 4 gives the proof of the following theorem.

Theorem 3 (Verifiable Distributed Point Function). The construction
in Fig. 1 is a secure verifiable DPF for the class of point functions Fn,G. For
any f ∈ Fn,G, the runtime of (k0, k1) ← VerDPF.Gen(1λ, f) is O(nλ), and
the size of a function share is O(nλ). For any x ∈ {0, 1}n, the runtime of
VerDPF.Eval(b, kb, x) is O(nλ), and the runtime of VerDPF.BVEval(b, kb,x) is
O(n · λ · |x|).

4 Verifiable Distributed Multi-Point Function

In this section, we present a novel method for efficiently batching many verifiable
DPF queries to obtain a verifiable FSS scheme for multi-point functions (MPFs).
Multi-point functions are defined as the sum of several point functions. While
any function can be viewed as an MPF, we will focus here on MPFs that have a
small number of non-zero points relatively to the domain size. This scheme will
also be verifiable in a similar, although more relaxed, manner as in the verifiable
DPF from Sect. 3. Our construction is based on a novel Cuckoo-hashing scheme
described below.
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4.1 Cuckoo-hashing from PRPs

Our technique is inspired by the use of Cuckoo-hashing schemes that are com-
mon throughout the PSI [5,6] and DPF [12] literature. In particular, it is com-
mon for the Cuckoo-hashing scheme to have two modes: a compact mode and
an expanded mode. Both modes are parameterized by m buckets and κ hash
functions h1, . . . , hκ : {0, 1}∗ → [m].

Compact Cuckoo-hashing Mode. In the compact mode, the input is t elements
x1, . . . , xt to be inserted into a table of m buckets. To insert an element xi, an
index k ∈ [κ] is randomly sampled and xi is inserted at index hk(xi). If this
index is already occupied by some other element xj , then xj is replaced by xi

and xj is reinserted using this same method. After some limit on the number of
trials, the insertion process is deemed to have failed. The purpose of the compact
mode is to efficiently pack t elements into the table of size m. This algorithm,
denoted CHCompact, is given in Algorithm 4.

Algorithm 4. CHCompact Compact Cuckoo-hashing scheme. The algorithm is
given a fixed time to run before it is deemed to have failed.
Input: Domain elements α1, . . . , αt

Hash functions h1, . . . , hκ : {0, 1}� → m
Number of buckets m ≥ t

1: Define an empty array of m elements Table where each entry is initialized to ⊥.
2: for ω from 1 to t do
3: Set β ← αω and set success ← False
4: while success is False do
5: Sample k

$←− [κ]
6: i ← hk(β).
7: if Table[i] = ⊥ then
8: Table[i] = β and success ← True
9: else Swap β and Table[i]

Output: Table

We consider m = e · t for e > 1, where the size of e determines the proba-
bility over the choice of hash functions of failing to insert any set of t elements.
More specifically, from the empirical analysis of Demmler et al. [6], we have the
following lemma.

Lemma 5 (Cuckoo-hashing Failure Probability [6]). Let κ = 3 and t ≥ 4.
Let m = e · t for e > 1. Let H be a family of collision-resistant hash functions,
and let h1, . . . , hκ ← H be randomly sampled from H. We have that t elements
will fail to be inserted into a table of size m with probability 2−λ, where

λ = at · e − bt − log2(t)
at = 123.5 · CDFNormal(x = t, μ = 6.3, σ = 2.3)
bt = 130 · CDFNormal(x = t, μ = 6.45, σ = 2.18)
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Here, CDFNormal(x, μ, σ) refers to the cumulative density function of the normal
distribution with mean μ and standard deviation σ up to the point x.

Remark 1 (Cuckoo-hash parameters). Asymptotically, we have the number of
Cuckoo-hash buckets as m = O(tλ + t log(t)); however, concretely, the picture
is much nicer than the asymptotics suggest. For sufficiently large t (i.e. t ≥ 30),
we can simplify Lemma 5 to be λ = 123.5 · e − 130 − log2(t), since the CDFNormal

factors become effectively one. Then, for λ = 80, we have that m ≤ 2t for all
30 ≤ t ≤ 237, which we believe captures nearly all practical use cases.

Expanded Cuckoo-hashing mode. In the expanded Cuckoo-hashing mode, the
hashing scheme takes as input t elements and produces a matrix of dimension
m × B that contains κ · t elements. This mode is produced by hashing all t
elements with each of the κ hash functions, then inserting each of the t elements
in all κ buckets as indicated by the hash functions. The parameter B is the
maximum size of these buckets.

Our PRP Cuckoo-hashing. In the Cuckoo-hashing schemes from the prior litera-
ture, the design of the scheme is focused on the compact mode, and the extended
mode is added without much change to the overall design. In our Cuckoo-hashing
scheme, we begin with an efficient construction of the expanded mode, then show
how we maintain efficiency of the compact mode. For a domain of elements D
of size n = |D|, we define the expanded mode of our Cuckoo-hashing scheme
with a PRP of domain size nκ. Let m be the number of bins in the Cuckoo-hash
table. Define B := �nκ/m�. The PRP then defines an expanded Cuckoo-hash
table of dimension m × B by simply arranging the nκ outputs of the PRP into
the entries of an m×B matrix. More specifically, let PRP : {0, 1}λ × [nκ] → [nκ]
be the PRP. Let σ ← {0, 1}λ be the seed of the PRP. Define entry (i, j) of the
m × B matrix A to be Ai,j := PRP(σ, (i − 1) · m + j). Note that the last row
of the matrix may have some empty entries, but this turns out to have little
consequence on the overall scheme.

To define the compact mode of this Cuckoo-hashing scheme, we explicitly
define the hash functions in terms of the PRP. As above, let PRP : {0, 1}λ ×
[nκ] → [nκ] be the PRP, and let σ ← {0, 1}λ be the seed of the PRP. For i ∈ [κ],
define the hash function hi : [n] → [m] as follows:

hi(x) := PRP(σ, x + n · (i − 1))/B� (1)

The hash functions h1, . . . , hκ can then be used in the original compact Cuckoo-
hashing scheme with m buckets. The main benefit of our construction comes
with the next feature, which allows a party to learn the location of an element
within a specific bucket of the expanded Cuckoo-hash table without directly
constructing the expanded table. More specifically, for i ∈ [κ], we define the
function indexi : [n] → [B] as follows:

indexi(x) := PRP(σ, x + n · (i − 1)) mod B (2)
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With these functions index1, . . . , indexκ in addition to the hash functions h1,
. . ., hκ, we can compute the locations {(i, j)k ∈ [m] × [B]}κ

k=1 for each of the κ
locations of an element x ∈ [n] in the expanded Cuckoo-hash table. In particular,
we have (i, j)k = (hk(x), indexk(x)).

4.2 Verifiable Distributed MPFs via PRP Hashing

We now present our verifiable MPF scheme that makes use of the Cuckoo-hashing
scheme described in the previous section. Let N be the MPF domain size. Our
input will be an MPF f defined by t point functions fαi,βi

: [N ] → G for i ∈ [t].
Without loss of generality, we consider α1, . . . , αt as distinct points. We would
like to efficiently support an FSS scheme for the function f : [N ] → G that is
defined as follows:

f(x) =
t∑

i=1

fαi,βi
(x)

Naively, we would generate t different DPF shares, one for each point function.
Evaluation of this naive distributed MPF (DMPF) share at a single point would
require t DPF share evaluations.

To improve over this naive construction, the idea is to pack our point func-
tions into a Cuckoo-hash table with m buckets. We begin by instantiating our
PRP-based Cuckoo-hashing scheme with a PRP of domain size Nκ and define
B = �Nκ/m�. The client can then use the compact mode to pack the values
α1, . . . , αt into a Cuckoo-hash table of size m. For each bucket at index i ∈ [m],
let α′

i be the value in the bucket. We can either have α′
i = αj for one of the

input αj , or α′
i = ⊥ if the bucket is empty. If α′

i = αj , let k ∈ [κ] be the index
of the hash function used to insert αj to bucket i. In other words, hk(αj) = i.
Define the index γi = indexk(αj), which is the index of αj in the ith bucket in the
expanded Cuckoo-hash mode. Next, define the point function gγi,βj

: [B] → G,
which evaluates to βj at the index of αj within the ith bucket. This point func-
tion is then shared to create (k(i)0 , k

(i)
1 ) ← VerDPF.Gen(1λ, gγi,βj

). In the case
where α′

i = ⊥, the shared function is set to be the zero function. The verifiable
distributed MPF (VDMPF) share has the form mpkb = (σ, k

(1)
b , . . . , k

(m)
b ) where

σ is the PRP seed.
To evaluate this multi-point function share at a point x ∈ [N ], the evaluator

first computes the κ possible buckets in which x could lie, denoted ik = hk(x)
for k ∈ [κ]. Next, the evaluator computes the index of x in each bucket, denoted
jk = indexk(x) for k ∈ [κ]. Finally, the evaluator computes the sum of the VDPF
in each of the buckets at i1, . . . , ik evaluated at j1, . . . , jk. This gives the output

yb = VerDMPF.Eval(b,mpkb, x) =
∑
k∈[κ]

VerDPF.Eval(b, k(ik)b , jk)

In addition, this VDMPF inherits all of the features of the VDPF con-
struction from Sect. 3, including the O(log(B)) savings when evaluating the
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full domain (via tree traversal), as well as verifiability of share well-formedness.
We note that the verifiability is a bit weaker than the definition achieved for
point functions. More specifically, for point functions we showed how the servers
can ensure that at most one evaluation point is nonzero when evaluating any
subset of the domain. For this VDMPF construction, we can show that there
are no more than m non-zero points in any subset of evaluations by showing
there is no more than one non-zero point in the VDPF in each bucket. This is
slightly weaker than the best-possible guarantee, which would be that there are
no more than t non-zero points in any set of evaluations. However, as discussed in
Sect. 4.1, we will essentially always have m ≤ 2t (see Remark 1), so we consider
this gap acceptable for most applications. In addition, we can achieve an exact
guarantee by reverting to the naive construction using the VDPFs from Sect. 3.
We leave for future work the challenge of closing this gap while maintaining
similar performance.

Our VDMPF construction is given in Fig. 2.

Lemma 6 (VerDMPF Correctness). Let F be the function class of multi-
point functions with at most t non-zero points. Figure 2 gives a correct function
secret sharing scheme for F .

Proof. This follows directly from the correctness of the VerDPF shares in each
bucket and the low statistical failure probability of the Cuckoo-hashing scheme.

Lemma 7 (VerDMPF Function Privacy). Let F be the function class of
multi-point functions with at most t non-zero points. Figure 2 gives a function-
private FSS scheme for F , as defined in Definition 2

Proof. The VerDPF shares in this construction computationally hide all infor-
mation regarding the non-zero evaluation points. The only additional leakage is
that these t evaluation points fit into a Cuckoo-hash table with the hash func-
tions specified by the PRP seed σ. Lemma 5 gives us a way to set the number
of buckets so that any t inputs will fail to hash with 2−λ probability. Setting λ
to be the computational security parameter maintains the adversary’s negligible
distinguishing advantage.

Lemma 8 (VerDMPF Share Integrity). Let VerDPF be a secure verifiable
point function scheme. Let VerDMPF := VerDMPFN,G be a verifiable multi-
point function scheme as defined in Fig. 2 that uses VerDPF for the Cuckoo-
hash buckets. No PPT adversary A can generate VerDMPF keys (k∗

0, k
∗
1) ←

A(1λ) along with L ≥ 1 distinct evaluation points x1, . . . , xL ∈ [N ] such that
the following holds. Let (yb, πb) ← VerDMPF.BVEval(b, k∗

b , {xi}L
i=1) such that

Accept ← VerDMPF.Verify(π0, π1) but there are ω > m indices i1, . . . , iω such
that y

(ij)
0 + y

(ij)
1 �= 0 for j ∈ [ω]. In other words, the output of the batched

evaluation contains more than m non-zero outputs.

Proof. This follows directly from the verifiability of the VerDPF shares, which
guarantees that there is at most one non-zero evaluation for each of the m
buckets.
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Lemma 6, Lemma 7, and Lemma 8 combine to give the following theorem.

Theorem 4. The construction in Fig. 2 is a secure verifiable DMPF for the
class F of multi-point functions f : [N ] → G with at most t non-zero evaluation
points. For any f ∈ F and m = O(tλ + t log(t)), the runtime of VerDMPF.Gen
is O (mλ log(N/m)). For η inputs, the runtime of VerDMPF.BVEval is
O(ηλ log(N/m)).

Proof. The asymptotics follow from the fact that generating a single VerDPF
share in this scheme takes time O(λ log(N/m)), and evaluation of a VerDPF
share at one point is also O(λ log(N/m)), where we take the PRP and PRG
evaluations to be O(λ).

Remark 2. We note briefly that if a PRP for the domain κN is not available,
our method will work just as well utilizing a generic Cuckoo-hashing scheme and
setting all indexj(i) = i. The difference will be that the domain size of the DPF in
each Cuckoo-hash bucket will not shrink as the number of nonzero points grows,
resulting in a VerDMPF.Gen time of O (mλ log(N)) and a VerDMPF.BVEval time
of O(ηλ log(N)).

In Appendix A, we give an alternate evaluation mode of our VDMPF, which
we call “match-mode” evaluation. This mode has identical performance to the
regular batch verifiable evaluation mode with the same verification guarantee.
The difference is that for each of the m buckets, match-mode evaluation com-
putes additive shares of whether or not any of the inputs matched with the
nonzero point in that bucket. This mode is useful in two-server PSI protocols,
among others.

5 Implementation & Performance

In this section, we present an implementation of our verifiable DPF and verifiable
MPF constructions and compare them to their non-verifiable and non-batched
counterparts.

Implementation Details. We implemented our VDPF and VDMPF constructions
in C++. We follow the approach of Wang et al. [13] by using a fixed-key AES
cipher to construct a Matyas-Meyer-Oseas [11] one-way compression function.
We use AES-based PRFs to construct our PRGs, our hash functions, and our
PRP. Using an AES-based PRP implicitly fixes our DMPF domain size to be
128 bits, and we leave for future work the task of implementing an efficient
small-domain PRP. Our implementation is accelerated with the Intel AES-NI
instruction, and all benchmarks were run on a single thread on an Intel i7-8650U
CPU. For comparison, we also implemented a non-verifiable DPF following the
constructions of Boyle et al. [3] and Wang et al. [13], which we refer to as the
“textbook” DPF. We implement the “textbook” distributed MPF by naively
applying the textbook DPF; namely, our textbook DMPF share contains one
DPF share per non-zero point, and evaluating the share requires evaluation all
DPF shares and summing their results.
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Fig. 2. Verifiable distributed multi-point function.
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DPF Comparisons. We now present the results of our DPF comparisons. For
various domain sizes 2n, we benchmarked the share generation time, the evalu-
ation time, and the full-domain evaluation time for the textbook DPF and the
verifiable DPF. All benchmarks of the verifiable DPF include the generation of
the verification proof. The share evaluation comparison runs the verifiable DPF
at 100 random points in {0, 1}n and generates the proof verifying this set of
evaluations. The runtime reported is the time per evaluation point. Benchmarks
are given in Fig. 4.

The slowdown for the verifiable evaluation time is quite small, as it essentially
only requires evaluating one additional level of the GGM tree. The slowdown for
the share generation time is a bit greater, since the verifiable share generation
has a 50% chance of failure, at which point it must be restarted. This can be
seen by the roughly factor of 2 slowdown in the runtime of the verifiable share
generation.

Overall, our comparisons show that our techniques introduce relatively little
overhead to the textbook DPF procedures. We view these results as an affirma-
tion of our claim that our verifiable DPF can replace the textbook DPF in any
application to provide a meaningful & robust malicious security claim without
seriously impacting performance. Our results are displayed in Fig. 3.

Fig. 3. In this figure, we present the benchmarks of the textbook DPF and the ver-
ifiable DPF presented in this work. The top-left graph plots runtimes for the share
generation time. As can be seen, the slowdown for verifiability is roughly 2×. The
top-right graph plots the runtimes for the share evaluation. As discussed in Sect. 5, the
verifiable runtime was computed by taking the runtime of the verifiable batch eval-
uation procedure (Fig. 1) for 100 random points and dividing it by 100. The bottom
graph plots the runtimes for the full domain evaluation operation.



176 L. de Castro and A. Polychroniadou

DMPF Comparisons. We now present the results of our DMPF comparisons. We
benchmarked the share generation and evaluation time for MPFs with various
numbers of nonzero points t. As with the DPF comparisons, all benchmarks of
the VDMPFs include the time required to generate the verification proof. Recall
that our “textbook” benchmark uses neither the batching nor the verification
techniques presented in this work. The batched, verifiable share generation time
is about 2× slower than the textbook share generation time. This is a balancing
between the increased runtime due to the overhead of the verifiable share genera-
tion, the overhead due to the number of buckets being greater than the nonzero
values, and the savings due to the domain size shrinking thanks to the PRP
savings. To display benchmarks that demonstrate this optimization, we chose a
domain size of N = 2126. This is so that the κ · N elements of the permutation
fit in the 128-bit domain of AES PRP. These benchmarks are given in Fig. 4.

The real savings, and what we view as one of the main results of this
section, comes in the share evaluation. As discussed in Sect. 4, the performance
of the batched VDMPF evaluation effectively does not grow with the number
of nonzero points t in the shared multi-point function. This is in stark contrast
to the textbook version, where evaluation time grows linearly with the number
of nonzero points t in the shared multi-point function. This leads to a dramatic
difference in the evaluation times, even when considering the time to generate
the verification proof, even for a small number of nonzero points (e.g. 10 points).
These results are displayed in Fig. 5.

Fig. 4. This graph plots the share generation time for the textbook DMPF and the
batched, verifiable DMPF presented in this work.
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Fig. 5. This figure plots the evaluation times for the textbook DMPF and the batched,
verifiable DMPF presented in this work. The domain sizes of these functions were 126
bits. Both graphs in this figure plot the same data; the first graph shows all plots while
the second graph is only a plot of the smallest four lines so that the batched VDMPF
runtimes can be viewed. The x-axis for these graphs is the number of points η on which
the shares are evaluated, and the colors of each line represent the number of nonzero
points t in the shared multi-point functions. The number of points is indicated in the
legends of the graphs. Note in the second graph that the evaluation time decreases as
the number of nonzero points on in the MPF grows.
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A Match-Mode VDMPF: Point Matching

In this section, we present an alternative evaluation mode for our VDMPF
scheme that is be useful in various applications. In the “main” evaluation mode,
which was presented in Fig. 2, the servers produce one output for each input
element to the batched evaluation algorithm. In the “match” evaluation mode
discussed in this section, the servers produce one output for each of the cuckoo-
hash buckets in the VDMPF key. The purpose of this evaluation mode is to
determine if one of the server’s input elements matches one of the non-zero
points of the multi-point function.

In more detail, during the evaluation algorithm the servers still produce a set
of inputs for each of the m buckets and evaluate the corresponding VDPF keys
on these inputs. Instead of summing the VDPF outputs according to a matching
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input, the servers sum the outputs of each VDPF to create a single output for
each of the m buckets. From the verifiability of the point function share in each
bucket, the servers can easily ensure that the evaluation of at most one of their
inputs is being revealed for each bucket. The algorithm is given in Algorithm 5.

Algorithm 5. VDMPF Match-Mode Evaluation, denoted VerDMPF.MatchEval.
The setting for this algorithm is the same as the VDMPF construction in
Figure 2.
Input: bit b and VerDMPF key kb

η inputs x1, . . . , xη

1: Parse σ, k
(1)
b , . . . , k

(m)
b ← kb

2: Define B ← �Nκ/m	, n′ ← �log(B)	.
3: Let VerDPF := VerDPFn′,G.
4: Initialize an array inputs of length m.
5: for ω from 1 to η do
6: Let i1, . . . , iκ ← h1(xω), . . . , hκ(xω)
7: Let j1, . . . , jκ ← index1(xω), . . . , indexκ(xω)
8: Append jk to inputs[ik] for each k ∈ [κ], ignoring duplicates.

9: Initialize an array outputs of length m to all zeros.
10: Initialize a proof π ← 0
11: for i from 1 to m do
12: {y�}L

�=1, π
(i) ← VerDPF.BVEval(b, k

(i)
b , inputs[i])

13: outputs[i] ← outputs[i] + y� for 
 ∈ [L]
14: π ← π ⊕ H′(π ⊕ π(i))

Output: outputs, π
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Abstract. We present a new OT-based two-party multiplication proto-
col that is almost as efficient as Gilboa’s semi-honest protocol (Crypto
’99), but has a high-level of security against malicious adversaries without
further compilation. The achieved security suffices for many applications,
and, assuming DDH, can be cheaply compiled into full security.

1 Introduction

In a two-party multiplication protocol, each party’s output is a random additive
share of the multiplication of the parties’ private inputs. Two-party multiplica-
tion is a fundamental building-block of arithmetic secure computation, holding
a role analogous to that oblivious transfer (OT) has in Boolean secure computa-
tion. We present a new, highly efficient (maliciously secure) OT-based two-party
multiplication protocol below, but first start with some background.

1.1 Background on OT-Based Two-Party Multiplication

There are a several known techniques to obtain two-party multiplication, histori-
cally falling in one of two categories: protocols based on homomorphic encryption
(HE), or protocols based on (Boolean) OT. The two classes of protocols offer
different tradeoffs between efficiency and underlying security assumption; HE-
based protocols are typically more efficient communication-wise, while OT-based
are more efficient computation-wise. Also, HE-based protocols typically require
stronger assumptions. In recent years, new paradigms [1,4–6,14] have emerged
for realizing two-party multiplication,1 where the underlying “machinery” is
1 Actually, most papers in the space focus on the related functionalities of OLE and

VOLE, discussed later on.
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based on homomorphic [7,8] or function [6] secret sharing. The two notions
may be viewed as analogues of respectively HE and functional encryption [3] in
the secret sharing realm. In this paper, we focus on OT-based protocols, and we
refer the reader to Sect. 1.4 for further discussion on protocols that do not rely
on OT.

Recall that OT is the functionality that takes two inputs x0, x1 ∈ Zq from
the sender, a bit β from the receiver, and returns xβ to the receiver (and nothing
to the sender). To the best of our knowledge, there are essentially two basic tem-
plates for honest-but-curious OT-based multiplication: the Gilboa [15] protocol,
and the Ishai, Prabhakaran, and Sahai [19] protocol. We refer the reader to Fig. 1
for a side by side comparison of the two protocols. For clarity of exposition, we
focus our attention on multiplications over the field Zq = Z/qZ for an odd prime
q (i.e., the arithmetic field of integers modulo an odd prime).

Malicious Security. As far as we know, all OT-based multiplication protocols
only achieve honest-but-curious (passive) security.2 To achieve malicious secu-
rity, these protocols can be compiled in a number of generic ways, e.g., using
SNARKSs, cut-and-choose, and/or MPC-in-the-head techniques. For concrete
efficiency, however, it is often preferable to design tailor-made solutions [14,20].
For instance, motivated by applications to MPC in the preprocessing model,
Keller et al. [20] (MASCOT) design various cut-and-choose techniques, on top
of Gilboa’s protocol, for maliciously realizing various useful functionalities in the
preprocessing model. We discuss MASCOT in detail in Sect. 1.3.

1.2 Our Contributions

We present a new OT-based two-party multiplication protocol that achieves a
high level of security against malicious adversaries. The protocol may be viewed
as a noisy generalization of Gilboa [15]’s protocol (or, alternatively, as a hybrid
between Gilboa [15] and Ishai et al. [19] protocols).

Let a, b ∈ Zq be the inputs of P1 and P2, respectively, and let n = �log q�+κ
for a (statistical) security parameter κ. Our protocol requires no initialization
stage, and the parties make n parallel OT-calls. In the ith call, P2’s input index
is a random value ti ← {−1, 1} (i.e., we switch conventions regarding the OT-
receiver’s input),3 and P1’s input pair is (−a + δi, a + δi) for a random mask
δi ← Zq. Notice that this differs from Ishai et al. [19] protocol in which P1’s
input in for OT-calls depends on the vectors sent by P2. After these calls are
done, P2 uniformly samples v = (v1, . . . , vn) ← Zn

q subject to b =
∑

i viti, and
sends v, but not the ti’s, to P1. See Protocol 1 for a more detailed description.
2 The OT-based protocol of Ghosh, Nielsen, and Nilges [14] does achieve malicious

security (without further compilation), but its security proof relies on an additional
hardness assumption (a rather non-standard coding assumption). Interestingly, the
security analysis in [14] is somewhat reminiscent of the security analysis of our
protocol.

3 The choice of {−1, 1} instead of {0, 1} significantly simplifies our security analysis,
but it is also what limits it to fields of characteristic greater than two (see Theorem
2).
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Fig. 1. Honest-But-Curious multiplication protocols between party P1, holding input
a ∈ Zq, and party P2, holding input b ∈ Zq. Gilboa’s protocol consists of � = �log(q)�
parallel OT-calls, where Ishai et al. [19]’ protocol consists on n = � + κ calls, where κ
is a (statistical) security parameter. We remark that Gilboa’s protocol can be cast as
a variant of Ishai et al. [19]’ protocol, where the pair of vectors (u0, u1), which P2 uses
for encoding its input in Ishai et al. [19] are implicitly hardcoded as u0 = (0, . . . , 0)
and u1 = (1, 21, 22, . . . , 2�−1). Gilboa [15], however, dispenses of the communication
round prior to the OT, since the two vectors are known in advance to both parties,
and achieves perfect security (in the OT-hybrid model).

Protocol 1 (Our OT-based multiplication protocol (P1,P2))

– Inputs. The parties hold common input 1κ. Party P1 holds private input a ∈ Zq,
and party P2 holds private input b ∈ Zq. Let n = �log q� + κ.

– OT. The parties makes n parallel OT-calls. In the i-th call:
1. P1, as the sender, inputs pair (−a + δi, a + δi) for a uniform δi ← Zq.

(It receives no output.)
2. P2, as the receiver, inputs index ti ← {−1, 1}, and receives output zi ∈ Zq.
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– Outputs.
1. P2 samples v = (v1, . . . , vn) ← Zn

q subject to b =
∑

i vi · ti. It sends v to P1.
2. P1 outputs − ∑

i δi · vi.
3. P2 outputs

∑
i zi · vi.

Before we discuss the merits of our protocol, we briefly touch on the correctness
and security analysis. It is easy to see that the protocol is correct (when invoked
by honest parties). Indeed,

s2 = 〈v, (z1, . . . , zn)〉 = 〈v, (δ1, . . . , δn)
︸ ︷︷ ︸

δ

+a · (t1, . . . , tn)
︸ ︷︷ ︸

t

〉

= a · 〈v, t〉 + 〈v, δ〉 = a · b − s1,

making s1 +s2 = a · b. Second, (similarly to Gilboa’s protocol mentioned earlier)
the protocol is fully secure for a malicious P2: the only way P2 may deviate from
the protocol is by choosing a different value for v (unrelated to b) at the last
stage of the protocol. This behavior, however, is equivalent to choosing a different
input, and thus does not violate the security of the protocol. The analysis for a
malicious P1 is more involved. Effectively, P1 is limited to choosing inconsistent
inputs for the OT-calls: instead of using (ai, a

′
i) of the form (δi − a, δi + a), a

corrupted P1 may choose pairs of inputs which are not consistent across different
OT-calls i.e., for some i �= j, it holds that ai − a′

i �= aj − a′
j , and it seems

this attack cannot be simulated using access to the (standard) multiplication
functionality.4 Instead, we show that it exhibits the following useful dichotomy:
depending on the number of inconsistent inputs in the OT-calls provided by
P1, either the execution can be simulated using the standard multiplication
functionality (with 2−κ/4 statistical-closeness), or, P2’s output has min-entropy
at least κ/4, when conditioning jointly on P2’s input and P1’s view. That is, P2’s
output is highly unpredictable, even when knowing its input. This property is
technically captured by the following informally stated theorem.

Theorem 2 (Security of our multiplication protocol, informal). For
adversary A corrupting P1, consider a random execution of Protocol 1 in the
presence of A, where P2 is holding input b, and let outA2 (b) denote P2’s output
and viewA(b) denote A’s view in this execution. Assume q ≥ 2κ/2,5 then at least
one of the following holds (depending on its inputs to the OT-calls):

1. A can be simulated given access to the perfect (standard) multiplication func-
tionality. (By extracting the input to the perfect multiplication from A’s inputs
to the OT-calls.)

4 It is not too hard to get convinced that our protocol does not realize the multipli-
cation functionality with statistical security (in the OT-hybrid model), but we defer
the rather tedious proof of this fact to the next version of this paper. It seems plau-
sible, however, that under the right Subset-Sum hardness assumption, the protocol
does realize the multiplication functionality with computational security. Proving it
is an intriguing open question.

5 We discuss how our results extend to arbitrary fields of characteristic greater than
two in Sect. 2.
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2. H∞
(
outA2 (b) | viewA(b), b

) ≥ κ/4. (i.e., P2(b)’s output is unpredictable from
A’s point of view, even if A knows b.)

We prove Theorem 2 by showing that our protocol realizes a “weak” ideal
multiplication functionality that formally captures the two conditions above (see
Sect. 4 for details). The above security guarantee makes our protocol very desir-
able for a number of reasons, enumerated below.

1. First, via a simple reduction from (standard) designated-input multiplication
to random-input multiplication, we can compile our protocol into a mali-
ciously secure protocol by performing an a posteriori check on the shares.
Such a check does not seem to exist for Gilboa [15], Ishai et al. [19] protocols.

2. Second, and more importantly, we claim that the security notion achieved
out-of-the-box by our protocol is sufficient for a number of applications, e.g.,
within protocols where some kind of correctness check is performed obliviously
on the parties’ outputs. For instance, in the threshold ECDSA of Lindell
and Nof [23], the output is released only after it is checked for correctness.
Consequently our protocol can readily be used as a multiplication protocol
therein.

Batching. We show that our protocol enjoys the following performance improve-
ment when performing m multiplications with P1 using the same input in each
instance; this task essentially corresponds to the important VOLE functionality
discussed in Sect. 1.3. Instead of running the protocol m times (and thus paying
m · n = m · (� + κ) OT’s), our protocol can be batched so that it requires only
κ + m · � calls to the underlying OT functionality. The batched version of our
protocol exhibits a similar dichotomy to the non-batched version: either the pro-
tocol is secure (with 2−κ/4 closeness to the ideal world), or, if not, each one of
the honest outputs has min-entropy at least κ/4, even when conditioning on all
of the honest party’s inputs (albeit there may be dependencies between the out-
puts). For large m, our approach almost matches the number of OT-calls from
Gilboa’s honest-but-curious protocol, while achieving a stronger security notion.
Moreover, in the Random Oracle Model (ROM), it is possible to also bring down
the communication complexity of our protocol to match [15] by instructing P2

to communicate v = (v1, . . . , vn) succinctly via the oracle, e.g., by sending a
short seed instead of the entire vector. Furthermore, for malicious security, it is
enough to perform a single a posteriori check on the shares of only one of the
underlying multiplications (say the first multiplication). Indeed, our dichotomy
result guarantees that the check is successful only if the attack can be simulated
in the ideal world (and thus all outputs are well-formed).

As a concrete efficiency example, for a prime q for which there exists a q-size
group where DDH is assumed to hold (say secp256k1 – the Bitcoin curve – with
prime q ≈ 2256), we instantiate the correctness-check using El-Gamal commit-
ments (these commitments were thoroughly used in [23] in the context of thresh-
old ECDSA). We estimate that the correctness-check requires computational-
complexity of around 30 exponentiations in the group and communication-
complexity of 20 group elements (assuming the encodings of field elements and
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group elements have essentially the same size). Since this penalty is independent
of the number of multiplications in the batch, performing a batch of m multi-
plications with (full) malicious security 2−κ/4 in the ROM incurs the following
cost:

OT’s Communication (bits) Computation (group exp.)

m · � + κ (m + 20) · � bits 30

Hence, even with the correctness-check, the complexity-penalty of our protocol
compared to Gilboa’s honest-but-curious protocol is insignificant for large m.6

1.3 Applications

In this section, we discuss several applications where our protocol may be of
interest.

OLE and VOLE. The oblivious linear evaluation (OLE) functionality may be
viewed as a variant of two-party multiplication where one party (say P2) has
full control over its share. Namely, on input a for P1 and (b, σ) for P2, the func-
tionality returns ab + σ to party P1 and nothing to party P2. An important
generalization of OLE is vector oblivious linear evaluation (VOLE), where it is
now assumed that P2 holds a pair of vectors (b,σ) and P1 learns the combination
ab + σ. There is a straightforward reduction from OLE and VOLE to multipli-
cation and batch-multiplication respectively and thus our protocol (compiled for
malicious security) can readily be used for this purpose.

MACs and Multiplication Triplets. Motivated by applications of arithmetic
MPC in the preprocessing model, i.e., generating function-independent corre-
lated random data that can be later used by the parties to achieve statistically
secure MPC for any functionality, there is a rich line of work ([2,10,11,13,20,22]
to name but a few) for generating message authentication codes (MACs) and
authenticated multiplication triplets. For convenience, we recall the definition of
each notion. On secret input x from P1 (only one party provides input), the two-
party MAC functionality returns τ ∈ Zq to P1 and a pair (k, σ) ∈ Z2

q to P2 such
that τ = x · k + σ. Thus, a corrupted P1 is effectively committed to x which can
be authenticated by revealing the pair (x, τ). Notice that P2 accepts the decom-
mitment if and only if τ = x · k + σ which uniquely determines x (unless P1 can
guess k, which happens with negligible probability). For reference, σ and τ are
referred to as the MAC shares and k is referred to as the MAC key. Next, we
define authenticated multiplication triplets. On empty inputs, the authenticated
multiplication triplets functionality (Beaver) returns (a1, b1, c1) and (a2, b2, c2)
to P1 and P2 respectively such that (a1 + a2) · (b1 + b2) = c1 + c2, together with

6 Without the oracle the penalty is rather noticeable, since there is a (� · m + κ)-
multiplicative blowup in the communication complexity.
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MAC keys and shares for all the relevant data, i.e., P2 holds a key k and shares
σ, σ′, σ′′, and P1 holds τ, τ ′, τ ′′ as MAC data for the triplet (a1, b1, c1), and the
MAC data for P2’s triplet (a2, b2, c2) is analogously defined (where the parties’
roles are reversed). It goes without saying, our base protocol can be used to gen-
erate MACs and triplets in a straightforward way (explained further below). For
comparison, we briefly outline MASCOT [20], the only purely OT-based work
for generating triplets with malicious security.

MASCOT [20]. To realize the two functionalities described above in the pres-
ence of malicious adversaries, [20] employs a number of cut-and-choose tech-
niques on top of Gilboa’s protocol. Specifically, for the MAC functionality, the
authors propose the following process: P2 samples a random MAC key k and
the parties run Gilboa’s protocol twice; once with inputs (x, k) and once with
inputs (x0, k) where x0 denotes a random dummy input sampled by P1. At the
end of the protocol the parties (are supposed to) obtain MAC shares for both x
and x0 under key k. To verify that P1 behaved honestly (as we discussed earlier,
only P1 is capable of cheating), P1 is instructed to reveal a random combination
of x0 and x as well as the same random combination of its MAC shares. If P2

accepts, then, with all but negligible probability, P2 is holding the right MAC
data for x. The protocol for the Beaver functionality follows a similar template,
however the added redundancy and check procedure (to verify correctness) is
more involved. For brevity, we do not describe it here but we mention that it
requires 6 or 8 executions (depending on the target security) of Gilboa’s protocol
on top of the required runs to obtain the MAC data (In total, Gilboa’s protocol
is ran 18 or 20 times depending on the target security for a single authenticated
multiplication triple).

Using our protocol to generate MACs and Triplets maliciously. MAC-
generation essentially coincides with batch-multiplication (where a single k is
used as a MAC-key to authenticate many values x1, x2, . . .). Thus, our batch-
multiplication protocol (with the correctness-check) can readily be used for this
purpose. Next, we turn to the triplets.

Analogously to standard multiplication, if we allow for an a posteriori check
on the shares (more involved than the one presented earlier), we show how our
protocol can be used to generate triplets. In particular, a single triplet can be
generated by running our base protocol 2 times in its non-batched version (to
generate the triplet) and 2 times in the batched version with batches of size 3
(to generate all the MAC-data), and then performing a correctness-check on the
shares. For concreteness, we instantiate this check for prime q when there is an
accompanying group where DDH is hard. We estimate that the correctness-check
requires computational-complexity of around 90 exponentiations in the group
and communication-complexity of 60 group elements. In total, this process incurs
the following costs for generating a single triplet in the random oracle model.7

7 Since it is not the focus of our paper, we have not examined how to optimize the pro-
tocol or correctness-check when many triplets are being generated, and we speculate
that several optimizations are possible.
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OT’s Communication (bits) Computation (group exp.)

4κ + 8� 70� 90

As an example, for � ≈ 512, our protocol is 53% cheaper in usage of the
underlying OT compared to MASCOT when aiming for security 2−64.

Comparison to 2PC Multiplication from [12]. We note that our multiplica-
tion protocol may also improve the efficiency of the threshold ECDSA protocol
of Doerner et al. [12]. In more detail, the core two-party multiplication protocol
in [12] is a variant of MASCOT where the parties multiply (random) dummy
values which are then opened in a cut-and-choose way to check for correctness.
Specifically, for each (designated-input) multiplication, [12] instructs the par-
ties to perform two random multiplications using the OT. Our protocol only
prescribes one random multiplication and avoids this redundancy. Thus, our
protocol enjoys an x2 improvement in the underlying use of OT.8

1.4 Related Work

Multiplication from Noisy Encoding. Drawing from [24], Ishai et al. [19]
generalize their protocol so that it supports many types of encodings for P2

input. Thus, instead of the two u-vectors from Fig. 1, P2 may use different noisy
encoding to encode its input prior to the OT. Under various coding assump-
tion (e.g., [21]), Ishai et al. [19] show that several coding schemes give rise to
honest-but-curious multiplication protocols with much improved complexity. As
mentioned earlier, this approach was later shown to be sufficient by [14] for
achieving malicious security under a specific coding assumption.

Non OT-based multiplication. Here we distinguish between HE-based and
the more recent approaches based on homomorphic and function secret sharing.
HE-Multiplication can be based on either somewhat homomorphic encryption
or fully homomorphic encryption. We refer the reader to [25] for a discussion
on HE-based multiplication in the context of a specific general-purpose MPC
(the SPDZ protocol [11]). The work on the two newer notions (homomorphic
and function secret sharing) is motivated by applications to correlated data gen-
eration in the prepossessing model (in the spirit of multiplication triplets). For
instance, Boyle et al. [5] show how to generate OLE-correlations using homo-
morphic secret sharing (under various coding assumptions), and Boyle et al. [4]
show how to generate long VOLE instances (again under various coding assump-
tions). These new approaches offer improvements over previous ones, especially
in communication costs.

8 When using OT-extensions, this improvement automatically translates into an x2
improvement in communication complexity, which is the most expensive resource in
[12].
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Paper Organization
In Sect. 2, we describe the high-level approach for analyzing the security of P2

in Protocol 1, as stated in Theorem 2. Notations, definitions and general state-
ments used throughout the paper are given in Sect. 3. Theorem 2 is formally
stated and proved in Sect. 4, and its batching extension is formally stated in
Sect. 5. Finally, in Sect. 6, we show how to compile our protocol generically for a
number of applications (including, e.g., perfect multiplication). We note that we
also provide (non-generic) group-theoretic instantiations in the supplementary
material.

2 Our Techniques

In this section, we describe the high-level approach for analyzing the security of
P2 in Protocol 1, as stated in Theorem 2. For the formal proof of this theorem
see Sect. 4.

Recall that a malicious A corrupting P1 can deviate from the protocol by
providing inputs to the OT-calls that are not consistent with any a ∈ Zq. Our
security proof consist of a case-by-case analysis depending on how “far from
consistent” A’s inputs to the OT are. Let (w−

i , w+
i ) denote the inputs that A

uses in the ith OT-call, let ai = (w+
i − w−

i )/2 and let δi = w+
i − ai. Let â be

the value that appears the most often in a = (a1, . . . , an), and let d = a − â · 1.
Intuitively, the hamming distance of d from 0 measures how much A deviates
from honest behaviour. In particular, d = 0 if P1 uses the same a in all OT-calls,
and the hamming weight of d is n− 1 if P1 never uses the same input twice. Let
t = (t1, . . . , tn), z = (z1, . . . , zn) and v be the values that are sampled/obtained
by P2 in the execution, and let s2 denote its final output. By definition, it holds
that

s2 = 〈v,z〉 = 〈v, δ + a ∗ t〉 = 〈v, δ + â · t〉 + 〈v,d ∗ t〉
= (〈v, â · t〉 + 〈v, δ〉) + 〈v,d ∗ t〉
= (â · b + 〈v, δ〉) + 〈v,d ∗ t〉,

letting ∗ stand for point-wise multiplication and δ = (δ1, . . . , δn). The last equa-
tion holds by the definition of v. Thus, given P1’s view along with the value of
b, notice that the value of s2 is the addition of the following two summands: the
constant9 (â · b + 〈v, δ〉) (viewed as a single summand) and 〈v,d ∗ t〉.

We say that a ∈ Zn
q is m-polychromatic, if for every y ∈ Zq it holds that

Ham(d, yn) ≥ m (e.g., (0, 1, 2, 3, 0) is 3-polychromatic but not 4-polychromatic).
We show that if a is not κ/2-polychromatic, hereafter almost monochromatic,
then the execution of the protocol can be simulated using oracle-access to the
perfect (i.e., standard) multiplication functionality (which provides the right
share to each party, without any offset). Otherwise, if a is κ/2-polychromatic,
hereafter polychromatic, then 〈v,d∗ t〉 has high min-entropy, given A’s view and
the value of b.
9 Given P1’s view and P2’s input.
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Before we further elaborate on each of the above two cases, we introduce the
following notation. To distinguish between the values fixed adversarially by A
and those sampled (honestly) by P2, in the remainder we treat the adversary’s
inputs as fixed values and the honest party’s input as random variables. Namely,
it is assumed that a ∈ Zn

q is fixed (and thus also the vector d), and we let V
and T denote the random variables where v and t are drawn from (i.e., uniform
distribution over Zn

q and {−1, 1}n, respectively).

Almost-Monochromatic a yields statistical security. We prove this part
by showing that, given V , the value of 〈V ,d ∗ T 〉 is close to being independent
of b. Namely, for any b, b′ ∈ Zq,

SD
(
(V , 〈V ,d ∗ T 〉)|〈V ,d∗T 〉=b, (V , 〈V ,d ∗ T 〉)|〈V ,d∗T 〉=b′

) ≤ 2−κ/4 (1)

Equation (1) yields that the simulation of P2 in the ideal world, given access to
the perfect multiplication functionality, can be simply done by emulating P2 on
an arbitrary input.

To see why Eq. (1) holds, let I := {i ∈ [n] : di �= 0}, and assume T I (the
value of T in the coordinate of I) is fixed to some s ∈ {−1, 1}|I|. Since, given
this fixing, 〈V ,d ∗ T 〉 = 〈V I ,dI ∗ s〉 is a deterministic function of V , proving
the monochromatic case is reduced to proving that

SD(V |〈V ,T 〉=b,V ) ≤ 2−κ/4 (2)

Since d is almost-monochromatic, then, given the above fixing of T I , it still
holds that H∞(T ) ≥ n − |I| ≥ �log q� + κ/2. Thus, by the leftover hash lemma

SD ((V , 〈V ,T 〉), (V , U)) ≤ 2−κ/4 (3)

for a uniformly sampled U ← Zq. In other words, the value of V is 2−κ/4-close
to uniform given 〈V ,T 〉, and Eq. (2) follows by a not-too-complicated chain of
derivations (see proof of Lemma 3).

Polychromatic a yields unpredictable offset. Fix b ∈ Zq, and for t ∈
{−1, 1}n let W t be the indicator random variable of the event {〈V , t〉 = b}, and
let W :=

∑
t∈{−1,1}n W t . In addition, for t ∈ {−1, 1}n and x ∈ Zq, let Zt

x be
the indicator random variable of the event {〈V b, t〉 = b ∧ 〈V ,d ∗ t〉 = x}, and
let Zx :=

∑
t∈{−1,1}n Zt

b . We show that for a polychromatic a, with probability
1 − 2−κ/4 over V it holds that

Zx/W ≤ 2−κ/4 (4)

for every x ∈ Zq (simultaneously). It follows that for such vector a, with high
probability over V , the probability that 〈V ,d ∗ T 〉 = x, for any value of x, is
small. In other words, 〈V ,d ∗ T 〉 has high min-entropy given (V , b).10

10 Actually, since the value of v sent to P1 is not uniform, but rather distributed
according to V b := V |〈V ,T 〉=b, to argue about the security of the protocol one needs
to argue about the min-entropy of 〈V b, d ∗T 〉 given (b, V b). We ignore this subtlety
in this informal exposition.
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We prove Eq. (4) by upper-bounding E[W 3] and E[Z3
x], for any x, and then

we use a third moment concentration inequality to derive Eq. (4). The harder
part is bounding E[Z3

x]. To get the gist of this bound, we give the intuition for
bounding E[Z2

x]. This bound is derived by proving that the number of pairs
(t, t′) with E[Zt

x · Zt′
x ] > 1/q4 is small. These pairs are identified by relating

the correlation of the indicator random variables of the events {〈V , t〉 = b},
{〈V , t′〉 = b}, {〈V ,d ∗ t〉} and {〈V ,d ∗ t〉} to the dimension of space spanned
by the vectors in St,t′ := {t, t′,d ∗ t,d ∗ t′}. In particular, it is not hard to see
that

rank(St,t′) = j =⇒ E[Zt
x · Zt′

x ] ≤ 1/qj

Hence, upper-bounding E[Z2
x] reduces to upper-bounding to number of pairs

(t, t′) with rank(St,t′) < 4. Upper-bounding the number of such pairs is done
using linear algebra arguments, exploiting the fact that d has at least κ/2 non-
zero elements (since it is polychromatic). Specifically, we show that the number
of pairs (t, t′) with E[Zt

x ·Zt′
x ] < 1/q4 decreases exponentially with the weight of

d. This bound is sufficient for calculating the second moment of Zx (deducing
a weaker bound than Eq. (4), cf., Sect. 4.2). Calculating the third moment of
Zx, however, for deriving Eq. (4) is more involved, and requires a more detailed
case-by-case analysis in the counting argument, cf., the full version of this paper
[17].

Extension to Arbitrary Fields. Our results extend trivially to large finite
fields (i.e., of size greater than 2κ/2). Next, we briefly explain how to use our
protocol for multiplying in a small field, denoted F. Unfortunately, as is, the
protocol does not enjoy the same unpredictability under attack since the entropy
of the offset is constrained by the size of the field, i.e., the offset has min-entropy
at most log(|F|). To circumvent this issue, we instruct the parties to embed F
into a larger field H of size 2κ/2 and perform the multiplication in H (of course,
the parties’ shares then reside in the larger field).

To obtain additive shares over the smaller field F, it is enough to perform
a local transformation to the output. This way, we enjoy the unpredictability
under attack (and thus the correctness-check can be performed over the larger
field) and we obtain correct shares of the output in F.

3 Preliminaries

3.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, low-
ercase for values and functions, and boldface for vectors. All logarithms con-
sidered here are in base 2. For a vector v = (v1, . . . , vn) and a set I ⊆ [n],
let vI be the ordered sequence (vi)i∈I , let v−I := v[n]\I , and let v−i := v−{i}
(i.e., (v1, . . . , vi−1, vi+1, . . . , vn)). For two vectors u = (u1, . . . , un) and v =
(v1, . . . , vn), let u ∗ v := (u1 · v1, . . . , un · vn), and let 〈u,v〉 :=

∑n
i=1 uivi.

Let bn denote the n-size all b vector, or just b when the size is clear from
the context. For a field F and a sequence of vectors v1, . . . ,vm ∈ Fn, let
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span{v1, . . . ,vm} := {∑m
j=1 λjvj : λ1, . . . , λm ∈ F} (i.e., the vector space that is

spawn by vectors v1, . . . ,vm), and let rank{v1, . . . ,vm} denote the dimension of
span{v1, . . . ,vm}. For a function f taking 1κ ∈ N as its first input, we let fκ(·)
stand for f(1κ, ·). Let ppt stand for probabilistic polynomial time, and pptm
stand for ppt (uniform) algorithm Turing Machine).

3.2 Distributions and Random Variables

The support of a distribution P over a finite set S is defined by Supp(P ) :=
{x ∈ S : P (x) > 0}. For a (discrete) distribution D, let d ← D denote that
d is sampled according to D. Similarly, for a set S, let x ← S denote that
x is drawn uniformly from S. The statistical distance (also known as, variation
distance) of two distributions P and Q over a discrete domain X is defined
by SD(P,Q) := maxS⊆X |P (S) − Q(S)| = 1

2

∑
x∈S |P (x) − Q(x)|. The min-

entropy of a distribution P over a discrete domain X is defined by H∞(P ) :=
minx∈Supp(P ){log(1/P (x))}.

3.3 Two-Party Protocols and Functionalities

A two-party protocol consists of two interactive Turing Machines (TMs). In
each round, only one party sends a message. At the end of protocol, each party
outputs some value. This work focuses on static adversaries: before the beginning
of the protocol, the adversary corrupts one of the parties that from now on may
arbitrarily deviate from the protocol. Thereafter, the adversary sees the messages
sent to the corrupted party and controls its messages. A party is honest, with
respect to a given protocol, if it follows the prescribed protocol. A party is semi-
honest, if it follows the prescribed protocol, but might output additional values.

We mark inputs to protocols and functionalities as optional, if they do not
have to be defined by the caller, and in this case they are set to ⊥.

3.3.1 Security
We define the security of our two-party protocols in the real vs. ideal paradigm
[9,16]. In this paradigm, the real-world model, in which protocols is executed, is
compared to an ideal model for executing the task at hand. The latter model
involves a trusted party whose functionality captures the security requirements
of the task. The security of the real-world protocol is argued by showing that
it “emulates” the ideal-world protocol, in the following sense: for any real-life
adversary A, there exists an ideal-model oracle-aided adversary (also known as,
simulator) S, such that the global output of an execution of the protocol with A in
the real-world model is distributed similarly to the global output of running SA in
the ideal model. In the following we only consider non-reactivate functionalities,
i.e., random functions.
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The Ideal Model. In the ideal execution model, the parties do not interact, but
rather make a single joint call to a two-party functionality. An ideal execution
of a two-party functionality f with respect to an adversary A taking the role of
P1 and inputs (1κ, x1, x2), denoted by IDEALf

P1
(A, κ, x1, x2), is the output of A

and that of the trusted party, in the following experiment (the case of malicious
P2 is analogously defined):

Experiment 3 (Ideal execution)

1. On input (1κ, x1), A sends an arbitrary message x̂1 to the trusted party.
2. The trusted party computes (y1, y2) = f(1κ, x̂1, x2) and sends y1 to A(1κ, x1).
3. A sends the message Continue/ Abort to the trusted party, and locally outputs

some value.
4. If A instructs Abort, the trusted party outputs ⊥. Otherwise, it outputs y2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The real model. We focus on security of protocols in the g-hybrid model, in
which the parties are given access to two-party functionality g. In executions
of such protocols, a malicious party can instruct the functionality g to abort
after seeing its output (which it gets first). Let Π = (P1,P2) be an two-party
protocol in the g-hybrid model, and let A be an adversary controlling party P1

(the case of malicious P2 is analogously defined). We define REALΠ
P1

(A, κ, x1, x2)
as the output of A (i.e., without loss of generality its view: its random input, the
messages it received, and the output of the g calls) and the prescribed output of
P2, in a random execution of (Ag(x1),P

g
2(x2))(1κ).

Hybrid-model security.

Definition 1 (α-security). A two-party protocol Π = (P1,P2) (black-boxly) α-
computes a two-party functionality f in the g-hybrid model with respect to input
domain D1 ×D2, if there exists a ppt oracle-aided algorithm S (simulator), such
that for every adversary A, κ ∈ N and inputs (x1, x2) ∈ D1 × D2, it holds that

SD
(
REALΠ

P1
(A, κ, x1, x2)) , IDEALf

P1

(
SA, κ, x1, x2

)) ≤ α(κ).

Furthermore, if A is semi-honest then so is SA: it sends its (real) input to the
trusted party, and does not ask to abort. Security is defined analogously for P2.

Extension to UC security. The above security notions are defined in the
so-called “standalone” model. However, we mention that the security analysis
for our main results (realizing WeakMult and WeakBatch) as well as for our
applications (e.g. Realizing PerfectMult from WeakMult and auxiliary “helper”
functionalities) uses straightline simulators exclusively, i.e., the simulator does
not rewind the adversary at any point of the simulation. Therefore, our results
can be extended to the UC setting.
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3.3.2 Oblivious Transfer (OT)
We use the (perfect) one-out-two oblivious transfer functionality (OT) defined
as follows: on input (σ−1, σ1) sent by the first party (the sender), and input
i ∈ {−1, 1} sent by the second party (the receiver), it sends σi to the receiver.
The functionality gets no security parameter.

3.3.3 Two-Party Multiplication
In multiplication over the field Zq = Z/qZ, where q is an odd prime, party P1

holds private input a ∈ Zq, party P2 holds private input b ∈ Zq, and the goal
is to securely computes random shares s1, s2 ∈ Zq for P1 and P2 (respectively),
such that s1 + s2 = a · b (for the ease of notation, we assume that operations are
made over the field Zq, i.e., modulo q). The following is what we address as the
perfect multiplication functionality.

Functionality 4 (PerfectMult)
P1’s input: a ∈ Zq.
P2’s input: b ∈ Zq and optional s2 ∈ Zq.
Operation:

1. If s2 =⊥, sample s2 ← Zq.
2. Output (s1, s2) for s1 ← a · b − s2.

Note that it is always holds that s1 + s2 = a · b. Also note that an adversary
controlling P1 can do no harm, and adversary controlling party P2 may choose
the value of its share s2, but no information about the other party’s input is
leaked. It seems that allowing one party to control its output is unavoidable,
and is also harmless for all the applications we are aware of.

3.3.4 Batching
In a batch-multiplication, a single input provided by one party is multiplied with
several inputs provided by the other party. Such multiplication is interesting
if the batching is more efficient than parallel executions of the (single input
per party) multiplication protocol. For this case, we define the perfect batch-
multiplication functionality below.

Functionality 5 (PerfectMultBatching)
P1’s input: a ∈ Zq.
P2’s input: b = (b1, . . . , bm) ∈ Zm

q and optional (s12, . . . , s
m
2 ) ∈ Zm

q .
Operation:

1. If (s12, . . . , s
m
2 ) = ⊥, sample (s12, . . . , s

m
2 ) ← Zm

q .
2. Output (s11, . . . , s

m
1 ) to P1 and (s12, . . . , s

m
2 ) to P2 for (s11, . . . , s

m
1 ) ← a · b −

(s12, . . . , s
m
2 ).

3.4 Some Inequalities

We use the following inequalities.
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Lemma 1 (Chebyshev’s inequality). Let X be a random variable with
E[X] ∈ (−∞,∞) and Var(X) ∈ (0,∞). Then

∀k > 0 : Pr [|X − E[X]| ≥ k] ≤ Var(X)/k2.

Definition 2 (Universal hash functions). A family H = {h : D → R} of
(hash) functions is called universal if for every x, y ∈ D with x �= y,

Prh←H [h(x) = h(y)] ≤ 1/ |R| .
Lemma 2 (The leftover hash lemma [18]). Let X be a random variable over
a universe D, let H = {h : D → R} be a universal hash family. Then for H ← H
it holds that

SD((H,H(X)), (H,U)) ≤ 2−(H∞(X)−log|R|)/2,

where U ← R (independent of H).

The following lemma is similar both in statement and proof to [19, Lemma
1]. It states that for a uniform universal hash function H conditioned on its
output for a uniform input X, does not affect its distribution by much. This is
in a sense the converse of the leftover hash lemma that states that (H,H(X)) is
close to uniform. For simplicity, we only state the lemma for the inner-product
hash family.

Lemma 3. Let (R,+, ·) be a finite ring of size r, let n = �log r�+κ, let d ∈ Rn,
let � = dist(d, 0n) and let V ← Rn and T ← {−1, 1}n be two independent
random variables. Then for every x ∈ R it holds that:

SD(V ,V |〈V ,T 〉=x) ≤ 2−(κ−1)/2.

The proof of the above can be found in the full-version of this paper [17].

4 Multiplication with Unpredictable Output Under
Attack

In this section, we formally describe our “weak” OT-based multiplication proto-
col introduced in Sect. 1; we state and analyze its security guarantee. We show
that our protocol securely realizes a multiplication functionality that guarantees
unpredictable honest-party output under attack, which, for lack of a better short
name, we will address as WeakMult. Intuitively, WeakMult allows the adversary
to either act honestly, or to induce an unpredictable offset on the honest party’s
output. As discussed in the introduction, such a security guarantee suffices in
many settings where “secure multiplication” is needed, and, with some additional
effort (see Sect. 6), can be compiled into perfect i.e., standard multiplication.

In Sect. 4.1, we define the WeakMult functionality and analyze the security
guarantee it provides. In Sect. 4.2, we formally define our OT-based multiplica-
tion protocol, and we prove that it securely realizes WeakMult. Hereafter, we fix
q ∈ PRIMES>2 (i.e., the size of the field), and all arithmetic operations are done
over the field Zq = Z/qZ (i.e., modulo q). Let Ham(x,y) stand for the hamming
distance between the vectors x and y.
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4.1 The Ideal Functionality

We start by describing the ideal functionality WeakMult. Recall that PerfectMult
is the perfect (standard) multiplication functionality defined in Sect. 3.3.3.

Definition 3 (polychromatic vector). A vector d ∈ Zn
q is m-polychromatic

if for every y ∈ Zq it holds that Ham(d, yn) ≥ m.

Functionality 6 (WeakMult)
Common input: a security parameter 1κ. Let n = �log q� + κ.
P1’s input: a ∈ Zq, and optional d ∈ Zn

q .
P2’s input: b ∈ Zq, and optional s2 ∈ Zq.
Operation:

If d is not κ/2-polychromatic (or d = ⊥), act according to
PerfectMult(a, (b, s2)).

Else:

1. Sample (v, t) ← Zn
q × {−1, 1}n such that 〈v, t〉 = b.11

2. Sample s2 ← Zq.
3. Output ((s1,v), s2) for s1 = a · b − s2 + 〈v,d ∗ t〉.

It is clear that WeakMult outputs the shares of a · b correctly on a non κ/2-
polychromatic d. The following lemma states the security guarantee of WeakMult
against a “cheating” P1 that uses a κ/2-polychromatic vector d.

Lemma 4. Let q ∈ PRIMES>2, κ ∈ N and n := �log q� + κ. Let d ∈ Zn
q , let

� = miny∈Zq
{Ham(d, yn)}, let λ := min{�, κ − 5, log q, n/3}, and let (V ,T ) ←

Zn
q × {−1, 1}n. Then for every b ∈ Zq, with probability 1 − 2−λ/2+3 over v ←

V |〈V ,T 〉=b, it holds that

H∞(〈v,d ∗ T 〉 | 〈v,T 〉 = b) ≥ λ/2 − 4.

When λ ≥ κ/2 (by the definition of λ this happens when the field is not too
small), for a κ/2-polychromatic d, Lemma 4 yields that for such d, conditioned
on 〈v,T 〉 = b, the min-entropy of 〈v,d∗T 〉 is at least κ/4−4. The rather tedious
proof of Lemma 4 is given in the full version of this paper [17]. Below, we state
and prove a weaker, but easier to read, variant.

Lemma 5 (A weak variant of Lemma 4). Let κ, n,d, �,V ,T be as in Lemma
4, and let λ := min{�, κ, log q, n/3}. Then for any b ∈ Zq, with probability 1 −
2−λ/3+2 over v ← V |〈V ,T 〉=b, it holds that

H∞(〈v,d ∗ T 〉 | 〈v,T 〉 = b) ≥ λ/3 − 4.

In words, compared to Lemma 4, Lemma 5 yields a slightly smaller min-entropy
guarantee which occurs with a slightly smaller probability.
11 This sampling can be done efficiently by sampling the two item uniformly, and then

adjusting one coordinate of v.
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Proof. We assume without loss of generality that

argmax
x∈Zq

|{i ∈ [n] : di = x}| = 0,

i.e., 0 is the most common element in d. (Otherwise, we prove the lemma for
the vector d′ = d − yn, where y ∈ Zq be the most common element). We also
assume that d is not the all-zero vector, as otherwise the proof trivially holds.

Let κ, n,d, �, λ,V ,T be as in Lemma 4, and fix b ∈ Zq. In addition, for
t ∈ {−1, 1}n, let W t be the indicator random variable for the event {〈V , t〉 = b},
and let W :=

∑
t∈{−1,1}n W t . For t ∈ {−1, 1}n and x ∈ Zq, let Zt

x be the
indicator random variable for the event {〈V , t〉 = b ∧ 〈V ,d ∗ t〉 = x}, and let
Zx :=

∑
t∈{−1,1}n Zt

x. We start by proving that with high probability over V ,
for every x ∈ Zq, it holds that

Zx/W ≤ 2−λ/3+4 (5)

and we will complete the proof of the lemma by showing that the above inequal-
ity still holds when defining Zx and W with respect to the random variable
V b := V |〈V ,T 〉=b (rather than with respect to V ). We prove Eq. (5) by bound-
ing the variance of W and Zx, and then use Chebyshev’s inequality (Lemma 1).
Specifically, we use the following claims (proven below).

Claim 7. For every x ∈ Zq : E[Zx] = 2n/q2 and Var(Zx) ≤ 22n−λ+4/q3.

Claim 8. E[W ] = 2n/q and Var(W ) ≤ 2n+1/q.

By Chebyshev’s inequality and Claim 7, for every x ∈ Zq:

Pr
[∣
∣Zx − 2n/q2

∣
∣ ≥ 2n−λ/3+2/q

]
≤ q2 · Var(Zx)

22n−2λ/3+4
≤ 2−λ/3

q
,

and thus by a union bound

Pr
[
∃x s.t.

∣
∣Zx − 2n/q2

∣
∣ ≥ 2n−λ/3+2/q

]
≤ 2−λ/3. (6)

Applying Chebyshev’s inequality with respect to Claim 8, we get that

Pr
[
W ≤ 2n−1/q

] ≤ Pr
[|W − 2n/q| ≥ 2n−1/q

] ≤ q2 · Var(W )
22n−2

≤ 2−κ+3, (7)

where the last inequality holds since, be definition, n ≥ log q + κ. Combining
Eqs. (6) and (7) yields that with probability at least 1 − (2−λ/3 + 2−κ+3) ≥
1 − 2−λ/3+1 over v ← V , it holds that:

1. ∀x ∈ Zq : Zx ≤ 2n−λ/3+3/q, and
2. W ≥ 2n−1/q.
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Note that for every v satisfying Items 1 and 2, and every x ∈ Zq, it holds that

Pr [〈v,d ∗ T 〉 = x | 〈v,T 〉 = b] =
Pr [〈v,d ∗ T 〉 = x ∧ 〈v,T 〉 = b]

Pr [〈v,T 〉 = b]
(8)

=
Zx

W
|V =v

≤ 2−λ/3+4.

We now turn to the distribution V b = V |〈V ,T 〉=b. Applying Lemma3 with
respect to the ring R = Zq with addition and multiplication modulo q, yields
that

SD(V ,V b) ≤ 2−(κ−1)/2 (9)

It follows that Eq. (8) holds with probability at least 1 − 2−λ/3+1 − 2−(κ−1)/2 ≥
1 − 2−λ/3+2 over v ← V b, as required.

4.1.1 Proving Claim 8

Proof. Recall that W :=
∑

t∈{−1,1}n W t for W t being the indicator random
variable for the event {〈V , t〉 = b}. Therefore, it is clear that E[W ] = 2n/q, and
a simple calculation yields that

Var (W ) = Var

⎛

⎝
∑

t∈{−1,1}n

W t

⎞

⎠ (10)

=
∑

t∈{−1,1}n

(E[(W t − 1/q)2] + E[(W t − 1/q) · (W−t − 1/q)])

≤ 2 ·
∑

t∈{−1,1}n

Var(W t)

≤ 2n+1/q,

as required. The second equality holds since for every t, t′ with t′ /∈ {−t, t}, the
random variables W t and W t′

are independent (because t and t′ are linearly
independent).

4.1.2 Proving Claim 7
Recall that Zx :=

∑
t∈{−1,1}n Zt

x for Zt
x being the indicator random variable for

the event {〈V , t〉 = b ∧ 〈V ,d ∗ t〉 = x}. For any t ∈ {−1, 1}n, since the vectors
t and d ∗ t are linearly independent (recall that d contains zero and non-zero
elements) it holds that E[Zt

x] = 1/q2, and therefore, E[Zx] = 2n/q2. It is left to
bound Var(Zx). For j ∈ [4], let

Bj := {(t, t′) ∈ {−1, 1}2n : rank{t, t′,d ∗ t,d ∗ t′} = j}
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Note that the only possible values for E[Zt
x · Zt′

x ] are {0} ∪ {1/qj}4j=1, where

E[Zt
x ·Zt′

x ] = 1/qj =⇒ (t, t′) ∈ Bj . We relate Var
(∑

t∈{−1,1}n Zt
x

)
to size {Bj}

as follows:

Var (Zx) =
∑

t,t′∈{−1,1}n

E[(Zt
x − 1/q2)(Zt′

x − 1/q2)] (11)

≤
∑

t,t′∈{−1,1}n

E[Zt
x · Zt′

x ]

≤
4∑

j=1

|Bj | /qj .

We complete the proof by bounding the size of Bj for each j ∈ [3] (for B4 we use
the trivial bound |B4| ≤ 22n).

Claim 9. |B1| = 0.

Proof. Since d contains zeros and non-zeros elements, the vectors t and d ∗ t,
for any t ∈ {−1, 1}n, are linearly independent over Zn

q , yielding that |B1| = 0.

Claim 10. |B2| ≤ 2n+2.

Proof. Since there are exactly 2n+1 linearly dependent pairs (t, t′), i.e., the pairs
∪t∈{−1,1}n{(t, t), (t,−t)}, we deduce the bound by proving that there are at most
2n+1 independent pairs (t, t′) in B2.

Fix an independent pair (t, t′) ∈ B2, let E = {i ∈ [n] : ti = t′i} and let
N = [n] \ E . Up to reordering of the coordinates, we can write t = (tE , tN ),
t′ = (tE ,−tN ) and d = (dE ,dN ). It is easy to verify that

span{t, t′,d ∗ t,d ∗ t′} = span{(tE ,0), (0, tN ), (dE ∗ tE ,0), (0,dN ∗ tN )}.

Since (t, t′) are independent and rank{t, t′,d ∗ t,d ∗ t′} = 2, the above yields
that

dE ∈ span{1} ∧ dN ∈ span{1} (12)

Since, by assumption, d is d is not the all-zero vector, Eq. (12) yields that
(dE ,dN ) = (u · 1,0) or d = (0, u · 1), for some u ∈ Zq \ {0}.

Assuming that B2 contains an independent pair, otherwise we are done, the
above yields that the non-zero coordinates of d are all equal to some u ∈ Zq\{0}.
It follows that for each vector t ∈ {−1, 1}n there are at most two vectors t1 and
t2, such that (t, tj) is an independent pair in B2 (actually, each t has exactly
two such vectors, with t1 = −t2). We conclude that the number of independent
pairs (t, t′) ∈ B2 is at most 2n+1.

Claim 11. |B3| ≤ 22n−min{n/3,�}+2 (recall that � = Ham(d,0)).
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Proof. Let μ := min{n/3, �}, fix (t, t′) ∈ B3, let E = {i ∈ [n] : ti = t′i} and let
N = [n] \ E . Up to reordering of the coordinates, we can write t = (tE , tN ),
t′ = (tE ,−tN ) and d = (dE ,dN ). It holds that

span{t, t′,d ∗ t,d ∗ t′} = span{(tE ,0), (0, tN ), (dE ∗ tE ,0), (0,dN ∗ tN )}.

Since the assumed dimension is 3, then

dE ∈ span{1} ∨ dN ∈ span{1} (13)

We next show how to partition the coordinates of d into sets I0 and I1, each
of size at least μ, such that for all i ∈ I0 it holds that di /∈ {dj : j ∈ I1} and vice
versa. If � ≤ n−μ, then we are done by taking I0 = {i : di = 0} and I1 = [n]\I0.
Assume that � > n − μ, which implies that μ ≤ n − 2μ < 2� − n. For α ∈ Zq

define Jα = {i : di = α} and notice that |Jα| < (n − μ)/2 because otherwise

|Jα| ≥ (n − μ)/2 > (n − (2� − n))/2 = n − �

which contradicts the definition of � (recall that 0 is the element with maximal
number of appearances in d, and there are exactly n − � zero coordinates).
Finally, define s ∈ Zq to be the minimal value such that ∪s

α=0Jα ≥ μ and let
I0 = ∪s

α=0Jα and I1 = [n]\I0. By definition, I0 is bigger than μ and it remains
to show that I1 ≥ μ. It holds that

|I1| = n − |I0| = n − ∣
∣∪s−1

α=0Jα

∣
∣ − |Js| ≥ n − μ − (n − μ)/2 ≥ μ.

Back to the proof, Eq. (13) yields that either E ⊆ I0, or E ⊆ I1, or N ⊆ I0, or
N ⊆ I1. Since |I0| , |I1| ≥ μ, the number of pairs (t, t′) ∈ {−1, 1}n that satisfy
this condition is at most 4 · 22n−μ, which ends the proof of the claim.

Putting it Together. Given the above claims, we are ready to prove Claim 7.

Proof (Proof of Claim 7). Recall that λ := min{�, κ, log q, n/3}. By Eq. (11) and
Claims 9 to 11, we conclude that

Var(Zx) ≤
4∑

j=1

|Bj | /qj

≤ 2n+2/q2 + 22n−λ+2/q3 + 22n/q4

≤ 22n−λ+4/q3,

as required. The last inequality holds since λ ≤ κ implies that 2n+2/q2 ≤
22n−λ+2/q3, and λ ≤ log q implies that 22n/q4 ≤ 22n−λ+2/q3.

4.2 The OT-Based Protocol

In the following we describe our OT-based implementation of the functionality
WeakMult. Recall that throughout this section we fix a field size q > 2 and
assume that all operation are made over the field Zq = Z/qZ (i.e., modulo q).
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Protocol 12 (Π = (P1,P2)).
Oracle: (one-out-of-two) OT.
Common input: security parameter 1κ. Let n = �log q� + κ.
P1’s private input: a ∈ Zq.
P2’s private input: b ∈ Zq.
Operations:

1. For each i ∈ [n], in parallel:
(a) P1 samples δi ← Zq, and P2 samples ti ← {−1, 1}.
(b) The parties jointly call OT((δi − a, δi + a), ti).

Let zi be the output obtained by P2 in this call.
2. P2 samples v ← Zn

q such that 〈v, (t1, . . . , tn〉)) = b, samples σ ← Zq, and
sends (v, σ) to P1.

3. P1 outputs s1 := −〈v, δ〉 − σ.
4. P2 outputs s2 := 〈v, (z1, . . . , zn)〉 + σ.

Note that, unlike in the simplified version of the protocol presented in the intro-
duction, party P2 in the above adds an additional mask σ to the shares. The
role of this additional mask is rather technical, but it appears necessary for
simulating of the above protocol using WeakMult (Functionality 6).

Lemma 6 (Security). Protocol 12 (α(κ) := 2−κ/4+1.5)-computes WeakMult in
the OT-hybrid model with respect to input domain Zq ×Zq. Furthermore, if both
parties act honestly, then their joint output equals the output of WeakMult on
their joint inputs.

Proof. We start with proving correctness (correct output when acting honestly).
Indeed, for any possible values of a, b, κ, s2, δ = (δ1, . . . , δn), t = (t1, . . . , tn),z =
(z1, . . . , zn),v an σ in a honest execution of Π(a, b)(1κ), it holds that

s2 = 〈v,z〉 + σ = 〈v, δ + a · t〉 + σ = a · 〈v, t〉 + 〈v, δ〉 + σ = a · b − s1,

and thus s1 + s2 = a · b.
For security, fix a security parameter κ ∈ N and inputs a, b ∈ Zq.
We only prove security for corrupted P1 (the proof for corrupted P2 is

straightforward and can be found in the full version of this paper [17]).

Corrupted P1: Given an oracle access to (the next-message function of) an
interactive adversary A controlling P1, its ideal-model simulator S, which uses
the functionality WeakMult, is described as follows:

Algorithm 13 (Ideal-model S)
Inputs: 1κ and a ∈ Zq.
Oracles: (real-model) attacker A.
Operations:

1. Simulate a random execution of (A(a),P2(0))(1κ) till the end of Step 1.
2. If the simulation ends prematurely (e.g., on invalid behavior), send Abort to

WeakMultκ, output A’s output and halt the execution.
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3. Let (w−
i , w+

i ) and ti denote the inputs that A and P2 use (respectively) in
the ith OT execution of the simulation (Step 1b). Let ai = (w+

i − w−
i ) · 2−1

(where 2−1 stands for the inverse of 2 in Zq), let a = (a1, . . . , an), let δ =
(w+

1 − a1, . . . , w
+
n − an), let â ∈ Zq denote the value that appears the most

often in a, and let d = a − â · 1.
4. If Ham(d, 0n) < κ/2:

(a) Send (â,d) to WeakMultκ.
(b) Receive s1 from WeakMultκ.
(c) Sample v ← Zn

q such that 〈v, (t1, . . . , tn)〉 = 0, and send (v, σ := −〈v, δ〉−
〈v,d ∗ t〉 − s1) to A.

5. Else:
(a) Send (â,d) to WeakMultκ.
(b) Receive (s1, v̂) from WeakMultκ.
(c) Send (v̂, σ := −s1 − 〈v̂, δ〉) to A.

6. Output A’s output in the simulation.

It is clear that S is efficient. We next bound the statistical distance between
REALΠ

P1
(A, κ, a, b) and IDEALWeakMult

P1
(SA, κ, a, b). Assuming without loss of gen-

erality that A is deterministic (a randomized adversary is just a convex combi-
nation of deterministic adversaries), the values of d, â and δ that it uses are
fixed, and it either uses an κ/2-polychromatic d, or not (i.e., an almost all-zeros
d). We handle each of these cases separately. In the following let V ← Zn

q ,
T ← {−1, 1}n and S1 ← Zq be independent random variables.

Polychromatic d. If A uses an κ/2-polychromatic d, then REALΠ
P1

(A, κ, a, b),
the view of A and the output of P2 in the real execution (A(a),P2(b))(1κ), are
jointly distributed according to

((V ,−S1 − 〈V , δ〉), â · b − S1 + 〈V ,d ∗ T 〉) |〈V ,T 〉=b (14)

Let (v̂, t̂) be the pair that is sampled in Step 1 of WeakMultκ. Since this pair
is sampled according to (V ,T )|〈V ,T 〉=b, in the ideal execution it holds that
IDEALWeakMult

P1
(SA, κ, a, b) (A’s view and the output of the trusted party in the

ideal execution) are jointly distributed according to Eq. (14). This concludes the
proof of this case.

Almost-monochromatic d. Assume A uses a non κ/2-polychromatic vector d,
i.e., �, the hamming distance of d from 0n, is less than κ/2. In this case, A’s view
in the real execution, i.e., the pair (v, σ), and the output s2 of P2, are jointly
distributed according to ((V , Σ), â·b−S1)|〈V ,T 〉=b, for Σ = −S1−〈V , δ〉−〈V ,d∗
T 〉. On the other hand, the output of SA and that of the trusted party in the
ideal execution, are jointly distributed according to ((V , Σ), â · b − S1)|〈V ,T 〉=0

(i.e., now the conditioning is over 〈V ,T 〉 equals 0 and not b). Therefore

SD
(
REALΠ

P1
(A, κ, a, b), IDEALWeakMult

P1
(SA, κ, a, b)

)
(15)

= SD
(
((V , Σ), â · b − S1)|〈V ,T 〉=b, (((V , Σ), â · b − S1)|〈V ,T 〉=0

)

≤ SD
(
(V , 〈V ,d ∗ T 〉)|〈V ,T 〉=b, (V , 〈V ,d ∗ T 〉)|〈V ,T 〉=0

)
.
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The inequality holds since each pair is a randomized function of V and 〈V ,d ∗
T 〉 (recall that â, b, δ are fixed, S1 is independent, and Σ is a function of S1,
〈V ,d ∗ T 〉 and 〈V , δ〉). Recall that � = Ham(d, 0n) < κ/2, and let I := {i ∈
[n] : di �= 0}. Since 〈V ,d ∗T 〉 is a deterministic function of V and T I , it suffices
to prove that

SD((V ,T I)|〈V ,T 〉=b, (V ,T I)|〈V ,T 〉=0) ≤ 2−(κ−�−3)/2 (16)

Since I � [n], for every x ∈ Zq it holds that

(V I ,T I)|〈V ,T 〉=x ≡ (V I ,T I) (17)

Hence, it suffices to prove that Eq. (16) holds for every fixing of (V I ,T I) =
(vI , tI). Indeed,

SD(V −I |〈V −I ,T −I〉=x, V −I |〈V −I ,T −I〉=x′)

≤ SD(V −I , V −I |〈V −I ,T −I〉=x) + SD(V −I , V −I |〈V −I ,T −I〉=x′)

≤ 2 · 2−(κ−�−1)/2

= 2−(κ−�−3)/2.

The second inequality holds by applying Lemma3 with a vector size ñ = n−� =
�log q� + (κ − �), over the ring R = Zq with addition and multiplication modulo
q.

5 Batching

In this section we consider the case that the parties P̂1 and P̂2 would like to
perform m > 1 multiplications, where P̂1 uses the same input a ∈ Zq and P̂2

uses different inputs b1, . . . , bm ∈ Zq. A naive solution is to perform m indepen-
dent executions of our single multiplication protocol Π (Protocol 12), where the
overall cost is m · (log q + κ) OT calls. In this section we present our batching
protocol which performs m such multiplications using only m · log q + κ OT
calls, at the cost of relaxing the security requirement. In Sect. 5.1 we describe
the relaxed ideal functionality WeakBatch that we consider for our batching task,
and in Sect. 5.2 we describe our OT-Based implementation (Protocol 15).

5.1 The Ideal Functionality

In the following we describe the ideal functionality WeakBatch.

Functionality 14 (WeakBatch)
Parameters: Multiplications number m ∈ N and a security parameter κ ∈ N.

Let n := �m · log q� + κ.
P̂1’s input: a ∈ Zq, and optional d ∈ Zn

q .
P̂2’s input: b = (b1, . . . , bm) ∈ Zm

q , and optional s2 = (s12, . . . , s
m
2 ) ∈ Zm

q .
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Operation:
If d is not κ/2-polychromatic (or d = ⊥), act according to

PerfectMultBatching(a, (b, s2)).

Else:
1. Sample (v1, . . . ,vm, t) ← (Zn

q )m × {−1, 1}n such that ∀i ∈ [m] : 〈vi, t〉 = bi.
2. Sample s2 = (s1

2, . . . , s
m
2 ) ← Zm

q .
3. Output ({(si

1,v
i)}m

i=1, {(si
2)}m

i=1) for si
1 = a · bi − si

2 + 〈vi,d ∗ t〉.
Note that for m = 1, WeakBatch is identical to WeakMult (Sect. 4.1). For m >

1, WeakBatch achieves perfect correctness and security whenever d is not κ/2-
polychromatic. In particular, when P̂1 is honest (i.e., d =⊥), the functionality
is perfectly secure against a cheating P̂2. As in WeakMult, the more complicated
security guarantee is against a cheating P̂1, which may use a κ/2-polychromatic
vector d.

The security guarantee against a cheating P̂1 that chooses an κ/2-
polychromatic d is characterized by the following result.

Lemma 7 Let q ∈ PRIMES>2, κ ∈ N, m ∈ N and n := �m · log q� + κ. Let
d ∈ Zn

q , let � := miny∈Zq
{Ham(d, yn)} and let λ := min{�, κ − 5, log q, n/3}. Let

(V = (V 1, . . . ,V m),T ) ← (Zn
q )m × {−1, 1}n. Then for any b1, . . . , bm ∈ Zq,

w.p. 1 − m · 2−λ/2+3 over v = (v1, . . . ,vm) ← V |∀j∈[m] : 〈V j ,T 〉=bj , it holds that

∀i ∈ [m] : H∞(〈vi,d ∗ T 〉 | ∀j ∈ [m] : 〈vj ,T 〉 = bj) ≥ λ/2 − 4.

We remark that the security guarantee that is obtained by Lemma7
is weaker than m independent calls to WeakMult, i.e., the functionality
WeakMultsm,κ((a,d), (b, s2)) := (WeakMultκ((a,d), (bi, s

i
2)))

m
i=1. The reason is

that Lemma 7 does not guarantee independence between the m shares of P̂2.
While each share, without knowing the other shares, has high min-entropy, it
might be that this is not the case when revealing some of the other shares.

The proof of Lemma 4 is given in the full version of this paper [17].

5.2 The OT-Based Protocol

In the following we describe our OT-based implementation of the function-
ality WeakBatch. We remind that throughout this section we fix a field size
q ∈ PRIMES>2 and assume that all operation are made over the field Zq = Z/qZ
(i.e., modulo q).

Protocol 15 (Γ = (P̂1, P̂2))
Oracles: One-out-of-two OT protocol OT.
Common inputs: m ∈ N and 1κ for κ ∈ N. Let n = �m · log q� + κ.
P̂1’s private input: a ∈ Zq.
P̂2’s private inputs: b1, . . . , bm ∈ Zq.



204 I. Haitner et al.

Operations:
1. For each i ∈ [n], in parallel:

(a) P̂1 samples δi ← Zq, and P̂2 samples ti ← {−1, 1}.
(b) The parties jointly call OT((δi − a, δi + a), ti). .

Let zi be the output obtained by P̂2 in this call.
2. P̂2 samples v1, . . . ,vm ← Zn

q such that ∀i ∈ [m] : 〈vi, t〉 = bi, samples
σ1, . . . , σm ← Zq, and sends (v1, σ1), . . . , (vm, σm) to P̂1.

3. P̂1 outputs (s11, . . . , s
m
1 ) for si

1 = −〈vi, δ〉 − σi.
4. P̂2 outputs (s12, . . . , s

m
2 ) for si

2 = 〈vi,z〉 + σi.

Namely, as in Protocol 12 (single multiplication), P̂1 samples random values
(δ1, . . . , δn) and P̂2 samples random values (t1, . . . , tn), and the OT calls (i.e.,
Step 1) are performed the same (except from the fact that in Protocol 15, the
value of n is larger than the one used in Protocol 12). But now, in Step 2, instead
of sampling a single vector v a single σ, P̂2 now samples m independent random
vectors v1, . . . ,vm, where each vi satisfy 〈vi, t〉 = bi, and samples m independent
random offsets σ1, . . . , σm (instead of a single one).

Lemma 8 (Security). For every m ∈ N, Γm = (P̂1, P̂2)(m, ·) (Protocol 12)
(α(κ) := 2−κ/4+1.5)-computes WeakBatchm = WeakBatch(m, ·, ·, ·) in the OT-
hybrid model, with respect to input domain Zq ×Zm

q . Furthermore, if both parties
act honestly, then their joint output equals WeakBatchm’s output on their joint
input.

The proof of Lemma 8 is given in the full version of this paper [17].

6 Applications

In this section, we show how our protocol can be used in several applications. To
be more precise, we show how to realize several functionalities of interest (Perfect
Multiplication, OLE, VOLE, MACs, Authenticated Triplets) in a hybrid model
with oracle access to the functionality WeakMult, which can be compiled into
a real-world protocol by substituting the oracle with our protocol (as per the
composition theorem of Canetti [9]).

6.1 Realizing Perfect Multiplication

We begin by showing how to realize perfect batch-multiplication maliciously
where the definition of perfect batch-multiplication is according Functionality 5
(It is stressed that perfect multiplication is simply a special case). We will dis-
tinguish between large and small fields (where a field F is small if |F| < 2κ/2).
Thus, we will assume here that q ≥ 2κ/2. In the full version of this paper [17] we
discuss the technicalities for small fields (it is stressed that our results extend
trivially to large fields that are not prime order).

To realize malicious security for Functionality 5, we will be needing the
following “helper” functionalities: One commitment functionality denote Fcom
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(Functionality 16) that allows the parties to commit to certain values that can
be revealed at a later time, and another functionality ShareCheck (Functional-
ity 17) that enables the parties to verify whether their shares where computed
correctly. In Sect. 6.1.2 we define our protocol in the hybrid model with ideal
access to WeakBatch, ShareCheck and Fcom and we prove that it realizes Per-
fectMultBatching.12 In the full version of this paper [17], we show how to realize
ShareCheck cheaply using group-theoretic cryptography. A real world protocol
with minimal overhead can thus be derived by substituting the oracles with the
relevant protocols herein.13

6.1.1 Ideal Commitment and Share-Correctness Functionalities
The functionality below receives one input from each party. These values are
revealed at a later time once the functionality receives approval by both parties.

Functionality 16 (Commitment Functionality Fcom)

– P1’s input: α ∈ Zq.
– P2’s input: β ∈ Zq

– Operation: Upon receiving continue from both parties, Fcom outputs β to P1

and α to P2.

The functionality below receives one input and one share from each party. It
simply checks whether the additive shares sum up to the product of the inputs.

Functionality 17 (ShareCheck)
P1’s input: (x1, s1) ∈ Z2

q.
P2’s input: (x2, s2) ∈ Z2

q

Operation: Output 1 if x1 · x2 = s1 + s2 and 0 otherwise.

6.1.2 Secure Multiplication Protocol

Protocol 18 (Ψ = (P1,P2))
Oracles: WeakBatch and ShareCheck
Parameters: Multiplications number m ∈ N and a security parameter κ ∈ N.

Let n := �m · log q� + κ.
P1’s input: a ∈ Zq.
P2’s input: b = (b1, . . . , bm) ∈ Zm

q .
Operations:

1. P1 samples x ← Zq, sets α = a − x and sends α to Fcom.
2. P2 samples y ← Zq, sets β = b1 − y and sends β to Fcom.
3. P1 and P2 invoke WeakBatch on inputs (1κ, x) and (1κ, y, b2, . . . , bm) respec-

tively. Let (ŝ11, . . . , ŝ
m
1 ), (ŝ21, . . . , ŝ

m
2 ) denote the respective outputs.

12 We note that the definition of Fcom is reactive. This feature does not interfere with
composition [9].

13 Typically, Fcom is realized via a hash function modelled as a random oracle.
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4. P1 and P2 invoke ShareCheck on inputs (1κ, x, ŝ11) and (1κ, y, ŝ12) respectively.
5. P1 and P2 send continue to Fcom.
6. P1 locally outputs (x · β + ŝ11, ŝ

2
1, . . . , ŝ

m
1 ) and P2 locally outputs (b1 · α +

ŝ12, . . . , bm · α + ŝm
2 ).

Theorem 19. Protocol 18 α-computes PerfectMultBatching (Functionality 5)
for

α(κ) = 2−κ/4+4.

The proof of Theorem19 can be found in the suplementary material.

6.1.3 Realizing OLE and VOLE
Recall that in VOLE (OLE is just single-instance VOLE), P1 holds an input a
and P2 holds b,σ ∈ Zm

q , and the functionality returns ab+σ to P1 and nothing
to P2. Using a straightforward reduction from VOLE to batch-multiplication, it
is enough to run Protocol 18 with parties using inputs a and b respectively. Then,
once the protocol concludes, we instruct P2 to add σ to its output and reveal
the result to P1. The resulting protocol is a secure realization of VOLE (or OLE
for m = 1). We omit the formal details since they are rather straightforward.

6.2 Generating Correlated Data in the Preprocessing Model

In this section, we show how to use our protocol for generating correlated prepro-
cessed data for general purpose MPC (namely MACs and Beaver Triplets). For
an informal discussion of the two concepts, we refer the reader to the introduc-
tion (Sect. 1.3). Since MACs are just a special instance of batch-multiplication
(and thus Protocol 18 can readily be used for this purpose) we only focus here on
Beaver triplets. Similarly to PerfectMult, we will be using another “helper” func-
tionality denote BeaverCheck which is analogous the ShareCheck, except that it is
more complicated because it involves many more checks. Still, in the full version
of this paper [17], we show that it can be cheaply realized using group-theoretic
cryptography.

Functionality 20 (Beaver)
Inputs: Empty for both parties with the following optional inputs.

1. P1’s optional input opt1: (x1
1, x

2
1, x

3
1, k1) ∈ Z2

q and (σi
1, τ

i
1) ∈ Z2

q for i ∈ [3].
2. P2’s optional input opt2: (x1

2, x
2
2, x

3
2, k2) ∈ Z2

q and (σi
2, τ

i
2) ∈ Z2

q for i ∈ [3].

Operation:

– Verify opt1 =⊥ or opt2 =⊥, otherwise abort (wlog say opt1 �=⊥).
– Sample (x1

2, x
2
2, k2) ← Z3

q.
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– Output (x1
i , x

2
i , x

3
i , ki, σ

1
i , σ2

i , σ3
i , τ1

i , τ2
i , τ3

i ) to Pi where unassigned values are
set subject to

{
(x1

1 + x1
2)(x

2
1 + x2

2) = x3
1 + x3

2

τ j
i = k3−ix

j
i + σj

3−i for i ∈ {1, 2}, j ∈ {1, 2, 3} .

Functionality 21 (BeaverCheck)
Common input: 1κ for a security parameter κ ∈ N.
P1’s input: (x1

1, x
2
1, x

3
1, k1) ∈ Z2

q and (σi
1, τ

i
1) ∈ Z2

q for i ∈ {1, 2, 3}.
P2’s input: (x1

2, x
2
2, x

3
2, k2) ∈ Z2

q and (σi
2, τ

i
2) ∈ Z2

q for i ∈ {1, 2, 3}.
Operation: Output 1 if the inputs satisfy the following (output 0 otherwise)

{
(x1

1 + x1
2)(x

2
1 + x2

2) = x3
1 + x3

2

τ j
i = k3−ix

j
i + σj

3−i for i ∈ {1, 2}, j ∈ {1, 2, 3} .

6.2.1 Authenticated (Beaver) Triplets Protocol
As mentioned in the introduction, the protocol below simply preforms two weak
multiplications to calculate the triplet and two (weak) batch-multiplications each
to obtain all the MAC data. In the end, the parties perform the correctness-check
on their shares.

Protocol 22 (Φ = (P1,P2))
Oracles: WeakMult, WeakBatch and BeaverCheck.
Inputs: Statistical parameter κ.
Operations:

1. Each Pi samples ki, ai, bi ← Zq.
2. P1 and P2 invoke WeakMult (a1, b2) and WeakMult (b1, a2).

Write γ1, δ1 and γ2, δ2 for their respective outputs.
3. Each Pi sets ci = aibi + γi + δi.
4. P1 and P2 invoke WeakBatch(k1, (a2, b2, c2)) and WeakBatch(k2, (a1, b1, c1)).

Write (τi, τ
′
i , τ

′′
i ), and (σi, σ

′
i, σ

′′
i ) for Pi’s outputs in each execution.

5. P1 and P2 invoke BeaverCheck on the relevant inputs.
6. Pi outputs (ai, bi, ci, ki, τi, τ

′
i , τ

′′
i , σi, σ

′
i, σ

′′
i ).

Theorem 23. Protocol 22 α-computes Beaver (Functionality 20) for

α(κ) = 2−κ/4+4.

The proof of the above is very similar to the proof of Theorem19 and it is
omitted.
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Abstract. We give black-box, round-optimal protocol compilers from
semi-honest security to malicious security in the Random Oracle Model
(ROM) and in the 1-out-of-2 OT correlations model. We use our com-
pilers to obtain the following results:

– A two-round, two-party protocol secure against malicious adversaries
in the random oracle model making black-box use of a two-round
semi-honest secure protocol. Prior to our work, such a result was
not known even considering special functionalities such as a two-
round oblivious transfer. This result also implies the first construc-
tions of two-round malicious (batch) OT/OLE in the random oracle
model based on the black-box use of two-round semi-honest (batch)
OT/OLE.

– A three-round multiparty secure computation protocol in the ran-
dom oracle model secure against malicious adversaries that is based
on the black-box use of two-round semi-honest OT. This protocol
matches a known round complexity lower bound due to Applebaum
et al. (ITCS’20) and is based on a minimal cryptographic hardness
assumption.

– A two-round, multiparty secure computation protocol in the 1-out-
of-2 OT correlations model that is secure against malicious adver-
saries and makes black-box use of cryptography. This gives new
round-optimal protocols for computing arithmetic branching pro-
grams that are statistically secure and makes black-box use of the
underlying field.

As a contribution of independent interest, we provide a new variant of the
IPS compiler (Ishai, Prabhakaran and Sahai, Crypto 2008) in the two-
round setting, where we relax requirements on the IPS “inner protocol”
by strengthening the “outer protocol”.

1 Introduction

Minimizing the round complexity of cryptographic protocols in the presence of
malicious parties has been a major theme of research in recent years. While
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most feasibility questions have been answered, there are still big efficiency gaps
between known round-optimal protocols and their best counterparts with secu-
rity against semi-honest parties.

This line of research produced many innovative ideas for bridging the effi-
ciency gap in special cases of interest. For instance, Peikert et al. [33] proposed
concretely efficient 2-round oblivious transfer (OT) protocols under several stan-
dard assumptions. Other concretely efficient 2-round OT protocols were pro-
posed in [26,27]. Chase et al. [10] and Branco et al. [7] designed such protocols
for oblivious linear evaluation (OLE), a natural arithmetic extension of OT.
Recent techniques improve the efficiency of 2-round protocols in the batch set-
ting, where multiple instances of OT or OLE are generated together [5,6]. In
all these cases, efficiently obtaining security against malicious parties (without
resorting to general-purpose NIZK) requires ingenious ideas that are carefully
tailored to the structure of the underlying primitives. In some cases, this requires
using more aggressive (and sometimes nonstandard) flavors of the assumptions
that underlie the semi-honest protocols. For instance, Boyle et al. [5] present
a communication-efficient 2-round “batch-OT” protocol, realizing polynomially
many instances of OT, with semi-honest security based on the Learning Parity
with Noise (LPN) assumption. In the case of malicious security, they present
a similar protocol in the random oracle model, but require a stronger leakage-
resilient variant of LPN.

The goal of this work is to propose new general techniques for bridging the
“semi-honest vs. malicious” gap without increasing round complexity, without
strengthening the underlying assumptions, and without significantly hurting con-
crete efficiency. A clean theoretical model for capturing the latter is a black-box
construction. Such a construction builds a malicious-secure protocol by using
an underlying semi-honest protocol as an oracle. The latter restriction ensures
that the efficiency gap does not depend on the complexity or structure of the
semi-honest protocol. This paradigm has been successfully applied not only in
the context of theoretical feasibility results, but also in the context of concretely
efficient protocols. Indeed, black-box constructions can typically be optimized
to have a very low overhead, at least in an amortized sense.

There is a large body of research on such black-box constructions, including
a black-box construction of constant-round honest-majority secure computation
from one-way functions [11] (replacing an earlier non-black-box construction
from [4]), a black-box construction of malicious-secure OT from semi-honest
OT [18] or trapdoor permutations [29] (replacing a non-black-box construction
of [17]), and a black-box construction for OT extension [20] (replacing the earlier
non-black-box protocol [3]).

One major shortcoming of most previous black-box constructions is that they
inherently increase the round complexity. In particular, they cannot be used to
obtain 2-round protocols. Thus, the main question we ask is:

Can we construct round-optimal black-box transformations from semi-honest
secure protocols to malicious secure variants?
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The recent work of [19], building upon the IPS compiler of [24], made partial
progress towards settling the question. In particular, it gave a round-preserving
black-box compiler that relies on a random OT correlation setup in the 2-party
case, or a more complex correlated OT setup in the multiparty case. Two sig-
nificant caveats are that the underlying semi-honest protocol should satisfy: (i)
semi-malicious security;1 and (ii) adaptive security with erasures, a limitation
inherited from [24]. This latter property is typically easy to achieve by increasing
the round complexity. However, it poses a major challenge in the 2-round setting.
While natural two-round protocols in the OT-hybrid model already satisfy the
adaptive security requirement, standard 2-round protocols in the plain model,
including semi-honest OLE or batch-OT protocols, do not.

The above state of affairs raises the following natural questions: Can we elim-
inate the adaptive security requirement? Can we eliminate the setup completely,
or replace it by a standard OT setup in the multiparty case?

Since we are targeting 2-round protocols with security against malicious
adversaries, we cannot hope to obtain results in the plain model. But since the
aim of achieving black-box protocols is efficiency, this raises the natural question:
can we build such round-preserving black-box protocol compilers in the random
oracle model?

1.1 Our Results

In this work, we tackle both kinds questions: eliminating the adaptive security
requirement and eliminating the need for correlated randomness completely in
the random oracle model. In the multiparty case, we also address the goal of
replacing the complex correlation setup from [19] by standard OT correlations.
We now give a more detailed account of our results.

Round-Preserving Compilers in the OT Correlations Model. In the
case of two-party protocols in the OT correlations model, we remove the need
for adaptive security with erasures and obtain the following result.

Informal Theorem 1. There exists a black-box compiler from any two-round
semi-malicious two-party protocol to a two-round malicious two-party computa-
tion protocol given a setup that consists of random 1-out-of-2 OT correlations
(alternatively, Rabin-OT correlations).

See Theorem 3 for a formal statement. As in the case of the IPS compiler [24],
the functionality f ′ realized by the semi-malicious protocol may depend on the
target functionality f we want the malicious protocol to realize. From a feasibility
point of view, it suffices to consider a semi-malicious protocol for OT (which can

1 Semi-malicious security is a strengthening of semi-honest security where the adver-
sary is allowed to choose the random tape of the corrupted parties in an arbitrary
manner before the protocol begins. In the context of 2-round protocols, most (but
not all) natural semi-honest protocols also satisfy this stronger security property.
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be used in parallel to realize f ′ via Yao’s protocol [34]). But when f is a “simple”
functionality such as batch-OT2 or batch-OLE, we can in fact use f ′ that consists
of only a constant number of instances of f .

We note that the required setup is minimal in the sense that both the number
of random OT correlations and their size only depend on the security parameter
and not on the circuit being computed. Moreover, recent techniques for effi-
cient “silent” OT extension [6] can make the setup reusable without additional
interaction.

To obtain this result, we build a new version of the black-box protocol com-
piler of [24], where we replace the outer protocol with one that can be simpler
and more efficient than the state-of-the-art [23] protocol previously used in this
setting. Besides eliminating the need for adaptive security from the semi-honest
MPC protocol, the improved outer protocol may be of independent interest.

However, our primary contribution (that also uses the techniques developed
above) is the construction of round-optimal compilers in the Random Oracle
model, as we discuss next.

Round-Preserving Compilers in the Random Oracle Model. The semi-
malicious to malicious protocol compilers, described above, rely on OT corre-
lations to perform cut-and-choose (using the watchlists mechanism introduced
in [24]). Our key contribution in this work is to remove the need for watch-
lists/OT correlations, and to instead give a novel adaptation of the Fiat-Shamir
paradigm in the Random Oracle model to perform the watchlist function. This
gives rise to new round-optimal malicious secure protocols in the random oracle
model from black-box use of semi-honest secure protocol.3

The Two-Party Setting. We obtain the following results in the two-party
setting. Here, non-interactive secure computation (NISC) denotes a two-round
2-party secure computation protocol for general functionalities where only one
party obtains an output. A two-sided non-interactive secure computation (NISC)
denotes a two-round 2-party secure computation protocol for general function-
alities where both parties obtain an output.

Informal Theorem 2 (BB Malicious NISC). There exists a construction
of NISC with malicious security in the random oracle model that makes black-box
use of NISC with semi-honest security.

Informal Theorem 3 (BB Malicious 2-sided NISC). In the random oracle
model, there exists a construction of two-sided NISC with malicious security that
makes black-box use of two-sided NISC with semi-honest security.

2 Batch-OT is not trivialized in the OT correlations model because the number of
OTs in this setup is a fixed polynomial in the security parameter.

3 In the random oracle model, we additionally remove the need for semi-malicious
security.
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As before, the functionality computed by the semi-honest protocol depends
on the target functionality computed by the malicious protocol. For the case of
simple functionalities such as (batch)-OT and (batch)-OLE, these two functions
are identical. The formal statement of the transformation in the random oracle
model can be found in Theorem 2 and its extension to the two-sided setting
appears in Sect. 5.3.

We note that [28] also used the Fiat-Shamir transform to collapse the number
of rounds of a NISC protocol but their final protocol was not two-round and their
assumptions were stronger than semi-honest two-round, two-party computation
(specifically, they needed homomorphic commitments and two-round malicious
secure OT protocol). Finally, NISC with semi-honest security can be obtained
based on the black-box use of any two-round semi-honest oblivious transfer (OT)
protocol, by relying on Yao’s garbled circuits [34]. This implies the following
corollaries of Informal Theorem2:

Informal Corollary 1. There exists a construction of two-round OT with
malicious security in the random oracle model that makes black-box use of two-
round OT with semi-honest security.

Informal Corollary 2. There exists a construction of two-round OLE/batch
OT/batch OLE respectively with malicious security in the random oracle model
that makes black-box use of two-round OLE/batch OT/batch OLE respectively
with semi-honest security.

Prior to our work, the only known construction of two-round malicious OLE
relied on specialized assumptions such as N th residuosity [10] or LWE [7]. The
black-box constructions of OT required assumptions stronger than semi-honest
security in the random oracle model [26,27] or in the plain model [13] (such as
strongly uniform key agreement).

Protocol Compilers in the Multi-party Setting. In the multiparty setting,
we give a construction of a three round protocol in the random oracle model that
makes black-box use of the minimal cryptographic hardness assumption which
is a two-round semi-honest OT protocol.

Informal Theorem 4. There exists a construction of three-round MPC with
malicious security in the random oracle model that makes black-box use of two-
round OT with semi-honest security.

The formal statement can be found in Theorem 4. Applebaum et al.[1] showed
that even considering only semi-honest security such a protocol is round-optimal
(in the random oracle model). A recent work of Patra and Srinivasan [32] gave
a construction of a three-round malicious secure protocol from any two-round
oblivious transfer that satisfied a certain form of adaptive security on the receiver
side. In this work, we construct a malicious secure protocol by relying only a two-
round semi-honest OT (in the random oracle model).

As an additional contribution, we show how to remove the complex multi-
party watchlist correlations setup from the work of [19] and replace it with a
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simple 1-out-of-2 random OT correlations setup. As a corollary, this gives the
first constructions of statistical secure protocols against malicious adversaries for
computing arithmetic branching programs making black-box use of the under-
lying field in the OLE correlations model. The formal statement appears in
Theorem 5.

2 Technical Overview

In this section, we describe the key ideas and techniques used in the construction
of our protocol compilers.

2.1 IPS Compiler

The starting point of our work is the black-box compiler given by Ishai, Prab-
hakaran, and Sahai [24] (henceforth, referred to as the IPS compiler). This com-
piler transforms a semi-honest secure protocol (with certain special properties)
into a malicious secure protocol. The (simplified version of the) IPS compiler
for computing a function f in the two-party setting consists of the following
components:

– A client-server MPC protocol for computing f that is secure against any
malicious adversary corrupting an arbitrary subset of the clients and a con-
stant fraction of the servers. Such a protocol, requiring only two rounds,
was constructed by Ishai, Kushilevitz, and Paskin [23] (see also [30]) making
black-box use of a PRG. This protocol is referred to as the outer protocol.

– A semi-honest secure4 protocol where the functionality computed by this
protocol is the computation done by the servers in the outer protocol. This
is referred to as the inner protocol.

In the IPS compiler, each party takes the role of a client in the outer MPC
protocol and generates the first round messages to be sent to the servers. The
computation performed by the servers in the outer protocol is emulated by the
inner protocol. Specifically, we run m instances of the inner protocol (where m
is the number of servers) in parallel. In the i-th instance, the parties use as input
the messages to be sent to the i-th server and use the inner protocol to compute
the functionality of the i-th server. At the end of this emulation, the parties
can obtain the second round message generated by each server from the inner
protocol and finally, compute the output of f using the output decoder of the
outer protocol.

If the adversary cheats in an instance of the inner protocol, then this cheating
translates to a corruption of the corresponding server in the outer protocol.
However, a malicious adversary can cheat in all the inner protocol instances,
thereby breaking the security of each one of them. Note that the outer protocol

4 The IPS compiler required this semi-honest protocol to satisfy a variant of adaptive
security with erasures property and we will come back to this point soon.
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is only guaranteed to be secure as long as a constant fraction of the servers are
corrupted. To ensure this property, the IPS compiler uses a special “cut-and-
choose” mechanism referred to as watchlists.

The simplest version of watchlist mechanism involves a Rabin-OT channel
with a carefully chosen erasure probability. For each of the m executions of
the inner protocol, each party sends its input, randomness pair used in that
particular execution to the other party via the Rabin OT channel. The other
party then checks if the input, randomness pair for the executions it received via
the channel is consistent with the transcript seen so far and aborts the execution
if it detects any inconsistency. The erasure probability of the Rabin-OT channel
is chosen in such a way that:

– The adversary cannot learn the private inputs of the honest parties from the
information it receives via the Rabin-OT channel.

– If the adversary cheats in more than a constant fraction of the inner protocol
instances, then with overwhelming probability this cheating is detected via
an inconsistency by the honest party.

Thus, the watchlist mechanism ensures that a malicious adversary that cheats
in more than a constant fraction of the inner protocol executions is caught and
this allows us to argue the security of the compiled protocol against malicious
adversaries.

Need for Adaptive Security of the Inner Protocol. As mentioned earlier, in the
IPS compiler, it is not sufficient for the inner protocol to satisfy standard semi-
honest security. We actually need the inner protocol to satisfy so-called “semi-
malicious” security with a certain variant of adaptive security with erasures.
As already noted in [24], it is possible to replace semi-malicious security with
standard semi-honest security using additional rounds. However, the need for
adaptive security with erasure seems somewhat inherent in the proof of security.
In the two-round setting, which is the primary focus of this work, this security
requirement translates to a natural property of the receiver called as equivocal
receiver security [15]. Specifically, we require the existence of an equivocal sim-
ulator that can equivocate the first round message of the receiver to any input.
Before proceeding further, let us give some more details on why is equivocality
property is needed in the security proof.

Consider an adversary that corrupts the sender and cheats in a small number
of inner protocol instances. The number of such cheating executions is small
enough so that it goes undetected by the watchlist mechanism. At the point
of generating the first round message from the receiver, we do not know in
which executions the adversary is planning to cheat, as the receiver sends its
message before the sender. Only after receiving the message from the adversary,
we realize that in some executions the adversary has cheated, thereby breaking
the security of the inner protocol. Hence, we need to equivocate the first round
receiver message in these cheating executions to the actual receiver input so that
we can derive the same output that an honest receiver obtains.
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We note that this property could be added generically to certain types of pro-
tocols such two-round semi-honest oblivious transfer. However, it is not known
how to add this property to general protocols by making black-box use of cryp-
tography. Even for special cases such as Oblivious Linear Evaluation (OLE), we
do not know of any method to add this property to natural semi-honest OLE
instantiations.

2.2 A New Compiler: Removing Equivocality

In this work, we give a new IPS-style compiler in the two-round setting where
the inner protocol need not satisfy the equivocal receiver message property.

Strengthening the Outer Protocol. Our main idea to achieve this is to strengthen
the requirements from the outer MPC protocol. Namely, we show that if the
outer protocol satisfies a certain output error-correction property, then we do
not need equivocal receiver security from the inner protocol. Our output error-
correction property requires that for all choices of second round messages from
the (few) corrupted servers, the output of the honest receiver remains the same.
Indeed, we can substitute the outputs of those cheating executions with any
default value and still we are guaranteed to obtain the same output as that of
an honest receiver. This removes the need to equivocate the first round message
of the receiver for the executions where the adversary is cheating and instead,
we can rely on any semi-malicious inner protocol. The main question we are now
tasked with solving is to construct an outer protocol in the client-server setting
that runs in two rounds and satisfies the output error-correction property.

Barriers. We first observe that if the outer protocol satisfies guaranteed output
delivery, then it satisfies the error correction property as well. Unfortunately,
Gennaro et al. [16] showed that in the two round setting, if more than one party
is corrupted, then it is impossible to construct protocols that have guaranteed
output delivery. Indeed, we do not know of any ways to bypass this impossibility
result even to achieve the weaker goal of error correction.

Pairwise Verifiable Adversaries. To overcome this barrier, we show that it is
sufficient to achieve error correction against a restricted class of adversaries,
that we call pairwise verifiable. In this model, the adversary that is corrupting
either one of the two clients and a constant fraction of the servers is forced to
send a first round message from the corrupted client to the honest servers such
that these messages pass a specified pairwise predicate check. Namely, there is a
predicate that takes the first round messages sent to any two servers and outputs
either accept or reject. We require the first round messages sent by the adversary
to each pair of honest servers to pass this predicate check. However, the first
round messages sent between corrupted servers or between a honest server and
a corrupted server need not satisfy the pairwise verification check. Addition-
ally, second round messages from corrupted servers can be generated arbitrarily.
We show that once we restrict the adversary to be pairwise verifiable, we can
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construct extremely efficient outer protocols that also satisfy output error cor-
rection. In particular, we show that the semi-honest secure protocol from [21] is
secure against pairwise verifiable adversaries if we replace the plain Shamir secret
sharing with a bi-variate Shamir secret sharing. The error correction property of
this construction can be shown by viewing Shamir secret sharing as an instance
of the Reed-Solomon error correcting codes.

Why is Security Against Pairwise Verifiable Adversaries Sufficient? We now
explain why this weaker security notion is sufficient to instantiate the IPS com-
piler for two rounds. To see why this is the case, we modify the watchlist mech-
anism checks so that it not only checks if the pair of input and randomness it
received via the Rabin-OT channel is consistent with the transcript, but also
checks if the inputs (a.k.a. the first round messages sent to the servers) pass the
pairwise verification check. Using standard statistical arguments, we show that
if all the inputs received via the Rabin-OT channel pass the pairwise verification
check, then a large fraction of the other messages also pass the pairwise verifica-
tion checks. This translates to the adversary only corrupting a small fraction of
the servers and we can rely on the security of the outer protocol against pairwise
verifiable adversaries.

Instantiating the Rabin-OT Channel. We now explain how to instantiate a
Rabin-OT channel if we have access to 1-out-of-2 OT correlations:

1. We first transform the 1-out-2 OT correlations non-interactively to 1-out-of-p
correlations. Such a transformation is implicit in the work of [8].

2. We then use the transformation described in [24, Section 2] to convert 1-out-
of-p random OT correlations into a single round Rabin OT protocol with
erasure probability 1 − 1/p.

We show that such a rational erasure probability is sufficient to instantiate
the IPS compiler.

2.3 Protocol Compiler in the Random Oracle Model

To give a compiler in the random oracle model, we first observe that the Rabin
OT channel can be replaced with a k-out-of-m OT channel (for an appropriate
choice of k) and the same arguments go through. Our key idea here is to replace
the k-out-of-m OT channel with the Fiat-Shamir transformation [12] applied
using a random oracle. Specifically, we require both parties to additionally send
a non-interactive and extractable commitment to their input and randomness
used in each of the inner protocol instances5. In each round, we require the
party sending the message to hash the transcript seen so far along with the
messages generated in this round to obtain a set of executions (called the opened
executions) of size k. The party, in addition to sending the messages of the

5 Such a commitment can be constructed unconditionally in the random oracle
model [31].
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inner protocol instances in that particular round, must also reveal the input–
randomness pair (via an opening of the commitments) for the opened executions.
The other party checks if the openings are correct, if the random oracle output is
correctly computed, if the input–randomness pair in the opened executions are
consistent with the transcript seen so far, and if the pairwise consistency checks
pass.

In the security proof, we rely on the correlation-intractability of the random
oracle [9] to show that if the adversary cheats in more than a constant fraction
of the inner protocol instances, then with overwhelming probability the opened
executions will intersect with the cheating executions. This will therefore be
detected by the honest party forcing it to abort. In our proof of security, we also
rely on the programmability of the random oracle to pre-determine the set of
opened executions of the honest parties.

Relying on a Semi-honest Secure Protocol. We observe that in the random oracle
model, it is sufficient for the inner protocol to satisfy semi-honest security rather
than semi-malicious security. Specifically, the random tape used by each party in
an instance of the inner protocol is set to be the output of the random oracle on
the party index, the instance number, and a randomly chosen salt. This ensures
that even if the salt is not uniformly random, the adversarial parties will query
the random oracle on different inputs which implies that the outputs obtained
from the oracle will be uniform and uncorrelated.

2.4 Two-Sided NISC

In the protocol compiler described earlier, at the end of the second round, the
receiver obtains the output of the two-party functionality whereas the sender
does not obtain any output. To extend this protocol to the setting where both
parties get the output (called the two-sided NISC setting [19]), we cannot use the
näıve idea of running the one-sided protocol in parallel but in opposite directions.
Specifically, nothing prevents a cheating adversary from using inconsistent inputs
in both these executions, thereby, breaking the security of the overall protocol.
To prevent this attack, we further refine the IPS compiler methodology. We
modify the first round commitments/message sent via the Rabin-OT channel to
include the inputs and the randomness used on both sides of the inner protocols.
In the opened/non-erased executions, in addition to the checks that are already
performed, each party checks if the inputs used on both sides are the same and
if it is not the case, then the honest parties abort. This prevents the adversary
from using inconsistent inputs in “many” instances of the inner protocol, and if
that is the case, we can rely on the security of the outer protocol to show that
this adversary does not learn any additional information about the honest party
inputs.

2.5 The Multiparty Setting

In extending the above ideas to the multiparty setting, we face two main chal-
lenges:
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1. First, we do not know of any two-round black-box inner protocol in the semi-
honest setting (and indeed [1] gave some barriers). Moreover, in existing three-
round protocols [32], if the adversary cheats in generating the first round
message, then the adversary can recover the private inputs of the honest
parties. Thus, we need the first message in the (3-round) inner protocol to
satisfy a certain form of adaptive security with erasures even if the outer
protocol has the output error correction property.

2. Recall that to use the security of the semi-honest inner protocol, we need to
additionally give the simulator the power to program the random tape of the
corrupted parties in some intermediate hybrids. Note that in our compiler we
rely on the random oracle to perform this programming. However, a cheating
adversary on behalf of a corrupted party i could query the random oracle
on many different salts where the first two parts of the query are fixed to
the same i and instance number j. It could then use the output of any one
of these queries as the random tape in the j-th inner protocol instance. A
natural idea to deal with this is to choose one of these queries uniformly at
random and “embed” the programmed random tape as the output of the cho-
sen query. The hope is that the adversary chooses this particular query with
non-negligible probability and we can use this to come up with a reduction
that breaks the security of the inner protocol. But this idea quickly runs into
trouble in the multiparty setting as the adversary could potentially corrupt
an arbitrary subset of the parties, and we require the adversary on behalf
of each malicious party to correctly choose this embedded query. This only
happens with probability that is exponential in n (where n is the number of
parties) and is not sufficient to break the security of the inner protocol.

To solve the first issue, we show how to add the required equivocal properties
to the protocol of [32] in a black-box manner relying only on two-round semi-
honest OT. This allows us to use it as the inner protocol and instantiate the IPS
compiler.

To solve the second issue, we rely on the fact that the semi-honest secure pro-
tocol in [32] has a special structure. Namely, it is a parallel composition of a sub-
protocol that computes a special functionality called 3MULTPlus. Importantly,
for this discussion it is sufficient to note that 3MULTPlus is a three-party func-
tionality. The security of the composed protocol is argued via a hybrid argument
where we switch each one of these sub-protocols for computing the 3MULTPlus
functionality to the ideal world. Now, relying on this special structure, we show
that in the intermediate hybrids, it is sufficient to program the random tapes of
the corrupted parties that participate in a single instance of the sub-protocol.
Since the number of such parties is only a constant, we can show that adversary
chooses the “correct” random oracle outputs with non-negligible probability and
this allows us to provide a reduction that breaks the security of the sub-protocol.

3 Preliminaries

Let λ denote the cryptographic security parameter. We assume that all cryp-
tographic algorithms implicitly take 1λ as input. A function μ(·) : N → R

+ is



Round-Optimal Black-Box Protocol Compilers 221

said to be negligible if for any polynomial poly(·), there exists λ0 such that for
all λ > λ0, we have μ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified
negligible function and poly(·) to denote an unspecified polynomial function.

We say that two distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are compu-
tationally indistinguishable if for every non-uniform PPT distinguisher D there
exists a negligible function negl(·) such that |Pr[D(1λ,Xλ) = 1]|−Pr[D(1λ, Yλ) =
1]| ≤ negl(λ).

3.1 Semi-honest Two-Round Two-Party Computation

We now give the syntax and definition for a two-round semi-honest two-party
computation protocol.

Syntax. Consider two parties, a sender with input y and a receiver with input
x. Let f be an arbitrary two-party functionality. A two-party protocol Π for
computing f is given by a tuple of algorithms (Π1,Π2, outΠ). Π1 is run by the
receiver and takes as input 1λ and the receiver input x and outputs (π1, sk).
The receiver sends π1 to the sender in the first round. Π2 is run by the sender
and it takes as input 1λ, π1, and the sender input y and outputs π2. The sender
sends π2 to the receiver in the second round. The receiver then runs outΠ on
inputs π2 and sk and obtains the output z. Let ViewR(〈R(1λ, x), S(1λ, y)〉) and
ViewS(〈R(1λ, x), S(1λ, y)〉) be the views of the receiver and the sender during
the protocol interaction with inputs x and y respectively. Here, View of a party
(either the sender or the receiver) includes its private input, its random tape,
and the transcript of the protocol. The protocol Π satisfies the definition given
below.

Definition 1 (Semi-Honest Security). A two-round, two-party protocol
Π = (Π1,Π2, outΠ) is said to securely compute f against semi-honest adver-
saries if it satisfies the following properties:

– Correctness: For every receiver’s input x and for every sender input y, we
have:

Pr[outΠ(π2, sk) = f(x, y)] = 1

where (π1, sk) ← Π1(1λ, x) and π2 ← Π2(1λ, π1, y).
– Security: There exists a simulator SimΠ such that for any receiver’s input

x and sender’s input y, we have:

ViewS(〈R(1λ, x), S(1λ, y)〉) ≈c (y, r,SimΠ(1λ, R, y))

ViewR(〈R(1λ, x), S(1λ, y)〉) ≈c (x, r,SimΠ(1λ, S, (x, r), f(x, y)))

where the random tape r of the sender/receiver in the second distribution is
uniformly chosen.
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Remark 1. In the standard definition of semi-honest security, SimΠ is allowed
to additionally set the random tape of the corrupted receiver. Here, we con-
sider a slightly stronger definition where the random tape of the corrupted
receiver is chosen uniformly and this is provided as input to SimΠ and SimΠ

is required to produce the transcript of the protocol. We note that this defi-
nition is implied by the standard definition whenever f is reverse sampleable.
Specifically, given (x, f(x, y)), if there is an efficient algorithm I that outputs
some y′ s.t. f(x, y) = f(x′, y′) then the weaker definition implies the stronger def-
inition described above. Indeed, for most natural functionalities, such as Oblivi-
ous Transfer (OT), Oblivious Linear Evaluation (OLE), their batched versions,
batch-OT and batch-OLE, there exists such a reverse sampler, and the above
definition is satisfied by all semi-honest secure protocols.

3.2 Semi-malicious Two-Round Two-Party Computation

Semi-Malicious security [2] is a strengthening of the semi-honest security defini-
tion where we additionally allow the adversary to choose the random tape of the
corrupted party arbitrarily. However, the adversary is restricted to follow the
protocol specification. Such an adversary is called as a semi-malicious adversary.
A two-round semi-malicious secure two-party protocol has the same syntax of a
semi-honest protocol and satisfies the definition given below.

Definition 2 (Semi-Malicious Security). A two-round, two-party protocol
Π = (Π1,Π2, outΠ) is said to securely compute f against semi-malicious adver-
saries if it satisfies the following properties:

– Correctness: For every receiver’s input x and for every sender input y, we
have:

Pr[outΠ(π2, sk) = f(x, y)] = 1

where (π1, sk) ← Π1(1λ, x) and π2 ← Π2(1λ, π1, y).
– Security: There exists a simulator SimΠ such that for any semi-malicious

adversary A corrupting either the sender or the receiver and for any receiver’s
input x, sender’s input y and for any random tape r, we have:

ViewA(〈R(1λ, x),A(1λ, y)〉) ≈c ViewA(〈R(1λ,0),A(1λ, y)〉)
ViewA(〈A(1λ, x), S(1λ, y)〉) ≈c (x, r,SimΠ(1λ, S, (x, r), f(x, y)))

where 0 is a default input.

3.3 Extractable Commitments in ROM

In our protocol compilers, we make use of non-interactive, straight-line
extractable commitments in the random oracle model. Namely, the commit-
ments are computationally hiding and straight-line extractable by observing the
queries that the adversary makes to the random oracle. Such commitments were
constructed in [31].
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3.4 Pairwise Verifiable Secret Sharing

Consider a linear t-out-of-m threshold secret sharing scheme where the secrets
are over a finite field F and the shares are over another finite field F

′. We use +
and · to denote the addition and multiplication operations over both the fields.

Definition 3 (Pairwise Verifiable Predicate). A predicate P is a pair-
wise verifiable predicate if it takes a threshold t, two indices j, k ∈ [m] and
the purported j-th and k-th shares xj and xk and outputs 1/0. Further, if
P (t, j, k, (xj , xk)) = 1 and P (t, j, k, (x′

j , x
′
k)) = 1, then P (t, j, k, (xj + x′

j , xk +
x′

k)) = 1 and P (2t, j, k, (xj · x′
j , xk · x′

k)) = 1.

In the main body, we also extend the definition of the pairwise verifiable
predicate P to take in a vector of pair of shares and apply the above pairwise
check for each pair.

Definition 4 (Pairwise Verifiable and Error Correctable Secret Shar-
ing). A t-out-of-m threshold linear secret sharing scheme (Share(t,m),Rec(t,m))
is said to be k-multiplicative and �-error-correctable w.r.t. pairwise predicate P
if:

1. k-Multiplicative: Given m shares of elements x1, . . . , xk arranged as a
matrix M of k rows and m columns, the row vector obtained by computing the
product of each column of M is a kt-out-of-m secret sharing of x1 ·x2 . . . ·xk.

2. Pairwise Verifiable Error Correction: Let T be a subset of [m] of size
at most �. Let (x1, . . . , xm) be arbitrary elements such that for any threshold
t′ ≤ kt and for any j, k ∈ [m]\T , P (t′, j, k, xj , xk) = 1. Then, for any {xi}i∈T ,
Rec(t′,m)({xi}i∈T , {xi}i�∈T ) = Rec(t′,m)({xi}i∈T , {xi}i�∈T ) = x. Furthermore,
there exists an efficient procedure Extrapolate that on input t′, {xi}i�∈T outputs
{x′

i}i∈T such that ({xi}i�∈T , {x′
i}i∈T ) belongs to supp(Share(t′,m)(x)).

We note that the above definition of pairwise verifiable secret sharing is the
same as the one given in [23] except that We note that bivariate Shamir secret
sharing is a t-out-of-m secret sharing scheme that is k-multiplicative and �-error
correctable as long as m ≥ kt + 2� + 1.

4 Two-Round Client-Server Protocol with Pairwise
Verifiability

In this section, we give a construction of a two-round, pairwise verifiable MPC
protocol in the client-server model. We start with the Definition of this protocol
in Sect. 4.1.
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4.1 Definition

Syntax. Let f be an arbitrary n-party functionality. Consider the standard client-
server MPC setting [11] with n clients and m servers. A two-round protocol
Φ = (Share,Eval,Dec) for computing a function f in this model has the following
syntax:

– Share(1λ, i, xi) : It outputs a set of shares (xi
1, . . . , x

i
m) along with a verifica-

tion key vki.
– Eval(j, (x1

j , . . . , x
n
j )) : It outputs a string φj .

– Dec(i, vki, (φ1, . . . , φm)) : It outputs a string z or the special symbol ⊥.

In the first round of the protocol, each client i ∈ [n] runs the algorithm Share
on its private input xi and obtains a set of shares (xi

1, . . . , x
i
m) and a verification

key vki. It then sends xi
j as the first round message to the j-th server for each

j ∈ [m]. In the second round, each server j ∈ [m] runs the Eval algorithm on
the first round messages received from each client and obtains the string φj . A
subset of the clients are designated as output clients in the protocol. The j-th
server sends φj to each of the output clients in the second round. To obtain the
output, each output client i runs Dec on its verification key vki and the second
round messages received from all the servers to obtain the output z.

Security Definition. Below we provide the security definition of a client-server
MPC protocol that is pairwise verifiable w.r.t. predicate P .

Definition 5 (Admissible Adversary). Let P be a pairwise predicate that
takes a client index i ∈ [n], two server indices j, k ∈ [m], the first round mes-
sage (xi

j , x
i
k) sent by the i-th client to the servers j and k and outputs 1/0. An

adversary A corrupting a subset of the clients and up to t servers is said to be
admissible w.r.t. pairwise predicate P if for every honest pair of servers j, k and
every corrupted client i, the output of the predicate P on input (i, j, k, (xi

j , x
i
k))

is 1.

Definition 6 (Pairwise Verifiable MPC). Let f be a n-party functionality.
A protocol Φ = (Share,Eval,Dec) is a two-round, n-client, m-server pairwise
verifiable MPC protocol for computing f against t server corruptions if there
exists a pairwise predicate P such that:

1. Error Correction: If A is any admissible adversary (see Definition 5) w.r.t.
P corrupting a subset T (where |T | ≤ t) of the servers and for any two sets
of second round messages {φj}j∈T and {φj}j∈T and for any honest client
i ∈ [n], Dec(i, vki, {φj}j �∈T , {φj}j∈T ) = Dec(i, vki, {φj}j �∈T , {φj}j∈T ) where
{φj}j �∈T are the second round messages generated by the honest servers in the
interaction with A and vki is the verification key output by Share algorithm.

2. Security: For any admissible adversary A (see Definition 5) w.r.t. P corrupt-
ing a subset of the clients and (adaptively) corrupting upto t servers, there
exists an ideal world simulator SimΦ such that for any choice of inputs of the
honest clients, the following two distributions are computationally indistin-
guishable:
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– Real Execution. The admissible adversary A interacts with the honest
parties who follow the protocol specification. The output of the real execu-
tion consists of the output of the admissible adversary A and the output
of the honest output clients.

– Ideal Execution. This corresponds to the ideal world interaction where
SimΦ and the honest client have access to the trusted party implementing
f . Each honest client sends its input to f and each honest output client
outputs whatever the trusted functionality sends back. For every honest
output client, SimΦ sends a special instruction to the trusted functionality
to either give the output of f to the output client or the special symbol ⊥.
The output of the ideal execution corresponds to the output of SimΦ and
the output of all the honest outputs clients.

We state the main theorem about constructing pairwise verifiable MPC pro-
tocol and defer the proof to the full version.

Theorem 1. Let (Share(t,m),Rec(t,m)) be a t-out-of-m, 4-multiplicative, t-error-
correctable secret sharing scheme w.r.t. pairwise predicate P (see Definition 4).
Let f be an arbitrary n-party functionality. Then, there exists a construction of
an n-client, m-server pairwise verifiable MPC protocol for computing f against
t server corruptions (see Definition 6) that makes black-box use of a PRF. Fur-
thermore, Eval algorithm does not perform any cryptographic operations. The
computational cost of the protocol is polynomial in the circuit size of f , the secu-
rity parameter 1λ, and the number of parties.

5 Black-Box Protocol Compilers in the Two-Party
Setting

In this section, we give our black-box protocol compilers to construct round-
optimal malicious-secure protocols in the two-party setting. In Sect. 5.1, we give
our compiler in the random oracle model. In Sect. 5.2, we give our compiler in
the OT correlations model. Finally, in Sect. 5.3, we show how to extend these
compilers to give a round-optimal, malicious-secure, two-party protocol in the
two-sided setting.

5.1 Protocol Compiler in the Random Oracle Model

In this subsection, we give a black-box compiler that transforms from any two-
round semi-honest two-party protocol to a two-round malicious secure protocol
in the random oracle model. We state the formal theorem statement below.

Theorem 2. Let f be an arbitrary two-party functionality. Assume the existence
of:

– A two-round, 2-client, m-server pairwise verifiable MPC protocol Φ =
(Share,Eval,Dec) for computing f against t server corruptions (see Defini-
tion 6).
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– A two-round semi-honest protocol Πi = (Πi,1,Πi,2, outΠi
) for each i ∈ [m]

(see Definition 1) where Πi computes the function Eval(i, ·).
Then, there exists a two-round protocol Γ for computing f that makes black-
box use of {Πi}i∈[n] and is secure against static, malicious adversaries in the
random oracle model. The communication and computation costs of the protocol
are poly(λ, |f |), where |f | denotes the size of the circuit computing f .

Instantiating the pairwise verifiable MPC protocol from Theorem1, we get
the following corollary.

Corollary 1. Let f be an arbitrary two-party functionality. There exists a two-
round protocol Γ for computing f that makes black-box use of {Πi}i∈[n] and is
secure against static, malicious adversaries in the random oracle model. The
communication and computation costs of the protocol are poly(λ, |f |), where |f |
denotes the size of the circuit computing f .

In Sect. 5.1, we describe the construction of the above malicious-secure pro-
tocol and in Sect. 5.1, we give the proof of security.

Construction. We start with the description of the building blocks used in the
construction.

Building Blocks. The construction makes use of the following building blocks.

1. A protocol Φ = (Share,Eval,Dec) that is a two-round, 2-client, m-server pair-
wise verifiable MPC protocol w.r.t. predicate P for computing the function f
against t server corruptions (see Definition 6). We set t = 4λ and m = 6t + 1.

2. An two-round semi-honest inner protocol Πi = (Πi,1,Πi,2, outΠi
) for each

i ∈ [m] (see Definition 1) where Πi computes the function Eval(i, ·) (i.e., the
function computed by the i-th server).

3. A non-interactive, straight-line extractable commitment (Com,Open). Such a
commitment scheme can be constructed unconditionally in the random oracle
model (see Sect. 3.3).

4. Two hash functions H1 : {0, 1}∗ → {0, 1}λ and H2 : {0, 1}∗ → Sm,λ that are
modelled as random oracles where Sm,λ is the set of all subsets of [m] of size
λ.

Description of the Protocol. Let P0 be the receiver that has private input x0 and
P1 be the sender that has private input x1. The common input to both parties
is a description of a two-party function f . We give the formal description of a
two-round, malicious-secure protocol for computing f in Figs. 1 and 2.

Proof of Security. Let A be the malicious adversary that is corrupting either
P0 or P1. We start with the description of the simulator Sim. Let Pi be the
honest client.
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Fig. 1. Description of r-round malicious 2PC

Fig. 2. Description of chkConsistency
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Description of Sim.

1. Interaction with the Environment. For every input value correspond-
ing to the corrupted P1−i that Sim receives from the environment, it writes
these values to the input tape of the adversary A. Similarly, the contents
of the output tape of A is written to Sim’s output tape.

2. Sim chooses uniform subset Ki of size λ and programs the random oracle
H2 to output this set when queried on the message generated by Pi.

3. Sim starts interacting with the simulator SimΦ for the outer protocol by cor-
rupting the client P1−i and the set of servers indexed by Ki. It obtains the
first round messages {xi

j}j∈Ki
sent by the honest client Pi to the corrupted

servers.
4. For each j ∈ Ki, it uses the input xi

j and uniformly chosen si
j to generate

the messages in the protocol Πj as described in Fig. 1. For each j �∈ Ki, it
runs the simulator for the inner protocol Πj to generate the messages on
behalf of Pi. To generate the commitments, for each j ∈ Ki, it uses (xi

j , s
i
j)

to compute comi
j . However, for each j �∈ Ki, it commits to some dummy

values.
5. For each of the unique random oracle queries made by A, Sim samples a

uniform element in the range of the oracle and outputs it as the response.
Each time Sim generates query to the random oracle on behalf of honest
Pi, Sim checks if adversary has already made that query. If that is the case,
then it aborts the execution and outputs a special symbol abort.

6. On obtaining the protocol message from A, Sim uses the straight-
line extractor for the extractable commitment Com and obtains
(x1−i

1 , s1−i
1 ), . . . , (x1−i

m , s1−i
m ) from com1−i

1 , . . . , com1−i
m respectively.

7. It initializes two empty sets I1 and I2.
8. For each j ∈ [m], if (x1−i

j ,H1(1 − i, j, x1−i
j , s1−i

j )) is not a valid
(input,randomness) pair for the protocol Πj w.r.t. the messages sent by
A, then it adds j to the set I1. It adaptively corrupts the server j in the
outer protocol and obtains xi

j . It uses this as the input to compute the
second round message of the protocol Πj when i = 1.

9. It constructs an inconsistency graph G where the vertices correspond to [m]
and it adds an edge between j and k if P (1− i, j, k, x1−i

j , x1−i
k ) = 0. It then

computes a 2-approximation for the minimum vertex cover in this graph
and calls this vertex cover as I2. For each j ∈ I2, it adaptively corrupts the
server j in the outer protocol and obtains xi

j . It uses this as the input to
generate the second round message of the protocol Πj when i = 1.

10. If |I1| ≥ λ or if |I2| ≥ λ, then it sends ⊥ to its ideal functionality.
11. It completes the interaction with A and if at any point of time, A’s messages

do not pass chkConsistency then Sim sends ⊥ to the trusted functionality.
12. It provides {x1−i

j }j �∈I1∪I2∪Ki
to SimΦ as the messages sent by the adversary

to the honest servers. SimΦ queries the ideal functionality on an input x1−i

and Sim forwards this to its trusted functionality.
13. If i = 0, then if SimΦ instructs the ideal functionality to deliver the output

to honest P0, then Sim forwards this message. Otherwise, if SimΦ instructs
the ideal functionality to deliver ⊥, Sim sends ⊥ to the ideal functionality.
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14. If i = 1, then Sim obtains z = f(x0, x1) from the ideal functionality and
forwards this to SimΦ. SimΦ sends the second round protocol messages
{φj}j �∈I1∪I2∪K1 from the honest servers. For each j �∈ I1 ∪ I2 ∪ K1, Sim
uses φj as the output of Πj and gives this as input to the simulator for
Πj along with (x0

j ,H1(0, j, x0
j , s

0
j )) as the (input, randomness) pair. We get

the final round message for Πj for each j �∈ I1 ∪ I2 ∪ K1 from the inner
protocol simulators and we use this to generate the final round message in
the protocol.

Proof of Indistinguishability. We now argue that the real execution and the ideal
execution are computationally indistinguishable via a hybrid argument.

– Real : This corresponds to the output of the real execution of the protocol.
– Hyb0 : This hybrid corresponds to the distribution where the random ora-

cle queries of the adversary are answered with a uniformly chosen random
element from the image of the oracle. Further, if the adversary makes any
queries to the hash functions H1,H2 before the exact same query was made
by the honest party, we abort. We note that since each query made to the
hash functions H1,H2 has a component which is a uniformly chosen random
string of length λ, the probability that an adversary is able to make a query
that exactly matches this string queried by an honest party is q ·2−λ (where q
is the total number of queries made by the adversary to the random oracles).
Hence, this hybrid is statistically close to the previous one.

– Hyb1 : In this hybrid, we make the following changes:
1. We use the extractor for the extractable commitment Com to obtain

(x1−i
1 , s1−i

1 ), . . . , (x1−i
m , s1−i

m ) from com1−i
1 , . . . , com1−i

m respectively.
2. We construct the sets I1 and I2 as described in the simulation.
3. If |I1| ≥ λ or |I2| ≥ λ, we abort the execution and instruct the honest

party to output ⊥.
4. If i = 0 and if |I1| < λ and |I2| < λ, then for each j ∈ I1 ∪ I2 ∪ Ki, we set

φj to be some default value and compute the output of honest P0.
In Lemma 1, we show that Hyb0 and Hyb1 are statistically indistinguishable
from the error correction properties of Φ (see Definition 4.1).

– Hyb2 : In this hybrid, we make the following changes:
1. We sample a uniform subset Ki (of size λ) and program the random oracle

H2 to output this set when queried on the messages generated by Pi.
2. For each j �∈ Ki, we change the commitments comi

j to be commitments
to some dummy values instead of (xi

j , s
i
j).

This hybrid is computationally indistinguishable to the previous hybrid from
the hiding property of the non-interactive commitment scheme.

– Hyb3 : In this hybrid, we do the following:
1. We choose uniform subset Ki of [m] of size λ and program the random

oracle H2 to output this set when queried on the messages generated by
Pi.

2. For each j �∈ Ki, we run the simulator for the inner protocol and generate
the messages from Pi for the protocol Πj using this simulator.
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3. We compute the sets I1 and I2 as before.
4. If some j �∈ Ki is added to I1 or I2 and if i = 1, we use xi

j to compute
the second round sender message.

5. If |I1| ≥ λ or if |I2| ≥ λ, we abort as in the previous hybrid.
6. For j �∈ Ki ∪ I1 ∪ I2, we use the input x1−i

j extracted from the extractable
commitment to compute φj = Eval(1λ, j, x0

j , x
1
j ).

7. If i = 0, for each j ∈ Ki ∪ I1 ∪ I2, we set φj to be a default value and use
these values instead to compute the output of the receiver P0.

8. If i = 1, then for each j �∈ K1 ∪ I1 ∪ I2, we send the input x0
j , randomness

H1(0, j, x0
j , s

0
j ) and the output φj to the simulator for Πj and obtain the

final round message in Πj . We use this to generate the final round message
in the overall protocol.

In Lemma 2, we show that Hyb2 ≈c Hyb3 from the semi-honest sender security
of the inner protocol.

– Hyb4 : In this hybrid, we make the following changes:
1. We (adaptively) corrupt the set of servers corresponding to the indices

Ki ∪ I1 ∪ I2 and the client P1−i. We run the simulator SimΦ for the outer
protocol and obtain the first round messages sent by the honest client to
these corrupted servers. We use this to complete the execution with A.

2. We provide {x1−i
j }j �∈Ki∪I1∪I2 (extracted from the extractable commit-

ment) to SimΦ as the messages sent by the adversary to the honest servers.
SimΦ queries the ideal functionality on an input x1−i.

3. If i = 0 then if SimΦ instructs the ideal functionality to deliver the output
to honest P0, then we instruct P0 to output f(x0, x1). Otherwise, if SimΦ

instructs the ideal functionality to deliver ⊥, we instruct P0 to output ⊥.
4. If i = 1, we compute z = f(x0, x1) and send this to SimΦ as the output

from the ideal functionality. SimΦ sends the second round protocol mes-
sages {φj}j �∈Ki∪I1∪I2 from the honest servers. We use this to generate the
final round message of the protocol as in the previous hybrid.

In Lemma 3, we show that Hyb3 ≈c Hyb4 from the security of the outer
protocol. We note that output of Hyb4 is identically distributed to the output
of the ideal execution with Sim.

Lemma 1. Assuming the error correction properties of Φ, we have Hyb0 ≈s

Hyb1.

Proof. We show that if |I1| ≥ λ or if |I2| ≥ λ then the honest client in Hyb0 also
aborts with overwhelming probability.

– Case-1: |I1| ≥ λ: Note that K1−i is chosen by the random oracle after
the adversary generates the message on behalf of the corrupted party in the
protocol. We show that since K1−i is uniformly chosen random subset of [m]
of size λ, the probability that |I1∩K1−i| = 0 is 2−O(λ). Note that if this event
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doesn’t happen, then the honest client Pi aborts in Hyb0.

Pr[|K1−i ∩ I1| = 0] ≤
(
m−λ

λ

)
(
m
λ

)

=
(

1 − λ

m

) (
1 − λ

(m − 1)

)
. . .

(
1 − λ

(m − (λ − 1))

)

<

(
1 − λ

m

)λ

< e−O(λ) .

where the last inequality follows since m = O(λ). By an union bound over
the set of all the q queries that adversary makes to the random oracle H2,
the probability that there exists some K1−i which is the response of the RO
such that |K1−i ∩ I1| = 0 is upper bounded by q · e−O(λ).

– Case-2: |I2| ≥ λ: Since |I2| ≥ λ, the size of the minimum vertex cover is at
least λ/2. This means that in the inconsistency graph, there exists a maximum
matching of size at least λ/4. Let M be the set of vertices for this matching.
Note that K1−i is uniformly chosen random subset of [m] of size λ. If any
edge of this matching is present in K1−i, then the honest client Pi aborts in
Hyb0. [22, Theorem 4.1] shows that probability that no edge of this matching
is present in K1−i is 2−O(λ). Again, by an union bound over the set of all the
q queries that adversary makes to the random oracle H2, the probability that
there exists some K1−i which is the response of the RO such that no edge in
M is in K1−i is upper bounded by q · 2−O(λ).

In the case, where |I1| ≤ λ and |I2| ≤ λ, consider an admissible adversary A′

against the protocol Φ that corrupts the set of servers indexed by I1 ∪ I2 ∪
Ki. By definition for every server j, k �∈ I1 ∪ I2 ∪ Ki, it follows that P (1 −
i, j, k, x1−i

j , x1−i
k ) = 1. Thus, it follows from the error correction property of Φ

that Hyb2 ≈s Hyb3.

Lemma 2. Assuming the semi-honest security of the inner protocol, we have
that Hyb2 ≈c Hyb3.

Proof. We sample a uniform subset Ki of [m] of size λ and program the random
oracle H2 to output the this set when queried on the messages generated by Pi.

Let I = [m]\Ki. We consider a sequence of |I| hybrids between Hyb2 and Hyb3
where we change from real to simulated executions of the inner protocol for each
j ∈ I one by one. If Hyb2 and Hyb3 are computationally distinguishable, then by
a standard hybrid argument, there exists two sub-hybrids Hyb2,j−1 and Hyb2,j

which differ only in the j-th execution and are computationally distinguishable.
Specifically, in Hyb2,j , the messages in the protocol Πj is generated as in the
ideal execution and in the Hyb2,j−1 it is generated as in the real execution. We
now show that this contradicts the semi-honest security of the inner protocol.

We begin interacting with external challenger and provide xi
j as the input

used by Pi in Πj . Amongst all the queries made by A to the random oracle
H1 where the first two inputs are (1 − i, j), we choose one of these queries
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(1− i, j, x1−i
j , s1−i

j ) at random and give x1−i
j as the input of the corrupted party.

The challenger provides with a random tape r1−i
j to be used by P1−i. We provide

r1−i
j as the response from the random oracle. On receiving the protocol message

from A, we run the extractor for the extractable commitment Com on com1−i
j

and obtain (x1−i
j , s1−i

j ). We consider the following cases.

1. If j is added to I1 or I2 then:
– If i = 1, we use xi

j to generate the second round sender message. We
generate the view of the adversary and run the distinguisher between
Hyb2,j and Hyb2,j−1 on this view and output whatever it outputs.

– If i = 0, we set φj to be an arbitrary value and generate the view of
the adversary and the output of the honest party as before. We run the
distinguisher between Hyb2,j and Hyb2,j−1 on these values and output
whatever it outputs.

2. If j is not added to I1 or I2 but (x1−i
j , s1−i

j ) �= (x1−i
j , s1−i

j ), then we output a
random bit to the external challenger.

3. If j is not added to I1 or I2 and (x1−i
j , s1−i

j ) = (x1−i
j , s1−i

j ), then we continue
with the rest of the execution using the messages from the challenger (i = 1)
or the output from the challenger (i = 0) to compute the view of the adversary
and output of the honest party. We run the distinguisher between Hyb2,j and
Hyb2,j−1 and output whatever it outputs.

We note that if j is not added to I1 or I2 and (x1−i
j , s1−i

j ) = (x1−i
j , s1−i

j ), then
the input to the distinguisher is identical to Hyb2,j−1 if the challenger generated
the messages of Πj as in the real execution and otherwise, it is identical to
Hyb2,j . Similarly, if j is added to I1 or I2, then the input to the distinguisher
is identical to Hyb2,j−1 if the challenger generated the messages of Πj as in the
real execution and otherwise, it is identical to Hyb2,j .

Finally, conditioning on j not added to I1 or I2, the probability that
(x1−i

j , s1−i
j ) �= (x1−i

j , s1−i
j ) is at least 1 − 1/q − negl(λ) (and at most 1 − 1/q +

negl(λ)) where q is the total number of queries made by the adversary to the
random oracle H1. Let us assume that the probability that the distinguisher
correctly predicts whether it is given a sample from Hyb2,j and Hyb2,j−1 to be
1/2 + μ(λ) (for some non-negligible μ(λ)). Let ε be the probability that j is
added to I1 or I2. Let p be the probability that the above reduction correctly
predicts whether it is interacting with the real execution or the ideal execution.
Then,

p ≥ (1/2 + μ(λ))ε + (1 − ε)((1 − 1/q − negl(λ))(1/2) + (1/q − negl(λ))(1/2 + μ(λ)))

≥ (1/2 + μ(λ))ε + (1 − ε)(1/2 + μ(λ)/q) − negl(λ)

≥ 1/2 + μ(λ)/q + ε(μ(λ) − μ(λ)/q) − negl(λ)

≥ 1/2 + μ(λ)/q − negl(λ)

and this contradicts the semi-honest security of the inner protocol.
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Lemma 3. Assuming the security of the outer protocol Φ, we have Hyb3 ≈c

Hyb4.

Proof. Assume for the sake of contradiction that Hyb3 and Hyb4 are compu-
tationally distinguishable. We give a reduction to breaking the security of the
outer protocol.

We begin interacting with the external challenger by providing the input xi

of the honest client Pi. We then corrupt the other client P1−i and the set of
servers indexed by Ki. We obtain the first round messages sent from the honest
client Pi to the corrupted servers and we begin interacting with A using these
messages. For each server that is added to I1 or I2, we adaptively corrupt that
server and obtain the first round message sent from the honest client to this
server. We use this message to continue with the rest of the execution as in
Hyb3. At the end of the protocol execution, we send {x1−i

j }j �∈Ki∪I1∪I2 as the
first round messages sent by the corrupted client P1−i to the honest servers.
If P0 is uncorrupted, we send {φj}j∈Ki∪I1∪I2 (set to be arbitrary values as in
Hyb3) to the challenger and it provides the output of P0 and we instruct P0 to
output the same. If P0 is corrupted, we obtain {φj}j �∈Ki∪I1∪I2 from the external
challenger and we use this to generate the final round message in the protocol.
We finally run the distinguisher between Hyb2 and Hyb3 on the view of A and
the output of P0 (if it is uncorrupted) and output whatever the distinguisher
outputs.

The above reduction emulates an admissible adversary as by definition the
first round message sent to the honest servers pass the pairwise verification w.r.t.
predicate P . Since |Ki ∪ I1 ∪ I2| ≤ |Ki| + |I1| + |I2| = 3λ = t, the reduction
emulates an admissible adversary that corrupts at most t servers. Thus, if the
messages generated by the external challenger are done as in the real execu-
tion then input to the distinguisher is identical to Hyb3. Else, it is identically
distributed to Hyb4. This implies that the reduction breaks the security of the
protocol Φ and this is a contradiction.

5.2 Protocol Compiler in the OT Correlations Model

In this section, we describe a protocol compiler that transforms two-round semi-
malicious two-party protocol to a two-round malicious-secure protocol. This
transformation is in the standard 1-out-of-2 OT correlations model. We state
the formal theorem below.

Theorem 3. Let f be an arbitrary two-party functionality. Assume the existence
of:

– A two-round, 2-client, m-server pairwise verifiable MPC protocol Φ =
(Share,Eval,Dec) for computing f against t server corruptions (see Defini-
tion 6).

– A two-round semi-malicious protocol Πi = (Πi,1,Πi,2, outΠi
) for each i ∈ [m]

(see Definition 2) where Πi computes the function Eval(i, ·).



234 Y. Ishai et al.

Then, there exists a two-round protocol Γ for computing f that makes black-box
use of {Πi}i∈[n] and is secure against static, malicious adversaries in the 1-out-
of-2 OT correlations model. The communication and computation costs of the
protocol are poly(λ, |f |), where |f | denotes the size of the circuit computing f and
the size of the OT correlations shared between the parties is a fixed polynomial
in the security parameter and is independent of the size of the function f .

Instantiating the pairwise verifiable MPC protocol from Theorem1, we get
the following corollary.

Corollary 2. Let f be an arbitrary two-party functionality. There exists a two-
round protocol Γ for computing f that makes black-box use of {Πi}i∈[n] and
is secure against static, malicious adversaries in the 1-out-of-2 OT correlations
model. The communication and computation costs of the protocol are poly(λ, |f |),
where |f | denotes the size of the circuit computing f and the size of the OT corre-
lations shared between the parties is a fixed polynomial in the security parameter
and is independent of the size of the function f .

We defer the proof of Theorem 3 to the full version.

5.3 Extension to the Two-Sided Setting

In this subsection, we explain how to extend the protocol described in Sect. 5.1
to the bidirectional communication model. Specifically, we want to construct an
two-round protocol where in each round, both parties can send a message and
we require both parties get the output at the end of the second round. The
extension for the protocol in the OT correlations model is similar.

Construction. The construction is very similar to the one described in Fig. 1
except that we run two instances of the inner protocol for each j ∈ [m], namely,
Π0

j and Π1
j where the parties use the same input in both the executions (but

use independently chosen randomness). Here, Π0
j is the protocol that delivers

output to P0 and Π1
j is the protocol that delivers output to P1. Additionally,

for each j ∈ [m], the parties send an extractable commitment to the input and
the random strings used in Π0

j and Π1
j respectively. In each round u ∈ [2], the

parties use the random oracle H2 to derive a set Ku
0 ,Ku

1 respectively as in the
previous protocol description. The party Pi (for each i ∈ {1, 2}) then opens
the above generated extractable commitment for those executions indexed by
Ku

i . The chkConsistency run by Pi is modified so that it checks if the input,
randomness pair is consistent in Π0

j and Π1
j for each j ∈ Ku

1−i. The output
computation by both parties is done exactly as described in Fig. 1.

We defer the proof of security of this construction to the full version.

6 Black-Box Protocol Compilers in the Multiparty
Setting

We state our main theorems about our protocol compiler in the multiparty case.
The proof of these theorems are given in the Appendix.
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6.1 Protocol Compiler in the Random Oracle Model

In this subsection, we give a construction of a three-round malicious-secure MPC
protocol in the random oracle model that makes black-box use of a two-round
semi-honest OT. It was shown in [1] that even considering only semi-honest
security in the random oracle model, such a black-box protocol for the case of
three parties is round-optimal. Recently, [32] gave a malicious-secure construc-
tion in the CRS model assuming a two-round malicious secure oblivious transfer
protocol that additionally satisfies equivocal receiver security [15].

We give the formal statement of our theorem below.

Theorem 4. Let f be an arbitrary n-party functionality. Assuming the existence
of:

– A two-round, 2-client, m-server pairwise verifiable MPC protocol Φ =
(Share,Eval,Dec) for computing f against t server corruptions (see Defini-
tion 6).

– A two-round semi-honest oblivious transfer protocol OT = (OT1,OT2, outOT).

Then, there exits a three-round protocol Γ for computing f over point-to-point
channels that makes black-box use OT and satisfies security with selective abort
against static, malicious adversaries in the random oracle model. The communi-
cation and computation costs of the protocol are poly(λ, n, |f |), where |f | denotes
the size of the circuit computing f .

Instantiating the pairwise verifiable MPC protocol from Theorem1, we get
the following corollary.

Corollary 3. Let f be an arbitrary n-party functionality. There exits a three-
round protocol Γ for computing f over point-to-point channels that makes black-
box use OT and satisfies security with selective abort against static, malicious
adversaries in the random oracle model. The communication and computation
costs of the protocol are poly(λ, n, |f |), where |f | denotes the size of the circuit
computing f .

We give the proof of Theorem 4 in the full version.

6.2 Protocol Compiler in the OT Correlations Model

In this subsection, we improve the result from [19] and give a construction of a
two-round black-box protocol for computing multiparty functionalities that are
secure against malicious adversaries in the OT correlations model. This compiler
makes black-box use of a two-round semi-malicious secure inner protocol that
has first message equivocality (defined in [19] and recalled in Definition 7).
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Building Blocks. The construction makes use of the following building blocks.

1. A two-round n-client, m-sever protocol Φ = (Φ1, Φ2, outΦ) satisfy-
ing privacy with knowledge of outputs6 for computing the function
g((x1, k1), . . . , (xn, kn)) = (y = f(x1, . . . , xn), {MAC(ki, y)}i∈[n]) where MAC
is a strongly unforgeable one-time MAC scheme. This protocol is secure
against t server corruptions and has publicly decodable transcript. We set
t = (m − 1)/3 and m = 16λn3. Such a protocol was constructed in [23,30] by
making black-box use of a PRG. As noted in [19], we can delegate the PRG
computations made by the servers to the client and ensure that the compu-
tation done by the servers do not involve any cryptographic operations.

2. A two-round inner protocol Πj = (Πj,1,Πj,2, outΠ) with publicly decodable
transcript for each j ∈ [m] where Πj computes the function Φ2(j, ·) (i.e., the
function computed by the j-th server). For each j ∈ [m], we require protocol
Πj to satisfy the following definition.

Definition 7 [19]. We say that (Π1,Π2, outΠ) is a two-round, inner protocol
for computing a function f with publicly decodable transcript if it satisfies the
following properties:

– Correctness: We say that the protocol Π correctly computes a function f if
for every choice of inputs xi for party Pi and for any choice of random tape
ri, we require that for every i ∈ [n],

Pr[outΠ(i, π(2)) = f(x1, . . . , xn)] = 1

where π(2) denotes the transcript of the protocol Π when the input of Pi is
xi with random tape ri and ski is the output key generated by Π1.

– Security. Let A be an adversary corrupting a subset of the parties indexed
by the set M and let H be the set of indices denoting the honest parties. We
require the existence of a simulator SimΠ such that for any choice of honest
parties inputs {xi}i∈H , we have:

Real(A, {xi, ri}i∈H) ≈c Ideal(A,SimΠ , {xi}i∈H)

where the real and ideal experiments are described in Fig. 3 and for each i ∈ H,
ri is uniformly chosen.

[19] showed that the protocol from [14] in the OT correlations model and [25] in
the OLE correlations model satisfy the above definition.

3. A single round Rabin OT protocol RabinOT with erasure probability 1 − λ ·
n/m. We extend the syntax of the Rabin OT protocol to take in m strings and
each of these strings are independently erased with probability 1 − λ · n/m.

6 Privacy with knowledge of outputs is a weaker notion than security with selective
abort and allows the adversary to select the output given by the trusted functionality
to the honest parties. We refer the reader to [23] for the formal definition.
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Fig. 3. Security game for the two-round inner protocol

Theorem 5. Let f be an arbitrary n-party functionality. Assume the existence
of:

– A two-round n-client, m-sever protocol Φ = (Φ1, Φ2, outΦ) satisfying privacy
with knowledge of outputs against t server corruptions for computing the func-
tion g defined above.

– A two-round inner protocol Πj = (Πj,1,Πj,2, outΠ) with publicly decodable
transcript for each j ∈ [m] where Πj computes the function Φ2(j, ·) (i.e., the
function computed by the j-th server) satisfying Definition 7.

Then, there exists a two-round protocol Γ that makes black box use of {Πj}j∈[m]

and computes f against static, malicious adversaries satisfying security with
selective abort in the 1-out-of-2 OT correlations model and access to point-to-
point channels. Further, if only (Φ1, outΦ) makes black-box use of a PRF and Φ2

does not perform any cryptographic operations, then Γ is fully black-box. The
communication and computation costs of the protocol are poly(λ, n, |f |), where
|f | denotes the size of the circuit computing f and the size of the OT correlations
shared between the parties is a fixed polynomial in the security parameter and
number of parties and is independent of the size of the function f .

We give the proof of this theorem in the full version.
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Abstract. We introduce a notion of round-robin secure sampling that
captures several protocols in the literature, such as the “powers-of-
tau” setup protocol for pairing-based polynomial commitments and zk-
SNARKs, and certain verifiable mixnets.

Due to their round-robin structure, protocols of this class inherently
require n sequential broadcast rounds, where n is the number of partic-
ipants.

We describe how to compile them generically into protocols that
require only O(

√
n) broadcast rounds. Our compiled protocols guarantee

output delivery against any dishonest majority. This stands in contrast to
prior techniques, which require Ω(n) sequential broadcasts in most cases
(and sometimes many more). Our compiled protocols permit a certain
amount of adversarial bias in the output, as all sampling protocols with
guaranteed output must, due to Cleve’s impossibility result (STOC’86).
We show that in the context of the aforementioned applications, this bias
is harmless.

1 Introduction

In many settings it is desirable for a secure multiparty computation (MPC)
protocol to guarantee output delivery, meaning that regardless of the actions
taken by an adversary who may corrupt up to n − 1 parties, all honest parties
always learn their outputs from the computation. This property, for example,
is needed in any use of secure computation that creates a critical public output,
such as securely sampling the setup parameters needed for a blockchain system,
etc. However, the seminal result of Cleve [23] showed that unless a majority of
parties are assumed to be honest, certain functions cannot be computed even
with fairness (meaning that if the adversary learns the output then so do all
honest parties).

In the two-party setting, a series of works culminated with a full charac-
terization of all finite-domain Boolean functions that can be computed with
guaranteed output delivery [2–4,35,49]. Our understanding is limited in the
multiparty setting: only a handful of functions are known to be securely com-
putable with guaranteed output delivery (e.g., the Boolean-OR and majority
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functions) [25,26,36]. In fact, for n > 3, only Boolean OR is known to achieve
guaranteed output delivery against n − 1 corruptions without bias.

The Boolean-OR protocol of Gordon and Katz [36] inherently requires a
linear number of broadcast rounds relative to the party count. It extends the
folklore “player-elimination technique” (originally used in the honest-majority
setting [33,34]) to the dishonest-majority case by utilizing specific properties of
the Boolean-OR function. In a nutshell, the n parties iteratively run a related
secure computation protocol with identifiable abort [25,42], meaning that if the
protocol aborts without output, it is possible to identify at least one dishonest
party. Since the abort may be conditioned on learning the putative output, this
paradigm only works if the putative output is simulatable, which is the case for
Boolean OR. If the protocol aborts, the dishonest party is identified and expelled,
and the remaining parties restart the computation with a default input for the
cheater (0 in case of Boolean OR). Because n−1 dishonest parties can force this
process to repeat n − 1 times, the overall round complexity must be Ω(n).1

The 1/p relaxation. A closer look at Cleve’s attack [23] reveals that any r-
round coin-tossing protocol that completes with a common output bit is exposed
to an inverse-polynomial bias of Ω(1/r); it is a natural line of inquiry to
attempt to achieve as tight a bias in the output as possible. Unfortunately,
as far as we know, this approach creates a dependence of the round complex-
ity on the number of parties that is typically much worse than linear. The
state of the art for coin-tossing is the work of Buchbinder et al. [16] where the
bias is Õ

(
n3 · 2n/r0.5+1/(2n−1−2)

)
, which improves upon prior works [5,23] for

n = O(log log r), i.e., when the number of rounds is doubly exponential in n
(e.g., for a constant number of parties the bias translates to O(1/r1/2+Θ(1))).

Towards generalizing the coin-tossing results, Gordon and Katz [37] relaxed
the standard MPC security definition to capture bias via 1/p-secure computa-
tion, where the protocol is secure with all but inverse-polynomial probability, as
opposed to all but negligible.2 They showed feasibility for any randomized two-
party functionality with a polynomial-sized range and impossibility for certain
functionalities with super-polynomial-sized domains and ranges. Beimel et al. [8]
extended 1/p-secure computation to the multiparty setting and presented proto-
cols realizing certain functionalities with polynomial-sized ranges. However, their
protocols again have round counts doubly exponential in n and only support a
constant number of parties. Specifically, if the size of the range of a function is
g(λ), then the round complexity for computing that function with 1/p-security
is (p(λ) · g(λ))2O(n) .

In sum, the 1/p-relaxation requires many more rounds and is limited to
functionalities with a polynomial-sized range. Many useful tasks, such as the

1 Surprisingly, if a constant fraction of the parties are assumed to be honest, this linear
round complexity can be reduced to any super-constant function; e.g., O(log∗ n) [24].

2 Formally, there exists a polynomial p such that every attack on the “real-world”
execution of the protocol can be simulated in the “ideal-world” computation such
that the output of both computations cannot be distinguished in polynomial-time
with more than 1/p(λ) probability.
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sampling of cryptographic keys (which must be drawn from a range of super-
polynomial size) cannot be achieved via this technique.

Biased-Sampling of Cryptographic Keys. Fortunately, some applications of MPC
that require guaranteed output delivery can indeed tolerate quite large bias. A
long line of works in the literature consider the problem of random sampling
of cryptographic objects in which each party contributes its own public share in
such a way that combining the public shares yields the public output, but even
the joint view of n − 1 secret shares remains useless. Protocols that follow this
pattern give a rushing adversary the ability to see the public contribution of the
honest parties first, and only later choose the secrets of the corrupted parties.
This approach permits the adversary to inflict a statistically large bias on the
distribution of the public output (for example, forcing the output to always end
in 0). However, the effect of this bias on the corresponding secret is hidden from
the adversary due to the hardness of the underlying cryptographic primitive.

For some simple cryptographic objects (e.g., collectively sampling x · G3),
there are single-round sampling protocols, known as Non-Interactive Distributed
Key Generation (NIDKG) schemes [28,54]. Interestingly, a classic construction
for (interactive) distributed key generation by Pedersen [51] in the honest major-
ity setting was found by Gennaro et al. [31] to unintentionally permit adversarial
bias, which the same authors later proved can be tolerated in a number of appli-
cations [32].

For more complex cryptographic objects, the contributions of the parties can-
not come in parallel. A few protocols are known in which the parties must each
contribute only once, but they must contribute sequentially. We refer to these as
round-robin protocols. Among them are the “powers-of-tau” protocol [13,39,47]
and variants of Abe’s verifiable mixnets [1,14], about which we will have more to
say below. The round-robin approach inherently requires Ω(n) broadcast rounds.

For some cryptographic objects, the state-of-the-art sampling protocols
do not guarantee output, but achieve security with identifiable abort. Multi-
party RSA modulus generation [20,21] is a key example. Applying the player-
elimination technique in this setting gives the adversary rejection-sampling capa-
bilities, since the adversary can repeatedly learn the outcome of an iteration of
the original protocol and then decide whether to reject it by actively cheating
with a party (who is identified and eliminated), or accept it by playing honestly.
An adversary that controls n−1 parties can reject n−1 candidate outputs before
it must accept one. This may be different than inducing a plain bias, since the
adversary can affect the distribution of the honest parties’ contributions, but in
this work we show that for certain tasks the two are the same. Regardless, the
broadcast-round complexity of this approach is, again, inherently Ω(n).

To summarize, with the exception of NIDKG protocols a few specific tasks, all
known techniques in the study of guaranteed output delivery with bias inherently
require Ω(n) broadcast rounds. It was our initial intuition that Ω(n) rounds were

3 Where G is a generator of a group of order q written in additive notation, and x is
a shared secret from Zq.
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a barrier. Our main result is overcoming this intuitive barrier for an interesting
class of functionalities.

1.1 Our Contributions

Our main contribution is to develop a new technique for constructing secure
computation protocols that guarantee output delivery with bias using O(

√
n)

broadcast rounds while tolerating an arbitrary number of corruptions. Prior
state-of-the-art protocols for the same tasks require n broadcast rounds. More-
over, our work stands in contrast to the folklore belief that realizing such func-
tionalities with guaranteed output delivery inherently requires Ω(n) rounds.

Our technique applies to the sampling of certain cryptographic objects for
which there exist round-robin sampling protocols, with a few additional prop-
erties. This class is nontrivial: it includes both the powers-of-tau and verifiable
mixnet constructions mentioned previously. The combination of scalability in n
with security against n − 1 corruptions is particularly important as it allows
for better distribution of trust (given that there need only be a single hon-
est party) than is possible with Ω(n)-round protocols. Indeed, well-known real-
world ceremonies for constructing the powers-of-tau-based setup parameters for
zk-SNARK protocols involved just a few participants [10] and later one hundred
participants [13]. Our aim is to develop methods that allow thousands to millions
of participants to engage in such protocols, which naturally requires a sublinear
round complexity.

Though our techniques are model-agnostic, we formulate all of our results in
the UC model. Specifically, we construct a compiler for round-robin protocols,
and formally incorporate the adversary’s bias into our ideal functionalities, as
opposed to achieving only 1/p-security [37].

The Basic Idea. The transformation underlying our compiler uses the “player-
simulation technique” that goes back to Bracha [15] and is widely used in the
Byzantine agreement and MPC literature (e.g., [41,43]) as well as the “player-
elimination framework” [33,34]. We partition the set of n players into

√
n subsets

of size
√

n each, and then construct a protocol that proceeds in at most O(
√

n)
phases, with O(1) rounds per phase. The key invariant of our technique is that
in each phase, either one subset is able to make progress towards an output (and
are thus able to halt), or if no subset succeeds, then at least one player from each
active subset can be identified as cheating and removed from the next phase.

Applying our technique requires two key properties of the original protocol
which we group under the moniker “strongly player-replaceable round-robin.”
We do not know precisely what kinds of functions can be computed by such
protocols, but the literature already contains several examples. This issue is not
new, as prior works in the literature must also resort to describing function
classes by the “presence of an embedded XOR” [35] or the “size of domain or
range” [8]. In our case, the restriction is defined by the existence of an algorithm
with certain properties that can be used to compute the function.
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Motivating Protocol: Powers of Tau. Before we give a more detailed explanation
of our technique, it will be useful to recall a simplified version of the powers-
of-tau protocol of Bowe, Gabizon, and Miers [13]. Throughout, we assume syn-
chronous communication, and a malicious adversary that can statically corrupt
an arbitrary subset of the parties. The powers-of-tau protocol was designed
for generating setup parameters for Groth’s zk-SNARK [38]. Given an ellip-
tic curve group G generated by the point G, our simplified version will output
{τ · G, τ2 · G, . . . , τd · G}, where d is public and τ is secret.

The protocol’s invariant is to maintain as an intermediate result a vector of
the same form as the output. In each round, the previous round’s vector is reran-
domized by a different party. For example, if the intermediate result of the first
round is a vector {τ1 · G, τ2

1 · G, . . . , τd
1 · G}, then in round two the second party

samples τ2 uniformly and broadcasts {τ1 · τ2 · G, τ2
1 · τ2

2 · G, . . . , τd
1 · τd

2 · G},
which it can compute by exponentiating each element of the previous vector.
It also broadcasts a zero-knowledge proof that it knows the discrete logarithm of
each element with respect to the corresponding element of the previous vector,
and that the elements are related in the correct way.

It is not hard to see that a malicious party can bias the output, as Cleve’s
impossibility requires, and variants of this protocol have attempted to reduce
the bias by forcing parties to speak twice [10,12], using “random beacons” as
an external source of entropy [13], or considering restricted forms of algebraic
adversaries [29,47] in the random oracle model.

Round-Robin Sampling Protocols. The powers-of-tau protocol has a simple struc-
ture shared by other (seemingly unrelated) protocols [1,14], which we now
attempt to abstract. First, observe that it proceeds in a round-robin fashion,
where in every round a single party speaks over a broadcast channel, and the
order in which the parties speak can be arbitrary. Furthermore, the message
that each party sends depends only on public information (such as the tran-
script of the protocol so far, or public setup such as a common random string)
and freshly-tossed private random coins known only to the sending party. The
next-message function does not depend on private-coin setup such as a PKI, or
on previously-tossed coins. Strongly player-replaceable round-robin protocols—
the kind supported by our compiler—share these properties.

Next, we generalize this protocol-structure to arbitrary domains. We denote
the “public-values” domain by V (corresponding to G

d in our simplified exam-
ple) and the “secret-values” domain by W (corresponding to Zq). Consider an
update function f : V × W → V (corresponding to the second party’s “reran-
domization” function, sans proofs) and denote by πRRSample(f, n, u) the cor-
responding n-party round-robin protocol for some common public input value
u ∈ V (corresponding to, e.g., {G, . . . , G}). In addition to the basic powers-of-
tau protocol and its variants [13,39,47], this abstraction captures an additional
interesting protocol from the literature: verifiable mixnets [14], where the parties
hold a vector of ciphertexts and need to sample a random permutation.



246 R. Cohen et al.

Generalizing to Pre-transformation Functionality. Having defined the class of
protocols, we specify a corresponding ideal functionality that these protocols
realize in order to apply our compiler. This “pre-transformation functionality”
is rather simple and captures the inherent bias that can be induced by the
adversary. Specifically, the functionality starts with the common public input
u, and then samples a uniform secret value w ∈ W and updates u with w
to yield a new public (intermediate) value v ..= f(u,w). The functionality
shows v to the adversary, and allows the adversary free choice of a bias value
x ∈ W with which it updates v to yield the final output y ..= f(v, x). For
the specific case of powers-of-tau, this corresponds to an honest party pick-
ing a secret τ1 and broadcasting {τ1 · G, τ2

1 · G, . . . , τd
1 · G}, and then the adver-

sary choosing τ2 (conditioned on the honest party’s output) and broadcasting
{τ1 · τ2 · G, τ2

1 · τ2
2 · G, . . . , τd

1 · τd
2 · G}.

For update function f : V × W → V and common public input u ∈ V,
we denote by FPreTrans(f, n, u) the n-party variant of the pre-transformation
functionality. Proving that the round-robin protocol realizes this functionality
boils down to realizing the a zero-knowledge proof that f has been correctly
applied. We prove the following theorem:

Theorem 1.1 (Pre-Transformation Security, Informal). Let n ∈ N, let f :
V × W → V be an update function, and let u ∈ V. Under these conditions,
πRRSample(f, n, u) realizes FPreTrans(f, n, u) in the FNIZK-hybrid model
within n broadcast rounds.

Theorem 1.1 gives the first modular analysis in the simulation paradigm of
(a version of) the powers-of-tau protocol; this is opposed to other security anal-
yses (e.g., [13,47]) that give a monolithic security proof and explicitly avoid
simulation-based techniques. On one hand, the modular approach allows the use
of the powers-of-tau protocol to generate setup for other compatible construc-
tions that otherwise rely on a trusted party, such as polynomial commitments
[44]. On the other hand, different instantiations of FNIZK give different security
guarantees for the protocol: a universally composable (UC) NIZK in the CRS
model yields a corresponding UC-secure protocol, a random-oracle-based NIZK
yields security in the random-oracle model, and a knowledge-of-exponent-based
NIZK yields stand-alone, non-black-box security in the plain model.

Round-Reducing Compiler. Let us now return to our main conceptual contribu-
tion: a compiler that reduces the round complexity of the round-robin protocols
described above from n broadcast rounds to O(

√
n).

Let f : V × W → V be an update function and u ∈ V a common
public input as before, and let m < n be integers (without loss of gener-
ality, consider n to be an exact multiple of m). Given an m-party protocol
πRRSample(f,m, u) executed in m rounds by parties Q1, . . . ,Qm (who speak
sequentially), let gj be the next-message function of Qj . The compiled pro-
tocol πCompiler(πRRSample(f,m, u), n, u,m) will be executed by n parties
P1, . . . ,Pn.
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The compiled protocol will organize its parties into m committees, and each
committee will execute a (n/m)-party MPC protocol in order to jointly evaluate
the next-message functions of parties in the original protocol. For ease of expo-
sition, we will say that each committee in this new protocol acts as a virtual
party in the original, which proceeds in virtual rounds. The MPC protocol must
be secure with identifiable abort [25,42] against any number of corruptions; that
is, either all honest parties obtain their outputs or they all identify at least one
cheating party.

Furthermore the MPC must provide public verifiability [6,53] in the sense
that every party that is not in a particular committee must also learn that
committee’s output (or the identities of cheating parties), and be assured that
the output is well-formed (i.e., compatible with the transcript, for some set of
coins) even if the entire committee is corrupted. This is similar to the notions of
publicly identifiable abort [46] and restricted identifiable abort [24].

In the ith round, all of the committees will attempt to emulate the party
Qi of the original protocol, in parallel. If a party is identified as a cheater at
any point, it is excluded from the rest of the computation. At the conclusion
of all MPC protocols for the first round, one of two things must occur: either
all committees aborted, in which case at least m cheating parties are excluded,
and each committee re-executes the MPC protocol with the remaining parties,
or else at least one committee completed with an output. In the latter case, let j
be the minimal committee-index from those that generated output, and denote
the output of committee j by ai. Next, all committees (except for committee j,
which disbands) proceed as if the virtual party Qi had broadcasted ai in the ith

round, and continue in a similar way to emulate party Qi+1 in round i+1. Note
that at a certain point all remaining committees may be fully corrupted, and
cease sending messages. This corresponds to the remaining virtual parties being
corrupted and mute in the virtual protocol; in this case all of the remaining
committee members are identified as cheaters. The compiled protocol proceeds
in this way until the virtualized copy of πRRSample(f,m, u) is complete.

If the generic MPC protocol that underlies each virtual party requires con-
stant rounds, then the entire protocol completes in O(m + n/m) rounds, and if
we set m =

√
n, we achieve a round complexity of O(

√
n), as desired. So long as

there is at least one honest party, one virtual party is guaranteed to produce an
output at some point during this time, which means that the compiled protocol
has the same output delivery guarantee as the original.

Post-Transformation Functionality. Although the compiled protocol
πCompiler(πRRSample(f,m, u), n, u,m) emulates the original πRRSample(f,

m, u) in some sense, it does not necessarily realize FPreTrans(f,m, u) as the
original protocol does, because the adversary has additional rejection-sampling
capabilities that allow for additional bias. We therefore specify a second ideal
functionality FPostTrans(f, n, u, r), where r is a bound on the number of
rejections the adversary is permitted; setting this bound to 0 coincides with
FPreTrans(f, n, u).
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As in FPreTrans(f, n, u), the functionality begins by sampling w ← W,
computing v = f(u,w) and sending v to the adversary, who can either accept
or reject. If the adversary accepts then it returns x ∈ W and the functionality
outputs y = f(v, x) to everyone; if the adversary rejects, then the functionality
samples another w ← W, computes v = f(u,w), and sends v to the adver-
sary, who can again either accept or reject. The functionality and the adversary
proceed like this for up to r iterations, or until the adversary accepts some value.

Theorem 1.2 (Post-Transformation Security, Informal). Let m < n be integers
and let f : V×W → V and u ∈ V be as above. Assume that πRRSample(f,m, u)
realizes FPreTrans(f,m, u) using a suitable NIZK protocol within m broad-
cast rounds, and that the next-message functions of πRRSample(f,m, u)
can be securely computed with identifiable abort and public verifiability in
a constant-number of rounds. Let r = m + �n/m�. Under these condi-
tions, πCompiler(πRRSample(f,m, u), n, u,m) realizes FPostTrans(f, n, u, r)
within O(r) broadcast rounds.

Although πCompiler(πRRSample(f,m, u), n, u,m) does not necessarily
realize FPreTrans(f,m, u) for every f , we show that it somewhat-unexpectedly
does if the update function f satisfies certain properties. Furthermore, we show
that these properties are met in the cases of powers-of-tau and mixnets.

Theorem 1.3 (Equivalence of Pre- and Post-Transformation Security, Infor-
mal). Let n, r ∈ N, let f : V×W → V be a homomorphic update function, and let
u ∈ V be a common public input. If a protocol π realizes FPostTrans(f, n, u, r)
then π also realizes FPreTrans(f, n, u).

Powers of Tau and Polynomial Commitments. A polynomial-commitment
scheme enables one to commit to a polynomial of some bounded degree d, and
later open evaluations of the polynomial. The pairing-based scheme of Kate
et al. [44] requires trusted setup of the form {G, τ · G, τ2 · G, . . . , τd · G} ∈ G

d+1,
for some elliptic curve group G. The security of the scheme reduces to the d-
strong Diffie-Hellman assumption (d-SDH) [11]. We show that if the setup is not
sampled by a trusted party, but instead computed (with bias) by our protocol
(either the round-robin or compiled variation), there is essentially no security
loss.

Theorem 1.4 (Generating Setup for SDH, Informal). If there exists a PPT
adversary that can break a d-SDH challenge generated by an instance of our
protocol in which it has corrupted n−1 parties, then there exists a PPT adversary
that can win the standard (unbiased) d-SDH game with the same probability.

SNARKs with Updateable Setup. Several recent Succinct Non-interactive Argu-
ments (zk-SNARKs) have featured updatable trusted setup, and have security
proofs that hold so long as at least one honest party has participated in the
update process [22,30,39,50]. Since their proofs already account for adversarial



Guaranteed Output for Round-Robin Sampling Protocols 249

bias and the form of their trusted setup derives from the setup of Kate et al. [44],
our protocols can be employed for an asymptotic improvement upon the best
previously known update procedure.

Verifiable Mixnets. A verifiable mixnet is a multiparty protocol by which a group
of parties can shuffle a set of encrypted inputs, with the guarantee that no corrupt
subset of the parties can learn the permutation that was applied or prevent the
output from being delivered, and the property that non-participating observers
can be convinced that the shuffle was computed correctly. Prior constructions,
such as the work of Boyle et al. [14], involve random shuffling and re-encryption in
a round-robin fashion, and their security proofs already consider bias of exactly
the sort our protocol permits. Thus, it is natural to apply our compiler, yielding
the first verifiable mixnet that requires sublinear broadcast rounds.

Concrete Efficiency. While our primary goal in this work is optimizing round
complexity, a round-efficient protocol is not useful in practice if it has unfeasibly
high (but polynomially bounded) communication or computation complexity. As
evidence of the practicality of our technique, the full version of this paper will
include an additional, non-generic construction that specifically computes the
powers-of-tau, and an analysis of its concrete costs. We give a summary of this
additional result in Sect. 5.

2 Preliminaries

Notation. We use = for equality, ..= for assignment, ← for sampling from a dis-
tribution, ≡ for distributional equivalence, ≈c for computational indistinguisha-
bility, and ≈s for statistical indistinguishability. In general, single-letter variables
are set in italic font, function names are set in sans-serif font, and string literals
are set in slab-serif font. We use V, W, X, and Y for unspecified domains,
but we use G for a group, F for a field, Z for the integers, N for the natural
numbers, and Σd for the permutations over d elements. We use λ to denote the
computational security parameter.

Vectors and arrays are given in bold and indexed by subscripts; thus ai is the
ith element of the vector a, which is distinct from the scalar variable a. When
we wish to select a row or column from a multi-dimensional array, we place a ∗
in the dimension along which we are not selecting. Thus b∗,j is the jth column
of matrix b, bj,∗ is the jth row, and b∗,∗ = b refers to the entire matrix. We use
bracket notation to generate inclusive ranges, so [n] denotes the integers from
1 to n and [5, 7] = {5, 6, 7}. On rare occasions, we may use one vector to index
another: if a ..= [2, 7] and b ..= {1, 3, 4}, then ab = {2, 4, 5}. We use |x| to denote
the bit-length of x, and |y| to denote the number of elements in the vector y.
We use Pi to indicate an actively participating party with index i; in a typical
context, there will be a fixed set of active participants denoted P1, . . . ,Pn. A
party that observes passively but remains silent is denoted V.

For convenience, we define a function GenSID, which takes any number of
arguments and deterministically derives a unique Session ID from them. For
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example GenSID(sid, x, x) derives a Session ID from the variables sid and x, and
the string literal “x.”

Universal Composability, Synchrony, Broadcast, and Guaranteed Output Deliv-
ery. We consider a malicious PPT adversary who can statically corrupt any
subset of parties in a protocol, and require all of our constructions to guaran-
tee output delivery. Guaranteed output delivery is traditionally defined in the
stand-alone model (e.g., [25]) and cannot be captured in the inherently asyn-
chronous UC framework [17]. For concreteness, we will consider the synchronous
UC modeling of Katz et al. [45], which captures guaranteed termination in UC,
but for clarity we will use standard UC notation. We note that our techniques
do not rely on any specific properties of the model, and can be captured in any
composable framework that supports synchrony, e.g., those of Liu-Zhang and
Maurer [48] or Baum et al. [7].

In terms of communication, we consider all messages to be sent over an
authenticated broadcast channel, sometimes denoted by FBC, and do not consider
any point-to-point communication. This is standard for robust MPC protocols
in the dishonest-majority setting. Our protocols proceed in rounds, where all
parties receive the messages sent in round i − 1 before anyone sends a message
for round i.

3 A Round-Reducing Compiler

The main result of our paper is a round-reducing compiler for round-robin sam-
pling protocols. To be specific, our compiler requires three conditions on any pro-
tocol ρ that it takes as input: ρ must have a broadcast-only round-robin structure,
it must be strongly player-replaceable, and it must UC-realize a specific function-
ality FPreTrans(f, ·, ·) for some function f . We define each of these conditions
in turn, before describing the compiler itself in Sect. 3.1.

Definition 3.1 (Broadcast-Only Round-Robin Protocol). A protocol has a
broadcast-only round-robin structure if the parties in the protocol send exactly
one message each in a predetermined order, via an authenticated broadcast chan-
nel. We often refer to such protocols simply as round-robin protocols.

Definition 3.2 (Strong Player-Replaceability). A protocol is strongly player-
replaceable if no party has any secret inputs or keeps any secret state. That is,
the next-message functions in a strongly player-replaceable protocol may take as
input only public values and a random tape.

Remark 3.3 (Strongly Player-Replaceable Round-Robin Protocols). If a pro-
tocol ρ(n, u) for n parties with some common input u ∈ V conforms to Defini-
tions 3.1 and 3.2, then it can be represented as a vector of functions g1, . . . ,gn+1

such that gi for i ∈ [n] is the next-message function of the ith party. g1 takes
u ∈ V and a vector of η uniform coins for some η ∈ N as input, and each suc-
ceeding function gi for i ∈ [2, n] takes u concatenated with the outputs of all
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previous functions in the sequence, plus η additional uniform coins. The last
function, gm+1, does not take any coins, and can be run locally by anyone to
extract the protocol’s output from its transcript. We refer to protocols that meet
these criteria as SPRRR protocols hereafter.

Note that Definition 3.2 is somewhat more restrictive than the (non-strong)
player-replaceability property defined by Chen and Micali [19]. Their definition
forbids secret state but allows players to use some kinds of secret inputs (in
particular, secret signature keys) in the next-message function, so long as every
player is capable of computing the next message for any given round. We forbid
such secret inputs, giving parties only an ideal authenticated broadcast channel
by which to distinguish themselves from one another.

Finally, we define the biased sampling functionality that any input protocol ρ
is required to realize. This functionality is parameterized by a function f which
takes an input value from some space (denoted V) and a randomization witness
(from some space W) and produces an output value (again in V) determinis-
tically. The functionality models sampling with adversarial bias by selecting a
randomization witness w from W uniformly, rerandomizing the input value using
w, and then providing the resulting intermediate v to the adversary, who can
select a second (arbitrarily biased) randomization witness x from W to apply to
v using f , in order to produce the functionality’s output y. Note that the only
requirement on f is that it has the same input and output domains, so that it
can be applied repeatedly. It is not required to have any other properties (such
as, for example, one-wayness).

Functionality 3.4. FPreTrans(f, n, u). Biased Sampling

This functionality interacts with n actively participating parties denoted
by P1 . . . Pn and with the ideal adversary S. It is also parameterized by an
update function f : V × W → V and an arbitrary value u ∈ V.

Sampling: On receiving (sample, sid) from at least one Pi for i ∈ [n],

1. If a record of the form (unbiased, sid, ∗) exists in memory, then ignore
this message. Otherwise, continue with steps 2 and 3.

2. Sample w ← W and compute v ..= f(u,w).
3. Store (unbiased, sid, v) in memory and send (unbiased, sid, v) to S.

Bias: On receiving (proceed, sid, x) from S, where x ∈ W,

4. If the record (done, sid) exists in memory, or if the record
(unbiased, sid, v) does not exist in memory, then ignore this message.
Otherwise, continue with steps 5 and 6.

5. Compute y ..= f(v, x).
6. Store (done, sid) in memory and broadcast (output, sid, y) to all parties.
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Note that this functionality never allows an abort or adversarially delayed
output to occur, and thus it has guaranteed output delivery.4 Now that all of
the constraints on input protocols for our compiler are specified, and we can
introduce a second functionality, which will be UC-realized by the compiled
protocol, given a constraint-compliant input protocol. This second functionality
is similar to FPreTrans and likewise has guaranteed output delivery, but it takes
an additional parameter r, and allows the adversary to reject up to r potential
honest randomizations before it supplies its bias and the output is delivered.

Functionality 3.5. FPostTrans(f, n, u, r). Rejection Sampling

This functionality interacts with n actively participating parties denoted
by P1 . . . Pn and with the ideal adversary S. It is also parameterized by an
update function f : V × W → V, an arbitrary value u ∈ V, and a rejection
bound r ∈ N.

Sampling: On receiving (sample, sid) from at least one Pi for i ∈ [n],

1. If a record of the form (candidate, sid, ∗, ∗) exists in memory, then ignore
this message. Otherwise, continue with steps 2 and 3.

2. Sample w1 ← W and compute v1
..= f(u,w1).

3. Store (candidate, sid, 1,v1) in memory and send the same tuple to S.

Rejection: On receiving (reject, sid, i) from S, where i ∈ N,

4. If i > r, or if either of the records (done, sid) or (candidate, sid, i +
1,vi+1) exists in memory, or if the record (candidate, sid, i,vi) does
not exist in memory, then ignore this message. Otherwise, continue with
steps 5 and 6.

5. Sample wi+1 ← W and compute vi+1
..= f(u,wi+1).

6. Store (candidate, sid, i+1,vi+1) in memory and send the same tuple to
S.

Bias: On receiving (accept, sid, i, x) from S, where i ∈ N and x ∈ W,

7. If either of the records (done, sid) or (candidate, sid, i+1,vi+1) exists in
memory, or if the record (candidate, sid, i,vi) does not exist in memory,
then ignore the message. Otherwise, continue with steps 8 and 9.

8. Compute y ..= f(vi, x).
9. Store (done, sid) in memory and broadcast (output, sid, y) to all parties.

Finally, we must discuss the property of public verifiability. We model public
verifiability as an abstract modifier for other functionalities. The parties interact-
ing with any particular session of an unmodified functionality become the active

4 Formally, every party requests the output from the functionality, and the adversary
can instruct the functionality to ignore a polynomially-bounded number of such
requests [45].
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participants in the modified functionality, but there may be additional parties,
known as observing verifiers, who may register to receive outputs (potentially
unbeknownst to the active participants) but do not influence the functionality
in any other way. This corresponds to the protocol property whereby a protocol
instance can be verified as having been run correctly by third parties who have
access to only a transcript (obtained, for example, by monitoring broadcasts).

Functionality 3.6. �F �PV. Public Verifiability for F
The functionality �F �PV is identical to the functionality F, except that
it interacts with an arbitrary number of additional observing verification
parties (all of them denoted by V, as distinct from the actively participating
parties P1, P2, etc.). Furthermore, if all actively participating parties are
corrupt, then �F �PV receives its random coins from the adversary S.

Coin Retrieval: Whenever the code of F requires a random value to
be sampled from the domain X, then sample as F would if at least one of
the active participants is honest. If all active participants are corrupt, then
send (need-coin, sid, X) to S, and upon receiving (coin, sid, x) such that
x ∈ X in response, continue behaving as F, using x as the required random
value.

Observer Registration: Upon receiving (observe, sid) from V, remem-
ber the identity of V, and if any message with the same sid is broadcasted
to all active participants in the future, then send it to V as well.

In the introduction, we have omitted discussion of public verifiability for the
sake of simplicity and clarity, but in fact, all known input protocols for our
compiler have this property (that is, they UC-realize �FPreTrans�PV, which
is strictly stronger than FPreTrans). Furthermore, we will show that given
an input protocol that realizes �FPreTrans�PV, the compiled protocol realizes
�FPostTrans�PV.

Note that when proving that a protocol realizes a functionality with public
verifiability, we do not typically need to reason about security against malicious
observing verifiers, since honest parties ignore any messages they send, and there-
fore there can be nothing in their view that the adversary cannot already obtain
by monitoring the relevant broadcast channel directly.

3.1 The Compiler

We now turn our attention to the compiler itself. We direct the reader to Sect. 1.1
for an intuitive view of the compiler, via virtual parties and virtual rounds.
With this intuitive transformation in mind, we now present a compiler which
formalizes it and addresses the unmentioned corner cases. The compiler takes
the form of a multiparty protocol πCompiler(ρ, n, u,m) that is parameterized
by a description of the original protocol ρ for m parties, and by the number of
real, active participants n, the public input u for the original protocol, and the
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number of committees (i.e., virtual parties) m. Before describing πCompiler, we
must formalize the tool that each committee uses to emulate a virtual party. We
do this via a UC functionality for generic MPC with identifiable abort.

Functionality 3.7. FSFE-IA(f, n). SFE with Identifiable Abort [42]

This functionality interacts with n actively participating parties denoted
by P1 . . . Pn and with the ideal adversary S. It is also parameterized by a
function, f : X1 × . . . × Xn → Y.

SFE: On receiving (compute, sid,xi) where xi ∈ Xi from every party Pi

for i ∈ [n],

1. Compute y ..= f
(
{xi}i∈[n]

)
.

2. Send (candidate-output, sid, y) to S, and receive (stooge, sid, c) in
response.

3. If c is the index of a corrupt party, then broadcast (abort, sid, c) to all
parties. Otherwise, broadcast (output, sid, y) to all parties.

In order to ensure that every party can identify the cheaters in committees
that it is not a member of, we must apply �·�PV to FSFE-IA, which gives
us publicly verifiable identifiable abort. We discuss a method for realizing this
functionality in Sect. 3.2; see Lemma 3.12 for more details. We can now give a
formal description of our compiler.

Protocol 3.8. πCompiler(ρ, n, u,m). Round-reducing Compiler

This compiler is parameterized by ρ, which is a player-replaceable round-
robin protocol with two parameters: the number of participants, which may
be hardcoded as m, and a common public input value from the domain V.
Let g1, . . . ,gm+1 be the vector of functions corresponding to ρ as described
in Remark 3.3, and let η be the number of coins that the first m functions
require. The compiler is also parameterized by the party count n ∈ N

+, the
common public input u ∈ V, and the committee count m ∈ N

+ such that
m ≤ n. In addition to the actively participating parties P� for 	 ∈ [n], the
protocol involves the ideal functionality �FSFE-IA�PV, and it may involve
one or more observing verifiers, denoted by V.

Sampling: Let a0
..= u and let C1,∗,∗ be a deterministic partitioning of [n]

into m balanced subsets. That is, for i ∈ [m], let C1,i,∗ be a vector indexing
the parties in the ith committee. Upon receiving (sample, sid) from the
environment Z, each party repeats the following sequence of steps, starting
with k ..= 1 and j1 ..= 1, incrementing k with each loop, and terminating
the loop when jk > m

1. For all i ∈ [m] (in parallel) each party P� for 	 ∈ Ck,i,∗
samples ω� ← {0, 1}η and sends (compute,GenSID(sid, k, i), ω�) to
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�FSFE-IA(γjk , |Ck,i,∗|)�PV, where γjk is a function such that

γjk

({
ω�

}
�∈Ck,i,∗

)
�→ gjk

(
a[0,jk],

⊕

�∈Ck,i,∗

ω�

)

2. For all i ∈ [m] (in parallel) each party P� for 	 ∈ [n] \ Ck,i,∗ sends
(observe,GenSID(sid, k, i)) to �FSFE-IA(γjk , |Ck,i,∗|)�PV (thereby tak-
ing the role of verifier).

3. For all i ∈ [m], all parties receive either (abort,GenSID(sid, k, i), ck,i) or
(output,GenSID(sid, k, i), âk,i) from �FSFE-IA(γjk , |Ck,i,∗|)�PV. In the
latter case, let ck,i

..= ⊥.
4. If any outputs were produced in the previous step, then let 	 be the

smallest integer such that (output,GenSID(sid, k, 	), âk,�) was received.
Let jk+1

..= jk + 1 and let ajk+1
..= âk,� and for every i ∈ [m] let

Ck+1,i,∗ ..=

{
Ck,i,∗ \ {ck,i} if i �= 	

∅ if i = 	

5. If no outputs were produced in Step 3, then let jk+1
..= jk and for every

i ∈ [m] let
Ck+1,i,∗ ..= Ck,i,∗ \ {ck,i}

Finally, each party outputs (output, sid,gm+1(am)) to the environment
when the loop terminates.

Verification: If there is an observing verifier V, then upon receiving
(observe, sid) from the environment Z, it repeats the following sequence of
steps, starting with k ..= 1 and j1 ..= 1, incrementing k with each loop, and
terminating the loop when jk > m.

6. V sends (observe,GenSID(sid, k, i)) to �FSFE-IA(γjk , |Ck,i,∗|)�PV for
all i ∈ [m], and receives either (abort,GenSID(sid, k, i), ck,i) or
(output,GenSID(sid, k, i), âk,i) in response.

7. V determines the value of jk+1 and Ck+1,∗,∗ per the method in Steps 4
and 5.

Finally, V outputs (output, sid,gm+1(am)) to the environment when the
loop terminates.

3.2 Proof of Security

In this section we provide security and efficiency proofs for our compiler. Our
main security theorem (Theorem 3.9) is split into two sub-cases: the case that
there is at least one honest active participant is addressed by Lemma 3.10, and
the case that there are no honest active participants (but there is one or more
honest observing verifiers) is addressed by Lemma 3.11. After this, we give a
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folklore method for realizing �FSFE-IA�PV in Lemma 3.12, and use it to prove
our main efficiency result in Corollary 3.13.

Theorem 3.9. Let f : V × W → V be an update function, let u ∈ V, let
m ∈ N

+, and let ρ be an SPRRR protocol such that ρ(m,u) UC-realizes
�FPreTrans(f,m, u)�PV in the presence of a malicious adversary statically
corrupting any number of actively participating parties. For every integer n ≥
m, it holds that πCompiler(ρ, n, u,m) UC-realizes �FPostTrans(f, n, u,m +
n/m)�PV in the presence of a malicious adversary statically corrupting any num-
ber of actively participating parties in the �FSFE-IA�PV-hybrid model.

Proof. By conjunction of Lemmas 3.10 and 3.11. Since corruptions are static,
a single simulator can be constructed that follows the code of either SCompiler

or SCompilerPV depending on the number of active participants corrupted by the
real-world adversary A.

Lemma 3.10. Let f : V × W → V be an update function, let u ∈ V, let
m ∈ N

+, and let ρ be an SPRRR protocol such that ρ(m,u) UC-realizes
�FPreTrans(f,m, u)�PV in the presence of a malicious adversary statically
corrupting up to m − 1 actively participating parties. For every integer n ≥
m, it holds that πCompiler(ρ, n, u,m) UC-realizes �FPostTrans(f, n, u,m +
n/m)�PV in the presence of a malicious adversary statically corrupting up to
n − 1 actively participating parties in the �FSFE-IA�PV-hybrid model.

Note that the above lemma also holds if the �·�PV modifier is removed from
both functionalities. This is straightforward to see, given the proof of the lemma
as written, so we elide further detail. Regardless, because the proof of this lemma
is our most interesting and subtle proof, upon which our other results rest, we
will sketch it first, to give the reader an intuition, and then present the formal
version in the full version of this paper.

Proof Sketch. In this sketch give an overview of the simulation strategy followed
by the simulator SCompiler against a malicious adversary who corrupts up to n−1
parties, using the same terminology and simplified, informal protocol description
that we used to build an intuition about the compiler in Sect. 1.1. Recall that
with the ith protocol committee we associate an emulated “virtual” party Qi, for
the purposes of exposition. We are guaranteed by the premise of Theorem 3.10,
that there exists an ideal adversary Sρ,D that simulates a transcript of ρ for
the dummy adversary D that corrupts up to m − 1 parties, while engaging in
an ideal interaction with functionality �FPreTrans(f,m, u)�PV on D’s behalf.
The compiled protocol πCompiler(ρ, n, u,m) represents a single instance of the
original protocol ρ, but in each virtual round there is an m-way fork from which
a single definitive outcome is selected (by the adversary) to form the basis of
the next virtual round. The main idea behind SCompiler is that the forking tree
can be pruned in each virtual round to include only the single path along which
the a real honest party’s contribution lies (or might lie, if no honest contribution
has yet become a definitive outcome), and then Sρ,D can be used to translate
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between the protocol instances represented by these path and the functionality
�FPostTrans(f,m, u,m)�PV.

For each fresh candidate vi produced by �FPostTrans(f,m, u,m)�PV, the
simulator SCompiler will invoke an instance of Sρ,D, feed it all the (definitive-
output) messages produced by the protocol thus far, and then feed it vi in
order to generate a corresponding honest-party message that can be sent to the
corrupted parties. It repeats this process until the adversary accepts the honest
party’s contribution in some virtual round κ, whereafter the last instance of Sρ,D
(which was created in round κ) is fed the remaining protocol messages in order
to extract the adversary’s bias y. Let h ∈ [n] index an honest party, and let θ
index the committee in to which it belongs, (corresponding to Qθ). The outline
for SCompiler is as follows (dropping Session IDs for the sake of simplification):

1. Initialize j ..= 1, k ..= 1, a0
..= u, κ ..= ⊥.

2. Obtain a candidate vk by sending either sample (only when k = 1) or
(reject, k − 1) to �FPostTrans�PV, and receiving (candidate, k,vk) in
response.

3. Invoke Sρ,D on protocol transcript a∗ (each message being sent on behalf
of a different corrupt party, and then send it (unbiased,vk) on behalf of
�FPreTrans�PV in order to obtain the tentative protocol message âk,θ of
Qθ.

4. Send (candidate-output, âk,θ) on behalf of �FSFE-IA�PV to the corrupt
parties in the committee indexed by θ, and wait for the adversary to either
accept this output, or abort by blaming a corrupt committee-member.

5. Simultaneously, interact with the fully corrupt committees indexed by [m] \
{θ} on behalf of �FSFE-IA�PV to learn the values of âk,i for i ∈ [m] \ {θ}.

6. If any virtual parties produced non-aborting output during this virtual round,
then let i′ ∈ [m] be the smallest number that indexes such a virtual party.
Let aj

..= âk,i′ (making the output of Qi′ definitive) and if i′ = θ then set
κ ..= j and skip to Step 8; otherwise, increment j and k and return to Step 2,
updating the committee partitioning to remove the committee corresponding
to Qi′ (and to remove any cheating real parties from the other committees)
as per the protocol.

7. If no virtual parties produced non-aborting output during this virtual round,
then increment k (but not j), update the committee partitioning to remove
the cheaters as per the protocol, and return to Step 2.

8. Once Qθ has produced a definitive output (in virtual round κ) and its under-
lying committee has disbanded, continue interacting with the other (fully
corrupt) committees on behalf of �FSFE-IA�PV until they have all either
produced a definitive output (which is appended to a) or become depleted of
parties due to cheating. At this point, a∗ should comprise a full transcript
of protocol ρ. Some prefix of this transcript has already been transmitted to
the final instance of Sρ,D (which was spawned in Step 2 during virtual round
κ); send the remaining messages (those not in the prefix) to the last instance
of Sρ,D as well, and it should output (proceed, x) along with its interface to
�FPreTrans�PV. Send (accept, κ, x) to �FPostTrans�PV and halt.
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The only non-syntactic aspect in which the above simulation differs from the
real protocol is as follows: whereas in the real protocol Qθ computes its message
âk,θ by running its honest code as per ρ (recall that this virtual party is real-
ized by an invocation of �FPreTrans�PV by committee θ), in the simulation
this value is produced by Sρ,D in consultation with �FPostTrans�PV. Observe,
first, that the reject interface of �FPostTrans�PV functions identically to an
individual invocation of �FPreTrans�PV and second that the transcript pro-
duced by Sρ,D in its interaction with �FPreTrans�PV is indistinguishable from
a real execution of ρ. From these two observations, we can conclude that the
above simulation is indistinguishable from a real execution of πCompiler to any
efficient adversary.

The formal proof of Lemma 3.10 is given in the full version of this paper,
where we also prove a similar lemma holds when there are no honest participants,
but at least one honest verifier, and sketch a proof for the folklore construction
of secure function evaluation with publicly verifiable identifiable abort.

Lemma 3.11. Let f : V × W → V be an update function, let u ∈ V, let
m ∈ N

+, and let ρ be an SPRRR protocol such that ρ(m,u) UC-realizes
�FPreTrans(f,m, u)�PV in the presence of an honest observing verifier and
a malicious adversary statically corrupting all m actively participating par-
ties. For every integer n ≥ m, it holds that πCompiler(ρ, n, u,m) UC-realizes
�FPostTrans(f, n, u,m + n/m)�PV in the presence of an honest observing ver-
ifier and a malicious adversary statically corrupting all n actively participating
parties in the �FSFE-IA�PV-hybrid model.

Lemma 3.12 (Folklore: NIZK + OT + BC =⇒ �FSFE-IA�PV). The func-
tionality �FSFE-IA�PV can be UC-realized in the (FNIZK,FBC)-hybrid model
using a constant number of sequential authenticated broadcasts and no other
communication, assuming the existence of a protocol that UC-realizes FOT.

Corollary 3.13. If there exists a protocol that UC-realizes FOT and a strongly-
player-replaceable round-robin protocol that UC-realizes �FPreTrans(f,
n, u)�PV using n sequential authenticated broadcasts and no other communi-
cation, then there is a player-replaceable protocol in the (FNIZK,FBC)-hybrid
model that UC-realizes �FPostTrans(f, n, u,m+n/m)�PV and uses O(m+n/m)
sequential authenticated broadcasts and no other communication. Setting m =√

n yields the efficiency result promised by the title of this paper.

Proof. Observe that πCompiler(ρ, n, u,m) requires at most m+n/m sequential
invocations of the �FSFE-IA�PV functionality, and involves no other commu-
nication. Thus the corollary follows from Theorem 3.9 and Lemma 3.12.
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4 A Round-Robin Protocol

In this section we present a simple protocol that meets our requirements (and
therefore can be used with our compiler), which is parametric over a class of
update functions that is more restrictive than the compiler demands, but never-
theless broad enough to encompass several well-known sampling problems. After
presenting the protocol in Sect. 4.1 and proving that it meets our requirements in
Sect. 4.2, we discuss how it can be parameterized to address three different appli-
cations: sampling structured reference strings for polynomial commitments in
Sect. 4.3, sampling structured reference strings for zk-SNARKs in Sect. 4.4, and
constructing verifiable mixnets in Sect. 4.5. We begin by defining the restricted
class of update functions that our protocol supports.

Definition 4.1. (Homomorphic Update Function). A deterministic polynomial-
time algorithm f : V×W → V is a Homomorphic Update Function if it satisfies:

1. Perfect Rerandomization: for every pair of values v1 ∈ V and w1 ∈ W,
{f(f(v1, w1), w2) : w2 ← W} ≡ {f(v1, w3) : w3 ← W}. If distributional
equivalence is replaced by statistical or computational indistinguishability,
then the property achieved is Statistical or Computational Rerandomization,
respectively.

2. Homomorphic Rerandomization: there exists an efficient operation � over W

such that for every v ∈ V, and every pair of values w1, w2 ∈ W, f(v, w1�w2) =
f(f(v, w1), w2). Furthermore, there exists an identity value 0W ∈ W such that
f(v, 0W) = v.

4.1 The Protocol

Our example is straightforward: each party (in sequence) calls the update func-
tion f on the previous intermediate output to generate the next intermediate
output. To achieve UC-security, the protocol must be simulatable even if f is
one-way. We specify that each party uses a UC-secure NIZK to prove that it
evaluated f correctly; this allows the simulator to extract the randomization
witness w for f even in the presence of a malicious adversary. Specifically, we
define a relation for correct evaluation for any update function f :

Rf = {((v1, v2), w) : v2 = f(v1, w)}

We make use of the standard UC NIZK functionality FNIZK, originally formulated
by Groth et al. [40]. For any particular f , there may exist an efficient bespoke

proof system that realizes FRf
NIZK. For example, if there is a sigma protocol for Rf ,

then FRf
NIZK can (usually) be UC-realized by applying the Fischlin transform [27]

to that sigma protocol. There are also a number of generic ways to UC-realize

FRf
NIZK for any polynomial-time function f [18,40,52]. Regardless, we give our

protocol description next.
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Protocol 4.2. πRRSample(f, n, u). Round-robin Sampling

This protocol is parameterized by the number of actively participating par-
ties n ∈ N

+, by a homomorphic update function f : V × W → V (as per
Definition 4.1), and by a common public input u ∈ V. In addition to the
actively participating parties Pp for p ∈ [n], the protocol involves the ideal

functionality FRf
NIZK, and it may involve one or more observing verifiers,

denoted by V.

Sampling: Let v0
..= u. Upon receiving (sample, sid) from the environment

Z, each party Pi for i ∈ [n] repeats the following loop for j ∈ [n]:

1. If j = i, Pi samples wj ← W, computes vj
..= f(vj−1,wj) and sub-

mits (prove, sid,GenSID(sid, j), (vj−1,vj),wj) to FRf
NIZK. Upon receiving

(proof, sid,GenSID(sid, j), πj) in response, Pi broadcasts (vj , πj).a

2. If j �= i, Pi waits to receive (v̂j , πj) from Pj , whereupon it submits

(verify,GenSID(sid, j), (vj−1, v̂j), πj) to FRf
NIZK. If FRf

NIZK replies with

(accept, sid,GenSID(sid, j)), then Pi assigns vj
..= v̂j . If FRf

NIZK replies
with (reject, sid,GenSID(sid, j)) (or if no message is received from Pj),
then Pi assigns vj

..= vj−1.
Finally, when the loop terminates, all actively participating parties out-

put (output, sid,vn) to the environment.b

Verification: If there is an observing verifier V, then on receiving
(observe, sid) from the environment Z, it listens on the broadcast chan-
nel and follows the instructions in Step 2 for all j ∈ [n]. At the end, it
outputs (output, sid,vn) to the environment.

a Note that when our compiler is applied to this protocol, aj = (vj , πj).
b This implies that the “output extraction” function gn+1 described in
Remark 3.3 simply returns vn, given the protocol transcript.

4.2 Proof of Security

In this section, we present the security theorem for the above protocol, a corollary
concerning the application of our compiler under various generic realizations of
FNIZK, and a theorem stating that for the specific class of functions covered by
Definition 4.1, the compiled protocol realizes the original functionality. Proofs
of the theorems in this section are given in the full version of this paper.

Theorem 4.3. Let f : V×W → V be a homomorphic update function per Def-
inition 4.1. For any n ∈ N

+ and u ∈ V, it holds that πRRSample(f, n, u) UC-
realizes �FPreTrans(f, n, u)�PV in the presence of a malicious adversary cor-

rupting any number of actively participating parties in the FRf
NIZK-hybrid model.

Corollary 4.4. Let f : V × W → V be a homomorphic update function per
Definition 4.1. For any u ∈ V and m,n ∈ N

+ such that m ≤ n, there exists a
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protocol in the FCRS-hybrid model that UC-realizes �FPostTrans(f, n, u,m +
n/m)�PV and that requires O(m + n/m) sequential broadcasts and no other
communication, under any of the conditions enumerated in Remark 4.5.

Remark 4.5. FRf
NIZK is realizable for any polynomial-time f in the FCRS-hybrid

model under the existence of enhanced trapdoor permutations, or the existence
of homomorphic trapdoor functions and the decisional linear assumption in a
bilinear group, or the LWE assumption, or the LPN and DDH assumptions.

Theorem 4.6. Let f : V × W → V be a homomorphic update function per
Definition 4.1. For any value of r ∈ N, the ideal-world protocol involving
�FPostTrans(f, n, u, r)�PV perfectly UC-realizes �FPreTrans(f, n, u)�PV in
the presence of a malicious adversary corrupting any number of active partici-
pants.

4.3 Application: Powers of Tau and Polynomial Commitments

In this section we specialize πRRSample to the case of sampling the powers
of tau, which was previously introduced in Sect. 1.1. Specifically, we define an
update function for the powers of tau in any prime-order group G with maximum
degree d ∈ N

+ as follows:

V = G
d

W = Z|G|
f : V × W → V = PowTauG,d(V, τ) �→ {

τ i · Vi

}
i∈[d]

It is easy to see that if G is a generator of G, then PowTauG,d({G}i∈[d], τ)
computes the powers of τ in G up to degree d. Proving that this function satisfies
Definition 4.1 will allow us to apply our results from Sect. 4.2.

Lemma 4.7. For any prime-order group G and any d ∈ N
+, PowTauG,d is a

homomorphic update function with perfect rerandomization, per Definition 4.1.

Proof. It can be verified by inspection that the homomorphic rerandomization
property of PowTauG,d holds if the operator � is taken to be multiplication
modulo the group order. That is, if q = |G|, then for any α, β ∈ Zq and any
V ∈ {G}i∈[d], we have PowTauG,d(PowTauG,d(V, α), β) = PowTauG,d(V, α · β
mod q). If we combine this fact with the fact that {PowTauG,d(V, τ) : τ ← Zq}
is uniformly distributed over the image of PowTauG,d(V, ·), then perfect reran-
domization follows as well.

As we have previously discussed, the powers of tau are useful primarily as
a structured reference string for other protocols. In light of this fact, it does
not make sense to construct a sampling protocol that itself requires a struc-

tured reference string. This prevents us from realizing FRPowTauG,d

NIZK (n) via the
constructions of Groth et al. [40], or Canetti et al. [18]. Fortunately, the NIZK
construction of De Santis et al. [52] requires only a uniform common random
string. Thus we achieve our main theoretical result with respect to the powers
of tau:



262 R. Cohen et al.

Corollary 4.8. For any prime-order group G and any d ∈ N
+, n ∈ N

+, m ∈ [n],
and V ∈ G

d, there exists a protocol in the FCRS-hybrid model (with a uniform
CRS distribution) that UC-realizes �FPreTrans(PowTauG,d, n,V)�PV and that
requires O(m+n/m) sequential broadcasts and no other communication, under
the assumption that enhanced trapdoor permutations exist.

Proof. By conjunction of Lemma 4.7 and Theorems 4.4 and 4.6 under the restric-
tion that the CRS distribution be uniform.

The above corollary shows that if we set m ..=
√

n, then we can sample
well-formed powers-of-tau structured reference strings with guaranteed output
delivery against n − 1 malicious corruptions in O(

√
n) broadcast rounds. How-

ever, most schemes that use structured reference strings with this or similar
structures assume that the strings have been sampled (in a trusted way) with
uniform trapdoors. Our protocol does not achieve this, and indeed cannot with-
out violating the Cleve bound [23]. Instead, our protocol allows the adversary to
introduce some bias. In order to use a reference string sampled by our protocol
in any particular context, it must be proven (in a context-specific way) that the
bias does not give the adversary any advantage.

Although previous work has proven that the bias in the reference string
induced by protocols for distributed sampling can be tolerated by SNARKs [12,
47], such proofs have thus far been monolithic and specific to the particular com-
bination of SNARK and sampling scheme that they address. Moreover, because
SNARKs are proven secure in powerful idealized models, prior distributed sam-
pling protocols were analyzed in those models as well. Unlike SNARKs, which
require knowledge assumptions, the security of the Kate et al. [44] polynomial-
commitment scheme can be reduced to a concrete falsifiable assumption. This
presents a clean, standalone context in which to examine the impact adversarial
bias in the trapdoor of a powers-of-tau reference string. We do not recall the
details of the polynomial-commitment construction,5 but note that its security
follows from the d-Strong Diffie-Hellman (or d-SDH) Assumption [44, Theorem
1]. We show that replacing an ideal bias-free powers-of-tau reference string with
a reference string that is adversarially biased as permitted by our functional-
ity FPostTrans(PowTauG,d, n, {G}i∈[d], r) yields no advantage in breaking the
d-SDH assumption, regardless of the value of r, so long as no more than n − 1
parties are corrupt. We begin by recalling the d-SDH assumption:

Definition 4.9 (d-Strong Diffie-Hellman Assumption [11]). Let the secu-
rity parameter λ determine a group G of prime order q that is generated by G.
For every PPT adversary A,

Pr
[
(c,G/(τ + c)) = A

({
τ i · G

}
i∈[d]

)
: τ ← Zq

]
∈ negl(λ)

5 Kate et al. actually present two related schemes. The first uses the powers of tau,
exactly as we have presented it, and the second requires the powers, plus the powers
again with a secret multiplicative offset (or, alternatively, relative to a second group
generator). It is easy to modify our construction to satisfy the second scheme, and
so for clarity we focus on the first, simpler one.
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We wish to formulate a variant of the above assumption that permits the
same bias as FPostTrans(PowTauG,d, n, {G}i∈[d], r). In order to do this, we
define a sampling algorithm that uses the code of the functionality. We then
give a formal definition of the biased assumption, which we refer to as the (n, r)-
Biased d-Strong Diffie-Hellman (or (n, r, d)-SDH) assumption.

Algorithm 4.10. AdvSampleZ
FPostTrans(PowTauG,d,n,{G}i∈[d],r)

(1λ)

Let Z be a PPT adversarial algorithm that is compatible with the environ-
ment’s interface to an ideal-world UC experiment involving FPostTrans
and the dummy adversary D. Let Z be guaranteed to corrupt no more than
n − 1 parties, and let it output some state s on termination.

1. Using the code of FPostTrans, begin emulating an instance of the ideal-
world experiment for FPostTrans(PowTauG,d, n, {G}i∈[d], r), with Z as
the environment. Let Ph be the honest party guaranteed in this experi-
ment by the constraints on Z.

2. In the emulated experiment, on receiving (sample, sid) from Z on
behalf of Ph, forward this message to FPostTrans on behalf of Ph

as a dummy party would, and then wait to receive (output, sid, z ={
τ · G, τ2 · G, . . . , τd · G

}
) for some τ ∈ Zq from FPostTrans in reply.

3. Extract τ from the internal state of FPostTrans, and wait for Z to
terminate with output s.

4. Output (s, τ)

Definition 4.11 ((n, r)-Biased d-Strong Diffie-Hellman Assumption).
Let the security parameter λ determine a group G of prime order q that is
generated by G. For every pair of PPT adversaries (Z,A),

Pr

⎡

⎣
A

(
s,

{
τ i · G

}
i∈[d]

)
= (c,G/(τ + c)) :

(s, τ) ← AdvSampleZ
FPostTrans(PowTauG,d,n,{G}i∈[d],r)

(1λ)

⎤

⎦ ∈ negl(λ)

Note that per Canetti [17], the dummy adversary D can be used to emulate
any other adversary. Thus if one were to use an n-party instance of FPostTrans
to generate the structured reference string for a protocol that uses the polynomial
commitments of Kate et al. [44], the hardness assumption that would underlie the
security of the resulting scheme is (n, r, d)-SDH. We show that for all parameters
n, r, the (n, r, d)-SDH assumption is exactly as hard as d-SDH.

Theorem 4.12. For every n, r, d ∈ N
+ and t-time adversary (Z,A) that suc-

ceeds with probability ε in the (n, r, d)-SDH experiment, there exists a t′-time
adversary B for the d-SDH experiment that succeeds with probability ε, where
t′ ≈ t.

The proof of the above theorem appears in the full version of this document.
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4.4 Application: Sampling Updateable SRSes

In this section we discuss the specialization of our protocol to the application of
sampling updateable structured reference strings for SNARKs. The game-based
notion of updateable security with respect to structured reference strings was
defined recently by Groth et al. [39]. Informally, if a SNARK has an updateable
SRS, then any party can publish and update to the SRS at any time, along with
a proof of well-formedness, and the security properties of the SNARK hold so
long as at least one honest party has contributed at some point. We direct the
reader to Groth et al. for a full formal definition. Because the update operation
is defined to be a local algorithm producing a new SRS and a proof of well-
formedness, which takes as input only a random tape and the previous SRS
state, it is tempting to consider the protocol comprising sequentially broadcasted
SRS updates by every party as a pre-existing specialization of πRRSample.

However, we require that the proof of well-formedness be a realization of FRf
NIZK

for whatever f maps the previous SRS to the next one, and the update algorithm
of Groth et al. (also used by later works [22,30,50]) does not have straight-line
extraction. Modifying any updateable SNARK to fit into our model is beyond
the scope of this work. Nevertheless, we discuss two alternatives that do not
involve modifying the SNARK.

First, we observe that if the proofs of well-formedness of the Groth et al.
update procedure [39] are taken to be part of the SRS itself, then the entire
update function (let it be called GrothUpdate) is in fact a homomorphic update
procedure per Definition 4.1, by an argument similar to our proof of Lemma 4.7.
This implies a result similar to Corollary 4.8: for any n,m ∈ N

+ such that
m ≤ n, there exists a protocol in the uniformly distributed CRS model that UC-
realizes FPostTrans(GrothUpdate, n, 1SRS,m + n/m) while using only O(m +
n/m) broadcasts under the assumption that enhanced trapdoor permutations
exist, where 1SRS is the “default” SRS. Furthermore, the well-formedness of
SRSes generated via this protocol can be verified without checking the entire
protocol transcript.

Second, we can define the functions f mapping the previous SRS to the
next one (without the proofs), specialize our protocol πRRSample for that

function (realizing Ff
NIZK generically), and rely on the public verifiability of

�FPostTrans�PV to ensure that the resulting SRS has the well-formedness
property required. In service of this approach, we present the update functions
for three recent zk-SNARKs. The update function BilinearSRSG1,G2,d is a sim-
ple modification of PowTauG,d that is compatible with both Marlin [22] and
Plonk [30]:

V = G
d
1 × G2 W = Zq

f : V × W → V = BilinearSRSG1,G2,d((X, Y ), τ) �→
({

τ i · Xi

}
i∈[d]

, τ · Y
)
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whereas Sonic [50] has a more complex SRS with a more complex update function

V = G
4d
1 × G

4d+1
2 × GT W = Z

2
q f : V × W → V = SonicSRSG1,G2,d

SonicSRSG1,G2,d((X,Y, Z), (τ, β))

�→
⎛

⎝

{
τ i−d−1 · Xi

}
i∈[d]

‖{
τ i · Xi+d

}
i∈[d]

‖{
β · τ i · Xi+3d+1

}
i∈[−d,d]\{0} ,

{
τ i−d−1 · Yi

}
i∈[d]

‖{
τ i · Yi+d

}
i∈[d]

‖{
β · τ i · Yi+3d+1

}
i∈[−d,d]

, β · Z

⎞

⎠

and all three have homomorphic rerandomization per Definition 4.1, by an argu-
ment similar to our proof of Lemma 4.7.

Because SNARKs with updateable SRSes must tolerate adversarial updates,
it seems natural to assume that they can tolerate the adversarial bias induced
by either of the above sampling methods. However, as we have mentioned, their
proofs tend to be in powerful idealized models that are incompatible with UC,
and so formalizing this claim is beyond the scope of this work.

4.5 Application: Verifiable Mixnets

Finally, we discuss the specialization of πRRSample to the mixing procedure of
verifiable mixnets. Most mixnet security definitions, whether game-based or sim-
ulation based, encompass a suite of algorithms (or interfaces, in the simulation-
based case) for key generation, encryption, mixing, and decryption. We reason
only about the mixing function, via an exemplar: the game-based protocol of
Boyle et al. [14]. Though we do not give formal proofs, and argue that the secu-
rity of the overall mixnet construction is preserved under our transformation.

Boyle et al. base their mixnet upon Bellare et al.’s [9] lossy variant of El
Gamal encryption for constant-sized message spaces. Let the message space size
be given by φ. Given a group G (chosen according to the security parameter λ)
of prime order q and generated by G, it is as follows:

KeyGenG(sk ∈ Zq) �→ (sk, pk) : pk ..= sk · G

Encpk(m ∈ [φ], r ∈ Zq) �→ (R,C) : R ..= r · G, C ..= r · pk + m · G

ReRandpk((R,C) ∈ G
2, r ∈ Zq) �→ (S,D) : S ..= R + r · G, D ..= r · pk + C

Decsk((R,C) ∈ G
2) �→ m ∈ [φ] s.t. m · G = C + R/sk

Note that we have given the random values (sk and r) for each function as
inputs, but they must be sampled uniformly and secretly in order to prove that
the above algorithms constitute an encryption scheme. Boyle et al. define the
notion of a (perfectly) rerandomizable encryption scheme and assert that the
above scheme satisfies it. We claim that given any pk ∈ G, if the homomorphic
operator � is taken to be addition over Zq, then ReRandpk is a homomorphic
update function per Definition 4.1. Given ReRandpk, the ciphertext mixing func-
tion for a vector of d ciphertexts in the Boyle et al. mixnet is as follows:

V = (G × G)d
W = Σd × Z

d
q

f = Mixpk,d(c, (σ, r)) �→ {
ReRandpk(cσ−1(i), ri)

}
i∈[d]
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where Σd is the set of all permutations over d elements. We claim that this
function is a homomorphic update function.

Lemma 4.13. For any pk ∈ G and any d ∈ N
+, Mixpk,d is a homomorphic

update function with perfect rerandomization, per Definition 4.1.

Proof Sketch. Perfect rerandomization holds because all elements in the vector of
ciphertexts are individually perfectly rerandomized. The homomorphic operator
is defined to be

� : ((σ1, r), (σ2, s)) �→
(

σ1 ◦ σ2,
{
si + rσ−1

2 (i)

}

i∈[d]

)

where ◦ is the composition operator for permutations.

In the mixnet design of Boyle et al., every mixing server runs Mixpk,d in
sequence and broadcasts the output along with a proof that the function was
evaluated correctly. In other words, their protocol is round-robin and player
replaceable. Because their proofs of correct execution achieve only witness-
indistinguishability (which is sufficient for their purposes), whereas we require

our proofs to UC-realize FRMixpk,d

NIZK , their protocol is not a pre-existing special-

ization of πRRSample. Nevertheless, we can realize FRMixpk,d

NIZK generically as we
have in our previous applications.

Corollary 4.14. For any prime-order group G and any d ∈ N
+, n,m ∈ N

+ such
that m ≤ n, pk ∈ G, and c ∈ image(Encpk)d, there exists a protocol in the FCRS-
hybrid model that UC-realizes �FPreTrans(Mixpk,d, n, c)�PV and that requires
O(m + n/m) sequential broadcasts and no other communication, under any of
the conditions enumerated in Remark 4.5.

Proof. By conjunction of Lemma 4.13 and Theorems 4.4 and 4.6.

We remark that the public-verifiability aspect of the functionality ensures
that the mixnet that results from integrating it into the scheme of Boyle et al. is
verifiable in the sense that they require [14, Definition 7]. Furthermore, the game-
based security definition of Boyle et al. [14, Definition 12] permits the adversary
to induce precisely the same sort of bias as �FPreTrans(Mixpk,d, ·, ·)�PV. It
follows naturally that their construction retains its security properties when
mixing is done via our functionality. Setting m ..=

√
n, we have achieved a

verifiable mixnet with guaranteed output delivery against n − 1 maliciously-
corrupt mix servers in O(

√
n) broadcast rounds.

5 With Concrete Efficiency

The previous sections of this paper were concerned with optimizing round effi-
ciency to the exclusion of all else. In practice, this may lead to protocols that
are concretely round-efficient, but prohibitively expensive due to large concrete
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communication or computation costs. Consider, for example, the powers of tau in
an elliptic curve: in practice, d ∈ [210, 220] [13]. This implies that the PowTauG,d

function involves many thousands of elliptic curve scalar multiplications; if ren-
dered into a boolean circuit, it could easily require trillions of gates. Evaluating
circuits of such size is at or beyond the edge of feasibility with current techniques
even in the security-with-abort setting, and our compiler requires the circuit to
be evaluated many times with identifiable abort.

We believe that this concrete inefficiency is a shortcoming of our
compiler and not the technique that underlies it. In evidence of this,
we use this section to sketch a new protocol, πBilinearSRS, which realizes
FPostTrans(BilinearSRSG1,G2,d, n, (X, Y ), 2

√
n−1) directly, where (X, Y ) is any

well-formed SRS. Our new protocol requires O(
√

n · log d) sequential broadcast
rounds and avoids the major concrete costs implied by compiling the round-robin
protocol. Here we will give a simple sketch and make a few high-level efficiency
claims. The full version of this paper contains a full protocol description, an
in-depth concrete cost analysis, and a proof of security.

πBilinearSRS will leverage the fact that the well-formedness of SRSes sampled
by the BilinearSRS update function can be checked using the pairing opera-
tion of the underlying bilinear group, without any additional protocol artifacts
or external information. πBilinearSRS is structured similarly to πCompiler, with
two major differences. First, when a committee’s intermediate output is cho-
sen to become definitive, it is first double-checked for well-formedness by all
parties in the protocol (the check is performed via the pairing operation and
therefore incurs only computational costs), and the entire committee is ejected
for cheating if this check fails. Second, we replace instances of �FSFE-IA�PV
that evaluate the BilinearSRSG1,G2,d update function as a circuit with instances
of a new functionality �FExtSRS�PV that directly computes the same update
function. �FExtSRS�PV maintains most of the public-verifiability properties of
�FSFE-IA�PV, but unlike the latter it allows the adversary to choose the out-
put arbitrarily if all active participants are corrupted.

In order to realize �FExtSRS�PV with reasonable concrete efficiency, each com-
mittee samples shares of a uniform secret τ and uses a generic reactive, arithmetic
MPC functionality �FMPC-IA�PV to compute secret sharings of the powers of τ .
The functionality �FMPC-IA�PV is similar to �FSFE-IA�PV, except that it is
reactive (that is, it allows the circuit to be determined dynamically after inputs
are supplied), it allows the adversary to choose outputs arbitrarily if all active
participants are corrupted, and it natively supports arithmetic computations
over an arbitrary field, which implies that this computation requires only O(d)
multiplication gates arranged in a circuit of depth O(log d). Using these shares of
the powers of τ , the committee engages in a round of distributed EC scalar oper-
ations to generate its intermediate SRS, which is checked for well-formedness by
the members of the committee (but not by any passive verifiers). If any active
participants are honest, and the intermediate SRS is not well-formed, then they
broadcast a message indicating as much, along with information that allows pas-
sive verifiers to efficiently confirm which active participant has cheated. Known
techniques for realizing �FMPC-IA�PV require a round count proportionate to the
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circuit’s multiplicative depth, and so the protocol realizing �FExtSRS�PV runs in
O(log d) rounds overall.

In practice, bilinear groups are realized by certain elliptic curves, and both
the pairing operation and the scalar-multiplication operation have large concrete
computational costs; thus we must use them judiciously. In πBilinearSRS, these two
operations incur the vast majority of concrete computational costs that are not
due to the protocol realizing �FMPC-IA�PV. We define a metric of the overall
wall-clock latency incurred by EC pairings and, similarly, a metric of the latency
incurred by EC scalar operations. For πBilinearSRS, the former cost is in O(

√
n)

and the latter is in O(d ·√n+n ·λ/ log λ) for active participants or O(n+d ·√n)
for passive verifiers; this is an improvement upon the round-robin SRS sampling
technique, which (after optimization) has a pairing latency in O(n) and a scalar
latency in O(d · n).

It should be noted that our protocol is not a strict improvement upon prior
techniques in all respects: it requires O(n1.5 · d · λ + n1.5 · λ2/ log λ) bits to be
broadcasted in total, not including the communication costs of the protocol that
realizes �FMPC-IA�PV; in this respect our approach is strictly worse than prior
work. The protocol that realizes �FMPC-IA�PV must evaluate O(d · n1.5) input
and output gates and O(d ·n) multiplication gates in total, among groups of

√
n

active participants. We identify this as our most significant concrete bottleneck.
Substantial progress has recently been made toward optimizing generic MPC
in the security-with-abort setting, but the publicly-verifiable identifiable-abort
setting has received less attention thus far. We hope and expect that this will
change, and πBilinearSRS will move toward practicality as a result.
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Abstract. Subversion attacks undermine security of cryptographic pro-
tocols by replacing a legitimate honest party’s implementation with one
that leaks information in an undetectable manner. An important lim-
itation of all currently known techniques for designing cryptographic
protocols with security against subversion attacks is that they do not
automatically guarantee security in the realistic setting where a protocol
session may run concurrently with other protocols.

We remedy this situation by providing a foundation of reverse firewalls
(Mironov and Stephens-Davidowitz, EUROCRYPT’15) in the universal
composability (UC) framework (Canetti, FOCS’01 and J. ACM’20). More
in details, our contributions are threefold:

– We generalize the UC framework to the setting where each party con-
sists of a core (which has secret inputs and is in charge of generating
protocol messages) and a firewall (which has no secrets and sanitizes
the outgoing/incoming communication from/to the core). Both the
core and the firewall can be subject to different flavors of corruption,
modeling different kinds of subversion attacks. For instance, we cap-
ture the setting where a subverted core looks like the honest core
to any efficient test, yet it may leak secret information via covert
channels (which we call specious subversion).

– We show how to sanitize UC commitments and UC coin tossing
against specious subversion, under the DDH assumption.

– We show how to sanitize the classical GMW compiler (Goldreich,
Micali and Wigderson, STOC 1987) for turning MPC with security
in the presence of semi-honest adversaries into MPC with security
in the presence of malicious adversaries. This yields a completeness
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Additionally, all our sanitized protocols are transparent, in the sense
that communicating with a sanitized core looks indistinguishable from
communicating with an honest core. Thanks to the composition theorem,
our methodology allows, for the first time, to design subversion-resilient
protocols by sanitizing different sub-components in a modular way.

1 Introduction

Cryptographic schemes are typically analyzed under the assumption that the
machines run by honest parties are fully trusted. Unfortunately, in real life,
there are a number of situations in which this assumption turns out to be
false. In this work, we are concerned with one of these situations, where the
adversary is allowed to subvert the implementation of honest parties in a
stealthy way. By stealthy, we mean that the outputs produced by a subverted
machine still look like honestly computed outputs, yet, the adversary can use
such outputs to completely break security. Prominent examples include back-
doored implementations [15,16,18] and algorithm-substitution (or kleptographic)
attacks [2–4,22,23]. The standardization of the pseudorandom number genera-
tor Dual EC DRBG, as exposed by Snowden, is a real-world instantiation of the
former, while Trojan horses, as in the case of the Chinese hack chip attack, are
real-world instantiations of the latter.

1.1 Subversion-Resilient Cryptography

Motivated by these situations, starting from the late 90s, cryptographers put con-
siderable effort into building cryptographic primitives and protocols that retain
some form of security in the presence of subversion attacks.

Yet, after nearly 30 years of research, all currently known techniques to obtain
subversion resilience share the limitation of only implying standalone security,
i.e. they only guarantee security of a protocol in isolation, but all bets are off
when such a protocol is used in a larger context in the presence of subversion
attacks. This shortcoming makes the design of subversion-resilient cryptographic
protocols somewhat cumbersome and highly non-modular. For instance, Ate-
niese, Magri, and Venturi [1] show how to build subversion-resilient signatures,
which in turn were used by Dodis, Mironov and Stephens-Davidowitz [17] to
obtain subversion-resilient key agreement protocols, and by Chakraborty, Dziem-
bowski and Nielsen [11] to obtain subversion-resilient broadcast; however, the
security analysis in both [17] and [11] reproves security of the construction in [1]
from scratch. These examples bring the fundamental question:

Can we obtain subversion resistance in a composable security framework?

A positive answer to the above question would dramatically simplify the design of
subversion-resilient protocols, in that one could try to first obtain security under
subversion attacks for simpler primitives, and then compose such primitives in
an arbitrary way to obtain protocols for more complex tasks, in a modular way.
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1.2 Our Contributions

In this work, we give a positive answer to the above question using so-
called cryptographic reverse firewalls, as introduced by Mironov and Stephens-
Davidowitz [21]. Intuitively, a reverse firewall is an external party that sits
between an honest party and the network, and whose task is to sanitize the
incoming/outgoing communication of the party it is attached to, in order to
annhilate subliminal channels generated via subversion attacks. The main chal-
lenge is to obtain sanitation while maintaining the correctness of the underlying
protocol, and in a setting where other parties may be completely under control
of the subverter itself.

While previous work showed how to build reverse firewalls for different cryp-
tographic protocols in standalone security frameworks we provide a founda-
tion of reverse firewalls in the framework of universal composability (UC) of
Canetti [6,7]. More in details, our contributions are threefold:

– We generalize the UC framework to the setting where each party consists of a
core (which has secret inputs and is in charge of generating protocol messages)
and a firewall (which has no secrets and sanitizes the outgoing/incoming com-
munication from/to the core). Both the core and the firewall can be subject to
different flavors of corruption, modeling different kinds of subversion attacks.
For instance, we capture the setting where a subverted core looks like the
honest core to any efficient test, yet it may leak secret information via covert
channels (which we call specious subversion).

– We show how to sanitize UC commitments and UC coin tossing against
specious subversion, under the decisional Diffie-Hellman (DDH) assumption
in the common reference string (CRS) model. Our sanitized commitment pro-
tocol is non-interactive, and requires 2λ group elements in order to commit
to a λ-bit string; the CRS is made of 3 group elements.

– We show how to sanitize the classical compiler by Goldreich, Micali and
Wigderson (GMW) [20] for turning multiparty computation (MPC) with
security against semi-honest adversaries into MPC with security against mali-
cious adversaries. This yields a completeness theorem for maliciously secure
MPC in the presence of specious subversion.

Additionally, all our sanitized protocols are transparent, in the sense that commu-
nicating with a sanitized core looks indistinguishable from communicating with
an honest core. Thanks to the composition theorem, our methodology allows,
for the first time, to design subversion-resilient protocols by sanitizing different
sub-components in a modular way.

1.3 Technical Overview

Below, we provide an overview of the techniques we use in order to achieve our
results, starting with the notion of subversion-resilient UC security, and then
explaining the main ideas behind our reverse firewalls constructions.
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Subversion-resilient UC Security. At a high level we model each logical
party Pi of a protocol Π as consisting of two distinct parties of the UC frame-
work, one called the core Ci and one called the firewall Fi. These parties can
be independently corrupted. For instance, the core can be subverted and the
firewall honest, or the core could be honest and the firewall corrupted. The ideal
functionalities F implemented by such a protocol will also recognize two UC
parties per virtual party and can let their behavior depend on the corruption
pattern. For instance, F could specify that if Ci is subverted and Fi honest,
then it behaves as if Pi is honest on F . Or it could say that if Ci is honest and
Fi corrupt, then it behaves as if Pi is honest but might abort on F . This is a
reasonable choice as a corrupt firewall can always cut Ci off from the network
and force an abort. We then simply ask that Π UC-realizes F . By asking that
Π UC-realizes F we exactly capture that if the core is subverted and the firewall
is honest, this has the same effect as Pi being honest. See Table 1 for all possible
corruption combinations for Ci and Fi at a glance, and how they translate into
corruptions for Pi in an ideal execution with functionality F .

Unfortunately, it turns out that for certain functionalities it is just impossible
to achieve security in the presence of arbitrary subversion attacks. For instance,
a subverted prover in a zero-knowledge proof could simply output an honestly
computed proof or the all-zero string depending on the first bit of the witness.
Since the firewall would not know a valid witness, these kind of subversion attacks
cannot be sanitized. For this reason, following previous work [11,17,19,21], we
focus on classes of subversion attacks for which a subverted core looks like an
honest core to any efficient test, yet it may signal private information to the
subverter via subliminal channels. We call such corruptions specious. We note
that testing reasonably models a scenario in which the core has been built by
an untrusted manufacturer who wants to stay covert, and where the user tests
it against a given specification before using it in the wild.

By defining subversion resilience in a black-box way, via the standard notion
of UC implementation, we also get composition almost for free via the UC com-
position theorem. One complication arises to facilitate modular composition of
protocols. When doing a modular construction of a subversion-resilient protocol,
both the core and the firewall will be built by modules. For instance, the core
could be built from a core for a commitment scheme and the core for an outer
protocol using the commitment scheme. Each of these cores will come with their
own firewall: one sanitizes the core of the commitment scheme; the other sani-
tizes the core of the outer protocol. The overall firewall is composed of these two
firewalls. It turns out that it is convenient that these two firewalls can coordi-
nate, as it might be that some of the commitments sent need to have the message
randomized, while others might only have their randomness refreshed. The latter
can be facilitated by giving the firewall of the commitment scheme a sanitation
interface where it can be instructed by the outer firewall to do the right sanita-
tion. Note that the protocol implementing the commitment ideal functionality
now additionally needs to implement this sanitation interface.



276 S. Chakraborty et al.

We refer the reader to Sect. 2 for a formal description of our model. Note
that another natural model would have been to have Pi split into three parts
(or tiers), Ci, Ui, and Fi, where: (i) Ui is a user program which gets inputs and
sends messages on the network; (ii) Ci is a core holding cryptographic keys and
implementations of, e.g., signing and encryption algorithms; and (iii) Fi is a
firewall used by Ui to sanitize messages to and from Ci in order to avoid covert
channels. The above better models a setting where we are only worried that
some part of the computer might be subverted. The generalisation to this case
is straightforward given the methodology we present for the case with no user
program Ui. Since we only look at subversions which are indistinguishable from
honest implementations, having the “unsubvertable” Ui appears to give no extra
power. We therefore opted for the simpler model for clarity. Further discussion
on the three-tier model can be found the full version [12].

Strong sanitation. The main challenge when analyzing subversion security of a
protocol in our framework is that, besides maliciously corrupting a subset of the
parties, the adversary can, e.g., further speciously corrupt the honest parties.
To overcome this challenge, we introduce a simple property of reverse firewalls
which we refer to as strong sanitation. Intuitively, this property says that no
environment, capable of doing specious corruptions of an honest core in the real
world, can distinguish an execution of the protocol with one where an honest
core is replaced with a so-called incorruptible core (that simply behaves honestly
in case of specious corruption). The latter, of course, requires that the firewall
of the honest core is honest.

We then prove a general lemma saying that, whenever a firewall has strong
sanitation, it is enough to prove security in our model without dealing with
specious corruptions of honest parties. This lemma significantly simplifies the
security analysis of protocols in our model.

Commitments In Sect. 3, we show how to obtain subversion-resilient UC com-
mitments. First, we specify a sanitizable string commitment functionality ̂FsCOM.
This functionality is basically identical to the standard functionality for UC com-
mitments [8], except that the firewall is allowed to sanitize the value s that the
core commits to, using a blinding factor r; the effect of this sanitation is that,
when the core opens the commitment, the ideal functionality reveals ŝ = s ⊕ r.
Note that this is the sanitation allowed by the sanitation interface. An imple-
mentation will further have to sanitise the randomness of outgoing commitments
to avoid covert channels.

Second, we construct a protocol ̂ΠsCOM that UC realizes ̂FsCOM in the presence
of subversion attacks. Our construction borrows ideas from a recent work by
Canetti, Sarkar and Wang [10], who showed how to construct efficient non-
interactive UC commitments with adaptive security. The protocol, which is in
the CRS model and relies on the standard DDH assumption, roughly works as
follows. The CRS is a tuple of the form (g, h, T1, T2), such that T1 = gx and
T2 = hx′

for x �= x′ (i.e., a non-DH tuple). In order to commit to a single
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bit b, the core of the committer encodes b as a value u ∈ {−1, 1} and outputs
B = gα · Tu

1 and H = hα · Tu
2 , where α is the randomness. The firewall sanitizes

a pair (B,H) by outputting ̂B = B−1 · gβ and ̂H = H−1 · hβ , where β is chosen
randomly; note that, upon receiving an opening (b, α) from the core, the firewall
can adjust it by returning (1−b,−α+β). Alternatively, the firewall can choose to
leave the bit b unchanged and only refresh the randomness of the commitment;
this is achieved by letting ̂B = B · gβ and ̂H = H · hβ ; in this case, the opening
is adjusted to (b, α + β). In the security proof, we distinguish two cases:

– In case the committer is maliciously corrupt, the simulator sets the CRS as
in the real world but additionally knows the discrete log t of h to the base
g. Such a trapdoor allows the simulator to extract the bit b corresponding to
the malicious committer by checking whether H/T2 = (B/T1)t (in which case
b = 1) or H · T2 = (B · T1)t (in which case b = 0). If none of the conditions
hold, no opening exists.

– In case the committer is honest, the simulator sets the CRS as a DH-tuple.
Namely, now T1 = gx and T2 = hx for some x known to the simulator. The
latter allows the simulator to fake the commitment as B = gα and H = hα,
and later adjust the opening to any given u ∈ {−1, 1} (and thus b ∈ {0, 1})
by letting α′ = α − u · x.

The above ideas essentially allow to build a simulator for the case of two parties,
where one is maliciously corrupt and the other one has an honest core and a semi-
honest firewall. These ideas can be generalized to n parties (where up to n − 1
parties are maliciously corrupt, while the remaining party has an honest core
and a semi-honest firewall) using an independent CRS for each pair of parties.
Finally, we show that the firewall in our protocol is strongly sanitizing and thus
all possible corruption cases reduce to the previous case. In particular, strong
sanitation holds true because a specious core must produce a pair (B,H) of the
form B = gα ·T ũ

1 and H = hα ·T ũ
2 for some ũ ∈ {−1, 1} (and thus b̃ ∈ {0, 1}), as

otherwise a tester could distinguish it from an honest core by asking it to open
the commitment; given such a well-formed commitment, the firewall perfectly
refreshes its randomness (and eventually blinds the message).

As we show in Sect. 3, the above construction can be extended to the case
where the input to the commitment is a λ-bit string by committing to each bit
individually; the same CRS can be reused across all of the commitments.

Coin Tossing. Next, in Sect. 4, we show a simple protocol that UC realizes the
standard coin tossing functionality FTOSS in the presence of subversion attacks.
Recall that the ideal functionality FTOSS samples a uniformly random string s ∈
{0, 1}λ and sends it to the adversary, which can then decide which honest party
gets s (i.e., the coin toss output).

Our construction is a slight variant of the classical coin tossing protocol by
Blum [5]; the protocol is in the ̂FsCOM-hybrid model, and roughly works as follows.
The core of each party commits to a random string si ∈ {0, 1}λ through the ideal
functionality ̂FsCOM. Then, the firewall of the coin toss instructs the firewall of
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the commitment to blind si using a random blinding factor ri ∈ {0, 1}λ which is
revealed to the core. At this point, each (willing) party opens the commitment,
which translates into ̂FsCOM revealing ŝj = sj ⊕ rj , and each party finally outputs
s = si ⊕ ri ⊕ ⊕

j �=i ŝj .
In the security proof, the simulator can fake the string si of an honest party so

that it matches the output of the coin tossing s (received from FTOSS), the strings
sj received from the adversary (on behalf of a malicious core), and the blinding
factor ri received from the adversary (on behalf of a semi-honest firewall). This
essentially allows to build a simulator for the case where up to n − 1 parties are
maliciously corrupt, while the remaining party has an honest core and a semi-
honest firewall. Finally, we show that the firewall in our protocol is strongly
sanitizing and thus all possible corruption cases reduce to the previous case.
Strong sanitation here holds because any string si chosen by a specious core
is mapped to a uniformly random string ŝi via the sanitation interface of the
functionality ̂FsCOM.

Completeness Theorem. Finally, in Sect. 5, we show how to sanitize the
GMW compiler, which yields a completeness theorem for UC subversion-resilient
MPC. Recall that in the classical GMW compiler one starts with an MPC pro-
tocol Π tolerating t < n semi-honest corruptions and transforms it into an
MPC protocol tolerating t malicious corruptions as follows. First, the players
run an augmented coin-tossing protocol, where each party receives a uniformly
distributed string (to be used as its random tape) and the other parties receive
a commitment to that string. Second, each party commits to its own input and
proves in zero knowledge that every step of the protocol Π is executed correctly
and consistently with the random tape and input each party is committed to.

As observed by Canetti, Lindell, Ostrovsky and Sahai [9], the above compila-
tion strategy cannot immediately be translated in the UC setting, as the receiver
of a UC commitment obtains no information about the value that was commit-
ted to. Hence, the parties cannot prove in zero knowledge statements relative
to their input/randomness commitment. This issue is resolved by introducing
a commit-and-prove ideal functionality, which essentially allows each party to
commit to a witness and later prove arbitrary NP statements relative to the
committed witness.

In order to sanitize the GMW compiler in the presence of subversion attacks,
we follow a similar approach. Namely, we first introduce a sanitazable commit-
and-prove functionality ̂FC&P. This functionality is very similar in spirit to the
standard commit-and-prove functionality, except that the firewall can decide
to blind the witness that the core commits to. In the full version [12], we
show how to realize the sanitizable commit-and-prove functionality in the CRS
model from the DDH assumption, using re-randomizable non-interactive zero-
knowledge arguments for all of NP [13]. In fact, there we exhibit a much more
general construction that can be instantiated from any so-called malleable mixed
commitment, a new notion that we introduce and that serves as a suitable
abstraction of our DDH-based construction from Sect. 3.
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In the actual protocol, we use both the coin tossing functionality FTOSS and
the sanitizable commit-and-prove functionality ̂FC&P to determine the random
tape of each party as follows. Each core commits to a random string si via ̂FC&P;
the corresponding firewall blinds si with a random ri that is revealed to the
core. Thus, the players use FTOSS to generate public randomness s∗

i that can be
used to derive the random tape of party Pi as s∗

i ⊕ (si ⊕ ri). Moreover each core
commits to its own input xi, which however is not blinded by the firewall. The
above allows each party, during the protocol execution, to prove via ̂FC&P that
each message has been computed correctly and consistently with the committed
input and randomness derived from the public random string s∗

i received from
FTOSS.

The security analysis follows closely the one in [9], except that in our case we
show that any adversary corrupting up to t parties maliciously, and the firewall
of the remaining honest parties semi-honestly, can be reduced to a semi-honest
adversary attacking Π. Since we additionally show that our firewall is strongly
sanitizing, which essentially comes from the ideal sanitation interface offered by
̂FC&P, all possible corruption cases reduce to the previous case.

2 A UC Model of Reverse Firewalls

In this section we propose a foundation of reverse firewalls in the UC model [7].
We use the UC framework for concreteness as it is the de facto standard. How-
ever, we keep the description high level and do not depend on very particular
details of the framework. Similar formalizations could be given in other frame-
works defining security via comparison to ideal functionalities, as long as these
ideal functionalities are corruption aware: they know which parties are corrupted
and their behavior can depend on it.

2.1 Quick and Dirty Recap of UC

A protocol Π consists of code for each of the parties P1, . . . ,Pn. The parties
can in turn make calls to ideal functionalities G. More precisely, the code of
the program is a single machine. As part of its input, it gets a party identifier
pid which tells the code which party it should be running the code for. This
allows more flexibility for dynamic sets of parties. Below, we will only consider
programs with a fixed number of parties. We are therefore tacitly identifying n
parties identifiers pid1, . . . , pidn with the n parties P1, . . . ,Pn, i.e., Pi = pidi. We
prefer the notation Pi for purely idiomatic reasons.

A party Pi can call an ideal functionality. To do so it will specify which
G to call (technically it writes down the code of G and a session identifier sid
distinguishing different calls), along with an input x. Then, (sid, pid, x) is given
to G. If G does not exists, then it is created from its code.

There is an adversary A which attacks the protocol. It can corrupt parties via
special corruption commands. How parties react to these corruptions is flexible;
the parties can in principle be programmed to react in any efficient way. As an
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example, in response to input active-corrupt, we might say that the party in
the future will output all its inputs to the adversary, and that it will let the
adversary specify what messages the party should send. The adversary can also
control ideal functionalities, if the ideal functionalities expose an interface for
that. It might for instance be allowed to influence at what time messages are
delivered on an ideal functionality of point-to-point message transmission.

There is also an environment E which gives inputs to the parties and sees
their outputs. The environment can talk freely to the adversary. A real world
execution ExecΠ,A,E is driven by the environment which can activate parties or
ideal functionalities. The parties and ideal functionalities can also activate each
other. The details of activation are not essential here, and can be found in [7].

The protocol Π is meant to implement an ideal functionality F . This is for-
mulated by considering a run of F with dummy parties which just forward mes-
sages between E and F . In addition, there is an adversary S, called the simulator,
which can interact with F on the adversarial interface, and which can interact
freely with E as an adversary can. The simulation is the process ExecF,S,E ,
where we do not specify the dummy protocol but use F for the dummy proto-
col composed with F . We say that Π UC-realizes F if there exists an efficient
simulator which makes the simulation look like the real world execution to any
efficient environment:

∃S∀E : ExecΠ,A,E ≈ ExecF,S,E ,

where A is the dummy adversary (that simply acts as a proxy for the envi-
ronment), and where the quantifications are over poly-time interactive Turing
machines.

Consider a protocol Π that realizes an ideal functionality F in a setting where
parties can communicate as usual, and additionally make calls to an unbounded
number of copies of some other ideal functionality G. (This model is called the G-
hybrid model.) Furthermore, let Γ be a protocol that UC-realizes G as sketched
above, and let ΠG→Γ be the composed protocol that is identical to Π, with
the exception that each interaction with the ideal functionality G is replaced
with a call to (or an activation of) an appropriate instance of the protocol Γ .
Similarly, any output produced by the protocol Γ is treated as a value provided
by the functionality G. The composition theorem states that in such a case, Π
and ΠG→Γ have essentially the same input/output behavior. Namely, Γ behaves
just like the ideal functionality G even when composed with an arbitrary protocol
Π. A special case of this theorem states that if Π UC-realizes F in the G-hybrid
model, then ΠG→Γ UC-realizes F .

2.2 Modeling Reverse Firewalls

To model reverse firewalls, we will model each party Pi as two separate parties
in the UC model: the core Ci and the firewall Fi. To be able to get composability
for our framework via UC composition, we model them as separate parties each
with their own party identifier (pid, F) and (pid, C). We use pid to denote the two
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Fig. 1. Implementing a normal functionality F using a sanitizable hybrid functionality
G and a sanitizing protocol Π = (C,F). Cores and firewalls talk to sanitizable function-
alities directly. Cores can additionally talk to the environment to exchange inputs and
outputs. Firewalls only talk to ideal functionalities. We think of ideal functionalities as
sanitizing the communication with the core via the firewall. This is illustrated in the
figure by information from the core going to the firewall, and information to the core
coming via the firewall. There is no formal requirement to what extent this happens;
it is up to the ideal functionality to decide what type of sanitation is possible, if any.

of them together. Below we write, for simplicity, Pi to denote the full party, Ci

to denote the core, and Fi to denote the firewall. Being two separate parties, the
core and the firewall cannot talk directly. It will be up to the ideal functionality
G used for communication to pass communication with the core through the
corresponding firewall before acting on the communication. It might be that
when G gets a message from Ci it will output this message to Fi and allow
Fi to change the message, possibly under some restrictions. We say that Fi

sanitizes the communication, and we call the interface connecting Fi for G the
sanitation interface of G. We call such an ideal functionality a “sanitizable” ideal
functionality.

Consider a party (Ci,Fi) with core Ci and firewall Fi connected to a sanitizing
ideal functionality G. The idea is that the firewall gets to sanitize all communica-
tion of the core Ci. The UC model seemingly allows a loophole, as the core could
make a call to some other ideal functionality H instead of talking to G. As we
discuss later, this behavior is ruled out if Ci is specious, so we will not explicitly
disallow it. If our model is later extended to allow stronger (non-specious) types
of subversion, then one would probably have to explicitly forbid Ci to use this
loophole.

When using a sanitizable ideal functionality, it is convenient to be able to
distinguish the interface of the ideal functionality from the parties using the
interface. We call the interface of G to which the core of Pi is connected the
input-output interface, IO. We call the party connected to it Ci. We call the
interface of G to which the firewall of Pi is connected the sanitation interface, S.
We call the party connected to it Fi. This is illustrated in Fig. 1.

2.3 Specious Corruptions

A major motivation for studying subversion resilience is to construct firewalls
which ensure that security is preserved even if the core is subverted. In this
section, we describe and discuss how we model subversion in the UC framework.
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In a nutshell, we let the adversary replace the code of the core. Clearly, if
the core is arbitrarily corrupted, it is impossible to guarantee any security. We
therefore have to put restrictions on the code used to subvert the core. One
can consider different types of subversions. In this work, we will consider a par-
ticularly “benign” subversion, where the subverted core looks indistinguishable
from the honest core to any efficient test. This is a particularly strong version of
what has been called “functionality preservation” in other works [11,17,19,21].
As there are slightly diverting uses of this term we will coin a new one to avoid
confusion.

The central idea behind our notion is that we consider corruptions where
a core Ci has been replaced by another implementation ˜Ci which cannot be
distinguished from Ci by black-box access to ˜Ci or Ci. We use the term specious
for such corruptions, as they superficially appear to be honest, but might not
be.

More in details, we define specious corruptions via testing. Imagine a test T
which is given non-rewinding black-box access to either Ci or ˜Ci, and that tries
to guess which one it interacted with. We say that a subversion is specious if it
survives all efficient tests. This is a very strong notion. One way to motivate this
notion could be that ˜Ci might be built by an untrusted entity, but the buyer of
˜Ci can test it up against a specification. If the untrusted entity wants to be sure
to remain covert, it would have to do a subversion that survives all tests. We
assume that the test does not have access to the random choices made by ˜Ci. This
makes the model applicable also to the case where ˜Ci is a blackbox or uses an
internal physical process to make random choices. We will allow the entity doing
the subversion to have some auxiliary information about the subversion and its
use of randomness. This will, for instance, allow the subversion to communicate
with the subverter in a way that cannot be detected by any test (e.g., using a
secret message acting as a trigger).

For a machine T and an interactive machine ˜C, we use T
˜C to denote that T

has non-rewinding black-box access to ˜C. If during the run of T˜C the machine
˜C requests a random bit, then a uniformly random bit is sampled and given to
˜C. Such randomness is not shown to T. We define the following game for an
efficiently sampleable distribution D and a test T.

– Sample (˜C, a) ← D, where a is an auxiliary string.
– Sample a uniformly random bit b ∈ {0, 1}:

• If b = 0, then run T
˜C to get a guess g ∈ {0, 1}.

• If b = 1, then run TC to get a guess g ∈ {0, 1}.
– Output c = b ⊕ g.

Let TestD,T denote the probability that c = 0, i.e., the probability that the
guess at b is correct.

Definition 1 (Specious subversion). We say that D is computationally
specious if for all PPT tests T it holds that TestD,T − 1/2 is negligible.
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We return to the discussion of the loophole for specious cores of creating
other ideal functionalities H that are not sanitizing. Note that if a core creates
an ideal functionality that it is not supposed to contact, then this can be seen
by testing. Therefore, such a core is not considered specious. Hence, the notion
of specious closes the loophole.

The notion of specious is strong, as it requires that no test T can detect the
subversion. At first glance it might even look too strong, as it essentially implies
that the subversion is correct. However, as we show next, a specious subversion
can still signal to the outside in an undetectable manner. To formalize this
notion, we define the following game for an efficiently sampleable distribution
D, an adversary A and a decoder Z.

– Sample (˜C, a) ← D, where a is an auxiliary string.
– Sample a uniformly random bit b ∈ {0, 1}:

• If b = 0, then run A
˜C to get a signal s ∈ {0, 1}∗.

• If b = 1, then run AC to get a signal s ∈ {0, 1}∗.
– Run Z(a, s) to get a guess g ∈ {0, 1}.
– Output c = b ⊕ g.

Let SignalD,A,Z denote the probability that c = 0, i.e., the probability that the
guess at b is correct.

Definition 2 (Signaling). We say that D is computationally signalling if there
exists a PPT adversary A and a PPT decoder Z such that SignalD,A,Z − 1/2 is
non-negligible.

Lemma 1. There exist a machine C, and an efficiently sampleable distribution
D, such that D is both computationally specious and signaling.

Proof (Proof sketch). Consider a machine C that when queried outputs a fresh
uniformly random y ∈ {0, 1}λ. Let Φ = {φκ : {0, 1}λ → {0, 1}λ}κ∈{0,1}λ be
a family of pseudorandom permutations. Consider the subversion ˜C of C that
hardcodes a key κ ∈ {0, 1}λ and: (i) when initialised samples a uniformly ran-
dom counter x ∈ {0, 1}λ; (ii) when queried, it returns φκ(x) and increments x.
Moreover, let D be the distribution that picks κ ∈ {0, 1}λ at random and outputs
(˜C, a = κ).

Note that the distribution D is specious, as the key κ is sampled at random
after T has been quantified. In particular, the outputs of φκ are indistinguishable
from random to T. The distribution D is also clearly signaling, as it can be seen
by taking the adversary A that queries its target oracle twice and sends the
outputs y1 and y2 as a signal to the decoder. The decoder Z, given a = κ,
computes xi = φ−1

κ (yi) (for i = 1, 2) and outputs 0 if and only if x2 = x1 + 1.

We can also define what it means for a set of subversions to be specious.

Definition 3 (Specious subversions). Given an efficiently sampleable distri-
bution D with outputs of the form (˜C1, . . . , ˜Cm, a) ← D, we let Di be the distribu-
tion sampling (˜C1, . . . , ˜Cm, a) ← D and then outputting (˜Ci, (i, a)). We say that
D is specious if each Di is specious.
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We now define the notion of a specious corruption. In this paper, we assume
that all specious corruptions are static.

Definition 4 (Specious corruption). We say that a party accepts specious
corruptions if, whenever it gets input (Specious, ˜C) from the adversary, it
replaces its code by ˜C. If the input (Specious, ˜C) is not the first one received by
the party, then it ignores it. We say that an environment E prepares specious cor-
ruptions if it operates as follows. First, it writes (Specious,D) on a special tape,
where D is specious. Then, it samples (˜C1, . . . , ˜Cm, a) ← D and writes this on
the special tape too. Finally, it inputs (Specious, ˜C1, . . . , ˜Cm) to the adversary.
The above has to be done on the first activation, before any other communication
with protocols or the adversary. We call this a specious environment.

In case of emulation with respect to the dummy adversary, we further require
that if the environment instructs the dummy adversary to input (Specious, ˜C)
to a party, then ˜C is from the list in (Specious, ˜C1, . . . , ˜Cm). We say that an
adversary interacting with a specious environment does specious corruptions if
whenever the adversary inputs (Specious, ˜C) to a party, then ˜C is from the list
(Specious, ˜C1, . . . , ˜Cm) received from the specious environment. We call such an
adversary specious. In particular, an adversary which never inputs (Specious, ˜C)
to any party is specious. We also call an environment specious if it does not write
(Specious,D) on a special tape as the first thing, but in this case we require that
it does not input anything of the form (Specious, ˜C1, . . . , ˜Cm) to the adversary,
and that it never instructs the dummy adversary to input (Specious, ˜C) to any
party.

In addition we require that specious environments and adversaries only do
static corruptions and that all corruptions are of the form.

– Core Malicious and firewall Malicious.
– Core Honest and firewall SemiHonest.
– Core Specious and firewall Honest.
– Core Honest and firewall Malicious.

We assume that all cores accept specious corruptions, and no other parties accept
specious corruptions.

We add a few comments to the definition. First, let us explain why we only
require security for the above four corruption patterns. Of all the corruption
patterns shown in Table 1 giving rise to a Malicious party, the one with core
Malicious and firewall Malicious gives the adversary strictly more power than
any of the other ones, so we only ask for simulation of that case. Similarly, of
the 3 corruption patterns giving rise to an Honest party, the ones with the core
Honest and Specious and the firewall SemiHonest and Honest respectively
are different, as neither gives powers to the adversary which are a subset of the
other, so we ask for simulation of both. The remaining case of Honest core and
Honest firewall we can drop, as it is a special case of the Honest core and
SemiHonest firewall. The only corruption pattern giving rise to an Isolate
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Table 1. Corruption patterns for cores and firewalls in our model, and their translation
in the ideal world. The highlighted rows are the cases that one needs to consider when
proving security using our framework.

Core C Firewall F Party P in F
Honest Honest Honest

Honest SemiHonest Honest

Specious Honest Honest

Honest Malicious Isolate

Specious SemiHonest Malicious

Specious Malicious Malicious

Malicious Honest Malicious

Malicious SemiHonest Malicious

Malicious Malicious Malicious

party is when the core is Honest and the firewall is Malicious; we therefore
ask to simulate this case too.

Second, note that it might look odd that we ask the environment to sample
the subversion ˜Ci. Could we not just ask that, when it inputs (Specious, ˜Ci)
to a core, then ˜Ci is specious? It turns out that this would give a trivial notion
of specious corruption. Recall that in the notion of specious, we quantify over
all tests. If we first fix ˜C, and then quantify over all tests when defining that it
is specious, then the universal quantifier could be used to guess random values
shared between ˜C and the adversary, like the key κ used in Lemma 1 (demon-
strating that a specious subversion can still be signaling). Therefore, a single ˜C
specious subversion cannot be signalling. Hence, asking for a specific subversion
to be specious would make the notion of specious corruption trivial. By instead
asking that a distribution D is specious, we can allow ˜C and the adversary to
sample joint randomness (like a secret key κ) after the test T has already been
quantified. Namely, recall that in the test game we first fix a T, and only then
do we sample D. This allows specious corruptions which can still signal to the
adversary, as demonstrated above. The reason why we ask the environment to
sample D and not the adversary has to do with UC composition, which we return
to later.

2.4 Sanitizing Protocols Implementing Regular Ideal Functionalities

For illustration, we first describe how to implement a regular ideal functionality
given a sanitizing ideal functionality. Later, we cover the case of implementing
a sanitizing ideal functionality given a sanitizing ideal functionality, see Fig. 1.

Consider a sanitizing protocol Π, using a sanitizable ideal functionality G,
that implements a regular ideal functionality F with n parties P1, . . . ,Pn. By
regular, we mean that F itself does not have a sanitation interface. Note that it
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makes perfect sense for a sanitizing protocol Π, using a sanitizable ideal func-
tionality G, to implement a regular ideal functionality. The firewall is an aspect
of the implementation Π and the sanitizable hybrid ideal functionality G. In
particular, this aspect could be completely hidden by the implementation of Π.
However, typically the behavior when the firewall is honest and corrupted is
not the same. A corrupted firewall can isolate the core by not doing its job.
We therefore call a party Pi where Ci is honest and Fi is corrupt an “isolated”
party. We insist that if Ci is specious and Fi is honest, then it is as if Pi is honest.
Hence, F should behave as if Pi is honest. We would therefore like the behavior
of F to depend only on whether Pi is honest, isolated, or corrupt. To add some
structure to this, we introduce the notion of a wrapped ideal functionality and
a wrapper.

A wrapped ideal functionality F should only talk to parties Pi. The wrapper
Wrap will talk to a core Ci and a firewall Fi. The wrapper runs F internally, and
we write Wrap(F). The inputs to and from Ci on Wrap(F) are forwarded to the
interface for Pi on F . The only job of Wrap is to introduce the same parties as in
the protocol and translate corruptions of Ci and Fi into corruptions on Pi. We
say that parties Pi in an ideal execution with F can be Honest, Malicious or
Isolate. The wrapped ideal functionality Wrap(F) translates corruptions using
the following standard corruption translation table.

Honest: If Ci is Honest and Fi Honest, let Pi be Honest on F .
Malicious: If Ci is Malicious, corrupt Pi as Malicious on F .
Isolated: If Ci is Honest and Fi is Malicious, corrupt Pi as Isolate on F .
Sanitation: If Ci is Specious and Fi is Honest, let Pi be Honest on F .
No Secrets: If Ci is Honest and Fi is SemiHonest, let Pi be Honest on F .

We discuss the five cases next. The Honest and Malicious cases are
straightforward; if both the core and the firewall are honest, then treat Pi as
an honest party on F . Similarly, if the core is malicious, then treat Pi as a mali-
cious party on F . The Isolated case corresponds to the situation where the core
is honest and the firewall is corrupted, and thus the firewall is isolating the core
from the network. This will typically correspond to a corrupted party. However,
in some cases, some partial security might be obtainable, like the inputs of the
core being kept secret. We therefore allow an Isolate corruption as an explicit
type of corruption. The standard behavior of F on an Isolate corruption is to
do a Malicious corruption of Pi in F .

The Sanitation case essentially says that the job of the firewall is to turn
a specious core into an honest core. This, in particular, means that the firewall
should remove any signaling. We add the No Secrets case to avoid trivial solu-
tions where the firewall is keeping, e.g., secret keys used in the protocol. We
want secret keys to reside in the core, and that firewalls only sanitize communi-
cation of the core. We also do not want that the core just hands the inputs to
the firewall and lets it run the protocol. A simple way to model this is to require
that the protocol should tolerate a semi-honest corruption of the firewall when
the core is honest. We do not require that we can tolerate a specious core and a
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semi-honest firewall. Removing signaling from a core will typically require ran-
domizing some of the communication. For this, the firewall needs to be able to
make secret random choices. Note that, with this modeling, a core and a firewall
can be seen as a two-party implementation of the honest party, where one can
tolerate either a specious corruption of the core or a semi-honest corruption of
the firewall.

Definition 5 (Wrapped subversion-resilient UC security). Let F be an
ideal functionality for n parties P1, . . . ,Pn. Let Π be a sanitizing protocol with
n cores C1, . . . ,Cn and n firewalls F1, . . . ,Fn. Let G be a sanitizable ideal func-
tionality which can be used by Π as in Fig. 1. We say that Π wsrUC-realizes
F in the G-hybrid model if Π UC-realizes Wrap(F) in the G-hybrid model with
the restriction that we only quantify over specious environments and specious
adversaries.

The typical behavior of a sanitizing ideal functionality is that, when it
receives a message from the core, it will output the received message to the
firewall, or output some partial information about the message to the firewall.
Later, it will receive some new message or sanitation instruction from the firewall.
Given this, it constructs the actual information to pass to the core functionality
of G. This might later end up at a firewall of another party, and after sanita-
tion end up at the core of that party. The latter is illustrated in Fig. 1, and an
example is given below. Note that this is not a formal requirement, but just a
description of idiomatic use of sanitation to give an intuition on the use of the
model.

To illustrate the use of sanitizable ideal functionalities, we specify an ideal
functionality FSAT for sanitizable authenticated communication. The communi-
cation between cores goes via the firewall which might change the messages.
Note that firewalls can be sure which other firewall they talk to, but corrupted
firewalls can lie to their local core about who sent a message. In fact, they can
pretend a message arrived out of the blue. We also equip FSAT with the possibility
for distributing setup, as this is needed in some of our protocols. We assume a
setup generator Setup which samples the setup and gives each party their corre-
sponding value. The firewalls also get a value. This, e.g., allows to assume that
the firewalls know a CRS. Since we do not want firewalls to keep secrets, we leak
their setup values to the adversary. This would not be a problem if the setup
values is a CRS.

Functionality FSAT

– Initially sample ((v1, w1), . . . , (vn, wn)) ← Setup() and output vi on IOi and wi

on Si. Leak wi to the adversary.
– On input (Send, a,Pj) on IOi, output (Send, a,Pj) on Si. To keep the descrip-

tion simple we assume honest parties sends the same a at most once. Adding
fresh message identifiers can be used for this in an implementation.
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– On input (Send, b,Pk) on Si, leak (Send,Pi, b,Pk) to the adversary and store
(Send,Pi, b,Pk).

– On input (Deliver, (Send,Pi, b,Pk)) from the adversary, where
(Send,Pi, b,Pk) is stored, delete this tuple and output (Receive,Pi, b)
on Sk.

– On input (Receive,Pm, c) on Sk, output (Receive,Pm, c) on IOi.

Fig. 2. Implementing F via protocol Π = (CF ,FF ) using G.

Remark 1 (on FSAT). We note that all protocols in this work, even if not explicitly
stated, are described in the FSAT-hybrid model. Moreover, whenever we say that
the core sends a message to the firewall (or vice-versa) we actually mean that
they communicate using FSAT.

2.5 General Case

We now turn our attention to implementing sanitizable ideal functionalities.
When a protocol Π implements a sanitizable ideal functionality, we call Π a
sanitizable protocol. Notice the crucial difference between being a sanitizable
protocol and a sanitizing protocol. A sanitizable protocol Π implements the
sanitization interface Si of F . Whereas a sanitizing protocol Π would have a
firewall using the sanitization interface Si of G.

When implementing a sanitizable ideal functionality F , the protocol should
implement the sanitation interface SF for F. This means that the protocol will
be of the form Π = (IO,S) where IO = (IO1, . . . , IOn) and S = (S1, . . . ,Sn).
Notice that Ci and Fi formally are separate parties, so they cannot talk directly.

It is natural that it is the firewall of the implementation Π = (IO,S) which
handles this. The firewall has access to the sanitation interface of G, which it
can use to sanitize Π. This means that F gets what could look like a double role
now. First, it sanitizes Π using SG . Second, it has to implement the sanitation
interface SF of Π (matching that of F). Note, however, that this is in fact the
same job. The sanitation interface SF of Π is used to specify how Π should be
sanitized. It is natural that FF needs to knows this specification. It then uses SG

to implement the desired sanitation. This is illustrated in Fig. 2.
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Fig. 3. The wrapper Wrap(F , L1, . . . , Ln).

When defining security of a protocol implementing a sanitizable ideal func-
tionality, we do not need to use a wrapper as when implementing a normal ideal
functionality, as F already has the same parties as in the protocol. It is however
still convenient to use a wrapper to add some structure to how we specify a
sanitizable ideal functionality. We assume a central part which does the actual
computation, and outer parts which sanitize the inputs from Pi before they are
passed to the central part.

Definition 6 (Well-formed sanitizing ideal functionality). A well-formed
sanitizing ideal functionality consists of an ideal functionality F , called the cen-
tral part, with an interface Pi for each party. The interface Pi can be Honest,
Malicious, or Isolate. There are also n outer parts L1, . . . ,Ln where Li has
an interface IOi for the core and Si for the firewall. The outer part Li can only
talk to the central part on Pi and the outer parts cannot communicate with each
other. The interface IOi can be Honest, Malicious, or Specious. The inter-
face Si can be Honest, Malicious, or SemiHonest. The corruption of F .IOi

is computed from that of Li.IOi and Li.Si using the standard corruption trans-
lation table (Table 1).

Fig. 4. Implementing G via protocol Γ = (CG ,FG) using H.

Definition 7 (Subversion-resilient UC security). Let F be an ideal func-
tionality for n cores CF

1 , . . . ,CF
n and n firewalls FF

1 , . . . ,FF
n , and let Π be a

sanitizing protocol with n cores CF
1 , . . . ,CF

n and n firewalls FF
1 , . . . ,FF

n . Let G be
a sanitizable ideal functionality which can be used by Π as in Fig. 2. We say that
Π srUC-realizes F in the G-hybrid model if F can be written as a well-formed
sanitizing ideal functionality, and Π UC-realizes F in the G-hybrid model with
the restriction that we only quantify over specious environments and specious
adversaries.
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2.6 Composition

We now address composition. In Fig. 2, we illustrate implementing F in the G-
hybrid model. Similarly, in Fig. 4, we implement G given H. In Fig. 5, we illustrate
the effect of composition. We can let Ci = CF

i ◦ CG
i and Fi = FF

i ◦ FG
i . Then, we

again have a sanitizing protocol ΠG→Γ = (C,F). For composition to work, we
need that specious corruptions respect the composition of a core.

Fig. 5. Implementing F via protocol ΠG→Γ using H.

Definition 8 (Specious corruption of a composed core). We say that an
adversary does a specious corruption of a composed core Ci = CF

i ◦CG
i if it inputs

(Specious, ˜CF
i , ˜CG

i ), where both CF
i and CG

i are specious. In response CF
i replaces

its code with ˜CF
i , and CG

i replaces its code with ˜CG
i .

Note that one could imagine a specious corruption of a composed core Ci which
could not be written as the composition of specious subversions ˜CF

i and ˜CG
i .

Theorem 1 (srUC Composition). Let F and G be ideal functionalities, and
let Π and Γ be protocols. Assume that all are subroutine respecting and subrou-
tine exposing as defined in [6]. If Π srUC-realizes F , and Γ srUC-realizes G,
then ΠG→Γ srUC-realizes F .

The proof of Theorem1 appears in the full version [12].
Note that if, e.g., G in the composition is well-formed and therefore wrapped,

then it is the wrapped functionality which is considered at all places. Therefore,
in Fig. 4 the ideal functionality G being implemented will be the wrapped ideal
functionality, and in Fig. 2 the hybrid ideal functionality G being used would
again be the wrapped one. There is no notion of “opening up the wrapping”
during composition. If F is a regular ideal functionality then Wrap(F) can be
written as a well-formed sanitizing ideal functionality. Therefore wsrUC security
relative to F implies srUC security relative to Wrap(F). During composition it
would be Wrap(F) which is used as a hybrid functionality. This is basically the
same as having F under the standard corruption translation.
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Fig. 6. A core with its matching firewall or with the identity firewall.

2.7 Computational Transparency

A central notion in the study of reverse firewalls is the notion of transparency.
The firewall is only supposed to modify the behavior of a subverted core. If the
firewall is attached to an honest core, it must not change the behavior of the
core. We define transparency in line with [21], namely, an honest core without a
firewall attached should be indistinguishable from an honest core with a firewall
attached.

Notice that this does not make sense if the party is implementing a saniti-
zable ideal functionality, like in Fig. 2. Without a firewall FF

1 , no entity would
implement the interface SF

1 , which would make a core without a firewall trivially
distinguishishable from a core with a firewall. Presumably, the interface SF

1 is
present because different inputs on this interface will give different behaviors.
We therefore only define transparency of firewalls implementing a regular ideal
functionality, as in Fig. 1. Note also that if G in Fig. 1 has a complex interac-
tion with Fi, then an execution without Fi might not make sense. Therefore, we
additionally only consider transparency in the FSAT-hybrid model. In this model
we can let Fi be an identity firewall which does not modify the communication.
This has the desired notion of no firewall being present.

Definition 9 (Transparency). Let (Ci,Fi) be a party for the FSAT-hybrid
model. Let Πi be the protocol for the FSAT-hybrid model where party number i
is (Ci,Fi), and all other parties are dummy parties. Let ID be the firewall which
always outputs any message it receives as input. Let Π ′

i be the protocol for the
FSAT-hybrid model where party number i is (Ci, ID), and all other parties are
dummy parties. These two protocols are illustrated in Fig. 6. We say that Fi is
computationally transparent if, for all poly-time environments E which do not
corrupt Ci or Fi/ID, it holds that ExecE,Πi,A ≈ ExecE,Π′

i,A, where A is the
dummy adversary.
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Fig. 7. An honest core with its matching firewall or a specious core with the same
firewall.

2.8 Strong Sanitation

Another central notion in the study of reverse firewalls is the notion that we call
sanitation. Namely, if you hide a specious core behind a firewall, then it looks
like an honest core behind a firewall. So far, we have defined this implicitly by
saying that a specious corruption of a core plus an honest firewall should be
simulatable by having access to an honest party on the ideal functionality being
implemented. This actually does not imply that the network cannot distinguish
between a specious core or an honest core behind the firewall. It only says that
the effect of a specious core behind a firewall are not dire enough that you cannot
simulate given an honest party in the ideal world.

In this section, we give a game-based definition of sanitation capturing the
stronger notion that, behind a firewall, a specious core looks like an honest core.
Recall that a core Ci is capable of receiving a specious corruption (Specious, ˜C)
from the environment, in which case it replaces its code by ˜C. For such a core,
let ̂C be the incorruptible core which when it receives a specious corruption
(Specious, ˜C) will ignore it and keep running the code of C.

Definition 10 (Strong sanitation). Let (Ci,Fi) by a party for the G-hybrid
model. Let ̂Ci be the corresponding incorruptible core. Let Πi be the protocol for
the FSAT-hybrid model where party number i is (Ci,Fi), and all other parties are
dummy parties. Let Π ′

i be the protocol for the FSAT-hybrid model where party
number i is (̂Ci,Fi), and all other parties are dummy parties. Note that if the
environment does a (Specious, ˜C) corruption of core number i, then in Πi core
i will run ˜C, whereas in Π ′

i it will run Ci. These two outcomes are illustrated in
Fig. 7. We say that Fi is strongly sanitising if, for all poly-time environments E
which do not corrupt Fi, but which are allowed a specious corruption of the core,
it holds that ExecE,Πi,A ≈ ExecE,Π′

i,A, where A is the dummy adversary.

It is easy to see that the definition is equivalent to requiring that, for all
poly-time environments E which do not corrupt Ci or Fi/ID, it holds that
ExecE,Πi,A ≈ ExecE,Π′

i,A, where A is the dummy adversary.

Lemma 2. Consider a protocol Π where for all parties (Ci,Fi) it holds that Fi

has strong sanitation. Then it is enough to prove security for these cases:

– Core Malicious and firewall Malicious.
– Core Honest and firewall SemiHonest.
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– Core Honest and firewall Malicious.

If in addition we assume the standard corruption behavior for Isolate, it is
enough to prove the cases:

– Core Malicious and firewall Malicious.
– Core Honest and firewall SemiHonest.

If in addition the protocol Π is for the FSAT-hybrid model and has computational
transparency, then it is enough to prove the case:

– Core Malicious and firewall Malicious.
– Core Honest and firewall Honest.

Proof. We prove the first claim. Note that relative to Definition 7 we removed
the case with the core Specious and the firewall Honest. We show that this
reduces to the case with core Honest and the firewall Honest. First replace
each Ci by ̂Ci. This cannot be noticed due to strong sanitation. Then notice that
we can replace an environment E doing specious corruption by E ′ which just
internally do not pass on (Specious, ˜C) to the core. Namely, it does not matter
if ̂Ci ignores the commands or we let E ′ do it. Then, we can replace ̂Ci by Ci as
there are no commands to ignore. So it is enough to prove security for the core
Honest and the firewall Honest. This case follows from the case with the core
Specious and the firewall Honest as being honest is a special case of being
specious.

The second claim follows from the fact that under standard corruption behav-
ior for Isolate the party Pi on the ideal functionality is Malicious when the
firewall is Malicious. So the simulator has the same power when simulating
an honest core and malicious firewall as when simulating a malicious core and a
malicious firewall. Then note that being an honest core is a special case of being
a malicious core.

In the last claim, we have to prove that assuming computational transparency
one does not have to prove the case with the core Honest and the firewall
SemiHonest. One can instead prove the case with the core Honest and the
firewall Honest. To see this note that, by definition of transparency, we can
replace the firewall with the identity firewall ID. For this firewall, an Honest
corruption is as powerful as a SemiHonest corruption. This is because the only
effect of a semi-honest corruption of ID is to leak the internal value wi from the
setup and the communication sent via ID. The ideal functionality FSAT already
leaks that information when ID is honest.

3 String Commitment

In this section, we show how to build UC string commitments with security in
the presence of subversion attacks. In particular, after introducing the sanitizable
commitment functionality, we exhibit a non-interactive commitment (with an
associated reverse firewall) that UC realizes this functionality in the CRS model,
under the DDH assumption.
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3.1 Sanitizable Commitment Functionality

The sanitazable commitment functionality ̂FsCOM, which is depicted below, is an
extension of the standard functionality for UC commitments [8]. Roughly, ̂FsCOM

allows the core of a party to commit to a λ-bit string si; the ideal functionality
stores si and informs the corresponding firewall that the core has sent a commit-
ment. Hence, via the sanitation interface, the firewall of that party is allowed to
forward to the functionality a blinding factor ri ∈ {0, 1}λ that is used to blind
si, yielding a sanitized input ŝi = si ⊕ ri. At this point, all other parties are
informed by the functionality that a commitment took place. Finally, each party
is allowed to open the commitment via the functionality, in which case all other
parties learn the sanitized input ŝi.

Functionality ̂FsCOM

The sanitizable string commitment functionality ̂FsCOM runs with parties
P1, . . . ,Pn (each consisting of a core Ci and a firewall Fi), and an adversary
S. The functionality consists of the following communication interfaces for the
cores and the firewalls respectively.

Interface IO
– Upon receiving a message (Commit, sid, cid,Ci, si) from Ci, where si ∈ {0, 1}λ,

record the tuple (sid, cid,Ci, si) and send the message (Receipt, sid, cid,Ci) to
Fi. Ignore subsequent commands of the form (Commit, sid, cid,Ci, ·).

– Upon receiving a message (Open, sid, cid,Ci) from Ci, proceed as follows: If
the tuple (sid, cid,Ci, ŝi) is recorded and the message (Blind, sid, cid,Ci, ·) was

sent to ̂FsCOM, then send the message (Open, sid, cid,Ci, ŝi) to all Cj �=i and S.
Otherwise, do nothing.

Interface S
– Upon receiving a message (Blind, sid, cid,Ci, ri) from Fi, where ri ∈

{0, 1}λ, proceed as follows: If the tuple (sid, cid,Ci, si, ·) is recorded,
then modify the tuple to be (sid, cid,Ci, ŝi = si ⊕ ri) and send the
message (Blinded, sid, cid,Ci, ri) to Ci, and (Receipt, sid, cid,Ci) to all
Cj �=i and S; otherwise do nothing. Ignore future commands of the form
(Blind, sid, cid,Ci, ·).

3.2 Protocol from DDH

Next, we present a protocol that UC-realizes ̂FsCOM in the FSAT-hybrid model.
For simplicity, let us first consider the case where there are only two parties.
The CRS in our protocol is a tuple crs = (g, h, T1, T2) satisfying the following
properties:
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– The element g is a generator of a cyclic group G with prime order q, and
h, T1, T2 ∈ G. Moreover, the DDH assumption holds in G.1

– In the real-world protocol, the tuple (g, h, T1, T2) corresponds to a non-DH
tuple. Namely, it should be the case that T1 = gx and T2 = hx′

, for x �= x′.
– In the security proof, the simulator will set the CRS as (g, h, T1, T2), where

T1 = gx and T2 = hx. By the DDH assumption, this distribution is compu-
tationally indistinguishable from the real-world distribution. In addition, the
simulator will be given the trapdoor (x, t) for the CRS crs = (g, h, T1, T2),
such that h = gt and T1 = gx.

As explained in Sect. 1.3, the above ideas can be generalized to the multiparty
setting by using a different CRS for each pair of parties.

Protocol ̂ΠsCOM (Sanitizable UC Commitment Protocol)

The protocol is executed between parties P1, . . . ,Pn each consisting of a core Ci

and a firewall Fi. In what follows, let party Pj = (Cj ,Fj) be the committer, and
all other parties Pk �=j act as verifiers.

Public inputs: Group G with a generator g, field Zq, and crs =
(crsj,k)j,k∈[n],k �=j = (gj,k, hj,k, T1,j,k, T2,j,k)j,k∈[n],k �=j .
Private inputs: The committer (or core) Cj has an input s ∈ {0, 1}λ which we
parse as s = (s[1], · · · , s[λ]). We will encode each bit s[i] ∈ {0, 1} with a value
u[i] ∈ {−1, 1}, so that u[i] = 1 if s[i] = 1 and u[i] = −1 if s[i] = 0. The firewall
Fj has an input r = (r[1], · · · , r[λ]) ∈ {0, 1}λ (i.e., the blinding factor).
Commit phase: For all i ∈ [λ], the core Cj samples a random αj,k[i] ← Zq and

computes the values Bj,k[i] = g
αj,k[i]

j,k ·T u[i]
1,j,k and Hj,k[i] = h

αj,k[i]

j,k ·T u[i]
2,j,k. Hence, it

sends cj,k = (cj,k[1], · · · , cj,k[λ]) to the firewall Fj where cj,k[i] = (Bj,k[i], Hj,k[i]).
For all i ∈ [λ], the firewall Fj picks random βj,k = (βj,k[1], · · · , βj,k[λ]) ∈ Zλ

q and
does the following:

– If r[i] = 0, it lets ̂Bj,k[i] = Bj,k[i] · g
βj,k[i]

j,k and ̂Hj,k[i] = Hj,k[i] · h
βj,k[i]

j,k ;

– Else if r[i] = 1, it lets ̂Bj,k[i] = Bj,k[i]−1 ·gβj,k[i]

j,k and ̂Hj,k[i] = Hj,k[i]−1 ·hβj,k[i]

j,k .

Hence, Fj sends ĉj,k = (ĉj,k[1], · · · , ĉj,k[λ]) to all other parties Pk �=j , where

ĉj,k[i] = ( ̂Bj,k[i], ̂Hj,k[i]).
Opening phase: The core Cj sends (s, αj,k) to the firewall Fj , where s ∈ {0, 1}λ

and αj,k ∈ Zλ
q . Upon receiving (s, αj,k) from Cj , the firewall Fj parses s =

(s[1], · · · , s[λ]) and αj,k = (αj,k[1], · · · , αj,k[λ]). Thus, for all i ∈ [λ], it does
the following:

– If r[i] = 0, it lets ŝ[i] = s[i] and α̂j,k[i] = αj,k[i] + βj,k[i];
– Else if r[i] = 1, it lets ŝ[i] = −s[i] and α̂j,k[i] = −αj,k[i] + βj,k[i].

Hence, Fj sends (ŝ, α̂j,k) to all other parties Pk �=j , where ŝ = (ŝ[1], · · · , ŝ[λ]) and
α̂j,k = (α̂j,k[1], · · · , α̂j,k[λ]).

1 Recall that the DDH assumption states that the distribution ensembles {g, h, gx, hx :

x ← Zq} and {g, h, gx, hx′
: x, x′ ← Zq} are computationally indistinguishable.



296 S. Chakraborty et al.

Verification phase: Upon receiving (ĉj,k, (ŝ, α̂j,k)) from Pj , each

party Pk �=j parses ĉj,k = (( ̂Bj,k[1], ̂Hj,k[1]), · · · , ( ̂Bj,k[λ], ̂Hj,k[λ])),
α̂j,k = (α̂j,k[1], · · · , α̂j,k[λ]), and encodes ŝ = (ŝ[1], · · · , ŝ[λ]) ∈ {0, 1}λ as
û = (û[1], · · · , û[λ]) ∈ {−1, 1}λ. Hence, for all i ∈ [λ], it verifies whether
̂Bj,k[i] = g

α̂j,k[i]

j,k · T
û[i]
1,j,k and ̂Hj,k[i] = h

α̂j,k[i]

j,k · T
û[i]
2,j,k. If for any i ∈ [λ], the above

verification fails, party Pk aborts; otherwise Pk accepts the commitment.

Theorem 2. The protocol ̂ΠsCOM srUC-realizes the ̂FsCOM functionality in the
FSAT-hybrid model in the presence of up to n − 1 static malicious corruptions.

We defer the proof of Theorem2 to the full version [12].

4 Coin Tossing

In this section, we build a sanitizing protocol that implements the regular coin
tossing functionality. Our protocol is described in the ̂FsCOM-hybrid model, and
therefore must implement the firewall that interacts with the ̂FsCOM functionality.

4.1 The Coin Tossing Functionality

We start by recalling the regular FTOSS functionality below. Intuitively, the func-
tionality waits to receive an initialization message from all the parties. Hence,
it samples a uniformly random λ-bit string s and sends s to the adversary.
The adversary now can decide to deliver s to a subset of the parties. The lat-
ter restriction comes from the fact that it is impossible to toss a coin fairly so
that no adversary can cause a premature abort, or bias the outcome, without
assuming honest majority [14].

Functionality FTOSS

The coin tossing functionality FTOSS runs with parties P1, . . . ,Pn, and an adver-
sary S. It consists of the following communication interface.

– Upon receiving a message (Init, sid,Pi) from Pi: If this is the first such message
from Pi then record (sid,Pi) and send (Init,Pi) to S. If there exist records
(sid,Pj) for all (Pj)j∈[n], then sample a uniformly random bit string s ∈ {0, 1}λ

and send s to the adversary S.
– Upon receiving a message (Deliver, sid,Pi) from S (and if this is the first such

message from S), and if there exist records (sid,Pj) for all (Pj)j∈[n], send s to
Pi; otherwise do nothing.
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4.2 Sanitizing Blum’s Protocol

Next, we show how to sanitize a variation of the classical Blum coin tossing
protocol [5]. In this protocol, each party commits to a random string si and
later opens the commitment, thus yielding s = s1 ⊕ · · · ⊕ sn. The firewall here
samples an independent random string ri which is used to blind the string si

chosen by the (possibly specious) core. We defer the security proof to the full
version [12].

Protocol ̂ΠTOSS (Sanitizing Blum’s Coin Tossing)

The protocol is described in the ̂FsCOM-hybrid model, and is executed between
parties P1, . . . ,Pn each consisting of a core Ci and a firewall Fi. Party Pi = (Ci,Fi)
proceeds as follows (the code for all other parties is analogous).

1. The core Ci samples a random string si ∈ {0, 1}λ and sends

(Commit, sidi, cidi,Ci, si) to ̂FsCOM.

2. Upon receiving (Receipt, sidi, cidi,Ci) from ̂FsCOM, the firewall Fi samples a

random string ri ∈ {0, 1}λ and sends (Blind, sidi, cidi,Ci, ri) to ̂FsCOM.

3. Upon receiving (Blinded, sidi, cidi,Ci, ri) from ̂FsCOM, as well as
(Receipt, sidj , cidj ,Cj) for all other cores Cj �=i, the core Ci sends the

message (Open, sidi, cidi,Ci) to ̂FsCOM.

4. Upon receiving (Open, sidj , cidj ,Cj , ŝj) from ̂FsCOM, for each core Cj �=i, the
core Ci outputs s := si ⊕ ri ⊕ ⊕

j �=i ŝj . (If any of the cores Cj do not open

its commitment, then Ci sets ŝj = 0λ.)

Theorem 3. The protocol ̂ΠTOSS wsrUC-realizes the FTOSS functionality in the
(FSAT, ̂FsCOM)-hybrid model in the presence of up to n − 1 malicious corruptions.

5 Completeness Theorem

In this section, we show how to sanitize the classical compiler by Goldreich,
Micali and Wigderson (GMW) [20], for turning MPC protocols with security
against semi-honest adversaries into ones with security against malicious adver-
saries. On a high level, the GMW compiler works by having each party commit
to its input. Furthermore, the parties run a coin tossing protocol to determine
the randomness to be used in the protocol; since the random tape of each party
must be secret, the latter is done in such a way that the other parties only learn
a commitment to the other parties’ random tape. Finally, the commitments to
each party’s input and randomness are used to enforce semi-honest behavior:
Each party computes the next message using the underlying semi-honest proto-
col, but also proves in zero knowledge that this message was computed correctly
using the committed input and randomness.
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5.1 Sanitizable Commit and Prove

The GMW compiler was analyzed in the UC setting by Canetti, Lindell, Ostro-
vsky and Sahai [9]. A difficulty that arises is that the receiver of a UC commit-
ment obtains no information about the value that was committed to. Hence, the
parties cannot prove in zero knowledge statements relative to their input/ran-
domness commitment. This issue is solved by introducing a more general commit-
and-prove functionality that essentially combines both the commitment and
zero-knowledge capabilities in a single functionality. In turn, the commit-and-
prove functionality can be realized using commitments and zero-knowledge
proofs.

In order to sanitize the GMW compiler, we follow a similar approach. Namely,
we introduce a sanitazable commit-and-prove functionality (denoted ̂FC&P and
depicted below) and show that this functionality suffices for our purpose. Intu-
itively, ̂FC&P allows the core Ci of each party Pi to (i) commit to multiple secret
inputs x, and (ii) prove arbitrary NP statements y (w.r.t. an underlying rela-
tion R that is a parameter of the functionality) whose corresponding witnesses
consist of all the values x. Whenever the core Ci commits to a value x, the fire-
wall Fi may decide to blind x with a random string r (which is then revealed
to the core). Similarly, whenever the core proves a statement y, the firewall Fi

may check if the given statement makes sense, in which case, and assuming the
statement is valid, the functionality informs all other parties that y is indeed a
correct statement proven by Pi.

Functionality ̂FC&P

The sanitizable commit-and-prove functionality ̂FC&P is parameterized by an NP
relation R, and runs with parties P1, . . . ,Pn (each consisting of a core Ci and
a firewall Fi) and an adversary S. The functionality consists of the following
communication interfaces for the cores and the firewalls respectively.

Interface IO
– Upon receiving a message (Commit, sid, cid,Ci, x) from Ci, where x ∈ {0, 1}∗,

record the tuple (sid, cid,Ci, x) and send the message (Receipt, sid, cid,Ci) to
Fi. Ignore future commands of the form (Commit, sid, cid,Ci, ·).

– Upon receiving a message (Prove, sid,Ci, y) from Ci, if there is at least one
record (sid, cid,Ci, ·) and a corresponding (Blind, sid, cid,Ci, ·) message was

sent to ̂FC&P, then send the message (Sanitize, sid,Ci, y) to Fi.
Interface S
– Upon receiving a message (Blind, sid, cid,Ci, r) from Fi, where r ∈ {0, 1}∗,

proceed as follows: if the tuple (sid, cid,Ci, x) is recorded, modify the tuple
to be (sid, cid,Ci, x̂ = x ⊕ r) and send the message (Blinded, sid, cid,Ci, r) to
Ci, and (Receipt, sid, cid,Ci) to all Cj �=i and S; otherwise do nothing. Ignore
future commands of the form (Blind, sid, cid,Ci, ·).

– Upon receiving a message (Continue, sid,Ci, y) from Fi, retrieve all tuples
of the form (sid, ·,Ci, x̂) and let x be the list containing all (possibly sani-
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tized) witnesses x̂. Then compute R(y, x): if R(y, x) = 1 send the message
(Proved, sid,Ci, y) to all Cj �=i and S, otherwise ignore the command.

In the full version [12], we show how to realize the sanitazable commit-and-
prove functionality from malleable dual-mode commitments, a primitive which we
introduce, and re-randomizable NIZKs for all of NP. Our commitment protocol
from Sect. 3 can be seen as a concrete instantiation of malleable dual-mode
commitments based on the DDH assumption.

5.2 Sanitizing the GMW Compiler

We are now ready to sanitize the GMW compiler. Let Π be an MPC protocol.
The (sanitized) protocol ̂ΠGMW is depicted below and follows exactly the ideas
outlined above adapted to the UC framework with reverse firewalls.

Protocol ̂ΠGMW (Sanitizing the GMW compiler)

The protocol is described in the ( ̂FC&P, FTOSS)-hybrid model, and is executed
between parties P1, . . . ,Pn each consisting of a core Ci and a firewall Fi. Party
Pi = (Ci,Fi) proceeds as follows (the code for all other parties is analogous).

Random tape generation: When activated for the first time, party Pi generates
its own randomness with the help of all other parties:
1. The core Ci picks a random si ∈ {0, 1}λ and sends (Commit, sidi, cidi, si) to

̂FC&P.
2. Upon receiving (Receipt, sidi, cidi,Ci) from ̂FC&P, the firewall Fi picks a ran-

dom ri ∈ {0, 1}λ and sends (Blind, sidi, cidi,Ci, ri) to ̂FC&P.
3. All the cores interact with FTOSS in order to obtain a public random string

s∗
i that is used to determine the random tape of Ci. Namely, each core Cj ,

for j ∈ [n], sends (Init, sidi,j ,Pj) to FTOSS and waits to receive the message
(Delivered, sidi,j ,Pj , s

∗
i ) from the functionality.

4. Upon receiving (Blinded, sidi, cidi,Ci, ri) from ̂FC&P, the core Ci defines r̂i =
s∗

i ⊕ (si ⊕ ri).
Input commitment: When activated with input xi, the core Ci sends
(Commit, sidi, cid

′
i, xi) to ̂FC&P and adds xi to the (initially empty) list of

inputs xi (containing the inputs from all the previous activations of the pro-

tocol). Upon receiving (Receipt, sidi, cid
′
i,Ci) from ̂FC&P, the firewall Fi sends

(Blind, sidi, cid
′
i,Ci, 0

|xi|) to ̂FC&P.
Protocol execution: Let τ ∈ {0, 1}∗ be the sequence of messages that were
broadcast in all activations of Π until now (where τ is initially empty).
1. The core Ci runs the code of Π on its input list xi, transcript τ , and ran-

dom tape r̂i (as determined above). If Π instructs Pi to broadcast a message,
proceed to the next step.

2. For each outgoing message μi that Pi sends in Π, the core Ci sends
(Prove, sidi,Ci, (μi, s

∗
i , τ)) to ̂FC&P, where the relation parameterizing the
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functionality is defined as follows:

R := {((μi, s
∗
i , τ), (xi, si, ri)) : μi = Π(xi, τ, s∗

i ⊕ (si ⊕ ri))} .

In words, the core Ci proves that the message μi is the correct next message
generated by Π when the input sequence is xi, the random tape is r̂i = s∗

i ⊕
(si ⊕ ri), and the current transcript is τ . Thus, Ci appends μi to the current
transcript τ .

3. Upon receiving (Sanitize, sidi,Ci, (μi, s
∗
i , τ)) from ̂FC&P, the firewall Fi veri-

fies that s∗
i is the same string obtained via FTOSS and that τ consists of all

the messages that were broadcast in all the activations up to this point. If
these conditions are not met, Fi ignores the message and otherwise it sends
(Continue, sidi,Ci, (μi, s

∗
i , τ)) to ̂FC&P and appends μi to the current tran-

script τ .
4. Upon receiving (Proved, sidj ,Cj , (μj , s

∗
i , τ)) from ̂FC&P, both the core Ci and

the firewall Fi append μj to the transcript τ and repeat the above steps.
Output: Whenever Π outputs a value, ̂ΠGMW generates the same output.

A few remarks are in order. First, and without loss of generality, we assume
that the underlying protocol Π is reactive and works by a series of activations,
where in each activation, only one of the parties has an input; the random tape
of each party is taken to be a λ-bit string for simplicity. Second, each party needs
to invoke an independent copy of ̂FC&P; we identify these copies as sidi, where
we can for instance let sidi = sid||i. Third, we slightly simplify the randomness
generation phase using the coin tossing functionality FTOSS. In particular, each
core Ci commits to a random string si via ̂FC&P; the corresponding firewall Fi

blinds si with a random string ri. Thus, the parties obtain public randomness
s∗

i via FTOSS, yielding a sanitized random tape r̂i = s∗
i ⊕ (si ⊕ ri) for party Pi.

Note that it is crucial that the parties obtain independent public random strings
s∗

i in order to determine the random tape of party Pi. In fact, if instead we
would use a single invocation of FTOSS yielding common public randomness s,
two malicious parties Pi and Pj could pick the same random tape by choosing
the same values si, ri, sj , rj . Clearly, the latter malicious adversary cannot be
reduced to a semi-honest adversary.
The theorem below states the security of the GMW compiler with reverse fire-
walls. The proof is deferred to the full version [12].

Theorem 4. Let F be any functionality for n parties. Assuming that Π UC
realizes F in the presence of up to t ≤ n − 1 semi-honest corruptions, then the
compiled protocol ̂ΠGMW wsrUC realizes F in the (FSAT, ̂FC&P,FTOSS)-hybrid model
in the presence of up to t malicious corruptions.

6 Conclusions and Future Work

We have put forward a generalization of the UC framework by Canetti [6,7],
where each party consists of a core (which has secret inputs and is in charge of



Universally Composable Subversion-Resilient Cryptography 301

generating protocol messages) and a reverse firewall (which has no secrets and
sanitizes the outgoing/incoming communication from/to the core). Both the core
and the firewall can be subject to different flavors of corruption, modeling the
strongly adversarial setting where a subset of the players is maliciously corrupt,
whereas the remaining honest parties are subject to subversion attacks. The
main advantage of our approach is that it comes with very strong composition
guarantees, as it allows, for the first time, to design subversion-resilient protocols
that can be used as part of larger, more complex protocols, while retaining
security even when protocol sessions are running concurrently (under adversarial
scheduling) and in the presence of subversion attacks.

Moreover, we have demonstrated the feasibility of our approach by designing
UC reverse firewalls for cryptographic protocols realizing pretty natural ideal
functionalities such as commitments and coin tossing, and, in fact, even for arbi-
trary functionalities. Several avenues for further research are possible, including
designing UC reverse firewalls for other ideal functionalities (such as oblivious
transfer and zero knowledge), removing (at least partially) trusted setup assump-
tions, and defining UC subversion-resilient MPC in the presence of adaptive
corruptions.
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Abstract. The question of minimizing the computational overhead of
cryptography was put forward by the work of Ishai, Kushilevitz, Ostro-
vsky and Sahai (STOC 2008). The main conclusion was that, under plau-
sible assumptions, most cryptographic primitives can be realized with
constant computational overhead. However, this ignores an additive term
that may depend polynomially on the (concrete) computational security
parameter λ. In this work, we study the question of obtaining optimal
efficiency, up to polylogarithmic factors, for all choices of n and λ, where
n is the size of the given task. In particular, when n = λ, we would like
the computational cost to be only Õ(λ). We refer to this goal as asymp-
totically quasi-optimal (AQO) cryptography.

We start by realizing the first AQO semi-honest batch oblivious lin-
ear evaluation (BOLE) protocol. Our protocol applies to OLE over small
fields and relies on the near-exponential security of the ring learning with
errors (RLWE) assumption. Building on the above and on known con-
structions of AQO PCPs, we design the first AQO zero-knowledge (ZK)
argument system for Boolean circuit satisfiability. Our construction com-
bines a new AQO ZK-PCP construction that respects the AQO property
of the underlying PCP along with a technique for converting statistical
secrecy into soundness via OLE reversal. Finally, combining the above
results, we get AQO secure computation protocols for Boolean circuits
with security against malicious parties under RLWE.

1 Introduction

The work of Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS08] put forward the
goal of minimizing the computational overhead of cryptography. This was defined
as the asymptotic ratio between the amount of work (say, Boolean circuit size)
required to securely realize a given cryptographic task of size n and the amount
of work required to realize the same task without any security at all. Here, n
denotes the size of a Boolean circuit specifying a functionality, for primitives
such as secure computation or zero-knowledge proofs, and just message size for
c© International Association for Cryptologic Research 2022
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simpler primitives such as encryption or commitment. The main conclusion of
[IKOS08] is that, under plausible assumptions, most cryptographic primitives
can be realized with constant computational overhead.

However, this ignores the significant additive term that may depend polyno-
mially on the (concrete) computational security parameter λ.1 That is, the com-
putational cost of the constant overhead protocol could be O(n + λc) for some
constant c > 1. As a consequence, amortized efficiency may only kick in when
n � λ, namely when the problem size is very big. For smaller instances, efficiency
(measured in terms of communication, computation, or other resources) can be
far from optimal. This is not only a theoretical concern, but also a practical
concern for many primitives that have good amortized efficiency.

Asymptotically Quasi-Optimal Cryptography. The question that motivates our
work is whether this is inherent. Can we get close to the best possible efficiency
for all choices of n and λ, in particular when n = λ? We refer to the goal
of achieving this up to polylogarithmic factors as asymptotically quasi-optimal
(AQO) cryptography. AQO requires that solving a problem of size n with λ bits
of security has computational cost (measured by Boolean circuit size) of ˜O(n+λ).
Modulo polylogarithmic factors, this represents the best possible solution, as the
costs of n and λ are both inherent for natural primitives.

We will sometimes also refer to the relaxed goal of AQO communication,
where the communication (or ciphertext size) is ˜O(n+λ), but the computational
cost may be larger. Here n refers to the communication complexity of realizing
the same task without security requirements.

We view AQO as a clean theoretical abstraction of a practically relevant
question, with an appealingly simple one-line description:

Solve a size-n cryptographic problem with efficiency Õ(n + λ).

AQO Cryptography: What’s Known and What Isn’t. In the domain of sym-
metric cryptography, the AQO goal is relatively easy to achieve. For instance,
natural generalizations of popular block ciphers such as AES are conjectured to
be AQO [MV15]. In fact, even with a constant (rather than polylogarithmic)
overhead, most symmetric primitives can be realized under plausible hardness
assumptions. This includes one-way functions [Gol00], pseudorandom genera-
tors [AIK08,BIO14], collision-resistant hashing [AHI+17], and pseudorandom
functions [BIP+18]. For public-key encryption and statistically binding commit-
ments, we have AQO schemes from Ring-LWE [LPR10,LPR13,LS19,GHKW17],

1 Throughout this paper, the security parameter λ refers to bits of concrete secu-
rity, requiring that no adversary of circuit size 2λ can gain better than 2−λ advan-
tage. This is a natural and robust notion of concrete security. An alternative notion
that settles for negligible advantage is not as robust, analogously to relaxing stan-
dard security definitions by requiring that every polynomial-time adversary has o(1)
advantage (rather than negligible in the sense of sub-polynomial).
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Table 1. Some representative examples in the AQO Landscape.

Primitive Assumption Reference

Secret-key Encryption Generalized AES [DR02,MV15]

Ring-LWE [LPR10]

Ring-LPN [HKL+12]

Mod-2/Mod-3 PRFs∗ [BIP+18]

Public-key Encryption Elliptic Curve CDH/DDH† [Gam85]

Ring-LWE [LPR10]

String-OT Elliptic Curve DDH† [NP01,AIR01]

Ring-LWE Folklore‡

Batch-OT Ring-LWE This work

Single-OLE Ring-LWE This work

Batch-OLE Ring-LWE This work

Additively Homomorphic Encryption∗∗ Ring-LWE [LPR10]

(Malicious-Verifier) Zero-Knowledge Ring-LWE This work

(Malicious) Two-party Computation Ring-LWE This work

Entry labeled with ∗ was conjectured to achieve asymptotically optimal security (i.e.,

same as AQO but without the polylog factors).
† denotes solutions with AQO communication but not AQO computation, e.g. elliptic

curves that employ exponentiation, making their computational complexity at least

quadratic.
‡ The folklore protocol for string-OT uses the fact that the [LPR10] Ring-LWE-based

PKE is additively homomorphic which gives us a leaky-OT. This can in turn be cor-

rected via randomness extraction.
∗∗ indicates measuring the complexity of (non-function-private) homomorphic point-

wise addition or scalar multiplication of two vectors of plaintexts.

and for collision-resistant hashing and statistically hiding commitments, we have
AQO schemes from Ring-SIS [Mic02,PR06,LM06].

Besides these, the case for other central cryptographic primitives such as zero-
knowledge proofs and secure computation, seems to be wide open and for good
reasons, as we discuss below. We refer to Table 1 for more examples in the AQO
landscape. By “batch-OT” and “batch-OLE” we refer to a semi-honest secure
two-party protocol for n copies of oblivious transfer (OT) or its generalization
to oblivious linear-function evaluation (OLE) modulo p ≤ poly(λ), which will be
discussed in detail later.

Where Do Previous Techniques Fail? The main technical challenge in achiev-
ing AQO is the question of how to amplify soundness or privacy without näıve
repetition (or similar techniques). Traditional techniques such as statistical
noise-flooding (for lattice-based OLE), arithmetization over big fields, or cut-
and-choose (for zero knowledge and secure computation) all fall short of this
goal. Even techniques that do achieve this goal in an amortized sense (such as
“constant-overhead” semi-honest 2PC from a local PRG [IKOS08] or ZK based
on robust honest-majority MPC [IKOS07,DIK10]) incur quadratic (in λ) addi-
tive terms, seemingly for inherent reasons.

An additional challenge for public-key AQO cryptography is that standard
“number-theoretic” constructions fail for two reasons. First, common number-
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theoretic operations, such as modular exponentiation over a λ-bit modulus, are
only known to have circuits of size ˜O(λ2). Second, factoring λ-bit integers or
discrete logarithm modulo a λ-bit prime can be done in time 2λc

for c < 1,
which requires working with numbers of size λc′

for c′ > 1.
This leaves us with essentially elliptic curve discrete logarithms and (ring)

learning with errors. In the case of elliptic curves, computations typically require
exponentiation, and in the case of learning with errors, computations typically
require matrix multiplication, both of which require superlinear time which
rules out computational quasi-optimality. This leaves us the ring learning with
errors assumption [LPR10,LPR13] with the unique status of helping us go
beyond communication AQO. On the one hand, the problem is believed to be
quasi-exponentially hard in the bit-length of the instance; and on the other
hand, operations typically involve multiplication of two O(λ)-degree polyno-
mials over a number field, which can be performed in quasi-linear ˜O(λ) time
using the (number-field version of) fast Fourier transform. Finally, Ring LWE
has proven itself to be versatile not only in theory, having helped us construct
fully homomorphic encryption [BV11b,BGV12,GHS12], but also in practice with
the NIST standardization effort for post-quantum-secure public-key cryptogra-
phy [Moo16].

Challenges for Secure Computation. In the semi-honest model, AQO secure com-
putation reduces to an AQO batch-OT via classical techniques [GMW87,Gol04].
This in turn reduces to AQO batch-OLE, which is a more natural target in the
context of lattice-based constructions. Several Ring-LWE based batch-OLE pro-
tocols have been proposed in the literature. The vanilla batch-OLE from Ring-
LWE uses noise-flooding to ensure sender privacy, and this causes the commu-
nication and computation to be of size O(n · λ) where λ is a statistical security
parameter, and hence is not AQO. Alternative techniques for circuit-private
FHE without noise-flooding also fall short of the AQO goal: [DS16] involves λ
iterations of bootstrapping to “rinse out” the noise, and [BPMW16] requires
homomorphic evaluation of a branching program of size Ω(λ). Even ignoring
AQO, these approaches do not seem attractive from a concrete efficiency view-
point.

Challenges for Security Against Malicious Parties. Going beyond semi-honest
security and achieving security against malicious parties in the AQO set-
ting poses additional challenges. Common cut-and-choose techniques in zero-
knowledge proofs and secure computation protocols [LPS08,HKE13,Lin16,
WRK17] incur a multiplicative overhead of at least λ to achieve simula-
tion error 2−λ. This is also the case when embedding a Boolean computa-
tion into an arithmetic computation over a big field F to achieve soundness
O(1/|F|) [BCG+17,XZZ+19,CDI+].

MPC-in-the-head techniques [IKOS07,IPS08,AHIV17,HIMV19] can improve
over standard cut-and-choose techniques by achieving a better amortized over-
head, as low as polylog(λ) [DIK10]. However, the underlying MPC protocols
incur an additive communication overhead of at least Ω(λ2). This also applies
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to all known succinct zero-knowledge argument systems, including those based
on classical PCPs and IOPs (e.g., [Kil92,BCS16,BBHR19,BCR+19,ZXZS20,
CY21,RR21]) and linear PCPs [IKO07,Gro10,GGPR13,BCI+13,BISW18].

Finally, there is a rich and productive literature constructing zero-knowledge
protocols for NP statements assuming RLWE [BKLP15,LS18,BBC+18,BLS19,
BLNS20]. To the best of our knowledge, these protocols cannot even achieve
AQO communication, let alone computation. The reason is subtle. Focusing on
ZK protocols for RLWE statements, the protocols seem to fall into one of two
categories. The first type incurs large soundness error which is then repeated
˜O(λ) times to get 2−λ soundness, and thus has at least a quadratic in λ overhead.
The second type is a direct proof with exponentially small soundness error and
AQO efficiency, but for a weaker NP statement related to RLWE which does not
seem directly applicable to constructing ZK proofs for general NP statements.2

We refer the reader to an extensive discussion in [BLS19] who, with a great deal
of ingenuity, reduce the number of parallel repetitions required in the first type
of protocols in order to achieve 2−λ soundness from λ to λ/logλ.

1.1 Our Results and Techniques

Our Results, in a Nutshell. Our results are three-fold. First, we show AQO
protocols for batch-oblivious linear evaluation (batch-OLE) and batch-oblivious
transfer (batch-OT)3 which are secure against semi-honest corruptions under
the Ring Learning with Errors (RLWE) assumption.

Secondly, in the case of batch-OLE, we improve this to obtain asymptotic
download rate that approaches 1. This gives an AQO variant of recent rate-
1 constructions from [DGI+19,BDGM19,GH19], which require uncompressing
batched ciphertexts. In contrast, our construction is a simple tweak on an old
encryption scheme due to Peikert, Vaikuntanathan and Waters [PVW08], a
batched version of Regev’s encryption [Reg05]. The high rate of our construction
gives rise (via a simple extractor-based transformation [BGI+17]) to an AQO
construction of statistically sender-private (SSP) 2-message OT from RLWE.
Beyond the AQO feature, this gives an alternative route to recent lattice-based
constructions of SSP OT [BD18,DGI+19,MS20].

Finally, we use the batch-OT to construct AQO zero-knowledge and secure
computation protocols for Boolean circuits with security against malicious par-
ties. These protocols too are secure under RLWE.

Our goal was to answer a clean theoretical question. However, as it turned
out, our solution for AQO batch-OLE is competitive in practice, especially for
small instance sizes (and small fields). While the AQO definition may not say

2 We remark that the statements we want are proofs (of knowledge) of a short secret s
such that As = t over a ring. On the other hand, the second type of protocols prove
that there is a short secret s such that As equals a short multiple of t.

3 Recall that Batch-OT/OLE refers to multiple OT/OLE instances carried out in
parallel.
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anything about concrete efficiency for real-world parameters, we view this empir-
ical data point of correlation between “AQO security” and “concrete efficiency”
as a promising sign.

We now proceed to describe our results and techniques in more detail.

Semi-Honest Batch-OLE: AQO and Concretely Efficient. Oblivious linear eval-
uation (OLE) is a protocol between two parties S, the sender who has a linear
function Lα,β(x) = αx + β over a finite ring R, and R, the receiver who has
an input m ∈ R. At the end of the protocol, R gets Lα,β(m) = αm + β, and
the sender gets nothing. OLE is a generalization of oblivious transfer (OT) over
fields (and rings) larger than F2, and has numerous applications, notably in
secure computation. We consider the n-fold repetition of the OLE functionality,
called batch-OLE, where the sender has α, β ∈ Rn, the receiver has m ∈ R and
gets α◦m+β ∈ Rn where ◦ denotes a coordinate-wise product. Here we consider
the case of batch-OLE over a polynomial-size modulus, namely where R = Zp

for p ≤ poly(λ).
We show the first construction of a semi-honest batch-OLE protocol which

is asymptotically quasi-optimal. Our protocol has minimal interaction of just
two rounds, and its security is based on the ring learning with errors (RLWE)
assumption. In the parameter regimes in which our protocol has competitive
concrete efficiency, it can be useful for realizing the distributed seed generation of
pseudorandom correlation generators (PCGs) for OLE and multiplication triples
based on Ring-LPN [BCG+20].

Our starting point is a folklore batch-OLE scheme using a batched version
of the classical Lyubashevsky-Peikert-Regev [LPR10] encryption scheme (hence-
forth called LPR encryption). The encryption scheme works over a message space
Rp := Zp[x]/(xk + 1) where k is a power of 2 and xk + 1 factors completely into
linear factors mod p.4 To encrypt a vector m ∈ Z

k
p, we first find, using the num-

ber theoretic transform (NTT), a polynomial m̂ such that m̂(ζi) = mi (mod p)
for all i ∈ [k]. Here, ζi ∈ Zp are the k roots of the polynomial xk + 1 (mod p)
which exist by our choice of p = 1 (mod 2k). The ciphertext

ct = (a, as + e + Δm̂) := (a, b)

where Δ = �q/p�,5 s is a random ring element and e is a short ring element.
The receiver in our OLE generates a ciphertext ct that encrypts his input m

and sends ct to the sender. By the semantic security of LPR encryption, which
relies on RLWE, the sender learns nothing about m.

The sender has α, β ∈ Z
k
p and wishes to homomorphically compute the (lin-

ear) OLE function. They do this by computing and returning to the receiver

cteval = (α̂a, α̂b + Δ̂β)

which one can easily check is an encryption of α ◦ m + β.
4 We denote the Ring-LWE dimension by k, and the OLE batch-size by n.
5 We typically pick q to be a multiple of p so the rounding is not necessary.
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The main problem with this idea is the lack of function privacy. That is, the
homomorphically evaluated ciphertext could contain information not just about
α◦m+β, but about α and β themselves. Indeed, this is not hard to see as the first
component of ct′ reveals α already. This can be solved using rerandomization:
the receiver can send a rerandomization key that allows the sender to generate a
pair (a′, b′ := a′s + e′) with a (statistically close to) random a′, which they add
to cteval. This results in a rerandomized ciphertext

ct′eval = (α̂a + a′, α̂b + b′ + Δ̂β)

where the first component is statistically close to random. Still, we are not done:
the receiver who knows s can retrieve terms such as α̂e + e′ which could reveal
significant information about α.

The typical way to get around this problem is to add to ct′ a very-high-
noise encryption of 0 (namely, one with a very large e′) that will mask such
terms. In particular, one appeals to the so-called noise-flooding lemmas [Gen09,
AJL+12,GKPV10] that requires adding noise that is a factor 2λ larger than α̂e
to achieve 2−λ (statistical) security. Unfortunately, this blows up ciphertext sizes
by a multiplicative factor of λ, resulting in a communication of O(kλ), violating
the demands of AQO efficiency. (Recall that we need ˜O(k + λ).)

At a high level, our main observation is that noise flooding is too strong
a hammer to achieve function privacy and therefore sender privacy. Instead,
our main contribution is a gentle noise-flooding procedure that gives us AQO
efficiency. We start by imagining what happens if we only add a small amount
of noise to each coordinate, in fact, just a constant factor larger than ‖α̂e‖∞.

To illustrate this concretely, imagine that each coordinate t of α̂e lives in the
interval [0, 10] and we add a noise term η chosen randomly from the interval
[0, 20]. If r = t + η lands up in the interval [10, 20], it reveals no information
about what t was to begin with! Indeed, all values of t in the interval [0, 10] are
equally likely conditioned on such a “good” r. In other words, by adding noise
that is a constant factor larger than ‖α̂e‖∞, one could hope to hide a constant
fraction of the coordinates of α̂e. This is formalized as our gentle noise-flooding
lemma (Lemma 3).

This is still not enough as leaking a constant fraction of α̂e′ is not accept-
able. However, this predicament we are in should point to secret-sharing as a
possible way out. Indeed, our solution is to use a suitable modification of the
OLE extractors of [IKOS09a,BMN18a] to extract fresh OLE instances from these
“leaky” OLE instances. In a nutshell, to achieve AQO efficiency, we instantiate
the compiler of Block, Gupta, Maji and Nguyen [BGMN18] with a Reed-Solomon
code which admits quasi-linear time encoding and erasure-decoding. We can also
achieve AQO batch-OT by embedding OT into OLE using a standard technique.

Finally, we show a simple modification of (a ring version of) the PVW encryp-
tion scheme [PVW08] which, when used in place of LPR encryption, gives us
a download-rate-(1 − ε) batch-OLE. Namely, the sender message has length
(1 + ε)klog p for any constant ε > 0. Note that this is smaller than the total



310 L. de Castro et al.

length of the sender input (namely, 2klog p), thus the sender input is somewhat
statistically hidden even if the receiver is malicious.

On Asymptotic Quasi-Optimality vs. Concrete Efficiency. Asymptotic quasi-
optimality is a theoretical framework to capture efficiency of cryptographic pro-
tocols, with an eye towards practicality. To demonstrate the latter, we provide
an implementation of our batch-OLE protocol and benchmark it against sev-
eral competing approaches [BDOZ11,dCJV21,BEP+20], demonstrating that it
achieves as good or better communication and/or computational overhead than
the competing approaches. Due to lack of space, we defer detailed performance
results and comparisons to the full version of this paper. The computational and
communication complexity is as good as the rounding protocol in [dCJV21] and
considerably better than other competing approaches [BDOZ11,BEP+20]. For
example, doing 10,000 OLEs over a 16-bit field requires a communication of 1.17
MB in our protocol versus 1.31 MB in the protocol of [dCJV21] and 2.09 MB in
the protocol of [BEP+20].

AQO Zero Knowledge. We show the first construction of a zero-knowledge proof
for all of NP that is asymptotically quasi-optimal in both computation and
communication. Furthermore, our protocol is constant-round. Our starting point
is an asymptotically quasi-optimal PCP that is implicit in prior works on near-
optimal PCPs [BS08,BCGT13]. We abstract such an AQO PCP via a gap version
of Cook’s theorem (cf. Theorem 4). Our construction proceeds in three steps:

1. We first compile the AQO PCP into an honest-verifier AQO zero-knowledge
PCP (ZKPCP). Recall that in such a ZKPCP, the view of an honest verifier
can be simulated without knowing the witness. Our construction relies on the
“MPC-in-the-head” technique from [IKOS07,IW14]. For the compilation, we
design a specialized MPC protocol that preserves the AQO property of the
underlying PCP.

2. In the next step, we construct an AQO honest-verifier ZK from our ZKPCP,
using batch-OT to emulate the PCP queries. As we are constructing a proof
(with unconditional soundness), we need the batch-OT to be uncondition-
ally secure against a malicious sender. However, we are unable to obtain
such a protocol directly from our semi-honest batch-OT protocol (in fact, our
malicious batch-OT protocol will rely on the zero-knowledge proof system
designed here). Instead, we design a new AQO batch-OT protocol based on
Ring-LWE with two caveats: it is unconditionally secure against a malicious
receiver as opposed to the sender, and it is only entropically secure in the
sense that a malicious receiver obtains some bounded leakage on the sender’s
input. By reversing the OT direction [WW06], we solve the problem of get-
ting security against a malicious sender. Finally, we show that the entropy
loss in the sender’s input only reduces the ZKPCP soundness in our honest-
verifier ZK proof system by essentially the loss in entropy. By appropriately
instantiating the parameters, we preserve AQO in this reduction.

3. Finally, to handle a malicious verifier, we have the verifier commit to its
randomness for the honest-verifier ZK system and reveal it to demonstrate
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honest behavior. As the verifier can abort at reveal, we need to ensure that
the actual proof is not learned by the verifier before it demonstrates honest
behavior. We achieve this by having the prover commit to the proof and reveal
it after the verifier reveals its randomness. By using an AQO commitment,
we ensure this step preserves the AQO property.

Thus, a key insight in this construction is that a leaky (entropically secure)
batch-OLE scheme is good enough because we only use it for soundness.

AQO Secure Function Evaluation. Finally, we discuss how to achieve AQO
secure function evaluation (SFE) for Boolean circuits in the presence of semi-
honest and malicious adversaries. Loosely speaking, semi-honest SFE is implied
directly by instantiating a variant of the classic GMW protocol [GMW87,Gol04]
with our AQO semi-honest batch-OT. Next, to compile it to achieve malicious
security, we first compile our semi-honest batch-OT protocol to be secure against
malicious parties using our AQO ZK. Our protocol then relies on the semi-honest
GMW protocol where the OTs are instantiated using our maliciously secure OT
protocol. Next, we rely on the observation from [GIP+14] that if we remove
the final output reconstruction round from the semi-honest GMW protocol in
the OT-hybrid model, then it does not reveal any information even to malicious
parties. This allows us to use a single zero-knowledge proof (rather than one
in each step of the protocol) to be provided just before the output shares are
revealed. As a corollary, we get an AQO single OLE over an arbitrary modulus.

1.2 Perspectives and Open Problems

Theoretical Motivation. Our original motivation for this work was to design
efficient solutions when the instance size n was small, i.e. n = O(λ) where λ
is the security parameter. We expect that studying this question will lead to
creative ways to solve problems such as OT, OLE, ZK, and MPC.

Our optimism is based on past examples. Several lines of research have started
from clean questions of this kind and turned out to have unexpected theoretical
and practical applications. Some examples include lattice-based cryptography,
black-box reductions and, closer to our work, low-complexity cryptography. A
common feature is that a new theoretical challenge has led to a rich landscape
of new techniques, which have then found other applications.

Practical Motivation. As already mentioned, our (semi-honest) batch-OLE pro-
tocol gives a promising evidence for relevance of the asymptotic AQO question
to concrete efficiency. Batch-OLE can serve as a useful building block for secure
arithmetic computation, and can be used to bootstrap pseudorandom correlation
generators for OLE [BCG+20]. In contrast, our current AQO zero-knowledge
protocol is impractical because of its reliance on a classical PCP.

Open Problems. The central creative challenge in achieving AQO is to find new
ways of amplification. While we succeeded in some cases, many questions about



312 L. de Castro et al.

AQO cryptography remain open and motivate future research. We include here
some open questions.

First, while there are AQO constructions of minicrypt objects from a variety
of assumptions, the only AQO public-key encryption scheme we are aware of is
based on Ring-LWE. There are likely to be other ways to achieve AQO cryp-
tomania, and we believe this is an interesting challenge for future research. A
second question is obtaining concretely efficient AQO zero-knowledge proofs. A
possible route is by employing a suitable AQO variant of a linear PCP (such
as the one of Gennaro et al. [GGPR13]), where the field size is kept small
and soundness is amplified by using λ queries, but with only a polylogarith-
mic increase in computation. Third, the notion of AQO reductions (which we
used to construct AQO semi-honest SFE from AQO batch-OT) leaves several
open questions. For instance, is there an information-theoretic AQO reduction
of zero-knowledge proofs to batch-OT? Finally, the idea of using leaky function-
alities (such as batch-OT or batch-OLE) in downstream applications, which we
used to construct our AQO ZK protocol, could be useful in other contexts.

2 Preliminaries

Basic Notations and Conventions. We denote the security parameter by λ and
by the abbreviation PPT to denote probabilistic polynomial-time. We write Õ(·)
to suppress polylogarithmic factors. In this work we consider nonuniform adver-
saries that are modeled by Boolean circuits.

2.1 Asymptotic Quasi-Optimality

In this section, we define the notion of asymptotic quasi-optimality (AQO) for the
cryptographic primitives we explore in this work. Recall that a major distinction
between this notion and some earlier notions of asymptotic (quasi)-optimality
from the literature [IKOS08,DIK10,BCG+17,BISW18] is that here, we demand
(and obtain) a near-optimal tradeoff between security and efficiency for every
instance size and security level, as opposed to sufficiently big polynomial-size (in
the security parameter) instances. In contrast, previous works neglect additive
terms that depend polynomially on the security parameter. For all primitives,
we define a notion of instance size that we denote by n and a security parameter
λ. Informally, asymptotic quasi-optimality demands that the algorithms for the
primitives run in time Õ(n+λ) and provides 2−λ-security against adversaries of
size 2λ.

We now describe how such a definition manifests in the case of two-party
secure function evaluation. Here, the instance size n refers to the size of a Boolean
circuit implementing the underlying functionality. Such protocols are formally
captured by a polynomial-time protocol compiler that, given inputs the security
parameter 1λ and a circuit C, outputs a pair of circuits (P0, P1) that implements
the next message function of the two parties in the protocol. The AQO efficiency
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requirement is that the size of the circuits P0 and P1 output by the compiler is
quasilinear in n + λ.

While the correctness requirement (when no party is corrupted) should hold
irrespective of the choice of λ,C, the security requirement only considers adver-
saries of size at most 2λ. The definition follows the standard definition of security
for two-party secure function evaluation [Gol04] with the exception that we use
the following “exact” notion of 2λ-indistinguishability:

Definition 1. Let X = {X(λ, a)}λ∈N,a∈{0,1}∗ and Y = {Y (λ, a)}λ∈N,a∈{0,1}∗

be two distribution ensembles. We say that the ensembles X and Y are 2λ-
indistinguishable, denoted X ≈2λ Y , if for every non-uniform circuit D of size
at most 2λ, every a ∈ {0, 1}∗, and all sufficiently large λ,

∣

∣

∣

∣

Pr
[D(X(λ, a), 1λ, a) = 1

] − Pr
[D(Y (λ, a), 1λ, a) = 1

]

∣

∣

∣

∣

≤ 2−λ.

The definitions for other AQO primitives considered in this paper follow as
special cases of AQO secure function evaluation. We defer the formal definitions
to the full version of this paper.

2.2 Ring Learning with Errors

Define the ring R := Z[x]/(xk + 1), where we take k to be a positive power of 2.
For a modulus q, let Rq = Zq[x]/(xk +1). Let U(Rq) be the uniform distribution
over Rq. For σ ∈ R

+, let χ denote the error distribution, which is a discrete,
zero-centered Gaussian distribution with variance σ2 over R. A sample e ← χ
is produced by sampling each coefficient from a discrete, zero-centered Gaussian
with variance σ2. We now define the decisional Ring-LWE problem [LPR10],
borrowing formalisms from [BEP+20].

Definition 2 (Decisional Ring Learning with Errors Problem). For a
modulus q ∈ N

+, k a power of 2, and a standard deviation σ ∈ R
+, let Rq and

χ be as defined above. We say that an algorithm A has advantage ε in solving
the problem RLWEn,q,χ if the following holds:

∣

∣

∣ Pr[b = 1 | a ← U(Rq), s, e ← χ, b ← A(a,as + e)]

− Pr[b = 1 | a ← U(Rq), u ← U(Rq)), b ← A(a,u)]
∣

∣

∣ ≥ ε

The decisional ring-LWE assumption postulates that every 2λ-time adversary has
advantage at most 2−λ in the distinguishing game above.

In order to achieve the definition, one would set k = k(λ) to be a large enough
polynomial function of λ. The cryptanalytic state of the art suggests that k(λ)
can be quasi-linear in λ.
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2.3 Ring-LWE Encryption

We describe a batched version of an encryption scheme from Lyubashevsky, Peik-
ert and Regev [LPR10] (henceforth called batch-LPR). There are four parame-
ters that define the scheme: k = k(λ), the ring dimension; q = q(λ), the cipher-
text modulus; p = p(λ), the plaintext modulus; and χ, an error distribution.
There are several constraints on these parameters that we will describe in the
sequel.

The scheme operates over the polynomial ring Rq = Zq[x]/(f(x)) where f(x)
is a degree-k polynomial that is irreducible over Q[x]. Typically, and throughout
this paper, we consider f(x) = xk + 1 where k is a power of two.

We will let χ be a (truncated) discrete Gaussian distribution over Zk which is
interpreted as a distribution over the coefficient embedding of R = Z[x]/(xk+1).
Thus, a polynomial v ∈ R is sampled according to the distribution by sampling
each coefficient independently from a truncated discrete Gaussian, namely a
discrete Gaussian with standard deviation σ whose support is contained in an
Euclidean ball of radius σ

√
k. Note that we truncate the Gaussian distribution

to have statistical distance of at most 2−k ≤ 2−λ from the untruncated Gaussian
distribution [MR04], hence truncation adds a 2−λ factor in security games, which
we typically ignore. Let U(Rq) be the uniform distribution over Rq.

Encryption Scheme. The encryption scheme proceeds as follows. The param-
eters k, p, q and σ are assumed to be known to all the algorithms.

– LPR.KeyGen(1λ): Choose a1, . . . , a�, s ← U(Rq) and e1, . . . , e� ← χ, where
� is a tunable parameter that will be set later during the rerandomization
procedure. Output the secret key sk = s and the rerandomization key rk =
(a1, . . . , a�, a1s + e1, . . . , a�s + e�).

– LPR.Encode(p,m) and LPR.Decode(p, m̂): The public, deterministic, encod-
ing algorithm transforms the message into a form that will be used by the
encryption algorithm, and the public decoding algorithm is its inverse oper-
ation. Both operations are linear.
The plaintext space for batch-LPR is Z

k
p. To encode m ∈ Z

k
p, apply the

number-theoretic transform (NTT) over Rp := Zp[x]/(xk + 1) to con-
vert it into m̂ ∈ Rq. The key property is that for every m1,m2 ∈ Z

k
p,

m1◦m2 = LPR.Decode(m̂1 ·m̂2) where · denotes multiplication of polynomials
in Rp and ◦ denotes coordinate-wise multiplication of vectors in Z

k
p.

– LPR.Enc(sk,m): Sample a ← Rq and e ← χ. Let Δ = �q/p and let m̂ =
LPR.Encode(p,m). Output the ciphertext

ct = (a, as + e + Δm̂) ∈ R2
q

(In this paper, q will be chosen as a multiple of p, so Δ = q/p.)
– LPR.Dec(sk, ct): Parse sk = s. Decryption of a ciphertext ct = (a, b) proceeds

by computing

m̂ =
⌊

b − as

Δ

⌋
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Output LPR.Decode(p, m̂).

Correctness, Security and Parameter Settings. There are several interrelated
constraints on the parameters that must be balanced when instantiating the
scheme. For correctness, we need that

||b − as||∞ ≤ Δ/2 ≈ q/2p

This places a lower bound on q = Ω(pσ2
√

k). Since we insist on full utilization of
all k plaintext slots, we require Z[x]/(xk +1) to split completely mod p, requiring
us to have p = 1 (mod 2k). Thus, we have q > p ≥ 2k + 1. (Additionally to
support quasi-linear time operations, we will also need to support NTT mod q,
so we requires the factors of q to be 1 (mod 2k) as well.)

The relationship between parameters is further complicated because of homo-
morphic operations, which can grow the error term in the ciphertext. To maintain
correctness, this may require the ciphertext modulus q to grow. Increasing q can
raise the lower bound on k since the known attacks on Ring-LWE improve in
quality as the ratio between q and σ increases; to compensate for it, one needs
to increase k. In turn, this increases the smallest p that can be supported.

Homomorphic Operations. We now define two basic homomorphic opera-
tions on the encryption scheme that allow us to construct a batch-OLE protocol.
The first operation Lin supports linear functions of the form fα,β(m) = α◦m+β.
It is often desirable that homomorphic operations produce a ciphertext that does
not leak the circuit computed to generate the ciphertext, even to the party that
generated the input ciphertext and who knows the secret key. This property
is often called function privacy [Gen09,GHV10] and is not satisfied by the Lin
algorithm. To achieve this function-hiding property, we need a rerandomization
algorithm ReRand.

– LPR.Lin(ct, α, β): The homomorphic addition algorithm outputs a ciphertext
ct′ that decrypts to α◦m+β if ct encrypts m. Letting ct = (a, b), the algorithm
outputs

ct′ = (α̂a, α̂b + Δ̂β)

where α̂ = LPR.Encode(p, α) and ̂β = LPR.Encode(p, β). Note that while
we think of the output of LPR.Encode as living in Rp, we think of it as a
polynomial over R when multiplying it with a and b.
Denoting α̂a by a′, the ciphertext ct′ is of the form (a′, a′s+ α̂e+Δ(α̂m̂+ ̂β).
Assuming that α̂e is small enough, decrytion recovers α̂m̂ + ̂β and decoding
it recovers α ◦ m + β.

– LPR.ReRand(rk, ct, B): Let χflood be the uniform distribution over [−B,
. . . , B]. The rerandomization operation parses rk = (a1, a2, . . . , a�, b1, b2,
. . . , b�) and ct = (a, b) and outputs

(a +
�

∑

i=1

riai + r0, b +
�

∑

i=1

ribi + f)
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where ri are polynomials with coefficients from a discrete Gaussian distribu-
tion, and f is a random polynomial with coefficients chosen from χflood.
Denoting the first component of the above ciphertext by a′, and assum-
ing that b = as + e + Δm̂, the second component can be written as
a′s + e +

∑�
i=1 riei + Δm̂. This is an encryption of m̂ as long as the error

e +
∑�

i=1 riei is small enough.

The rerandomization procedure is often used with B > 2λ · pσ2k. Indeed,
pσ2k is an upper bound on the �∞ norm of the noise term in the output of
Lin. By the noise-flooding lemma [Gen09,GKPV10,AJL+12], this gives us 2−λ

statistical security of LPR.ReRand. In this work, we will use a narrower flooding
distribution.

2.4 Entropy and Extraction

The min-entropy of a random variable X is H∞(X) = −logmaxx Pr[X = x].
The conditional min-entropy of X given Y , defined in [DORS08], is H̃∞(X|Y ) =
−log Ey[maxx Pr[X = x|Y = y]]. We need the following fact.

Lemma 1 (Lemma 2.2 in [DORS08]). Let X,Y,Z be random variables where
Y takes at most 2� possible values. Then,

H̃∞(A|B,C) ≥ H̃∞(A,B|C) − � ≥ H̃∞(A|C) − � .

We also need the following regularity lemma [Mic02,LPR13].

Lemma 2 (Corollary 7.5 in [LPR13]). Let a1, . . . , a� be chosen at random
from Rq = Z[x]/(xk + 1) where k is a power of two, and let r0, r1, . . . , r� be
ring elements each of whose coefficients is chosen from a discrete Gaussian with
parameter σ ≥ 2k · q(n+2)/n�. Then the distribution of r0 +

∑�
i=1 riai (given

a1, . . . , a�) has statistical distance at most 2−Ω(k) from the uniform distribution
over Rq.

3 AQO Semi-Honest Batch-OLE and Batch-OT

We begin this section with our first technical contribution, namely a gentle
noise-flooding procedure. We then use this to construct our asymptotically quasi-
optimal batch-OLE and batch-OT schemes in Sect. 3.3.

3.1 Gentle Noise-Flooding

The noise-flooding lemma (e.g. [Gen09,GKPV10]) states that for every integer
x ∈ [−P, P ], the distribution of x + y where the integer y is chosen uniformly at
random from the interval [−Q,Q] is statistically close to the uniform distribution
over the interval [−Q,Q]. Specifically, the statistical distance is O(P/Q). Typi-
cally, this lemma is used with Q ≥ P · 2λ so as to result in exponentially small
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statistical distance. Our gentle noise-flooding lemma below shows a qualitatively
stronger statement: the distribution of x + y can be perfectly simulated by an
algorithm that gets x with probability 2P/(2Q + 1) (and ⊥ otherwise). This is
a specific, simple, instance of a statistical-to-perfect lemma as in [IKO+11].

Let D = {Da}a∈A be an ensemble of distributions indexed by a variable a ∈
A. An ε-leaky perfect simulator for D is an algorithm S such that the distribution
obtained by outputting S(a) with probability ε and S(⊥) with probability 1 − ε
is identically distributed to Da.

Lemma 3 (Gentle Noise Flooding Lemma). Let P,Q be integers with P <
Q. Let the encoding of a ∈ [−P, P ], denoted Encode(a) be s = a + r where r is
chosen uniformly from [−Q,Q]. Then, there exists a 2P/(2Q + 1)-leaky perfect
simulation for the encoding scheme.

Proof. We first analyze the distribution Encode(a). Consider two cases.

– Case 1: P −Q ≤ s ≤ Q−P . In this case, we argue that no information about
a is leaked. For any s such that P − Q ≤ s ≤ Q − P , and any a ∈ [−P, P ],
there is a unique r ← [−Q,Q] such that s = a + r. This implies that for any
a,

Pr[Encode(a) = s | s ∈ [Q − P, P − Q]] = 1/(2Q − 2P ).

Furthermore, the probability that we are in Case 1, i.e., s ∈ [P − Q,Q − P ]
is exactly (2Q − 2P + 1)/(2Q + 1).

– Case 2: s < P −Q or s > Q−P . In this case, s leaks something about a. As
the number of r’s that result in Case 1 is exactly 2Q − 2P + 1, the number
of bad r’s is exactly 2P . Therefore, the probability that this case occurs is
2P/(2Q + 1).

We now define S to be the algorithm that works as follows. On input ⊥, it
simply outputs a uniformly random value in [P − Q,Q − P ]; and on input a, it
outputs a+r conditioned on a+r �∈ [P −Q,Q−P ] where r is chosen uniformly at
random from [−Q,Q]. The distributions induced by S(⊥) and S(a) are identical
to the distributions from Cases 1 and 2 respectively. Since Case 2 occurs with
2P/(2Q + 1) probability, we achieve 2P/(2Q + 1)-leaky perfect simulation. ��
Corollary 1. Let Q ≥ kP . Let a ∈ [−P, P ]k be arbitrary and let s = a+r where
r ← [−Q,Q]k is chosen at random. Then, there exists a simulator S that takes
O(λ · (logP + logk)) bits of information on a and simulates the distribution of s
to within statistical distance 2−Ω(λ).

The statistical-to-perfect simulator S in the proof of Lemma 3 uses 2P/(2Q+
1) · k < 2 coordinates of a (their values together with their locations) in expec-
tation. The corollary follows by a Chernoff bound.

3.2 Entropically Secure Batch-OLE Protocol

We first present a “leaky” batch-OLE protocol which guarantees that the
sender’s input has residual entropy given the (semi-honest) receiver’s view. The
receiver is guaranteed simulation security against a semi-honest sender.
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The receiver starts with input m ∈ Z
k
p and the sender has input α, β ∈ Z

k
p.

For convenience, one can imagine that α and β are random. At the end of the
protocol, the receiver gets γ = α ◦ m + β, where all operations are component-
wise. Let k, p, q and σ be the parameters of the LPR scheme.

1. The receiver generates a key pair (sk, rk) ← LPR.KeyGen(1λ). It encrypts m
into a ciphertext ct ← LPR.Enc(sk,m), and sends (rk, ct) to the sender.

2. The sender computes a ciphertext ct′ ← ReRand(rk, Lin(ct, α, β), Q) where
Q = Ω(pk2σ) and returns ct′ to the client.

3. The receiver outputs γ ← Dec(sk, ct′).

Correctness follows from the properties of the LPR encryption scheme in
Sect. 2.3. The entropic security statement is captured by the lemma below.

Lemma 4 (Entropically Secure Semi-Honest Batch OLE). Let the
parameters k = k(λ), p = p(λ), σ = σ(λ), Q = ˜Ω(pk2σ) and q = Ω(pQ). Con-
ditioned on the receiver’s view, the sender input α has residual entropy at least
H∞(α) − O(λlogQ).

Proof. The receiver’s view consists of the LPR secret key s, the public poly-
nomials a, a1, . . . , a�, the error polynomials e1, . . . , e�, the input m (which we
collectively denote by view0) and the sender message ct′. The latter is

ct′ = (a′, b′) = (α̂a +

�
∑

i=1

riai + r0, α̂b + Δ̂β +

�
∑

i=1

ribi + f)

=

(

α̂a +
�

∑

i=1

riai + r0, (α̂a +

�
∑

i=1

riai + r0)s + (α̂e +

�
∑

i=1

riei + f) + Δ(α̂m̂ + ̂β)

)

Note that ct′ can be generated given A := α̂a +
∑�

i=1 riai + r0, E := α̂e +
∑�

i=1 riei +f and α̂m̂+ ̂β. Since ̂β is random and independent of α̂, so is α̂m̂+ ̂β.
Since the coordinates of α̂e +

∑�
i=1 riei are bounded by ˜O(pkσ), an application

of the gentle noise-flooding lemma (Corollary 1) tells us that E can be simu-
lated given O(λ) of its coordinates, and therefore O(λlogQ) bits. An application
of Lemma 1 tells us that H̃∞(α|A,E) ≥ H∞(α|A) − O(λlogQ). (We implic-
itly condition all entropy expressions on view0.) Finally, the regularity lemma
(Lemma 2) tells us that A is 2−Ω(λ)-close to uniform. Putting this together, we
get that H̃∞(α|A,E) ≥ H∞(α) − O(λlogQ). ��

Finally, we note that for a sufficiently large value of k (as a function of λ),
the residual entropy is a constant fraction of the entropy of α.

3.3 Our Batch-OLE and Batch-OT Schemes

AQO Batch-OLE. Block et al. [BGMN18], building on [IKOS09a,BMN18a],
showed a compiler that converts leaky OLE to fresh OLE. Our main observation
is that their compiler preserves asymptotic quasi-optimality as long as one uses
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an error-correcting code that permits quasi-linear time encoding and erasure-
decoding, both of which are satisfied by the Reed-Solomon code. This gives us
the following theorem. We defer details and concrete optimizations to the full
version of this paper.

Theorem 1. There exists an asymptotically quasi-optimal BOLE protocol under
the 2λ-hardness of the RLWE assumption.

AQO Batch-OT. Since our Batch-OLE protocol works over polynomial-sized
fields, we can get a batch-OT protocol by näıvely embedding a single-bit OT
into a single instance of OLE over Zp. The näıve embedding loses a factor of
log p in the rate. We remark that it may be possible to reclaim this and achieve
a constant rate by working with an extension field of F2, i.e., F2� for some
�, and using ideas from [CCXY18,BMN18a] to embed F

�′
2 into F2� . We leave

the exploration of this avenue to a future work. An alternative approach that
achieves a near-constant rate is described in Sect. 4.1.

4 AQO Batch-OLE: The Malicious Setting

In this section, we show how to achieve a two-round AQO leaky batch-OLE that
is entropically secure against a malicious receiver. In particular, we will show
that for every (possibly maliciously chosen) receiver message, the sender input a
has residual entropy conditioned on his message to the receiver. The sender will
be assumed to be semi-honest. We defer the exact notion of entropic security to
Theorem 2 and instead start with the protocol itself.

4.1 Entropically Secure OLE Against a Malicious Receiver

Our starting point is to develop an additively homomorphic encryption scheme
with good “post-evaluation rate”, namely one where the size of homomorphically
evaluated ciphertexts are approximately the same as the size of the messages they
encrypt. Such schemes were developed very recently in a collection of indepen-
dent works [BDGM19,GH19,DGI+19]. We observe that a simple tweak on an
encryption scheme due to Peikert, Vaikuntanathan and Waters [PVW08] already
gives us good post-evaluation rate together with good concrete efficiency. In con-
trast, all the cited works construct somewhat more complex and concretely less
efficient schemes. We do pay a price, namely, freshly encrypted ciphertexts are
not rate-1; in fact, they are somewhat larger than they would be otherwise.
Yet, this does not matter much for us: indeed for our application to entropically
secure OLE, only the size of the homomorphically evaluated ciphertext matters.

Our scheme, denoted EntOLE, is parametrized by a dimension k, plaintext
modulus p, ciphertext (Ring-LWE) modulus q and a noise parameter σ. We
define two additional parameters: η that will govern the message sizes, and a
compressed ciphertext modulus q′. One challenge that must be overcome to
achieve a low post-evaluation rate is a reduction of the ciphertext modulus. Since
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our homomorphic computation must support one plaintext-ciphertext multipli-
cation, our starting ciphertext modulus q must be greater than p2, since we must
have log p bits for the message and an additional log p bits to account for the
growth of the error term. The resulting ciphertext modulus q′ will only be a few
bits larger than p. To switch to this modulus we employ the modulus reduction
operation from Brakerski & Vaikuntanathan [BV11a].

Modulus Reduction [BV11a,BGV12]. For ciphertext moduli q, q′ such that q′

divides q, the modulus reduction operation ModRedq,q′ takes in an element a ∈
Rq and outputs a′ ∈ Rq′ where a′ =

⌊

q′

q a
⌋

.

μ =
⌊

b′ − a′s mod q′

Δ′

⌋

We now describe a secret-key linearly homomorphic encryption scheme with
post-evaluation rate close to 1.

– EntOLE.KeyGen(1λ, η) : For each i ∈ [η], sample si ← χ and output

sk = (s1, . . . , sη) ∈ Rη
q

– EntOLE.Enc (sk, (μ1, . . . , μη)) : Takes as input a secret key and a message
vector (μ1, . . . , μη) where each μi is in Z

k
p. For i ∈ [η], sample ai ← U(Rq),

where U denotes the uniform distribution. Let a denote the column vector of
length η consisting of the ai polynomials. Similarly, let s be a row vector of
length η consisting of the secret polynomials. Define the matrix M ∈ Rη×η

q

where M[i, j] = 0 for i �= j and M[i, i] = LPR.Encode(μi) for each i ∈
[η]. Finally, sample a matrix E ∈ Rη×η

q such that each E[i, j] ← χ is an
independently sampled error polynomial. Output the following ciphertext:

ct = (a | a · s + MΔ + E) ∈ Rη×(η+1)
q

(Note that a · s is an η × η matrix which is the outer product of the vectors
a and s.)

– EntOLE.Eval(ct, {αi}η
i=1, {βi}η

i=1) : Takes as input a ciphertext ct and the
sender’s BOLE inputs where each input is in Z

k
p. Let α be the column vector

of length η such that α[i] = LPR.Encode(αi) for i ∈ [η]. Let β be the column
vector of length η + 1 such that β[i + 1] = LPR.Encode(βi) for i ∈ [η], and set
β[1] = 0. Compute an encryption of the BOLE result as follows:

ctbole = (α)T · ct + Δβ ∈ Rη+1
q

This ciphertext consists of η + 1 elements in Rq.
To achieve a high rate for the output ciphertext, we perform the modulus
switching operation [BV11a,BGV12] to reduce our modulus from q to q′. We
define the output ciphertext ctres ∈ Rη+1

q′ as follows:

ctres[i] := ModRedq,q′(ctbole[i]) for i ∈ [η + 1]
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– EntOLE.Dec(sk, ctres) : Takes as input a vector of η secret keys and a cipher-
text in Rη+1

q′ . Decryption proceeds by first computing μi for i ∈ [η] as follows:

μi :=
⌊

ctres[i + 1] − ctres[1] · sk[i]
Δ′

⌋

where Δ′ = �q′/p. Set μi := LPR.Decode(μi), and output {μi}η
i=1 ∈ Rη

p.

Fig. 1. Entropically secure batch-OLE scheme

The entropically secure OLE protocol is described in Fig. 1. The following
theorem states the correctness and security properties of the protocol; the proof
is deferred to the full version of this paper.

Theorem 2. Fix η ∈ N. For a security parameter λ, let k, σ, q be parameters
that give 2λ security of ring LWE. Let p be the plaintext modulus, and let q′

be a ciphertext modulus such that p divides q′ and q′ divides q. In addition, let
q′ > pkσ and let q > p2k2σ. Then, there exists a BOLE protocol with batch size
n = kη with the following properties.

1. The communication from the receiver to the sender is (η + 1)η · k · log q bits.
2. The communication from the sender to the receiver is k(η + 1)log q′ bits.
3. The receiver’s runtime is Θ(η2klog(k)log(q)).
4. The sender’s runtime is Θ(η2log(k)log(q) + ηklog(k)log(q′)).
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5. For every malicious receiver R∗ that outputs a ciphertext ct ∈ Rη×(η+1)
q , the

entropy of the sender’s first input for any distribution of a is at least

H̃∞(a|ctres) ≥ H̃∞(a) − (log(q′)k(η + 1) − log(p)kη)

≥ H̃∞(a) − O(nlog(k) + klog(p))
(1)

The last bullet shows that with a large enough η, there is considerable residual
entropy in a given the receiver’s view. Indeed, a has entropy nlogp, and the
residual entropy is (up to multiplicative constants) at least nlogp−nlogk−klogp
which is a constant fraction of the entropy of a if p = poly(k) and η = n/k is
a constant, or even a 1 − 1/logck fraction if p is superpolynomial in k and η
is polylogarithmic in k. The first four bullets show that the protocol has AQO
efficiency.

By relying on a simple extension of [WW06], we also obtain an entropically
secure OLE w.r.t malicious sender. In slight more detail, in the “reversed” pro-
tocol, the receiver will play the role of the sender and the sender the role of the
receiver in the underlying batch OLE. For each instance of the batch OLE, the
receiver with input x sets its input as x, r where r is chosen uniformly at random
and the sender with input a, b sets its input as a. The sender learns z = a · x + r
and sends w = z+b to the receiver which can compute its output as w−r. If the
underlying batch OLE is entropically secure against a malicious receiver with
entropy loss ε, then the reversed protocol will be entropically secure against a
malicious sender with entropy loss ε.

Leaky Batch-OTs from Leaky Batch-OLE. We now show how to obtain a entrop-
ically secure batch OT protocol from a batch OLE protocol.

We begin by observing that a näıve embedding of n OT instances into n
OLE’s does not work. From Theorem 2, we have that the entropy loss with a
batch size n is ω(n). The maximum entropy of the sender’s message in n OT
instances is 2 ·n, therefore, the sender’s entire input could potentially be leaked.
Next, we provide a tighter reduction from batch-OT to batch-OLE.

Let c be any integer. We will design an m-batch OT protocol that is entrop-
ically secure against a malicious receiver where the entropy loss in the sender’s
“a” message is at most (1/logc(n)) · m. Our compilation proceeds as follows:

1. We compile a batch OLE with batch size n over a prime p of length logc+2λ
bits to n OLEs over the ring modulo p′ = p1 ·p2 · · · pτ where p1, . . . , pτ are the
first τ = logcλ prime numbers with the guarantee that except with probability
2−λ at least n−λ OLEs over p′ are secure against a malicious receiver. If the
original batch OLE is only entropically secure against a malicious receiver
w.r.t “a”-message, then the entropy loss in the “a” message will decrease
further by at most λ · log(p′).

2. Next, we reduce OLE over ring modulo p′ = p1 · p2 · · · pτ to τ OLEs over
each of the primes p1, . . . , pτ using a standard application of the Chinese
Remainder Theorem.



Asymptotically Quasi-Optimal Cryptography 323

3. Finally, we employ the näive reduction of OLE modulo any prime p to a bit
OT, namely, the receiver feeds its input bit b as is in the OLE protocol, while
the sender maps its input s0, s1 to a = (s1 − s0), b = s0.

We provide details only for the first step as the remaining steps follow stan-
dard techniques.

The sender and receiver will essentially use their inputs a, b, x modulo p′

as their inputs for the OLE modulo p. Recall that p′ is the product of the first
logcλ primes,6 which implies log(p′) < logc+1λ. This in turn means the maximum
value of a ·x+p computed over integers is O(2log

c+1λ) < p. So the receiver learns
a · x + p computed over integers. This however induces a leakage as the receiver
is only supposed to learn the value mod(p′). In order to reduce the leakage, we
will have the sender modify its inputs to a′ = a, b′ = b + r · p′ where r is chosen
uniformly at random from [−λ · p′, λ · p′]. By the gentle noise-flooding Lemma 3,
we can conclude that the probability that the OLE leaks is at most O(1/λ). By
a Chernoff bound, we can conclude that except with probability 2−λ at most λ
of the OLE instances are leaky.

We now analyze the entire compilation. We instantiate the batch OLE with
batch size n = klogcλ over a prime p of length logc+2λ bits (where k is the Ring
LWE dimension set as λ). Recall from Theorem 2 that the entropy loss of the
senders “α”-message is at most nlogk+klogp = nlogλ+λlogp. The length of p′ is
at most logc+1λ bits. Since at most λ OLEs are leaky, the maximum entropy loss
in the “α”-message can be bounded by nlogλ + λlogp + λlog(p′) = O(λlogc+2λ).

Finally, we obtain a batch-OT protocol with a batch size of n · τ = λlog2cλ
and entropy loss of O(λlogc+2λ). Therefore, we have the following theorem.

Theorem 3. For any constant c, there exists a batch-OT protocol over n =
λlog2cλ instances such that for every malicious receiver R∗, and arbitrary dis-
tribution over sender’s inputs, the entropy of sender’s “a” input at the end of
the protocol is at least: H∞(a) − O(λlogc+2λ).

5 AQO Zero-Knowledge Arguments

In this section we construct an AQO zero-knowledge argument system. Our
starting point is a stronger version of Cook’s theorem that follows implicitly from
the PCP literature which we compile into an (honest verifier) ZKPCP. In the next
step we convert our ZKPCP into a ZK argument system. The former is achieved
based on the MPC-in-the-head paradigm whereas the later transformation uses
AQO batch OT protocol to emulate the query phase from the ZKPCP oracle.

We begin by recalling Cook’s theorem which states that there exists a pair
of algorithms (A,B) where given any Boolean circuit C of size s, A maps C to
a 3CNF formula F and B maps an input w for C to an input z for F such that
the following properties hold:

1. Algorithms A and B run in time poly(s).

6 The product of the first n primes is eO(nlogn).
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2. If w satisfies C then z satisfies F .
3. If C is unsatisfiable, then F is unsatisfiable.

Next, we state a stronger version of the Cook’s theorem which is implicit in
constructions of near-optimal PCPs from the literature [BS08,BCGT13].

Theorem 4. There exists a pair of algorithms (A,B) and constants a, b, c ∈ N

where given any Boolean circuit C of size s, A maps C to a 3CNF formula F
and B maps an input w for C to an input z for F such that:

1. Algorithms A and B run in time Õ(s). Let the number of clauses in F be
s · loga(s).

2. If w satisfies C then z satisfies F .
3. If C is unsatisfiable, so is F . Furthermore, for any assignment of the variables

of F , at most (1 − 1/logb(s)) fraction of the clauses of F are satisfied.
4. Finally, each variable in F appears at most logc(s) times.

The last property can be enforced generically by replacing each variable in F
by a distinct variable and then using expander-based consistency checks [PY91].

Next, we design an honest verifier (HV) ZKPCP for the language LC by rely-
ing on Theorem 4 and the MPC-in-the-head paradigm [IKOS07,IKOS09b]. Note
that prior approaches for converting PCP to (HV) ZKPCP either used an ad-
hoc and inefficient approach [DFK+92] or used MPC-in-the-head for achieving
PCP of proximity with a focus on feasibility and did not attempt to optimize
the asymptotic efficiency [IW14]. Achieving AQO based on MPC-in-the-head
requires taking a different approach.

We begin by describing our MPC model and then provide our compilation.

Our MPC Model. In the original work of [IKOS07] which introduced the MPC-
in-the-head paradigm, the main results implies a zero-knowledge PCP over a
large alphabet for a relation R starting from any honest majority MPC protocol
that computes a functionality related to R. In this work, we consider a specific
MPC topology and apply the MPC-in-the-head paradigm. Next, we describe our
MPC model and the security.

Consider an arbitrary 3CNF formula F with m clauses and t variables
x1, . . . , xt. We specify an MPC model for the formula F . In our model, we
consider a set of input clients C1, . . . , Cd and d distinct parties per clause of F ,
servers (Si

1, . . . , S
i
d) (i ∈ [m]), an aggregator party A and an output client o. Only

the input clients will receive inputs and the final output will be output by the
output client. Each input client receives a share corresponding to each variable
in F . Namely, Ci receives as input (x1

i , . . . , x
t
i) for i ∈ [d]. At the onset of the

protocol, each client Ci transmits xj
i to server Sk

i if the kth clause of F contains
the literal xj . In other words, for every k ∈ [m], the servers Sk

1 , . . . , Sk
d have the

shares corresponding to the (three) literals occurring in the kth clause. Upon
receiving inputs from the input clients, the servers Sk

1 , . . . , Sk
d securely compute

the functionality f specified by kth clause, where the assignments to the literals
are obtained by first XORing the corresponding shares from the servers. We
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denote the MPC protocol that realizes f by Π. Namely, if the jth literal occurs
in the kth clause, the assignment is given by

⊕d
i=1 xj

i . All servers learn the result,
and the result of the computation is then forwarded to the aggregator party by
server Sk

1 for each k. Then, the aggregator party computes the AND of the k
values its received and relays that to the output client. The output client finally
outputs whatever it receives from the aggregator.

From the description of the MPC model, it follows that if the input clients
are given as inputs (XOR) additive shares of the assignment of the variables in
F , and all parties behave honestly, then the result output by the output client
is the evaluation of F under the corresponding assignment.

Security Model: We will require the protocol to be secure against a passive cor-
ruption of at most �d−1

2  servers among Sk
1 , . . . , Sk

d for any k. In particular, this
means the input clients and aggregator cannot be corrupted. It now follows that
if we instantiate Π with any honest majority MPC protocol secure against pas-
sive adversaries we have that no adversary can learn anything beyond the result
output by the output client.

Compiling to ZKPCP. We defer the proof of Theorem 5 to the full version.

Theorem 5. Given a Boolean circuit of size s, there exists a non-adaptive
s · loga(s)-query AQO honest verifier ZKPCP over the binary alphabet. More
precisely, the PCP achieves perfect simulation w.r.t an honest verifier, sound-
ness 2− s

logb(c) and a proof of size s · logc(s), where a, b, c are constants.

5.1 AQO-Honest Verifier ZK from AQO-Honest Verifier ZKPCP

In this section, we transform the AQO-honest verifier ZKPCP into an (interac-
tive) AQO honest-verifier ZK proof using the entropic-secure batch OT protocol
discussed in Sect. 4.

We consider an interactive ZK proof where the verifier queries each bit of the
PCP via the OT protocol, where the verifier sets its input as 1 if it wants to query
the proof bit and 0 otherwise. The prover on the other hand sets the sender’s
input as the proof bit corresponding to the receiver’s 1 input and a random bit
corresponding to the receiver’s 0 input. It now follows that the honest-verifier
zero-knowledge property follows directly from the security of the OT protocol
against semi-honest receivers. Furthermore, if the underlying batch OT and the
honest verifier ZKPCP are AQO then the resulting ZK will also be AQO.

Ideally, we would like to conclude the soundness of the ZK protocol from
the soundness of the underlying ZKPCP. However, we instantiate the underly-
ing batch OT protocol with one that is only entropically secure. Nevertheless,
since the entropic loss in sender’s privacy (played by the ZK verifier) against a
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malicious receiver (played by the ZK prover) in the underlying OT is information-
theoretic, we can argue that the soundness loss can be bounded by the loss in
entropy of the OT sender’s input.

In more detail, the verifier first runs the underlying PCP verifier to obtain the
set of queries. It next sets its input to the OT as x ⊕ r, r where x is a bit vector
such that xi = 0 if the PCP Verifier queries that location and 1 otherwise. The
vector r is set uniformly at random. The sender, on the other hand, sets each
element of its input vector a uniformly at random. The prover receives a · x ⊕ r
at the end of the OT executions. It then transmits y = a · x ⊕ r ⊕ b where b is
the vector incorporating the symbols of the PCP proof. Finally, the verifier will
be able to retrieve the ith proof bit by computing yi ⊕ ri.

Zero-knowledge against an honest verifier follows directly from the compu-
tational privacy of the underlying OT protocol.

We argue soundness next. Specifically, given a (possibly unbounded) prover
P∗ for the HVZK, we construct a PCP prover B that internally incorporates P∗,
runs an honest interaction with P∗, emulating the honest verifier with input x,
extracts the PCP as y ⊕ a · x ⊕ r by extracting a and r (in exponential time)
from the OT transcript and feeds that as the PCP oracle.

Let h be the min-entropy of the distribution of the honest PCP verifier
queries. We make a simplification assumption that holds for most ZKPCPs in the
literature including the one built in the previous section. Namely, we assume that
there is a family of subsets Q of indices (of PCP locations) such that the verifier’s
query distribution is uniform over Q. In particular, this implies h ≥ log(|Q|).7

Let the soundness in the real world where the prover and verifier interact
using the protocol be ε. We now identify the success probability of B as a function
of ε and bound it by the soundness of the ZKPCP to conclude the soundness of
the HVZK. We consider an intermediate experiment which proceeds like the real
world, where the honest verifier after the OT protocol resamples its random tape
consistent with the transcript and the leakage (in possibly exponential time) and
uses the new random tape to verify the proof. The soundness of this verifier must
be identical to the soundness of the real verifier. By construction, in an execution
of the intermediate experiment, the distribution of the verifier’s queries is the
conditional distribution of the honest PCP verifier query distribution conditioned
on the partial transcript of the OT interaction. Let X ′ denote this distribution.
By Theorem 3 and observing h is Ω̃(n), we can conclude that

H∞(X ′) ≥
(

1 − 1
logc(n)

)

· h

7 For example, in the classic MPC-in-the-head based ZKPCP [IKOS07], the verifier
queries a random t subset out of n. Here Q contains all t subsets of [n].
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We know that the soundness of the ZKPCP system is 2−s. This implies that
for any proof oracle generated by a prover, the number of queries in Q on which
the verifier accepts a false proof, i.e. bad queries is at most |Q|/2s. Furthemore,
given an OT transcript, each of the |Q|/2s bad queries can have a probability
mass of at most 1/2H∞(X′) in X ′ by the definition of min-entropy. Therefore, we
have

ε ≤ |Q|
2s

· 1
2H∞(X′) =

2h

2s
· 1
2(1−1/logc(n))·h =

1
2s−h/logc(n)

We have that |Q| is 2 ˜O(s) as the length of the ZKPCP is ˜O(s). Therefore by
setting c appropriately we have that soundness is 2− ˜Ω(s).

Security Against Malicious Verifiers. The ZK protocol described above is inse-
cure if the verifier acts dishonestly. In particular, it may query beyond the privacy
threshold of the underlying ZKPCP and violate the zero-knowledge property. In
order to enforce correct behaviour and restrict a dishonest verifier to a certain
query pattern, we add another phase in which the verifier commits to its ran-
domness used both for sampling the PCP queries and for generating the OT
messages. As the verifier does not have any secret input, it can reveal (decom-
mit) this randomness upon concluding the OT phase and the prover can check
if the verifier sampled the queries and participated in the OT correctly. (In fact,
to enforce correct sampling of the verifier’s randomness, the parties run a coin-
tossing in the well, where only the verifier learns the outcome of the coin-tossing.
This protocol can be implemented using commitments schemes). Recall that the
prover sends the masked proof at the end of the OT phase. The prover needs
to check the verifier’s randomness prior to sending this message as the verifier
could cheat in the OT phase, learn the proof and abort before revealing its ran-
domness. At the same time, if the prover sees the verifier’s PCP queries before
sending the masked proof it can cheat. We prevent this by requiring the prover
to first commit to its masked proof at the end of the OT phase before the verifier
reveals its randomness and the decommit to the proof after it checks the veri-
fier’s actions in the OT phase. Our complete protocol can be found in Fig. 2. We
conclude with the following theorem whose proof is deferred to the full version.

Theorem 6. Let (PPCP,VPCP) be an AQO honest verifier ZKPCP system (cf.
Theorem5), Com be an AQO commitment scheme, Comh be an AQO statistically
hiding commitment scheme and ΠOT be a entropic-secure AQO batch-OT scheme
(cf. Sect. 4). Then the interactive proof from Fig. 2 is a ZK argument system with
soundness error 2−Ω(s).
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Fig. 2. ZK argument system
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Abstract. Secure multi-party computation (MPC) protocols that are
resilient to a dishonest majority allow the adversary to get the output
of the computation while, at the same time, forcing the honest parties
to abort. Aumann and Lindell introduced the enhanced notion of secu-
rity with identifiable abort, which still allows the adversary to trigger an
abort but, at the same time, it enables the honest parties to agree on
the identity of the party that led to the abort. More recently, in Euro-
crypt 2016, Garg et al. showed that, assuming access to a simultaneous
message exchange channel for all the parties, at least four rounds of com-
munication are required to securely realize non-trivial functionalities in
the plain model.

Following Garg et al., a sequence of works has matched this lower
bound, but none of them achieved security with identifiable abort. In this
work, we close this gap and show that four rounds of communication are
also sufficient to securely realize any functionality with identifiable abort
using standard and generic polynomial-time assumptions. To achieve this
result we introduce the new notion of bounded-rewind secure MPC that
guarantees security even against an adversary that performs a mild form
of reset attacks. We show how to instantiate this primitive starting from
any MPC protocol and by assuming trapdoor-permutations.

The notion of bounded-rewind secure MPC allows for easier paral-
lel composition of MPC protocols with other (interactive) cryptographic
primitives. Therefore, we believe that this primitive can be useful in other
contexts in which it is crucial to combine multiple primitives with MPC
protocols while keeping the round complexity of the final protocol low.

1 Introduction

Secure multi-party computation (MPC) [25,46] allows a group of mutually dis-
trustful parties to jointly evaluate any function over their private inputs in such

D. Ravi—Funded by the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement No.
803096 (SPEC).

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13275, pp. 335–364, 2022.
https://doi.org/10.1007/978-3-031-06944-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06944-4_12&domain=pdf
http://orcid.org/0000-0001-5062-0388
http://orcid.org/0000-0001-6423-8331
http://orcid.org/0000-0002-9083-5794
https://doi.org/10.1007/978-3-031-06944-4_12


336 M. Ciampi et al.

a way that no one learns anything beyond the output of the function. Since
its introduction, MPC has been extensively studied in terms of assumptions,
complexity, security definitions, and execution models [2,6,7,11,12,22,25,26,33–
35,37,39,41,45].

One interesting line of research concerns proving the security of MPC pro-
tocols in the case of a dishonest majority. In this model, unfortunately, it is in
general impossible to obtain guaranteed output delivery or even fairness [13],
which are particularly useful properties. The former guarantees that the honest
parties always receive the output of the computation and the latter guarantees
that either all the parties receive the output or none does (not even the corrupted
parties). Due to the impossibility of Cleve et al. [13], most of the MPC protocols
proven secure in the dishonest majority setting only satisfy the notion of unani-
mous abort. This notion guarantees that either all the honest parties receive the
output, or none of them does. Another recent line of works has established that
four rounds are both necessary [22] and sufficient [2,4,7,10,29] for MPC with
unanimous abort (with respect to black-box simulation) while relying on broad-
cast.1 However, none of these works study the notion of MPC with identifiable
abort.

The notion of MPC with identifiable abort, which was first considered by
Aumann and Lindell [3], ensures that either the honest parties receive the output
of the computation or they unanimously identify the (corrupted) party that
led to the abort. Subsequently, Ishai, Ostrovsky, and Zikas [32] showed how to
achieve this notion in the information theoretic and computational setting, and
propose a construction (in the computational setting) that does not rely on any
setup assumptions. The work of Ishai et al. led to a sequence of works that
proposed improved protocols realizing security with identifiable abort [5,8,9,16,
43]. All of these works either require a trusted setup (e.g., correlated randomness)
or require more than a constant number of rounds.

Moreover, the new recent lower bounds on MPC with unanimous abort and
the new results on MPC with identifiable abort leave open the following question:

What is the best-possible round complexity for securely evaluating any func-
tion with identifiable abort (with black-box simulation) in the plain model
when the majority of the parties are corrupted and broadcast channels are
assumed?

In this work, we answer the above question2 and match the lower bound
proven in [22] by presenting a four-round protocol with identifiable abort rely-
ing only on standard polynomial-time cryptographic assumptions (i.e., one-way

1 In each round all the parties can send a message. That is, the channel allows for
a simultaneous exchange of messages in each round. Unless otherwise specified we
implicitly refer to this model of communication when referring to broadcast.

2 All our results are with respect to black-box simulation. Hereafter we assume that
this is implicitly stated in our claims.
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trapdoor permutations).3 To the best of our knowledge, prior to our work, no
protocol achieved security with identifiable abort in the plain model in four
rounds of communication.

To achieve this result, we define and construct a four-round bounded-rewind
secure MPC protocol as an intermediate step. A bounded-rewind secure MPC
protocol enjoys the same security as a standard MPC protocol (with unanimous
abort), and is additionally resilient to rewind attacks. More precisely, the proto-
col remains secure even if the adversary is allowed to receive a (bounded) number
of third rounds in response to multiple (adversarially chosen) second-round mes-
sages. The reason why we define (and construct a protocol that satisfies) this
new security notion is to obtain an MPC protocol that can be easily composed in
parallel with other interactive cryptographic primitives. We see this as a result
of independent interest and we believe that this notion is also useful in other
contexts where MPC protocols need to be combined with other interactive prim-
itives (e.g., key distribution protocols, proof-of-knowledge or even other MPC
protocols). This notion becomes instrumental in our construction, since we will
execute an MPC protocol and a zero-knowledge-like protocol in parallel. We give
more details on the notion and the constructions later in this section.

1.1 Our Results

As previously mentioned, the stepping stone of our construction is a four-round
bounded-rewind secure MPC protocol. We realize this notion using a compiler
that turns, in a round-preserving manner, any four-round MPC protocol into a
bounded-rewind secure MPC protocol. Our compiler relies on a bounded-rewind
secure oblivious transfer (OT) protocol (similar to the one proposed by Choud-
huri et al. [10]), on Yao’s Garbled Circuits (GC) and public-key encryption.
Unfortunately, we cannot directly use the OT protocol of Choudhuri et al. [10],
since we need the OT to be simulation-based secure against malicious receivers.4

Hence, we also need to prove that such a bounded-rewind secure OT protocol
is indeed simulatable. The bounded-rewind secure OT protocol and the public-
key encryption scheme can be instantiated from trapdoor permutations (TDPs),
and GCs can be based on one-way functions. Given the above, we can claim the
following:

Theorem 1 (informal).Assuming TDPs and the existence of a 4-roundMPC pro-
tocol that realizes the function f with unanimous abort over broadcast channels
against a dishonest majority, then there exists a bounded-rewind secure 4-round
MPC protocol that realizes the same function (relying on the same communication
channel) with unanimous abort against a dishonest majority.
3 Some of the tools used in our constructions require the trapdoor permutations to be

certifiable. Any time that we refer to trapdoor permutations we implicitly assume
that they are certifiable. Note that such trapdoor permutations can be instantiated
using RSA with suitable parameters [21].

4 We require an additional property on the OT, which we elaborate further in the next
section.



338 M. Ciampi et al.

To finally obtain our round-optimal MPC protocol that is secure with iden-
tifiable abort, we compose the bounded-rewind secure MPC protocol, in par-
allel, with a combination of two-round witness-indistinguishable proofs, signa-
ture schemes and three-round non-malleable commitment schemes. We provide
more detail regarding this in the next section. To obtain our final construction
we require the bounded-rewind secure MPC protocol to be perfectly correct.
Finally, observing that all the additional tools we need can be based on TDPs,
we can claim the following.

Theorem 2 (informal).Assuming TDPs and the existence of a perfectly correct 4-
round bounded-rewind secure MPC protocol that realizes the function f with unani-
mous abort over broadcast channels against a dishonest majority, then there exists
a 4-round MPC protocol that realizes the same function (relying on the same com-
munication channel) with identifiable abort against a dishonest majority.

To state our main theorem, we argue that the four-round MPC protocol
proposed in [10] is perfectly correct and that the final bounded-rewind MPC
protocol we obtain from Theorem 1 preserves the perfect correctness of the input
protocol. Given that the protocol of Choudhuri et al. [10] is based on OT, which
in turn can be based on TDPs, we can state the following.

Corollary (informal). Assuming TDPs then there exists a 4-round MPC pro-
tocol that realizes any function f with identifiable abort over broadcast channels
against a dishonest majority.

1.2 Technical Overview

The Challenge of ObtainingMPCwith Identifiable Abort. Among many
other interesting results, in [32] the authors propose a protocol that realizes any
function with identifiable abort in the plain model. In more detail, Ishai et al. pro-
pose a generic approach to turn any MPC protocol with identifiable abort, that
relies on correlated randomness as a setup assumption, into a secure MPC pro-
tocol with identifiable abort in the plain model. Their compiler is quite straight-
forward: the parties use an MPC protocol ΠCR to generate correlated random-
ness, which is then used to run the previously mentioned protocol of [32], which
we denote as Π IOZ. In the case that some parties abort during the execution
of Π IOZ the property of identifiable abort is trivially maintained since Π IOZ is
proven secure under the assumption that correlated randomness exists which,
in turn, has been generated using by the protocol ΠCR. On the other hand, if
an abort occurs during the execution of ΠCR then all the parties could sim-
ply disclose the randomness used to run ΠCR and check which party did not
follow the protocol description. Note that the randomness of the parties can
be disclosed at this stage of the protocol since ΠCR does not require the par-
ties’ input to be executed and therefore privacy is still guaranteed. However,
such an approach crucially needs the protocol ΠCR to be secure against adaptive
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corruptions.5 Indeed, without this property it is not clear how to prove the secu-
rity of the protocol. This is due to the fact that, during the simulation of ΠCR, it
might be necessary to output the random coins used by the honest parties, which
are controlled by the simulator. Revealing the random coins of the simulator might
make the simulated execution trivially distinguishable from the real one. Unfor-
tunately, it is not clear how to use such an approach to obtain a constant round
protocol since it has been shown in [23] that it is impossible to achieve security
with adaptive corruptions in a constant number of rounds in the plain model.

Another approach that one could follow is to start from a protocol Π that is
proven secure in the plain model and attach a public coin zero-knowledge (ZK)
proof to each round of Π. That is, each party computes one message of Π and then
runs a ZK proof to show that the computed message has been generated accord-
ingly to Π. We first note that such an approach does not immediately work if Π is
not perfectly correct. Indeed, if Π is not perfectly correct then there might exist
randomness that, if used to compute a message of Π, would make the receiver of
this message abort. However, the adversary would be able to complete the proof
since it has followed the protocol. Instead of using a perfectly correct protocol Π
one could add a coin-tossing protocol, but this would create additional issues since
the coin-tossing protocol needs to be secure with identifiable abort.

Another issue with the above approach is that, even in the case where Π is per-
fectly correct, we cannot just use a standard public-coin ZK proof, given that the
adversary might maul the ZK proof received from an honest party. To account for
this, using a public-coin non-malleable ZK in combination with a perfectly correct
Π seems to be a reasonable direction. But, also in this case, if we want a constant
round protocol we need to require the public-coin ZK to be executable in a con-
stant number of rounds and, as shown in [24], only trivial languages admit con-
stant round public-coin black-box ZK protocols (with negligible soundness error).
Therefore, if we want to use such an approach, we need to relax the public-coin
requirement, and, indeed, public verifiability suffices. We say that a ZK protocol is
publicly verifiable if, by looking at the messages of the protocol exchanged between
a prover and a verifier, it is possible to infer whether the honest verifier would
accept the proof without knowing its random coins. Moreover, it must be possible
to detect whether the verifier is sending valid messages (i.e., messages that would
not make the honest prover abort) without knowing the randomness of the prover
and by just looking at the transcript. This property is particularly important for
our purposes since it allows a party P , that is not involved in the execution of the
non-malleable ZK protocol between two parties (in which one is acting as a prover
and the other as the verifier), to detect which party caused the abort (if any). If
the prover is malicious and the verifier rejects, then P notices this and it can tag
the party acting as the prover as being corrupted. If instead the verifier sends a
message that the prover would reject then, also due to the public verifiability, P
can tag the party acting as the verifier as corrupted.

5 In this model, the identities of the corrupted parties are not fixed at the beginning
of the experiment and the adversary can decide which party to corrupt during the
execution of the protocol.
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Assuming that there are constant round ZK protocols with all these proper-
ties (hereafter we refer to them as special ZK protocols) and that Π is a perfectly
correct constant round protocol, we can finally construct an MPC protocol with
identifiable abort (in a constant number of rounds) in the plain model.

However, in this work, we want to study the optimal round complexity for MPC
with identifiable abort. In particular, we want to prove that four rounds are suffi-
cient to securely realize any function with identifiable abort. We start by observing
that it is not needed to run a ZK proof after each round of the protocol. Indeed,
we could just let the parties run the protocol Π and only at the end, in the case a
party aborts, each party generates its zero-knowledge proof (proving that all the
messages of Π that it has sent over the broadcast channel have been computed
correctly). If the ZK protocol is four-round (which is the best we can hope for) and
Π needs four rounds as well (which, again, is the best we can hope for) then we
have obtained an 8-round MPC protocol with identifiable abort.

The next natural step, to reduce the round complexity of the above protocol,
is to parallelize the messages of Π and the messages of the special ZK protocol.
This natural approach fails for two reasons. First, the special ZK protocol now
needs to be delayed-input. That is, the statement the parties prove in the case
someone aborts is not defined until the fourth round and, second, there is no
reason to expect that Π and a zero-knowledge protocol would compose in par-
allel. Even if there are four-round special ZK protocols that enjoy the property
of delayed-input, like the one in [11], at the same time it is unclear how to prove
that this protocol composes with Π due to well-known rewinding issues. Indeed,
one approach to prove the security of this candidate MPC protocol would be to
consider a first hybrid experiment in which we run the simulator of the special
ZK proof. This step is a straightforward reduction and does not seem to cause
issues. Note that, in this intermediate hybrid experiment, the simulator of the
ZK protocol is rewinding the adversary and, in particular, we can assume that
the simulator rewinds (at least) from the third to the second round. We now
proceed to the next hybrid where we run the simulator of Π. Proving the indis-
tinguishability between the two hybrid experiments is problematic. The reason
is that the rewinds made by the ZK simulator could make the adversary ask
for multiple second rounds with respect to Π. However, the reduction can only
receive one set of second round messages from the challenger and it is unclear
whether the reduction can fake these messages of Π during the rewinds.

In this work, we solve this issue by constructing an MPC protocol (with
unanimous abort) that is bounded-rewind secure. That is, such an MPC pro-
tocol remains secure even if an adversary asks to receive multiple third-round
messages as a reply to multiple (adversarially generated) second round messages.
Equipped with this tool we can make the reduction work and complete the proof.
We note that this approach works only under the assumption that the ZK sim-
ulator rewinds from the third to the second round, which we will argue to be
sufficient for our construction. In more detail, in this work we simply combine
the bounded-rewind secure MPC protocol with witness-indistinguishable proofs
and non-malleable commitments. These tools guarantee a mild form of non-
malleability (which is sufficient for our purposes) that is achieved by requiring
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rewinds only from the third to the second round in the security proof. The way
we achieve non-malleability has become quite standard recently and has been
used in [4,10,11,22]. For this reason, we do not give more details on these aspects
and refer the interested reader to the technical section. Instead, we dedicate the
last part of this section to explain how we construct our bounded-rewind secure
MPC protocol.

Bounded-Rewind Secure MPC. Our compiler turns a four-round MPC pro-
tocol Π, that only relies on a broadcast channel, into a four-round bounded-
rewind-secure MPC protocol Πrmpc (that, again, works over a broadcast channel).
We start by discussing how the protocol works for the two-party case (with par-
ties P1 and P2), and then discuss how to extend our approach to the multi-party
case. For reference, in Fig. 1 we provide a pictorial description of the protocol
Πrmpc.

As already mentioned, a protocol is bounded-rewind secure if it retains its
security even in the case that the adversary queries the honest party on multiple
second rounds, and receives an honestly generated third round for each of these
queries. It is easy to imagine that most of the existing four-round MPC protocols
have no resiliency against such types of attacks. Indeed, usually the simulation
strategy adopted to prove the security of these protocols is to rewind from the
third to the second round and extract the input of the corrupted parties. Regard-
less of that, we aim to provide a compiler that works on any four-round MPC
protocol without making any additional assumptions on the input protocol.

To prevent the adversary from gaining an advantage, using its rewinds, we
adopt a strategy to hide the third round message of Π and only reveal it in
the fourth round. To do that we follow an approach similar to [1,14,18], by
embedding the next-message function of Π inside a garbled circuit (GC). More
precisely, each party (e.g., P1) upon receiving the second round message of Π
creates a GC that contains all the messages of Π generated so far, its input
and randomness. Note that the GC embeds almost all the information needed
to compute the fourth round of Π. The only thing that is missing is the third
round of the other party (P2 in our example). The GC, on input the third round
message of P2 for Π, runs the next-message function and returns the fourth
round of Π for P1.

As one might expect, to securely evaluate the GC, P1 and P2 need to run
an OT protocol in which, in this example, P2 acts as the receiver and P1 acts
as the sender. The input of P1 (which acts as a sender) to the OT protocol are
the labels of the GC we have just described, while the input of P2 (which acts
as the receiver) is its third round of the protocol Π. In other words, in the third
round of the protocol we have just described each party does not send the third
round message of Π over the channel, but it sends the OT receiver message
which encodes the third round of Π.

The above approach, however, has an issue. To prove its security we need to
use an OT protocol that is simulation-based secure against malicious receivers.
This is required because in the simulation we need to use the OT simulator to
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Fig. 1. Our rewindable-secure protocol for the two-party case. msgj
i represents the j-

th message of the MPC protocol Π computed by the party Pi. ot
j
i represents the j-th

message of the bounded-rewind secure OT protocol in which Pi acts as the sender and
P3−i acts as the receiver with i ∈ [2]. The pairs of inputs (K0

i ,K
1
i ) that the party

Pi uses as input when acting as the sender of the OT represent the labels of the wire
for the garbled circuit that computes the next-message function of Π. This garbled
circuit GCi has hardwired-in the input of Pi, its randomness and all the messages of Pi

generated up to the second round. The algorithm eval is the GC evaluation algorithm,
that on input the encoding of the GC and a set of labels (one per each wire) returns
the output of the GC (the last message of Π in this case). Note that the parties in the
last round also send the third message of Π. This is because to compute the output of
Π the parties might need all the messages generated from Π.

extract the third round of Π (and forward it to the simulator of Π). Existing
OTs that achieve this property require at least four rounds, and this means
that our construction is not secure unless the OT protocol is resilient against
rewinding attacks. Interestingly, in [10] the authors propose a four-round OT
protocol that is secure even in the presence of an adversary that does a bounded
number of rewinds. One drawback of the protocol proposed in [10] is that it is
not proved to be simulation-based secure against malicious receivers. This should
not come as a surprise since it seems to be contradictory to have a primitive that
allows extraction through rewinds (since we are in the plain model), but at the
same time is secure against adversaries that make rewinds. Fortunately, we can
prove that the protocol of [10] is also simulation-based secure against malicious
receivers. This proof requires a non-trivial simulator and analysis to argue that
the simulated transcript remains indistinguishable from a real one. Our OT
simulator and proof crucially rely on the elegant analysis of the simulator for
the zero-knowledge protocol proposed by Hazay et al. [30]. We refer the reader
to Sect. 6 for more details.

The Multi-party Case. A natural extension of the above 2-party approach to
the n-party case would be for each pair of parties to engage in an OT instance
as a receiver and sender respectively, to retrieve the labels which are needed to
query each other GC and to obtain the fourth round of Π. More precisely, each
party now prepares a garbled circuit as before with the difference that its GC
now accepts n − 1 inputs (n − 1 third round messages of the remaining n − 1
parties).
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This approach does not immediately work since, for example, the party Pi

would be able to get only the labels for the wires of the garbled circuit of Pj

that encodes its own third round. However, to query the garbled circuit of Pj ,
the party Pi needs at least one label per wire. To allow Pi to get those labels,
we use an approach similar to the one proposed in [10], in which, in the fourth
round, all the parties broadcast the randomness and the input used when acting
as the OT receiver. In this way Pi can finally query Pj ’s garbled circuit since it
has the labels that correspond to the third round messages of all the parties.

However, since we need to rely on the rewindable-security of the OT protocol,
we cannot simply let the parties disclose their randomness contrary to what
happens in [10]. For this reason we propose a simple modification of the rewind-
secure OT that retains an adequate level of security even in the case that part
of the randomness used in the computation is disclosed.

Even if the above approach looks promising, it is vulnerable to the following
attack by a potentially corrupted P �: P � could use different third-round messages
in each of the n OT instances when acting as the OT receiver. This behaviour is
problematic since it allows the adversary to recover the fourth-round messages
of the honest parties (via the evaluation of their respective garbled circuits)
computed with respect to different third-round messages, which could compro-
mise the security of the underlying MPC protocol Π. Indeed, in the case that
Π is normally executed over a broadcast channel, honest parties compute their
fourth-round message with respect to the same third-round messages.

To solve this problem, we break this one-to-one dependency such that the
labels of the garbled circuit (GC) are secret shared among the OT executions
in such a way that it is guaranteed that the labels of a party’s GC can only
be reconstructed if and only if each party has used the same input across the
OT executions where it was acting as the receiver. For more details on how this
secret sharing works we refer the reader to Sect. 4.

1.3 Related Work

As already mentioned, the notion of security with identifiable abort was first
considered by Aumann and Lindell [3]. This notion was subsequently studied in
[15,31,32].

Ishai et al. [32] show that in the correlated randomness model MPC with
identifiable abort can be realized information-theoretically. In the information-
theoretic setting Ishai et al. require all the n parties to be in possession of some
shared randomness and leave open the question of whether information-theoretic
ID-MPC can be realized assuming oracles that return correlated randomness
shares to less than n parties. This question has been answered in the affirmative
in recent works [8,9,43].

The idea of using the SPDZ protocol [17,19] to realize ID-MPC has been
used in a few follow-up works. In the work of Spini and Fehr [44] the authors
aim to adapt the SDPZ protocol to allow for identifiable abort without increasing
the complexity of the protocol too much. Their protocol achieves a communi-
cation and computation complexity that polynomially depends on the number
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of the participating parties. In another work by Cunningham et al. [16], the
authors extend the results of Spini and Fehr and obtain a protocol that requires
n messages instead of O(n) messages [16, Table 1], where n is the number of
parties. Furthermore, their protocol also realizes the notion of completely iden-
tifiable abort, which is introduced in the same work. The notion of completely
identifiable abort extends the existing notion of identifiable abort by not only
guaranteeing that a single cheating party is identified but that all the cheating
parties are identified.

In the work of Scholl et al. [42] the authors present a compiler that takes any
passively secure preprocessing protocol and turns it into one with covert security
and identifiable abort. A protocol that fulfills these conditions is, again, the
SPDZ protocol [17,19]. In Baum et al. [5] the authors present a constant round
ID-MPC protocol with concrete efficiency. Their protocol only makes black-box
use of OT and a circular 2-correlation robust hash function. The security of
their protocol is proven in the UC framework and they also present an efficiency
analysis of their construction.

The notion of bounded-rewind security has been considered in previous works
with respect to simpler primitives, like witness-indistinguishable proofs, com-
mitment schemes [4,28,36] and the mentioned oblivious transfer [10]. In [10] the
authors also propose a notion (and instantiation) of a rewindable secure MPC
protocol. However, their rewind-secure protocol is only secure against a weaker
class of adversaries called semi-malicious adversaries. Without getting too tech-
nical, such an adversary provides its randomness and inputs to the simulator
which can then simulate in a straight-line manner. In our work, we do not have
this luxury since we require our construction to be secure against any probabilis-
tic polynomial-time adversarial strategy which creates many additional technical
challenges.

2 Preliminaries and Standard Definitions

Notation. We denote the security parameter with λ ∈ N. A randomized algo-
rithm A is running in probabilistic polynomial time (PPT) if there exists a poly-
nomial p(·) such that for every input x the running time of A(x) is bounded by
p(|x|). Let A and B be two interactive probabilistic algorithms. We denote by
〈A(α), B(β)〉(γ) the distribution of B’s output after running on private input β
with A using private input α, both running on common input γ. Typically, one
of the two algorithms receives 1λ as an input. A transcript of 〈A(α), B(β)〉(γ)
consists of the messages exchanged during an execution where A receives a pri-
vate input α, B receives a private input β and both A and B receive a common
input γ. Moreover, we will define the view of A (resp. B), denoted by viewA

(A,B)

(resp. viewB
(A,B)), as the messages it received during the execution of the protocol

(A,B), along with its randomness and its input. We say that the transcript τ
of an execution b = 〈A(z), B〉(x) is accepting if b = 1. We say that a protocol
(A,B) is public coin if B only sends random bits to A. If the randomness is
explicit we write a := A(x; r) where x is the input and r is the randomness.
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A protocol is defined to be delayed-input if it requires the input of the protocol
only in the last round of communication.

We assume familiarity with the notion of negligible functions, garbled cir-
cuits, CPA encryptions, extractable commitments, public-coin WI proofs and
oblivious transfers and refer the reader to the full version for more details.

2.1 Non-malleable Commitments Scheme

We follow the definition of non-malleable commitments used in [26,38,40] (these
definitions are build upon the original definition of Dwork et al. [20]). In the
real experiment, the adversary, called man-in-the-middle MIM, interacts with a
committer C in the left session, and with a receiver R in the right session. We
assume w.l.o.g. that each session has a tag and non-malleability holds only if the
tag from the left session is different from the one in the right session.

At the beginning of the experiment, C receives an input v and MIM receives
an auxiliary input z, which could contain a priori information about v. For
the real experiment, we denote with MIM〈C,R〉(ṽ, z) the random variable that
describes the message that MIM commits to in the right session, jointly with the
view of MIM. In the ideal experiment, MIM interacts with a PPT simulator S.
There, we denote with SIM〈C,R〉(1λ, z) the random variable describing the value ṽ
that S committed to and the output view of S. In either of the two experiments,
the value ṽ is defined to be ⊥ if the tags in the left and right session are equal.

Definition 2.1 (Synchronous Non-malleable Commitments). A 3-round
commitment scheme 〈C,R〉 is said to be synchronous non-malleable if for every
PPT synchronizing adversary6 MIM, there exists a PPT simulator S such that
the following ensembles are computationally indistinguishable:

{MIM〈C,R〉(ṽ, z)}λ∈N,v∈{0,1}λ,z∈{0,1}∗ and {SIM〈C,R〉(1λ, z)}λ∈N,v∈{0,1}λ,z∈{0,1}∗

Additionally, we require the following properties to hold for the synchronous
non-malleable commitments: 1) Non-malleability with respect to extraction: this
notion requires the existence of an extractor ExtNMCom that is able to extract
a message from a well-formed commitment generated by MIM. Moreover, the
output distribution of ExtNMCom remains the same independently of whether
the adversary is receiving honest or simulated commitments. 2) Last-message
pseudo-randomness: the last message generated by C is computationally indis-
tinguishable from a random string.

Formal definitions of this properties can be found in the full version. In the
work of Choudhuri et al. [10], it is observed that the (synchronous version of the)
3-round non-malleable commitments of [27] satisfies all the mentioned properties.

2.2 Trapdoor Generation Protocol with Bounded Rewind Security

This section is taken almost verbatim from [4,10] and introduces the notion of
trapdoor generation protocols with bounded rewind security.
6 A synchronizing adversary is an adversary that sends its message for every round

before obtaining the honest party’s message for the next round.
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Syntax. A trapdoor generation protocol TDGen = (TDGen1,TDGen2,TDGen3,
TDOut,TDValid,TDExt) is a three round protocol between two parties - a sender
(trapdoor generator) S and a receiver R that proceeds as follows:

1. Round 1 - TDGen1(·):
S computes and sends tdS→R

1 ← TDGen1(RS) using a random string RS .
2. Round 2 - TDGen2(·):

R computes and sends tdR→S
2 ← TDGen2(tdS→R

1 ;RR) using randomness RR.
3. Round 3 - TDGen3(·):

S computes and sends tdS→R
3 ← TDGen3(tdR→S

2 ;RS).
4. Output - TDOut(·):

The receiver R outputs 0/1 ← TDOut(tdS→R
1 , tdR→S

2 , tdS→R
3 ).

5. Trapdoor Validation Algorithm - TDValid(·):
Taking as an input (trap, tdS→R

1 ), output a single bit 0 or 1 that determines
whether the value trap is a valid trapdoor corresponding to the message td1
sent in the first round of the trapdoor generation protocol.

In the remainder of this work, to not overburden the notation, we indicate
td1 to be tdS→R

1 , td2 to be tdR→S
2 , and td3 to be tdS→R

3 .
The algorithm TDValid is public and everyone can verify that trap is a valid

trapdoor for a first round message td1.

Extraction. Furthermore, we require the existence of a PPT extractor algorithm
TDExt that, given a set of values7 (td1, {tdi

2, td
i
3}3i=1) such that td12, td

2
2, td

3
2 are

distinct and TDOut(td1, tdi
2, td

i
3) = 1 for all i ∈ [3], outputs a trapdoor trap such

that TDValid(trap, td1) = 1.

1-Rewinding Security. Roughly speaking, if a trapdoor generation protocol is 1-
rewind secure then no cheating PPT receiver R� can learn a valid trapdoor even
when R� queries S on two (possibly adaptive) different second-round messages,
thereby receiving two different third round responses from the sender. The formal
definition of this notion can be found in the full version.

3 Rewind-Secure OT and MPC

We assume familiarity with the standard notions of multi-party computation
secure with unanimous and identifiable abort under black-box simulation in the
plain model. We refer to the full version for more details. In this section, we
introduce the definitions of two rewind-secure primitives, namely oblivious trans-
fer (OT) and MPC. We start with the definition of our new notion of special
rewindable OT. Afterwards, we define what it means for an MPC protocol to be
rewindable secure.

7 These values can be obtained from the malicious sender via an expected PPT rewind-
ing procedure. The expected PPT simulator in our applications performs the neces-
sary rewindings and then inputs these values to the extractor TDExt.
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Definition 3.1 (Special B-Rewindable OT Security). Let OT =
(OT1,OT2,OT3,OT4) be an OT protocol, then we say that OT is special B-
rewindable secure against malicious senders with B rewinds if the output distri-
butions of the adversary in the experiments E0

k and E1
k (where Eσ

k is defined below)
are computationally indistinguishable for any k ∈ [B] and all {b0[j], b1[j]}j∈[B]

with bσ[j] ∈ {0, 1}λ for all j ∈ [B] and σ ∈ {0, 1} and with b0[k] = b1[k].

Adversary A Challenger C

ot1 ← OT1(1
λ):

�−−−−−−−−−−−−−−−−−−−−−−−−−−
ot1

−−−−−−−−−−−−−−−−−−−−−−−−−−�
{ot2[j ]}j∈[B]

For each j ∈ [B]:
ot3[j] ← OT3(ot1, ot2[j], bσ [j])

�−−−−−−−−−−−−−−−−−−−−−−−−−−
{ot3[j ]}j∈[B]

−−−−−−−−−−−−−−−−−−−−−−−−−−�
ot4[k ]

We note that this definition is equal to the one proposed in [10] except for
the fact that we require the adversary to pick the same input in the k-th slot.

Definition 3.2 (Bounded Rewind-Secure MPC with unanimous
abort). A 4-round MPC protocol MPC for f is a tuple of deterministic
polynomial-time algorithms MPC = {(Next1i ,Next

2
i ,Next

3
i ,Next

4
i , outputi)}i∈[n]

(where the algorithms are defined as in the standard definition of MPC:
Similar to the standard security definition of MPC, we define the real-world

and ideal-world execution.

Ideal Computation. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function and let
I ⊂ [n], of size at most n − 1, be the set of indices of the corrupt parties. Then,
the joint ideal execution of f under (S, I) on input vector x = (x1, . . . , xn),
auxiliary input aux and security parameter λ, denoted by IDEALun-abortf,I,S(aux)(x, λ),
is defined as in the standard definition of MPC.

Real Execution. Let Π = (P1, . . . , Pn) be an n-party 4-round MPC protocol
and let I ⊆ [n], of size at most n − 1, denote the set of indices of the parties
corrupted by A. The joint execution of Π under (A, I) in the real world, on input
vector x = (x1, . . . , xn), auxiliary input aux and security parameter λ, denoted
by REALΠ,I,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and A(aux)
resulting from the following 4-round protocol interaction. Let H denote the set
of indices of honest parties H = [n] \ I.

– Interaction in Round 1: A receives {msg1j = Nextj(1λ, xj , ρj)}j∈H and sends
messages {msg′1

i }i∈I of its choice. Let msg<2 = {{msg1j}j∈H, {msg′1
i }i∈I} .

– Interaction in Round 2 and 3 with B rewinds:
– A is given {msg2j = Next2j (1

λ, xj , ρj ,msg<2)}j∈H .
– A chooses B second-round messages, namely {msg′2

i [k]}i∈I,k∈[B].
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– A is given {msg3j [k] = Next3j (1
λ, xj , ρj ,msg<3[k])}j∈H,k∈[B], where

msg<3[k] = {msg<2, {msg2j}j∈H, {msg′2
i [k]}i∈I}.

– A sends third-round message {msg′3
i }i∈I of its choice.

– Let msg<4 = {msg<3[1], {msg3j [1]}j∈H, {msg′3
i }i∈I}.

– Interaction in Round 4: A is given fourth-round messages {msg4j =
Next4j (1

λ, xj , ρj ,msg<4)}j∈H. A sends fourth-round messages {msg′4
i }i∈I of

its choice.

REALI,A(aux)(x, λ) is defined as (yH, z), where yH is the vector of outputs of the
honest parties while z is the output of the adversary.

Security Definition. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function. A
protocol Π securely computes the function f with unanimous abort and bounded
B-rewind security if for every PPT real-world adversary A there exists a PPT
simulator S such that for every I ⊂ [n] of size at most n − 1, the following
ensembles are computationally indistinguishable:

{
REALΠ,I,A(aux)(x, λ)

}
x∈({0,1}∗)n,λ∈N

and
{
IDEAL

un-abort
f,I,S(aux)(x, λ)

}

x∈({0,1}∗)n,λ∈N
.

4 From MPC with Unanimous Abort to B-rewindable
MPC with Unanimous Abort

In this section, we present a compiler that makes a four-round MPC protocol
ΠMPC secure with unanimous abort in the plain model bounded-rewind-secure,
resulting in the protocol Πrmpc, while preserving all its other security properties.
We begin with a high-level overview of the compiler and establish some notation
for simplicity. Let msgr

i denote the message broadcast by Pi in Round r (r ∈ [4])
of ΠMPC.

The Two-Party Case. For simplicity, we start by considering the 2-party case,
where one of the parties, here P2, is corrupted. To make ΠMPC bounded-rewind-
secure, we need to ensure that security is maintained even if P2 receives a set
of multiple third-round messages from P1 (namely, msg31) as a response to its
chosen set of second-round messages (namely, msg22).

In our protocol the party Pi (i ∈ [2]) computes a garbled circuit GCi that
has hard-coded inside its input xi, randomness ri and the protocol transcript of
ΠMPC until Round 2 i.e. {msg1j ,msg2j}j∈[2] and takes as input the set of third-
round messages {msg3j}j∈[2] and outputs Pi’s fourth-round message i.e. msg4i . In
the last round of Πrmpc, these garbled circuits are then evaluated to obtain the
fourth-round messages of ΠMPC. For the evaluation of these garbled circuits, we
need the parties to be able to obtain the labels corresponding to {msg3j}j∈[2]. For
this purpose we rely on an oblivious transfer OT protocol.8 In the above context,
P1 does not send msg31 directly in Round 3 of Πrmpc but instead participates in

8 For the wires corresponding to their own third-round message (i.e. msg3i in GCi), the
labels can be broadcasted directly in the last round.
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an OT instance as an OT receiver with input msg31; while P2 participates as the
sender using as its input the labels of GC2 that were used to encode the input
msg31. Similarly, there would be another OT instance with P2 as the receiver
and P1 as the sender for the labels of msg32 corresponding to GC1. It is now
evident that the parties can proceed to evaluate the garbled circuits, obtain the
fourth-round messages of ΠMPC and compute the output. Intuitively, the above
approach helps to achieve rewind-security because, in the security game, the
honest party P1 has to send multiple third-round messages (in round 3 of Πrmpc)
which, in our protocol, contain msg31 messages under the hood of OT and are
thereby ‘hidden’ from the adversary. In the fourth-round only one among these
third-round messages is ‘opened’ to the adversary which effectively reduces the
security to a single execution of ΠMPC.

The Multi-party Case. A natural extension of the above 2-party approach to the
multi-party case would be to let each pair of parties, Pi and Pj , engage in an OT
instance (say OTj,i) as an OT receiver and sender respectively to retrieve labels
of msg3i corresponding to GCj (which would output the fourth-round message of
Pj). However, unlike the 2-party case, a party, for example, Pi is not able to
obtain the labels for all the inputs of GCj , and therefore cannot evaluate GCj . In
more detail, Pi would not have access to the labels corresponding to the input
msg3k in GCj (where k, j 
= i). To enable Pi (and everyone else) to recover these
labels, we make Pk reveal the OT randomness that is used as an OT receiver
during the instance OTj,k so that everyone can learn the output of this OT
(i.e. the labels of GCj corresponding to msg3k). Note that this randomness can
be safely revealed because the adversary learns the OT receiver’s input msg3k
also in the protocol ΠMPC which is secure with unanimous abort. In light of the
above, we define the security notion of OT with rewindable security against a
malicious sender. This notion is a slightly modified variant of the one used in
[10] and their construction can be easily adapted with minor tweaks to satisfy
our notion. This rewind-secure OT construction also satisfies public verifiability,
enabling all the parties to check the correctness of the OT receiver messages, for
all pairwise instances of the OT, by just checking the transcripts.

Next, we observe that the above approach of using pairwise OTs is vulnerable
to the following attack by a potentially corrupted party Pi : Pi could use different
third-round messages (i.e. msg3i ) as its input across the n OT instances where it
acts as an OT receiver (one instance for every other party as the sender). This
behaviour violates the security of the underlying MPC since it allows the adver-
sary to recover the fourth-round messages of honest parties (via evaluation of
their respective garbled circuits) computed with respect to different third-round
messages msg3i . Note that in the underlying protocol ΠMPC the adversary cannot
launch this attack since honest parties compute their fourth-round message with
respect to the same msg3i (which is broadcast in round 3 of ΠMPC).

The crux of the above issue is that the labels of GCj corresponding to msg3i are
tied to a single instance of OT, i.e. the one between Pi and Pj . To resolve this,
we break this one-to-one dependency such that the labels of GCj corresponding
to msg3i are obtained in a distributed manner across all n OTs where Pi acts as
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a receiver. For simplicity, assume that msg3i contains only a single bit b ∈ {0, 1}
and corresponds to wire w in each of the n garbled circuits. Each garbler Pj

additively shares the labels of wire w of GCj among the parties for b ∈ {0, 1}. Now,
each Pk has an additive share for each of the n garbled circuits corresponding
to wire w and each bit b ∈ {0, 1}. Accordingly, the OT instances between Pi,
acting as the receiver, (who participates with the actual value of bit b as input)
and Pk, acting as the sender, would now involve Pk participating with the two
tuples of n additive shares as its input, where the first tuple comprises of the n
additive shares for b = 0, while the other tuple contains the n additive shares
for b = 1. The above technique ensures that if Pi participates with inconsistent
inputs b across its instances as an OT receiver then neither the label for b = 0
nor for b = 1 will be recovered for any honest party’s garbled circuit. This is
due to the fact that the OT instances with a subset of honest parties as OT
senders would output additive shares corresponding to 0, while the others would
output additive shares corresponding to 1; which is insufficient to reconstruct
either of the labels. The transfer of the additive shares is done using public-
key encryption i.e. by encrypting the relevant share using the public key of the
intended recipient. This allows us to maintain the property that all messages in
Πrmpc are sent over a broadcast channel.

Looking ahead, this is useful to achieve identifiable abort security as it allows
the parties to give a corresponding proof of correctness for these messages in such
a way that it can be verified by everyone. In our final construction, however, the
relevant additive shares of the garbled circuits are not used directly in the OT
instances. Instead, the OT senders encrypt each of their tuple of n additive shares
using one-time pads, broadcast these encryptions and use the corresponding one-
time pad keys as inputs to the OT. Note that if the additive shares were used
directly, some of the components of an honest sender’s input (corresponding to
the additive shares given by a corrupt garbler) are adversarially chosen. How-
ever, the above described modification using one-time pads allows us to rely on
standard OT security where an honest sender’s input is not adversarially chosen.
This completes the high-level description of our compiler.

Lastly, we highlight an important aspect related to the security of the above
described bounded-rewind-secure MPC construction. Since we allow the adver-
sary to proceed to the evaluation of the garbled circuits and obtain the output
only if it used consistent third-round messages in all the OT instances where it
participated as a receiver, we require the property of ‘simultaneous extractabil-
ity’ from the rewind-secure OT. In more detail, consider multiple OT instances
running in parallel where the receiver is corrupted and the sender is honest. We
require that the simulator of the OT should be able to extract the input of the
malicious receivers in the same rewinding thread for multiple OT instances. This
is needed to check if the adversary used consistent inputs on behalf of the same
malicious receiver or not, as the latter would result in abort. We show in Sect. 6
that the modified variant of the rewind-secure OT of [10] satisfies this property
of simultaneous extractability.

We now formally describe our compiler in Fig. 2.
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Notation. - Let Circuit Ci,x,ρ,msg<3(msg31,msg32, . . . ,msg3n) denote the
boolean circuit with hard-wired values i, x, ρ and the transcriptmsg<3

of the first two rounds of an execution of ΠMPC that upon receiv-
ing n inputs msg31,msg32, . . . ,msg3n (i.e. the third-round broadcast
messages of the execution of ΠMPC) computes Next4i (x, ρ,msg<4 =
{msg<3,msg31,msg32, . . . ,msg3n}). For simplicity, we assume that each
third-round broadcast message is � bits long – so the circuit has L = n�
input bits.

- Let OTj,k denote an instance of a B-rewind secure OT (denoted as
(rOT1, rOT2, rOT3, rOT4, rOT5, rOT6)) where Pj acts as the sender
and Pk acts as the receiver.

Private Input. Pi has private input xi ∈ {0, 1}λ and randomness ρi.
Output. y = f(x1, . . . , xn) or ⊥.
Round 1. Each Pi does the following:
1. Run the setup of the PKE scheme as (pki, ski) ← keygen(1λ;RPKE).
2. Compute the first-round message of ΠMPC as msg1i ← Next1i (xi; ρi).
3. Compute the first-round OT message as the receiver – i.e. for each j ∈

[n] corresponding to the instance OTj,i (where Pi acts as the receiver),
sample randomness R1

j,i and compute rotj,i1 ← rOT1(1λ;R1
j,i).

4. Broadcast pki,msg1i , {rotj,i1 }j∈[n]
)
.

Round 2. Each Pi does the following:
1. If any party aborts in the previous round, honest parties output ⊥. a

2. Compute the second-round message of ΠMPC as msg2i ←
Next2i (xi, ρi,msg<2), where msg<2 = {msg1j}j∈[n].

3. Compute the second-round OT message as the sender – for each j ∈
[n] corresponding to the instance OTi,j (where Pi acts as the sender),
sample randomness Si,j and compute roti,j2 ← rOT2(rot

i,j
1 ;Si,j).

4. Broadcast msg2i , {roti,j2 }j∈[n]
)
.

Round 3. Each Pi does the following:
1. Compute the garbled circuit as (GCi,Ki) ← garble(Ci,x,ρ,msg<3 , 1λ;

RGC), where Ki denotes the set of labels {K(0)
i,α,K

(1)
i,α}α∈[L].

2. For each α ∈ [L] and b ∈ {0, 1}, compute an additive sharing
(K(b)

i,α,1,K
(b)
i,α,2, . . . ,K

(b)
i,α,n) of the label K(b)

i,α.
3. For each α ∈ [L], b ∈ {0, 1} and j ∈ [n] \ {i}, compute the ciphertexts

ct
(b)
i,α,j ← enc(pkj ,K

(b)
i,α,j).

4. Compute the third-round message of ΠMPC as msg3i ← Next3i (xi, ρi,
msg<3), where msg<3 = {msg1j ,msg2j}j∈[n].

5. Compute the third-round OT message as the receiver using as
an input the string msg3i – for each j ∈ [n] corresponding to
the OT instance OTj,i, sample randomness R3

j,i and run rotj,i3 ←
rOT3(msg3i , rot

j,i
1 , rotj,i2 ;R3

j,i).
6. Broadcast {ct(b)i,α,j}α∈[L],j∈[n]\i,b∈{0,1}, {rotj,i3 }j∈[n]

)
.

Fig. 2. Πrmpc
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Round 4. Each Pi does the following:
1. For each α ∈ [L], b ∈ {0, 1} and j ∈ [n] \ {i} , compute K

(b)
j,α,i ←

dec(ski, ct
(b)
j,α,i).

2. For each j, k ∈ [n], check the correctness of rotj,k3 sent by Pk (this is
possible due to public verifiability of the OT). If the check does not
pass, broadcast ‘abort’ and output ⊥, else, continue.

3. // Recall that the input wires of each GCk (k ∈ [n]) at indices [(j −
1)�+ 1, j�] correspond to msg3j and K

(b)
k,α,i denotes Pi’s additive share

of the label of GCk corresponding to index α and bit b.
For each j ∈ [n] and β ∈ [�] – let m

(0)
j,β,i = (K(0)

1,(j−1)�+β,i, . . . ,

K
(0)
n,(j−1)�+β,i) and m

(1)
j,β,i = (K(1)

1,(j−1)�+β,i, . . . ,K
(1)
n,(j−1)�+β,i). Sample

random strings q
(0)
j,β,i and q

(1)
j,β,i (to be used as one-time pad keys) and

compute M
(0)
j,β,i = m

(0)
j,β,i + q

(0)
j,β,i and M

(1)
j,β,i = m

(1)
j,β,i + q

(1)
j,β,i.

4. For each j ∈ [n] corresponding to the OT instance OTi,j (where
Pj participated as a receiver with input msg3j ) – Compute the
fourth-round OT message as the sender as follows: run roti,j4 ←
rOT4

(
(q(0)j,1,i, q

(1)
j,1,i), (q

(0)
j,2,i, q

(1)
j,2,i), . . . , (q

(0)
j,�,i, q

(1)
j,�,i), rot

i,j
1 , roti,j2 , roti,j3 ;

Si,j

)
.

5. For all OT instances OTj,i where Pi participated as the receiver, com-

pute rotj,i5 ← rOT5

(
R1

j,i, R
3
j,i

)
for all j ∈ [n].

6. Broadcast (GCi,msg3i , {roti,j4 }j∈[n], {rotj,i5 }j∈[n], {M
(0)
j,β,i, M

(1)
j,β,i}j∈[n],β∈[�]).

Output Computation. Each Pi does the following:
1. If any party broadcasted ‘abort’ in Round 4, output ⊥.
2. Compute the output of each OT instance where Pj acts as the receiver

and Pk acts as the sender as follows (where j, k ∈ [n]):
- Compute (qj,1,k, qj,2,k, . . . , qj,�,k) ← rOT6(rot

k,j
1 , rotk,j

2 , rotk,j
3 ,

rotk,j
4 , rotk,j

5 ,msg3j ).
- Let msg3j be the third-round message of ΠMPC broadcast by Pj in
Round 4. Parse msg3j as msg3j = bj,1||bj,2|| . . . bj,�.

- For each β ∈ [�], set {K1,(j−1)�+β,k, , . . . ,Kn,(j−1)�+β,k} = qj,β,k ⊕
M

(bj,β)
j,β,k , where M

(bj,β)
j,β,k was broadcast by Pk in Round 4.

3. For each garbled circuit GCj (j ∈ [n]) – compute Kj,α =
∑n

k=1 Kj,α,k

for each α ∈ [L].
4. For each GCj (j ∈ [n]), compute msg4j ← eval(GCj , Kj,1, . . . , Kj,L).
5. Output yi ← outputi(xi, ρi, {msg1j ,msg2j ,msg3j ,msg4j}j∈[n]).

a we assume that honest parties execute this step in the beginning of each
round.

Fig. 2. (continued)
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The compiler makes use of the following tools:

– A 4-round MPC protocol ΠMPC with unanimous abort security represented
by the set of functions {(Next1i ,Next

2
i ,Next

3
i ,Next

4
i , outputi)}i∈[n], where all

the messages are assumed to be sent over a broadcast channel.
– A garbling scheme (garble, eval, simGC) that is assumed to satisfy properties

of privacy (a set of labels, together with the garbled circuit, reveals nothing
about the input the labels correspond to), correctness (the correct evaluation
of the garbled circuit matches the evaluation of the plain circuit), authenticity
of input labels (it is not possible to ‘forge’ a different set of valid input labels
from a set of valid input labels) and partial evaluation resiliency (unless at
least one label corresponding to every bit is obtained, nothing about the
output is revealed). We defer details of these notions to the full version.

– A delayed-input OT protocol, instantiated by the construction in Sect. 6,
denoted as a sequence of algorithms (rOT1, rOT2, rOT3, rOT4, rOT5, rOT6),
where rOTr (r ∈ [5]) denotes the algorithm to compute the r-th round mes-
sages and rOT6 denotes the algorithm for the output computation. The OT
protocol satisfies special 2-B rewindable security and sender simulatability.

– A CPA-secure public-key encryption scheme PKE = (keygen, enc, dec).

Theorem 4.1 Assume the existence of a 4-round MPC protocol with unani-
mous abort security against dishonest majority, a CPA-secure public key encryp-
tion scheme, a garbling scheme that is assumed to satisfy properties of privacy,
correctness, authenticity of input labels and partial evaluation resiliency and a
5-round delayed-input oblivious transfer protocol (described in Sect. 6) satisfy-
ing special 2-B rewindable security and sender simulatability. Then, Πrmpc is
a 4-round B-rewindable secure MPC with unanimous abort against dishonest
majority in the plain model.

The above construction can be built based on trapdoor permutations (we
refer to the full version for details on the instantiations of each of the building
blocks). The formal proof of Theorem4.1 can be found in the full version.

5 Our Construction: MPC with Identifiable Abort

In this section we present the four-round MPC protocol secure with identifiable
abort. The idea of our construction is to let every participating party prove,
during the execution of the MPC protocol, that it is generating all of its messages
according to the protocol description. To prove the correctness of the generated
messages, each party, in the last round, executes a zap (i.e., a two-round public-
coin WI proof) with every other participating party. These zaps prove that
either all the messages of the MPC protocol are generated correctly or the party
has, earlier in the protocol execution, generated a non-malleable commitment
with respect to a trapdoor, that has been generated using a trapdoor generation
protocol later in the protocol execution. Both, the trapdoor generation protocol
and the non-malleable commitment scheme are also executed in parallel to the
MPC protocol.
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To allow the simulator in the security proof of this construction to gener-
ate a valid zap it needs to prove the second part of the relation, i.e. that the
non-malleable commitment is a commitment to the trapdoor generated using the
trapdoor generation protocol. To create such a commitment, the simulator needs
to rewind the overall protocol to extract the trapdoor from the trapdoor gen-
eration protocol. To guarantee that during these rewinds the underlying MPC
protocol is preserved, we can rely on its rewindable security. After the trapdoor is
extracted, the simulator can commit to it in the non-malleable commitment and,
finally, finishes the execution of the zap. We need to require the commitment
scheme to be non-malleable to prevent an adversary from malleability attacks.
An adversary could, for example, if these commitments were malleable, maul one
of them during the simulation and use it to create its own commitment to the
trapdoor of the trapdoor generation protocol and use it to provide an accept-
ing zap even though it did not behave accordingly to the protocol description.
In Fig. 3 we provide the formal description of our protocol Π ID, for which we
make use of the following tools.

– A public-coin perfectly correct trapdoor generation protocol TDGen =
(TDGen1,TDGen2,TDGen3,TDOut,TDValid,TDExt).

– A perfectly correct 3-round special non-malleable commitment scheme
NMCom = (C,R).

– A perfectly correct 4-round MPC protocol that is 3-rewindable secure with
unanimous abort Π. W.l.o.g. we assume that whenever a party aborts in Π
(i.e., its next message function outputs ⊥) then the party keeps interacting
with the other parties by sending ⊥ anytime that it is suppose to send a
message for Π and replace its output with ⊥. Moreover, if a party receives ⊥
from any other party, it will replace any message of Π (as well as its output)
with ⊥. The construction of Π is described in Sect. 4 and we argue that it
satisfies perfect correctness in the full version.

– A perfectly correct 2-round public coin WI proof RWI = (P,V) for the NP-
language L characterized by the relation R specified below (we denote state-
ments and witnesses as st and w, respectively).

st :=
(
msg<5, {msg�}�∈[4] , {nmc�}�∈[3], td1, r

)
and w := (x,R, r̃, RNMCom)

R(st, w) = 1 if either of the following conditions is satisfied:
1. Honest: for every 
 ≤ 4, msg� is an honestly computed 
th round

message in the protocol Π w.r.t. input x, randomness R and the first
(
 − 1) round protocol transcript msg<5.

2. Trapdoor: {nmc�}�∈[3] is an honest transcript of NMCom w.r.t. input
r̃ and randomness RNMCom (AND) trap = r⊕ r̃ is a valid trapdoor w.r.t.
td1
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We also require the domain of the messages of the receivers/verifier of
TDGen,NMCom and RWI to be {0, 1}λ.

In each round if a set of parties stops replying then all the honest parties
stop and output (⊥, i), where Pi is the party with the smallest index that
did not reply.

Round 1. Pi computes and broadcasts the first round messages of the
following protocols:
1. Rewindable secure MPC Π: msg1,i ← Next1,i(1λ, xi, Ri,⊥).
2. Sender message of TDGen: td1,i ← TDGen1 (Rtd,i).
For every j �= i:
3. Sender message of the non-malleable commitment scheme

NMComi→j
1 ← NMCom1(r̃i→j , Ri→j

NMCom) where r̃i→j ← {0, 1}λ.
Round 2. Pi computes and broadcasts the second round messages of the
following protocols:
1. MPC Π: msg2,i ← Next2,i(1λ, xi, Ri,msg<2).
For every j �= i:
2. Receiver message of TDGen: tdi→j

2 ← TDGen2(td1,j).
3. Receiver message of the non-malleable commitment scheme

NMComj→i
2 ← NMCom2(nmcj→i

1 ).
Round 3. Pi computes and broadcasts the following messages of the
following protocols:
1. Third round of Π: msg3,i ← Next3,i(1λ, xi, Ri,msg<3)
2. The third round of TDGen: set td2,i = td1→i

2 || . . . ||tdn→i
2 where

tdi→i
2 = ⊥. Compute td3,i ← TDGen3(td2,i).

For every j �= i:
(a) The third round of NMCom: NMComi→j

3 ← NMCom3(nmci→j
2 ,

r̃i→j ;Ri→j
NMCom).

(b) The first round of RWI: zapj→i
1 ← {0, 1}λ.

Round 4. Pi does the following: If ∃j �= i such that
TDValid(td1,j , td2,j , td3,j) �= 1 then output (abort, j) and stop else
compute and broadcast the following messages
// where td2,j := (td1→j

2 || · · · ||tdn→j
2 ).

1. Fourth round message of the MPC protocol Π: msg4,i ← Next4,i(1λ,

xi, Ri,msg<4)
For every j �= i
2. A random value ri→j ← {0, 1}λ.
3. The second round of RWI: Define st :=

(
msg<5,

{
msg�,i

}
�∈[4]

,

{nmci→j
� }�∈[3], td1,j , r

i→j
)

and w := (xi, Ri,⊥,⊥) and compute

zapi→j
2 ← P(st, w, zapi→j

1 ).
Output Computation Pi computes the following:
1. If ∃j �= i and k, s.t. V(st, zapj→k

2 , zapj→k
1 , st) = 0 where st :=(

msg<5,
{
msg�,j

}
�∈[4]

, {nmcj→k
� }�∈[3], td1,k, rj

)
, output j and stop.

2. Output output(1λ, xi, Ri,msg<5)

Fig. 3. Π ID
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Unless otherwise specified, in each round if a set of parties stops replying
then all the honest parties stop and output abort together with the index
of the party with the smallest index to indicate which is the aborting
party.

Initialization Run A using the randomness ρA and use the randomness
ρ to compute all the messages described below.
Round 1.
– Upon receiving the message msg1,i from the right session where i ∈ I

do the following.
1. Compute td1,i ← TDGen1 (Rtd,i).
For every j �= i:
2. Compute NMComi→j

1 ← NMCom1(r̃i→j , Ri→j
NMCom) where r̃i→j ←

{0, 1}λ.
3. Broadcast {NMComi→j

1 }j∈[n]\{i}, td1,i,msg1,i.
– Upon receiving the first round from A, for each i ∈ I forward msg1,i

to the right interface and continue as follows.
Round 2.
– Upon receiving the messagemsg2,i from the right interface where i ∈ I

do the following:
1. Compute the receiver message of TDGen: tdi→j

2 ← TDGen2(td1,j).
2. Compute the receiver message of the non-malleable commitment

scheme NMComj→i
2 ← NMCom2(nmcj→i

1 ).
– Broadcast {NMComj→i

1 , tdi→j
2 }j∈[n]\{i},msg2,i.

– Upon receiving the second round from A, for each i ∈ I forward
msg2,i to the right interface and continue as follows.

Round 3.
– Upon receiving the message msg3,i from the right session where i ∈ I

do the following:
1. Compute the third round of TDGen: set td2,i = td1→i

2 || . . . ||tdn→i
2

where tdi→i
2 = ⊥ and compute td3,i ← TDGen3(td2,i)

For every j �= i:
(a) Compute the third round of NMCom: NMComi→j

3 ←
NMCom3(nmci→j

2 , r̃i→j ;Ri→j
NMCom).

(b) Compute the first round of RWI: zapj→i
1 ← {0, 1}λ.

2. Broadcast {NMComi→j
3 , zapj→i

1 }j∈[n]\{i}, td3,i,msg3,i

Upon receiving the third round from A, for each i ∈ I do the following.
Check abort. On the behalf of the honest party Pi do the following: If
∃j �= i such that TDValid(td1,j , td2,j , td3,j) �= 1 then let j be the smallest
of such indexes, send (abort, j) to the ideal functionality and output the
view generated so far and stop. Else for each i ∈ I do the following:
Check if the trapdoor has been already extracted. Send get trap
to the right interface. If the reply received from the right interface is
02λ then go to Rewinds. Else, if the reply is {trapj}j∈I such that for
each j ∈ I TDValid(trapj , tdj) = 1 then send {msg3,i}i∈I to the right
interface, and upon receiving the message msg4,i for all i ∈ I from the
right interface go to Round 4.

Fig. 4. M(ρA, ρ)
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Rewinds.
1. Rewind A to the end of round 1 and freeze the main thread at this

point. Then, create a set of T (to be determined later) rewinding
threads, where on each thread, only rounds 2 and 3 of the protocol
are executed using fresh randomness for each primitive.

2. For each look-ahead thread, define a thread to be GOOD with respect
to Pi if for all malicious parties Pj

– Pj does send its third round messages.
– TDValid(td1,j , td2,j , td3,j) = 1 where td2,j is as computed in round

3.
3. The number of threads T created is such that at least 3 GOOD threads

exist.
Trapdoor extraction.
1. For every corrupted party Pj , extract a trapdoor trapj by running

the trapdoor extractor TDExt using the transcript of the trapdoor
generation protocol with Pj playing the role of the trapdoor gen-
erator from any 3 GOOD threads. Specifically, compute trapj ←
TDExt(td1, {tdk

2 , td
k
3}3k=1) where (td1, tdk

2 , td
k
3) denotes the transcript

of the trapdoor generation protocol with Pj as the sender of the k-th
GOOD thread.

2. Send (set trap, {trapj}j∈I) to the right interface.
3. Go back to the pre-rewinds thread, send {msg3,i}i∈I to the right

interface. Upon receiving the message msg4,i from the right interface
for all i ∈ I continue as follows

Round 4. For all i ∈ I
4. Set ri→j ← trapj ⊕ r̃i→j

5. Compute RWI:
Define st :=

(
msg<5,

{
msg�,i

}
�∈[4]

, {nmci→j
� }�∈[3], td1,i, r

i→j
)

and

w :=
(
⊥,⊥, r̃i→j , Ri→j

NMCom

)
and compute zapi→j

2 ← P(st, w, zapi→j
1 ).

End of the simulation For all i ∈ I
1. If ∃j �= i and k, s.t. V(st, zapj→k

2 , zapj→k
1 , st) = 0 where st :=(

msg<5,
{
msg�,j

}
�∈[4]

, {nmcj→k
� }�∈[3], td1,k, rj→k

)
, let j be the small-

est of such indexes such that this holds, then send (abort, j) to the
ideal functionality and output the view generated so far.

Fig. 4. (continued)

Theorem 5.1. Assuming the existence of a public-coin perfectly correct trap-
door generation protocol, a perfectly correct 3-round special non-malleable com-
mitment, a perfectly correct 4-round MPC protocol that is three-rewindable secure
with abort against dishonest majority in the plain model, a perfectly correct 2-
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– Start S using randomness of appropriate length and initialize trap =
02λ.

– Forward any query made by S directed to the adversarial interface to
the right interface of M.

– Upon receiving a query from S directed to the ideal functionality
forward the query to it.

– Upon receiving (set trap, y) from M set trap ← y.
– Upon receiving the command get trap from M send trap to the right

interface of M.
– Upon receiving the command (abort, j) from M forward it to the

ideal functionality.
– Upon receiving the messages {msgk,i}i∈I from the right interface of

M, rewind S up to the k-th round and forward {msgk,i}i∈I to S.a
– Whenever S stops, stop and output whatever S outputs.

a Note that S has full control of Π.S, hence it can rewind Π.S at its will. In
the security proof such rewinds need to be handled with some care as we will
show in the formal proof.

Fig. 5. S

round public-coin WI proof, then Π ID is a four-round MPC secure protocol with
identifiable abort against dishonest majority in the plain model.

The above construction Π ID can be built based on trapdoor permutations (we
refer to the full version for details on the instantiations of each of the building
blocks).

To describe the simulation, we denote the set that contains the indices of
all the corrupted parties as I. Before describing how our simulator S works,
we define an algorithm M that we refer to as the augmented machine. The
augmented machine internally runs the adversary A (we refer to this as the left
interface), and acts as a proxy between A and its external interface (which we
denote as the right interface) with respect to the messages of Π. At a high level,
M filters the messages of Π that will be forwarded to the simulator of Π denoted
by Π.S, and forwards the replies received from Π.S to A. The way in which M
and Π.S interact with each other is regulated by our simulator S, that internally
runs (and has full control of) M and Π.S.

The reason why we describe our simulator via the augmented machine M is
to deal with the rewinds that the simulator of Π might do. We refer to Fig. 4
and Fig. 5 for the formal description of M and S respectively.

The indistinguishability proof of Theorem5.1 can be found in the full version.
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6 Special BOT-Rewindable Secure Oblivious Transfer

Now, we present a modified version of the compiler of Choudhuri et al. [10]
that achieves our new notion of special BOT-rewindable security and sender
simulatability. The compiler makes use of the following tools:

Private Inputs. The sender uses as its private input two lists (L0, L1),
where each list consists of l bit strings of length λ, i.e. Lb = {yi,b}i∈[l]

and yi,b ∈ {0, 1}λ. The receiver uses as its private input a vector x that
consists of l bits, i.e. x = (x1, . . . , xl).
Output. The receiver obtains the values {yi,xi

}i∈[l].
Round 1. (Receiver)
1. Compute the first round message of all the OTs, i.e. for all i ∈ [n], k ∈

[BOT], ot
i,k
1 ← OT1(1λ, r1i,k). We refer to index i as the outer index and

k as the inner index.
2. Output {oti,k1 }i∈[n],k∈[BOT] to the sender.
Round 2. (Sender)
1. Compute the second round message of all the OTs, i.e. for all i ∈

[n], k ∈ [BOT], ot
i,k
2 ← OT′

1(ot
i,k
1 ; r2i,k).

2. Output {oti,k2 }i∈[n],k∈[BOT] to the receiver.
Round 3. (Receiver)
1. Encode the input x using n additive shares, i.e. sample bj ← {0, 1}l

for all j ∈ [n − 1] and compute bn :=
⊕n−1

j=1 bj .
2. Select one of the OT′ instances for all of the outer indexes i, i.e. sample

σi ← [BOT] for all i ∈ [n].
3. Use the input bi to compute oti,σi

3 ← OT′
3(bi, {oti,σi

j }j∈[2]; r3i ). The
other OTs are discontinued.

4. Output {oti,σi

3 }i∈[n] to the sender.
Round 4. (Sender)
1. Compute the garbled circuit (GC, {Ki,b}i∈[n],b∈{0,1}) :=

garble(COT[{yi,0}i∈[l], {yi,1}i∈[l]]), where the circuit COT[{yi,0}i∈[l],
{yi,1}i∈[l]] on input x1, . . . ,xl outputs {yi,xi

}i∈[l] with
x = (x1, . . . ,xl) :=

⊕n
i=1 bi.

2. For all i ∈ [n], compute oti,σi

4 ← OT′
4({Ki,b}b∈{0,1}, {oti,σi

j }j∈[3]; r4i )
3. Output {oti,σi

4 }i∈[n] and GC to the receiver.
Round 5. (Receiver)
1. Output (r1σi,i

, r3i )i∈[n] to the sender.
Output Computation. (Receiver)
1. For all i ∈ [n], compute K̃i := OT′

5(bi, {oti,σi

j }j∈[4]).
2. Output {y′

i}i∈[l] := eval(GC, {K̃i}i∈[n]).

Fig. 6. BOT-rewindable Compiler OT
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– A delayed-input oblivious transfer protocol OT′ = (OT′
1,OT

′
2,OT

′
3,

OT′
4,OT

′
5) with the following properties: one-sided simulation security, and

2-extractability. In the full version we recall the oblivious transfer protocol
of [34] and observe that it has the desired properties.

– A garbled circuit (garble, eval, simGC) that is assumed to satisfy privacy, per-
fect correctness, authenticity of input labels and partial evaluation resiliency.

Theorem 6.1. Assuming the existence of a delayed-input oblivious transfer pro-
tocol that satisfies one-sided simulation security, and 2-extractability, and a gar-
bled circuit that satisfies privacy, perfect correctness, authenticity of input labels
and partial evaluation resiliency, then the OT (described above) is an oblivious
transfer protocol with special BOT-rewindableand sender simulatability.

The above construction can be built based on trapdoor permutations (we
refer to the full version for details on the instantiations of each of the build-
ing blocks). In the remainder of this section we argue informally about sender
simulatability, the proof can be found in the full version.

Sender Simulatability for Parallel Executions of OT. Our construction of
B-rewindable secure MPC Πrmpc in Sect. 4 uses the OT defined in this section as
a building block. It is crucial for proving the security of Πrmpc that it is possible
to extract from all the malicious receivers at the same time. In more detail, the
simulator SOT of OT proceeds to the extraction via rewinds (i.e. sending to the
adversary a 2nd round of OT computed with new randomness), therefore the sim-
ulator of the OT should be able to extract the inputs of malicious receivers in the
same rewinding thread for multiple OT instances that are executed in parallel.
We refer to this property informally as simultaneous extractability. We therefore
define SOT when multiple, say m2, executions of the protocol OT of Fig. 6 are
executed in parallel, with a single execution corresponding to each pair of parties,
where m denotes the number of parties. Let us indicate with OT′ the underlying
OT protocol that is used in Fig. 6. We discuss now the high-level overview of
SOT. Recall that in the rewind-secure OT construction of Fig. 6, the OT receiver
chooses a set of indices among the underlying OT′ instances that it wishes to
continue. However, the adversary acting on behalf of the OT receiver can choose
to reveal a different set of indices across different rewinds of the simulator. Note
that, to extract the receiver’s input used in an instance of OT′, the simulator
requires two transcripts where the receiver chooses the same index. Therefore,
in order to extract the input of malicious receivers across multiple OT instances
in the same rewind thread, it is crucial that the indices for all the OT instances
have appeared at least once previously in the rewind thread in which we are
able to extract. Based on the above, the natural simulation strategy would be
to continue rewinds until the above condition occurs i.e. until there occurs a
rewinding thread such that the indices for all the OT instances have appeared
at least once previously (we refer to this as a collision). It is important to notice
that if in a rewinding thread a collision does not appear, then SOT obtains a
transcript with a new index. Therefore, it is sufficient for SOT to rewind until it
finds a collision. Unfortunately, simulation based on the above natural halting
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condition suffers from the following issue: if the simulator stops the first time it
sees a transcript having the set of indices seen earlier, then the distribution of the
transcripts output by the simulator is biased towards more frequently appear-
ing indices that appeared in earlier rewinds. Therefore, the simulated view is
not indistinguishable from the real view of the adversary. A similar issue was
observed in the zero-knowledge protocol of [30], where the authors proposed a
new halting condition of the simulator to maintain the indistinguishability of
the views. We adopt their solution in the design of our simulation strategy. In
more detail, for a better understanding, we elaborate on the issue of [30] and
describe how their scenario is analogous to us. The authors of [30] consider N
parallel instances of the following four-round ZK protocol: the verifier commits
to a challenge in the 1st round and opens it in the 3rd round. In the 4th round
the prover answers to the challenge. In particular, the verifier chooses t among
the N instances for which it opens the challenge. The prover, in round 4, finishes
the ZK protocol for the revealed challenges. The simulator S on behalf of the
honest prover should be able to cheat w.r.t. all the indices (of the instances)
opened by the verifier. In order to do that S rewinds the malicious verifier V ∗,
and succeeds if each of the t indices opened by V ∗ has appeared in at least one of
the earlier rewinds (a collision occurs). Note that V ∗ can choose different indices
during different rewinds. However, when S fails to cheat it learns at least one
new index that did not occur in any of the previous rewinds. In [30] it is pointed
out that if S stops as soon as it can simulate successfully, then the simulated
view could be distinguishable from the real world view of V ∗ due to the same
reasons explained above (in the context of OT). It is easy to see that SOT could
collect the indices in the same way as S. It remains to argue that the strate-
gies with which the malicious receiver can open the OT′ indices are a subset of
the one that V ∗ can perform. Consider an execution of OT where the malicious
receiver opens n indices k1, . . . , kn as opposed to t indices i1, . . . , it given by
V ∗. It easy to see that N of [30] corresponds to nB in our case. For simplicity,
let us assume that the underlying OT′ instances are labeled {1, . . . , nB}, then
each kj has a value only in {(j − 1) · B + 1, . . . , j · B}, with j ∈ [n]. Therefore,
this corresponds to a strategy of V ∗ where for each ij , V ∗ chooses value only in
{j − 1 · (N

t ) + 1, . . . , j · N
t }, with j ∈ [t].

Acknowledgements. We are grateful to Maciej Obremski, our tall lighthouse who
illuminated our path toward proving the complexity of our simulators.
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Abstract. Two common variations of ECDSA signatures are additive
key derivation and presignatures. Additive key derivation is a simple
mechanism for deriving many subkeys from a single master key, and is
already widely used in cryptocurrency applications with the Hierarchical
Deterministic Wallet mechanism standardized in Bitcoin Improvement
Proposal 32 (BIP32). Because of its linear nature, additive key deriva-
tion is also amenable to efficient implementation in the threshold setting.
With presignatures, the secret and public nonces used in the ECDSA
signing algorithm are precomputed. In the threshold setting, using pres-
ignatures along with other precomputed data allows for an extremely
efficient “online phase” of the protocol. Recent works have advocated for
both of these variations, sometimes combined together. However, some-
what surprisingly, we are aware of no prior security proof for additive
key derivation, let alone for additive key derivation in combination with
presignatures.

In this paper, we provide a thorough analysis of these variations, both
in isolation and in combination. Our analysis is in the generic group
model (GGM). Importantly, we do not modify ECDSA or weaken the
standard notion of security in any way. Of independent interest, we also
present a version of the GGM that is specific to elliptic curves. This EC-
GGM better models some of the idiosyncrasies (such as the conversion
function and malleability) of ECDSA. In addition to this analysis, we
report security weaknesses in these variations that apparently have not
been previously reported. For example, we show that when both vari-
ations are combined, there is a cube-root attack on ECDSA, which is
much faster than the best known, square-root attack on plain ECDSA.
We also present two mitigations against these weaknesses: re-randomized
presignatures and homogeneous key derivation. Each of these mitigations
is very lightweight, and when used in combination, the security is essen-
tially the same as that of plain ECDSA (in the EC-GGM).

1 Introduction

Let us recall the basic ECDSA signature scheme [17]. Let E be an elliptic curve
defined over Zp and generated by a point G of prime order q, and let E∗ be the set
of points (x, y) on the curve excluding the point at infinity O. The unreduced
conversion function C : E∗ → Zp maps a point P to its x-coordinate. The
c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13275, pp. 365–396, 2022.
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reduced conversion function C̄ : E∗ → Zq maps a point P to the canonical
representative of C(P) (i.e., an integer in the range [0, p)) reduced mod q.

The secret key for ECDSA is a random d ∈ Z
∗
q , the public key is D = dG ∈ E.

The scheme makes use of a hash function Hash : {0, 1}∗ → Zq. The signing and
verification algorithms are shown in Fig. 1. The signing algorithm will fail with
only negligible probability.

Fig. 1. ECDSA signing and verification algorithms

The security of ECDSA has only been analyzed in idealized models of
computation. Specifically, Brown [4] showed that under standard intractability
assumptions on Hash (collision resistance and random/zero preimage resistance),
ECDSA is secure in the generic group model [14,16]. In addition, Fersch, Kiltz,
and Pottering [10] have also showed that ECDSA is secure under somewhat dif-
ferent intractability assumptions on Hash if the conversion function is modeled
as an idealized function (but one that captures some idiosyncrasies of the actual
conversion function). In this paper, we will also analyze ECDSA and several vari-
ants in the generic group model. However, we shall work in a specific version of
the generic group model that more accurately models some of the idiosyncrasies
of elliptic curves and the corresponding conversion function. We call this the
elliptic curve generic group model (EC-GGM), which may be of indepen-
dent interest. By working in this model, we overcome objections raised in [10]
and elsewhere [18] that Brown’s analysis was incomplete. For example, it was
pointed out that Brown’s analysis ruled out any malleability in the signature
scheme, whereas ECDSA signatures are in fact malleable.

Several variations of ECDSA have been proposed, notably additive key
derivation and presignatures. We are mainly interested in these variations
because of the optimizations they enable in the threshold setting, where the
signing functionality is implemented as a secure distributed protocol by parties
that each hold a share of the secret key. However, these variations also enable
optimizations in the single-signer setting as well.

Additive Key Derivation. With additive key derivation, the secret-key/public-
key pair (d,D) is viewed as a master key pair from which subkey pairs
can be derived using a simple additive shift. Specifically, we can derive a secret
subkey of the form d + e by using a “tweak” e ∈ Zq. For such a derived secret
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subkey, we can compute the corresponding derived public subkey from the public
key D as D + eG. In the context of cryptocurrency, this type of additive key
derivation is used in so-called Hierarchical Deterministic Wallets using the
Bitcoin Improvement Proposal 32 (BIP32) standard [20], which is a specific
way of deriving a tweak e via a chain of hashes applied to the public key and
other public data. Note that BIP32 also specifies so-called “hardened” subkeys,
which derives subkeys using the secret key—we do not consider such “hardened”
subkeys in this paper.

There is a cost to storing secret keys, and additive key derivation is useful in
reducing that cost, since it allows several distinct public keys to be used while
only having to store a single secret key. This secret-key storage cost manifests
itself in both the threshold and non-threshold settings. In the non-threshold set-
ting, there is the obvious cost of maintaining the secret key in some kind of
secure storage. In the threshold setting, there is the cost of running the key gen-
eration algorithm and storing secret shares in some kind of secure storage. There
may be additional costs in the threshold setting: for example, the cost of reshar-
ing the secret key periodically, both to provide proactive security and to allow
for dynamic changes in the share-holder membership. Because of the linearity of
the key derivation, implementing additive key derivation in the threshold setting
comes at essentially no cost.

Unfortunately, and somewhat surprisingly, we are aware of no prior proofs of
security for ECDSA with additive key derivation. While [21] purports to present
such a proof (via a direct reduction to the security of ECDSA), their proof seems
to be fundamentally flawed: their simulator apparently needs to “reprogram” a
random oracle that has already been “programmed”. The more recent work [8]
analyzes additive key derivation with respect to a variant of ECDSA in which the
derived public key is prepended to the message to be signed, and with a restricted
attack model in which an attacker is only allowed to ask for one signature per
message and derived public key.

Presignatures. In the signing algorithm, the values r and R := rG are inde-
pendent of the message to be signed (or the tweak), and so they can be pre-
computed in advance of an actual signing request. In the threshold setting, it is
tempting to not only precompute a sharing of r, but to also to precompute R
itself. This can greatly simplify the online signing phase of the protocol. Indeed,
several papers, including [7] and [11] present protocols that use presignatures.
Moreover, [7] advocates for the combination of presignatures and additive key
derivation, even though the security of additive key derivation, let alone additive
key derivation in combination with presignatures, has never been analyzed.

The paper [5] considers the security of presignatures (in isolation). They give
an explicit definition and they briefly sketch a proof of security in the GGM with
Hash also modeled as a random oracle (an earlier version of [5] had an incorrect
security bound).
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1.1 Our Contributions

Security Proofs. We carry out a careful and detailed security analysis of
ECDSA and several variants, including ECDSA with additive key derivation,
ECDSA with presignatures, and ECDSA with both additive key derivation and
presignatures. This analysis is done in the generic group model (more precisely,
the EC-GGM) under concrete assumptions for the hash function Hash. Impor-
tantly, we do not modify ECDSA or weaken the standard notion of security in
any way. Unlike [5], we do not model Hash as a random oracle (and we give
somewhat tighter security bounds). Our analysis carries over immediately to
any threshold implementation of ECDSA whose security reduces to that of the
non-threshold scheme (which is typically the case).

For additive key derivation, we mainly assume that the set E of all valid
tweaks is not too large and is determined in advance. In practice (such as with
BIP32), tweaks are derived, via a hash, from identifiers (possibly combined with
a “root” public key). This assumption on E can be justified if the set of valid
identifiers, and in particular, the set of identifiers with respect to which we are
concerned about forgeries, is indeed small. It can also be further justified by
modeling the hash function used to derive tweaks as a random oracle. That
said, our analysis also works without this assumption, and we describe how our
security results can be stated in terms of concrete security properties of the
hash used to derive the tweaks—this is discussed in the full version [12]. We also
provide an analysis of the BIP32 key derivation function in the full version [12],
which justifies modeling it as a (public use) random oracle.

Attacks. While we are able to prove security results under reasonable assump-
tions for all of the variations listed above, in the course of our analysis, we
discovered that the concrete security of some of these variants is substantially
worse than plain ECDSA.

An Attack on ECDSA with Additive Key Derivation and Presignatures. For
example, consider ECDSA with both additive key derivation and presignatures.
Consider the following attack:

1. Make one presignature query to get the group element R and let t := C̄(R).
2. Find m, e,m∗, e∗ such that h+ te = h∗ + te∗, where e �= e∗ and h := Hash(m)

and h∗ := Hash(m∗)
3. Ask for a signature (s, t) using this presignature on message m with tweak e.

Observe that (s, t) being a valid signature on m with respect to the tweak e
means that

R = s−1hG + s−1t(D + eG) = s−1(h + te)G + s−1tD = s−1(h∗ + te∗)G + s−1tD,

which means that (s, t) is also a valid signature on m∗ with respect to e∗.
Also observe that Step 2 above is essentially a 4-sum problem of the type

studied by Wagner [19] and others [2,15]. Indeed, Wagner’s algorithm allows
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us to implement Step 2 in time significantly less than O(q1/2) if the set E is
sufficiently large. In particular, if |E| = Θ(q1/3), then we can solve this 4-sum
problem and forge a signature in time roughly O(q1/3). While not a polynomial-
time attack, this is clearly a much more efficient attack than the best-known
attack on plain ECDSA, which runs in time roughly O(q1/2).

An Attack on ECDSA with Presignatures. Even with presignatures alone,
ECDSA has potential security weaknesses that plain ECDSA does not. Con-
sider the following attack:

1. Make one presignature query to get the group element R and let t := C̄(R).
2. Compute R∗ ← cR for some c ∈ Z

∗
q and let t∗ := C̄(R∗).

3. Find m,m∗ such that h/t = h∗/t∗, where h := Hash(m) and h∗ := Hash(m∗)
and m �= m∗.

4. Ask for a signature (s, t) using the presignature R on message m.
5. Compute s∗ satisfying (s∗)−1t∗ = cs−1t, and output (s∗, t∗).

Observe that (s, t) being a valid signature on m means that R = s−1hG +
s−1tD. Moreover,

R∗ = cR = cs−1hG + cs−1tD = cs−1t(h/t)G + cs−1tD
= (s∗)−1t∗(h/t)G + (s∗)−1t∗D = (s∗)−1t∗(h∗/t∗)G + (s∗)−1t∗D
= (s∗)−1h∗G + (s∗)−1t∗D,

which means that (s∗, t∗) is a valid signature on m∗.
To implement Step 3, for fixed t and t∗, there is no obvious way to find h, h∗

satisfying h/t = h∗/t∗ in time faster than O(q1/2). However, the inability to do so
requires an assumption on Hash that is not needed for plain ECDSA. Moreover,
it is clear that ECDSA with presignatures is completely insecure if we allow
a “raw” signing oracle, i.e., a signing oracle that takes as input the purported
hash h rather than the message m. There are settings where allowing such “raw”
signing queries may be useful (e,g., in a remote signing service to avoid the cost
of message transmission), and plain ECDSA is secure in the EC-GGM even with
raw signing queries.

Note that one could extend the above attack so that the attack iterates
Steps 3 and 4 for many values of c. This would give us an attack that is essen-
tially a multiplicative variant of a 3-sum problem, for which there is no known
algorithm that runs in time O(q1−ε) for any ε > 0 [15]. However, this is again
an attack vector that is not available for plain ECDSA.

Mitigations. In addition to the analysis and attacks above, we present several
mitigations.

Re-randomized Presignatures. A presignature of the form r′ ∈ Zq and R′ :=
r′G ∈ E is computed as before. However, when a signing request is made, the
actual presignature used is r := r′ +δ and R := R′ +δG, where δ ∈ Zq is a public
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value that is pseudo-randomly generated at the time of the signing request (the
key property is that δ is not predictable). This mitigation may be deployed both
with and without additive key derivation.

We prove much stronger security results with this mitigation. Specifically,
we prove a security result for re-randomized presignatures without additive key
derivation that is essentially equivalent to the security result for plain ECDSA.
With additive key derivation, the concrete security degrades by a factor of |E|,
where E is the set of valid tweaks, but the resulting scheme is no longer vulner-
able to the 4-sum attack described above. Both with and without additive key
derivation, we can also prove security even with respect to a raw signing oracle.

We are mainly interested in the use of re-randomized presignatures in the
threshold setting. Since the re-randomization is linear, in terms of working with
linear secret sharing, the impact is negligible (computing (r′+δ)−1 in the thresh-
old setting is no harder than computing r−1, assuming one is using standard
techniques, such as [1]). However, the parties will still need access to a source
of public randomness to generate δ. Accessing this public randomness may or
may not introduce some extra latency, depending on details of the system. For
example, in the Internet Computer (IC) [9], which motivated our work, there is
already a mechanism for accessing public, unpredictable randomness via a “ran-
dom tape” (which is implemented using a threshold BLS signature [3]). More-
over, in the IC architecture, when a subprotocol (such as a threshold ECDSA
signing protocol) is launched, we can access this public randomness with no
additional latency.

Instead of generating δ at the time of the signing request, as an alternative
approach, one might also derive δ from a hash applied to (among other things)
the public key, the (hash of) the message to be signed, and (if using additive key
derivation) the tweak. This approach for re-randomizing presignatures comes at
essentially no cost, either in terms of computation or latency. However, while
it heuristically appears to offer more security than plain presignatures, and in
particular foils the 4-sum attack described above, we have not formally analyzed
the security of this approach.

Homogeneous Key Derivation. We also propose an alternative additive key
derivation mechanism with better security properties. The master secret key
now consists of a randomly chosen pair (d, d′) ∈ Zq × Zq. The corresponding
master public key is (D,D′) := (dG, d′G). Given a tweak e ∈ Zq, the derived
secret key is d + ed′, and the derived public key is D + eD′.

Clearly, just as for additive key derivation, we can easily derive a public
key from the master public key. Moreover, since key derivation is linear, imple-
menting homogeneous key derivation in the threshold setting comes at very little
cost. Compared to additive key derivation, the only downsides are (1) some small
additional computational and communication complexities, and (2) the lack of
compatibility with existing standards, such as BIP32.

One can combine homogeneous key derivation with either plain ECDSA,
ECDSA with presignatures, and ECDSA with re-randomized presignatures. We
give security proofs for all three of these variations. The upshot is that with
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homogeneous key derivation, for each variation, we get a security result for that
variation with homogeneous key derivation that is essentially equivalent to that
variation without key derivation. In particular, unlike with additive key deriva-
tion, our security results do not degrade linearly with |E|, where E is the set
of valid tweaks, and we do not need to insist that the set E is determined in
advance. In particular, we may just assume that the tweaks are derived by a
collision resistant hash.

Table 1. Summary of concrete security theorems

No presigs Presigs Re-randomized presigs

No derivation Ecr + NErpr + Ezpr + N2/q Ecr + UNErpr + NErr + Ezpr + N2/q � Ecr + NErpr + Ezpr + N2/q

Additive Ecr + N |E|Erpr + Ezpr + N2/q Ecr + UN |E|Erpr + Npsig E4sum1 + NE4sum2 + Ezpr + N2/q � Ecr + N |E|Erpr + Ezpr + N2/q

Homogeneous Ecr + NErpr + Ezpr + N2/q Ecr + UNErpr + NErr + Ezpr + N2/q � Ecr + NErpr + Ezpr + N2/q

Summary of Concrete Security Bounds. Table 1 summarizes our concrete
security theorems. Each table entry gives an upper bound on an adversary’s
success in producing a forgery (ignoring small constants) in the EC-GCM (and
in the PDF file, each table entry also contains a hyperlink to the actual theorem).
These upper bounds are stated in terms of:

– q: the order of the group E;
– N : the number of oracle queries (group, signing, or presignature);
– Npsig: the number of presignature requests;
– U : the maximum number of unused presignature requests outstanding at any

point in time;
– |E|: the size of the set of valid tweaks;
– Ecr: the probability of successfully finding a collision in Hash;
– Erpr: the probability of successfully finding a preimage under Hash of a random

element in Zq;
– Ezpr: the probability of successfully finding a preimage under Hash of 0;
– Err: the probability, given random ρ ∈ Z

∗
q , of finding m,m∗ such that h/h∗ =

ρ, where h := Hash(m) and h∗ := Hash(m∗) and h∗ �= 0;
– E4sum1: the probability, given random t ∈ Zq, of successfully finding

m, e,m∗, e∗ such that h + te = h∗ + te∗, where e, e∗ ∈ E, e �= e∗ and
h := Hash(m) and h∗ := Hash(m∗);

– E4sum2: the probability of successfully finding m, e,m∗, e∗ such that h/t +
e = h∗/t∗ + e∗, where e, e∗ ∈ E, (m, e) �= (m∗, e∗) and h := Hash(m) and
h∗ := Hash(m∗), where t ∈ Z

∗
q is selected by the adversary from one of several

random samples, and t∗ ∈ Z
∗
q is a random value given after t is selected.

The success probabilities Ecr, Erpr, Ezpr, Err, E4sum1, E4sum2 are stated in terms of
an adversary whose running time is essentially that of the forging adversary (or
that time plus UN , in either of the presignature settings). Also, the symbol �
in the table indicates that this mode of operation is insecure with “raw” signing.
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We make some quick observations about this table. First, observe that the
first and third rows are identical, as are the first and third columns. Second, we
see that the best security bounds are in the upper left cell and the lower right cell,
and these bounds are the same—this suggests that ECDSA with homogeneous
key derivation and re-randomized presignatures is just as secure as plain ECDSA.
Third, we see that the worst security result is in the middle cell, corresponding
to the setting of additive key derivation combined with (non-re-randomized)
presignatures; moreover, this is not just a case of sloppy analysis, as we have
already seen that in this setting, there is an actual attack that produces a forgery
in time significantly faster than O(q1/2). Finally, we see that “raw” signing is
insecure for all modes of operation in the middle column. Each other mode is
secure even with “raw” signing, meaning that the mode is just as secure if the
signing algorithm is given an arbitrary hash value h ∈ Zq (not necessarily the
output of Hash) and, in the case of key derivation, and arbitrary tweak e ∈ Zq

(not necessarily in E or satisfying any other constraint).

2 The EC-GGM

We propose the following elliptic curve generic group model (EC-GGM).
We assume an elliptic curve E is defined by an equation y2 = F (x) over Zp

and that the curve contains q points including the point at infinity O. Here, p
and q are odd primes. Let E∗ be the set of non-zero points (excluding the point
at infinity) on the curve, i.e., (x, y) ∈ Zp ×Zp that satisfy y2 = F (x). From now
on, we shall not be making any use of the usual group law for E, but simply
treat E as a set; however, for a point P = (x, y) ∈ E∗, we write −P to denote
the point (x,−y) ∈ E∗. Note that because we are assuming q is prime, there
are no points of the form (x, 0) ∈ E (these would be points of order 2 under the
usual group law).

An encoding function for E is a function π : Zq �→ E that is injective, iden-
tity preserving, meaning that π(0) = O, and inverse preserving, meaning
that for all i ∈ Zq, π(−i) = −π(i).

In the EC-GGM, parties know E and interact with a group oracle Ogrp

that works as follows:

– Ogrp on initialization chooses an encoding function π at random from the set
of all encoding functions

– Ogrp responds to two types of queries:
• (map, i), where i ∈ Zq: return π(i)
• (add,P1,P2), where P1,P2 ∈ E: return π

(
π−1(P1) + π−1(P2) )

Notes. 1. The intuition is that the random choice of encoding function hides
relations between group elements.

2. However, to make things more realistic in terms of the ECDSA conversion
function, the encodings themselves have the same format as in a concrete
elliptic curve, even though we do not at all use the group law of an elliptic
curve.
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3. Also to make things more realistic, the trivial relationship between a point
and its inverse (that they share the same x-coordinate) is preserved.

4. Our model only captures the situation of elliptic curves over Zp of prime order
and cofactor 1. This is sufficient for many settings, and it covers all of the
“secp” curves in [6].

5. It would be possible to extend the model to elliptic curves of non-prime order
as well, in which case the domain of the encoding function π would have to
be adjusted to match the structure of the group.

3 Properties of the ECDSA Conversion Function

For a random variable T taking values in some finite set X, we define its guessing
probability to be max {Pr[T = x] : x ∈ X}.

Recall again the ECDSA signature scheme as described in Sect. 1 and Fig. 1.
The unreduced conversion function C : E∗ → Zp is a 2-to-1 map (recall that
there are no points of the form (x, 0) ∈ E). Therefore, the distribution of C(R),
for random R ∈ E∗, is uniform over a subset of Zp of size (q−1)/2. In particular,
the guessing probability of C(R) is 2/(q − 1).

Hasse’s theorem says that q − 1 = p + 2θp1/2 for some θ ∈ [−1, 1]. This
implies that for p ≥ 13 we have p/2 ≤ q ≤ 2p. We shall implicitly assume
this from now on. The bound p ≤ 2q and the fact that C is 2-to-1 imply that
every element of Zq has at most four preimages under the reduced conversion
function C̄ : E∗ → Zq; therefore, the guessing probability of t := C̄(R) is at
most 4/(q − 1). The ECDSA signing algorithm fails if t = 0 or h + td = 0. Thus,
the probability that the signing algorithm fails is at most 8/(q − 1).

Hasse’s theorem also implies that the probability that x ∈ C(E∗), for random
x ∈ Zp, is equal to 1/2 + θp−1/2. We can use this to design an efficient proba-
bilistic sampling algorithm Samp, which takes as input t ∈ Zq and returns
either fail or a point R ∈ C̄−1(t), with the following properties:

– For randomly chosen t ∈ Zq, we have

Pr[Samp(t) = fail] ≤ 3
4 + 1

2p−1/2.

– For randomly chosen t ∈ Zq, the conditional distribution of Samp(t), given
that Samp(t) �= fail, is uniform over E∗.

The algorithm works as follows:

1. Let t′ ∈ Z be the canonical representative of t in the interval [0, q). (Assume
t is uniform over Zq. t′ is uniform over {0, . . . , q − 1}.)

2. If q < p, then with probability 1/2 add q to t′. ( t′ is uniform over an interval
{0, . . . , u − 1}, where p ≤ u ≤ 2p.)

3. If t′ ≥ p then return fail. (Failure occurs with probability at most 1/2; oth-
erwise, t′ is uniform over {0, . . . , p − 1}.)

4. Set x ← [t′ mod p] ∈ Zp. (x is uniform over Zp.)
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5. If F (x) is not a square, return fail. (Failure occurs with probability 1/2 −
θp−1/2.)

6. Choose a random square root y of F (x) and return R := (x, y). ( R is uniform
over E∗.)

4 Notions of Security

Definition 1 (CMA security). For a signature scheme S and an adversary
A, we denote by CMAadv[A,S] the advantage that A has in forging a signature
in a chosen message attack against S. This is the probability that A wins the
following game.

– The challenger runs the key generation algorithm for S to obtain a public key
pk and a secret key sk and gives pk to A.

– A makes a sequence of signing requests to the challenger. Each such request
is a message m, which the challenger signs using sk, giving the resulting sig-
nature σ to A.

– At the end of the game, A outputs (m∗, σ∗).
– We say A wins the game if σ∗ is a valid signature on m∗ under pk, and

m∗ was not submitted as a signing request.

Definition 2 (CMA security in GGM). If S is based on computations in
a certain group, we can also model such a CMA attack in the generic group
model, in which all computations in the group done by A and the challenger
are performed using the group oracle as described in Sect. 2. In this case, A’s
advantage in the corresponding CMA attack game is denoted CMAggmadv[A,S].

Definition 3 (Random-preimage resistance). Let Hash be a hash function
whose output space is Zq. Let A be an adversary. We define RPRadv[A,Hash] to
be the advantage of A in breaking the random-preimage resistance of Hash.
This is defined as the probability that A wins the following game.

– The challenger chooses h ∈ Zq uniformly at random and gives h to A.
– A outputs m.
– We say A wins the game if Hash(m) = h.

Definition 4 (Zero-preimage resistance). Let Hash be a hash function
whose output space is Zq. Let A be an adversary. We define ZPRadv[A,Hash]
to be the advantage of A in breaking the zero-preimage resistance of Hash.
This is defined as the probability that A wins the following game.

– A outputs m.
– We say A wins the game if Hash(m) = 0.

Definition 5 (Collision resistance). Let Hash be a hash function. Let A be
an adversary. We define CRadv[A,Hash] to be the advantage of A in breaking
the collision resistance of Hash. This is defined as the probability that A wins
the following game.

– A outputs m,m′.
– We say A wins the game if Hash(m) = Hash(m′) but m �= m′.
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5 Proof of Security of ECDSA in the EC-GGM

In the EC-GGM model, the generator G is encoded as π(1) and the public key
D is encoded as π(d) for randomly chosen d ∈ Z

∗
q . We assume that d �= 0. These

encodings of G and D are given to the adversary at the start of the signing attack
game.

The adversary then interacts makes a sequence of queries to both the group
and signing oracles. The signing oracle on a message m itself works as usual,
computing h = Hash(m), but it uses the group oracle to compute the encoding
of R = rG. Note that we have R = s−1hG + s−1tD, where (s, t) is the signature.
For simplicity, let us assume that R is output by the signing oracle as well.

At the end of the signing attack game, the adversary outputs a forgery (s∗, t∗)
on a message m∗. The signature is then verified using the verification algorithm,
computing h∗ = Hash(m∗), and then again making use of the group oracle to
compute the encoding of R∗ = (s∗)−1h∗G + (s∗)−1t∗D.

We define three types of forgers.

Type I. R∗ = ±R for some R computed by the signing oracle.
Type II. R∗ �= ±R for any R computed by the signing oracle, and h∗ �= 0.
Type III. Neither Type I or Type II.

A Lazy Simulator. Instead of choosing the encoding function π at random
at the beginning of the attack game, we can lazily construct π a bit at a time.
That is, we represent π as a set of pairs (i,P) which grows over time—such a
pair (i,P) represents the relation π(i) = P. Here, we give the entire logic for
both the group and signing oracles in the forgery attack game. Figure 2 gives the
details of Lazy-Sim.

Fig. 2. Lazy-Sim
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At the end of the attack game, the adversary will output a forgery (s∗, t∗)
on a message m∗. The verification routine will be used to verify this signature,
and this will use the add queries to perform the computation, which will take
O(log q) group oracle queries. We denote by Ngrp the total number of group
oracle queries explicitly made by the adversary, with the understanding that
this includes the group oracle queries used to verify the forgery, as well as the
group oracle queries used to generate G and D, but not including group oracle
queries used in the signing queries. We let Nsig denote the number of signing
queries made by the adversary, and set N := Nsig + Ngrp.

This lazy simulation is perfectly faithful. Specifically, the advantage of any
adversary in the signature attack game using this lazy simulation of the group
oracle is identical to that using the group oracle as originally defined.

A Symbolic Simulator. We now define a symbolic simulation of the attack
game. The essential difference in this game is that Domain(π) will now consist
of polynomials of the form a + bD, where a, b ∈ Zq and D is an indeterminant.
Here, D symbolically represents the value of d. Note that π will otherwise still
satisfy all of the requirements of an encoding function. Figure 3 gives the details
of Symbolic-Sym.

Fig. 3. Symbolic-Sim

Lemma 1. The difference between the adversary’s forging advantage in the
Lazy-Sim and Symbolic-Sim games (as described in Figs. 2 and 3) is O(N2/q).

Proof. See the full version [12]. 	
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Theorem 1. Let A be an adversary attacking Secdsa as in Definition 2 that
makes at most N signing or group queries. Then there exist adversaries BI,
BII, and BIII, whose running times are essentially the same as A, such that

CMAggmadv[A,Secdsa] ≤ CRadv[BI,Hash] + (4 + o(1))N · RPRadv[BII,Hash]

+ ZPRadv[BIII,Hash] + O(N2/q).

Proof. Consider a Type I forger playing against our symbolic simulator (see
Fig. 3), where R∗ = ±R for some R produced by the signing oracle (which must
be unique). This means (s∗)−1(h∗ + t∗D) = ±s−1(h + tD) and t∗ = t. In other
words, for η ∈ {±1}, we have (s∗)−1(h∗ + tD) = ηs−1(h + tD), which gives us
the two equations (s∗)−1h∗ = ηs−1h and (s∗)−1t = ηs−1t. These two equations
imply h∗ = h, which implies a collision on the hash function Hash. This gives us
the adversary BI in the theorem.

Now consider a Type II forger playing against our symbolic simulator, where
R∗ �= ±R for any R produced by the signing oracle. Suppose π−1(R∗) = a+ bD.
By the verification equation, we also have π−1(R∗) = (s∗)−1(h∗ + t∗D). Thus, we
have a = (s∗)−1h∗ and b = (s∗)−1t∗. These identities, along with the assumption
that h∗ �= 0, imply that b �= 0, a �= 0, and t∗ = h∗a−1b. The group element R∗

must have been generated at random by some group oracle query made directly
by the adversary (this follows from the fact that b �= 0). Since the coefficients
a, b were already determined before this query, it follows that the value of R∗ is
independent of these coefficients. We want to use this Type II forger to break
the random-preimage resistance of Hash. That is, we are given random h† ∈ Zq

and want to find a preimage of h† under Hash. To do this, we will guess the
group oracle query that will produce the value R∗ in the forgery, and then we
will run our sampling algorithm to compute t† ← h†a−1b, R† $← Samp(t†).
If the sampler fails, then we abort. Otherwise, we set R∗ := R† and t∗ := t†

and proceed as usual: if the adversary forges a signature, we succeed in finding
a preimage of h†. This is adversary BII in the theorem.

A Type III forger produces a forgery with h∗ = 0. This gives us adversary
BIII in the theorem.

The above analysis was with respect to the symbolic simulator. To get the
result with respect to the lazy simulator, we use Lemma 1, which gives us the
term O(N2/q) in the theorem. 	

Notes. 1. All three assumptions we make—collision resistance, random-

preimage resistance, and zero-preimage resistance—are necessary conditions,
in the sense that it is trivial to break the scheme if any of them are false.

2. The above analysis shows that ECDSA is secure under the same assumptions,
even if we give the adversary access to a “raw” signing oracle, where the input
is h, not m. Of course, in this model, the notion of a forgery must be modified
appropriately, to disallow forgery on any message m∗ for which H(m∗) was
submitted as a “raw” signing query.
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6 ECDSA with Additive Key Derivation

We assume that the secret key d ∈ Zp is used as a master key to derive secret
subkeys of the form d+e for a “tweak” e ∈ Zq. For such a derived secret subkey,
we can compute the corresponding derived public subkey from the public key D
as D + eG.

As we will see, it is impossible to achieve security without some restriction on
the choice of tweaks. We assume that any tweak must come from a set E ⊆ Zq

of allowed tweaks that is chosen before the attack game starts. This can be
enforced in several ways, one of which is to obtain tweaks as the output of a
hash function which is modeled as a random oracle. In the full version [12] we
provide an analysis of the BIP32 key derivation function, which justifies modeling
it as a (public use) random oracle. As we will see, security will degrade linearly
in |E|. In the full version [12], we provide an alternative analysis in terms of
concrete security properties of the hash function used to derive tweaks.

The CMA security game in Definition 1 (as well as Definition 2) is modified so
that the signing oracle takes a message m and a tweak e. Similarly, the adversary
must output a forgery on a specific message m∗ under specific tweak e∗, and the
forgery only counts if the pair (m∗, e∗) was not given to the signing oracle.

We define CMAggm
akd adv[A,S,E] to be adversary A’s advantage in winning

this modified CMA game in the EC-GGM.
Lemma 1 is seen to hold as well in this setting, where to process a signing

query (h, e), the symbolic simulator runs the same algorithm as before, but with
e + D in place of D.

Theorem 2. Let A be an adversary attacking Secdsa as in Definition 2 with
additive key derivation that makes at most N signing or group queries, of
which Nsig are signing queries. Then there exist adversaries BIa, BIb, BII, and
BIII, whose running times are essentially the same as A, such that

CMAggm
akd adv[A,Secdsa,E] ≤ CRadv[BIa,Hash] + (4 + o(1))Nsig|E| · RPRadv[BIb,Hash]

+ (4 + o(1))N |E| · RPRadv[BII,Hash] + ZPRadv[BIII,Hash] +O(N2/q).

Proof. Consider a Type I forger playing against our symbolic simulator, where
R∗ = ±R for some R produced by the signing oracle (which must be unique).
This means (s∗)−1(h∗ + t∗(e∗ + D)) = ±s−1(h + t(e + D)) and t∗ = t. In other
words, for η ∈ {±1}, we have (s∗)−1(h∗ + te∗ + tD) = ηs−1(h + te + tD), which
gives us the two equations (s∗)−1(h∗ + te∗) = ηs−1(h+ te) and (s∗)−1t = ηs−1t.
These two equations imply

h∗ + te∗ = h + te. (1)

If e∗ = e, then we have h∗ = h. Let us call this a Type Ia forgery. In this case,
we can use the forging adversary to break the collision resistance of Hash as in
Theorem 1. This is adversary BIa in Theorem 2.

Otherwise, we have t = (h∗ − h)/(e − e∗). Let us call this a Type Ib forgery.
We want to use this Type Ib forger to break the random-preimage resistance of
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Hash. That is, we are given random h† ∈ Zq and want to find a preimage of h† under
Hash. To do this, we will guess the relevant signing query and the tweak e∗.
We then we will run our sampling algorithm to compute t† ← (h† − h)/(e − e∗),

R† $← Samp(t†). If the sampler fails, then our forger fails. Otherwise, we set R :=
R† and t := t† and proceed as usual: if the adversary forges a signature, we succeed
in finding a preimage of h†. This is adversary BIb in Theorem 2.

Now consider a Type II forger playing against our symbolic simulator, where
R∗ �= ±R for any R produced by the signing oracle. Suppose π−1(R∗) = a+ bD.
By the verification equation, we also have π−1(R∗) = (s∗)−1(h∗ + t∗(e∗ + D)).
Thus, we have a = (s∗)−1(h∗ + t∗e∗) and b = (s∗)−1t∗. These identities, along
with the assumption that h∗ �= 0, imply b �= 0, a − be∗ �= 0, and

t∗ =
bh∗

a − be∗ . (2)

The group element R∗ must have been generated at random by some group
oracle query made directly by the adversary (this follows from the fact that
b �= 0). Since the coefficients a, b were already determined before this query, it
follows that the value of R∗ is independent of these coefficients. We want to use
this Type II forger to break the random-preimage resistance of Hash. That is,
we are given random h† ∈ Zq and want to find a preimage of h† under Hash. To
do this, we will guess the relevant group oracle query that will produce
the value R∗ in the forgery, as well as the tweak e∗. Then we will run
our sampling algorithm to compute t† ← (bh†)/(a − be∗), R† $← Samp(t†). If
the sampler fails, then our forger fails. Otherwise, we set R∗ := R† and t∗ := t†

and proceed as usual: if the adversary forges a signature, we succeed in finding
a preimage of h†. This is adversary BIb in Theorem 2.

Type III forgers are handled just as in Theorem 1. 	

Notes. 1. This analysis also shows that ECDSA with additive key derivation

is secure under the same assumptions, even if we give the adversary access to
a “raw” signing oracle, where the input is h, not m. It even remains secure if
the signing tweak e is not constrained to lie in the set E. It is really only the
forging tweak e∗ that must be constrained.

2. Security really does degrade as |E| gets large. In particular, if |E| = Θ(q1/2),
then for fixed h, t, and e, a Type Ib forger can expect to find (h∗, e∗) �= (h, e)
satisfying (1) in time O(q1/2), which is enough to forge a signature. Similarly,
for fixed a, b, and t∗, a Type II forger can expect to find (h∗, e∗) satisfying
(2) in time O(q1/2), which is enough to forge a signature.

7 ECDSA with Presignatures

In some settings, it is convenient to precompute various pairs (r,R), where

r
$← Z

∗
q and R ← rG. When processing a request to sign a message, we can

allocate one such precomputed pair and use it to finish the computation of the
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signature. So long as neither R is not revealed to the adversary before he makes a
signing query, our proof of security goes through unchanged. However, there are
optimizations in some settings (especially in threshold signing protocols) that
can be exploited if we do in fact reveal R to the adversary before he chooses
which message to sign using the value of R.

In the forgery game, we allow the adversary to make presig queries, which
generate a pair (r,R) as above. In a signing request, the adversary also specifies
an index k to specify that the kth presignature should be used to sign the given
message. The adversary is not allowed to specify the same presignature index
for two distinct signing requests.

A Lazy Simulator. We start with the analog of Lazy-Sim in Fig. 2, but now
with presignatures. Figure 4 gives the details of Lazy-Sim.

Fig. 4. Lazy-Sim (with presignatures)

A Symbolic Simulator. We now define a symbolic simulation of the attack
game, which is the analog of Symbolic-Sim in Fig. 3. In this setting, however,
Domain(π) will now consist of polynomials of the form a + bD + c1R1 + c2R2 +
· · · , where a, b, c1, c2, . . . ∈ Zq, and D, R1, R2, . . . are indeterminants. Here, D
symbolically represents the value of d, and Rk symbolically represents the value
of rk. Figure 5 gives the details of Symbolic-Sim.

Lemma 2. The difference between the adversary’s forging advantage in the
Lazy-Sim and Symbolic-Sim games (as described in Figs. 4 and 5) is O(N2/q).
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Fig. 5. Symbolic-Sim (with presignatures)

Proof. See the full version [12]. 	

Since our symbolic simulation is used in our reductions to various hardness

assumptions about Hash, we have to take into account the extra cost associated
with computing with polynomials in the variables D, R1, R2, . . . . Let U denote
the maximum number of unused presignatures at any point in time, i.e., the
maximum size of the set K attained throughout the game. Assuming we use
hash tables as appropriate, the symbolic simulation can be implemented so as
to have an expected running time that is O(UN) (with good tail bounds on the
running time as well). This degradation in the running time by a factor of U for
the extra bookkeeping seems unavoidable. If one views Hash as a random oracle,
then this degradation plays no role, as then we have a perfectly information-
theoretic result.

The results proved on basic ECDSA (without key derivation) do not carry
through without modification. To analyze security in the setting, we need a new
assumption on Hash:

Definition 6 (Ratio resistance). Let Hash be a hash function whose output
space is Zq. Let A be an adversary. We define RRadv[A,Hash] to be the advan-
tage of A in breaking the ratio resistance of Hash. This is defined as the
probability that A wins the following game.

– The challenger chooses ρ ∈ Z
∗
q uniformly at random and gives ρ to A.

– A outputs messages m and m∗.
– We say A wins the game if Hash(m∗) �= 0 and Hash(m)/Hash(m∗) = ρ.

If we view Hash as a random oracle, then the best type of ratio resistance attack
is a birthday attack.
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We define CMAggm
ps adv[A,S] to be adversary A’s advantage in winning the

CMA game with presignatures in the EC-GGM. Theorem1 then becomes:

Theorem 3. Let A be an adversary attacking Secdsa as in Definition 2 with
presignatures that makes at most N presignature, signing, or group queries.
Let U denote the maximum number of unused presignatures at any point in time.
Then there exist adversaries BI, BIIa, BIIb, BIIc, and BIII, whose running times
are essentially the same as A plus O(UN), such that CMAggm

ps adv[A,Secdsa] is
bounded by

CRadv[BI,Hash] + (4 + o(1))N · RPRadv[BIIa,Hash]
+ (4 + o(1))N · RRadv[BIIb,Hash] + UN · RPRadv[BIIc,Hash]

+ ZPRadv[BIII,Hash] + O(N2/q).

Proof. Everything goes through as in the proof of Theorem1, except for the
analysis of Type II forgeries.

Consider the point in time when the adversary queries the group oracle to
obtain R∗ for the first time. Let us call this a Type IIa forgery if at this time,
π−1(R∗) is of the form a + bD. Type IIa forgeries can be dealt with in exactly
the same way as Type II forgeries in the proof of Theorem 1.

Now, consider a Type II forgery that is not a Type IIa forgery. For such a
forgery, the initial preimage of R∗ is a polynomial that involves the indetermi-
nants R1, R2, . . . . However, before the attack ends, all of these variables must be
substituted via signing queries—indeed, if the attack ends with a forgery, we
must have π−1(R∗) = (s∗)−1(h∗ + t∗D).

Renaming variables as necessary, suppose that at the time R∗ is initially
generated, we have π−1(R∗) = a+bD+c1R1+· · ·+c�R�, where the ci’s are nonzero,
and that during the attack, we substitute Ri �→ s−1

i (hi + tiD) for i = 1, . . . , 
, in
that order. Let us define a Type IIb forgery to be one with

h1

t1
= · · · =

h�

t�
=

h∗

t∗
, (3)

and we define a Type IIc forgery to be a Type II forgery that is neither
Type IIa or IIb.

We can use a Type IIb forger to break the ratio resistance of Hash. Note that
the initial preimage of R∗ cannot be of the form ±Rk, as otherwise this would be a
Type I forgery; in particular, the group element R∗ must be generated at random
via a group oracle query made directly by the adversary. Therefore, given the
ratio-resistance challenge ρ, we guess the group oracle query that produces
R∗, pick one of the variables Ri arbitrarily from among the variables R1, R2, . . . , R�

appearing in π−1(R∗) at that time R∗ is generated, and run the sampler on input
t∗ = ti/ρ to generate R∗. This is the adversary BIIb in Theorem 3. Note that
adversary BIIb will succeed if its guess at R∗ was correct, regardless of which of
the variables Ri it chooses.
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We can use a Type IIc forger to break the random-preimage resistance of
Hash. This is the adversary BIIc in Theorem 3. To understand the design of
adversary BIIc, consider a Type IIc forgery. For i = 0, . . . , 
, define

Ai := a +
∑

j≤i

cjhj/sj and Bi := b +
∑

j≤i

cjtj/sj .

At the end of the attack, we must have π−1(R∗) = A� +B�D, and so the forgery
must satisfy:

A� = (s∗)−1h∗ and B� = (s∗)−1t∗. (4)

These two equations imply A� = B� ·h∗/t∗, and using the fact that A� = A�−1 +
c�h�/s� and B� = B�−1 + c�t�/s�, we can rewrite this as

(A�−1 − B�−1h�/t�) = (B�−1 + s−1
� c�t�)︸ ︷︷ ︸

=B�

(h∗/t∗ − h�/t�). (5)

From (5), it is clear that either

(a) A�−1 �= B�−1 · h�/t�,
(b) A�−1 = B�−1 · h∗/t∗ and h�/t� = h∗/t∗, or
(c) B� = 0.

By repeating the above argument, and because we are assuming that (3) does
not hold, we see that either

(i) Ai−1 �= Bi−1 · hi/ti and Ai = Bi · h∗/t∗ for some i = 1, . . . , 
, or
(ii) Bi = 0 for some i = 1, . . . , 
.

If we wish, we can categorize these as Type IIc(i) and IIc(ii) forgeries. Note
that for a Type IIc(i) forgery, we may also assume that hj/tj = h∗/t∗ for j =
i + 1, . . . , 
, but we do not use this fact here.

The probability if a Type IIc(i) forgery can be bounded by

UN · RPRadv[BIIc,Hash] + O(UN/q).

The random-preimage adversary BIIc works by guessing R∗ and then guess-
ing the index i at which condition (i) above occurs. Analogous to (5), we
have

(Ai−1 − Bi−1hi/ti) = (Bi−1 + s−1
i citi)(h∗/t∗ − hi/ti). (6)

At the time the substitution Ri �→ s−1
i (hi+tiD) is made, all of the terms appearing

in (6), besides si and h∗, are already fixed. Moreover, we are assuming the left
hand side of (6) is nonzero. This implies there is a one-to-one correspondence:
for every h∗ such that h∗/t∗ − hi/ti �= 0 there exists a unique s−1

i such that
Bi−1 + s−1

i citi �= 0 and vice versa. Adversary BIIc uses its challenge as the value
of h∗ and solves (6) for s−1

i . Note that there are (at most) two values of h∗ for
which this will fail, one that satisfies h∗/t∗ −hi/ti = 0 and the other that makes
s−1

i = 0.
The probability of a Type IIc(ii) forgery is easily seen to be at most

(UN)/(q − 1). 	
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Notes. 1. This scheme cannot be secure if we allow raw signing queries. Here
is one simple attack. Suppose we get a presignature R with t := C̄(R) and
we compute R∗ = 2R. Let h∗ = Hash(m∗) be the hash of a message m∗ for
which we want to forge a signature. We solve h/t = h∗/t∗ for h and ask for a
raw signature on h using presignature R, obtaining the signature (s, t). We
then compute s∗ satisfying (s∗)−1t∗ = cts−1, so (s∗, t∗) is a forgery on m∗.

2. More generally, we really do need to assume that given t and t∗, it is hard
to find preimages of h and h∗ such that h/t = h∗/t∗ holds, as otherwise,
essentially the same attack can be applied. Thus, ratio resistance is essential.

3. An attacker could try the above attack with R∗ = 2R, 3R, . . . , obtaining
many candidates for t∗ to combine with many candidates for h and h∗. This
would give us a multiplicative version of the 3-sum problem, for which there
is no known attack that is significantly better than birthday (see [15]).

7.1 ECDSA with Presignatures and Additive Key Derivation

Now suppose we combine presignatures with additive key derivation. Here, we
assume that presig queries take no input as before, but the signing queries take
as input an index k that specifies the presignature to use, along with a message
mk and the tweak ek.

We define CMAggm
akd,psadv[A,S,E] to be adversary A’s advantage in winning

this modified CMA game in the EC-GGM. We can still prove security of ECDSA
in this setting using stronger intractability assumptions for Hash.

Let us first consider the symbolic simulation of the signing oracle. Using
the notation established above, hk := Hash(mk) and tk := C̄(Rk). We want to
choose sk ∈ Z

∗
q at random and then substitute s−1

k (hk + tkek + tkD), rather than
s−1

k (hk + tkD) for Rk in all polynomials in Domain(π) that involve Rk. The proof
of Lemma 2 goes through unchanged.

Definition 7 (4sum1 intractability). Let Hash be a hash function whose
output space is Zq. Let E ⊆ Zq. Let A be an adversary. We define
4sum1adv[A,Hash,E] to be the advantage of A in breaking the 4sum1 property
of Hash with respect to the set E. This is defined as the probability that A wins
the following game.

– The challenger chooses t ∈ Zq uniformly at random and gives t to A.
– A outputs m, e,m∗, e∗, where e, e∗ ∈ E.
– We say A wins the game if h+te = h∗+te∗, where e �= e∗ and h := Hash(m)

and h∗ := Hash(m∗).

Definition 8 (4sum2 intractability). Let Hash be a hash function whose
output space is Zq. Let E ⊆ Zq. Let A be an adversary. We define
4sum2adv[A,Hash,E] to be the advantage of A in breaking the 4sum2 property
of Hash with respect to the set E. This is defined as the probability that A wins
the following game.

– The adversary asks the challenger for many random samples in Z
∗
q , and the

adversary chooses one such sample t ∈ Z
∗
q .
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– The challenger chooses t∗ ∈ Z
∗
q at random and gives t∗ to A.

– A outputs m, e,m∗, e∗, where e, e∗ ∈ E.
– We say A wins the game if h/t + e = h∗/t∗ + e∗, where (m, e) �= (m∗, e∗)

and h := Hash(m) and h∗ := Hash(m∗).

Theorem 4. Let A be an adversary attacking Secdsa as in Definition 2 with
additive key derivation and presignatures that makes at most N pres-
ignature, signing, or group queries, of which Npsig are presignature requests.
Let U denote the maximum number of unused presignatures at any point in
time. Then there exist adversaries BIa, BIb, BIIa, BIIb, and BIIc, and BIII,
whose running times are essentially the same as A plus O(UN), such that
CMAggm

akd,psadv[A,Secdsa,E] is bounded by

CRadv[BIa,Hash] + (4 + o(1))Npsig · 4sum1adv[BIb,Hash,E]

+ (4 + o(1))N |E| · RPRadv[BIIa,Hash] + (4 + o(1))N · 4sum2adv[BIIb,Hash,E]

+ UN |E| · RPRadv[BIIc,Hash] + ZPRadv[BIII,Hash] +O(N2/q).

Also, adversary BIIb obtains O(Npsig) random samples from its challenger.

Proof. We categorize forgeries as Types Ia, Ib, IIa, IIb, IIc, and III: Types Ia
and Ib are as in Theorem2, Types IIa–IIc are as in Theorem 3, and Type III is
as in Theorem 1.

The analysis we did for Type Ia and III forgeries in Sect. 6 goes through here
without any change. Also, the analysis we did for Type II forgeries in Sect. 6
carries over here for Type IIa forgeries.

Type Ib Forgeries. We get a Type Ib forgery if and only if the Eq. (1) holds
with e �= e∗. Without presignatures, the adversary had to commit to h and e
before learning t, but with presignatures, the adversary is free to choose h and
e, along with h∗ and e∗, after learning t. Indeed, we see that creating a Type Ib
forgery is essentially equivalent to breaking the 4sum1 property in Definition 7.
We can easily use such a forger to break the 4sum1 property as follows: given
the challenge t in the 4sum1 game, we guess the relevant presignature, set
tk := t and run the sampler on t to get Rk. This gives us BIb in Theorem 4.

Type IIb and IIc forgeries. Everything goes through exactly as in Theorem3,
but with hi replaced by Δi := hi + tiei and h∗ replaced by Δ∗ := h∗ + t∗e∗. In
particular, we categorize Type IIb forgeries as those where

Δ1

t1
= · · · =

Δk

tk
=

Δ∗

t∗
.
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We can easily use a Type IIb forger to break the 4sum2 property as follows.
In the first stage of the attack game in Definition 8, we use the random samples
given by the 4sum2-challenger to generate all the presignatures we need using the
sampling algorithm. With overwhelming probability, O(Npsig) random samples
will suffice. We then guess the group operation that produces R∗. At
the time this group operation is performed, we choose one of the variables Ri

appearing in π−1(R∗) arbitrarily and select t in the attack game in Definition 8
to the corresponding sample ti. We then obtain t∗ from our 4sum2-challenger
and run the sampling algorithm on t∗ to get R∗. A Type IIb forgery will give
us the values m, e,m∗, e∗ we need to win the attack game in Definition 8. This
is adversary BIIb in Theorem 4.

The adversary BIIc in Theorem 4 is exactly the same as BIIc in Theorem 3,
but with hk replaced by Δk and h∗ replaced by Δ∗, and where we also have to
guess the tweak e∗. 	

Notes. 1. Just as in the case of presignatures without additive key derivation,

this scheme cannot be secure if we allow raw signing queries.
2. In the full version [12], we provide an alternative analyisis in terms of concrete

security properties of the hash function used to derive tweaks.

How Strong Are the 4sum1 and 4sum2 Properties? Consider first the
4sum1 property. If we just choose e and e∗ arbitrarily, then viewing Hash as a
random oracle, then analogous to the birthday attack, we can find m and m∗

satisfying the required relation in time O(
√

q). However, by exploiting the fact
that we also have control over e and e∗, we can beat the birthday attack.

Indeed, suppose we view Hash as a random oracle, and the elements of E
are randomly chosen. Then this problem is no harder than the 4-sum problem
studied in Wagner [19] and elsewhere [2,15]. Wagner gave an algorithm to solve
this problem that beats the birthday attack. In the full version [12], we sketch
Wagner’s algorithm, adapted to our setting. One consequence of this is that if
|E| = Θ(q1/3), then we can solve this 4-sum problem and forge a signature in
time O(q1/3). The attack works as follows.

– Make one presignature query to get the group element R and let t := C̄(R).
– Use Wagner’s algorithm to find m, e,m∗, e∗ such that h+te = h∗ +te∗, where

e �= e∗ and h := Hash(m) and h∗ := Hash(m∗).
– Now ask for a signature using this presignature on message m with tweak e.
– This signature is also a signature on m∗ with tweak e∗.
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The O(q1/3) work is time spent computing hashes of messages and tweaks
(which themselves may well just be hashes), and performing hash table lookups.
Mitigating against this attack is (i) the fact that the O(q1/3) time must be
done between the time that the presignature is generated and the time that the
adversary asks for a signature using that presignature, and (ii) the fact that the
attack takes space O(q1/3) (but see [2,15] for time-space trade-offs).

We stress that this O(q1/3) attack requires just one presignature and one
corresponding signature. It is also easily seen that the 4sum2 property is also no
harder than a 4-sum problem.

8 ECDSA with Re-randomized Presignatures

We saw the ECDSA with presignatures leads to potential vulnerabilities, espe-
cially when combined with additive key derivation. At the very least, we require
additional intractability assumptions. In this section, we explore a variant in
which the presignatures are re-randomized when used for signing. For thresh-
old ECDSA implementations, this re-randomization maintains most of the ben-
efits of presignatures; however, it also maintains most of the security properties
that we had without presignatures, both in the settings with and without addi-
tive key derivation.

So now a presignature is of the form (r′,R′), where r′ $← Zq and R′ ← r′G.
As before, when processing a request to sign a message, we can allocate one such
precomputed pair and use it to finish the computation of the signature. However,
instead of using the presignature directly, we re-randomize it, computing δ

$← Zq,
and using (r,R) := (r′ + δ,R′ + δG) as the presignature. Crucially, the value of
δ is given to the adversary as an output of the signing request.

Notes. 1. The reason why we insist on giving δ to the adversary is that a
protocol implementing a distributed signing service may ultimately reveal δ.
This allows us to reduce the security of such a distributed protocol to this
primitive. Depending on how the distributed signing service is implemented,
generating δ may or may not introduce extra latency.

2. Instead of generating δ at random, it could also be obtained by deriving it as
a hash of R′ and the signing request. The results we present here could be
adapted to this setting, especially if we model the hash as a random oracle.
While the security results would be somewhat weaker than if δ is generated
at random, they would still be significantly stronger than not using any re-
randomization at all.

A Lazy Simulator. We start with the analog of Lazy-Sim in Fig. 4, but now
with re-randomized presignatures. Figure 6 gives the details of Lazy-Sim.
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Fig. 6. Lazy-Sim (with re-randomized presignatures)

A Symbolic Simulator. We define a symbolic simulation of the attack game,
which is the analog of Symbolic-Sim in Fig. 5. As in Fig. 5, Domain(π) will now
consist of polynomials of the form a+bD+c1R1+c2R2+· · · , where a, b, c1, c2, . . . ∈
Zq, and D, R1, R2, . . . are indeterminants. Here, D symbolically represents the value
of d, and Rk symbolically represents the value of r′

k (and not rk). Figure 7 gives
the details of Symbolic-Sym.

Lemma 3. The difference between the adversary’s forging advantage in the
Lazy-Sim and Symbolic-Sim games (as described in Figs. 6 and 7) is O(N2/q).

The proof of Lemma 3 follows the same lines as that of Lemma 2, and we
leave the details to the reader.

We define CMAggm
rrpsadv[A,S,E] to be adversary A’s advantage in winning

this modified CMA game in the EC-GGM.

Theorem 5. Let A be an adversary attacking Secdsa as in Definition 2 with
re-randomized presignatures that makes at most N presignature, signing,
or group queries. Let U denote the maximum number of unused presignatures
at any point in time. Then there exist adversaries BI, BIIa, BIIbc, and BIII,
whose running times are essentially the same as A plus O(UN), such that
CMAggm

rrpsadv[A,Secdsa] is bounded by

CRadv[BI,Hash] + (4 + o(1))N · RPRadv[BIIa,Hash]

+ N · RPRadv[BIIbc,Hash] + ZPRadv[BIII,Hash] + O(N2/q).
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Fig. 7. Symbolic-Sim (with re-randomized presignatures)

Proof. We categorize forgeries just as in Theorem 3, but we lump Types IIb and
IIc into a single Type IIbc. Forgeries of types I, IIa, and III are handled just as
in Theorem 3.

For forgeries of type IIbc, just as in Theorem 3, we suppose that at the time
R∗ is initially generated, we have π−1(R∗) = a+bD+c1R1+ · · ·+c�R�, where the
ci’s are nonzero; however, during the attack, we substitute Ri �→ s−1

i (hi+tiD)−δi

for i = 1, . . . , 
, again, in that order. For i = 0, . . . , 
, define

Ai := a +
∑

j≤i

cj(hj/sj − δj) and Bi := b +
∑

j≤i

cjtj/sj .

Equation (5) then becomes

(A�−1 − B�−1h�/t� − c�δ�) = (B�−1 + s−1
� c�t�)(h∗/t∗ − h�/t�). (7)

At the time the substitution R� �→ s−1
� (h� + t�D) − δ� is made, all of the terms

appearing in (7), besides δ�, s�, and h∗, are already fixed. Therefore, the left-hand
side of (7) will vanish with probability 1/q, and as long as this does not happen,
we can use this Type IIbc forger to break random-preimage resistance. Indeed,
just as we argued in the proof of Theorem3, there is a one-to-one correspondence:
for every h∗ such that h∗/t∗ − h�/t� �= 0 there exists a unique s−1

� such that
B�−1 + s−1

� c�t� �= 0 and vice versa. We use this the given random-preimage
challenge as the value of h∗ and solve (7) for s−1

� . 	

Notes. 1. With re-randomized presignatures, we again obtain security with

respect to raw signing queries (allowing arbitrary, unconstrained hk ∈ Zq).
2. One sees from the proof of Theorem 5 that we only need that the randomizer

δk is sufficiently unpredictable—it need not be uniformly distributed over Zq.
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8.1 ECDSA with Re-randomized Presignatures and Additive Key
Derivation

Now suppose we combine re-randomized presignatures with additive key deriva-
tion. We define CMAggm

akd,rrpsadv[A,S,E] to be adversary A’s advantage in win-
ning this modified CMA game in the EC-GGM.

Theorem 6. Let A be an adversary attacking Secdsa as in Definition 2 with
additive key derivation and re-randomized presignatures that makes at
most N presignature, signing, or group queries, of which Npsig are presigna-
ture queries. Let U denote the maximum number of unused presignatures at
any point in time. Then there exist adversaries BIa, BIb, BIIa, BIIc, and BIII,
whose running times are essentially the same as A plus O(UN), such that
CMAggm

akd,rrpsadv[A,Secdsa,E] is bounded by

CRadv[BIa,Hash] + (4 + o(1))Nsig|E| · RPRadv[BIb,Hash]
+ (4 + o(1))N |E| · RPRadv[BIIa,Hash] + N |E| · RPRadv[BIIbc,Hash]

+ ZPRadv[BIII,Hash] + O(N2/q).

Proof. Forgeries are categorized just as in Theorem 4, but we lump Types IIb
and IIc into a single Type IIbc. Type Ia and Ib forgeries are handled just as in
Theorem 2. Type IIa forgeries are handled just like Type II forgeries in Theo-
rem 2. Type III forgeries are handled just as in Theorem1.

For Type IIbc forgeries, everything goes through exactly as in Theorem5,
but with hi replaced by Δi := hi + tiei and h∗ replaced by Δ∗ := h∗ + t∗e∗, and
the adversary BIIbc has to guess e∗. 	

Notes. 1. With re-randomized presignatures, we again obtain security with

respect to raw signing queries (allowing arbitrary, unconstrained hk, ek ∈ Zq).
2. Just in Theorem 5, it is not essential that δk is uniformly distributed over

Zq—it only needs to be sufficiently unpredictable.
3. In the full version [12], we provide an alternative analyisis in terms of concrete

security properties of the hash function used to derive tweaks.

9 Homogeneous Key Derivation

We propose a new key derivation technique (a similar construction was given in
[13] for completely different purposes). This derivation technique is still essen-
tially linear, and so enjoys many of the same advantages of additive key deriva-
tion, including (i) the ability to derive public keys from a master public key,
and (ii) the ability to efficiently implement the scheme as a threshold signature
scheme.

The basic idea is this. The master secret key is now a random pair (d, d′) ∈
Zq × Zq, and the corresponding master public key is the pair (D,D′) :=
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(dG, d′G) ∈ E × E. For a given “tweak” e ∈ Zq, the corresponding derived
secret key is d + ed′ ∈ Zq and the corresponding derived public key is D + eD′.

We consider homogeneous key derivation without presignatures, with pres-
ignatures, and with re-randomized presignatures.

As we will see, we can prove stronger results with homogeneous key derivation
than we could with additive key derivation. In particular, we will not need to
assume that the tweaks come from some predetermined set E ⊆ Zq. As such,
we will assume that a tweak e ∈ Zq is derived from the hash function Hash as
e ← Hash(id), where id is an arbitrary identifier. Here, Hash is the same hash
function used by ECDSA; however, it could also be a different hash function
(the only requirement is that this hash function maps into Zq and is collision
resistant). The signing algorithm will take as input both a message m and an
identifier id. In the forgery attack game, a forgery consists of a valid signature
(s∗, t∗) on a message m∗ and an identifier id∗, subject to the constraint that the
signing oracle was not invoked with the same message/identifier pair (m∗, id∗).

9.1 Homogeneous Key Derivation Without Presignatures

The lazy simulation in Fig. 2 is modified as follows: (i) In the initialization step,
the challenger chooses (d, d′) ∈ Zq ×Zq at random, invokes (map, d) and (map, d′)
to obtain D and D′. The challenger gives (G,D,D′) to the adversary. (ii) In a
signing request, the adversary supplies an identifier id in addition to a message
m, and the tweak e ∈ Zq is computed as e ← Hash(id). To process such a signing
request, the challenger carries out the same logic, but with d + ed′ replacing d
in steps 4(f) and 4(g).

To verify a signature with respect to a tweak e∗, where e∗ := Hash(id∗), the
signature is verified with respect to the public key D + e∗D′.

The symbolic simulation in Fig. 3 is modified as follows: (i) In the initial-
ization step, the challenger invokes (map, D) and (map, D′) to obtain D and D′.
The challenger gives (G,D,D′) to the adversary. Here, D and D′ are distinct inde-
terminants. (ii) In a signing request, the adversary supplies an identifier id in
addition to a message m, and the tweak e ∈ Zq is computed as e ← Hash(id).
To process such a signing request, the challenger carries out the same logic, but
with D + eD′ replacing D in step 4(g).

It is easy to prove that Lemma 1 carries over to this setting without change.
We leave this to the reader.

We define CMAggm
hkd adv[A,S] to be adversary A’s advantage in winning this

modified CMA game in the EC-GGM. We can prove the following analog of
Theorem 2. As the reader will notice, the statement of this theorem is almost
the same as Theorem 1.

Theorem 7. Let A be an adversary attacking Secdsa as in Definition 2 with
homogeneous key derivation that makes at most N signing or group queries.
Then there exist adversaries BI, BII, and BIII, whose running times are essen-
tially the same as A, such that
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CMAggm
hkd adv[A,Secdsa] ≤ CRadv[BI,Hash] + (4 + o(1))N · RPRadv[BII,Hash]

+ ZPRadv[BIII,Hash] + O(N2/q).

Proof. We categorize forgeries as Type I, II, or III just as in Theorem 1.
For a Type I forgery, for η ∈ {±1}, we have

(s∗)−1(h∗ + tD + te∗D′) = ηs−1(h + tD + teD′).

This gives us three equations:

(s∗)−1h∗ = ηs−1h, (s∗)−1t = ηs−1t, and (s∗)−1te∗ = ηs−1te.

These three equations imply h∗ = h and e∗ = e. This immediately gives us the
adversary BI in Theorem 7 that breaks the collision resistance of Hash, either of
the form Hash(m∗) = Hash(m) or Hash(id∗) = Hash(id).

For a Type II forgery, if π−1(R∗) = a + bD + b′D′, we have

a + bD + b′D′ = (s∗)−1(h∗ + t∗D + t∗e∗D′).

This gives us three equations:

a = (s∗)−1h∗, b = (s∗)−1t∗, and b′ = (s∗)−1t∗e∗.

Just as in Theorem 1, we obtain b �= 0, a �= 0, and t∗ = h∗a−1b. In addition, we
have b′ = be∗. So just as in Theorem 1, we obtain an adversary BII that breaks
the random-preimage resistance of Hash.

For a Type III forgery, just as in Theorem 1, we obtain an adversary BIII that
breaks the zero-preimage resistance of Hash. 	

Note. The above analysis shows that the scheme is secure even with a “raw”
signing oracle.

9.2 Homogeneous Key Derivation with Presignatures

The lazy simulation in Fig. 4 is modified as follows: (i) In the initialization step,
the challenger chooses (d, d′) ∈ Zq ×Zq at random, invokes (map, d) and (map, d′)
to obtain D and D′. The challenger gives (G,D,D′) to the adversary. (ii) In a
signing request, the adversary supplies an identifier idk in addition to a message
mk, and the tweak ek ∈ Zq is computed as ek ← Hash(idk). To process such
a signing request, the challenger carries out the same logic, but with d + ekd′

replacing d in steps 5(c) and 5(d).
To verify a signature with respect to a tweak e∗, where e∗ := Hash(id∗), the

signature is verified with respect to the public key D + e∗D′.
The symbolic simulation in Fig. 5 is modified as follows: (i) In the initial-

ization step, the challenger invokes (map, D) and (map, D′) to obtain D and D′.
The challenger gives (G,D,D′) to the adversary. Here, D and D′ are distinct inde-
terminants. (ii) In a signing request, the adversary supplies an identifier idk in
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addition to a message mk, and the tweak ek ∈ Zq is computed as ek ← Hash(idk).
To process such a signing request, the challenger carries out the same logic, but
with D + ekD′ replacing D in step 5(d).

It is easy to prove that Lemma 2 carries over to this setting without change.
We leave this to the reader.

We define CMAggm
hkd,psadv[A,S] to be adversary A’s advantage in winning

this modified CMA game in the EC-GGM. We can prove the following analog
of Theorem 4. As the reader will notice, the statement of this theorem is almost
the same as Theorem 3.

Theorem 8. Let A be an adversary attacking Secdsa as in Definition 2 with
homogenous key derivation and presignatures that makes at most N pres-
ignature, signing, or group queries. Let U denote the maximum number of unused
presignatures at any point in time. Then there exist adversaries BI, BIIa, BIIb,
BIIc, and BIII, whose running times are essentially the same as A plus O(UN),
such that CMAggm

hkd,psadv[A,Secdsa] is bounded by

CRadv[BI,Hash] + N · RPRadv[BIIa,Hash]
+ (4 + o(1))N · RRadv[BIIb,Hash] + UN · RPRadv[BIIc,Hash]

+ ZPRadv[BIII,Hash] + O(N2/q).

Proof. We categorize forgeries as Type I, IIa, IIb, IIc, or III essentially as in
Theorem 3.

Everything goes through the same as in the proof of Theorem 7, except for
the analysis of Type II forgeries.

Consider the point in time when the adversary queries the group oracle to
obtain R∗ for the first time. Let us call this a Type IIa forgery if at this time,
π−1(R∗) is of the form a + bD + b′D′. Type IIa forgeries can be dealt with in
exactly the same way as Type II forgeries in the proof of Theorem7.

Now, consider a Type II forgery that is not a Type IIa forgery. For such a
forgery, the initial preimage of R∗ is a polynomial that involves the indetermi-
nants R1, R2, . . . . However, before the attack ends, all of these variables must be
substituted via signing queries, so that if the attack ends with a forgery, we must
have π−1(R∗) = (s∗)−1(h∗ + t∗D + t∗e∗D′).

Just as in Theorem 3, we suppose that at the time R∗ is initially generated,
we have π−1(R∗) = a+bD+c1R1+· · ·+c�R�, where the ci’s are nonzero; however,
during the attack, we substitute Ri �→ s−1

i (hi+tiD+tieiD′) for i = 1, . . . , 
, again,
in that order. For i = 0, . . . , 
, define

Ai := a +
∑

j≤i

cjhj/sj , Bi := b +
∑

j≤i

cjtj/sj , and B′
i := b′ +

∑

j≤j

cjtjej/sj .

A forgery must satisfy:

A� = (s∗)−1h∗, B� = (s∗)−1t∗, and B′
� = (s∗)−1t∗e∗. (8)
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Note that the first of these two equations are identical to the two equations
in (4) in the proof of Theorem3. Indeed, we can complete the proof just as in
Theorem 3, where Type IIb and IIc forgeries are defined in the same way. 	

Note. Unlike as in Theorem 7, we see that this scheme is insecure if we allow a
“raw” signing oracle.

9.3 Homogeneous Key Derivation with Re-randomized
Presignatures

The lazy simulation in Fig. 6 is modified as follows: (i) In the initialization step,
the challenger chooses (d, d′) ∈ Zq ×Zq at random, invokes (map, d) and (map, d′)
to obtain D and D′. The challenger gives (G,D,D′) to the adversary. (ii) In a
signing request, the adversary supplies an identifier idk in addition to a message
mk, and the tweak ek ∈ Zq is computed as ek ← Hash(idk). To process such
a signing request, the challenger carries out the same logic, but with d + ekd′

replacing d in steps 5(h) and 5(i).
To verify a signature with respect to a tweak e∗, where e∗ := Hash(id∗), the

signature is verified with respect to the public key D + e∗D′.
The symbolic simulation in Fig. 7 is modified as follows: (i) In the initial-

ization step, the challenger invokes (map, D) and (map, D′) to obtain D and D′.
The challenger gives (G,D,D′) to the adversary. Here, D and D′ are distinct inde-
terminants. (ii) In a signing request, the adversary supplies an identifier idk in
addition to a message mk, and the tweak ek ∈ Zq is computed as ek ← Hash(idk).
To process such a signing request, the challenger carries out the same logic, but
with D + ekD′ replacing D in step 5(i).

It is easy to prove that Lemma 3 carries over to this setting without change.
We leave this to the reader.

We define CMAggm
hkd,rrpsadv[A,S] to be adversary A’s advantage in winning

this modified CMA game in the EC-GGM. We can prove the following analog
of Theorem 6. As the reader will notice, the statement of this theorem is almost
the same as Theorem 5.

Theorem 9. Let A be an adversary attacking Secdsa as in Definition 2 with
homogeneous key derivation and re-randomized presignatures that
makes at most N presignature, signing, or group queries. Let U denote the max-
imum number of unused presignatures at any point in time. Then there exist
adversaries BI, BIIa, BIIc, and BIII, whose running times are essentially the
same as A plus O(UN), such that CMAggm

hkd,rrpsadv[A,Secdsa] is bounded by

CRadv[BI,Hash] + (4 + o(1))N · RPRadv[BIIa,Hash]

+ N · RPRadv[BIIbc,Hash] + ZPRadv[BIII,Hash] + O(N2/q).

Proof. We categorize forgeries as Type I, IIa, IIbc, or III essentially as in The-
orem 5.

The proof follows the same outline as that of Theorem8, except for the
analysis of Type IIbc forgeries, which follows the same outline as in Theorem 5.



On the Security of ECDSA with Additive Key Derivation and Presignatures 395

Note. The above analysis shows that the scheme is secure even with a “raw”
signing oracle.
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Abstract. We study secure multi-party computation (MPC) protocols
for branching circuits that contain multiple sub-circuits (i.e., branches)
and the output of the circuit is that of single “active” branch. Crucially,
the identity of the active branch must remain hidden from the protocol
participants.

While such circuits can be securely computed by evaluating each
branch and then multiplexing the output, such an approach incurs a
communication cost linear in the size of the entire circuit. To alleviate
this, a series of recent works have investigated the problem of reducing
the communication cost of branching executions inside MPC (without
relying on fully homomorphic encryption). Most notably, the stacked
garbling paradigm [Heath and Kolesnikov, CRYPTO’20] yields garbled
circuits for branching circuits whose size only depends on the size of the
largest branch. Presently, however, it is not known how to obtain simi-
lar communication improvements for secure computation involving more
than two parties.

In this work, we provide a generic framework for branching multi-party
computation that supports any number of parties. The communication
complexity of our scheme is proportional to the size of the largest branch
and the computation is linear in the size of the entire circuit. We provide
an implementation and benchmarks to demonstrate practicality of our
approach.

1 Introduction

Secure multiparty computation (MPC) [5,9,20,40] is an interactive protocol that
allows a group of mutually distrusting parties to jointly compute a function over
their private inputs without revealing anything beyond the output of the func-
tion. Over the years, significant progress has been made towards improving the
efficiency of MPC protocols [3,11,12,16,21–25,33,39] to make them practically
viable.

While a wide variety of techniques for efficiency improvements have been devel-
oped in different settings based on the corruption threshold, communication model
or security guarantee, a common aspect of most modern efficient protocols in all
c© International Association for Cryptologic Research 2022
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of these settings is that they circuit representation of the function. A limitation
of such protocols, however, is that their total communication complexity is at
least linear in the size of the circuit. Known techniques for getting sub-linear com-
munication in the circuit size rely on computationally heavy tools such as fully-
homomorphic encryption (FHE) [19] or homomorphic secret sharing (HSS) [7].
While there have been recent advancements in improving the efficiency of these
methods, they are still far from being practical in many use cases.

As a result, the efficiency of existing efficient protocols is highly dependent on
how succinctly a function can be represented using circuits. This is clearly not
ideal, since circuits are often not the most efficient way of representing many
functions. A common example of such functions are ones that include some
kind of conditional control flow instructions. When evaluating such functions, a
circuit-based MPC will incur communication dependent on the size of the entire
circuit, while in reality we only need to evaluate the “active” path (i.e., the path
that is actually executed based on the conditional) in the circuit.

It is therefore useful to design efficient MPC protocols for useful classes of
functions, where the total communication between the parties only depends on
the “active” parts, rather than the entire circuit.

MPC for Conditional Branches. In this work, we focus on one such class
of functions, namely, ones that contain conditional branches. As discussed in
[29], a real world example of an application that consists of conditional branches
is where a set of servers collectively provide k services and the clients can pay
and avail any one of their services (depending on their requirements), without
revealing to the servers which service they are availing. Similarly, control flow
instructions are also integral to any kind of programming and as observed in
[27], many kinds of control flow instructions (including repeated and/or nested
loops) can be refactored into conditional branches. Such refactorings often result
in a large number of conditional branches. For such functions, designing MPC
protocols where the total communication only depends on the size of the active
branch is very useful.

Recently, in a sequence of works [26,27], Heath and Kolsnekov made progress
in this direction in the two-party setting. They design garbled circuit based two-
party semi-honest protocols for evaluating functions with conditional branches,
where the total communication only depends on the size of the largest branch.
In the multiparty setting, however, no such protocols are currently known. The
recent works of [28,30] design MPC for conditional branches where they reduce
the number of public-key operations required to evaluate conditional branches;
however, the total communication in their protocols still depends on the size of
all branches. Furthermore, all these protocols only work for Boolean circuits.

Given this state of the art, we consider the following question in this work:

Does there exist an efficient multiparty protocol for securely computing
conditional branches, where the total communication only depends on the
size of the largest branch?
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We remark that all of the above mentioned prior works only focus on the
semi-honest setting. The task of designing analogous maliciously-secure protocols
remains unexplored (both in the two-party and multi-party settings). In this
work, we also consider this question.

1.1 Our Contributions

We design the first multiparty computation protocols for conditional branches,
where the communication complexity only depends on the size of the largest
branch. Our protocols can support arbitrary number of parties and corruptions.
We present both constant and non-constant round variants.

I. Non-constant Round Branching MPC. Our first contribution is a semi-
honest MPC for conditional branches, where the communication complexity only
depends on the size of the largest branch. This protocol is capable of computing
arithmetic circuits over any field or ring. The round complexity of this protocol
depends on the depth of the circuit.

We present this protocol as a generic compiler that can transform a large class
of admissible1 MPC protocols into ones for conditional branches that achieve the
aforementioned communication complexity. Several existing concretely efficient
protocols including MASCOT [33], SPDZ2k [12], Overdrive [34], TinyOT [18]
and [25], [13] can be used with this compiler.

In particular, by instantiating our compiler with a semi-honest admissi-
ble (dishonest-majority) MPC protocol with communication complexity CC(|C|)
(where C is the circuit being evaluated), we obtain the following result:

Informal Theorem 1. Let λ be the security parameter. There exists a semi-
honest secure MPC for evaluating conditional branches, that can tolerate arbi-
trary corruptions and that achieves communication complexity of O(CC(|Cmax|)+
n2kλ + n2|Cmax|), where k is the number of branches in the conditional.

We also implement this protocol to test its concrete efficiency and compare it
to state-of-the-art MPC protocols. More details are provided later in this section.

Extension to Malicious Security. We also present an extension of this protocol to
the case of malicious adversaries. Asymptotically, its communication complexity
is similar to the semi-honest protocol, except that it incurs a multiplicative
overhead dependent on a statistical security parameter.

We view this construction as initial evidence that efficient branching MPC
with malicious security is possible. However, we believe that there is significant
scope for future improvements towards achieving good concrete efficiency.

II. Constant Round Branching MPC. Our next contribution is a constant
round MPC for conditional branches, where the communication complexity only
1 We require the underlying MPC to be such that it evaluates the circuit in a gate-

by-gate manner and maintains an invariant that for every intermediate wire in the
circuit, the parties collectively hold a sharing of the value induced on that wire
during evaluation.
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depends on the size of the largest branch. This protocol is based on a multiparty
garbling approach [2] and only supports boolean circuits.

We also present this protocol in the form of a general compiler. Namely, given
a MPC protocol with communication complexity CC(|C|) for evaluating a circuit
C, we get the following result:

Informal Theorem 2. Let λ be the security parameter. There exists a
constant-round, semi-honest secure MPC for evaluating conditional branches
(represented as Boolean circuits), that can tolerate arbitrary corruptions and
that achieves communication complexity of O(|CC(λ|Cmax|)+n2kλ +n2λ|Cmax|),
where k is the number of branches in the conditional.

To obtain both of the above results, we adopt a fundamentally different
approach as compared to prior works [26–28,30] in this area. Specifically, prior
works require the parties to locally evaluate all the branches. In contrast, in our
approach, the parties select the “active” branch and only execute that branch. A
detailed overview our approach can be found in the next section.

III. Comparison and Performance Evaluation. To gauge practicality, we
implement our non-constant round semi-honest compiler and instantiate it using
two kinds of protocols:

– Quadratic Dependence on the Number of Parties: MP-SPDZ is a common
MPC library that contains implementations of the SPDZ protocol [16] and
its descendants. All of the protocols in this library have total communica-
tion with quadratic dependence on the number of parties. We instatiate our
compiler with an implementation of MASCOT [33] from this library with-
out modification. Our code is agnostic to which protocol the MPC library is
configured; this helps demonstrates that our techniques are generic and block-
box. We run benchmarks over simulated LAN and WAN settings. We show
that our compiled protocol outperforms näıvely evaluating all the branches
in parallel using MASCOT for as few as 8 branches.

– Linear Dependence on the Number of Parties: We implement an optimized
variant of our compiler that incurs a linear additive overhead in the num-
ber of parties, instead of a quadratic overhead. We then test the efficiency
of our compiler when instantiated with the CDN protocol [13], which only
has a linear dependence on the number of parties. For this, we first imple-
ment the CDN protocol. To the best of our knowledge, this is the first known
implementation of CDN. Similar to the previous case, we show that our com-
piled protocol (instantiated using CDN) outperforms näıvely evaluating all
the branches in parallel using CDN for 8 branches.

2 Technical Overview

Background. All recent works [26–28,30] in this area are based on the same
principle approach – the parties evaluate all branches, albeit, only the “active”
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branch is evaluated on real inputs, while the remaining branches are all evaluated
on fake/garbage values.

For instance, in the two-party setting, [26,27], which are based on a garbled
circuit based approach, one of the parties garbles all the k branches. It then
“stacks” these garblings into a compressed form that is proportional to the length
of the largest branch in the circuit. Using some additional information sent by
the garbler, the evaluator is able to reconstruct k different garbled circuits, only
one of which is a valid garbling of the “active” branch, and the remaining are
random strings (or some garbage material). Unaware of the active branch, the
evaluator evaluates the k garbled circuits w.r.t. different branches to obtain k
different output labels. These output labels are then filtered with the help of a
“multiplexer” to obtain the correct output. Overall, this approach reduces the
communication to only depend on the size of the largest branch (the computation
complexity, however, is still large).

In the multiparty setting, both [28,30], follow the same principle approach.
These protocols have separate preprocessing and online phases. They require
parties to evaluate all branches (including the inactive ones) in the online phase
over 0 or some random values and leverage this fact to get savings in the pre-
processing phase. As a result, communication in the preprocessing phase only
depends on the size of one branch, but the communication in the online phase
still depends on the size of all the branches.

Indeed, it is unclear how to extend the stacked garbling approach used in
[26,27] to get similar savings in communication in the multiparty setting. Recall
that the garbler in stacked garbling is required to garble all branches and hence
its computation depends on the size of all branches. This means that naive
approaches that involve distributing the role of the garbler amongst multiple
parties are a non-starter as they will incur communication proportional to the
size of all branches. In order to design a multiparty protocol with similar com-
munication savings as in stacked garbling, we therefore adopt a fundamentally
different approach.

Our Approach. In our approach, the parties select which branch to execute
in a “privacy-preserving” manner and only execute that branch. To facilitate
this private selection, both of our constructions (in the non-constant round and
constant-round settings) employ a common tool – a variant of oblivious lin-
ear evaluation that we refer to as oblivious inner product (OIP). In particular,
our protocols make use of OIPs with (small) constant rate. We show that such
OIPs can be easily constructed using low-rate linearly homomorphic encryption
schemes, which are known from a variety of assumptions [8,15,17,38].

In the sequel, we first describe the main ideas underlying our non-
constant round constructions. We then proceed to describe our constant-round
construction.

2.1 Non-constant Round Branching MPC

We start with the observation that the problem of computing conditional
branches bears some similarities to the problem of private function evaluation
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(PFE) [31,35,36]. Recall that in PFE, one party has the function and the remain-
ing parties provide inputs. This, in some sense is reminiscent of the problem that
we have at hand, albeit with some differences. In particular, in our case, while
none of the parties actually knows which function/branch is “active”, they all
know the set that this branch belongs to. Moreover, the parties collectively hold
information about which of these functions to evaluate. This can be viewed as
a distributed variant of PFE. In light of this observation, we build upon some
ideas previously used in the PFE literature.

Private Function Evaluation. In PFE, the function is only known to one of
the parties (say party P1). The security requirements in standard PFE are very
similar to that in MPC, with the only additional requirement that the func-
tion must remain hidden from all other parties. To achieve this, Mohassel and
Sadeghian [35] observe that in order to hide a function that is represented in the
form of a circuit, there are two components that need to remain hidden – (1) The
wire-configuration of the circuit, i.e., how the gates connect with each other, and
(2) the function (i.e., addition or multiplication) implemented by each gate in the
circuit. They propose a strategy to conceal the above components of a circuit in
order to achieve function privacy (without relying on universal circuits). In par-
ticular, they start with MPC protocols that work over some kind of secret shares
(additive/threshold/authenticated) and evaluate any given circuit in a gate-by-
gate manner. These protocols maintain the invariant that for every intermediate
wire in the circuit, all parties hold a sharing of the value induced on that wire
during evaluation. Many concretely efficient protocols such as [12,16,22,25,33],
satisfy these requirements. [35] propose the following modifications to such MPC
protocols to obtain a PFE protocol:

1. Hiding Wire Configuration: Each intermediate wire in the circuit has two end
points – (1) one is the source gate, for which it acts as the outgoing wire and
(2) the other is the destination gate, for which it acts as the incoming wire.
As discussed earlier, for hiding the wire configuration, we need to hide the
gate connections, i.e., we want to hide the mapping between the source and
destination of each wire in the circuit. For this, [35] assign two unique labels
to each wire w. One is an outgoing label based on its source gate and second
is an incoming label based on whether it acts as left or right input wire to
its destination gate. Let π denote the mapping between these incoming and
outgoing labels, i.e., let π(i) = j denote that a wire that has incoming label i
has an outgoing label j. In PFE, this mapping π is only known to the function
folding party.
In order to hide this mapping, [35] devise a mechanism to mask the outputs
value of each gate and unmask them based on π when this value is used for
evaluating the destination gate of this wire. This is executed by sampling an
input mask and an output mask for every wire in the circuit. Let in1, . . . , inW

and out1, . . . , outW be the set of these input and output masks, where W
is the total number of wires in the circuit. In the preprocessing phase, with
the help of the function holding party and the underlyin MPC, the parties
compute Δw = inw −outπ(w) for every w ∈ [W ]. These Δw values are revealed
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to function holding party in the clear. This processing information helps the
parties in using appropriately permuted input and output masks to mask and
unmask wire values during evaluation in the online phase. In more detail, the
online phase proceeds as follows:

– Upon evaluating each gate g, the parties use output masks to mask all
the outgoing wires of the gate. Let the outgoing wires have labels c and
d respectively, and let uc and ud denote these masked outputs. These
masked outputs are revealed to all parties in the clear.

– For evaluating a particular gate g, where the two input wires have
incoming wire labels a and b, the function holding party computes
A = uπ(a) + Δa and B = uπ(b) + Δb and sends it to all the parties.
The parties subtract their shares of inpa and inpb from these values to get
a sharing of the actual values on which to evaluate gate g.

2. Hiding Gate Functions: This is relatively easier. Assume that our arithmetic
circuit representation of the function only consists of addition and multipli-
cation gates, let typeg = 0 (and typeg = 1 resp.) denote that gate g is an
addition gate (and multiplication gate resp.). For each gate g with incoming
wires a and b, we can use the underlying MPC to compute both shares of
a + b and a · b. The function holding party P1 can secret share typeg using
the underlying MPC and the parties can then choose between shares of a + b
and a · b by computing the following using the underlying MPC:

(1 − [typeg])([a + b]) + typeg([a · b]),

where we denote [x] as a sharing of a value x using the secret sharing scheme
used by the underlying MPC. This allows the parties to evaluate the correct
function, without revealing it.

Our Semi-honest Protocol. In our setting, the parties know the description
of all the branches in the conditional and have a secret sharing of the index
of the active branch. In order to hide the identity of the active branch, similar
to the above approach, we need to hide both the wire configuration and the
gate functions of the active branch. We start by listing the barriers in directly
adapting the above approach to our setting and then proceed to discuss how we
resolve them.

– In the preprocessing phase, computing Δ requires the function holding party
to input π to the underlying MPC. In our setting, no party knows the exact
value of π.

– In the online phase, A and B values are computed locally by the function
holding party in PFE since it already knows the mapping π. This is again a
problem in our setting.

– Finally, in order to hide the gate functions in the online phase, the value of
each typeg secret shared by the function holding party. But as above, neither
party in our setting knows this value.
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In order to overcome the above barriers, we crucially rely on the fact that in
our setting, while no single party knows the function (or the mapping π), they
all know the set that the function belongs to. In other words, given a set of k
branches C1, . . . , Ck, all the parties can locally compute the mappings π1, . . . , πk

corresponding to each branch. Moreover, the parties also have a secret sharing
of the index of the active branch. Let α be the index of the active branch. Our
first idea towards resolving the above barriers to is to somehow allow the parties
combine their shares of α with π1, . . . , πk to get a sharing of πα. However, since
the size of π1, . . . , πk depends on the size of all branches, a naive implementa-
tion of this computation will incur communication that depends on the size of
π1, . . . , πk.

We get around this by using a new variant of oblivious linear evaluation,
which we refer to as oblivious inner product. We now outline our main ideas:

– Sharing of α: We work with a unary representation of the index α. In other
words, we assume each party have k secret shares, where the αth share is a
sharing of 1, while all others are sharings of 0s. Let these shares be denoted
by [b1], . . . , [bk]

– Input/Output Masks: In the preprocessing phase, we use the under-
lying MPC to sample random input and output masks in1, . . . , inW and
out1, . . . , outW , where W is the number of wires in the largest branch. Each
party, now locally permutes its shares of input masks based on the k mappings
π1, . . . , πk. In more detail, given sharings [out1], . . . , [outW ], for each m ∈ [k],
the parties locally compute sharings [outπm(1)], . . . , [outπm(W )]. Lets denote
each [outπm(1)], . . . , [outπm(W )] by [−−−→

outπm
]. If instead of computing shares of

πα, we directly compute re-randomized shares of [−−−→
outπα

], then the parties can
simply compute their shares of Δw values as follows

∀w ∈ [W ], [Δw] = [inw] − [outπα(w)]

– Oblivious Inner Product: For computing re-randomized shares [−−−→
outπα

],
we use a primitive called oblivious inner product (OIP). This is a protocol
between two-parties, called the sender and receiver and bears resemblance
to oblivious linear evaluation. The sender has inputs m0, . . . ,mk and the
receiver has inputs b1, . . . , bk. At the end of the protocol, the receiver learns
m0 +

∑
i∈[k] bimi and the sender learns nothing.

We use this primitive and a GMW [20] style approach to obtain shares of−−−→
outπα

as follows: for each pair of parties in the protocol, we run an instance
of OIP, where one party acts as the sender and the other acts as the receiver.
The inputs of the sender party to this OIP are its shares of [−−−→

outπ1 ], . . . , [
−−−−→
outπW

]
and a random value X, while the inputs of the receiver are its shares of the
unary representation of α. At the end, each party Pi computes its share of−−−→
outπα

by adding the outputs of each OIP instance where it acted as the
receiver and subtracting each X sampled in the OIP instance where it acted
as the sender. It is easy to see that these resulting shares are indeed shares
of −−−→

outπα
.
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However, note that while the length of the output of each OIP in our case
only depends on the size of the largest branch, the length of sender inputs
depends on the size of all branches. Therefore, in order to design an MPC
protocol where the overall communication is only proportional to the size
of the largest branch, we must use an OIP where the communication only
depends on the length of receiver inputs and the output, but is independent
of the length of sender inputs. We show that such OIPs can be constructed
using linearly homomorphic encryption with constant rate.

– Online Phase: Now that we have sharing of Δw values that was computed
using the mapping π corresponding to the active branch, we can compute
shares of the A and B values as follows:

[A] =
∑

m∈[k]

[b1]uπ1(a) + [Δa] and [B] =
∑

m∈[k]

[b1]uπ1(b) + [Δb]

We note that most linearly homomorphic secret sharing schemes allow such
computations to be done non-interactively and hence it does not incur any
overhead in the communication complexity. Shares of typeg for every gate g
can also be computed in a similar manner.

We present a formal description of this protocol in Sect. 5.

Extension to Malicious Security. While the basic outline of our protocol
remains the same, even in the malicious setting, we need to do a little more work
to make the above protocol secure against a malicious adversary. In particular,
we need to ensure that the inputs used by the parties in the OIP instances are
consistent with values/shares computed by them using the underlying MPC. For
this we propose to add the following consistency checks:

Receiver’s Input Consistency. We start by using an OIP that is secure against
a malicious reciever. In order to ensure that receiver uses valid sharings of the
active branch, we implement a kind of MAC check using the underlying MPC.
In particular, in the OIP execution, the sender samples k +1 random values and
appends them to its inputs. Now when the receiver computes the output of the
OIP, it also learns an inner product of these random values with its shares of
the active branch (we refer to this as the MAC value for this OIP). We now
use the underlying MPC to compute the exact same value. In particular, the
sender sends the k +1 random values that it sampled in the OIP as input to the
underlying MPC, while the receiver sends the MAC value learnt from the output
of the OIP. We allow the underlying MPC to now check if the MAC value indeed
corresponds to an inner product of the receivers shares of the active branch and
the random values input by the sender. We note that since the length of the
receiver’s input is independent of the size of all branches, computing this MAC
value inside the MPC does not incur too much overhead.

Sender’s Input Consistency. Recall that the inputs of the sender to the OIP
depend on the size of all branches, and hence we cannot hope to use the kind of
check that we used for ensuring receiver consistency. Moreover, since the length
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of the sender message is much shorter than the length of its inputs, we also
cannot hope to use an OIP with malicious sender security that can somehow
extract the sender’s inputs. Therefore, instead we continue to work with an
OIP that is secure against a semi-honest sender but augment it with a cut-and-
choose style approach. In particular, we sample multiple copies of the masks and
compute delta values using OIPs for each of those copies. We also ask the sender
to commit (using compressive commitments) to the inputs and randomness used
for computing each of its sender messages. At the end of all OIP instantiations,
we use the underlying MPC to sample a random subset and reveal the shares of
masks of all parties for that subset. The senders also send the randomness used
by them in the sender messages of this opened subset. Given this information, the
parties can verify if the senders behaved honestly and used consistent shares in
the opened instances. We use the remaining unopened instances to run multiple
copies of the online phase and take a majority to decide the final output. Due
to the use of cut-and-choose, the communication complexity of our maliciously
secure protocol is proportional to δ × the cost of computing the largest branch.
We defer a formal description of this protocol to the full-version of this paper.

2.2 Constant Round (Semi-honest) Protocol

Beaver, Micali, and Rogaway (BMR) [2] proposed a general template for con-
structing constant round MPC from existing generic non-constant round MPC.
The main observations underlying their technique were – (1) round complexity
of more generic non-constant round protocols depends on the depth of the func-
tion being computed and (2) garbling [40] a functionality/circuit is a constant
depth procedure.

The parties can leverage these observations to first execute a garbling phase,
where they compute a garbled circuit of the function (that they wished to eval-
uate) using the non-constant round protocol. This phase will require a constant
number of rounds. Given this garbled circuit, they then proceed to the evalua-
tion phase, where each party locally evaluates the garbled circuit to learn the
output. This phase requires no interaction and hence the overall protocol runs
in a constant number of rounds.

More concretely, in the garbling phase, the parties collectively sample two
keys kw,0, kw,1 for every wire w in the circuit. The garbled table for each gate
g in the circuit with incoming wires a, b and outgoing wire c, consists of the
following four rows, corresponding to α, β ∈ {0, 1}:

ctα,β = PRFka,α
(g) + PRFkb,β

(g) + kc,g(α,β)

Branching MPC using BMR Template. The generality of the BMR app-
roach immediately makes it compatible with our non-constant round semi-honest
protocol (from Sect. 2.1). Indeed, in the garbling phase, parties can use that pro-
tocol to compute a garbled circuit for the active branch. During the evaluation
phase, however, since the parties do not know which branch the garbled circuit
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corresponds to, they can evaluate it for every branch and obtain the correspond-
ing output wire labels. Note that only the labels obtained by evaluating w.r.t. to
the active branch actually correspond to a valid set of abels. Finally, via interac-
tion, parties can determine the output corresponding to the “valid” set of output
labels. The complexity of this last step is independent of the circuit size and only
depends on the number of branches times the output length.

While this yields a simple baseline constant round MPC for conditional
branches, it is highly inefficient. Since no party knows the keys ka,α, kb,β in their
entirety, they must evaluate the PRF (on these keys) inside an MPC protocol.
Since, the circuit representations of PRF’s are typically massive, this protocol is
unlikely to be concretely efficient. As such, for concrete efficiency, we require a
protocol that only makes a black-box use of cryptography.

Towards Black-Box use of Cryptography. Damg̊ard and Ishai [14] proposed
a variant of the above BMR template that enables parties to evaluate the PRF
outside the MPC, thereby only making a black-box use of cryptography.

Specifically, in their approach, each party Pi samples two keys ki
w,0, k

i
w,1 for

every wire w in the circuit. In other words, the cumulative keys associated with
every wire is a concatenation of all the parties’ keys. The garbled table for each
gate g in the circuit with incoming wires a, b and outgoing wire c, consists of the
following 4 · n rows, corresponding to α, β ∈ {0, 1} and i ∈ [n]:

ctiα,β =
n⊕

m=1

PRFkm
a,α

(g‖i) +
n⊕

m=1

PRFkm
b,β

(g‖i) + ki
c,g(α,β)

It is easy to see that unlike the BMR approach, here the parties are only
required to evaluate the PRF on their own keys, which can be done locally
and the resulting PRF evaluation can be fed as input to the underlying MPC
implementing the garbling functionality.

In our setting, however, this approach posits a fundamental barrier. Recall
that for evaluating conditional branches, we want to garble the active branch
without revealing the index of the active branch. For this, while garbling any
gate (say the jth gate), it is imperative that the parties remain oblivious to both
the functionality associated with it and its incoming and outgoing wires. As
a result, the parties are unaware of which keys ki

a,α, ki
b,β to use for computing

the corresponding ciphertexts, and hence cannot evaluate the PRF on those
keys locally. A natural approach to overcome this problem is to perform this
evaluation within an MPC; however, we are then back to the realm of non-
black-box use of cryptography. As such it is unclear how to directly adapt this
approach to our setting, while making a black-box use of cryptography.

Garbling using Key-Homomorphic PRFs. To overcome the above barrier,
we explore the work of Ben-Efraim et al. [4] who presented an alternative tem-
plate for multiparty garbling, using key-homomorphic PRFs. These are PRFs
with the following property: PRFk1(m)+̃PRFk2(m) = PRFk1 ·̃k2(m), where +̃ and
·̃ are some operations. As before, each party samples two keys for every wire in
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the circuit and given such a PRF, the parties the compute each ciphertext as
follows:

ctα,β =
∑̃

m∈[n]

(
PRFkm

a,α
(g)+̃PRFkm

b,β
(g)

)
+̃

(∏̃

m∈[n]
km

c,g(α,β)

)

It is easy to see that similar to the previous approach, each party here is only
required to evaluate the PRF on its own key, which can be done locally. At first,
it might seem that in our setting, the same problem (as before) still persists.
Indeed, for local PRF evaluation, the parties are required to know which key
to use, which as discussed earlier is not possible when the parties are required
to obliviously garble one of the conditional branches. However, we observe that
homomorphism of the PRF can be leveraged here to resolve this problem.

Lets assume that the parties start by ordering the gates and wires in every
branch in some canonical order. Now, when garbling the jth gate of the active
branch, they must choose the appropriate keys from all the keys associated with
the jth gate in every branch. We also assume that the parties have a sharing
of the unary representation of the index associated with the active branch. The
parties can now use multiple instances of OIP (as in our non-constant round
protocols) to obtain shares of the keys associated with the two incoming wires
of the jth gate in the active branch.

Consider a key homomorphic PRF where both +̃ and ·̃ are the same operation
associated with the reconstruction algorithm of the secret sharing scheme used
in the undelying MPC, i.e., [PRFk(m)] = PRF[k](m). This PRF can now be used
along with the above observation to compute a garbling of the active branch as
follows: for simplicity let’s assume that each branch is of the same size and has
W wires. The parties start by collectively sampling 2W keys. For garbling the
jth gate, for each α, β ∈ {0, 1}, they use OIPs to compute shares [ka,α], [kb,β ]
and [kc,g(α,β)], where a, b are the incoming and c is the outgoing wire of the jth

gate in the active branch and g is the function computed by this gate. Parties
can now locally evaluate the PRF on these shares and use the underlying MPC
to compute shares of the ciphertexts as follows:

[ctα,β ] = PRF[ka,α](j) + PRF[kb,β ](j) + [kc,g(α,β)]

Upon computing this garbled circuit for the active branch, similar to the
baseline solution, parties evaluate it w.r.t. all the branches and then run a “mini-
MPC” to filter out the valid labels and determine the final output.

Instantiating Key Homomorphic PRF. Most existing dishonest majority
MPC protocols [12,16,22,25,33] use additive secret sharing. To use the above
ideas with such protocols, we need an additively key-homomorphic PRF, i.e.,
where PRFk1(m) + PRFk2(m) = PRFk1+k2(m). Unfortunately, key homomorphic
PRFs are currently only known from the DDH assumption [6,37] and those PRFs
do not achieve a similar additive homomorphism.

Ben-Efraim et al. [4] observed that instead of a PRF, it suffices to use a
(decisional) ring LWE based random function here. This function is of the form:
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F = fk : Rp → Rp|fk(a) = a · k + e, where p = 2N + 1 is a prime, N is a power
of two, Rp = Zp[X]/(XN + 1) and a, k, and e are polynomials in the ring and
the coefficients of e come from a gaussian distribution. Since a is public, it is
easy to see that given additive shares of the key k and error e, it is possible for
the parties to locally compute shares of the above function. As is standard when
using LWE/RLWE, encrypting using such a random function typically requires
multiplying the message (before adding it to the output of this function) with the
size of the range from which the message comes from. In the case of garbling,
since both the message and keys come from the same distribution, as shown
in [4], this requires choosing the parameters carefully and additionally requires
sampling the keys from a gaussian distribution. However, since the parties only
need to compute additive shares of these keys and errors, this can be done easily
by requiring the parties to sample their shares from appropriate distributions.
We defer more details to Sect. 6.

3 Oblivious Inner Product

In this section, we define a variant of oblivious linear evaluation (OLE), which we
refer to as oblivious inner product (OIP). OIP is a protocol between two parties,
called the sender and receiver respectively. The sender has inputs (−→m0, . . . ,

−→mk) in
some domain (say Dm), and receiver has inputs (b1, . . . , bk) in the same domain
D. At the end of the protocol, the receiver should learn −→m0 +

∑
i∈[k] bi

−→mi and
nothing more, while the sender should learn nothing about the reciever inputs
b1, . . . , bk.

For our constructions, we consider two variants of OIP, a semi-honest version
and one that is secure against a malicious receiver. We now define the syntax
and the security guarantees of a two-message OIP protocol in the plain model.
The definitions can be naturally extended to the CRS model.

Definition 1 (Two-Message Oblivious Inner Product). A two-message
oblivious inner product between a receiver R and a sender S is defined by a
tuple of 3 PPT algorithms (OIPR,OIPS,OIPout). Let λ be the security parame-
ter. The receiver computes msgR, ρ as the evaluation of OIPR(1λ, (b1, . . . , bk)),
where (b1, . . . , bk) ∈ Dk is the receiver’s input. The receiver sends msgR
to the sender. The sender then computes msgS as the evaluation of
OIPS(1λ,msgR, (−→m0, . . . ,

−→mk)), where (−→m0, . . . ,
−→mk) ∈ Dm×(k+1) are sender’s

inputs. The sender sends msgS to the receiver. Finally, the receiver computes
the output by evaluating OIPout(ρ,msgR,msgS).

A semi-honest OIP satisfies correctness, security against semi-honest receiver
and semi-honest sender, while the malicious variant satisfies correctness, security
against semi-honest sender and malicious receiver, which are defined as follows:

– Correctness: For each (−→m0, . . . ,
−→mk) ∈ Dm×(k+1) and (b1, . . . , bk) ∈ Dk, the

following holds

Pr

⎡
⎢⎣

(ρ,msgR) ← OIPR

(
1

λ
, (b1, . . . , bk)

)

msgS ← OIPS

(
1

λ
,msgR, (−→m0, . . . , −→mk)

)
∣∣∣∣∣ OIPout (ρ,msgR,msgS) = −→m0 +

∑
i∈[k]

bi
−→mi

⎤
⎥⎦ = 1.
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– Security against Semi-Honest Sender: The following holds for any
(b1, . . . , bk) ∈ Dk and (b′

1, . . . , b
′
k) ∈ Dk, where ∃i ∈ [k] s.t. bi �= b′

i

{
(msgR, ρ) ← OIPR

(
1

λ
, (b1, . . . , bk)

) ∣∣∣ msgR

}
≈c

{
(msg′

R, ρ
′
) ← OIPR

(
1

λ
, (b

′
1, . . . , b

′
k)

) ∣∣∣ msgR

}
.

– Security against Semi-Honest Receiver: For every PPT adversary A
corrupting the receiver, there exists a PPT simulator SR such that for any
choice of (b1, . . . , bk) ∈ Dk and (−→m0, . . . ,

−→mk) ∈ Dm×(k+1), the following holds:

OIPS

(
1λ,msgR, (−→m0, . . . ,

−→mk)
) ≈c SR(1λ, ρ,msgR,−→m0 +

∑

i∈[k]

bi
−→mi),

where (msgR, ρ) ← OIPR(1λ, (b1, . . . , bk)).
– Security against a Malicious Receiver: For every PPT adversary A

corrupting the receiver, there exists a PPT simulator SR = (S1
R,S2

R), such
that for any choice of (−→m0, . . . ,

−→mk) ∈ Dm×(k+1), the following holds:
∣∣∣∣Pr

[
IDEALSR,FOIP

(1
λ

, −→m0, . . . , −→mk) = 1
]

−Pr
[
REALA,OIP(1

λ
, −→m0, . . . , −→mk) = 1

] ∣∣∣∣ ≤ 1

2
+ negl(λ).

Where experiments IDEALSR,FOIP
and REALA,OIP are defined as follows:

Exp IDEALSR,FOIP

(
1λ,−→m0, . . . ,

−→mk

)
:

– msgR ← A(1λ)

– (b1, . . . , bk) ← S1
R (1

λ,msgR)
– out ← FOIP(

−→m0, . . . , −→mk, b1, . . . , bk)

– msgS ← S2
R (1

λ, out,msgR)
– Output A(msgS)

Exp REALSR,FOIP

(
1λ,−→m0, . . . ,

−→mk

)
:

– msgR ← A(1λ)

– msgS ← OIPS

(
1λ,msgR, (−→m0, . . . , −→mk)

)

– Output A(msgS)

We present a construction of such OIPs from linearly homomorphic encryption
in the full-version of this paper. We show that if the underlying linearly homo-
morphic encryption has rate-1, then so does the OIP protocol.

4 MPC Interface

As discussed in the introduction, all of our compilers make use of an underlying
secure computation protocol with certain properties. In this section, we describe
the properties that we want from these underlying protocols.

We model these requirements as a reactive functionality (denoted as Fmpc).
At a high level, we require secret sharing based MPC that evaluate a given
circuit in a gate-by-gate manner and maintain an invariant that the parties hold
a secret sharing of the values induced on each intermediate wire in the circuit.
A formal description of this reactive functionality appears in Fig. 1.
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For ease of notation, in our protocol descriptions, we shall let [varid] denote
the value stores by the functionality under (varid, a); and we will write [z] =
[x] + [y] as a shorthand for calling Add and [z] = [x] · [y] as a shorthand for
calling Multiply. And by abuse of notation, we will let varid denote the value,
x, of the data item held in location (varid, x). We use [x]i to denote the share
of x given to party Pi in the underlying MPC.

To the best of our knowledge, most secret sharing based protocols [12,13,
16,25,33] securely implement this reactive functionality in the presence of a
malicious adversary who can corrupt arbitrary number of parties. Moreover,
most of these protocols are capable of evaluating circuits over any field/ring.

It is easy to see that any such secret sharing based MPC that evaluates the
circuit in a gate-by-gate manner and maintains the invariant that parties hold
shares of all intermediate wires in the circuit will trivially have support for the
Initialize Input, Initialize constant, Add, Add by const, Multiply, Mul-
tiply by const, Function and Output Private Shares calls. Moreover, since
the multiplication in these protocols typically requires parties to actually gener-
ate and compute shares of random values, the Random call is also implemented
by these protocols. We now discuss how the remaining calls can be implemented
in both the semi-honest and malicious settings.

Semi-honest Setting. The only other calls used in our semi-honest proto-
cols are Random Bit and Output. As observed in some of these protocols,
Random Bit is also very easy to implement (especially in the semi-honest set-
ting). This is done by requiring each party Pi to randomly sample bi ∈ {1,−1}
and secret share it amongst all the parties. The parties then add all the shares
obtained from all parties (let the resulting shares be [s]) and then compute [s]+1

2 .
The resulting shares will be of a random bit. Share Zero can be realized with
semi-honest security by having every party secret share 0 and then requiring
each party to locally sum up its shares. Finally, it is easy to see that the Out-
put call can also be easily implemented, since the parties actually hold shares
of all intermediate values. To reconstruct the output, they can simply broadcast
their respective shares to all parties and then run the reconstruction algorithm.

Malicious Setting. While protocols such as SPDZ [16] and its descendants [12,
25,33] (that use MACs w.r.t. a global key) delegate the check that ensures that
these shares are indeed consistent with the “correct” values to the end of the
protocol, we show that these protocols still securely implement all remaining
calls in the Fmpc functionality.

Intuitively, since these protocols delegate the malicious security/consistency
checks to the end the protocol, the only place where we need to ensure that
the shares held by the parties for any particular wire are indeed consistent and
correct is when those values are reconstructed or are used outside of this MPC
protocol, i.e., in the OIP and when the outcome of OIP is returned to the MPC.
The subcalls inside Fmpc that are really affected by this are Initialize Input,
Random, Share Zero, Check Zero and Output Shares and Output. As
discussed above, Initialize Input and Random are already implemented by
these protocols.
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– Check Zero: For this sub-call, we observe that given authenticated additive
shares ([x1], [m1]), ([x2], [m2]), with m1 = k ∗ x1, m2 = k ∗ x2 where k is
the global MAC key, parties can compute [m] = [m1] − [m2] locally, followed
by having each player Pi first commit and then broadcast its share [m]i to
reconstruct [m] and check if m =

∑
i mi = 0.

– Share Zero: For this we can augment the semi-honest Share Zero protocol
described above with an asymptotically efficient batch-wise check to ensure
malicious security. Specifically, to verify the outputs of the 	 semi-honest
Share Zero calls [x1], . . . , [x�], parties can publicly sample 	 random values
{ri}�

i=1 and compute a random linear combination [r] =
∑�

i=1 ri[xi] followed
by running the Check Zero call on [r] and a trivial sharing of 0 (each party
Pi’s share is 0).

– Output and Output Share: As discussed above authenticated shares in
the above protocols are of the form ([x], [m]), where m = k ∗ x and k is
the global MAC key. For both of these sub-calls, the parties first broadcast
their shares [x] and reconstruct. Then the parties can compute x · [k] and run
Check Zero to check if the resulting shares reconstruct to the same value
as the shares [m]. This is very similar to “MAC check” subprotocol already
implemented in [33].
We note that the above proposed protocols only reveal shares [x] and not [m].
Indeed, revealing all shares of both x an m will trivially give away the global
MAC key and make the protocol insecure. To make this compatible with our
maliciously secure protocol, we assume that when the parties use the shares
generated via Fmpc outside of Fmpc ( i.e., to compute the OIP messages), they
can do so on the “unauthenticated shares”, i.e., on only the [x] part and not
on the [m] part. Now, before, using the shares obtained as output of this OIP
in Fmpc, we can make them “authenticated” by computing the corresponding
[m] shares for this output. This can be done trivially, since the parties hold
a secret sharing of the global MAC key. This is a standard approach used in
many of the above protocols including MASCOT [33].
Moreover, we remark that the above proposed modification does not cause
our compiler or the compiled protocols to be insecure in any way. This is
because, the authentication mechanism used on the shares is only specific
to Fmpc and not to the primitives used outside of it. As a result, outside of
Fmpc, an adversary can easily modify the authenticated shares in whatever
way they want. Hence, in principle the following strategies are equivalent –
(1) where the computations done outside of Fmpc are performed on authenti-
cated shares. (2) where the computations done outside of Fmpc are performed
on unauthenticated shares, but we authenticate the output of those compu-
tations before they are used in Fmpc again.
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Fig. 1. A required ideal functionality for MPC

5 Non-constant Round Semi-honest Branching MPC

In this section, we present our semi-honest compiler for distributed computation
of a circuit with conditional branches.

Let the circuit/function be such that it consists of an initial sub-function
f1, followed by the k branches and then a sub-function f2. We assume that the
parties have access to Fmpc (see Fig. 1). When evaluated using Fmpc, the output
of f1 is a secret sharing of the inputs to the branching part and a secret sharing
of the unary representation of the index associated with the branch that needs
to be executed (henceforth referred to as the active branch). The output of the
branching part is a secret sharing of the inputs to the function f2.

Given a circuit C, we assume that the parties decide on some canonical order-
ing of the gates in the circuit, such that gate i only takes as inputs the values
output by the gates j < i . We assume w.l.o.g. that the ith gate in C has fan-in 2



414 A. Goel et al.

and the outgoing wire of any gate can act as the incoming wire for any number
of gates.2

For simplicity, we assume that all branches are of the same size and have G
gates. Our protocol can be easily extended to the scenario where the branches are
of varying sizes by suitably padding the smaller branches with fake gates. Let 	
be the length of inputs to the branching part of the function. For evaluating this
part, we assume that there are 	 input gates that are common to all branches. We
set both the incoming and outgoing labels for the wires coming out of these gates
as 1, . . . , 	 respectively. For each branch m ∈ [k], and each gate i in this branch,
we assign outgoing label i + 	 to the wire coming out of this gate and incoming
labels 	 + 2i − 1 and 	 + 2i respectively to its two incoming wires. Therefore,
we assume that the number of unique outgoing labels assigned in a branch are
G+ 	, while the total number of unique incoming labels assigned in a branch are
W = 2G+	. We present a slightly optimized version of the protocol described in
the introduction, namely that only requires parties to sample 1 mask per wire,
instead of 2 masks.

Let π be the mapping corresponding to a circuit C that maps incoming labels
to the outgoing labels of each wire in C. For instance, π(i) corresponds to the
outgoing label of the wire with incoming label i. Let C1, . . . ,Ck be the circuit
representations of the k branches and let {π1, . . . , πk} be the corresponding map-
pings associated with these branches. Finally, we assume that the circuits and
inputs are defined over some field F.

Protocol. The parties start by invoking (func, f1, x1, . . . , xn, inp1, . . . , inp�,
b1, . . . , bk) in Fmpc on their original inputs x1, . . . , xn, to obtain shares of inputs
to the branching part [inp1], . . . , [inp�], where |	| is the total input length and
shares [b1], . . . , [bk], where b1 . . . bk is the unary representation of the index asso-
ciated with the active branch. Given these shares, parties run the protocol pre-
sented in Fig. 2. The output of this protocol is a secret sharing of the inputs to
f2 (i.e., the last part of the circuit). Let m be the length of these inputs. The
parties finally invoke (func, f2, y1, . . . , ym, out) and (out, out) in Fmpc to learn
the final output out.

Optimization. A naive implementation of the online phase in the above proto-
col will result in a round complexity that depends on the maximum number of
gates in any particular branch. This can be improved to be proportional to the
maximum multiplicative depth of any branch by using a simple optimization.
For simplicity, lets assume that all branches have the same depth and each layer
of each branch contains the same number of gates. We know that the gates on
level 	 only depend on the outgoing wires of gates on layers < 	. We can therefore
evaluate all the gates in a particular level in parallel. This simple idea can also
be extended to the case where the branches have different depths and widths. In

2 Our compiler can work with circuits that have gates with arbitrary fan-out. In our
construction, it suffices to view such gates as having a single outgoing wire that acts
as the incoming wire for multiple gates. Hence, we only assign a single label to the
outgoing wire of each gate.
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Fig. 2. Semi-honest compiler

that case, let x� (and y� resp.) be the minimum (and maximum resp.) number
of gates on level 	 in any branch. We can evaluate the first x� gates in parallel.
Then in the next round we can evaluate the y� −x� +x�+1 gates in parallel. This
ensures that the overall round complexity of the online phase will only depend
on the depth of the branches.
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Complexity Analysis. We now analyze the communication complexity of the
above semi-honest protocol. If we use a rate-1 OIP, the communication complex-
ity in the pre-processing phase is O(n2|Cmax|+n2kλ), where |Cmax| is the size of
the largest branch. In the online phase for each gate we perform both addition
and multiplication and then choose between the two. As a result we perform 2
multiplications per gate. The communication complexity of the online phase is
O(2 × CC(|Cmax|)), where CC(|Cmax|) is the communication complexity incurred
upon evaluating Cmax using the underlying MPC.

Overall, given the above protocol and optimizations, we obtain the following
result. Due to space constraints, we defer the security proof of this construction
to the full-version of this paper.

Theorem 1. Let λ be the security parameter and F be a function class consist-
ing of functions of the form f(−→x ) = f2(fbr(f1(−→x ))), where fbr := {g1, . . . , gk}
is a function consisting of k conditional branches, defined as fbr(i,−→x ) = gi(−→x ).
Assuming the existence of a rate-1 two-message semi-honest secure OIP (see
Definition 1), there exists an MPC protocol in the Fmpc-hybrid model (see
Sect. 4) for computing any f ∈ F that achieves semi-honest security against
an arbitrary number of corruptions and incurs a communication overhead of
O(n2(kλ + |Cmax|)).

In the full-version of this paper, we show that a rate-1 two-message semi-
honest secure OIP can be constructed from rate-1 linearly homomorphic encryp-
tion. Such encryptions are known [8,15,17,38] from a variety of assumptions
including LWE, Ring LWE and DDH assumption.

6 Constant Round Semi-honest Branching MPC

In this section we present our constant round semi-honest protocol for distributed
computation of a branching circuit.

As discussed in the technical overview, we instantiate a random function
based on the RLWE assumption for our protocol that works as an approximate
key homomorphic PRF. We briefly recall the variant of the decisional RLWE
hardness assumption stated by Ben-Efraim et al. [4]. Let p = 2N + 1 be a
prime, where N , called the dimension or security parameter, is a power of 2. Let
Rp = Zp[X]/(XN +1) be the polynomial ring over Zp modulo XN +1. We start
by recalling the decisional RLWE assumption.

Definition 2 (Decisional Ring LWE Problem). Any non-uniform PPT
adversary cannot distinguish between {(ai, bi)}i∈I and {(ai, ai · k + δi)}i∈I with
non-negligible probability where {ai}i∈I , {bi}i∈I and k are chosen uniformly at
random from Rp and the coeffecients of {ei}i∈I are sampled from χ, a spherical
Gaussian distribution.

By transforming to the Hermite normal form, the RLWE assumption also
holds if k is chosen from a spherical Gaussian distribution. In general, it is also
necessary to bound the number of samples |I|; say |I| = O(1) or |I| = O(log N).
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Our protocol follows the BMR approach which involves sampling a pair of
keys k0

w, k1
w for each wire w in the circuit. A garbled table is then constructed

for each gate such that the key corresponding to the value on the output wire is
encrypted using the keys corresponding to the input values. Since the position
of each ciphertext in the garbled table leaks information about its plaintext, a
private random mask bit γw ∈ {0, 1} is sampled for each wire w and the masks
for the input wires are used to permute the rows of the garbled table for each
gate. Let the external value βw on a wire be the plaintext value ρw on the wire
masked with the mask γw i.e., βw = ρw ⊕γw. Then, the masks on the input wires
are used to permute the rows of the garbled table such that the external values
on the input wires can be used to index into the required row of the garbled
table. Thus, to ensure that parties decrypt the correct row when evaluating the
circuit, the mask for the output wire has to also be included in the ciphertext for
each row. We use the approach of Ben-Efraim et al. [4], where the last coordinate
of the keys k0

w, k1
w for each wire are set to 0, which slightly reduces security, and

the external value is embedded into this coordinate during encryption. We use
k‖e to denote that the bit e was embedded in the last coordinate of the key k.

As observed in [4], since the plaintext and key come from the same set when
computing the ciphertexts for the garbled table, we sample coefficients for both
the keys and errors from Gaussian distribution χ, similar to the RLWE errors
to ensure that decryption is possible. Moreover, Ben-Efraim et al. [4] also show
that overall, it suffices to use just 8 · fout distinct public random elements of the
form Au,v

g from the ring, where fout is the maximal fan-out of the circuit.
The garbling phase is presented in Fig. 3 and the evaluation phase is presented

in Fig. 4. We adopt similar notation to the semi-honest protocol presented in
Fig. 2 and use incoming and outgoing labels for each wire. Let 	 be the number
of input wires to the branching part of the function, we set the incoming and
outgoing labels for these wires to be 1, . . . , 	. For gate g in each branch, we set
the outgoing wire label to be 	 + g, the left incoming wire label to be 	 + 2g − 1
and the right incoming wire label to be 	 + 2g. We also let πm for each m ∈ [k]
to be the mapping that maps incoming labels to the outgoing labels of each wire
for the m-th branch.

Finally, we remark that we require the underlying MPC protocol that securely
realizes Fmpc to run in constant number of rounds for constant depth circuits.
This is to ensure that our protocol has constant number of rounds. This is true
for most secret sharing based protocols that evaluate the circuit in a gate-by-gate
manner.

Complexity Analysis. We assume that the size of the ring Rp is in O(λ). If
we use a rate-1 semi-honest secure OIP, the communication complexity in the
garbling phase is O(n2|Cmax|+n2kλCC(λ|Cmax|)), where |Cmax| is the size of the
largest branch and CC(λ|Cmax|) is the communication complexity incurred upon
evaluating Cmax using the underlying MPC. In the evaluation phase, the com-
munication cost incurred is for reconstructing O(λ|Cmax|) shares corresponding
to the garbling material.
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Fig. 3. Garbling phase of the constant round (semi-honest) protocol

Overall, given the above protocol and optimizations, we obtain the following
result. Due to space constraints, we defer the security proof of this construction
to the full-version of this paper.
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Fig. 4. Evaluation phase of the constant round (semi-honest) protocol

Theorem 2. Let λ be the security parameter and F be a function class consist-
ing of functions of the form f(−→x ) = f2(fbr(f1(−→x ))), where fbr := {g1, . . . , gk}
is a function consisting of k conditional branches, defined as fbr(i,−→x ) = gi(−→x ).
Assuming that a rate-1 two-message semi-honest secure OIP exists (see Def-
inition 1) and that the decisional RLWE problem holds (see Definition 2),
there exists a constant-round MPC protocol in the Fmpc-hybrid model (see
Sect. 4) for computing any f ∈ F that achieves semi-honest security against
an arbitrary number of corruptions and incurs a communication overhead of
O(n2λ(k + |Cmax|)).

Note that if we instatiate the rate-1 two-message semi-honest secure OIP
using a rate-1 RLWE-based linearly homomorphic encryption, then the above
theorem yields a protocol that only relies on the hardness of decisional RLWE.

7 Implementation

We implement and benchmark our semi-honest non-constant round proto-
col from Sect. 5. The code is publicly available at https://github.com/rot256/
research-branching-mpc. In addition to the code and instructions used for bench-
marking, the repository also contains the raw data used in this paper and scripts
used to create the plots.

https://github.com/rot256/research-branching-mpc
https://github.com/rot256/research-branching-mpc
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7.1 How We Benchmark

Underlaying MPC. We implement tour semi-honest compiler on top of two
different multi-party computation protocols.

1. Quadratic Dependence on the Number of Parties. A semi-honest variant of
MASCOT [33] (MASCOT without sacrificing and message authentication
codes) over the prime field F216+1 = Z/(0x10001 Z) provided by MP-SPDZ
[32] (called “semi-party.x”). We simply invoke the MP-SPDZ implemen-
tation as a black-box: wrapping each instance of “semi-party.x” in a pro-
gram which provides provides inputs/outputs to the party. Since MP-SPDZ
povides a universal interface our implementation is agnostic with regards to
the underlying MPC implementation: any reactive MPC in MP-SPDZ which
allows computation over F216+1 could be swapped in with ease.

2. Linear Dependence on the Number of Parties. A batched semi-honest ver-
sion of CDN [13] where we instantiate the linearly homomorphic encryption
using the same ring LWE parameters described above. We implement this
ourselves again using the Lattigo (more information below) library for the
RLWE components.

CDN Implementation. We implement a semi-honest batched version of CDN,
instantiating the linearly homomorphic encryption using the same parameters
described above (the same as the OIP). To reduce the overhead (computa-
tional/communication) induced by the homomorphic encryption we execute mul-
tiplications in batches of 212 (the dimension of the ring used for RLWE), by pack-
ing 212 independent shares (over 0x10001) into a single ciphertext and execute
the CDN multiplication protocol on these in parallel. The decryption threshold
is the full set of parties. The CDN implement is included in the same repository.
To the best of our knowledge, this is the first known implementation of CDN.

Instantiating OIP and Ring LWE Parameters. In our implementation, we
use an optimized version of OIP. We observe that the O(n2) overhead incurred
from the use of pairwise-OIPs can be driven down to O(n), if instead of a regu-
lar linearly homomorphic encryption, we use a threshold linearly homomorphic
encryption (TLHE). TLHE are linearly homomorphic encryptions that comprise
of a single public-key and where each party holds a “share” of the secret key.
This share of the secret key can be used by the parties to decrypt to a share
of the plaintext. As shown in [10], the keys for RLWE based threshold linearly
homomorphic encryption can be setup very efficiently by the parties in a cou-
ple of rounds. At a high level, this observation allows us to reuse the sender
and receiver messages of each party across multiple OIP instantiations and as
a result, overall, each party only needs to send one receiver message and one
sender message.

Recall that in our semi-honest protocol, the receiver and sender messages in
all OIP instances are computed using the same shares of the index associated
with the active branch and the masks. Each party can compute its receiver
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message by encrypting its shares of b1, . . . , bk. Similarly, for the sender message,
each party can compute an inner-product of these encryptions received from all
parties and its shares of the permuted masks. Finally, all parties can add all
the sender messages (which are also ciphertexts) received from all parties. This
gives them an encryption of the permuted masks for the active branch. Now each
party can run threshold decryption using its share of the secret-key to obtain a
sharing of the resulting inner-product.

We use BFV [17] over a cyclotomic ring of index 213 and dimension 212,
i.e. R[X]/(X212 + 1) where: Q1 := 0x7ffffec001, Q2 := 0x8000016001, P :=
0x40002001, N := Q1Q2P,R := Z/(NZ). This gives us a linearly homomorphic
encryption scheme for vectors −→v ∈ (F216+1)2

12
, which additionally allows (full)

threshold decryption. We use the Lattigo [1] library to implement all the RLWE
components.

Benchmarking Platform. All benchmarks were run on a laptop with an Intel
i7-11800H CPU (@ 2.3 GHz) and 64 GB of RAM. All networking is over the
loopback interface and network latency was simulated using traffic control (tc)
on Linux. We also do not restrict the bandwidth when comparing running times
– note that this constitutes a relative “worst-case scenario” for our results: as
our technique reduces communication, the relative performance gain for many
branches would only increase by restricting bandwidth.

How The Branches Were Generated. During our benchmark each branch
contained 216 uniformly random gates: each gate is a multiplication/addition
gate with probability 1/2. We benchmark using “layered circuits”, meaning each
level contains 212 gates which can be evaluated in parallel (to reduce the number
of rounds). Subject to the layering constraint, the wiring is otherwise random:
the inputs to each gate are sampled uniformly at random from all previous
outputs (not just those in the last layer). We believe this distribution over circuits
form a realistic benchmark for the expected performance across many real-world
applications.

Averaging. We run all benchmarks 10 times and take the average.

7.2 Comparison of Communication Complexity

In Fig. 5, we compare the communication complexity of our technique to the
näıve baseline solution of evaluating each branch in parallel using the underlying
MPC. For the baseline solution we do not consider the additional overhead of
multiplexing the output, i.e., selecting the output of the active branch.

Looking at Fig. 5 (a)/(b), we observe that our technique improves communi-
cation over the baseline for both CDN and MASCOT with 3 parties when the
number of branches is ≥ 8. For less than 8 branches the communication overhead
of the RLWE-based OIP and the need to evaluate universal gates (requiring the
base-MPC to compute 3 multiplications) outweighs the communication saving of
only executing the active branch. Upon reflection 8 branches is about the lowest
number of branches we could hope to see savings for: recall that each branch
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contains ≈ 215 multiplications3, therefore the parallel execution of 6 branches
requires the same number of multiplications as that of the 216 universal gates
used in our technique. As expected we also observe that the communication of
our technique remains (nearly4) constant for any number of branches.

Lastly we fix the number of branches to 16 and plot (in Fig. 5 (c)) the commu-
nication complexity of our technique for a varying number of parties, as expected
the communication of our compiler applied to MASCOT increases quadratically,
while our technique preserves the linearly increasing communication of CDN;
constant per-party communication (and computation).

Fig. 5. Communication Complexity of Branching MPC compared to the base-line of
evaluating each branch in parallel.

7.3 Comparison of Running Time

From Fig. 6 and Fig. 7, we observe that for sufficiently many branches our tech-
nique also reduces running time over the baseline for both CDN and semi-
honest MASCOT. This is also expected: after the relatively high constant over-
head of our technique, the marginal cost of adding another branch (of length
	) is that of: (1) O(	) linear operations in the underlying MPC. (2) O(	)
〈ciphertext〉× 〈plaintext〉 operations in the RLWE based homomorphic encryp-
tion scheme. (3) O(	) 〈ciphertext〉+〈ciphertext〉 operations in the RLWE based
homomorphic encryption scheme (Fig. 8).

The first one introduces a very small cost (essentially that of reading the
branch), the second is dominated by the cost of doing a number theoretic trans-
form (NTT) on the plaintext (the players local share), which again is essentially
that of computing a small constant number of fixed-size FFTs. We note that
the NTTs are computed on random shares and could be relegated to a pre-
computation phase. The final ciphertext/ciphertext addition is just a constant
number of entry-wise additions of vectors in a small prime field – the cost of
which is miniscule. Looking at Fig. 6 and Fig. 7 we observe that this marginal
3 Since the type of each gate in each branch is sampled uniformly at random.
4 It grows slightly, since the unary representation of the selection wire must be

shared/computed. However the computation of the branch completely dominates
the communication.
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Fig. 6. Running time of Branching MPC with CDN.

Fig. 7. Running time of Branching MPC with Semi-Honest MASCOT.

Fig. 8. Running time of Branching MPC for Different Number of Parties.

computational cost (of doing NTTs) has a higher influence when the network
latency is low and quickly becomes insignificant as the latency increases.
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9. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure proto-
cols (Abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, p. 462.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 43

10. Chen, M., et al.: Diogenes: lightweight scalable RSA modulus generation with a
dishonest majority. Cryptology ePrint Archive, Report 2020/374 (2020). https://
eprint.iacr.org/2020/374

11. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

12. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k: efficient
MPC mod 2k for dishonest majority. Cryptology ePrint Archive, Report 2018/482
(2018). https://eprint.iacr.org/2018/482

13. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

14. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

15. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

http://github.com/ldsec/lattigo
https://doi.org/10.1007/978-3-030-77886-6_23
https://doi.org/10.1007/978-3-030-77886-6_23
https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/3-540-48184-2_43
https://eprint.iacr.org/2020/374
https://eprint.iacr.org/2020/374
https://doi.org/10.1007/978-3-319-96878-0_2
https://eprint.iacr.org/2018/482
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9


Secure Multiparty Computation with Free Branching 425

16. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

17. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144

18. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 29

19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

21. Gordon, S.D., Starin, D., Yerukhimovich, A.: The more the merrier: reducing the
cost of large scale MPC. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12697, pp. 694–723. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77886-6 24

22. Goyal, V., Li, H., Ostrovsky, R., Polychroniadou, A., Song, Y.: ATLAS: efficient
and scalable MPC in the honest majority setting. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 244–274. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84245-1 9

23. Goyal, V., Polychroniadou, A., Song, Y.: Unconditional communication-efficient
MPC via Hall’s marriage theorem. In: Malkin, T., Peikert, C. (eds.) CRYPTO
2021. LNCS, vol. 12826, pp. 275–304. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-84245-1 10

24. Goyal, V., Song, Y.: Malicious security comes free in honest-majority MPC. Cryp-
tology ePrint Archive, Report 2020/134 (2020). https://eprint.iacr.org/2020/134

25. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Concretely efficient large-scale
MPC with active security (or, TinyKeys for TinyOT). In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 86–117. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3 4

26. Heath, D., Kolesnikov, V.: Stacked garbling - garbled circuit proportional to longest
execution path. In: Micciancio, D., Ristenpart, T. (ed.) CRYPTO 2020, Part II,
vol. 12171 of LNCS, pp. 763–792. Springer, Heidelberg, August 2020. https://doi.
org/10.1007/978-3-030-56880-1 27

27. Heath, D., Kolesnikov, V.: LogStack: stacked garbling with O(b log b) computation.
In: Canteaut, A., François-Xavier Standaert, editors, EUROCRYPT 2021, Part III,
volume 12698 of LNCS, pages 3–32. Springer, Heidelberg, October 2021 . https://
doi.org/10.1007/978-3-030-77883-5 1

28. Heath, D., Kolesnikov, V., Peceny, S.: MOTIF: (almost) free branching in GMW -
via vector-scalar multiplication. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
Part III, vol. 12493 of LNCS, pp. 3–30. Springer, Heidelberg (2020). https://doi.
org/10.1007/978-3-030-64840-4 1

29. Heath, D., Kolesnikov, V., Peceny, S.: Garbling, stacked and staggered - faster k-
out-of-n garbled function evaluation. In: Tibouchi, M., Wang, H. (eds.) Advances in
Cryptology - ASIACRYPT 2021 - 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, 6–10 December
2021, Proceedings, Part II, vol. 13091 of Lecture Notes in Computer Science, pp.
245–274. Springer (2021). https://doi.org/10.1007/978-3-030-92075-3

https://doi.org/10.1007/978-3-642-32009-5_38
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-030-77886-6_24
https://doi.org/10.1007/978-3-030-77886-6_24
https://doi.org/10.1007/978-3-030-84245-1_9
https://doi.org/10.1007/978-3-030-84245-1_9
https://doi.org/10.1007/978-3-030-84245-1_10
https://doi.org/10.1007/978-3-030-84245-1_10
https://eprint.iacr.org/2020/134
https://doi.org/10.1007/978-3-030-03332-3_4
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-77883-5_1
https://doi.org/10.1007/978-3-030-77883-5_1
https://doi.org/10.1007/978-3-030-64840-4_1
https://doi.org/10.1007/978-3-030-64840-4_1
https://doi.org/10.1007/978-3-030-92075-3


426 A. Goel et al.

30. Heath, D., Kolesnikov, V., Peceny, S.: Masked triples- amortizing multiplication
triples across conditionals. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp.
319–348. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4 12

31. Katz, J., Malka, L.: Constant-round private function evaluation with linear com-
plexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
556–571. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 30

32. Keller, M.: MP-SPDZ: a versatile framework for multi-party computation. In: Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (2020)

33. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October
2016

34. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

35. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for
private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 33

36. Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function evalu-
ation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
486–505. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 26

37. Naor, M., Pinkas, B., Reingold, O.: Distributed Pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 23

38. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

39. Wails, R., Johnson, A., Starin, D., Yerukhimovich, A., Gordon, S.D.: Stormy:
statistics in Tor by measuring securely. In: Cavallaro, L., Kinder, J., Wang, X.F.,
Katz, J. (eds.) ACM CCS 2019, pp. 615–632. ACM Press, November 2019

40. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-030-75248-4_12
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31


Secure Multiparty Computation
with Sublinear Preprocessing

Elette Boyle1(B), Niv Gilboa2, Yuval Ishai3, and Ariel Nof3

1 Reichman University (IDC Herzliya), and NTT Research, Herzliya, Israel
eboyle@alum.mit.edu

2 Ben-Gurion University, Beersheba, Israel
gilboan@bgu.ac.il

3 Technion, Haifa, Israel
{yuvali,ariel.nof}@cs.technion.ac.il

Abstract. A common technique for enhancing the efficiency of secure
multiparty computation (MPC) with dishonest majority is via prepro-
cessing: In an offline phase, parties engage in an input-independent proto-
col to securely generate correlated randomness. Once inputs are known,
the correlated randomness is consumed by a “non-cryptographic” and
highly efficient online protocol.

The correlated randomness in such protocols traditionally comes in
two flavors: multiplication triples (Beaver, Crypto ’91), which suffice
for security against semi-honest parties, and authenticated multiplica-
tion triples (Bendlin et al., Eurocrypt ’11, Damg̊ard et al., Crypto ’12)
that yield efficient protocols against malicious parties.

Recent constructions of pseudorandom correlation generators (Boyle
et al., Crypto ’19, ’20) enable concretely efficient secure generation of
multiplication triples with sublinear communication complexity. How-
ever, these techniques do not efficiently apply to authenticated triples,
except in the case of secure two-party computation of arithmetic circuits
over large fields.

In this work, we propose the first concretely efficient approach for
(malicious) MPC with preprocessing in which the offline communication
is sublinear in the circuit size. More specifically, the offline communica-
tion scales with the square root of the circuit size.

From a feasibility point of view, our protocols can make use of any
secure protocol for generating (unauthenticated) multiplication triples
together with any additive homomorphic encryption. We propose con-
cretely efficient instantiations (based on strong but plausible “linear-
only” assumptions) from existing homomorphic encryption schemes and
pseudorandom correlation generators.

Our technique is based on a variant of a recent protocol of Boyle et al.
(Crypto ’21) for MPC with preprocessing. As a result, our protocols
inherit the succinct correlated randomness feature of the latter protocol.
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1 Introduction

Protocols for secure multiparty computation (MPC) [2,18,28,44] enable a set
of parties with private inputs to compute a joint function of their inputs while
revealing nothing but the output. Optimizing the asymptotic and concrete effi-
ciency of MPC protocols has been the topic of a large body of work. The question
is particularly challenging when considering security against malicious adver-
saries, who can actively corrupt parties.

A successful approach for the design of such protocols is to employ preprocess-
ing. Before the inputs are known, the parties run an offline protocol to generate
correlated secret randomness, which is consumed by a lightweight and typically
“non-cryptographic” (or “information-theoretic”) online protocol.1 This model,
known also as the offline/online model, is in particular appealing when no honest
majority can be guaranteed, since it allows to push the heavy “cryptographic”
part of the protocol to the offline phase, minimizing the cost of the online pro-
tocol. Originating from the work of Beaver [1], who showed how to use “mul-
tiplication triples” for secure arithmetic computation with dishonest majority,
many protocols for secure computation make extensive use of correlated ran-
domness [3,11,20–24,31,39].

Most of the above works design protocols in the preprocessing model with
security against malicious adversaries. A powerful recurring technique uses
homomorphic MACs to authenticate the values produced by the online pro-
tocol [3,23]; the resulting correlation is a form of “authenticated” multiplication
triples. Indeed, the so-called “SPDZ” line of work serves as a leading approach
in this area, spawning a range of optimizations, implementations, and improve-
ments, e.g. [5,17,20,35,36]. Another recent approach includes compilers based on
sublinear distributed zero-knowledge [6,14]. As per design, in all these protocols
the bulk of the work lies in the preprocessing phase. In particular, the typical
communication complexity of this phase in existing protocols is by orders of
magnitude higher than the size of the circuit being evaluated.

Recent constructions of pseudorandom correlation generators (PCGs) [8–10]
demonstrate promising potential for improving the communication demands of
certain preprocessing procedures. PCGs provide a means for parties to locally
expand short correlated seeds into long pseudorandom instances of certain cor-
relations, without communication. Indeed, recent PCG constructions based on
Learning Parity with Noise (LPN) or its Ring-LPN variant enable concretely
efficient secure generation of many multiplication triples, with sublinear com-
munication and good concrete efficiency, including the secure generation of the
seeds [9,10]. This directly yields a practical, sublinear-communication prepro-
cessing for MPC with semi-honest security.

However, these techniques do not generally apply to the more complex cor-
relation of authenticated multiplication triples, necessary for extending this app-

1 This can be formalized by requiring the existence of alternative correlated random-
ness, which is computationally indistinguishable from the one generated by the offline
protocol, and given which the entire protocol is information-theoretically secure.
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roach to protocols with malicious security. Concretely efficient PCGs for authen-
ticated triples exist only in the limited setting of 2-party correlations over large
fields [10].2 Using PCG-generated pairwise authenticated triples in the style of
“BDOZ” [3] may be feasible for arithmetic circuits and a small number of par-
ties, but result in online communication that scales quadratically in the number
of parties. In the case of 2-party evaluation of Boolean circuits, PCGs for OT can
be used to generate multiplication triples over F2, enabling semi-honest online
protocols with 2 bits per party per gate, whereas for malicious security one needs
to communicate 2 elements of a big finite field per gate.

To conclude, current PCG machinery cannot be efficiently used to generate
authenticated triples that support an online protocol that scales linearly with the
number of parties, or alternatively even 2-party protocols for Boolean circuits.
Consequently, all practical protocols for MPC with preprocessing in these set-
tings require the communication complexity of preprocessing to be much bigger
than the circuit size.

1.1 Our Results

We provide new feasibility and concrete efficiency results for secure multiparty
computation (MPC) in the dishonest majority setting. Our general approach
can be instantiated to give the first practical sublinear-communication methods
for generating “SPDZ-style” correlations, in the sense of achieving malicious
security with an online phase that is both non-cryptographic and has linear
communication in both the circuit size and the number of parties.

Our approach does not require authenticated multiplication triples as in
SPDZ [23], but rather makes use of only semi-honest (non-authenticated) triples
together with additional preprocessing material that builds on a variant of a
recent protocol of Boyle et al. [14]. As a consequence, our protocols inherit the
succinct correlated randomness feature of the latter protocol—that is, the addi-
tional preprocessing material (beyond multiplication triples) is only sublinear in
the circuit size. From a concrete efficiency point of view, our approach is also
attractive for Boolean circuits in the 2-party case, as there are no concretely
efficient PCG for generating binary authenticated triples, whereas PCG for OT
can generate binary non-authenticated triples.

More concretely, our protocols support secure computation in the prepro-
cessing model of arithmetic circuits over any finite field or ring Z2k . We say that
the online phase is “information theoretic” (or “non-cryptographic”) in the sense
that the correlated randomness distribution D is computationally indistinguish-
able from some distribution D′ for which executing the online phase with D′

induces true information theoretic security. The offline preprocessing phase has
communication that scales with the square root of the circuit size. Our protocol

2 While these limitations can in some cases be circumvented [9,25,40], this comes at
a big additional cost.
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can make use of any secure protocol for generating (unauthenticated) multipli-
cation triples, together with any additively homomorphic encryption.3

This constitutes a new feasibility result.

Theorem 1 (Sublinear-setup MPC with preprocessing, informal). Let
C be an arithmetic circuit of size |C| (counting multiplication gates, inputs and
outputs) over a ring R, where R is either a finite field F or the ring Z2k . Then,
there exists a secure n-party MPC protocol in the preprocessing model that com-
putes C with security against up to n − 1 malicious parties and the following
features:

– Sublinear offline communication, consisting of a number of R-elements
that scales as O(

√|C|).
– Information-theoretic online phase
– Per-party online communication that does not grow with n: namely,

O(|C|) R-elements.

Security is based on the assumptions underlying two cryptographic building
blocks:

– additively homomorphic encryption;
– sublinear-communication protocol for semi-honest generation of pseudoran-

dom (un-authenticated) multiplication triples over R: e.g., implied by LPN.

Note that the information-theoretic nature of the online phase makes the
task of achieving sublinear offline communication highly nontrivial, as opposed
to trivial solution approaches which simply ignore the offline phase (zero offline
communication) and perform a complete secure computation in the online phase.

We additionally propose concretely efficient instantiations of our main the-
orem (based on strong but plausible “linear-only” assumptions) from existing
homomorphic encryption schemes and existing pseudorandom correlation gen-
erators.

The overhead of our online phase is quite modest and in many settings is
dominated by the communication of the semi-honest baseline protocol, even
over a fast 1 Gbps network, e.g. for an arithmetic circuit of 220 gates over a
prime field of 60 bits (and soundness error 2−50).

1.2 Technical Overview

Starting Point: Distributed Zero Knowledge and BGIN’21. We follow in line with
a collection of recent prior works using sublinear distributed zero knowledge
machinery toward low-communication solutions for compiling semi-honest to
malicious security [6,12–14].

The high-level structure of these protocols is as follows. Within the protocol,
the parties begin by running the underlying semi-honest secure protocol aside
3 Implied, e.g., by any of the Quadratic Residuosity, Learning with Errors, or Deci-

sional Composite Residuosity assumptions.
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from the final step. Then, before exchanging the final messages and revealing
outputs, the parties first jointly execute a verification phase in which correctness
of the first phase is asserted. This is done by generating and verifying zero
knowledge proofs on distributed data (hereafter “Distributed zero knowledge”),
which can be done with sublinear proof size for simple languages [6]. Distributed
zero knowledge (DZK) proofs consider a setting with a single prover and multiple
verifiers, who each hold pieces of the statement; the prover sends a share of the
proof to each verifier, and the verifiers interact amongst themselves in order to
verify the proof.

The specific structure and use of the DZK proof system within the MPC
protocol application varies across works: either each party acts separately as
prover to assert his own proper behavior [6,12,14], or the parties jointly emulate
the prover on the collective set of generated values, which no single party knows
in full [6,14].

A complication arises in any multi-party setting with more than a single
corrupted party, as collusion may take place between a proving and a verify-
ing entity. In order to provide soundness, the statement being proved must be
somehow robustly held across parties, such that a corrupt verifier cannot modify
his piece of the statement to enable the proof to improperly be accepted. Such
robustness is natural in the case of MPC with an honest majority, where the
honest parties themselves holds sufficient information to determine the (secret)
statement. For the case of dishonest majority, ensuring robustness is less clear.
A main idea of [14] (hereafter referred to as “BGIN’21”) is that correlated ran-
domness generated during preprocessing can be designed so as to function as an
additional “dealer” party whose actions must be determined independent of the
inputs, but whose behavior is guaranteed to be honest.

Of course, for this approach to work, it is crucial that the correlated ran-
domness is indeed generated honestly. In the idealized preprocessing model, as
considered in [14], this comes for free: the parties are assumed to be given hon-
estly generated samples from the correlated randomness from an ideal honest
dealer. Our challenge is to remove this assumption, and to generate these val-
ues as part of the protocol in a manner that still suffices for overall security, in
sublinear communication. Moreover, we would like to do so without resorting to
expensive general-purpose tools such as fully homomorphic encryption. Instead,
we will rely on any additively homomorphic encryption. Doing so will require us
to modify the BGIN’21 correlation and protocol in the process.

The BGIN’21 Dealer (Slightly Modified). Consider the DZK joint prover emula-
tion approach. After the semi-honest execution, the parties wish to jointly prove
that for every multiplication gate, the shares they hold of the output wire cor-
respond correctly to the shares they hold of the two input wires. To compress
this into a single verification instead of |C|, the parties sample random coef-
ficients αg for each multiplication gate g, and instead verify that this random
linear combination of all gate-checks indeed verifies. This reduces the challenge
to proving that single degree-2 multivariate polynomial evaluates to 0 on O(|C|)
secret-shared inputs.
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To achieve this, each party takes part in 3 phases: (1) “Joint-Prover,” com-
puting its contribution of the jointly generated proof of correctness, (2) “Verifier
query,” jointly generating a verifier query challenge (a form of coin toss protocol),
and (3) “Verifier answer,” performing its role as one of the multiple verifiers.

The dealer (in addition to generating the semi-honest correlation material)
must effectively perform each of these actions acting as an additional honest
party, and commit to its answers to be revealed in the online phase. Concretely,
for arithmetic circuit C over ring R, the dealer must perform the following
generation tasks:

1. Semi-honest multiplication triples (for semi-honest computation):
For each gate g, additive shares of random rg

1 , r
g
2 ∈ R and rg

1 · rg
2 ∈ R.

2. Random compressing coefficients: Selecting random (or sufficiently high-
entropy) linear coefficients αg for each gate g, so that correctness of all mul-
tiplication gates can be checked in a compressed manner via a random linear
αg-combination of the individual verification polynomials. A concise descrip-
tion of all αg is shared across the parties to be revealed and reconstructed in
the online phase during verification. In [14], each αg is taken to be the gth
power of single random value α ← R.

3. Prover contribution: The “dealer party’s share” of the jointly computed
DZK proof. This consists of simply proof-size many random share values
si ∈ R, secret shared to the parties in such a way that the value of each si

cannot be changed by malicious parties in the online phase.
4. Verifier query generation: Random polynomial evaluation point τ ∈ R.
5. Verifier answer contribution: Computation of verifier query answer as a

function of the dealer’s share of the statement (a function of items 1 and 2),
its shares of the proof (item 3), and the verifier query (item 4).

When using a D-ZK proof with multiple rounds of interaction (as in
BGIN’21), Step 3 above is replaced by a sequence of: (a) generating random
Verifier challenges, and (b) computing the Prover contribution to this round of
interaction.

Some parts of items 1–5 above are not a problem toward our goal. As dis-
cussed, recent constructions of PCGs enable concretely efficient secure generation
of many semi-honest multiplication triples with sublinear communication [9,10],
taking care of item 1. In addition, we can easily support sampling and commit-
ting to random shares and of a random point as in items 3 & 4.

The problems are items 2 and 5. In the current state as in BGIN’21, the com-
putation of item 5 requires performing a secure computation that is both linear
in the circuit size, and high degree. The degree comes from multiple places: from
the high powers of αg, from the recursive DZK proof structure (typically exe-
cuted interactively), and the DZK verifier answer procedure which is computed
as a function on top of these (already high-degree) expressions.

Expressing Dealer with Bilinear Structure. We thus devise a new approach. Our
idea is to modify the BGIN’21 protocol, so as to make the corresponding items
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2–5 of dealer computation expressible as a single bilinear pairing computation
between two types of values: (1) ones that are (already) held additively secret
shared across the parties, e.g. from the semi-honest multiplication triples, and
(2) a small, sublinear-size set of other secret values.

Given this structure, we can securely emulate the dealer with low communica-
tion using additively homomorphic encryption. Namely, the parties will generate
encryptions of the small set of secret values (requiring sublinear communication,
comparable to the small number of values). Then they homomorphically com-
pute encrypted shares of the desired paired output using the public ciphertexts
and their additive shares, without communication. Since the size of the dealer’s
output is short—equivalently, the bilinear maps are highly compressing—the
parties can then execute a standard protocol for jointly decrypting the resulting
ciphertexts, again with sublinear communication.

In turn, it hence remains to achieve the above structural goal for the dealer’s
computation.

First, we observe that replacing the recursive multi-round DZK with a sim-
pler non-recursive DZK construction of [6] (albeit with

√|C| instead of log |C|
communication cost) immediately alleviates one source of cost. The new prover
and verifier procedures become simply degree 2. In particular, in this construc-
tion, the computation of a verifier’s answer corresponds to interpreting

√|C|-size
collections of symbols from the proof and statement as coefficients of a polyno-
mial, and evaluating each at the point τ chosen as the verifier query (in dealer
Step 4). Said in different words, each polynomial evaluation is an inner product
between the corresponding

√|C|-length coefficient vector with the vector formed

by the corresponding
√|C| powers τ0, τ1, . . . , τ

√
|C| of τ . Note that while there

are several different blocks of symbols, they are each inner-producted with the
same powers-of-τ vector.

If we could reach a state where the symbols of the proof and statement
were held as additive secret shares, then we would in fact have reached our
goal, where the powers-of-τ form the sublinear-size set of other values (to be
encrypted). However, this is not yet the case. This is because the “statement”
that must be proved is formed by the αg-linear-compressed combination of the
multiplication triple values, as opposed to the values themselves.

It is worth emphasizing an important difference between our setting and typ-
ical usage of the αg-linear-compression technique, which is employed broadly in
protocol design. Typically, coefficients αg are chosen after the parties are already
committed to their the semi-honest protocol execution, in which case there is no
need for secrecy, and they are simply public values. In contrast, in this setting (as
in BGIN’21), for the dealer to function as an honest party, the selection of these
coefficients must be made already in the preprocessing phase, but kept secret
through the semi-honest protocol execution. In turn, the traditionally simple
linear compression here constitutes a nontrivial secure computation.

In fact, because of this, there is a problem even if the parties already somehow
held secret shares of random values αg. This is because multiplication by a
coefficient αg still amounts to an additional degree of secure multiplication. Since
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computation of the dealer’s contribution to the verification polynomial already
requires degree 2 terms, this additional multiplication pushes out of hope for
turning the computation into a bilinear operation.

Instead, we identify a new method for computing the same overall verification
polynomial evaluation expression between the “dealer” party and online parties,
which enables pushing more work to the online parties, but which means that
the linear combination coefficients do not need to be used by the dealer at all
in his calculations. (In some sense, this comes from an alternative perspective
and goal than from BGIN’21, which focused primarily on optimizing the online
portion of the protocol while assuming an honest dealer.) This step uses the fact
that the online parties hold secret shares not only of the masks r1, r2 of the input
wires of any multiplication gate, but also shares of their product, r1r2, leveraging
the specific structure of semi-honest multiplication triples. In particular, terms
in the verification polynomial of the form αgr1r2, which were computed by the
dealer in BGIN’21, can be jointly computed by the online parties if the αg is
made public, using the (r1r2) additive shares.

In doing so, we not only remove the extra secure multiplication of scaling by
the αg, but also the remaining question of how these coefficients αg should be
generated. What results is a successful expression of the dealer in the desired
bilinear form, between additively secret shared values and powers of τ , which we
will denote by πBL.

Putting the Pieces Together. Obtaining the feasibility result follows in a few
steps.

We prove that the above-described modifications to the dealer’s ideal func-
tionality still suffice, with corresponding adjustments in the online portion, to
yield security in the overall protocol.

Combining the above ideas, we then obtain a semi-honest secure protocol
that securely evaluates the (new) dealer functionality with sublinear commu-
nication. Namely, the parties: (1) run the sublinear-communication protocol
for semi-honest generation of pseudorandom (un-authenticated) multiplication
triples; (2) run a secure protocol for randomly sampling τ (as dictated by the [6]
DZK; either from the ring R, or an extension ring if R is small) and gener-
ating AHE encryptions ci of the powers τ0, τ1, . . . , τ

√
|C|, (3) locally evaluate

encrypted shares of the bilinear form πBL by computing the compressing linear
combination of the AHE ciphertexts ci with the corresponding secret shares of
the relevant values; (4) exchanging the resulting output-share ciphertexts and
additively combining across parties, resulting in encryptions of the outputs of
πBL; and (5) executing a secure protocol for jointly decrypting the resulting
ciphertexts.

In order to achieve the same dealer emulation with malicious security, we
leverage a generic communication-preserving compiler of Naor and Nissim [38]
(building on [28,37]). Using this compiler a semi-honest secure protocol can be
compiled into a maliciously secured protocol for the same functionality with sub-
linear additive communication cost. Since the compiler only requires collision-
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resistant hash functions, which are implied by additively homomorphic encryp-
tion [32], this does not require introducing new assumptions. This implies the
final result. In the full version of the paper, we propose a maliciously secure pro-
tocol with concrete efficiency that is based on making two stronger, but quite
plausible, assumptions on the AHE: being “linear-only” and having a threshold
encryption variant. See discussion at the end of Sect. 6.

2 Preliminaries

Notation. Let P1, . . . , Pn be the parties participating in the protocol. We use
[n] to denote the set {1, . . . , n}. Let R be a ring which is either a finite field F

or the ring Z2k and let |R| be its size. Finally, let κ be the security parameter.
We use bold letters to represent vectors and v[j] to denote the jth entry of the
vector v. When we write u · v we refer to the inner product between the two
vectors. We use �x� to denote an additive sharing of x. When we write �x�, we
mean that each entry in x is additively shared across the parties.

2.1 Security Definitions

In our setting, there is a set of n parties who wish to jointly run some com-
putation. We assume that all parties are connected via point-to-point secure
channels, which enable them to send messages to each other. In this work, we
will typically consider secure computation of arithmetic circuits (with addition
and multiplication gates) over a finite ring R, where R can either be fixed or be
given as part of the circuit description. In particular, the case of Boolean cir-
cuits is captured by R = F2. For security, we use the standard ideal/real world
definition from [16,27].

MPC with Preprocessing. Our main result refers to an MPC protocol that
employs a “cryptographic” input-independent offline protocol, followed by a
“non-cryptographic” input-dependent online protocol. As a building block, we
will rely on MPC protocols in a hybrid model in which the offline protocol is
replaced by an ideal source of correlated randomness D that is generated by a
trusted dealer.

In this correlated randomness model, we consider protocols for arithmetic
circuits that offer security up to an “additive” attack on intermediate wires in
the circuits. Most information-theoretic protocols that offer the weaker form of
semi-honest security also satisfy this notion of security with additive attacks.

We formalize the notion of “security-up-to-additive-attacks” [26], in the set-
ting of MPC with dishonest majority in the correlated randomness model. This
security model applies to the class F of arithmetic circuits over a ring R, and
allows the ideal-world adversary S to (blindly) pick a tampering function that
adds a chosen value from R for each wire of the circuit. Concretely, we allow
additive attacks on input wires to multiplication gates and on the circuit’s output
wires. The trusted party in the ideal world then determines the output of the
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honest parties by computing the circuit over the parties’ inputs, applying the
chosen additive error to each wire.

MPC with non-cryptographic Online Phase. An MPC protocol in the
preprocessing model is similar to the above model of MPC with correlated ran-
domness, except that the correlated randomness D is securely generated by an
offline protocol, instead of being distributed by a trusted dealer. As before, the
correlated randomness D can then be consumed by an online protocol. The main
advantage of this offline-online paradigm is that it allows the online protocol to
be “non-cryptographic” (or information-theoretic), which typically translates to
good concrete efficiency. We formalize this notion by requiring that the corre-
lated randomness produced by an honest execution of the offline protocol can be
replaced by a computationally indistinguishable distribution D, such that given
D, the online protocol is information-theoretically secure.

Definition 1 (PMPC with non-cryptographic online phase). Let F be
the class of n-party functionalities represented by arithmetic circuits C. An MPC
protocol for F with preprocessing and non-cryptographic online phase (or PMPC
protocol for short) is defined by a pair of protocols Π = (Πoffline,Πonline) such that:

– Πoffline is invoked with public inputs (1κ, 1n, 1|C|, R), where |C| is the size
of an arithmetic circuit C ∈ F over R. It terminates with each party Pi

outputting a local random output Zi.
– Πonline is invoked on public inputs (1κ, 1n, C) and local inputs (Zi, xi) held

by each Pi and ends with Pi outputting yi.

We make the following security requirements:

– The protocol obtained by first running Πoffline and then Πonline securely real-
izes F .

– There exists an ideal correlation generator D(1κ, 1n, 1|C|,R), outputting
(Z ′

1, ..., Z
′
n), such that:

1. The output of D is computationally indistinguishable from the output of
an honest execution of Πoffline.

2. If we feed Πonline with the output of D, the resulting protocol realizes F
with statistical (information-theoretic) security.

In fact, to capture a minimal notion of MPC with non-cryptographic
online phase, it suffices to relax the latter requirement (on Πonline with D) to
information-theoretic semi-honest security. However, the protocols we consider
here satisfy the stronger property.

2.2 Fully Linear Proof Systems

A main technical building block in [14] is a fully linear proof system [6], enabling
information-theoretic sublinear-communication zero-knowledge proofs on secret-
shared or distributed input statements. In a nutshell, zero-knowledge fully linear
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interactive oracle proof (zk-FLIOP) is an information-theoretic proof system in
which a prover P wishes to prove that some statement about an input x to a
verifier V . In each round of the protocol, P produces a proof which, together
with x, can be queried by V using linear queries only. Then, a public random
challenge is generated and the parties proceed to the next round. At the end,
the verifier V accepts or rejects based on the answers it received to its queries.

Definition 2 (Public-coin zk-FLIOP [6]). A public-coin fully linear inter-
active proof system over R with ρ-round and �-query and message length
(u1, . . . , uρ) ∈ N

t, consists of a randomized prover algorithm P and a deter-
ministic verifier algorithm V . Let the input to P be x ∈ Rm and let r0 = ⊥. In
each round i ∈ [ρ]:

1. P outputs a proof πi ∈ Ru1 , computed as a function of x, r1, . . . , ri−1 and
π1, . . . , πi−1.

2. A random public challenge ri is chosen uniformly from a finite set Si.
3. � linear oracle queries qi

1, . . . , q
i
� ∈ Rm+ui are determined based on r1, . . . , ri.

Then, V receives � answers (〈qi
1, x||πi〉, . . . , 〈qi

�, x||πi〉).
At the end of round ρ, V outputs accept or reject based on the random challenges
and all the answers to the queries.

Let L ⊆ Rm be an efficiently recognizable language. We say that ρ-round �-
query interactive fully linear protocol (PFLIOP,VFLIOP) over R is zero-knowledge
fully linear interactive oracle proof system for L with soundness error ε if it
satisfies the following properties:

– Completeness: If x ∈ L, then VFLIOP always outputs accept.
– Soundness: If x /∈ L , then for all P∗, the probability that VFLIOP outputs

accept is at most 2−ε.
– Zero knowledge: There exists a simulator SFLIOP such that for all x ∈ L

it holds that SFLIOP ≡ view[PFLIOP(x),VFLIOP](VFLIOP) (where the verifier’s view
view[PFLIOP(x),VFLIOP](VFLIOP) consists of {ri}i∈[ρ], {(qi

1, . . . , q
i
�)}i∈[ρ] and(〈qi

1, x||πi〉, . . . , 〈qi
�, x||πi〉

)
i∈[ρ]

.

In this paper, we will use this tool for degree-d languages. That is, languages
for which membership can be checked using a degree-d polynomial. The following
theorem, which will be used by us, states that for degree-d languages, there are
zk-FLIOP protocols with sublinear communication and rounds in the size of the
input and number of monomials.

Theorem 2 ([6]). Let q : Rm → R be a polynomial of degree-d with M mono-
mials, and let Lq = {x ∈ Rm | q(x) = 0}. Let ε be the required soudness error.
Then, there is a zk-FLIOP for Lq with the following properties:

– Constant rounds, d = 2: It has 1 round, proof length O(η
√

m), challenge
length O(η) and the number of queries is O(

√
m), where η = log|R|

(√
m
ε

)
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when R is a finite field, and η = log2
(√

m
ε

)
when R = Z2k . The computa-

tional complexity is Õ(M) and the proof generation is a degree-2 function of
the input x and the prover’s secret randomness, determined by the circuit C
and the public randomness.

– Logarithmic rounds, d ≥ 2: It has O(log M) rounds, proof length
O(dη log M), challenge length O(η log M)and the number of queries is O(d +
log M), where η = log|R|

(
d log m

ε

)
when R is a finite field, and η =

log2
(

d log m
ε

)
when R = Z2k . The computational complexity is O(dM).

2.3 Additively-Homomorphic Encryption (AHE)

Our main protocol can be based on any additively homomorphic encryption
(AHE) scheme. An AHE scheme consists of algorithms (Gen,Enc,Dec,Add) such
that (Gen,Enc,Dec) satisfy the usual correctness and semantic security require-
ments of a public-key encryption scheme, and Add enables to add (more generally,
linearly combine) a vector of encrypted messages.

More concretely, Gen is a key-generation algorithm which takes as input the
security parameter 1κ and outputs a pair of secret and public keys (sk, pk),
where pk includes a description of a finite plaintext ring R, Enc is an encryp-
tion algorithm which takes the public key pk and a message m ∈ R as inputs
and outputs a ciphertext c, Dec is a deterministic decryption algorithm which
takes the secret key sk and ciphertext c as inputs and outputs a message m
(or a symbol ⊥ in case of failure), and the randomized algorithm Add takes as
input ciphertexts {cj ∈ Encpk(mj)}j∈[M ] and ring elements a0, . . . , aM ∈ R and
outputs a fresh ciphertext c ∈R Encpk(a0 +

∑M
j=1 aj · mj). We use the notation

Add
(
(ak)M

k=0, (ck)M
k=1

)
for this operation. When we simply want to add M cipher-

texts (i.e., a0 = 0 and ak = 1 for each k ≥ 1), we simply write Add(c1, . . . , cM ).
The above definition captures a simple version of AHE in which one can com-

bine an unbounded number of encrypted messages and the resulting ciphertext
is distributed identically to a fresh encryption of the correct value. This notion
can be satisfied by standard number-theoretic encryption schemes such as the
Goldwasser-Micali scheme [29] or its generalized version due to Benaloh [19]. To
accommodate other instantiations, such lattice-based schemes [33,42], or using
Pailler’s encryption scheme [41] over a chosen plaintext modulus, one needs to
slightly relax the definition to allow a statistical error in the output of Add that
depends on the number of ciphertexts that are combined. While we chose the
strict definition for simplicity, our results can be extended to use the relaxed
variants of AHE that support such alternative instantiations.

2.4 Ideal Functionalities and Basic Building Blocks

Fcoin - Coin Tossing. This ideal functionality who gives the parties fresh random
coins. It can be implemented using any secure coin tossing protocol. In the
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context of our protocol, we can minimize the number of calls to Fcoin by having
the parties call Fcoin once to obtain a seed from which they can locally derive a
long vector of ring elements.

Fbc - Broadcast with Selective Abort. This ideal functionality allows the parties
to deliver a message msg to all the other parties, while giving the adversary the
ability to cause any party to abort. Therefore, whenever we say throughout the
paper that Pi broadcasts a message, we mean that it sends a message to all
parties via Fbc. This functionality can be easily implemented by having Pi sends
its message to all the parties, and then running an additional round where all
parties compare the message they received. To amortize away the second-round
comparison, a standard optimization technique is to batch the check for many
messages by taking a random linear combination of all these message before the
end of the protocol.

Authenticated Secret Sharing 〈·〉. In some cases, we will need the parties to hold
a secret sharing of x in an authenticated way, i.e., that allows the parties to
securely reveal (with abort) the secret. We denote by 〈x〉 such a secret sharing
and denote by open the opening procedure which receives 〈x〉 and guarantee
that at the end either the parties will obtain x or abort the protocol (up to
a negligible failure probability). To implement this over a field, one can use
SPDZ-style information-theoretic MACs [3,23]. We stress that this tool is used
a sublinear number of times in our protocol, and so its cost is amortized away.

3 The BGIN Compiler [14]

In this section, we review the verification procedure of Boyle et al.(BGIN) [14],
that enables compiling a semi-honest protocol in the pre-processing model into a
maliciously secured protocol, with sublinear additional amount of correlated ran-
domness. There are two conditions that the semi-honest protocol should satisfy
for the compiler to work:

1. Additive security: The adversary is restricted to only adding errors to a
set of wires W in the circuit.

2. “Star-sharing” Compliance: For each circuit’s wire w ∈ W , the parties
hold a masked value x̂w = xw − rw and additive shares of the mask rw. The
dealer knows rw and its shares.

For formal definition, we refer the reader to [14]. The above requirements are
satisfied by the semi-honest protocol based on Beaver triples [1]. Here the set W
consists of all input wires for multiplication gates and output wires of the circuit.
To maintain the star-sharing invariant in the circuit-independent version of the
protocol, the parties first locally convert their star shares on each input wire to a
multiplication gate, into additive shares of the output. Then, they can carry-out
linear operations over the additive shares. When they arrive to the next input
wire to a multiplication gate, they interact to reveal the masked input and so on.
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To achieve malicious security, SPDZ-style [23] protocols use authenticated
Beaver triples. This means that for each multiplication gate g, the parties receive
from the dealer shares of (r1, r2, r1 · r2) and (r1 · θ, r2 · θ, r1 · r2 · θ), where θ is
a global secret key. To achieve statistical security of κ bits, the MACed triple
should be generated over a large ring (e.g., if the computation is carried-out
over F2, then the MACed triple should be over F2κ). This implies a correlated
randomness overhead of O(|C| · κ) ring elements for small fields.

The novel verification protocol of BGIN [14] avoids this and requires the
dealer to provide only sublinear amount of correlated randomness beyond the
semi-honest protocol. The idea works as follows. For each wire w ∈ W , the
parties need to verify the consistency of the values shared on this wire, with the
values shared on the wires that precede it. In other words, the parties verify that
they hold a sharing of the correct value on w, given the sharings they hold on
wires that feed w. Specifically, let Gw be the set of multiplication gates that feed
w (i.e., that between their output wire and w there are no other multiplication
gates). For each g ∈ Gw, let xg

1, x
g
2 be the two input wires to g. The parties wish

to verify that xw −∑
g∈Gw

xg
1 ·xg

2 = 0. Instead, it suffices for the parties to verify
that

p =
∑

w∈W

αw · (xw −
∑

g∈Gw

xg
1 · xg

2)

=
∑

w∈W

αw ·
⎛

⎝x̂w + rw −
∑

g∈Gw

(x̂g
1 + rg

1) · (x̂g
2 + rg

2)

⎞

⎠ = 0 (1)

where the αws are random elements given to the parties by the dealer (it suffices
for the dealer to give a seed α from which all randomness is derived).

Next, note that each gate g� can feed several wires. For each multiplication
gate g�, let W g� be the set of wires w for which g� ∈ Gw (i.e., that g�’s output
feed these wires). Then, let γ� =

∑

w∈W g�

αw. Thus, Eq. (1) can be written as

p =
∑

w∈W

αw · (x̂w + rw) −
∑

g�∈mult

γ� · ((x̂g�

1 + rg�

1 ) · (x̂g�

2 + rg�

2 ))

=
∑

w∈W

αw · x̂w −
∑

g�∈mult

γ� · (x̂g�

1 · x̂g�

2 ) +
∑

w∈W

αw · rw

−
∑

g�∈mult

γ� · (x̂g�

1 · rg�

2 + x̂g�

2 · rg�

1 ) +
∑

g�∈mult

γ� · (rg�

1 · rg�

2 )

Now, setting

Λ =
∑

w∈W

αw · x̂w −
∑

g�∈mult

γ� · (x̂g�

1 · x̂g�

2 ) (2)

Γi =
∑

w∈W

αw · rw,i −
∑

g�∈mult

γ� · (x̂g�

1 · rg�

2,i + x̂g�

2 · rg�

1,i) (3)
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and Ω =
∑

g�∈mult

γ� · (rg�

1 · rg�

2 ), it follows that checking that p = 0 is equivalent to

checking that Λ +
∑n

i=1 Γi + Ω = 0.
Observe that the parties can locally compute Λ, each party Pi can locally

compute Γi and the dealer can locally compute Ω. Leveraging this, the verifica-
tion protocol in [14] works thus as follows:

1. Each party Pi computes Λ and Γi, while the dealer computes Ω.
2. The dealer star shares Ω to the parties by sending Ω̂ = Ω −ω and also hands

a mask si to each party Pi.
3. Each party Pi star shares Γi to the parties by broadcasting Γ̂i = Γi − si.
4. Each party Pi proves that it shared the correct Γi using a zk-FLIOP proof

system (see explanation below).
5. If all proofs terminated successfully, then the dealer sends

∑n
i=1 si + ω to all

parties.
6. The parties locally compute p and check equality to 0. If it holds, the parties

output accept. Otherwise, they output reject.

The two main observations here are: (i) Γi is computed via a 2-degree poly-
nomial. Thus, by Theorem 2, there exists a zk-FLIOP to prove that Eq. (3)
holds. (ii) All inputs to the zk-FLIOP are either known to all parties or known
to the dealer. Thus, we can run the zk-FLIOP by letting Pi emulate the prover’s
role, and letting all the other parties together with the dealer emulate the ver-
ifier’s role. Specifically, the prover star-shares the proof across the parties and
the dealer, and then each verifier makes the linear queries over its shares of the
proof and the inputs. The fact that each piece of information is known to an
honest participant (i.e., an honest party or the dealer) is what guarantee sound-
ness. Leveraging the fact that from Theorem 2 the amount of communication
in the proof can be made sublinear, we have that the amount of data sent by
the verifying dealer is also sublinear in the size of the statement which, in our
case, is similar to the size of the computed circuit. Finally, since all the compu-
tations made by the dealer in this protocol are over random data, it follows that
the dealer can preprocess its messages and secret share it to the parties in an
authenticated way, before the online computation begins. Overall, the amount
of correlated randomness given to the parties for this protocol is sublinear.

Distributing the Dealer. The authors in [14] did not provide a distributed pro-
tocol to compute the dealer. Instead, they viewed the dealer’s role as a circuit
to be computed, and proposed to compute it using any general-purposed MPC.
Then, they showed that the number of multiplication gates in the dealer’s circuit
is approximately 4|C| + n · 2|C| for n parties. That is, the size of the dealer’s
circuit grows linearly with circuit C and the number of parties n.

4 A New Simplified Verification Protocol

In this section, we present a modified verification protocol that will allow us
eventually to distribute the dealer with sublinear communication. Our primary
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aim is to make the computation performed by the dealer be low depth (i.e., it is
possible to represent the dealer using a low-depth circuit). A secondary goal is
to make the size of the dealer’s circuit be independent of the number of parties.

To this end, we first observe that the parties can locally compute an additive
sharing of Ω as well. This holds since γ� is public and they hold shares of rg�

1 ·rg�

2

(these are part of the semi-honest correlated randomness). It follows that now

Γi =
∑

w∈W

αw · rw,i −
∑

g�∈mult

γ� · (
x̂g�

1 · rg�

2,i + x̂g�

2 · rg�

1,i + (r1 · r2)
g�

i

)

Next, instead of letting each party prove that it star-shared the correct Γi,
we will run a single proof where the parties emulate together the role of the
zk-FLIOP prover. The dealer, however, still serves as a verifier, but now only
once instead of n times. The goal now will be to prove that Γ =

∑n
i=1 Γi is

correct. That is, that

Γ =
∑

w∈W

αw · rw −
∑

g�∈mult

γ� · (x̂g�

1 · rg�

2 + x̂g�

2 · rg�

1 + (r1 · r2)g�) (4)

is correct given the star shares of Γ and the inputs. Our protocol to prove this is
based on the constant round zk-FLIOP construction from [6] (the first item in
Theorem 2) and requires O(

√|C|) communication (and so O(
√|C|) correlated

randomness from the dealer). The idea is as follows. First, observe that letting

a = ((αw)w∈W , (−γ� · x̂g�

1 ,−γ� · x̂g�

2 ,−γ�)g�∈mult) (5)

and

b = ((rw)w∈W , (rg�

2 , rg�

1 , (r1 · r2)g�)g�∈mult) (6)

we have that Γ = a · b where a is known to the parties and b is known to the
dealer. Note that both vectors are of size |W | + 3|mult| = 5|mult| = 5|C|. In our
verification protocol, each party Pi first computes Γi and then star-shares it to
the other parties, by broadcasting Γ̂i = Γi − ti to the other parties. Then, the
parties locally compute Γ̂ =

∑n
i=1 Γ̂i. The parties then wish to verify that

Γ̂ + t − a · b = 0 (7)

where t =
∑n

i=1 ti. The main observation here is that Eq. (7) represents a 2-
degree polynomial over the inputs a, b, Γ̂ , s. Thus, by Theorem 2, there exists
a zk-FLIOP to prove that Eq. (7) holds, where the proof’s size is sublinear
in the size of the input. However, unlike the BGIN compiler [14], here there
does not exist a single prover who knows the entire input. We thus need to let
the parties emulate jointly the role of the prover. In particular, the parties can
locally compute additive shares of the proof and then star-share them to the
other parties (exactly as with Γi). To enable this, we use the constant round zk-
FLIOP from Theorem 2, where the proof generation itself is a degree-2 function
of the input and prover’s randomness. Since in Eq. (7) each input is either known



Secure Multiparty Computation with Sublinear Preprocessing 443

to all parties, or, known to the dealer and additivley shared across the parties,
it follows that each party can locally compute an additive share of the proof. As
for the verifiers, the zk-FLIOP queries can be made over their shares, since the
queries are linear. As in the BGIN compiler, we crucially rely on the fact that in
our protocol, each piece of information (i.e., the inputs and the proof) is known
either by each party or by the dealer, and so we can use the dealer as a verifier as
well. By the linearity of the queries, it thus follow that the queries’ answers can
be reconstructed by each party and the dealer alone, thereby guaranteeing that
an honest party will receive the correct answers. This means that if cheating
took place and the statement is incorrect, then by the soundness property of
the zk-FLIOP, it will be detected by any honest verifier (except for a small
probability). As for privacy, the zero-knowledge property together with the fact
that each party sees only masked values, guarantee that no private information
is leaked during the execution.

Πvrfy: Let (PFLIOP, VFLIOP) be a zk-FLIOP protocol with 1 round, � queries, and
message length u ∈ N for the polynomial in Eq. (7).

1. The trusted dealer D:
(a) Chooses a random mask ti ∈ F for each i ∈ [n] and hands it to Pi

(b) Chooses a random mask si ∈ F
u for each i ∈ [n] and hands it to Pi.

2. The parties call Fcoin to receive αw for each w ∈ W (recall that W is the
set of the circuit’s output wire and multiplication gates’ output wires). Alter-
natively, the parties call Fcoin to receive α and expand it to αw by setting
αw = αw or via a PRG.

3. The parties locally compute Λ (see Eq. (2)).
4. Each party Pi computes Γi and star-shares it to the parties by broadcasting

Γ̂i = Γi − ti.
5. The parties locally compute Γ̂ =

∑n
i=1 Γ̂i (note that Γ̂ = Γ − t where t =∑n

i=1 ti).
6. The parties jointly prove that Γ is correct:

Let I = (Γ̂ , t,a, b) be the vector of inputs to the zk-FLIOP protocol. Let
IP = (Γ̂ , 0,a, 0) (i.e., a vector obtained by replacing all inputs not known
to all parties in I with 0) and ID = (0, t, 0, b) (i.e., a vector obtained by
replacing all inputs not known to the dealer in I with 0).
Observe that: I = IP + ID.
(a) Let π = PFLIOP(I) be the proof generated by the prover in the zk-FLIOP

protocol. Then, each party Pi locally computes its share of the proof πi

and broadcasts π̂i = πi − si to all the other parties.
(b) The dealer D choose a random challenge τ and hands to the parties.
(c) Let π̂ =

∑n
i=1 π̂i and s =

∑n
i=1 si. Let q1, . . . , q� be the query vector

determined by VFLIOP based on τ . Then, the parties locally compute

â1, . . . , â� ← 〈q1, IP ||π̂〉, . . . , 〈q�, I
P ||π̂〉

whereas the dealer computes

ã1, . . . , ã� ← 〈q1, ID||s〉, . . . , 〈q�, I
D||s〉.
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(d) The dealer D hands ã1, . . . , ã� to the parties, who locally compute

a1 = â1 + ã1, . . . , a� = â� + ã�

(e) The parties run the decision predicate of VFLIOP on a1, . . . , a�. If any party
received reject, then it output reject. Otherwise, the parties proceed to the
next step.

7. The parties locally compute p̂ = Λ + Γ̂ .
8. The dealer hands the parties t.
9. The parties locally compute that p = p̂ + t. If p = 0, they output accept.

Otherwise, they output abort.

We begin by proving correctness, soundness and privacy for Πvrfy, when Πvrfy

is ran over a finite field F. The proof appears in the full version.

Proposition 1. Assume that Πvrfy is executed over a finite field F, let W be the
set of all output wires and input wires to multiplication gates and let Δw be the
additive error on wire w ∈ W . Then, Πvrfy satisfies the following properties:

1. Correctness: If ∀w ∈ W : Δw = 0 and all parties follow the protocol’s
instructions, then the honest parties always output accept.

2. Soundness: If ∃w ∈ W : Δw �= 0, then the honest parties output accept with
probability at most |W |

|F| + ε, where ε is the soundness error of the zk-FLIOP
protocol.

3. Privacy: For any adversary A controlling a subset of parties T of size≤
n − 1, there exists a simulator S who receives (x̂w,Δw, rw,i)w∈W and {(r1 ·
r2)

g�

i }g�∈mult for all i ∈ T as input, and outputs a transcript viewS such that
viewS ≡ view

Πvrfy

A .

Working Over Small Fields or the Ring Z2k . The soundness error of our
protocol depends on the size of the field F. When we compute the circuit over
small fields, it is possible to run Πvrfy over an extension field to reduce the error.
This is carried-out by lifting each input to the verification protocol into the
extension field. Suppose that we want the error to be 2−σ. Then, one can choose
an extension field F̃ such that |W |

|F̃| + ε ≤ 2−σ.
Similarly, when the circuit is computed over the ring Z2k , we will run Πvrfy

over the extension ring Z2k [x]/f(x), i.e., the ring of polynomials with coeffi-
cients from Z2k modulo a polynomial f(x) which is of the right degree and is
irreducible over Z2. As shown in [6,12], taking f of degree d, the number of
roots of a polynomial of degree δ over Z2k [x]/f(x) is at most 2(k−1)dδ +1. Thus,
the probability that p = 0 is at most 2(k−1)d·(|W |)

2kd ≈ |W |
2d . Hence, by choosing d

appropriately, we can achieve a desired soundness error.

From an Online to an Offline Dealer. In Πvrfy the dealer only sends messages
that depend on random data. Therefore, it can preprocess all its messages and
secret share it to the parties in an authenticated way. This includes the masks
ti, the masks si and its share of the queries’ answers.
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Complexity. The amount of correlated randomness that we obtain depends
on the size of the proof u and the size of the queries’ answers � in the zk-
FLIOP emulation. By Theorem 2 both � and u is square-root of the input’s
size to the relation given in Eq. (7). Thus, the amount of correlated randomness
is O(

√|W |).
The communication cost of the protocol per party includes star sharing Γi,

sending the share of the proof πi and opening the correlated randomness which
is shared in an authenticated way. Thus, it depends on the size of the proof and
size of the correlated randomness. Hence, as the correlated randomness, it is of
size O(

√|W |).
Finally, the computational work includes computing the random coefficients

αw, computing Λ, and the work in the zk-FLIOP protocol. The number of arith-
metic operations for the first two computations is linear in the size of |W |,
whereas by Theorem 2, the number of operations for the latter is Õ(M), where
M is the number of monomials in Eq. (7). As the number of monomials is O(|W |),
we obtain that the computaional work is Õ(|W |).

Summing the above and using Theorem 2 we obtain:

Proposition 2. Let ε be a statistical error bound. Then, Protocol Πvrfy has com-
munication cost of O(

√|W | · κ) per party, computational work Õ(|W |) and
the amount of correlated randomness provided by the dealer is O(

√|W | · κ),

where κ = log|F|

(√
|W |
ε

)
when the input is defined over a finite field F,

κ = log2

(√
|W |
ε

)
when the input is defined over the ring Z2k (where W is

the set of the ciruit’s output wires and input wires to multiplication gates).

4.1 A Concrete Instantiation for the Zk-FLIOP Protocol

In this section, we present a concrete instantiation for the constant round zk-
FLIOP protocol used in Πvrfy based on the fully linear PCP construction given
in [6]. Consider a prover P who wants to prove that c −a · b = 0 to a verifier V ,
where a and b are vector of elements of size m.

To prove the correctness of the statement, the vectors a and b are divided
into M vectors, i.e., a = a1|| · · · ||aM and b = b1|| · · · ||bM . This means that the
statement to be proven can be written as c − ∑M

k=1 ak · bk. Denote the number
of elements in each vector by L, and so L · M = m.

The first step of P is to choose random vectors a0 and b0. The, define L
polynomials of degree-M such that:

∀e ∈ [L] : fe(0) = a0[e], . . . , fe(M) = aM [e].

That is, the evaluation of fe on the point k is the eth entry of the vector ak.
Similarly, define additional L polynomials of degree-M by setting:

∀e ∈ [L] : ge(0) = b0[e], . . . , ge(M) = bM [e].
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Next, define an additional polynomial q by letting q(x) =
∑L

e=1 fe(x) · ge(x).
By the way q is defined it follows that:

– For each k ∈ {0, . . . , M} it holds that q(k) = ak · bk

– The degree of q is 2M .

To fully define q the prover P thus computes M more additional points on q.
This can be done by first interpolating the fe and ge polynomials to compute
these polynomials on the points M + 1, . . . , 2M and then computing q(x) for
each x ∈ {M + 1, . . . , 2M}.

The protocol then proceeds as follows:

1. Proof : The prover P defines the proof by setting

π =
({fe(0)}L

e=1, {ge(0)}L
e=1, q(0), . . . , q(2M)

)

2. Challenge: A random point τ is chosen (such that τ /∈ {0, . . . , M}).
3. Query: The linear queries over the proof and inputs are defined such that

the verifier V is given:
– For each e ∈ [L] : fe(τ) and ge(τ).
– q(τ)
– c − ∑M

k=1 q(k)
4. Decision: The verifier V checks that

(a) q(τ) =
∑L

e=1 fe(τ) · ge(τ)
(b) c − ∑M

k=1 q(k) = 0
If both equations hold, then V outputs accept. Otherwise, it outputs reject.

Observe that in check 4a, the verifier ensures that P defined the proof cor-
rectly, i.e., computed the polynomial q honestly. Then, it can verify that the
statement holds via check 4b. Note also that privacy (zero-knowledge) is main-
tained in this protocol by the additional random point defined for each polyno-
mial (i.e., fe(0) and ge(0)). These random points make the evaluation of each
polynomial on the point τ look completely random.

Soundness. A malicious prover can succeed only if check 4a passes although
q(x) is not defined correctly. By the Schwartz-Zippel lemma, this event can
happen when working over a finite field with probability bounded by 2M

|F| .
When the statement is defined over the ring Z2k , then the verification proto-

col itself is executed over the extension ring Z2k [x]/f(x) (see above). In this case,
if f is of degree d, then the cheating probability is bounded by 2(k−1)d·(2M)

2kd ≈ 2M
2d .

Concrete Costs. Recall that L and M are parameter to choose under the
constraint that m = L · M . If we set L = M =

√
m, the cost becomes sublinear

in m. Concretely, the size of the proof is 2L + 2M + 1 = 4
√

m + 1. In addition,
the size of the answers to the queries is 2L + 2 = 2

√
m + 2.

Plugging in the above into our protocol, recall that m = |W | + 3|mult| (see
Eq. (5) and (6)). Now, in the emulation of the zk-FLIOP in Πvrfy, the parties
communicate to star-share their additive shares of the proof πi and communicate



Secure Multiparty Computation with Sublinear Preprocessing 447

to reconstruct the queries’ answers (here the parties open the shared masks of
the answers which was given to them by the dealer). Overall, the communication
cost is therefore roughly 6

√|W | + 3|mult|+2 elements sent by each party to the
other parties.

The amount of correlated randomness handed by the dealer, however, is
exactly 2

√|W | + 3|mult| + 1 elements. This is due to the fact that the dealer
acts only as a verifier and does not hold a share of the proof (more accurately,
the dealer only provides masks for the shares of the proof held by the parties;
however, this is private randomness which is not required to be shared across
the parties).

4.2 The Dealer’s Ideal Functionality FDealer

Based on the concrete instantiation described in the previous section, we now
define an ideal functionality for the trusted dealer. Later, when we show how to
distribute the dealer’s work, we will show how to securely compute this func-
tionality.

Recall that the dealer’s work includes the following: (i) choosing random
masks for the circuit’s wires as part of the semi-honest correlated randomness;
(ii) choosing random private masks for the parties to mask Γi and to mask the
additive shares of the proof πi; (iii) choosing a random challenge τ and (iv)
computing the zk-FLIOP queries’ answers based on i,ii and iii.

Observe that (iv) involves computing a random point on many polynomials.
Recall that in the zk-FLIOP protocol, the verifier should receive fe(τ), ge(τ) for
each e ∈ [L] and q(τ). The first 2L polynomials are of degree M , whereas q is
of degree 2M . In our protocol, the f polynomials correspond to the vector a
(see Eq. (5)), which is being determined in the online computation and is known
to all parties. In contrast, the g polynomials correspond to the vector b (see
Eq. (6)) which is known to the dealer. Finally, the polynomial q is star-shared
across the parties, meaning that it is additively shared between each party and
the dealer.

To define the ideal functionality in a simple way, we first define a procedure
πBL that performs the bilinear computation between the coefficients of a set of
polynomials and the powers of a point, which is what required to evaluate these
polynomials on the point.

Fig. 1. The procedure πBL
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Next, observe that in our protocol, some values are given to the parties at the
beginning of the protocol, whereas some values are revealed during the execution.
In the definition of the functionality, we split the outputs into three types:

1. Values that are given to the parties in the clear before the beginning of the
protocol.

2. Values that are additively shared across the parties at the beginning of the
protocol. These are marked using our notation �·�.

3. Values that should be revealed during the execution to the parties. To realize
this, the dealer can secret share these values in an authenticated way. These
values are marked using the notation 〈·〉. As explained in Sect. 2.4, one can
realize it via SPDZ-style information-theoretic MACs [3,23].

The dealer’s ideal functionality to produce correlated randomness for both
the semi-honest computation and the verification protocol is formally defined in
Functionality 3.

FUNCTIONALITY 3 (The Ideal Functionality FDealer)

Let mult be the set of multiplication gates. Denote by WI , Wmult and Wo the set
of the circuit’s input wires, the set of input wires to multiplication gates and
the set of the circuit’s output wires, respectively. Let M and L be parameters
given to the functionality. Let A be the ideal-world adversary controlling a set
of parties of size≤ n − 1.
The functionality FDealer works as follows:

– For each wire w ∈ WI∪Wmult∪Wo sample a random rw ∈ R.
Sample random masks s0, . . . , s2M ∈ R.
Sample a random b0 ∈ RL

Sample a random point τ ∈ R.
– Let b = ((rw)w∈Wmult∪Wo , (r

g�
2 , r

g�
1 , (r1 · r2)

g�)g�∈mult).
Then, split b into M vectors of size L, i.e., b = b1|| · · · ||bM .

– For each e ∈ [L]: let Ge be a vector of size M + 1 defined as Ge =
b0[e]|| · · · ||bM [e].
Set G = G1|| · · · ||GL. Then, compute: y1, . . . , yL ← πBL(G, τ, M) (see
Fig. 1).

– Let S = (s0, . . . , s2M ). Then, compute z ← πBL(S, τ, 2M) (see Fig. 1) and
s =

∑M
k=1 sk.

– Give the parties

({〈rw〉}w∈WI∪W0 , �b�, �b0�, �S�, 〈y1〉, . . . , 〈yL〉, 〈τ〉, 〈s〉, 〈z〉)
while letting A choose the corrupted parties’ shares.

Comparison with BGIN [14]. A drawback of our verification protocol com-
pared to [14] is that we have O(

√
C ·n) communication per party and they have

O(log(|C|) · n) communication. Nevertheless, in both protocols, communication
is sublinear in the size of the circuit. Our main advantage is in the work of
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the dealer. First, the size of the dealer’s circuit (i.e., number of multiplications
operations) does not depend on the number of parties n, which gives rise to
efficient implementation even for large number of parties. Much more important
is the fact that our dealer is represented by computation of low-depth. We will
explore this property in Sect. 6 and see how it is crucial for achieving the goal of
distributing the dealer with sublinear communication. We stress that the dealer
in [14] cannot be represented this way. To see this, it suffices to recall that in
their work the dealer needs to compute

∑
g�∈mult γ� · (rg�

1 · rg�

2 ). This implies that
it needs to compute the coefficients γ� and so the random coefficient αw for each
wire w. To avoid linear correlated randomness, the authors in [14] suggested to
use a single α from which all αw are derived by computing: αw = αw. This yields
a computation with depth that is linear in the size of the circuit, which makes it
impossible to use the techniques presented in the next sections. In our protocol,
the dealer does not need to compute anything based on the random coefficients
and so this is completely avoided.

5 Online Computation with a Trusted Dealer

We are now ready to present the main protocol to compute any arithmetic
circuits with malicious security in the FDealer-hybrid model (i.e., in the presence
of a trusted dealer that gives the parties the correlated randomness). Informally,
our protocol takes a secure-up-to-additive attack and star-sharing compliant
protocol, and compiles it into malicious security, by adding a verification step,
where the parties run the protocol Πvrfy from Sect. 4. The formal description
appears in the full version of this paper.

Concrete Costs. We estimate the concrete communication and computation
overhead of our verification protocol compared to the base semi-honest proto-
col. The communication overhead is a small additive term that is completely
dominated by the communication complexity of the semi-honest protocol. The
concrete computational overhead of the verification protocol for arithmetic cir-
cuits is often dominated by the communication cost of the semi-honest protocol
even when the traffic is exchanged over a fast 1 Gbps network. To make our fol-
lowing estimates somewhat easier we assume an imbalance between the degree of
each polynomial M , which is set to M =

√|C|, and the number of polynomials
L = 5

√|C|.
In the verification protocol, the parties communicate to star-share Γi and

then emulate the zk-FLIOP. When using the instantiation presented in Sect. 4.1,
each party sends roughly 4L = 20

√|C| elements to star-share its share of the
proof. Then, the parties need to open the correlated randomness, which yields
2M = 2

√|C| additional elements sent per party (see the end of Sect. 4.1). Over-
all, each party sends approximately 22

√|C| elements. This overhead is domi-
nated by the cost of the baseline semi-honest protocol (which requires interaction
for each gate) even for moderately large circuits.
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The computational cost of a party is dominated by interpolation to compute
M extra points on each of L polynomials of degree M . Polynomial interpola-
tion can be efficiently performed by the Discrete Fourier Transform (DFT) and
therefore the total computation is dominated by L DFT operations. To give one
data point, consider an arithmetic circuit of size |C| = 220 over Fp, such that
p is a 60-bit prime and 210 divides p − 1. In this setting, the soundness error
is ≈ M

|C| = 2−50. Based on Shoup [43], a single multiplication of polynomials

of degree M =
√|C| = 210 over Fp takes 56 µs on a single standard core. The

multiplication requires three DFT operations, one on each input polynomial and
then one inverse DFT (which is also a DFT) to return the output polynomial to
coefficient representation. Extrapolating these numbers to our case of a single
DFT, it is safe to estimate that the interpolation of a single polynomial takes at
most 20 µs, and interpolating L = 5 · 210 polynomials requires at most 100 ms.

The communication cost of the semi-honest protocol is two field elements per
multiplication gate for a total of 120 · 220 bits. Even if the underlying network
has 1 Gbps bandwidth then the total time for communication is roughly 120 ms
which exceeds the time for computation.

6 Distributing the Dealer with Sublinear Communication

We are now ready to show how to compute the dealer’s functionality FDealer.
The main observation behind our offline protocol is that, given a circuit C, the
dealer’s computation can be described using the next four steps:

1. Sample a vector b of semi-honest correlated randomness.
2. Sample a vector v of ring elements of size O(

√|C|) using an arithmetic circuit
of size O(

√|C|).
3. Compute a bilinear function over b and v which outputs O(

√|C|) ring ele-
ments. Denote the output vector by y.

4. Give the parties �b� and a subset of entries of v||y. Some of the entries may
be secret shared (and possibly authenticated).

To see this, recall that the dealer needs to evaluate O(
√|C|) polynomials on

a random point τ . This can be done by computing a vector of the powers of
τ , i.e., (τ, τ2, . . . , τ2M ) and then multiplying the coefficients of each polynomial
with this vector. Note that the task of computing 2M powers of τ is represented
by a circuit of size O(

√|C|) since M = O(
√|C|). It should be noted that b

consists of points on these polynomials and not coefficients, and so the dealer is
required to do the conversion first.

We now proceed to describe a protocol which emulates the dealer. The idea
behind the protocol is that we will generate encryptions of the powers of τ via
an additively-homomorphic encryption scheme (AHE). Then, the parties can
compute locally the bilinear operation, obtaining an encrypted version of the
result, which can then be decrypted.

To this end, we define several ideal functionalities that will be used in the
protocol.



Secure Multiparty Computation with Sublinear Preprocessing 451

The Ideal Functionality Ftriples. This ideal functionality will be used to generate
the semi-honest correlated randomness of the protocol, which consists of m mul-
tiplication triples. The Ftriples functionality can be realized with polylogarithmic
communication complexity (in m) and good concrete efficiency via pseudoran-
dom correlation generators (PCGs) based on Ring-LPN [10].

FUNCTIONALITY 4 (The Ideal Functionality Ftriples)

Functionality Ftriples works with parties P1, . . . , Pn and an ideal-world adver-
sary § controlling a strict subset of the parties with indexes I ⊂ [n] as follows:
Upon receiving the command (Init, m) from all parties, it waits to receive
r�
1,i, r

�
2,i, r

�
3,i for each i ∈ I and � ∈ [m] from §. Then, it chooses for each

� ∈ [m] and j ∈ [n] \ I random r�
1,j , r

�
2,j , r

�
3,j under the constraint that

n∑

i=1

r�
3,i =

n∑

i=1

r�
1,i ·

n∑

i=1

r�
2,i

Then, it hands (r�
1,i, r

�
2,i, r

�
3,i)�∈[m] to party Pi.

The Ideal Functionality FAHE
EncPowers. The next ideal functionality gives the parties

encryptions of the powers of τ . It also gives an authenticated secret sharing of τ .
In addition, it samples the masks that are used in the online verification protocol
and secret shares the sum of them in an authenticated way. Recall that we can
realize authenticated secret sharing with information-theoretic MACs, and so
generating it can be represented by a small constant-size circuit.

FUNCTIONALITY 5 (The Ideal Functionality FAHE
EncPowers)

Functionality FAHE
EncPowers works with parties P1, . . . , Pn as follows:

– Upon receiving the command Init from all parties, the functionality runs
Gen(1κ) to obtain (sk, pk), Then, it chooses shares ski for each i ∈ [n]
such that sk =

∑n
i=1 ski and sends pk, ski to party Pi.

– Upon receiving the command (compute, M) from all parties the function-
ality:
1. Chooses a random τ , computes τ2, . . . , τ2M and c1, . . . , c2M =

Encpk(τ), . . . ,Encpk(τ2M ).
2. Chooses random s0, . . . , s2M and computes s =

∑M
k=1 sk.

Then, it hands {�sk�}2M
k=0, c1, . . . , c2M , 〈τ〉, 〈s〉 to the parties.

The parties compute the encryption of powers of τ using a simple, iterative
protocol, beginning with a shared value Encpk(1), which is an encryption of τ0 =
1. Next, each party chooses its random share τi of τ . To compute Encpk(τ j+1)
given Encpk(τ j) and τi, each party homomorphically computes Encpk(τ j · τi)
and sends the result to the other parties. Upon receiving all ciphertexts, each
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party homomorphically evaluates Encpk(τ j · ∑n
i=1 τi) = Encpk(τ j+1). Overall,

this functionality can be computed with communication of O(M · poly(κ, n)) =
O(

√|C| · poly(κ, n)) ring elements. To achieve malicious security, we can use
generically communication-preserving compilers; see below.

The ideal functionality FAHE
AuthDec. This functionality receives a ciphertext c from

all parties and the secret-key share ski from each Pi and outputs 〈u〉 where u =
Decsk(c) and sk =

∑n
i=1 ski (i.e., the parties receive authenticated secret sharing

of u). Note that it can be realized by a protocol with cost that is independent of
the size of the computed circuit.

Realizing FDealer with Semi-honest Security. Using the above functionalities
it is easy to describe a semi-honest protocol to compute FDealer.

ΠSH
dealer: Upon receiving a description of the circuit C as an input:

1. Sample semi-honest correlated randomness: the parties call Ftriples to receive
(rg�

1,i, r
g�

2,i, r
g�

3,i)g�∈mult. For each input and output wire w of the circuit, each
party Pi samples a random rw,i and then the parties generate 〈rw〉 where
rw =

∑n
i=1 rw,i.

2. The parties call FAHE
EncPowers to receive back ski, {�sk�}2M

k=0, c1, . . . , c2M , 〈τ〉, 〈s〉.
3. Each party Pi samples b0,i ∈ RL and then uses the shares

b0,i, {rw,i}w∈W , (rg�

1,i, r
g�

2,i, r
g�

3,i)g�∈mult to define the M -degree polynomials ge,i

for each e ∈ [L], and the shares {sk,i}2M
k=0 to define the 2M -degree polynomial

q̃i. Then, each party locally converts its shares of the points on these polyno-
mials to shares of the coefficients.
Denote the coefficients of ge (for each e ∈ [L]) by ge,0, . . . , ge,M and of q̃ by
q̃0, . . . , q̃2M .

4. For each e ∈ [L], each party Pi locally computes
Encpk(ge,i(τ)) ← Add

(
(ge,k,i)k∈{0,...,M}, (ck)k∈[M ]

)
.

Similarly, each Pi computes
Encpk(q̃i(τ)) ← Add

(
(q̃k,i)k∈{0,...,2M}, (ck)k∈[2M ]

)
.

5. Each Pi sends {Encpk(ge,i(τ))}e∈[L],Encpk(q̃i(τ)) to all the other parties.
6. The parties locally compute {Encpk(ge(τ))}e∈[L],Encpk(q̃(τ)) by adding the

received ciphertexts.
7. The parties obtain {〈ge(τ)〉}e∈[L] and 〈q̃(τ)〉 by calling FAHE

AuthDec. Denote 〈y〉 =
(〈g1(τ)〉, . . . , 〈gL(τ)〉) and 〈z〉 = 〈q̃(τ)〉

Output : Each party outputs his share of b,b0 and {sk}2M
k=0, and his authenticated

shares of τ , s, y and z.

Proposition 3. Assuming the AHE scheme is semantically secure,
protocol ΠSH

dealer realizes FDealer with semi-honest security in the (Ftriples,FAHE
EncPowers,

FAHE
AuthDec)-hybrid model.

The proof can be found in the full version. As discussed above, FAHE
EncPowers can be

realized using a protocol with sublinear cost in the size of the computed circuit,
while FAHE

AuthDec can be realized with constant cost. Given FAHE
AuthDec is called to

decrypt sublinear amount of ciphertexts, the total cost of calling Fdec is also
sublinear. Thus, we get the following:
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Corollary 1 (Distributing the dealer with semi-honest security). Given
(1) semi-honest protocol realizing Ftriples to compute m multiplication triples with
communication α(κ, n,m,R), and (2) a semantically-secure AHE scheme, there
exists a protocol that securely realizes FDealer in the semi-honest model with com-
munication per party of O(

√|C|) · poly(n, κ) ring elements and α(κ, n, |C|, R)
additional bits.

Achieving Malicious Security. In the context of feasibility, one can
easily obtain a malicious security variant of Corollary 1 by applying the
communication-efficient GMW-style compiler of Naor and Nissim [38] (building
on [28,37]). Using this compiler, a semi-honest secure protocol can be compiled
into a maliciously secured protocol for the same functionality with sublinear
additive communication cost of poly(κ, n, log |C|, log |R|) bits per party. Since
the compiler only requires collision-resistant hash functions, which are implied
by additively homomorphic encryption [32], this does not require introducing
new assumptions. Note that the compiler also respects an augmented correlated
randomness functionality that allows the adversary to pick its own output shares
as we require in this work. We thus obtain the following:

Theorem 6 (Distributing the dealer with malicious security). Given (1)
semi-honest protocol realizing Ftriples to compute m multiplication triples with
communication α(κ,m,R), and (2) a semantically-secure AHE scheme, there
exists a protocol that securely realizes FDealer in the malicious model with com-
munication per party of O(

√|C|) ·poly(n, κ) ring elements and α(κ, n, |C|, R)+
poly(κ, n, log |C|, log |R|) additional bits.

Conclusion: MPC with Sublinear Preprocessing and Non-crypto
graphic Online Phase. To obtain our main result, we combine the offline
protocol of Theorem 6 with the online protocol described in Sect. 5, instantiated
with Beaver’s semi-honest MPC protocol [1] based on multiplication triples. This
yields a protocol which satisfies the notion of Preprocessing MPC from Defini-
tion 1, where the offline communication complexity of Πoffline scales with

√|C|
and the online communication and correlated randomness are the same as those
of the baseline semi-honest protocol up to a sublinear additive term. The pro-
tocol relies on AHE, together with any low-communication protocol (e.g., one
based on PCG) for generating random (unauthenticated) multiplication triples.

Theorem 7 (Sublinear preprocessing from AHE+triples). Let f be an
n-party functionality represented by an arithmetic circuit C over a ring R. Then,
given (1) semi-honest protocol realizing m unauthenticated multiplication triples
(see Ftriples) with communication α(κ, n,m,R), and (2) an AHE scheme over
R, there exists a PMPC protocol (Πoffline,Πonline) for f with non-cryptographic
online phase (see Definition 1) with the following efficiency measures:

– The communication per party in Πoffline is O(
√|C|) ·poly(n, κ) ring elements

and α(κ, n, |C|, R) + poly(κ, n, log |C|, log |R|) additional bits;
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– The communication per party in Πonline is O(|C|) + O(
√|C|) · poly(n, κ) ring

elements.

Ingredient (1) in Theorem 7 can be instantiated with a PCG based on LPN or
Ring-LPN [10] for better concrete efficiency, with α(κ, n, |C|, R) = n2 · poly(κ) ·
(log |C|+log |R|) bits of communication. Using this instantiation, the total com-
munication cost of Πoffline is O(

√|C|) · poly(n, κ) ring elements.

Improving Concrete Efficiency. The protocol described previously for dis-
tributing the dealer uses generic tools to compile the semi-honest protocol to a
malicious protocol. This approach is sufficient for good asymptotic efficiency, but
not necessarily for good concrete efficiency. In the full version of the paper, we
propose a maliciously secure protocol with improved performance that is based
on making two stronger, but quite plausible, assumptions on the AHE: being
“linear-only” and having a threshold encryption variant.

An AHE is “linear-only”, or more precisely has Linear Targeted Malleability
[4,7], if linear functions, and only linear functions, can be computed homomor-
phically on the ciphertexts. It is widely assumed that popular AHE schemes such
as Goldwasser-Micali [29], Paillier [41] and even certain parameter ranges for lat-
tice based encryption systems [15] are all “linear-only”. Encryption schemes with
a threshold variant enable parties to share a secret key and distributively decrypt
a ciphertext without interaction. Systems with such a threshold variant include
GM [34], Paillier [30] and lattice based systems via noise flooding.

The proposed protocol to distribute the dealer assuming a circuit over a
field F executes a generically malicious secure protocol for the generation of
powers of τ and then the rest of the previous semi-honest protocol. The parties
proceed by threshold decryption of the ciphertexts. The adversary can add errors
to the decrypted values, which might even depend on the evaluation point τ .
However, due to Linear Targeted Malleability the probability that any attack
on the protocol does not cause an honest party to abort after verification in the
online phase is Θ

(
M
|F|

)
. The complexity of the protocol is dominated by roughly

5|C| homomorphic operations and threshold decryption of 5
√|C| ciphertexts.
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Abstract. Non-interactive publicly verifiable secret sharing (PVSS)
schemes enables (re-)sharing of secrets in a decentralized setting in the
presence of malicious parties. A recently proposed application of PVSS
schemes is to enable permissionless proof-of-stake blockchains to “keep
a secret” via a sequence of committees that share that secret. These
committees can use the secret to produce signatures on the blockchain’s
behalf, or to disclose hidden data conditioned on consensus that some
event has occurred. That application needs very large committees with
thousands of parties, so the PVSS scheme in use must be efficient enough
to support such large committees, in terms of both computation and
communication. Yet, previous PVSS schemes have large proofs and/or
require many exponentiations over large groups.

We present a non-interactive PVSS scheme in which the underlying
encryption scheme is based on the learning with errors (LWE) problem.
While lattice-based encryption schemes are very fast, they often have
long ciphertexts and public keys. We use the following two techniques to
conserve bandwidth: First, we adapt the Peikert-Vaikuntanathan-Waters
(PVW) encryption scheme to the multi-receiver setting, so that the bulk
of the parties’ keys is a common random string. The resulting scheme
yields Ω(1) amortized plaintext/ciphertext rate, where concretely the
rate is ≈ 1/60 for 100 parties, ≈ 1/8 for 1000 parties, and approaching
1/2 as the number of parties grows. Second, we use bulletproofs over
a DL-group of order about 256 bits to get compact proofs of correct
encryption/decryption of shares.

Alternating between the lattice and DL settings is relatively painless,
as we equate the LWE modulus with the order of the group. We also show
how to reduce the the number of exponentiations in the bulletproofs by
applying Johnson-Lindenstrauss-like compression to reduce the dimen-
sion of the vectors whose properties must be verified.

An implementation of our PVSS with 1000 parties showed that it is
feasible even at that size, and should remain so even with one or two
order of magnitude increase in the committee size.
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1 Introduction

A publicly-verifiable secret-sharing scheme (PVSS) lets a dealer share a secret
among a committee of shareholders, in such a way that everyone (not just the
shareholders) can verify that the secret was shared properly and be assured
that it is recoverable. A noninteractive PVSS scheme lets the sender broadcast
just a single message to the entire universe, from which the shareholders can
get their shares and everyone else can check that sharing was properly done.1 A
proactive PVSS scheme further enables passing the secret from one committee of
shareholders to the next, so that (a) the secret remains hidden from an adversary
that only controls a minority in each committee, and (b) everyone can check that
the secret is passed properly between consecutive committees.

Such protocols play crucial role in distributed cryptography, and were studied
extensively in the literature [11,14,16,20,22,23,28,31–33,37,50–52,54,56]. They
were also recently proposed as enablers of secure computation on large-scale
distributed networks such as public blockchains [7,31]. Unfortunately, existing
PVSS schemes in the literature fall short of what is needed for general-purpose
secure computation in large-scale systems, where committees may scale to hun-
dreds or even thousands of parties [7,26]. See related work in Sect. 1.1.

In this work we propose a new system for (proactive, noninteractive) PVSS,
that remains feasible even with huge committees. In asymptotic terms, with secu-
rity parameter λ and k-party committees, the PVSS protocol that we propose
has the dealer and each committee member perform only O(λ + k) exponentia-
tions and broadcast O(λ + k) scalars in Zp and O(log(λ + k)) group elements.
(In addition, each party needs to perform O(λ2 + λk) scalar multiplications in
Zp, which comes to dominate the running time.)

In terms of actual numbers, we wrote a preliminary, single-threaded, imple-
mentation of our system and tested it on committees of up to 1000 members.2

With a 1000-member committee, the dealer runs in about 40 s (single-threaded)
and broadcasts a single message of size less than 300KB, while each committee
member requires about 20 s to obtain its share and verify the proofs. As we
explain in the sequel, this system can be extended to a proactive PVSS proto-
col for very large-scale systems, where the wall-clock time to refresh a secret is
measured in just a few minutes.

We also point out that while our goal of using LWE encryption was motivated
by practical consideration, a side effect is that the secrecy of the PVSS scheme
is preserved even against quantum attackers. This protects the PVSS scheme
from potential “harvest-and-decrypt” attacks using future quantum computers.
This feature may be especially important for blockchain applications, where all
the data is “harvested” by design.

1 Clearly such schemes must rely on some form of PKI.
2 The implementation should also support committees that are one or two orders of

magnitude larger, with only a mild increase in runtime.
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1.1 The PVSS Problem and Related Work

Verifiable secret sharing (VSS) was introduced by Chor et al. [16], with the
objective of making secret sharing robust against malicious parties – i.e., a mali-
cious dealer distributing incorrect shares, or malicious shareholders submitting
incorrect shares in the reconstruction protocol.

Stadler [54] introduced publicly verifiable secret sharing (PVSS), in which the
correctness of shares is verifiable by everyone (not just shareholders). As Stadler
notes, the idea appears implicitly in earlier works. Chor et al.’s VSS protocol
[16] happened to be publicly verifiable. GMW [28] also includes a PVSS protocol
(Sect. 3.3), in which shareholders generate public keys independently, and the
encrypter sends encryptions of shares of the secret to the shareholders, together
with NIZK proofs that the ciphertexts are well-formed and indeed encrypt shares.
These early schemes can be made non-interactive, by using NIZKs with the PVSS
protocol in [28], or by applying the Fiat-Shamir heuristic to the Σ-protocols in
[54].

Later PVSS works focused primarily on improving the efficiency of non-
interactive ZK proofs for the ciphertexts, and minimizing the assumptions under-
lying those proofs [11,14,20,22,23,31–33,37,50–52,56]. Below, we will focus on
PVSS schemes that follow the GMW approach to PVSS, where shareholders
receive shares encrypted under their own independently generated public keys.
In [48], this approach to PVSS is called “threshold encryption with transparent
setup”. We can categorize these PVSS schemes according to what underlying
encryption scheme they use to encrypt shares. For the most part, these schemes
all use 1) Paillier encryption, 2) ElGamal encryption of scalars “in the exponent”,
3) pairing-based encryption of elements of the source group of the bilinear map,
or 4) lattice-based encryption.

Paillier encryption [45] might at first appear ill-suited to PVSS in the “thresh-
old encryption with transparent setup” setting, as shareholders have different
Paillier public keys, and therefore have incompatible plaintext spaces that make
it awkward to prove relationships among shares. However, this problem can
be overcome by using a common interval that is inside the plaintext spaces
of all of the Paillier keys, and using a proof system that proves (among other
things) that the encrypted message is indeed within this interval. Camenisch and
Shoup [14] build an encryption scheme with verifiable encryption and decryption,
based on Paillier’s decision composite residuosity assumption, that uses such an
“interval” approach; the Σ-protocols for verifiable encryption and decryption
each require only O(1) exponentiations.3 Recently, Lindell et al. [37] used essen-
tially a version of Camenisch-Shoup to construct a PVSS scheme with O(k)
exponentiations per committee member (during re-sharing), for committees of
size k (see Sect. 6.2).4 Later schemes using variants of Paillier to encrypt PVSS
shares include [23,33,51]. All of these PVSS schemes have the usual disadvan-
tage of schemes related to Paillier, namely that exponentiations are expensive,
3 In earlier work, Fouque and Stern [20] informally present a somewhat similar scheme.
4 Lindell et al. also constructed a scheme that avoids Paillier, but with much higher

bandwidth.
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as the exponentiations are over a group whose size should in principle be about
exp(O(λ3)) for security parameter λ to maintain sufficient security against the
number field sieve, and which in practice is much larger than, say, an elliptic
curve group with comparable security (against classical computers). Also, the
size of the proofs is linear in the size of the ciphertexts.

PVSS schemes that encrypt shares “in the exponent” include [31,37,52]. In
those schemes, recovering the secret itself requires solving DL, which is only
possible when the secret is small. For example, Groth’s PVSS scheme [30,31],
affiliated with the Dfinity blockchain, shares the secret for BLS signing [9] by
dividing it “into small chunks, which can be encrypted in the exponent and
later extracted using the Baby-step Giant-step method”. That scheme employs
a weak range proof to demonstrate that the chucks in the exponent are small
enough to be recovered. The scheme has numerous optimizations, such as using
the same randomness for ciphertexts in the multi-receiver setting. The paper
[31] mentions an implementation, but does not provide details.

Bilinear-map-based PVSS schemes can verifiably encrypt source group ele-
ments, as opposed to scalars [19,55]. An advantage of these schemes is that
proofs of smallness – such as those needed in Camenisch-Shoup and Groth’s
PVSS scheme – are unnecessary, as the bilinear map makes verifiable encryption
very natural [8,21]. A disadvantage is that these schemes are limited to settings
where one is content to have the secret be a source group element – e.g., as
when the secret is being used as a signing or decryption key in a pairing-based
cryptosystem.

Lattice-based encryption schemes can encrypt large scalars, and have encryp-
tion and decryption procedures that are much faster than group-based schemes.5

The main disadvantage of lattice-based schemes is high bandwidth, as lattice-
based ciphertexts and public keys are in the order of kilobytes. The high band-
width issue, however, can often be amortized away, since many plaintexts can be
packed into a single ciphertext, as in the Peikert-Vaikuntanathan-Waters encryp-
tion scheme [47]. In principle, ciphertext expansion in lattice-based schemes can
be arbitrarily small [12]. Also, very small ciphertext expansion (e.g., close to 2)
can be compatible with very high performance that can be orders of magnitude
better than Paillier-based schemes [24]. (See also [43,44], cf. [53].)

Proving that lattice-based ciphertexts are well-formed requires proofs of
smallness (for vectors that should be small, such as the secret key, encryp-
tion randomness). Some lattice-based schemes [17,36] have used the approach of
decomposing the coefficients of the vectors into their binary representations, and
then proving that each purported bit in the representation is indeed in {0, 1}.
Alternatively, one can use an approach somewhat similar to Camenisch-Shoup:
a Σ-protocol that proves that a vector is inside a certain ball by revealing a sta-
tistically masked version of that vector. In the lattice setting, Lyubashevsky [38]
showed how to use rejection sampling to reduce the required size gap between

5 Of course, this statement refers to basic, possibly additively homomorphic lattice-
based encryption schemes, not fully homomorphic encryption.
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the masking vector and masked vector. Some other works on proofs of smallness
are: [5,18].

In this paper, we are motivated in part by the blockchain setting, where
PVSS can help enable a blockchain to “keep a secret” [7] that it can use to
sign or decrypt conditioned upon events, but where bandwidth is at a premium.
Currently, blockchains almost exclusively use proof systems based on QAPs [29,
46] or bulletproofs [13], because these have the most concise proofs.6

1.2 An Overview of Our PVSS Construction

We assume we have a PKI, in which each party (and potential shareholder) has
independently generated its own key pair for public-key encryption. Based on this
PKI, our goal is to design a practical non-interactive PVSS scheme that allows
a dealer to share a secret by verifiably (in zero-knowledge) encrypting shares of
the secret to a “committee” of shareholders under their keys. The scheme should
also allow each committee member to act as a dealer and verifiably “re-share”
its share to the next committee of shareholders. We use Shamir secret sharing,
though essentially any linear secret sharing will do.

Our PVSS scheme arises out of two design choices – namely, 1) to use lattice-
based encryption, and 2) to use bulletproofs. Below, we explain these choices and
their consequences.

Lattice-Based Encryption. Lattice-based encryption is a good fit for PVSS,
not only because it is exceptionally fast, but also because its disadvantages turn
out not to be big problems in the PVSS setting. One apparent disadvantage is
that lattice-based encryption has long public keys and ciphertexts. However, in
the multi-receiver setting of PVSS, this disadvantage can be amortized away by
adapting the Peikert-Vaikuntanathan-Waters (PVW) encryption scheme [47] to
the multi-receiver setting. Another apparent disadvantage is that, for lattice-
based PVSS, proving that ciphertexts are well-formed requires zero-knowledge
proofs of smallness – e.g., that the “noise” in the ciphertexts is small. However,
as we have seen in Sect. 1.1, PVSS and verifiable encryption schemes based on
Paillier and ElGamal “in the exponent” also employ weak range proofs, and
therefore they have no advantage over lattices here.

We briefly review the PVW lattice-based encryption scheme, as used in our
PVSS scheme. The scheme uses a public random matrix A that is common to
all parties. Each party i generates a secret vector si, and sets bi = si · A + ei to
be its public key.7 The parties’ public key vectors (say that there are k of them)
are collected into a matrix B. The collective public key of the PVSS system is

6 Despite being compact, bulletproofs have linear verification complexity. The Dory
scheme [35] is similar to bulletproofs, but with logarithmic verification complexity.

7 In the real scheme, each user creates several such vectors, but we defer this discussion
to the body of the paper.
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[
A
B

]
. The encryption of a message vector m = (m1, . . . ,mk) ∈ Z

k
q is

[
A
B

]
r +

[
e1
e2

]
+

[
0
m

]
=

[
c1
c2

]
, (1)

where r, e1, e2 are vectors with small coefficients and all operations take place
in Zq. A committee member will use this scheme to encrypt k re-shares of its
share to the next k-member committee.8

Note how well the PVW scheme is suited to the multi-receiver setting. In
the basic setting of (single-user) Regev encryption [49], each user has its own
matrix A as part of its public key, while here A is amortized across all parties.
Moreover, note that an encryption to an extra user costs just an extra element
in Zq. When the number of users becomes large, the ciphertext expansion factor
becomes a small constant.

As far as we know, ours is the first use of the PVW lattice-based encryption
scheme in the multi-receiver setting. Proving the security of PVW in this setting
is subtle: when decrypting each user implicitly obtains the inner product of si

and r, which leaks something about r. One therefore needs to show that, for
practical parameters, the secrets are still hidden despite the leakage. We cover
this issue in Sect. 2.3.

Bulletproofs. Our second design choice is to use bulletproofs. We are aiming
for a PVSS scheme that can be used on a blockchain, as blockchains provide
an especially compelling platform for PVSS. Linear-size proofs are not suitable
for blockchains, as such proofs (which might appear in many blocks) need to be
downloaded and verified by everyone that is confirming the blockchain state. For
this reason, proof systems in use on actual blockchains are almost exclusively
based on QAPs [29,46] or bulletproofs [13]. Bulletproofs have some advantages
over proof systems based on QAPs, such as being based on more natural assump-
tions, not requiring bilinear maps, and having only linear (versus quasi-linear)
prover time complexity. Bulletproofs also work over small groups (a feature not
shared by PVSS schemes based on Paillier encryption).

Recently, Bootle et al. [10] described a variant of bulletproofs based on lattice
problems. In this variant, the proofs are not as compact, but proof generation and
verification presumably would be faster. As future work, it may be interesting
to investigate how using this variant affects the performance of our scheme.

Using Lattice-Based Encryption and Bulletproofs Together. Now our
goal is to construct a proof system, ultimately based on bulletproofs, that allows
a shareholder to prove that incoming and outgoing PVW ciphertexts correctly
encrypt re-shares associated to its share.
8 For convenience, we have described the system as having only k members total, but

consecutive k-member committees could be non-overlapping subsets of a larger set
of parties.
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As a first step to make our encryption scheme and bulletproofs compatible,
we set our LWE modulus q to be the order of the bulletproof group. The plain-
text space of our encryption scheme – i.e., the space the shares live in – is also
Z/(qZ).9 Now we “simply” need to create a commitment of the messages and
prove that the ciphertext encrypts them. After this, all the proofs can be done
using bulletproofs. The main contribution of this work is a collection of tech-
niques, optimized for efficiency, to prove that a lattice encryption is valid and
that the message corresponds to some DL committed value.

In more detail, we create a Pedersen commitment to all the coefficients of
r, ei, and m. We now would like to prove that the committed values satisfy the
linear relationship in (1). Also, very importantly, we need a proof that r and ei

have small coefficients. Proving exact relationships is the bread and butter of
bulletproofs. We handle proofs of smallness in a multi-stage process that carefully
calibrates the transition from “lattice world” to “bulletproof world”. Namely, in
some cases, we first reduce the dimension of the vectors involved, and instead
prove that this dimension-reduced vector has small coefficients. This dimension
reduction in turn reduces the number of exponentiations we eventually need to
perform in the bulletproof world. Before moving to bulletproof world, we also
invoke a lattice-based (without bulletproofs) proof of smallness with a large gap.
While this proof is “slacky”, it is sufficient to prove certain expressions do not
“wrap” modulo q, so that we can now consider these expressions over Z. Now
that we have reduced the dimension and are assured that mod-q statements can
be lifted to statements over Z, we can use bulletproofs to prove the exact l2 norm
of the vectors. We provide additional techniques to hide the exact l2 norm if only
a bound on the norm is desired. The bulletproofs for the linear relationships and
for smallness are aggregated to the extent possible. Details are provided below.

Dimension Reduction and Slacky Lattice-Based Proofs of Smallness.
Our dimension reduction technique is based on the Johnson-Lindenstrauss
lemma [34]. The idea is that for all vectors v, we have ‖vR‖ ≈ √

n‖v‖, where
R is an n-column matrix whose entries are chosen from a normal distribution
of variance 1. When R is chosen in this way, the distribution of ‖vR‖2 follows
the chi-squared distribution and its confidence intervals are known. When the
coefficients of R are instead chosen from a discrete distribution over {0,±1}
where the probability of 0 is 1/2, one can heuristically verify that these confi-
dence intervals are bounded by the continuous ones.10 If we would like to be in
a 1 − 2−128 interval, then R can have around 256 columns and then the ratio
between the smallest value of ‖vR‖ and the largest is under 4. This means that
we can project an arbitrary-dimensional vector into just 256 dimensions and

9 Unlike the more standard LWE encryption in which the message also needs to be
small, we use a version of the scheme implicit in [27] where the messages can be
arbitrarily large in Zq, but the length of �m has to increase to encode all of the
message. We describe this in Sect. 2.2.

10 There are concrete bounds for tails of some of these distributions (e.g. [1]), but they
are asymptotic and are looser than necessary for our concrete parameters.
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prove the �2 norm of the resulting vector, and be within a small factor of the
correct result. And, of course, the projection operation is linear. The concrete
bounds for the dimension-reduction technique are described in Sect. 3.2.

Everything in the above discussion was based on the fact that we were work-
ing over the integers, rather than over Zq. When working modulo q, it is possible
that v has a large norm, but vR mod q has a small one. This event can clearly
only occur if the coefficients of v are large enough that multiplication with R
causes a wraparound modulo q. It is therefore important to show that this does
not happen, and we do this in the manner as in the lattice-based proofs from
[41]. We now explain how the technique applies to our context. The main idea is
to show that all the elements of v are not too big. This seems a bit circular, as
our goal is already to prove that ‖v‖ is small. But our requirement now is not to
get a very tight bound on the norm, but simply to show that all the elements of
v are small enough to not cause a wrap around. For this, one employs a simple
fact that is sometimes useful in lattice cryptography [6, Lemma 2.3], which states
that if a vector v has a large coefficient, then for any y ∈ Zq, 〈v, r〉 + y mod q
has a large coefficient with probability at least 1/2, where the coefficients of r
are randomly chosen from {0,±1} as above. One would therefore prove that the
coefficients of v are small by committing to some masking vector y, receiving a
128-column matrix R as a challenge, and then outputting vR + y. The purpose
of y is to hide v, and so some rejection sampling [39] is necessary to keep the
distribution of vR + y independent of v. Note that the gap between the actual
�∞ norm of v and that of what we can prove is increased by a factor of at least
the dimension of v. This is because the �∞ norm is not well-preserved under
transformations and also due to the masking which is needed because we will
actually be outputting the value vR + y. This is much larger than the factor of
approximately 4 in the �2-dimension reduction above, and this is why we only
employ this technique for proving that no wrap-around occurs.

In the context of our encryption scheme, instead of proving that the long
vectors ei (with dimension dependent on the number of users) have small norm,
we can instead prove that the short 256-dimensional vector

([
c1
c2

]
−

[
A
B

]
r −

[
0
m

])
· R (2)

has small norm. Also, we prove that r · R has small norm instead of r. Other
purportedly short vectors are handled in the same way. For example, each of the
k new committee members needs to prove that the public key bi = siA + ei is
properly created. The combination of these techniques is described throughout
Sect. 3.

Bulletproofs and Precise Proofs of Smallness. Suppose now that we want
to prove a tighter upper bound β on the squared �2 norm of a vector v =
(v1, . . . , vk). (Proving tighter bounds allows us to use tighter parameters in our
lattice-based encryption scheme.) Assume β is an integer. First, we pick a vector
x such that the squared l2 norm of the concatenated vector v‖x is exactly β.
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For the vector x, 4 coefficients suffice, as the non-negative integer β − ∑
v2

i

can always be expressed as the sum of at most 4 squares. We then use the
“slacky” techniques above to prove that there is no wraparound modulo q in the
computation of the squared l2 norm of v‖x. Then, we commit to v‖x, and use
bulletproofs to prove the exact quadratic relation.

We can aggregate the relations that we prove using bulletproofs – e.g., these
exact proofs of smallness are combined together with proofs of the linear equa-
tions in (1).

1.3 Organization

In Sect. 2 we describe our lattice-based encryption scheme, and discuss the exten-
sion of PVW to the multi-receiver setting. In Sect. 3 we present the size-proof
protocols that we use in our scheme and their parameters. In Sect. 4, we provide
details about our implementation. In the long version [25] we describe in more
detail the various sub-protocols that the parties run locally, for key-generation,
encryption, decryption, and secret re-sharing, explain how to aggregate aggre-
gate the bulletproof instances from all these components into just two bullet-
proof instances, and finally put all these components together in a (proactive)
publicly-verifiable secret-sharing protocol.

2 The Underlying Encryption Scheme

In this section we develop the encryption scheme that is used by our protocol,
starting from a (variant of) PVW encryption [47] and specializing it to our needs.

Below we denote integers and scalars by lowercase letters, vectors by bold
lowercase letters, and matrices by uppercase letters. Vectors are considered row
vectors by default. (Parameters are denoted by either lowercase English or low-
ercase Greek letters). For integers x, q, we denote by x mod q the unique integer
x′ ∈ [− q

2 ,+ q
2 ) such that x′ = x (mod q). We denote vectors by bold-lowercase

letters, and it will usually be evident from context whether they are row or col-
umn. The l2 and l∞ norms of a vector v are denoted ‖v‖2, ‖v‖∞, respectively.
For a matrix A, we let ‖A‖2, (resp. ‖A‖∞) denote the largest l2, (resp. l∞) norm
of any row in A.

2.1 Learning with Errors (LWE)

The LWE problem was introduced by Regev [49]. In the decision variant, the
adversary is given pairs (A,B) where A is chosen uniformly from Z

k×m
q , and it

needs to distinguish the cases where:

– B is chosen uniformly at random in Z
n×m
q , or

– B is set as B := SA + E mod q, where the entries of S,E are chosen from
some public distributions χs, χe over Zq that output integers of magnitude
much smaller than q with overwhelming probability.
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This problem is believed to be hard for many different settings of the parameters
k,m, n, q, χs, χe. For some of them it is even proven to be as hard as solving
some “famous” lattice problems in the worst case. In this work we assume that
this problem is (exponentially) hard when the χ’s are uniform distributions on
integers is some symmetric interval [±σ] with σ � q/2. The specific parameters
that we use were chosen according to the LWE hardness estimator of Albrecht
et al. [3], see more details in The long version [25]. Also in our protocol we always
use k = m, so we drop the distinction between these parameters in the sequel.

2.2 Variants of Regev Encryption

In [49], Regev described a public-key encryption scheme whose security is based
on the hardness of decision-LWE. Later, Peikert, Vaikuntanathan and Waters
(PVW) described in [47] a variant with improved plaintext-to-ciphertext expan-
sion ratio. Our protocol is based on a variant of the PVW construction. Underly-
ing it is the following “approximate encryption” scheme, where decryption only
recovers a noisy version of the plaintext:

Key-generation. The key-owner chooses a random A ← Z
k×k
q , S ← χn×k

s

and E ← χn×k
e and computes B := SA + E mod q. The secret key is S and

the public key is (A,B), which is pseudorandom under the decision LWE
assumption.

Encryption. To encrypt an n-vector x ∈ Z
n
q , the encryptor chooses r ← χk

s ,
e1 ← χk

e , e2 ← χn
e , and sets c1 := Ar+e1 mod q and c2 := Br+e2+x mod q.

The ciphertext is (c1, c2), which is again pseudorandom under the decision
LWE assumption.

Decryption. To decrypt (approximately), the key-owner outputs x′ := c2 −
Sc1 mod q. Substituting all the terms one can check that

x′ =
(
(SA + E)r + e2 + x

) − S(Ar + e1) = x +

e′︷ ︸︸ ︷
Er + e2 − Se1,

where for appropriate choices of χs, χe we will have ‖e′‖∞ � q.

Plaintext Encoding. To be able to fully recover the plaintext, Regev encryp-
tion uses some form of error-correction that allows the decryptor to compute
x from the noisy x′. Most variants of Regev encryption use encoding based on
scaling, but for us it is more convenient to use a different form of encoding11

(which was implicit in the homomorphic encryption scheme of Gentry, Sahai
and Waters [27]). We encode a plaintext vector x∗ ∈ Z

n
q by a higher-dimension

x ∈ Z
�n
q that includes not just x∗ but also a large multiple of it. Let Δ := 
√q�

and g := (Δ, 1) ∈ Z
2
q. The dimension-n vector (x1, . . . , xn) ∈ Z

n
q is encoded in

the vector (x1g| . . . |xng) ∈ Z
2n
q .

11 The reason that this encoding method is better for us, is that it allows us to work
only with Zq elements. In other variants of Regev encryption one usually must work
with both Zq and Zp for some p � q.
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More generally, we could use a parameter � ≥ 2 and set Δ := 
 �
√

q� and
the “gadget vector” g := (Δ�−1, . . . ,Δ, 1) ∈ Z

�
q. We then encode a vector

(x1, . . . , xn) in the higher-dimension (x1g| . . . |xng) ∈ Z
n�
q . The larger we set

the parameter �, the more redundant the encoded vector becomes, which lets us
tolerate larger noise and still recover the original vector. (On the other hand, we
need to increase the number of rows in the secret key from n to �n.) Specifically,
for each entry xi in the original plaintext vector, the approximate-decryption
above yields a noisy �-vector x′ = xg+e mod q, and xi can then recovered using
the decoding procedure from Fig. 1.

Fig. 1. The plaintext decoding procedure

As long as all the ei’s are bounded in magnitude below q/2(Δ+1) ≈ Δ�−1/2,
then the equality yi = ei − Δei+1 in Row 2 holds not only modulo q but also
over the integers. In that case we also have z = e1 − Δ�−1e� over the integers,
and since |e1| < Δ�−1/2 then also e = e1 in Row 3 holds over the integers, so we
recover the correct output x.

For our implementation we stuck to the setting � = 2, which is somewhat
simpler to implement. In general, however, setting a slightly larger value (such
as � = 4) may lead to somewhat better parameters, since it can tolerate larger
noise and therefore smaller lattice dimension for the same security level. We
leave exploring this direction to future work.

2.3 The Multiparty Setting

A very useful property of the scheme above is that the i’th plaintext value xi

can be recovered using only rows {1+(i−1)�, . . . , i�} of the secret key matrix S
(indexing start at 1). To wit, denote by Si the sub-matrix of S consisting only
of these rows, and let c2,i be the sub-vector of c2 consisting of entries {1 + (i −
1)�, . . . , i�}, then xi can be recovered by setting x′ := c2,i − Sic1 ∈ Z

�
q, then

using the decoding procedure from Fig. 1.
It is therefore possible to use the encryption scheme above in a multiparty

setting, where all parties share the same random matrix A (a common-random-
string which is chosen by a trusted party during setup), and each party i chooses
its own secret key S ← χ�×k

s and noise Ei ← χ�×k
e , and computes its own public

key Bi := SiA + Ei mod q.
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The global public key is then set to include the matrix A, followed by all the
Bi’s in order (which are viewed as sub-matrices of the public-key matrix B from
above). Encryption works just as above, with the plaintext vector x ∈ Z

n
q viewed

as having one plaintext element xi ∈ Zq destined to each party i. For decryption,
each party i uses its secret key Si to get the noise vector x′

i = xig + ei, then
apply the decoding procedure from Fig. 1 to recover xi from x′

i.

LWE with Leakage. The multiparty setting above brings up a new problem:
what happens when some of the parties are dishonest and deviate from the pre-
scribed distribution for choosing their public keys? The issue is that encryption
uses the same vector r for encrypting all the plaintext elements to all the parties.
When party i is dishonest and Bi is chosen adversarially, seeing Bir + ei may
leak information about r to the adversary, potentially making it possible for it
to distinguish some other Bjr + ej from random and maybe learn something
about the plaintext encrypted for party j.

Luckily, some characteristics of our application make it possible to counter
this threat. In particular, each party i in our protocol is required to prove that
its public key is “well formed”. Namely it must provide a proof of knowledge
of Si, Ei such that Bi := SiA + Ei mod q, and moreover where the l2 norm of
the rows in Si, Ei is bounded by some known bounds βs, βe, respectively. In this
setting, we can reduce security to plain LWE (without any leakage), as long as
the encryptor chooses e2 from a somewhat wider distribution than e1.

Fix the LWE parameters k, n, q, χs, χe1, and let ρs, ρs ∈ R be factors that
bound the size of vector from χs, χe1, respectively, along any fixed direction.
Specifically, we require that for any fixed v ∈ Z

k
q , choosing s ← χk

s and e ← χk
e

we get
|〈v, s〉| ≤ ρs · ‖v‖2 and |〈v, e〉| ≤ ρe · ‖v‖2,

except perhaps with a probability negligible in κ. Let βs, βe ∈ R be the bounds
that the parties in our protocol must prove, and let χe2 be another noise distri-
bution over Z, which is wide enough so that χe2 is statistically close12 to χe2 + δ
for any fixed integer offset δ ≤ �ρsβe + ρeβs�. Then consider the following game
between an adversary and a challenger:

– The challenger chooses, sends to the adversary a random matrix A ∈ Z
k×k
q .

– The adversary chooses S ∈ Z
n×k
q and E ∈ Z

n×k
q , subject to the constraint

that the l2 norm of each row in S,E is bounded by βs, βe, respectively. The
adversary sets B = SA + E mod q and sends S,E,B to the challenger.13

– The challenger chooses r ← χk
s , e1 ← χk

e1, e2 ← χk
e2, and a uniformly random

vector u ∈ Z
k
q . It also tosses a coin σ ∈ {0, 1}.

If σ = 1 then the challenger sets c1 := Ar+e1 mod q and c2 := Br+e2 mod q.
If σ = 0 then the challenger sets c1 := u and c2 := Sc1 + e2 mod q.

12 Up to a distance negligible in κ.
13 The adversary sends not only B but also S, E to the challenger, since in our protocol

it will have to prove knowledge of these matrices so they can be extracted from it.



470 C. Gentry et al.

– The challenger sends (c1, c2) to the adversary, and the adversary outputs a
guess σ′ for σ.

Lemma 2.1. Let the parameters k, n, q, χs, χe1, and ρs, ρs, χe2 be as above.
Then under the hardness of decision-LWE with parameters k, n, χs, χe1, the
adversary in the game above has only a negligible advantage in guessing the
value of σ.

Proof. Substituting all the variables above, we have

(Ar + e1, Br + e2) =
(
Ar + e1, (SA + E)r + e2

)
=

(
Ar + e1, S(Ar + e1) − Se1 + Er + e2

)
(3)

(s)≈ (
Ar + e1, S(Ar + e1) + e2

) (c)≈ (
u, Su + e2

)
. (4)

The last relation follows directly from the hardness of decision LWE with these
parameters. To see why the penultimate relation holds, note that ‖Er−Se‖∞ ≤
ρsβe + ρeβs except with a negligible probability, and therefore e2 is statistically
close to Er − Se1 + e2.

Semantic Security in the Multiparty Setting. Lemma 2.1 implies that
we can get semantic security for the honest parties in our protocol, even if
the dishonest parties deviate from the prescribed distribution for choosing their
public keys. (As long as they successfully prove knowledge of S,E as above.)

To that end, we modify the encryption procedure from Sect. 2.2 so that it uses
the wider noise χe2 rather than χe when choosing the noise vector e2. We then
view the CRS matrix together with all the honest public keys as the matrix A
from the lemma, and the dishonest public keys are viewed as the matrix B from
the lemma. We note that with this view, the matrix A is pseudorandom from
the adversary’s perspective. Lemma 2.1 tells us that A�r +�e1 is indistinguishable
from random even given Br + e2, and the encryption scheme uses the part of
A�r + �e1 corresponding to the honest parties’ public keys to mask the plaintext
values for these parties, hence we get semantic security.

How Wide Must χe2 Be? Lemma 2.1 requires that χe2 is very wide, enough
to “flood” the term δ := Er−Se, i.e., larger by at least the (statistical) security
parameter. In our application, however, making χe2 very wide is costly: For
security of 128 bits, adding one bit to the width of χe2 increases by about 40
the dimension of the LWE secret that we need to use. (So making it (say) 50-bit
wider will increase the dimension by almost 2000.)

However, in our setting it seems likely that setting χe2 only slightly larger
than (the expected size of) δ is safe, since the encryption randomness and noise
are only used once, and the adversary gets at most t < 1000 samples from
the “leakage”. We therefore took a pragmatic approach, making χe2 only large
enough so the distributions χt

e2 and χt
e2 + δ are “not too far”. Specifically, we

set it large enough to ensure that the Rényi divergence between them is a small
constant. While this is not enough to prove that decision-LWE remains hard, it
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is enough to show that the search problem remains hard. As we are not aware
of any attack on decision-LWE that does not go via full recovery of the LWE
secret, we take it as a strong indication of security even in our setting.

In more detail, in the long version [25] we establish a high-probability bound
on the l∞ norm of δ (call it μ). We use the heuristic of modeling χe2 as a zero-
mean Normal random variable with variance σ2 (where σ is the parameter that
we need to set). Using analysis similar to [2,4], we bound the Rényi divergence
of order α between χt

e2 and χt
e2 + δ by ρ := exp

(
απt · (μ/σ)2

)
, and use the

probability-preservation property of Rényi divergence to conclude that for any
event E(v) that depends on a vector v, we have

Pr
v←χt

e2

[E(v)] ≥ Pr
v←χt

e2+δ
[E(v)]α/(α−1)/ρ.

In particular the above holds for the event in which the adversary finds the LWE-
secret r. Setting σ = b

√
2πt and using (say) α = 2, yields ρ = exp(1) = e and

hence Prv←χt
e2

[E(v)] ≥ Prv←χt
e2+δ[E(v)]2/e. By the hardness of search-LWE,

the probability on the left-hand side is negligible, and hence so is the probability
on the right-hand side.

2.4 An Optimization: Using Module-LWE over Small Rings

As is common in lattice-based cryptosystems, we gain efficiency by using opera-
tions over higher-degree algebraic ring rather than directly over the integers. In
our multiparty setting parties use �-row public key (to enable or input encoding),
so instead we use operations over a ring of dimension �, namely R�=Z[X]/(X�+1).
(We also denote R�,q = R/qR = Zq[X]/(X�+1).) (Recall that our implementa-
tion uses � = 2, and more generally we may use slightly larger value such as
� = 4.) This means that the parties’ secret-key and noise vectors can now be
specified using half as many scalars, so in our protocols the parties will need to
commit and prove relations for half as many variables. The scheme thus needs to
choose low-norm elements in R�, which is done by choosing their representation
in the power basis using the same distributions χs, χe1, χe2 over Zq. Below we
use the same notations χs, χe1, χe2 for both the Z distribution and the induced
distributions over R�.

2.5 The Encryption Scheme in Our Protocol

Using all the components above, we describe here explicitly the encryption
scheme as we use it in our protocol:

Parameters. Denote by n the number of parties and t < n/2 bound the number
of dishonest parties. For LWE we have a modulus q, The dimension k of
the LWE secrets and noise vectors, and the secret- and noise-distributions
χs, χe1, χe2.
We also have the redundancy parameter �, and we denote n = n�, t = t�, and
k = k�. Let Δ = 
 �

√
q� and let the “gadget vector” be g = (Δ�−1, . . . ,Δ, 1) ∈

Z
�
q, representing the element g ∈ R�,q.
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Common Reference String. A random matrix A ← Rk×k
q .

Key-Generation. Each party i chooses the secret key and noise vectors in Rk
q ,

si ← χk
s and ei ← χk

e1, sets bi := siA + ei ∈ R�,q as its public key, and
broadcasts it to everyone.

Encryption. The global public key consists of the matrix A and all the bi’s.
Let B ∈ Rn×k

�,q be a matrix whose rows are all the bi’s in order.
Given n plaintext scalars x1, . . . , xn ∈ Zq, we encode them in a vector x =
(x1, . . . , xn)g ∈ Rn

�,q. Namely we encode each xi as the element xig ∈ R�,q.
The encryptor chooses three vectors r ← χk

s , e1 ← χk
e1, and e2 ← χk

e2, and
computes the ciphertext vectors

c1 := ArT + eT
1 mod q, and c2 := BrT + eT

2 + xT mod q.

Decryption. On ciphertext (c1, c2) and secret key si, party i uses the approx-
imate decryption procedure to compute y := c2 − 〈si, c1〉 mod q.
This yields y = xg + e for some scalar x ∈ Zq and small noise element
e ∈ Rq,�, which can also be written as a vector equation y = xg + e mod q.
The decryptor then uses the decoding procedure from Fig. 1 w to recover the
scalar x.

The discussion above implies that this scheme is correct as long as the decryption
noise is smaller than Δ�−1/2, and and it offers semantic security for the honest
parties under module-LWE (with leakage if χe2 does not completely drown the
other noise terms.)

3 Proofs of Smallness

Our scheme relies on parties committing to various vectors and broadcasting
publicly-verifiable proofs about them. Some of the statements that are proven
are simple linear constraints (e.g., when a party proves that it re-shared its secret
properly). But most of the proofs that we use are proofs-of-smallness, when the
prover needs to convince everyone that the norms of its vectors are bounded by
some public bounds.

The main reason for proving smallness is that lattice-based cryptosystems
only provide correctness guarantees when certain quantities are small enough.
Another reason to use proofs-of-smallness is because the underlying proof sys-
tems that we use are only capable of proving constraints modulo some integer
parameter P (e.g., discrete-logarithm-based commitments and proofs). To prove
the same constraints over the integers, we augment these underlying proofs by
also proving smallness of the relevant values, to establish that no wraparound
modulo P occurs.

A publicly verifiable proof of smallness protocol lets a prover commit to a
vector and convince everyone that the committed vector is smaller than some
public bound. Such proofs are parametrized by the norm in question (l2 or l∞)
and a gap parameter γ ≥ 1. Completeness of such proofs for a bound b only
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holds when the vector of the honest prover has norm bounded by b/γ, while
soundness ensures that even cheating provers cannot pass verification if their
vector has norm larger than b. Such protocols can be modeled as special cases
of the commit-and-prove functionality (e.g., [15]), except that the constraint
enforced on honest parties is more strict than that for dishonest parties. This is
captured in the functionality SMLl[γ] from Fig. 2.

Fig. 2. The proof-of-smallness functionality SMLl[γ]

3.1 Underlying Commit-and-Prove Systems

Our scheme makes extensive use of underlying commit-and-prove systems, that
let parties commit to integer values and prove relations among these committed
values. Specifically, these systems lets a prover convince everyone of the veracity
of two types of constraints:

Linear Constraints. The prover commits to the secret vector x, then given the
public vector a it reveal the scalar b and proves that

∑
i aixi = b (mod P ).

Quadratic Constraints. The prover commits to (x|y), then given the public
offset vectors14 u,v it reveals the scalar b and proves that

∑
(xi+ui)(yi+vi) =

b (mod P ).

In our implementation we use Pedersen commitments to vectors, and small vari-
ations of the Bulletproof protocol [13]. (In this case the parameter P is the
order of the hard-discrete-logarithm group.) The Bulletproof variants that we
use are described in the long version [25], where we also show how to use some
homomorphic properties in order to aggregate them.

We note that for the systems that we use, proving linear constraints is cheaper
than proving quadratic constraints, roughly because the prover only needs to
commit to x rather than to both x and y. We therefore strive to only prove

14 See Sect. 3.1 for the reason for the offset vectors.
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quadratic constraints on low-dimension vectors, which leads to noticeable sav-
ings. The main novel tool that we use for that purpose, and which we believe
will find other applications, is in showing how to use the Johnson-Lindenstrauss
lemma to reduce the dimension of the vectors on which we need to perform
quadratic proofs. That is, we replace a quadratic proof on a high-dimension vec-
tor with a linear proof on that vector, combined with a quadratic proof on a
low-dimension one (i.e. 256-dimensional). See more details later in this section.

l2 Norm Proofs Modulo P . In our scheme we often use commit-and-prove
protocols for quadratic constraints to prove the l2-norm of a vector modulo P ,
which is not entirely straightforward. Naively, we could try to let the prover
commit to (x|x) and then directly use the underlying quadratic proofs to prove
that

∑
i x2

i = b2 (mod P ). This naive protocol doesn’t quite work, however,
since a cheating prover may commit to two different vectors (x|x′) rather than
to the same vector twice. One solution could be to add linear proofs to establish
that xi = x′

i for all i, but that could become expensive (as it may require
commitments to each xi separately).

Instead, after the prover commits to (x|x′) ∈ Z
2d
P and publishes the bound b,

the verifier chooses at random an offset vector u ∈ Z
d
P , and the prover uses the

underlying quadratic proof protocol to prove that
∑

i(xi+ui)(xi−ui) = b2−‖u‖2
(mod P ). It is easy to see that if a cheating prover commits to some (x|x′) with
x �= x′, then this last constraint would only hold with probability 1/P . In our
implementation we let the verifier choose only a single random scalar u ∈ ZP ,
then use the offset vector u = (1, u, u2, . . . , ud−1). Again it is easy to see that in
this case, if x �= x′ then the constraint only holds with probability at most d/P .

3.2 Tails of Distributions and the Johnson-Lindenstrauss Lemma

As we mentioned above, an important component in our scheme is pro-
jecting high-dimension vectors down to lower dimension using the Johnson-
Lindenstrauss Lemma. Namely, instead of directly proving smallness of a high-
dimension vector w, we choose a random rectangular matrix R, prove smallness
of the lower-dimension v = wR, and use Johnson-Lindenstrauss to argue that
this implies also tight approximation for the norm of the original w. (Specifi-
cally, the distribution D that we use for the entries of R has D(0) = 1/2 and
D(±1) = 1/4.)

To obtain very tight bounds, we use a heuristic that roughly states that the
tail of the distribution on ‖wR‖ can be bounded as if the entries of R were cho-
sen from the zero-mean continuous Normal distribution of the same variance. A
strong justification for this heuristic comes from the analysis of Achlioptas [1],
who proved that for an arbitrary vector w and R ← Dn×k, all the moments of the
induced distribution over ‖wR‖2 are bounded by the corresponding moments of
the distribution ‖wR′‖2 where the entries of R′ are chosen from the correspond-
ing zero-mean continuous Normal distribution. This intuitively implies that the
tails of the continuous distribution are fatter, and so bounding them will imply
bounds on the discrete distribution. This intuition generally holds except that
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the discretization may cause some minor discrepancies that vanish exponentially
with the dimension k. See more discussion in the long version [25]. This heuristic
lets us use the following bounds when setting concrete parameters:

Fact 3.1. Let N be the continuous normal distribution centered at 0 with vari-
ance 1, and χ2[k] be the χ2 distribution with k degrees of freedom.15 Then for
every vector w ∈ Z

d it holds that:

Pr
r←N d

[∣∣∣∣
〈
w,

1√
2
r
〉∣∣∣∣ > 9.75 · ‖w‖

]
= Pr

y←N

[
|y| > 9.75 ·

√
2
]

< 2−141.

Pr
R←N d×256

[∥∥∥∥ 1√
2
wR

∥∥∥∥
2

< 30 · ‖w‖2
]

= Pr
y←χ2[256]

[y < 60] < 2−128.

Pr
R←N d×256

[∥∥∥∥ 1√
2
wR

∥∥∥∥
2

> 337 · ‖w‖2
]

= Pr
y←χ2[256]

[y > 674] < 2−128.

Corollary 3.2. [heuristic] Let D be a distribution on {0,±1} such that D(1) =
D(−1) = 1

4 and D(0) = 1
2 . Under the heuristic substitution of D with 1√

2
N , for

every vector w ∈ Z
d:

Pr
r←Dd

[|〈w, r〉| > 9.75 · ‖w‖] � 2−141,

Pr
R←Dd×256

[‖wR‖2 < 30 · ‖w‖2] � 2−128,

Pr
R←Dd×256

[‖wR‖2 > 337 · ‖w‖2] � 2−128,

where � denotes a heuristic bound.

3.3 A Modular Johnson-Lindenstrauss Variant

In some cases we need a high probability bounds on the size of wR mod P rather
than the size of wR itself. When the bound that we seek is sufficiently smaller
than P , we get this as an easy corollary:

Corollary 3.3. Fix d, P ∈ Z and a bound b ≤ P/45d, and let w ∈ [±P/2]d

with ‖w‖ ≥ b. Let D[0] = 1/2 and D[±1] = 1/4, then Pr
R←Dd×256

[‖wR mod P‖ <

b
√

30] < 2−128.

Proof. We have two cases:

– The first case is when ‖w‖∞ ≥ P/4d. Let i be an index of an entry in w with
magnitude at least P/4d, and consider any column of R (denoted r): After
choosing all but the i’th entry in r, at most one of the three values {0,±1}
yields |〈w, r〉 mod P | < P/8d. Hence the probability that all the columns of

15 The χ2 distribution with k degrees of freedom is the distribution of
k∑

i=1

x2
i where

xi ← N .
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R yield entries smaller than P/8d is at most (1/2)256. Since b ≤ P/45d then
P/8d > b

√
30 and therefore

Pr
R←Dd×256

[‖wR mod P‖ < b
√

30] ≤ Pr
R

[‖wR mod Pq‖ < P/8d] ≤ 2−256.

– The second case is when ‖w‖∞ < P/4d. Here with probability one we have
wR ∈ [±P/2]256, so mod-P reduction has no effect and the assertion follows
directly from Corollary 3.2.

3.4 Approximate Proofs of Smallness

A tool from previous work that will be used as a subroutine in most of our new
proofs is a zero-knowledge proof that proves that a committed vector has small
coefficients. We use the approximate proofs of l∞-smallness of Lyubashevsky
et al. [42] (which also utilize rejection sampling, as is common in lattice-based
proofs). This proof system has a fairly large gap between the l∞ norm of the
vector used by honest provers and what the prover can prove. But this gap will
not show up in the rest of our scheme, because these proofs are only used to
show that there is no wraparound modulo P (after which we use an exact proof
for l2 norm modulo P ). The main feature of this proof is that the dimension
of the transmitted vector is just 128, irrespective of how long the vector whose
smallness we would like to prove.

To bound the size of a vector w, the prover commits to w and to a masking
vector y (chosen at random to be somewhat larger than w), and sends the
commitments to the verifier. The verifier chooses a small random matrix R, and
the prover opens z = wR + y (and convinces the verifier that it is indeed the
right z wrt w and y), and the verifier checks that z is small. Soundness relies
on the following lemma.

Lemma 3.4 ([42], Lemma 2.5). Fix q, d ∈ Z and any two vectors y ∈
[±q/2]128 and w ∈ [±q/2]d. Let D[0] = 1/2 and D[±1] = 1/4, then choosing
R ← Dd×128 we have

Pr
R

[∥∥wR + y mod q
∥∥

∞ <
1
2
‖w‖∞

]
< 2−128.��

Describing the proof system in more detail, we use a hard-DL group of order P
for the underlying commit-and-prove protocols, as follows. The prover holds a
vector w, and the verifier holds a discrete-log-based commitment to w (e.g.,
Pedersen). The goal of the protocol is to prove that w has l∞ norm bounded by
some known b, where for the honest prover we assume that ‖w‖∞ ≤ b/γ (with
γ our gap parameter).

0. We use security parameter λ = 128 and the size gap is γ = 2 · 9.75λ
√

d <
2500

√
d.

1. The prover has a vector w ∈ Z
d of bounded size ‖w‖∞ ≤ b/γ, and the verifier

knows a commitment to w.
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2. The prover chooses a uniform masking vector y ← [ ±� b
2 (1 + 1

λ )� ]λ and sends
to the verifier a commitment to y.

3. Let D(0) = 1/2 and D(±1) = 1/4, the verifier chooses R ← Dd×λ and sends
it to the prover.

4. The prover computes u := wR and z := u + y. It restarts the protocol from
Step 2 if either ‖u‖∞ > b/2λ or ‖z‖∞ > b/2.
If the two tests above passed, then the prover sends z to the verifier along
with a ZKPOK that indeed z = wR + y (mod P ).

5. The verifier accepts if the ZKPOK succeeds, and in addition ‖z‖∞ ≤ b/2.

Lemma 3.5. The protocol above is an approximate proof-of-smallness for the
l∞ norm, with size gap γ < 2500

√
d.

Proof. The honest prover has ‖w‖∞ ≤ b/γ, so by the first part of Claim 3.2
and the union bound, we have that ‖u‖∞ ≤ 9.75

√
d‖w‖∞ ≤ 9.75

√
db/γ < b/2λ

except with probability 27 · 2−141 = 2−134. A restart due to this check therefore
only happens with negligible probability.

Conditioned on ‖u‖∞ ≤ b/2λ, the rejection sampling check for ‖u + y‖∞ ≤
b/2 leaks nothing about u (or w), by [39]. Furthermore, using the analysis from
[40, Section 5.2], the probability of the prover restarting due to this check is
about 1 − 1

e ≈ 0.63. Hence the expected number of repetitions is constant.
It is left to show soundness, so consider a cheating prover with ‖w‖∞ > b.

By Lemma 3.4 such prover has probability at most 2−128 of getting ‖wR +
y mod P‖∞ ≤ b/2, regardless of y. This completes the proof.

3.5 Exact Proofs of Smallness

Using the protocol from Sect. 3.4, combined with a sum-of-squares proof, we can
get an efficient exact proofs of smallness, provided that the bound b that we need
to prove is sufficiently smaller than

√
P . Roughly, to prove that a value x has

magnitude smaller than some public bound b, it is sufficient to show that b2 −x2

is non-negative,16 which can be done by representing it as a sum of squares: After
committing to x, the prover finds and commits to four other integers α, β, γ, δ
such that b2 − x2 = α2 + β2 + γ2 + δ2. The prover uses the underlying commit-
and-prove systems to show that this equality holds modulo P , and also uses the
approximate proof from above to show that the numbers are small enough so
that they do not trigger a wraparound modulo P . Taken together, this means
that this constraint holds over the integers, hence proving that indeed |x| < b.

In our implementation we actually use a slightly more general version, where
the prover may wish to amortize over m instances of this problem. The upside of
amortizing is that he will only need one l∞ proof (as opposed to one per vector).
The downside is that the size-bounds that we can prove this way are slightly
more restricted, since the gap in the approximate proofs grows with (the square
root of) the total dimension of all the vectors combined.
16 More generally, to show that x ∈ [a, b] it is sufficient to show that (x − a)(b − x) is

non-negative.
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The protocol is described below. In this description we assume that com-
mitments to different vectors can be combined to a single commitment for the
concatenated vector (as needed for the underlying proofs systems). This clearly
holds for the Pedersen commitments that we use in our implementation.

1. The prover has m vectors w1, . . .wm ∈ Z
d, and the verifier has commitments

to all these vectors. For each vector wi, the prover wants to prove that ‖wi‖ ≤
bi (where the bi’s are public).
Denote b = maxi bi, and assume that b <

√
P/(3536(d + 4)

√
m).

2. For each wi, the prover finds four non-negative integers αi, βi, γi, δi such that
α2

i + β2
i + γ2

i + δ2i = b2i − ‖wi‖2.
Let ui := (αi, βi, γi, δi) and vi := (wi|ui) ∈ Z

d+4. The prover sends to the
verifier commitments to all the ui’s, and they both combine them with the
commitments to wi’s to get commitment for the vi’s.

3. The prover provides a ZKPOK that for all i, ‖vi‖2 = b2i (mod P ) (cf.
Sect. 3.1).

4. The prover provides an l∞ ZKPOK showing that
‖(v1| · · · |vm)‖∞ <

√
P/2(d + 4).

Lemma 3.6. If b = maxi bi <
√

P/ (3536(d + 4)
√

m), then the protocol above
is correct, and a zero-knowledge proof of knowledge that ‖wi‖ ≤ bi for all i.

Proof. ZK follows from the ZK of the two underlying proofs.
For soundness, note that proving statement (3) implies that for all the vi’s

we have ‖vi‖∞ <
√

P/2(d + 4), and therefore ‖vi‖2 =
∑d+4

j=1 v
2
i,j < P/2. This

implies that statement (2) holds over the integers and not just modulo P , hence
b2i − ‖wi‖2 is positive.

The only thing left to show is that the bound b = maxi bi is small enough to
allow the use of the l∞ approximate proof from Sect. 3.4 To prove that all the
coefficients in the concatenated vector (v1| · · · |vm) of dimension m(d+4) are of
size at most

√
P/2(d + 4) using that proof, the honest prover must have all the

coefficients smaller than
√

P/2(d + 4)/γ, where γ = 2500
√

m(d + 4). Hence we
need

b ≤
√

P/2(d + 4)
2500

√
m(d + 4)

=
√

P/
(√

2 · 2500 · (d + 4)
√

m
) ≈

√
P/

(
3536(d + 4)

√
m

)
,

which is exactly the bound in the statement of the lemma.

As a side remark, if we can tolerate a one-bit leakage on each ‖wi‖2, then
the prover can instead find three integers αi, βi, γi such that α2

i + β2
i + γ2

i =
b2i − ‖wi‖2 ± 1 (such three integers always exist since every integer which is
congruent to 1 or 2 modulo 4 is a sum of three squares). The prover then does
the same proof as above, but sending δi = ±1 to the verifier in the clear. (We
do not use this option in our protocol.)
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Exact Proofs of Smallness with Larger Bounds. In our scheme we some-
times need to prove exact bounds on vectors with entries that are larger than
the bound above. To do that, we let the prover break each coefficients into (say)
two digits of size ≤ �√b�, commit to these digits and prove exact smallness for
them separately, and then prove that combining these digits indeed yields the
original coefficient.

Namely, the honest prover has a dimension-d vector w with ‖w‖ ≤ b, and the
verifier has a commitment to w. The prover uses radix φ ∈ Z, chosen as small
as possible subject to φ2 − φ ≥ b

√
d/2. It breaks w into two “digit vectors”,

wlo := w mod φ (with entries in [±φ/2]) and whi := (w−wlo)/φ. It commits to
these vectors, produces a linear-constraint proof showing that w = ρ ·whi +wlo

(mod P ), and uses the exact proof protocol from above to prove that

‖wlo‖ ≤
√

d · φ/2, and ‖whi‖ ≤ b/φ +
√

d/2. (5)

To see why the last inequality must hold, observe that

‖whi‖ = ‖w − wlo‖/φ ≤ (‖w‖ + ‖wlo‖)/φ ≤ (b + φ
√

d/2)/φ = b/φ +
√

d/2.

Let b∗ :=
√

P/
(
3536(d + 4)

√
m) be the bound that we need in order to be able

to use the exact proofs from above. The condition φ2 − φ ≥ b
√

d/2 ensures that
b/φ +

√
d/2 ≤ √

d · φ/2, so we can use the above proofs as long as we are able
to set the radix φ small enough such that

√
d · φ/2 ≤ b∗. It is not hard to verify

that when
√

b < b∗ · (4/d)3/4 − (4/d)1/4, the two conditions φ2 −φ ≥ b
√

d/2 and√
d · φ/2 ≤ b∗ can always be satisfied.17

Combining the two bounds from Eq. (5) and the linear-relation proof, we can
therefore conclude that the size of the original w is bounded by

‖w‖ ≤ φ‖whi‖ + ‖wlo‖ ≤ φ(b/φ +
√

d/2) + φ
√

d/2 = b + φ
√

d.

Therefore, this technique induces a multiplicative size gap of γ = 1+φ
√

d
b between

what the honest prover holds and what we can conclude about the vector of a
cheating prover. (In our setting this gap will be minuscule.)

We remark that when using this technique, the prover needs to commit to
more vectors and prove quadratic constraints on them, incurring a somewhat
higher computational cost. Also, in the amortized setting, we can deal with a
mix of some “small” and “large” vectors by breaking into digits only the large
vectors and keeping the small vectors intact.

Approximate Proofs of Smallness for l2 Norm. The protocol in the pre-
vious section for proving that ‖w‖ ≤ b require proving quadratic constraints
on the vi’s to show that ‖vi‖2 = b2i , which may be costly. We note, however,
that a simple application of Corollary 3.2 allows us to reduce the number of
coefficients that are involved in the quadratic proof to 256 + 4 = 260, regardless
17 Jumping ahead, in our setting we have b∗ > 2104 and d = 256, so we can handle

bounds up to b ≈ 2190. The bounds that we actually need to prove will all be much
much smaller.
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of the dimension of w. The price that we pay is a small gap between what we
can prove and what the honest prover actually uses (and the restriction on the
bound that the protocol supports becomes somewhat smaller).

The idea is to first project the d-dimensional vector down to a 256-
dimensional one by setting u = wR, for a random matrix R, and then apply the
proof from the previous section to the projected vector u. Using Corollary 3.2,
an exact bound on ‖u‖ yields a very narrow range for the bound on ‖w‖. In our
protocol, however, we use a more general form of this approximate proof, which
is tailored to proving LWE relations, as we described next.

3.6 Proofs of Smallness for LWE

In the encryption scheme from Sect. 2.5, the prover sometimes has an LWE
instance b = sA + e (mod q), and it needs to prove that s, e are small. While
the prover can commit to s, e and use the proofs above, in this case we can
save about half the cost by skipping the commitment to e, since e is implicitly
committed by seeing the commitment to s and knowing A and b.

Below we describe this more efficient protocol, for the case q = P (with P
the parameter of the underlying commit-and-prove systems). In fact we need a
slightly more general variant that includes a committed “offset vector”, and as
in previous sections we also let the prover amortize over m such proofs. We also
use the technique from Sect. 3.5 to handle vectors with larger norm by splitting
the projected vectors into high and low digits.

In more detail, both prover and verifier know public matrices Ai ∈ Z
ki×di

P ,
i = 1, . . . , m and bounds bi, b

′
i, and let γ be the size gap (to be defined below).

The prover has vectors si ∈ Z
k
P and ei,xi ∈ Z

di

P , where ‖si‖ ≤ bi/γ and ‖ei‖ ≤
b′
i/γ. The 2m vectors si, ei are partitioned into a set L of ml “large” vectors and

a set S of ms “small” ones (so ml + ms = 2m). The designation of which vector
belongs to what set is also public.

To simplify notations somewhat, below we assume that the LWE secrets are
all “small” and the noise vectors are all “large”, which would be the case in our
application. The protocol can be easily extended to handle an arbitrary mix of
“large” and “small”, but the notations get rather awkward.

Let β :=
√

P/(
√

2 · 2500 · 260 · √
ms + 2ml) ≈ √

P/(219.9
√

ms + 2ml). For
correctness of the protocol below, we require that the the bounds on the “small”
vectors in S all satisfy bi ≤ β/

√
30. For the “large” vectors in L, let b∗ =

mini(b′
i) (i.e., the smallest “large” bound) and b∗ = maxi(b′

i), and we require
that 8b∗/

√
b∗ ≤ β.

The radix for breaking integers into digits is set to φ ∈ Z, taken as large as
possible subject to

√
30b∗/φ + 8 ≥ 8φ, specifically we use φ := 
√b∗ · 30/64�.

Denoting γ1 :=
√

337/30 ≤ 3.36 and γ2 := 1 + 16φ√
30b∗

< 1 + 2√
b∗

, the size-gap
that the protocol below achieves is γ1 · γ2.18 The protocol proceeds as follows:

0. For all i, let b̂i :=
√

30 bi/γ2 and b̂hi
i := (

√
30 b′

i/φ +
√

256/2)/γ2 =
(
√

30 b′
i/φ + 8)/γ2, and also let b̂lo :=

√
256φ/(2γ2) = 8φ/γ2.

18 In our setting we have b∗ > 290, so the term 2√
b∗

is insignificant.



Practical Non-interactive PVSS with Thousands of Parties 481

1. The prover sets bi := siAi + ei +xi mod P for all i, and sends to the verifier
the bi’s and also commitments to the si’s and xi’s.

2. Let D[0] = 1/2 and D[±1] = 1/4. The verifier chooses Ri ← Dki×256 and
R′

i ← Ddi×256, and sends to the prover.
3. The prover computes ui := siRi, vi := eiR

′
i. If ‖ui‖ >

√
30bi/γ2 or ‖vi‖ >√

30b′
i/γ2 then the prover aborts.

Otherwise it splits the vi’s into digits, vlo
i = vi mod φ (with entries in

[±φ/2]), and vhi
i = (vi − vlo

i )/φ.
The prover commits to all the ui’s, vlo

i ’s, and vhi
i ’s and sends to the verifier.

4. the parties then engage in the following ZKPOK protocols:
A. Exact smallness proofs (cf. Sect. 3.5): For all i the prover proves that

‖ui‖ ≤ b̂i, ‖vlo
i ‖ ≤ b̂lo, and ‖vhi

i ‖ ≤ b̂hi
i .

B. Linear-constraint proofs for the projected LWE secrets, siRi = ui

(mod P ) for all i.
C. Linear-constraint proof for the LWE relation: For each all i it proves that

biR
′
i = siAiR

′
i + φvhi

i + vlo
i + xiR

′
i (mod P ).

5. The verifier accepts if all the proofs passed.

Lemma 3.7. Assume that the dimensions and bounds satisfy the following con-
ditions:

– For vectors in S we have bi ≤ β/
√

30, and for vectors in L we have 8b∗/
√

b∗ ≤
β.

– For all i, bi ≤ P/45ki and b′
i ≤ P/45di.

Then the protocol is correct ZKPOK, proving that bi = siAi + ei + xi mod P
holds for some ‖si‖ ≤ bi and ‖ei‖ ≤ b′

i. The size gap for both the si’s and ei’s
is γ :=

√
337/30 · (1 + 16φ

b∗ ) ≤ 3.36(1 + 20√
b∗ ).

Proof. ZK follows from the ZK of all the components. For completeness, first
note that since the honest prover has si ≤ bi/γ and si ≤ b′

i/γ then by Corollary
3.2 the prover only aborts in Step 3 with negligible probability.

We also need to show that the bounds used in Step 4A satisfy the constraints
from Lemma 3.6. As we have ms + 2ml projected vectors ui,vi ∈ Z

256
P , we need

to ensure that the bounds b̂i, b̂
hi
i , b̂lo that are used in the exact-smallness proofs

do not exceed
√

P/
(√

2 · 2500 · 260
√

ms + 2ml

)
= β. For vectors in S we have

bi ≤ β/
√

30 and therefore b̂i ≤ √
30bi ≤ β. For vectors in L, recall that we set

φ = 
√b∗ · 30/64� to get b̂hi
i ≥ b̂lo, and since b′

i ≤ b∗ we get:

b̂lo ≤ b̂hi
i ≤ (

√
30 b′

i/φ + 8)/γ2 ≤ (
√

30 b∗ + 8φ)/φ

(
√

30 b∗ + 16φ)/(
√

30 b∗)

=
√

30 b∗ + 8φ√
30 b∗ + 16φ

·
√

30 b∗

√b∗ · 30/64�

≤ (b∗/b∗) · 8
√

b∗ = 8b∗/
√

b∗ ≤
√

P/(
√

2 · 2500 · 260 · √ms + 2ml).
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It remains to prove soundness. Due to the proofs in Step 4 we can extract con-
crete si,xi,ui, vhi

i ,vlo
i even from cheating provers. For each i, we can therefore

define ei := bi−siAi−xi mod P ∈ [±P/2]di (so the constraint bi = siAi+ei+xi

(mod P ) holds by definition). All we need to show, then, is that ‖si‖ ≤ bi and
‖ei‖ ≤ b′

i.
Due to constraint 4C, it holds by definition of ei that (φvhi + vlo) = eiR

′
i

(mod P ). Letting vi := φvhi+vlo, the bounds that we proved on the size of ‖vhi‖
and ‖vlo‖, together with the setting γ2 = 1 + 16φ/(

√
30b∗) ≥ 1 + 16φ/(

√
30b′

i),
imply that

‖vi‖ ≤ φb̂hi
i + b̂lo = (

√
30 b′

i + 8φ)/γ2 + 8φ/γ2 ≤
√

30 b′
i + 16φ

1 + 16φ/(
√

30b′
i)

=
√

30b′
i.

Since bi ≤ P/45ki and b′
i ≤ P/45di then we can use Corollary 3.3. By this

corollary, it must be the case that ‖si‖ ≤ bi and ‖ei‖ ≤ b′
i for all i, or else we

would only have negligible probability of getting ‖ui‖ ≤ bi

√
30 or ‖vi‖ ≤ b′

i

√
30.

This completes the proof.

Using Different φi for Different LWE Equations. The protocol above uses the
same radix φ for all the “large” vectors, adding an extra factor of b∗/b∗ in
the conditions of Lemma 3.7. In our application this factor does not make a
difference, but it can be avoided by using a different radix φi = 
√b′

i · 30/64�
for splitting the i’th “large” vector vi. This would have the effect of only requiring
8
√

b∗ ≤ β (rather than 8b∗/
√

b∗ ≤ β).

Sharing LWE Secrets Across Instances. When using the proof above in our
protocol, we often need to prove multiple LWE instances for the same LWE
secret. For example the same secret key is used in both the proof of key generation
and the proof of decryption.

In this case, the prover will only send a single commitment to that LWE secret
s, the verifier will only send a single challenge matrix R, and the parties will only
run a single exact-smallness proof for u = sR in Step 4A and a single instance
of the linear proof for it in Step 4B. On the other hand, they will run a separate
instance of the proof in Step 4C for each LWE relation. The bounds will remain
exactly as in Lemma 3.7 (although in this case we may have ms + 2ml < 2m).

Proofs for Module-LWE. As mentioned in Sect. 2.4, our implementation
actually uses Module-LWE over a low dimension extension field FP � rather than
over the integers (specifically we use � = 2).

The proofs-of-smallness protocols above can easily be extended to this case,
treating b = sA + e (mod q) as an equation over the FP � , which can be written
as B = SA′ + E (mod P ) in matrix notation over the integers.

Given A′ and B, every entry in E can be expressed as an affine expression in
the entries of S, and moreover, the entries in S are all known linear combinations
of the (representation over Zp of) s. We can therefore arrange the entries of E

in a vector ẽ, and get a new equation over the integers b̃ = sÃ + ẽ (mod P ),
which we can prove using the protocol above.
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4 Implementation and Performance

In the long version [25] we describe how to put the techniques from the pre-
vious sections together into a PVSS scheme. We implemented the components
above in C++, with operations in the Curve 25519 using libsodium and opera-
tions in FP 2 using NTL. The implementation is available under MIT license from
https://github.com/shaih/cpp-lwevss. Our implementation is still quite naive,
operating single-threaded, and making direct call to the exponentiation routines
of libsodium without any optimizations for multi-exponentiations.

We run this program on an old server that we had access to, featuring Intel
Xeon CPU, E5-2698 v3 running at 2.30GHz (which is a Haswell processor) with
32 cores and 250GB RAM. The software configurations included libsodium
1.0.18, NTL version 11.3.0, and GMP version 6.2.0, all compiled with gcc 7.3.1 and
running on CentOS Linux 7, kernel version 3.10.0.

The performance results with number of parties from 128 to 1024 are sum-
marized in Tables 1 and 2. In Table 1 we specify for each setting the time spent in
each of the high-level subroutine: key-generation, encryption, decryption, prov-
ing, and verifying. We also specify there the number of scalar-point multipli-
cations (denoted #exp) performed in each subroutine, and the total RAM con-
sumption. In Table 2 we specify for each setting the running-time spent in some of

Table 1. Performance results with 128–1024 parties, by high-level subroutine.

# of parties Keygen

time(sec)

Encrypt

time(sec)

Decrypt

time(ms)

Prove Verify RAM

# exp time(sec) # exp time(sec) usage

128 5.1 4.2 1.4 80392 22.9 23145 15.3 2.26GB

256 5.2 4.4 1.4 82608 23.7 23451 15.9 2.73GB

512 5.2 5.0 1.4 84030 25.3 24063 17.4 3.74GB

1024 5.3 5.8 1.4 87524 28.2 24939 20.0 5.28GB

the lower-level subroutines: In particular the time spent by vector-matrix multi-
plication by the CRS matrix over Zq, and the time spend performing scalar-point
multiplications on the curve.

Table 2. Running time (seconds) with 128–1024 parties, by low-level subroutine.

# of parties Prover Verifier

multiply by

CRS

Point-scalar

multiply

Total time Multiply by

CRS

Point-scalar

multiply

Total time

128 15.2 9.6 32.2 6.1 2.8 15.3

256 15.3 9.9 33.3 6.1 2.8 15.9

512 15.8 10.1 35.5 6.4 2.9 17.4

1024 16.1 10.5 39.4 6.5 3.0 20.0

As can be seen in Table 2, only about 25–30% of the prover time and about
15% of the verifier time was spent performing scalar-point multiplications on

https://github.com/shaih/cpp-lwevss
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the curve. The reason is that the number of these curve operations is lin-
ear in the dimensions k, while the number of scalar multiplications modulo q
is quadratic (since we compute a few vector-matrix multiplications.) We also
note that switching to a structured CRS matrix (by moving to operations over
dimension-k extension field/ring and relying on ring-LWE) would have reduced
the multiply-by-CRS time, making it insignificant. Implementing this optimiza-
tion could yield an almost 2× speedup for the prover and about 1.5× speedup for
the verifier. It is clear from these tables that this PVSS scheme is quite feasible,
even for committees with many hundreds of parties and with our rather naive,
single-thread implementation.
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2. Agrawal, S., Stehlé, D., Yadav, A.: Towards practical and round-optimal lattice-
based threshold and blind signatures. IACR Cryptol. ePrint Arch. 2021, 381 (2021).
https://eprint.iacr.org/2021/381

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9, 169–203 (2015). https://doi.org/10.1515/jmc-2015-
0016, https://bitbucket.org/malb/lwe-estimator/src/master/

4. Bai, S., Lepoint, T., Roux-Langlois, A., Sakzad, A., Stehlé, D., Steinfeld, R.:
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Abstract. While it is well known that the sawtooth function has a
point-wise convergent Fourier series, the rate of convergence is not the
best possible for the application of approximating the mod function in
small intervals around multiples of the modulus. We show a different
sine series, such that the sine series of order n has error O(ε2n+1) for
approximating the mod function in ε-sized intervals around multiples
of the modulus. Moreover, the resulting polynomial, after Taylor series
approximation of the sine function, has small coefficients, and the whole
polynomial can be computed at a precision that is only slightly larger
than −(2n + 1) log ε, the precision of approximation being sought. This
polynomial can then be used to approximate the mod function to almost
arbitrary precision, and hence allows practical CKKS-HE bootstrapping
with arbitrary precision. We validate our approach by an implementation
and obtain 100 bit precision bootstrapping as well as improvements over
prior work even at lower precision.

1 Introduction

The work of [8,9] presented a new homomorphic encryption (HE) scheme for
approximate arithmetic (called the CKKS-HE scheme) over real/complex num-
bers. The CKKS-HE scheme was considerably more efficient than other schemes
for approximately evaluating arithmetic circuits and leveraged properties of
approximate arithmetic to achieve these efficiency gains. One of the key insights
was to treat the homomorphic encryption error as part of the approximate arith-
metic error, and, thus, no additional mechanism was required to round away
the homomorphic encryption error after decryption. The CKKS-HE scheme has
found many applications, among them privacy-preserving machine learning and
secure genome analysis (see [4,15–17,19,22] for some examples).

However, the initial CKKS-HE scheme was only capable of evaluating low-
depth circuits since it lacked a bootstrapping procedure to “refresh” the cipher-
text modulus to enable further homomorphic computation. This was remedied
when [7] introduced the first bootstrapping procedure for the CKKS-HE scheme.
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This involved viewing a ciphertext ct with a small modulus q as a cipher-
text with respect to the largest modulus qL and then homomorphically comput-
ing coefficient rounding modulo q to obtain a new ciphertext ct′ that encrypts
approximately the same message as ct with respect to a larger modulus q�,
enabling further homomorphic computation. Thus, a challenge here is to com-
pute the mod function homomorphically, which is not easily representable via an
arithmetic circuit. In fact, the mod function modulo q on the interval [−Kq,Kq]
for some integer K is not even a continuous function. However, [7] made the
clever observation that in the CKKS-HE scheme, we have an upper bound m on
the size of the message, which can be made much smaller than q. In this situa-
tion, we actually only need to be able to compute the mod function on points
in [−Kq,Kq] that are a distance at most m from a multiple of q. In this case,
the mod function is periodic with period q and is linear on each of the small
intervals around a multiple of q. Figure 1 shows the mod function along with the
small intervals for approximation.

- 20 - 10 10 20

- 4

- 2

2

4

Fig. 1. The mod function with modulus q = 10. The solid red lines represent the small
intervals on which we need to approximate. (Color figure online)

The work of [7] further observed that the mod function [t]q on these inter-

vals can be approximated via a scaled sine function S(t) = q
2π sin

(
2πt
q

)
. This

approximation introduces an inherent error that depends on the message upper
bound m. Let ε denote the ratio m

q . Then, it can be shown that

|[t]q − S(t)| ≤ 2π2

3
qε3.

If ε is small enough, then this error can be sufficiently small for use in boot-
strapping provided that S(t) can be well-approximated by a low degree poly-
nomial. The work of [7] along with several followup works [6,12] proceeded to
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provide methods of approximating this scaled sine function (or scaled cosine
function in the case of [12]) by a low-degree polynomial, which can then be
plugged into the bootstrapping procedure of [7]. However, due to the inher-
ent error between the mod function [t]q and the scaled sine function S(t), this
approach has a “fundamental error” that will occur regardless of how S(t) is
approximated. One of the problems with this is that in order for the error to be
O(1) (and, therefore, not destroy the message), m must be O(q2/3). This means
that we must begin bootstrapping while the size of the encrypted message is
considerably smaller than q, which is a source of inefficiency in the bootstrap-
ping procedure, particularly in applications that require high precision. An even
greater problem is that when homomorphically computing the mod function, we
must treat qI +m for some integer I as the input, which we refer to as the boot-
strapping plaintext. The issue with this is that if q is significantly larger than m,
then since the number of modulus bits “consumed” by each homomorphic mul-
tiplication of the mod function is the size of the bootstrapping plaintext, these
homomorphic multiplications will consume significantly more modulus bits than
normal homomorphic operations. Thus, it is inefficient to obtain high-precision
bootstrapping by simply increasing q to decrease ε. Instead, in order to obtain
high-precision bootstrapping, it is beneficial to obtain good polynomial approx-
imations to the mod function for fixed ε. An additional challenge to obtaining
high-precision bootstrapping is that the approximation to the mod function must
be representable by a low-degree polynomial. If the degree of the polynomial is
too high, evaluating it homomorphically may consume almost all of the cipher-
text modulus, leaving the ciphertext after bootstrapping incapable of performing
many homomorphic operations. Compounding this challenge is the fact that the
coefficients of the low-degree polynomial approximation to the mod function
must additionally be small. This is because if the coefficients are large, when
evaluating the polynomial, the basis polynomials must be computed to higher
precision to ensure the stability of the computation, since errors introduced by
approximate arithmetic are amplified by large coefficients.

The reason obtaining high-precision bootstrapping for CKKS-HE is impor-
tant is that one of the main applications for CKKS-HE is privacy-preserving
machine learning. However, many ML algorithms require high precision com-
putation in order to converge. This may be especially true during the learning
phase of neural networks, which involves back propagation and integer divi-
sion by private integers. Additional nonlinear steps involve pooling functions,
threshold functions, etc. Moreover, due to their high depth, computing these
ML algorithms homomorphically without bootstrapping is infeasible. Thus, for
privacy-preserving ML applications, high-precision bootstrapping is required.

Recently, the works of [18] and [13] were able to bypass the “fundamental
error” in the approximation of the mod function by a scaled sine function to
obtain higher-precision bootstrapping. [18] attempts to avoid the scaled sine
function by finding the optimal minimax polynomial of a fixed degree that
approximates the mod function via algorithmic search. They use a variant of
the Remez algorithm [21] to obtain an approximation to the optimal minimax
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polynomial of a given degree that approximates the modular reduction function
on the union of intervals containing points close to multiples of q. Unfortunately,
as observed by [18], the size of the coefficients of these polynomials are too large
to enable high-precision bootstrapping. They then show that by using a compo-
sition of sine/cosine and the inverse sine function and using the Remez algorithm
to algorithmically search for good polynomial approximations to these functions,
one can obtain higher-precision bootstrapping, but their bootstrapping method
has only been shown to obtain 40 bit message precision in the latest version
of their work. [13] avoids the “fundamental error” by finding direct polynomial
approximations of the mod function on small intervals around the modulus via
a new technique called modular Lagrange interpolation. The coefficients of these
polynomials were small enough to enable high-precision bootstrapping. How-
ever, the coefficients were still large enough that in order to evaluate the polyno-
mial approximations, one would need to operate at a higher precision than the
bootstrapping plaintext. Ultimately, this fact corresponded to the bootstrapping
procedure losing additional levels, since the computations during bootstrapping
were operating at a higher precision. The authors are able to obtain 67 bit pre-
cision bootstrapping in the latest version of their work.

1.1 This Work

In this work, we show how to obtain arbitrary precision bootstrapping via a
different method from that of [13] and more in line with the original sine function
approach of [7]. Instead of approximating the mod function directly, we first
approximate the mod function by a sine series and then approximate the sine
function by its Taylor series (more precisely, the Taylor series of eix). This is then
followed by a series of squarings to approximate the other terms in the sine series.
We show that the sine series converges to the mod function in small intervals
around the modulus. In particular, our sine series of order n has error O(ε2n+1)
for approximating the mod function in ε-sized intervals around multiples of the
modulus.

Thus, we avoid the fundamental error of the scaled sine approach and are able
to obtain an approximation with arbitrarily small error in the desired intervals.
Furthermore, the coefficients of the sine series are small (in fact, they have norm
<2). This, combined with the fact that the Taylor series expansion of sinx has
small coefficients, leads to a polynomial approximation of the mod function with
small coefficients. Due to these small coefficients, the whole polynomial can be
computed at a precision only slightly larger than (−2n − 1) log ε, the precision
of the approximation being sought.

We validate our approach by an implementation and obtain 100 bit precision
bootstrapping as well as improvements over prior work even at lower precision.
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1.2 Problem Overview

Here, we provide a brief overview of the challenges of approximating the mod
function for use in CKKS-HE bootstrapping. We provide a thorough overview of
the bootstrapping procedure in Sect. 3. The goal of CKKS-HE bootstrapping is
to take a ciphertext ct at the lowest level and bring it up to the highest level so
that homomorphic computation can continue. In other words, we wish to obtain
a ciphertext ct′ such that

〈ct, sk〉 mod q ≈ 〈ct′, sk〉 mod q�,

where q is the lowest level modulus and q� represents a higher level modulus.
Since errors accumulated during homomorphic computation are not eliminated
by decryption in CKKS-HE, the goal is not to reduce the error in the cipher-
text, but, rather, to increase the modulus so that more computations can be
performed. If one simply views the ciphertext ct as operating at the highest
level qL, then it follows that 〈ct, sk〉 mod qL = qI + m. The magnitude of I
can be upper bounded and m << q and, thus, the challenge then becomes to
compute mod q on small intervals near multiples of q (we defer additional com-
plications such as computing on slots vs. coefficients to Sect. 3). Since CKKS-HE
can compute homomorphic additions and multiplications, we need a polynomial
approximation to the mod function. However, there are three crucial criteria
that are relevant to the bootstrapping application.

– Error: The error of the approximation contributes additional error to the
message m, which, if large, will cause a loss in plaintext precision.

– Degree: The degree of the polynomial approximation determines the multi-
plicative depth required to evaluate it. A larger multiplicative depth corre-
sponds to losing more modulus levels and, thus, if too large, the polynomial
will not be able to be evaluated homomorphically.

– Coefficient Magnitude: The size of the coefficients of the polynomial
approximation determine the “evaluation precision” at which one must oper-
ate during bootstrapping. Larger coefficients correspond to a larger “eval-
uation precision” in order to maintain numerical stability, which, in turn,
corresponds to losing more modulus bits per level.

Thus, it is critical that we obtain good low-degree polynomial approxima-
tions to the mod function in small intervals around multiples of the modulus
that additionally have small coefficients. Moreover, as discussed previously, it is
important the ratio m/q = ε is not too small, since then the size of the bootstrap-
ping plaintext qI + m will be significantly larger than m, and homomorphically
evaluating the approximation to the mod function will consume a large number
of modulus bits. Thus, one can think of ε as fixed to be, say 2−10.

1.3 Sine Series

As mentioned previously, several prior approaches to CKKS-HE bootstrapping
approximated the mod function via a scaled sine function. For simplicity, we will
ignore the scaling for the moment and try to obtain a good approximation to
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the mod 2π function. Thus, prior works used sinx as an approximation of this
function and noted that, for |x| < ε, the error of approximation is O(ε3). It is
well-known that the Fourier series of the mod function (or sawtooth function)
converges everywhere except the discontinuities. Unfortunately, the rate of con-
vergence is too slow, and the Fourier series does not give a good approximation
when the number of terms is small. Instead, we will approximate the mod func-
tion by a different sine series such that it converges to the mod function near
multiples of the modulus very quickly. As a warmup, suppose we added a sin 2x
term to our approximation of the mod function. If we can determine coefficients
β1 and β2 such that the Taylor series expansion of β1 sinx+β2 sin 2x is x+x5p(x)
for some polynomial p(x), then for |x| < ε, the error of approximation will be
O(ε5), an improvement on sinx. Thus, looking at the x and x3 terms in the
Taylor series expansions of sinx and sin 2x, we wish to determine β1, β2 such
that β1 + 2β2 = 1 (so that the coefficient of x is 1) and β1 + 23β2 = 0 (so that
the coefficient of x3 is 0). This can be solved to yield β1 = 4/3, β2 = −1/6. This
intuition can then be extended to give an n-term sine series with error O(ε2n+1).
We will show that the βi’s are small and, thus, the resulting low-degree poly-
nomial approximation has small coefficients. Moreover, we will show that the
constants hiding in the big-O notation are reasonable, and the dependence on n
is minor.

1.4 On Approximating Arcsine

An alternative way to view our result is that having computed the periodic
function sinx, our sine series allows us to compute arcsin (of sinx) using an angle-
multiplication computation. In other words, since we showed above that x =
4/3sin x−1/6sin 2x+O(x5) (for small x, and hence small sin x), then equivalently
arcsin y = 4/3 y − 1/6 d(y) + O(y5), where d is a function such that d(sin x) =
sin 2x. However, d(sin x) is not a simple polynomial function of sinx (as opposed
to the easy double-angle formula for cosx), and this way of computing arcsin y
cannot use a simple polynomial of y. While good polynomial approximations
of arcsin y might exist (for small y), there seems no simple methodology to
obtain this. Instead, [18] use the Remez algorithm to obtain a best fit low degree
polynomial approximation of arcsin. This algorithmic approach has the drawback
that while the polynomial degree maybe small, the coefficients of the polynomial
output by Remez algorithm can be of arbitrary size. Fortunately, [18] report
that the coefficients are small enough to obtain 40-bit precision bootstrapping,
although it is not clear if this holds in general.

Our approach is different, as we utilize the potential of CKKS-HE to compute
on complex numbers. Thus, instead of first computing sinx and then its arcsin,
we first compute the periodic function eix (using its Taylor series approximation)
and then compute its logarithm. Thus, given that x = 4/3 sinx − 1/6 sin 2x +
O(x5), we also get that x = Im(4/3 eix − 1/6 e2ix) + O(x5) (for small x). Most
importantly, it is a polynomial in its argument (i.e. eix) with small coefficients.
Thus, this allows for an easy homomorphic computation.
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1.5 Organization

In Sect. 2, we formalize the above intuition and prove explicit error bounds for
the sine series approximation of the mod function. In Sect. 3, we overview the
bootstrapping procedure for CKKS-HE. In Sect. 4, we explain how to approx-
imate the sine series by a low-degree polynomial for bootstrapping. In Sect. 5,
we implement bootstrapping using our sine series approximation and give per-
formance metrics and comparisons with prior approaches.

2 Sine Series Approximation

In this section, we will show the following theorem and corollaries, giving a sine
series approximation to the mod function in small intervals around the modulus
that can be used for CKKS-HE bootstrapping.

Theorem 1. For every n ≥ 1, there exists a sequence of rational numbers
β1, ...βn such that for every ε, 0 < ε < 2/

√
n, for every |x| < ε,

∣∣∣∣∣x −
n∑

k=1

βk sin(kx)

∣∣∣∣∣ < e2 ∗ (n + 1) ∗ (ε/2)2n+1

Using the periodicity of the sine function, we immediately arrive at the fol-
lowing corollary.

Corollary 1. For every n ≥ 1, there exists a sequence of rational numbers
β1, ...βn such that for every ε, 0 < ε < 2/

√
n, for every integer m, for every x

such that |x − 2mπ| < ε,
∣∣∣∣∣(x mod 2π) −

n∑
k=1

βk sin(kx)

∣∣∣∣∣ < e2 ∗ (n + 1) ∗ (ε/2)2n+1

A further simple manipulation leads to the following scaled version of the
corollary.

Corollary 2. For every n ≥ 1, there exists a sequence of rational numbers
β1, ...βn such that for every ε, 0 < ε < 1

π
√

n
, for every integer q ≥ 1, for every

integer m, for every x such that |x − m ∗ q| < ε ∗ q,
∣∣∣∣∣(x mod q) − q

2π
∗

n∑
k=1

βk sin(2πk ∗ x/q)

∣∣∣∣∣ <
e2 ∗ q

2π
∗ (n + 1) ∗ (επ)2n+1

Determining the βi’s: To prove Theorem 1, for each n, we will determine the
rational numbers {βi}i∈[n]. In particular, these are not the same as the Fourier
coefficients of the sawtooth function, as we are focused on x that is potentially
much smaller than the period of the sawtooth function. Recall that we wish
to determine {βi}i∈[n] such that the resulting sine series has a Taylor series
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expansion of the form x + x2n+1p(x) for some polynomial p(x). In particular,
there are no terms of degree < 2n + 1 (except for x). These constraints give a
system of equations that can be solved to determine the βi’s.

We begin by formalizing this intuition. For every n > 0, for every sequence of
n distinct integers a = (a1, ..., an), let V (n)(a) denote the Vandermonde matrix
of a, i.e. it is the n × n matrix with the (i, j)-th element aj−1

i (for i, j ∈ [1..n]).
Define S(n)(a) to be the n × n matrix with the (i, j)-th element a2j−1

i , i.e. each
row is the odd powers of the elements of a. Note that the first column of this
matrix is just a. Also, define a related matrix Ŝ(n)(a) to be the n × n matrix
which is same as S(n)(a) except that the first column (i.e. a) is replaced by
(2n + 1)-th powers of a. In other words, the (i, 1)-th element of this matrix is
a
(2n+1)
i .

Let β = (β1, β2, . . . , βn) be an n-vector of rational numbers. For the sine
series approximation, we would like to determine β so that the transpose of the
matrix S(n)(a) multiplied by β is a vector with all entries zero except the first,
which is one. Since βi refers to the coefficient of the sin(aix) term in the sine
series, the above requirement ensures that when we Taylor expand each sine
term in the sine series about the origin (or a multiple of 2π) and sum the terms,
the resulting polynomial will be x + x2n+1p(x) for some polynomial p(x). Thus,
the x3, x5, . . . , x2n−1 terms in the Taylor series expansions of the sin(ix)’s cancel
out. We note that since our sine series will include sin x, sin 2x, sin 3x, . . . terms,
we will later instantiate a with (1, 2, . . . , n). The required condition is drawn
below.

⎛
⎜⎜⎜⎝

a1 a2 ... an

a3
1 a3

2 ... a3
n

...
a2n−1
1 a2n−1

2 ... a2n−1
n

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

β1

β2

...
βn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ (1)

Let di denote the (i, 1)-th minor of S(n)(a). In other words, the list {di}i is
the list of minors of the first column of S(n)(a).

Lemma 1.
βi = (−1)i+1 ∗ di

det(S(n)(a))
.

Proof. From the above equation, β is just the first column of the inverse of
(S(n)(a))T . Note that the (i, 1)-th element of the inverse of the transpose of
S(n)(a) is (−1)i+1 ∗ di divided by the determinant of S(n)(a).

We now give an explicit formula for the determinant of S(n)(a). We will also
give an explicit formula for the determinant of Ŝ(n)(a), which will be of use
later. We will use the well-known fact that the determinant of the Vandermonde
matrix is given by the following formula.

det(V (n)(a)) =
n∏

i=1

∏
1≤j<i

(ai − aj).
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Lemma 2. The determinant of the matrix S(n)(a) is
(

n∏
i=1

ai

)
∗

n∏
i=1

∏
1≤j<i

(a2
i − a2

j ).

The determinant of the matrix Ŝ(n)(a) is

(−1)n−1 ∗ det(S(n)(a)) ∗
n∏

i=1

a2
i .

Proof. We will first focus on the matrix S(n)(a). For computing the determinant,
for each row i, we get a contribution of a factor ai towards the determinant, and
the remaining matrix is then just a Vandermonde matrix with all powers of a2

i .
Thus,

det(S(n)(a)) =

(
n∏

i=1

ai

)
∗ det(V (n)(a′)),

where a′ = (a2
1, . . . , a

2
n). The result then follows from the well-known determi-

nant of Vandermonde matrices.
As for the claim for the matrix Ŝ(n)(a), first consider a modified matrix that

is obtained by moving the first column to the last. Since this can be accomplished
by (n−1) column exchanges, the determinant of the modified matrix is (−1)n−1

times the determinant of Ŝ(n)(a). Furthermore, the determinant of the modified
matrix is easily related to determinant of S(n)(a) by noting that i-th row in the
modified matrix is a2

i times the i-th row in S(n)(a).

We observe from the formula for the determinant of S(n)(a) that if the
sequence of integers a are in increasing order and lower bounded by one, then
the determinant of S(n)(a) is positive. We now show the following lemma, char-
acterizing the βi’s.

Lemma 3. For the matrix S(n)(a) with a set to the sequence of integers from
one to n,

β1 =
2n

n + 1
< 2

and, for i ≥ 2
|βi| < 1.

Moreover, the βi’s alternate in sign and decrease in magnitude as i increases.
That is,

|βi+1| < |βi|
for all i ∈ [n], β2j+1 > 0, and β2j < 0.
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Proof. We will show this using the formula for βi from Lemma 1. By definition,

di = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a3
1 a5

1 ... a2n−1
1

a3
2 a5

2 ... a2n−1
2

...
a3

i−1 a5
i−1 ... a2n−1

i−1

a3
i+1 a5

i+1 ... a2n−1
i+1

...
a3

n a5
n ... a2n−1

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Thus,

di =

⎛
⎝

n∏
j=1,j �=i

a2
j

⎞
⎠ ∗ det(S(n−1)(a′)),

where a′ is a with ai removed. Thus,

βi = (−1)i+1 ∗
(∏n

j=1,j �=i a2
j

)

ai ∗
(∏i−1

j=1(a
2
i − a2

j )
)

∗
(∏n

j=i+1(a
2
j − a2

i )
) .

We observe that every term in the above expression is positive except for (−1)i+1

and, thus, the βi’s alternate sign with β2j+1 > 0 and β2j < 0. It follows that

β1 =
2(n!)2

(n + 1)!(n − 1)!
=

2n

n + 1
< 2.

Moreover, for i ≥ 2,

|βi| =
1
i

∗ 2(n!)2

(2n)!
∗

(
2n

n + i

)

Observe that |βi+1| < |βi|. Moreover, since
(

2n
n+i

)
<

(
2n
n

)
for i ≥ 2, it follows that

|βi| <
2
i

≤ 1

for i ≥ 2.

Bounding the Error: A First Attempt. Having characterized the βi’s, we
now turn our focus to bounding the error between f(x) =

∑n
k=1 βk sin(kx) and

x for |x| < ε. We note that f(x) is an analytic function since it is the sum
of analytic functions and, therefore, its Taylor series converges to f(x). Thus,
taking the Taylor series expansion of f(x) around 0,

f(x) = x +
∞∑

m=2n+1

f (m)(0)
m!

xm.
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We can bound |x − f(x)| for |x| < ε using the Lagrange remainder term of the
2n-th Taylor polynomial of f(x). Thus,

|x − f(x)| =
∣∣∣∣
f (2n+1)(ξ)
(2n + 1)!

x2n+1

∣∣∣∣
for some real number ξ between 0 and x. We have that

f (2n+1)(x) = ±
n∑

k=1

βkk2n+1 cos(kx).

Upper bounding f (2n+1)(ξ) gives

|x − f(x)| <

n∑
k=1

|βk|k2n+1 |x2n+1|
(2n + 1)!

.

By Lemma 3, βk < 2/k, which gives

|x − f(x)| < |x2n+1| ∗ 2
(2n + 1)!

∗
n∑

k=1

k2n.

This then gives an upper bound of ε2n+1 ∗ 2∗n∗n2n

(2n+1)! , and no better than ε2n+1 ∗
2∗n2n

(2n+1)! ≈ (ε/2)2n+1 ∗ e2n/(
√

π(n + 1) ∗ n) However, we will now show that a
more sophisticated, yet elementary, approach that improves upon this bound by
approximately a factor of e2n, essentially giving us an upper bound of (ε/2)2n+1.

A Better Bound via the Alternating Series Test. To obtain a better error
bound, we will show that the Taylor series expansion of our sine series satisfies
Leibniz’s alternating series test. This will enable us to bound the error of the
sine series f(x) from the mod function by the (2n + 1)−th term in the Taylor
series expansion (the first nonzero term after x). We can write the Taylor series
expansion of f(x) as x − ∑∞

m=n+1(−1)m ∗ bm, where

bm =
n∑

j=1

βj ∗ (jx)2m−1

(2m − 1)!
. (2)

To bound the error, we will show, for any x in the domain of approxima-
tion, that the series

∑∞
m=n+1(−1)m ∗ bm satisfies the alternating series test. The

alternating series test requires that the bm satisfy the following three conditions.

1. limm→∞ bm = 0
2. All bm are positive (or all bm are negative)
3. |bm| ≥ |bm+1| for all natural numbers m ≥ n + 1.

Theorem 2. Alternating Series Test [Leibniz]. If the series above satisfies the
alternating series test then

∑∞
m=n+1(−1)m ∗ bm converges. Moreover, for all

k ≥ 0, ∣∣∣∣∣
∞∑

m=n+1

(−1)m ∗ bm −
n+1+k−1∑
m=n+1

(−1)m ∗ bm

∣∣∣∣∣ ≤ |bn+1+k|.
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We will show the following lemma.

Lemma 4. (Main Lemma) For every |x| < 2/
√

n, the above series given by
bm satisfies the Leibniz alternating series test.

A Naive Proof Attempt. We briefly explain why the following naive approach
to proving this lemma fails. For simplicity, assume that n is odd, so that βn is
positive and βn−1 is negative by Lemma 3. Then, the naive approach would be
to prove that

βn ∗ (n ∗ x)2m−1

(2m − 1)!
+ βn−1 ∗ ((n − 1) ∗ x)2m−1

(2m − 1)!

(and similarly paired other terms) decreases as m increases, starting from m =
n + 1. Since powers of n ∗ x are larger than powers of (n − 1) ∗ x, this would
eventually be true for some m > n + 1. However, since |βn| < |βn−1| and βn−1

is negative (see Lemma 3), this is not necessarily true at m = n + 1. In fact,
calculations show that this indeed fails for a few terms beyond m = n+1. Thus, a
more advanced approach is required to prove that the Leibniz test holds starting
at m = n + 1. We will show that the test holds for |x| < 2/

√
n.

Preparing for the Proof. We prove Lemma 4 in the next subsection, but first
we show several additional lemmas which will assist us in the proof of Lemma 4.

Define V (n,k)(a) to be an n × n matrix, which is same as the Vandermonde
matrix V (n)(a) except the last column is replaced by the (n − 1 + k)-th powers
(instead of the (n − 1)-th powers).

Let hk(a) be the complete homogeneous symmetric polynomial of degree k in
a given by

hk(a) =
∑

1≤i1≤...≤ik≤n

ai1 ∗ · · · ∗ aik
.

The base polynomial h0(a) is taken to be one. Note that the polynomials hk(a)
differ from the elementary symmetric polynomials ek(a), since in the latter the
summation is taken over 1 ≤ i1 < ... < ik ≤ n. The following lemma is a
consequence of the well known generating series of the complete homogeneous
symmetric polynomials, but we give a simple proof for completeness in Supple-
mentary Material A.

Lemma 5. For any k ≥ 0, any a of length n > 0, and an independent formal
variable t,

k∑
j=0

hj(a)tj =
n∏

i=1

k∑
j=0

(tai)j mod tk+1.

Lemma 6. For k ≥ 1, the determinant of the matrix V (n,k)(a) is

det(V (n)(a)) ∗ hk(a)
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Proof. Fix any k ≥ 1. Consider an n × n matrix M which is same as V (n,k)(a)
except that the last row is powers of an indeterminate x. In other words the last
row is (x0, x1, ..., xn−2, xn−1+k). Let a′ stand for the (n − 1) length truncation
of a. Treating the elements of a′ as scalars, the determinant of the matrix M
is a polynomial in x of degree n − 1 + k. Call this polynomial f(x). Since the
determinant of a matrix with two equal (or even scaled by a constant) rows is
zero, the polynomial f(x) has roots a′. Thus,

f(x) = g(x) ∗
n−1∏
i=1

(x − ai), (3)

where g(x) is a polynomial (to be determined) of degree k . However, f(x), the
degree n − 1 + k polynomial, has zero coefficients for all monomials xj with j in
[n − 1..n − 1 + k − 1]. If we introduce a new formal variable t = 1/x, then the
above Eq. (3) can be written as

f̃(t) = g̃(t) ∗
n−1∏
i=1

(1 − tai). (4)

where f̃ (resp. g̃) is the polynomial f (resp. g) with coefficients reversed. Note, all
the zero coefficients of f(x) described above imply that coefficient of monomial
tj in f̃(t) is zero for every j in [1..k], and the constant term in f̃(t) is fn−1+k,
where fn−1+k denotes the coefficient of xn−1+k in f(x). Thus, f̃(t) = fn−1+k

mod tk+1. Considering Eq. (4) modulo tk+1, we get

fn−1+k ∗
n−1∏
i=1

(1 − tai)−1 = g̃(t) mod tk+1. (5)

The above equation is well-formed as inverse of (1 − tai) modulo tk+1 is well-
defined. Indeed, it is easy to check that (1 − tai) ∗ ∑k

j=0(tai)j is 1 mod tk+1.
Hence, we also get,

fn−1+k ∗
n−1∏
i=1

k∑
j=0

(tai)j = g̃(t) mod tk+1. (6)

Since g(x) is of degree k, g̃(t) has degree at most k as well. Denote by g̃j the
coefficient of tj in g̃j , which is same as gk−j . Then, by comparing coefficients of
tj on both sides, by Lemma 5 we get that for each j ∈ [0..k],

gk−j = g̃j = fn−1+k ∗ hj(a′).
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Thus, having determined g(x), we also have f(x) by (3). Letting x = an, then
we get

det (V (n,k)(a)) = f(an)

=
n−1∏
i=1

(an − ai) ∗ g(an)

=
n−1∏
i=1

(an − ai) ∗ fn−1+k ∗
k∑

j=0

ak−j
n hj(a′)

=
n−1∏
i=1

(an − ai) ∗ fn−1+k ∗ hk(a)

= det(V (n)(a)) ∗ hk(a),

where the last equality follows by noting that the top coefficient of f(x), i.e.
fn−1+k is the (n, n)-minor of V (n,k)(a), which is same as the (n, n)-minor of
Vandermonde matrix V (n)(a), which, in turn, is (−1)n+n ∗ det V (n−1)(a′).

Lemma 7. For a = (12, 22, 32, . . . , n2), for all k ≥ 0,

hk+1(a)
hk(a)

≤ n3.

Proof. First note that hk+1(a) =
∑n

i=1 ai ∗ hk(a(i)), where a(i) is a restricted to
first i entries. Since ai are monotonically increasing, it follows that hk+1(a) ≤
n ∗ an ∗ hk(a), from which the claim follows.

Lemma 8. For the matrix S(n)(a) with a set to the sequence of integers from
one to n, let βi be given by the formula in Lemma 1. Then,

n∑
i=1

βi ∗ i2n+1 = (−1)n−1 ∗ (n!)2.

Proof. With a set to the sequence of integers from one to n,
∑n

i=1 βi ∗ i2n+1 is
the inner product of the first column of Ŝ(n)(a) and β. In the following, the i-th
column of a matrix M will be denoted by Mi, and the (i, j)-th entry of M will
be denoted by Mi,j . Thus, using Lemma 1, we have
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n∑
i=1

βi ∗ i2n+1 = β � · (Ŝ(n)(a))1

=
1

det(S(n)(a))
∗

n∑
i=1

(−1)i+1di ∗ (Ŝ(n)(a))i,1

=
det(Ŝ(n)(a))
det(S(n)(a))

= (−1)n−1 ∗
n∏

i=1

a2
i

= (−1)n−1 ∗ (n!)2,

where we have used Lemma 2 in the second-to-last equality.

2.1 Alternating Series Test (Proof of Main Lemma)

Having shown Lemmas 6, 7, and 8, we are now ready to prove the main lemma
(Lemma 4).

Proof. (of Lemma 4) In this proof, we will fix a to be the sequence of integers
from 1 to n. Note, each bm can be written as bm = cm ∗ x2m−1

(2m−1)! , where cm =∑n
j=1 βj ∗ j2m−1. We now prove the three properties required of bm so that the

series
∑∞

m=n+1(−1)m ∗ bm satisfies the alternating series test.

1. We show that bm goes to zero, as m goes to infinity. Since n is fixed and all βi

are bounded by Lemma 3, we just need to show that for every x in the domain
of approximation, for every j ∈ [n], (jx)2m−1

(2m−1)! goes to zero as m goes to infinity.
Since the domain of approximation is bounded, |x| itself is bounded. Since,
k! ≥ e(k/e)k, the above is upper bounded by e−1 ∗ (jx ∗ e/(2m − 1))2m−1,
which goes to zero as m goes to infinity.

2. To show that all bm are positive (or all are negative), it suffices to show that
all cm are positive (or all cm are negative). As a warmup, we first focus on
cn+1 (i.e. m set to n+1). By Lemma 8, this quantity is simply (−1)(n−1)∗(n!)2

and hence is positive if n is odd, and negative when n is even.
Let Ŝ(n,k)(a) be the matrix that is the same as Ŝ(n)(a) except that the first
column is replaced by the (2n − 1 + 2k) powers of a. Thus, Ŝ(n,1)(a) is same
as Ŝ(n)(a). As in the proof of Lemma 8,
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cn+k =
n∑

i=1

βi ∗ i2n−1+2k

= β � · (Ŝ(n,k)(a))1

=
1

det(S(n)(a))
∗

n∑
i=1

(−1)i+1di ∗ (Ŝ(n,k)(a))i,1

=
det(Ŝ(n,k)(a))
det(S(n)(a))

To give an expression for det(Ŝ(n,k)(a)), we will use Lemma 6. To use
this lemma, we first relate Ŝ(n,k)(a) to V n,k(a). Recall, the first column of
Ŝ(n,k)(a) is (2n − 1 + 2k) powers of a. Also, for other columns, the (i, j)-th
entry is a2j−1

i (2 ≤ j ≤ n). Since k ≥ 1, each entry in the i-th row has at least
one power of ai, and hence the determinant of Ŝ(n,k)(a) is

∏n
i=1 ai times the

determinant of a new matrix M , which has as its first column (2n+2(k − 1))
powers of a, and all other columns as 2(j − 1)-th powers of a (2 ≤ j ≤ n).
Let a(2) be the sequence a, but with each entry squared. Then this matrix
M is same as the matrix V n,k−1(a(2)) but with the first and last column
exchanged. Thus, using Lemma 6, it follows that det(Ŝ(n,k)(a)) is

(−1)n−1 ∗ hk−1(a(2)) ∗
n∏

i=1

∏
1≤j<i

(a2
i − a2

j ) ∗
n∏

i=1

a3
i ,

From Lemma 2, we also have that the determinant of S(n)(a) is
(

n∏
i=1

ai

)
∗

n∏
i=1

∏
1≤j<i

(a2
i − a2

j ).

Recalling that ai is just i, we thus have that for k ≥ 1, all cn+k are positive
if n is odd, and all cn+k are negative if n is even.

3. We now show that |bm| ≥ |bm+1| for all m ≥ n + 1. We have,

|bm+1|
|bm| =

(−1)n−1 ∗ hm+1−(n+1)(a
(2)) ∗ ∏n

i=1

∏
1≤j<i(a

2
i − a2

j ) ∗ ∏n
i=1 a3

i ∗ x2m+1

(2m+1)!

(−1)n−1 ∗ hm−(n+1)(a
(2)) ∗ ∏n

i=1

∏
1≤j<i(a

2
i − a2

j ) ∗ ∏n
i=1 a3

i ∗ x2m−1

(2m−1)!

=
hm+1−(n+1)(a

(2)) ∗ x2m+1

(2m+1)!

hm−(n+1)(a
(2)) ∗ x2m−1

(2m−1)!

=
hm+1−(n+1)(a

(2))

hm−(n+1)(a
(2))

∗ x2

2m(2m + 1)

≤ n3 ∗ x2

2m(2m + 1)
(by Lemma 7)

≤ 1 (for |x| < 2/
√

n).

We are now ready to prove Theorem 1.
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Proof. (of Theorem 1) Let βk, for k ∈ [1..n], be defined as in Eq. (1) with a set
to the sequence of numbers from 1 to n. From the Taylor series expansion of the
sine series, which converges since the sine series is analytic, it follows that

n∑
k=1

βk sin(kx) = x −
∞∑

m=n+1

(−1)m ∗ bm,

where bm are defined in Eq. (2), i.e. bm =
∑n

k=1 βk ∗ (kx)2m−1

(2m−1)! . Thus, by Lemma 4
and Leibniz’s alternating series test (Theorem 2), we have for |x| < 2/

√
n,

∣∣∣∣∣x −
n∑

k=1

βk sin(kx)

∣∣∣∣∣ ≤ |bn+1|

=

∣∣∣∣∣
n∑

k=1

βk ∗ (kx)2n+1

(2n + 1)!

∣∣∣∣∣

=
|x2n+1|

(2n + 1)!
∗

∣∣∣∣∣
n∑

k=1

βk ∗ k2n+1

∣∣∣∣∣

=
(n!)2

(2n + 1)!
∗ |x2n+1|,

where we used Lemma 8 in the last equality.
Restricting |x| < ε, Theorem 1 follows from the fact that

(n!)2

(2n + 1)!
ε2n+1 <

((n + 1)/e)2n+2e2

((2n + 1)/e)2n+1
ε2n+1

= e ∗ (n + 1) ∗
(

n + 1
2n + 1

)2n+1

∗ ε2n+1

= e ∗ (n + 1) ∗
(

2n + 2
2n + 1

)2n+1

∗
( ε

2

)2n+1

< e2 ∗ (n + 1) ∗
( ε

2

)2n+1

,

where we have used the fact that

(n

e

)n

< n! <

(
n + 1

e

)n+1

e

for all n ≥ 1 and that (1 + 1/n)n < e for all n ≥ 1.

3 Application to Bootstrapping for Approximate HE

In Sect. 1, we explained that approximating the mod function on small inter-
vals around the modulus is a necessary step in bootstrapping for approximate
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homomorphic encryption (CKKS). In this section, we will briefly overview the
bootstrapping procedure for the CKKS-HE scheme introduced in [7].

Notation and Necessary Preliminaries: Let M be a power of 2 and ΦM (X) =
XN + 1 be the Mth cyclotomic polynomial of degree N = M/2. Let R =
Z[X]/ΦM (X). For an integer q, let Rq = Zq[X]/ΦM (X). Using the canonical
embedding σ, it is possible to map an element m(X) ∈ R into C

N by eval-
uating m(X) at the Mth primitive roots of unity. Using the same canonical
embedding, it is also possible to define an isometric ring isomorphism between
S = R[X]/ΦM (X) and C

N/2, where for an element m(X) ∈ S, it has the canon-
ical embedding norm ||m||can∞ = ||σ(m)||∞.

Overview of the CKKS-HE Scheme: The CKKS-HE scheme [9] is an HE scheme
for approximate arithmetic over real/complex numbers. Its security is based on
the ring-LWE (RLWE) assumption. The message space of the scheme is polyno-
mials m(X) in R with ||m||can∞ < q/2 for a prime q. Using the canonical embed-
ding and appropriate scaling, one can map a vector in C

N/2 of fixed precision into
R. The fact that canonical embedding induces an isometric ring isomorphism
between S and C

N/2 implies that operations on the message space R map to
the same operations performed coordinate-wise on C

N/2. Thus, the CKKS-HE
scheme supports packing N/2 complex numbers into a single plaintext and oper-
ating on them in single instruction multiple data (SIMD) manner. Please refer
to [9] for more details on this encoding procedure. We will refer to m(X) ∈ R
as the plaintext/message and the corresponding vector in C

N/2 as the plaintext
“slots.”

A ciphertext ct encrypting a message m ∈ R is an element of R2
q�

for some
� ∈ {0, . . . , L}. � refers to the “level” of the ciphertext. In [9], q� = p� ∗ q for
primes p and q. However, q� can be set in other ways (such as via an RNS
basis [8]). The decryption structure is 〈ct, sk〉 mod q� = m + e for some small
error e ∈ R. Observe that there is no way to remove e and some of the least
significant bits of m are unrecoverable. A fresh ciphertext is generated at the
highest level L. Homomorphic operations increase the magnitude of the error and
the message and one must apply a rescaling procedure or modular reduction
to bring a ciphertext to a lower level to continue homomorphic computation.
Eventually, a ciphertext is at the lowest level (an element of R2

q), and no further
operations can be performed.

Bootstrapping Procedure for CKKS-HE: [7] introduced the first bootstrapping
procedure for the CKKS-HE scheme. Subsequent works [5,6,11,12] improved
various aspects of bootstrapping, but the overall procedure remains the same.
The goal is to take a ciphertext at the lowest level and bring it up to a higher
level so that homomorphic computation can continue. Thus, given a ciphertext
ct at the lowest level, we want to obtain another ciphertext ct′ such that

〈ct, sk〉 mod q ≈ 〈ct′, sk〉 mod q�
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for some � > 1. For simplicity in the following, we will include the starting
decryption error in the message m. That is, we will assume that 〈ct, sk〉 mod q =
m.

Bootstrapping is done via the following sequence of steps:

1. Modulus Raising: By simply considering ct as a ciphertext at the highest
level, it follows that 〈ct, sk〉 mod qL = qI + m for some I ∈ R.

2. Coefficients to Slots: We need to perform the modular reduction on the
polynomial coefficients of t = qI + m. However, recall that homomorphic
computations evaluate coordinate-wise on the plaintext “slots,” not the poly-
nomial coefficients. Thus, we need to transform our ciphertext so that the
polynomial coefficients are in the “slots.” This can be done by evaluating a
linear transformation homomorphically.

3. Compute the Mod Function: We need a procedure to com-
pute/approximate the mod function homomorphically. This is a significant
challenge since we can only compute arithmetic operations homomorphically.

4. Slots to Coefficients: Finally, we need to undo the coefficients to slots step.
This can be done by homomorphically evaluating the inverse of the previous
linear transform.

Observe that if we can approximate the mod function, then the above pro-
cedure will give us a ct′ at some higher level � that decrypts to m + e for some
small error e. Since we are dealing with approximate arithmetic, this error from
bootstrapping can be absorbed into the other errors that occur during approxi-
mate arithmetic and homomorphic evaluation. We can upper bound |I| < K for
some integer K so that we only need to approximate the mod function on the
interval [−Kq − m,Kq + m], where we have overloaded notation to make m an
upper bound on the size of the message.

4 Evaluating the Sine Series Approximation of the Mod
Function

In order to use the sine series approximation of the mod function given by
Corollary 2 for bootstrapping, we must approximate the sine series by a low-
degree polynomial, since the CKKS-HE scheme cannot compute sine directly.
In this section, using our sine series approximation of the mod function and the
well-known Taylor series expansion of the sine function, we will give explicit
low-degree polynomial approximations of the mod function on small intervals
around multiples of the modulus to (almost) arbitrary precision. The resulting
polynomials have small coefficients, as the Taylor series of the sine function has
small coefficients, and the sine series itself has small coefficients by Lemma 3.
Recall that small coefficients are beneficial in contrast to large coefficients, as in
the latter case one is forced to compute the different power monomials to much
higher precision in order to obtain an accurate polynomial evaluation. This,
in turn, causes the computational precision that we must operate at during
bootstrapping to be higher, which causes each “level” to consume more bits of
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the modulus. We next explain how we evaluate the sine series and then determine
the degree and evaluation precision required for the Taylor series approximation
of sine.

Evaluating the Sine Series: To evaluate the sine series, we first compute a Taylor
series approximation of eix (recall that CKKS-HE allows us to compute over
complex numbers). We can obtain an approximation to sinx by extracting the
imaginary part. The other higher order sin kx terms can be obtained conveniently
by computing eikx from eix and extracting the imaginary part. As for computing
the Taylor series approximation of the sine function, note that the domain of
approximation is small intervals around �q, where � ∈ [−K..K] and q is the
modulus. The bound K comes from the bound on the Hamming-weight of the
secret key and is typically 12 to 32. If our input is X = x + �q for some small
offset x and � ∈ [−K..K], our goal is to compute ei(2π(x+�q)/q). This then requires
a Taylor series that has powers of 2π(x + �q)/q, which can be more than one.
Earlier works noted that one can instead first compute ei(2π(x+�q)/(q2r)) using a
Taylor series expansion (for some r > 0) and then compute ei(2π(x+�q)/q) using
r squarings.

Determining the Degree of the Taylor Series Approximation: Next, we must
determine the degree to which we compute the Taylor series expansion of
e2πi(x+�q)/(q2r). The Taylor series expansion is

∞∑
m=0

(2πi(x + �q)/(q2r))m/m!.

We now determine for which range of values of (x+�q) the above restricted to the
sine terms, i.e. the imaginary terms or odd powers of x, satisfies the alternating
series test (so that the partial series error can be bound by the absolute value of
the next missing term). Thus, we need to determine the conditions under which

1 >
(2π|(x + �q)|/(q2r))(2m+1)/(2m + 1)!
(2π|(x + �q)|/(q2r))(2m−1)/(2m − 1)!

=
(2π|(x + �q)|/(q2r))2

(2m + 1)(2m)

Assuming x << q and 2r ≈ K + 1, the above holds when m > π. Thus, if the
Taylor series is computed partially up to any degree 2m − 1, then the error in
the approximation of sine is at most

(2π)2m+1/(2m + 1)! < (2πe/(2m + 1))2m+1,

which is at most 2−(2m+1) if we require that m > 2πe.
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Thus, having computed sin(2π(x+�q)/(q2r)) partially up to m terms, we now
investigate the error for the higher order terms in the sine series, i.e. sin(2πk(x+
�q)/q) for k ≥ 1. If the error in the approximation of the original term is small,
say δ << 1, then the error for this k-th term is approximately k2r ∗ δ (as it
requires r + log k squarings). Thus, the total error in the sine series due to the
Taylor series approximation of

∑n
k=1 βk sin(2πk(x + �q)/q) is upper bounded in

absolute value by
∑n

k=1 |βk|∗k2rδ, which is approximately (K+1)δ
∑n

k=1 |βk|∗k,
which is at most n2(K + 1)δ by Lemma 3, which, in turn, is at most n2(K +
1)2−(2m+1).

Finally, using Corollary 2, the total error in the mod function approximation,
for an input X = x + �q with � ∈ [−K..K] and |x| < ε ∗ q for any ε < 1/π

√
n is

(q/2π) ∗ n2(K + 1)2−(2m+1) +
e2 ∗ q

2π
∗ (n + 1) ∗ (ε ∗ π)2n+1.

Thus, it makes sense to have m about −n log2 (ε ∗ π) (which is typically greater
than 2πe for n > 1; if this value is less than 2πe, then the above analysis must
be redone for potentially a larger r).

Determining the Evaluation Precision: We must also determine the precision to
which to evaluate the polynomials. Setting Y = 2π(x + �q)/(q2r), we observe
that the degree m Taylor expansion of e2πi(x+�q)/(q2r) is simply the polynomial

m∑
j=0

(iY )j/j!.

Recall that we have chosen r so that |Y | < 1. Moreover, setting cj = ij/j!,
the polynomial becomes

∑m
j=0 cjY

j , where |cj | ≤ 1. We need to determine the

precision to which we evaluate the powers Y j (we will first evaluate the Y 2j

’s
by repeated squaring and then use these powers to evaluate all intermediate
powers). Let Y j denote the exact values and let Ỹ j denote the approximated
values (to some precision to be determined). Suppose we evaluate the powers Y j

up to w bits (and simply chop off the additional bits). Then, |Ỹ − Y | < 2−w.
Computing Ỹ 2 by squaring Ỹ and rounding, we have that Ỹ 2 differs from Y 2

by at most ≈ 2 ∗ 2−w. To see this, note that Ỹ = Y ± δ, where δ < 2−w. Then,
Ỹ 2 = Y 2 ± 2Y δ + δ2 < Y 2 ± 2δ + δ2 ≈ Y 2 ± 2 ∗ 2−w. By an analogous argument,
it follows that Ỹ j differs from Y j by at most approximately j ∗ 2−w. Thus, the
error of

∑m
j=0 cj Ỹ

j is bounded by

m∑
j=0

j ∗ 2−w ∗ 1
j!

=
m∑

j=1

2−w

(j − 1)!
< e ∗ 2−w.

Thus, to obtain error 2−d, it suffices to compute the powers Ỹ j to precision w
for w > d + log2 e, only slightly higher than the minimum precision d required
to obtain this approximation.
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In the above, we saw that having small coefficients cj (and coefficients that
decrease in magnitude as j increases) enabled the approximation of the polyno-
mial

∑m
j=0 cjY

j by evaluating the powers of Y to precision only a couple bits
larger than the minimum precision required for the desired error. This is crucial
during bootstrapping as a higher evaluation precision directly corresponds to
losing more bits of the modulus during the polynomial evaluation. In contrast,
suppose that the cj ’s were large and bounded in magnitude |cj | < 2k for some k.
Then, if the powers of Y are evaluated to precision w, the error of the polynomial
evaluation is bounded by

m∑
j=0

j ∗ 2−w ∗ 2k <
m(m + 1)

2
∗ 2k−w.

Thus, to obtain error 2−d, the powers of Y would need to be evaluated to pre-
cision w > d + k + 2 log m − 1. Note the additional dependence on both k and
the number of terms m.

5 Implementation

To demonstrate the applicability of our polynomial approximation to high pre-
cision bootstrapping for approximate homomorphic encryption, we updated the
bootstrapping procedure of the HEAAN library [1] to utilize our sine series during
the “Compute the Mod Function” step (see Sect. 3). Additionally, we updated
HEAAN to use the quadmath library, since we wanted to achieve bootstrapping
error smaller than the precision of a double. We ran our implementation1 using
a PC with an AMD Ryzen 5 3600 3.6 GHz 6-Core CPU.

Table 1 gives our bootstrapping results for sine series of various orders. As
before, ε represents the ratio p/q, where p is an upper bound on the size of
the message (including any errors associated from the approximate arithmetic
and prior homomorphic operations) and q is the size of the modulus prior to
bootstrapping. In Table 1, ε is set to 2−10. The Hamming weight of the secret
key is set to h = 256, so that on average K is about

√
h = 16. However, our

implementation can handle K as large as 31. qL denotes the modulus of the
largest level, which is the modulus of a fresh ciphertext prior to any homomorphic
operations. N denotes the ring dimension, which we increase as qL increases to
maintain 128-bit security [2,3,10]. Results in this table were obtained using 8
slots, and the dependence on a larger number of slots is reported below. q�′

denotes the modulus of the ciphertext after bootstrapping. The reported error
is the decryption error after performing bootstrapping. In other words, if the
decryption before bootstrapping would have resulted in message slot value M ,
then the decryption after bootstrapping would result in a message slot value M ′

such that |M ′ − M | ≤ βbs|M |. As can be seen from Table 1, for log2 p = 80
and log2 p = 100, the bootstrapping error is essentially zero. This is because the

1 The source code is available upon request.
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Table 1. High-Precision Bootstrapping Results for ε = 2−10. The Hamming weight of
the secret key is set to h = 256. The errors reported are for K up to 31.

Input Sine Modulus Ring Boot Modulus Error Runtime††

Precision† Series (Fresh) Dim. Prec. (After) (Boot.) (secs)

log2 p Order log2 qL N log2 q�′ βbs = err/p

30 2 1200 216 55 344 2−25 22

50 3 1600 216 75 531 2−45 32

60 4 2400 217 85 1008 2−54 119

80 5 2400 217 105 583 < 2−80 129

100 6 3000 217 125 843 < 2−100 167
†The modulus q� of the ciphertext prior to bootstrapping is p/ε. The number of
bits of q� is p − log ε = p + 10, and bootstrapping (computational) precision is
set to (p − log ε + log2 K) + 10.
††Includes runtime of “Coefficients to Slots” and “Slots to Coefficients” steps.
Number of slots fixed to be 8 so that the “Compute the Mod Function” step
dominates runtime. Results reported are from an AMD Ryzen 5 3600 3.6 GHz
6-Core CPU using quadmath, NTL and GMP software libraries

bootstrapping procedure is performed at a precision that is ten bits more than
the number of bits required to represent M + Kq (i.e. the value which needs to
be reduced mod q).

Recall that the sine series approach begins by approximating eix using a
Taylor series approximation, since CKKS-HE allows computation on complex
numbers. In this particular implementation, we approximated eix/K to degree
63 using the Paterson-Stockmeyer polynomial evaluation optimization [20] and
then performed log K squarings to obtain an approximation of eix. Below, we
report results for other variants for approximating eix.

We see that our methodology is capable of achieving high precision boot-
strapping, with the resulting message precision as large as 100 bits. Prior to our
work, the highest precision bootstrapping of CKKS was the recent work of [13]
which could achieve a resulting message precision of up to 67 bits. However, that
result was only for K = 12 and secret key Hamming weight h = 64, whereas
our 100 bit precision bootstrapping is for h = 256 and can handle K up to 31.
Observe that using a sparser key (in addition to weakening security) reduces
the number of intervals required for approximation, making the approximation
easier. Thus, we view our result as a substantial improvement for bootstrap-
ping in settings where high precision is required, such as the inference step of
a convolution neural network or even the learning stage of the neural network.
As mentioned earlier, since CKKS is for approximate arithmetic, it is only pos-
sible to have unlimited computation for stable computations that do not lose
precision. However, even such stable computations lose precision in early stages
prior to convergence. Thus, it is important to begin such computations with
high precision and, later, one can switch to smaller precision during the stable
regime.
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Table 2. Timing and Error Dependence on Number of Slots. In this table ε = 2−10,
log2 p = 80, and the sine series order is fixed to n = 5.

Num Input Sine Modulus Ring Boot. Modulus Error Runtime††

Slots Precision Series (Fresh) Dim. prec. (After) (Boot.) (secs)

log2 p Order log2 qL N log2 q�′ βbs = err/p

8 80 5 2400 217 105 583 < 2−80 129

16 80 5 2400 217 105 583 < 2−80 151

32 80 5 2400 217 105 583 2−72 178

64 80 5 2400 217 105 583 2−71 208

128 80 5 2400 217 105 583 2−69 269

256 80 5 2400 217 105 583 2−69 308

512 80 5 2400 217 105 583 2−68 484

1024 80 5 2400 217 105 583 2−66.5 847

2048 80 5 2400 217 105 583 2−65.5 1477
†† Includes runtime of “Coefficients to Slots” and “Slots to Coefficients” steps. For
all rows, the mod function evaluation time is almost the same at 82 secs

5.1 Time and Error Dependence on the Number of Slots

As the number of slots is increased, the time of the mod function evaluation step
during bootstrapping remains the same (assuming we use at most N/4 slots, so
that all the polynomial coefficients can be packed into a single ciphertext during
the “Coefficients To Slots” step). However, the linear transforms that send the
coefficients to slots and vice versa take a substantial hit since their runtime scales
with the number of slots. Since the linear transforms also involve more rotations,
key-switchings, multiplications by constants, and additions, for every doubling
of the number of slots, the bootstrapping error also increases proportionately.
However, since our error is so low, the error for a high number of slots still
remains low enough to be termed high-precision. This dependence of runtime and
bootstrapping error is reported in Table 2 for one particular parameter, where
the sine series is of order five. Observe that for 8 and 16 slots, our bootstrapping
method gives essentially no error. However, for a larger number of slots, the
error slowly increases as it is dominated by the error introduced during the
linear transform steps. We note that the runtime increases quite substantially as
the number of slots increases. This poor performance is due to the fact that the
implementation of the linear transform step used in the HEAAN library [1] scales
poorly as the number of slots increases. The work [6] showed how to improve the
runtime of the linear transform step at the cost of losing more ciphertext modulus
bits, but their implementation is not public. The work [5] also recently improved
the performance of the linear transform step further. It would be interesting to
have an implementation that combined our sine series approximation of the mod
function with the linear transform evaluation algorithms of [5].
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5.2 Comparison with Basic Sine and Other Variants

While the implementation results reported in Table 1 used a Taylor series approx-
imation of degree 63 of eix/K , the implementation in [1] instead used a degree
7 approximation of eix/K∗24 followed by 4 additional squarings. We investigated
if we could use a similar approach for the sine series, as the different order sine
terms are obtained by squarings of eix anyways. We found that for small pre-
cision, i.e. log2 p ≤ 40, this approach can lead to a faster implementation while
yielding effectively the same error. However, for log2 p ≥ 50, this approach led
to substantially worse error. For example, at log2 p = 50, the error increased
from 2−45 to 2−30. But, as mentioned, for smaller log2 p we get the following
improvements. First of all, the basic sine approach (i.e. n = 1) with r = 4 and
degree 7 Taylor series yields an error of 2−19 for log2 p = 30. If the fresh modulus
used is 1600 bits, then the modulus after bootstrapping has 795 bits. The time
taken is 10.5 s. Interestingly, with sine series of order two, i.e. n = 2, using the
same approach we get an error of 2−26, with modulus after bootstrapping having
685 bits. Moreover, the time taken is 10.7 s. Yet another implementation, with
a degree 31 Taylor series approximation, and r = 0, also yields error 2−25, but
takes time 16.5 s. However, the modulus after bootstrapping has more bits at
744 bits. Regardless, it seems that the sine series of order two with a degree 7
Taylor series and r = 4 seems to be beneficial at low precision.

We also experimented with different values of ε, in particular ε set to
2−5, 2−10, 2−15, 2−20. The errors at each input precision were not much dif-
ferent, and, in fact, ε = 2−10 seems to be the best option.

Table 3. Comparison with [18]. Note, [18] cites results for K = 25, whereas our results
are for K up to 31.

[18] This work

Key Hamming Ciphertext Bootstrapping Key Hamming Ciphertext Bootstrapping

Weight (h) Bits Lost Precision (bits) Weight (h) Bits Lost Precision (bits)

192 1080 40.5 256 1069 44

N/A N/A N/A 256 1392 53

N/A N/A N/A 256 1817 80

N/A N/A N/A 256 2157 100

5.3 Comparison with Other Prior Works

The work [6] followed an interesting approach of obtaining Chebyshev inter-
polants of the scaled sine function. In particular, using the Taylor series of
sin(2πK cos x), they obtained approximations of sin(2πKx) in terms of Cheby-
shev polynomials. Furthermore, this approach also leads to an almost optimal
minmax polynomial approximation, as well as yielding small coefficients. Since
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Table 4. Comparison with Modular Lagrange Interpolation [13]. Note, [13] cites results
for K = 12, whereas our results are for K up to 31.

[13] This work

Input Key Hamming Ciphertext Error Key Hamming Ciphertext Error

Precision Weight (h) Bits Lost (Boot.) Weight (h) Bits Lost (Boot.)

30 64 935 2−24 256 856 2−25

50 64 1725 2−46 256 1069 2−45

60 64 1800 2−54 256 1392 2−54

80 64 2150 2−63 256 1817 < 2−80

100 N/A N/A N/A 256 2157 < 2−100

the scaling K is already incorporated in the function, it removes the log K squar-
ings required in [7] and in this work. However, Chebyshev interpolants do not
readily submit to the Paterson-Stockmeyer evaluation optimization and while [6]
did show a variant of this method, it leads to coefficients increasing in size. Thus,
as explained in Sect. 3, this then requires a larger computational precision that
leads to loss of many more (ciphertext modulus) bits per multiplication depth
in the bootstrapping circuit. For a direct comparison of our approach to [6], we
take data from Tables 2, 3 and 4 from that work, as their implementation is
unfortunately not public, and note that the best approximation they obtain has
error 2−21 for data set IV∗. A look at our Table 1 shows that the worst error
we obtain is 2−25 for log2 p = 30. The number of ciphertext (modulus) bits lost
for that error is 1200 − 344 = 856, whereas [6] loses 1240 − 43 ∗ 6 = 982 bits.
Moreover, our implementation can handle K up to 31 since we set the secret key
Hamming weight h = 256, whereas [6] gives results for K = 12 and use h = 64.
Thus, our approach is clearly better at even this low precision.

In [12], the authors obtain better approximation error than [6] by leveraging
the fact the approximation is only needed in small intervals around multiples of
the modulus. However, their approach also uses a baby-step giant-step, or alter-
nately the Paterson-Stockmeyer variant applied to Chebyshev polynomials that
can lead to a blowup in the size of coefficients. The authors do not give details
on the number of ciphertext (modulus) bits lost in the bootstrapping procedure,
nor is their implementation public. The maximum bootstrapping precision they
achieve is 18.5 bits.

In [18], the authors report high-precision bootstrapping using a composition
of sine/cosine and arcsine. The polynomials to approximate these functions are
found via algorithmic search using the Remez algorithm (which gives no guar-
antee on the size of the coefficients), and the authors do not provide any details
on the size of these coefficients apart from noting that they “are small enough
not to distort the messages.” Moreover, their implementation is not public. The
authors report a practical implementation of up to 40-bits precision bootstrap-
ping. In Table 3, we compare our results with theirs using the relevant avail-
able information in their paper. We note that [18] gives an implementation of
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RNS-CKKS [8], which improves performance over the original CKKS imple-
mentation by utilizing an RNS basis. This introduces an additional challenge of
having to ensure that rescaling errors are small, but this can be done without
significantly increasing error, and, in fact, the recent work [14] shows a method of
managing the scaling factor so that homomorphic multiplication error in RNS-
CKKS is about the same as that of the original CKKS scheme.

The work [13] gives a direct approximation of the mod function, i.e. without
going through the sine function, and hence bypasses the fundamental error of
the sine function approach. Thus, they can get arbitrarily high precision, and
they also show that the coefficients of their polynomial approximation are not too
large. Nevertheless, the coefficients are large enough that our approach beats [13].
Moreover, they only give implementation numbers for K = 12, and for K =
31, the number of ciphertext modulus bits lost during bootstrapping would be
higher. In Table 4, we compare their results with ours for ε = 2−10 and various
plaintext precisions.

The recent work [5] optimized the performance of bootstrapping for RNS-
CKKS. They introduce a scale-invariant polynomial evaluation method as well as
a “double hoisting” technique for evaluating the homomorphic linear transforms.
These techniques improve the performance of bootstrapping considerably and are
compatible with our sine series approximation of the mod function. Moreover, to
the best of our knowledge, [5] gives the first public implementation of full RNS-
CKKS with bootstrapping. We note that they do not focus on obtaining better
approximations to the mod function and utilize previous techniques and variants
thereof to perform the “Compute the Mod Function” step in bootstrapping.
Their maximum bootstrapping precision achieved is 32.6 bits, but we stress that
this was not the focus of their work. An interesting direction would be to combine
both their bootstrapping optimizations with our sine series approximation of the
mod function.
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A Proof of Lemma 5

Lemma 5 (restated). For any k ≥ 0, any a of length n > 0, and an independent
formal variable t,

k∑
j=0

hj(a)tj =
n∏

i=1

k∑
j=0

(tai)j mod tk+1.

Proof. We prove this lemma by induction over n. The base case for n = 1 follows
as hj(a) = aj for every j in [0..k]. Suppose the lemma holds for n − 1. Then, let
a′ be truncation of a to its first n − 1 components. We have, modulo tk+1,
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n∏
i=1

k∑
j=0

(tai)j =
k∑

z=0

(tan)z ∗
n−1∏
i=1

k∑
j=0

(tai)j

=
k∑

z=0

tzaz
n ∗

k∑
j=0

hj(a′)tj

=
k∑

j=0

k∑
z=0

az
n ∗ hj(a′)tj+z

=
k∑

z=0

k∑
j=0

az
n ∗ hj(a′)tj+z

=
k∑

z=0

k−z∑
j=0

az
n ∗ hj(a′)tj+z

=
k∑

z=0

k∑
j′=z

az
n ∗ hj′−z(a′)tj

′

=
k∑

z=0

∑
k≥j′; j′≥z

az
n ∗ hj′−z(a′)tj

′

=
∑

z≤k; j′≤k; z≥0; z≤j′
az

n ∗ hj′−z(a′)tj
′

=
k∑

j′=0

j′∑
z=0

az
n ∗ hj′−z(a′)tj

′

=
k∑

j′=0

hj′(a)tj
′
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Abstract. We formally define polynomial packing methods and initi-
ate a unified study of related concepts in various contexts of cryptogra-
phy. This includes homomorphic encryption (HE) packing and reverse
multiplication-friendly embedding (RMFE) in information-theoretically
secure multi-party computation (MPC). We prove several upper bounds
and impossibility results on packing methods for Zpk or Fpk -messages
into Zpt [x]/f(x) in terms of (i) packing density, (ii) level-consistency,
and (iii) surjectivity. These results have implications on recent devel-
opment of HE-based MPC over Z2k secure against actively corrupted
majority and provide new proofs for upper bounds on RMFE.

Keywords: Packing method · Homomorphic encryption · Secure
multi-party computation · Reverse multiplication-friendly embedding ·
Zpk

1 Introduction

HE Packing. Homomorphic encryption (HE), which allows computations on
ciphertexts without decryption, is such a versatile tool that it is often referred as
the holy grail of cryptography. After Gentry’s breakthrough [23], HE has under-
gone extensive study and development. HE is now considered to be exploitable in
real-life applications (e.g. privacy-preserving machine learning [28]) and regarded
as a core building block in various cryptographic primitives (e.g. secure multi-
party computation [21]).

One drawback of contemporary lattice-based HE schemes [4,22] is that their
plaintext space is of the form Zq[x]/ΦM (x), as their security is based on Ring
Learning with Errors (RLWE) [30]. That is, these schemes are homomorphic with
regards to the addition and multiplication of polynomial ring Zq[x]/ΦM (x). This
raises a question of how to homomorphically encode messages into the plaintexts,
as our data are usually binary bits, integers, fixed/floating point numbers, or at
least Zp and Fpk .

Among a number of works on how to encode data into HE plaintexts [8,10–
12], Smart-Vercauteren [33,34] first introduced the idea of packing several Zp (or
Fpk) elements into the HE plaintext space Zp[x]/ΦM (x) via CRT1 ring isomor-
1 Chinese Remainder Theorem.
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phism with well-chosen prime p. Their simple yet powerful technique enables
SIMD2-like optimizations and enhances amortized performance. That is, with a
polynomial packing method, we can securely compute on multiple Zp-messages
simultaneously by homomorphically computing on a single packed HE plaintext
in Zp[x]/ΦM (x). In particular, through the packing, the complex multiplicative
structure of Zp[x]/ΦM (x) embeds the more handy coordinate-wise multiplica-
tion (a.k.a. Hadamard product) of Z

n
p , where n denotes the number of packed

messages. Packing has now become a standard technique in HE research, and it
is not too much to say that the performance of HE applications are determined
by how well packings are utilized.

However, this conventional packing method has a limitation: it cannot (effi-
ciently) pack Z2k -messages.3 This limitation has recently attracted attention
due to development of secure multi-party computation (MPC) over Z2k secure
against actively corrupted majority by SPDZ2k [15]. SPDZ2k follows the frame-
work of HE-based MPC protocol SPDZ [21], while targeting Z2k -messages rather
than prime field Zp-messages, with a motivation from the fact that Z2k arith-
metic matches closely what happens on standard CPUs. In this context, Over-
drive2k [31] and MHz2k [13], whose goal are efficient constructions of HE-based
MPC over Z2k , came up with new and more involved polynomial packing meth-
ods for Z2k -messages (Sect. 4).

RMFE in Perfectly Secure MPC. Another context where polynomial pack-
ings appear is information-theoretically secure MPC (or perfectly secure MPC).
A main tool in this area is Shamir’s linear secret sharing scheme(LSSS). A
cumbersome fact when using LSSS is that the number of shares is restricted
by the field where computation takes place.4 Thus, it is standard to lift the
computation to a larger field which supports enough number of shares, but
this causes substantial overheads. In their seminal work [5], Cascudo-Cramer-
Xing-Yuan first defined and studied reverse multiplication-friendly embedding
(RMFE) which is, roughly speaking, an embedding of several elements of small
finite field into a larger finite field while providing somewhat homomorphism of
degree-2. Note that an RMFE can be indeed viewed as a polynomial packing
F

n
pk → Fpd

∼= Fp[x]/f(x), where p is a prime and f(x) ∈ Fp[x] is an irreducible
polynomial of degree d. Surprisingly, [5] constructed constant-rate RMFEs, lever-
aging algebraic geometry, and applied them to remove logarithmic overhead in
amortized communication complexity which appears to enable Shamir’s secret
sharing. Since [5], RMFE has become a standard tool in information-theoretically
secure MPC, to achieve linear amortized communication cost while preserving
optimal corruption tolerance: [3,7,17,18,20,32].

2 Single Instruction, Multiple Data.
3 The original method of [33] does not consider packings for Zpk . Gentry-Halevi-

Smart [24] later generalized the method to support such packing. However, this
method achieves only considerably low efficiency. See Sect. 4.1.

4 Indeed, the number of evaluation points is bounded by the size of the field.
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In [16], the notion of RMFE was extended to over Galois rings for construc-
tion of efficient perfectly secure MPC over Zpk . Again, RMFE over Galois rings
for Zpk -messages can be viewed as a polynomial packing Z

n
pk → GR(pk, d) ∼=

Zpk [x]/f(x), where p is a prime and f(x) ∈ Zpk [x] is a degree-d irreducible
polynomial in Fp[x].

Other Contexts. Other than HE and perfectly secure MPC, there are still
more areas where polynomial packings are used for amortization: correlation
extraction for secure computation [2], zk-SNARK [6], etc. Moreover, we believe
that polynomial packing will be even more prominent and universal tool for effi-
ciency and practicality in the future: (i) RLWE-based cryptosystems are emerg-
ing, where plaintexts are Zq[x]/ΦM (x); (ii) Secure computation is emerging,
where some parts of protocols need to be large or of certain form due to secu-
rity or mathematical properties required, whereas where we actually want to
compute in is (extremely) small and typical such as F2 or Z232 .

1.1 Our Contribution

Unified Definition and Survey. In this work, we formally define polynomial
packing methods, which can be understood as (somewhat) homomorphic encod-
ing for copies of a small ring, e.g. Zp or Fpk , into a larger ring, e.g. Zq[x]/f(x),
(Sect. 3.1). The notion of polynomial packing unifies forementioned concepts
in various contexts of cryptography, including HE packing and RMFE in per-
fectly secure MPC. Then, we gather existing packing methods in one place. This
includes RMFE (Sect. 2.3 and 3.1), classic HE packing methods (Sect. 3.1), and
recent development occurred in HE-based MPC over Z2k (Sect. 4). We also pro-
vide decomposition lemmas which suggest that it is enough to study packing
methods for Z

n
pk (or F

n
pk) into Zpt [x]/f(x) where t ≥ k and p is prime, instead

of general case of Z
n
P (or F

n
P ) into ZQ[x]/f(x) where P,Q ∈ Z

+ (Sect. 3.2).
The results also rule out the possibility of using composite modulus for better
packing.

Upper Bounds and Impossibility. We prove several upper bounds
and impossibility results on packing methods for Zpk or Fpk -messages into
Zpt [x]/f(x).

– Upper Bounds on Packing Density (Sect. 5): We evaluate the efficiency of
packing methods by packing density which measures how densely the mes-
sages are packed in (plaintext) polynomials (Definition 5). We prove that,
when a packing method provides somewhat homomorphism upto degree-D
polynomials, the packing density is roughly upper bounded by 1/D (Theo-
rem 1 and 2). These results have several implications:

• The packing method of MHz2k [13] achieves nearly optimal density in
some sense when using their parameters (Example 6). Our results justify
the lifting of MHz2k packing (See Sect. 4.3).
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• We provide the first upper bound on RMFE over Galois ring for Zpk -
messages (Example 7).

• We provide a new proof for upper bound on RMFE, which can be
extended to higher-degree settings unlike the previous proof (Exam-
ple 10).

– Impossibility of Level-consistency (Sect. 6): The notion of level-consistency
captures the property whether packings are decodable in an identical way at
different multiplicative levels (Definition 6). The level-consistency is a desir-
able feature as it allows homomorphic computation between different packing
levels. We prove sufficient and necessary conditions on parameters to allow
a level-consistent packing method. These results have the following implica-
tions:

• HELib packing [26] (a.k.a. GHS packing [24], See Sect. 4.1) is essen-
tially the optimal method to use in fully homomorphic encryption(FHE)
(Example 14).

• It is impossible to construct efficient level-consistent packing methods in
most cases. This justifies the use of level-dependent packings in SPDZ-
like MPC protocols over Z2k [13,31] and highlights the usefulness of the
trick proposed by MHz2k [13], which closed the gap between the level-
consistent and level-dependent packing methods in so-called reshare pro-
tocol. (See Sect. 6.1.)

– Impossibility of Surjectivity (Sect. 7): For a packing method into R, the notion
of surjectivity captures the condition whether every element of R is decodable
(Definition 8). This distinction is essential when designing a cryptographic
protocol with the packing method in a malicious setting, where an adversary
might freely deviate from the protocol. If there is an element in R which
fails to decode, a malicious adversary might make use of the element to ille-
gitimately learn information of other parties, if such invalid packings are not
properly handled. We prove sufficient and necessary conditions on parameters
to allow a surjective packing method. Our results suggest that it is impossi-
ble to construct a meaningful surjective packing method in most cases. This
justifies the use of non-surjective packings and the need of ZKPoMK5, which
ensures an HE ciphertext encrypts a validly packed plaintext, in SPDZ-like
MPC protocols over Z2k [13,31].

2 Preliminaries

2.1 Notations and Terminologies

In this paper, we only consider finite commutative rings with unity. Thus, we
omit the long description and simply refer them as rings. Readers must under-
stand the term ring as finite commutative rings with unity, even if not explicitly
stated. In addition, we only consider monic polynomials when defining quotient
rings. Thus, we omit description on monic property throughout the paper for
5 Zero-knowledge proof of message knowledge.
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readability. Readers must understand any polynomials defining quotient rings as
monic polynomials, even if not explicitly stated.

This paper carefully distinguishes between the use of the terms message and
plaintext. Messages are those we really want to compute with. On the other
hand, plaintexts are defined by encryption scheme (particularly, HE schemes)
we are using. In this paper, messages are in Zpk or Fpk and plaintexts are in
Zq[x]/f(x).

For prime fields, we use both notations Fp and Zp, depending on whether we
want to emphasize that it is a field or that it is the ring of integer modulo p. The
multiplicative order of b modulo a is denoted as orda(b). We use Inva(b) to denote
the smallest positive integer which is a multiplicative inverse of b modulo a. We
use � to denote the coordinate-wise multiplication (a.k.a. Hadamard product)
in products of rings. In a product of rings Rn, the element ei denotes a standard
unit vector whose i-th coordinate is 1 and the other coordinates are 0. We denote
the M -th cyclotomic polynomial as ΦM (x) and the Euler’s totient function as
φ(·). We use GR(pk, d) to denote the Galois ring, a degree-d extension of Zpk .
We use notations [n] := {1, 2, · · · , n} and [0, n] := {0, 1, · · · , n}.

2.2 Polynomial Factorizations

Here, we briefly review some basic facts on polynomial factorizations in Zpk [x].
First, recall Hensel lifting (or Hensel’s lemma).

Lemma 1 (Hensel Lifting). Let f(x) ∈ Zpk [x] be a monic polynomial which
factors into

∏r
i=1 gi(x)�i in Fp[x], where gi(x) are distinct irreducible polyno-

mials. Then there exist pairwise coprime monic polynomials f1(x), · · · , fr(x) ∈
Zpk [x] such that f(x) =

∏r
i=1 fi(x) in Zpk [x] and fi(x) = gi(x)�i (mod p), for

all i ∈ [r].

When gcd(M,p) = 1, ΦM (x) factors into
∏r

i=1 gi(x) in Fp[x], where gi(x)
are distinct irreducible polynomials of degree d := ordM (p). Thus, φ(M) = r · d
holds. To see this, consider a primitive M -th root of unity in a sufficiently large
extension field of Fp. Then, it is easy to see that the number of its conjugates is
d which coincides with the degree of its minimal polynomial. Applying Hensel’s
lemma, we have a factorization ΦM (x) =

∏r
i=1 fi(x) in Zpk [x], where deg(fi) =

d and fi(x) = gi(x) (mod p). Accordingly, we have a CRT ring isomorphism
Zpk [x]/ΦM (x) ∼= ∏r

i=1 Zpk [x]/fi(x). Each Zpk [x]/fi(x) is often referred to as a
CRT slot of Zpk [x]/ΦM (x).

2.3 RMFE

Reverse multiplication-friendly embeddings (RMFE) were first defined and stud-
ied in-depth by [5].6 At a high level, RMFEs are embeddings of several elements
6 Nonetheless, this object was also previously studied in [2] to amortize oblivious linear

evaluations (OLE) into a larger extension field for correlation extraction problem in
MPC. However, their construction achieved only sublinear density.
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of small finite field into a larger finite field, while providing somewhat homomor-
phism of degree-2.

Definition 1 (RMFE). A pair of maps (ϕ,ψ) is called an (n, d)pk -reverse
multiplication-friendly embedding (RMFE) if it satisfies the following.

– The map ϕ : F
n
pk → Fpkd is Fpk -linear.

– The map ψ : Fpkd → F
n
pk is Fpk -linear.

– For all a, b ∈ F
n
pk , it holds ψ(ϕ(a) · ϕ(b)) = a � b

Surprisingly, [5] constructed families of (n, d)pk -RMFE where the density n/d
converges to some constant, for arbitrary prime power pk, leveraging algebraic
geometry. That is, [5] constructed constant-rate RMFEs. For instance, we have
a family of (n, d)2-RMFE with n/d → 0.203 from [5]. Since this seminal work,
RMFE has become a standard tool in information-theoretically secure MPC,
to achieve linear amortized communication cost while preserving optimal cor-
ruption tolerance: [3,5,7,17,18,20,32]. RMFE was also leveraged in zk-SNARK
context recently [6].

Recently in [16], RMFE over Galois rings was first defined and studied. It is
a natural generalization of RMFE over fields to Galois rings.

Definition 2 (RMFE over Galois Ring). A pair of maps (ϕ,ψ) is called an
(n, d)pr -RMFE over modulus pk if it satisfies the following.

– The map ϕ : GR(pk, r)n → GR(pk, d) is GR(pk, r)-linear.
– The map ψ : GR(pk, d) → GR(pk, r)n is GR(pk, r)-linear.
– For all a, b ∈ GR(pk, r)n, it holds ψ(ϕ(a) · ϕ(b)) = a � b

The authors also showed that any (n, d)pr -RMFE over fields can be naturally
lifted upto an (n, d)pr -RMFE over modulus pk. That is, there are asymptotically
good RMFE also in the Galois ring setting.

Their goal was to construct efficient (n, d)p-RMFEs over modulus pk for Zpk -
messages as a building block for more efficient information-theoretically secure
MPC over Zpk . More generally, it seems there are very limited applications
where messages in Galois ring (except Zpk or Fpk) play important roles. Thus,
in our work, we focus on (n, d)p-RMFE over modulus pk for Zpk -messages. Note
that this case can be interpreted as packing Zpk -messages into GR(pk, d) ∼=
Zpk [x]/f(x) for some degree-d f(x) ∈ Zpk [x] which is irreducible modulo p.

3 Packing: Definitions and Basic Facts

In this section, we formally define packings and related concepts which are our
main interests in this work. Some basic examples of packing methods are intro-
duced for illustrative purpose. We also present some propositions which allow us
to modularize our study of packing methods. We begin with a formal definition
of packing.
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3.1 Definitions and Basic Examples

Definition 3 (Packing). Let R and R be rings. We call a pair of algorithms
(Pack,Unpack) a packing method for n R-messages into R, if it satisfies the
following.

– Pack is an algorithm (possibly probabilistic) which, given a ∈ Rn as an input,
outputs an element of R.

– Unpack is a deterministic algorithm which, given a(x) ∈ R as an input, out-
puts an element of Rn or ⊥ denoting a failure.

– Unpack(Pack(a)) = a holds for all a ∈ Rn with probability 1.

For simplicity, the definition is presented a bit generally. In this paper, we
are mostly interested in the cases where R is Zp with p ∈ Z

+ (or a finite field
Fpk) and R is a polynomial ring Zq[x]/f(x) with q ∈ Z

+ and monic f(x).
Notice that in Definition 3 the ring structure is not considered. Packing meth-

ods are interesting only when algebraic structures of the rings come in, since
otherwise a packing is nothing more than a vanilla data encoding. The following
definition of degree captures quality of (somewhat) homomorphic correspondence
between packed messages and a packing. In this work, we are interested in pack-
ings of at least degree-2.

Definition 4 (Degree-D Packing). Let P = (Packi,Unpacki)D
i=1 be a collec-

tion of packing methods for Rn into R. We call P a degree-D packing method,
if it satisfies the following for all 1 ≤ i ≤ D:

– If a(x), b(x) satisfy Unpacki(a(x)) = a, Unpacki(b(x)) = b for a, b ∈ Rn, then
Unpacki(a(x) ± b(x)) = a ± b holds;

– If a(x), b(x) satisfy Unpacks(a(x)) = a, Unpackt(b(x)) = b for a, b ∈ Rn and
s, t ∈ Z

+ such that s + t = i, then Unpacki(a(x) · b(x)) = a � b holds.

Notice that the definition is heavy on the use of Unpack rather than Pack.
Some readers might find it unnatural to define a property of packing methods
with their unpacking structures. However, this is how things are. For instance,
given that a collection of unpacking algorithms (Unpacki)D

i=1 allows a degree-D
packing method, it is trivial to find an appropriate collection of packing algo-
rithms (Packi)D

i=1: we can just define Packi as an algorithm which randomly
outputs an preimage of the input regarding Unpacki. On the other hand, if a
collection of packing algorithms (Packi)D

i=1 is given, it requires non-trivial com-
putations to find an appropriate collection of packing algorithms (Unpacki)D

i=1

in this case. In this regard, definitions and proofs coming up are also aligned to
Unpack rather than Pack.

Here are some direct but noteworthy consequences of the definition.

Remark 1. Note that the definition implies that Unpacki(c · a(x)) = c · a holds
for all c ∈ Z with probability 1. In particular, Unpacki(0) = 0.

Remark 2. A packing method P = (Packi,Unpacki)D
i=1 is of degree-D, only if

P ′ = (Packi,Unpacki)D′
i=1 is a degree-D′ packing method for all D′ < D.
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The following are some basic examples of packing methods. More sophisti-
cated examples are introduced in Sect. 4.

Example 1 (Coefficient Packing). Let f(x) be a degree-d monic polynomial in
Zp[x]. Define Pack as a bijection which maps (a0, · · · , ad−1) ∈ Z

d
p to

∑d−1
i=0 ai·xi ∈

Zp[x]/f(x). Define Unpack as the inverse of Pack. Then, (Pack,Unpack) is a
degree-1 packing method for Z

d
p into Zp[x]/f(x). We often refer this method as

coefficient packing. As coefficient packing is already too good, we do not further
examine degree-1 packing methods in this paper. Note that this method also
applies to Fpk -messages if degree-1 is sufficient, since F

n
pk is isomorphic to Z

kn
p

as Zp-modules.

Example 2 (Conventional HE Packing). When making use of lattice-based HE
schemes, where the plaintext space is of the form Zp[x]/ΦM (x), it is standard to
choose prime p such that p = 1 (mod M) (and M as a power-of-two to enable
efficient implementations). Then, ΦM (x) fully splits in Zp[x], and Zp[x]/ΦM (x) ∼=
Z

φ(M)
p holds. The isomorphism induces a natural packing method, which is of

degree-∞, i.e. degree-D for any D ∈ Z
+. This packing is more than good in

several aspects, but has quite heavy restrictions on parameters. In particular,
the method does not allow packing Z2k -messages.

Example 3 (HE Packing for Fpd). If one want to pack Fpd -messages when mak-
ing use of lattice-based HE schemes, we often choose M so that ΦM (x) fac-
torizes into r distinct degree-d irreducible polynomials in Zp[x]. Then, we have
Zp[x]/ΦM (x) ∼= F

r
pd . As Example 2, this isomorphism induces a natural packing

method which is of degree-∞, but has even heavier restriction on parameters.

Example 4 (RMFE). Essentially, an RMFE is nothing more than a degree-
2 packing method for copies of a finite field Fpk into a larger finite field
Fpd

∼= Zp[x]/f(x), where p is a prime and f(x) is a monic degree-d irreducible
polynomial in Zp[x]. The only additional requirement is that the packing algo-
rithm at level-1 and unpacking algorithm at level-2 must be Zp-linear functions.
However, any degree-2 packing method can be easily transformed to satisfy the
requirement.

Example 5 (RMFE over Galois Ring). Essentially, an RMFE over Galois ring
for Zpk -messages is nothing more than a degree-2 packing method for copies of
Zpk into a larger Galois ring GR(pk, d) ∼= Zpk [x]/f(x), where p is a prime and
f(x) is a degree-d irreducible polynomial in Zp[x].

Lastly, we define packing density which measures efficiency of packing meth-
ods. It measures how dense messages are packed in a single packing.

Definition 5 (Packing Density). For a packing method for Rn into R, we
define its packing density as log(|R|n)/ log(|R|).

Example 1, 2, and 3 have perfect packing density of 1. However, we will see
that these are very special cases. In most cases such perfect packing density is
not achievable, and even moderate packing density is hard to achieve.
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3.2 Decomposition Lemmas

In this subsection, we state and prove several necessary conditions on existence
of certain packing methods. The following propositions allow us to modularize
our study and focus on the case of packings into Zpt [x]/f(x).

Proposition 1. Let R be a ring with characteristic p and R be a ring with
characteristic q. There exists a degree-0 packing method (Pack,Unpack) for Rn

into R only if p divides q.

Proof. Let a(x) be an output of Pack(1). Then, Unpack(q · a(x)) = q · 1 by
Remark 1. Meanwhile, q · a(x) = 0 in R. Thus, q · 1 = 0 in Rn, by Remark 1.
�
Proposition 2. Let R be a ring with characteristic p. Let q = q1 · q2, where
p|q1 and gcd(q1, q2) = 1. There exists a degree-D packing method P for Rn into
Zq[x]/f(x), if and only if there exists a degree-D packing method P ′ for Rn into
Zq1 [x]/f(x).

Proof (Sketch). Suppose (Packi,Unpacki)D
i=1 is a degree-D packing method P for

Rn into Zq[x]/f(x). Let a(x) satisfy Unpacki(a(x)) = a for some a ∈ Rn and 1 ≤
i ≤ D. We can identify a(x) with (a1(x), a2(x)) ∈ Zq1 [x]/f(x) × Zq2 [x]/f(x) via
CRT isomorphism. Now, consider multiplying a constant Invq1(q2) · q2. Observe
the following.

– (Invq1(q2) · q2) · a = (Invp(q2) · q2) · a = a ∈ Rn

– (Invq1(q2) · q2) · a1(x) = 1 · a1(x) = a1(x) ∈ Zq1 [x]/f(x)
– (Invq1(q2) · q2) · a2(x) = Invq1(q2) · 0 = 0 ∈ Zq2 [x]/f(x)

Thus, if Unpacki(a(x)) = Unpacki(a1(x), a2(x)) = a then Unpacki(a1(x), 0) = a.
Then, we can construct P ′ with appropriate projections and injections. The
other direction is more direct. For the full proof, see the full version [14]. 
�
Proposition 3. Let p = p1 · p2 and q = q1 · q2, satisfying p1|q1, p2|q2, and
gcd(q1, q2) = 1. There exists a degree-D packing method P for Z

n
p into R :=

Zq[x]/f(x), if and only if there exist degree-D packing methods P(j) for Z
n
pj

into
Rj := Zqj

[x]/f(x) for j = 1, 2.

Proof (Sketch). Suppose (Packi,Unpacki)D
i=1 is a degree-D packing method P

for Z
n
p into R. Let a(x) ∈ R satisfy Unpacki(a(x)) = a for some a ∈ Z

n
p and 1 ≤

i ≤ D. We can identify a(x) with (a1(x), a2(x)) ∈ R1×R2 and a with (a1,a2) ∈
Z

n
p1

×Z
n
p2

via CRT isomorphisms. Now, consider multiplying a constant Invq1(q2)·
q2. Observe the following.

– (Invq1(q2) · q2) · a1 = (Invp1(q2) · q2) · a1 = a1 ∈ Z
n
p1

– (Invq1(q2) · q2) · a2 = Invq1(q2) · 0 = 0 ∈ Z
n
p2

– (Invq1(q2) · q2) · a1(x) = 1 · a1(x) = a1(x) ∈ R1

– (Invq1(q2) · q2) · a2(x) = Invq1(q2) · 0 = 0 ∈ R2
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That is, if Unpacki(a1(x), a2(x)) = (a1,a2) then Unpacki(a1(x), 0) = (a1,0).
The similar holds for j = 2. Then, we can construct P(1) and P(2) with appro-
priate projections and injections. The other direction is more direct. For the full
proof, see the full version of this paper [14]. 
�

According to Proposition 1 and 2, to study degree-D packing methods for
copies of a finite field Fpk into Zq[x]/f(x), it is enough to study degree-D packing
methods into Zpt [x]/f(x) for some t ≥ 1. The similar holds for packing methods
for copies of Zp according to Proposition 1, 2, and 3. That is, to study degree-D
packing methods for copies of Zp into Zq[x]/f(x) where p is an arbitrary integer,
it is enough to study degree-D packing methods for Z

n
pk into Zpt [x]/f(x) for some

t ≥ k where p is a prime.
Therefore, from now on, we focus on packing methods for Z

n
pk or F

n
pk into

Zpt [x]/f(x) where p is a prime. (Afterwards, p is a fixed prime, even if it is
not explicitly stated.) This is not only because they are the most interesting
case containing Z2k and F2k , but also because they play roles as building blocks
when constructing general packing methods (Proposition 2, 3). We note that
the properties of packing methods, which we examine in the following sections
(level-consistency in Sect. 6 and surjectivity in Sect. 7), are preserved by the
constructions in Proposition 2 and 3.

4 More Examples

In continuation of Sect. 3.1, we give more examples on packing methods. The
following examples are degree-2 packing methods for Z2k -messages, which are
(or can be) used to construct HE-based MPC protocol over Z2k following the
approach of SPDZ [21]. Most of definitions and statements in this paper are
motivated from these examples.

4.1 HELib Packing

In Example 2, we introduced the conventional HE packing method for Zq-
messages into Zq[x]/ΦM (x), where M is a power-of-two and q = 1 (mod M).
However, it is not always applicable, e.g. if we consider Z2k -messages. The prob-
lem here is that ΦM (X) never fully splits in Z2k . One way to detour this problem
is the following. It was first proposed by Gentry-Halevi-Smart [24] and general-
ized by Halevi-Shoup [26] to optimize bootstrapping procedure for fully homo-
morphic encryption (particularly, for HELib [25]). In this paper, we will refer
this method as HELib packing.

To construct a packing method for Zpk -messages into Zpk [x]/ΦM (x), choose
M to satisfy gcd(M,p) = 1. Let ΦM (x) factor into r distinct degree-d irreducible
polynomials in Zp[x], where d := ordM (p). Then, we have the factorization
ΦM (x) =

∏r
i=1 fi(x) in Zpk [x] via Hensel lifting and the CRT ring isomorphism

Zpk [x]/ΦM (x) ∼= ∏r
i=1 Zpk [x]/fi(x). The packing algorithm Pack puts i-th Zpk -

message at the constant term of Z2k [x]/fi(x) and puts zeroes at the other coeffi-
cients. Define Unpack as the inverse of Pack. It is easy to see that (Pack,Unpack)
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defines a degree-∞ packing method. However, the HELib packing achieves very
low packing density 1/d.

4.2 Overdrive2k Packing

To design an efficient HE-based MPC protocol over Z2k , Overdrive2k [31] con-
structed a degree-2 packing method for Z

n
2k into Z2k [x]/ΦM (x), where M is odd

(so yielding a CRT ring isomorphism Z2k [x]/ΦM (x) ∼= ∏r
i=1 Z2k [x]/fi(x) with

deg(fi) = d). For construction, they considered the following problem. Consider
a subset A of [0, d − 1] with A = {a1, · · · , am} so that 2ai �= aj + ak for all
(i, i) �= (j, k) and ai + aj < d for all i, j. The problem is to find the maximum
value of m = |A| with A for given d.7 Given a solution m and A for given d,
the packing algorithm of Overdrive2k at level-1 put i-th m messages in Z2k at
the coefficients of xai of an element in Z2k [x]/fi(x) for ai ∈ A and put zeroes
at the other coefficients. Then, via the ring homomorphism, we can pack r · m
messages into a plaintext achieving the packing density of m/d. The authors
Overdrive2k noted that the packing density of their method seems to follow the
trend of approximately d0.6/d.

Since the set A is carefully designed, if we multiply two packed plaintexts, the
(2 ·ai)-th coefficient of the result equals the multiplied value of ai-th coefficients
of the original plaintexts. That is, Overdrive2k packing is of degree-2. Note that
Overdrive2k packing naturally extends to arbitrary degree-2 packing methods
for Z

n
pk into Zpk [x]/f(x).

4.3 MHz2k Packing

To further improve the packing density of Overdrive2k, MHz2k [13] construct a
degree-2 packing method for Z2k -messages into Z2t [x]/ΦM (x), where t is slightly
larger than k. Their core idea is to pack messages at evaluation points via inter-
polation unlike Overdrive2k which rather pack at coefficients. The caveat here
is, however, that the polynomial interpolation on Z2k is not always possible,
e.g. there is no f(x) ∈ Z2k satisfying f(0) = 1 and f(2) = 0 simultaneously. In
this context, they propose the tweaked interpolation, where they lift the target
points of Z2k upto a larger ring Z2k+δ , multiplying an appropriate power-of-two
to eliminate the effect of non-invertible elements.

Let t = k + 2δ and Z2t [x]/ΦM (x) factors into
∏r

i=1 Z2t [x]/fi(x) via CRT,
where fi(x) are all of degree-d. The packing algorithm at level-1 perform tweaked
interpolation on i-th d+1

2 � Z2k -messages {μij}, so that we have Li(x) ∈ Z2t [x]
which satisfies (i) deg(Li) ≤ d−1

2 � and (ii) Li(j) = μij · 2δ. Then, put Li(x)
in the i-th CRT slot of Z2t [x]/ΦM (x), i.e. Z2t [x]/fi(x). This gives us a packing
density of roughly k/(2k + 2d). Since the degree condition on Li(x) and extra
δ in the modulus are designed to avoid degree overflow and modulus overflow,
when the product of two packings is given, we can decode the homomorphically
7 Similar problems were also considered in other cryptography literature [2,18,29]. For

more detailed discussions, see the full version [14].
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multiplied messages without any loss of information. That is, we can unpack at
level-2 by evaluating points on each CRT slot and observing the upper k bits of
outputs.

Note that MHz2k packing can be naturally extended to a degree-D pack-
ing method for Zpk -messages into Zpt [x]/ΦM (x) with gcd(M,p) = 1 of density
roughly

k

D · (k + d
p−1 )

.

4.4 Comparison

In this subsection, we compare some properties of the examples previously given
in this section. These features are motivations of the definitions and results in
later sections. This subsection is summarized in Table 1.

Table 1. Comparisons on degree-2 packing methods for Z2k -messages

Method HELib Overdrive2k MHz2k

Level-consistency Consistent Dependent Dependent

t
?
= k t = k t = k t > k

Density 1/d ≈d0.6/d ≈k/(2k + 2d)

Notice that, in HELib packing which is of degree-∞, packing algorithms
and unpacking algorithms are identical for all level. We will later refer these
kind of packings as level-consistent packings (Sect. 6). However, in Overdrive2k
and MHz2k packing, the packing algorithm differs for each level. For example, in
Overdrive2k packing, messages are coefficients of xai ’s at level-1, and coefficients
of x2·ai ’s at level-2. We will later refer these kind of packings as level-dependent
packings (Sect. 6).

One big difference of MHz2k packing from the previous packings is that
it uses larger modulus for polynomial ring than that of messages. The other
packing methods are sort of coefficient packing, making it no use of increasing
the modulus for polynomial ring. This difference will serve as one of the topics
in Sect. 5 (e.g. Example 6).

Note that degree-2 MHz2k packing reaches density of nearly 1/2 when k is
sufficiently larger than d. This is true for typical parameters used in HE-based
MPC over Z2k : k = 64, 128, 196 and d ≤ 20. In Sect. 5, we will show that MHz2k
packing achieves a certain form of near-optimality (Example 6).

We now examine common features of these methods. Note that there are
invalid packings regarding to these packing methods. For example, in HELib
packing, a(x) ∈ Z2k [x]/ΦM (x) is not a valid packing, i.e. Unpack(a(x)) =⊥, if
a(x) modulo fi(x) is not a constant. We will later refer these kind of packings
as non-surjective packings (Sect. 7).
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Also notice that all these packings leverage CRT ring isomorphism, which is a
natural and convenient way to achieve parallelism. They pack messages into each
CRT slot in an identical and independent manner. We refer packing methods
following this approach as CRT packings.

5 Bounds on Packing Density

In this section, we examine upper bounds on packing density of degree-D packing
methods for Zpk and Fpk , where p is a prime (See Sect. 3.2).

5.1 Algebraic Background

We first remark some algebraic facts, which enable proofs in the following sub-
sections.

Proposition 4. When R is a principal ideal ring (PIR), every submodule of a
free R-module of rank n can be finitely generated with n generators.

Proof. See the full version of this paper [14]. 
�
Remark 3. Note that Zpt is a local PIR. Consider R := Zpt [x]/f(x) as a free
Zpt -module with the rank deg(f). Then by Nakayama’s lemma, the cardinality
of minimal generating sets is a well-defined invariant for submodules of R.

Let A be a linearly independent subset of R. Then, since the span 〈A〉 is a
submodule of R with a minimal generating set A, inequality deg(f) ≥ |A| holds
by Proposition 4.

5.2 Packing Density of Zpk -Message Packings

In this subsection, we examine upper bounds on packing density of degree-D Zpk -
message packings. We begin with an upper bound for degree-1 packing methods:
we cannot pack copies of Zpk more than the degree of the quotient polynomial.
Unlike the simple and plausible statement, the proof is quite involved. In par-
ticular, it depends on Remark 3. The following proposition says that we cannot
reduce the degree of quotient polynomial significantly and tower the packings
along a large modulus. Notice that there are no restriction on t and f(x).

Proposition 5. There exists a degree-1 packing method for Z
n
pk into R :=

Zpt [x]/f(x) with k ≤ t, only if n ≤ deg(f).

Proof. Let (Pack1,Unpack1) be a degree-1 packing method for Z
n
pk into R. For

each i ∈ [n], choose ai(x) ∈ R such that Unpack1(ai(x)) = ei. View R as a
free Zpt -module of rank deg(f), and consider the submodule 〈a1(x), · · · , an(x)〉.
By linear homomorphic property (Remark 1), when

∑n
i=1 ci ·ai(x) = 0 for some

ci ∈ Zpt , then ci = 0 (mod pk) must hold. Thus, {a1(x), · · · , an(x)} is a minimal
generating set of 〈a1(x), · · · , an(x)〉, and therefore n ≤ deg(f) holds (Remark 3).


�
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In the rest of this subsection, we narrow our scope to packing methods for
Z

n
pk into Zpk [x]/f(x) with the same modulus. Indeed, this setting is less general.

Nonetheless, our results still have interesting consequences (See Example 6–9).
The following is a small remark on packings of non-zero elements modulo p in
this setting.

Remark 4. Let (Packi,Unpacki)D
i=1 be a degree-D packing method for Z

n
pk into

R := Zpk [x]/f(x). For any i ∈ [D], if Unpacki(a(x)) = a for some a ∈ Z
n
pk

which is non-zero modulo p, then a(x) is also non-zero modulo p. Otherwise,
Unpacki(pk−1 · a(x)) = Unpacki(0) = 0 �= pk−1 · a, contradicting the linear
homomorphic property (Remark 1). In particular, when f(x) is an irreducible
polynomial in Zp[x], such a(x) is a unit in R.

Roughly speaking, our main result is that we cannot pack more than d/D
Zpk -messages into Zpk [x]/f(x) while satisfying degree-D homomorphic property,
where d = deg(f). Intuitively, the statement can be understood as that we
must pack the inputs into lower d/D coefficients since reduction by the quotient
polynomial act as randomization and will ruin the structure of packing. However,
the proof is much more involved since we have to handle all possible packing
methods. Notice that the following theorem subsumes Proposition 5 as the D = 1
case in the t = k setting. The essence of the proof is a generic construction of
a large set which is required to be linearly independent regardless of specific
structures of packing methods.

Theorem 1. There exists a degree-D packing method for Z
n
pk into R :=

Zpk [x]/f(x) where f(x) ∈ Zpk [x] is a degree-d irreducible polynomial modulo
p, only if d ≥ D · (n − 1) + 1.

Proof. Let (Packi,Unpacki)D
i=1 be a degree-D packing method for Z

n
pk into R.

For each i ∈ [n], choose ai(x) ∈ R such that Unpack1(ai(x)) = ei. Let us denote
A(r,s) := {a1(x)r · aj(x)s}1<j≤n. For example, A(0,D) = {a2(x)D, · · · , an(x)D},
A(D,0) = {a1(x)D}, and A(1,D−1) = {a1(x)a2(x)D−1, · · · , a1(x)an(x)D−1}.

Step 1: Consider the following set of level-t packings.

At :=
⋃

r+s=t
0<s

A(r,s)

We will show that At is linearly independent in R for all t ≤ D by induction on
t. The case where t = 1 is true by the linear homomorphic property at level-1
(Remark 1): A1 = {a2(x), · · · , an(x)} (See also Proposition 5).

Suppose At is linearly independent for some t < D. View At+1 as A(0,t+1) ∪
a1(x) · At. Suppose

∑
aα(x)∈At+1

(cα · aα(x)) = 0, for some cα ∈ Zpk . Then,
by linear homomorphic property at level-(t + 1), cα = 0 must hold for all
aα(x) ∈ A(0,t+1), since elements of a1(x) · At unpack to 0 and A(0,t+1) unpacks
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to a linearly independent set by construction. Subsequently, we have again the
following equality: ∑

aα(x)∈a1(x)·At

(cα · aα(x)) = 0.

Meanwhile, since a1(x) is a unit in R (Remark 4) and At is linearly independent
by induction hypothesis, cα = 0 must also hold for all aα(x) ∈ a1(x) · At. Thus,
At is linearly independent in R for all t ≤ D.

Step 2: Now consider the set A := AD ∪ {a1(x)D}, which coincides with
{a1(x)D, · · · , an(x)D} ∪ a1(x) · AD−1. Suppose

∑
aα(x)∈A(cα · aα(x)) = 0, for

some cα ∈ Zpk . Then, by linear homomorphic property at level-D, cα = 0 must
hold for all aα(x) ∈ {a1(x)D, · · · , an(x)D}, since elements of a1(x)·AD−1 unpack
to 0 and {a1(x)D, · · · , an(x)D} unpacks to a linearly independent set by con-
struction. Subsequently, we have again the following equality:

∑

aα(x)∈a1(x)·AD−1

(cα · aα(x)) = 0.

Meanwhile, since a1(x) is a unit in R and AD−1 is linearly independent by
Step 1, cα = 0 must also hold for all aα(x) ∈ a1(x) · AD−1. Thus, A is linearly
independent, and therefore d ≥ |A| = D(n − 1) + 1 must hold (Remark 3). 
�

The following are direct consequences of our theorem.

Example 6. Degree-D packing methods for Zpk -messages into Zpk [x]/f(x),
where f(x) is a degree-d irreducible polynomial modulo p, have packing density
of no larger than 1

D + 1
d ·(1− 1

D ). Consequently, degree-D CRT packing methods
for Zpk -messages into Zpk [x]/f(x), where f(x) factors into r distinct irreducible
factors modulo p, have packing density of no larger than 1

D + r
deg(f) · (1 − 1

D )
(Sect. 4.4). In particular, degree-D CRT packing methods for Z2k -messages into
Z2t [x]/ΦM (x), where M is odd and ΦM (x) factors into distinct degree-d irre-
ducible factors modulo p, have packing density of no larger than 1

D + 1
d · (1− 1

D ).
That is, when parameters are carefully chosen, the MHz2k packing already

nearly reach the optimal packing density for packing methods for Zpk -messages
into Zpk [x]/f(x) (Sect. 4.3). Thus, if one wants to construct a degree-D packing
method for Z2k -messages into Z2t [x]/ΦM (x) with substantially better density
than the MHz2k packing, the only possibility is choosing t > k or not employing
the CRT approach.

Example 7 (RMFE over Galois Ring). Consider RMFE over Galois rings for
copies of Zpk into a larger Galois ring isomorphic to Zpk [x]/f(x), which is exactly
the setting of Theorem 1. The theorem states that such RMFE cannot have
packing density larger than 1

2 + 1
2 deg(f) . To the best of our knowledge, this is

the first upper bound result on packing density of RMFE over Galois rings. Our
theorem also yields upper bounds on packing density of degree-D generalization
of RMFE over Galois rings.



536 J. H. Cheon and K. Lee

Example 8. For D > 1, consider degree-D packing methods for Zpk -messages
into Zpt [x]/f(x), where f(x) is irreducible modulo p. By Proposition 5, when
t > k, we cannot achieve a perfect packing density 1. When t = k, we cannot
achieve a perfect packing density 1 unless deg(f) = 1, by Theorem 1. That is,
there is no perfect degree-D packing method for Zpk -messages into Zpt [x]/f(x),
when f(x) is irreducible modulo p and deg(f) > 1.

Example 9. For D > 1, consider degree-D packing methods for Zpk -messages
into Zpt [x]/f(x), where f(x) is square-free modulo p. By Example 8, there is no
perfect degree-D CRT packing method for Zpk -messages into Zpt [x]/f(x), unless
f(x) splits into distinct linear factors. In particular, there is no perfect degree-D
CRT packing method for Z2k -messages into Z2t [x]/ΦM (x) when M is odd.

5.3 Packing Density of Fpk -Message Packings

In this subsection, we examine upper bounds on packing density of degree-D Fpk -
message packings. We begin with an upper bound for degree-1 packing methods,
which is an analogue of Proposition 5. Unlike the simple and plausible statement,
the proof is quite involved. In particular, it depends on Remark 3. The following
proposition says that we cannot reduce the degree of quotient polynomial sig-
nificantly and tower the packings along a large modulus. Notice that there are
no restriction on t and f(x).

Proposition 6. There exists a degree-1 packing method for F
n
pk into R :=

Zpt [x]/f(x), only if n · k ≤ deg(f).

Proof. Let (Pack1,Unpack1) be a degree-1 packing method for F
n
pk into R. Fix

a basis of Fpk as {β1, · · · , βk}. For each i ∈ [n] and j ∈ [k], choose aij(x) ∈ R
such that Unpack1(aij(x)) = βj ·ei. View R as a free Zpt -module of rank deg(f),
and consider the submodule 〈aij(x)〉i∈[n],j∈[k]. By linear homomorphic property
(Remark 1), when

∑n
i=1 cij · aij(x) = 0 for ci ∈ Zpt , then ci = 0 (mod p) must

hold. Thus, {aij(x)}i∈[n],j∈[k] is a minimal generating set of 〈aij(x)〉i∈[n],j∈[k],
and therefore n · k ≤ deg(f) holds (Remark 3). 
�

In the rest of this subsection, we narrow our scope to packing methods for
F

n
pk into Zp[x]/f(x) with the prime modulus. Indeed, this setting is less general.

Nonetheless, our results still have interesting consequences (See Example 10–13).
Our main result in this subsection is the following theorem, which is a finite

field analogue of Theorem 1. However, it is much more involved since we must
also handle the multiplicative structure inside Fpk . Notice that our theorem
subsumes Proposition 6 as the D = 1 case in the t = 1 setting. The essence of
the proof is again a generic construction of a large set which is required to be
linearly independent regardless of specific structures of packing methods.

Theorem 2. Let B := {β1, · · · , βk} be a basis of Fpk as a Fp-vector space.
There exists a degree-D packing method for F

n
pk into R := Zp[x]/f(x) where
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f(x) ∈ Zp[x] is a degree-d irreducible polynomial modulo p, only if the following
inequality holds.

d ≥ dim〈βD
1 , · · · , βD

k 〉 + (n − 1)
D∑

t=1

dim〈βt
1, · · · , βt

k〉

Proof (Sketch). Similar to the proof of Theorem 1. See the full version [14]. 
�

To have a more concrete bound, we prove the following proposition. Let σ
(t)

pk

denote the multiplicative order of p modulo pk−1
gcd(pk−1,t)

.

Proposition 7. Let β be a primitive element of Fpk . Regarding the primitive
element basis {1, β, β2, · · · , βk−1}, the following equality holds.

dim〈1t, βt, β2t, · · · , β(k−1)t〉 = σ
(t)

pk

Proof. Observe that dim〈1t, βt, β2t, · · · , β(k−1)t〉 is equal to the degree of the
minimal polynomial of βt in Fp[x]. The degree of the minimal polynomial of βt

is again equal to the length of the orbit of βt regarding Frobenius map x �→ xp.
Since β is a primitive element, we are finding the smallest s ∈ Z

+ satisfying
t = t · ps (mod pk − 1), which is σ

(t)

pk by definition. 
�
Corollary 1. There exists a degree-D packing method for F

n
pk into R :=

Zp[x]/f(x) where f(x) ∈ Zp[x] is a degree-d irreducible polynomial modulo p,
only if the following inequality holds.

d ≥ σ
(D)

pk + (n − 1)
D∑

t=1

σ
(t)

pk

Proof. Choose a primitive element β of Fpk and apply Theorem 2 on the basis
{1, β, β2, · · · , βk−1} with the help of Proposition 7. 
�

The following are some consequences of our main result.

Example 10 (RMFE). Note that σ
(1)

pk and σ
(2)

pk are always k. Then, by Corol-
lary 1, degree-2 packing methods for Fpk -messages into Zp[x]/f(x), where f(x) is
a degree-d irreducible polynomial, have packing density of no larger than 1

2 + k
2d .

That is, packing density of RMFE is upper bounded by 1
2 + k

2d . This is a known
result (See [17]). However, previous proofs do not extend to higher-degree cases
(See Example 12) or to the Galois ring case (See Example 7).

Example 11 (Degree-2 Packing). By Example 10, degree-2 CRT packing meth-
ods for Fpk -messages into Zp[x]/f(x), where f(x) factors into r distinct irre-
ducible factors, have packing density of no larger than 1

2 + r·k
2 deg(f) (Sect. 4.4). In

particular, degree-2 CRT packing methods for F2k -messages into Z2[x]/ΦM (x),
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where M is odd and ΦM (x) factors into distinct degree-d irreducible factors
modulo 2, have packing density of no larger than 1

2 + k
2d .

Suppose one wants to design a degree-2 packing method for Fpk -messages into
Zpt [x]/f(x) which has a packing density substantially larger than 1/2. Note that
choosing t ≥ 2 already yields packing density no larger than 1/2 by Proposition 6.
Thus, only possibility is not employing the CRT approach.

Example 12 (Degree-3 Packing). Note that σ
(3)

pk is always k, except the case
of pk = 4. Then, by Corollary 1, degree-3 packing methods for Fpk -messages
into Zp[x]/f(x), where f(x) is a degree-d irreducible polynomial, have packing
density of no larger than 1

3 + 2k
3d , unless pk = 4. Consequently, degree-3 CRT

packing methods for Fpk -messages into Zp[x]/f(x), where f(x) factors into r

distinct irreducible factors, have packing density of no larger than 1
3 + 2r·k

3 deg(f) . In
particular, degree-3 CRT packing methods for F2k -messages into Z2[x]/ΦM (x),
where M is odd and ΦM (x) factors into distinct degree-d irreducible factors
modulo 2, have packing density of no larger than 1

3 + 2k
3d , given k �= 2.

Suppose one wants to design a degree-3 packing method for Fpk -messages into
Zpt [x]/f(x) which has a packing density substantially larger than 1/3. Note that
choosing t ≥ 3 already yields packing density no larger than 1/3 by Proposition 6.
Thus, only possibility is choosing t = 2 or not employing the CRT approach.

Example 13. By the same arguments as in Example 8 and 9, we have the follow-
ing: For D > 1, there is no perfect degree-D packing method for Fpk -messages
into Zpt [x]/f(x), when f(x) is irreducible modulo p and deg(f) > 1. Thus, there
is no perfect degree-D CRT packing method for Fpk -messages into Zpt [x]/f(x),
unless f(x) splits into distinct linear factors. In particular, there is no perfect
degree-D CRT packing method for F2k -messages into Z2t [x]/ΦM (x) when M is
odd.

6 Level-Consistency

In this section, we define and examine the concept of level-consistency, which is a
favorable property for a packing method to have. Our main results are necessary
and sufficient conditions for a polynomial ring to allow a level-consistent packing
method for Zpk and Fpk , where p is a prime (See Sect. 3.2). They limit the achiev-
able efficiency of level-consistent packing methods, yielding the impossiblity of
designing an efficient packing methods while satisfying level-consistency.

6.1 Definition and Basic Facts

Definition 6. For D > 1, a degree-D packing method (Packi,Unpacki)D
i=1 is

called level-consistent if Unpacki is all identical for 1 ≤ i ≤ D. Otherwise, we
say a packing method is level-dependent.
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The notion of level-consistency captures the property whether packings are
decodable in an identical way at different levels (Proposition 8). In an algebraic
viewpoint, a level-consistent packing has a single Unpack for all levels, which is
a ring homomorphism defined on where it does not abort. The level-consistency
is a desirable feature, as it allows homomorphic computation between different
packing levels. On the other hand, when working with level-dependent packing
methods, we must be careful about whether the operands are packed in the same
packing level as we perform homomorphic computation on packed messages.

For instance, Overdrive2k [31] and MHz2k [13] design and utilize Z2k -message
packing methods, which are level-dependent, to construct HE-based MPC pro-
tocols over Z2k following the approach of SPDZ [21]. Their level-dependency
complicates the so-called reshare protocol which re-encrypts a level-zero HE
ciphertext to a fresh ciphertext allowing two-level HE to be sufficient for their
purpose. The problem here is that a masking HE ciphertext is used twice in the
reshare protocol: once to mask the input ciphertext of level-zero and once to
reconstruct the fresh ciphertext of level-one by subtracting it. While the differ-
ence of HE levels can be managed easily with modulus-switching, that of the
packing levels seems to be problematic.

In order to remedy this issue caused by level-dependency, Overdrive2k and
MHz2k had to come up with their own solutions. Overdrive2k provides two
masking ciphertexts having the same messages but in different packing : one with
level-zero packing and the other with level-one packing. However, this solution
substantially degrades the efficiency of the protocol. MHz2k resolves this issue
by a technical trick which does not cause any extra cost, closing the gap between
the level-consistent and level-dependent packing methods in this case.

This issue does not arise in SPDZ-family [1,19,21,27] over a finite field Zp,
where the conventional packing method is already level-consistent (See Exam-
ple 2). For detailed discussion, refer to [13]. In a later subsection, we prove
the impossibility of designing an efficient Z2k -message packings while satisfying
level-consistency. This justifies the use of level-dependent packings in SPDZ-like
MPC protocols over Z2k and highlights the usefulness of the trick proposed by
MHz2k [13].

The following proposition says that a level-consistent packing method can be
trivially extended to an arbitrary degree.

Proposition 8. A level-consistent degree-D packing method P can be extended
to a level-consistent degree-D′ packing method P ′ for arbitrary D′ > D.

Proof. When P is (Packi,Unpack)D
i=1, just define P ′ as (Pack1,Unpack)D′

i=1. 
�
A crucial tool when dealing with a level-consistent packing method is idem-

potents. We extensively leverage the concept of idempotents and their properties
when proving our main results on level-consistency. Here, we list properties of
idempotents which are used afterwards.

Proposition 9. Let R be a finite ring. For all a ∈ R, there exists a positive
integer s such that as is idempotent, i.e. a2s = as.
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Proof. See the full version of this paper [14]. 
�
Proposition 10. Let R and R be rings. Let P be a level-consistent packing
method for Rn into R with identical unpacking algorithms Unpack. For any idem-
potent a ∈ Rn, there exists an idempotent a(x) ∈ R such that Unpack(a(x)) = a.

Proof. First, extend P to a degree-D packing method for a sufficiently large D
(Proposition 8). Let a ∈ Rn be idempotent. Choose an element ã(x) ∈ R such
that Unpack(ã(x)) = a. By Proposition 9, there exists s ∈ Z

+ such that a(x) :=
ã(x)s is idempotent in R. Then, Unpack(a(x)) = Unpack(ã(x)s) = as = a holds.


�
Proposition 11. For a prime p, let R := Zpt [x]/f(x) and f(x) = g(x)�

(mod p), where g(x) is an irreducible polynomial in Fp[x]. Then, an idempo-
tent element of R is either 0 or 1.

Proof. See the full version of this paper [14]. 
�
Another tool which is useful when dealing with level-consistent packing meth-

ods is nilpotents. The following proposition says any nilpotent must unpack to
a nilpotent, given it is a valid packing regarding to a level-consistent method.

Proposition 12. Let R and R be rings, and let P be a level-consistent pack-
ing method for Rn into R with identical unpacking algorithms Unpack. For any
nilpotent a(x) ∈ R, Unpack(a(x)) outputs a nilpotent a ∈ Rn or a failure ⊥.

Proof. Suppose Unpack(a(x)) outputs a ∈ Rn. Let s be a positive integer such
that a(x)s = 0 in R. Extend P to a degree-s packing method (Proposition 8).
Then, as = Unpack(a(x)s) = Unpack(0) = 0 holds. 
�

Lastly, we introduce the notion of one-to-one packing which plays an impor-
tant role in the proof of our main result.

Definition 7 (One-to-one Packing). Let R and R be rings. We say a packing
method (Packi,Unpacki)D

i=1 for Rn into R is one-to-one, if there is unique a(x) ∈
R such that Unpacki(a(x)) = a for all a ∈ Rn and i ∈ [D].

6.2 Level-Consistency in Zpk -Message Packings

Our main result on level-consistency in Zpk -message packings is the following
theorem. Our theorem illustrates a necessary condition for a surjective packing
method for Zpk -messages to exist. As mentioned, the proof regards the notion
of idempotents (Proposition 10, 11).

Theorem 3. For a prime p, let f(x) ∈ Zpt [x] have exactly r distinct irreducible
factors in Zp[x]. There exists a level-consistent packing method for Z

n
pk into

Zpt [x]/f(x) only if n ≤ r.
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Proof. Let f(x) be factorized into
∏r

i=1 f̄i(x) in Zp[x], where each f̄i(x) is a
power of a distinct irreducible polynomial in Zp[x]. The factorization can be
lifted upto Zpt [x] via Hensel lifting. Let f(x) =

∏r
i=1 fi(x), where fi(x) ∈ Zpt [x]

is the Hensel lift of f̄i(x) satisfying f̄i(x) = fi(x) (mod p). By Proposition 11,
there are 2r idempotents in Zpt [x]/f(x) ≈ ∏r

i=1 Zpt [x]/fi(x), namely {0, 1}r.
Also note that there are 2n idempotents in Z

n
pk , namely {0, 1}n.

By Proposition 10, for each idempotent a of Z
n
pk , there is a distinct idem-

potent a(x) of Zpt [x]/f(x) such that Unpack(a(x)) = a. Thus, the number of
idempotents in Z

n
pk cannot be larger than that of Zpt [x]/f(x), and n ≤ r holds.


�
The following are some consequences of Theorem 3. We begin with an opti-

mality result for HELib packing (Sect. 4.1).

Example 14. Essentially, Theorem 3 asserts that HELib packing offers the opti-
mal packing density if level-consistency is required. As level-consistency is more
than a favorable feature for fully homomorphic encryption(FHE), our result reas-
sures that HELib packing is an excellent packing method to use for FHE, and it
strongly justifies long line of researches based on such packing method [9,24,26].

The following examples illustrate the hardness of designing an efficient HE
packing method for Z2k -messages while satisfying level-consistency. We have
similar results for Zpk -messages with p �= 2.

Example 15. When M = 2m, since ΦM (x) = (x + 1)2
m−1

in F2[x], we can pack
at most one copy of Z2k into Z2t [x]/ΦM (x) while satisfying level-consistency.

Example 16. When M is an odd, ΦM (x) factors into a product of distinct irre-
ducible polynomials of degree d = ordM (2) in F2[x]. Let φ(M) = r · d. Then,
we can pack at most r copies of Z2k into Z2t [x]/ΦM (x) while satisfying level-
consistency. Note that, since d > log M by definition, r < φ(M)/ log M .

Example 17. When M = 2s ·M ′, where M ′ is an odd, ΦM (x) = ΦM ′(−x2s−1
) =

ΦM ′(x)2
s−1

in F2[x]. Thus, we cannot pack more copies of Z2k into Z2t [x]/ΦM (x)
than Z2t [x]/ΦM ′(x) while satisfying level-consistency.

Theorem 3 also yields the impossibility of level-consistent RMFEs over Galois
ring for Zpk -messages.

Example 18. In GR(pt, d) ∼= Zpt [x]/f(x) with a degree-d f(x) which is irre-
ducible modulo p, we can pack at most one copy of Zpk while satisfying level-
consistency. That is, there is no meaningful level-consistent RMFE over Galois
ring for Zpk -messages.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Theorem 3 is also a sufficient one.

Theorem 4. If there are r distinct irreducible factors of f(x) ∈ Zpt [x] in Fp[x],
then there is a level-consistent packing method for Z

r
pk into Zpt [x]/f(x).
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Proof. Let f(x) be factorized into
∏s

i=1 gi(x)�i in Fp[x], where s ≥ r and each
gi(x) is distinct irreducible polynomial in Fp[x]. The factorization can be lifted
upto Zpk [x] via Hensel lifting. Let f(x) =

∏s
i=1 fi(x), where fi(x) ∈ Zpk [x] is the

Hensel lift of gi(x)�i satisfying fi(x) = gi(x)�i (mod p). Then, we can identify
Zpk [x]/f(x) with

∏s
i=1 Zpk [x]/fi(x) via the CRT ring isomorphism.

There is a trivial ring monomorphism ψ : Z
r
pk → Zpk [x]/f(x) defined as the

following.

ψ(a1, · · · , ar) = (a1, · · · , ar, 0, · · · , 0) ∈
s∏

i=1

Zpk [x]/fi(x)

Define the function ψ−1 : Zpk [x]/f(x) → Z
r
pk ∪ {⊥} as the following.

ψ−1(a(x)) =

{
a, if there is a ∈ Z

r
pk such that ψ(a) = a(x)

⊥, otherwise

Let πk and ιk denote the projection and injection between Zpt [x]/f(x) and
Zpk [x]/f(x) respectively. Define Pack := ιk ◦ ψ and Unpack := ψ−1 ◦ πk (Fig. 1).
Then, it is straightforward that (Pack,Unpack) is a level-consistent packing
method. 
�

Fig. 1. Definitions of Pack and Unpack in Theorem 4

6.3 Level-Consistency in Fpk -Message Packings

Our main result on level-consistency in Fpk -message packings is the following
theorem. It is a finite field analogue of Theorem 3 which is on Zpk -message
packings. Our theorem illustrates a necessary condition for a level-consistent
packing method for Fpk -messages to exist.

Theorem 5. Let r be the number of distinct irreducible factors of f(x) ∈ Zpt [x]
in Fp[x] whose degrees are multiples of k. There exists a level-consistent packing
method F

n
pk into Zpt [x]/f(x) only if n ≤ r.
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Proof (Sketch). Then, using Proposition 12 with the fact that 0 is the only
nilpotent element in F

n
pk , we can modify given (Pack,Unpack) to a level-consistent

packing method (Pack′,Unpack′) for F
n
pk into Fp[x]/ĝ(x), where ĝ(x) is the largest

square-free factor of f(x).
Moreover, we can find g(x), a divisor of ĝ(x), such that for any a(x) ∈

Fp[x]/ĝ(x) satisfying Unpack′(a(x)) = 0, it holds that a(x) = 0 (mod g(x)).
That is, we can again modify (Pack′,Unpack′) into a level-consistent one-to-one
packing method (Pack′′,Unpack′′) for F

n
pk into Fp[x]/g(x). Then, by arguments

on multiplicative orders with help of Proposition 10 and 11, we can eventually
prove that g(x) must have n distinct irreducible factors in Fp[x] whose degrees
are multiples of k, in order to such (Pack′′,Unpack′′) to exist. For the full proof,
see the full version of this paper [14]. 
�

The following are some consequences of Theorem 5. They illustrate the hard-
ness of designing an efficient HE packing method for F2k -messages while satis-
fying level-consistency. We have similar results for Fpk -messages with p �= 2.

Example 19. When M = 2m, since ΦM (x) = (x + 1)2
m−1

in F2[x], we can only
pack copies of F2 into Z2t [x]/ΦM (x) while satisfying level-consistency. Even in
that case, we can pack at most one copy of F2.

Example 20. When M is an odd, ΦM (x) factors into a product of distinct irre-
ducible polynomials of degree d = ordM (2) in F2[x]. Let φ(M) = r · d. Then,
we can only pack copies of F2k such that k|d into Z2t [x]/ΦM (x) while satisfying
level-consistency. In that case, we can pack at most r copies of F2k . Note that,
since d > log M by definition, r < φ(M)/ log M . For instance, if one wants to
pack F28 into Z2t [x]/ΦM (x) with an odd M while satisfying level-consistency,
then one must choose M such that ordM (2) is a multiple of 8.

Example 21. When M = 2s ·M ′, where M ′ is an odd, ΦM (x) = ΦM ′(−x2s−1
) =

ΦM ′(x)2
s−1

in F2[x]. Thus, we cannot pack more copies of F2k into Z2t [x]/ΦM (x)
than Z2t [x]/ΦM ′(x) while satisfying level-consistency.

Theorem 5 also yields the impossibility of level-consistent RMFEs.

Example 22. In Fpd
∼= Zp[x]/f(x) with a degree-d irreducible f(x), we can pack

at most one copy of Fpk while satisfying level-consistency. Furthermore, if k �

d, we cannot pack even a single copy of Fpk into Fpd while satisfying level-
consistency. That is, there is no meaningful level-consistent RMFE.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Theorem 5 is also a sufficient one.

Theorem 6. Suppose there are r distinct irreducible factors of f(x) ∈ Zpt [x]
in Fp[x] whose degrees are multiples of k. Then, there exists a level-consistent
packing method F

r
pk into Zpt [x]/f(x).

Proof (Sketch). Similar to the proof of Theorem 4. See the full version [14]. 
�
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7 Surjectivity

In this section, we define and examine the concept of surjectivity, which is a
favorable property for a packing method to have. Our main results are necessary
and sufficient conditions for a polynomial ring to allow a surjective packing
method for Zpk and Fpk , where p is a prime (See Sect. 3.2). They limit the
achievable efficiency of surjective packing methods, yielding the impossiblity of
designing an efficient packing methods while satisfying surjectivity.

7.1 Definition and Basic Facts

Definition 8 (Surjective Packing). Let R be a ring. We say a degree-D
packing method (Packi,Unpacki)D

i=1 into R is surjective8 if there is no a(x) ∈ R
such that Unpack1(a(x)) =⊥.

For a packing method for Rn into R, the notion of surjectivity captures the
condition whether every element of R is decodable. This distiction is essential
when designing a cryptographic protocol with the packing method in a malicious
setting, where an adversary might freely deviate from the protocol. If there is
a(x) ∈ R such that Unpack1(a(x)) =⊥, a malicious adversary might make use of
a(x), when one is supposed to use a valid packing according to the protocol. The
deviation may not only harm the correctness of the protocol, but also may leak
information of honest parties, if such invalid packings are not properly handled.

For instance, Overdrive2k [31] and MHz2k [13] design and utilize Z2k -message
packings which are not surjective to construct HE-based MPC protocols over Z2k

following the approach of SPDZ [21]. In order to mitigate the invalid packings,
they perform ZKPoMK (Zero-Knowledge Proof of Message Knowledge) to ensure
an HE ciphertext encrypts a validly packed plaintext.9 ZKPoMK do not appear
in SPDZ-family [1,19,21,27] over a finite field Zp, where the conventional packing
method is already surjective with perfect packing density (See Example 2). In a
later subsection, we prove the impossibility of designing an efficient Z2k -message
packings while satisfying surjectivity. This justifies the use of non-surjective
packings and the need of ZKPoMK in SPDZ-like MPC protocols over Z2k .

The following proposition says that the definition of surjectivity trivially
extends to all levels. The fact is used throughout this section.

Proposition 13. Suppose (Packi,Unpacki)D
i=1 is a degree-D surjective packing

method for Rn into R. Then, there is no a(x) ∈ R such that Unpacki(a(x)) =⊥,
for all i ∈ [D].

Proof. By surjectivity and multiplicative homomorphic property, it holds that
Unpack2(a(x)) = Unpack1(1) � Unpack1(a(x)) ∈ Rn, for all a(x) ∈ R. Likewise,
we can proceed inductively upto UnpackD(·). 
�
8 In a sense that any element of R could be an image of Pack1(·).
9 ZKPoMK was first conceptualized in MHZ2k [13], but it is also performed in Over-

drive2k [31] implicitly. For detailed discussion, refer to [13].
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A crucial fact when dealing with a surjective packing method is the following
proposition on zero-sets. We extensively use the proposition when proving our
main results on surjectivity.

Proposition 14 (Zero-set Ideal). Let R and R be rings. For D > 1, let
(Packi,Unpacki)D

i=1 be a degree-D surjective packing method for Rn into R. Let
Zi be the set consisting of elements a(x) ∈ R such that Unpacki(a(x)) = 0.
Then, Z = Z1 = · · · = ZD for some ideal Z of R. Moreover, |Z| = |R|/|R|n.

Proof. By Proposition 13 and multiplicative homomorphic property, R · Zi ⊂
Zi+1 holds for i < D. Since 1 ∈ R, Zi ⊂ R · Zi holds, and therefore Zi ⊂
R·Zi ⊂ Zi+1. By Proposition 13 and additive homomorphic property, Zi’s have
the same size, namely |Zi| = |R|/|R|n. Thus, Zi = R · Zi = Zi+1 holds. We can
now put Z := Z1 = · · · = ZD. Moreover, since R · Z = Z holds, Z is an ideal of
R. 
�

7.2 Surjectivity in Zpk -Message Packings

Our main result on surjectivity in Zpk -message packings is the following theorem.
Our theorem illustrates a necessary condition for a surjective packing method
for Zpk -messages to exist.

Theorem 7. Let ř be the number of linear factors of f(x) ∈ Zpt [x] in Zpk [x]
which are mutually distinct modulo p. For D > 1, there exists a degree-D sur-
jective packing method Z

n
pk into Zpt [x]/f(x) only if n ≤ ř.

Proof (Sketch). Let (Packi,Unpacki)D
i=1 be a degree-D surjective packing method

for Z
n
pk into Zpt [x]/f(x). For all b(x) ∈ Zpt [x]/f(x), since Unpacki(b(x)) = b for

some b ∈ Z
n
pk by surjectivity (Proposition 13), Unpacki(pk ·b(x)) = 0 holds. Thus,

we can construct a degree-D surjective packing method (Pack′
i,Unpack

′
i)

D
i=1 for

Z
n
pk into Zpk [x]/f(x) with appropriate projections and injections. Then, we

repeatedly apply Proposition 14 to show that, for each unit vector ei ∈ Z
n
pk ,

there exists ai(x) ∈ Zpk [x]/f(x) such that (i) Unpack′
1(ai(x)) = ei (ii) ai(x) is

non-zero at exactly one CRT slot. Eventually, again with Proposition 14, we can
couple each ai(x) with distinct linear factors of f(x) ∈ Zpk [x]. For a full proof,
see the full version of this paper [14]. 
�

Before we proceed, we state a simple fact on irreducibility of Φ2m(x) over a
power-of-two modulus.

Proposition 15 (Irreducibility of Φ2m (x)). For M = 2m, cyclotomic poly-
nomial ΦM (x) is irreducible modulo 4, i.e. there are no f(x), g(x) ∈ Z4[x] such
that f(x) · g(x) = ΦM (x) (mod 4) and deg(f),deg(g) ≥ 1.

Proof. See the full version of this paper [14]. 
�
The following are some consequences of Theorem 7. They illustrate the impos-

sibility of designing a surjective HE packing method for Z2k -messages with cyclo-
tomic polynomials. We have similar results for Zpk -messages with p �= 2.
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Example 23. When M = 2m, by Proposition 15, we cannot pack any copies of
Z2k into Z2t [x]/ΦM (x) while satisfying surjectivity and degree-2 homomorphism.

Example 24. When M is an odd, ΦM (x) factors into a product of distinct irre-
ducible polynomials of degree d = ordM (2) in F2[x]. Thus, we cannot pack any
copies of Z2k into Z2t [x]/ΦM (x) while satisfying surjectivity and degree-2 homo-
morphism.

Example 25. When M = 2s ·M ′, where M ′ is an odd, ΦM (x) = ΦM ′(−x2s−1
) in

Z[x]. Thus, by Example 24, we cannot pack any copies of Z2k into Z2t [x]/ΦM (x)
while satisfying surjectivity and degree-2 homomorphism.

Theorem 7 also yields the impossibility of surjective RMFEs over Galois ring
for Zpk -messages.

Example 26. In GR(pt, d) ∼= Zpt [x]/f(x) with a degree-d f(x) which is irre-
ducible modulo p, we cannot pack any copy of Zpk while satisfying surjectivity,
unless d = 1. That is, there is no meaningful surjective RMFE over Galois ring
for Zpk -messages.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Theorem 7 is also a sufficient one.

Theorem 8. Suppose there are r linear factors of f(x) ∈ Zpt [x] in Zpk [x] which
are mutually distinct modulo p. Then, there exists a surjective packing method
Z

r
pk into Zpt [x]/f(x).

Proof. Let g(x) ∈ Zpk [x] be the product of such r linear factors of f(x) in Zpk [x].

Then, there is a CRT ring isomophism ψ : Z
r
pk

∼=−→ Zpk [x]/g(x). Let πk and ιk
denote the projection and injection between Zpt [x]/f(x) and Zpk [x]/f(x), and
let πg and ιg denote those of Zpk [x]/f(x) and Zpk [x]/g(x) respectively.

Define Pack := ιk ◦ ιg ◦ ψ and Unpack := ψ−1 ◦ πh ◦ πk (Fig. 2). Then, it is
straightforward that (Pack,Unpack) is a surjective packing method. 
�

Fig. 2. Definitions of Pack and Unpack in Theorem 8
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7.3 Surjectivity in Fpk -Message Packings

Our main result on surjectivity in Fpk -message packings is the following theorem.
It is a finite field analogue of Theorem 7 which is on Zpk -message packings. Our
theorem illustrates a necessary condition for a surjective packing method for
Fpk -messages to exist.

Theorem 9. Let r be the number of distinct degree-k irreducible factors of
f(x) ∈ Zpt [x] in Fp[x]. For D > 1, there exists a degree-D surjective packing
method F

n
pk into Zpt [x]/f(x) only if n ≤ r.

Proof (Sketch). Let (Packi,Unpacki)D
i=1 be a degree-D surjective packing method

for F
n
pk into Zpt [x]/f(x). For all b(x) ∈ Zpt [x]/f(x), since Unpacki(b(x)) = b for

some b ∈ F
n
pk by surjectivity (Proposition 13), Unpacki(p ·b(x)) = 0 holds. Thus,

we can construct a degree-D surjective packing method (Pack′
i,Unpack

′
i)

D
i=1 for

F
n
pk into Fp[x]/f(x) with appropriate projections and injections.

By Proposition 14 and the fact that R := Fp[x]/f(x) is a principal ideal
ring, the zero-set ideal can be set as Z = ǧ(x) · R for some ǧ(x) ∈ Fp[x] which
divides f(x). Let g(x) := f(x)/ǧ(x). Then, using R/Z ∼= Fp[x]/g(x), we can
construct a degree-D surjective packing method (Pack′′

i ,Unpack′′
i )D

i=1 for F
n
pk into

Fp[x]/g(x) with appropriate projections and injections. Note that deg(g) = k · n
since |R/Z| = pkn by Proposition 14. Then by a counting argument on zero-
divisors, we can show that g(x) must factor into n distinct degree-k irreducible
polynomials to allow such packing. For the full proof, see the full version [14]. 
�

The following are some consequences of Theorem 9. They illustrate the hard-
ness of designing an efficient HE packing method for F2k -messages while satis-
fying surjectivity. We have similar results for Fpk -messages with p �= 2.

Example 27. When M = 2m, since ΦM (x) = (x + 1)2
m−1

in F2[x], we can only
pack copies of F2 into Z2t [x]/ΦM (x) while satisfying surjectivity and degree-2
homomorphism. Even in that case, we can pack at most one copy of F2.

Example 28. When M is an odd, ΦM (x) factors into a product of distinct irre-
ducible polynomials of degree d = ordM (2) in F2[x]. Let φ(M) = r · d. Then,
we can only pack copies of F2d into Z2t [x]/ΦM (x) while satisfying surjectivity
and degree-2 homomorphism. In that case, we can pack at most r copies of F2d .
Note that, since d > log M by definition, r < φ(M)/ log M .

For instance, if one wants to pack F28 into Z2t [x]/ΦM (x) with an odd M
while satisfying the conditions, then one must choose M such that ordM (2) = 8.
However, such M cannot be larger than (28 − 1) and might be too small for a
secure parameter of HE.

Example 29. When M = 2s ·M ′, where M ′ is an odd, ΦM (x) = ΦM ′(−x2s−1
) =

ΦM ′(x)2
s−1

in F2[x]. Thus, we cannot pack more copies of F2k into Z2t [x]/ΦM (x)
than Z2t [x]/ΦM ′(x) while satisfying surjectivity and degree-2 homomorphism.

Meanwhile, using such M can be useful when packing copies of a small field:
it enables to meet certain level of HE security by enlarging the degree of the
ring. See Example 28.
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Theorem 9 also yields the impossibility of surjective RMFEs.

Example 30. In Fpd
∼= Zp[x]/f(x) with a degree-d irreducible f(x), we cannot

pack even a single copy of Fpk while satisfying surjectivity and degree-2 homo-
morphism, if k �= d. That is, there is no meaningful surjective RMFE.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Theorem 9 is also a sufficient one.

Theorem 10. If there are r distinct degree-k irreducible factors of f(x) ∈ Zpt [x]
in Fp[x], then there exists a surjective packing method F

r
pk into Zpt [x]/f(x).

Proof (Sketch). Similar to the proof of Theorem 8. See the full version [14]. 
�
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Abstract. The Cheon-Kim-Kim-Song (CKKS) scheme (Asiacrypt’17)
is one of the most promising homomorphic encryption (HE) schemes
as it enables privacy-preserving computing over real (or complex) num-
bers. It is known that bootstrapping is the most challenging part of
the CKKS scheme. Further, homomorphic evaluation of modular reduc-
tion is the core of the CKKS bootstrapping. As modular reduction is
not represented by the addition and multiplication of complex num-
bers, approximate polynomials for modular reduction should be used.
The best-known techniques (Eurocrypt’21) use a polynomial approxi-
mation for trigonometric functions and their composition. However, all
the previous methods are based on an indirect approximation, and thus
it requires lots of multiplicative depth to achieve high accuracy. This
paper proposes a direct polynomial approximation of modular reduction
for CKKS bootstrapping, which is optimal in error variance and depth.
Further, we propose an efficient algorithm, namely the lazy baby-step
giant-step (BSGS) algorithm, to homomorphically evaluate the approx-
imate polynomial, utilizing the lazy relinearization/rescaling technique.
The lazy-BSGS reduces the computational complexity by half compared
to the ordinary BSGS algorithm. The performance improvement for the
CKKS scheme by the proposed algorithm is verified by implementation
using HE libraries. The implementation results show that the proposed
method has a multiplicative depth of 10 for modular reduction to achieve
the state-of-the-art accuracy, while the previous methods have depths of
11 to 12. Moreover, we achieve higher accuracy within a small multi-
plicative depth, for example, 93-bit within multiplicative depth 11.
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1 Introduction

Homomorphic encryption (HE) is a specific class of encryption schemes that
enables computation over encrypted data. The Cheon-Kim-Kim-Song (CKKS)
scheme [12] is one of the highlighted fully homomorphic encryption (FHE)
schemes as it supports efficient computation on real (or complex) numbers, which
are the usual data type for many applications such as deep learning. As the other
HE schemes are designed for different domains, the CKKS scheme is known to
be the most efficient for real numbers. For example, Brakerski-Fan-Vercauteren
(BFV) [5,6,17] and Brakerski-Gentry-Vaikuntanathan (BGV) [4] schemes are
designed for integer messages in Zq, and FHEW/TFHE [13–15] are designed for
binary circuits.

Gentry’s blueprint of bootstrapping provides the idea of homomorphic re-
encryption of ciphertext. In CKKS bootstrapping, the modular reduction by an
integer is performed homomorphically. However, the modular reduction func-
tion is not represented by the addition and multiplication of complex numbers.
Hence, an approximate polynomial of trigonometric functions is used in prior
arts [3,7,9,18,24], which have two limitations in practice: i) these are indirect
approximations, which require larger multiplicative depths, and ii) the measure
of approximation error is minimax-base (minimizing the upper bound of the
approximation error). This paper shows that the minimax polynomial does not
guarantee the minimax bootstrapping error. We propose that the error variance
would be a better measure than the minimax error, especially for bootstrapping.

The CKKS scheme provides the trade-off between the efficiency and precision
of messages as encrypted data of the CKKS scheme inherently has noise. Errors
in encrypted data are propagated and added along with homomorphic opera-
tions. Hence, the error should be carefully measured when we design a circuit
for efficiency and security in CKKS. Moreover, as attacks against CKKS have
recently been proposed [11,26,27], reducing errors of the CKKS scheme becomes
more crucial to mitigate the risk of the attacks.

1.1 Our Contributions

This paper contains contributions to the high-precision bootstrapping of the
CKKS scheme. We propose i) a method to find the optimal approximate poly-
nomial for the modular reduction in bootstrapping and ii) an efficient algorithm
for homomorphic evaluation of polynomials.

First, we propose the optimal approximate polynomial for CKKS bootstrap-
ping in the aspect of signal-to-noise ratio (SNR), which improves the precision
of CKKS bootstrapping. As a result, we can reserve more levels after bootstrap-
ping while achieving the best-known precision, where the level of a ciphertext
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is defined as the number of successive multiplications that can be performed
to the ciphertext without bootstrapping. The proposed approximate polyno-
mial has the following three features: i) an optimal measure of error for CKKS
bootstrapping: we show that an approximate polynomial that achieves the least
error variance is also optimal for CKKS bootstrapping in the aspect of SNR.
ii) a direct approximation: the approximate polynomial of modular reduction is
directly obtained from the whole polynomial space of degree n, i.e., Pn, using
the error variance-minimizing method, and thus it has less multiplicative depths
compared to the previous methods (In other words, less bootstrapping is required
for the same circuit.) iii) reduction of error from noisy calculation: in the polyno-
mial evaluation over CKKS, each polynomial basis has an error. Unlike previous
bootstrapping methods, the proposed method minimizes the errors introduced
by noisy basis as well as the approximation error.

Second, we propose a novel variant of the baby-step giant-step (BSGS) algo-
rithm, called the lazy-BSGS algorithm, which reduces the number of relineariza-
tions by half compared to ordinary BSGS algorithms. The proposed lazy-BSGS
algorithm is more efficient for higher degree polynomial. The proposed approx-
imate polynomial has a high degree, while the previous methods use a com-
position of small-degree polynomials. Thus, the lazy-BSGS algorithm makes the
evaluation time of the proposed polynomial comparable to the previous methods.

Note for the First Contribution. Previous methods utilized the minimax approx-
imate polynomial of modular reduction function for bootstrapping to reduce the
bootstrapping error [18,24]. However, in CKKS bootstrapping, a linear trans-
formation on slot values, called SlotToCoeff, is performed, and its resulting
ciphertext is the sum of thousands of noisy values. Since many noisy values are
added, the upper bound on the final error value is loose. Hence, we propose to
minimize the error variance instead of the upper bound on the error.

Besides the approximation error, each polynomial basis also has an error in
CKKS, and it is amplified when we multiply large coefficients of the approxi-
mate polynomial. The previous approximation method could not control these
errors with the approximate polynomial coefficients. Thus, they used the trigono-
metric function and double angle formula instead, to make the approximation
degree small [3,18,24]. This indirect approximation results in larger multiplica-
tive depths. It is preferred to reserve more levels after bootstrapping as it can
reduce the number of bootstrapping in the whole system; moreover, the number
of remaining levels after bootstrapping is also important for an efficient circuit
design of algorithms using CKKS, for example, in [23], the depth of activation
layer is optimized for the levels after bootstrapping. The proposed method min-
imizes the basis error variance as well as the approximation error variance, so it
has less multiplicative depths compared to the previous composition of trigono-
metric functions. To the best of our knowledge, this is the first method to find the
optimal approximate polynomial that minimizes both the approximation error
and the error in the basis at the same time.

We show that from the learning with error (LWE) assumption, the input
of approximate polynomial follows a distribution similar to Irwin-Hall distri-
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bution, regardless of the security. The proposed method exploits this property
to improve the approximation accuracy. Also, we derive an analytical solution
for our error variance-minimizing approximate polynomial, while the previous
minimax approximate polynomial was obtained by iterative algorithms [18,24].

Note for the Second Contribution. As rescaling and relinearization introduce
additional errors, it is desirable to perform them as late as possible. In addi-
tion, the number of rescalings/relinearizations is also reduced by reordering the
operations to delay the relinearization/rescaling. This technique, the so-called
lazy rescaling/relinearization technique, has been applied to reduce the compu-
tational complexity in [1,8,22]. We propose a rigorous analysis on lazy rescaling
and relinearization in the BSGS algorithm. Moreover, we propose the algorithm
to find the optimal approximate polynomial, which fits the lazy-BSGS algorithm
for odd functions.

1.2 Related Works

Bootstrapping of the CKKS Scheme. Since the CKKS bootstrapping was
firstly proposed in [9], the Chebyshev interpolation has been applied to the
homomorphic evaluation of modular reduction [7,18]. Then, a technique for
direct approximation was proposed using the least squares method [25] and
Lagrange interpolation [19]. However, the magnitudes of coefficients of those
approximate polynomials are too large. The algorithm to find minimax approxi-
mate polynomial using improved multi-interval Remez algorithm and the use of
arcsin to reduce approximation error of the modular reduction were presented
in [24]. The bootstrapping for the non-sparse-key CKKS scheme was proposed,
and the computation time for homomorphic linear transformations was signif-
icantly improved by using double hoisting in [3]. Julta and Manohar proposed
to use sine series approximation [20], but as there exists a linear transformation
from sine series {sin(kx)} to power of sine functions

{
sin(x)k

}
, this method is

also based on trigonometric functions.

Attacks on the CKKS Scheme and High-Precision Bootstrapping. An
attack to recover the secret key using the error pattern after decryption was
recently proposed by Li and Micciancio [26], and thus it becomes more crucial
to reduce the error in CKKS. One possible solution to this attack is to add
a huge error, so-called the noise flooding technique [16] or perform rounding
after decryption to make the plaintext error-free [26]. In order to use the noise
flooding technique, the CKKS scheme requires much higher precision, and the
bootstrapping error is the bottleneck of precision. Although a lot of research is
required on how to exploit the bootstrapping error for cryptanalysis of CKKS,
the high-precision bootstrapping is still an interesting topic [3,20,24,25].

1.3 Organization of This Paper

The remainder of the paper is organized as follows. In Sect. 2, we provide the
necessary notations and SNR perspective on error. The CKKS scheme and its
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bootstrapping algorithm are summarized in Sect. 3. We provide a new method to
find the optimal direct approximate polynomials for the CKKS scheme and also
show its optimality in Sect. 4. Section 5 provides the novel lazy-BSGS algorithm
for the efficient evaluation of approximate polynomial for CKKS bootstrapping.
The implementation results and comparison for precision and timing perfor-
mance for the CKKS bootstrapping are given in Sect. 6. Finally, we conclude
the paper in Sect. 7.

2 Preliminaries

2.1 Basic Notation

Vectors are denoted in boldface, such as v, and all vectors are column vectors.
Matrices are denoted by boldfaced capital letters, i.e., M. We denote the inner
product of two vectors by 〈·, ·〉 or simply ·. �·�, �·�, and �·� denote the rounding,
floor, and ceiling functions, respectively. [m]q is the modular reduction, i.e., the
remainder of m dividing by q. x ← D denotes the sampling x according to a
distribution D. When a set is used instead of distribution, x is sampled uniformly
at random among the set elements. Random variables are denoted by capital
letters such as X. E[X] and V ar[X] denote the mean and variance of random
variable X, respectively. For a function f , V ar[f(X)] can be simply denoted by
V ar[f ]. ‖a‖2 and ‖a‖∞ denote the L-2 norm and the infinity norm, and when
the input is a polynomial, those denote the norm of coefficient vector. We denote
the supreme norm of a function ‖f‖sup := supt∈D |f(t)| for a given domain D.

Let ΦM (X) be the M -th cyclotomic polynomial of degree N , and when M is
a power of two, M = 2N , and ΦM (X) = XN + 1. Let R = Z/〈ΦM (X)〉 be the
ring of integers of a number field S = Q/〈ΦM (X)〉, where Q is the set of rational
numbers and we write Rq = R/qR. A polynomial a(X) ∈ R can be denoted by
a by omitting X when it is obvious. Since the multiplicative depth of a circuit is
crucial in CKKS, from here on, the multiplicative depth is referred to as depth.

2.2 The CKKS Scheme

The CKKS scheme and its residual number system (RNS) variants [10,18] pro-
vide operations on encrypted complex numbers, which are done by the canon-
ical embedding and its inverse. Recall that the canonical embedding Emb of
a(X) ∈ Q/〈ΦM (X)〉 into C

N is the vector of the evaluation values of a at the
roots of ΦM (X) and Emb−1 denotes its inverse. Let π denote a natural projec-
tion from H = {(zj)j∈Z∗

M
: zj = z−j} to C

N/2, where Z
∗
M is the multiplicative

group of integer modulo M . The encoding and decoding are defined as follows.

– Ecd(z;Δ): For an (N/2)-dimensional vector z, the encoding returns

m(X) = Emb−1
(⌊

Δ · π−1(z)
⌉
Emb(R)

)
∈ R,

where Δ is the scaling factor and �·�Emb(R) denotes the discretization into an
element of Emb(R).
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– Dcd(m;Δ): For an input polynomial m(X) ∈ R, output a vector

z = π(Δ−1 · Emb(m)) ∈ C
N/2,

where its entry of index j is given as zj = Δ−1 ·m(ζj
M ) for j ∈ T , ζM is the M -

th root of unity, and T is a multiplicative subgroup of Z∗
M satisfying Z

∗
M/T =

{±1}. Alternatively, this can be basically represented by multiplication by an
N/2 × N matrix U whose entries are Uji = ζi

j , where ζj := ζ5
j

M .

For a real number σ, DG(σ2) denotes the distribution in Z
N , whose entries

are sampled independently from the discrete Gaussian distribution of variance
σ2. HWT (h) is the set of signed binary vectors in {0,±1}N with Hamming
weight h. Suppose that we have ciphertexts of level l for 0 ≤ l ≤ L.

The RNS-CKKS scheme performs all operations in RNS. The ciphertext
modulus Ql = q ·

∏l
i=1 pi is used, where pi’s are chosen as primes that satisfy

pi = 1 (mod 2N) to support efficient number theoretic transform (NTT). We
note that Q0 = q is greater than p as the final message’s coefficients should
not be greater than the ciphertext modulus q. For a faster computation, we use
the hybrid key switching technique in [18]. First, for predefined dnum, a small
integer, we define partial products

{
Q̃j

}

0≤j<dnum
=

{∏(j+1)α−1
i=jα pi

}

0≤j<dnum
,

for a small integer α = �(L + 1)/dnum�. For a ciphertext with level l and dnum′ =
�(l + 1)/α�, we define [18]

WDl(a) =

⎛
⎜⎝

[
a

Q̃0

Ql

]

Q̃0

, · · · ,

[
a

Q̃dnum′−1

Ql

]

Q̃dnum′−1

⎞
⎟⎠ ∈ Rdnum′

,

PWl(a) =

⎛
⎝

[
a

Ql

Q̃0

]

Ql

, · · · ,

[
a

Ql

Q̃dnum′−1

]

Ql

⎞
⎠ ∈ Rdnum′

Ql
.

Then, for any (a, b) ∈ R2
Ql

, we have

〈WDl(a),PWl(b)〉 = a · b (mod Ql) .

Then, the operations in the RNS-CKKS scheme are defined as follows:

– KeyGen(1λ):
• Given the security parameter λ, we choose a power-of-two M , an integer

h, an integer P , a real number σ, and a maximum ciphertext modulus Q,
such that Q ≥ QL.

• Sample the following values: s ← HWT (h).
• The secret key is sk := (1, s).

– KSGensk(s′): For auxiliary modulus P =
∏k

i=0 p′
i ≈ maxj Q̃j , sample a′

k ←
RPQL

and e′
k ← DG(σ2). Output the switching key

swk := (swk0, swk1) =({b′
k}dnum

′−1
k=0 , {a′

k}dnum
′−1

k=0 ) ∈ R2×dnum′
PQL

,

where b′
k = −a′

ks + e′
k + P · PW(s′)k (mod PQL).
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• Set the evaluation key as evk := KSGensk(s2).
– Encsk(m): Sample a ← RQL

and e ← DG(σ2). The output ciphertext is

ct = (−a · s + e + m,a) (mod QL) ,

where sk = (1, s). There is also a public-key encryption method [12], but
omitted here.

– Decsk(ct): Output m̄ = 〈ct, sk〉.
– Add(ct1, ct2): For ct1, ct2 ∈ R2

Ql
, output ctadd = ct1 + ct2 (mod Ql) .

– Mult(ct1, ct2): For ct1 = (b1, a1) and ct2 = (b2, a2) ∈ R2
Ql

, return

ctmult = (d0, d1, d2) := (b1b2, a1b2 + a2b1, a1a2) (mod Ql) .

– RLevk(d0, d1, d2): For a three-tuple ciphertext (d0, d1, d2) corresponding to
secret key (1, s, s2), return (d0, d1) + KSevk((0, d2)).

– cAdd(ct1,a;Δ): For a ∈ C
N/2 and a scaling factor Δ, output ctcadd = ct +

(Ecd(a;Δ), 0).
– cMult(ct1,a;Δ): For a ∈ C

N/2 and a scaling factor Δ, output ctcmult =
Ecd(a;Δ) · ct.

– RS(ct): For ct ∈ R2
Ql

, output ctRS =
⌊
p−1

l · ct
⌉
(mod ql−1) .

– KSswk(ct): For ct = (b, a) ∈ R2
Ql

and swk := (swk0, swk1), output

ctKS =

(
b +

⌊ 〈WDl(a), swk0〉
P

⌉
,

⌊ 〈WDl(a), swk1〉
P

⌉)
(mod Ql) .

The key-switching techniques are used to provide various operations such as
complex conjugate and rotation. To remove the error introduced by approxi-
mate scaling factors, one can use different scaling factors for each level as given
in [21], or we can use the scale-invariant method proposed in [3] for polyno-
mial evaluation. We note that (FullRNS-)HEAAN and SEAL are (dnum = 1) and
(dnum = L + 1) cases, respectively, and Lattigo supports for arbitrary dnum.

2.3 Signal-to-Noise Ratio Perspective of the CKKS Scheme

There has been extensive research on noisy media in many areas such as wireless
communications and data storage. In this perspective, the CKKS scheme can be
considered as a noisy media; encryption and decryption correspond to transmis-
sion and reception, respectively. The message in a ciphertext is the signal, and
the final output has additive errors due to ring-LWE (RLWE) security, rounding,
and approximation.

The SNR is the most widely-used measure of signal quality, which is defined
as the ratio of the signal power to the noise power as follows:

SNR =
E[S2]
E[N2]

,

where S and N denote the signal (message) and noise (error), respectively. As
shown in the definition, the higher SNR corresponds to the better quality.
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A simple way to increase SNR is to increase the signal power, but it would
be limited due to regulatory or physical constraints. The CKKS scheme has the
same problem; a larger scaling factor should be multiplied to the message to
increase the message power, but if one uses a larger scaling factor, the cipher-
text level decreases, or larger parameters should be used for security. Hence, to
increase SNR, it is beneficial to reduce the noise power in the CKKS scheme
rather than increasing the signal power.

Error estimation of the CKKS scheme so far has been focused on the high-
probability upper bound of the error after several operations [9,12] and also
minimax for approximation [24]. However, the bound becomes quite loose as the
homomorphic operation continues, and its statistical significance may diminish.
Thus, we maximize SNR in this paper, which is equivalent to minimizing error
variance when the scaling factor is fixed.

3 Bootstrapping of the CKKS Scheme

3.1 Outline of the CKKS Bootstrapping

There are extensive studies for bootstrapping of the CKKS scheme [3,7,9,18–
20,24,25]. The CKKS bootstrapping consists of the following four steps: Mod-
Raise, CoeffToSlot, EvalMod, and SlotToCoeff.

Modulus Raising (ModRaise). ModRaise increases the ciphertext modulus to
a larger modulus. Let ct be the ciphertext satisfying m(X) = [〈ct, sk〉]q. Then
we have t(X) = 〈ct, sk〉 = qI(X) + m(X) ≡ m(X) (mod q) for I(X) ∈ R with a
high-probability bound ‖I(X)‖∞ < K = O(

√
h). The following procedure aims

to calculate the remaining coefficients of t(X) when dividing by q.

Homomorphic Evaluation of Encoding (CoeffToSlot). Homomorphic opera-
tions are performed in plaintext slots, but we need component-wise operations
on coefficients. Thus, to deal with t(X), we should put polynomial coefficients in
plaintext slots. In CoeffToSlot step, Emb−1 ◦π−1 is performed homomorphi-
cally using matrix multiplication [9], or FFT-like hybrid method [7]. Then, we
have two ciphertexts encrypting z′

0 = (t0, . . . , tN
2 −1) and z′

1 = (tN
2
, . . . , tN−1)

(when the number of slots is small, we can put z′
0 and z′

1 in a ciphertext, see [9]),
where tj denotes the j-th coefficient of t(X). The matrix multiplication is com-
posed of three steps [9]: i) rotate ciphertexts, ii) multiply diagonal components
of matrix to the rotated ciphertexts, and iii) sum up the ciphertexts.

Evaluation of the Approximate Modular Reduction (EvalMod). An approxi-
mate evaluation of the modular reduction function is performed in this step. As
additions and multiplications cannot represent the modular reduction function,
an approximate polynomial for [·]q is used. For approximation, it is desirable to
control the message size to ensure mi ≤ ε · q for a small ε [9].

Homomorphic Evaluation of Decoding (SlotToCoeff). SlotToCoeff is the
inverse operation of CoeffToSlot. Since the matrix elements do not have to be
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precise as much in CoeffToSlot, we can use a smaller scaling factor here [3].
In SlotToCoeff, the ciphertext is multiplied by the CRT matrix U, whose
elements have magnitudes of one. Thus, the N errors in slots are multiplied by
a constant of size one and then added.

3.2 Polynomial Approximation of Modular Reduction

Previous works approximated the modular reduction function as q
2π sin

(
2πt
q

)
[7,

9,18]. Approximate polynomial of sine function is found by using Taylor expan-
sion of exponent function and eit = cos(t) + i · sin(t) in [9]. The Chebyshev
approximation of sine function improved the approximation in [7]. The modi-
fied Chebyshev approximation in cosine function and the double-angle formula
reduced the error and evaluation time in [18]. However, in these approaches,
the sine function is used, and thus there is still the fundamental approximation
error, that is, ∣∣∣∣m − q

2π
sin(2π

m

q
)

∣∣∣∣ ≤ q

2π
· 1

3!

(
2π|m|

q

)3

.

Direct-approximation methods were proposed in [19,25], but their coefficients
are large and amplify errors of polynomial basis. A composition with inverse sine
function that offers a trade-off between the precision and the remaining level
was proposed to remove the fundamental approximation error between the sine
function and the modular reduction [24]. However, the evaluation of inverse sine
function has a considerable multiplicative depth.

Those prior researches tried to find the minimax approximate polynomial pn,
which minimizes ‖f − pn‖sup, where f is the function to approximate, such as sine
function [7,9,18,24]. Lee et al. proposed the multi-interval Remez algorithm [24],
which is an iterative method to find minimax approximate polynomial of an
arbitrary piece-wise continuous function.

3.3 Baby-Step Giant-Step Algorithms

There are several baby-step giant-step algorithms for a different purpose in the
context of HE. In this paper, BSGS only refers to the polynomial evaluation
algorithm proposed in [18] and its variants. The BSGS algorithm is presented
in Algorithm 1 composed of SetUp, BabyStep, and GiantStep. SetUp cal-
culates all the polynomial bases required to evaluate the given polynomial. The
GiantStep divides the input polynomial by a polynomial of degree 2ik and calls
GiantStep recursively for its quotient and remainder, where i ≤ �log(deg/k)�
for an integer k, and deg is the degree of the polynomial. When the given poly-
nomial has a degree less than k, it calls BabyStep, and it evaluates the given
polynomial of a small degree, namely a baby polynomial.

Originally, Han and Ki proposed to use a power-of-two k [18], and Lee et al.
generalized k to an arbitrary even number and proposed to omit even-degree
terms for odd polynomial,1 which reduces the number of ciphertext-ciphertext
1 This technique appears in their first version in Cryptology ePrint Archive.



560 Y. Lee et al.

Algorithm 1. BSGS Algorithm [18,24]
Instance: A ciphertext ct of t, a polynomial p(X) =

∑
i ci · Ti(X).

Output: A ciphertext encrypting p(t).

1: Let l be the smallest integer satisfying 2lk > n for an even number k.
2: procedure SetUp(ct, l, k)
3: cti ← encryption of Ti(t)
4: ct2ik ← encryption of T2ik(t) � for 0 ≤ i < l.
5: end procedure
6: procedure BabyStep(p(X), {cti} , k)
7: return

∑
j cj · ctj � baby polynomials.

8: end procedure
9: procedure GiantStep(p(X), {cti} , l, k)

10: if deg(p) < k then
11: return BabyStep(p(X), {cti} , k)
12: end if
13: Find q(X), r(X) s.t. p(X) = q(X) · T2ik(X) + r(X)
14: ctq ←GiantStep(q(X), {cti} , l, k)
15: ctr ←GiantStep(r(X), {cti} , l, k)
16: return ctq · ct2ik + ctr
17: end procedure

multiplications [24]. The number of ciphertext-ciphertext multiplications is given
as

k − 2 + l + 2l

in general, and
�log (k − 1)� + k/2 − 2 + l + 2l

for odd polynomials, where deg < k ·2l is satisfied. Also, Bossuat et al. improved
to do more recursion for high-degree terms [3] to optimize the multiplicative
depth. In the BSGS algorithm of Bossuat et al., we can evaluate a polynomial of
degree up to 2d −1 within multiplicative depth d by applying O(log k) additional
multiplications.

4 Optimal Approximate Polynomial of Modular
Reduction for Bootstrapping of the CKKS Scheme

This section proposes a new method to find the optimal approximate polynomial
of the modular reduction function for the CKKS bootstrapping, considering the
noisy computation nature of the CKKS Scheme. The optimality of the proposed
approximate polynomial is proved, and statistics of input for an approximate
polynomial are also analyzed to improve the approximation.

4.1 Error Variance-Minimizing Polynomial Approximation

We use the variance of error as the objective function for the proposed polyno-
mial approximation and show that it is also optimal for CKKS bootstrapping.
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As described later in the following subsections, the error in the noisy polynomial
basis, namely the basis error, might be amplified by coefficients of the approx-
imate polynomial. Thus, the magnitude of its coefficients should be small, and
using the generalized least square method, the optimal coefficient vector c∗ of
the approximate polynomial is obtained as

c∗ = arg minc

(
V ar[eaprx] +

∑
wic

2
i

)
, (1)

where eaprx is the approximation error, and the constant values wi are determined
by the basis error given by CKKS parameters such as key Hamming weight,
number of slots, and scaling factor.

We call the proposed approximate polynomial obtained by (1) as the error
variance-minimizing approximate polynomial, and we derived an analytic solu-
tion. We note that the optimized solution attempts to minimize the variance
of the approximation error as well as the variance of amplified basis error. The
error variance-minimizing approximate polynomial is described in detail by tak-
ing bootstrapping as a specific example in the following subsection. It is worth
noting that the approximation can be applied arbitrary function.

4.2 Optimality of the Proposed Direct Approximate Polynomial

In this subsection, we show that the proposed error variance-minimizing approx-
imate polynomial is optimal for CKKS bootstrapping in the following aspects.
First, we show that an approximate polynomial that minimizes the error variance
after EvalMod also minimizes the bootstrapping error variance, and thus it is
optimal in terms of SNR. Next, we show that the direct approximation to the
modular reduction allows a more accurate approximation than previous indirect
approximations using trigonometric functions [3,7,9,18,24] for fixed multiplica-
tive depth.

Error-Optimality of the Proposed Approximate Polynomial in CKKS
Bootstrapping. Here, we show that error variance-minimizing approximate
polynomial guarantees the minimal error after bootstrapping in the aspect of
SNR, while the minimax approach in [3,7,9,18,24] does not guarantee the min-
imax error after bootstrapping. In EvalMod, the operations between different
slots do not happen, and thus we can assume that the error in each slot is inde-
pendent. The SlotToCoeff is the homomorphic operation of decoding, and
the decoding of m(X) is given as (m(ζ0),m(ζ1), . . . , m(ζN/2−1)). Hence, the error
in the j-th slot after SlotToCoeff is given as eboot,j(ζj) =

∑N−1
i=0 emod,i · ζi

j

which is the sum of thousands of independent random variables, where emod,i

denotes the error in the i-th slot after EvalMod and |ζj | = 1.
The minimax approximate polynomial minimizes ‖eaprx(t)‖sup [7,24]. In this

case, we have emod,i = eaprx(ti) + enoise,i, where ti is the i-th slot value after
CoeffToSlot and enoise,i is the random error by the noisy polynomial basis
of CKKS. Hence, the minimax approximation minimizes max

(∣∣eaprx(ti) · ζi
j

∣
∣) =
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‖eaprx(ti)‖sup, not max (|eboot,j |). In other words, we observe that the final boot-
strapping error is eboot,j , and we have

max (|eboot,j |) = max

(∣∣∣∣∣
N−1∑
i=0

emod,i · ζi
j

∣∣∣∣∣

)
= max

(∣∣∣∣∣
N−1∑
i=0

(eaprx(ti) + enoise,i) · ζi
j

∣∣∣∣∣

)

≤ max

(∣∣∣∣∣
N−1∑
i=0

eaprx(ti) · ζi
j

∣∣∣∣∣

)
+ max

(∣∣∣∣∣
N−1∑
i=0

enoise,i · ζi
j

∣∣∣∣∣

)
, (2)

where

max

(∣∣∣∣∣
N−1∑
i=0

eaprx(ti) · ζi
j

∣∣∣∣∣

)
≤ ∥∥ζ0

j · eaprx
∥∥
sup

+ · · · +
∥∥∥ζN−1

j · eaprx

∥∥∥
sup

.

Hence, the minimax approximate polynomial does not guarantee the minimum
infinity norm of bootstrapping error but provides an upper bound only for the
approximation error term. Besides, it is challenging to optimize polynomial coef-
ficients for noisy basis in the existing minimax approximation.

In contrast, the proposed error variance-minimizing approximate polynomial
minimizes V ar[emod,j ]. Thus, it also minimizes the final bootstrapping error
V ar[eboot,j ], as

V ar[eboot,j ] = V ar[emod,0 · ζ0j ] + · · · + V ar[emod,N−1 · ζ
(N−1)
j ].

The above equation implies that minimizing the variance of the approximate
error is optimal to reduce the bootstrapping error of the CKKS scheme in the
aspect of SNR. Due to the characteristics of SlotToCoeff, we have the tight
value of the variance of bootstrapping error, while the minimax provides an
upper bound of infinity norm. In other words, we can optimize our objective
function by the proposed error variance-minimizing approximate polynomial,
whereas the minimax approach optimizes an upper bound (the right-hand side
of (2)) instead of the bootstrapping error (the left-hand side of (2)).

Depth Optimality of Direct Approximation. As shown in (1), the pro-
posed method approximates the objective function directly, while the prior works
approximate trigonometric functions [3,7,9,18,24]. Let Pdeg ⊂ C[X] be the set
of all polynomials whose degree is less than or equal to deg. When we perform
a direct approximation, the algorithm finds an approximate polynomial among
all elements of Pdeg, and its multiplicative depth is �log(deg)�.

When we use the approximation of trigonometric function, the search space
of the approximation algorithm is much more limited. For example, as in [3,24],
suppose that we use the double angle formula twice and approximate polynomial
for cosine and arcsine of degree deg1 and deg2, respectively. Then the search space
is {

f2 ◦ g ◦ f1|f1 ∈ Pdeg1 , f2 ∈ Pdeg2 , and g(x) = (x2 − 1)2 − 1
}

.

We can see that the search space is much smaller than P4deg1deg2 , and its multi-
plicative depth is �log(deg1 + 1)� + 2 + �log(deg2 + 1)� ≥ �log(4deg1deg2 + 1)�.
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Hence, the direct approximation in P4deg1deg2 has more chance to find a better
approximation as well as it has less multiplicative depth.

4.3 Noisy Polynomial Basis and Polynomial Evaluation
in the CKKS Scheme

Let {φ0(x), φ1(x), . . . , φn(x)} denote a polynomial basis of degree n such that
every φk(t) is odd for an odd k. When a polynomial p(x) =

∑
ciφi(x) is evaluated

homomorphically, it is expected that the result is p(x) + e for a small error e. In
the CKKS scheme, there exists an error in encrypted data, and thus, each φi(x)
contains independent ebasis,i, namely the basis error. Thus, the output is

∑
ci(φi(x) + ebasis,i) = p(x) +

∑
ciebasis,i.

In general,
∑

ciebasis,i is small as ebasis,i are small. However, when |ci| are much
greater than p(x),

∑
ciebasis,i dominates p(x).

The basis errors, ebasis,i are introduced by rescaling, key switching, and
encryption errors, which are independent of the message. Each φi(x) is usually
obtained from smaller-degree polynomials, and thus there may be some corre-
lation between ebasis,i’s. If we assume that each ebasis,i is independent, then the
variance of

∑
ci · ebasis,i becomes

∑
c2i · V ar(ebasis,i) and wi in (1) corresponds

to V ar(ebasis,i). The experiments in Sect. 6 support that our approximation with
this independence assumption obtains accurate approximations for bootstrap-
ping in practice. In other words, we do not need exact distributions of ebasis,i in
practice.

In conclusion, the magnitude of ci’s should be controlled when we find an
approximate polynomial. A high-degree approximate polynomial for modular
reduction and piece-wise cosine function has large coefficients magnitude in pre-
vious works [19,24]. There have been series of studies in approximate polyno-
mials in the CKKS scheme [3,7,12,18,19,24,25], but the errors amplified by
coefficients were not considered in the previous studies.

4.4 Optimal Approximate Polynomial for Bootstrapping
and the Magnitude of Its Coefficients

The most depth-consuming and noisy part of bootstrapping is EvalMod. In
this subsection, we show how to find the optimal approximate polynomial for
EvalMod in the aspect of SNR. By scaling the modular reduction function [·]q
by 1

q , we define

fmod :

K−1⋃
i=−K+1

Ii → [−ε, ε] , that is, fmod(t) = t − i if t ∈ Ii,

where Ii = [i − ε, i + ε] for an integer −K < i < K . Here, ε denotes the ratio of
the maximum coefficient of the message polynomial and the ciphertext modulus,
that is, |mi/q| ≤ ε, where mi denotes a coefficient of m(X). Let T be the random
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variable of input t of fmod(t). Then, T = R + I, where R is the random variable
of the rational part r, and I is the random variable of the integer part i. We
note that PrT (t) = PrI (i) · PrR (r) is satisfied for t = r + i as i and r are
independent and

⋃
i Ii = [−ε, ε] × {0,±1, . . . ,±(K − 1)}, where PrT ,PrI , and

PrR are the probability mass functions or probability density functions of T, I,
and R, respectively.

The approximation error for t is given as

eaprx(t) = p(t) − fmod(t) = p(t) − (t − i),

where a polynomial p(t) =
∑

ciφi(t) approximates fmod(t). We can set p(t) as
an odd function because fmod(t) is odd. Then the variance of eaprx is given as

V ar[eaprx] = E[e2aprx] =

∫

t

eaprx(t)
2 · PrT (t) dt

=
∑

−K<i<K

PrI (i)

∫ i+ε

t=i−ε

eaprx(t)
2 · PrR (t − i) dt,

where the mean of eaprx is zero by assuming that PrT (t) is even. It is noted that
the integral can be directly calculated or approximated by the sum of discretized
values as in [25].

The basis error
∑

c2i · V ar(ebasis,i) is also added as discussed in Subsect. 4.3.
We generalize V ar(ebasis,i) by wi. Then, we find c∗ such that

c∗ = arg minc

(
V ar[eaprx] +

∑
wic

2
i

)
, (3)

and its solution satisfies

∇c

(
V ar[eaprx] +

∑
wic

2
i

)
= 0,

where c = (c1, c3, . . . , cn) and w = (w1, w3, . . . , wn) are coefficient and weight
constant vectors, respectively. We note that the objective function is convex.

It is noted that V ar(ebasis,i) may differ by i, and thus, a precise adjustment
of the magnitude of polynomial coefficients can be made by multiple weight
constants, wi’s. The following theorem states that we can find the approximate
polynomial for p(t) efficiently; the computation time of solving this system of lin-
ear equations is the same as that of finding an interpolation polynomial for given
points. It will be faster than the improved multi-interval Remez algorithm [24],
as the Remez algorithm requires an interpolation per each iteration.

Theorem 1. There exists a polynomial-time algorithm that finds the odd poly-
nomial p(t) =

∑
ciφi(t) satisfying

arg minc

(
V ar[eaprx] +

∑
wic

2
i

)
,

when PrT (t) is an even function.
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Proof. By substituting p(t) =
∑

ciφi(t) from V ar[eaprx] = E[e2aprx] =
E[fmod(t)2] − 2E[fmod(t) · p(t)] + E[p(t)2], we have

∂

∂cj
V ar[eaprx] = −2E[fmod(t)φj(t)] + 2

∑

i

ci · E[φi(t)φj(t)].

Therefore, one can find c∗ = arg minc

(
V ar[eaprx] +

∑
wic

2
i

)
by solving the fol-

lowing system of linear equations:

(T + wI) · c = y, (4)

where w is a diagonal matrix where wii = wi,

T =

⎡

⎢
⎢
⎢
⎢
⎣

E[φ1 · φ1] E[φ1 · φ3] . . . E[φ1 · φn]

E[φ3 · φ1] E[φ3 · φ3] . . .
...

...
. . .

...
E[φn · φ1] E[φn · φ3] . . . E[φn · φn]

⎤

⎥
⎥
⎥
⎥
⎦

, and y =

⎡

⎢
⎢
⎢
⎣

E[fmod · φ1]
E[fmod · φ3]

...
E[fmod · φn]

⎤

⎥
⎥
⎥
⎦

.

E[φi ·φj ] and E[fmod ·φi] are integral of polynomials, which are easily calculated.
Also, the equation can be simplified by the linear transformation from monomial
basis to φ, and thus, the approximation of other functions is readily obtained.

��

4.5 Statistical Characteristics of Modular Reduction

The input distribution of the proposed approximate polynomial, represented by
PrI and PrR, is required to find T and y. Unfortunately, in HE, it is not always
possible to utilize the message distribution as it might be related to security.
However, we observe and analyze that the major part of the input distribution
of approximate polynomial is unrelated to the security.

After ModRaise, the plaintext in the ciphertext ct = (b, a) is given as

t(X) = q · I(X) + m(X) = 〈ct, sk〉
(
mod XN + 1

)
,

where sk has Hamming weight h and each coefficient of a ciphertext (b, a) is
an element of Zq. The RLWE assumption states that a ciphertext is uniformly
distributed over R2

q, and thus each coefficient of b and a is distributed uniformly
at random. In other words, coefficients of b + a · s follow the well-known Irwin-
Hall distribution. Especially, it is a sum of h + 1 independent and identically
distributed uniform random variables.

We note that one can exploit the distribution of I without security con-
cerns. This is because the probability distribution PrI is given by the RLWE
assumption (that b and a are uniformly distributed), regardless of the message
distribution. Also, the implementation results in Sect. 6 show that we can achieve
high approximation accuracy of the proposed approximate polynomial using PrI

even if we set to the worst-case of PrR.



566 Y. Lee et al.

Table 1. Experimental result and theoretical probability mass function of I when
h = 192

i PrI (i) i PrI (i) i PrI (i)

Experiment Theory Experiment Theory Experiment Theory

0 9.94·10−2 9.91·10−2 ±8 1.36·10−2 1.37·10−2 ±16 3.34·10−5 3.48·10−5

±1 9.64·10−2 9.61·10−2 ±9 8.02·10−3 8.10·10−3 ±17 1.16·10−5 1.23·10−5

±2 8.78·10−2 8.76·10−2 ±10 4.44·10−3 4.50·10−3 ±18 3.84·10−6 4.09·10−6

±3 7.52·10−2 7.51·10−2 ±11 2.30·10−3 2.34·10−3 ±19 1.20·10−6 1.27·10−6

±4 6.05·10−2 6.05·10−2 ±12 1.12·10−3 1.15·10−3 ±20 3.40·10−7 3.71·10−7

±5 4.58·10−2 4.58·10−2 ±13 5.15·10−4 5.26·10−4 ±21 9.41·10−8 1.01·10−7

±6 3.25·10−2 3.26·10−2 ±14 2.20·10−4 2.27·10−4 ±22 – 2.58·10−8

±7 2.17·10−2 2.18·10−2 ±15 8.84·10−5 9.15·10−5 ±23 – 6.15·10−8

We can numerically obtain the distribution of I or analytically derive its
distribution. Table 1 is the probability mass function of I, obtained numerically
using SEAL and analytically derived by using Irwin-Hall distribution. It is shown
that the experimental results and our probability analysis using the Irwin-Hall
distribution agree. In previous researches, a heuristic assumption is used, and
a high-probability upper bound K = O(

√
h) for ‖I‖∞ is used for polynomial

approximation [3,9,18,24], but they could not utilize the distribution of I.
For PrR, we can set the worst-case scenario; message m(X) is uniformly

distributed over ‖m‖∞ < ε · q, as it results in the most significant entropy of
the message. The experimental results in Sect. 6 show that even though the
worst-case scenario is used and the distribution of m(X) is different from the
actual one, the error value in the proposed method is comparable to the prior
arts [3,24] while consuming less depth. Also, in the experiment of [3], a uniformly
distributed message is used to simulate the bootstrapping error and utilized the
fact that m(X) is highly probable to be in the center to use a small-degree
arcsine Taylor expansion. We note that we can also heuristically assume a specific
distribution in our bootstrapping when we specify PrR for (1) and improve the
precision.

5 Lazy Baby-Step Giant-Step Algorithm

This section proposes error and complexity optimization when evaluating the
error variance-minimizing approximate polynomial in bootstrapping. There are
two optimizations: First, we show that the error variance-minimizing approxi-
mate polynomial is odd, and thus, we can ignore the even-degree terms. Second,
we propose a novel evaluation algorithm, namely the lazy-BSGS algorithm, to
reduce the computational complexity of EvalMod.

5.1 Reducing Error and Complexity Using Odd Function Property

When the approximate polynomial is an odd function, we can save time for both
homomorphically evaluating and finding the polynomial. Moreover, by omitting
the even-degree terms, we can reduce the approximate error and basis errors.
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Error Variance-Minimizing Polynomial for an Odd Function. This sub-
section shows that the variance-minimizing polynomial is an odd function, where
PrT (t) is even. Using an odd polynomial, we can reduce the approximation error
and the computation time to find the proposed approximate polynomial. First
of all, we only need to integrate over the positive domain when obtaining each
element of (4). Second, the number of operations to evaluate the approximate
polynomial can also be reduced by omitting even-degree terms when using the
lazy-BSGS algorithm Algorithm 2 in the following subsection. Finally, the basis
error is also reduced as only half of the terms are added.

The following theorem shows that when the objective of polynomial approx-
imation such as fmod(t) is odd and the probability density function is even, the
error variance-minimizing approximate polynomial is also an odd function.

Theorem 2. If PrT (t) is an even function and f(t) is an odd function, the
error variance-minimizing approximate polynomial for f(t) is an odd function.

Proof. Existence and uniqueness: Equation (3) is a quadratic polynomial for the
coefficients c, and thus there exists one and only solution.
Oddness: Let Pm be the subspace of the polynomials of degree at most m and
fm(t) denote the unique element in Pm that is closest to f(t) in terms of the
variance of difference. Then, V ar[−f(−t) − p(t)] +

∑
wic

2
i is minimized when

p(t) = −fm(−t), because

V ar [−f(−t) − p(t)] =
∫

t

(−f(−t) − p(t))2 · Pr(t)dt

=
∫

−u

−(f(u) + p(−u))2 · Pr(−u)du

=
∫

u

(f(u) − (−p(−u)))2 · Pr(u)du

= V ar [f(t) − (−p(−t))] ,

and the squares of coefficients of fm(t) and −fm(−t) are the same. As the error
variance-minimizing approximate polynomial is unique, we conclude fm(t) =
−fm(−t).

��

5.2 Lazy Baby-Step Giant-Step Algorithm

In this subsection, we propose a new algorithm that efficiently evaluates arbi-
trary polynomials over the CKKS scheme, namely the lazy-BSGS algorithm in
Algorithm 2, and we extend it to the odd polynomials. We apply the lazy relin-
earization and rescaling technique [1,2,8,22] to the BSGS algorithm to improve
its time complexity and error performance. For example, when we evaluate a
polynomial of degree 711 by using the ordinary BSGS algorithm in [18], 58
non-scalar multiplications are required; however, when we use the odd-BSGS



568 Y. Lee et al.

Algorithm 2. Lazy-BSGS Algorithm
Instance: A ciphertext ct of t, a polynomial p(X) of degree deg.
Output: A ciphertext encrypting p(t).

1: Let l be the smallest integer satisfying 2lk > n for an even number k.
2: procedure SetUpLazy(ct, l, k)
3: for i = 2; i < k; i ← 2i do
4: cti ← 2 · cti/2cti/2 − 1
5: cti ← RL(cti)
6: end for
7: for i = 3; i < k; i ← i + 1 do
8: i0, i1 ← 2�log i�, i − 2�log i�

9: cti0 ← RL(cti0)
10: cti ← 2 · cti0cti1 − cti0−i1

11: end for
12: if k/2 is even then � To reduce the error, see Fig. 2
13: ctk ← 2 · ctk/2+1ctk/2−1 − ct2
14: else
15: ctk ← 2 · ctk/2ctk/2 − 1
16: end if
17: ctk ← RL(ctk)
18: for i = 2k; i < deg; i ← 2i do
19: i0, i1 ← 2�log i�, i − 2�log i�

20: cti ← 2 · cti/2cti/2 − 1
21: cti ← RL(cti)
22: end for
23: {cti} ← encryptions of Ti(t)
24: {ct2ik} ← encryptions of T2ik(t)
25: end procedure
26: procedure GiantStepLazy(p(X), {cti} , l, k)
27: if deg(p) < k then
28: return BabyStep(p(X), {cti} , k)
29: end if
30: Find q(X), r(X) s.t. p(X) = q(X) · T2ik(X) + r(X)
31: ctq ←GiantStep(q(X), {cti} , l, k)
32: ctr ←GiantStep(r(X), {cti} , l, k)
33: ctq ← RL(ctq)
34: return ctq · ct2ik + ctr
35: end procedure

algorithm [24], 46 non-scalar multiplications are required. Moreover, the lazy
relinearization method reduces the number of relinearizations to 33, which is
the same number of relinearizations for a polynomial of degree 220 using the
ordinary BSGS algorithm.

The relinearization and rescaling introduce additional errors in the CKKS
scheme, and the error propagates along with homomorphic operations. Hence, we
should delay the relinearization and rescaling to reduce the error of the resulting
ciphertext. Moreover, those operations, especially relinearization, require many
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NTTs, and thus it requires lots of computation. For some circuits, we can reduce
the numbers of relinearizations and rescalings by delaying them. We observe that
we can perform plaintext addition, ciphertext addition, and scalar multiplication
to a ciphertext before relinearization.

A ciphertext is a three-tuple (d0, d1, d2) ∈ R3
qL such that 〈(d0, d1, d2), (1, s, s2)〉

= m + e. A plaintext u ∈ R can be multiplied homomorphically by calculating
(u · d0, u · d1, u · d2), but we note that the error is amplified by the magnitude
of u. When we add a ciphertext (b, a) to (d0, d1, d2), we get (d0 + b, d1 + a, d2).
However, as the scaling factor of ciphertext is changed along with homomorphic
operations, we should make sure that the scaling factors of the two ciphertexts are
identical when we add two ciphertexts. If not, we can multiply a constant, Δ1/Δ2,
to a ciphertext which has a smaller scaling factor and then add, where Δ1 is the
larger scaling factor, and Δ2 is the smaller scaling factor. Alternatively, we can use
the scaling factor management technique proposed in [21].

We propose the lazy-BSGS algorithm, which reduces the numbers of rescal-
ings and relinearizations, and we analyze its computational complexity. Here,
we rigorously analyze the number of relinearizations as its complexity is much
higher than other operations, and we note that the number of rescalings is also
similar. As we use the Chebyshev polynomial of the first kind as the polyno-
mial basis, we explain the lazy-BSGS algorithm with Chebyshev polynomial.
For the sake of brevity, we denote ciphertext-ciphertext multiplication by ·, and
the ciphertext of Tj(t0) is denoted by ctj , where Tj is Chebyshev polynomial of
the first kind with degree j.

SetUp finds all the Chebyshev polynomials of degree less than or equal to
k, and T2ik for i < l, for given parameter k and l. We use Ta = 2 · T2i · Ta−2i −
T2i+1−a to find cta, where i = �log(a)�. We note that one can alternatively
use multiplication of odd degree polynomials to reduce the basis error, which is
presented in Subsect. 5.4.

First, we find ct2i for i < k, and these are used to find other Chebyshev
bases with degrees less than k. Thus, we rescale and relinearize them, which
requires �log(k − 1)� rescalings and relinearizations. When calculating cta =
2 · ct2i · cta−2i − ct2i+1−a, if cta−2i is a three-tuple ciphertext, we relinearize
it (and rescale it if needed.) We note that the lazy rescaling makes it possible
to accurately subtract ct2i+1−a from 2 · ct2i · cta−2i without level consumption
as follows. We do not rescale ct2i · cta−2i here, and thus the scaling factor of
2 · ct2i · cta−2i is maintained as ≈ q2. Obviously, the level of ct2i+1−a is larger
than that of ct2i · cta−2i . When their scaling factors are different, we multiply
(Δ2i · Δa−2i) · pl/Δ2i+1−a to ct2i+1−a and rescale if Δ2i+1−a ≈ q2, or multiply
(Δ2i · Δa−2i) /Δ2i+1−a if Δ2i+1−a ≈ q, where Δj denotes the scaling factor of
ctj , and pl is the last prime of modulus chain for cta−2i . Now, the scaling factors
of ct2i+1−a and 2ct2i ·cta−2i are the same, and thus we can subtract them without
additional error from the difference of scale.

To evaluate ct2i · cta−2i , we need to relinearize cta−2i if it is not relinearized
yet. Hence, we need relinearized ctj ’s for j < 2�log k−1	−1 to find cti for all
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i < 2�log k−1	. Moreover, if k ≥ 2�log k−1	 + 2�log k−1	−1, we need k − 2�log k−1	 +
2�log k−1	−1 more relinearizations. Each ct2ik should be relinearized as it is used
for multiplication in GiantStep, which requires l relinearizations. In conclusion,
we do

�log(k − 1)� + (2�log k−1	−1 − 1) + l

relinearizations in SetUp. If k ≥ 2�log k−1	 + 2�log k−1	−1,
(
k − 3 · 2�log k−1	−1

)

additional relinearizations are required.
BabyStep performs only plaintext multiplication and addition. Hence, it

does not require relinearization in our lazy-BSGS algorithm, but the scale for
baby-step polynomial coefficients should be adequately scaled to make the added
ciphertexts have identical scaling factors, but this process does not involve addi-
tional computation at all. Note that the resulting ciphertext of BabyStep is
not relinearized, i.e., it has size 3.

In GiantStep, the ctq is relinearized before multiplied to ct2ik. Hence, the
number of relinearizations is 2l−1 + 2l−2 + · · · + 1 = 2l − 1, and the final result
is not relinearized. Thus, we perform relinearization once more right before
SlotToCoeff.

Finally, the number of relinearizations in lazy-BSGS is

�log(k − 1)� + (2�log k−1	−1 − 1) + l + 2l

if k < 2�log k−1	 + 2�log k−1	−1 and otherwise

�log(k − 1)� +
(
2�log k−1	−1 − 1

)
+ l + 2l +

(
k − 3 · 2�log k−1	−1

)
.

Lazy-BSGS for Odd Polynomial. We can naturally extend the lazy-BSGS
for the odd polynomials. Here, SetUp finds all the odd-degree Chebyshev poly-
nomials of degrees less than k. To find an odd-degree Chebyshev polynomial, we
need an even-degree Chebyshev polynomial because the multiplication of odd-
degree Chebyshev polynomials is not an odd-degree polynomial. Hence, we use
T2i to find cta, where i = �log(a)�, and thus we rescale and relinearize them,
which requires �log(k − 1)� rescaling and relinearization. Thus, the number of
relinearizations in lazy-BSGS for odd polynomial is

�log(k − 1)� + (2�log k−1	−1/2 − 1) + l + 2l

if k < 2�log k−1	 + 2�log k−1	−1 and otherwise

�log(k − 1)� +
(
2�log k−1	−1/2 − 1

)
+ l + 2l +

(
k − 3 · 2�log k−1	−1

)
/2.

Using the error variance-minimizing approximate polynomial in bootstrap-
ping requires evaluating a polynomial with a higher degree than the previous
composition methods. However, the lazy-BSGS algorithm reduces the time com-
plexity by half, compared to ordinary BSGS mentioned in Sect. 2. As a result,
the lazy-BSGS algorithm makes the time complexity of evaluating our polyno-
mial comparable to the previous algorithm. Figure 1 compares our lazy-BSGS
algorithm, odd-BSGS algorithm [24], and the original BSGS algorithm [18].
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Fig. 1. Number of relinearizations for the variants of BSGS algorithms.

The lazy-BSGS algorithm is given in Algorithm 2 in detail. We note that
the methods in [3] should be applied for optimal depth and scale-invariant eval-
uation, but we omit it for the sake of brevity. However, we note that Fig. 1
considers the depth optimization in [3], and thus, the number of relinearizations
is high when the degree is close to a power of two. The BSGS coefficients are
pre-computed for optimal parameters k and l to minimize the complexity.

5.3 Error Variance-Minimizing Approximate Polynomial for BSGS
Algorithm

In this subsection, we propose a method to find the variance-minimizing approx-
imate polynomial for the odd-BSGS algorithm. We generalize the amplified basis
error and find the variance-minimizing coefficients for the odd-BSGS algorithm.
The numerical method to select the weight constantly is also proposed.

BSGS Algorithm Coefficients and Minimizing the Approximation
Error Variance. In the lazy-BSGS algorithm, we divide the given polyno-
mial by T2ik and evaluate its quotient and remainder. Hence, each polynomial
basis is multiplied by a divided coefficient, not ci. We define d by the vector
of coefficients multiplied to the basis in BabyStep, in other words, we have
2l polynomials in BabyStep such that pbabyi (t) =

∑
j∈{1,3,...,k−1} di,jTj(t) for

i = 0, 1, . . . , 2l − 1, and d = (d0,1, d0,3, . . . , d2l−1,deg−k·2l−1).
We should reduce the magnitude of d, to reduce the basis error. Let p(t) =∑
ciTi(t), and then, c and d have the following linearity:

c = L · d =
[
A2l−1k

]
·
[
A2l−2k 0

0 A2l−2k

]
· · ·

⎡

⎢
⎣

Ak

. . .
Ak

⎤

⎥
⎦ · d, (5)

where

Ak =
[
Ik/2

1
2Jk/2

0 1
2Ik/2

]
,
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Ik/2 is the k/2×k/2 identity matrix, and Jk/2 is the k/2×k/2 exchange matrix.
Hence, the linear equation to find the error variance-minimizing approximate
polynomial (4) is modified for the BSGS algorithm as

(LᵀTL + wI) · d = y. (6)

Generalization of Weight Constant. Let Ep be a function of d, which is
the variance of basis error amplified by the BSGS algorithm. We simplify Ep

by a heuristic assumption that Ti’s are independent and the encryptions of
Tk(t), . . . , T2l−1k(t) have small error. Let T̂i be the product of all T2jk’s mul-
tiplied to pi in the giant step, for example, T̂0 = 1 and T̂3 = TkT2k. Considering
the error multiplied by di,j , ej · T̂i is the dominant term as Ti has zero mean for
odd integer i as it is an odd polynomial. Thus, we can say that

Ep ≈
∑

i

∑

j

d2i,jE[T̂ 2
i ]V ar[ebasis,j ],

a quadratic function of d. In other words, we have Ep = dᵀHd, where H is a
diagonal matrix that Hki+j,ki+j = E[T̂ 2

i ]V ar[ebasis,j ]. Thus, (3) is generalized as

c∗ = arg minc (V ar[eaprx] + Ep) .

Equation (5) gives us that the optimal coefficient d∗ satisfies

(LᵀTL + H)d∗ = Lᵀy. (7)

Numerical Method of Finding Optimal Approximate Polynomial.
Instead of finding Ep, a simple numerical method can also be used. In prac-
tice, the numerical method shows good error performance in the implementa-
tion in Subsect. 6.1. We can let wi = w for all i and find w numerically. When w
increases, the magnitude of coefficients decreases, and V ar[eaprx] increases, and
thus its sum is a convex function of w. The magnitude of the basis errors that are
amplified by coefficients d has the order of the rescaling error whose variance is
2n(h+1)
12·q2 , where n is the number of slots. In other words, we adjust w to minimize

V ar[eaprx] + w · ‖d‖22, (8)

where w ≈ 2n(h+1)
12·q2 . The odd-BSGS coefficients d, which minimize (8), satisfy

(LᵀTL + wI)d = Lᵀy.

Lemma 1 (Rescaling error [9]). The error variance of rescaling error is
2n(h+1)

12 , where h is key Hamming weight and n is the number of slots.

We can fine-tune w by a numerical method of performing bootstrapping and
measure the bootstrapping error variance, and then adjust w. Once we decide
on d, it becomes just part of the implementation; one can even hard-wire it.



High-Prec. Bootstrapping for Approx. HE by Error Variance Minimization 573

Fig. 2. Variance of basis error in Ti(t) for even i using HEAAN (a) and SEAL (b) libraries
with various parameters, where h = 64.

5.4 Basis Error Variance Minimization for Even-Degree Terms

In this subsection, we show that the even-degree Chebyshev polynomials in
CKKS have huge errors and propose a method to find a small-error Chebyshev
polynomial. In the BSGS algorithm, we use even-degree Chebyshev polynomials,
namely, T2ik(t). For depth and simplicity, we usually obtain Ta(t) by using

Ta(t) = 2 · T2i(t) · Ta−2i(t) − T2i+1−a(t),

where i = �log(a)�. Let cti be the ciphertext of message Ti(t) with scaling
factor Δ, and it contains error ebasis,i. Then, the error in cti+j obtained by
cti+j = 2cti · ctj − ct|i−j| is given as

(2Ti(t)ebasis,j + 2Tj(t)ebasis,i)Δ + 2ebasis,iebasis,j − ebasis,|i−j|. (9)

As Δ � ebasis,i, ebasis,j , the dominant term of error variance in (9) is

V ar[2Ti(t)ebasis,j + 2Tj(t)ebasis,i]

≈ 4E[Ti(t)2]V ar[ebasis,j ] + 4E[Tj(t)2]V ar[ebasis,i]. (10)

As a simple example, it is shown that E[Ti(t)2] is close to one when i is an
even number for low-degree polynomials, where t is a value after CoeffToSlot.
Meanwhile, E[Ti(t)] is zero and V ar[Ti(t)] is a small value when i is odd. Thus,
following to (10), the error remains large when it is multiplied by an even-degree
Chebyshev polynomial in the calculation of the next Chebyshev polynomial.
Therefore, when a is even, cta should be calculated by cta = 2ct2i−1 · cta+1−2i −
ct2i+1−2−a rather than cta = 2ct2i · cta−2i − ct2i+1−a. Also, it is noted that, for
the above reasons, the power-of-two polynomials should have a large basis error.

Figure 2 shows the experimental results of the variance of error in encryp-
tion of Ti(t) for even i’s, where t is the output value of CoeffToSlot.
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Table 2. The second moment of Ti(t) when t is value after SlotToCoeff and N = 215

i 0 1 2 3 4 5 6 7 8 9

E[Ti(t)
2] h = 192 1.00 0.035 0.905 0.187 0.718 0.361 0.579 0.457 0.520 0.491

h =
√

N 1.00 0.013 0.950 0.105 0.828 0.239 0.696 0.358 0.596 0.426

Square mark and x mark legends are the results with and without opera-
tion reordering, respectively. In other words, square marks are results from
cta = 2ct2i−1 · cta−2i+1 − ct2i+1−2−a for even a. The experimental result in
Fig. 2 supports our argument that multiplying even-degree Chebyshev polyno-
mials amplifies the error. We can see that the basis error is significantly improved
by reordering operations. For example, the variance of error in ct74 is reduced
to 1/1973 compared to that of without reordering (Fig. 2).

6 Performance Analysis and Comparison

In this section, several implementation results and comparisons for the previous
bootstrapping algorithms are presented. The bootstrapping using the proposed
approximate polynomial is implemented on the well-known HE library Lattigo,
as Lattigo is the only open-source library that supports bootstrapping of RNS-
CKKS at the time of writing. We also provide a proof-of-concept implementation
of bootstrapping with high precision such as 93 bits, based on the HEAAN library.

6.1 Error Analysis

Weight Parameter and Approximation Error. In Subsect. 5.3, we dis-
cussed analytic and numerical solutions for error variance-minimizing approxi-
mate polynomial. In this subsection, these methods are implemented and veri-
fied. We confirm that the numerical method in Subsect. 5.3 finds a polynomial
that is very close but has a slightly larger error than that of the optimal one,
and w ≈ (h+1)2n

q212 , where n is the number of slots.
The experimental results are shown in Fig. 3 with parameters N = 216, h =

64, and the slot size n = 23. The blue lines with triangular legend show the
error by polynomial approximation as 2n · q2 · V ar[eaprx]. The green lines with
x mark legend show the amplified basis errors as 2n · q2 · Ep, and the red lines
with square legend are for the mean square of bootstrapping errors without scale
obtained by experiments using the proposed approximate polynomial in (8). The
gray dot line is the variance of bootstrapping error without scale, achieved by
the analytic solution of the error variance-minimizing approximate polynomial
(7) of the same degree, which is the lower bound of bootstrapping error variance.
The reason for multiplying the above result by 2n is because of SlotToCoeff
as discussed in Subsect. 4.2. For the worst-case assumption, we assume that m
is distributed uniformly at random.

In Fig. 3, the sum of blue lines with triangular legend and green lines with x
mark legend meets the red lines with the square legend. In other words, it shows
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Fig. 3. The theoretical variance of the approximation error, amplified basis error, and
experimental results implemented in HEAAN. Polynomials of degree 81 are used. (Color
figure online)

that the theoretical derivation and experimental results are agreed upon. It can
also be seen that it is possible to obtain an approximate polynomial with a small
error with the proposed numerical method, but the error is slightly larger than
that of the analytical solution. It is noted that the optimal w is close to the
variance of the rescaling error (h+1)2n

q212 .

Polynomial Degree and Minimum Error. This subsection presents the
experimental result of the approximate error variance of the proposed error
variance-minimizing approximate polynomial for the given degree and constant
w. In the above paragraphs, we show that when w ≈ (h+1)2n

q212 , the variance of
approximation error achieves the optimality. Unlike the previous methods that
find the approximate polynomial without considering the CKKS parameters,
the proposed approximation algorithm finds an approximate polynomial that is
optimal for the given parameter of the CKKS scheme, such as the number of
slots, key Hamming weight, and scaling factor.

In Fig. 4, we represent the variance of approximation error with w = (h+1)2n
q212 ,

where ‖m/q‖∞ < 2−5. w = 2−104 corresponds to q ≈ 260 and slot size n = 214.
w = 2−200 corresponds to q ≈ 2109 for the same slot size. In this figure, we can
see that the proposed method approaches the maximal accuracy of polynomial
approximation for q ≈ 260 within depth 10. Moreover, we can see that the pro-
posed error variance-minimizing approximate polynomial achieves approximate
error variance 2−209 within depth only 11.

6.2 Comparison of Bootstrapping and High-Precision Bootstrapping

Experimental Result of Bootstrapping Error. The proposed method is
implemented using Lattigo, and it is compared with the most accurate boot-
strapping techniques in the literature [3,24] in Table 3. In this table, the proposed
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Fig. 4. Error variance of the proposed polynomial, for w = 2−104 and 2−200.

Table 3. Comparison of the variance of bootstrapping error of the proposed error
variance-minimizing polynomial and prior arts. Columns “cos” and “sin−1” are for the
degree of the approximate polynomial of each, and “double” is for the number of double
angle formulas of cosine applied. The proposed method uses direct approximation, so
the degree of the approximate polynomial is indicated by fmod.

Algorithm h N n log QPL λ log q log p log ‖r‖∞ EvalMod V ar[eboot] Bit prec. Runtime(s)

cos Double sin−1 Depth #relin

[24] 192 216 214 1553 ≈ 128 60 50 −10 68 2 5 12 24 2−64.5 32.6 451.5

[3] 192 216 214 1547 ≈ 128 60 45 −5 62 2 7 11 24 2−62.6 31.6 22.8

1547 ≈ 128 60 45 −5 62 2 3 10 22 2−44.4 22.4 25.3

Proposed 192 216 214 1487 > 128 60 45 −5 fmod: 711 10 33 2−62.1 31.4 28.3

Proposed (high prec2.) 192 217 212 – – 115 102 −5 fmod: 1625 11 46 2−185.4 93.03 –

192 217 23 – – 115 106 −5 2−199.0 100.11 –

error variance-minimizing polynomial directly approximates fmod, and the previ-
ous methods approximate the cosine function and use the double-angle formula.
For a high precision achieved in [3,24], approximate polynomials of 1

2π arcsin (t)
by multi-interval Remez algorithm and Taylor expansion are evaluated, respec-
tively, and the evaluation of those algorithms consumes three more levels. For
a fair comparison, we fix the message precision as ≈ 31-bits and compare the
depth of modular reduction. The timing result is measured using Intel Xeon Sil-
ver 4210 CPU @ 2.20 GHz, single core. The scale-invariant evaluation [3] is also
applied for a precise evaluation. The same parameter set as [3] is used for the
proposed method, and thus the same levels are consumed for CoeffToSlot
and SlotToCoeff.

In the experiment, we sample each slot value a + bi ∈ C, where a and b
are uniformly distributed over [−1, 1], and thus, from the central limit theo-
rem, the coefficient of the encoded plaintext follows a Gaussian distribution. On
the other hand, the proposed error variance-minimizing approximate polynomial
is obtained under assumption that the coefficients of plaintext are distributed
uniformly at random, that is, PrR (r) = 1

2ε for all r ∈ [−ε, ε] as a worst-case
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assumption discussed in Sect. 4. We note that the difference of message distri-
bution for approximation and actual experiment is a harsh environment for the
proposed error variance-minimizing approximate polynomial.

The first three rows of Table 3 show that the proposed method requires less
depth compared to the prior arts. This is due to the indirect approximation using
trigonometric functions of previous methods. Compared to the previous method
with the same depth of 10, our method has 9-bit higher precision. In another
aspect, the proposed approximate polynomial achieves the same precision as the
previous methods by only the depth of 10. The proposed bootstrapping con-
sumes one to two fewer levels in EvalMod, thus we used smaller parameters
in the experiment which improves security. We can utilize the additional level
depending on the application, for example, one can exploit it for efficient cir-
cuit design to reduce the total number of bootstrapping of the whole system
(e.g., inference of privacy-preserving deep learning [23],) or we might speed up
CoeffToSlot or SlotToCoeff using this remaining level. However, in terms
of bootstrapping runtime for ≈ 31-bit precision, our method is slower than pre-
vious methods due to the evaluation of high-degree polynomial. Our algorithm
is more advantageous for higher precision as it is efficiently scalable, which is
discussed in the next subsection.

Comparison of Numerical and Analytical Error. Experiments in Fig. 3 show
that the error variance-minimizing approximate polynomial has V ar[eaprx] +∑

wid
2
i = 2−103.33 when w = 2−104. We can easily find the expected boot-

strapping error variance with this value. The error variance is multiplied by
2n in SlotToCoeff; thus, the error variance after SlotToCoeff should be
2−88.33. The scaling factor in bootstrapping is ≈ q, and thus, the error without
scaling is 2−88.33 · q2 ≈ 231.67. The scaling factor of a message is ≈ 245, and thus
the expected bootstrapping error variance is 231.67/p2 ≈ 2−58.33. Compared with
the experimental result in Table 3, 2−61.12, we can see that the numerical result
roughly meets the analysis. The difference seems to be due to various methods
to reduce the error introduced in Sect. 5.

Scalability and High-Precision Bootstrapping. The last two rows in
Table 3 represent the proof-of-concept implementation of high-precision CKKS
bootstrapping2. In the table, we can see that the proposed method achieves high
precision such as 93-bit with 212 slots. It is worth noting that our method uses
the same depth as previous methods [3,24], but achieves much higher accuracy.
We use the variance-minimizing approximate polynomial of degree 1625 with
parameter w = 2−200 which minimizes (8) (the minimum value is ≈ 2−209), as

2 It is implemented using a multi-precision CKKS library HEAAN which supports rescal-
ing by an arbitrary-length integer. As this proof-of-concept implementation is only
interested in high precision, we omitted runtime and parameter QPL (as a side note,
(h, N, log QPL) = (192, 217, 3069) achieves 128-bit security [3].) We note that the
implementation is slow due to the non-RNS nature of HEAAN and has less level due
to the use of dnum = 1.
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shown in Fig. 4. We can also say that bottleneck of bootstrapping error is the
scaling factor, not the approximation.

The previous bootstrapping methods so far cannot achieve such high accu-
racy, and even if so, it will have a huge multiplicative depth to perform a
high-degree polynomial approximation. Julta and Manohar proposed sine series
approximation and 100-bit accuracy CKKS bootstrapping using their approxi-
mation which consumes modulus of 22157 (see Table 1 in [20]). In contrast, due to
the direct approximation of the proposed method, it has much less depth com-
pared to indirect approximations, and thus we can achieve the same accuracy
(shown in the last row or Table 3) with modulus about 21495, which corresponds
to 6 more levels after bootstrapping. Also, the proposed lazy-BSGS algorithm
reduces the number of relinearizations; the previous BSGS algorithm for odd
polynomial [24] requires 66 relinearizations to evaluate polynomial of degree
1625.

This high accuracy is essential in the presence of the Li-Micciancio attack [26].
The “noise flooding” method is currently the only known way to make CKKS
provably secure against Li-Micciancio attack, but it was impractical with boot-
strapping as it makes CKKS noisy by losing about 30-40 bits of accuracy [26].
Although a lot of research is required on how to exploit the bootstrapping error
for cryptanalysis, at least, we can directly apply the noise flooding technique [16]
with the high-precision bootstrapping.

7 Conclusion

In this paper, we have two contributions for accurate and fast bootstrapping of
CKKS scheme, that is, we proposed i) a method to find the optimal approximate
polynomial of modular reduction for bootstrapping and its analytical solution,
and ii) a more efficient algorithm to homomorphically evaluate a high-degree
polynomial. The proposed error variance-minimizing approximate polynomial
guarantees the minimum error after bootstrapping in the aspect of SNR; in con-
trast, the previous minimax approximation does not guarantee the minimum
infinity norm of the bootstrapping error. Moreover, we proposed an efficient
algorithm, the lazy-BSGS algorithm, to evaluate the approximate polynomial.
The lazy-BSGS algorithm reduces the number of relinearizations by half com-
pared to the ordinary BSGS algorithm, and the error is also reduced. We also
proposed the algorithm to find the error variance-minimizing approximate poly-
nomial designed for the lazy-BSGS algorithm.

The proposed algorithm reduces the level consumption of the most depth-
consuming part of bootstrapping, approximate modular reduction. Thus we can
reserve more levels after bootstrapping or we can use the level to speed up
bootstrapping. The number of the levels after bootstrapping is significant for
efficient circuit design of algorithms using CKKS [23], as well as it reduces the
number of bootstrappings.

The bootstrapping performance improvement by the proposed algorithm was
verified by an implementation. The implementation showed that we could reduce
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the multiplicative depth of modular reduction in CKKS bootstrapping while
achieving the best-known accuracy. Also, we discussed that the proposed method
achieves the CKKS bootstrapping with very high accuracy, so we can directly
apply the noise flooding technique to the CKKS scheme for IND-CPAD security.
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Abstract. A transciphering framework converts a symmetric cipher-
text into a homomorphic ciphertext on the server-side, reducing com-
putational and communication overload on the client-side. In Asiacrypt
2021, Cho et al. proposed the RtF framework that supports approximate
computation.

In this paper, we propose a family of noisy ciphers, dubbed Rubato,
with a novel design strategy of introducing noise to a symmetric cipher of
a low algebraic degree. With this strategy, the multiplicative complexity
of the cipher is significantly reduced, compared to existing HE-friendly
ciphers, without degrading the overall security. More precisely, given a
moderate block size (16 to 64), Rubato enjoys a low multiplicative depth
(2 to 5) and a small number of multiplications per encrypted word (2.1
to 6.25) at the cost of slightly larger ciphertext expansion (1.26 to 1.31).
The security of Rubato is supported by comprehensive analysis includ-
ing symmetric and LWE cryptanalysis. Compared to HERA within the
RtF framework, client-side and server-side throughput is improved by
22.9% and 32.2%, respectively, at the cost of only 1.6% larger ciphertext
expansion.

Keywords: Homomorphic encryption · Transciphering framework ·
Stream cipher · HE-friendly cipher

1 Introduction

Real-world data typically contain some errors from their true values since they
are represented by real numbers rather than bits or integers. Even in the case that
input data are represented by exact numbers without approximation, one might
have to approximate intermediate values during data processing for efficiency.
Therefore, it would be practically relevant to support approximate computation
over encrypted data. The CKKS encryption scheme [24] provides the desirable
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feature using an efficient encoder for real numbers. Due to this feature, CKKS
achieves good performance in various applications, for example, to securely eval-
uate machine learning algorithms on a real dataset [17,55].

Unfortunately, current HE schemes including CKKS commonly suffer from
heavy computational and memory overload. The encryption/decryption speed
is relatively slow compared to conventional encryption schemes, and it implies
that HE is inadequate for bulk encryption. Also, ciphertext expansion seems to
be an intrinsic problem of homomorphic encryption due to the noise used in the
encryption algorithm. Although the ciphertext expansion has been significantly
reduced down to the order of hundreds in terms of the ratio of a ciphertext size
to its plaintext size since the invention of the batching technique [38], it does
not seem to be acceptable from a practical viewpoint. Furthermore, this ratio
becomes even worse when it comes to encryption of a short message; encryption
of a single bit might result in a ciphertext of a few megabytes.

1.1 Transciphering and HE-friendly Ciphers

Transciphering Framework. To address the issue of computational overload
and the ciphertext expansion, a hybrid framework, also called a transciphering
framework, has been proposed for exact computation [54]. It basically converts
a symmetric ciphertext c = Ek(m) to a homomorphic ciphertext EncHE(m) by
homomorphically evaluating the cipher. For approximate computation, Cho et al.
[25] proposed a new transciphering framework, dubbed the RtF framework (see
Fig. 1). We give a brief description of the RtF framework in the following.

For a given message vector m ∈ R
n, a client encrypts an encoded message

�Δ ·m� ∈ Z
n
q using a symmetric cipher E over Zq with a secret key k ∈ Z

n
q and a

nonce nc; this secret key is encrypted using the FV encryption algorithm EncFV.
The resulting ciphertexts c = Ek(m), the FV-encrypted symmetric key EncFV(k),
and the nonce nc are stored in the server. When the server wants to compute
EncCKKS(m) (for computation over encrypted data), the server homomorphically
evaluates the server-side conversion of the RtF framework, securely obtaining
EncCKKS(m).

Given a symmetric cipher with low multiplicative depth and complexity, a
transciphering framework provides the following advantages on the client-side.

– A client does not need to encrypt all its data using an HE algorithm (except
the symmetric key). All the data can be encrypted using only a symmet-
ric cipher, significantly saving computational resources in terms of time and
memory.

– Symmetric encryption does not result in ciphertext expansion, so the com-
munication overload between the client and the server will be significantly
low compared to using any homomorphic encryption scheme alone.

All these merits come at the cost of computational overload on the server-side.
That said, this trade-off would be worth considering in practice since servers are
typically more powerful than clients.
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Fig. 1. A simplified diagram of the RtF transciphering framework. Homomorphic oper-
ations are performed in the boxes with thick lines.

Although a transciphering framework can be considered at any place where
HE is used, it is not a panacea for every privacy problem since it takes more time
than HE-only until EncHE(m) is finally obtained. We suggest two appropriate
scenarios for transciphering frameworks in the full version of this paper [43].

HE-friendly Ciphers. Symmetric ciphers are built on top of linear and non-
linear layers, and in a conventional environment, there has been no need to take
different design principles for the two types of layers with respect to their imple-
mentation cost. However, when a symmetric cipher is combined with BGV/FV-
style HE schemes [18,34] in a transciphering framework, homomorphic addition
becomes way cheaper than homomorphic multiplication in terms of computation
time and noise growth. With this observation, the efficiency of an HE-friendly
cipher is evaluated by its multiplicative complexity and depth. In an arithmetic
circuit, its multiplicative complexity is represented by the number of multipli-
cations (ANDs in the binary case). Multiplicative depth is the depth of the
tree that represents the arithmetic circuit, closely related to the noise growth
in the HE-ciphertexts. These two metrics have brought a new direction in the
design of symmetric ciphers: to use simple nonlinear layers at the cost of highly
randomized linear layers as adopted in the design of FLIP [53] and Rasta [27].

1.2 Our Contribution

Designing a symmetric cipher can be seen as a trade-off between security and
efficiency. A designer should identify important cost metrics of the targeted plat-
form (e.g., x86, ARM, and HE), and focus on optimizing them within a given
security level. When it comes to HE-friendly ciphers, one of the most impor-
tant cost metrics is the time for evaluating the cipher while homomorphically
encrypted, typically translated to multiplicative depth and complexity in the



584 J. Ha et al.

literature. To optimize such metrics, quadratic S-boxes [6], random linear lay-
ers [53], and nonlinear layers with high-degree inverses [27] have been used.

In this regard, the LWE encryption has promising properties as an HE-
friendly cipher since it is based on a linear combination of key material, while
noise prevents algebraic attacks. However, straightforward application of the
LWE encryption has a disadvantage on the client-side; in the LWE encryption,
(a, b = 〈a, s〉+e) is sampled from an LWE distribution, where a should be freshly
generated by a pseudorandom function for every encryption. It makes the LWE
encryption too costly on the client-side compared to conventional symmetric
encryption.

In this work, we propose a new HE-friendly cipher, dubbed Rubato, as a
cost-effective trade-off between the LWE encryption and conventional symmetric
encryption in a transciphering framework for approximate homomorphic encryp-
tion. In particular, when the RtF transciphering framework [25] is used, we can
add noise only with a partial loss of precision. For a low-degree keyed function
Ek : Zk

q → Z
�
q, each sample is of the form

(a,Ek(a) + e)

where e ∈ Z
�
q is sampled from a discrete Gaussian distribution, and a is generated

by an extendable output function (XOF) with a nonce. We remark that such a
noisy cipher is not suitable for transciphering of exact data since the server might
lose some information on the original message after transciphering. In Table 1, we
compare Rubato to existing HE-friendly ciphers operating on modular domains
assuming 128-bit security and the same modulus q.

Table 1. Comparison of HE-friendly ciphers operating on modular domains, where
the modulus q is set to 25 bits. “#(Key words)” is the number of key words in Zq and
“#(Multiplications)” (resp. “Random bits”) is the number of multiplications (resp.
random bits) required to generate a single component of a ciphertext.

Cipher Masta HERA Pasta LWE Rubato

#(Key words) 16 16 64 1024 64
Multiplicative depth 7 10 5 0 2
#(Multiplications) 7 10 9.81 0 2.1
Random bits 400 150 250 25600 80
Source [42] [25] [30] [58] This work

Since Rubato is a combination of a conventional symmetric cipher and the
LWE encryption, we analyze its security in two ways: symmetric cryptanalysis
and LWE cryptanalysis. We apply the symmetric cryptanalysis by guessing all
the noise, while LWE cryptanalysis is considered by linearizing monomials to
new variables. From extensive analysis, we recommend a set of parameters for
various applications.
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Our implementation of Rubato combined with the RtF transciphering frame-
work can be found in a public repository both for the client side1 and the server
side2. When Rubato and HERA are compared in the RtF framework, client-side
and server-side throughput is improved by 22.9% and 32.2%, respectively, at the
cost of only 1.6% larger ciphertext expansion.

1.3 Related Work

Since the transciphering framework has been introduced [54], early works have
been focused on the homomorphic evaluation of popular symmetric ciphers (e.g.,
AES [38], SIMON [48], and PRINCE [31]). Such ciphers have been designed with-
out any consideration of their arithmetic complexity, so the performance of their
homomorphic evaluation was not satisfactory.

LowMC [6], being the first HE-friendly cipher, aims to minimize the depth and
the number of AND gates, but its low multiplicative depth makes it vulnerable
to algebraic attacks [26,28,57]. Due to these attacks, its parameters have been
updated, and the resulting cipher is now called LowMCv3. Canteaut et al. [19]
claimed that stream ciphers would be advantageous in terms of online complex-
ity compared to block ciphers, and proposed a new stream cipher Kreyvium.
However, its practical relevance is limited since the multiplicative depth (with
respect to the secret key) keeps growing as keystreams are generated.

The FLIP stream cipher [53] is based on a novel design strategy that its
permutation layer is randomly generated for every encryption without increasing
the algebraic degree in its secret key. Furthermore, it has been reported that
FiLIP [52], a generalized instantiation of FLIP, can be efficiently evaluated with
the TFHE scheme [45]. Rasta [27] is a stream cipher aiming at higher throughput
at the cost of high latency using random linear layers, which are generated by an
extendable output function. Dasta [44], a variant of Rasta using affine layers with
lower entropy, boosts up the client-side computation. Masta [42], another variant
of Rasta operating on a modular domain, improves upon Rasta in terms of the
throughput on both the client and server side. Dobraunig et al. [30] formally
defined hybrid homomorphic encryption and proposed another variant Pasta of
Rasta operating on a modular domain, improving performance upon Masta.

Cho et al. [25] proposed a transciphering framework for approximate homo-
morphic encryption, called RtF, which is composed of a stream cipher over mod-
ular domain and conversion from FV to CKKS. The stream cipher HERA was
proposed in the same paper as a building block of the RtF framework. The
HERA cipher is based on a new design strategy – the key schedule is randomized
while linear layers are fixed – which is claimed to be efficient on both sides.

In order to reduce the ciphertext expansion when encrypting short messages,
Chen et al. [21] proposed an efficient LWEs-to-RLWE conversion method which
enables transciphering to the HE-ciphertexts (including CKKS): small messages
can be encrypted by LWE-based symmetric encryption with a smaller ciphertext

1 https://github.com/KAIST-CryptLab/Rubato.
2 https://github.com/KAIST-CryptLab/RtF-Transciphering.

https://github.com/KAIST-CryptLab/Rubato
https://github.com/KAIST-CryptLab/RtF-Transciphering
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size (compared to RLWE-based encryption), and a collection of LWE ciphertexts
can be repacked to an RLWE ciphertext to perform a homomorphic evaluation.
Lu et al. [50] proposed a faster LWEs-to-RLWE conversion algorithm in a hybrid
construction of FHEW [32] and CKKS, dubbed PEGASUS, where the conversion
is possible for a larger number of slots.

2 Preliminaries

2.1 Notations

Throughout the paper, bold lowercase letters (resp. bold uppercase letters)
denote vectors (resp. matrices). For a real number r, �r� denotes the nearest
integer to r, rounding upwards in case of a tie. For an integer q, we identify
Zq with Z ∩ (−q/2, q/2], and for any real number z, [z]q denotes the mod q
reduction of z into (−q/2, q/2]. The notation �·� and [·]q are extended to vec-
tors (resp. polynomials) to denote their component-wise (resp. coefficient-wise)
reduction. For a complex vector x, its �p-norm is denoted by ‖x‖p. When we say
�p-norm of a polynomial, it means that the �p-norm of the coefficient vector of
the polynomial. For a measurable subset S ⊂ R

d, vol(S) is the volume of S.
Usual dot products of vectors are denoted by 〈·, ·〉. We denote the multiplica-

tive group of Zq by Z
×
q . The set of strings of arbitrary length over a set S is

denoted by S∗. For two vectors (strings) a and b, their concatenation is denoted
by a‖b. For a set S, we will write a ← S to denote that a is chosen from S
uniformly at random. For a probability distribution D, a ← D denotes that a is
sampled according to the distribution D. Unless stated otherwise, all logarithms
are to the base 2.

2.2 Lattice Background

Let B ∈ R
m×n be a full rank matrix. The lattice L(B) generated by B is defined

by L(B) = {B · x : x ∈ Z
n}. The matrix B is called a basis of L(B). The i-th

successive minimum λi(L) of a lattice L is the smallest value t such that at
least i linearly independent lattice vectors of length ≤ t exist in L. The shortest
vector problem (SVP) is finding a shortest non-zero vector of L from a given
basis. The γ-unique shortest vector problem (γ-uSVP) is finding the shortest
non-zero vector of L provided that λ2(L) > γλ1(L). The γ-bounded distance
decoding (BDDγ) problem is finding a lattice point in L closest to a target
vector t provided that dist(t, L) := minx∈L dist(t,x) ≤ γ · λ1(L).

Hermite Factor. Given an n-dimensional lattice L with a basis B, a root-
Hermite factor δ of the basis B is defined by δn−1 = ‖b1‖/(det(L(B))1/n where
b1 is the shortest vector of the basis and det(L(B)) =

√
BᵀB. If δ is smaller,

then the basis includes a shorter vector in the lattice.

Gaussian Heuristic. Gaussian heuristic (GH) is a heuristic on how many
lattice points are contained in a nice object. Given a measurable set S ⊂ R

n and
a full-rank lattice L ⊂ R

n, the number of lattice points of L in S is approximated
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by #(S ∩ L) = vol(S)/det(L). If S is an n-dimension ball of radius R, then the
equation becomes #(S ∩ L) = vnRn/det(L) where vn is the volume of the
unit n-ball. With this heuristic, the norm of the shortest vector of L can be
approximated by

GH(L) =
(
v−1

n det(L)
) 1

n .

For random lattices, GH is precise within the error at most 5% [37].

Geometric Series Assumption. Schnorr claimed that the Gram-Schmidt
orthogonalized norm of a BKZ-reduced basis behaves as a geometric series,
which is called geometric series assumption (GSA) [60]. For a BKZ-reduced basis
B = [b1, · · · ,bn] and its orthogonalization B∗ = [b∗

1, · · · ,b∗
n], it satisfies that

‖b∗
1‖/‖b∗

i ‖ = ri−1 for all 1 ≤ i ≤ n where r is a constant.

2.3 Learning with Errors

Let n and q be positive integers. Let χ be a probability distribution over Z. For
an unknown vector s ∈ Z

n
q , the LWE (learning with errors) distribution Ls,χ

over Z
n
q × Zq is obtained by sampling a vector a ← Z

n
q and an error e ← χ, and

outputting
(a, b = [〈a, s〉 + e]q) ∈ Z

n
q × Zq.

The search-LWE problem is to find s ∈ Z
n
q when independent samples (ai, bi)

are obtained according to Ls,χ. The decision-LWE problem is to distinguish the
distribution Ls,χ from the uniform distribution over Z

n
q × Zq.

For a positive real α > 0, the discrete Gaussian distribution Dαq is a proba-
bility distribution on Z defined by

Pr [y ← Dαq : y = x] ∝ exp
(−πx2/(αq)2

)

for each x ∈ Z. The discrete Gaussian distribution is a popular candidate of the
distribution χ.

2.4 RtF Transciphering Framework

We briefly introduce the RtF framework [25], which enables the transciphering
of approximate data. The RtF framework works as follows. On the client-side,
a real message vector m ∈ R

n is scaled up and rounded off into Zq. Then, the
client encrypts the scaled message m̃ ∈ Z

n
q using a stream cipher E over Zq. This

“E-ciphertext” will be sent to the server with a nonce nc and an FV-encrypted
secret key K of E.

On the server-side, it first evaluates the stream cipher E homomorphically
from nonces {nci}i and the FV-encrypted key K. Then the server performs the
linear transformation SlotToCoeffFV, obtaining the resulting FV-ciphertext Z
that contains the keystreams of E in its coefficients. This process is called the
offline phase since evaluating Z is possible only with nonces and K.

After receiving E-ciphertexts {ci = Ek(m̃i)}i, the server starts its online
phase. Computing an FV-ciphertext C having the E-ciphertexts on its coefficients
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and subtracting Z from C, the server obtains the FV-ciphertext X of {m̃i}i

in its coefficients. Finally, the server CKKS-bootstraps X to translate it into
the corresponding CKKS-ciphertext of {mi}i in its slots. Since the messages
{mi}i should be moved from the coefficients to the slots, the last step of the
bootstrapping, SlotToCoeffCKKS, can be omitted. As a result, the server will be
able to approximately evaluate any circuit on the CKKS-ciphertexts. The detailed
description of the RtF framework can be found in the full version [43].

3 Rubato: A Family of Noisy Ciphers

3.1 Specification

The Rubato cipher is designed to be flexible in block size so that it offers a more
suitable choice of parameters for various applications. The block size n is the
square of a positive integer v, which defines the size of matrices in linear layers.
The stream cipher Rubato for λ-bit security takes as input a symmetric key
k ∈ Z

n
q , a nonce nc ∈ {0, 1}λ, and returns a keystream knc ∈ Z

�
q for some � < n,

where the nonce is fed to the underlying extendable output function (XOF) that
outputs an element in (Zn

q )∗. In a nutshell, Rubato is defined as follows.

Rubato[k, nc] = AGN◦Fin[k, nc, r]◦RF[k, nc, r−1]◦· · ·◦RF[k, nc, 1]◦ARK[k, nc, 0]

where the i-th round function RF[k, nc, i] is defined as

RF[k, nc, i] = ARK[k, nc, i] ◦ Feistel ◦ MixRows ◦ MixColumns

and the final round function Fin is defined as

Fin[k, nc, r] =
Trn,� ◦ ARK[k, nc, r] ◦ MixRows ◦ MixColumns ◦ Feistel ◦ MixRows ◦ MixColumns

for i = 1, 2, . . . , r − 1 (see Fig. 2).

Key Schedule. The round key schedule can be simply seen as a component-
wise product between random values and the master key k, where the uniformly
random values in Z

×
q are obtained from a certain extendable output function

XOF with an input nc. Given a sequence of the outputs from XOF, say rc =
(rc0, . . . , rcr) ∈ (Zn

q )r+1, ARK is defined as follows.

ARK[k, nc, i](x) = x + k • rci

for i = 0, . . . , r, and x ∈ Z
n
q , where • (resp. +) denotes component-wise multi-

plication (resp. addition) modulo q. The extendable output function XOF might
be instantiated with a sponge-type hash function SHAKE [33].

Linear Layers. Each linear layer is the composition of MixColumns and
MixRows. Similarly to HERA, MixColumns (resp. MixRows) multiplies a certain
v × v MDS matrix Mv to each column (resp. row) of the state as in Fig. 4a and
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Fig. 2. The round function of Rubato. Operations in the box with dotted (resp. thick)
lines are public (resp. secret). “MC” and “MR” represent MixColumns and MixRows,
respectively.

Fig. 4b, where the state of Rubato is also viewed as a v × v-matrix over Zq (see
Fig. 3). The MDS matrix Mv for v = 4, 6, 8 is defined as follows.

y4 = [2, 3, 1, 1]
y6 = [4, 2, 4, 3, 1, 1]
y8 = [5, 3, 4, 3, 6, 2, 1, 1]

Mv =

⎡

⎢
⎢
⎢
⎣

yv

ROT1(yv)
...

ROTv−1(yv)

⎤

⎥
⎥
⎥
⎦

where ROTi(y) is the rotation to the right of y by i components. Therefore, Mv

is a circulant matrix derived from yv.

Nonlinear Layers. The nonlinear map Feistel is a Feistel network in a row,
which was proposed in [30]. For x = (x1, . . . , xn) ∈ Z

n
q , we have

Feistel(x) = (x1, x2 + x2
1, x3 + x2

2, . . . , xn + x2
n−1).

It is naturally bijective and of degree 2.

Truncation. The truncation function Trn,� : Zn
q → Z

�
q is just a truncation of

the last n − � words. For x = (x1, . . . , xn) ∈ Z
n
q , we have

Trn,�(x) = (x1, . . . , x�).
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Fig. 3. State of Rubato. Each square stands for the component in Zq.

Fig. 4. Definition of MixColumns and MixRows. For c ∈ {1, 2, . . . , v}, xij and yij are
defined as in Fig. 3.

Although we know that the truncation function makes some part of the last ARK
and MixRows meaningless, we write it in this way for brevity. We recommend to
instantiate Trn,� ◦ ARK[k, nc, r] ◦ MixRows as a whole in real implementation.

Adding Gaussian Noise. At the very last of the cipher, we add Gaussian noise
to every component. From an one-dimensional discrete Gaussian distribution
Dαq with zero mean and variance (αq)2/2π, we sample � elements e1, . . . , e� ←
Dαq independently. For x = (x1, . . . , x�) ∈ Z

�
q, we have

AGN(x) = (x1 + e1, . . . , x� + e�).

Encryption Mode. When a keystream of k blocks (in (Z�
q)

k) is needed for
some k > 0, the “inner-counter mode” can be used; for ctr = 0, 1, . . . , k − 1, one
computes

z[ctr] = Rubato [k, nc‖ctr] (ic),

where ic denotes a constant (1, 2, . . . , n) ∈ Z
n
q . For a given message vector m ∈

(R�)k, encryption by Rubato is defined by

c = �Δ · m� + z (mod q)

where Δ ∈ R is a scaling factor.

3.2 Parameter Selection

In this section, we recommend some sets of parameters and concrete instantiation
of Rubato. Some sets of parameters are selected in Table 2. The notations in the
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table follow those in Sect. 3.1. We give three types of parameters: S, M, and L.
These imply the size of blocks.

Table 2. Selected parameters of Rubato.

Parameter λ n � �log q� αq r

Par-80S 80 16 12 26 11.1 2
Par-80M 80 36 32 25 2.7 2
Par-80L 80 64 60 25 1.6 2
Par-128S 128 16 12 26 10.5 5
Par-128M 128 36 32 25 4.1 3
Par-128L 128 64 60 25 4.1 2

When choosing the modulus q, we consider the effect of noise on precision. For
a discrete Gaussian distribution Dαq, the size of noise is expectedly Ee←Dαq

[ |e| ].
Suppose we obtain p-bit average precision while using the RtF framework with
some deterministic cipher (e.g., HERA [25]). It means that, a given message x
and the message after transciphering x′, |x−x′| < 1/2p. Then, the expected loss
of precision bits is upper bounded by

p + log2
[
Ee←Dαq

[1/2p + e/Δ]
]
.

In our instantiation, we enlarge the modulus q to compensate this loss of preci-
sion.

The choice of the scaling factor Δ should vary along with the ‖m‖1, where
m ∈ R

∗ is a message vector. In our experiment (see Sect. 5), we constrain ‖m‖1 ≤
1 and choose Δ = q/16 for the RtF framework [25]. If someone manipulates a
message ‖m‖1 ≤ s, it is appropriate to choose Δ = q/(16 · s).

3.3 Design Rationale

The main observation behind our design is that adding noise increases the alge-
braic degree of a cipher. Suppose that we are given LWE samples {(ai, bi =
〈ai, s〉 + ei)}i. In Arora-Ge attack [9], an attacker establishes an equation

tαq∏

e=−tαq

(bi − 〈ai, s〉 − e) = 0

in order to solve the LWE instance, where t ∈ R determines the adversarial
success probability. In this way, the noisy linear equation becomes a polynomial
equation of degree (2tαq + 1). If the linear equation 〈a, s〉 is replaced by a poly-
nomial F (a, s) of degree d, the Arora-Ge equation becomes of degree d(2tαq+1).
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We choose the discrete Gaussian distribution for sampling noise since the
cryptanalysis of LWE has been extensively studied under the discrete Gaussian
assumption. In the main body of the stream cipher, we use building blocks from
HERA [25] and Pasta [30]. For linear layers and the key schedule, we follow the
style of HERA. Although we are aware of generic ways of constructing an MDS
matrix [40,41], those approaches result in a matrix with large components. We
keep the component of matrices Mv as small as possible for efficiency. When
enlarging the block size n, we computationally find v × v MDS matrices since
we cannot keep the original linear layer of HERA.

For nonlinear layers, Cho et al. [25] claimed that a nonlinear layer whose
inverse is of a high degree mitigates algebraic MitM attacks. As there has not
been any known quadratic function with the inverse of a high degree over Zq,
a cubic S-box has been used in HERA, which leads to a larger multiplicative
depth. After truncation was proposed for an alternative countermeasure for an
algebraic MitM attack [29], Dobraunig et al. [30] proposed a Feistel structure for
HE-friendly ciphers. Since the Feistel structure is vulnerable to algebraic MitM
attacks, a cubic function for the last nonlinear layer and truncation are adopted
to Pasta. As we thought that deploying both the cubic function and truncation is
superfluous, we conclude that truncation without the cubic function is sufficient
for Rubato.

4 Security Analysis

In this section, we provide the security analysis of Rubato. We summarize the
analysis result in Table 3. We omit too costly attacks (i.e., time complexity larger
than 21000 for all the parameters) such as trivial linearization and interpolation
attacks. We computed the complexity of each attack by using Wolfram Mathe-
matica and made the source codes publicly available in our repository3. In the
full version [43], we give some additional plots on the security analysis.

Assumptions and the Scope of Analysis. In this work, we will consider
the standard “secret-key model”, where an adversary arbitrarily chooses a nonce
and obtains the corresponding keystream without any information on the secret
key. The related-key and the known-key models are beyond the scope of this
paper.

Since Rubato takes as input counters, an adversary is not able to control the
differences of the inputs. Nonces can be adversarially chosen, while they are also
fed to the extendable output function, which is modeled as a random oracle.
So one cannot control the difference of the internal variables. For this reason,
we believe that our construction is secure against any type of chosen-plaintext
attacks including (higher-order) differential, truncated differential, invariant sub-
space trail, and cube attacks. A recent generalization of an integral attack [15]
requires only a small number of chosen plaintexts, while it is not applicable to
Rubato within the security bound.

3 https://github.com/KAIST-CryptLab/Rubato.

https://github.com/KAIST-CryptLab/Rubato
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Table 3. The log of the complexity of the attacks on Rubato. The upward sign (↑)
implies that the complexity is larger than 21000. The linear algebra constant ω is
assumed to be 2.

Parameter GCD Gröbner LC Lattice Arora-Ge

Par-80S 393.6 80.04 155.9 760.5 80.04
Par-80M 878.6 84.55 249.9 ↑ 80.37
Par-80L ↑ 82.73 349.8 ↑ 82.73
Par-128S 411.9 128.1 311.7 ↑ 128.1
Par-128M 880.7 128.1 249.9 ↑ 128.1
Par-128L ↑ 169.6 349.8 ↑ 129.6

4.1 Cryptanalysis Based on Symmetric Primitive Analysis

Most of the symmetric cryptanalysis assumes that a targeted cipher is a deter-
ministic algorithm. Symmetric cryptanalysis is to find some statistical or alge-
braic characteristics of the function which is distinguished from its ideal coun-
terpart. However, as the Gaussian noise is added at the end of the cipher, Rubato
should be seen as a random sampling. For this reason, most of the conventional
symmetric cryptanalysis are not directly applicable to Rubato. Nevertheless, by
guessing all the noise, an attacker can try to analyze Rubato using symmetric
key cryptanalysis. Since the noise is sampled from discrete Gaussian distribu-
tion Dαq, it is always advantageous for an attacker to guess that the noise is
zero when the data are sufficiently given. We denote the probability such that a
sample from Dαq is zero by ε0 = Pr [e ← Dαq : e = 0] .

4.1.1 Trivial Linearization
Trivial linearization is to solve a system of linear equations by replacing all
monomials with new variables. When applied to the r-round Rubato cipher, the
number of monomials appearing in this system is upper bounded by

S =
2r
∑

i=0

(
n + i − 1

i

)
.

Therefore, at most S equations will be enough to solve this system of equations.
All the monomials of degree at most 2r are expected to appear after r rounds
of Rubato (as explained in detail in the full version [43]). Therefore, by guessing
e = 0, we can conclude that this attack requires O(Sω/εS

0 ) time, where 2 ≤ ω ≤
3. Since the success probability is too small for r ≥ 1, it will never be a dominant
attack.
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4.1.2 GCD Attack
The GCD attack seeks to compute the greatest common divisor (GCD) of uni-
variate polynomials, and it can be useful for a cipher operating on a large field
with its representation being a polynomial in a single variable. This attack can
be extended to a system of multivariate polynomial equations by guessing all the
key variables except one. For r-round Rubato, the complexity of the GCD attack
is estimated as O(qn−1r22r) even if there is no noise. For a security parameter
λ ≤ 256, Rubato will be secure against the GCD attack even with a single round
as long as n ≥ 16.

4.1.3 Gröbner Basis Attack
The Gröbner basis attack is an attack by solving a system of equations by
computing a Gröbner basis of the system. If such a Gröbner basis is found, then
the variables can be eliminated one by one after carefully converting the order of
monomials. We refer to [8] for details. In the literature, security against Gröbner
basis attack is bounded by the time complexity for Gröbner basis computing.

Suppose that an attacker wants to solve a system of m polynomial equations
in n variables over a field Fq,

f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0.

The complexity of computing a Gröbner basis of such system is known to be

O

((
n + dreg

dreg

)ω)

in terms of the number of operations over the base field, where 2 ≤ ω ≤ 3 and
dreg is the degree of regularity [14]. With the degree of regularity, one can see
how many degrees of polynomial multiples will be needed to find the Gröbner
basis. Unfortunately, it is hard to compute the exact degree of regularity for a
generic system of equations. When the number of equations is larger than the
number of variables, the degree of regularity of a semi-regular sequence can be
computed as the degree of the first non-positive coefficient in the Hilbert series

HS(z) =
1

(1 − z)n
×

m∏

i=1

(1 − zdi).

As it is conjectured that most sequences are semi-regular [35], we analyze the
security of Rubato against the Gröbner basis attack under the (semi-)regular
assumption.

Hybrid Approach. One can take a hybrid approach between the guess-and-
determine attack and the algebraic attack [13]. Guessing some variables makes
the system of equations overdetermined. An overdetermined system becomes
easier to solve; the complexity of the hybrid approach after g guesses is given as

O

(
qg

(
n − g + dg

dg

)ω)

where dg is the degree of regularity after g guesses.
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Application to Rubato. For the Gröbner basis attack, re-arranging equations
may lead to a significant impact on the attack complexity. For example, one may
set a system of equations using only plaintext-ciphertext pairs or set a system
of equations with new variables standing for internal states. The former will be
a higher-degree system in fewer variables, while the latter will be a lower-degree
system in more variables.

From a set of nonce-plaintext-ciphertext triples {(nci,mi, ci)}i, an attacker
will be able to establish an overdetermined system of equation

f1(k1, . . . , kn) = f2(k1, . . . , kn) = · · · = fm(k1, . . . , kn) = 0

where ki ∈ Zq is the i-th component of the key variable. The degree of regularity
of the system is computed as the degree of the first non-positive coefficient in

(
1 − z2

r
)m−n

(
2r−1∑

i=0

zi

)n

where r is the number of rounds. The larger number of equations implies a
smaller degree of regularity. Since the summation does not have any negative
term, one easily sees that the degree dreg of regularity cannot be smaller than
2r. We conservatively lower bound the time complexity when there is no noise
by

O

((
n + 2r

2r

)ω)

regardless of the number of equations. Since at least n equations are required
for the unique root, we can conclude that this attack requires n data and

O

((
n + 2r

2r

)ω

ε−n
0

)

time. We note that the hybrid approach always has worse complexity.
Instead of a system of equations of degree 2r, one can establish a system of

((r − 1)n + �)k quadratic equations in n(r − 1)k + n variables, where k is the
block length of each query. To get the unique root, it requires that k ≥ n/�.
Then, the complexity is

O

((
n(r − 1)k + n + dreg(r, k)

dreg(r, k)

)ω

ε−�k
0

)

where the degree dreg(r, k) of regularity is computed under the semi-regular
assumption.

Although we explain that the truncation can prevent MitM attack, MitM
attack is not a “never-applicable” attack for Rubato. Suppose y = (y1, . . . , y�)
be a keystream. By creating new variables x�+1, . . . , xn, an attacker can make
n MitM equations in 2n − � variables k1, . . . , kn, x�+1, . . . , xn. Denoting the first
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�r/2�-round function by F and the last �r/2�-round function except for Trn,�

and AGN by G,

Rubato[k, nc1] = (y1, . . . , y�)
G ◦ F [k, nc1] = (y1 − e1, . . . , y� − e�, x�+1, . . . , xn)

F [k, nc1] = G−1(y1 − e1, . . . , y� − e�, x�+1, . . . , xn) (1)

where ei’s are guessed noise. Equation 1 is of degree 2�r/2� so that the lower
bound of the degree of regularity is also 2�r/2�. Similarly as above, to get the
unique root, the queried block length k should satisfy n + k(n − �) ≤ nk. Then,
the time complexity is lower bounded by

O

((
n + (n − �)k + 2�r/2�

2�r/2�

)ω

ε−�k
0

)

.

4.1.4 Interpolation Attack
The interpolation attack is to establish an encryption polynomial in plaintext
variables without any information on the secret key and to distinguish it from
a random permutation [46]. It is known that the data complexity of this attack
depends on the number of monomials in the polynomial representation of the
cipher.

For the r-round Rubato cipher, let rc = (rc0, . . . , rcr) ∈ (Zn
q )r+1 be a

sequence of the outputs from XOF. For i = 0, . . . , r, rci is evaluated by a poly-
nomial of degree 2r−i. As we expect that the r-round Rubato cipher has almost
all monomials of degree ≤ 2r in its polynomial representation, the number of
monomials is lower bounded by

r∑

j=0

2j
∑

i=0

(
n + i − 1

i

)
.

Similarly as the trivial linearization, the success probability is too small for r ≥ 1,
it will never be a dominant attack.

4.1.5 Linear Cryptanalysis
Linear cryptanalysis was originally introduced for binary spaces [51], but it can
also be applied to non-binary spaces [11]. Similarly to binary ciphers, for an odd
prime number q, the linear probability of a cipher E : Zn

q → Z
n
q with respect to

input and output masks a,b ∈ Z
n
q can be defined by

LPE(a,b) =
∣
∣
∣
∣Em

[
exp
{

2πi

q

(
− 〈a,m〉 + 〈b,E(m)〉

)}]∣∣
∣
∣

2

where m follows the uniform distribution on Z
n
q . When E is a random permuta-

tion, the expected linear probability is defined by ELPE(a,b) = EE[LPE(a,b)].
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Then, the number of samples required for linear cryptanalysis is known to be
1/ELPE(a,b). In order to ensure the security against linear cryptanalysis, it is
sufficient to bound the maximum linear probability maxa 	=0,b ELPE(a,b).

Application to Rubato. Although it seems that the linear cryptanalysis cannot
be applied to Rubato directly because of the noise, we give a security bound
for linear cryptanalysis assuming no noise. There are two applications of linear
cryptanalysis on Rubato according to how to take the input variables: the XOF
output variables or the key variables. In the first case, unlike traditional linear
cryptanalysis, the probability of any linear trail of Rubato depends on the key
since it is multiplied by the input. It seems infeasible to make a plausible linear
trail without any information on the key material.

In the second case, the attack is reduced to solving an LWE-like problem as
follows; given pairs (nci,yi) such that Rubato(k, nci) = yi, one can establish

〈b,yi〉 = 〈a,k〉 + ei

for some vectors a �= 0,b ∈ Z
n
q and error ei sampled according to a certain

distribution χ. An attacker requires 1/ELPE(a,b) samples to distinguish χ from
the uniform distribution [11].

Lemma 1. For any a = (a1, . . . , an) �= 0,b = (b1, . . . , bn) ∈ Z
n
q such that

hw(b2, b3, . . . , bn) = h, the linear probability of Feistel is

LPFeistel(a,b) ≤ 1
qh

.

Proof. By the definition, we have

LPFeistel(a,b)

=
∣
∣
∣
∣Em

[
exp
{

2πi

q
(−〈a,m〉 + 〈b,Feistel(m)〉)

}]∣∣
∣
∣

2

=

∣
∣
∣
∣
∣
Em

[

exp

{
2πi

q

(
n−1∑

k=1

(−akmk + bkmk + bk+1m
2
k) + (−an + bn)mn

)}]∣∣
∣
∣
∣

2

=
∣
∣
∣
∣Emn

[
exp
{

2πi

q
((−an + bn)mn)

}]∣∣
∣
∣

2

×
n−1∏

i=1

∣
∣
∣
∣Emi

[
exp
{

2πi

q

(
(−ai + bi)mi + bi+1m

2
i

)
}]∣∣
∣
∣

2

.

Carlitz and Uchiyama [20] proved that
∣
∣
∣
∣
∣

q−1∑

x=0

exp
(

2πi

q
· p(x)

)∣∣
∣
∣
∣
≤ (r − 1)

√
q

for any polynomial p(x) of degree r over Zq. Therefore, we have
∣
∣
∣
∣Emi

[
exp
{

2πi

q

(
(−ai + bi)mi + bi+1m

2
i

)
}]∣∣
∣
∣

2

≤
∣
∣
∣
∣
1
q

· √
q

∣
∣
∣
∣

2

≤ 1
q
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and it implies that

LPFeistel(a,b) ≤ 1
qh

.

��
Since the branch number of the linear layer of Rubato is 2v (as shown in the

full version [43]), we can conclude that an r-round Rubato cipher provides λ-bit
security against linear cryptanalysis when q(2v−2)·
 r

2 � > 2λ.

4.1.6 Differential Cryptanalysis and Its Variants
Since Rubato takes counters as input, an adversary is not able to control the dif-
ferences of its inputs. Nonces can be adversarially chosen, while they are also fed
to the extendable output function, which is modeled as a random oracle. So one
cannot control the difference of the internal variables. For this reason, we believe
that our construction will be secure against any type of chosen-plaintext attack
including (higher-order) differential, truncated differential, invariant subspace
trail, and cube attacks.

Nonetheless, to prevent an unsuspected differential-related attack, we present
a computation of a differential characteristic in the following. Given a pair a,b ∈
Z

n
q , the differential probability of Feistel is defined by

DPFeistel(a,b) =
1
qn

· ∣∣{x ∈ Z
n
q : Feistel(x + a) − Feistel(x) = b}∣∣ .

So DPFeistel(a,b) is determined by the number of solutions to Feistel(x + a) −
Feistel(x) = b.

Lemma 2. For any a = (a1, . . . , an) �= 0,b = (b1, . . . , bn) ∈ Z
n
q such that

hw(a1, a2, . . . , an−1) = h, the differential probability of Feistel is

DPFeistel(a,b) ≤ 1
qh

.

Proof. Our goal is to find the maximum number of solutions to the equation

Feistel(x+ a) − Feistel(x) = (a1, 2a1x1 + a2
1 + a2, . . . , 2anxn−1 + a2

n−1 + an) = b.

For i ≤ n − 1, the equation 2aixi + a2
i + ai+1 = bi has a unique solution xi =

(bi − a2
i − ai+1) · (2ai)−1 if ai �= 0 and the equation has maximally q solutions if

ai = 0. For i = n, the variable xn is free so that the maximal number of solution
is q. It implies that

DPFeistel(a,b) ≤ 1
qh

.

��
Since the branch number of the linear layer of Rubato is 2v (as shown in the

full version [43]), we can conclude that an r-round Rubato cipher provides λ-bit
security against differential cryptanalysis when q(2v−2)·
 r

2 � > 2λ.
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4.2 Cryptanalysis Based on LWE Analysis

As Rubato is not an LWE instance, algorithms solving LWE are not directly
applied to Rubato. However, if someone considers a single component of a
keystream block of Rubato as

(

(au)u ,
∑

u

auku + e

)

(2)

where u = (u1, . . . , un) ∈ Z
n
≥0, and ku =

∏
i kui

i implies a monomial with degree
u, it becomes an LWE instance with the linearized variables whose dimension is

Sn,r =
2r
∑

i=1

(
n + i − 1

i

)

where 2r < q.
In this section, we will denote notations in a linearized way. For example, we

denote Rubato samples by (A, c = As + e) where s stands for the vector (ku)u
and A stands for a set of (au)u in a certain monomial order.

We remark that we do not explore potential vulnerabilities which can arise
from combining symmetric key cryptanalysis and LWE cryptanalysis. We ana-
lyze each attack in its original way, not in a mixed way. For example, in our
analysis, all the LWE cryptanalysis except Arora-Ge attack [9] assume that
(au)u is independently sampled from the uniform distribution over Zq, which is
not the case for Rubato.

4.2.1 Exhaustive Search
The most naive approach for solving LWE is the exhaustive search. Given m
samples (A, c), an attacker guesses noise e = (e1, . . . , em) and finds s satisfying
As = c − e where A is required to have a left inverse. To attack Rubato, the
attacker needs to guess at least (2tαq + 1)Sn,r times for success probability
Pr [e ← Dαq : |ei| ≤ tαq for all i] where the expected time complexity is upper
bounded by ε

Sn,r

0 . Since the success probability is too small for r ≥ 1, it will
never be a dominant attack.

There is a meet-in-the-middle (MitM) approach mentioned in [10], which is a
time-memory trade-off of the exhaustive search. For the same reason, the MitM
approach cannot be a dominant attack.

4.2.2 Lattice Attacks
Reduction to a lattice problem is one way to solve LWE. To solve a lattice
problem, an attacker needs a short enough basis of the given lattice. This short
basis is obtained by using a lattice reduction algorithm such as the BKZ algo-
rithm [23,59].

Core-SVP Hardness of BKZ Algorithms. The BKZ algorithm is a lattice
reduction algorithm that uses an (approximate-)SVP oracle of small dimension
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β. This algorithm repeatedly calls the SVP oracle as a subroutine to find the
shortest vectors in the projected lattice of dimension β. An output from the
BKZ-β algorithm is called a “BKZβ-reduced basis”. The SVP oracle can be
instantiated using sieving algorithms or enumeration algorithms.

Unfortunately, it is difficult to predict how many calls will be made to the
SVP oracle in the BKZ algorithm. So, we analyze the security of Rubato against
the BKZ algorithm using a single call, in which case the underlying hardness
assumption is called core-SVP hardness [7]. Table 4 compares the expected time
complexity of the BKZ algorithm for various instantiations of the SVP oracle in
terms of BKZ block size β and root-Hermite factor δ. For Lindner and Peikert [49]
and Albrecht et al. [3], the time complexity is estimated by extrapolating their
experimental running time of the BKZ algorithm using enumeration methods.
For the remaining instantiations, the complexity analysis is theoretically based
on the cost of a single call to the SVP-oracle.

When it comes to the quality of a BKZβ-reduced basis, Chen [22] gave a limit

lim
N→∞

δ =
(

v
− 1

β

β

) 1
β−1

≈
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

(3)

for the root-Hermite factor δ assuming the Gaussian heuristic and the geometric
series assumption. Chen also gave an experimental proof that this limit is a
reasonable choice when N is finite. As another estimate of δ for a BKZβ-reduced
basis, the lattice rule of thumb [56], which says δ = β

1
2β , is often used in the

literature. We will opt for Chen’s limit when we compute β from a fixed value
of δ.

Table 4. Expected time complexity of the BKZ algorithm for various instantiations of
the SVP oracle in terms of BKZ block size β and root-Hermite factor δ.

Instantiation of the SVP oracle Complexity (in log)

Lindner and Peikert [49] 1.8
log δ − 110

Albrecht et al. [3] 0.009
log2 δ

− 27

Enumeration [2] β log β
8 − 0.654β + 25.84

Classical Sieve [12] 0.292β + o(β)
Quantum Sieve [47] 0.265β + o(β)

Primal Attack. Primal attack is the strategy of solving the search-LWE
problem via solving the bounded distance decoding (BDD) problem. Given m
samples (A, c = As + e) following Ls,χ, one can see that c is near the lattice
L(A). Finding the nearest lattice point from c is equivalent to finding the secret
vector s when A is (left) invertible. If A is not invertible, it is sufficient to gather
a few more samples.
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In order to solve the derived BDD problem, there are two approaches: enu-
meration [37,49] and reduction to unique-SVP (uSVP) [4,5]. Since the enumer-
ation method is treated as a subroutine in the BKZ algorithm, we do not take
it into account as a direct solver of the BDD problem.

The second approach, the reduction to uSVP, was firstly proposed by
Albrecht et al. [4]. The main idea of the approach is to solve SVP of the larger
lattice L = L(B) of basis

B =
(
A c
0 u

)

where u = dist(c, L(A)). This lattice contains an unusually small vector (e,−u),
which implies the gap λ2(L)/λ1(L) is large. Assuming Gaussian heuristic and
linear independence of A, Göpfert [39] showed that an attacker can create the
λ2(L)/λ1(L)-gap greater than

min
{
q, q1−N/m

√
m
2πe

}

√
m · αq√

2π

.

As a lattice reduction satisfying λ2(L)/λ1(L) > τδm for some constant τ ≤ 1 is
sufficient to solve a uSVP instance [36], this approach requires log root-Hermite
factor

log δ =
log2(τα

√
e)

4N log q

if min
{
q, q1−N/m

√
m
2πe

}
= q1−N/m

√
m
2πe . Although experimental evidence sug-

gests τ ≤ 0.4 [36], we set τ = 1 for the conservative choice of parameters.
Alkim et al. gave an alternative success condition of the attack [7]. Denoting

d = m + N + 1 and σ = αq/
√

2π, the requirement is that

σ
√

β ≤ δ2β−dqm/d

where δ is computed by Eq. 3. We take both into account along with the param-
eter N = Sn,r.

Dual Attack. The dual attack, also called the short integer solution (SIS)
strategy, is an attack finding small vector w ∈ Z

m
q such that wᵀA ≡ 0 (mod q).

Given m samples (A, c) from Ls,χ, finding a short vector satisfying wᵀA ≡ 0
(mod q) leads to

wᵀc = wᵀ(As + e) = wᵀe

where the last term is small. The short vector w should satisfy

‖w‖2 =
1
α

√
ln(1/ε)

π

in order to distinguish Ls,χ from random with advantage ε [49]. By the definition
of the root-Hermite factor δ, the attack requires that

log δ =
log2
(

1
α

√
ln(1/ε)

π

)

4N log q
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for the LWE instance parametrized by N , α, and q. When evaluating the security
of Rubato, we set N = Sn,r and ε ≈ 1/23.

4.2.3 BKW Attack
The original BKW algorithm was proposed for solving the learning parity with
noise (LPN) problem [16] by Blum, Kalai, and Wasserman. Regev pointed out
that the BKW algorithm can be used for solving LWE, and Albrecht et al. [3]
gave the formal analysis of the BKW algorithm for LWE. We briefly explain the
BKW attack on LWE, and we refer to [3] for more details.

The BKW attack is a lattice-version of Gaussian elimination parametrized
by a and b. Suppose there is an LWE distribution Ls,χ where χ = Dαq is
parametrized by the dimension N and the modulus q. Given enough samples
(A, c) from Ls,χ, the BKW attack first reduces A to a kind of block diagonal
matrix. The width of the block is b and there will be an a = �N/b� blocks.

As samples from Ls,χ intrinsically include noise, too many additions or sub-
tractions between samples result in a useless equation. Instead, the attacker
gathers (qb −1)/2 samples having all nonzero values up to sign in the first block.
Denote this table of samples by T 1. If Ls,χ outputs a sample (ai, ci) which
has the same first block in T 1, the attacker makes (ai, ci) to have all-zero first
block by adding/subtracting the sample in T 1. Similarly, the attacker can gather
(qb − 1)/2 samples having all-zero first block and all nonzero values up to sign
in the second block. Denote this table of samples by T 2. By repeating the same
process, the attacker can construct a matrix of the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T 1

0 . . . 0 T 2

0 . . . 0 0 . . . 0 T 3

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . 0 T a−1

0 . . . 0 0 . . . 0 0 . . . 0 0 T a

0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

After solving a lattice problem with respect to M , the attacker can perform
back substitution for the remaining parts.

The time complexity of this attack to solve search-LWE is
(

qb − 1
2

)
·
(

a(a − 1)
s

· (N + 1)
)

+
⌈

qb

2

⌉
·
(⌈

N

d

⌉
+ 1
)

· d · a + poly(N)

where d = N − �N/b�. The parameter a should satisfy a ≤ log(α−2) in order
to distinguish Ls,χ from random [56]. We compute the concrete complexity by
using a = log(α−2) without the polynomial terms. As N = Sn,r for Rubato, the
complexity of the attack is at least 2Sn,r log q/(−2 log α).
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4.2.4 Arora-Ge Attack
Arora and Ge proposed an algebraic algorithm to solve the search-LWE problem
[9]. The main idea of this attack is that, given LWE samples {(ai, bi)}i, the errors
fall into some interval [−tαq, tαq] for some large enough t so that the equations

tαq∏

e=−tαq

(bi − 〈ai, s〉 − e) = 0

holds. Although the complexity of this attack for LWE is well-organized in [1],
we independently describe the lower bound of complexity as the equations are
different from LWE.

When guessing noise, an attacker may control the range of guesses to mini-
mize the cost of attacks since the noise is not uniformly distributed. We denote
the probability such that a sample from discrete Gaussian Dαq lies in the interval
[−tαq, tαq] by

εt = Pr [e ← Dαq : |e| ≤ tαq] .

Since this probability determines the complexity of many attacks, we find the
minimum of the complexity among {t : −3

√
2π ≤ t ≤ 3

√
2π} which is equivalent

to the range of 6 times the standard deviation.
Let Ei(·) denote the i-th component of the Rubato cipher without noise. Then,

by using Arora-Ge attack, an attacker can make a set of equations as follows.
Given m nonce-plaintext-ciphertext triples {(ncj ,mj , cj)}j ,

⎧
⎨

⎩

tαq∏

ei,j=−tαq

(cj,i − Ei(ncj ,mj) − ei,j) = 0

⎫
⎬

⎭
1≤i≤�
1≤j≤m

(4)

where cj,i is the i-th component of cj . These equations are for the key variable
k of total degree 2r(2tαq + 1).

Now, we give a lower bound of the complexity of solving Eq. 4 by using
Gröbner basis attack. As discussed in Sect. 4.1.3, we can conservatively assume
the degree of regularity of Eq. 4 is 2r(2tαq + 1) regardless of the number of
nonce-plaintext-ciphertext triples. We have the time complexity at least

O

((
n + 2r(2tαq + 1)

2r(2tαq + 1)

)ω

ε−c
t

)

where c should be larger than or equal to n to get the unique root. This com-
plexity formula also lower bounds the trivial linearization approach to solving
Eq. 4.

Meet-in-the-Middle Approach. Similar to most of the algebraic attacks,
one can try to use the MitM approach for Arora-Ge attack. From Eq. 1, the
attacker can build the Arora-Ge equations as follows.

⎧
⎨

⎩

∏

(ei,j)i∈Cj

(
Fi[k, ncj ]− (G−1)i(y1 − e1,j , . . . , y� − e�,j , x�+1, . . . , xn)

)
= 0

⎫
⎬

⎭
1≤j≤m
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where
Cj :=

{
(e1, . . . , e�) ∈ Z

� : −tαq ≤ ei ≤ tαq for all i
}

,

Fi and (G−1)i are the i-th components of F and G−1 respectively. These equa-
tions are of degree 2�r/2�(2tαq + 1)� so that the lower bound of the degree of
regularity also is 2�r/2�(2tαq + 1)�. Similarly as above, to get the unique root,
the queried block length k should satisfy n + k(n − �) ≤ nk. Then, the time
complexity is lower bounded by

O

((
n + (n − �)k + 2�r/2�(2tαq + 1)�

2�r/2�(2tαq + 1)�

)ω

ε−�k
t

)

.

We give some plots of the complexity of the Arora-Ge attack according to the
choice of t in the full version [43].

5 Performance Evaluation

In this section, we evaluate the performance of the RtF framework combined
with the Rubato cipher in terms of encryption speed and ciphertext expansion.
The source codes of server-side computation are developed in Golang version
1.16.4 with Lattigo library4 which implements RNS (residue number system)
variants of the FV and the CKKS schemes. For the HE parameters, we use the RtF
parameter Par-128a in [25], which uses the arcsin function. For completeness, we
summarize the HE parameters in the full version [43]. The source codes of client-
side computation are developed in C++17, using GNU C++ 7.5.0 compiler
with AVX2 instruction set. For the instantiation of the XOF, we use AES128
in counter-mode as well as SHAKE256 in openssl library5 and XKCP library6,
respectively. Our experiments are done in AMD Ryzen 7 2700X @ 3.70 GHz
single-threaded with 64 GB memory.

5.1 Benchmark and Comparison

We measure the performance of the RtF framework along with Rubato, distin-
guishing two different parts: the client-side and the server-side. The client-side
latency includes time for generating pseudorandom numbers (needed to generate
a single keystream in Z

n
q ), keystream generation from Rubato, message scaling,

rounding, and vector addition over Zq. Since generating pseudorandom numbers
from XOF takes significant time on the client-side, we measure the client-side
performance according to the instantiations of the XOF.

On the server-side, the latency is divided into offline and online phases as
described in Sect. 2.4. The offline latency includes time for randomized key sched-
ule, homomorphic evaluation of the keystreams from Rubato, and the linear
4 https://github.com/ldsec/lattigo.
5 https://github.com/openssl/openssl.
6 https://github.com/XKCP/XKCP.

https://github.com/ldsec/lattigo
https://github.com/openssl/openssl
https://github.com/XKCP/XKCP
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transformation SlotToCoeffFV. The online latency includes computing the FV-
ciphertext containing the symmetric ciphertexts in its coefficients, homomorphic
subtraction, and the modified CKKS-bootstrapping process in the RtF framework
(called HalfBoot). We measure the latency until the first HE-ciphertext comes
out, while the throughput is measured until all the n HE-ciphertexts come out.
Because the XOF running time does not affect the server-side performance as
significantly as it does on the client-side, we only use SHAKE256 instantiation
for a fair comparison with previous results. We note that our evaluation does
not take into account key encryption since the encrypted key will be used over
multiple sessions once it is computed. For the same reason, the initialization
process of the HE schemes is not considered.

Table 5. Client-side performance of the RtF transciphering framework with Rubato.

Set AES128 SHAKE256

Latency
(cycle)

Throughput
(C/B)

Latency
(cycle)

Throughput
(C/B)

Par-80S 2154 72.63 5906 199.1

Par-80M 3644 49.36 11465 143.5

Par-80L 4957 32.97 16679 110.9

Par-128S 3076 103.6 10446 351.8

Par-128M 4381 55.10 14292 179.7

Par-128L 5323 35.70 16920 113.5

We summarize our implementation results in Table 5 and Table 6. In Table 5,
the client-side latency and throughput for each instantiation of the XOF are given.
Table 6 includes ciphertext expansion ratio (CER), time-relevant measurements,
and precision. One can see that a larger parameter implies higher throughput at
the cost of higher latency on both sides. As Rubato needs a substantial amount of
random bits, the client-side performance is significantly influenced by the choice of
XOF. On the server-side, we note that Rubato only affects the offline latency while
the online latency is affected by the efficiency of CKKS bootstrapping.

Table 6. Server-side performance of the RtF transciphering framework with Rubato.

Set CER Latency Throughput
(KB/s)

Precision
(bits)Offline (s) Online (s)

Par-80S 1.31 21.48 19.75 6.676 18.8
Par-80M 1.25 37.44 19.71 7.032 19.0
Par-80L 1.25 85.65 19.79 6.520 19.1
Par-128S 1.31 50.78 20.28 6.083 18.8
Par-128M 1.26 68.47 19.88 6.666 18.9
Par-128L 1.26 86.34 20.09 6.712 18.9
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Comparison. We compare the result of Par-128L to the recent implementation
of HERA [25], LWEs-to-RLWE conversions [50], and CKKS itself. The comparison
is summarized in Table 7. The result of HERA is obtained from the paper. The
source codes of LWEs-to-RLWE conversion are taken from the OpenPegasus
library7. As OpenPegasus library does not include symmetric LWE encryp-
tion, we implement (seeded) symmetric LWE encryption with AVX2-optimized
SHAKE256. We use Lattigo library for CKKS encryption.

Table 7. Comparison of the RtF transciphering framework with Rubato to previous
environments supporting homomorphic encryption of approximate numbers. All the
experiments are done with 128-bit security. Parameter N in parentheses implies the
dimension of LWE. The parameter p stands for the bits of precision.

Scheme N � Ctxt. Exp. Client Server p

Ctxt.
(KB)

Ratio Lat.
(μs)

Thrp.
(MB/s)

Lat.
(s)

Thrp.
(KB/s)

RtF-Rubato 216 216 0.183 1.26 4.585 31.04 106.4 6.712 18.9

RtF-HERA [25] 216 216 0.055 1.24 1.520 25.26 141.58 5.077 19.1

LWE [50] 216(210) 210 0.007 4.84 21.91 0.051 65.88 0.010 9.3

CKKS 214 214 468 23.25 9656 2.035 None 19.1

In this table, the security parameter λ is set to 128. For the fairness of
comparison, the remaining levels after transciphering are all set to be 7. For
all experiments, we sample the domain of each component of the message vec-
tor from the uniform distribution over (−1, 1). When computing the ciphertext
expansion ratio, we use the formula log q/(p + 1), which excludes the effect of
sending a public nonce. Multiple use of different nonces can be dealt with a
counter so that the effect of a nonce to the ratio is asymptotically zero.

Since the OpenPegasus library supports only selected sets of parameters in
terms of the number of slots and the ciphertext modulus (at the point of sub-
mission), we implemented LWEs-to-RLWE for N = 216 and � = 210 which does
not provide exactly the same functionality as ours with full available slots.

One can see that Rubato with the RtF framework outperforms HERA with
respect to the both-side throughput, while it has a worse CER and cipher-
text size compared to HERA. Also, Rubato outperforms the LWEs-to-RLWE
conversion with respect to CER, ciphertext size and client-side performance,
achieving the main purpose of the transciphering framework. Compared to the
CKKS-only environment, Rubato with the RtF framework has better CER and
client-side performance, while the CKKS-only environment requires no additional
computation.

7 https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS.

https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS
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7. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange:
a new hope. In: SEC 2016, pp. 327–343. USENIX Association, USA (2016)

8. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Sym-
metric Cryptol. 2020(3) (2020)

9. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

10. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08344-5 21

11. Baignères, T., Stern, J., Vaudenay, S.: Linear cryptanalysis of non binary ciphers.
In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 184–
211. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3 13

12. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 10–24. SIAM
(2016)

13. Bettale, L., Faugere, J.C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)

14. Bettale, L., Faugère, J.C., Perret, L.: Solving polynomial systems over finite fields:
improved analysis of the hybrid approach. In: Proceedings of the 37th International
Symposium on Symbolic and Algebraic Computation, ISSAC 2012. Association for
Computing Machinery (2012)

15. Beyne, T., et al.: Out of oddity – new cryptanalytic techniques against symmetric
primitives optimized for integrity proof systems. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 299–328. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 11

https://doi.org/10.1007/978-3-030-84245-1_25
https://doi.org/10.1007/978-3-030-84245-1_25
https://doi.org/10.1007/978-3-319-12160-4_18
https://doi.org/10.1007/978-3-319-12160-4_18
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-540-77360-3_13
https://doi.org/10.1007/978-3-030-56877-1_11


608 J. Ha et al.

16. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

17. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Simulating homomorphic eval-
uation of deep learning predictions. In: Dolev, S., Hendler, D., Lodha, S., Yung,
M. (eds.) CSCML 2019. LNCS, vol. 11527, pp. 212–230. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-20951-3 20

18. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, pp. 309–325. ACM (2012)

19. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. J. Cryptol. 31(3), 885–916 (2018)

20. Carlitz, L., Uchiyama, S.: Bounds for exponential sums. Duke Math. J. 24(1),
37–41 (1957)

21. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient homomorphic conversion between
(Ring) LWE ciphertexts. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021.
LNCS, vol. 12726, pp. 460–479. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78372-3 18
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was first constructed by Gentry (STOC 2009). Single instruction multi-
ple data (SIMD) gave rise to efficient homomorphic operations on vec-
tors in (Ftd)�, for prime t. RLWE instantiated with cyclotomic polyno-

mials of the form X2N + 1 dominate implementations of FHE due to
highly efficient fast Fourier transformations. However, this choice yields
very short SIMD plaintext vectors and high degree extension fields, e.g.
� < 100, d > 100 for small primes (t = 3, 5, . . .).
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SIMD, Field Instruction Multiple Data, applying reverse multiplication
friendly embedding (RMFE) to FHE. With RMFE, length-k Ft vectors
can be encoded into Ftd and multiplied once. The results have to be
recoded (decoded and then re-encoded) before further multiplications
can be done. We introduce an FHE-specific technique to additionally
evaluate arbitrary linear transformations on encoded vectors for free
during the FHE recode operation. On top of that, we present two opti-
mizations to unlock high degree extension fields with small t for homo-
morphic computation: r-fold RMFE, which allows products of up to 2r

encoded vectors before recoding, and a three-stage recode process for
RMFEs obtained by composing two smaller RMFEs. Experiments were
performed to evaluate the effectiveness of FIMD from various RMFEs
compared to standard SIMD operations. Overall, we found that FIMD
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to FHE for the same amount of data, while using almost k/2× fewer
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1 Introduction

Fully homomorphic encryption (FHE) has seen a lot of improvements since it
was first realized by Gentry [24]. Currently, there are four main schemes in
wide use, Brakerski-Gentry-Vaikunathan (BGV) [5], Brakerski-Fan-Vercauteren
(BFV) [4,22], Cheon-Kim-Kim-Song (CKKS) [11] and FHEW/TFHE [14,15,21].
The first two schemes support finite field operations, the CKKS scheme supports
approximate arithmetic of numbers and the FHEW/TFHE family operates over
bits or low-precision numbers.

Most implementations of FHE, such as SEAL [36], PALISADE [35] and Lat-
tigo [33] focus on the case where BGV and BFV are instantiated with power-of-
two cyclotomic polynomial moduli. These parameters enjoy highly efficient arith-
metic due to negacyclic fast fourier transforms (FFT). However, small primes
such as t = 3, 5, 7, 11 are not useful in these cases due to the unfriendly decompo-
sition of the plaintext space into very few slots with a slot algebra corresponding
to finite fields of high extension degree. Therefore, use of BGV and BFV focused
on word-sized homomorphic encryption which uses large primes of 32 or more
bits, integer and fractional encodings proposed in [8,16,19,20] and an alternate
“polynomial modulus” for high-precision integer arithmetic in [3,10].

Various papers have been published on the use of finite extension fields of
low to medium extension degree (≤64) for homomorphic computation, which we
elaborate on in a later section on related work. However, there remains a lack
of techniques that unlock the use of high degree extension fields for homomor-
phic computation, which would lead to improvements for small-prime arithmetic
circuits due to the faster arithmetic enabled by negacyclic FFT.

Our Contributions. In this work, we introduce field instruction multiple
data (FIMD), a method to encode more data into FHE ciphertexts by lever-
aging the inherent vector of extension fields plaintext structure from SIMD. We
add another level of packing to FHE, embedding a vector of base/intermediate
field elements into each slot of a SIMD plaintext such that homomorphic oper-
ations can be performed on the encoded vectors. Field addition, multiplication
and linearized polynomial evaluations correspond to component-wise addition,
multiplication, and linear maps on the encrypted vectors.

To that end, we apply reverse multiplication friendly embedding (RMFE)
defined by Cascudo et al. [7] to FHE. RMFE allows us to encode a length-k vector
of small field elements (F)k into a single element of a larger extension field E/F.
Products of these extension field elements then “correspond” to component-
wise multiplication on the underlying vectors. However, this process is not a
homomorphism and thus cannot support an arbitrary number of multiplications.
To address this limitation in MPC, Cascudo et al. [7] defined a recoding protocol
ReEncode which decodes and re-encodes field elements in one go after each MPC
multiplication so that it can be used in subsequent multiplications.

The key to applying RMFEs to FHE is that the encode, decode, and recod-
ing (i.e. decode then re-encode) operations are F-linear maps between (F)k and E.
Such maps can be represented by linearized polynomials and therefore evaluated
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in FHE using low-noise Frobenius automorphisms. Furthermore, we show that
rotations, shifts and even arbitrary linear transformations M on the encrypted
vector can be done for free by modifying the recode operation into a composition
of decode, M , and encode. This gives FIMD more flexibility than SIMD in terms
of the overhead of linear transformations over the plaintext space but FIMD
requires the recode operation after multiplications. Crucially, we exploit the fact
that the recode operation in FHE is non-interactive and does not require any
pre-processing. Performing arbitrary linear transformations during the ReEncode
protocol of Cascudo et al. [7] would be almost impossible because randomness
specific to any desired linear transformation has to be prepared beforehand.

Besides that, we propose r-fold RMFE to amortize the overhead of the homo-
morphic RMFE recode operation over several multiplications, at the cost of lower
packing efficiency. Instead of decoding after a single multiplication, r-fold RMFE
allows up to encodings of 2r vectors to be multiplied together before decoding.
With an additional requirement that field elements encoding multiplications of
fewer than 2r vectors can be added together, r-fold RMFE can allow multi-
variate polynomials of degree up to 2r to be evaluated before decoding. This
generalization of RMFE could be of independent interest.

On top of that, we introduce a three-stage process for recoding operations
for RMFEs composed of two component RMFEs. Exploiting the fact that such
RMFEs is built on a tower of field extensions F ⊂ E1 ⊂ E2, we apply three linear
maps ψout : E2 → (E1)kout , φout : (E1)kout → E2, and π′

in : (E1)kout → (E1)kout , each
of which have lower degree than the recoding map π : E2 → E2. All together, this
approach reduces the number of Frobenius automorphisms needed compared to
the standard recode process.

Finally, we perform several experiments to compare the efficiency of the var-
ious flavors of RMFE introduced in this work against each other and standard
FHE multiplications. FIMD improves the performance of FHE for small plain-
text moduli, not only achieving more than 2× faster multiplications amortized
but also using up to k/2× fewer ciphertexts in the whole process.

Related Work. Exploiting finite fields for homomorphic computation was
first considered by Kim et al. [32]. They showed that equality of two encrypted
integers could be efficiently computed using Fermat’s Little Theorem. For more
complex operations, Jäschke and Armknecht [31] explored using addition and
multiplication in extension fields to compute integer addition but found them
lacking. Leveraging the vector space nature of extension fields, Tan et al. [39]
proposed the extract then compute method for comparison of encrypted integers.
Illiashenko and Zucca [30] took advantage of the nature of comparison polyno-
mials, reaching comparable efficiency to THFE-based methods for homomorphic
comparisons.

Studies were also done for encoding integers and fixed-point numbers such
that arithmetic was efficient. Dowlin et al. [19] considered decomposing integers
and fractional numbers into base-2 representations and then encoding them as
polynomials for fast arithmetic. Costache et al. [16] then showed that the two
methods of Dowlin et al. were isomorphic and derived lower bounds for the
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representation to support homomorphic computation. This was further extended
by Castryck et al. [8] to a more flexible encoding based on Laurent polynomials
and more fine-grained decomposition of the FHE plaintext space with composite
plaintext modulus. In another direction, Chen et al. [10] proposed to replace
the plaintext modulus t with X − b for some base b. This yields the plaintext
space Z/(bn + 1)Z which enables high-precision arithmetic. Bootland et al. [3]
generalized this to support complex-valued data by considering polynomials of
the form Xm + b.

Lastly, RMFE was studied to improve MPC over finite fields. Cascudo et al.
[7] used it to improve the amortized communication complexity of MPC pro-
tocols at the expense of the size of the field; previous work had to reduce the
adversary threshold instead. Concurrently, Block et al. [2] applied it to achieve
more efficient batched multiplications in MPC over binary fields. Since then,
RMFE has been generalized to support MPC over Galois rings by Cramer et al.
[17] and alternatively into circuit-amortization friendly embeddings to evalu-
ate more complex circuits in a single multiplication by Dalskov et al. [18]. For
HE-based MPC over Z2k , methods were devised for protocols Overdrive2k [34]
and MHz2k [12] for packing Z2k -messages into polynomials, supporting depth-1
homomorphic correspondence.

2 Preliminaries

2.1 Fully Homomorphic Encryption

A leveled fully homomorphic encryption (FHE) scheme is a homomorphic
encryption scheme that supports evaluation of circuits of at most depth L, for
some pre-defined non-negative integer L. Encryptions of messages m will be
denoted with m to emphasize their underlying encrypted messages. We will use
P to denote the space of possible messages for the FHE scheme.

– (pk, evk, sk) ← KeyGen(1λ, 1L): Given security and level parameters λ and L
as inputs, output a public key pk, secret key sk and evaluation key evk.

– c = m ← Enc(pk,m): Given a public key pk and message m ∈ P as inputs,
output a ciphertext c = m that encrypts m.

– m′ ← Dec(sk, c): Given a secret key sk and ciphertext c as inputs, and outputs
a message m′ ∈ P.

– c′ ← Eval(evk, f,m1, ...,mn): Given evaluation key evk, function f : Pn → P
and encryption m1, ...,mn of ciphertexts m1, ...,mn ∈ P, output a ciphertext
c′ such that Dec(sk, c′) = f(m1, ...,mn).

Usually, the Eval algorithm uses sub-routines of which the most common ones
are homomorphic addition and multiplication.

– c+ ← EvalAdd(evk,m1,m2): Given an evaluation key evk and two ciphertexts
m1,m2 as inputs, output a ciphertext c+ = m1 + m2, encrypting the sum of
the encrypted input messages.
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– c× ← EvalMul(evk,m1,m2): Given an evaluation key evk and two ciphertexts
m1,m2 as inputs, output a ciphertext c× = m1 × m2, encrypting the product
of the encrypted input messages.

For all known (leveled) FHE schemes, which are based on (Ring) Learning
with Error ((R)LWE) problems, ciphertexts are noisy encryptions of their under-
lying plaintext. This means that only a limited number of computations can be
performed before the noise in the ciphertexts overwhelms the data and the result
is unusable.

Single Instruction Multiple Data (SIMD). Let R = Z[X]/Φm(X), where
Φm(X) is the m-th cyclotomic polynomial and Rq = R/qR. Generation two
FHE schemes such as BGV and BFV typically use plaintext spaces of the form
P = Rt for some prime t. Smart and Vercauteren [37] noted that, if t and
m are co-prime, Φm(X) ≡ ∏�

i=1 fi(X) mod t, with deg fi(X) := d = φ(m)/�
for all i ∈ {1, . . . , �}. They proposed single instruction multiple data (SIMD),
simultaneously operating on vectors of messages, for FHE by exploiting the
following ring isomorphisms

P = Rt
∼= Zt[X]/〈f1(X)〉 × Zt[X]/〈f2(X)〉 × · · · × Zt[X]/〈f�(X)〉 ∼=

�∏

i=1

Ftd .

These isomorphisms are a result of applying the Chinese Remainder Theorem
on the polynomial ring Z[X]/Φm(X) with the decomposition of Φm(X) into
its irreducible factors modulo t. From this, vectors in (Ftd)� can be encoded in
a single ciphertext and enjoy homomorphic component-wise Ftd addition and
multiplications. Furthermore, the elements within the vectors can be moved
around via ring automorphisms κ : X �→ Xκ, for κ ∈ Z

∗
m. In particular, for prime

t, the automorphism X �→ Xt corresponds to a component-wise Frobenius map
on plaintext vectors. Halevi and Shoup [29] present a thorough introduction on
the SIMD plaintext structure. Thus, with SIMD, we have a third sub-routine for
intra-vector data manipulation through homomorphic automorphisms.

– c� ← EvalAut(evk, κ,m): Given an evaluation key evk, ciphertext m and
automorphism κ ∈ Z

∗
m, output a ciphertext c� = κ(m).

This third sub-routine, more specifically the Frobenius automorphism, is key
to the effective application of finite extension fields for homomorphic computa-
tion. In practice, multiple powers of the Frobenius automorphism, typically the
set of {ti}d−1

i=1 will be needed and techniques have been developed to optimize
the computational complexity and evaluation key sizes for evaluating more than
one automorphism on a single ciphertext [28]. Besides that, through EvalAut and
multiplicative masks, basic data movement of shifts and rotations on encoded
vectors x = (x1, ..., x�) ∈ (Ftd)�.

– c′ ← FHE.EvalShift(evk, ρ,x): Let ρ < 0 denote a left shift and ρ ≥ 0 denote
a right shift. Using FHE.EvalAut defined above, output the ciphertext

c′ =

{
(x|ρ|, ..., x�, 0, ..., 0), if ρ < 0;
(0, ..., 0, x1, ..., x�−ρ), otherwise.
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– c′ ← FHE.EvalRot(evk, ρ, x̂): Let ρ < 0 denote a left rotation and ρ ≥ 0 denote
a right rotation. Using FHE.EvalAut defined above, output the ciphertext

c′ =

{
(x|ρ|, ..., x�, x1, ..., x|ρ|−1), if ρ < 0;
(x�−ρ+1, ..., x�, x1, ..., x�−ρ), otherwise.

2.2 Finite Extension Fields

Let q be a prime power. Extension fields Fqw are Fq-vector spaces of dimension
w. A q-linearized polynomial f(Y ) is a polynomial of the form

f(Y ) = f0 + f1Y
q1

+ f2Y
q2

+ · · · + fz−1Y
qz−1 ∈ Fq[Y ],

where any non-zero coefficient of f is attached to a monomial Y qa

for some
positive integer a. In the following lemma, we review how Fq-linear maps between
subspaces of Fqw can be expressed as q-linearized polynomials.

Lemma 1. Let V and W be Fq-linear subspaces of Fqw , and let T : V → W
be an Fq-linear map. Then, there exists a unique q-linearized polynomial fT (Y )
with deg fT ≤ qdim(V ), such that for any α ∈ V , fT (α) = T (α).

Proof. Let {α1, α2, . . . , αk} be a basis for V , and let A denote the Moore matrix
given by

⎡

⎢
⎢
⎢
⎣

α1 α2 · · · αk

αq
1 αq

2 · · · αq
k

...
... · · · ...

αqk−1

1 αqk−1

2 · · · αqk−1

k

⎤

⎥
⎥
⎥
⎦

.

Evaluation of a q-linearized polynomial is clearly Fq-linear, so for fT (α) = T (α)
to hold for any α, fT (Y ) must have coefficients f0, f1, . . . , fk−1 such that the
following matrix equation holds:

[
f0 f1 · · · fk−1

]
A =

[
T (α1) T (α2) · · · T (αk)

]
.

Since α1, α2, . . . , αk are linearly independent, A has a nonzero determinant by
[26, Lemma 1.3.3]. A is also a square matrix, so its inverse A−1 always exists.
Thus f0, f1, · · · , fk−1 is found by computing

[
T (α1) T (α2) · · · T (αk)

]
A−1. From

this computation it is also clear that fT (Y ) is unique. The proof is complete.

For FHE schemes with plaintext space P ∼= (Ftd)�, homomorphic evaluation
of component-wise t-linearized polynomials can be easily done using EvalAut.
Each monomial Y ti can be homomorphically computed with EvalAut(evk, ti, Y ),
without multiplications and therefore almost no depth.

– c′ ← EvalLinearMap(evk, fT ,m): For simplicity, we use m1 + m2 to denote
EvalAdd(evk,m1,m2) for FHE ciphertexts m1,m2 and a · m to mean the
product of a plaintext a and ciphertext m. Then, let fT (X) =

∑d−1
i=0 aiX

ti

and output c′ :=
∑d−1

i=0 ai · EvalAut(evk, pi,m) =
∑d−1

i=0 aimti .
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2.3 Reverse Multiplication Friendly Embeddings

Introduced by Cascudo et al. [7] and concurrently studied by Block et al. [2],
reverse multiplication friendly embeddings (RMFE) are methods of embedding
(Ft)k into Ftd such that component-wise multiplication in the vector space
(denoted with ∗) corresponds to multiplication over the field.

Definition 1. Let q be a prime power and Fq denote the finite field of q ele-
ments. For integers k,w ≥ 1, a (k,w)q-RMFE is a pair of Fq-linear maps, (φ, ψ),
where φ : (Fq)k → Fqw and ψ : Fqw → (Fq)k such that for all x,y ∈ (Fq)k,

x ∗ y = ψ(φ(x) · φ(y)).

There are two approaches to constructing RMFEs, polynomial interpolation,
and algebraic function fields. From these, others can be obtained by composing
these base constructions appropriately.

RMFEs from Polynomial Interpolation. The core idea is that a vector
x = (x1, ..., xk) ∈ (Fq)k can be encoded as a polynomial f ∈ Fq[X] via
interpolation, that is, we require that f(Pi) = xi for some fixed set of points
{Pi ∈ Fq}. Hence products of polynomials, when evaluated at the points {Pi},
yield component-wise products of the vectors corresponding to each polynomial.
The following theorem constructs an RMFE that can then be constructed based
on this principle. The caveat is the value of k is limited by the number of points
available in Fq.

Theorem 1 ([7, Lemma 4]). For a base finite field Fq and 1 ≤ k ≤ q + 1,
there exists a (k, 2k − 1)q-RMFE.

Proof. Let Fq[X]≤m denote the set of polynomials in Fq[X] whose degree is
at most m and define ∞m+1 as a formal symbol such that f(∞m+1) is the
coefficient of Xm for f ∈ Fq[X]≤m. Let P1, ..., Pk be pair-wise distinct elements
in Fq ∪ {∞k} and let α be a root of a monic irreducible polynomial F (X) of
degree 2k − 1. Then Fq2k−1 ∼= Fq(α) ∼= Fq[X]/(F (X)).

Polynomial interpolation yields the following Fq-vector space isomorphism
between Fq[X]≤k−1 and (Fq)k:

E1 : Fq[X]≤k−1 → (Fq)k; f �→ (f(P1), ..., f(Pk)).

The evaluation embedding into (Fq)k can be extended naturally to any set of
polynomials of a limited degree. In particular, for polynomials in Fq[X]≤2k−2,

E ′
1 : Fq[X]≤2k−2 → (Fq)k; f �→ (f(P ′

1), ..., f(P ′
k)),

where P ′
i := Pi if Pi ∈ Fq and P ′

i := ∞2k−1 if Pi = ∞k. Finally, we use the
following isomorphism to map polynomials to the extension field Fq2k−1 ,

E2 : Fq[X]≤2k−2 → Fq2k−1 ; f =
2k−2∑

i=0

fiX
i �→ f(α) =

2k−2∑

i=0

fiα
i.
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The (k, 2k − 1)q-RMFE is obtained by defining φ = E2 ◦ E−1
1 , where E2 is

restricted to the subset Fq[X]≤k−1, and ψ = E ′
1 ◦ E−1

2 . To see the correctness of
the procedure, let fx = E−1

1 (x), fy = E−1
1 (y) be the polynomial encoding of the

vectors x,y ∈ (Fq)k. E−1
2 (φ(x) · φ(y)) = fxfy, since there is no overflow on the

monomials Xi. Therefore,

ψ(φ(x) · φ(y)) = E ′
1(fxfy)

= (fxfy(P1), ..., fxfy(Pk))
= (fx(P1)fy(P1), ..., fx(Pk)fy(Pk))
= x ∗ y.

Algebraic Function Fields. A function field K/Fq is an algebraic extension
of the rational function field Fq(X), which contains all fractions of polynomials
in Fq[X]. Every function field K has an infinite set of “points” called places,
denoted by P and has a degree deg P . The number of places with a given degree
is finite and in particular, places P of deg P = 1 are called rational.

For functions f ∈ K and a place P , either f has a pole at P (i.e. (1/f)(P ) =
0), or f can be evaluated at P and f(P ) can be thought of as an element of
Fqdeg P . The elements of the function field K always have the same number of
zeroes and poles, up to multiplicity, called the order. For any two functions f , g
that do not have poles at P ,

1. λ(f(P )) = (λf)(P ), for every λ ∈ Fq;
2. f(P ) + g(P ) = (f + g)(P ) and
3. f(P ) · g(P ) = (f · g)(P ).

A divisor is a formal sum of places, G =
∑

cP P , with cP ∈ Z and only finitely
many cP �= 0. This set of places also is called the support of G and denoted with
supp(G). Just like places, a divisor G has a degree, deg G :=

∑
cP deg P ∈ Z.

For any function f ∈ K\{0}, there is a principal divisor associated to f , denoted
with (f). Roughly speaking, this principal divisor has the form (f) =

∑
aP P ,

where aP = o if f has a zero of order o at P , aP = −o if f has a pole of order o
at P and aP = 0 if P is neither a zero or pole of f .

The Riemann-Roch space associated with a divisor, G =
∑

cP P , is denoted
by L(G) = {0} ∪ {f ∈ K\{0} | (f) + G =

∑
aP P and aP ≥ 0, ∀P}. It is the set

of all functions in K that have poles and zeroes at the set of places prescribed by
G along with the zero function. To be more precise, every function f ∈ L(G) has
a zero of order at least |cP | at the places P if cP ≤ 0 and can have a pole of order
of at most cP at the places P with cP ≥ 0. For any other place Q �∈ supp(G),
f(Q) ∈ Fqdeg Q . This space is a vector space over Fq and its dimension �(G) is
not more than deg G + 1 [6, Lemma 2.51].

Another important fact is that given f, g ∈ L(G), the product f · g resides
in L(2G). For every function field K, there is a non-negative integer associated
with it called the genus, denoted with g(K) := maxG deg G − �(G) + 1 where G
runs over all divisors of K.
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From Polynomial Interpolation to Function Fields. To give more intuition
for the more abstract RMFEs from algebraic function fields, we sketch how
RMFEs from the rational function field Fq(Y ) parallel the RMFEs obtained
from polynomial interpolation. The points Pi ∈ Fq of polynomial interpolation
can be understood as univariate polynomials (Y −Pi), which are rational places
in Fq(Y ), and ∞ roughly corresponding to the place (1/Y ). More general places
in Fq(Y ) include the ideals Q = (f(Y )), where f are irreducible polynomials.
The degree of such a place Q is equal to the degree of the polynomial f(Y ).

Recall that in interpolation RMFEs, vectors were mapped to polynomials
in Fq[X]≤2k−2. In rational function field RMFEs, this corresponds to mapping
vectors to functions living in a particular subset of the Riemann-Roch space
L(G) of some divisor G, such that G does not have the places {(Y − Pi)} in its
support. To embed functions from L(G) into Fqw , we “evaluate” them at a fixed
place R = (f(Y )) whose degree is w. This evaluation corresponds to considering
the residues of our functions, modulo f(Y ).

RMFEs from Algebraic Function Fields. Here, we state the properties
of RMFEs that can be obtained from algebraic function fields. Proofs for the
following theorems and corollaries can be found in [7].

Theorem 2 ([7, Lemma 6]). Let K/Fq be an algebraic function field with
genus g and k distinct rational places P1, ..., Pk. Let G be a divisor of K such
that supp(G) ∩ {P1, ..., Pk} = ∅ and �(G) − �(G − ∑k

i=1 Pi) = k. If there exists
a place R with w = deg R > 2 deg G, then there exists a (k,w)q-RMFE.

In particular, the conditions of Theorem 2 are satisfied as long as there is a
place of sufficiently high degree.

Corollary 1 ([7, Corollary 1]). Let K/Fq be an algebraic function field of
genus g and suppose that there are k distinct rational places (P1, ..., Pk) and a
place of degree w ≥ 2k + 4g − 1. Then, there exists a (k,w)q-RMFE.

Finally, we state how RMFEs can be composed to yield more RMFEs.

Theorem 3 ([7, Lemma 5]). Suppose (φin, ψin) is a (kin, win)q-RMFE and
(φout, ψout) is a (kout, wout)qwin -RMFE. (φ, ψ) is a (kinkout, winwout)q-RMFE,
where

φ : (Fq)kinkout → Fqwinwout

⎛

⎜
⎜
⎜
⎝

x1, ..., xkin ,
xkin+1, ..., x2kin ,

...
. . .

...
xkin(kout−1)+1, ..., xkinkout

⎞

⎟
⎟
⎟
⎠

�→ φout

⎛

⎜
⎜
⎝

φin(x1, ..., xkin),
φin(xkin+1, ..., x2kin),

. . . ,
φin(xkin(kout−1)+1, ..., xkinkout)

⎞

⎟
⎟
⎠

and

ψ : Fqwinwout → (Fq)kinkout

α �→ ψout(α) = (u1, ..., ukout) ∈ (Fqwin )kout �→ (ψin(u1), ..., ψin(ukout)) ∈ (Fq)kinkout .
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3 Field Instruction Multiple Data (FIMD)

In this section, we present how RMFE and SIMD can be combined to encode and
work on more data in a single FHE ciphertext. Then, we describe an extension to
RMFE that removes the need to recode after each multiplication, at the expense
of more expensive recoding operations. Finally, we introduce some optimizations
tailored to composite RMFEs.

3.1 RMFE with FHE

The BGV and BFV FHE schemes offer the plaintext space P ∼= ∏�
i=1 Ftd . Typ-

ical FHE-based secure computation systems only use base field operations and
pack an Ft element in each slot. RMFE unlocks the full capacity of P by introduc-
ing a “new” dimension in P hidden within the Ftd algebra of each SIMD slot.
Homomorphic extension field operations such as addition, multiplication, and
linearized polynomials are exploited to work with encrypted vectors from (Fq)k

within each plaintext slot, where qw ≤ td. With RMFE, we use “extension field
instructions” to process data, yielding a field instruction multiple data (FIMD)
system.

Throughout this section, let (φ, ψ) be a (k,w)q-RMFE. We first describe the
core encoding and decoding functionality of FIMD.

– μ ∈ Ftd ← FIMD.Encode(x = (x1, ..., x�·k) ∈ (Fq)�·k): For i = 1, ..., �, let
xi = (x(i−1)k+1, ..., xi·k) ∈ (Fq)k.
1. Embed each xi into Fqw with φ to obtain x̂ = (φ(x1), ..., φ(x�)) ∈ (Fqw)�;
2. Encode x̂ into μ ∈ P with the SIMD isomorphism.

– m ∈ (Fq)�·k ← FIMD.Decode(μ ∈ P):
1. Decode μ to the SIMD plaintext vector m̂ = (μ1, ..., μ�) ∈ (Fqw)�;
2. Apply ψ to the components of m̂ separately to compute the final output

m = (ψ(μ1), ..., ψ(μ�)) ∈ (Fq)�·k.

The μ from FIMD.Encode is then encrypted with the FHE scheme into μ for
use in encrypted processing. Similarly, the input to FIMD.Decode comes from
decrypted FHE ciphertexts that contain RMFE-encoded vectors.

Arithmetic Operations. The main operations in FHE are homomorphic addi-
tion and multiplication. Addition is straightforward in FIMD but multiplication
requires a little more work to achieve. Because RMFE only supports one multipli-
cation after embedding, the resulting data cannot be used without first decoding
and re-encoding it. A re-encoding protocol was proposed by Cascudo et al. [7]
to refresh secret-shared RMFE-encoded field elements and we require a similar
operation with FHE. Crucially, the Fq-linear nature of φ and ψ means that they
can be composed to obtain a recode map, π := φ ◦ ψ.

Evaluating π on encrypted RMFE-encoded data is done by homomorphically
evaluating the q-linearized polynomial fπ from applying Lemma 1 to π. Let evk
denote the evaluation keys for the BGV/BFV FHE scheme and μ1, μ2 obtained
from FIMD.Encode, then the basic homomorphic FIMD operations are as follows.
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– c′ ← FIMD.Recode(evk, c): Output c′ = FHE.EvalLinearMap(evk, fπ, c).
– c+ ← FIMD.EvalAdd(evk, μ1, μ2): Output c+ = FHE.EvalAdd(evk, μ1, μ2).
– c× ← FIMD.EvalMul(evk, μ1, μ2):

1. Compute c = FHE.EvalMul(evk, μ1, μ2);
2. Output c× = FIMD.Recode(evk, c).

Moving Data within Encrypted RMFE-Encoded Vectors. With SIMD,
data in the various slots can be moved around using the automorphisms κ ∈ Z

∗
m.

Rotations of the components are achieved with EvalAut using the appropriate
automorphisms, κ, and shifts computed by first masking the irrelevant slots and
rotating the result. Similar operations can be done with RMFE-encoded vectors
and in fact, RMFE supports even more complex intra-vector manipulations.

This is possible due to the Fq-linearity of φ and ψ. Any Fq-linear map τ :
(Fq)k → (Fq)k can be applied on x of φ(x) by sandwiching it between φ and ψ,
as φ ◦ τ ◦ ψ. This generalizes the recode operation, which has the identity map
id between φ and ψ. In this way, arbitrary linear transformations on individual
RMFE components in FIMD can be folded into homomorphic multiplication and
thus done for free in many situations. Let f ′

τ be the polynomial from Lemma 1
for φ ◦ τ ◦ ψ.

– c×′ ← FIMD.EvalMul′(evk, τ,m1,m2):
1. Compute c = FHE.EvalMul(evk, μ1, μ2);
2. Output c× = FHE.EvalLinearMap(evk, f ′

τ , c).

Rotations and Shifts for FIMD-Encoded Vectors. With the complete
FIMD technique, where RMFE and SIMD are combined, we focus on how to com-
pute rotations and shifts on P, interpreted as the space of vectors (Fq)k·�. For any
plaintext x = (x1, ..., xk·�) ∈ (Fq)k·�, FIMD encodes it into x̂ = (φ(x1), ..., φ(x�)),
where xi = (x(i−1)k+1, ..., xi·k) for 1 ≤ i ≤ �. To achieve rotations or shifts on
the entire vector, we split the process into two steps.

First, we execute a set of RMFE-only data movement operations followed
by a set of SIMD-only data movement operations. If we only move by small
steps (<k), usually there would be one portion of the data that will move to
an adjacent SIMD-slot and another that stays in the same SIMD-slot. More
generally, each xi can be partitioned into two parts, one that moves by z SIMD-
slots and the other that moves by z + 1 SIMD-slots to the left or right, for some
z = 0, ..., � − 1. If any of z, z + 1 goes beyond � + 1, those components should be
wrapped around the other side of the vector for rotations and discarded for shifts.
This is accomplished by using the appropriate SIMD data movement operation,
FHE.EvalRot for the former and FHE.EvalShift for the latter.

For example, when rotating data one slot to the left, the first component of
xi, x(i−1)k+1 will be moved into last component of xi−1, whereas all other com-
ponents remain in xi but are moved 1 slot to the left, i.e. (x(i−1)k+2, ..., xi·k, y),
where y would come from xi+1. On the other hand, moving by k +1 slots to the
left means that x(i−1)k+1 will be moved to slot i − 2 and (x(i−1)k+2, ..., xi·k, y)
moved to slot i − 1.
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– c′ ← FIMD.EvalRot(evk, ρ, c): Let |ρ| = ρSIMDk + ρRMFE.
• If ρRMFE = 0, output c′ = FHE.EvalRot(evk, ρ, c).
• Otherwise, ρRMFE > 0. Let τ0 and τ1 be Fq-linear maps on (Fq)k with

τ0(z) = (zρRMFE+1, ..., zk, 0, ..., 0) and τ1(z) = (0, ..., 0, z1, ..., zρRMFE
) for z =

(z1, ..., zk).
1. Compute ciphertexts cτ0 = FHE.EvalLinearMap(evk, fτ0 , c) and cτ1 =

FHE.EvalLinearMap(evk, fτ1 , c);
2. Positive (negative) ρ mean rotation to the right (left). To move data

correctly, for i = 0, 1,
ρ > 0: compute c′

τi = FHE.EvalRot(evk, ρSIMD − i, cτi);
ρ < 0: compute c′

τi = FHE.EvalRot(evk,−ρSIMD − (1 − i), cτi).
3. Output c′ = FIMD.EvalAdd(evk, c′

τ0 , c
′
τ1).

– c′ ← FIMD.EvalShift(evk, ρ, c): Follow the steps of FIMD.EvalRot(evk, ρ, c),
replacing FHE.EvalRot with FHE.EvalShift.

3.2 r-fold RMFE

Among the possible plaintext spaces (Ftd)� available in the BGV/BFV FHE
schemes, the possible set of (d, �) can be very diverse. Many times, t is chosen
so that d = 1 and � is maximized. However, this requires large t because d =
1 ⇔ t | (m − 1), where m refers to the m-th cyclotomic polynomial Φm(X) in
P = Zt[X]/Φm(X).

In the case for small t = 2, 3, 5, 7, ..., we can choose m to minimize d but
it is not always possible. More specifically, most HE implementations support
cyclotomic polynomials of the form Φm(X) = Xm/2+1, where m = 2N for some
positive integer N . For such m, small primes tend to have very high d in the
range of m/4, ...,m/32, which using m = 32768 as an example, would translate
to d ∈ {512, 1024, 2048, 4096}. With such high d, using FHE.EvalLinearMap after
each multiplication would be prohibitively expensive and alternatives are needed.

Instead of just 1 multiplication before decoding, we generalize RMFE to an
embedding that allows r-fold multiplications before decoding is strictly neces-
sary. This means that products of up to 2r encoded vectors can be done before
ψ is applied by multiplying the vectors pair-wise recursively.

Definition 2. Let q be a prime power and Fq denote the finite field of q ele-
ments. For integers k,w, r ≥ 1, a (k,w, r)q-RMFE is a pair of Fq-linear maps,
(φ, ψ), where φ : (Fq)k → Fqw and ψ : Fqw → (Fq)k such that for any 2r vectors
x1, ...,x2r ∈ (Fq)k,

2r∗
i=1

xi = ψ

(
2r∏

i=1

φ(xi)

)

.

This allows us to effectively amortize the expensive recoding step over several
multiplications instead, although this reduces the packing capacity as we will
show. Besides that, in practice, linear map evaluations incur some noise increase
and reducing the number of recoding steps also reduces the noise overhead of
FIMD multiplications.
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With this new property, it is desirable to be able to add intermediate prod-
ucts of r-fold RMFE-encoded vectors, regardless of the number of multiplica-
tions these products have undergone. This way, we can easily perform degree-r
multivariate polynomial evaluations simultaneously on all components of r-fold
RMFE-encoded vectors. While it is not a strict requirement in Definition 2, we
will focus on constructions that support this. To that end, we need an additional
condition on algebraic function field RMFEs to ensure inter-operability between
encoded vectors that go through a different number of multiplications.

Definition 3. Let K/Fq be an algebraic function field. A divisor, G =
∑

aP P
in K, is called positive if aP ≥ 0 for all P .

For a positive divisor G, L(G) is the set of functions that may have poles of order
at most aP at the places P with aP �= 0 in G. This means that L(xG) ⊆ L(yG)
for any x ≤ y, since functions in L(xG) can only have poles of order less than
x · aP ≤ y · aP .

Theorem 4 (Extending Theorem 2). Let K/Fq be an algebraic function
field with genus g and k distinct rational places P1, ..., Pk. Let G be a positive
divisor of K such that supp(G)∩{P1, ..., Pk} = ∅ and �(G)−�(G−∑k

i=1 Pi) = k.
If there exists a place R with w = deg R > 2r deg G, then there exists a (k,w, r)q-
RMFE.

Proof. As before, we have the evaluation map from L(G) to the rational places,

E1 : L(G) → (Fq)k; f �→ (f(P1), ..., f(Pk)).

We choose a k-dimensional subspace W ⊂ L(G) such that E1 restricted to W is
an isomorphism between W and (Fq)k for encoding. Then, with f(R) denoting
the evaluation of any f ∈ K at R, the RMFE encode map is given by

φ : E1(W ) ∼= (Fq)k → Fqw ; (f(P1), ..., f(Pk)) �→ f(R).

With a positive divisor, all L(xG) ⊆ L(2rG) and so we focus on the largest
space, L(2rG). We define the following injective Fq-linear map (since deg R >
deg 2rG as well),

E2 : L(2rG) → Fqw ; f �→ f(R).

To obtain the RMFE decode map ψ, we first consider the map from the image
of E2 to the input space,

ψ′ : Im(E2) ⊆ Fqw → (Fq)k; f(R) �→ (f(P1), ..., f(Pk)).

Because E2 is injective, f ∈ L(2rG) is uniquely determined by f(R) and we
linearly extend ψ′ to all of Fqw to get ψ.

The correctness of the construction follows for the same reasons in the proof of
Theorem 2. With a positive divisor G, any RMFE-encoded vectors that under-
gone some number of multiplications would lie in L(xG) ⊆ L(2rG) for some
x ≤ 2r and thus can be added together in the “ambient” space L(2rG).
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Corollary 2 (Extending Corollary 1). Let K/Fq be an algebraic function
field of genus g and suppose that there are k distinct rational places (P1, ..., Pk)
and a place of degree w ≥ 2rk + 2r+1g − 2r + 1. Then, there exists a (k,w, r)q-
RMFE.

Proof. Like the proof of Corollary 1, we choose a divisor G of degree k + 2g − 1,
whose support is disjoint from (P1, ..., Pk). Now, to apply Theorem 4 we require
w = deg R > 2r deg G, and therefore can get a (k,w, r)q-RMFE as long as
w > 2r(k + 2g − 1).

FIMD with r-Fold RMFE. We tag ciphertexts with a RMFE level, augment-
ing a standard BGV/BFV ciphertext c into (c, η), where η denotes the number of
multiplications that have been done on c since the data was first RMFE-encoded.
This is to keep track of how many multiplications a ciphertext can tolerate with-
out recoding before being rendered useless by excessive multiplications.

Let (φ, ψ) be a (k,w, r)q-RMFE and we use rFIMD to denote the combi-
nation of r-fold RMFE with SIMD packing methods. First, we highlight the
modifications needed when encrypting and decrypting r-fold RMFE vectors.

– (c, 0) ← rFIMD.Encrypt(pk,x = (x1, ..., x�·k) ∈ (Ft)�·k):
1. Compute x̂ = FIMD.Encode(x = (x1, ..., x�·k)).
2. Encrypt x̂ and output (c = FHE.Encrypt(pk, x̂), 0).

– m ← rFIMD.Decrypt(sk, (c, η)):
1. If η > r, abort and output ⊥. Otherwise, continue to Step 2.
2. Decrypt the ciphertext to obtain μ = FHE.Decrypt(sk, c).
3. Decode μ and output m = FIMD.Decode(μ) ∈ (Ft)�·k.

Homomorphic operations remain mostly unchanged, especially for addition.
The only difference is that the RMFE level of output ciphertexts has to be
accounted for. As a side effect of shifts and rotations of RMFE-encoded data
being modified recodings, any data movement operation in rFIMD with ρ =
ρSIMDk + ρRMFE with ρRMFE �= 0 would reset the RMFE level to zero.

– (c+, η) ← rFIMD.EvalAdd(evk, (c1, η1), (c2, η2)): Set η = max(η1, η2) and out-
put (c+ = FIMD.EvalAdd(evk, c1, c2), η).

– (c×, η) ← rFIMD.EvalMul(evk, (c1, η1), (c2, η2)): Let η′ = max(η1, η2) + 1. We
distinguish between two cases, η′ = r and η′ < r.
1. If η′ = r, compute the recoded result c× = FIMD.EvalMul(evk, c1, c2) and

output (c×, 0).
2. Otherwise, η′ < r and output (c× = FHE.EvalMul(evk, c1, c2), η′).

– (c′, η′) ← rFIMD.EvalShift(evk, ρ, (c, η)): Let ρ = ρSIMDk + ρRMFE.
Return (c′ = FIMD.EvalShift(evk, ρ, c), η′), where η′ = 0 if ρRMFE �= 0 and
η′ = η otherwise.

– (c′, η) ← rFIMD.EvalRot(evk, ρ, (c, η)): Let ρ = ρSIMDk + ρRMFE.
Return (c′ = FIMD.EvalRot(evk, ρ, c), η′), where η′ = 0 if ρRMFE �= 0 and
η′ = η otherwise.
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3.3 Composite RMFE with FHE

Recall from Theorem 3 that composite RMFEs (kinkout, winwout)q are built
from two component RMFEs, an “inner” (kin, win)q-RMFE and “outer”
(kout, wout)qwin -RMFE with the maps (φin, ψin) and (φout, ψout) respectively. This
allows us to design a three-stage method for recoding that leverages the simpler
linear maps (φin, ψin) and (φout, ψout). However, it also presents complications
for extending the r-fold property to composite RMFEs, which we describe and
address at the end of the section by relaxing the recoding requirements for com-
posite RMFEs.

Exploiting the Intermediate Extension. The key difference between stan-
dard and composite RMFEs is the tower of field extensions of Fq underlying
composite RMFEs, Fq ⊆ E1 = Fqwin ⊆ E2 = Fqwinwout . Furthermore, their respec-
tive extension degrees [E1 : Fq] = win and [E2 : E1] = wout are smaller than
the direct extension [E2 : Fq] = winwout. This means that E1-linear maps on E2

and Fq-linear maps on E1 correspond to |E1|- and |Fq|-linearized polynomials of
lower degrees and thus easier to evaluate.

We propose a three-stage recode process for composite RMFEs, exploiting
the intermediate field E1. Let x = (x1, ...,xkout),y = (y1, ...,ykout) ∈ (Fq)kinkout be
vectors to be encoded, where zi = (z(i−1)kin+1, ..., zikin) ∈ (Fq)kin for z ∈ {x,y}.
Denoting with α ∈ E2 the result of φ(x) · φ(y), we perform recoding in the
following manner,

1. Compute ψout(α) = (φin(x1) · φin(y1), ..., φin(xkout) · φin(ykout)) ∈ (E1)kout .
2. Apply the recode map πin = φin ◦ ψin to each component of ψout(α), recoding

the intermediate field elements from the “inner” RMFE.
(
πin

(
φin(xi) · φin(yi)

))kout

i=1
= (φin(x1 ∗ y1), ..., φin(xkout ∗ ykout)) ∈ (E1)kout

3. Encode the resulting vector (φin(x1 ∗ y1), ..., φin(xkout ∗ ykout)) with φout, get-
ting α′ = φout((φin(x1 ∗ y1), ..., φin(xkout ∗ ykout))) ∈ E2.

Three-Stage Recode for FIMD. As with standard recode, we evaluate linear
maps in each stage. However, Stages 1 and 3 work over an E1-vector space while
Stage 2 work over an Fq-vector space. Stages 1 and 3 correspond to applying
the “outer” RMFE decoding and encoding maps, ψout, φout respectively. These
would correspond to evaluating two qwin -linearized polynomials, one per map,
following Lemma 1.

Let φ′
in and ψ′

in denote extensions of φin and ψin to Fq-linear maps over (E1)kout

that perform component-wise encoding and decoding of the E1 elements. In the
second stage, notice that the map

π′
in : (E1)kout → (E1)kout

(α1, . . . , αkout) �→ φ′
in (ψ′

in ((α1, . . . , αkout)))
= (φin(ψin(α1)), ..., φin(ψin(αkout)))
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is Fq-linear since (E1)kout is the product of kout copies of the Fq-vector space E1

and π is the product of kout copies of πin. Thus, we can evaluate one q-linearized
polynomial to achieve Stage 2.

In fact, as with the recode operation with standard RMFEs, we can view π′
in

as a recode operation over the entire input vector space F
kinkout
q . Then, we can

similarly enhance the three-stage recode process to also evaluate arbitrary linear
transformations τ over elements in F

kinkout
q .

π′
in,τ : (E1)kout → (E1)kout

(α1, . . . , αkout) �→ φ′
in (τ (ψ′

in ((α1, . . . , αkout))))

With this, we get an alternate FIMD multiplication algorithm for composite
RMFEs. Similar to FIMD.EvalMul′ in Sect. 3.1, we can evaluate arbitrary linear
transformations τ during FIMD multiplication. This is achieved by replacing fπ′

in

with the appropriate linearized polynomial for π′
in,τ in Stage 2 of FIMD.Recode3S.

– c′ ← FIMD.Recode3S(evk, c): Let fψout , fπ′
in
, and fφout denote the linearized

polynomials required in the three stage recoding process.
1. Compute c(1) = FHE.EvalLinearMap(evk, fψout , c).
2. Compute c(2) = FHE.EvalLinearMap(evk, fπ′

in
, c(1)).

3. Output c′ = FHE.EvalLinearMap(evk, fφout , c
(2)).

– c× ← FIMD.EvalMulc(evk, c1, c2):
1. Compute c = FHE.EvalMul(evk, c1, c2).
2. Output c× = FIMD.Recode3S(evk, c).

As with standard RMFEs, r-fold RMFEs can be composed just like the
original RMFE.

Theorem 5 (Composite r-fold RMFE). Let (φin, ψin) be a (kin, win, r)q-
RMFE and (φout, ψout) be a (kout, wout, r)qwin -RMFE. Then, their composition in
the manner of Theorem 3, denoted with (φ, ψ), is a (kinkout, winwout, r)q-RMFE.

The proof of this is exactly the same as (k,w)q-RMFE composition, since
the composition of Fq-linear maps are Fq-linear and field elements decode to
component-wise products of their respective encoded input vectors after each
decode step. If both (φin, ψin) and (φout, ψout) allow mixing “intermediate” prod-
ucts, then the composed r-fold RMFE (φ, ψ) will also have this property.

Relaxing the r-fold Property for Composite RMFEs. Recode can be
delayed up until 2r encoded vectors are multiplied for any r-fold RMFEs. How-
ever, r-fold RMFEs from Theorem 5 is less space-efficient than r-fold RMFEs
derived from Theorem 4. This is due to the fact that r-fold RMFEs have
w > 2r ·k and so a composite r-fold RMFE from Theorem 5 would typically have
winwout > (22r) ·kinkout per Corollary 2. With FHE, winwout is generally a depen-
dent variable – t and m are the main parameters – rendering r-fold composite
RMFEs almost unusable.
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To remedy this situation, we relax the r-fold property such that for composite
r-fold RMFEs, one can perform a less expensive “outer” recode after r′-fold
multiplications for some r′ | r and only do a complete recode process after r-fold
multiplications.

Theorem 6 (Composite r-fold RMFE, Relaxed Recode). Let (φin, ψin)
be a (kin, win, r)q-RMFE and (φout, ψout) be a (kout, wout, r

′)qwin -RMFE, for some
r′ | r. Then, their composition following Theorem 3, denoted with (φ, ψ), is a
(kinkout, winwout, r)q-RMFE, provided πout = φout ◦ ψout is evaluated on encoded
elements after every r′-fold multiplications.

Proof. Let φ′
in and ψ′

in denote extensions of the “inner” RMFE encode and decode
maps to act component-wise on vectors in (E1)kout . Suppose we have 2r inputs,
xi = (x1,i, ..., xkinkout,i) for 1 ≤ i ≤ 2r and let their respective encodings be
αi = φout(φ′

in(xi)). Any intermediate result after r′-fold multiplications β would
need to be refreshed with β′ = πout(β). Otherwise, further multiplications would
fail to correctly decode with ψout and thus similarly fail to decode with ψ. Finally,
observe that the map ψin tolerates up to 2r ≥ 2r′

multiplications. Therefore, any
intermediate product γ would decode correctly with ψ′

in(ψout(γ)) as long as they
have been “outer recoded” after every r′-fold multiplications.

Thus, the “outer” RMFE is no longer restricted to be r-fold and can even
be a standard (kout, wout)q-RMFE if we are willing to perform an “outer” recode
after each multiplication. In that case, the overhead between composite and
standard r-fold RMFEs would be almost identical. Assuming we are using a
composite r-fold RMFE with components (φin, ψin) and (φout, ψout) of (kin, win, r)q

and (kout, wout, r
′)q-RMFEs respectively, we have

– (c×, ρ) ← rFIMD.EvalMulc(evk, (c1, ρ1), (c2, ρ2)): Let ρ′ = max(ρ1, ρ2)+1 and
πout = φout ◦ ψout.
1. Compute c = FHE.EvalMul(evk, c1, c2).
2. Then, we consider three cases based on ρ′.

(a) If ρ′ = r, output (c× = FIMD.Recode3S(evk, c), 0).
(b) Else, if ρ′ | r′, output (c× = FHE.EvalLinearMap(evk, πout, c), ρ′).
(c) Otherwise, output (c, ρ′).

4 RMFE Parameter Selection with FHE

In this section, we describe how parameters should be chosen for RMFE with
FHE. As introduced in Sect. 2.1, for chosen t and m, the FHE plaintext space is
(Ftd)�, where d · � = φ(m). Therefore, we are limited to (k,w, r)q-RMFEs where
qw ≤ td and q is some power of t.

For the various forms of RMFE discussed in previous sections, the main
parameter is the function field K used in Theorems 2 and 4. First, we introduce
the Hasse-Weil bound, which gives an upper bound on the number of rational
places of a function field. For every function field K, there is a unique non-
singular projective curve C associated with it. It was shown that there is a
one-to-one correspondence between the points on the curve C and the rational
places of K.
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Table 1. Possible (k, deg R, r)q-RMFE parameters

Function field Base field, Fq Genus, g Max. k, η deg G Min. deg R, r-fold

Rational (P) Ft 0 = t + 1 k − 1 2r(k − 1) + 1

Elliptic (E) Ft 1 ≤ t + 1 + 2
√

t k + 1 2r(k + 1) + 1

Hermitian (H) Ft2
t(t−1)

2
= t3 + 1 k + t2 − t − 1 2r(deg G) + 1

Lemma 2 (Hasse-Weil Bound, [38, Theorem 5.2.3]). Let K/Fq be an alge-
braic function field with genus g. The number of rational places of K, η, satisfies

|η − (q + 1)| ≤ 2g
√

q.

A collection of curves that satisfy the Hasse-Weil bound can be found at [23].

Packing Density. The packing density of an RMFE instantiation can be defined
as w/k. Cascudo et al. showed that there existed families of RMFEs with good
asymptotic packing density.

Theorem 7 ([7, Theorem 5]). There exists a family of (k,w)t-RMFE with
k → ∞ and w = O(k). More concretely,

w

k
→ 2 +

4
A(t)

,

where A(t) is Ihara’s constant of Ft.

We extend the definition of packing density to FIMD by computing d/k and
not w/k because the FHE plaintext space is fixed to extension degree d with the
choice of t and m. A smaller number means that the FIMD instantiation can
effectively use a larger portion of the underlying field.

Function Fields for Efficient RMFE for FHE. To make good use of the
finite extension fields available from SIMD, we consider the following function
fields that yield RMFEs with w/k close to 2. Details of the possible RMFEs
enabled by these function fields are given in Table 1. The minimum degree of the
place R is derived from Corollaries 1 and 2.

– Rational Function Field, Ft(X): Corresponding to choosing the projective
line as the underlying curve.

– “Elliptic” Function Fields, Ft[X,Y ]/C: C is an appropriate elliptic curve that
approaches the Hasse-Weil bound.

– Hermitian Function Field, Ft2 [X,Y ]/C: C = Y t +Y −Xt+1 is the Hermitian
curve, and the function field satisfies the Hasse-Weil bound exactly.

When using Hermitian curves, note that the FHE slot degree d is effectively
halved as the base field of the Hermitian function field is Fq = Ft2 .

Existence of Higher Degree Place R. Given a function field K/Fq, the choice
of w is dependent on whether K even admits a place R with deg R = w. The
following lemma gives conditions for the existence of places of a given degree.
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Lemma 3 ([38, Corollary 5.2.10 (b), (c)]). Let K/Fq be an algebraic func-
tion field with genus g.

1. If g = 0, then there exists a place of degree w, for all w ≥ 1.
2. If g ≥ 1, it is sufficient that w satisfies

2g + 1 ≤ q
w−1

2 (q
1
2 − 1),

for there to exist a place R of degree w.

The function fields from Table 1 have relatively small values of g, ensuring us
a wide selection of w. More explicitly, let w0 be the value derived from Lemma
3 such that for all w ≥ w0, Lemma 3 guarantees the existence of a place of
degree w for a given function field. Table 2 records the values of w0 for each of
the function fields from Table 1.

Table 2. Lower bound on degree of places guaranteed to exist by Lemma 3

Function field w0

Rational (P) 1

Elliptic (E) 2(logt 3 − logt(t
1/2 − 1)) + 1

Hermitian (H) logt

(
t + 1

t−1

)
+ 1

Composite RMFEs for FHE. For composite RMFEs, r-fold or otherwise,
there are more considerations for the choices of component RMFEs. If we do
not need the r-fold property, we could choose component RMFEs, (kin, win) and
(kout, wout) such that the complexity of each stage of FIMD.Recode3S is about
the same. This entails balancing win ·kout with wout as these determine the degree
of the linear maps computed in Stage 2 and Stages 1 and 3 respectively.

For composite r-fold RMFEs, the main choices are in the sizes of r′ and kout.
Larger r′ means fewer recoding operations but reduces the potential packing
efficiency, while kout determines how expensive the “outer” recoding operation
would be. An option is to have cheap “outer” recodes and a more expensive three-
stage recode since the latter would be amortized over r-fold multiplications.

5 Experiment Results

In this section, we discuss the results of our experiments on the performance
of standard and r-fold RMFEs, as well as the three-stage recode optimization
for composite (r-fold) RMFEs. The experiment platform is an Intel R© Xeon R©

Platinum 8170 with maximum turbo frequency of 3.7 GHz and 192 GB RAM.
We do not use multi-threading for the experiments in this section.
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Table 3. FHE plaintext spaces for various primes with Φ8192(X)

Plaintext modulus, t # SIMD slots, � Extension degree, d

3 2 2048

7 4 1024

17 8 512

31 16 256

Throughout this section, we use Φ8192(X) = X4096 + 1 and various plain-
text modulus t. Magma was used to implement the RMFEs and compute the
necessary data to use with HElib. The capacity parameter in HElib is set to
99 and yields a maximum ciphertext bit-width of <159. Estimations with the
lwe-estimator of Albrecht et al. [1] shows the FHE instance achieving at
least 80-bit security. Table 3 shows the decomposition of the plaintext space
for m = 8192 with respect to various primes. We split our experiments into two
main categories: FIMD with basic and composite (r-fold) RMFE.

rFIMD Implementation Details. The main component of rFIMD is the
recode operation, which consists of evaluating one or more linear maps on FHE
ciphertexts to refresh the RMFE encoding encrypted within them. To that end,
we generated the key-switching matrices for all necessary automorphisms in the
recode operation, which is at most, w matrices for a (k,w, r)q-RMFE. This allows
us to fully exploit the hoisting technique of Halevi and Shoup [28]. We evaluate
each linear map in the recode operation by first hoisting the input ciphertext and
then computing the required automorphisms one by one to minimize the number
of ciphertexts in memory. Besides that, due to the large noise increases from the
recode computation, we apply modulus switching to rescale the resulting cipher-
text. This reduces the ciphertext modulus based on the current estimated noise
levels and improves the performance of multiplications down the line.

5.1 Experimental Results for Basic (r)FIMD

A list of the parameters used for basic RMFEs is shown in Table 4. These param-
eters are chosen by maximizing k for each function field and they also support
r-fold variants for small r ∈ {1, 2, 4}. Note that Hermitian function fields were
not considered for t = 17, 31, as deg G would exceed d. We also had to reduce k
for t = 31 with higher r values for the same reason that deg G would exceed d. We
denote an RMFE parameter set by t-curve type, where curve type ∈ {P, E, H}
indicates the rational (P for projective line), elliptic and Hermitian function
fields respectively. For example, 17-P represents the case where t = 17 and the
RMFE is instantiated with the rational function field.

The first set of experiments compared the performance and noise impact
of (r)FIMD multiplication to FHE multiplication. We prepared one (r)FIMD
ciphertext and one FHE ciphertext, which was repeatedly squared until their
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Table 4. Basic RMFE parameters

t d K Parameter (P) set Curve k d/k w

3 2048 Projective 3-P – 4 512 7

Elliptic 3-E y2 − x3 − 2x − 1 7 293 17

Hermitian 3-H y3 + y − x4 28 73.1 67

7 1024 Projective 7-P – 8 128 15

Elliptic 7-E y2 − x3 − 3 13 78.8 29

Hermitian 7-H y7 + y − x8 214 4.79 511

17 512 Projective 17-P – 18 28.4 35

Elliptic 17-E y2 − x3 − 3x 26 19.7 55

31 256 Projective 31-P – 16.0 8.0 63

32.0 16.0 31

Elliptic 31-E y2 − x3 − 3 14 18.3 89

43 5.95 31

capacities were exhausted. The time taken to complete this process as well as
the overall number of multiplications that were done were recorded. For better
comparison against (r)FIMD multiplications, we took as many timings from the
last few FHE multiplications onwards, so that the same number of multiplica-
tions are compared. This is because HElib implements the BGV scheme whose
multiplications become cheaper due to the use of modulus switching after each
multiplication for noise control. The complete set of basic (r)FIMD experiments
are described in Table 11, furnished in Appendix A. As we observe a similar trend
across the different parameter sets, a subcollection will be used to facilitate the
discussion about the experiment results in Table 5.

In general, (r)FIMD multiplications take much longer to complete than FHE
multiplications. We observe a trend of better amortized (r)FIMD multiplication
speedup as r increases. The speedup is primarily attributed to the decrease in
(r)FIMD multiplication time as the number of recodes performed is reduced.
Sometimes, recoding is not necessary as no more operations can be executed
after the maximum FIMD multiplications are achieved. Table 5 show that by
suppressing the recodes for P Sets 3-H and 7-H, we are able to obtain an amor-
tized speedup of more than 20× and 11× respectively. This shows that recode
is indeed an expensive operation that should be used sparingly.

We also see that higher k values are needed to see benefits with (r)FIMD.
These k values are dependent on the type of the function field, with RMFEs
from Hermitian function fields yielding the highest k, for any fixed r. Hence,
it is beneficial to perform fewer recodes while maximizing the value of k for a
basic (r)FIMD instantiation. Note that the number of multiplications supported
for any ciphertext varies slightly, due to variance in the noise generated in fresh
ciphertexts.
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Table 5. Selected experiments comparing (r)FIMD and FHE multiplication perfor-
mance for basic RMFEs

P Set k r Max #
rFIMD Mult

Max #
FHE Mult

rFIMD
Mult (sec)

FHE
Mult (sec)

Speedup v.s.
k FHE Mult

3-H 28 1 3 5 3.59 0.0245 0.191×
2 4 5 2.31 0.0355 0.431×
4 4 5 0.900 0.0400 1.24×
4� 4 5 0.0541 0.0389 20.1×

7-P 8 1 3 5 3.74 0.0242 0.0516×
2 4 5 2.40 0.0359 0.120×
4 4 5 1.16 0.0378 0.261×
4� 4 5 0.0431 0.0404 11.0×

7-H 214 1 3 5 1.83 0.0238 2.79×
17-P 18 1 2 5 1.16 0.0245 0.380×

2 4 5 1.12 0.0348 0.558×
4 4 5 0.428 0.0381 1.61×

31-E 43 1 2 4 0.578 0.0236 1.76×
43 2 3 4 0.382 0.0251 2.82×
14 4� 3 4 0.0258 0.0263 14.3×

�No recodes were performed

Furthermore, our implementation of homomorphic linear map evaluation
computes one monomial at a time and consumes it immediately; leaving 0.5k×
fewer ciphertexts (during peak operation) in memory compared to FHE. This
can be adjusted to trade off improved FIMD multiplication speeds by comput-
ing several monomials at once using multiple cores. We observed that the recode
operation roughly consumes the noise budget of one multiplication, implying
that the standard RMFEs defined in Sect. 2.3 would yield about 1/2 the num-
ber of FHE multiplications. Overall, r-fold RMFEs have an important role in
balancing FIMD multiplication performance and retaining a sizable proportion
of multiplications for any given capacity.

5.2 Experimental Results for Composite RMFE

As Table 3 shows, it is very difficult to work with small primes as the extension
degrees of their plaintext slot algebra are exceedingly high (>1000). Therefore,
we investigated the effectiveness of composite RMFEs for FIMD in such cases.
For our choice of m = 8192, it would not be meaningful to use composite RMFEs
for t = 17, 31 and we focus on t = 3, 7 in this section. Due to the high degree, it is
very expensive to generate the recode map π and so we focus on the three-stage
recode process described in Sect. 3.3.
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Just like the previous section, we consider the packing density of a composite
RMFE instantiation with d/k, where k = kin · kout. The degree d′ = [E1 : Fq]
is chosen as the next largest power-of-two from win. For larger r-fold values, we
can adjust the intermediate degree accordingly. We identify a composite RMFE
parameter set by a prefix C, e.g. C7-E, and present the parameters used in the
experiments to follow in Table 6.

Table 6. Composite RMFE parameters

t d K P set Curve (ktotal, d/ktotal)

3 2048 Projective C3-P – (8, 256), (16, 128), (32, 64), (64, 32),
(128, 16), (256, 8), (512, 4)

Elliptic C3-E y2 − x3 − 2x − 1 (24, 85.3), (48, 42.7), (64, 32), (96, 21.3),
(128, 16), (192, 10.7), (384, 5.33)

Hermitian C3-H y3 + y − x4 (24, 85.3), (44, 46.5), (48, 42.7), (88, 23.2),
(96, 21.3), (108, 19.0), (276, 11.6), (216, 216)

7 1024 Projective C7-P – (32, 32), (64, 16), (128, 8), (256, 4)

Elliptic C7-E y2 − x3 − 3 (26, 39.4), (48, 21.3), (52, 19.7),
(96, 10.7), (104, 9.85), (208, 4.92)

Hermitian C7-H y7 + y − x8 (64, 16)

In this second set of experiments, we compared the performance and noise
impact of FIMD multiplication with composite RMFEs to FHE multiplication.
Similar to the previous experiment, we repeatedly squared FIMD and FHE
ciphertext until their capacities were exhausted and recorded the time taken
as well as how many squarings could be done.

As illustrated in Table 12 in Appendix A, composite RMFEs are more expen-
sive than basic RMFE and standard FHE. Composite RMFEs, however, offer
a greater amortized speedup than basic RMFEs over standard FHE multiplica-
tions due to the increase in packing capacity (i.e. lower d/ktotal). We make a few
observations on some of the trends in the results, presenting them with tables
featuring appropriate subcollections of Table 12 below.

Our first observation is that there is a slight advantage in choosing an inter-
mediate field such that its extension degree d′ = [E1 : Fq] > [E2 : E1]. Consider-
ing the results presented in Table 7, we see that a larger d′ value, over the same
ktotal, resulted in more than 10% savings in (r)FIMD multiplication time. This
is supported by the fact that the 3-stage recode process requires evaluating two
E1-linear maps in Steps 1 and 3 of FIMD.Recode3S and only one Fq-linear map
in Step 2. Using larger E1 reduces the computation time in Steps 1 and 3 while
increasing the computation time in Step 2 and we expect that a ratio close to
2 : 1 for [E1 : Fq] : [E2 : E1] would be best for three-stage recode performance in
our implementation.
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Table 7. Effect of intermediate field size on composite RMFEs

P set ktotal (kin, rin)q (kout, rout)qd′ rFIMD
Mult (sec)

Speedup v.s.
FHE Mult

C7-P 64 (4, 2)7 (16, 2)716 0.4663130 3.396230

(8, 2)7 (8, 2)732 0.4076150 3.734270

We consider the effect of fixing either rin and rout, while fixing d′, on composite
RMFEs. A subcollection of the experiments where we fixed rout and d′, while
varying rin, that supports our observation can be found in Table 8. We observe
that similar to basic RMFEs, (r)FIMD multiplication timings generally decrease
with larger rin. In our implementation, after each (r)FIMD multiplication, the
ciphertext capacity drops by similar amounts regardless of recoding type (outer
or full). With larger rin, some full recodes are replaced by outer recodes, thereby
reducing the time taken. However, due to the smaller ktotal that accompanies
this increase, overall amortized speedup against FHE multiplication actually
decreased.

Table 8. Effect of rin for Composite RMFEs, Keeping rout and d′ fixed

P set (kin, rin)q (kout, rout)qd′ ktotal Max
rFIMD Mult

rFIMD
Mult (sec)

Speedup v.s.
ktotal FHE Mult

C3-E (2, 2)3 (64, 1)316 128 2 1.4284200 1.138740

(6, 1)3 (64, 1)316 384 2 2.4344100 1.954400

C3-H (3, 2)3 (16, 1)364 48 2 0.4838210 1.189630

(11, 1)3 (16, 1)364 176 2 1.1126300 1.891190

(11, 2)3 (8, 1)3128 88 2 0.4557780 2.271160

(27, 1)3 (8, 1)3128 216 2 1.0570600 2.641760

On the other hand, Table 9 features a subcollection of experiments fixing rin
and d′ while varying rout. We generally get a decrease in (r)FIMD multiplication
times as rout increases. This is consistent with earlier trends seen in basic RMFEs
and composite RMFEs with fixed rout.

Looking at the parameter sets 7-H and C7-P, we also conclude that three-
stage recode is more efficient than direct recode for composite RMFEs. Although
we could not compute the direct recode map for C7-P, we approximate its per-
formance by extending from 7-H in Table 10. The theoretical wtotal for C7-P
is 16 · 63 = 1008, which roughly corresponds to the number of monomials in
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Table 9. Effect of rout for Composite RMFEs, Keeping rin and d′ fixed

P set (kin, rin)q (kout, rout)qd′ Max
rFIMD Mult

rFIMD
Mult (sec)

Speedup v.s.
FHE Mult

C3-P (4, 3)3 (16, 2)332 3 0.5992640 2.602520

(4, 3)3 (32, 1)332 2 0.2796210 11.709300

C3-E (2, 2)3 (32, 2)316 3 0.8984420 1.212720

(2, 2)3 (64, 1)316 2 1.4284200 1.138740

(6, 1)3 (32, 2)316 2 1.3726500 2.065650

(6, 1)3 (64, 1)316 2 2.4344100 1.954400

C3-H (3, 1)3 (16, 2)332 2 0.7272080 0.935283

(3, 1)3 (32, 1)332 2 1.2001000 1.107840

(11, 1)3 (8, 2)364 2 0.6007660 1.847700

(11, 1)3 (16, 1)364 2 1.1126300 1.891190

(27, 1)3 (4, 2)3128 2 0.5804140 2.261520

(27, 1)3 (8, 1)3128 2 1.0570600 2.641760

C7-P (8, 1)7 (16, 2)716 1 0.5346350 3.126460

(8, 1)7 (32, 1)716 1 0.7542980 4.484790

Table 10. Comparing Three-Stage Recode and Direct Recode

P set k w r Max
rFIMD Mult

rFIMD
Mult (sec)

1 rFIMD
Mult (sec)

7-H 214 511 1 3 1.83 0.610

C7-P 8 · 32 = 256 16 · 63 = 1008 (1, 1) 1 0.754 0.754

its direct recode map. We extrapolate the FIMD multiplication timing for C7-
P with direct recode by adjusting the multiplication time for 7-H by a factor
of 1008/511 ≈ 1.97 as w = 511 for 7-H. 7-H took 1.83 s for 3 multiplications
which give an average of 0.610 s per multiplication. One multiplication in C7-P
took an average of 0.754 s which is almost twice as fast as the adjusted time of
0.610 · 1.97 ≈ 1.20 s.

6 Conclusion and Future Work

In this work, we present a method that allows small primes to be used with
the BGV and BFV FHE schemes without compromising on the amount of data
that can be packed into a ciphertext. Specifically, we adapted reverse multi-
plication friendly embedding (RMFE) to FHE. To that end, we introduced an
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FHE-specific technique to compute a linear transformation on encoded vectors
for free during the recode process. Additionally, we proposed two extensions
to RMFE targeting FHE plaintext spaces with high extension degree fields,
namely r-fold RMFE and a three-stage recode process for composite RMFE.
r-fold RMFE supports correct decoding of products of up to 2r encoded vectors
at the expense of requiring a higher field degree w for the embedding, capital-
izing on the fact that the fixed d of FHE is often too high for small primes to
fully utilize for standard RMFEs. Composite RMFEs, on the other hand, let us
“split” a large extension field into a tower of smaller fields. This tower of fields is
exploited in a three-stage recode, where each stage goes between pairs of fields
that are smaller extensions and thereby use operations of lower complexity.

Our experiments show that FIMD multiplication is noisier than FHE multi-
plications, typically using the capacity of two FHE multiplications. On the other
hand, FIMD multiplications have a lower amortized time and need only two
ciphertexts to multiply more data. We also find that composite RMFEs, while
applicable to high-degree (>1000) extension fields, are difficult to use in practice.
Generating the direct recode map is very time-consuming but the three-stage
recode process requires as much capacity as almost 3 FHE multiplications. That
said, we approximated the performance of direct recode and found that three-
stage recode does improve multiplication times, but significantly increased noise
consumption. A middle ground needs to be found for using composite RMFEs,
which would entail using “inner” and “outer” RMFEs with some amount of r
and r′-fold respectively.

This paper represents the beginning of applying RMFE to FHE, and much
work remains to be done. A first direction would be adapting the methods of
[13] to FIMD and potentially improve downstream applications of FHE. Another
important task is to adapt RMFE for Galois rings, which was explored by Cramer
et al. [17] for MPC, to FHE. Crucially, the bootstrapping techniques of Gentry
et al. [25], Halevi and Shoup [27] and Chen and Han [9] for BGV and BFV
demand plaintext algebras that are Galois rings. Finally, developing RMFEs from
other classes of algebraic function fields is necessary to better understand how
best to perform homomorphic computation with high-degree extension fields.
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A Complete Experiment Results

A.1 Basic RMFE

Table 11. Comparison of FIMD and FHE multiplication performance for basic RMFEs

P Set k r Max #

rFIMD Mult

Max #

FHE Mult

rFIMD
Mult (sec)

FHE
Mult (sec)

Speedup v.s.

k FHE Mult

3-P 4 1 3 6 7.84 0.0170 0.00868×
2 4 5 4.54 0.0337 0.0297×
4 4 5 1.75 0.0369 0.0845×
4� 4 5 0.0475 0.0370 3.12×

3-E 7 1 3 6 7.16 0.0180 0.0176×
2 4 6 4.58 0.0276 0.0421×
4 4 5 1.70 0.0478 0.197×
4� 4 5 0.0469 0.0373 5.57×

3-H 28 1 3 5 3.59 0.0245 0.191×
2 4 5 2.31 0.0355 0.431×
4 4 5 0.900 0.0400 1.24×
4� 4 5 0.0541 0.0389 20.1×

7-P 8 1 3 5 3.74 0.0242 0.0516×
2 4 5 2.40 0.0359 0.120×
4 4 5 1.16 0.0378 0.261×
4� 4 5 0.0431 0.0404 11.0×

7-E 13 1 3 5 3.71 0.0244 0.0853×
2 4 5 2.31 0.0359 0.202×
4 4 5 0.931 0.0384 0.536×
4� 4 5 0.0478 0.0404 20.1×

7-H 214 1 3 5 1.83 0.0238 2.79×
17-P 18 1 2 5 1.16 0.0245 0.380×

2 4 5 1.12 0.0348 0.558×
4 4 5 0.428 0.0381 1.61×

17-E 26 1 2 5 1.16 0.0252 0.565×
2 4 5 0.961 0.0434 1.17×
4 4 5 0.421 0.0389 2.40×

31-P 32 1 2 4 0.579 0.0231 1.28×
32 2 3 4 0.384 0.0259 2.16×
16 4 3 4 0.0262 0.0254 15.5×

31-E 43 1 2 4 0.578 0.0236 1.76×
43 2 3 4 0.382 0.0251 2.82×
14 4 3 4 0.0258 0.0263 14.3×

�No recodes were performed
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A.2 Composite RMFE

Table 12. Comparison of FIMD and FHE multiplication performance for composite
RMFEs, with the three-stage recode process of Sect. 3.3

P Set (kin, rin)q (kout, rout)qd′ Max
rFIMD Mult

Max
FHE Mult

rFIMD
Mult (sec)

FHE
Mult (sec)

Speedup v.s.
FHE Mult

C3-P (2, 2, 3)3 (28, 3, 55)38 3 6 0.7074590 0.0174873 1.384240

(4, 1, 7)3 (64, 2, 127)38 2 5 1.6718600 0.0129312 1.980060

(4, 1, 7)3 (128, 1, 255)38 1 5 1.7500500 0.0124286 3.636160

(4, 2, 7)3 (64, 1, 127)316 2 5 1.1955500 0.0126123 2.700630

(4, 3, 7)3 (16, 2, 31)332 3 5 0.1890470 0.0350566 11.86810

(4, 3, 7)3 (32, 1, 63)332 2 5 0.2501270 0.0248627 12.72320

(4, 4, 7)3 (8, 2, 15)364 3 5 0.0966742 0.0340547 11.272400

(4, 4, 7)3 (16, 1, 31)364 2 5 0.1409130 0.0233469 10.603700

(4, 6, 7)3 (2, 2, 3)3256 4 5 0.0882771 0.0365346 3.310900

(4, 6, 7)3 (4, 1, 7)3256 3 6 0.1059930 0.0175280 2.645920

C3-E (2, 2, 7)3 (32, 2, 63)316 3 6 0.8984420 0.0170243 1.212720

(2, 2, 7)3 (64, 1, 127)316 2 5 1.4284200 0.0127079 1.138740

(6, 1, 15)3 (32, 2, 63)316 2 5 1.3726500 0.0147678 2.065650

(6, 1, 15)3 (64, 1, 127)316 2 6 2.4344100 0.0123901 1.954400

(6, 2, 15)3 (16, 2, 31)332 3 5 0.8059610 0.0338111 4.027320

(6, 2, 15)3 (32, 1, 63)332 2 5 1.0435400 0.0129588 2.384290

(6, 3, 15)3 (8, 2, 15)364 3 6 0.5079130 0.0164912 1.558490

(6, 3, 15)3 (16, 1, 31)364 2 6 0.1632760 0.0168873 9.929100

(6, 4, 15)3 (4, 2, 7)3128 3 5 0.0692145 0.0332331 11.523500

(6, 4, 15)3 (8, 1, 15)3128 2 5 0.0893559 0.0248044 13.324400

C3-H (3, 1, 17)3 (16, 2, 31)332 2 6 0.7272080 0.0141697 0.935283

(3, 1, 17)3 (32, 1, 63)332 2 6 1.2001000 0.0138491 1.107840

(3, 2, 17)3 (8, 2, 15)364 3 6 0.4109670 0.0276301 1.613570

(3, 2, 17)3 (16, 1, 31)364 2 5 0.4838210 0.0119909 1.189630

(11, 1, 33)3 (8, 2, 15)364 2 6 0.6007660 0.0126140 1.847700

(11, 1, 33)3 (16, 1, 31)364 2 6 1.1126300 0.119557 1.891190

(11, 2, 33)3 (4, 2, 7)3128 3 6 0.3776890 0.0258704 3.013850

(11, 2, 33)3 (8, 1, 15)3128 2 5 0.4557780 0.117630 2.271160

(27, 1, 65)3 (4, 2, 7)3128 2 5 0.5804140 0.0121539 2.261520

(27, 1, 65)3 (8, 1, 15)3128 2 5 1.0570600 0.0129282 2.641760

C7-P (4, 2, 7)7 (16, 2, 31)716 3 5 0.4663130 0.0247454 3.396230

(4, 2, 7)7 (32, 1, 63)716 2 5 0.5249380 0.0129875 3.166860

(8, 1, 15)7 (16, 2, 31)716 1 5 0.5346350 0.0130587 3.126460

(8, 1, 15)7 (32, 1, 63)716 1 5 0.7542980 0.0132143 4.484790

(8, 2, 15)7 (8, 2, 15)732 3 5 0.4076150 0.0237835 3.734270

(8, 2, 15)7 (16, 1, 31)732 2 5 0.5056360 0.0129546 3.279410

(8, 3, 15)7 (4, 2, 7)764 3 5 0.2652440 0.0235409 2.840060

(8, 3, 15)7 (8, 1, 15)764 2 5 0.0908312 0.0126516 8.914370

C7-E (6, 2, 15)7 (8, 2, 15)732 3 5 0.4115960 0.0246697 2.876960

(6, 2, 15)7 (16, 1, 31)732 2 6 0.5140520 0.0129425 2.417030

(13, 1, 29)7 (8, 2, 15)732 2 5 0.5879160 0.0124884 2.209150

(13, 1, 29)7 (16, 1, 31)732 1 5 0.7183080 0.0126397 3.660070

(13, 3, 29)7 (2, 2, 3)7128 3 5 0.2556120 0.0242098 2.462540

(13, 3, 29)7 (4, 1, 7)7128 2 5 0.0623321 0.0255382 21.305100

C7-H (32, 1, 147)7 (2, 1, 3)7256 2 6 0.5453260 0.0135578 1.591150
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Abstract. At ITCS 2020, Bartusek et al. proposed a candidate indistin-
guishability obfuscator (iO) for affine determinant programs (ADPs). The
candidate is special since it directly applies specific randomization tech-
niques to the underlying ADP, without relying on the hardness of tradi-
tional cryptographic assumptions like discrete-log or learning with errors.
It is relatively efficient compared to the rest of the iO candidates. How-
ever, the obfuscation scheme requires further cryptanalysis since it was not
known to be based on any well-formed mathematical assumptions.

In this paper, we show cryptanalytic attacks on the iO candidate
provided by Bartusek et al. Our attack exploits the weakness of one of
the randomization steps in the candidate. The attack applies to a fairly
general class of programs. At the end of the paper we discuss plausible
countermeasures to defend against our attacks.

Keywords: Indistinguishability obfuscation · Cryptanalysis · Affine
determinant program

1 Introduction

Indistinguishability Obfuscation (iO) [7] is a probabilistic polynomial-time algo-
rithm that transforms a circuit C into an obfuscated circuit C ′ = iO(C) while
preserving the functionality. In addition, for any functionally equivalent circuits
C1 and C2 of the same size, iO(C1) and iO(C2) are computationally indis-
tinguishable. iO is a powerful cryptographic primitive with a wide variety of
applications in cryptography and complexity theory. Indeed indistinguishability
obfuscation, when combined with a minimal cryptographic primitive (one-way
functions), is generally regarded as “crypto complete”, implying almost all cryp-
tographic applications currently known (e.g., [10,17,32,38]).

Despite the remarkable success in basing cryptographic applications on iO,
constructing efficient and provably secure iO remains a long-standing open prob-
lem in cryptography. While still far from the ultimate goal, many iO candidates
have been provided in the past eight years. They can be generally classified as
follows:
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Candidates from multilinear maps. The initial iO candidates are built
based on multilinear maps (a.k.a. graded encodings) [18,20,24]. Starting from the
first iO candidate of Garg et al. [21], these candidates have gone through several
rounds of break-and-repair. (see, e.g. [6,14–16,26,37]). To date, some variants of
the original candidate of Garg et al. [21] remain secure, but no security proofs
were known for any of those variants without using strong idealized models.

Candidates from succinct functional encryption. A remarkable line of
works has been dedicated to building iO from succinct functional encryption
schemes, which can then be based on well-founded assumptions, including LPN,
DLIN in pairing and PRG in NC0 [3,4,11,22,29–31,33–36]. They build iO via a
series of reductions and take advantage of many cryptographic primitives, includ-
ing attribute-based encryption, fully homomorphic encryption, FE for quadratic
functions, homomorphic secret-sharing, universal circuits, etc. The downside of
those candidates is that the overall constructions are complicated and far from
efficient.

Candidates based on non-standard lattice assumptions. We also have
lattice-based candidates without using pairing or multilinear maps. [12,13,23]
construct candidates based on a strong circular-security assumption. [39] shows
that oblivious LWE sampling implies iO and gives a candidate based on a
circularity-like conjecture. Unfortunately, [25] provides counterexamples to both
assumptions. Apart from the circularity-based candidates, some works try to
base iO on Noisy Linear FE [1,2]. Recent work [19] improves on [39] by basing
iO on succinct LWE sampling, a weaker notion. It presents a candidate whose
security is related to the hardness of solving systems of polynomial equations.
The security of all these candidates relies on non-standard assumptions.

Candidate for affine determinant program. Finally, a special candi-
date obfuscator, which is the focus of this work, is provided by Bartusek
et al. [8] for obfuscating affine determinant programs. An affine determinant
program (ADP): {0, 1}n → {0, 1} is specified by a tuple of square matrices
(A,B1,B2, . . . ,Bn) over Fq and a function Eval : Fq → {0, 1}. It evaluates on
input x ∈ {0, 1}n and produces an output Eval(det(A +

∑
i∈[n] xiBi)). Non-

uniform log-space computations (denoted by L/poly) can be transformed into
polynomial-size ADPs. Since NC1 ⊆ L/poly, an obfuscator for such ADPs can
serve as an obfuscator for NC1 circuits, which implies general purpose iO addi-
tionally assuming the existence of fully homomorphic encryption [21].

The obfuscation candidate based on ADP is unique since it is the only
unbroken candidate to date that does not rely on any traditional cryptographic
assumptions like discrete-log or LWE. The candidate is also relatively simple
to describe. In addition, the current quantum techniques do not seem to show
special advantage in breaking the ADP-based candidate. So if LWE is broken by
a quantum algorithm in future, the obfuscation candidate for ADP might be the
only living iO candidate against quantum computers.



Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 647

The idea of using the ADP program model for obfuscation was also used in
the earlier paper of Bartusek et al. [9] for obfuscating conjunctions, where they
can achieve provable security based on standard cryptographic assumptions.
However, obfuscating a general program requires significantly different ideas.
Indeed, the lack of security reduction from any well-formed assumption also
means that the security of the candidate in [8] requires more investigation.

1.1 Main Result

In this work, we show cryptanalytic attacks against the iO candidate of Bartusek
et al. [8]. Our attack can be seen as a variant of the “mod 4 attack” mentioned
in [8, Section 9.3]. The “mod 4 attack” was originally discussed in [8, Section 9.3]
as an attack for breaking a simpler version of the obfuscation scheme. It was
also the motivation of adding a layer of randomization called Random Local
Substitutions (RLS). However, we show that even with the RLS they provide,
we can still manipulate the “mod 4 attack” in some other way to break the iO
candidate.

To explain what kind of programs our attack applies to, let us describe the
necessary and sufficient conditions separately. The necessary condition of the
programs where our attack applies is that we can efficiently find four inputs of
the form x1 = a0b0c,x2 = a1b0c,x3 = a0b1c,x4 = a1b1c s.t. the program
outputs the same value on these inputs, where a,b, c are some fixed strings of
arbitrary length. Our attack will exactly run on those four inputs. The sufficient
conditions are more complex to describe in their general forms. They deal with
the minors of the matrices used in the ADPs to be obfuscated. Here let us mention
a simple sufficient condition, that is, if two of the matrices among the n are all
zero. Namely, for 1 ≤ i < j ≤ n, Bi = Bj = 0. If so then we can distinguish the
obfuscated version of such programs with those of functionally equivalent ADPs
with Bi �= 0 or Bj �= 0. The general sufficient conditions relax the constraint
such that we do not require the underlying branching program to contain all-
zero matrices. This makes our attack work for a fairly general class of programs.
However, as mentioned, the precise conditions on which our attack applies is a
bit complicated. We refer readers to Sect. 5.3 for details.

At the end of the paper we provide some revisions of the RLS randomiza-
tion which plausibly defends the obfuscation scheme against our attack. Let us
also remark that the witness encryption candidate in [8] is constructed via a
somewhat different methodology, to which our attack does not apply.

1.2 Our Ideas in a Nutshell

To obfuscate an ADP, Bartusek et al. [8] sample independent even noises and add
them to each entry of {A,Bi∈[n]}. However, they also notice that the adversary
can extract the parities of the noises by computing the determinant first and
then computing the result mod 4 after adding noises. The coefficients of the
parities are minors of A +

∑
i∈[n] xiB, which are known to the adversary.
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To defend against the attack, they introduce Random Local Substitutions,
aiming to substitute the ADP P chosen by the adversary with another ADP
P ′ = RLS(P ), while preserving the functionality.

The intuition that how the RLS comes to rescue is that by applying RLS to
P the adversary cannot learn minors of A′ +

∑
i∈[n] xiB′

i, where {A′,B′
i∈[n]} are

matrices of RLS(P ). However, as we will show in this paper, it is not necessary
to learn the coefficients of the parities to carry out the attack. We sketch the
idea of our attack below.

Our attack starts from a well-crafted kind of ADP. Consider the simplest
case where n = 2. We observe that if for i ∈ {1, 2}, Bi of P is a zero matrix,
then B′

i of P ′ = RLS(P ) will also be a zero matrix. Therefore, if for all i,Bi is
a zero matrix, then for all x, the minors of A′ +

∑
i∈[n] xiB′

i remain the same.
Therefore, we can add four parity equations together to cancel out the unknown
coefficients (the equal minors), i.e., ∀x : 4x ≡ 0 mod 4. We refer to Sect. 5.1 for
how we cancel out the coefficients and other details about the attack.

We further generalize the above attack by relaxing the limitation that Bi

of P are all zero matrices. By comparing the minors before and after the RLS,
we notice that the RLS may not bring much uncertainty to the minors of A′ +∑

i∈[n] xiB′
i, especially when Bi∈[n] are sparse matrices. In Sect. 5.2, we figure

out the exact condition on which the minors of A′ +
∑

i∈[n] xiB′
i remain the

same for different x, regardless of the randomness injected by the RLS. Thus,
our attack is similarly applicable to all ADPs satisfying the condition.

2 Preliminaries

Let Z,N+ be the set of integers and positive integers respectively. For n ∈ N
+,

we let [n] denote the set {1, . . . , n}. For p ∈ N
+, We denote Z/pZ by Zp and

denote the finite field of prime order p by Fp. A vector v ∈ F
n
p (represented in

column form by default) is written as a bold lower-case letter and we denote
its i-th element by vi ∈ Fp. A matrix A ∈ F

n×m
p is written as a bold capital

letter and we denote the entry at position (i, j) by (A)i,j . For any set of matrices
A1, . . . ,An of potentially varying dimensions, let diag(A1, . . . ,An) be the block
diagonal matrix with the Ai on the diagonal, and zeros elsewhere.

We use the usual Landau notations. A function f(·) is said to be negligible
if f(n) = n−ω(1) and we denote it by f(n) = negl(n). We write D1 ≈C D2 if no
computationally-bounded adversary can distinguish between D1 and D2 except
with advantage negligible in the security parameter.

2.1 Indistinguishability Obfuscation

Definition 1 (Indistinguishability Obfuscator [7]). A uniform PPT
machine iO is an indistinguishability obfuscator for a circuit class {Cλ} if the
following conditions are satisfied:
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• (Strong Functionality Preservation) For all security parameters λ ∈ N
+, for

all C ∈ Cλ,
Pr

C′←iO(λ,C)
[∀x,C ′(x) = C(x)] ≥ 1 − negl(λ).

• For any non-uniform PPT distinguisher D, there exists a negligible function α
such that the following holds: for all λ ∈ N

+, for all pairs of circuits C0, C1 ∈
Cλ, we have that if C0(x) = C1(x) for all input x and |C0| = |C1| (where |C|
denotes the size of a circuit), then

|Pr [D (iO (λ,C0)) = 1] − Pr [D (iO (λ,C1)) = 1]| ≤ α(λ).

3 Affine Determinant Programs

In this section we describe a way of representing L/poly computations as
polynomial-size ADPs [5,28]. We start with the definitions of L/poly computa-
tions, Branching Programs (BPs) and ADPs, followed by the connections among
them.

Definition 2 (Non-uniform Logarithmic-space Turing Machines). A
logarithmic-space Turing machine with polynomial-sized advice is a logarithmic-
space Turing machine M∗ (i.e. a machine using a logarithmic amount of writable
memory space) as well as an infinite collection of advice strings {an}n∈N of
polynomial size (i.e. |an| = O(nc) for some c). (M∗, an) decides a language
L∗ ⊂ {0, 1}∗ if

∀x ∈ {0, 1}∗,M∗(x, a|x|) = χL∗(x)

(where χL∗(x) is the indicator function for L∗, i.e. χL∗(x) = 1 if and only if
x ∈ L∗). The set of languages decided by of logarithmic-space Turing machines
with polynomial-sized advice is denoted by L/poly; we refer to (M∗, an) as an
L/poly machine.

Definition 3 (Branching Programs). A branching program is defined by a
directed acyclic graph G(V,E), two special vertices s, t ∈ V , and a labeling func-
tion φ assigning to each edge in E a literal (i.e., xi or xi) or the constant 1.
Its size is defined as |V | − 1. Each input assignment x = (x1, . . . , xn) naturally
induces an unlabeled subgraph Gx, whose edges include every e ∈ E such that
φ(e) is satisfied by x. An accepting path on input x is a directed s− t path in the
graph Gx. BP is said to be deterministic if for every x, the out-degree of every
vertex in Gx is at most 1. Thus, an deterministic branching program computes
the function f : {0, 1}n → {0, 1}, such that f(x) = 1 if and only if the number
of accepting paths on x is 1.

Definition 4 (Affine Determinant Programs). An affine determinant pro-
gram is parameterized by an input length n, a width �, and a finite field Fp. It
is comprised of an affine function L : {0, 1}n → F

�×�
p along with an evaluation

function Eval : Fp → {0, 1}. The affine function L is specified by an (n+1)−tuple
of � × � matrices L = (A,B1, . . . ,Bn) over Fp so that L(x) := A+

∑
i∈[n] xiBi.
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On input x ∈ {0, 1}n, ADPL,Eval(x) is computed as Eval(det(L(x))). Typically,
we use one of the following Eval functions.

• Eval=0(y) def=

{
1, y = 0
0, y �= 0

.

• Eval �=0(y) def=

{
1, y �= 0
0, y = 0

.

• Evalparity(y) def= y mod 2.

Transformation Between L/poly Computations and Deterministic BPs. Suppose
we have an s(n)-space bounded non-uniform deterministic Turing machine, its
configuration graph on an input of length n is bounded by 2O(s∗(n)), where
s∗(n) = max{s(n), �log(n), �log (a (n))} and a(n) is the length of the advice.
Then we can construct a deterministic branching program Gn to simulate the
Turing machine. Gn has a vertex for each of the configurations that is reachable
from the start configuration. The edge ej,k is labeled by xi if configuration j can
reach configuration k in one step when xi = 1. The label xi is defined analogously.
The label 1 means that configuration j can always reach configuration k in one
step. Gn is acyclic as we can require the Turing machine to count the steps taken
and record it on the work tape. It is easy to see that Gn

x has a s − t path if
and only if the Turing machine accepts on input x. On the other hand, after
putting description of a deterministic branching program on the advice tape,
finding a s− t path in the BP can be computed in log-space since the out degree
of every vertex is at most 1 for any x. Due to these facts, we can conclude that
polynomial-size deterministic BPs equal to L/poly computations.

Encoding BPs as ADPs. Suppose there is a branching program of size � com-
puting a Boolean function f , where each input induces at most one accept-
ing path1. We can represent the branching program as an adjacency matrix
of size (� + 1) × (� + 1). Each element in the matrix is 0, 1 or some variable
(xi or xi). We denote the adjacency matrix by M(x). M(x) is 0 below the
main diagonal (including main diagonal) since a branching program can be view
as a DAG. Then we modify the main diagonal elements of M(x) to −1 and
delete the leftmost column and lowermost row. We denote the resulting � × �
matrix by L(x). For all x ∈ {0, 1}n, We have det (L(x)) = f(x). Then we set
A = L(0), Bi = L(1i) − A, where 0 is the input whose bits are all 0 and 1i is
the input whose i’s bit is 1 and 0 everywhere else. For all x ∈ {0, 1}n, We have
L(x) = A +

∑
i∈[n] xiBi. This immediately gives us an ADP for the branching

program. The evaluation function is Eval �=0. We use the following theorem to
show the correctness of the encoding. For more details we refer readers to [27].

1 Here, we actually define a new class of branching programs that can be seen as
a generalization of the deterministic BPs whose out degree of every vertex is not
limited by 1 for all x. This new notion can be helpful when obfuscating ADPs.
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Theorem 1 (Imported Theorem [27]). Let AG be the a×a adjacency matrix
of a DAG G (over GF (p)). For any two vertices s, t in G, let np

s,t denote the
number of distinct s-t paths in G modulo p, and for any a × a matrix A, let
A(i,j) denote the (a − 1) × (a − 1) matrix obtained by removing the ith row and
the jth column from A. Then for any two vertices s, t the following assertion
hold:

np
s,t = detp(I − AG)−1 detp((I − AG)(t,s)).

The entries in the main diagonal of (I − AG) are all 1s. Therefore, detp(I −
AG)−1 = 1.

Example. We give a small example for a BP/ADP for a 3-bit function that com-
putes x1 ∨x3 = 1 (see Fig. 1(a)). First, we delete the rejection configuration and
related edges. Then we apply topological sorting on the remaining 4 configura-
tions. If there are two edges between any two configurations, we replace them by
an edge labeled by “1”. Now we can obtain a branching program corresponding
to the Turing machine (see Fig. 1(b)). The M(x), L(x) of the branching program
is

M(x) =

⎡

⎢
⎢
⎣

0 x1 1 − x1 0
0 0 0 1
0 0 0 x3

0 0 0 0

⎤

⎥
⎥
⎦ , L(x) =

⎡

⎣
x1 1 − x1 0
−1 0 1
0 −1 x3

⎤

⎦ .

and the resulting ADP is

A =

⎡

⎣
0 1 0

−1 0 1
0 −1 0

⎤

⎦ ,B1 =

⎡

⎣
1 −1 0
0 0 0
0 0 0

⎤

⎦ ,B2 =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ ,B3 =

⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦ .

Fig. 1. A transformation between L/poly computations and BPs

Other examples can be found in, e.g., [8, Section 4].



652 L. Yao et al.

4 The BIJMSZ iO Scheme

In this section we recall the iO scheme proposed by Bartusek, Ishai, Jain, Ma,
Sahai, and Zhandry [8]. The scheme works by additionally applying the fol-
lowing four transformations in sequence to an ADP. These transformations are
functionality-preserving. Readers who are familiar with the scheme can safely
skip this section. Looking ahead, our attack will exploit the weakness of Trans-
formation 1 and 2.

4.1 Transformation 1: Random Local Substitutions

The goal of Random Local Substitutions (RLS) is to inject entropy into the
branching program by adding some vertices and modifying edges in a somewhat
random way2. We denote the resulting BP by M ′(x). Specifically, we can add
a vertex vj,k for each pair (vj , vk). For convenience, we only consider the 2 × 2
submatrices of M ′(x) with row indexed by vj , vj,k and column indexed by vj,k,
vk. Denote this matrix by M

′(j,k)(x). If the edge between vj , vk is labeled by 1,
then M

′(j,k)(x) has following 4 choices (the last one is special as it is the only
one which can change the label between vj and vk, we will analyze it separately
in our attack): [

0 1
0 0

]

,

[
1 1
0 0

]

,

[
0 1
0 1

]

,

[
1 0
0 1

]

.

If there is no edge between vj , vk, then M
′(j,k)(x) has following 3 choices:

[
0 0
0 0

]

,

[
1 0
0 0

]

,

[
0 0
0 1

]

.

If the edge between vj , vk is labeled by xi, then M
′(j,k)(x) has following 12

choices: [
0 xi

0 0

]

,

[
0 xi

0 1

]

,

[
0 xi

0 xi

]

,

[
0 xi

0 xi

]

,

[
1 xi

0 0

]

,

[
1 0
0 xi

]

,

[
xi xi

0 0

]

,

[
xi xi

0 xi

]

,

[
xi 0
0 xi

]

,

[
xi 0
0 1

]

,

[
xi xi

0 0

]

,

[
xi xi

0 xi

]

.

If the edge between vj , vk is labeled by xi, then M
′(j,k)(x) also has 12 choices,

which is analogous to labeled by xi. We can swap xi and xi in above matrices
to obtain the 12 choices.

One can easily check that the above transformation does not change the
amount of path from vj to vk. Namely, it is functionality-preserving3.

2 The transformation is actually applied to an ADP. We describe it by BP because BP
is a DAG and thus can be better understood. You can understand the RLS here in
this way: it decodes the input ADP back to a BP first, then it does the transformation
and encodes the resulting BP as the final ADP.

3 There are many potential ways of applying RLS. The RLS transformation here is the
candidate given in [8].
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Example. We start from the example branching program in Sect. 3 and add a
intermediate vertex for every two vertices (see Fig. 2(a)). Then we reassign the
labels of the edges as described above. We show a possible result of RLS in
Fig. 2(b). The ADP corresponding to the figure is

A′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0
0 −1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,B′
1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B′
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,B′
3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(vertices are sorted in lexicographical order, i.e. v1, v1,2, v1,3, v1,4, v2, v2,3, · · · ).

Fig. 2. Random local substitutions

4.2 Transformation 2: Small Even-Valued Noise

This transformation takes advantage of the fact that for any polynomial g :
Z

n → Z, and for any {ei ∈ Z}i∈[n], it holds that

g(x1, x2, . . . , xn) ≡ g(x1 + 2e1, x2 + 2e2, . . . , xn + 2en) mod 2
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Therefore, when taking an ADP as input, we can add independent random even
numbers as the noise term to each entry of {A, {Bi}i∈[n]}. We denote the result-
ing matrices by {A + 2E0, {Bi + 2Ei}i∈[n]}. The evaluation function also needs
to change from Eval �=0 to Evalparity.

The bound for the error terms and the modulus p must be set carefully to
guarantee correctness and security. In particular, the noise term are relatively
small compared to the modulus p (although both are super-polynomial) so that
for any y1, ..., yn ∈ {0, 1}:

(
det

(
(A+2E0)+

∑

i∈[n]

yi(Bi +2Ei)
)

mod p
)

mod 2 = det(A+
∑

i∈[n]

yiBi) mod 2

In other words, the noise term in an honest evaluation does not wrap around
mod p.

4.3 Transformation 3: Block-Diagonal Matrices

Ideally, when obfuscating an ADP, we need to force the adversary to evaluate
the program in the way we want. This goal is achieved by adding some random-
ness in the matrices. Only an honest evaluation can cancel out the randomness
and reveal the output. Other combination of the matrices will leave the ran-
domness intact, hiding all useful information of the origin ADP. This can be
accomplished by sampling 2n random matrices {Gi,Hi}i∈[n] of determinant 1.
We will append each Gi to A along the diagonal, and then append Hi − Gi

to Bi in the ith slot along the diagonal. We denote the resulting matrices by{
diag(A,G1,G2, . . . ,Gn), {diag(Bi,0,0, . . . ,0,Hi − Gi,0, . . . ,0,0)}i∈[n]

}
.

4.4 Transformation 4: AIK Re-randomization

The re-randomization step a la. [5] is applied twice in the obfuscation, once after
taking the second transformation and again after taking the third transforma-
tion. In both steps, we left- and right-multiply each matrices with uniformly
random matrices R, S respectively such that det(R) · det(S) = 1.

To summarize, the final obfuscation is

R′
(

AddDiag

(

R
(
AddNoise

(
RLS(ADP)

))
S
))

S′.

5 Our Attack

The BIJMSZ obfuscation scheme consists of three transformations along with
the re-randomization step. Among the three transformations, the purpose of
adding block-diagonal matrices is preventing adversary from evaluating program
dishonestly (e.g. Computing A + 3B1); adding even-valued noise is meant to
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convert possibly low-rank matrices into full-rank ones. The re-randomization
step is meant to hide information other than the determinant and rank of the
matrices.

Therefore, after applying these two transformations and the re-randomization
step, we expect that the leakage only comes from the determinant of A +∑

i∈[n] xiBi. Indeed, our attack is based on the following observations about
the determinant.

Key Observations. The adversary can get extra information by computing
det(A +

∑
i∈[n] xiBi) mod 4, namely, first computing the determinant over Zp,

then computing the result mod 4. Note that we can ignore modulo p when ana-
lyzing our attack since we always add matrices of the ADPs together honestly,
i.e. compute A +

∑
i∈[n] xiBi where xi ∈ {0, 1}. In this case, the determinant

will never wrap around mod p. See Sect. 4.2.
The idea of computing det(A +

∑
i∈[n] xiBi) mod 4 was also observed by

Bartusek et al. [8, Section 9.3], where they suggest that computing such a value
is useful for extracting the parities of the noise terms. The reason that Bartusek
et al. introduce the RLS transformation is precisely to prevent this attack.

However, if the RLS transformation does not inject randomness into some
matrices, then we can still extract information by computing the determinant
modulo 4. Indeed, we observe that the RLS candidate given in [8, Section 8.1.1]
is not guaranteed to inject randomness into every matrix. Specifically, if we have
a program {A,B1 = 0}, the program after RLS will be {A′,B′

1 = 0}. Namely,
when applying RLS on a zero matrix B, it only increases the dimension of the
B matrix, and the resulting matrix remains a zero matrix.

5.1 Base Case

Running Example. Consider an ADP (A,B1,B2) computing f : {0, 1}2 → 1
that is in one of the following forms:

1. B1 = B2 = 0;
2. B1 �= 0 or B2 �= 0.

First, apply RLS to the ADP and denote the resulting ADP by (A′,B′
1,B

′
2).

Let L′(x) = A′ +
∑

i xiB′
i. In case 1, we have B′

1 = B′
2 = 0, whereas B′

1 �= 0
or B′

2 �= 0 in case 2. Then applying the AddNoise operation to (A′,B′
1,B

′
2),

hoping that the choice of ADP is masked by the operation. We let (A′′ = A′ +
2E0,B′′

1 = B′
1 + 2E1,B′′

2 = B′
2 + 2E2) denote the resulting ADP and evaluate

the ADP by computing det(L′′(x)), where L′′(x) = A′′ +
∑

i xiB′′
i . We omit

the AddDiag operation as well as the re-randomization step since they will not
change det(A′′ +

∑
i xiB′′

i ). We have

Theorem 2.

det(A′′ +
∑

i∈[n]

xiB′′
i )

≡det(L′(x)) +
∑

j∈[�′],k∈[�′]

(2e
(0)
j,k +

∑

i

xi2e
(i)
j,k) det(L′(x)(j,k)) mod 4

(1)
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where L′(x)(j,k) is a matrix obtained by deleting the jth row and kth column of
L′(x), e

(i)
j,k is the (j, k) element of Ei and �′ is the dimension of L′(x).

To see the correctness of the equation, first we only need to consider constant
terms and linear terms of the noises. Quadratic terms or terms with higher degree
will be cancelled out by modulo 4 since noises are all even numbers. Then we
notice that when computing det(M+2E) for a matrix M and a noise matrix E,
the constant terms of noises are equal to det(M); the linear terms of noises can
be divided into non-intersecting parts, each part only relevant to one entity of
E. For the (j, k) element of E which is denoted by ej,k, the linear term of ej,k is
ej,k · det(M(j,k)). We can obtain Eq. (1) by replacing M with L′(x) and E with
2E0 + 2

∑
i xiEi.

To formally prove Theorem 2, we prove the following lemma.

Lemma 1. For any � ≥ 2, A ∈ Z
�×�, and any E ∈ Z

�×�, we have

det(A + 2E) = det(A) +
∑

j∈[�],k∈[�]

2ej,k det(A(j,k)) (mod 4) (2)

where ej,k is the (j, k)th entry of E, A(j,k) ∈ Z
(�−1)×(�−1) is a matrix obtained

by deleting the jth row and the kth column of A.

Proof. Recall the Laplace expansion for determinant: for any matrix V ∈ R
�×�,

for any k ∈ [�],
det(V) =

∑

j∈[�]

(−1)j+kvj,k det(V(j,k)) (3)

We prove Lemma 1 by induction. For the base case of � = 2,

det(A + 2E)
= (a1,1 + 2e1,1) · (a2,2 + 2e2,2) − (a1,2 + 2e1,2) · (a2,1 + 2e2,1)
≡(1) (a1,1a2,2 − a1,2a2,1) + 2(e1,1a2,2 + e2,2a1,1 − e1,2a2,1 − e2,1a1,2) (mod 4)

≡ det(A) +
∑

j∈[�],k∈[�]

(−1)j+k2ej,k det(A(j,k)) (mod 4)

≡(2) det(A) +
∑

j∈[�],k∈[�]

2ej,k det(A(j,k)) (mod 4),

(4)
where (1) is obtained by dropping the multiples of 4, (2) is obtained by dropping
the −1 sign since −2e = 2e (mod 4) for every e ∈ Z

4.

4 For the same reason, we will ignore the sign of the minors in the rest of this paper.
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For � ≥ 3,

det(A + 2E)

=
∑

j∈[�]

(−1)j+1(aj,1 + 2ej,1) · det((A + 2E)(j,1))

≡(1) det(A) +
∑

j∈[�]

(2ej,1) · det((A)(j,1))+

∑

j∈[�]

aj,1 ·
⎛

⎝
∑

i∈[�],i �=j,k∈[�],k �=1

2ei,k det((A(i,k))(j,1))

⎞

⎠ (mod 4)

≡(2) det(A) +
∑

j∈[�],k∈[�]

2ej,k det(A(j,k)) (mod 4)

(5)

where (1) uses the induction hypothesis, (2) is obtained by fixing each ej,k and
regrouping the terms of A(j,k).

Therefore Theorem 2 holds:

det(A′′ +
∑

i∈[n]

xiB′′
i )

≡det(L′(x)) +
∑

j∈[�′],k∈[�′]

(2e
(0)
j,k +

∑

i

xi2e
(i)
j,k) det(L′(x)(j,k)) mod 4

(6)

Let us now show how to use Theorem 2 to distinguish two programs.

Case 1. We have L′(00) = L′(10) = L′(01) = L′(11) since B′
1 = B′

2 = 0. Thus,
we can write det(L′′(x)) mod 4 as:

det(L′′(00)) ≡ det(L′(00)) +
∑

j,k(2e
(0)
j,k) det(L′(00)(j,k)) mod 4

det(L′′(10)) ≡ det(L′(00)) +
∑

j,k(2e
(0)
j,k + 2e

(1)
j,k) det(L′(00)(j,k)) mod 4

det(L′′(01)) ≡ det(L′(00)) +
∑

j,k(2e
(0)
j,k + 2e

(2)
j,k) det(L′(00)(j,k)) mod 4

det(L′′(11)) ≡ det(L′(00)) +
∑

j,k(2e
(0)
j,k + 2e

(1)
j,k + 2e

(2)
j,k) det(L′(00)(j,k)) mod 4

Then we sum them all:

det(L′′(00)) + det(L′′(01)) + det(L′′(10)) + det(L′′(11))
≡ 4 det(L′(00)) +

∑
j,k(8e

(0)
j,k + 4e

(1)
j,k + 4e

(2)
j,k) det(L′(00)(j,k)) mod 4

≡ 0 mod 4

Case 2. We do computations analogous to case 1. However, in this case, we
do not have L′(00) = L′(10) = L′(01) = L′(11) any more. As the result,
we cannot combine the 2e

(i)
j,k det(L′(x)(j,k)) terms. Therefore, when computing∑

x∈{0,1}2 det(L′′(x)) mod 4, the result may be either 0 or 2, both with proba-
bility 1/2. As we will show in Sect. 5.2, we can achieve

∑
x∈{0,1}2 det(L′′(x)) ≡ 0

mod 4 by setting A,B1,B2 carefully even when B1 �= 0 ∧ B2 �= 0. However, for
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most of ADPs, the result of the equation will be either 0 or 2, both with probability
1/2. So it is easy to find such ADPs which can be distinguished from case 1.

In conclusion, we can guess the random choice of ADP with probability at
least 3/4 by computing

∑
x∈{0,1}2 det(L′′(x)) mod 4. We guess case 1 when the

result is 0. Otherwise, we guess case 2.

5.2 Advanced Case

In the base case we have shown that an ADP with two matrices being 0s can be
distinguished from a functionally equivalent ADP with non-zero matrices at the
same input bits. Such a condition is quite restricted, as it can be easily prevented
by, for example, adding a dummy non-zero entry at the diagonal of each matrix.
So it is natural to raise the following question:

Can we apply the attack without forcing B1 = B2 = 0?

The answer is yes. To see why, we observe that the attack in the base case
crucially uses the fact that we can combine the 2e

(i)
j,k det(L′(x)(j,k)) terms when

they are equal across different inputs. Namely, for any x1,x2 ∈ {0, 1}2, L̂′(x1) =
L̂′(x2), where M̂ is the minor matrix of M�×�, i.e.

M̂ =

⎡

⎢
⎢
⎢
⎣

det(M(1,1)) det(M(1,2)) · · · det(M(1,�))
det(M(2,1)) det(M(2,2)) · · · det(M(2,�))

...
...

. . .
...

det(M(�,1)) det(M(�,2)) · · · det(M(�,�))

⎤

⎥
⎥
⎥
⎦

.

Let us remark that instead of defining M̂ as a matrix, we can define it as
any ordered set {det(M(i,j))}. However, writing it as a matrix is a convenient
notation.

In the base case, we assume the entire matrices of L′(xi), for i = 1, 2, 3, 4, are
equal to each other. However, for the attack to work we only require L̂′(xi),
for i = 1, 2, 3, 4, to be equal to each other. The rest of the section is devoted
to analyzing the relationship between L̂′(x) and L̂(x) and figure out that to
what extent the entries of L̂′(x) are unpredictable after applying RLS on L(x).

Let us first classify the vertices of the graphs we are dealing with.

Theorem 3. Vertices in L′(x) can be classified into two categories: original
vertices and intermediate vertices. The entries of L̂′(x) have the following cases:

1. ∀s, j ∈ [� + 1] satisfying s ≤ � and j > 1, L̂′(x)[vs, vj ]= L̂(x)[vs, vj ]5.
2. ∀s, i, j ∈ [� + 1] satisfying s ≤ � and i < j, L̂′(x)[vs, vi,j ]= L̂(x)[vs, vj ] ·

L′(x)[vi,j , vj ].
3. ∀s, t, j ∈ [� + 1] satisfying s < t and j > 1, L̂′(x)[vs,t, vj ]= L̂(x)[vs, vj ] ·

L′(x)[vs, vs,t].

5 Recall that when encoding a BP into an ADP, the lowermost row and the leftmost
column are deleted. Thus, if the dimension of L(x) is �, the number of nodes should
be � + 1.
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4. ∀s, t, i, j ∈ [� + 1] satisfying s < t and i < j,
L̂′(x)[vs,t, vi,j ](vs,t �=vi,j) = L̂(x)[vs, vj ] · L′(x)[vi,j , vj ] · L′(x)[vs, vs,t].

5. ∀i, j ∈ [� + 1] satisfying i < j,

L̂′(x)[vi,j , vi,j ]=

{
det(L(x)), L(x)[vi, vj ] = 0 or L′(x)[vi, vj ] = 1
det(L(x)(vi,vj)=0), L(x)[vi, vj ] = 1 and L′(x)[vi, vj ] = 0

where M[vi, vj ] is the entry in the row corresponding to vi (row vi for short)
and the column corresponding to vj (column vj for short) of M, M(vi,vj)=0

is a matrix obtained by modifying the (vi, vj) entry of M to 0 and vi,j is the
intermediate vertex between vi and vj, as we defined in Sect. 4.1.

Proof. We prove the theorem by showing following 4 lemmas.

Lemma 2. ∀s, j ∈ [� + 1] satisfying s ≤ � and j > 1, L̂′(x)[vs, vj ]= L̂(x)[vs, vj ].

Proof. Comparing L′(x)(vs,vj) with L(x)(vs,vj), there are mainly two kinds of
differences: 1) L′(x)(vs,vj) have rows and columns corresponding to intermediate
vertices. 2) L′(x)(vs,vj)[vi, vt] may not equal to L(x)(vs,vj)[vi, vt]. To be specific,
recall that if L(x)[vi, vt] = 1, the RLS will set L′(x)[vi, vt] = 0 with probability
1/4. Thus, if we delete the intermediate vertices as well as related edges one by
one and recover the values between original vertices at the same time, we can
convert L′(x)(vs,vj) to L(x)(vs,vj). To prove the lemma, we only need to prove
that the determinant remains unchanged during the conversion. We use vi,t to
denote the intermediate vertex to be deleted. There are broadly 2 cases in the
conversion:

Label between original vertices deleted or unchanged. In this case,
we do not need to recover the label between original vertices (namely, the label
between vi and vt). Also, we can find row vi,t or column vi,t with only nonzero
entry −1 at (vi,t, vi,t). Therefore, Computing the expansion of det(L′(x)(vs,vj))
by row vi,t or column vi,t is equal to computing the determinant after deleting
row vi,t and column vi,t. See Fig. 3(a) and (b).

Label between original vertices changed. This case can be transformed
to the first one by adding row vi,k to row vi or adding column vi,k to column vk,
which keeps the determinant unchanged as well as recovers the label between vi

and vt. See Fig. 3(c).

Lemma 3. ∀i, j ∈ [� + 1] satisfying i < j, L̂′(x)[v∗, vi,j ]= L̂(x)[v∗, vj ] ·
L′(x)[vi,j , vj ],
where v∗ is either an original vertex or an intermediate vertex, v∗ �= vi,j and
v∗ �= v1.

Proof. We notice that row vi,j of L′(x)(v∗,vi,j) has the only possible nonzero
entry at (vi,j , vj). We can expand det(L′(x)(v∗,vi,j)) by row vi,j . The result is
L′(x)[vi,j , vj ] ∗ det((L′(x)(v∗,vi,j))(vi,j ,vj)). We can rewrite (L′(x)(v∗,vi,j))(vi,j ,vj)

as (L′(x)(v∗,vj))(vi,j ,vi,j), namely, the matrix obtained by deleting row vi,j

and column vi,j of L′(x)(v∗,vj). As we showed in the proof of Lemma 2,
det(L′(x)(v∗,vj)) equals to det((L′(x)(v∗,vj))(vi,j ,vi,j)). See Fig. 4.
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Fig. 3. Minors unrelated to any intermediate vertex

Lemma 4. ∀s, t ∈ [� + 1] satisfying s < t, L̂′(x)[vs,t, v∗]=L̂(x)[vs, v∗] ·
L′(x)[vs, vs,t].
where v∗ is either an original vertex or an intermediate vertex, v∗ �= vs,t and
v∗ �= v�+1.

We omit the proof as it is analogous to Lemma 3.

Lemma 5. ∀i, j ∈ [� + 1] satisfying i < j, L̂′(x)[vi,j , vi,j ] = det(L
(x)(vi,vj)=L′(x)[vi,vj ]).

Proof. As we showed in the proof of Lemma 2, we have a conversion that deletes
all intermediate vertices and recovers labels between original vertices. However,
the label between vi and vj is an exception. To recover the label, we need to
add row vi,j to row vi or add column vi,j to column vj . Unfortunately, both row
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Fig. 4. Minor related to some intermediate vertex

vi,j and column vi,j are deleted in L′(x)(vi,j ,vi,j). As the result, there’s no way
that we can recover the label. Therefore, after the conversion, we will obtain a
matrix whose (vi, vj) entry may be the only different entry compared with L(x).
To be specific, if L(x)[vi, vj ] = 1 and L′(x)[vi, vj ] = 0, the (vi, vj) entry of the
resulting matrix is 0.

This completes the proof of Theorem 3.
With Theorem 3 we can find the necessary and sufficient condition for

L̂′(x1) = L̂′(x2), where x1,x2 are two different inputs. In fact, we have

Theorem 4. For L(x1) and L(x2) satisfying following conditions, we can con-
clude that L̂′(x1) = L̂′(x2) regardless of the randomness injected by the RLS:

1. L̂(x1) = L̂(x2).
2. ∀i, j ∈ [� + 1] satisfying i ≤ � and j > 1 and L(x1)[vi, vj ] �= L(x2)[vi, vj ], the

entries in the ith row and jth column of L̂(x1) are all 0s.
3. ∀i, j ∈ [� + 1] satisfying i < j,

det(L(x1)(vi,vj)=0) = det(L(x1)) = det(L(x2)) = det(L(x2)(vi,vj)=0).

Proof. We will analyse these three conditions one by one.
First, we require that L̂(x1) = L̂(x2). The reason is that for any pair of

original vertices vi, vj , L̂′(x)[vi, vj ] = L̂(x)[vi, vj ]. (See Theorem 3, the first case.)
Then, we compute ΔL(x1,x2) = L(x1) − L(x2). The nonzero entries

in ΔL(x1,x2) represent the differences between L(x1) and L(x2). If
ΔL(x1,x2)[vi, vj ] �= 0, the difference may be propagated into (vi, vi,j), (vi,j , vj)
and (vi, vj) of ΔL′(x1,x2) after applying RLS (see Fig. 5). We notice that row
vi,j entries of L̂′(x) depend on L′(x)[vi, vi,j ] (marked in north east lines) and col-
umn vi,j entries of L̂′(x) depend on L′(x)[vi,j , vj ] (marked in north west lines).
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So the difference may cause entries in row vi,j or column vi,j (except (vi,j , vi,j),
which we will discuss later) of ΔL̂′(x1,x2) to be nonzero. Fortunately, these
entries of L̂′(x) also depend on row vi entries and column vj entries of L̂(x). To
be specific, if row vi entries and column vj entries of L̂(x) are all zero, row vi,j

entries and column vi,j entries of L̂′(x) are all zero (except (vi,j , vi,j)), whatever
the entries of L′(x) are. (See Theorem 3, the second to the forth case.) There-
fore, we further require that for any nonzero entry of ΔL(x1,x2)[vi, vj ], row vi

entries and column vj entries of L̂(x1) are all zero.

Fig. 5. The relationship among (minor) matrices before and after the RLS

Finally, we analyze the condition for ΔL̂′(x1,x2)[vi,j , vi,j ] = 0. If
L(x1)[vi, vj ] = L(x2)[vi, vj ] = 0, we have L̂′(x1)[vi,j , vi,j ] = det(L(x1)),
L̂′(x2)[vi,j , vi,j ] = det(L(x2)). Therefore, we require det(L(x1)) = det(L(x2)).
If L(x1)[vi, vj ] = L(x2)[vi, vj ] = 1, with probability 1/4, we have
L̂′(x1)[vi,j , vi,j ] = det(L(x1)(vi,vj)=0), L̂′(x2)[vi,j , vi,j ] = det(L(x2)(vi,vj)=0).
We further require det(L(x1)(vi,vj)=0) = det(L(x2)(vi,vj)=0). (See Theo-
rem 3, the fifth case.) If L(x1)[vi, vj ] = 0, L(x2)[vi, vj ] = 1, we require
det(L(x1)) = det(L(x2)(vi,vj)=0). If L(x1)[vi, vj ] = 1, L(x2)[vi, vj ] = 0, we
require det(L(x1)(vi,vj)=0) = det(L(x2)).

This completes the proof of Theorem 4.

Running Example. Let us start with defining a family of ADPs to which our
attack could apply6. Since we only need 4 inputs to carry out our attack, we can
fix the other n − 2 input bits. w.l.o.g. we assume that x1 and x2 are unfixed. ∀
ADP P in the family, there exists an assignment a ∈ {0, 1}n−2 to the values of
x3x4 . . . xn respect to P , s.t. the program matches the following pattern:

6 The family of ADPs here is only a subset of all ADPs our attack could apply.
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L(x1x2a) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 1 0
−1 ∗ · · · ∗ ∗ 0
0 −1 · · · ∗ ∗ 0
...

...
. . .

...
...

...
0 0 · · · −1 ∗ 0
0 0 · · · 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

where ∗ is a wildcard and represents one element in {0, 1, x1, x1, x2, x2}.
Next, we will show that

∑

x∈{00a,10a,01a,11a}
det(L′′(x)) ≡ 0 mod 4.

First, we have

L̂(x1x2a) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Namely, det(L(x1x2a)(i,j)) =

{
1, (i = 1 ∨ i = �) ∧ j = �

0, otherwise
. To see why,

notice that the rightmost column of L̂(x1x2a) is an all-zero column, thus
det(L(x1x2a)(i,j)) = 0 for j < �. Moreover, we can add the topmost
and lowermost rows of L̂(x1x2a) together to obtain an all-zero row, thus
det(L(x1x2a)(i,j)) = 0 for 1 < i < �. It is easy to check that det(L(x1x2a)(1,�)) =
det(L(x1x2a)(�,�)) = 1.

Then, nonzero entries in ΔL(x1a,x2a) depend on x1, x1, x2 and x2 entries
in L(x1x2a), where x1,x2 ∈ {0, 1}2 ∧ x1 �= x2. These entries are marked by ∗
in the matrix above. Therefore, we hope that entries in 2nd-(� − 1)th rows, 2nd-
(� − 1)th columns of L̂(x ∈ {00a, 10a, 01a, 11a}) are all zero, which is exactly
the case.

Finally, only entries marked by ∗ may be modified from 1 to 0 after RLS.
Since entries in the rightmost column of L(x1x2a) are always all zero, we can
conclude that det(L(x1x2a)) = det(L(x1x2a)(i,j)=0) = 0, where i, j ∈ [�] and
L(x1x2a)[i, j] = ∗ according to the above matrix.

We also give a concrete example:

L(x) =

⎡

⎢
⎢
⎢
⎢
⎣

0 x3 0 x3 0
−1 0 x4 0 x4

0 −1 x1 0 0
0 0 −1 x2 0
0 0 0 −1 x3

⎤

⎥
⎥
⎥
⎥
⎦

, L(x1x2a)
a=11

=

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 1 0
−1 0 1 0 0
0 −1 x1 0 0
0 0 −1 x2 0
0 0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎦

.

L(x) computes x1 ∧ x2 ∧ x3, i.e. the output depends on x1 and x2. Therefore, in
advanced case attack, we don’t require the output bit to ignore some input bits,
unlike in the base case attack.
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Let us remark that the successful condition of our attack can be further
relaxed. For example, if det(L(01)(v2,v3)=0) ((v2, v3) corresponding to the (2, 2)
entry of L(x)) did not equal to det(L(00)) while det(L(01)) = det(L(00)), then
L̂′(01)[v2,3, v2,3] = L̂′(00)[v2,3, v2,3] still holds with probability 3/4. As a result,
the advantage that we can distinguish the ADP in the example from another
functionally equivalent ADP after obfuscation will decrease by a factor of 3/4,
which is still noticeable.

5.3 The Scope of the Attack

In the end let us discuss

What kind of programs does the attack apply to?

We are afraid that we cannot give an exact and succinct answer to this question.
The reason is when analysing ADPs, we focus on constraints on determinants and
minors. However, the connection between these constraints and functionality is
unclear. Moreover, with constraints on 4 inputs (we only need 4 inputs to apply
the attack), it is difficult to figure out what the whole function looks like.

Therefore, we choose to describe the necessary condition and the sufficient
condition separately. The necessary condition of the attack is to find 4 inputs
x1 = a0b0c,x2 = a1b0c,x3 = a0b1c,x4 = a1b1c s.t. the program outputs
the same value on these inputs where a,b, c are some fixed strings of arbitrary
length. The sufficient condition of the attack is that for the 4 inputs mentioned
above, we always have L̂′(x1) = L̂′(x2) = L̂′(x3) = L̂′(x4) regardless of the
randomness injected by the RLS. This condition is satisfiable when the plaintext
ADP satisfies the conditions in Theorem 4.

We also notice that the attack can be further generalized. Recall that in the
above attack, we require L̂′(00) = L̂′(10) = L̂′(01) = L̂′(11). But why we need
the equality of these four minor matrices? When looking back to Sect. 5.1, on
the high level, we can write the idea of our attack as

[
e
(0)
j,k e

(1)
j,k e

(2)
j,k

]
⎡

⎣
1 1 1 1
0 1 0 1
0 0 1 1

⎤

⎦

⎡

⎢
⎢
⎣

det(L′(00)(j,k))
det(L′(10)(j,k))
det(L′(01)(j,k))
det(L′(11)(j,k))

⎤

⎥
⎥
⎦ = 0 mod 2.

To make the equation hold regardless of the choice of e
(0)
j,k , e

(1)
j,k and e

(2)
j,k , the

equality of these four minor matrices is necessary. However, if we have 2b(b > 2)
inputs, we will not require the equality of minor matrices. Take b = 3 as an
example, the idea of our attack can be written as:
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[
e
(0)
j,k e

(1)
j,k e

(2)
j,k e

(3)
j,k

]

⎡

⎢
⎢
⎣

1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

det(L′(000)(j,k))
det(L′(100)(j,k))
det(L′(010)(j,k))
det(L′(001)(j,k))
det(L′(110)(j,k))
det(L′(101)(j,k))
det(L′(011)(j,k))
det(L′(111)(j,k))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0 mod 2.

Therefore, for L̂′(x ∈ {0, 1}3) satisfying following four conditions:

1. L̂′(000)+L̂′(100)+L̂′(010)+L̂′(001)+L̂′(110)+L̂′(101)+L̂′(011)+L̂′(111) = 0
mod 2

2. L̂′(100) + L̂′(110) + L̂′(101) + L̂′(111) = 0 mod 2
3. L̂′(010) + L̂′(110) + L̂′(011) + L̂′(111) = 0 mod 2
4. L̂′(001) + L̂′(101) + L̂′(011) + L̂′(111) = 0 mod 2

we have ∑

x∈{0,1}3

det(L′′(x)) ≡ 0 mod 4.

To conclude, if we cannot find four inputs satisfying the conditions in Theorem 4,
it is still possible to find eight or more inputs that are capable of applying
the”mod 4” attack.

6 A Plausible Fix and Further Discussions

In this section, we describe a possible approach of preventing our attack. Intu-
itively, the reason for the attack to work is that the RLS transformation does
not inject enough randomness into the original ADP. To be specific, if the edge
between vj and vk is labeled 0 or 1 before RLS, the edges among vj , vk and vj,k

are never labelled xi or xi after RLS.
Therefore, a natural way of fixing the attack is to get around this limitation.

If the edge between vj , vk is labeled by 1, then M
′(j,k)(x) has the following extra

choices: [
xi 1
0 xi

]

,

[
xi 1
0 xi

]

,

[
xi 1
0 0

]

,

[
0 1
0 xi

]

,

[
xi 1
0 0

]

,

[
0 1
0 xi

]

.

If there is no edge between vj , vk, then M
′(j,k)(x) has following extra choices:

[
xi 0
0 xi

]

,

[
xi 0
0 xi

]

,

[
xi 0
0 0

]

,

[
0 0
0 xi

]

,

[
xi 0
0 0

]

,

[
0 0
0 xi

]

.

We use the example in Sect. 4.1 to show the revision of the RLS (see Fig. 6,
changes compared with Fig. 2(b) are marked in red color).
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Fig. 6. The revision of the RLS (Color figure online)

With the revision we can defend against the base case attack since it effec-
tively makes the B matrices non-zero. But how about the advanced case?
Suppose that the label between vj,� and v� is xi or xi after the RLS (this
is always possible in the revision of the RLS). As the result, ∀x,y satisfying
xi �= yi, L′(x)[vj,�, v�] �= L′(y)[vj,�, v�]. Recall that L̂′(x)[v1, vj,�] = L̂(x)[v1, v�] ·
L′(x)[vj,�, v�]. In addition, we always have L̂(x)[v1, v�] = 1. We can conclude that
L̂′(x)[v1, vj,�] �= L̂′(y)[v1, vj,�]. Namely, the revision can prevent the equality of
the minors and thus defend against the advanced case attack.

We also notice the necessity of setting up connection between security param-
eter λ and the RLS transformation. The amount of randomness of the RLS intro-
duced in [8] only depends on the matrix size of ADP. Even for the revision of
the RLS we mentioned above (as it is), the amount of randomness only depends
on the input length and the matrix dimension.

Therefore, for programs with very small input lengths and matrix dimen-
sions, the adversary can guess the output of RLS correctly with some probability
that is independent of λ, in which situation the adversary could break the iO
scheme with non-negligible probability. A simple way of preventing this attack
is applying RLS iteratively for λ times. Adding more intermediate vertices is
another possible solution.

Let us remark that the revision of RLS we provide merely prevents the attack
we describe in this paper, it should not be viewed as a candidate with enough
confidence.

We cannot even ensure that with the above revision the iO scheme can be
secure against all “modulo 4 attacks”. We leave it as future work to give an RLS
candidate with concrete parameters in some restricted adversarial model that
is provably secure against known attacks. For example, it will be interesting to
provide a candidate with provable security against all “modulo 4 attacks”.
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Abstract. In this work, we study what minimal sets of assumptions
suffice for constructing indistinguishability obfuscation (iO). We prove:

Theorem(Informal): Assume sub-exponential security of the follow-
ing assumptions:

– the Learning Parity with Noise (LPN) assumption over general prime
fields Fp with polynomially many LPN samples and error rate 1/kδ, where
k is the dimension of the LPN secret, and δ > 0 is any constant;

– the existence of a Boolean Pseudo-Random Generator (PRG) in NC0

with stretch n1+τ , where n is the length of the PRG seed, and τ > 0 is
any constant;

– the Decision Linear (DLIN) assumption on symmetric bilinear
groups of prime order.

Then, (subexponentially secure) indistinguishability obfuscation for all
polynomial-size circuits exists. Further, assuming only polynomial secu-
rity of the aforementioned assumptions, there exists collusion resistant
public-key functional encryption for all polynomial-size circuits.

This removes the reliance on the Learning With Errors (LWE)
assumption from the recent work of [Jain, Lin, Sahai STOC’21]. As a
consequence, we obtain the first fully homomorphic encryption scheme
that does not rely on any lattice-based hardness assumption.

Our techniques feature a new notion of randomized encoding called
Preprocessing Randomized Encoding (PRE), that essentially can be com-
puted in the exponent of pairing groups. When combined with other new
techniques, PRE gives a much more streamlined construction of iO while
still maintaining reliance only on well-studied assumptions.

1 Introduction

Indistinguishability obfuscation (iO) for general programs computable in poly-
nomial time [12] enables us to hide all implementation-specific details about
any program while preserving its functionality. iO is a fundamental and power-
ful primitive, with a plenthra of applications in cryptography and beyond. It is
c© International Association for Cryptologic Research 2022
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hence extremely important to investigate how to build iO, based on as minimal
assumptions as possible, and via as simple constructions as possible. Advances
on understanding what assumptions imply iO and simplification of iO construc-
tions have immediate implications on the rest of cryptography through the many
applications of iO. So far, through the accumulation of extensive research by a
large community since the first mathematical candidate iO proposal by [19] (see
the survey in [20] and references therein), we recently saw the first construc-
tion of iO [30] based on four well-studied assumptions: Learning With Errors
(LWE) [38], Decisional Linear assumption (DLIN) [11] over bilinear groups, Learn-
ing Parity with Noise (LPN) over Fp [25], and the existence of a Pseudo-Random
Generator (PRG) in NC0 [21].

While the work of Jain, Lin and Sahai [30] settles the feasibility of iO on
solid assumptions, much still awaits be answered, even on the front of feasibility.
A fundamental question to study next is:

“What minimal sets of well-studied assumptions suffice to construct iO? ”

From a complexity theoretic perspective, studying the minimal sets of sufficient
assumptions helps deepen our understanding of the nature and structure of iO,
as well as understanding the power of these sufficient assumptions (via the many
applications of iO). It also serves as a test-bed for new ideas and techniques,
and may lead to new ways of constructing iO and other primitives.

As we embark upon this question, it is important to keep an open mind. The
answers may not be unique – there may be different minimal combinations of
assumptions that are sufficient for iO, and we do not know what the future may
bring. Perhaps LWE alone is enough, or perhaps not. The answers may not be
what we expect. Unexpected answers may teach us just as much as (if not more
than) the answers that confirm our expectations. Our work here presents one
such answer that challenges expectations, and at the same time, simplifies the
overall architecture needed to construct iO from well-studied assumptions.

Our Result. We improve upon the iO construction of [30] by removing their
reliance on LWE. We thus obtain iO based on the following three assumptions,
which generates interesting consequences that we discuss below.

Theorem 1 (Informal). Assume sub-exponential security of the following
assumptions:

– the Learning Parity with Noise (LPN) assumption over general prime fields
Fp with polynomially many LPN samples and error rate 1/kδ, where k is the
dimension of the LPN secret, and δ > 0 is any constant;

– the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with
stretch n1+τ , where n is the length of the PRG seed, and τ > 0 is any constant;

– the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime
order.
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Then, (subexponentially secure) indistinguishability obfuscation for all
polynomial-size circuits exists. Assuming only polynomial security of the
assumptions above yields polynomially secure functional encryption for all
polynomial-size circuits.

It is interesting to note that of the three assumptions above, only one of them
is known to imply public-key encryption or key agreement on its own – the DLIN
assumption. Even assuming the other two assumptions simultaneously, it is not
known how to build key agreement or any other “public key” primitive. (Recall
that known constructions of public-key encryption from LPN require relatively
sparse errors, that is, δ ≥ 1

2 in our language above [2,10].) Thus, this work
removes one, namely LWE, of the two public-key assumptions in [30], making a
first step towards understanding the minimal set of assumptions underlying iO.

Lattices vs. (Pairing + LPN over Fp + PRG in NC0). An immediate conse-
quence of our theorem is that the combination of bilinear pairing, LPN over Fp,
and constant-locality PRG is sufficient for building all the primitives that are
implied by iO or Functional Encryption (FE) (and other assumptions that are
implied by one of the three assumptions). This, somewhat surprisingly, includes
Fully Homomorphic Encryption (FHE) that support homomorphic evaluation
of (unbounded) polynomial-size circuits, through the construction by [17] that
shows FHE can be built from subexponentially secure iO and rerandomizable
encryption, which is implied by the DLIN assumption. It also includes Attribute
Based Encryption (ABE) that support policies represented by (unbounded)
polynomial-size circuits, which is a special case of functional encryption. To this
day, the only known constructions of FHE and ABE for circuits are based on
the hardness of lattice-type problems – either directly from problems like LWE
or Ring LWE, or slightly indirectly via problems such as the approximate GCD
problem [18]. Our work hence yields the first alternative pathways towards these
remarkable primitives.

Corollary 2 (Informal). Assume the same assumptions as in the Theorem
1. Then, fully homomorphic encryption and attribute-based encryption for all
polynomial-sized circuits exist.

Beyond FHE and ABE, lattice problems and techniques have been at the heart of
nearly every work over the past decade attempting to achieve advanced crypto-
graphic feasibility goals. Our theorem shows that, through iO, the combination
of pairing groups, LPN over Fp, and constant-locality PRG is just as powerful as
(and potentially more powerful than) lattice techniques for achieving feasibility
goals.

We emphasize that our result complements instead of replaces lattice-based
constructions. It also gives rise to several exciting open directions for future
work, such as, can we obtain direct constructions of FHE or ABE (not via iO or
FE) from the trio of assumptions? And, is there any formal relationship between
these assumptions and lattice assumptions (e.g., BDD, SVP etc.)?

Streamlining iO Construction. In our minds, an equally important contribu-
tion of our work is streamlining of the construction of iO from well-studied
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assumptions. Current surviving iO proposals are all highly complex. They usu-
ally start with building a minimal tool and then transform it to iO through
a number of sophisticated transformations in the literature. Take the recent
construction of iO in [30] as an example. It starts with 1) building a 1-key
secret-key FE scheme for NC0 with sublinearly compact ciphertext, that is only
weakly (1 − 1/poly(λ))-secure, then 2) lift the function class to handle circuits
via transformations in [7,32,37], 3) amplify security via [20], 4) turn secret-ley
FE to public-key FE via [13], 5) transform FE with sublinear-size ciphertext
to FE with sublinear-time encryption [22,35], and finally 6) construct iO from
public-key FE for circuits with sublinear-time encryption [6,14]. While there
exist alternative transformations for each of the steps, and other constructions
of iO may omit some of the steps, it is a widely recognized problem that existing
iO constructions are complex.

Our new construction of iO, while removing the reliance of LWE, also removes
the reliance on most transformations used in previous constructions. Starting
from a known and simple partially hiding functional encryption scheme based
on DLIN by [40], we construct a public-key FE for NC1 with sublinear-time
encryption, and then lift the function class from NC1 to P using Yao’s garbled
circuits as done in [7,32,37], which can be transformed into a public key which
implies iO via [6,14].

To enable our results, we propose and achieve the new notion of Preprocessed
Randomized Encodings (PRE). Roughly speaking, PRE allows for preprocessing
the input x and random coins r into preprocessed input (PI,SI) where PI is
public and SI is private, so that, later a randomized encoding of (f,x) can be
computed by polynomials with only degree 2 in SI, and constant degree in PI,
over general prime field Fp. PRE guarantees that the preprocessed input (PI,SI)
can be computed in time sublinear in the size of the circuit f and the randomized
encoding together with PI hides the actual input x.

We now proceed to an overview of our techniques.

2 Technical Overview

FE Bootstrapping. A common thread in many recent iO constructions [4,5,
7,8,20,27,28,30,32–34,36] is FE bootstrapping – transformations that lift FE
for computing simple functions in NC0 to full fledged functional encryption for
polynomial-sized circuits. Such an FE scheme in turn implies iO by the works
of [6,14].

More specifically, functional encryption is an advanced form of public key
encryption, which allows generating functional secret keys associated with a
specific function f : {0, 1}n → {0, 1}m, denoted as SKf , such that, decrypting a
ciphertext CT(x) using this secret key reveals only the output f(x), and nothing
else about the encrypted input x. To imply iO, it suffices to have FE for NC1

with the following properties:
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– It supports publishing a single functional decryption key SKC , for a circuit
C : {0, 1}n → {0, 1}m where every output bit is computable by a formula of
fixed size poly(λ) in the security parameter. The overall size of C is poly(λ)·m.

– It is crucial that FE has encryption that runs in time sublinear in the size of
the circuit C: TEnc = poly(λ) · m1−ε – we refer to this property as sublinear
time-succinctness.

In contrast, FE with encryption that takes time polynomial in the circuit size is
just equivalent to vanilla public key encryption [23,39]. An intermediate level of
efficiency known as sublinear size-succinctness only requires the ciphertext
size to be sublinear |CT(x)| = poly(λ) · m1−ε, without restricting the encryption
time. It has been shown that FE with sublinear size-succinctness in fact implies
FE with sublinear time-succinctness, but additionally assuming LWE [22,35].
In this work, one of our technical contributions is presenting a direct way of
constructing FE with sublinear time-succinctness without LWE.

To reach the above powerful FE via bootstrapping, we start with FE schemes
supporting the most expressive class of functions that we know how to build
from standard assumptions. Partially-hiding functional encryption generalizes
the syntax of functional encryption to allow a public input PI that does not need
to be hidden in addition to the secret input SI. Furthermore, decryption reveals
only h(PI,SI), where h is the function for which the functional decryption key
is generated. So far, from standard assumptions over bilinear maps of order p
(e.g. DLIN), prior works [20,28,40] constructed PHFE for polynomials h over Zp

that have constant degree in the public input PI and only degree-2 in the private
input SI. We say such a polynomial h has degree-(O(1), 2).

h(PI,SI) =
∑

j,k

gj,k(PI) · xj · xk mod p, where gj,k has constant degree

Furthermore, known PHFE schemes enjoy strong simulation security and their
encryption runs in time linear in the length of the input: TEnc = (|PI| +
|SI|)poly(λ). Both these properties will be instrumental later.

Perhaps the most straightforward way of bootstrapping FE for simple func-
tions to FE for complex functions is using the former to compute a Randomized
Encoding (RE) π of the complex function C(x), from which the output can be
derived. It seems, then, that all we need is an RE that can be securely evalu-
ated using degree-(O(1), 2) PHFE. Unfortunately, this idea immediately hits a
key barrier: Known RE encoding algorithms EncodeC(x; r) have at least local-
ity 4 and hence degree 4 (over Zp) in x and r, both of which must be kept
private. Making the degree smaller has been a long-standing open question. To
circumvent this issue, we formalize a new notion of degree-(O(1), 2) randomized
encoding that crucially relies on input preprocessing.

Preprocessed Randomized Encoding. The key properties of a preprocessed Ran-
domized Encoding (PRE) scheme are: (i) encodings can be generated using
degree-(O(1), 2) polynomials h on pre-processed inputs (PI,SI); and (ii) the input
preprocessing has sublinear time succinctness. More precisely, the syntax of PRE
is described below.
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Preprocessed Randomized Encoding

– PRE.PreProc(p,x) → (PI, SI). The preprocessing algorithm converts an input
x ∈ {0, 1}n and random tape r into a preprocessed input (PI, SI) over Zp. It
is important that preprocessing does not depend on the circuit to be encoded
later (but only an upper bound on its size). It must satisfy sublinear time-
succinctness in the sense that preprocessing time is sublinear in the size of
the computation, TPreProc = m1−εpoly(λ).

– PRE.Encode(C,PI, SI) = π. The encoding algorithm takes a circuit C of size
mpoly(λ) and a preprocessed input (PI, SI), and produces a binary randomized
encoding π. PRE.EncodeC can be computed by a polynomial mapping over
Zp with constant degree in PI and degree 2 in SI.

– PRE.Decode(π) = y. The decoding algorithm decodes the output y = C(x)
from π.

Indistinguishability security: PRE guarantees that (PI, π) generated from
(C,x0) or (C,x1) are indistinguishable as long as C(x0) = C(x1).

If we had such PRE, we can easily construct the desired powerful FE as
follows:

FE.SK : PHFE.SKh , where h(PI,SI) = PRE.EncodeC(PI,SI) = π

FE.CT : PHFE.CT(PI,SI) , where (PI,SI) ← PRE.PreProc(p,x)

The simulation security of the underlying PHFE guarantees that the only infor-
mation revealed is PI, π. Hence by the indistinguishability security of pRE, FE
ciphertexts of inputs x0, x1 that produce the same outputs are indistinguishable.
For time succinctness, since the preprocessing takes sublinear time m1−εpoly(λ)
and PHFE encryption takes time proportional to the length of the preprocessed
inputs, which is also sublinear, we have that FE encryption has sublinear time
succinctness.

2.1 Challenges to Constructing Preprocessed Randomized Encoding

We now explain how to construct PRE for NC1. The main challenges are making
sure that: (i) encoding is only degree 2 in the private preprocessed input SI;
and (ii) preprocessing has sublinear time-succinctness. Towards this, our start-
ing point is to consider a known randomized encoding scheme for NC1 that has
constant locality and sublinear randomness (explained next), and somehow mod-
ify it so that it can enjoy degree-(O(1), 2) encoding. Such a constant-degree RE
scheme can be obtained by combining a constant-locality RE, such as [41], with
a PRG in NC0. The encoding algorithm works as π = Encode′

C(x; r′ = PRG(r)),
where the random tape has sublinear length |r| = m1−τpoly(λ) if the Encode′

algorithm uses a linear number of random coins |r′| = O(m)poly(λ) and PRG
has appropriate polynomial stretch. We call this property sublinear randomness;
it is needed because the PRE encoding algorithm is deterministic and hence the
sublinearly short preprocessed input (PI,SI) must encode all the randomness
needed for producing the encoding. Observe that Encode′ has constant locality
(and hence degree) in (x, r), but the locality is much higher than 2.
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High-Level Approach for PRE: So how can we use preprocessing to reduce the
encoding degree to just 2 in private proprocessed inputs? We start by adapting
several ideas from [30] that were used to construct objects called structured-seed
PRGs, to constructing our desired PRE. Here is the high-level approach:

– Since the public input PI is supposed to hide x′ = x, r, we will set PI as an
encryption HEEnc(x′) of x′ using a special-purpose homomorphic encryption
scheme.

– We set SI to contain the secret key of this homomorphic encryption and some
other “preprocessed information” about the encryption. Crucially, we need to
ensure that PI,SI can be computed by a circuit of size sublinear in size of C.

– Given PI,SI, the encode algorithm Encode first takes PI and homomorphically
evaluate Encode′ to obtain an output encryption HEEnc(π). Then, it takes
SI and decrypts HEEnc(π) to obtain π. We will ensure that homomorphic
evaluation of a locality-d function Encode′ is a degree d operation on PI, and
crucially decryption is a degree 2 operation in SI (and has at most constant
degree in HEEnc(π)). Because of this, Encode will have degree-(O(1), 2).

Instantiation via LPN Over Fp. An example of such a homomorphic encryption
scheme is based on LPN over Fp.

PI = HEEnc(x′) = (A,b = sA + e + x′ mod p)

where the dimension dim is polynomially related with λ, but relatively small
as we describe below. We sample A ← Z

dim×|x′|
p , s ← Z

1×dim
p , and the errors

e is chosen so that each coordinate is non-zero with probability dim−δ for any
constant δ > 0 associated with the LPN over Fp assumption.

To come up with SI for decryption. We observe that for every locality-d
polynomial h the following equation holds:

h(b − As) = h(x′ + e)

The LHS of the equation tells us that if we include in SI all degree-d monomials
of s, namely, SI = (1||s)⊗d, then the above quantity can be computed by a
polynomial that is degree d in PI = (A,b) and in fact linear in SI. By choosing
dim to be polynomially smaller than |x|, the above SI will still be sufficiently
succinct for our purposes. The RHS of the equation tells us that the error e is
sparse, and h depends only on a constant number d variables, and thus with
probability 1−O(dim−δ), we have h(x′ +e) = h(x′). This almost matches what
we want, except that decryption has a noticable error probability O(dim−δ).

To correct the decryption errors, the key observation is that for a polynomial
mapping Encode′

C with long outputs, the error vector Corr = Encode′
C(x′ + e) −

Encode′
C(x′) is sparse: only a O(dim−δ) fraction of elements in Corr are non-zero.

Prior work [30] developed a technique for “compressing” such sparse vector Corr
into (U, V ) of sublinear length |U, V | = m1−εpoly(λ). From U, V , Corr can be
expanded out using only degree 2. Therefore, by adding (U, V ) to SI, we can
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decrypt and then correct errors in the output with just degree-2 computation in
U, V .

SI = (1||s)⊗d, U, V

However, the compression mechanism of [30] only guarantees that U, V are size-
succinct, but are not time-succinct, and in fact, constructing them takes time
linear in the circuit size m.

Barriers to Time-Succinctness: Unfortunately, the above approach cannot
achieve time-succinctness for the following reasons: The preprocessing algorithm
needs to compute the errors Corr = Encode′

C(x′ + e) − Encode′
C(x′) in the

decryption output. Though the error vector is sparse, every element could be
wrong with Ω(dim−δ) probability, depending on the LPN noises e used to encrypt
x′ and the input-output dependency graph of the function Encode′

C computed.
Therefore, the circuit implementing the preprocessing must have Encode′

C stored.
This creates two problems: (i) the proprocessing time (in the circuit model) is
at least |C|, and more subtly, (ii) the proprocessing depends on C.

In the previous work of [30], they deal with the first issue by invoking the
transformation from size-succinct FE to time-succinct FE [22,35] assuming LWE.
The second issue is not a problem, since they construct structured-seed PRG
and only apply the aforementioned technique to a fixed PRG in NC0. However,
structured-seed PRG alone is not enough for FE bootstrapping, and they need to
additionally rely on FHE based on LWE, and the security amplification technique
of [20] which again relies on LWE1.

In this work, to streamline the construction of iO, and to weaken the
underlying assumptions, we want to construct PRE that directly achieves time-
succinctness. Next, we discuss how to address the first issue above using the idea
of amortization.

Key Idea: Amortization. To get around the hurdle that preprocessing a single
input x seems to inherently take time proportional to |C|, we ask a simpler
question: can we “batch-preprocess” in sublinear time? To make it precise, say
we have k input vectors x1, . . . ,xk each of dimension n, and we are interested
in learning h(x1), . . . , h(xk) w.r.t. a polynomial mapping h : {0, 1}n → {0, 1}m′

with constant locality. Can we batch-process {x1, . . . ,xk} into a public and a
secret input (PI,SI) in time sublinear in m′ · k, such that each h(xi) can be
computed with constant degree in PI and degree 2 in SI. Our answer is Yes!

Furthermore, in order to get around the subtler problem that preprocessing
depends on Encode′

C , we will consider a version of amortized preprocessing for

1 Besides [20], there are other works that contain FE security amplification tech-
niques [4,5,26]. However, it has been recently acknowledged that there is a common
issue in these techniques due to an incorrect application of the leakage simulation
lemma. The work of [20] circumvents the use leakage simulation lemma, but achieves
only weaker security amplification, which nevertheless is still sufficient for construct-
ing iO.
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computing polynomials h that have a fixed set of monomials Q = {Q1, . . . , Qm′}.
We say that h(x1, · · · ,xk) has monomial pattern Q if it has form:

h(x1, · · · ,xk) =
∑

i,j

ηi,jQj(xi) mod p , where ηi,j are integer coefficients (1)

The preprocessing is then allowed to depend on the monomials Q, but not the
polynomials h to be computed later. We formalize this tool called Preprocessed
Polynomial Encoding (PPE) below.

Preprocessed Polynomial Encoding

– PPE.PreProc(p, Q,x1, · · · ,xk) → (PI, SI). Given a collection of constant
degree-d monomials, Q = {Q1, . . . , Qm′}, the preprocessing algorithm con-
verts a batch of k inputs {xi ∈ {0, 1}n}i∈[k] into a preprocessed input (PI, SI)
over Zp. It satisfies sublinear time-succinctness in the sense that prepro-
cessing time is sublinear in m′ · k.

– PPE.Decode(p, Q, h,PI, SI) = y. The decoding algorithm decodes the output

y = h(x1, · · · ,xk) =
∑

i,j

ηi,jQj(xi) mod p .

Indistinguishability security: PPE guarantees that PI for any two different
inputs x1, · · · ,xk and x′

1, · · · ,x′
k are indistinguishable.

Next we need to answer two questions: (i) Can we construct PPE?; and (2) Is
this amortization useful to construct PRE? Below, we answer the second question
first.

Constructing PRE Using (Amortized) PPE. In order to construct PRE scheme,
we need a randomized encoding scheme (with sublinear randomness) with an
encoding algorithm Encode′

C that is exactly the kind of polynomials that PPE
can handle (Eq. 1). Then, we can simply use the PPE preprocessing as the PRE
preprocessing. More precisely, there should exist a universal set of monomials Q,
such that, for every complex circuit C,

Encode′
C(x, r)7 =

{
hl(x1, · · · ,xk) =

∑

i,j

ηl,i,jQj(xi) mod p
}

l

where ηl,i,j ’s depend on C, but Qj ’s do not.

We construct such an RE for NC1, denoted as ARE, using Yao’s garbling
scheme [41] and a PRG in NC0. Recall that we consider circuits C : {0, 1}n →
{0, 1}m=m′k where every output bit is computable by a formula of fixed size,
say λ. We can divide C into k chunks C1, . . . , Ck where circuit Ci computes the
ith chunk of outputs of C and has size m′λ, and then we can garble each of the
chunks separately.

ARE.Encode(C,x, r1, . . . , rk) = Yao.Gb(C1,x;PRG(r1)), . . . ,Yao.Gb(Ck′ ,x;PRG(rk)),
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The idea is viewing {xi = (x, ri)} as the k inputs to be batch processed. But,
do the functions {Yao.Gb(Ci, �, �)} share a universal set of monomials? Unfortu-
nately, this is not the case since the computation of each garbled table depends
on the gates in Ci. To solve this problem, we modify our approach to garble the
universal circuit and treat Ci’s as part of input to be garbled. More precisely,

ARE.Encode(C,x, r1, . . . , rk) = Yao.Gb(U, (C1,x),PRG(r1)), . . . ,Yao.Gb(U, (Ck,x),PRG(rk)),

where U is a universal circuit that takes as input Ci,x and outputs Ci(x). Now
the computation of the garbled tables no longer depend on Ci, neither does the
input garbling of x. The only part that depends on Ci is the input garbling of Ci,
which looks like (1−Cij)l0 +Cij l1, for every bit of description of Ci. Examining
more closely, we see that the monomials for computing the labels are in fact
universal, and Ci only affects the coefficients that combine these monomials.
This is exactly the type of polynomials that PPE can handle.

Note that our ARE only handles NC1 circuits because they can be written as
formulas. In a formula, every wire w feeds into a single gate g as an input wire.
Hence, it suffices to use a PRG with linear stretch to expand the label for wire w
into pseudorandom masks used for creating the garbled table for g. If the fan-out
were unbounded, we would need a PRF in order to generate the pseudorandom
masks for all the gates that wire w feeds into. However, we do not have PRF
with constant locality. More details are provided in Sect. 5, where we also show
that the size of the garbling is linear in |C| = mλ and the total input length
|x′ = (x, r)| is sublinear in m.

2.2 Constructing Proprocessed Polynomial Encoding

We now construct our key technical tool PPE. For simplicity, in this overview,
we will focus on computing just the a collection of degree d monomials Q =
{Qi(xj)}i∈[m′],j∈[k], as it illustrates the idea behind our preprocessing procedure,
and polynomials with monomial pattern Q can be computed in the same degree
as the monomials. Similar to before, the public preprocessed input PI contains
a LPN encryption of each xj , that is,

PI = {HEEnc(xj) = (Aj ,bj = sAj + ej + xj)}j∈[k],

where Aj ← Z
n×k
p , s ← Z

1×k
p , and ej ∈ Z

k
p where each coordinate is zero with

probability k−δ. Here we set the LPN dimension to k, which is set to be poly-
nomially related to but polynomially smaller than n. Given PI, we can homo-
morphically evaluate all monomials in Q to obtain encryption of the outputs
{HEEnc(Qi(xj))}i,j .

Next, we construct SI so that these ciphertexts can be decypted and errors can
be corrected. For decryption, SI includes all degree d monomials in the secret key
s, SI0 = (1||s)⊗d, so that one can obtain the erroneous outputs {Qi(xj + ej)}i,j .
Next, think of the errors Corr as arranged in a m′ × k matrix, where Corr[i, j] =
Qi(xj +ej)−Qi(xj). We do not compress the entire matrix Corr in one shot, nor
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compressing it column by column, the new idea is compressing it row by row.
Each row, denoted by Corri, has dimension k and contains the errors related to
computing a single monomial Qi on all inputs {xj}j ,

Corri = {Qi(xj + ej) − Qi(xj)}j∈[k] .

If we can compress each Corri into SIi in (amortized) sublinear time
(k1−Ω(1))poly(λ), then the overall time for computing SI = (SI0,SI1, · · · ,SI′m)
is (k1−Ω(1) · m

k )poly(λ), sublinear in m′ · k. Given such SI, we can indeed correct
all errors in degree 2 and obtain the desired outputs {Qi(xj)}i,j .

The Compressed Version SIi. So what is special about compressing each row
Corri? The key is that elements in one row {Corr[i, j]}j are all independent,
because the value Corr[i, j] depends on ej ,xj , which is independent for different
j’s. In comparison, note that this is not the case for elements in one column
{Corr[i, j]i}. This is because two different monomials Qi and Qi′ may depend
on the same input variable, say the k’th, and hence Corr[i, j] and Corr[i′, j] both
depend on the same noise ej,k used for hiding xj,k. The independence and the
fact that each element Corr[i, j] is non-zero with probability O(k−δ) imply that
each row Corri has O(k1−δ) non-zero elements with overwhelming probability.

We rely on both the sparsity of and independence of elements in Corri to
compress it. Let’s first see how the compressed version SIi looks like. We assign
elements in Corri into T = k1−δ square matrices {Mi,γ}γ∈[T ], each of size (t =
kδ/2) × (t = kδ/2). The assignment can be arbitrary as long as every element
Corr[i, j] is assigned to a unique location in one of the matrices Mi,j1 [j2, j3].
We denote by φ this assignement, φ(j) = (j1, j2, j3). Observe that on average,
each matrix Mi,γ contains less than 1 non-zero entries. By the independence of
elements in Corri again, every matrix Mi,γ has at most λ non-zero entries, with
overwhelming probability in λ. Thus, every matrix Mi,γ has rank less than λ
and can be decomposed into Ui,γ ,Vi,γ ∈ Z

t×λ
p such that Mi,γ = Ui,γ · V�

i,γ .
The compressed version SIi = {Ui,γ ,Vi,γ}γ∈[t1] contains exactly these U,V
matrices, and the value of Qi(xj) can be computed in degree (O(1), 2) from PI,
SI0 and SIi as follows:

Qi(xj) = Qi(bj − sAj) − (
Corr[i, j] = Mi,j1 [j2, j3]

)

= Qi(bj − sAj) − (
Ui,j1 · V�

i,j1

)
[j2, j3]

The size of SIi = O(T × t × λ) = O(k1−δ × kδ/2 × λ) = O(k1−δ/2λ) is sublinear
in k as desired.

Computing of SIi in Sublinear Time. We now show that beyond being size-
succinct, each SIi can also be computed in time sublinear in k in an amortized
fashion. More precisely, we show that the collection of SI1, . . . ,SIm′ can be com-
puted by a circuit of size (nk2 + m′k1−δ/2)poly(λ), which is sublinear in m′ · k
when k is set appropriately. We break down the task of computing SI1, . . . ,SIm′

in two steps.
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1. Clearly, to compute each SIi in amortized sublinear time in k, we cannot
afford to compute the entire row Corri which has dimension k. Instead, we
compute the list NZCorri of non-zero entries in Corri only, which has size
O(k1−δ). More precisely, NZCorri consists of tuples of the form

NZCorri = {(j, φ(j) = (j1, j2, j3), Corr[i, j]) | j ∈ [k], Corri[j] �= 0} .

That is, it contains the index j of the non-zero entries in Corri, the matrix
location they are assigned to Mi,j1 [j2, j2], and the value of the error Corr[i, j].
Moreover, the list is sorted in ascending order with respect to coordinate j1,
so that tuples with the same value j1 appear contiguously.

2. In the second step, we use these special lists {NZCorri} to compute SIi.

Let’s see how to do each step in amortized sublinear time, starting with the
easier second step.

The Second Step: Given NZCorri, we can compute SIi in time poly(λ)(k1−δ/2).
This is done by making a single pass on NZCorri and generating rows and columns
of {Ui,γ ,Vi,γ}γ∈[T “on the fly”. We can start by initializing these matrices with
zero entries. Then for the 
’th tuple (j, φ(j) = (j1, j2, j3),Corr[i, j]) in NZCorri,
we set Ui,j1 [j2, 
] = Corr[i, j] and Vi,j1 [j3, 
] = 1. Since each matrix Mi,γ gets
assigned at most λ non-zero entries, the index 
 ranges from 1 up to λ, fitting
the dimension of U’s, and V’s. Hence, this way of generating Ui,γ and Vi,γ

guarantees that Mi,γ = Ui,γV�
i,γ .

The First Step: Next, we first illustrate how to generate all lists {NZCorri}i∈[m′]
in sublinear time in m′k, in the Random Access Memory (RAM) model. The
first sub-step is collecting information related to all the non-zero elements in the
LPN errors {ej}j∈[k] used to encrypt the inputs {xj}j∈[k]. More precisely, for
every coordinate l ∈ [n] in an input, form the list

NZInpl = {(j, xj,l, ej,l) | ej,l �= 0}j∈[k] .

That is, NZInpl contains the index j of each input xj , such that, the l’th element
xj,l is blinded by a non-zero error ej,l �= 0, as well as the values xj,l, ej,l of the
input and error elements. Tuples in this list are sorted in ascending order with
respect to coordinate j. Note that these lists can be computed in time O(nk).

Now, think of a database that contains all {NZInpl}l and inputs {xj}j , which
can be randomly accessed. The second sub-step makes a pass over all monomi-
als Q1, . . . Qm′ . Each monomial Qi depends on at most d variables (out of n
variables), say Qi depends on variables at coordinates {l1, . . . , ld}. For every
monomial Qi, with random access to the database, make a single pass on lists
NZInpl1 , . . . ,NZInpld and generate NZCorri on the fly. The fact that every list
NZInpl is sorted according to j ensures that the time spent for each Qi is
O(k1−δ). Thus, in the RAM model {NZCorri}i can be constructed in sublin-
ear time O(m′k1−δ). All we need to do now is coming up with a circuit to do
the same.
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Circuit Conversion. To obtain such a circuit, we examine each and every step
inside the above RAM program and then replace them by suitable (sub)circuits,
while preserving the overall running-time. Since the conversion is very technical,
we refer the reader to the full version for details, and only highlight some of
the tools used in the conversion. We make extensive use of sorting circuits of
almost linear size [1] and Turing machine to circuit conversions. For example,
at some point we have to replace RAM memory lookups by circuits. To do so,
we prove the following simple lemma about RAM look up programs. A RAM
lookup program P lookup

q,N indexed with a number N ∈ N and a number q ∈ N is
a program with the following structure: It takes as input q indices {i1, . . . , iq}
and a database DB ∈ {0, 1}N and it outputs {DB[i1], . . . ,DB[iq]}. We show that
this can be implemented efficiently by a circuit:

Lemma 3. Let q,N ∈ N. A RAM lookup program PRAM
q,N (that looks up q indices

from a database of size N) can be implemented by an efficiently uniformly gen-
eratable boolean circuit of size O((q + N)poly(log2(q · N))) for some polynomial
poly.

Please see the full version [29] for how we use the above lemma and other tech-
nical details.

Outline. This completes are technical overview. In the main body, we present
three abstractions PPE, ARE and PRE. In the full version, we show how to
combine these abstractions along with a partially hiding FE scheme to build a
sublinear functional encryption. The outline is summarized in Fig. 1.

3 Preliminaries

We now set up some notations that will be used throughout the paper. Through-
out, we will denote the security parameter by λ. For any distribution X , we
denote by x ← X the process of sampling a value x from the distribution X .
Similarly, for a set X we denote by x ← X the process of sampling x from
the uniform distribution over X. For an integer n ∈ N we denote by [n] the
set {1, .., n}. Throughout, when we refer to polynomials in security parameter,
we mean constant degree polynomials that take positive value on non-negative
inputs. We denote by poly(λ) an arbitrary polynomial in λ satisfying the above
requirements of non-negativity.

We use standard Landau notations. We will also use Õ, where for any function
a(n, λ), b(n, λ), we say that a = Õ(b) if a(n, λ) = O(b(n, λ)poly(λ, log2 n)) for
some polynomial poly. A function negl : N → R is negligible if negl(λ) = λ−ω(1).
Further, the negl is subexponentially small if negl(λ) = 2−λΩ(1)

.
We denote vectors by bold-faced letters such as b and u. Matrices will be

denoted by capitalized bold-faced letters for such as A and M. For any k ∈ N,
we denote by the notation v⊗k = v ⊗ · · · ⊗ v︸ ︷︷ ︸

k

the standard tensor product. This

contains all the monomials in the variables inside v of degree exactly k.
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Fig. 1. Flowchart depicting the technical outline.

Multilinear Representation of Polynomials and Representation over Zp. A
straightforward fact from analysis of boolean functions is that every NC0 function
F : {0, 1}n → {0, 1} can be represented by a unique constant degree multilinear
polynomial f ∈ Z[x = (x1, . . . , xn)], mapping {0, 1}n to {0, 1}. At times, we con-
sider a mapping of such polynomial f ∈ Z[x] into a polynomial g over Zp[x] for
some prime p. This is simply obtained by reducing the coefficients of f modulo p
and then evaluating the polynomial over Zp. Observe that g(x) = f(x) mod p
for every x ∈ {0, 1}n as f(x) ∈ {0, 1} for every such x. Furthermore, given any
NC0 function F , finding these representations take polynomial time.

Computational Indistinguishability. We now describe how computational indis-
tinguishability is formalized.
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Definition 4 (ε-indistinguishability). We say that two ensembles X =
{Xλ}λ∈N and Y = {Yλ}λ∈N are ε-indistinguishable where ε : N → [0, 1] if for
every probabilistic polynomial time adversary A it holds that: For every suffi-
ciently large λ ∈ N,

∣∣∣∣ Pr
x←Xλ

[A(1λ, x) = 1] − Pr
y←Yλ

[A(1λ, y) = 1]
∣∣∣∣ ≤ ε(λ).

We say that two ensembles are computationally indistinguishable if they are
ε-indistinguishable for ε(λ) = negl(λ) for some negligible negl, and that two
ensembles are sub-exponentially indistinguishable if they are ε-indistinguishable
for ε(λ) = 2−λc

for some positive real number c.

Assumptions. We make use of three assumptions. We state the two assumptions
LPN and PRG below, which are used to build the components which are new to
this paper. Please see [30] for a formal definition of DLIN.

Definition 5 (δ-LPN (Assumption, [9,15,16,24]). Let δ ∈ (0, 1). We say
that the δ-LPN Assumption is true if the following holds: For any constant ηp >
0, any function p : N → N s.t., for every 
 ∈ N, p(
) is a prime of 
ηp bits, any
constant ηn > 0, we set p = p(
), n = n(
) = 
ηn , and r = r(
) = 
−δ, and we
require that the following two distributions are computationally indistinguishable:

{
(A,b = s · A + e) | A ← Z


×n
p , s ← Z

1×

p , e ← D1×n

r (p)
}


∈N{
(A,u) | A ← Z


×n
p , u ← Z

1×n
p

}


∈N

In addition, we say that subexponential δ-LPN holds if the two distributions above
are subexponentially indistinguishable.

The second assumption we use is of that of an existence of Boolean PRG in
NC0 with polynomial stretch.

Definition 6 (Pseudorandom Generator). A stretch-m(·) pseudorandom gen-
erator is a Boolean function PRG : {0, 1}∗ → {0, 1}∗ mapping n-bit inputs to
m(n)-bit outputs (also known as the stretch) that is computable by a uniform
p.p.t. machine, and for any non-uniform p.p.t adversary A there exist a negli-
gible function negl such that, for all n ∈ N

∣∣∣∣ Pr
r←{0,1}n

[A(PRG(r)) = 1] − Pr
z←{0,1}m

[A(z) = 1]
∣∣∣∣ < negl(n).

Further, a PRG is said to be in NC0 if PRG is implementable by a uniformly
efficiently generatable NC0 circuit. PRG is said to have polynomial stretch if
m(n) = n1+Ω(1). Finally, PRG is said to be subexponentially secure if negl(n) =
O(exp(−nΩ(1))).



Indistinguishability Obfuscation from LPN, DLIN and PRGs 685

Remark 7. In the candidate constructions, typically there is a sampling algo-
rithm that samples the description of PRG, and this property of computational
indistinguishability is expected to hold with probability 1 − o(1) over the choice
of PRG. Such a PRG will give us an existential result. Constructively, this issue
can be addressed by constructing our FE scheme with multiple instantiations of
PRG so that with overwhelming probability, at least one of the FE schemes we
build is secure, and then using an FE combiner [3,31].

4 Preprocessed Polynomial Encoding

In this section, we formally define a PPE scheme. Before we formally define the
notion we introduce the function class FPPE. We first define the notion of a degree
d monomial pattern Q over n variables which is just a collection of monomials
of degree at most d.

Definition 8 (d-monomial pattern and monomials). For an integer d > 0,
and an integer n > d ∈ N, we say Q is a d-monomial pattern over n variables,
if Q = {Q1, . . . , Qm}, where for every i ∈ [m], we have that 0 < |Qi| ≤ d, and
each Qi is a distinct subset of [n]. For any input x ∈ {0, 1}n and a set Q ⊆ [n],
define MonQ(x) =

∏
i∈Q xi to be the monomial in x corresponding to the set Q.

Thus, for any input x, a d-monomial pattern Q = {Q1, . . . , Qm} over n variables
defines m monomials of degree at most d.

We denote by Γd,n the set of all d-monomial patterns over n variables.

Definition 9 (Polynomial Class FPPE). For a constant d ∈ N, the family
of classes of polynomials FPPE,d = {FPPE,d,nPPE,Q,kPPE

}d≤nPPE∈N,Q∈Γd,nPPE
,kPPE∈[N]

consists of polynomials f ∈ FPPE,d,nPPE,Q,kPPE
of the following kind: f is defined

by a sequence of integers (ζ(j)i )j∈[kPPE],i∈[mPPE]. It takes as input x consisting of
kPPE blocks x = (x(1), . . . ,x(kPPE)) each of nPPE variables, and has form:

f(x) :=
∑

j∈[kPPE], Qi∈Q
ζ
(j)
i MonQi

(x(j)),

where Q is a d-monomial pattern with |Q| = mPPE.

In a nutshell, FPPE consists of polynomials that take as input a kPPE blocks of
inputs of size nPPE, and computes all polynomials that are linear combination
of some fixed constant degree d monomials on those inputs governed by a set Q.
Looking ahead, for the PPE scheme we will require that the size of the circuit
computing (PI,SI) will be sublinear in |Q| · kPPE.
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Definition 10 (Syntax of PPE). For any constant d > 0, a PPE scheme for
function class FPPE,d consists of the following p.p.t. algorithms:

– (PI,SI) ← PreProc(1nPPE , 1kPPE , p, Q,x ∈ Z
nPPE·kPPE
p ) : The randomized Pre-

processing algorithm takes as input the block length parameter nPPE, the num-
ber of blocks parameter kPPE, a prime p, a d-monomial pattern on nPPE vari-
ables Q of size mPPE, and an input x ∈ Z

nPPE·kPPE
p . It processes it to output

two strings, a public string PI and a private string SI. Both these strings are
vectors over Zp. We denote by 
PPE = 
PPE(nPPE,mPPE, kPPE) the combined
dimension of (PI,SI) over Zp.

– y ← Eval(f ∈ FPPE,d,nPPE,Q,kPPE
, (PI,SI)) : The deterministic evaluation algo-

rithm takes as input the description of a function f ∈ Fd,nPPE,Q,kPPE
and a

pre-processed input (PI,SI). It outputs y ∈ Zp.

The correctness requirement is completely straightforward namely y should be
equal to f(x) with high probability.

Definition 11 ((Statistical) Correctness of PPE). Let d > 0 be a constant
integer, a PPE scheme for the function class Fd,PPE satisfies correctness if: For
every kPPE ∈ N, nPPE = kΘ(1), and Q ∈ Γd,nPPE

with mPPE ≥ 1 sets, any function
f ∈ Fd,PPE,nPPE,Q,kPPE

, any prime p and any input x ∈ Z
nPPE·kPPE
p :

Pr
[
Eval(f, (PI,SI)) = f(x) mod p (PI,SI) ← PreProc(1nPPE , 1kPPE , p,Q,x)]

]

≥ 1 − O(exp(−kPPE
Ω(1)))

Note that we require correctness to hold when kPPE is large enough, we will
also require the security to hold for large values of kPPE. The next definition we
discuss is that of security. The security definition roughly requires that for any
input x ∈ Z

nPPE·kPPE
p , the public part of the computed pre-processed input while

pre-processing x is computationally indistinguishable to the public part of the
pre-processed input when the pre-processing is done for the input 0nPPE·kPPE .

Definition 12 (Security of PPE). Let d > 0 be an integer constant. A PPE
scheme is secure, if the following holds: Let β > 0 be any constant and p :
N → N be any function that on input an integer r, outputs an rβ bit prime. Let
nPPE = kPPE

Θ(1) be any polynomial in kPPE. Let p = p(kPPE) and {xkPPE
}kPPE∈N

be any ensemble of inputs where each xkPPE
∈ Z

nPPE·kPPE
p and {QkPPE

}kPPE∈N be
ensemble of monomial patterns with QkPPE

∈ Γd,nPPE
with size mPPE ≥ 1. Then for

kPPE ∈ N, it holds that for any probabilistic polynomial time adversary, following
distributions are computationally indistinguishable with the advantage bounded
by negl(kPPE).
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{
PI | (PI, SI) ← PreProc(1nPPE , 1kPPE , p, QkPPE

, xkPPE
)
}

kPPE{
PI | (PI,SI) ← PreProc(1nPPE , 1kPPE , p, QkPPE

, 0nPPE·kPPE)
}

kPPE

Further, the scheme is said to be subexponentially secure if negl(kPPE) =
exp(−kPPE

Ω(1)).

Definition 13 (Sublinear Pre-processing Efficiency). Let d > 0 be a con-
stant integer. We say that PPE scheme for FPPE,d satisfies sublinear efficiency
if there exists a polynomial poly and constants c1, c2, c3 > 0 such that for
nPPE, kPPE ∈ N, Q ∈ Γd,nPPE

with size mPPE ≥ 1 and a prime p the size of
the circuit computing PreProc(1nPPE , 1kPPE , p, Q, ·) is tPPE = O((nPPE · kPPEc1 +
mPPE · kPPE

1−c2 + kPPE
c3)poly(log2 p)).

The reason we call this requirement as sublinear pre-processing efficiency is
that if mPPE = nPPE

1+Ω(1), then, one can find a small enough kPPE = nPPE
Ω(1)

such that tPPE = Õ((mPPEkPPE)1−Ω(1)) where Õ hides polynomial factors in
log2 p. Finally we present the requirement that the evaluation for any function
f , can be done by a constant degree polynomial gf that is just degree two in SI.

Definition 14 (Complexity of Evaluation). Let d ∈ N be any constant.
We require that PPE scheme for FPPE,d satisfies the following. We require that
for every kPPE ∈ N, nPPE = kPPE

Θ(1), and Γ ∈ Γd,nPPE
of size mPPE ≥ 1,

any prime p, any input x ∈ Z
nPPE·kPPE
p , any pre-processed input (PI,SI) ←

PreProc(1nPPE , 1kPPE , p, Γ, x), and any f ∈ Fd,nPPE,Q,kPPE
, the following rela-

tion is satisfied:

Eval(f, (PI,SI)) = gf,Q(PI,SI) mod p

where gf,Q(·, ·) is an efficiently computable (multivariate) polynomial over Zp of
degree O(d) in PI and degree 2 in SI.

4.1 PPE Construction Details

In this section, we present our construction of PPE scheme. Before delving into
the construction, we describe the list of notations that will be useful:

– Parameters t1 = 
k1−δ� and T = 
kδ/2�. Observe that 2·kPPE ≥ t1·T 2 ≥ kPPE.
– t is the slack parameter. It is set as kPPE

δ
10 ,

– Map φ: We define an injective map φ which canonically maps kPPE elements
into t1 buckets (equivalently called as a matrices in the text below), each
having a size of T × T . For every j ∈ [kPPE], φ(j) = (j1, (j2, j3)) where
j1 ∈ [t1], (j2, j3) ∈ [T ]× [T ]. Such a map can be computed in time polynomial
in log2 kPPE and can be computed by first dividing j ∈ [kPPE] by t1 and setting
its remainder as j1. Then the quotient of this division is further divided by
T . The quotient and the remainder of this division are set as (j2, j3).
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Construction of PPE

(PI,SI) ← PreProc(1nPPE , 1kPPE , p,Q = (Q1, . . . , QmPPE
),x): Below we

describe the pseudo-code. We show how to construct a circuit for the
same when we talk about preprocessing efficiency property of the scheme.
Perform the following steps:

– Parse x = (x1, . . . ,xkPPE
) where each xj ∈ Z

nPPE
p . Parse xj =

(xj,1, . . . , xj,nPPE
).

– The overall outline is the following: We first show how to sample
components PI′ = (PI1, . . . ,PIkPPE

), and then how to sample SI along
with a boolean variable flag. PI will be set as (flag,PI′).

– Sampling PI′ = (PI1, . . . ,PIkPPE
): Sample s ← Z

kPPE
p . For every i ∈

[nPPE], and j ∈ [kPPE]:
1. Sample aj,i ← Z

kPPE
p .

2. Sample ej,i ← Ber(kPPE−δ) · Zp. Denote ej = (ej,1, . . . , ej,nPPE
).

3. Compute bj,i = 〈aj,i, s〉 + ej,i + xj,i mod p.
For j ∈ [kPPE], set PIj = {aj,i, bj,i}i∈[nPPE].

– Sampling SI: SI has mPPE + 1 components. That is, SI = (SI0, . . .
,SImPPE

). Set SI0 = (1, s)⊗
 d
2 �. We now show how to compute SIr for

r ∈ [mPPE].
1. For j ∈ [kPPE], compute Corrr,j = MonQr

(xj) −MonQr
(xj + ej).

2. Initialize for every γ ∈ [t1], matrices Mr,γ in Z
T×T
p with zero

entries.
3. For j ∈ [kPPE], compute φ(j) = (j1, (j2, j3)) and set

Mr,j1 [j2, j3] = Corrr,j . If any matrix Mr,γ for γ ∈ [t1], has
more than t non-zero entries, then set flagr = 0. Otherwise, set
flagr = 1.

4. If flagr = 1, then, for γ ∈ [t1], compute matrices Ur,γ ,V�
r,γ ∈

Z
T×t
p such that Mr,γ = Ur,γ · Vr,γ . Otherwise for every γ ∈ [t1],

set Ur,γ ,Vr,γ to be matrices with zero-entries.
5. Set SIr = {Ur,γ ,Vr,γ}γ∈[t1].

– Sampling flag: For every i ∈ [nPPE], let Seti = {j ∈ [kPPE]|ej,i �=
0}. If any of these sets have size outside the range [kPPE1−δ −
tkPPE

1−δ
2 , kPPE

1−δ + tkPPE

1−δ
2 ], set flag = 0. Otherwise, set flag =

min{flagr}r∈[m].
y ← Eval(f, (PI,SI)) : Parse PI = (flag,PI1, . . . ,PIkPPE

) where PIj = {aj,i,

bj,i}i∈[nPPE]. Similarly, parse SI = (SI0, . . . ,SImPPE
). Here SI0 = (1, s)⊗
 d

2 �

and SIr = {Ur,γ ,Vr,γ}γ∈[t1] for r ∈ [mPPE]. Parse x = (x1, . . . ,xkPPE
)

and f(x) =
∑

r∈[mPPE],j∈[kPPE]
μr,jMonQr

(xj) for μr,j ∈ Z. Output:

gf,Q(PI,SI) =
∑

r∈[mPPE],j∈[kPPE]

μr,jwr,j(PI,SI),
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where the polynomial wr,j(PI,SI) is the following:

wr,j(PI,SI) =flag · (MonQr
(bj,1 − 〈aj,1, s〉, . . . , bj,nPPE

− 〈aj,nPPE
, s〉))

+ flag · Ur,j1 · Vr,j1 [j2, j3],

where φ(j) = (j1, (j2, j3)). We remark that the polynomial above is
written as a function of s and not SI0, however, since we always mean
SI0 = (1, s)⊗
 d

2 �, we treat this polynomial as some degree-2 polynomial
in SI0.

Remark 15. The only difference to the scheme described in the overview is that
the scheme also uses a boolean variable flag. flag will be 1 with overwhelming
probability, and is set to 0 when “certain” low probability events happen. As
described earlier, the size of the input (PI,SI) is already sublinear. Later, we
describe how even the time to compute it is sublinear.

In the full version [29], we argue correctness, efficiency, complexity and security
properties.

Summing Up: From the above theorems, we have the following result:

Theorem 16. Assuming δ-LPN assumption (Definition 5) holds for any con-
stant δ > 0, then there exists a PPE scheme satisfying Definition 10. Further, if
the assumption is subexponentially secure, then so is the resulting PPE scheme.

5 Amortized Randomized Encoding

We now formally define the notion of an amortized RE scheme (which we will
denote by ARE). The notion is designed to be exactly compatible with a PPE
scheme. The function class FARE is identical to the class for the PRE scheme FPRE.
Namely, FARE = {FARE,nARE,mARE,kARE,λ}nARE,kARE,mARE,λ∈N consists of all circuits
C : {0, 1}nARE → {0, 1}mARE·kARE where every bit of the output is computed by a
Boolean formula of size λ (circuits where each gate has a single fan-out). Such
an ARE scheme has the following syntax:

Definition 17 (Syntax of ARE). An ARE scheme consists of the following
p.p.t. algorithms:

– Encode(C ∈ FARE,nARE,mARE,kARE,λ,x ∈ {0, 1}nARE) → y. The encoding
algorithm is a randomized algorithm that takes as input a circuit C ∈
FARE,nARE,mARE,kARE,λ along with an input x ∈ {0, 1}nARE . It outputs a string
y ∈ {0, 1}∗.

– Decode(1λ, 1nARE , 1mARE , 1kARE ,y) → z : The deterministic decode algorithm
takes as input a string y. It outputs z ∈ ⊥ ∪ {0, 1}mARE·kARE .

An ARE scheme satisfies the following properties.
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Definition 18 ((Perfect) Correctness of ARE). A ARE scheme for the
function class FARE satisfies correctness if: For every polynomials nARE(·),
mARE(·), kARE(·), every λ ∈ N, let nARE = nARE(λ),mARE = mARE(λ), kARE =
kARE(λ). Then, for every x ∈ {0, 1}nARE , C ∈ FARE,nARE,mARE,kARE,λ:

Pr
[
Decode(1λ, 1nARE , 1mARE , 1kARE ,y) = C(x) y ← Encode(C,x)

]
= 1

Definition 19 (Indistinguishability Security). We say that ARE scheme
is secure if the following holds: Let λ ∈ N be the security parameter,
and nARE,mARE, kARE = Θ(λΘ(1)) be polynomials in λ. For every sequence
{C,x0,x1}λ where x0,x1 ∈ {0, 1}nARE and C ∈ FARE,nARE,mARE,kARE,λ with C(x0) =
C(x1), it holds that for λ ∈ N the following distributions are computationally
indistinguishable

{y | y ← ARE.Encode(C,x0)}
{y | y ← ARE.Encode(C,x1)}

Further, we say that ARE is subexponentially secure the above distributions are
subexponentially indistinguishable.

Efficiency Properties. We require that such an ARE scheme is compatible with
a PPE scheme. Namely, the encoding operation Encode(C, ·) uses a constant
degree d-monomial pattern Q of small size m′

ARE = O((nARE+mARE)poly(λ)) over
n′
ARE = O((nARE + m

1−Ω(1)
ARE )poly(λ)) variables such that every bit is computable

using those monomials. Namely:

Definition 20 (Efficiency). We require that there exists constants d ∈
N, c1, c2 > 0, such that the following holds. For any λ ∈ N and
any nARE, kARE,mARE = λΩ(1), there exists an efficiently samplable degree
d-monomial pattern Q of size m′

ARE = O((nARE + mARE)λc1) such that for any
circuit C ∈ FARE,nARE,mARE,kARE,λ and input x ∈ {0, 1}nARE , Encode(C,x; r) → y ∈
{0, 1}T satisfies the following requirements:

– Parse r = (r1, . . . , rkARE
) where each component is of equal size. Let ai =

(x, ri). Then the length of ai ∈ {0, 1}n′
ARE is n′

ARE = O((nARE + m1−c2
ARE )λc1).

– For i ∈ [T ], each yi =
∑

Q∈Q,j∈[kARE]
μi,Q,j ·MonQ(aj) for efficiently samplable

μi,Q,j ∈ Z.

The first property is to ensure that ai for i ∈ [kARE] will be the kARE blocks
that will be preprocessed by the PPE scheme in our construction of PRE. The
monomial pattern used by the PRE will be Q, and it will be used to compute y.

5.1 Construction Details

In Fig. 2, we now give the formal construction of the ARE scheme. We establish
some useful notations and recall the tools we need.
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Notation and Ingredients: λ ∈ N is the security parameter, nARE,mARE, kARE
are parameters associated with the function class FARE,nARE,mARE,kARE

.

Tool: We use a PRG in NC0 (denoted by G) that stretches t1−ε bits to t bits (t
is set below). We also use a PRG in NC0 (denoted by H) that stretches λ bits to
2 · λ + 2 bits. Denote by H0 the function that computes first half of the output
of H and by H1 the function that computes the other half.
We set n′

ARE = (nARE + m1−ε
ARE)poly(λ) for a large enough polynomial poly. We

will set t = n′
ARE − nARE.

Universal Formula Implementing a Formula: Let U = UmAREλ,nARE,mARE
:

{0, 1}mARE·λ×{0, 1}nARE → {0, 1}mARE be the universal circuit formula for evaluat-
ing Boolean formulas with nARE-bit inputs, mARE-bit outputs, and size mARE ·λ.
In particular, U(Ci,x) = Ci(x) for circuits Ci and input xi satisfying the require-
ments. The size of each U is Õ(nARE +mARE), where Õ hides polynomial factors
in log nARE, log nARE, λ. Since nARE,mARE are all polynomials in λ, we ignore its
dependence on logarithmic factors.

In full version [29], we discuss why all the properties are satisfied. Thus, we
have the following theorem:

Theorem 21. Assuming the existence of a boolean PRG in NC0 with a stretch
n1+ε for some constant ε > 0 where n is the input length to the PRG (see
Definition 6), then there exists an ARE scheme satisfying Definition 17. Further,
if the PRG is subexponentially secure, then so is ARE.

6 Preprocessed Randomized Encoding

In this section, we define a Preprocessed Randomized Encoding scheme. We
define and build it for the following function class:

Function Class: The function class FPRE = {FPRE,nPRE,mPRE,kPRE,λ}nPRE,mPRE,kPRE∈Poly,λ∈N

is indexed with three polynomials nPRE,mPRE, kPRE : N → N and a parameter
λ ∈ N. We define this function class to be exactly FFE,nPRE,mPRE·kPRE,λ, consisting
of all Boolean formulas with nPRE(λ) input bits and mPRE(λ) · kPRE(λ) output bits
where every output bit is computed by a Boolean formula of size λ.

Definition 22 (Syntax of Preprocessed Randomized Encoding). A pre-
processed randomized encoding scheme PRE for the function class FPRE contains
the following polynomial time algorithms:

– PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x ∈ {0, 1}nPRE) → (PI,SI). The prepro-
cessing algorithm takes as inputs the security parameter λ, input length 1nPRE ,
output block length 1mPRE , number of output blocks parameter 1kPRE a prime p
and an input x ∈ {0, 1}n. It outputs preprocessed input (PI,SI) ∈ Z


PRE
p , where

PI is the public part and SI is the private part of the input.
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Fig. 2. ARE scheme description

– PRE.Encode(C, (PI,SI)) = y. The encoding algorithm takes inputs a circuit
C ∈ FPRE,nPRE,mPRE,kPRE,λ, and preprocessed input (PI,SI). It outputs a binary
encoding y.

– PRE.Decode(y) = out. The decoding algorithm takes as input an encoding y
and outputs a binary output out.
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Remark 23. Note that we could have defined the primitive without a parameter
kPRE by considering formulas with output length mPRE as described in the high-
level overview earlier. This is only done because this notation will align well with
rest of the primitives that we use and build in this paper. Instead of requiring the
size of the circuit computing the preprocessing to be proportional to mPRE

1−ε

for some constant ε > 0, we will require it to be proportional to mPRE · kPRE1−ε.
By setting kPRE to be sufficiently large function of mPRE, this will ensure the size
of the circuit computing the preprocessing is sublinear in mPRE · kPRE

In this paper, we care about constructions where for the function class above,
nPRE,mPRE and kPRE are all polynomially related with λ, that is, of magnitude
λΘ(1). Further, the output block length is super-linear in the input length, that
is, mPRE = nPRE

1+ε for some constant ε > 0.

Correctness and Security Requirements

Definition 24 (Correctness). We say that PRE is correct if the following
holds: For every λ ∈ N, nPRE,mPRE, kPRE = Θ(λΘ(1)), p a prime, x ∈ {0, 1}nPRE ,
and C ∈ FPRE,nPRE,mPRE,kPRE,λ.

Pr[Decode(Encode(C,PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x))) = C(x)] ≥ 1 − exp(−λΩ(1)).

Definition 25 (Indistinguishability Security). We say that PRE scheme
is secure if the following holds: Let β, c1, c2, c3 > 0 be arbitrary constants, and
p : N → N be any function that takes as input any integer r and outputs a
rβ bit prime and nPRE(r) = rc1 , mPRE(r) = rc2 and kPRE = rc3 be three poly-
nomials. Let {C,x0,x1}λ∈N be any ensemble where x0,x1 ∈ {0, 1}nPRE(λ) and
C ∈ FPRE,nPRE(λ),mPRE(λ),kPRE(λ),λ with y = C(x0) = C(x1). Then it holds that
for any λ ∈ N, and letting p = p(λ), nPRE = nPRE(λ), mPRE = mPRE(λ) and
kPRE = kPRE(λ) it holds that the following distributions are computationally
indistinguishable
{
(PI,y) | (PI, SI) ← PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x0), y ← PRE.Encode(C,PI, SI)

}

{
(PI,y) | (PI, SI) ← PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x1), y ← PRE.Encode(C,PI, SI)

}

Further, we say that PRE is subexponentially secure the above distributions are
subexponentially indistinguishable.

The Efficiency and Complexity Requirements

Definition 26 (Sublinear Efficiency of PRE). We require that there exists
a polynomial poly and constants c1, c2, c3 > 0 such that for every poly-
nomials nPRE,mPRE and kPRE and every security parameter λ ∈ N, every
prime p, the (randomized) circuit D(·) that on input x ∈ {0, 1}nPRE com-
putes PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x) has size bounded by ((nPRE +
mPRE

1−c1)kPREc2 + mPREkPRE
1−c3)poly(λ, log p).
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In particular, this implies that when mPRE = mPRE(λ) = Θ(λΘ(1)), nPRE =
O(mPRE

1−ε) for some constant ε ∈ (0, 1), then, there exists some constant c >
0, γ(c1, c2, c3, c) > 0 such that when kPRE = nPRE

c, then the size of D is bounded
by (mPRE · kPRE)1−γ · poly(λ, log p)).

Definition 27 (Complexity of Encoding). We require that for every poly-
nomials nPRE,mPRE, kPRE, every security parameter λ ∈ N, every C ∈
FPRE,nPRE,mPRE,kPRE,λ, and every prime p, there exists a polynomial mapping f
satisfying the following:

– For every input x ∈ {0, 1}nPRE , and every (PI,SI) ← PreProc(1λ,
1nPRE , 1mPRE , 1kPRE , p, x),

f(PI,SI) mod p = PRE.Encode(C, (PI,SI)) .

– There is a universal constant d ∈ N independent of all parameters, s.t., f has
degree d in PI and degree 2 in SI.

– f can be uniformly and efficiently generated from λ, nPRE,mPRE, kPRE, p, C.

6.1 Construction of Preprocessed Randomized Encoding

The construction of a PRE scheme is really straightforward. We simply com-
pose PPE with ARE. Let’s take a look at it formally. Let the function class we
are interested in is FPRE,nPRE,mPRE,kPRE,λ where λ is the security parameter and
nPRE,mPRE, kPRE are polynomials in the security parameter. Let p denote the
prime to be used for the PRE scheme.

Ingredients: We make use of two ingredients:

1. A ARE scheme. Let d > 0 be the constant degree which is the degree of
evaluation of the PRE scheme. We set:

– nARE = nPRE,
– mARE = mPRE,
– kARE = kPRE,
– m′

ARE = (nPRE + mPRE) · λc1 ,
– n′

ARE = (nPRE + mPRE
1−c2)λc1 , where c1, c2 > 0 are constants associated

with the efficiency requirements of ARE. Let QARE be the d-monomial
pattern of size m′

ARE over n′
ARE variables associated with the encoding

operation.
2. A PPE scheme, where we set:

– The prime to be used as p,
– nPPE = n′

ARE,
– mPPE = m′

ARE,
– Set the monomial pattern QPPE = QARE = Q. The degree of the monomial

pattern is d,
– Let d′ = O(d) be the constant degree of the polynomial gf (·) = PPE.
Eval(f, ·) mod p used to evaluate any polynomial f ∈ Fd,PPE,nPPE,Q,kPPE

.

We now describe our construction in Fig. 3:
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Fig. 3. The description of the PRE scheme.

In the full version, we argue various properties associated with a PRE scheme.
Thus, we have the following theorem:

Theorem 28. Assume that there exists two constant δ, ε > 0 such that:

– δ-LPN assumption (Definition 5) holds,
– There exists a PRG in NC0 with a stretch n1+ε where n is the length of the

input (Definition 6),

Then, there exists a PRE scheme (Definition 22). Further, assuming the underly-
ing assumptions are subexponentially secure, then so is the resulting PRE scheme.

7 Summing Up

In the full version [29], we use a PRE scheme and combine it with a partially hid-
ing functional encryption, to build a sublinear functional encryption for Boolean
formulas and then bootstrap it to iO using prior results. Thus, we prove:

Theorem 29. If there exists constants δ, τ > 0 such that:

– δ-LPN assumption holds (Definition 5),
– There exists a PRG in NC0 with a stretch of n1+τ where n is length of the

input (Definition 6),
– The DLIN assumption over prime order symmetric bilinear groups holds.

Then, there exists a sublinear functional encryption scheme for circuits. Further
if the underlying assumptions are subexponentially secure, then there exists a
secure indistinguishability obfuscation for all circuits.
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Abstract. Incompressible encryption allows us to make the ciphertext
size flexibly large and ensures that an adversary learns nothing about
the encrypted data, even if the decryption key later leaks, unless she
stores essentially the entire ciphertext. Incompressible signatures can be
made arbitrarily large and ensure that an adversary cannot produce a
signature on any message, even one she has seen signed before, unless
she stores one of the signatures essentially in its entirety.

In this work, we give simple constructions of both incompressible
public-key encryption and signatures under minimal assumptions. Fur-
thermore, large incompressible ciphertexts (resp. signatures) can be
decrypted (resp. verified) in a streaming manner with low storage. In
particular, these notions strengthen the related concepts of disappearing
encryption and signatures, recently introduced by Guan and Zhandry
(TCC 2021), whose previous constructions relied on sophisticated tech-
niques and strong, non-standard assumptions. We extend our construc-
tions to achieve an optimal “rate”, meaning the large ciphertexts (resp.
signatures) can contain almost equally large messages, at the cost of
stronger assumptions.

1 Introduction

Security breaches are ubiquitous. Therefore, it is natural to wonder: will
encrypted messages remain secure, even if the secret decryption key is later
leaked? Forward secrecy deals exactly with this problem, but requires either
multi-round protocols or key updates, both of which may be undesirable in many
scenarios. And in the usual time-bounded adversary model, unfortunately, such
limitations are inherent: an adversary can simply store the ciphertext and wait
for the secret key to leak, at which point it can easily decrypt.

Incompressible encryption. In this work we ask: can we force a would-be “save-
it-for-later adversary” to actually store the ciphertext in its entirety, for the
entire length of time it is waiting for the secret key to leak? At a minimum such
storage may be inconvenient, and for very large files or long time frames, it may
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be prohibitively costly. Even for short messages, one may artificially increase the
ciphertext size, hopefully forcing the adversary to use much more storage than
message length. We may therefore hope that such an incompressible encryption
scheme maintains the privacy of messages even if the secret key is later revealed.

Remark 1. For an illustrative example, an individual with a gigabit internet
connection can transmit ∼10 TB per day, potentially much more than their own
storage. Of course many entities will have 10 TB or even vastly more, but an
incompressible scheme would force them to devote 10 TB to storing a particular
ciphertext for potentially years until the key is revealed. Across millions or bil-
lions of people, even powerful adversaries like state actors would only be able to
devote such storage to a small fraction of victims.

Unfortunately, traditional public key encryption schemes are not incompress-
ible; an adversary may be able to store only a short digest of the ciphertext and
still obtain non-trivial information about the plaintext once the secret key is
leaked. For example, for efficiency reasons, hybrid encryption is typically used
in the public key setting, where the encryption of a message m may look like:

(Enc(pk, s), G(s) ⊕ m) .

Here, s is a short seed, and G is a pseudorandom generator used to stretch
the random seed into a pseudorandom pad for the message m. A save-it-for-
later adversary need not store the entire ciphertext; instead, they can store just
Enc(pk, s) as well as, say, the first few bits of G(s) ⊕ m. Once the secret key is
revealed, they can learn s and then recover the first few bits of m. This may
already be enough to compromise the secrecy of m. Such an attack is especially
problematic if we wanted to artificially increase the ciphertext size by simply
padding the message and appending dummy bits, since then the first few bits of
m would contain the entire secret plaintext.

The compressibility issue is not limited to the scheme above: we could replace
G(s)⊕m with a different efficient symmetric key encryption scheme such as CBC-
mode encryption, and essentially the same attack would work. The same goes
for bit encryption as well.

Incompressible public key encryption instead requires that if the adversary
stores anything much smaller than the ciphertext, the adversary learns absolutely
nothing about the message, even if the secret key later leaks.

Remark 2. We note that plain public key encryption does have some incompress-
ibility properties. In particular, it is impossible, in a plain public key encryption
scheme, for the adversary to significantly compress the ciphertext and later be
able to reconstruct the original ciphertext. However, this guarantee implies noth-
ing about the privacy of the underlying message should the key leak.

Incompressible Signatures. A canonical application of signatures is to prevent
man-in-the-middle attacks: by authenticating each message with a signature,
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one is assured that the messages were not tampered with. However, a man-in-
the-middle can always delay sending an authenticated message, by storing it for
later. The only way to block such attacks in the usual time-bounded adversary
model is to use multi-round protocols, rely on synchronized clocks and timeouts,
or have the recipients keep state, all of which may be undesirable. We therefore
also consider the case of incompressible signatures, which force such a delaying
adversary to actually store the entire signature for the duration of the delay.

In slightly more detail, in the case of plain signatures, a forgery is a signature
on any new message, one the adversary did not previously see signed. The reason
only new signed messages are considered forgeries is because an adversary can
simply store a valid signature it sees, and later reproduce it. An incompressible
signature, essentially, requires that an adversary who produces a valid signature
on an existing message must have actually stored a string almost as large as the
signature. By making the signatures long, we may hope to make it prohibitively
costly to maintain such storage. As in the case of encryption, existing signature
schemes do not appear to offer incompressible security; indeed, it is usually
desired that signatures are very short.

Feature: Low-storage for streaming honest users. Given that communication
will be inconveniently large for the adversary to store, a desirable feature of
incompressible ciphertexts and signatures is that they can be sent and received
with low storage requirements for the honest users. In such a setting, the honest
users would never store the entire ciphertext or signature, but instead generate,
send, and process the communication bit-by-bit in a streaming fashion.

Feature: High rate. With incompressible ciphertexts and signatures, communi-
cation is set to be deliberately large. If the messages themselves are also large, it
may be costly to further blow up the communication in order to achieve incom-
pressibility. Therefore, a desirable feature is to have the rate—the ratio of the
maximum message length to the communication size—be as close to 1 as possi-
ble. In this way, for very large messages, there is little communication overhead
to make the communication incompressible.

1.1 Prior Work

Dziembowski [Dzi06b] constructed information-theoretically secure symmetric-
key incompressible encryption (referred to as forward-secure encryption) via ran-
domness extractors. The focus of our work is on public-key encryption and sig-
nature schemes, which inherently cannot be information-theoretically secure.1

1 The symmetric-key scheme of [Dzi06b] also only offers one-time security. However,
a simple hybrid argument shows that this implies many-time security, where the
adversary can compress each of many ciphertexts separately and later sees the secret
key. However, it inherently does not offer any security if the adversary can jointly
compress many ciphertexts, even if the compressed value is much smaller than a
single ciphertext! In contrast, public-key incompressible encryption automatically
ensures security in such setting via a simple hybrid argument.
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Very recently, Guan and Zhandry [GZ21] define and construct what they
call disappearing public key encryption and digital signatures. Their notions are
very similar to ours, except with an important distinction: they assume both
honest and malicious parties operate as space-bounded streaming algorithms
throughout their operation. Honest users are assumed to have a somewhat lower
storage bound than the adversary’s.

In terms of the functionality requirement for honest users, their model cor-
responds to the low-storage streaming variant of incompressible cryptography.
However, in terms of the security requirement, disappearing cryptography is
somewhat weaker, since it restricts the adversary to also be space-bounded
throughout its entire operation, and observe the ciphertexts/signatures produced
by the cryptosystem in a streaming manner. On the other hand, incompressible
cryptography allows the adversary to observe each ciphertext/signature in its
entirety and compute on it using an unrestricted amount of local memory, but
then store some small compressed version of it afterwards. Some disappearing
schemes may be insecure in the incompressible threat model: for example, one
of the disappearing ciphertext schemes from [GZ21] could potentially even be
based on symmetric key cryptography, despite being a public key primitive.2 Yet
public key incompressible ciphertexts easily imply public key encryption, which
is believed to be stronger than symmetric key cryptography [IR90].

In summary, incompressible cryptography with low-storage streaming is also
disappearing, but the reverse direction does not hold.

Guan and Zhandry explain several interesting applications of disappearing
ciphertexts and signatures, including deniable encryption [CDNO97]. Here, one
imagines that the secret key holder is coerced into revealing their key. In order
to protect the contents of an encrypted message, traditional deniable encryp-
tion allows the key holder to generate a fake key that causes the ciphertext to
decrypt to any desired value. Unfortunately, such receiver-deniable encryption
is impossible in the standard model [BNNO11]. Disappearing ciphertexts offer
a solution, since the contents are protected without even faking the key, as the
space-bounded attacker is unable to store the ciphertext.

However, in addition to achieving a weaker security model than incompress-
ible cryptography, the schemes of [GZ21] are based on non-standard heuristic
assumptions. In particular:

– Their schemes are built from a novel object called online obfuscation, a very
strong proposed form of program obfuscation in the bounded storage setting.
While [GZ21] gives plausible candidate constructions, the constructions are
complex and it is unclear how to prove security. It is even plausible that the
notion of online obfuscation is impossible.

– One of their candidates requires, at a minimum, standard-model virtual grey
box (VGB) obfuscation [BCKP14], which is stronger even than indistinguisha-
bility obfuscation [BGI+01], already one of the strongest known assumptions

2 It’s not hard to see that one-way functions, and therefore symmetric key cryptogra-
phy, are implied by disappearing ciphertexts, since the secret key can be information-
theoretically recovered from the public key.
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in cryptography. And even assuming VGB, the security remains unproven.
Their other candidate could plausibly be information-theoretic (but again,
currently not proven), but is limited to a quadratic separation between the
ciphertext/signature size and the honest users’ storage.

– Their encryption and signature schemes involve ciphertexts/signatures that
are significantly larger than the messages, and so their schemes are low “rate”
when the messages are large.

To summarize, prior to this work it was not known how to achieve disappear-
ing/incompressible public-key encryption/signatures with provable security even
under very strong assumptions such as indistinguishability obfuscation!

1.2 Our Results

We give new positive results for incompressible cryptography:

– Under the minimal assumption of standard-model public key encryption, we
construct a simple incompressible public key encryption scheme. The scheme
supports streaming with constant storage, independent of the ciphertext
size. As a special case, we achieve provably secure disappearing ciphertexts
with optimal honest-user storage and under mild assumptions, significantly
improving on [GZ21]. The ciphertext size is |c| = |S|+|m|×poly(λ), where |S|
is the adversary’s storage, |m| the message size, and λ the security parameter.

– Under the minimal assumption of one-way functions, we construct incom-
pressible signatures. Our scheme supports streaming with constant storage,
independent of the signature size. Thus we also achieve provably secure disap-
pearing signatures under minimal assumptions, again significantly improving
on [GZ21]. The total communication (message length plus signature size) is
|S| + |m| + poly(λ).

– Under standard-model indistinguishability obfuscation (iO), we construct
“rate 1” incompressible public-key encryption, where |c| = |S| + poly(λ) and
the message length can be as large as roughly |S|. In particular, for very large
messages, the ciphertext size is roughly the same as the message size.
The public keys of our scheme are small, but the secret keys in this scheme
are at least as large as the message, which we explain is potentially inherent
amongst provably-secure high-rate schemes.
Along the way, we give the first rate-1 construction of functional encryption
for circuits, where |c| = |m| + poly(λ).

– We consider a notion of “rate-1” incompressible signatures, where the total
communication is only |S| + poly(λ), and the message can be as large as
roughly |S|. Note that the signature by itself must have size at least |S|
for incompressibility (since m may be compressible), and so if we separately
send the message and signature, the total communication would be at least
|S| + |m|, which is not rate 1. Instead, we just send a signature and require
the message to be efficiently extractible from the signature.
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We show that rate-1 incompressible signatures are equivalent to incompress-
ible encodings, defined by Moran and Wichs [MW20]. By relying on the posi-
tive results of [MW20], we obtain such signatures under either the Decisional
Composite Residuosity (DCR) or Learning With Errors (LWE) assumption,
in either the CRS or random oracle model. The random oracle version sup-
ports low-space streaming, as does the CRS model if we assume the (large)
CRS is streamed. On the other hand, by relying on the negative results
of [MW20], we conclude that a provably secure rate-1 construction in the
standard model is unlikely.

1.3 Other Related Work

Bounded Storage Model. Guan and Zhandry [GZ21] is set in Maurer’s [Mau92]
Bounded Storage Model (BSM), which leverages bounds on the adversary’s
storage to enable applications. Most prior work in the BSM is about achiev-
ing unconditionally secure schemes for the types of scenarios for which we
already have computationally secure schemes in the standard model (CPA
encryption [CM97,AR99,Lu02,Raz17,GZ19], Key Agreement [CM97,GZ19,
DQW21], Oblivious Transfer [CCM98,Din01,DHRS04,GZ19,DQW21], etc.).
Time-stamping [MST04] is perhaps the first application of the BSM beyond
achieving information-theoretic security by assuming additional computational
assumptions. Similarly, our work, as well Guan and Zhandry [GZ21], considers
scenarios for which computationally secure schemes in the standard model are
impossible and which only make sense in the BSM (public-key encryption where
the adversary gets the secret key after seeing the ciphertext, signature schemes
where the adversary cannot sign messages whose signatures she has previously
observed). Our results necessarily rely on computational assumptions.

Big-Key Cryptography in the Bounded Retrieval Model. The study of big-key
cryptography in the Bounded Retrieval Model (BRM) has evolved through a
series of works [Dzi06a,DLW06,CDD+07,ADW09,ADN+10,BKR16]. The high-
level difference is that in the BRM, the secret keys are made large to prevent exfil-
tration, while the communication (e.g., ciphertexts, signatures) are kept small.
Incompressible cryptography is the reverse: we make the communication large
to prevent an adversary from being able to remember it in its entirety, while the
secret key is ideally small. On a technical level, while there are some high-level
similarities such as relying on a combination of computational and information-
theoretic techniques, the concrete schemes are quite different.

Symmetric Cryptography with Memory-Bounded Adversaries. There has been
various studies into the symmetric-key setting where the adversaries are memory-
bounded. For instance, the work by Rivest [Riv97] introduces all-or-nothing
encryption, a symmetric-key encryption scheme such that only knowing some
individual bits of the ciphertext reveals no information about the message.
This is similar to the forward-secure encryption due to [Dzi06b], except that
in forward-secure encryption, the adversary is allowed to compute an arbitrary
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function (with a small-sized output) of the ciphertext, instead of only know-
ing a few individual bits of it. So all-or-nothing encryption can be thought
of as disappearing encryption in the symmetric-key setting, whereas forward-
secure encryption is cloaser the a symmetric-key incompressible encryption. The
work by Zaverucha [Zav15] further extends the idea of all-or-nothing encryp-
tion, constructing a password-based encryption scheme. Building on this, the
work by Biryukov and Khovratovich [BK16] constructs memory-hard encryp-
tion by combing the idea from [Zav15] together with an external memory-hard
function, which allows for high memory bounds even with a small block size. All
of these prior works are in the symmetric-key setting, and it is not obvious how
to extend them to the public-key setting as we study in this paper.

1.4 Technical Overview

Incompressible Encryption. We first consider incompressible public key encryp-
tion. The syntax is identical to that of standard-model encryption, but the secu-
rity game is different:

1. The challenger first gives the adversary the public key.
2. The adversary then produces two messages m0,m1.
3. The challenger encrypts one of the two messages, as the ciphertext c.
4. Now the adversary produces a state s of size somewhat smaller than c.
5. The challenger then reveals the secret key.
6. The adversary, given only the small state s but also the secret key, now makes

a guess for which message was encrypted.

Note that, except for the size of the state s being bounded between Steps 4 and 6,
the size of the adversary’s storage is unbounded. It is also easy to see that this
definition implies standard semantic security of public-key encryption.

Remark 3. Note that this security definition is quite similar to that of disappear-
ing public key encryption by Guan and Zhandry [GZ21] with two distinctions.
Firstly, in the disappearing encryption security experiment, there is no Step 4
as above. Instead, the adversary is bounded by some space throughout the entire
experiment. Additionally, functionality wise, disappearing encryption requires
the protocol to be executable by honest parties with some space bound lower
than the adversary’s storage. In our setting, we do not consider this to be an
inherent requirement, but rather a desirable feature that some of our schemes
satisfy. As we will see in Remark 4, this feature is incompatible with rate-1
schemes, and hence we will drop it in that setting.

Our Solution. We give a construction of incompressible encryption in Sect. 3,
under the minimal assumption of generic public key encryption.

We describe our solution using functional encryption (FE), which is a form
of public key encryption where the secret key holder can give out function secret
keys for functions f ; a function secret key allows for learning f(m) but noth-
ing else about the message. For our application, we only need a very special
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case of single-key functional encryption, which we instantiate with a simple and
potentially practical construction from generic public key encryption scheme.
Our incompressible encryption scheme works as follows:

– The public key is just the public key for the underlying FE scheme. The secret
key is a function secret key for the function fv defined as

fv(s, b) =

{
s if b = 0
s ⊕ v if b = 1

where the value v is chosen uniformly at random and hard-coded into fv.
Here, s, v are reasonably short strings, whose length will be discussed shortly.

– To encrypt m, choose a random s, and compute c ← FE.Enc(FE.mpk, (s, 0))
as an encryption of (s, 0) under the FE scheme. Then choose a large random
string R. Interpret s as the pair (s′, t), where t is a string of length equal to
the message length, and s′ is the seed for a strong extractor. Then compute
z = Extract(R; s′) ⊕ t ⊕ m. The final ciphertext is (c,R, z).

– To decrypt, use the FE secret key to recover s = (s′, t) from c. Then recover
m = z ⊕ Extract(R; s′) ⊕ t.

We can generate and transmit the string R in a streaming fashion. We can then
use an online extractor [Vad03] so that Extract(R; s′) can be computed without
having to store R in its entirety. Note that R is the only “big” component of the
ciphertext, so encryption and decryption therefore require small space.

We prove security through a hybrid argument. First, we use FE security
to switch to c being generated as c ← FE.Enc(FE.mpk, (s ⊕ v, 1)). Since this c
decrypts equivalently under the secret key, this change is indistinguishable.

We then observe that the string u = s ⊕ v being encrypted under the FE
scheme, as well as the string z included in the final ciphertext, are both just
uniformly random strings. We can therefore delay the generation of the secret
key and v until the very end of the experiment. Now we think of the adversary’s
state (as well as some other small values needed to complete the simulation) as
a leakage on the large random string R. Since the adversary’s storage is required
to be small compared to R, R has min-entropy conditioned on this leakage. This
means we can invoke the randomness guarantee of the randomness extractor to
replace Extract(R; s′) with a uniform random string. At this point, m is one-time-
padded with a uniform string, and therefore information-theoretically hidden.

We explain how to instantiate the functional encryption scheme. Since the
adversary only ever sees a single secret key, we can build such a functional
encryption scheme generically from public key encryption, using garbled circuit
techniques [GVW12]. On the other hand, our functional encryption scheme only
needs to support an extremely simple linear function. We show a very simple
and potentially practical solution from any public key encryption scheme.

Remark 4. We note that our scheme has a less-than-ideal rate, since the cipher-
text size is at least as large as the adversary’s storage plus the length of the
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message. Low rates, however, are inherent to schemes supporting low-storage
streaming. Indeed, the storage requirements of the honest users must be at least
as large as the message, and in the high-rate case this means the honest users
must be capable of storing the entire ciphertext. This remains true even if the
message itself is streamed bit-by-bit, which can be seen as follows: by incompress-
ibility, the decrypter cannot start outputting message bits until essentially the
entire stream has been sent. Otherwise, an attacker can store a short prefix of the
ciphertext, and then when it gets the secret key mimic the decrypter until it out-
puts the first message bit. Now, at the point right before the decrypter outputs
the first message bit, the entire contents of the message must be information-
theoretically contained within the remaining communication (which is short) and
the decrypter’s state, since the decrypter ultimately outputs the whole message.
Thus the decrypter’s state must be almost as large as the message.

A rate-1 solution. We now discuss how we achieve a rate-1 scheme, using indis-
tinguishability obfuscation. This is our most complicated construction, and we
only give a brief overview here with the full construction in Sect. 4.

The central difficulty in achieving a rate-1 scheme is that we cannot guarantee
a ciphertext with large information-theoretic entropy. Indeed, the ciphertext
must be almost as small as the message, so there is little room for added entropy
on top of the message. But the message itself, while large, many not have much
entropy. Therefore, our approach of using randomness extraction to extract a
random string from the ciphertext will not work naively.

Our solution, very roughly, is to have the large random value in the secret
key. Using a delicate argument, we switch to a hybrid where the ciphertext
is just an encryption of large randomness R, and the secret key contains the
message, masked by a string extracted from R. Now we can mimic the low-rate
case, arguing that given the small state produced by the adversary, R still has
min-entropy. Thus, the message m is information-theoretically hidden.

The result is that we achieve an incompressible encryption scheme whose
rate matches the rate of the underlying functional encryption scheme. Unlike the
low-rate case, our FE scheme appears to need the full power of FE for circuits,
since it will be evaluating cryptographic primitives such as PRGs and extractors.
Unfortunately, all existing FE schemes for general circuits, even using iO, have
poor rate. For example, if we look at the original iO scheme of [GGH+13], the
ciphertext contains two plain public key encryption encryptions of the message,
plus a NIZK proof of consistency. The result is that the rate is certainly at
most 1/3. Another construction due to [BCP14] sets the ciphertext to be an
obfuscated program containing the message; since known obfuscation schemes
incur a large blowup, the scheme is not rate-1.

We give a novel rate-1 FE scheme (with many key security), by building on
ideas from [BZ14]. They build an object called private linear broadcast encryp-
tion (PLBE), which can be seen as a special case of FE for simple comparison
functionalities. However, their approach readily generalizes to more complex
functionalities. The problem with their construction is that their proof incurs a
security loss proportional to the domain size. In their case, the domain is poly-
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nomial and this is not a problem. But in our case, the domain is the message
space, which is exponential. One may hope to use complexity leveraging, but
this would require setting the security parameter to be at least as large as the
message. However, this will not give a rate-1 scheme since the ciphertext is larger
than the message by an additive factor linear in the security parameter.

We therefore devise new techniques for proving security with just a poly-
nomial loss, even for large messages, thus giving the first rate-1 FE scheme for
general circuits, from iO and one-way functions. Details in Sect. 7.

Remark 5. We note that the final construction of rate-1 incompressible encryp-
tion has very short public keys, but large secret keys. We therefore leave as an
interesting open question devising a scheme that also has short secret keys. How-
ever, achieving such a scheme with provable security under standard assumptions
appears hard. Indeed, cryptographic assumptions typically make no restrictions
on the adversary’s storage. The issue is that the message itself may have little
entropy, and so to prove that a ciphertext is incompressible it seems the compu-
tational assumptions will be used to transition to a hybrid where the ciphertext
has nearly full entropy (indeed, this is how our proof works). But this transition
happens without space bounds, meaning the reduction actually is capable of
decrypting the ciphertext and recovering the message once the key is revealed.
Yet in this hybrid the ciphertext was “used up” in order to make it high-entropy,
and it seems the only place left to embed the message is the secret key (again,
this is how our proof works). If the message is large, it therefore seems the secret
key must be large as well. We believe this intuition can be formalized as a black-
box separation result, similarly to analogous results of [Wic13], but we leave this
for future work.

Incompressible Signatures. An incompressible signature scheme is defined by the
following experiment:

1. The challenger first gives the adversary the public key.
2. The adversary makes repeated signing queries on arbitrary messages. In

response, the challenger produces a signature on the message.
3. After observing many signatures, the adversary must produce a small state s

of size somewhat smaller than a single signature.
4. Next, the adversary, is given the small state s, and wins if it produces a valid

signature on any message, potentially even one used in a prior signing query.

Note that, except for the size of the state s being bounded between Steps 3
and 4, the size of the adversary’s storage is unbounded.

Remark 6. This definition is also quite similar to that of disappearing signature
due to Guan and Zhandry [GZ21] except for two differences. For disappearing
signatures, the security experiment does not have Step 3 as above, and instead
requires the adversary to be bounded by some space throughout the entire exper-
iment. Functionality wise, disappearing signature requires the scheme can be
run by honest parties with a space bound somewhat lower that the adversary’s
storage, whereas we don’t require that for incompressible signatures.
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Our Solution. We give a very simple construction of incompressible signatures
in Sect. 5. To sign m, first choose a large uniformly random string R, and then
compute σ ← Sign(sk, (R,m)), where Sign is a standard-model signature scheme.
The overall signature is then (R, σ). Verification is straightforward.

Both signing and verification can be evaluated in a low-space streaming fash-
ion, provided Sign can be evaluated as such. One can always assume this property
of Sign: first hash the message using a streaming-friendly hash function such as
Merkle-Damg̊ard, and then sign the hash. Since the hash is small and computing
the hash requires low-space, the overall signing algorithm is low space.

For security, consider an adversary which produces a small state s somewhat
smaller than the length of R. Since R is random, it will be infeasible for the
adversary to re-produce R in Step 4. Therefore, any valid signature must have
an R different than any of the messages previously signed. But this then violates
the standard unforgeability of Sign.

A rate-1 solution. In Sect. 6, we modify the above construction to get a rate-
1 solution. We note that “rate” here has to be defined carefully. In the above
solution, the signature size is independent of the message size, and so it seems
that the signature has good rate. However, communication will involve both
the signature and the message, and so the total length of the communication
will be significantly larger than the message. We therefore want that the total
communication length is only slightly longer than the message being signed.

On the other hand, if the message is very long, one may naturally won-
der whether we can just sign the message using any standard-model signature
scheme, and have the resulting communication be rate-1. However, a long mes-
sage may in fact be compressible. What we want is to achieve rate-1 total com-
munication, and incompressibility, even if the message may be compressed.

We therefore define a rate-1 incompressible signature as an incompressible
signature where the signature is only slightly longer than the message, and where
there is a procedure to extract the message from the signature. In this way, all
that needs to be sent is the signature itself, and therefore the total communica-
tion remains roughly the same as the message.

Equivalence to incompressible encodings. We next demonstrate that incompress-
ible signatures are equivalent to incompressible encodings [MW20]. These are
public encoding schemes where the encoding encodes a message into a codeword
c that is only slightly longer than the message. From c, the original message
can be recovered using a decoding procedure. For security, the adversary then
receives the codeword as well as the message, tries to compress the codeword
into a small storage s. Then the adversary, given s and the message, tries to
recover the exact codeword c.

A rate-1 incompressible signature (with small public keys) gives an incom-
pressible encoding: to encode a message, simply generate a new public/secret key
pair, and sign the message. The codeword c is then the public key together with
the signature. Decoding and security follow readily from the message extraction
procedure and security of the incompressible signature.
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In the other direction, to sign a message, first incompressibly encode the mes-
sage and then sign the result using a standard-model signature scheme. The final
signature is the codeword together with the standard-model signature. Extrac-
tion follows from the decoding procedure. If the incompressible encoding sup-
ports low-space streaming, so does the signature scheme. For security, since the
adversary cannot produce the original codeword that was signed due to the secu-
rity of the incompressible encoding, they must produce some other codeword.
But a valid signature would also contain a standard-model signature on this new
codeword, violating the security of the signature scheme.

Moran and Wichs [MW20] instantiate incompressible encodings under either
the Decisional Composite Residuosity (DCR) or Learning With Errors (LWE)
assumptions, in either the CRS or random oracle models. We observe that their
incompressible encodings simply break the message into blocks of length poly(λ)
and encode each block separately; as such they can be easily streamed in low
space, though the CRS-based scheme would need the CRS to be streamed as
well. We obtain the incompressible signatures under the same assumptions in
the same models, with low-space streaming.

We also note that we can have the signer generate the CRS and include
it in the public key, giving a standard-model incompressible encoding scheme
with large public keys. Note that such a scheme is not immediately equivalent to
incompressible encodings, since the codeword contains the public key, and would
therefore be too large.

On the other hand, [MW20] show that a CRS or random oracle is somewhat
necessary, by giving a black box separation relative to falsifiable assumptions
in the standard model. Due to our equivalence, this implies such a black box
impossibility for incompressible signatures in the standard model as well.

2 Preliminaries

Min-Entropy Extractor. Recall the definition for average min-entropy:

Definition 1 (Average Min-Entropy). For two jointly distributed random
variables (X,Y ), the average min-entropy of X conditioned on Y is defined as

H∞(X|Y ) = − logE
y

$←Y
[max

x
Pr[X = x|Y = y]].

Lemma 1 ([DRS04]). For random variables X,Y where Y is supported over a
set of size T , we have H∞(X|Y ) ≥ H∞(X,Y ) − log T ≥ H∞(X) − log T.

Definition 2 (Extractor [Nis90]). A function Extract : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε) strong average min-entropy extractor if, for all jointly
distributed random variables (X,Y ) where X takes values in {0, 1}n and
H∞(X|Y ) ≥ k, we have that (Ud,Extract(X;Ud), Y ) is ε-close to (s, Um, Y ),
where Ud and Um are uniformly random strings of length d and m respectively.

Remark 7. Any strong randomness extractor is also a strong average min-
entropy extractor, with a constant loss in ε.
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Digital Signatures. We also generalize the syntax of a signature scheme, which
will ultimately be necessary to achieve a meaningful high “rate”. Instead of
producing a signature that is sent along side the message, we would implicitly
embed or encode the message into the signature. The signature is then all that
is sent to the receiver, from which the message can be decoded and verified. Any
standard signature scheme can readily be viewed in our generalized syntax by
just calling (m,σ) the “signature.”

A public key signature scheme for message space {0, 1}Lm and signature
space {0, 1}Lσ is a tuple of PPT algorithms Π = (Gen,Sign,Ver) such that:

– Gen(1λ) → (vk, sk) samples a verification key vk, and a signing key sk.
– Sign(sk,m) → σ takes as input the signing key sk and a message m, and

computes a signature σ that implicitly contains the message m.
– Ver(vk, σ) → m/⊥ takes as input the verification key vk and a signature

σ, and outputs either the message m or ⊥. Outputting m means that the
signature verifies, and outputting ⊥ means that the signature is invalid.

Definition 3 (Correctness). For all λ ∈ N and message m ∈ {0, 1}Lm , let
(vk, sk) ← Gen(1λ), then we have Pr[Ver(vk,Sign(sk,m)) = m] ≥ 1 − negl(λ).

We modify the security experiment slightly by asking the adversary to output
a signature σ instead of a message-signature pair, and the adversary wins the
game if and only if Ver(vk, σ) /∈ {⊥,m1, . . . , mq} where mi’s are the previously
queried messages. The “rate” of the signature scheme is defined to be Lm/Lσ.

Functional Encryption. For our constructions we also need single-key game-
based functional encryption. Let λ be the security parameter. Let {Cλ} be
a class of circuits with input space Xλ and output space Yλ. A functional
encryption scheme for the circuit class {Cλ} is a tuple of PPT algorithms
FE = (Setup,KeyGen,Enc,Dec) defined as follows:

– Setup(1λ) → (mpk,msk) takes as input the security parameter λ, and outputs
the master public key mpk and the master secret key msk.

– KeyGen(msk, C) → skC takes as input the master secret key msk and a circuit
C ∈ {Cλ}, and outputs a function key skC .

– Enc(mpk,m) → ct takes as input the public key mpk and a message m ∈ Xλ,
and outputs the ciphertext ct.

– Dec(skC , ct) → y takes as input a function key skC and a ciphertext ct, and
outputs a value y ∈ Yλ.

We can analogously define the “rate” of an FE scheme to be the ratio between
the message length to the ciphertext length. We require correctness and security
of a functional encryption scheme.
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Definition 4 (Correctness). A functional encryption scheme FE = (Setup,
KeyGen,Enc,Dec) is said to be correct if for all C ∈ {Cλ} and m ∈ Xλ:

Pr

⎡
⎢⎢⎣y = C(m) :

(mpk,msk) ← Setup(1λ)
skC ← KeyGen(msk, C)

ct ← Enc(mpk,m)
y ← Dec(skC , ct)

⎤
⎥⎥⎦ ≥ 1 − negl(λ).

Consider the following Semi-Adaptive Security Experiment, DistSemiAdpt
FE,A (λ):

– Run FE.Setup(1λ) to obtain (mpk,msk) and sample a random bit b ← {0, 1}.
– On input 1λ and mpk, The adversary A submits the challenge query consisting

of two messages m0 and m1. It then receives ct ← FE.Enc(mpk,mb).
– The adversary now submits a circuit C ∈ {Cλ} s.t. C(m0) = C(m1), and

receives skC ← FE.KeyGen(msk, C).
– The adversary A outputs a guess b′ for b. If b′ = b, we say that the adversary

succeeds and experiment outputs 1. Otherwise, the experiment outputs 0.

Definition 5 (Single-Key Semi-Adaptive Security). For security param-
eter λ, a functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) is said to
have single-key semi-adaptive security if for all PPT adversaries A :

Pr
[
DistSemiAdpt

FE,A (λ) = 1
]

≤ 1
2

+ negl(λ).

We can also consider selective security, where the adversary only receives mpk
after sending the challenge messages. We can also consider many-time semi-
adaptive/selective security, where the adversary is able to adaptively query for
as many skC as it would like, provided they all occur after the challenge query.

3 Incompressible Encryption: Our Basic Construction

Here we show how to construct an incompressible public key encryption scheme
with low “rate”, i.e. the ratio of the message size to the ciphertext size. First, we
define what it means for a public key encryption scheme to be incompressible.

3.1 Definition

We give the definition of incompressible encryption, which is based on the similar
definition of disappearing encryption [GZ21]. For security parameters λ and S,
an incompressible public key encryption scheme with message space {0, 1}Lm

and ciphertext space {0, 1}Lct is a tuple of PPT algorithms Π = (Gen,Enc,Dec).

Remark 8. For the original disappearing PKE defined in [GZ21], it is addition-
ally required that Gen, Enc, and Dec can be run in space N 
 Lct. Here, we will
consider schemes that have both large and small space.
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The rest of the syntax of an incompressible PKE scheme is identical to that
of a classical PKE scheme. The “rate” of the PKE scheme is simply Lm/Lct.

For the security definition, consider the following indistinguishability exper-
iment for an adversary A = (A1,A2):

Incompressible Encryption Security Experiment DistIncomEnc
A,Π (λ):

1. The adversary A1, on input 1λ, outputs a space bound 1S .
2. Run Gen(1λ, 1S) to obtain keys (pk, sk).
3. Sample a uniform bit b ∈ {0, 1}.
4. The adversary is then provided the public key pk.
5. The adversary replies with the challenge query consisting of two messages m0

and m1, receives ct ← Enc(pk,mb).
6. A1 produces a state st of size at most S.
7. The adversary A2 is given the tuple (pk, sk,m0,m1, st) and outputs a guess

b′ for b. If b′ = b, we say that the adversary succeeds and the output of the
experiment is 1. Otherwise, the experiment outputs 0.

Definition 6 (Incompressible Encryption Security). For security param-
eters λ and S, a public key encryption scheme Π = (Gen,Enc,Dec) has incom-
pressible encryption security if for all PPT adversaries A = (A1,A2):

Pr
[
DistIncomEnc

A,Π (λ) = 1
]

≤ 1
2

+ negl(λ).

Remark 9. The original Disappearing Ciphertext Security [GZ21] has a very sim-
ilar security notion, except that the adversary has a space bound of S throughout
the entire experiment, and that the ciphertext is a long stream sent bit by bit.
Notice that our definition of Incompressible Encryption Security is a strictly
stronger security definition than Disappearing Ciphertext Security.

3.2 Construction

Construction 1. Given FE = (Setup,KeyGen, Enc,Dec) a single-key selectively
secure functional encryption scheme with a rate of ρFE and a strong average
min-entropy extractor Extract : {0, 1}n × {0, 1}d → {0, 1}Lm , with d = poly(λ)
and n = S + poly(λ) the construction Π = (Gen,Enc,Dec) works as follows:

– Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate
the secret key for the following function fv with a hardcoded v ∈ {0, 1}d+Lm :

fv(s′ = (s, t), flag) =

{
s′ if flag = 0
s′ ⊕ v if flag = 1

.

Output pk = FE.mpk and sk = FE.skfv
← FE.KeyGen(FE.msk, fv).

– Enc(pk,m): Sample a random tuple s′ = (s, t) where s ∈ {0, 1}d is used as
a seed for the extractor and t ∈ {0, 1}Lm is used as a one-time pad. The
ciphertext consists of three parts: FE.ct ← FE.Enc(FE.mpk, (s′, 0)), a long
randomness R ∈ {0, 1}n, and z = Extract(R; s) ⊕ t ⊕ m.
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– Dec(sk, ct = (FE.ct, R, z)): First, obtain s′ ← FE.Dec(FE.skfv
,FE.ct), and

then use the seed s to compute Extract(R; s) ⊕ z ⊕ t to recover m.

Note that if Extract is an online extractor [Vad03], then encryption and decryp-
tion can be run in a low-space streaming fashion, by first sending FE.ct, then
streaming R, and then sending z. The rate of this construction is

Lm

Lct
= Lm

(
d + Lm + 1

ρFE
+ n + Lm

)−1

=
1

(1/ρFE + 1) + S/Lm
− o(1).

Theorem 1. Assuming the existence of a functional encryption scheme with
single-key selective security and a rate of 1/poly(λ), and a (poly(λ), negl(λ))
average min-entropy extractor, there exists an incompressible PKE with cipher-
text size S+Lm+poly(λ)+poly(λ)Lm, public key size poly(λ) and secret key size
poly(λ). It supports streaming decryption using Lm + poly(λ) bits of memory.

3.3 Proof of Security

We organize our proof of security into a sequence of hybrids.

Sequence of Hybrids

– H0: The original incompressible encryption security experiment DistIncomEnc
A,Π ,

where the bit b in the experiment is fixed to be 0.
– H1: In step 5, instead of computing FE.ct ← FE.Enc(FE.mpk, (s′, 0)), compute

FE.ct ← FE.Enc(FE.mpk, (s′ ⊕ v, 1)).
– H2: In step 2, only sample (FE.mpk,FE.msk) ← FE.Setup(1λ). In step 5,

after receiving the challenge query, sample uniformly random z ∈ {0, 1}Lm ,
u ∈ {0, 1}d+Lm , R ∈ {0, 1}n and send back FE.ct ← FE.Enc(FE.mpk, (u, 1)),
R, and z as the ciphertext. In step 7, sample a uniformly random s ∈ {0, 1}d,
and compute t = Extract(R; s) ⊕ z ⊕ m0, and v = s′ ⊕ u where s′ is the tuple
(s, t). Use this v to compute sk = FE.skfv

← FE.KeyGen(FE.msk, fv).
– H3: In step 7, sample a uniformly random r ∈ {0, 1}Lm and compute t =

r ⊕ z ⊕ m0 instead.
– H4: Swap the bit b in the security experiment to be 1 instead of 0.
– H5: Switch back to the case where t = Extract(R; s) ⊕ z ⊕ m1.
– H6: Switch back to the case where we produce sk in step 2 instead of step 5.
– H7: Switch the FE ciphertext back to the real one FE.Enc(FE.mpk, (s′, 0)).

Notice here we’re at the original incompressible encryption security experi-
ment, where the bit b is fixed to be 1.

Proof of Hybrid Arguments

Lemma 2. If the functional encryption scheme FE has single-key selective secu-
rity, then no PPT adversary can distinguish between H0 and H1 (respectively H6

and H7) with non-negligible probability.
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Proof. Here we will prove the case for H0 and H1. The case for H6 and H7 follows
analogously. This is by a simple reduction to the single-key selective security
of the functional encryption scheme. If an adversary A is able to distinguish
between H0 and H1, we show how to construct an adversary A′ that breaks
security of the functional encryption scheme FE. The only difference between
H0 and H1 is that in H0 the adversary receives an encryption of (s′, 0), while in
H1 the adversary receives an encryption of (s′ ⊕v, 1). But notice that fv(s′, 0) =
s′ = fv(s′ ⊕ v, 1), so the adversary A is able to distinguish between two FE
ciphertexts that have the same functional output on function fv, for which it has
a secret key. This directly breaks the underlying functional encryption security.
Concretely, A′ works as follows by using A = (A1,A2) as a subroutine:

– On input 1λ, sample uniform values s′ and v, and submit the challenge query
FE.m0 = (s′, 0) and FE.m1 = (s′ ⊕ v, 1) to the challenger. Receive FE.mpk
and FE.ct in response.

– Send 1λ to A1 and receive 1S .
– Send FE.mpk to A1, receive challenge query m0 and m1, and respond with
FE.ct, R and z, where R is a random string of length S + poly(λ), and z =
Extract(R; s) ⊕ t ⊕ m0. The adversary A1 produces a state st. Notice that
the only component that’s different for H0 and H1 is FE.ct, and it does not
depend on the challenge query from A1. R and z remain unchanged.

– Send fv to the challenger and receive FE.skfv
. Forward sk = FE.skfv

to A2

together with (FE.mpk,m0,m1, st).
– If A2 outputs that it is in H0, output 0. Otherwise, output 1.

It is straightforward to verify that if A wins the game, A′ wins as well. ��
Lemma 3. No adversary can distinguish between H1 and H2 (respectively H5

and H6) with non-negligible probability.

Proof. We prove the case for H1 and H2, the case for H5 and H6 follows analo-
gously. Since pk does not depend on sk, and sk is not used until in step 7, now
instead of fixing fv (and thus sk = FE.skfv

) in step 2, we sample it lazily in
step 7. Our new sampling procedure in H2 makes the following two changes to
H1: First, in H1, we sample a uniform t and compute z = Extract(R; s)⊕ t⊕m0,
while in H2, we sample a uniform z and compute t = Extract(R; s)⊕z⊕m0. This
is just a change of variables, and gives two identical distributions. Second, in H1

we sample a uniform v and encrypt u = v⊕s′, while in H2 we encrypt a uniform
u and compute v = u ⊕ s′. Again, these are identical distributions. Thus, no
adversary can distinguish between H1 and H2 with non-negligible probability. ��
Lemma 4. If the extractor Extract is a (poly(λ), negl(λ)) average min-entropy
extractor, then no adversary that produces a state st of size at most S can dis-
tinguish between H2 and H3 (resp. H4 and H5) with non-negligible probability.

Proof. We prove the case for H2 and H3. The other case follows naturally.
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Here let the random variables X = R, and Y = (FE.mpk,FE.msk,m0,m1,
u, z) and Z = st. By Lemma 1, we have

H∞(X|Y,Z) ≥ min
y

H∞(X|Y = y, Z) ≥ min
y

H∞(X|Y = y) − S = poly(λ).

The last equality above follows since X = R is a uniformly random string,
independent of Y , of length S + poly(λ). By extractor security, no adversary
can distinguish (s,Extract(R; s), Y, Z) from (s, ULm

, Y, Z) except with negl(λ)
probability. Since we now sample u ← ULm

, no adversary can now distinguish
between t = Extract(R; s) ⊕ z ⊕ m0 and t = u ⊕ z ⊕ m0, i.e. H2 and H3. ��
Lemma 5. No adversary can distinguish H3 from H4 with non-zero probability.

Proof. Notice that the only difference between H3 and H4 is that in H3 we have
t = r⊕z ⊕m0 while in H4 we have t = r⊕z ⊕m1, where r is uniformly random.
Thus t is uniformly random in both cases, and H3 and H4 are identical. ��
Theorem 2. If FE is a functional encryption scheme with single-key selective
security, and Extract is a (poly(λ), negl(λ)) average min-entropy extractor, then
Construction 1 has incompressible encryption security.

Proof. The lemmas above show a sequence of hybrids where no PPT adversary
that produces a state with size at most S can distinguish one from the next with
non-negligible probability. The first hybrid H0 corresponds to the incompressible
encryption security game where b = 0, and the last one H7 corresponds to the
case where b = 1. The security of the indistinguishability game follows. ��

3.4 Instantiating Our FE

We now give a simple construction of functional encryption for our needed func-
tionality. Recall that our functions fv have the form fv(s, flag) = s ⊕ (flag · v).

Construction 2. Let (Gen′,Enc′,Dec′) be a public key encryption scheme. Our
scheme FE = (Setup,KeyGen,Enc,Dec) for message length n + 1 is defined as:

– Setup(1λ): For i ∈ {1, . . . , n}, b ∈ {0, 1}, run (pki,b, ski,b) ← Gen′(1λ). Output
(mpk = (pki,b)i,b,msk = (ski,b)i,b).

– KeyGen(msk, fv) = (ski,vi
)i.

– Enc(mpk, (s, flag)): For i ∈ {1, . . . , n}, b ∈ {0, 1}, compute ci,b =
Enc′(pki,b, si ⊕ (flag · b)). Output c = (ci,b)i,b.

– Dec(skfv
, c): Output x = x1x2 · · · xn where xi = Dec′(ski,vi

, ci,vi
)

For correctness, note that xi = si ⊕(flag ·vi), and therefore x = s⊕(flag ·v) =
fv(s, flag). Note that the rate of this scheme is 1/poly(λ). Thus the overall rate
of our incompressible encryption scheme is 1/poly(λ).

Theorem 3. If (Gen′,Enc′,Dec′) is a CPA secure public key encryption scheme,
then Construction 2 is single key semi-adaptively secure for the functions fv.
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Proof. Consider a single key semi-adaptive adversary for Construction 2. Let
m0 = (s0, flag0),m1 = (s1, flag1) be the challenge messages. For a fixed flag bit,
fv is injective. Therefore, if m0 = m1, it must be that flag0 = flag1. Then if the
adversary’s secret key query is on fv, we must have v = s0 ⊕ s1. Thus the two
possibilities for the challenge ciphertext are the same for ci,vi

, but encrypt oppo-
site bits in ci,1−vi

. Since the adversary never gets to see the secret keys ski,1−vi
,

a simple hybrid argument shows that flipping these bits is indistinguishable. ��
Corollary 1. Assuming the existence of a CPA secure public key encryption
scheme and a (poly(λ), negl(λ)) average min-entropy extractor, there exists an
incompressible PKE with ciphertext size S + Lm + poly(λ) + poly(λ)Lm, public
key size poly(λ) and secret key size poly(λ). Furthermore, it supports streaming
decryption using Lm + poly(λ) bits of memory.

4 Rate-1 Incompressible Encryption

Here, we construct incompressible encryption with an optimal rate of 1 − o(1),
i.e. the message length is (almost) the same as the ciphertext length.

4.1 Construction

For our construction, we require a functional encryption scheme with single-key
semi-adaptive security and a rate of 1, a strong average min-entropy extractor,
and a secure pseudorandom generator (PRG). Our construction works as follows.

Construction 3. Given FE = (Setup,KeyGen, Enc,Dec) a rate-1 func-
tional encryption scheme satisfying single-key semi-adaptive security, Extract :
{0, 1}Lm × {0, 1}d → {0, 1}n a strong average min-entropy extractor where
d, n = poly(λ), and PRG : {0, 1}n → {0, 1}Lm a secure PRG, the construction
Π = (Gen,Enc,Dec) works as follows:

– Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate
the secret key for the following function fv,s with a hardcoded large random
pad v ∈ {0, 1}Lm and a small extractor seed s ∈ {0, 1}d:

fv,s(x, flag) =

{
x if flag = 0
PRG(Extract(x; s)) ⊕ v if flag = 1

.

Output pk = FE.mpk and sk = FE.skfv,s
← FE.KeyGen(FE.msk, fv,s). Set

Lm = S + poly(λ).
– Enc(pk,m): The ciphertext is simply an encryption of (m, 0) using the under-

lying FE scheme, i.e. FE.ct ← FE.Enc(FE.mpk, (m, 0)).
– Dec(sk, ct): Decryption also corresponds to FE decryption. The output is sim-

ply FE.Dec(FE.skfv,s
, ct) = fv,s(m, 0) = m as desired.
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Let ρFE be the rate of FE. Then the ciphertext size is (Lm + 1)/ρFE and
the rate of our incompressible encryption scheme is ρΠ = ρFE/(1 + L−1

m ). If
ρFE = 1 − o(1), then ρΠ = 1 − o(1) as well.

Theorem 4. Assuming the existence of a functional encryption scheme with
single-key semi-adaptive security and a rate of 1 − o(1), and a (poly(λ), negl(λ))
average min-entropy extractor, there exists an incompressible PKE with message
size of up to S − poly(λ), ciphertext size S + poly(λ), public key size poly(λ) and
secret key size poly(S, λ).

4.2 Proof of Security

We organize our proof of security into a sequence of hybrids.

Sequence of Hybrids

– H0: The original incompressible encryption security experiment DistIncomEnc
A,Π ,

where the bit b in the experiment is fixed to be 0.
– H1: Instead of fixing v and s in step 2 of the security experiment, lazily sample

v and s in step 7 where we need to provide sk. Also, instead of sampling v
directly, first sample a uniformly random u ∈ {0, 1}Lm , and then compute
v = u ⊕ m0.

– H2: We further modify how we sample v. Now instead of sampling a random
u, we sample a random PRG key k ∈ {0, 1}n, and set v = PRG(k) ⊕ m0.

– H3: We once more modify how we sample v. We now sample a long random-
ness R ∈ {0, 1}Lm and use that to compute v = PRG(Extract(R; s)) ⊕ m0.

– H4: In step 5, set the ciphertext to be FE.ct ← FE.Enc(FE.mpk, (R, 1)).
– H5: In step 7, revert to computing v = PRG(k) ⊕ m0 for a uniform k.
– H6: In step 7, revert to computing v = u ⊕ m0 for a uniform u.
– H7: Switch the bit b of the experiment from 0 to 1.
– H8: In step 7, sample v as PRG(k) ⊕ m1.
– H9: In step 7, sample v as PRG(Extract(R; s)) ⊕ m1.
– H10: In step 5, change the ciphertext back to FE.ct ← FE.Enc(FE.mpk,

(m1, 0)).
– H11: In step 7, sample v as PRG(k) ⊕ m1.
– H12: In step 7, sample v as u ⊕ m1.
– H13: Sample a uniform v back at the beginning of the experiment in step 2.

Notice that now we’re back at the original incompressible encryption security
experiment, where the bit b is fixed to be 1.

For the proofs of the hybrids and Theorem 4, please refer to the full version.

5 Incompressible Signatures: Our Basic Construction

5.1 Definition

Here we give the definition of incompressible signatures. An incompressible sig-
nature scheme Π = (Gen,Sign,Ver) takes an additional space parameter S, and
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in addition to the standard model signature security (where the adversary has
unbounded space throughout the game), we also require incompressible signature
security that utilizes the following experiment for adversary A = (A1,A2):

Signature Forgery Experiment SigForgeIncomSig
A,Π (λ):

– The adversary A1, on input 1λ, outputs a space bound 1S .
– Run Gen(1λ, 1S) to obtain keys (vk, sk).
– The adversary A1 is given the public key vk.
– For q = poly(λ) rounds, A1 submits a message m, and receives σ ←
Sign(sk,m). At the end of the last round, A1 produces a state st of size
at most S.

– The adversary A2 is given the public key vk, the state st, and all the queried
messages m, and outputs a signature σ′. If Ver(vk, σ′) outputs ⊥, output 0.
Otherwise, output 1.

Notice that traditionally, we would require Ver(vk, σ′) to be distinct from the
messages m’s queried before, but here we have no such requirement. With this
experiment in mind, we now define the additional security requirement for an
incompressible signature scheme.

Definition 7 (Incompressible Signature Security). For security parame-
ters λ and S, an incompressible signature scheme Π = (Gen,Sig,Ver) has incom-
pressible signature security, if for all PPT adversaries A = (A1,A2):

Pr
[
SigForgeIncomSig

A,Π (λ) = 1
]

≤ negl(λ).

5.2 Construction

We present a very simple construction from classical public key signature
schemes.

Construction 4. Let λ, S be security parameters. Given Sig = (Gen,Sign,Ver)
a classical public key signature scheme with message space {0, 1}n+Lm where
n = S + poly(λ) and rate ρ′, we construct an incompressible signature scheme
Π = (Gen,Sign,Ver) as follows:

– Gen(1λ, 1S): Run Sig.Gen(1λ) to obtain (Sig.vk,Sig.sk). Output vk = Sig.vk
and sk = Sig.sk.

– Sign(sk,m): Sample randomness R ∈ {0, 1}n, and output σ ←
Sig.Sign(Sig.sk, (R,m)).

– Ver(vk, σ): Run M ← Sig.Ver(Sig.vk, σ). If M = ⊥, output ⊥. Otherwise, if
M = (R,m), output m.

Sig can be computed in an low-space streaming fashion, since we can hash the
message in low space first using Merkle-Damg̊ard. Then Construction 5 can
readily be computed with low space streaming. The rate of this construction is

Lm

Lσ
=

Lm

(S + Lm)/ρ′ = ρ′(1 + S/Lm)−1.
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5.3 Proof of Security

Theorem 5. Assuming the existence of a secure public key signature scheme
with rate ρ′, there exists an incompressible signature scheme with signature size
ρ′(S + Lm + poly(λ)), public key size poly(λ) and secret key size poly(λ). Fur-
thermore, it supports streaming computation using poly(λ) bits of memory.

Proof. We show this through a reduction proof. Concretely, we show how one
can use an adversary A = (A1,A2) that breaks the incompressible signature
security as a subroutine to build an adversary A′ the breaks the underlying
classical Sig scheme. The adversary A′ works as follows:

– Send 1λ to A1, receive 1S , and set n = S + poly(λ).
– Receive vk from the challenger, and forward it to A1.
– For each signing query mi made by A1, sample a random Ri ∈ {0, 1}n and

make a query (Ri,mi) to the challenger. Receive back σi and forward it
directly to A1.

– When A1 produces a state st, send vk, st and all the signing queries {mi}i to
A2. Output what A2 outputs as σ′.

Notice that if A wins, that means Ver(vk, σ′) = (R′,m′) = ⊥. If m′ ∈ {mi}i,
then (R′,m′) is a pair not queried before by A′, and thus A′ wins the game. If
m′ = mj for some j, then we argue that with overwhelming probability R′ = Rj ,
and hence A′ wins as well. Indeed this is true since

H∞(Rj |st, vk, {mi}i) ≥ S + poly(λ) − S = poly(λ).

Therefore Rj is unpredictable conditioned on A2’s view, so the probability of
A2 producing some R′ = Rj is negligible. ��

6 Rate-1 Incompressible Signatures

6.1 Incompressible Encoding

Moran and Wichs [MW20] give the definition for incompressible encodings and
show construction based on either the Decisional Composite Residuosity (DCR)
or Learning With Errors (LWE) assumptions. We modify the definition slightly
to better accommodate the syntax in this paper.

Definition 8 (Incompressible Encodings [MW20]). Let λ be security
parameters. An incompressible encoding scheme for message space {0, 1}Lm and
codeword space {0, 1}Lc is a pair of PPT algorithms Code = (Enc,Dec) that
utilizes the following syntax:

– Enc(1λ,m) → c on input the security parameter and a message, outputs a
codeword c.

– Dec(c) → m on input a codeword, outputs the decoded message m.
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The “rate” of the incompressible encoding is Lm/Lc.3

We additionally require correctness and S-incompressibility4:

Definition 9 (Correctness). For all λ ∈ N and m ∈ M, Pr[Dec(Enc(1λ,
m)) = m] ≥ 1 − negl(λ).

Next, consider the following experiment for adversary A = (A1,A2):

Codeword Compression Experiment CompIncomCode
A,Code (λ, S):

– On input 1λ, the adversary A1 submits a message m and auxiliary input aux.
It receives c ← Enc(1λ,m), and produces a state st of size at most S.

– The adversary A2 is given the state st, the message m, and the auxiliary
information aux; it produces a codeword c′. Output 1 if and only if c′ = c.

Definition 10 (S-Incompressibility). For security parameter λ, we require
that for all PPT adversary A = (A1,A2):

Pr
[
CompIncomCode

A,Code (λ, S) = 1
]

≤ negl(λ).

6.2 Construction

Now we show how we modify Construction 4 to get an incompressible signature
scheme with a rate of 1. Essentially we can think of the procedure of attaching
a long random string in Construction 4 as a form of an incompressible encoding
with a poor rate. Here we just need to replace it with an incompressible encoding
with a rate of 1.

Construction 5. Let λ, S be security parameters. Given Sig = (Gen,Sign,Ver)
a classical signature scheme with rate 1, and Code = (Enc,Dec) an incompress-
ible encoding scheme with rate 1 and S-incompressibility, we construct an incom-
pressible signature scheme Π = (Gen,Sign,Ver) as follows:

– Gen(1λ, 1S): Run Sig.Gen(1λ) to obtain (Sig.vk,Sig.sk). Output vk = Sig.vk
and sk = Sig.sk.

– Sign(sk,m): First compute the codeword c ← Code.Enc(1λ,m), and then com-
pute σ ← Sig.Sign(Sig.sk, c).

– Ver(vk, σ): Run c ← Sig.Ver(Sig.vk, σ). If c = ⊥, output ⊥. Otherwise, output
m ← Code.Dec(c).

The rate of our scheme is the product of the rates of the incompressible
encoding and standard-model signature scheme. We can construct a classical
signature scheme with rate 1 − o(1) from any one-way function by hashing the
message using a universal one-way hash function, and then signing the hash
value. Our incompressible signatures therefore have rate 1− o(1), in the CRS or
random oracle model. The following is proved in the full version:
3 This is equivalent to the α-expansion property as defined in [MW20] for α = Lc/Lm.
4 This is equivalent to β-incompressibility as defined in [MW20] for β = S.
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Theorem 6. Assuming the existence of a secure public key signature scheme
with rate 1 and an incompressible encoding scheme with rate 1, there exists an
incompressible signature scheme with signature size Lm, public key size poly(λ)
and secret key size poly(λ). Furthermore, it supports streaming computation
using poly(λ) bits of memory, assuming either the random oracle model, or the
streaming of the CRS in the CRS model.

6.3 Equivalence to Incompressible Encoding

Lastly, we quickly show that incompressible signatures are equivalent to incom-
pressible encodings (plus one-way functions) by showing how to construct an
incompressible encoding scheme from an incompressible signature scheme.

Construction 6. Let λ be a security parameter. Given Sig = (Gen,Sign,Ver)
an incompressible signature scheme with rate 1 and small verification keys, we
construct an incompressible encoding scheme Π = (Enc,Dec,Ver) as follows:

– Enc(1λ,m): Sample (Sig.vk,Sig.sk) ← Sig.Gen(1λ, 1S), and then compute σ ←
Sig.Sign(Sig.sk,m). Output c = (Sig.vk, σ).

– Dec(c = (Sig.vk, σ)): Simply output m ← Sig.Ver(Sig.vk, σ).

The codeword length is the signature length (equal to message length if Sig
has rate 1) plus the length of the verification length. Hence the rate is 1 if the
verification keys are short. Correctness follows directly from the correctness of
the signature scheme. Security also follows directly: if an adversary using a state
st of size at most S is able to produce c′ = c, then it has also produced a valid sig-
nature σ and hence wins the incompressible signature security game. Therefore,
by Construction 5 and 6, incompressible signatures and incompressible encodings
(plus one-way functions) are equivalent.

7 Constructing Rate-1 Functional Encryption

Here, we build rate-1 functional encryption (FE). For our application, we only
need one key security. However, our construction satisfies many-key security,
though we need indistingishability obfuscation (iO). We leave it as an open
question whether such high-rate single key FE can be built from standard tools.

Our construction is based on the techniques of Boneh and Zhandry [BZ14],
who build from iO something called private linear broadcast encryption, which
is a special case of general FE. A number of issues arise in generalizing their
construction to general functions, which we demonstrate how to handle.

7.1 Building Blocks

Definition 11 (Indistinguishability Obfuscation [BGI+01]). An indistin-
guiability obfuscator iO for a circuit class {Cλ} is a PPT uniform algorithm
satisfying the following conditions:
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– Functionality: For any C ∈ Cλ, then with probability 1 over the choice of
C ′ ← iO(1λ, C), C ′(x) = C(x) for all inputs x.

– Security: For all pairs of PPT adversaries (S,D), if there exists a negligible
function α such that

Pr[∀x,C0(x) = C1(x) : (C0, C1, σ) ← S(λ)] > 1 − α(λ)

then there exists a negligible function β such that∣∣ Pr[D(σ, iO(λ,C0)) = 1] − Pr[D(σ, iO(λ,C1)) = 1]
∣∣ < β(λ)

When Cλ is the class of all polynomial-size circuits, we simply call iO an
indistinguishability obfuscator. There are several known ways to construct indis-
tinguishability obfuscation:

– Garg et al. [GGH+13] build the first candidate obfuscation from crypto-
graphic multilinear maps.

– Provably from novel strong circularity assumptions [BDGM20,GP21,WW20]
– Provably from “standard” assumptions [JLS21]: (sub-exponentially secure)

LWE, LPN over fields, bilinear maps, and constant-locality PRGs

Definition 12 (Puncturable PRF [BW13,KPTZ13,BGI14]). A puncturable
PRF with domain Xλ and range Yλ is a pair (Gen,Punc) where:

– Gen(1λ) outputs an efficiently computable function PRF : Xλ → Yλ

– Punc(PRF, x) takes as input a function PRF and an input x ∈ Xλ, and outputs
a “punctured” function PRFx.

– Correctness: With probability 1 over the choice of PRF ← Gen(1λ),

PRFx(x′) =

{
PRF(x′) if x′ = x

⊥ if x′ = x

– Security: For all x ∈ Xλ, (PRFx,PRF(x)) is computationally indistinguish-
able from (PRFx, y), where PRF ← Gen(1λ) and y ← Yλ.

Such puncturable PRFs can be built from any one-way function [GGM86].
We now give a new definition of a type of signature scheme with a single-

point binding (SPB) property. This allows, given a message m, for generating a
fake verification key together with a signature on m. The fake verification key
and signature should be indistinguishable from the honest case. Yet there are no
signatures on messages other than m relative to the fake verification key. [BZ14]
implicitly constructs such signatures from iO and one-way functions, but with a
logarithmic message space, which was good enough for their special-purpose FE
scheme. In our case, we need to handle very large exponential message spaces.
The problem with [BZ14]’s approach is that the security loss is proportional to
the message space; to compensate requires assuming (sub)exponential hardness,
and also setting the security parameter to be larger than the message length.
This results in the signature size being polynomial in the message size, resulting
in a low-rate FE scheme. SPB signatures avoid the exponential loss, so we can
keep the security parameter small, resulting in a rate-1 FE scheme.
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Definition 13. A single-point binding (SPB) signature is a quadruple of algo-
rithms (Gen,Sign,Ver,GenBind) where Gen,Sign,Ver satisfy the usual properties
of a signature scheme. Additionally, we have the following:

– (vk, σ) ← GenBind(1λ,m) takes as input a message m, and produces a verifi-
cation key vk and signature σ.

– For any messages m and with overwhelming probability over the choice of
(vk, σ) ← GenBind(1λ,m), Ver(vk, σ′) ∈ {m,⊥} for any σ′. That is, there is
no message m′ = m such that there is a valid signature of m′ relative to vk.

– For any m, GenBind(1λ,m) and (vk,Sign(sk,m)) are indistinguishable, where
(vk, sk) ← Gen(1λ). Note that this property implies that Ver(vk, σ) accepts and
output m, when (vk, σ) ← GenBind(1λ,m).

We explain how to construct SPB signatures in the full version of the paper,
either from leveled FHE (and hence LWE), or from iO and one-way functions.

Our Rate-1 FE Scheme. We now give our rate-1 FE scheme:

Construction 7. Let iO be an indistinguishability obfuscator, Gen be a PRF,
(Gen′,Sig,Ver) a signature scheme, and PRG : {0, 1}λ → {0, 1}2λ,PRG′ :
{0, 1}λ → {0, 1}Lm be a PRG.

– Setup(1λ): Sample PRF ← Gen(1λ). Set msk = PRF and mpk = iO(1λ, PEnc),
where PEnc is the program given in Fig. 1.

– KeyGen(msk, f): output skf ← iO(1λ, PDec,f ), where PDec,f is the program
given in Fig. 2.

– Enc(mpk,m): Choose a random r, and evaluate (t, v) ← mpk(r). Then parse
v = (w, u). Set c = PRG′(w)⊕m. Next run (vk, sk) ← Gen′(1λ;u), using u as
the random coins for Gen′. Compute σ ← Sign(sk, c). Output (t, σ).

– Dec(skf , (t, σ)) = skf (t, σ)

Inputs: r
Constants: PRF

1. t ← PRG(r).
2. v ← PRF(t).
3. Output (t, v).

Fig. 1. The program PEnc.

Inputs: t, σ
Constants: PRF

1. (w, u) ← PRF(t)
2. (vk, sk) ← Gen (1λ;u).
3. c ← Ver(vk, c, σ). If c = ⊥, abort and output ⊥.
4. Output f(PRG (w) ⊕ c).

Fig. 2. The program PDec,f .

Correctness follows immediately from the correctness of the various compo-
nents. Notice that the ciphertext size is Lm + poly(λ), provided the signature
scheme outputs short signatures. Therefore, construction 7 has rate 1 − o(1).

Provided the random coins for (Gen′,Sign,Ver) are independent of the mes-
sage length, PEnc has size poly(λ), independent of the message length. If Gen′,Sign
can be evaluated in a low-space streaming fashion, then so can Enc.
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7.2 Proof of Security

Sequence of Hybrids

– H0: This is the FE security experiment, where the bit b in the experiment is
fixed to be 0. Note that in this hybrid, the challenge ciphertext is generated
as (t∗, σ∗), where r∗ ← {0, 1}λ, t∗ ← PRG(r∗), (w∗, u∗) ← PRF(t∗), x∗ ←
PRG′(w∗), c∗ ← x∗ ⊕ m0, (vk∗, sk∗) ← Gen′(1λ;u∗), and σ∗ ← Sign(sk∗, c∗).

– H1: This is identical to H0, except that we now generate t∗ uniformly at
random: t∗ ← {0, 1}2λ.

– H2: This is the same as H1, except that we change the way we generate
mpk, skf . First compute PRFt∗ ← Punc(PRF, t∗), (w∗, u∗) ← PRF(t∗). Then
let (vk∗, sk∗) ← Gen′(1λ;u∗) and x∗ = PRG(w∗). We now compute mpk ←
iO(1λ, P punc

Enc ) and answer secret key queries with skf ← iO(1λ, P punc
Dec ). Here,

P
punc
Enc and P

punc
Dec,f are the programs in Figs. 3 and 4

– H3: This is identical to H2, except that now we generate w∗, u∗ uniformly at
random, instead of (w∗, u∗) ← PRF(t∗).

– H4: This is identical to H3 except that we now generate x∗ uniformly at
random instead of x∗ ← PRG(w∗).

– H5: This is identical to H4, except for the following changes:
• We generate c∗ uniformly at random at the beginning of the experiment.
• After the challenge query, we generate x∗ = c∗ ⊕ m0. Note that x∗ is the

only place m0 enters the experiment.
– H6: This is identical to H5, except now we generate (vk∗, σ∗) ←

GenBind(1λ, c∗).
– H7 through H13: Hybrid H7+i is identical to H6−i, except that m0 is replaced

with m1. Thus H13 is the FE security experiment where b is fixed to be 1.

Fig. 3. The program P punc

Enc . Differences from PEnc highlighted in yellow. (Color figure
onine)
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Fig. 4. The program P punc

Dec,f . Differences from PEnc,f highlighted in yellow. (Color figure
onine)

For the proofs of the hybrid arguments, please refer to the full version.
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Abstract. We put forth a new paradigm for program obfuscation, where
obfuscated programs are endowed with proofs of “well formedness.” In
addition to asserting existence of an underlying plaintext program with
an attested structure, these proofs also prevent mauling attacks, whereby
an adversary surreptitiously creates an obfuscated program based on
secrets which are embedded in other obfuscated programs. We call this
new guarantee Chosen Obfuscation Attacks (COA) security.

We show how to enhance a large class of obfuscation mechanisms to
be COA-secure, assuming subexponentially secure IO for circuits and
subexponentially secure one-way functions. To demonstrate the power of
the new notion, we also use it to realize:

– A new form of software watermarking, which provides significantly
broader protection than current schemes against counterfeits that
pass a keyless, public verification process.

– Completely CCA encryption, which is a strengthening of completely
non-malleable encryption.

1 Introduction

General-purpose program obfuscation (developed in [3,7,13,16,17,20] and many
other works) holds great promise for enhancing the security of software: Soft-
ware can be distributed and executed without fear of exposing sensitive design
secrets or keys hidden in the code. Furthermore, when executing obfuscated
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software, all intermediate states are guaranteed to remain hidden, even when
both the hardware and the software components of the underlying platform are
adversarial.

However, ubiquitous use of program obfuscation might actually make the
security of software worse in other respects: Verifying properties of an obfus-
cated program becomes harder - it is essentially reduced to black-box testing
the program. This is highly unsatisfactory, especially in situations where the
source of the program is untrusted. Indeed, the very property that makes obfus-
cation a boon for software creators - namely the ability to hide secrets both in
the code and in the functionality - is a bane for users of the software, unless
those users put complete trust in the creators.

Another concern is that the use of program obfuscation makes it harder to ver-
ify whether a given program depends on other programs in “illegitimate ways”,
where legitimacy (and lack thereof) relates to both structural and functional
dependence between programs. For instance, obfuscation might facilitate software
plagiarism by hiding the fact that program A runs some (potentially proprietary)
program B as a subroutine, without publicly disclosing this fact. Furthermore,
obfuscation might facilitate hiding the fact that program A is a mauled version
of B - i.e. that A’s functionality surrepetitiously depends on the functionality of
B. The latter can be a concern even regardless of how B is implemented.1

We define and realize a new notion of program obfuscation that addresses
the above concerns. However, before we present the new notion and some appli-
cations, we point out prior approaches. To the best of our knowledge, the only
existing general notion of obfuscation that provides the ability to verify prop-
erties of obfuscated programs is Verifiable Indistinguishability Obfuscation [2].
However, that notion provides only limited hiding guarantees: indistinguishabil-
ity of the obfuscated versions of two functionally equivalent programs is guaran-
teed only if there is a short witness of their equivalence. Furthermore, it provides
no guarantees against adversaries that maul honestly generated programs.

Mauling attacks have been considered in the context of non-malleability of
obfuscation. Thid has so far been studied only in the context of virtual black
box obfuscation of point functions and related functionalities [11,24] and is thus
susceptible to strong impossiblity results [4]. In particular, no generally viable
notion of non-malleable obfuscation has been proposed.

Defending against program plagiarism has been studied in the context of soft-
ware watermarking [4]. However, that line of work has concentrated on detecting
illicit programs that very closely preserve the functionality of the watermarked
program [12] (or else preserve some cryptographic use of it [18]), and does not

1 One might expect that existing notions of obfuscation, such as indistinguishability
obfuscation (IO), already defend against such mauling attacks. However, this expec-
tation fails for programs whose code includes random keys that affect the functionality.
For instance, IO does not appear to rule out the possibility that an adversary, given
an obfuscated version of a puncturable pseudorandom function with a random key k,
manages to generate another obfuscated program that computes the same function
but with key (k + 1).
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address more general forms of plagiarism – e.g., generating a seemingly legiti-
mate obfuscated program that illicitly uses a given program as a subroutine, or
even changes some internal parameters while preserving the overall design.

1.1 Our Contributions

We first summarize our main contributions and then elaborate on each one.

– Definitions: We show how to enhance a number of existing notions of program
obfuscation so as to provide a strong flavor of verifiability, combined with
mitigating malleability attacks. We call such enhancement “security against
chosen obfuscation attacks” (or, COA security). For sake of specifity, we also
formulate a self-contained notion of COA obfuscation which will be used
throughout this work.2

– Constructions: We construct COA obfuscation, assuming subexponentially
secure iO and one-way functions. More generally, we show how to enhance
(or, fortify) any one out of a class of measures of secure obfuscation to provide
COA security.

– Applications: COA-secure obfuscation is directly applicable in situations
where a user wishes to verify some properties regarding the structure and
functionality of a given obfuscated program. In addition, we use COA-secure
obfuscation to construct software watermarking mechanisms that provide a
new and powerful notion of security. Finally, we use COA-secure obfuscation
to construct a completely CCA-secure public-key encryption scheme, which is
a new notion of security that naturally strengthens completely non-malleable
public-key encryption [14], which in turn augments non-malleability to con-
sider mauling attacks against both the ciphertext and the public key.

1.2 Defining COA Obfuscation

The first main contribution of this work is in developing a security notion that
incorporates meaningful secrecy, verifiability, and non-malleability guarantees,
while still being realizable by general-purpose obfuscation algorithms. Several
challenges face such an endeavor.

First, to let the user verify various properties of the program, we would like
to emulate the effect of having a one message proof attached to the obfuscated
program. Since we do not have any cryptographic setup, such a proof cannot be
zero-knowledge. Still, we would like to ensure that this proof does not reveal any-
thing about the program that is to be hidden by the obfuscation. We thus formu-
late a notion of hiding that’s intertwined with the functionality of the obfuscated
program.

Developing an appropriate notion of non-malleability proves equally challeng-
ing. In particular, it appears hard to effectively capture mauling attacks on the
2 We also define a somewhat weaker variant, which only guarantees verifiability with-

out any non-malleability guarantees. We then realize this variant with a simpler
construction than the one used to obtain COA security. See more details in [8].
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functionality of programs without resorting to “simulation-based” formalisms
(as done in [11,24]), which would in turn be subject to general impossibility
akin to VBB-obfuscation [4]. Indeed, an indistinguishability-based notion that
avoids the need for a simulator appears to be warranted in order to preserve
broad applicability.

We get around this difficulty by extending the notion of CCA-secure commit-
ments (namely, commitments that are secure against chosen commitment attacks
[9]) to our setting. Indeed, our notion (which is, in turn, a natural extension of
security against chosen ciphertext attacks for public-key encryption [27,28] to
the setting of obfuscation) provides the strongest-known viable form of non-
malleability for obfuscation schemes.

That is, we consider obfuscators O that take as input a program C along with
a predicate φ that represents some attestation on the structure and functionality
of C. Next, we augment the process of executing an obfuscated program with
an initial step aimed at verifying that this program “corresponds to a plaintext
program that satisfies φ.” Here, however, we somewhat relax the traditional
deterministic verification process, and instead allow for randomized verification
that, given a purported obfuscaed program Ĉ, outputs either a reject symbol,
or else a fully functional program C̃. We then require that: (a) whenever φ(C)
holds, V (O(C, φ), φ) = C̃, where C̃ is functionally equivalent to C, and (b) For
all strings Ĉ and predicates φ, the event where V (Ĉ, φ) = C̃ where C̃ �=⊥, and
there is no program C that is functionally equivalent to C̃ and such that φ(C)
holds, occurs only with negligible probability.

We stress that the above definition postulates a two-step randomized process
for generating a functional obfuscated program: the first step is carried out by O,
while the second is carried out by V . Furthermore, while obfuscating a legitimate
program C (i.e. φ(C) = 1) always results with a program C̃ = V (O(C, φ), φ)
that is functionally equivalent to C, an adversarially generated string Ĉ might
result in a random variable C̃ = V (Ĉ, φ) where different draws from C̃ are
different programs with completely different functionalities. (Still φ(C̃) holds
almost always.)3

Finally, we would like to require that, for “sufficiently similar” programs
C0, C1, polytime adversaries be unable to distinguish O(C0, φ) from O(C1, φ), even
when given access to a de-obfuscation oracle O−1(·, φ). That is, we consider adver-
saries that are given a challenge program C∗ = O(Cb, φ) for b ← {0, 1}, along with
access to an oracle O−1(·) that operates as follows: If Ĉ = C∗ or V (Ĉ, φ) =⊥, then
O−1(Ĉ) =⊥. Else, O−1(Ĉ) = C, where C is the lexicographically first program
that’s functionally equivalent to Ĉ and where φ(C) holds. The verification guar-
antee implies that (w.h.p.) such a program exists when V (Ĉ, φ) �=⊥.

It remains to determine what makes programs C0, C1 “sufficiently similar”.
Here we consider a number of variants, that correspond to existing notions of
security for plain obfuscation. One natural option, corresponding to plain iO,
considers any pair C0, C1 of equal-size, functionally equivalent programs.

3 Our randomized verification step is borrowed from that of Non-Interactive Distribu-
tionally Indistinguishable (NIDI) arguments, as developed in [22]. Indeed, as there,
it appears to be an essential relaxation that is crucial for realizability.
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Another option,which turns out to be relatively simple towork in the context of
our applications, corresponds to a slight simplification of the notion of obfucation
of probabilistic circuits, specifically X-Ind-pIO [10]. That is, we consider samplers
that sample triples (C0, C1, z), where C0 and C1 are programs and z is some aux-
iliary information. A sampler Samp is admissible for φ if both C0 and C1 satisfy φ,
and in addition any poly size adversary A, given z and oracle access to a program,
can tell whether this program is C0 or C1 only with sub-exponentially small advan-
tage over 1/2, when (C0, C1, z) ← Samp. An obfusator (O, V ) is COA Secure with
respect to predicate φ if any polytime adversary A′, that’s given C∗ = O(Cb, φ),
z, where ((C0, C1, z) ← Samp, as well as oracle access to O−1(·), can guess b only
with advantage that’s polynomially related to that of A.

The intuition for why COA security guarantees non-malleability is the same
as in the case of CCA commitment and CCA encryption: An adversary that
manages to “maul” its challenge progrom Ĉ into a program Ĉ ′ that passes
verification and such that the preimages of the resulting C̃ and C̃ ′ are related
in some non-trivial way, can readily use this ability to break COA security via
applying O−1(C̃ ′) to obtain the plaintext program that is related to the preimage
of its challenge C∗. It is stressed that here the “non trivial relation” may include
both structural and functional properties of the plaintext programs.

1.3 Applications of COA Obfuscation

COA-secure obfuscation is clearly directly applicable in situations where a user
wishes to verify some properties regarding the structure and functionality of a
program that is otherwise obfuscated (hence “opaque”). We further demonstrate
the power of this notion via two applications: First, we define and construct a
new notion of program watermarking which, while being formally incomparable
with existing notions, significantly pushes the envelope of what’s obtainable in
this context. Second, we define and construct a new notion of completely-CCA
secure encryption, nametly encryption that remain secure even in the presence
of an oracle that decrypts adversarially chosen ciphertexts with respect to adver-
sarially chosen public keys. In both cases, our constructions rely on COA-secure
obfuscation in a crucial way.

A New Approach to Software Watermarking. Existing formulations of water-
marking (e.g. [12,15]) concentrate on preventing the creation of “counterfeit”
programs that are close in functionality to the watermarked program and yet
remain unmarked. Instead, we propose a way to publicly detect any program that
stands in some pre-determined relation with the watermarked program, and is
unmarked (or carries a different mark than the watermarked program). The new
notion is incomparable with the existing ones: On the one hand, the proposed
notion does not rule out the possibility of creating “jail-broken programs”, it
only guarantees that these programs will be detectable. Still, the detection algo-
rithm is fixed and keyless, hence detection is inherently public and universal.
Furthermore, the new notion identifies a significantly larger class of “software
piracy” attackes, namely those attacks where the “forbidden similarity” between
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the jail-broken program and the original program may be defined via some pre-
determined relation that considers both the structure and the functionality of
the jail-broken program and the watermarked program.

More specifically, our proposed notion of watermarking, with respect to a
family C of programs and a relation R(·, ·), postulates a marking algorithm M
and a (randomized) verification algorithm V with the following properties. The
watermarking party chooses a program C from the family C, along with a mark
m, and applies M to obtain a watermarked program Ĉ such that:
(a) V (Ĉ) = (C̃,m), where C̃ is functionally equivalent to C. (That is, Ĉ passes
verification, bears the mark m, and results in a program that’s functionally
equivalent to the original.)
(b) Any adversarially generated program Ĉ ′ where V (Ĉ ′) = (C̃ ′,m′) and such
that there exists a program C ′ that’s functionally equivalent to C̃ ′ and such that
R(C,C ′) holds, must have m′ = m except for negligible probability. (That is, if
Ĉ ′ passes verification and the resulting program C̃ has a functionally equivalent
”plaintext” program C ′ that stands in the specified relation with C, then Ĉ ′ has
to bear the mark m.)

We note that this notion is very general, and in particular prevents potential
plagiarism where the plagiarized program has very different functionality than
the watermarked one, and yet uses the watermarked program as a subroutine or
otherwise incorporates it in its code.

We then use subexponential COA obfuscation to construct watermarking
schemes for any function family C and relation R where:
(a) the description of a program C ← C is “one way” with respect to the func-
tionality of the program (i.e. the description is uniquely determined, yet hard
to efficiently extract, given sufficiently many input-output pairs), and:
(b) R is such that whenever R(C,C ′) holds, knowledge of C ′ enables breaking the
one wayness of C. That is, there is an algorithm that computes the description
of C, given only C ′ and oracle access to C. As a concrete example, we consider
watermarking a PRF, where the relation R holds only if two PRF circuits use the
same key; relying on a “key-injective” PRF, this can be extended to a relation
R that holds whenever two PRFs agree on their outputs for some input.

Application to Completely CCA Encryption. We formulate a new notion of secu-
rity for public key encryption, which we call completely CCA (CCCA) secure
encryption. Our new notion of security provides a strong form of non-malleability
for encryption schemes, and is a stronger variant of the notion of completely
non-malleable encryption of Fischlin [14]. The latter notion of secure encryp-
tion scheme rules out non-malleability even when a man-in-the-middle adver-
sary”mauls” an honest (public-key, ciphertext) pair to produce a new public key
and a new ciphertext where the corresponding plaintext is related to the original
plaintext (according to some relation R).

Informally, our notion of completely CCA security strengthens CCA security
(rather than plain non-malleability) by allowing the adversary to have access
to a strong decryption oracle. The adversary can query this decryption ora-
cle adaptively with different (possibly related) combinations of public keys and



COA-Secure Obfuscation and Applications 737

ciphertexts. The decryption oracle brute-force finds a message and randomness
string corresponding to the queried public-key/ciphertext pair (and if no such
pair exists, it it returns a ⊥). The security requirement is that the adversary
must not be able to break CPA-security for a challenge public-key ciphertext
pair even given unbounded queries to this oracle (as long as it does not query
the oracle on the challenge pair).

As shownbyFischlin [14], even his (weaker) notion of completely non-malleable
encryption is impossible to realize with respect to black-box simulation in the plain
model (i.e., without any trusted setup assumptions). In this work we show, surpris-
ingly, that it is possible to construct completely CCA-2 secure encryption (and
hence completely non-malleable encryption) in the plain model from COA obfus-
cation. While the reduction is BB, the bound is avoided by the fact that we need
sub-exponential assumptions to construct COA obfuscation to begin with.

Let us provide more detail about the new notion of CCCA encryption. We
first formulate a strong variant of completely non-malleable encryption in the
spirit of CCA-secure commitments. In this variant, the adversary has access to
a standard decryption oracle (with respect to adversarially generated ciphertext
and the original secret key), and also has access to an oracle that, essentially,
takes an adversarially generated public key pk and ciphertext c, and returns a
plaintext m such that c could potentially the result of encrypting m with public
key pk (and some random string). We note that this is a very strong primitive,
that in particular implies both completely non-malleable encryption and CCA-
secure commitment.

We then show that the Sahai-Waters CCA secure encryption [29], when the
obfuscation algorithm is COA-secure (with respect to a predicate φ that attests
for the correct structure of the obfuscated program), rather than plain iO, is
completely CCA secure.

We provide two alternative proofs of security of this scheme. One proof follows
a blueprint similar to that of [29], with one major difference: when the adversary
A queries the decryption oracle with a public-key ciphertext pair (p̃k, c) then:

– If p̃k matches the challenge public key, then there is a direct reduction to the
Sahai-Waters game.

– If p̃k is different from the challenge public key, then the reduction uses the
COA deobfuscation oracle to decrypt the ciphertext c. In more details, the
reduction first invokes cO.Ver on p̃k to obtain some program P̃ . The verifia-
bility property of cO guarantees that if P̃ �=⊥, then there must be a program
P ′ such that P̃ = iO(P ′; r). Since, we assume iO is injective, the reduction
can then use the deobfuscation oracle O−1 on P̃ to recover P ′. Now, from
this plaintext program P ′ it is possible to extract “secret” PRF keys (K1,K2)
by reading the description of P ′ (this is possible since our COA fortification
is defined for circuits that have some PRF keys embedded). These secret keys
can then be used to decrypt c.

The second proof directly uses the notion of COA-secure obfuscation: We
formulate an admissible sampler where each sample consists of two instances of
the encryption program in the public key, along with an auxiliary input that
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enables the adversary to obtain a challenge ciphertext c∗ where embedded in
c∗ depends on whether one has access to the first or the second instance of the
encryption program. We then argue that:
(a) when the encryption programs are given as oracles, it is infeasible to distin-
guish the two cases, thus the sampler is admissible. (Here we essentially use the
fact that the underlying symmetric encryption scheme is CCA.) We conclude
that a even a COA adversary, that has access to the COA-obfuscated version of
one of the two copies of the encryption algorithm, along with the same auxiliary
input a de-obfuscation oracle, is still unable to distinguish the two cases.
(b) On the other hand, A CCCA attack against the scheme can be simulated by
a COA adversary that has access to a COA-secure obfuscation of one of the two
instances of the encryption algorithm, to the same auxiliary input as before, and
to a de-obfuscation oracle that’s used to respond to the de-encryption queries of
the CCCA attacker. This means that such CCCA attack must fail.

1.4 Constructing COA Obfuscation

Before sketching our construction for COA obfuscation, it will be helpful to set
aside the non-malleability requirement, and consider only the simpler question of
fortifying an obfuscation scheme to obtain verifiability. Let O be an obfuscator,
and let φ be an efficiently computable predicate on programs. Recall that the ver-
ifiable version of O with respect to φ is a pair of algorithms (vO.Obf, vO.Verify)
such that the following holds:

– Correctness: For any program C such that φ(C) holds, if Ĉ ← vO.Obf(C) and
˜C ← vO.Verify(Ĉ), then we have that ˜C and C are functionally equivalent.
That is, vO.Verify ”accepts” Ĉ as ˜C.

– Verifiability: Conversely, if ˜C is the result of vO.Verify(Ĉ) for some string Ĉ,
then, except with negligible probability, there exists a program C such that
φ(C) holds and ˜C is functionally equivalent to C, or more precisely, that ˜C
is in the image of O(C).

– Obfuscation: vO guarantees the same level of indistinguishability as O.
That is, there exists an efficient transformation from distinguishers between
vO.Obf(C1) and vO.Obf(C2), to distinguishers between O(C1) and O(C2),
for any distribution over pairs of programs C1, C2 ∈ F that satisfy φ.
(The formal definition considers distribution over (C1, C2, z) where z is auxil-
iary information that will be given to the distinguishers. Also, we shall permit
the transformation to suffer a (possibly sub-exponential) quantitative loss in
the level of indistinguishability.)

A useful interpretation of the pair of algorithms (vO.Obf, vO.Verify) is that
they together implement O. An intriguing side-effect of this is that the honest
vO obfuscator (who runs vO.Obf) does not necessarily know the final obfuscated
program ˜C generated by vO.Verify, though it knows that it is of the form O(C).
On the other hand, if the obfuscator is malicious, it could control the outcome
of vO.Verify to be fixed, or alternately, ensure that different runs of vO.Verify
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results in obfuscations of different programs (without violating the verifiabil-
ity condition). These “relaxations” of vO may appear inconsequential, since an
honest obfuscator is only interested in fixing the functionality, and on the other
hand, a malicious obfuscator could have randomly chosen the program it wants
to obfuscate. But as we see below, these relaxations are crucial to realizing ver-
ifiability fortification.

Exploiting NIDI for Verifiability. A natural approach to obtaining verifiabil-
ity would be to attach some form of a non-interactive proof to the obfuscated
program, proving that it was constructed as O(C) for some C such that φ(C)
holds. Unfortunately, NIZK is impossible without a trusted setup. The next best
option would be to use a non-interactive witness indistinguishable (NIWI) proof
system, which can indeed be realized without a setup [5,6,19], under a variety
of assumptions. Indeed, this was the approach taken in [2]. However, since a
NIWI proof can hide a witness only if alternate witnesses are available, attach-
ing a NIWI to O(C) directly does not suffice; instead, [2] cleverly combines three
obfuscations with a NIWI which only proves that two of them correspond to func-
tionally equivalent programs, both satisfying the predicate (this necessitates the
verifiable-equivalence restriction). By evaluating the three programs and taking
the majority, the user is assured that they are using a valid O(C). Also, the
variable witnesses introduced suffices to prevent the NIWI from breaking the
indistinguishability guarantee that iO provides for pairs of functionally equiva-
lent circuits. Unfortunately, this approach is closely tied to the specific hiding
guarantee of iO, limited to functionally equivalent circuits, and further adds a
technical requirement that there should be a short witness to the equivalence.

The relaxations we build into vO enable an alternative. Specifically, instead
of attaching a proof to (one or more) programs, vO.Verify is allowed to sample
a program and a proof. This enables us to use a proof system which lets the
verifier sample a statement and a proof together, where the statement comes
from a distribution determined by the prover. Such a proof system was recently
introduced in [22], under the name of Non-Interactive Distributionally Indis-
tinguishable (NIDI) arguments. The hiding property that NIDI offers is that
as long as two statement distributions are indistinguishable from each other,
then adding the proofs does not break the indistinguishability (by more than a
sub-exponential factor). With a statement distribution corresponding to O(C),
we can directly use the prover and verifier in a NIDI argument as vO.Obf and
vO.Verify.

COA Security Fortification. For defining COA-security fortification, we consider
an injective obfuscator O, where injectivity means that the obfuscator does not
map two distinct programs to the same obfuscated program. While this property
may naturally be present in obfuscators with perfect functionality preservation,
it is easy to add this to an obfuscator (without affecting hiding properties) by
simply attaching a perfectly binding commitment of a program to the obfusca-
tion. The reason we shall consider the given obfuscator O to be injective is so
that we will be able to unambiguously refer to a de-obfuscation oracle.
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Given an injective obfuscator O, a COA fortification of O, denoted cO =
(cO.Obf, cO.Ver) is a pair of efficient algorithms satisfying the following proper-
ties:

– Correctness: This is similar to that in the case of verifiability fortification,
except that there is no requirement for the obfuscated to satisfy any predicate.
That is, for any program C, if Ĉ ← cO.Obf(C), then we have that ˜C ←
cO.Ver(Ĉ) such that ˜C is functionally equivalent to C.

– Verifiability: Again, this property is similar to that in the case of verifiability
fortification, except for the predicate. That is, if ˜C ← cO.Ver(Ĉ) then, except
with negligible probability, ˜C is in the codomain of O(C).

– COA-secure obfuscation: COA-security is defined analogous to how CCA
security is defined for encryption or (more appropriately) commitment. Con-
sider an adversary who tries to guess b ← {1, 2} from Ĉ, where Ĉ ←
cO.Obf(Cb), and (C1, C2) are a pair of programs. In a chosen obfuscation
attack (COA), the adversary can create purported obfuscations Ĉ ′ �= Ĉ and
have them de-obfuscated as O−1(cO.Ver(Ĉ ′)). Note that we require O to
be injective so that O−1 is well-defined (it outputs ⊥ if the input is not in
the codomain of O). Any advantage that the adversary has in guessing b
with access to this deobfuscation oracle should translate to a distinguishing
advantage between O(C1) and O(C2) (without a deobfuscation oracle).

COA-Security Fortification from Robust NIDI. Our COA-security fortification
uses non-interactive CCA-secure commitments, as well as NIDI arguments.
CCA-secure commitments were introduced by [9], and a non-interactive con-
struction based on NIDI arguments was given in [22], which suffices for our
purposes. However, for the NIDI arguments used in our construction, we need
a stronger security guarantee than in [22], namely robustness – a term that we
borrow from [9] where it was used in a similar sense. A robust NIDI w.r.t. an
oracle O retains its indistinguishability preservation guarantee for distinguishers
that have access to O. We discuss the construction of robust NIDI soon after
describing COA fortification.

Our COA-security fortification cO uses a non-interactive CCA-secure com-
mitment scheme , and NIDI arguments for NP that are robust against the decom-
mitment oracle for , . The obfuscation cO.Obf(C) generates a robust NIDI proof
̂C for the language consisting of pairs ( ˜C, c) where ˜C ← O(C) and c ←, (C).
Note that C is fixed, but only the distribution over ( ˜C, c) is determined by
the NIDI prover (obfuscator). The verifier cO.Ver( ̂C) runs the NIDI verifier to
transform ̂C into a pair ( ˜C, c) (or rejects it), and then outputs ˜C. Note that
the CCA-secure commitment c is simply discarded by the verifier. The role of
this commitment is, in the proof of security, to allow running a COA adversary
– which expects access to the oracle O−1 ◦ cO.Ver – using the decommitment
oracle for com.

Constructing Robust NIDI. Our construction of a robust NIDI follows the outline
in [22], except that we instantiate all primitives with those that retain their
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security guarantees in the presence of the oracle O. In what follows, we outline
this construction.

In a nutshell, a NIDI consists of an iO-obfuscated program that obtains as
input the first message of an appropriate two-message proof system (satisfying
ZK with superpolynomial simulation), and outputs a statement sampled from
the input distribution, together with a proof. In [22], it was shown that the
resulting system hides the distribution from which statements are sampled. Our
construction of robust NIDIs modifies this template by requiring the underlying
iO and ZK proof to be secure in the presence of the oracle O. For any oracle with
a finite truth table, we achieve this by assuming subexponential security of the
underlying primitives, e.g., by setting the iO security parameter large enough
such that iO becomes secure against adversaries that store the underlying truth
table.

2 Preliminaries

We use x ← S to denote uniform sampling of x from the set S. [n] is used to
denote the set {1, 2, . . . n}. For x, y ∈ {0, 1}n, x ◦ y denotes the inner product of
x, y, i.e. if x = x[1 . . . n], y = y[1 . . . n], x ◦ y =

⊕

i∈[n] xi · yi. Functional equiv-
alance of two circuits C1, C2 is denoted by C1 ≡ C2. We refer to a circuit class
as C = {Cκ}κ∈N, where Cκ consists of a set of circuits. In addition, whenever we
consider a circuit class, we assume that it has a corresponding efficient predicate
to check membership in the class, i.e. for circuit class C = {Cκ}κ∈N, there is a
corresponding efficient predicate φC s.t. φC(κ,C) = 1 if C ∈ Cκ and 0 otherwise.
For a distribution D on domain X , Supp(D) denotes the support of D on X . We
define puncturable PRFs and key-injectivity for puncturable PRFs below:

Definition 1 (Puncturable PRF). For sets {0, 1}n and {0, 1}m, a
puncturable PRF with key space K consists of a tuple of algorithms
(PRF.Eval,PRF.Puncture,PRF.pEval) that satisfy the following two conditions.

– Functionality preserving under puncturing. For every x∗ ∈ {0, 1}n,
every x ∈ {0, 1}n \ {x∗}, and all K ∈ K, we have: PRF.Eval(K,x) =
PRF.pEval(K{x∗}, x), where K{x∗} ← PRF.Puncture(K,x∗).

– Pseudorandomness at punctured points. For every x∗ ∈ {0, 1}n, every
x ∈ {0, 1}n \ {x∗}, and any PPT adversary A, it holds that

∣

∣

∣ Pr [A(K{x∗},PRF.Eval(K,x∗)) = 1] − Pr[A(K{x∗}, Uk) = 1]
∣

∣

∣ = negl(κ),

where K ← K,K{x∗} ← PRF.Puncture(K,x∗), and Uk is the uniform distri-
bution over {0, 1}k.

2.1 Non-Interactive Distributionally Indistinguishable (NIDI)
Arguments

In a NIDI argument [22] for an NP language L, the prover algorithm P is given a
distribution D for sampling member-witness pairs, and it generates a program π
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which can be used (by the verifier algorithm V) to verifiably generate a member
of the language L. The hiding property of a NIDI is that if two distributions D1

and D2 are such that the members they generate are indistinguishable from each
other (when the witnesses are held back), then the program π generated by the
NIDI prover remains similarly indistinguishable, upto a “gap” ε. We formally
recall the definition of this primitive from [22] below.

Definition 2 (Non-Interactive Distributionally-Indistinguishable
(NIDI) Arguments). A pair of PPT algorithms (P,V) is a non-interactive
distributionally-indistinguishable (NIDI) argument for NP language L with asso-
ciated relation RL if there exist non-interactive algorithms P and V that satisfy:

– Completeness: For every poly(κ)-sampleable distribution4 D = (X ,W) over
instance-witness pairs in RL such that Supp(X ) ⊆ L,

π ∈ Supp (P(1κ,D)) =⇒ V(1κ, π) ∈ Supp(X ).

– Soundness: For every ensemble of polynomial-length strings {πκ}κ there
exists a negligible function μ such that

Pr
x←V(1κ,πκ)

[

(x �= ⊥) ∧ (x �∈ L)] ≤ μ(κ).

– ε-Gap Distributional Indistinguishability: There exists an efficient
transformation T on distinguishers such that for every poly(κ)-sampleable
pair of distributions D0 = (X0,W0) and D1 = (X1,W1) over instance-witness
pairs in RL where Supp(X0) ∪ Supp(X1) ⊆ L, and every distinguisher D with

∣

∣

∣ Pr[D(P(1κ,D0)) = 1] − Pr[D(P(1κ,D1)) = 1]
∣

∣

∣ = ν(κ)

the distinguisher D′ = T (D) satisfies:
∣

∣

∣ Pr[D′(X0) = 1] − Pr[D′(X1) = 1]
∣

∣

∣ ≥ ε(κ) · ν(κ).

We have the following theorem from [22].

Theorem 1. Assuming the existence of sub-exponentially secure one-way func-
tions and sub-exponentially secure indistinguishability obfuscation, there exist
NIDI arguments satisfying ε-gap distributional indistinguishability, for every
ε(κ) = 2−o(logc κ), for a constant c > 1.

4 Here, we slightly abuse notation and use D to also denote a circuit that on input
uniform randomness, outputs a sample from the distribution D.
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2.2 CCA Commitments

A chosen-commitment attack (CCA) secure commitment scheme [9] is a com-
mitment scheme, which remains hiding for commitments even in the presence of
a (computationally inefficient) “decommitment oracle” cca.DeCom that opens
all commitments that do not match the challenge commitment. For the decom-
mitment oracle to be well-defined, we shall require that the commitment is per-
fectly binding: for all r0, r1 and m0 �= m1 we have that cca.Com(m0; r0) �=
cca.Com(m1; r1).

A CCA secure commitment scheme is parameterized by a message length
M = M(κ); we shall consider the message space to be {0, 1}M , where M is
polynomial. As defined below, a non-interactive CCA commitment scheme con-
sists of an efficient randomized algorithm cca.Com (with an implicit “canoni-
cal opening”). We let cca.DeCom denote the function that maps an output of
cca.Com to the message underlying it (or ⊥ if no such message exists).

Definition 3. An ε(κ)-secure non-interactive CCA commitment scheme over
a message space {0, 1}M(κ) consists of a randomized algorithm cca.Com and a
deterministic algorithm cca.DeCom, satisfying the following.

– Correctness. For all m ∈ {0, 1}M and r ∈ {0, 1}∗ we have that

cca.DeCom(cca.Com(1κ,m; r)) = m.

(This implies perfect binding.)
– Efficiency. cca.Com runs in time poly(κ), while cca.DeCom runs in time

2O(κ).
– ε(κ)-Security. For a message m ∈ {0, 1}M and a distinguisher D, let

pccaD,m = Pr
c←cca.Com(1κ,m)

[Dcca.DeCom ◦ Filtc(1κ, c) = 1],

where Filtc is the identity function on all inputs except c, on which it outputs
⊥. Then, for all polynomials s there is a negligible function ν such that, for
all m1,m2 ∈ {0, 1}M and all distinguishers D of size at most s(κ),

∣

∣

∣pccaD,m1
− pccaD,m2

∣

∣

∣ ≤ ε(κ)ν(κ).

We rely on a recent construction of non-interactive CCA commitments
from [22].

Theorem 2 ([22]). Assuming sub-exponentially secure indistinguishability
obfuscation and either

– Sub-exponential (classical) hardness of DDH and sub-exponential quantum
hardness of LWE (as used in [21]), or

– Sub-exponential time-lock puzzles based on the RSW assumption (as used
in [26])

there exist non-interactive CCA commitments satisfying Definition 3.

The assumptions in the aforementioned theorem can also be reduced by using
time-lock puzzles based on iO and the existence of hard-to-parallelize languages.
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2.3 Obfuscation

An obfuscator O is a randomized program that probabilistically maps a circuit
from some family {Cκ}κ∈N to another functionally equivalent circuit. We shall
require an obfuscator to satisfy the following correctness and efficiency properties
(with probability 1):

Functionality Preservation. For all κ ∈ N and all C ∈ Cκ, O(1κ, C) ≡ C
(where ≡ indicates that the two circuits are functionally equivalent).

Polynomial Slowdown. There exists a polynomial p such that for all κ ∈ N

and all C ∈ Cκ, |O(1κ, C)| ≤ p(|C|) (where | · | denotes the size of a circuit).
Efficient Obfuscation. O is a polynomial time algorithm. Generally, we shall

also assume that the circuits in Cκ are of size at most polynomial in κ.

Security. For a sampler Samp and a distinguisher D, we define, for b ∈ {1, 2},

pSamp,b
O,D := Pr (C1,C2,z)←Samp(1κ)

˜C←O(1κ,Cb)

[

D( ˜C, z) = 1
]

and AdvSamp
O,D :=

∣

∣

∣p
Samp,1
O,D − pSamp,2

O,D

∣

∣

∣ (1)

Then, an obfuscator O is said to be (S,D) secure, if for all Samp ∈ S and D ∈ D,
AdvSamp

O,D is negligible. In particular, for indistinguishability obfuscation (iO), S is
the class of samplers which output (C1, C2, z) where C1 ≡ C2 and z = (C1, C2),
and D consists of all PPT distinguishers.

Following [10],5 below we define a class of samplers, called admissible sam-
plers, that only requires that it is (very) hard for a PPT adversary to distinguish
between oracle access to C1 and to C2. Here the distinguishing probability is
required to be negligible even after amplifying by a factor of 2κ, with κ being
the number of bits of inputs for the circuits.

Definition 4 (Admissible Samplers). For any adversary A, and b ∈ {1, 2},
let

pSamp,b,κ
A := Pr

(C1,C2,z)←Samp(1κ)

[

ACb(z) = 1
]

and AdvSamp,κ
A :=

∣

∣

∣p
Samp,1,κ
A − pSamp,2,κ

A

∣

∣

∣.

A sampler Samp over C = {Cκ}κ∈N where all C ∈ Cκ take κ-bit inputs, is called
admissible if there exists a negligible function μ s.t. for any non-uniform PPT
adversary A, AdvSamp,κ

A ≤ μ(κ) · 2−κ, for all sufficiently large κ.

5 Admissible samplers are a special case of X-Ind sampler defined in [10], where it
is parametrized by a function X(κ) ≤ 2κ. The definition of admissible samplers
corresponds to setting X(κ) = 2κ and restricting to (deterministic) circuits taking
κ-bit inputs.
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We shall refer to an obfuscation scheme with respect to such admissible
samplers as a pIO scheme. As shown in [10], assuming the existence of sub-
exponentially secure iO and sub-exponentially secure puncturable PRFs, pIO
schemes exist for any polynomial sized circuit family, that is secure against a
class D of sub-exponential time distinguishers.

Next we define injective obfuscators.

Definition 5 (Injective Obfuscator). An obfuscator O for a circuit family
{Cκ}κ∈N is said to be injective if ∀κ1, κ2, C1, C2

O(1κ1 , C1; r1) = O(1κ2 , C2; r2) �= ⊥ ⇒ C1 = C2.

We remark that it is easy to convert any obfuscator into an injective obfuscator
(without affecting its hiding properties) simply by attaching a perfectly binding
commitment of the circuit to its original obfuscation.

3 New Definitions

We define COA-secure obfuscation in Sect. 3.1, and Verifiability/COA fortifica-
tion for obfuscations in Sects. 3.2 and 3.3 respectively. Towards this, first, we
will need the following definition of circuit samplers.

Definition 6 (φ-Satisfying Samplers). Let C = {Cκ}κ∈N be a circuit class
and φ be a predicate. We say that a randomized algorithm Samp is a φ-satisfying
sampler over C if, for all large enough κ, Samp(1κ) outputs (C1, C2, z) such that,
with probability 1, C1, C2 ∈ Cκ and, φ(C1) = φ(C2) = 1.

3.1 COA-Secure Obfuscation

Definition 7 (Admissible φ-satisfying Samplers). A sampler algorithm
Samp(1κ) is an admissible φ-satisfying sampler over C if it is both admissible
(according to Definition 4) and φ-satisfying (according to Definition 6) over C.

Definition 8 (COA-Secure Obfuscation). A COA-secure obfuscation for
a circuit class C = {Cκ}κ∈N w.r.t. a predicate φ is a pair of PPT algorithms
(cO.Obf, cO.Ver) defined as follows6:

– cO.Obf(1κ, C, φ) → ̂C. This takes as input the security parameter κ, a circuit
C ∈ Cκ, a predicate φ, and outputs an encoding ̂C.

– cO.Ver(1κ, ̂C, φ) → { ˜C ∪ ⊥}. This takes as input a string ̂C, a predicate φ,
and outputs either a circuit ˜C or a reject symbol ⊥.

These algorithms satisfy the following correctness, verifiability and security prop-
erties.

6 Both the algorithms cO.Obf and cO.Ver take as input a predicate. This is to capture
the uniformity of the algorithms w.r.t. φ.
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– Perfect Correctness. For every κ ∈ N and circuit C ∈ Cκ s.t. φ(C) = 1,
if ˜C ← cO.Ver(1κ, cO.Obf(1κ, C, φ), φ), then ˜C ≡ C.

– Verifiability. For every ensemble of polynomial-length strings {Πκ}κ∈N,
there exists a negligible function ν(·) such that:

Pr
˜C←cO.Ver(1κ,Πκ,φ)

[

˜C �= ⊥ ∧
(

�C ∈ Cκ : φ(C) = 1 ∧ ˜C ≡ C
)]

= ν(κ).

– COA Security. Let O be an oracle defined as follows: O(κ, ˜C) outputs the
lexicographically first circuit C ∈ Cκ such that φ(C) = 1 and C is functionally
equivalent to ˜C.
For any sampler algorithm Samp, and an oracle distinguisher D, for b ∈
{1, 2}, let

qSamp,b,κ
cO,D := Pr

(C1,C2,z)←Samp(1κ)
̂C←cO.Obf(1κ,Cb,φ)

[

DO(κ,·) ◦ cO.Ver(1κ,·,φ) ◦ Filt
̂C (1κ, ̂C, z) = 1

]

,

COAAdvSamp,κ
cO,D :=

∣

∣

∣q
Samp,1,κ
cO,D − qSamp,2,κ

cO,D

∣

∣

∣

where Filt
̂C denotes a function that behaves as the identity function on all

inputs except ̂C, on which it outputs ⊥.
Then for every admissible φ-satisfying sampler Samp (according to Defini-
tion 7) and any non-uniform PPT distinguisher D, there exists a negligible
function μ(·), s.t. COAAdvSamp,κ

cO,D = μ(κ).

While the above definition of COA security is w.r.t. admissible samplers,
we can also define COA security more generally as an add-on for obfuscation
schemes O whose security could be w.r.t. other samplers. Before presenting this
notion of fortifying any obfuscation scheme with COA security, we introduce a
simpler (but already useful) notion of fortifying an obfuscation scheme by adding
verifiability.

3.2 Verifiability Fortification for Obfuscation

Given an obfuscation scheme O, we shall define its verifiability fortification w.r.t.
a predicate φ as a pair of algorithms (vO.Obf, vO.Verify). The verification algo-
rithm guarantees that, given a string Π (purportedly generated by vO.Obf), if
˜C ← vO.Verify(Π) and ˜C �= ⊥, then there exists a circuit C which satisfies the
predicate φ s.t. ˜C = O(C; r) for some randomness r.

Definition 9 (Verifiability Fortification for Obfuscation). Let O be an
obfuscator for a circuit class C = {Cκ}κ∈N and φ be an efficiently computable
predicate on circuits. An ε-gap verifiability fortification of O w.r.t. φ, is a tuple
of PPT algorithms vO = (vO.Obf, vO.Verify) that satisfy the following:

– Correctness. For every κ ∈ N and every circuit C ∈ Cκ, such that φ(C) = 1,

Pr
˜C←vO.Verify(1κ,vO.Obf(1κ,C,φ),φ)

[ ˜C ≡ C] = 1.
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– Verifiability. For every ensemble of polynomial-length strings {Πκ}κ∈N,
there exists a negligible function ν(·) such that:

Pr
˜C←vO.Verify(1κ,Πκ,φ)

[
C̃ �= ⊥ ∧

(
�(C ∈ Cκ, r) : φ(C) = 1 ∧ C̃ = O(C; r)

)]
= ν(κ).

– ε-Gap Indistinguishability of Obfuscated Circuits. There exists an
efficient transformation T (on distinguisher circuits) such that for any φ-
satisfying sampler Samp (Definition 6) over {Cκ}κ and distinguisher D,

AdvSamp
O,T (D) ≥ ε(κ) · AdvSamp

vO.Obf,D

where AdvSamp
O′,D′ (for (O′,D′) = (O, T (D)) or (vO.Obf,D)) is as defined in

(1).

3.3 COA Fortification for Obfuscation

We now define COA fortification cO for an obfuscation scheme O w.r.t. a predi-
cate φ. Apart from the natural correctness property, we require that cO satisfies
verifiability w.r.t. predicate φ just like verifiability fortification. In addition, we
want cO to satisfy “gap COA security”, which intuitively means that any dis-
tinguisher D that distiguishes between cO.Obf(C1) and cO.Obf(C2) given access
to a circuit deobfuscation oracle can be converted to a distinguisher that distin-
guishes O(C1) from O(C2) without access to any oracle. In our construction, our
transformation between distinguishers is not necessarily of polynomial size in the
security parameter κ – therefore, in addition to ε as before, we parameterize the
gap security in our definition by T = T (κ) to capture the (in)efficiency of this
transformation.

Definition 10 (COA Fortification for Injective Obfuscators). Let O be
an injective obfuscator for a circuit class C = {Cκ}κ∈N and φ be an efficiently
computable predicate on circuits. A (T, ε)-gap COA fortification of O w.r.t. φ is
a pair of PPT algorithms cO = (cO.Obf, cO.Ver) as follows:

– cO.Obf(1κ, C, φ) → ̂C. This is a randomized algorithm that on input security
parameter κ, a circuit C ∈ Cκ, and a predicate φ, outputs an encoding ̂C.

– cO.Ver(1κ, ̂C, φ) → { ˜C ∪ ⊥}. This is a randomized algorithm that on input
security parameter κ, a string ̂C, and a predicate φ, outputs either a circuit
˜C or a reject symbol ⊥.

These algorithms satisfy the following correctness and security properties.

– Perfect Correctness. For every κ ∈ N and every circuit C ∈ Cκ such that
φ(C) = 1,

Pr
˜C←cO.Ver(1κ,cO.Obf(1κ,C,φ),φ)

[∃ r s.t. ˜C = O(1κ, C; r)] = 1
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– Verifiability. For every ensemble of polynomial-length strings {Πκ}κ∈N,
there exists a negligible function ν(·) such that:

Pr
˜C←cO.Ver(1κ,Πκ,φ)

[
C̃ �= ⊥ ∧

(
�(C ∈ Cκ, r) : φ(C) = 1 ∧ C̃ = O(1κ, C; r)

)]
= ν(κ).

– (T, ε)-Gap Security. Let O−1(C̃) =

{
C if ∃ (C ∈ Cκ, r) s.t. C̃ = O(1κ, C; r)

⊥ otherwise.

(well-defined since O is injective). For any φ-satisfying sampler Samp (see
Definition 6), and an oracle circuit D, for b ∈ {1, 2}, let

qSamp,b
cO,D := Pr

(C1,C2,z)←Samp(1κ)
̂C←cO.Obf(1κ,Cb,φ)

[

DO−1◦ cO.Ver(1κ,·,φ) ◦ Filt
̂C (1κ, ̂C, z) = 1

]

COAAdvSamp
cO,D :=

∣

∣

∣q
Samp,1
cO,D − qSamp,2

cO,D

∣

∣

∣

where Filt
̂C denotes a function that behaves as the identity function on all

inputs except ̂C, on which it outputs ⊥.
Then, there exists a T -sized transformation T (on distinguisher circuits) such
that for any admissible sampler Samp over {Cκ}κ and distinguisher D,

AdvSamp
O,T (D) ≥ ε(κ) · COAAdvSamp

cO,D

where AdvSamp
O,T (D) is as defined in (1).

Remark 1. One could consider a (possibly) stronger definition that allows the
sampler Samp used in defining COAAdvSamp

cO,D to also make de-obfuscation queries.
We note that for worst-case indistinguishability notions for O (like iO), this does
not make any difference, as the (non-uniform) sampler can output the optimal
pair of circuits.

Remark 2. We remark that for any T = T (κ) ≥ poly(κ), any ε = ε(κ) ≤ negl(κ),
(T, ε)-gap COA fortification for any injective (T, ε)-secure pIO implies COA-
secure obfuscation according to Definition 8. Here (T, ε)-security indicates that
the advantage of any poly(T )-sized adversary in the pIO security game is at most
negl(ε).

4 Robust NIDI

Robust NIDI arguments w.r.t. an oracle O are an extension of NIDI arguments
(Definition 2), whereby the gap distributional indistinguishability requirement
of NIDI is further strengthened to hold even if the distinguisher has access to
the oracle O. (The completeness and soundness guarantees remain unchanged.)
In other words, any distinguisher DO, distinguishing the proofs generated by
prover P on input the distributions on instance-witness pairs - D0 = (X0,W0)
or D1 = (X1,W1), can be converted to an efficient distinguisher T (D)O which
distinguishes the underlying instances X0 or X1 upto a “gap” ε. We formally
define the same below.
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Definition 11 (Robust NIDI Arguments). Let L be an NP language with
an associated relation RL, and O be an arbitrary oracle. A NIDI argument for
L, (P,V) is said to be robust w.r.t. O if it satisfies the following:

– ε-Gap Robust Distributional Indistinguishability: There exists an
efficient transformation T on distinguishers such that for every poly(κ)-
sampleable pair of distributions D0 = (X0,W0) and D1 = (X1,W1) over
instance-witness pairs in RL where Supp(X0) ∪ Supp(X1) ⊆ L, and every
distinguisher D with

∣

∣

∣ Pr[DO(P(1κ,D0)) = 1] − Pr[DO(P(1κ,D1)) = 1]
∣

∣

∣ = ν(κ)

the distinguisher ̂D = T (D) satisfies:
∣

∣

∣ Pr[ ̂DO(X0) = 1] − Pr[ ̂DO(X1) = 1]
∣

∣

∣ ≥ ε(κ) · ν(κ).

We construct robust NIDI arguments for any finite7 oracle O = {Oκ}κ∈N by
modifying the construction in [22] to ensure that all the underlying primitives
remain secure in the presence of oracle O. Our approach to achieve this is to rely
on complexity leveraging, although it may be possible to leverage other axes
of hardness in order to instantiate the underlying primitives with those that
remain secure in the presence of O. In the full version [8], we prove the following
theorem.

Theorem 3. Fix any finite oracle O = {Oκ}κ∈N. Assuming the existence of
sub-exponentially secure one-way functions and sub-exponentially secure indis-
tinguishability obfuscation, there exist robust NIDI arguments w.r.t. O, satisfying
ε-gap distributional indistinguishability, for every ε(κ) = 2−o(logc(κ)), for some
constant c > 1, satisfying Definition 11.

5 Constructing COA Secure Obfuscation

In this section, we prove the following theorem.

Theorem 4. For any (T (κ), ε(κ)), if there exist ε(κ)-secure CCA commitments
satisfying Definition 3 for which the decommitment oracle can be implemented
in time T (κ), and robust NIDIs satisfying ε(κ)-gap distributional indistinguisha-
bility w.r.t. the decommitment oracle for the CCA commitments (see Definition
11), then there exists a (T (κ), ε(κ)/4)-gap COA fortification for any injective
obfuscation, satisfying Definition 10.

Here we describe our construction, and defer its proof of security to our full
version [8].

7 By ‘finite’, we mean that there exists a constant c > 1 s.t. for large enough κ the
oracle Oκ can be represented as a truth-table of size at most 2κc

.
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Construction 1. We require the following primitives:

– Let ccacom denote an ε(κ)-secure CCA commitment scheme according to Def-
inition 3 and let O denote the (deterministic, inefficient) oracle that imple-
ments the cca.DeCom algorithm for ccacom. That is, on input a commitment
string ,, the oracle O outputs either a message m ∈ {0, 1}∗ or ⊥. Also, let
T = poly(|m|, 2κ) (where |m| denotes the size of message space for ccacom).

– Let r-NIDI denote a robust NIDI w.r.t. oracle O for language Lφ, defined
below.

– Let O denote the underlying obfuscator for our COA fortification. We will
assume that this obfuscator is secure against poly(T )-sized adversaries. This
can be achieved by appropriately scaling the security parameter for O, since
O is assumed to be subexponentially secure.

– Define language Lφ = {{O, c} : ∃(C, r1, r2) : O = O(C; r1) ∧ c =
ccacom(C; r2) ∧ φ(C) = 1}

The algorithm cO.Obf(1κ, C, φ) does the following:

– Define distribution DC(r1||r2) = {O(C; r1), c = ccacom(C; r2)} for uniformly
sampled r1, r2.

– Output π ← r-NIDI.P(1κ,DC ,Lφ) computed using uniform randomness rc.

The algorithm cO.Ver(1κ, ̂C, φ) does the following:

– Sample randomness rR.
– Output y ← r-NIDI.V(1κ, π; rR).

In particular, for ε(κ) = 2−o(logc(κ)) and some constant c > 1, there exist
ε(κ)-secure CCA commitments satisfying Definition 3 for which the decommit-
ment oracle can be implemented in time T (κ) where T (κ) = 2κδ

for some
constant δ > 0, and by Theorem 3 there exist robust NIDI arguments satis-
fying ε(κ) gap distributional indistinguishability w.r.t. the decommitment oracle
for the CCA commitments. Then, the theorem above implies that there exist
(2κδ

, 2−o(logc(κ)))-gap COA fortification for any injective obfuscation.

Corollary 1. Assuming the existence of sub-exponentially secure one-way func-
tions and sub-exponentially secure indistinguishability obfuscation, there exists
COA-secure obfuscation for all polynomial-sized circuits, satisfying Definition 8.

Proof. (Sketch) By [10], assuming the existence of sub-exponentially secure iO
and sub-exponentially secure puncturable PRFs, there exist subexponentially
secure pIO schemes for any polynomial sized circuit family. That is, there exists
a constant δ > 0 such that for T = 2κδ

, and every poly(T )-sized distinguisher D,
AdvSamp

pIO,D = negl(T ) where Samp is an admissible sampler according to Definition
4. This scheme can be made injective (while retaining T -security) by attaching
a perfectly binding commitment of the circuit to its original obfuscation.

Furthermore, for ε(κ) = 2−o(logc(κ)) and some constant c > 1, there exist
ε(κ)-secure CCA commitments satisfying Definition 3 for which the decommit-
ment oracle can be implemented in time T (κ), and by Theorem 3 there exist
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robust NIDI arguments satisfying ε(κ) gap distributional indistinguishability
w.r.t. the decommitment oracle for the CCA commitments. Then, the theorem
above implies that there exist (2κδ

, 2−o(logc(κ)))-gap COA fortification for any
injective obfuscation and in particular, for the injective pIO scheme described
above. This results in a COA-secure obfuscation scheme, whose correctness and
verifiability are immediate from those of the COA fortification. Furthermore,
by definition of fortification, this means there is a T -sized transformation T on
distinguishers such that for any admissible sampler Samp and distinguisher D,

AdvSamp
O,T (D) ≥ ε(κ) · COAAdvSamp

cO,D

This implies that for any T -sized distinguisher D, COAAdvSamp
cO,D = negl(κ). ��

6 Keyless Verifiable Watermarking

In this section, we describe an application of COA obfuscation to building water-
marking schemes. We present a generalized abstraction called keyless verifiable
watermarking. As a consequence we obtain watermarking for useful functionali-
ties like PRFs as a special case of this abstraction.

In the following, we define our notion of watermarking, which generalizes the
one in the recent work of Kitagawa et al. [23] to capture publicly markable and
extractable watermarking schemes without setup.

Definition 12 (Keyless Verifiable Watermarking). Let C = {Cκ}κ∈N

be a circuit class s.t. Cκ consists of circuits with input length n(κ) and out-
put length m(κ). For a distribution family DC and a relation R over C, a
(DC , R)-unremovable keyless verifiable watermarking scheme with a message
space M = {Mκ}κ∈N consists of two PPT algorithms (Mark,Verify) as follows:

– Mark(1κ, C,m): Mark is a randomized algorithm that takes as input a circuit
C ∈ Cκ, a message (or mark) m ∈ Mκ and outputs a (marked) circuit ̂C.

– Verify(1κ, ̂C): Verify is a randomized algorithm that takes as input a (purport-
edly marked) circuit ̂C and outputs a pair (C ′,m′), where C ′ is a circuit or
⊥, and m′ ∈ Mκ ∪ {⊥}.

They should satisfy the following properties:

– Correctness. There exists a negligible function μ s.t. for any circuit C ∈ Cκ

and message m ∈ Mκ it holds that

Pr
(C′,m′)←Verify(1κ,Mark(1κ,C,m))

[C ′ �≡ C ∨ m′ �= m] ≤ μ(κ).
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– (DC , R)-Unremovability. There exists a negligible function ν s.t. for every
non-uniform PPT adversary A, for all sufficiently large κ,

Pr[ExpA,DC,R(κ) = 1] ≤ ν(κ)

where the experiment ExpA,DC,R(κ) is defined as follows:
1. A(1κ) sends a message m ∈ Mκ to the challenger. The challenger samples

a circuit C ← DCκ
and responds with ̂C ← Mark(1κ, C,m).

2. A outputs a circuit ̂C∗. Let (C∗,m∗) ← Verify(1κ, ̂C∗). Then, the experi-
ment outputs 1 iff C∗ �= ⊥, m∗ �= m, and

• either ∃C ′ ∈ Cκ s.t. C ′ ≡ C∗ and Rκ(C ′, C) = 1,
• or there is no circuit in Cκ that is functionally equivalent to C∗.

Our definition is incomparable with recent related definitions, specifically
those of Cohen et al. [12] Aaronson et al. [1], where the latter proposes a unified
definition to capture most prior works. Specifically, we require that a water-
marking scheme has a verification algorithm that is executed before running the
watermarked programs. In our definition, the adversary is considered to have
removed the watermark only if it produces a circuit that verifies, and for which
the corresponding circuit in the circuit family is related to the original circuit.

Our definition also strengthens the definitions from prior works (includ-
ing [23] and [1]) in some crucial ways:

– Our definition eliminates the need for any key generation algorithm/public
parameters.

– Our definition incorporates a guarantee that a circuit passing the verification
indeed belongs to the circuit class.

In addition, our definition has a flavor of traitor-tracing security that is similar
to the recent works of [18]. In particular, we say that an adversary wins the
watermarking game if it removes/modifies the watermark and outputs a circuit
that is related to the original circuit – where related refers to satisfying one of a
large class of relations.

We shall construct a (DC , R)-unremovable keyless verifiable watermarking
scheme, when circuits drawn from DC are unlearnable from oracle access, but
the relation R is such that a circuit becomes learnable given a related circuit (as
made precise in Theorem 5). We first describe our construction before stating
its security guarantee.

Construction 2. Let C = {Cκ}κ∈N be a circuit class s.t. Cκ consists of circuits
that take inputs of length n(κ) and produce outputs of length m(κ), and M =
{Mκ}κ∈N be a space of polynomially long messages. For any κ ∈ N and any
m ∈ Mκ, let C′

κ = {Cm | C ∈ Cκ,m ∈ Mκ}, where

Cm(x) =

{

m||C(0) if x = 0
C(x) otherwise.
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Let circuit class C′ = {C′
κ}κ∈N be the marked circuit class and φ′ be its

membership predicate, i.e. φ′(C) = 1 iff C ∈ C′
κ (φ′ will internally use φC , the

membership predicate of C).
Let cO = (cO.Obf, cO.Ver) be COA obfuscation for C′, w.r.t. predicate φ′

(according to Definition 8). Instantiate the watermarking scheme for C w.r.t.
message space M = {Mκ}κ∈N and relation R as follows:

– Mark(1κ, C,m): Return cO.Obf(1κ, Cm, φ′), where Cm is defined using C as
above.

– Verify(1κ, ̂C): Let C ′ ← cO.Ver(1κ, ̂C, φ′). Parse C ′(0) as m||y, where m ∈
Mκ and y ∈ {0, 1}m(κ). (If C ′ = ⊥, or the parsing above fails, return (⊥,⊥).)
Construct a circuit C ′′ such that

C ′′(x) =

{

y if x = 0
C ′(x) otherwise.

Return (C ′′,m).

We provide the following theorem which captures the security of the above
construction. We provide a proof of this in our full version [8].

Theorem 5. Let C = {Cκ}κ∈N, DC = {DCκ
}κ∈N and R = {Rκ}κ∈N be ensembles

of polynomial (in κ) sized circuits, distributions over those circuits and relations
over those circuits, as follows:

– Cκ = {Eκ(f, ·) | f ∈ {0, 1}h(κ)}, where Eκ is a polynomial sized circuit imple-
menting a function Eκ : {0, 1}h(κ) × {0, 1}n(κ) → {0, 1}m(κ), with n(κ) ≤ κc

for a constant c < 1.
– For any circuit family A = {Aκ}κ∈N where Aκ is of size poly(2n(κ)),

Pr
C←DCκ , C′←AC(·)

κ

[C ′ ≡ C ] ≤ negl(2n(κ)).

– There is a family of polynomial (in κ) sized circuits Rec = {Recκ}κ∈N such
that,

Pr
C←DCκ

[

∃C ′ ∈ Cκ, Rκ(C,C ′) = 1 ∧ RecC(·)
κ (C ′) �= C

]

≤ negl(κ).

Then the watermarking scheme in Construction 2 is a (DC , R)-unremovable
keyless verifiable watermarking scheme, (according to Definition 12) for circuit
class C and message space M.

Next, we provide the following corollary which captures PRF watermarking as
special case of the above theorem.

Corollary 2. Let F = {Fk(·)}k∈Kκ,κ∈N be a PRF family with key-space K =
{Kκ}κ∈N, and seed, input, and output lengths as polynomials h(κ), n(κ) and m(κ)
respectively, such that n(κ) ≤ κc for some c < 1. In addition, suppose the key
distribution ensemble DK and relation ensemble R are as follows:
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– F is a sub-exponentially secure PRF under key distribution DK. That is, for
any adversary of size poly(2n(κ)), the following holds: (where F(n,m) = set
of all functions with input length n and output length m)

∣

∣

∣

∣

Pr
k←DK, b←AFk(·)(1κ)

[b = 1] − Pr
H←F(n,m), b←AH(1κ)

[b = 1]
∣

∣

∣

∣

≤ negl(2n(κ))

– There exists an algorithm Rec s.t.

Pr
k←DK

[

∃k′ ∈ K, Rκ(k′, k) = 1 ∧ RecFk(·)
κ (k′) �= k

]

= negl(κ).

Then the watermarking scheme for F in construction 2 is a (DK, R)-unremovable
keyless verifiable watermarking scheme.

As a concrete instantiation of the above corollary, we consider the following
relation over PRF keys: Rκ(k, k′) = 1 iff Fk(·) agrees with Fk′(·) on at least one
input. We will use a sub-exponentially secure PRF family F , which satisfies the
following key injectivity property:

Pr
k←DKκ

[∃k′ ∈ K, Rκ(k, k′) = 1 ∧ k′ �= k] = negl(κ).

where DKκ
denotes the key distribution for which the PRF security holds.

Such PRFs can be constructed as in [12] under sub-exponential DDH and LWE
assumptions. For such a PRF, R(k, k′) = 1 iff k = k′ (for most k). Then, letting
Rec be the identity function satisfies the condition on the relation R in the above
corollary. Thus, instantiating Corollary 2 with Fk(·),DK, R as defined above, we
get a (DK, R)-keyless verifiable watermarking scheme for F .

7 Completely CCA-secure Encryption

In this section, we introduce the notion of a completely CCA-secure public key
encryption scheme. Our notion of completely CCA secure PKE is a generalization
of the notion of completely non-malleable encryption put forward by [14]. The
original definition of Fischlin [14] follows a simulation-based formulation. Later
[30] gave a game-based formulation of completely non-malleable encryption and
showed it to be equivalent to the original simulation-based definition of complete
non-malleability. Our formulation of completely CCA-secure encryption also uses
a game-based formulation.

Definition 13 (C-CCA-security). An encryption scheme PKE = (KeyGen,
Enc,Dec) is completely CCA secure if there exists a (potentially randomized)
verification algorithm KeyVerify such that the following hold.

– Soundness of verification: For any string p̂k and message x, the probability
that KeyVerify(p̂k) rejects and Enc(p̂k, x) �=⊥ is negligible, i.e., there is a
negligible function μ(·) in the security parameter κ such that

Pr[(rv, re) ← {0, 1}κ, KeyVerify(p̂k; rv) = 0 ∧ Enc(p̂k, x, re) �=⊥)] < μ(κ)
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– For every PPT adversary A, Advc-ccaPKE,A,b(·) is upper bounded by μ(κ), where

Advc-ccaPKE,A,b(·) = Pr[Expc-ccaPKE,A(κ) = 1] − 1
2

and Expc-ccaPKE,A(κ) is defined via the following experiment involving A and a
(potentially inefficient) challenger C:

1. The challenger C samples r∗ $←− {0, 1}κ and runs (pk∗, sk∗) ← KeyGen(1κ, r∗).

It then returns pk∗ to A. It also samples a random bit b
$←− {0, 1}, computes

the challenge ciphertext c∗ ← Enc(pk∗, b, r) for a random r, and returns c∗ to
A.

2. At any point in the game, the adversary can make (multiple) decryption
queries to the challenger with respect to either the given public key or dif-
ferent (potentially mauled) public keys. In particular, A gets access to an
oracle D(·, ·). The oracle D takes as input either a ciphertext ci, or else a
pair (p̃ki, ci). In the first case, if ci = c∗ then D returns ⊥. Else D returns
Dec(sk∗, ci). In the second case, D first chooses a random string r. Next, if
ci = c∗ and pki = pk∗, or else ci =⊥, or KeyVerify(pki, r) =⊥, then D returns
⊥. Otherwise, D brute-force finds the set of message-randomness pairs (m, r)
such that Enc(pki,m; r) = ci. Finally, it returns a random message from this
set, or ⊥ if this set is empty.

3. When A outputs a guess b′, return 1 if b′ = b.

7.1 C-CCASecure PKE Scheme in the Plain Model

In this section we show how to construct a completely CCA2 secure PKE scheme
in the plain model (i.e., without any set up assumption). It is known from the
work of Fischlin [14] that, it is impossible to construct even completely non-
malleable encryption schemes for general relations w.r.t. black-box simulation
in the standard model. Later works [25,30] overcome this impossibility result
by relying on the common random or reference string model. In this work, we
show how to construct a completely CCA2 secure encryption scheme (which is
stronger than complete non-malleability) in the plain model from COA fortifi-
cation of indistinguishability obfuscators (iO) and one-way functions. The use of
sub-exponential assumptions allow us to bypass the impossibility result of Fis-
chlin [14]. We now present the details of our construction. The main ingredients
required for our construction as follows:

Construction 3. Let ε > 0 be an arbitrary small constant s.t. ε < δ and:

– Let F1 : {0, 1}2κ → {0, 1} and F2 : {0, 1}2κ+1 → {0, 1}κ be two puncturable
pseudo-random functions that for security parameter 1k satisfy 2kε

- security
against (non-uniform) adversaries.

– Let G : {0, 1}κ → {0, 1}2κ be a PRG that’s 2kε

- secure against (non-uniform)
adversaries.
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– Let φ(C) be the predicate asserting that C is a circuit of the form of Fig. 1
with F1, F2 and G as specified above.

– Let iO = (iO.Obf, iO.Eval) be sub-exponentially secure injective indistin-
guishability obfuscation scheme that for security parameter 1k satisfies 2kε

-
security against (non-uniform) adversaries.

– Let cO = (cO.Obf, cO.Ver) be a COA fortification of an underlying injective
indistinguishability obfuscator (iO) for circuits with respect to predicate φ.

We construct our completely CCA-2 secure encryption scheme PKE =
(KeyGen,Enc,Dec) as follows:

1. KeyGen(1κ) : The key generation algorithm does the following:
– Sample puncturable PRF keys K1 for F1 and K2 for F2.
– Generate program PK1,K2 defined in Fig. 1.
– Compute ̂P ← cO.Obf(1κ, PK1,K2 , φ).
– Output pk = ̂P , sk = (K1,K2).

Hardwired: Puncturable PRF Keys K1,K2.

Input: Message m ∈ {0, 1}, randomness r ∈ {0, 1}κ.
(a) Let t = G(r)
(b) Set c1 = t, c2 = F1(K1, t) ⊕ m, and c3 = F2(K2, c1|c2).
(c) Output c = (c1, c2, c3).

Fig. 1. Program PK1,K2 .

2. Enc(pk,m ∈ {0, 1}) : The encryption algorithm does the following:
– Sample randomness r ∈ {0, 1}κ

– Run the randomized verification algorithm ˜P ← cO.Ver(1κ, ̂P , φ).
– If ˜P �= ⊥, run ˜P (m; r) to obtain c = (c1, c2, c3).

3. Dec(pk, sk, c = (c1, c2, c3)) : The decryption algorithm does the following:

– Check if c3
?= F2(K2, c1|c2). If the check fails, output ⊥. Otherwise, it

continues.
– Output m′ = F1(K1, c1) ⊕ c2

In [8] we also show that Complete CCA security of the above scheme holds
whehever the obfuscation scheme used is COA secure as in Definition 8. That is:

Theorem 6. Assume that the obfuscation scheme O in the above scheme is
COA secure with respect to predicate φ. Then the scheme is complete CCA secure
as in Definition 13.
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Abstract. We propose a mechanism for generating and manipulat-
ing protein polymers to obtain a new type of consumable storage that
exhibits intriguing cryptographic “self-destruct” properties, assuming
the hardness of certain polymer-sequencing problems.

To demonstrate the cryptographic potential of this technology, we
first develop a formalism that captures (in a minimalistic way) the func-
tionality and security properties provided by the technology. Next, using
this technology, we construct and prove security of two cryptographic
applications that are currently obtainable only via trusted hardware
that implements logical circuitry (either classical or quantum). The first
application is a password-controlled secure vault where the stored data
is irrecoverably erased once a threshold of unsuccessful access attempts
is reached. The second is (a somewhat relaxed version of) one time pro-
grams, namely a device that allows evaluating a secret function only a
limited number of times before self-destructing, where each evaluation is
made on a fresh user-chosen input.

Finally, while our constructions, modeling, and analysis are designed
to capture the proposed polymer-based technology, they are sufficiently
general to be of potential independent interest.

1 Introduction

Imagine we could cryptographically create k-time programs, i.e., programs that
can be run only some bounded number of times, and inherently self-destruct after
the k-th invocation. This would open the door to a plethora of groundbreaking
applications: For instance, we would be able to use even low-entropy passwords
for offline data storage, because k-time programs could lock out a brute-force-
search adversary after a few attempts; today this is possible only via interaction
or trusted electronics.
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Alternatively, we could release a sensitive and proprietary program (such as
a well-trained ML model) and be guaranteed that the program can be used only
a limited number of times, thus potentially preventing over-use, mission-creep,
or reverse engineering.

Such programs can also be viewed as a commitment to a potentially expo-
nential number of values, along with a guarantee that only few of these values
are ever opened.

Indeed, k-time programs, first proposed by Goldwasser, Kalai, and Rothblum
[35] are extremely powerful. What does it take to make this concept a reality?
Obviously, we cannot hope to do that with pure software or classical information
alone, since these are inherently cloneable. In fact, software-only k-time programs
do not exist even if the program can use quantum gates [13].

In [35] it is shown that “one-out-of-two” memory gadgets, which guaran-
tee that exactly one out of two pieces of data encoded in the gadget will be
retrievable, along with circuit garbling techniques [55], suffice for building k-
time programs for any functionality.

However, how do we obtain such memory gadgets? While Goldwasser et al.
suggest a number of general directions, we are not aware of actual implementa-
tions of one-out-of-two memory gadgets other than generically tamper-proofing
an entire computational component.

Can alternative technologies be explored? Also, what can be done if we only
can obtain some weaker forms of such memory gadgets, that provide only limited
retrievability to naive users, along with limited resilience to adversarial attacks?

More generally, where can we look for such technologies, and how can we
co-develop the new technology together with the cryptographic modeling and
algorithmics that will complement the technology to obtain full-fledged k-time
programs, based only on minimal and better-understood assumptions on the
physical gadgets, rather than by dint of complex defensive engineering?

1.1 Contributions

This work describes a cross-disciplinary effort to provide some answers to these
questions, using ideas based on the current technological capabilities and limi-
tations in synthesizing and identifying random proteins. We begin with a brief
overview of the relevant biochemical technology and our ideas for using this
technology for bounded-retrieval information storage. We then describe our algo-
rithmic and analytical work towards constructing k-time programs and related
applications, along with rigorous security analysis based on well-defined assump-
tions on the adversarial capabilities - both biochemical and computational.

Biochemical Background. Advances in biotechnology have allowed the
custom-tailored synthesis of biological polymers for the purpose of data stor-
age. Most effort has focused on DNA molecules, which can be synthesized as
to encode digital information in their sequence of bases. DNA can be readily
cloned and read with excellent fidelity, both by nature and by existing technol-
ogy [12,19,27,38]. Even minute amounts of DNA can be reliably cloned - and
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then read - an effectively unbounded number of times, making it an excellent
storage medium—too good, alas, for our goal, since it is unclear how to bound
the number of times a DNA-based storage can be read.

Consider, though, a different biological polymer: proteins. These chains of
amino acids can likewise represent digital information, and can be synthesized via
standard (albeit more involved) lab procedures. However, reading (“sequencing”)
the amino acid sequence in a protein appears much more difficult: The best
known lab procedure for sequencing general proteins is mass spectrometry, which
requires a macroscopic pure sample, free of substantial pollution. The sequencing
process then destroys the sample - the protein is chopped into small fragments
which are accelerated in a detector.

Furthermore, we have no way to clone a protein that is given in a small
amount. Indeed, Francis Crick’s central dogma of molecular biology states: “once
‘information’ has passed into protein it cannot get out again. [Information] trans-
fer from protein to protein, or from protein to nucleic acid is impossible” [20].
Over billions of years of evolution, no known biological system has ever violated
this rule, despite the reproductive or immunological benefits this could have
bestowed. Moreover, in the 63 years since that bold hypothesis (or, alterna-
tively, challenge) was put forth, it has also stymied human ingenuity, in spite of
the enormous usefulness to science and medicine that such ability would provide.

This makes proteins terrible as a general-purpose data storage medium: they
cannot be read unless presented in just the right form, and they self-destruct after
few reads. However, cryptography is the art of making computational lemonade
out of hard lemons. Can we leverage the time-tested hardness of sequencing small
amounts of proteins for useful functionality? We see a couple of approaches,
leading to different functionality and applications.

Biochemical “Conditionally Retrievable Memory”. As a first attempt, we
consider a protein-based “conditionally retrievable memory”, that stores infor-
mation in a way so that retrieving the information requires knowledge of some
key, and furthermore, once someone attempts to retrieve the information “too
many times” with wrong keys, the information becomes irrevocably corrupted.
A first attempt at implementing such a system may proceed as follows: The
sender encodes the payload information into a payload protein, and the key
into a header protein, which are connected into a single protein (the concrete
encoding and procedures are discussed in Sect. 2). The process actually creates
a macroscopic amount of such payload-header pairs, and mixes these pairs with
a large quantity of decoys which are similarly structured but encode random
keys and payloads. The resulting sample is then put in a vial, serving the role
of (biological) memory.

Recovering the information from the vial can be done via a pull-down pro-
cedure, i.e., a chemical reaction of the sample with an antibody that attaches
to a specific portion of the protein. Given the key, one can choose the correct
antibody and use it to isolate the information-bearing proteins from the added
ones. Then, the information can be read via mass spectrometry.

In addition, any meaningful attempt to obtain information from the vial
would necessarily employ some sort of pull-down on some portion of the sam-
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ple in the vial, and then employ mass spectrometry on the purified portion of
the sample. (Indeed, performing mass spectrometry on the vial without pull-
down will return results that are polluted by the decoys.) Furthermore, since
each application of the spectrometry process needs, and then irrevocably con-
sumes, some fixed sample mass, an adversary is effectively limited to trying some
bounded number n of guesses for the key, where n depends on the initial mass
of the sample in the vial and the grade of the specific spectrometer used.

Partially Retrievable Memory. The above scheme appears to be easily adapt-
able to the case of storing multiple key-payload pairs in the same vial, along with
the random noise proteins. This variant has the intriguing feature that even a
user that knows all keys can only obtain n payloads from the vial, where n is the
number of pull-down-plus-mass-spectrometry operations that can be applied to
the given sample.

Challenges. While the above ideas seem promising, they still leave a lot to
be desired as far as a cryptographic scheme is concerned: First, we would need
a more precise model that adequately captures the capabilities required from
honest users of the system, as well as bounds on the feasible capabilities of
potential adversaries—taking into account that adversaries might have access to
significantly more high-end bio-engineering and computational tools than honest
users. Next, we would need to develop algorithmic techniques that combine bio-
engineering steps and computational steps to provide adequate functionality
and security properties. Finally, we would need to provide security analysis that
rigorously asserts the security properties within the devised model. We describe
these steps next.

Formal Modeling: Consumable Tokens. The full biochemical schemes we
propose involve multiple steps and are thus difficult to reason about formally. We
thus distill the requisite functionality and security properties into relatively sim-
ple idealized definition of a consumable token in Sect. 3. In a nutshell, an (1, n, v)-
time token is created with 2v values: keys k1, ..., kv and messages m1, ...,mv,
taken from domains K and M , respectively. Honest users can query a token
only once, with key k′. If k′ = ki for some i, then the user obtains mi, else the
user obtains ⊥. Adversaries can query a token n times, each with a new key k′.
Whenever any of keys equals kj , the adversary obtains mj . We assume that the
size of M , K and v are fixed, independent of any security parameter.

Constructing Consumable Tokens. Our biochemical procedures provide a
candidate construction for consumable tokens, but with weak parameters. They
can only store a few messages, of short length, under short keys, with non-
negligible completeness and soundness errors. This is in addition to the power
gap between an honest recipient and an adversarial one; the former can perform
one data retrieval attempt, while the latter might be able to perform up to n
queries, for some small integer n.

Thus, employing our protein-based consumable tokens in any of the appli-
cations discussed above is not straightforward. It requires several (conventional
and new) techniques to mitigate these challenges. Amplifying completeness is
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handled by sending several vials, instead of one, all encoding the same message.
Storing long messages is handled by fragmenting a long message into several
shorter ones, each of which is stored under a different header in a separate vial.
The rest are more involved and were impacted by the application itself.

Bounded Query, Point Function Obfuscation for Low-entropy Pass-
words. Password-protected secure vaults, or digital lockers, allow encrypting a
message under a low entropy password. This can be envisioned as a point func-
tion with multi-bit output where the password is the point and the message is
the output. With our consumable tokens, one can store the message inside a
vial with the password being mapped to a token key (or header) that is used
to retrieve the message. The guarantee is that an honest recipient, who knows
the password, will be able to retrieve the message using one query. While an
adversary can try up to n guesses after which the token will be consumed.

However, having a non-negligible soundness error complicates the matter.
We cannot use the conventional technique of sharing the message among sev-
eral vials, and thus reducing the error exponentially. This is due to the fact
that we have one password mapped to the keys of these tokens, so revealing
the key of any of these tokens would give away the password. We thus devise
a chaining technique, which effectively forces the adversary to operate on the
tokens sequentially. In Sect. 4, we start with formalizing an ideal functionality
for bounded-query point function obfuscation, and then detail our consumable
token and chaining based construction, along with formal security proofs.

(1, n)-time Programs. Next we use (1, n, v)-consumable tokens to construct
(1, n)-time programs, namely a system that, given a description of a program
π, generates some digital rendering π̂ of π, and a number of consumable tokens,
that (a) allows a user to obtain π(x) on any value x of the user’s choice, and
(b) even an adversary cannot obtain more information from the combination of
π̂ and the physical tokens, on top of π(x1), ..., π(xn) for n adversarially chosen
values x1, ..., xn.

In the case of n = 1 (i.e., when even an adversary can obtain only a single
message out of each token), (1, 1)-time programs can be constructed by garbling
the program π and then implementing one-out-of-two oblivious transfer for each
input wire using a (1, 1, 2)-consumable token with K = M = {0, 1}κ [35]. How-
ever, constructing (1, n′)-time programs from (1, n, v)-consumable tokens with
n > 1 turns out to be a significantly more challenging problem, even when v
is large and even when n′ is allowed to be significantly larger than n (i.e., even
when the bound that the construction is asked to impose on the number of xi’s
for which the adversary obtains π(xi) is significantly larger than the number of
messages that the adversary can obtain from each token): A first challenge is
that plain circuit garbling provides no security as soon as it is evaluated on more
than a single input (in fact, as soon as the adversary learns both labels of some
wire). Moreover, even if one were to use a “perfect multi-input garbling scheme”
(or, in other words VBB obfuscation [9]), naive use of consumable tokens would
allow an adversary to evaluate the function on an exponential number of inputs.
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Our construction combines the use of general program obfuscation (specif-
ically, Indistinguishability Obfuscation [9,42]) together with special-purpose
encoding techniques that guarantee zero degradation in the number of values
that an adversary may obtain—namely (1, n)-time programs using our consum-
able tokens.

Specifically, our construction obfuscates the circuit, and uses consumable
tokens to store random secret strings each of which represents an input in the
circuit input domain. Without the correct strings, the obfuscated circuit will
output ⊥. Beside amplifying soundness error (luckily it is based on secret sharing
for this case), our construction employs an innovative technique to address a
limitation imposed by the concrete construction of consumable tokens. That
is, a token can store a limited number of messages (or random strings), thus
allowing to encode only a subset of the circuit inputs rather than the full input
space. We use linear error correcting codes to map inputs to codewords, which
are in turn used to retrieve random strings from several tokens.

We show a number of flavors of this construction, starting with a simple one
that uses idealized (specifically VBB) obfuscation, followed by a more involved
variant that uses only indistinguishability obfuscation iO. We also discuss how
reusable garbled circuits [34] can be used to limit the use of iO to a smaller and
simpler circuits.

Protection from Malicious Encapsulators. Our constructions provide vary-
ing degrees of protection for an honest evaluator in face of potentially ill-
structured programs. The (1, n)-point function obfuscation application carries
the guarantee that an adversary can only obfuscate (or encapsulate) valid point
functions with the range and domain specified. This is due to the fact that we use
consumable tokens each of which is storing one secret message m (from a fixed
domain) under a single token key (from a fixed space). The use of a wrong key
(i.e., one that is not derived correctly from the password that an honest evalua-
tor knows) will return ⊥. The general (1, n)-program application only guarantees
that the evaluator is given some fixed program, but without guarantees regard-
ing the nature of the program. Such guarantees need to be provided in other
means. A potential direction is to provide a generic non-interactive zero knowl-
edge proof that the encapsulated program along with the input labels belong to
a given functionality or circuit class.

The Analytical Model. We base our formalism and analysis within the UC
security framework [15]. This appears to be a natural choice in a work that mod-
els and argues about schemes that straddle two quite different models of compu-
tation, and in particular attempt at arguing security against attacks that com-
bine bioengineering capabilities as well as computational components. Specifi-
cally, when quantifying security we use separate security parameters: one for the
bioengineering components and one for the computational ones. Furthermore,
while most of the present analysis pertains to the computational components,
we envision using the UC theorem to argue about composite adversaries and
in particular construct composite simulators that have both bioengineering and
computational components.
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1.2 Related Work

Katz et al. [44] initiated the study of tamper-proof hardware tokens to achieve
UC security for MPC protocols in the plain model. Several follow up works
explored this direction, e.g., [18,40,41], with a foundational study in [37]. In gen-
eral, two types of tokens are used: stateful [23] and stateless (or resettable) [7,22];
the latter is considered a weaker and more practical assumption than the former.
In another line of work, Goldwasser et al. [35] employed one-time memory devices
to build one-time programs as mentioned before. They assume that such mem-
ory devices exist without showing any concrete instantiation. Our work instead
provides an instantiation for a weaker version of memory devices—(1, n)-time
memory devices—and uses them to build (1, n)-time programs. Other works
relied on tamper-proof smart cards to construct functionalities such as anony-
mous authentication and practical MPC protocols [39,45]. They assume that
such cards withstand reverse-engineering or side-channel attacks. Our work, on
the other hand, proposes an alternative that relies on deeper, more inherent
physical phenomena that have withstood the test of nature and ingenuity. We
show that even a weak level of security and functionality, far below the natural
smart-card trust assumption, suffices for useful cryptographic functionalities.

Quantum computing offer an unclonability feature that poses the question of
whether it can offer a solution for bounded program execution. This possibility
was ruled out by Broadbent et al. [13] who proved that one-time programs,
even in the quantum model, cannot be constructed without one-time mem-
ory devices. To circumvent this impossibility, Roehsner et al. [52] introduced
a relaxed notion—probabilistic one-time programs—allowing for some error in
the output, and showed a construction in the quantum model without requiring
hardware tokens. Secure software leasing (SSL) [5] emerged as a weaker alterna-
tive for quantum copy-protection [1]. SSL deals with software piracy for quantum
unlearnable circuits; during the lease period the user can run the program over
any input, but not after the lease expires. Our work bounds the number of exe-
cutions a user obtains regardless of the time period and can be used for learnable
functions.

Another line of research explored basing cryptography on physical assump-
tions. For example, noisy channels [21] and tamper-evident seals [48] were used to
implement oblivious transfer and bit commitments. Others built cryptographic
protocols for physical problems: [32] introduced zero knowledge proof system
for nuclear warhead verification and [28] presented a unified framework for such
proof systems with applications to DNA profiling and neutron radiography. This
has been extended in [29] to build secure physical computation in which parties
have private physical inputs and they want to compute a function over these
inputs. Notably, [29] uses disposable circuits; these are hardware tokens that can
be destroyed (by the opposing party) after performing a computation. In com-
parison to all these works, our consumable tokens are weaker as they are used
for storing short messages rather than performing a computation.

Physical unclonable functions (PUFs) [51] are hardware devices used as
sources of randomness, that cannot be cloned. PUFs found several applications,
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such as secure storage [25], key management [43], oblivious transfer [53], and
memory leakage-resilient encryption schemes [6]. The works [14] and [50] pro-
posed models for using trusted and malicious PUFs, respectively, in the UC
setting. Our tokens share the unclonability feature with PUFs, but they add the
bounded query property and the ability to control the output of a data retrieval
query.

Lastly, a few works investigated the use of DNA in building cryptographic
primitives and storage devices. For example, a DNA-based encryption scheme
was proposed in [56], while [26] focused on bio-data storage that deteriorates
with time by utilizing engineered sequences of DNA and RNA, without any
further cryptographic applications. Both works do not provide any formal mod-
eling or security analysis. To the best of our knowledge, we are the first to
use unclonable biological polymers—proteins—to build advanced cryptographic
applications with formal treatment. Apart from storage, a more ambitious view
was posed by Adleman [3] back in the 1990s, who investigated the concept of
molecular computers. They showed how biochemical interactions can solve a
combinitorial problem over a small graph encoded in molecules of DNA [2]. This
leaves an open question of whether one can extend that to proteins and build
stronger tokens that can securely execute a full computation.

2 Unclonable Polymer-Based Data Storage

In this section, we present an overview of the protein-based data storage con-
struction that we use to build consumable tokens. We focus on the specifications
and guarantees this construction provides rather than detailed explanation of the
biology behind them. The detailed explanation, and a more complete version of
this section, can be found in the full version.1

Protein-based Data Storage and Retrieval. Advances in biotechnology
have allowed the custom-tailored synthesis of biological polymers for the purpose
of data storage. Much of the effort in this new field has focused on the use of
DNA, generating an arsenal of molecular protocols to store and retrieve informa-
tion [12,19,27,38]. With this growing application, we became interested in the
cryptographic attributes this new hardware offers. Specifically, we propose the
use of proteins, in particular short amino-acid polymers or peptides, as a data
storage material. Curiously, the most fundamental characteristics of proteins;
they cannot be directly cloned nor can they replicate or be amplified, and that
“data retrieval” is typically self-destructive, might be considered as limitations
from a regular data storage point of view. However, these exact traits can confer
powerful features to instantiate cryptographic primitives and protocols.

Accordingly, for storage, the digital message is encoded into the primary
configuration of the peptide/protein, i.e., the sequence of the 20 natural amino

1 It should be noted that we are working on a sister paper showing the details of
this biological construction; will delve into the technical details of the biochemical
realization and empirically analyze it under the framework established in this paper.
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Fig. 1. General scheme for peptide-based data storage.

acids of the protein material, the “peptide-payload”. To retrieve the message,
the order of the amino-acids of a protein is determined, after which this sequence
is decoded to reconstruct the original message. Given that our primary goal is
to design a biological machinery to securely realize cryptographic primitives, we
extend this basic paradigm to support data secrecy. Our proposal is based on a
number of features of proteins and peptides: (i) unique peptides can be designed
to comprise any string of amino acids and be physically produced with precision
and at high fidelity, (ii) a peptide sample whose amino acid sequence is not
known is unclonable and cannot be replicated or amplified, (iii) sequencing the
peptide results in its consumption.2

As illustrated in Fig. 1, the peptide message, peptide-m, is conjugated to a
short (<10 amino acids) peptide tag, a tag that is recognized specifically by a
predetermined monoclonal antibody (mAb). Thus, the peptide tag, designated
“header”, corresponds to its specific mAb. Next, peptide-m is mixed with a vast
variety of decoy peptide messages, all of which are peptide permutations of
composition and length, each conjugated to a collection of alternative header
sequences. The sender shares the secret header with the recipient, i.e., the peptide
sequence of the header (this is digital data), which reveals to the recipient the
identity of the correct unique mAb to be used to recover peptide-m. Then he
sends a vial of the protein mix (a physical component).

For data retrieval, as shown in Fig. 2, the only possible way to decode the mes-
sage is to first single out and purify peptide-m. This can be achieved by employing
the unique mAb that specifically recognizes the unique header attached to pep-
tide-m. Note that all decoy peptides and the target peptide-m are of the same
general length, mass, and composition, but differing in sequence. Thus, effec-
tive purification of the desired protein from the decoys, without the matching
mAb, is impossible through standard biochemical/biophysical methodologies.
This achieves message secrecy in the sense that without the matching mAb, m
cannot be retrieved.

Biochemical properties. Protein-based data storage enjoys several properties
that we exploit in our cryptographic applications. These include the following

2 Although we talk about one message in these protocols, several messages can be
stored in one sample by having several peptide-ms instead of one, each of which is
conjugated with a unique header and mixed with the decoys.
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Fig. 2. Message retrieval.

(this is a high level description, more details on the biochemical features that
supports these properties can be found in the full version):

– Unclonability. Proteins are unclonable biological polymers, meaning that
given an amount of proteins one cannot replicate it to obtain a larger amount.

– Destructive data retrieval. Modern biology is only capable of reading pro-
tein sequences indirectly, destructively, and at lower throughput compared to
DNA. The main practical strategy for reading proteins is mass spectrometry
(MS) or versions thereof [8,33]. This machinery imposes several conditions on
the protein sample to allow retrieving the digital data. First, the sample must
contain a sufficient amount of the target protein, and second, the sample must
be pure enough. Once a vial is purified and read using MS, the structure of
the protein is destructed due to fragmentation.

– Adversarial interactions. The only known way to retrieve any information
about the data stored in a vial is by pulling-down the target protein using
the key (or mAb), and then sequencing this protein using MS. Thus, an
adversary, who does not know the correct mAb, can only guess a candidate
mAb and check if sequencing will output m. Also, when obtaining several
(independent) tokens, the adversary will operate on these tokens separately,
since purification and sequencing are still needed to obtain the stored data.

– Bounded query. The previous properties imply that a protein-based data stor-
age allows for a finite number of data retrieval attempts after which the vial
is consumed, i.e., each data retrieval attempt destroys a portion of the biolog-
ical material. In our model, we account for that fact that an adversary could
be more powerful that an honest recipient, e.g., she owns more advanced MS
that operates at lower thresholds. This implies that the vial will allow the
adversary to perform multiple data retrieval attempts, denoted as n, but an
honest recipient will perform only one.

– Message and key (header) sizes. Proteins can store relatively short messages
using short headers. In the full version, we show how to use fragmentation to
store a long message using several vials instead of one, such that the header
will be the concatenation of all headers used in these vials. Nonetheless, in
our applications, we use consumable tokens to store cryptographic keys rather
than very long messages.

– Completeness and soundness errors. Due to laboratory experimental (human
and machine) errors, the protein-based data storage may have non-negligible
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completeness and soundness errors. The former means that despite the use of
the correct mAb, the target message may not be successfully retrieved. While
the latter means that despite the use of an incorrect mAb, an adversary
may manage to recover m. In other words, these incorrect mAb may have
similar features to the correct one (what we call close keys). We amplify the
completeness error on the biology side (by sending several vials all encoding
the same message),3 while we amplify the soundness error as part of the
cryptographic constructions that we build in later sections.

3 The Consumable Token Functionality

We utilize the protein-based data storage to build what we call consumable
tokens. A consumable token is a physical token that stores some secret messages,
requires a secret key to retrieve any of these messages, and (partially) destructs
after each data retrieval attempt. An honest recipient will have one data retrieval
attempt, while an adversary (who could be more powerful than honest parties)
may have multiple attempts. In this section, we define an ideal functionality for
consumable tokens that we use in our applications. Some preliminary notions
that we use in our work can be found in the full version.

Notation. We use [n] as a shorthand for {1, 2, . . . , n}. For time unit represen-
tation, we use the term “computational time step” to refer to the time needed
to perform an operation in Turing machine-based modeling of computations.
While we use “technologically-realizable time step” to refer to the time needed to
perform an operation in physical procedures, which may involve computational
algorithms as well. We use κ to denote the security parameter which encapsulates
two security parameters: κp for physical procedures and κc for computational
algorithms. Thus, when we say polynomial in κ, this means polynomial in the
max{κp, κc}. Lastly, boldface letters represent vectors and PPT is a shorthand
for probabilistic polynomial time.

3.1 Ideal Functionality Definition

In formalizing our ideal functionality, we target an adversary class that interacts
with a token only using the feasible procedure of applying token keys. Also, we
adopt a deterministic approach for quantifying the closeness relation between the
keys, and hence, computing the soundness error of any data retrieval attempt. In
particular, each key k in the token key space has a set of close keys. Hitting any
of these keys may allow retrieving the message from the token with a probability
bounded by γ (the upper bound for the soundness error).

Adversary Class A. We require the consumable token (or any cryptographic
application built using this token) to be secure against an adversary that per-
forms data retrieval (or decode) queries using token keys. This adversary, if
3 At the cryptography level this is still viewed as one token that allows the honest

recipient to retrieve the message with all but negligible probability.
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given multiple tokens, operate on these tokens separately. To capture the fact
that class A may have more power than the honest parties, an adversary A ∈ A
can perform up to n decode queries instead of only one. This adversary is adap-
tive in the sense that it may choose her input based on the outputs obtained
from previous interactions. Furthermore, this adversary is capable of performing
digital and physical procedures.

Key Affinity Database. In order to capture the relation between the keys
in the token key space K, we use an affinity database D. Such a database is
composed of rows each of which is indexed by a key k ∈ K. Each row, in turn,
contains a set of tuples (k′, γ′) where k′ is a close key to k and γ′ is the corre-
sponding soundness error, such that γ′ ≤ γ. So for a token storing message m
under key k, a decode query with k′ allows an adversary A to obtain m with
probability γ′. Recall that a token can store multiple messages each of which is
tied to a different key. When these keys are selected at random, any key applied
by the adversary will be close to at most one of these keys. Accordingly, in our
model the ideal functionality is parameterized by the affinity database D. It
consults this database for each adversarial query to decide key closeness and
γ′ value (if any). Furthermore, recall that for any token the soundness error is
upper bounded by γ. Thus, for all queries i ∈ [n], we require

∑
i γ′

i ≤ γ.

Ideal Functionality. An ideal functionality for consumable tokens, denoted
as FCT , is defined in Fig. 3. As shown, FCT is parameterized by a security
parameter κ, a key affinity database D, and an integer n. As noted earlier,
for simplicity FCT allows an honest party to perform one decode query, while it
allows the adversary to perform up to n queries. It is straightforward to generalize
to arbitrary configurations given that the power gap between honest parties and
the adversary is preserved.

As shown in the figure, FCT supports four interfaces. The first one, Encode,
allows the sender P1 to create a consumable token with ID tid encoding multiple
secret messages under secret keys, all chosen by P1, and transfer the token to
P2. To capture the fact that in real life an adversary may interrupt the commu-
nication between P1 and P2, FCT asks the adversary whether to proceed. If the
adversary agrees to continue, FCT notifies P2 about the new token, and creates
a state for this token.4 This state includes a counter j to track the number of
decode queries performed so far, which is initialized to 0. It also includes two
flags, hflag1 and hflag2, tracking whether P1 and P2, respectively, are honest or
corrupted. These flags are set by default to 1 indicating that both parties are
honest.

The second interface, Decode, allows P2 to query the token on a key k′. If the
input key matches the ith token key in k, the corresponding message mi will be
returned to P2, otherwise, ⊥ will be returned. After the first query, where the
counter j is set to 1, FCT stops answering all future Decode queries, capturing
that an honest recipient gets only one retrieval query.

4 It is the responsibility of P1 to securely share k with P2.
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Fig. 3. An ideal functionality for consumable tokens.

The third and fourth interfaces, Corrupt-encode and Corrupt-decode, are used
to notify FCT that the environment wants to corrupt any of the involved parties.
Corrupting P1 allows the adversary to encode a vector of messages m′ under a
key vector k′, both of his choice. The state of this token will indicate that P1 is
corrupted by setting hflag1 = 0. On the other hand, and to capture the additional
power an adversary A ∈ A has, corrupting P2 allows the adversary to perform
up to n decode queries. Moreover, trying a key k′ �= ki for i ∈ [v], gives the
adversary γ′ chance to obtain mi if k′ is close enough to key ki.

To depict these capabilities, FCT tracks the number of decode queries per-
formed so far and stops answering when this counter j reaches its maximum
value n. Key closeness and soundness error are measured by invoking an algo-
rithm called affinity that simply searches the database and checks if k′ (the
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Fig. 4. A physical construction of consumable tokens.

adversary’s input) is listed in the close key set of any of token keys in k. It
outputs a flag close, and index i, and a soundness error value γ′. If close = 1,
this means that k′ is close to ki, and hence, FCT outputs mi with probability
γ′.

As shown, we restrict the token to be in the hand of either an honest party or
the adversary but not both at the same time. Therefore, P2 cannot be corrupted
after the honest recipient submits a decode query. Before submitting any honest
decode query, corrupting P2 is allowed, and when the environment asks for that,
the value of hflag2 is set to 0.

3.2 A Construction for Consumable Tokens

In this section, we present a construction for consumable tokens, shown in Fig. 4.
It is based on the biological procedures used in storing and retrieving data using
proteins discussed in Sect. 2. We conjecture that it securely realizes FCT .5 In
the full version, we present a mathematical (vector-based) model to abstract the
biological procedures. We also show a consumable token construction (using this
vector model) and formally prove its security.

5 This construction is described at a high level; the biological experiments (the subject
of our followup paper) will determine parameters such as required protein quantities,
MS thresholds, amount of decoy proteins, etc., and falsify our conjecture.
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4 Bounded-query Point Function Obfuscation

In this section, we introduce one of the cryptographic applications of consum-
able tokens: obfuscating bounded-query point functions with multibit output.
We begin with motivating this application, after which we define a notion for
bounded-query point function obfuscation, and a construction showing how con-
sumable tokens can be used to realize this functionality.

Motivation. Program obfuscation is a powerful cryptographic concept that
witnessed a large interest in the past two decades. It hides everything about
a program other than what can be learned solely by running this program. A
program obfuscator is a compiler that takes as input the original program, or
circuit, and produces an unintelligible version that preserves functionality but
hides any additional information. Program obfuscation found numerous appli-
cations, e.g., [30,31,46,49]. Barak et al. [9] initiated the first rigorous study of
program obfuscation laying down several security notions. Among them, we have
virtual black box (VBB), which states that all what an adversary can learn from
an obfuscated program can be simulated using an oracle access to the original
program. The same work showed that this notion cannot be realized for general
functionalities, but can be realized for restricted function classes.

Point functions are one of these classes that has been studied thoroughly [11,
16,17,46,54]. A point function outputs 1 at a single target point x, and 0 at all
points x′ �= x. It is useful for access control applications where providing the
correct passcode grants the user an access to the system. An extended version
of this function class supports a multibit output, i.e., message m, instead of a
single bit. The obfuscation of this extended class is motivated by the notion of
digital lockers [16]: for a message m encrypted using a low-entropy key, such as
a human-generated password, the only way for an adversary to learn anything
about m from its ciphertext is through an exhaustive search over the key space.

A question that arises here is whether one can strengthen this security guar-
antee to also prevent exhaustive search attacks. In real life access-control appli-
cations, this usually takes the form of tracking the number of login attempts and
lock the user out when a maximum number is exceeded. However, this cannot
be applied to digital lockers; an adversary has a copy of the ciphertext and can
decrypt it for as many times as she wishes. Thus, the question becomes more
about the possibility of augmenting multibit-output point function obfuscation
with a bounded-query (or limited number of decryptions) capability.

We answer this question in the affirmative by instantiating a bounded-query
obfuscator for point functions with multibit output using consumable tokens. We
achieve that by translating the low entropy point or password p into the high
entropy token key space, and setting the multibit output to be the message m
encoded inside the token. The message m is obtained when the correct password
p is queried, and only up to nq queries can be performed (nq ∈ N).

4.1 Definition

We aim to build an obfuscator for multibit-output point functions with points
drawn from a low entropy distribution. For password space P and message space
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Fig. 5. An ideal functionality for bounded-query point function obfuscation.

M, let Ip,m : P → M ∪ {⊥} be a point function that outputs m when queried
on p and ⊥ otherwise. Let I = {Ip,m|p ∈ P,m ∈ M} be the family of these
functions. In this section, we define an ideal functionality for bounded-query
point function obfuscation that allows one honest query and up to nq function
evaluations. This functionality, denoted as FBPO, is captured in Fig. 5.

As shown in the figure, FBPO supports four interfaces. The first is Obfuscate
that allows P1 to ask for obfuscating any point function Ip,m in the class I
defined earlier. If the adversary agrees to continue, FBPO notifies P2 about the
new obfuscation request and creates a state for it. As shown, this state stores
a counter to track the number of evaluate queries performed so far, which is
initialized to 0. It also stores two flags, hflag1 and hflag2 introduced before,
tracking whether P1 and P2, respectively, are honest or corrupted. These flags
are set by default to 1 indicating that both parties are honest. As noted, FBPO

allows for one obfuscation request, and hence, several instantiations are needed
to create multiple obfuscated functions.

The second interface, Evaluate, allows P2 to request evaluating the obfuscated
point function over an input password p′ of her choice. If this input matches the
stored password p, then P2 obtains m, and ⊥ otherwise. FBPO updates the
counter j to be 1, and thus, all future queries will not output anything since an
honest P2 gets only one query.
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The third and fourth interfaces, Corrupt-obfuscate and Corrupt-evaluate, are
used to notify FBPO that the environment wants to corrupt any of the involved
parties. Corrupting P1 allows the adversary to obfuscate any point function
Ip,m ∈ I of her choice. The state of this obfuscation will indicate that P1 is
corrupted by setting hflag1 to 0. On the other hand, corrupting P2 allows the
adversary to perform up to nq evaluate queries over inputs of her choice. The
adversary needs to invoke Corrupt-evaluate for each input evaluation, where after
performing nq queries, FBPO will stop responding. As shown, an obfuscated
function can be in the hand of either an honest party or the adversary, but
not both at the same time. In particular, if an honest party performs her single
evaluate query, Corrupt-evaluate will not do anything.

Beside realizing the above ideal functionality, which captures correctness and
security, we require any bounded-query point function obfuscation scheme real-
izing FBPO to satisfy the efficiency property defined below.

Definition 1 (Efficiency of Bounded-query point function Obfusca-
tion). There exists a polynomial q such that for all κ ∈ N, all Ip,m ∈ Iκ, and
all inputs p′ ∈ P, if computing Ip,m(p′) takes t computational time steps, then
the command (Evaluate, p′) takes q(t, κ) technologically-realizable time steps.

4.2 Construction

A direct application of FCT produces a construction that suffers from two limi-
tations. First, it obfuscates a class of point functions with multibit output that is
restricted in its domain; must be in the high-entropy token key space K. Second,
FCT has a non-negligible soundness error bounded by γ, which will violate the
security guarantees of FBPO. Recall that the goal is to have a construction that
permits A to only perform a bounded query exhaustive search. In other words,
the success probability of A in retrieving m must be only negligibly larger than
the probability of guessing the correct password when performing nq queries
(e.g., nq

|P| + negl(κ) when using a uniform password distribution). We now show
our construction in stages, where to simplify the discussion, we assume a uniform
password distribution in the following paragraphs.6

First Attempt. An initial idea is to use a known soundness amplification tech-
nique in which m is shared among u tokens, accompanied with a mechanism to
map a password p ∈ P to a set of keys ki ∈ K for i ∈ [u]. This mapping can
be built as, for example, a set of random oracles π1, . . . , πu each of which maps
any password p ∈ P to a random string of size ρ for some ρ ∈ N. So we have
πi : P → {0, 1}ρ and we denote the output space of each πi as SP ⊂ {0, 1}ρ such
that |SP | = |P|. Each random string is then used to choose a key at random from
K. This is modeled by having the token creator P1 use a public algorithm KeyGen
that takes a random string as input and returns a token key as an output.
6 Later, when proving Theorem 1, we generalize that by replacing

nq

|P| with a variable
representing the probability of guessing the password using nq queries. The value of
this variable can be computed based on the underlying password distribution.
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At a high level, with this construction an adversary A will need to retrieve
all shares from all token instances in order to recover m. Taking the worst case
scenario, meaning fixing the soundness error to be the maximum value γ, this
multi-instance approach reduces the overall soundness error to γu. By setting u
to be large enough, the soundness error becomes negligible. Furthermore, and
given that each token instance allows n attempts to retrieve a share, and that
all shares are needed to recover m, A will have nq = n attempts to obtain m.

However, the above analysis is flawed. The adversary A can perform what
we call a leftover attack and utilize the relation between the keys of the u tokens
(i.e., mappings of the same password) to gain a better advantage in recovering
m. That is, success with any of the tokens not only reveals the message share
stored in that token, but also reveals the keys of the rest of the tokens. In detail,
A operates on the first token and performs up to n − 1 queries (by guessing
passwords and mapping them to token keys using π1). If any of these queries
succeeds in retrieving m1, then with probability at least 1 − γ, A knows that
the key (and hence the password guess) used in this query is the correct key k1
(respectively, the password p). Knowing p, and the public mapping function set
{π1, . . . , πu} as well as KeyGen, allows A to derive the rest of the tokens keys
and retrieve all shares m2, . . . ,mu. On the other hand, if A does not succeed in
retrieving m1 using the first n − 1 queries, it operates on the second token by
repeating the same strategy. In fact, A here has a better chance to guess the
correct password/key since it will exclude all the passwords that did not succeed
with the first token. If A succeeds in retrieving m2, and thus p and k1, k3, . . . , ku

as mentioned previously, then it can go back to the first token and use the last
query to retrieve m1. If it didn’t succeed, A applies the same strategy to the rest
of the tokens with the hope of guessing the correct password.

As noted, although the probability of retrieving all shares without correctly
guessing any of the token keys is γu, A now has nq = un queries (instead of n)
to guess the right password. Based on that, the probability of retrieving m can
be computed as:7 Pr[m] = un

|P| +
(
1 − un

|P|
)
γu. In other words, A can retrieve m

by either guessing the password correctly in any of the un queries, or by being
lucky and retrieving all shares from all tokens despite using incorrect keys due
to the soundness error. Although, the second term has been reduced and can be
set to negligible by configuring u properly, the first term increased the advantage
of A way beyond n

|P| .

Our Construction. To address the leftover attack, we introduce a construction
that chains the u tokens together so that in order to operate on the jth token,
A would need to retrieve all mi for i < j. Otherwise, A will have to guess the
token key from a large space (larger than |P|). This enables us to amplify the
soundness error without increasing the total number of queries A obtains.

Towards building our construction, we introduce a modified way to map
passwords to token keys. In particular, a function set f1, . . . , fu is used to gen-

7 For the jth token, the size of the password space, after excluding the passwords that
were already tried, is |P| − (j − 1)n. For simplicity, we let |P| − (j − 1)n ≈ |P|.
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erate token keys k1, . . . , ku such that for i ∈ [u] we define f1 : P → K and
fi : P×{0, 1}κ → K when i > 1. We write ki ← fi(p, r′

i), where r′
i = r0⊕· · ·⊕ri−1

such that r0 = ⊥ and ri ← {0, 1}κ is a random string stored in the ith token.
Each fi first applies the mapping πi described earlier to p and then uses the
output along with the random string r′

i (for i > 1) to generate a token key. A
concrete instantiation of fi could be composed of a random oracle that takes
πi(p)‖ r′

i as input and outputs a random string of size ρ, then KeyGen is invoked
for this random string to generate a key ki as before.

Note that each fi, for i > 1, may have an input space that is larger than the
output space, i.e., |P|2κ >> |K|. If this is the case (in particular, if 2κ ≥ |K|),
this function can be instantiated to cover the full space of K and be a many-
to-one mapping. That is, a password p ∈ P can be mapped to different keys
(or to all keys in K) by changing the random string r used when invoking fi.
Furthermore, correctly guessing the key k of any of the tokens (other than the
first one) without the random string r, does not help the adversary in guessing
the password p (the adversary still needs to guess r in order to recover the
password).

Protocol 2, described in Fig. 6, outlines a construction that uses the above
function set, along with the consumable token ideal functionality FCT , to build a
bounded-query obfuscator for low-entropy point functions with multibit output.

We informally argue that this construction addresses the leftover attack
described previously (again, for simplicity we assume a uniform password distri-
bution for the moment). To see this, let an adversary A follow the same strategy
as before and assume that A did not obtain r1||m1 while performing (n − 1)
queries over the first token. A now moves to the second token, performs (n − 1)
queries where it will succeed in guessing the key k2 correctly with probability
n−1
|K| . This is different from the naive construction in which this probability is

n−1
|P|−(n−1) since the previously tried passwords are excluded. In our construction,
A, when it does not have r1, has the only choice of trying keys from the full key
space K (regardless of the password space distribution). This is due to the fact
that without r′

2 (where r′
2 = r1), A cannot compute the induced key space by P,

thus the only choice is to guess keys from K. This probability will be negligible
for a large enough K.

Furthermore, even if A guesses the correct k2, without the random string r′
2

it will be infeasible to deduce the password p from k2 through f2. A needs to
feed f2 with passwords and random strings, where the latter has a space of size
2κ. Also, under the many-to-one construction of f2, . . . , fu, several (or even all)
passwords could be mapped to k2 due to the random string combination, which
makes the task harder for A to find out the correct password. The same argument
applies to the rest of the tokens because without r1, none of the subsequent r′

i

can be computed, and the only effective strategy for A is to guess keys from
the key space K. So for each of these tokens, the success probability is n−1

|K|
instead of n−1

|P|−(i−1)(n−1) as in the naive scheme (again, the latter will depend on
the password distribution, but the former will always be uniform). The success
probability for A to retrieve m is then approximated as: Pr[m] ≈ n

|P|+
(
1− n

|P|
)
γu.
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Fig. 6. A construction for a bounded-query obfuscation scheme for I.

That is, to retrieve m, A either has to guess the password correctly using the first
token, or get lucky with every token and retrieve the share it stores. As shown,
this amplifies the soundness error (and can be set to negligible with sufficiently
large u) without increasing the number of queries A can do.8

4.3 Security

Theorem 1 shows that Protocol 2 in Fig. 6 securely realizes FBPO for the function
family I, with an arbitrary password distribution. For simplicity, we assume that
the token keys ki, the randomness ri, and the message m are all of an equal size,
which is polynomial in the security parameter κ. The proof can be found in the
full version.

8 Similarly, to make the presentation easier, the probability is simplified here where
some terms are omitted. See the full proof in the full version.
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Theorem 1. For 0 ≤ γ ≤ 1, if each of f1, . . . , fu is as defined above, then
Protocol 2 securely realizes FBPO for the point function family I = {Ip,m|p ∈
P,m ∈ M} in the FCT -hybrid model in the presence of any adversary A ∈ A,
with nq = n and large enough u.

Remark 1. As mentioned before, κ encapsulates a digital and a biological secu-
rity parameters. Also, A is capable of doing computational algorithms and phys-
ical procedures, so is the simulator. In the above theorem, the simulator is com-
putational, but it relies on FCT whose simulator involves physical procedures.
The use of UC security allows us to obtain an overall security guarantee against
all physical/digital combined attacks, both in concrete and asymptotic terms.

5 (1, n)-time Programs

In this section, we introduce another cryptographic application of consumable
tokens; (1, n)-programs. For such programs, completeness states that an honest
party can run a program at most once, while soundness states that an adversary
can run this program at most n times. Again, this can be generalized to allow for
multiple honest queries given that the power gap between honest parties and the
adversary is preserved. We begin with motivating this application, after which
we present a construction showing how consumable tokens can be used to build
(1, n)-programs for arbitrary functions.

Remark 2. One may argue that this application is a generalization of the
bounded-query point function obfuscation. Thus, the previous section is not
needed as one may construct a (1, n)-program for any point function. However,
(1, n)-program guarantees that only some program was encapsulated, while the
previous section guarantees that a valid point function has been encapsulated.
Also, the construction shown in this section relies on a rather strong assumption,
namely, indistinguishability obfuscation, that was not required in the previous
section. Therefore, we present these applications separately.

Motivation. One-time (and k-time) programs allow hiding a program and lim-
iting the number of executions to only one (or k). They can be used to pro-
tect proprietary software and to support temporary transfer of cryptographic
abilities. Furthermore, k-time programs allow obfuscating learnable functions—
functions that can be learned using a polynomial number of queries. By having k
as a small constant, an adversary might not be able to learn the function, which
makes obfuscating such a function meaningful.

Goldwasser et al. [35] showed a construction for one-time programs that com-
bines garbled circuits with one-time memory devices. Goyal et al. [37] strength-
ened this result by employing stateful hardware tokens to support unconditional
security against malicious recipients and senders. Bellare et al. [10] presented a
compiler to compile any program into an adaptively secure one-time version. All
these schemes assumed the existence of tamper-proof hardware tokens without
any concrete instantiation. Dziembowski et al. [24] replaced one-time memory
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devices with one-time PRFs. Although they mentioned that no hardware tokens
are needed, they impose physical restrictions such as inability to leak all bits of
the PRF key, and limiting the number of read/write operations; it is unclear if
these assumptions can be realized in practice. Goyal et al. [36] avoided the usage
of hardware tokens by relying on a blockchain and witness encryption. In par-
ticular, the garbled circuit is posted on the blockchain and the input labels are
encrypted using witness encryption, which can be decrypted later after mining
several blocks given that the input is unique to guarantee at most one execution.
Yet, requiring to store a garbled circuit on a blockchain is impractical.

We investigate the applicability of consumable tokens in constructing
bounded execution programs. This is a natural direction given the bounded
query capability of these tokens, and the fact that we build these tokens rather
than assuming their existence. Nonetheless, the gap between an honest party
and the adversary forces us to consider a slightly different notion; the (1, n)-
program mentioned above. Thus, any application that requires the adversary to
execute only on one input, like digital currencies, cannot be implemented using
(1, n)-programs. However, applications that allow n adversarial queries, such as
obfuscating learnable functions, can employ our scheme.

5.1 Definition

In this section, we define an ideal functionality for bounded-query encapsulation.
This functionality, denoted as FBE , is captured in Fig. 7. The description of the
interfaces, and the goal of using the flags and the counter, are very similar to
what was described in the previous section for FBPO. The only difference is that
instead of hiding a point function, FBE hides an arbitrary circuit. The honest
recipient can evaluate this circuit over one input, while an adversary can evaluate
over up to nq inputs. Thus, we do not repeat that here.

Beside realizing the above ideal functionality, we require any bounded-query
obfuscation scheme realizing FBE to satisfy the efficiency property defined below.

Definition 2 (Efficiency of Bounded-query Encapsulation). There exists
a polynomial p such that for all κ ∈ N, all C ∈ Cκ, and all inputs x ∈
{0, 1}∗, if computing C(x) takes t computational time steps, then the command
(Evaluate, ·, x) takes p(t, κ) technologically-realizable time steps.

5.2 Construction and Security

To ease exposition, we describe our construction in an incremental way. We start
with a simplified construction that handles only programs with small input space,
and assumes idealized obfuscation (specifically, Virtual Black Box obfuscation
[9]). Next we extend to handle programs with exponential-size domains (namely,
poly-size inputs). We then replace VBB with indistinguishability obfuscation iO.
Finally, we briefly discuss how reusable garbling can reduce the use of iO.
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Fig. 7. An ideal functionality for bounded-query encapsulation.

First Attempt—Using VBB. In this initial attempt, our goal is to lay down
the basic idea behind our construction (rather than optimizing for efficiency).
We use two tables Tab1 and Tab2. Tab1 maps a program’s input space X to
the token message space M. This table is secret and will be part of the hidden
program. While Tab2 maps X to the token key space K, and it is public.

We use Prog to denote the program that encapsulates the intended circuit or
simply function f , which we want to transform into a (1, n)-program. As shown
in Fig. 8, Prog is parametererized by a table Tab : X → M, a secret key sk, and
f . It has two paths: a trapdoor path and a regular one. The trapdoor path is
activated when a hidden trigger in the input m is detected. In particular, this
input may contain a ciphertext of the program output. On the other hand, if
this ciphertext encrypts the special string φ�out , where φ is some unique value
outside the range of f and �out is the length of f ’s output, the regular path is
activated. It evaluates f over x ∈ X that corresponds to the first part of m.

Protocol 3 defined in Fig. 9 shows a construction for (1, n)-time program
for Prog using FCT . For simplicity, we assume |X | = |M| = |K|, the keys in
K are distinct (i.e., do not have any affinity relation), and that FCT has a
negligible soundness error (we discuss later how to achieve that). Bounded query
is achieved via the consumable token; to evaluate over input x, the obfuscated
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Fig. 8. The program ProgTab,sk,f

program bP requires a corresponding message m that is stored inside a token.
Since the table Tab2 is secret hidden inside bP , the only way for P2 to obtain a
valid m is through the consumable token. Once the token is consumed, no more
evaluations can be performed. An adversary, on the other hand, and using FCT ,
will be able to obtain up to n messages corresponding to n program inputs.
Thus, this adversary can run bP at most n times. See the full version for an
(informal) security argument of this construction.

Our Construction—Extending Program Domain and Replacing VBB
with iO. The concrete construction of a consumable token may impose limita-
tions on the number of keys and messages that can be stored in a single token.
Thus, a token may not be able to cover the full domain X of the program Prog.
So if a single token can store a set of message M ⊂ M messages, we have
|M | < |X |. To address this issue, we modify the previous construction to use
multiple tokens along with an error correcting code C. We map each x ∈ X to a
codeword of length ω, and we use ω tokens to represent the program input. Each
symbol in a codeword indicates which key to use with each token. By configur-
ing C properly, this technique allows us to cover the program domain without
impacting the number of program executions that (an honest or a malicious) P2

can perform.
Concretely, we use a linear error correcting code C with minimum distance

δ, meaning that the Hamming distance between any two legal codewords is at
least δ. We represent each key in the set K ⊆ K used in creating a token, where
|K| = |M |, as a tuple of index and value. So the set K is ordered lexicographically
such that the first key in this ordered set is given index 0, and so on. Hence,
a symbol in a codeword is the index of the token key to be used with the
corresponding token. Based on this terminology, we work in a field of size q = |K|
with a code alphabet Σ = {0, . . . , q − 1}.

Definition 3. (Linear Codes [4]). Let Fq be a finite field. A [ω, d, δ]q linear
code is a linear subspace C with dimension d of Fω

q , such that the minimum
distance between any two distinct codewords c, c′ ∈ C is at least δ. A generating
matrix G of C is a ω × d-matrix whose rows generates the subspace C.
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Fig. 9. A construction for a (1, n)-time program scheme for ProgTab,sk,f .

For any d ≤ ω ≤ q, there exist a [ω, d, (ω − d + 1)]q linear code: the Reed-
Solomon code [47], which we use in our construction. Let S denote the set of
strings to be encoded, such that each input x ∈ X is mapped to a unique
s ∈ S. Using classic Reed-Solomon, to encode an input x, we first define its
corresponding s, and then we multiply s by the generating matrix G to generate
a codeword of size ω. Using this approach, we can cover a domain size |S| = qd+1.

Accordingly, P1 now has to generate ω tokens, denoted as ct0, . . . , ctω−1,
instead of one. Each of these tokens will include all keys in K. Each key k ∈ K
will be tied to a unique message m such that m will be retrieved when a decode
query using k is performed over the token. Let the messages stored in the first
token be m0,0, . . . ,m0,q−1, and in the second token be m1,0, . . . ,m1,q−1, and
so on. We generate these messages using a pseudorandom generator with some
random seed r. In particular, we have mi,j = PRG(r)[i, j] for all i ∈ {0, . . . , ω −
1} and j ∈ {0, . . . , q − 1}; we picture the output of the PRG as an ω × q matrix
of substrings. Hence, m0,0 is the substring stored at row 0 and column 0 in this
matrix, which is the first substring of the PRG output, and so on.9 Thus, to
create token ct0, P1 will pass K and m0,0, . . . ,m0,q−1 to FCT , while for ct1 the
messages m1,0, . . . ,m1,q−1 along with K will be passed, etc.

9 As we will see shortly, mi,j = PRG(r)[i, j] ‖ φn(|x|+�out) assuming all x ∈ X are of
the same length, but we omit that for now to ease exposure.
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Fig. 10. The program ProgG,n,sk,r,f with linear error correcting codes.

So to execute Prog over input x, P2 first maps x to s, and then generates
the codeword c for s. After that, she uses the keys with the indices included in
c to query the corresponding tokens. For example, if c = {5, 9, 15, . . . }, then k5
is used to query the first token to retrieve m0 = m0,5, k9 is used to query the
second token and retrieve m1 = m1,9, etc. These messages m = m0 ‖ · · · ‖ mω−1

will be used as input to Prog to obtain the output f(x). This in turn means
that Prog must check that m corresponds to a valid codeword in C. We also
modify the trapdoor path to allow including multiple outputs instead of one.
This is needed to allow the simulator to simulate for an adversary who queries
the tokens out of order. It may happen that the last query is common for two (or
more) codewords (in other words, just when this query takes place, the simulator
will tell that the adversary got valid codewords). Having multiple outputs (each
concatenated with the x value that leads to this output) permits the simulator to
embed the valid outputs for the inputs corresponding to these valid codewords.

The modified version of Prog can be found in Fig. 10 (with both the lin-
ear code and iO instead of VBB). We also modify the description of Prog (see
Fig. 11). The parameters of the underlying error correcting code are configured
in a way that produces a code C such that |C| = |X |. As shown, the output
of Encap now contains ω tokens beside the obfuscation of Prog. Eval follows the
description above.

On Preserving the Number of Program Executions (1, n). An honest
party can query any token once. Thus, overall, she will be able to retrieve only
one codeword. An adversary, on the other hand, can query each token up to n
times. We want to guarantee that the nω messages she obtains does not allow
constructing more than n valid codewords. In other words, we want to ensure
that to retrieve n + 1 codewords, at least nω + 1 distinct queries are needed.
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Fig. 11. A construction for a (1, n)-time program scheme for ProgG,n,sk,r,f .

To formalize this notion, we define what we call a cover ; a cover of two,
or more, codewords is the set of all distinct queries needed to retrieve these
codewords. For example, codewords c1 = {5, 4, 13, 17} and c2 = {5, 9, 12, 18}
have a cover of {5, 4, 9, 12, 13, 17, 18},10 and so P2 needs 7 queries to obtain the
messages that correspond to these codewords from the tokens.

Definition 4. A code [ω, d, δ]q is n-robust if for any n + 1 distinct codewords
the size of the cover is at least nω + 1.

So the robustness factor is the number of codewords an adversary can obtain.
To preserve this number to be the original n that an adversary can obtain with
one token, we need to configure the parameters of C to satisfy the lower bound
of the cover size defined above. We show that for Reed-Solomon codes as follows
(the proof can be found in the full version).

10 Note that if 5 was not on the same position for both codewords then it would have
been considered distinct. Different positions means that k5 will be used with different
tokens, which leads to different messages mi,j .
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Lemma 1. For a Reed-Solomon code [ω, d, δ]q to be n-robust (cf. Definition 4),
we must have ω − n(d − 1) − 1 ≥ 0.

Accordingly, we have the following theorem (the proof can be found in the
full version.)

Theorem 2. Assuming sup-exponentially secure iO and one-way functions, the
iO-based construction described in Fig. 11 is a (1, n)-time program in the FCT -
hybrid model.

Remark 3. It is an intriguing question whether we can obtain (1, n)-time pro-
grams without iO. Since an adversary can evaluate over multiple inputs, we
cannot use garbled circuits—evaluating a circuit over more than one input com-
promises security. A potential direction is to employ reusable garbling [34], and
use our construction to build a (1, n)-time program for the circuit that encodes
the inputs (which requires a secret key from the grabler). Thus, iO is only needed
for the encoding circuit, and our consumable token limits the number of times
this circuit can be evaluated, rather than obfuscating the full program as above.
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53. Rührmair, U.: Oblivious transfer based on physical unclonable functions. In: Inter-
national Conference on Trust and Trustworthy Computing, pp. 430–440 (2010)

54. Wee, H.: On obfuscating point functions. In: ACM STOC, pp. 523–532 (2005)
55. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS, pp. 162–167 (1986)
56. Zhang, Y., Fu, L.H.B.: Research on DNA cryptography. In: Applied Cryptography

and Network Security, vol. 357, pp. 10–5772. InTech, Rijeka, Croatia (2012)

https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/3-540-49162-7_14
https://doi.org/10.1007/978-3-642-38348-9_41


Distributed (Correlation) Samplers: How
to Remove a Trusted Dealer in One

Round

Damiano Abram(B), Peter Scholl, and Sophia Yakoubov

Aarhus University, Aarhus, Denmark

damiano.abram@cs.au.dk

Abstract. Structured random strings (SRSs) and correlated random-
ness are important for many cryptographic protocols. In settings where
interaction is expensive, it is desirable to obtain such randomness in as
few rounds of communication as possible; ideally, simply by exchanging
one reusable round of messages which can be considered public keys.

In this paper, we describe how to generate any SRS or correlated ran-
domness in such a single round of communication, using, among other
things, indistinguishability obfuscation. We introduce what we call a dis-
tributed sampler, which enables n parties to sample a single public value
(SRS) from any distribution. We construct a semi-malicious distributed
sampler in the plain model, and use it to build a semi-malicious public-
key PCF (Boyle et al., FOCS 2020) in the plain model. A public-key PCF
can be thought of as a distributed correlation sampler; instead of pro-
ducing a public SRS, it gives each party a private random value (where
the values satisfy some correlation).

We introduce a general technique called an anti-rusher which com-
piles any one-round protocol with semi-malicious security without inputs
to a similar one-round protocol with active security by making use of a
programmable random oracle. This gets us actively secure distributed
samplers and public-key PCFs in the random oracle model.

Finally, we explore some tradeoffs. Our first PCF construction is limited
to reverse-sampleable correlations (where the random outputs of honest
parties must be simulatable given the random outputs of corrupt parties);
we additionally show a different construction without this limitation, but
which does not allow parties to hold secret parameters of the correlation.
We also describe how to avoid the use of a random oracle at the cost of
relying on sub-exponentially secure indistinguishability obfuscation.

1 Introduction

Randomness is crucial for many cryptographic protocols. Participants can gener-
ate some randomness locally (e.g. by flipping coins), but the generation of other
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forms of randomness is more involved. For instance, a uniform reference string
(URS) must be produced in such a way that a coalition of corrupt protocol
participants—controlled by the adversary—cannot bias it too much. Even more
complex is the generation of a structured reference string (SRS, such as an RSA
modulus), which can depend on secrets (such as the modulus factorization) that
should not be known to anyone.

In contrast to common reference strings, which are public, some protocols
demand correlated randomness, where each participant holds a secret random
value, but because the values must satisfy some relationship, they cannot be
generated locally by the participants. An example of correlated randomness is
random oblivious transfer, where one participant has a list of random strings, and
another has one of those strings as well as its index in the list. Such correlated
randomness often allows cryptographic protocols to run with a more efficient
online phase.

Typically, in order to set up an SRS or correlated randomness without making
additional trust assumptions, the parties must run a secure multi-party computa-
tion protocol, which takes several rounds of interaction. In this paper, we explore
techniques that let parties sample any common reference string or correlation
in just one round of interaction.

1.1 Related Work

There are a number of lines of work that can be used to generate randomness
in different ways.

Universal Samplers. A universal sampler [HJK+16] is a kind of SRS which can
be used to obliviously sample from any distribution that has an efficient sampling
algorithm. That is, after a one-time trusted setup to generate the universal sam-
pler, it can be used to generate arbitrary other SRSs. Hofheinz et al. [HJK+16]
show how to build universal samplers from indistinguishability obfuscation and
a random oracle, while allowing an unbounded number of adaptive queries. They
also show how to build weaker forms of universal sampler in the standard model,
from single-key functional encryption [LZ17]. A universal sampler is a very pow-
erful tool, but in many cases impractical, due to the need for a trusted setup.

Non-interactive Multiparty Computation (NIMPC). Non-interactive multiparty
computation (NIMPC, [BGI+14a]) is a kind of one-round protocol that allows
n parties to compute any function of their secret inputs in just one round of
communication. However, NIMPC requires that the parties know one another’s
public keys before that one round, so there is another implicit round of
communication.1 NIMPC for general functions can be constructed based on
subexponentially-secure indistinguishability obfuscation [HIJ+17].
1 This requirement is inherent; otherwise, an adversary would be able to take the

message an honest party sent, and recompute the function with that party’s input
while varying the other inputs. NIMPC does allow similar recomputation attacks,
but only with all honest party inputs fixed, which a PKI can be used to enforce.
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Spooky Encryption. Spooky encryption [DHRW16] is a kind of encryption which
enables parties to learn joint functions of ciphertexts encrypted under inde-
pendent public keys (given one of the corresponding secret keys). In order for
semantic security to hold, what party i learns using her secret key should reveal
nothing about the value encrypted to party j’s public key; so, spooky encryp-
tion only supports the evaluation of non-signaling functions. An example of a
non-signaling function is any function where the parties’ outputs are an additive
secret sharing. Dodis et al. [DHRW16] show how to build spooky encryption
for any such additive function from the LWE assumption with a URS (this also
implies multi-party homomorphic secret sharing for general functions). In the
two-party setting, they also show how to build spooky encryption for a larger
class of non-signaling functions from (among other things) sub-exponentially
hard indistinguishability obfuscation.

Pseudorandom Correlation Generators and Functions (PCGs and PCFs). Pseu-
dorandom correlation generators [BCG+19a,BCG+19b,BCG+20b] and func-
tions [BCG+20a,OSY21] let parties take a small amount of specially corre-
lated randomness (called the seed randomness) and expand it non-interactively,
obtaining a large sample from a target correlation. Pseudorandom correlation
generators (PCGs) support only a fixed, polynomial expansion; pseudorandom
correlation functions (PCFs) allow the parties to produce exponentially many
instances of the correlation (via evaluation of the function on any of exponen-
tially many inputs).

PCGs and PCFs can be built for any additively secret shared correlation
(where the parties obtain additive shares of a sample from some distribution)
using LWE-based spooky encryption mentioned above. Similarly, with two par-
ties, we can build PCGs and PCFs for more general reverse-samplable cor-
relations by relying on spooky encryption from subexponentially secure iO.
PCGs and PCFs with better concrete efficiency can be obtained under dif-
ferent flavours of the LPN assumption, for simpler correlations such as vector
oblivious linear evaluation [BCGI18], oblivious transfer [BCG+19b] and oth-
ers [BCG+20b,BCG+20a].

Of course, in order to use PCGs or PCFs, the parties must somehow get
the correlated seed randomness. Public-key PCGs and PCFs allow the par-
ties to instead derive outputs using their independently generated public keys,
which can be published in a single round of communication. The above, spooky
encryption-based PCGs and PCFs are public-key, while the LPN-based ones are
not. Public-key PCFs for OT and vector-OLE were recently built based on DCR
and QR [OSY21]; however, these require a structured reference string consisting
of a public RSA modulus with hidden factorization.

1.2 Our Contributions

In this paper, we leverage indistinguishability obfuscation to build public-key
PCFs for any correlation. On the way to realizing this, we define several other
primitives, described in Fig. 1. One of these primitives is a distributed sampler,
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which is a weaker form of public-key PCF which only allows the sampling of
public randomness. (A public-key PCF can be thought of as a distributed corre-
lation sampler.) Our constructions, and the assumptions they use, are mapped
out in Fig. 2. We pay particular attention to avoiding the use of sub-exponentially
secure primitives where possible (which rules out strong tools such as probabilis-
tic iO [CLTV15]).

Primitive Distribution Output

Distributed Sampler (DS, Def. 3.1) fixed public
Reusable Distributed Universal Sampler ([ASY22]) any public
Public-key PCF (pk-PCF, [OSY21]) fixed, reverse-samplable private
Ideal pk-PCF ([ASY22]) any private

Fig. 1. In this table we describe one-round n-party primitives that can be used for sam-
pling randomness. They differ in terms of whether a given execution enables sampling
from any distribution (or just a fixed one), and in terms of whether they only output
public randomness (in the form of a URS or SRS) or also return private correlated
randomness to the parties.

We begin by exploring constructions secure against semi-malicious adver-
saries, where corrupt parties are assumed to follow the protocol other than in
their choice of random coins. We build a semi-malicious distributed sampler, and
use it to build a semi-malicious public-key PCF. We then compile those proto-
cols to be secure against active adversaries. This leads to a public-key PCF that
requires a random oracle, and supports the broad class of reverse-sampleable
correlations (where, given only corrupt parties’ values in a given sample, honest
parties’ values can be simulated in such a way that they are indistinguishable
from the ones in the original sample).

We also show two other routes to public-key PCFs with active security. One
of these avoids the use of a random oracle, but requires sub-exponentially secure
building blocks. The other requires a random oracle, but can support general
correlations, not just reverse-sampleable ones. (The downside is that it does not
support correlations with master secrets, which allow parties to have secret input
parameters to the correlation.) We defer the discussion of this last construction
to the full version of this paper [ASY22, Section 7] due to space constraints.

It may seem strange to want to avoid sub-exponentially secure primi-
tives,2 when many candidates for indistinguishability obfuscation itself are
based on subexponential assumptions [JLS21]. However, despite informal argu-
ments [LZ17], this is not known to be inherent: earlier iO candidates are based
on polynomial hardness [GGH+13] (albeit for an exponential family of assump-
tions), and in future we may obtain iO from a single, polynomial hardness
assumption. In general, it is always preferable to require a weaker form of secu-
rity from a primitive, and this also leads to better parameters in practice. The

2 By sub-exponential security, we mean that no PPT adversary cannot break the
security of that primitive with probability better than 2−λc

for a constant c.
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Fig. 2. In this table we describe the constructions in this paper. In pink are

assumptions: they include somewhere statistically binding hash functions (SSB), mul-
tiparty homomorphic encryption with private evaluation (pMHE [AJJM20], a weaker
form of multi-key FHE), indistinguishability obfuscation (iO), non-interactive zero

knowledge proofs (NIZK), and universal samplers (US). In blue are constructions
of distributed samplers (DS, Definition 3.1), reusable distributed universal samplers
(reusable DUS, Definition 7.6) and public-key pseudorandom correlation functions (pk-
PCFs, [OSY21]). Constructions with bold outlines are secure against active adversaries;
the rest are secure against semi-malicious adversaries. In magenta are necessary setup
assumptions. (Note that the availability of a random oracle (RO) immediately implies
the additional availability of a URS.) Dashed lines denote the use of sub-exponentially
secure tools. (Color figure online)

problem of removing sub-exponential assumptions from iO, or applications of
iO, has been studied previously in various settings [GPSZ17,LZ17].

1.3 Technical Overview

Distributed Samplers. We start by introducing a new tool called a distributed
sampler (DS, Sect. 3). A distributed sampler allows n parties to sample a single,
public output from an efficiently sampleable distribution D with just one round
of communication (which is modelled by the exchange of public keys).

Semi-malicious Distributed Samplers. We use multiparty homomorphic encryp-
tion with private evaluation (pMHE [AJJM20], a weaker, setup-free version of
multi-key FHE) and indistinguishability obfuscation to build semi-malicious dis-
tributed samplers in the plain model (Sect. 4). In our distributed sampler construc-
tion, all parties can compute an encryption of the sample from everyones’ public
keys (using, among other things, the homomorphic properties of the encryption
scheme), and then use an obfuscated program in party i’s public key to get party i’s
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partial decryption of the sample. The partial decryptions can then be combined to
recover the sample itself. The tricky thing is that, in the proof, we must ensure that
we can replace the real sample with an ideal sample. To do this, we must remove
all information about the real sample from the public keys. However, pMHE secret
keys are not puncturable; that is, there is no way to ensure that they do not reveal
any information about the contents of one ciphertext, while correctly decrypting
all others. We could, in different hybrids, hardcode the correct partial decryption
for each of the exponentially many possible ciphertexts, but this would blow up the
size of the obfuscated program. Therefore, instead of directly including a pMHE
ciphertext in each party’s DS public key, we have each party obfuscate an addi-
tional program which produces a new pMHE ciphertext each time it is used. This
way, when we need to remove all information about a given sample, we can remove
the entire corresponding secret key (via the appropriate use of puncturable PRFs
and hardcoded values). This technique may be useful for other primitives, such as
NIMPC [BGI+14a] and probabilistic iO [CLTV15], to avoid the use of an expo-
nential number of hybrids.

Achieving Active Security with a Random Oracle. Upgrading to active security is
challenging because we need to protect against two types of attacks: malformed
messages, and rushing adversaries, who wait for honest parties’ messages before
sending their own. We protect against the former using non-interactive zero
knowledge proofs. (This requires a URS which, though it is a form of setup, is
much weaker than an SRS.) We protect against the latter via a generic transfor-
mation that we call an anti-rusher (Sect. 5.1). To use our anti-rusher, each party
includes in her public key an obfuscated program which takes as input a hash
(i.e. a random oracle output) of all parties’ public keys. It then samples new
(DS) public keys, using this hash as a PRF nonce. This ensures that even an
adversary who selects her public keys after seeing the honest party public keys
cannot influence the selected sample other than by re-sampling polynomially
many times.

Public-key PCFs. We start by building a public-key PCF that requires an SRS
(Sect. 6.3). The SRS consists of an obfuscated program that, given a nonce and n
parties’ public encryption keys, uses a PRF to generate correlated randomness,
and encrypts each party’s random output to its public key. We can then eliminate
the need for a pre-distributed SRS by instead using a distributed sampler to
sample it (Sect. 6.4).

Public-key PCFs without Random Oracles. The proofs of security for the con-
structions sketched above only require polynomially many hybrids, roughly
speaking because the random oracle allows the simulator to predict and con-
trol the inputs to the obfuscated programs. We can avoid the use of the random
oracle, at the cost of going through exponentially many hybrids in the proof of
security, and thus requiring sub-exponentially secure primitives.
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Public-key PCFs for any Correlation with a Random Oracle. Boyle et al.
[BCG+19b] prove that a public-key PCF in the plain model that can handle
any correlation (not just reverse-sampleable ones) must have keys at least as
large as all the correlated randomness it yields. We observe that we can use a
random oracle to sidestep this lower bound by deriving additional randomness
from the oracle.

As a stepping stone, we introduce a different flavour of the distributed sam-
pler, which we call the reusable distributed universal sampler (reusable DUS).
It is reusable because it can be queried multiple times (without the need for
additional communication), and it is universal because each query can produce
a sample from a different distribution (specified by the querier). We build a
reusable distributed universal sampler from a universal sampler, a random ora-
cle and a distributed sampler (by using the distributed sampler to produce the
universal sampler). Our last public-key PCF ([ASY22, Section 7]) then uses the
reusable distributed universal sampler to sample from a distribution that first
picks the correlated randomness and then encrypts each party’s share under her
public key.

2 Preliminaries

Notation. We denote the security parameter by λ and the set {1, 2, . . . ,m}
by [m]. Our constructions are designed for an ordered group of n parties
P1, P2, . . . , Pn. We will denote the set of (indexes of) corrupted parties by C,
whereas its complementary, the set of honest players, is H.

We indicate the probability of an event E by P[E]. We use the term noticeable
to refer to a non-negligible quantity. A probability p is instead overwhelming if
1 − p is negligible. We say that a cryptographic primitive is sub-exponentially
secure, if the advantage of the adversary is bounded by 2−λc

for some constant
c > 0. When the advantage is negligible, we say that it is polynomially secure.

We use the simple arrow ← to assign the output of a deterministic algorithm
Alg(x) or a specific value a to a variable y, i.e. y ← Alg(x) or y ← a. If Alg is
instead probabilistic, we write y

$← Alg(x) and we assume that the random tape
is sampled uniformly. If the latter is set to a particular value r, we write however
y ← Alg(x; r). We use $← also if we sample the value of y uniformly over a set
X, i.e. y

$← X. Finally, we refer to algorithms having no input as distributions.
The latter are in most cases parametrised by λ. The terms circuit and program
are used interchangeably.

Used Primitives. Our work relies on the following primitives.

– Indistinguishability Obfuscation (iO). [BGI+01] An obfuscator is an algo-
rithm that rearranges a circuit Cr into another program Cr′ with the same
input-output behaviour, but being so different that it is impossible to tell
what operations Cr initially performed. Specifically, security states that it is
impossible to distinguish between the obfuscation of equivalent circuits. The
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first indistinguishability obfuscator was designed by Garg et al. in [GGH+13].
Formal definitions of iO are given in [ASY22, Section 2.1].

– Puncturable PRFs.[KPTZ13,BW13,BGI14b] A puncturable PRF is a PRF F
in which it is possible to puncture the keys in any position x. In other words, it
means that from a key K, it is possible to derive another key K̂ containing no
information about FK(x) but still permitting to compute FK(y) for every y �=
x. It is easy to build puncturable PRF from the GGM construction [GGM86].
Formal definitions are given in [ASY22, Section 2.2].

– Simulation-Extractable NIZKs. [GO07] A NIZK for an NP relation R is a con-
struction that allows proving the knowledge of a witness w for a statement
x with only one round of interaction and without revealing any additional
information about w. The zero-knowledge property is formalised by the exis-
tence of PPT simulators generating proofs without needing witnesses. The
operation is performed exploiting a trapdoored CRS.
We say that the NIZK is simulation-extractable if there exists an efficient
algorithm that, in conjunction with the simulators, permits to extract the
witness from any valid proof generated by the adversary.
When the CRS is a random string of bits, we talk about NIZKs with URS.
Formal definitions are given in [ASY22, Section 2.3].

– Multiparty Homomorphic Encryption with Private Evaluation (pMHE). MHE
with private evaluation [AJJM20] is a construction that permits to evaluate
circuits over encrypted values. It is possible to obtain partial decryptions with
no interactions. Retrieving the actual plaintext requires however an additional
round of communication as we need to pool the partial decryptions. MHE with
private evaluation is a weaker version of multi-key FHE. The main differences
is that there is actually no public key but only a private one that changes for
every ciphertext. Furthermore, the encryption algorithm needs to know the
parameters (input size, output size and depth) of the circuits we are going to
evaluate. We can build pMHE from LWE [AJJM20]. Formal definitions are
given in [ASY22, Section 2.4].

– Somewhere Statistically Binding (SSB) Hashing. [HW15] An SSB hash func-
tion is a keyed hash function with particular properties: every key hk hides an
index i that specifies in which block the hash is statistically binding. Specifi-
cally, every pair of messages having the same digest under hk must coincide at
the i-th block. It is possible to build SSB hash functions from fully homomor-
phic encryption [HW15]. Formal definitions are given in [ASY22, Section 2.5].

3 Defining Distributed Samplers

Informally speaking, a distributed sampler (DS) for the distribution D is a con-
struction that allows n parties to obtain a random sample R from D with just
one round of communication and without revealing any additional information
about the randomness used for the generation of R. The output of the procedure
can be derived given only the public transcript, so we do not aim to protect the
privacy of the result against passive adversaries eavesdropping the communica-
tions between the parties.
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If we assume an arbitrary trusted setup, building a DS becomes straightfor-
ward; we can consider the trivial setup that directly provides the parties with a
random sample from D. Obtaining solutions with a weaker (or no) trusted setup
is much more challenging.

The structure and syntax of distributed samplers is formalised as follows. We
then analyse different flavours of security definitions.

Definition 3.1 (n-party Distributed Sampler for the Distribution D).
An n-party distributed sampler for the distribution D is a pair of PPT algorithms
(Gen,Sample) with the following syntax:

1. Gen is a probabilistic algorithm taking as input the security parameter 1lλ

and a party index i ∈ [n] and outputting a sampler share Ui for party i. Let
{0, 1}L(λ) be the space from which the randomness of the algorithm is sampled.

2. Sample is a deterministic algorithm taking as input n shares of the sampler
U1, U2, . . . , Un and outputting a sample R.

In some of our security definitions, we will refer to the one-round protocol
ΠDS that is induced by the distributed sampler DS = (Gen,Sample). This is the
natural protocol obtained from DS, where each party first broadcasts a message
output by Gen, and then runs Sample on input all the parties’ messages.

3.1 Security

In this section we formalise the definition of distributed samplers with relation to
different security flavours, namely, semi-malicious and active. We always assume
that we deal with a static adversary who can corrupt up to n − 1 out of the n
parties. We recall that a protocol has semi-malicious security if it remains secure
even if the corrupt parties behave semi-honestly, but the adversary can select
their random tapes.

Definition 3.2 (Distributed Sampler with Semi-malicious Security). A
distributed sampler (Gen,Sample) has semi-malicious security if there exists a
PPT simulator Sim such that, for every set of corrupt parties C � [n] and
corresponding randomness (ρi)i∈C , the following two distributions are computa-
tionally indistinguishable:

⎧
⎪⎨

⎪⎩

(Ui)i∈[n]

(ρi)i∈C , R

∣
∣
∣
∣
∣
∣
∣

ρi
$← {0, 1}L(λ) ∀i ∈ H

Ui ← Gen(1lλ, i; ρi) ∀i ∈ [n]
R ← Sample(U1, U2, . . . , Un)

⎫
⎪⎬

⎪⎭
and

{
(Ui)i∈[n]

(ρi)i∈C , R

∣
∣
∣
∣
∣

R
$← D(1lλ)

(Ui)i∈H
$← Sim

(
1lλ, C,R, (ρi)i∈C

)

}
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Observe that this definition implies that, even in the simulation, the relation

R = Sample(U1, U2, . . . , Un)

holds with overwhelming probability. In other words, security requires that
(Gen,Sample) securely implements the functionality that samples from D and
outputs the result to all of the parties.

Observe that the previous definition can be adapted to passive security by
simply sampling the randomness of the corrupted parties inside the game in the
real world and generating it using the simulator in the ideal world.

We now define actively secure distributed samplers. Here, to handle the chal-
lenges introduced by a rushing adversary, we model security by defining an
ideal functionality in the universal composability (UC) framework [Can01], and
require that the protocol ΠDS securely implements this functionality.

Definition 3.3 (Distributed Sampler with Active Security). Let DS =
(Gen,Sample) be a distributed sampler for the distribution D. We say that DS
has active security if the one-round protocol ΠDS securely implements the func-
tionality FD (see Fig. 3) against a static and active adversary corrupting up to
n − 1 parties.

FD
Initialisation. On input Init from every honest party and the adversary, the
functionality activates and sets Q := ∅. (Q will be used to keep track of queries.)
If all the parties are honest, the functionality outputs R

$← D(1lλ) to every honest
party and sends R to the adversary, then it halts.
Query. On input Query from the adversary, the functionality samples R

$← D(1lλ)
and creates a fresh label id. It sends (id, R) to the adversary and adds the pair to Q.
Output. On input (Output, îd) from the adversary, the functionality retrieves the
only pair (id, R) ∈ Q with id = îd. If such pair does not exist, the functionality
does nothing. Otherwise, it outputs R to every honest party and terminates.
Abort. On input Abort from the adversary, the functionality outputs ⊥ to every
honest party and terminates.

Fig. 3. Distributed sampler functionality

Remark 3.4 (Distributed Samplers with a CRS or Random Oracle). Our con-
structions with active security rely on a setup assumption in the form of a
common reference string (CRS) and random oracle. For a CRS, we assume the
algorithms Gen,Sample are implicitly given the CRS as input, which is modelled
as being sampled by an ideal setup functionality. As usual, the random oracle is
modelled as an external oracle that may be queried by any algorithm or party,
and programmed by the simulator in the security proof.
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Observe that this definition allows the adversary to request several samples R
from the functionality, and then select the one it likes the most. Our definition
must allow this in order to deal with a rushing adversary who might wait for the
messages (Ui)i∈H of all the honest parties and then locally re-generate the corrupt
parties’ messages (Ui)i∈C , obtaining a wide range of possible outputs. Finally, it
can broadcast the corrupt parties’ messages that lead to the output it likes the
most. This makes distributed samplers with active security rather useless when
the distribution D has low entropy, i.e. when there exists a polynomial-size set S
such that D(1lλ) ∈ S with overwhelming probability. Indeed, in such cases, the
adversary is able to select its favourite element in the image of D.

On the Usefulness of Distributed Samplers with a CRS. Our distributed samplers
with active security require a CRS for NIZK proofs. Since one of the main goals
of the construction is avoid trusted setup in multiparty protocols, assuming the
existence of a CRS, which itself is some form of setup, may seem wrong.

We highlight, however, that some types of CRS are much easier to gen-
erate than others. A CRS that depends on values which must remain secret
(e.g. an RSA modulus with unknown factorization, or an obfuscated program
which contains a secret key) is difficult to generate. However, assuming the secu-
rity of trapdoor permutations [FLS90], bilinear maps [GOS06], learning with
errors [PS19] or indistinguishability obfuscation [BP15], we can construct NIZK
proofs where the CRS is just a random string of bits, i.e. a URS. In the random
oracle model, such a CRS can even be generated without any interaction. So, the
CRS required by our constructions is the simplest, weakest kind of CRS setup.

4 A Construction with Semi-malicious Security

We now present the main construction of this paper: a distributed sampler with
semi-malicious security based on polynomially secure MHE with private evalua-
tion and indistinguishability obfuscation. In Sect. 5, we explain how to upgrade
this construction to achieve active security.

The Basic Idea. Our goal is to generate a random sample R from the distribution
D. The natural way to do it is to produce a random bit string s and feed it into
D. We want to perform the operation in an encrypted way as we need to preserve
the privacy of s. A DS implements the functionality that provides samples from
the underlying distribution, but not the randomness used to obtain them, so no
information about s can be leaked.

We guarantee that any adversary corrupting up to n − 1 parties is not able
to influence the choice of s by XORing n bit strings of the same length, the
i-th one of which is independently sampled by the i-th party Pi. Observe that
we are dealing with a semi-malicious adversary, so we do not need to worry
about corrupted parties adaptively choosing their shares after seeing those of
the honest players.
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Preserving the Privacy of the Random String. To preserve the privacy of s,
we rely on an MHE scheme with private evaluation pMHE = (Enc,PrivEval,
FinDec). Each party Pi encrypts si, publishing the corresponding ciphertext ci

and keeping the private key ski secret. As long as the honest players do not reveal
their partial decryption keys, the privacy of the random string s is preserved.
Using the homomorphic properties of the MHE scheme, the parties are also able
to obtain partial plaintexts of R without any interactions. However, we run into
an issue: in order to finalise the decryption, the construction would require an
additional round of communication where the partial plaintexts are broadcast.

Reverting to a One-round Construction. We need to find a way to perform the
final decryption without additional interaction, while at the same time preserving
the privacy of the random string s. That means revealing a very limited amount
of information about the private keys sk1, sk2, . . . , skn, so that it is only possible
to retrieve R, revealing nothing more.

Inspired by [HIJ+17], we build such a precise tool by relying on indistin-
guishability obfuscation: in the only round of interaction, each party Pi addition-
ally publishes an obfuscated evaluation program EvProgi containing the private
key ski. When given the ciphertexts of the other parties, EvProgi evaluates the
circuit producing the final result R and outputs the partial decryption with rela-
tion to ski. Using the evaluation programs, the players are thus able to retrieve
R by feeding the partial plaintexts into pMHE.FinDec.

Dealing with the Leakage about the Secret Keys. At first glance, the solution
outlined in the previous paragraph seems to be secure. However, there are some
sneaky issues we need to deal with.

In this warm-up construction, we aim to protect the privacy of the random
string s by means of the reusable semi-malicious security of the MHE scheme
with private evaluation. To rely on this assumption, no information on the secret
keys must be leaked. However, this is not the case here, as the private keys are
part of the evaluation programs.

In the security proof, we are therefore forced to proceed in two steps: first,
we must remove the secret keys from the programs using obfuscation, and then
we can apply reusable semi-malicious security. The first task is actually trickier
than it may seem. iO states we cannot distinguish between the obfuscation of two
equivalent programs. Finding a program with the same input-output behaviour
as EvProgi without it containing any information about ski is actually impossible,
as any output of the program depends on the private key. We cannot even hard-
code the partial decryptions under ski for all possible inputs into the obfuscated
program as that would require storing an exponential amount of information,
blowing up the size of EvProgi.

In [HIJ+17], while constructing an NI-MPC protocol based on multi-key
FHE and iO, the authors deal with an analogous issue by progressively changing
the behaviour of the program input by input, first hard-coding the output corre-
sponding to a specific input and then using the simulatability of partial decryp-
tions to remove any dependency on the multi-key FHE secret key. Unfortunately,
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in our context, this approach raises additional problems. First of all, in contrast
with some multi-key FHE definitions, MHE does not support simulatability of
partial decryptions. Additionally, since the procedure of [HIJ+17] is applied
input by input, the security proof would require exponentially many hybrids. In
that case, security can be argued only if transitions between subsequent hybrids
cause a subexponentially small increase in the adversary’s advantage. In other
words, we would need to rely on subexponentially secure primitives even if future
research shows that iO does not. Finally, we would still allow the adversary to
compute several outputs without changing the random strings (sh)h∈H selected
by the honest parties. Each of the obtained values leaks some additional infor-
mation about the final output of the distributed sampler. In [HIJ+17], this fact
did not constitute an issue as this type of leakage is intrinsically connected to
the notion of NI-MPC.

Bounding the Leakage: Key Generation Programs. To avoid the problems
described above, we introduce the idea of key generation programs. Each party
Pi publishes an obfuscated program KGProgi which encrypts a freshly chosen
string si, keeping the corresponding partial decryption key secret.

The randomness used byKGProgi is produced via a puncturable PRF F taking
as a nonce the key generation programs of the other parties. In this way, any slight
change in the programs of the other parties leads to a completely unrelated string
si, ciphertext ci and key ski. It is therefore possible to protect the privacy of si using
a polynomial number of hybrids, as we need only worry about a single combination
of inputs. Specifically, we can remove any information about ski from EvProgi and
hard-code the partial plaintext di corresponding to (cj)j∈[n]. At that point, we
can rely on the reusable semi-malicious security of the MHE scheme with private
evaluation, removing any information about si from ci and di and programming
the final output to be a random sample R from D.

The introduction of the key generation programs requires minimal modifi-
cations to the evaluation programs. In order to retrieve the MHE private key,
EvProgi needs to know the same PRF key Ki used by KGProgi. Moreover, it
now takes as input the key generation programs of the other parties, from which
it will derive the MHE ciphertexts needed for the computation of R. Observe
that EvProgi will also contain KGProgi, which will be fed into the other key
generation programs in a nested execution of obfuscated circuits.

Compressing the Inputs. The only problem with the construction above, is that
we now have a circularity issue: we cannot actually feed one key generation
program as input to another key generation program, since the programs are of
the same size. This holds even if we relied on obfuscation for Turing machines,
since to prove security, we would need to puncture the PRF keys in the nonces,
i.e. the key generation programs of the other parties. The point at which the
i-th key is punctured, which is at least as big as the program itself, must be
hard-coded into KGProgi, which is clearly too small.

Instead of feeding entire key generation programs into KGProgi, we can input
their hash, which is much smaller. This of course means that there now exist
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different combinations of key generation programs leading to the same MHE
ciphertext-key pair (ci, ski), and the adversary could try to extract information
about ski by looking for collisions. The security of the hash function should,
however, prevent this attack. The only issue is that iO does not really get along
with this kind of argument based on collision-resistant hashing. We instead rely
on the more iO-friendly notion of a somewhere statistically binding hash function
SSB = (Gen,Hash) [HW15].

Final Construction. We now present the formal description of our semi-
maliciously secure DS. The algorithms Gen and Sample, as well as the unobfus-
cated key generation program PKG and evaluation program PEval, can be found
in Fig. 4. In the description, we assume that the puncturable PRF F outputs
pseudorandom strings (r1, r2, r3) where each of r1, r2 and r3 is as long as the
randomness needed by D, pMHE.Enc, and HE.PrivEval respectively. Moreover, we
denote by B the maximum number of blocks in the messages fed into SSB.Hash.

Theorem 4.1. If SSB = (Gen,Hash) is a somewhere statistically binding hash
function, pMHE = (Enc,PrivEval,FinDec) is a MHE scheme with private eval-
uation, iO is an indistinguishability obfuscator and (F,Punct) is a puncturable
PRF, the construction in Fig. 4 is an n-party distributed sampler with semi-
malicious security for the distribution D.

We prove Theorem 4.1 in [ASY22, Appendix A]. Observe that a distributed
sampler with semi-malicious security also has passive security.

5 Upgrading to Active Security

When moving from semi-malicious to active security, there are two main issues
we need to tackle: corrupt parties publishing malformed shares of the sampler,
and rushing adversaries. The former can be easily dealt with by adding NIZK
proofs of well-formedness to the sampler shares (for this reason, our solution
relies on a URS). Rushing adversaries are a more challenging problem, and to
deal with this, we rely on a random oracle.

The Problem of Rushing. In the semi-maliciously secure construction described in
Sect. 4, the randomness used to generate an honest party’s MHE ciphertexts and
private keys is output by a PRF, which takes as input a nonce that depends on
the key generation programs of all parties (including the corrupt ones). To prove
security, we need to puncture the PRF key at that nonce, erasing any correlation
between the MHE ciphertext and the PRF key. This can be done in the semi-
malicious case, as the simulator knows the programs of the corrupted parties before
it must produce those of the honest parties. In the actively secure case, we run into
an issue. The adversary is able to adaptively choose the programs of the corrupted
parties after seeing those of the other players, in what is called rushing behaviour.
In the security proof, we would therefore need to puncture a PRF key without
knowing the actual position where puncturing is needed.
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Distributed Sampler with Semi-Malicious Security

Gen(1lλ, i) :

1. K
$← {0, 1}λ

2. hk
$← SSB.Gen(1lλ, B, 0)

3. KGProg
$← iO 1lλ, PKG[K, i]

)
4. EvProg

$← iO 1lλ, PEval[K, i, hk,KGProg]
)

5. Output U := (hk,KGProg,EvProg).

Sample Ui = (hki,KGProgi,EvProgi)
)

i∈[n]

)
:

1. ∀i ∈ [n] : di ← EvProgi (hkj ,KGProgj)j �=i

)
2. Output R ← pMHE.FinDec D̃, (di)i∈[n]

)
The algorithm D̃.
Given a set of n random strings s1, s2, . . . , sn, perform the following operations.

1. s ← s1 ⊕ s2 ⊕ · · · ⊕ sn

2. Output R ← D(1lλ; s)

PKG[K, i]: the key generation program

Hard-coded. The private key K and the index i of the party.
Input. A hash y.

1. (r1, r2, r3) ← FK(y)
2. s ← r1
3. (c, sk) ← pMHE.Enc(1lλ, D̃.params, i, s; r2)
4. Output c.

PEval[K, i, hki,KGProgi]: the evaluation program

Hard-coded. The private key K, the index i of the party, the hash key hki,
and the obfuscated key generation program KGProgi.
Input. A set of n − 1 pairs (hkj ,KGProgj)j �=i where the first element is a hash
key and the second is an obfuscated key generation program.

1. ∀j ∈ [n] : yj ← SSB.Hash hkj , (hkl,KGProgl)l�=j

)
2. ∀j �= i : cj ← KGProgj(yj)
3. (r1, r2, r3) ← FK(yi)
4. si ← r1
5. (ci, ski) ← pMHE.Enc(1lλ, D̃.params, i, si; r2)
6. di ← pMHE.PrivEval(ski, D̃, c1, c2, . . . , cn; r3)
7. Output di.

Fig. 4. A distributed sampler with semi-malicious security
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Although the issue we described above is very specific, dealing with rushing
behaviour is a general problem. In a secure distributed sampler, we can program
the shares of the honest parties to output an ideal sample when used in conjunc-
tion with the shares of the corrupted players. Since the latter are unknown upon
generation of the honest players’ shares, the immediate approach would be to
program the outputs for every possible choice of the adversary. We run however
into an incompressibility problem as we would need to store exponentially many
ideal outputs in the polynomial-sized sampler shares.

5.1 Defeating Rushing

In this section, we present a compiler that allows us to deal with rushing behaviour
without adding any additional rounds of interaction. This tool handles rushing
behaviour not only for distributed samplers, but for a wide range of applications
(including our public-key PCF in Sect. 6). Consider any single-round protocol with
no private inputs, where SendMsg is the algorithm which party i runs to choose a
message to send, and Output is an algorithm that determines each party’s output
(from party i’s state and all the messages sent). More concretely, we can describe
any such one-round protocol using the following syntax:

SendMsg(1lλ, i; ri) → gi generates party i’s message gi, and
Output(i, ri, (gj)j∈[n]) → resi produces party i’s output resi.

(In the case of distributed samplers, SendMsg corresponds to Gen, and Output
corresponds to Sample.)

We define modified algorithms (ARMsg,AROutput) such that the associated
one-round protocol realizes an ideal functionality that first waits for the cor-
rupted parties’ randomness, and then generates the randomness and messages
of the honest parties.

This functionality clearly denies the adversary the full power of rushing: the
ability to choose corrupt parties’ messages based on honest parties’ messages. For
this reason, we call it the no-rush functionality FNoRush. However, we do allow the
adversary a weaker form of rushing behaviour: selective sampling. The function-
ality allows the adversary to re-submit corrupt parties’ messages as many times
as it wants, and gives the adversary the honest parties’ messages in response
(while hiding the honest parties’ randomness). At the end, the adversary can
select which execution she likes the most.

Definition 5.1 (Anti-Rusher). Let (SendMsg,Output) be a one-round n-
party protocol where SendMsg needs L(λ) bits of randomness to generate a mes-
sage. An anti-rusher for SendMsg is a one-round protocol (ARMsg,AROutput)
implementing the functionality FNoRush (see Fig. 5) for SendMsg against an active
adversary.

If (SendMsg,Output) = (Gen,Sample) is a distributed sampler with semi-
malicious security, applying this transformation gives a distributed sampler with
active security.
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FNoRush

Initialisation. Upon receiving Init from every party and the adversary, the func-
tionality activates and enters the querying phase.
Querying phase. Upon receiving the id-th Query from the adversary, the func-
tionality waits for ri from every corrupted party Pi. Then, for every h ∈ H, it
samples rh

$← {0, 1}L(λ) and computes gh ← SendMsg(1lλ, h; rh). Finally, it stores
(ri)i∈[n] as the id-th set of randomness and sends (gh)h∈H back to the adversary.
Output. Upon receiving Output from the adversary, the functionality waits for
a value îd from the adversary, and retrieves the corresponding tuple (ri)i∈[n] (or
outputs ⊥ if there is no such tuple). It then outputs rh to Ph for every h ∈ H.

Fig. 5. The anti-rushing functionality FNoRush

Intuition Behind Our Anti-rushing Compiler. We define (ARMsg,AROut-
put) as follows. When called by party i, ARMsg outputs an obfuscated program
Si; this program takes as input a response of the random oracle, and uses it
as a nonce for a PRF FKi

. The program then feeds the resulting pseudoran-
dom string r into SendMsg, and outputs whatever message SendMsg generates.
Our techniques are inspired by the delayed backdoor programming technique of
Hofheinz et al. [HJK+16], used for adaptively secure universal samplers.

The Trapdoor. In order to prove that our compiler realizes FNoRush for SendMsg,
a simulator must be able to force the compiled protocol to return given outputs
of SendMsg, even after sending messages (outputs of ARMsg) on behalf of the
honest parties.

Behind its usual innocent behaviour, the program Si hides a trapdoor that
allows it to secretly communicate with the random oracle. Si owns a key ki for a
special authenticated encryption scheme based on puncturable PRFs. Every time
it receives a random oracle response as input, Si parses it as a ciphertext-nonce
pair and tries to decrypt it. If decryption succeeds, Si outputs the corresponding
plaintext; otherwise, it resumes the usual innocent behaviour, and runs SendMsg.
(The encryption scheme guarantees that the decryption of random strings fails
with overwhelming probability; this trapdoor is never used accidentally, but it
will play a crucial role in the proof.) Obfuscation conceals how the result has
been computed as long as it is indistinguishable from a random SendMsg output.

The inputs fed into (Si)i∈[n] are generated by querying the random oracle
with the programs themselves and NIZKs proving their well-formedness. The
random oracle response consists of a random nonce v and additional n blocks
(ui)i∈[n], the i-th one of which is addressed to Si. The input to Si will be the
pair (ui, v). When the oracle tries to secretly communicate a message to Si, ui

will be a ciphertext, whereas v will be the corresponding nonce.
Given a random oracle query, using the simulation-extractability of the

NIZKs, the simulator can retrieve the secrets (in particular, the PRF keys) of
the corrupted parties. It can then use this information to learn the randomness
used to generate the corrupted parties’ messages (i.e. their outputs of SendMsg).
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The simulator then needs only to encrypt these messages received from FNoRush

using (ki)i∈H , and include these ciphertexts in the oracle response.

Formal Description of Our Anti-rushing Compiler. We now formalise
the ideas we presented in the previous paragraphs. Our anti-rushing compiler
is described in Fig. 7. The unobfuscated program PAR is available in Fig. 6. We
assume that its obfuscation needs M(λ) bits of randomness. Observe that PAR

is based on two puncturable PRFs F and F ′, the first one of which is used to
generate the randomness fed into SendMsg.

The second puncturable PRF is part of the authenticated encryption scheme
used in the trapdoor. We assume that its outputs are naturally split into 2m
λ-bit blocks, where m(λ) is the size of an output of SendMsg (after padding). To
encrypt a plaintext (x1, . . . , xm) ∈ {0, 1}m using the key k and nonce v ∈ {0, 1}λ,
we first expand v using F ′

k. The ciphertext consists of m λ-bit blocks, the j-th
one of which coincides with the (2j + xj)-th block output by F ′. Decryption is
done by reversing these operations. For this reason, we assume that the values
(ui)i∈[n] in the oracle responses are naturally split into m λ-bit chunks. Observe
that if the j-th block of the ciphertext is different from both the 2j-th and the
(2j + 1)-th block output by the PRF, decryption fails.

Finally, let NIZK = (Gen,Prove,Verify,Sim1,Sim2,Extract) be a simulation-
extractable NIZK for the relation R describing the well-formedness of the obfus-
cated programs (Si)i∈[n]. Formally, a statement consists of the pair (Si, i),
whereas the corresponding witness is the triple containing the PRF keys ki and
Ki hard-coded in Si and the randomness used for the obfuscation of the latter.

PAR[SendMsg, k, K, i]

Hard-coded. The algorithm SendMsg, PRF keys k and K and the index i of
the party.
Input. Oracle responses (u, v) ∈ {0, 1}λ·m(λ) × {0, 1}λ.

1. (y0
1 , y1

1 , y0
2 , y1

2 , . . . , y0
m, y1

m) ← F ′
k(v)

2. For every j ∈ [m] set

xj ←

⎧⎪⎨
⎪⎩
0 if y0

j = uj ,

1 if y1
j = uj ,

⊥ otherwise.

3. If xj �= ⊥ for every j ∈ [m], output (x1, x2, . . . , xm).
4. Set r ← FK(u, v).
5. Output gi ← SendMsg(1lλ, i; r).

Fig. 6. The anti-rushing program
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Anti-Rushing Compiler ΠNoRush

URS. The protocol needs a URS urs
$← NIZK.Gen(1lλ) for the NIZK proofs.

ARMsg(1lλ, i, urs):

1. ki
$← {0, 1}λ

2. Ki
$← {0, 1}λ

3. wi
$← {0, 1}M(λ)

4. Si ← iO 1lλ, PAR[SendMsg, ki, Ki, i];wi

)
(see Fig. 6)

5. πi
$← Prove 1lλ, urs, (Si, i), (ki, Ki, wi)

)
6. Output armsgi := (Si, πi).

AROutput armsgj = (Sj , πj)
)

j∈[n]
, urs

)
:

1. If there exists j ∈ [n] such that Verify urs, πj , (Sj , j)
)
= 0, output ⊥.

2. Query (Sj , πj)j∈[n] to the random oracle H to get v, (ui)i∈[n]

)
.

3. ∀i ∈ [n] : gi ← Si(ui, v).
4. Output (gj)j∈[n].

Fig. 7. Anti-rushing compiler

Theorem 5.2. If (SendMsg,Output) is a one-round n-party protocol, NIZK =
(Gen,Prove,Verify,Sim1,Sim2,Extract) is a simulation-extractable NIZK with
URS for the relation R, iO is an indistinguishability obfuscator and (F,Punct)
and (F ′,Punct′) are two puncturable PRFs satisfying the properties described
above, the protocol ΠNoRush = (ARMsg,AROutput) described in Fig. 7 realizes
FNoRush for SendMsg in the random oracle model with a URS.

We prove Theorem 5.2 in [ASY22, Appendix B].

Theorem 5.3. Suppose that DS = (Gen,Sample) is a semi-maliciously secure
distributed sampler for the distribution D. Assume that there exists an anti-
rusher for DS.Gen. Then, there exists an actively secure distributed sampler
for D.

On the Novelty of this Compiler. Observe that the idea of a compiler converting
passive protocols into actively secure ones is not new. The most famous example
is GMW [GMW87], which achieves this by adding ZK proofs proving the well-
formedness of all the messages in the protocol. The novelty of our construction
consists of doing this without increasing the number of rounds. GMW deals with
rushing by requiring all the parties to commit to their randomness at the begin-
ning of the protocol and then prove that all the messages in the interaction are
consistent with the initial commitments. A passively secure one-round protocol
would therefore be compiled, in the best case, into a 2-round one.
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Although the techniques were inspired by [HJK+16], this work employs the
ideas in a new context, generalising them to multiple players and applying them
in multiparty protocols. Observe indeed that [HJK+16] devised the techniques
to construct adaptively secure universal samplers. To some extent, we still use
them to prevent the adversary from making adaptive choices.

6 Public-Key PCFs for Reverse-Samplable Correlations

We now consider the concept of a distributed correlation sampler, where the
distribution D produces private, correlated outputs R1, R2, . . . , Rn, where Ri is
given only to the i-th party. This can also model the case where the distribution
D has only one output R = R1 = · · · = Rn, which must be accessible only to
the parties that took part in the computation (but not to outsiders; unlike with
a distributed sampler).

PCGs and PCFs. The concept of distributed correlation samplers has been
previously studied in the form of pseudorandom correlation generators (PCGs)
[BCGI18,BCG+19a,BCG+19b,BCG+20b] and pseudorandom correlation func-
tions (PCFs)[BCG+20a,OSY21]. These are tailored to distributions with n
outputs, each one addressed to a different player. Specifically, they consist of
two algorithms (Gen,Eval): Gen is used to generate n short correlated seeds or
keys, one for each party. Eval is then used to locally expand the keys and non-
interactively produce a large amount of correlated randomness, analogously to
the non-correlated setting of a PRG (for PCG) or PRF (for PCF).

Both PCGs and PCFs implicitly rely on a trusted dealer for the generation
and distribution of the output of Gen, which in practice can be realized using
a secure multiparty protocol. The communication overhead of this computation
should be small, compared with the amount of correlated randomness obtained
from Eval.

If we consider a one-round protocol to distribute the output of Gen, the
message of the i-th party and the corresponding randomness ri act now as a
kind of public/private key pair (ri is necessary to retrieve the i-th output.)
Such a primitive is called a public-key PCF [OSY21]. Orlandi et al. [OSY21]
built public-key PCFs for the random OT and vector-OLE correlations based on
Paillier encryption with a common reference string (a trusted RSA modulus).
In this section, we will build public-key PCFs for general correlations, while
avoiding trusted setups.

6.1 Correlation Functions and Their Properties

Instead of considering singe-output distributions D, we now consider n-output
correlations C. We also allow different samples from C to themselves be correlated
by some secret parameters, which allows handling correlations such as vector-
OLE and authenticated multiplication triples (where each sample depends on
some fixed MAC keys). This is modelled by allowing each party i to input a
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master secret mki into C. These additional inputs are independently sampled by
each party using an algorithm Secret.

Some Example Correlations. Previous works have focussed on a simple class
of additive correlations, where the outputs R1, . . . , Rn form an additive secret
sharing of values sampled from a distribution. This captures, for instance, obliv-
ious transfer, (vector) oblivious linear evaluation and (authenticated) multipli-
cation triples, which are all useful correlations for secure computation tasks.
Vector OLE and authenticated triples are also examples requiring a master
secret, which is used to fix a secret scalar or secret MAC keys used to produce
samples. Assuming LWE, we can construct public-key PCFs for any additive
correlation [BCG+20a], using homomorphic secret-sharing based on multi-key
FHE [DHRW16]. However, we do not know how to build PCFs for broader classes
of correlations, except for in the two-party setting and relying on subexponen-
tially secure iO [DHRW16].

As motivation, consider the following important types of non-additive corre-
lations:

– Pseudorandom secret sharing. This can be seen as a correlation that sam-
ples sharings of uniformly random values under some linear secret sharing
scheme. Even for simple t-out-of-n threshold schemes such as Shamir, the
best previous construction requires

(
n
t

)
complexity [CDI05].

– Garbled circuits. In the two-party setting, one can consider a natural garbled
circuit correlation, which for some circuit C, gives a garbling of C to one
party, and all pairs of input wire labels to the other party. Having such a
correlation allows preprocessing for secure 2-PC, where in the online phase,
the parties just use oblivious transfer to transmit the appropriate input wire
labels.3 Similarly, this can be extended to the multi-party setting, by for
instance, giving n parties the garbled circuit together with a secret-sharing
of the input wire labels.

For garbled circuits, it may also be useful to consider a variant that uses a
master secret, if e.g. we want each garbled circuit to be sampled with a fixed
offset used in the free-XOR technique [KS08].

Reverse-Samplable Correlations. The natural way to define a public-key
PCF would be a one-round protocol implementing the functionality that samples
from the correlation function C and distributes the outputs. However, Boyle et al.
[BCG+19b] prove that for PCGs, any construction satisfying this definition in
the plain model would require that the messages be at least as long as the
randomness generated, which negates one of the main advantages of using a
PCF. Following the approach of Boyle et al., in this section we adopt a weaker
definition. We require that no adversary can distinguish the real samples of
3 Note that formally, in the presence of malicious adversaries, preprocessing garbled

circuits in this way requires the garbling scheme to be adaptively secure [BHR12].
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the honest parties from simulated ones which are reverse sampled based on
the outputs of the corrupted players. This choice restricts the set of correlation
functions to those whose outputs are efficiently reverse-samplable4. We formalise
this property below.

Definition 6.1 (Reverse Samplable Correlation Function with Master
Secrets). An n-party correlation function with master secrets is a pair of PPT
algorithms (Secret, C) with the following syntax:

– Secret takes as input the security parameter 1lλ and the index of a party i ∈ [n].
It outputs the i-th party’s master correlation secret mki.

– C takes as input the security parameter 1lλ and the master secrets
mk1, . . . ,mkn. It outputs n correlated values R1, R2, . . . , Rn, one for each
party.

We say that (Secret, C) is reverse samplable if there exists a PPT algorithm
RSample such that, for every set of corrupted parties C � [n] and master secrets
(mki)i∈[n] and (mk′

h)h∈H in the image of Secret, no PPT adversary is able to
distinguish between C(1lλ,mk1,mk2, . . . ,mkn) and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(R1, R2, . . . , Rn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∀i ∈ C : mk′
i ← mki

(R′
1, R

′
2, . . . , R

′
n) $← C(1lλ,mk′

1,mk′
2, . . . ,mk′

n)
∀i ∈ C : Ri ← R′

i

(Rh)h∈H
$← RSample

(
1lλ, C, (Ri)i∈C , (mki)i∈C , (mkh)h∈H

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Notice that indistinguishability cannot rely on the secrecy of the master
secrets (mki)i∈[n] and (mk′

h)h∈H , since the adversary could know their values.
Furthermore, RSample does not take as input the same master secrets that were
used for the generation of the outputs of the corrupted parties. The fact that
indistinguishability holds in spite of this implies that the elements (Ri)i∈C leak
no information about the master secrets of the honest players.

6.2 Defining Public Key PCFs

We now formalise the definition of public key PCF as it was sketched at the
beginning of the section. We start by specifying the syntax, we will then focus our
attention on security, in particular against semi-malicious and active adversaries.

Definition 6.2 (Public-Key PCF with Master Secrets). A public-key
PCF for the n-party correlation function with master secrets (Secret, C) is a pair
of PPT algorithms (Gen,Eval) with the following syntax:

– Gen takes as input the security parameter 1lλ and the index of a party i ∈ [n],
and outputs the PCF key pair (ski, pki) of the i-th party. Gen needs L(λ) bits
of randomness.

4 In the examples above, reverse-samplability is possible for pseudorandom secret-
sharing, but not for garbled circuits, since we should not be able to find valid input
wire labels when given only a garbled circuit.
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GPCF-Corr(λ)
Initialisation.
1. b

$← {0, 1}
2. ∀i ∈ [n] : (ski, pki)

$← Gen(1lλ, i)
3. ∀i ∈ [n] : mk′

i
$← Secret(1lλ, i)

4. Activate the adversary with input (1lλ, (pki)i∈[n]).
Repeated querying. On input (Correlation, x) from the adversary where x ∈
{0, 1}l(λ), compute
1. ∀i ∈ [n] : R0

i ← Eval(i, pk1, . . . , pkn, ski, x)
2. (R1

i )i∈[n]
$← C(1lλ,mk′

1, . . . ,mk′
n)

3. Give (Rb
1, R

b
2, . . . , R

b
n) to the adversary.

Output. The adversary wins if its final output is b.

Fig. 8. Correctness game for the public-key PCF

– Eval takes as input an index i ∈ [n], n PCF public keys, the i-th PCF private
key ski and a nonce x ∈ {0, 1}l(λ). It outputs a value Ri corresponding to the
i-th output of C.
Every public-key PCF (Gen,Eval) for C induces a one-round protocol ΠC .

This is the natural construction in which every party broadcasts pki output by
Gen, and then runs Eval on all the parties’ messages, its own private key and
various nonces.

Definition 6.3 (Semi-maliciously Secure Public-Key PCF for Reverse
Samplable Correlation). Let (Secret, C) be an n-party, reverse samplable
correlation function with master secrets. A public-key PCF (Gen,Eval) for
(Secret, C) is semi-maliciously secure if the following properties are satisfied.

– Correctness. No PPT adversary can win the game GPCF-Corr(λ) (see Fig. 8)
with noticeable advantage.

– Security. There exists a PPT extractor Extract such that for every set of
corrupted parties C � [n] and corresponding randomness (ρi)i∈C , no PPT
adversary can win the game GC,(ρi)i∈C

PCF-Sec (λ) (see Fig. 9) with noticeable advan-
tage.

Correctness requires that the samples output by the PCF are indistinguish-
able from those produced by C even if the adversary receives all the public keys.
Security instead states that a semi-malicious adversary learns no information
about the samples and the master secrets of the honest players except what can
be deduced from the outputs of the corrupted parties themselves.

Like for distributed samplers, the above definition can be adapted to passive
security by modifying the security game. Specifically, it would be sufficient to
sample the randomness of the corrupted parties inside the game, perhaps relying
on a simulator when b = 1.
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GC,(ρi)i∈C
PCF-Sec (λ)

Initialisation.
1. b

$← {0, 1}
2. ∀h ∈ H : ρh

$← {0, 1}L(λ)

3. ∀i ∈ [n] : (ski, pki) ← Gen(1lλ, i; ρi)
4. (mki)i∈C ← Extract(C, ρ1, ρ2, . . . , ρn).
5. ∀h ∈ H : mk′

h
$← Secret(1lλ, h)

6. Activate the adversary with 1lλ and provide it with (pki)i∈[n] and (ρi)i∈C .
Repeated querying. On input (Correlation, x) from the adversary where x ∈
{0, 1}l(λ), compute
1. ∀i ∈ [n] : R0

i ← Eval(i, pk1, . . . , pkn, ski, x)
2. ∀i ∈ C : R1

i ← R0
i

3. (R1
h)h∈H

$← RSample 1lλ, C, (R1
i )i∈C , (mki)i∈C , (mk′

h)h∈H

)
4. Give (Rb

1, R
b
2, . . . , R

b
n) to the adversary.

Output. The adversary wins if its final output is b.

Fig. 9. Security game for the public-key PCF

In our definition, nonces are adaptively chosen by the adversary; however, in
a weak PCF [BCG+20a], the nonces are sampled randomly or selected by the
adversary ahead of time. We can define a weak public-key PCF similarly, and
use the same techniques as Boyle et al. [BCG+20a] to convert a weak public-key
PCF into a public-key PCF by means of a random oracle.

Active Security. We define actively secure public-key PCFs using an ideal func-
tionality, similarly to how we defined actively secure distributed samplers.

Definition 6.4 (Actively Secure Public-Key PCF for Reverse Sam-
plable Correlation). Let (Secret, C) be an n-party reverse samplable correla-
tion function with master secrets. A public-key PCF (Gen,Eval) for (Secret, C) is
actively secure if the corresponding one-round protocol ΠC implements the func-
tionality FRSample

C (see Fig. 10) against a static and active adversary corrupting
up to n − 1 parties.

Any protocol that implements FRSample
C will require either a CRS or a random

oracle; this is inherent for meaningful correlation functions, since the simulator
needs to retrieve the values (Ri)i∈C in order to forward them to FRSample

C . There-
fore, some kind of trapdoor is needed.

Notice also that the algorithm RSample takes as input the master secrets
of the corrupted parties. We can therefore assume that whenever the values
(Ri)i∈C chosen by the adversary are inconsistent with (mki)i∈C or with C itself,
the output of the reverse sampler is ⊥. As a consequence, an actively secure
public-key PCF must not allow the corrupted parties to select these irregular
outputs; otherwise distinguishing between real world and ideal world would be
trivial.
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FRSample
C

Initialisation. On input Init from every honest party and the adversary, the
functionality samples mkh

$← Secret(1lλ, h) for every h ∈ H and waits for (mki)i∈C

from the adversary.
Correlation. On input a fresh nonce x ∈ {0, 1}l(λ) from a party Pj , the func-
tionality waits for (Ri)i∈C from the adversary. Then, it computes

(Rh)h∈H
$← RSample 1lλ, C, (Ri)i∈C , (mki)i∈C , (mkh)h∈H

)
,

sends Rj to Pj and stores x, (Ri)i∈[n]

)
. If x has already been queried, the func-

tionality retrieves the stored tuple x, (Ri)i∈[n]

)
and outputs Rj to Pj .

Fig. 10. The actively secure public-key PCF functionality for reverse samplable corre-
lation

6.3 Public-Key PCF with Trusted Setup

We will build our semi-maliciously secure public-key PCF by first relying on a
trusted setup and then removing it by means of a distributed sampler. A public-
key PCF with trusted setup is defined by Definition 6.2 to include an algorithm
Setup that takes as input the security parameter 1lλ and outputs a CRS. The CRS
is then provided as an additional input to the evaluation algorithm Eval, but not
to the generation algorithm Gen. (If Gen required the CRS, then substituting
Setup with a distributed sampler would give us a two-round protocol, not a
one-round protocol.)

We say that a public-key PCF with trusted setup is semi-maliciously secure
if it satisfies Definition 6.3, after minor tweaks to the games GPCF-Corr(λ) and
GC,(ρi)i∈C

PCF-Sec (λ) to account for the modified syntax. Notice that in the latter, the
extractor needs to be provided with the CRS but not with the randomness used
to produce it. If that was not the case, we would not be able to use a distributed
sampler to remove the CRS. Formal definitions of public-key PCF with trusted
setup are available in [ASY22, Section 6.3].

Our Public-key PCF with Trusted Setup. Our construction is based once again
on iO. The key of every party i is a simple PKE pair (ski, pki). The generation
of the correlated samples and their distribution is handled by the CRS, which
is an obfuscated program. Specifically, the latter takes as input the public keys
of the parties and a nonce x ∈ {0, 1}l(λ). After generating the master secrets
mk1,mk2, . . . ,mkn using Secret and the correlated samples R1, R2, . . . , Rn using
C, the program protects their privacy by encrypting them under the provided
public keys. Specifically, Ri and mki are encrypted using pki, making the i-th
party the only one able to retrieve the underlying plaintext.

The randomness used for the generation of the samples, the master secrets
and the encryption is produced by means of two puncturable PRF keys k and
K, known to the CRS program. The CRS program is equipped with two keys:
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k and K. The first one is used to generate the master secrets; the input to the
PRF is the sequence of all public keys (pk1, pk2, . . . , pkn)). The master secrets
remain the same if the nonce x varies. The second PRF key is used to generate
the randomness fed into C and the encryption algorithm; here, the PRF input
consists of all the program inputs. As a result, any slight change in the inputs
leads to completely unrelated ciphertexts and samples.

On the Size of the Nonce Space. Unfortunately, in order to obtain semi-
maliciously security, we need to assume that the nonce space is of polynomial
size. In the security proof, we need to change the behaviour of the CRS program
for all nonces. This is due to the fact that we cannot rely on the reverse sam-
plability of the correlation function as long as the program contains information
about the real samples of the honest players. If the number of nonces is expo-
nential, our security proof would rely on a non-polynomial number of hybrids
and therefore we would need to assume the existence of sub-exponentially secure
primitives.

The Formal Description of Our Solution. Our public-key PCF with trusted
setup for (Secret, C) is described in Fig. 11 together with the program PCG used
as a CRS.

Our solution relies on an IND-CPA PKE scheme PKE = (Gen,Enc,Dec) and
two puncturable PRFs F and F ′. We assume that the output of the first one is
naturally split into n+1 blocks, the initial one as big as the randomness needed
by C, the remaining ones the same size as the random tape of PKE.Enc. We also
assume that the output of F ′ is split into n blocks as big as the randomness used
by Secret.

Theorem 6.5 (Public Key PCFs with Trusted Setup). Let (Secret, C)
be an n-party, reverse samplable correlation function with master secrets. If
PKE = (Gen,Enc,Dec) is an IND-CPA PKE scheme, iO is an indistinguishability
obfuscator, (F,Punct) and (F ′,Punct′) are puncturable PRFs with the properties
described above and l(λ) is polylog(λ), the construction presented in Fig. 11 is a
semi-maliciously secure public-key PCF with trusted setup for (Secret, C).

Furthermore, if PKE, iO, (F,Punct) and (F ′,Punct′) are sub-exponentially
secure, the public-key PCF with trusted setup is semi-maliciously secure even if
l(λ) is poly(λ).

In both cases, the size of the CRS and the PCF keys is poly(l).

We prove Theorem 6.5 in [ASY22, Appendix C].

6.4 Our Public-Key PCFs

As mentioned in the previous section, once we obtain a semi-maliciously secure
public-key PCF with trusted setup, we can easily remove the CRS using a dis-
tributed sampler. We therefore obtain a public-key PCF with security against
semi-malicious adversaries. If the size of the CRS and the keys of the initial
construction is logarithmic in the size of the nonce space, the key length after
removing the setup is still polynomial in l(λ).
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Public-Key PCF with Trusted Setup

Setup(1lλ)

1. k
$← {0, 1}λ

2. K
$← {0, 1}λ

3. Output CGP $← iO 1lλ, PCG[k, K]
)

Gen(1lλ, i)

1. Output (ski, pki)
$← PKE.Gen(1lλ)

Eval(i,CGP, pk1, . . . , pkn, ski, x)

1. (c1, c2, . . . , cn) ← CGP(pk1, . . . , pkn, x)
2. (Ri,mki) ← PKE.Dec(ski, ci)
3. Output Ri.

PCG[k, K]

Hard-coded. Two puncturable PRF keys k and K.
Input. n public keys pk1, . . . , pkn and a nonce x ∈ {0, 1}l(λ).

1. (r, r1, r2, . . . , rn) ← FK(pk1, . . . , pkn, x).
2. (s1, s2, . . . , sn) ← F ′

k(pk1, . . . , pkn)
3. ∀i ∈ [n] : mki ← Secret(1lλ, i; si)
4. (R1, R2, . . . , Rn) ← C(1lλ,mk1, . . . ,mkn; r)
5. ∀i ∈ [n] : ci ← PKE.Enc pki, (Ri,mki); ri

)
6. Output c1, c2, . . . , cn.

Fig. 11. A public-key PCF with trusted setup

Theorem 6.6 (Semi-maliciously Secure Public Key PCFs). Let
(Secret, C) be an n-party, reverse samplable correlation function with master
secrets. Suppose that pkPCFS = (Setup,Gen,Eval) is a semi-maliciously secure
public-key PCF with trusted setup for (Secret, C). Moreover, assume that there
exists a semi-maliciously secure n-party distributed sampler for pkPCFS.Setup.
Then, public-key PCFs for (Secret, C) with semi-malicious security exist.

We will not prove Theorem 6.6 formally. Security follows from the fact that
distributed samplers implement the functionality that samples directly from the
underlying distribution. From this point of view, it is fundamental that the
randomness input into Setup is not given as input to the extractor of the public-
key PCF pkPCFS.

Active Security in the Random Oracle Model. If we rely on a random
oracle, it is easy to upgrade a semi-maliciously secure public-key PCF to active
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security. We can use an anti-rusher (see Sect. 5.1) to deal with rushing and mal-
formed messages. If the key size of the semi-malicious construction is polynomial
in l(λ), after compiling with the anti-rusher, the key length is still poly(l). The
technique described above allows us to deduce the security of our solution from
the semi-malicious security of the initial public-key PCF. The result is formalised
by the following theorem. Again, we will not provide a formal proof.

Theorem 6.7 (Actively Secure Public Key PCFs in the Random Ora-
cle Model). Let (Secret, C) be an n-party, reverse samplable correlation func-
tion with master secret. Assume that pkPCF = (Gen,Eval) is a semi-maliciously
secure public-key PCFs for (Secret, C) and suppose there exists an anti-rusher
for the associated protocol. Then, actively secure public-key PCFs for (Secret, C)
exist.

Active Security from Sub-exponentially Secure Primitives. So far, all
our constructions rely on polynomially secure primitives. However, we often
work in the random oracle model. We now show that it is possible to build
actively secure public-key PCFs in the URS model assuming the existence of
sub-exponentially secure primitives. Furthermore, these constructions come with
no restrictions on the size of the nonce space.

Our solution is obtained by assembling a sub-exponentially and semimali-
ciously secure public-key PCF with trusted setup with a sub-exponentially and
semi-maliciously secure distributed sampler. We add witness-extractable NIZKs
proving the well-formedness of the messages. Like for our semi-malicious con-
struction, if the size of the CRS and the keys of the public-key PCF with trusted
setup is polynomial in the nonce length l(λ), after composing with the DS, the
key size remains poly(l).

Theorem 6.8 (Actively Secure Public Key PCFs from Subexponen-
tially Secure Primitives). Let (Secret, C) be an n-party, reverse samplable
correlation function with master secret. Suppose that pkPCFS = (Setup,Gen,
Eval) is a sub-exponentially and semi-maliciously secure public-key PCF with
trusted setup for (Secret, C). Assume that there exists a sub-exponentially and
semi-maliciously secure n-party distributed sampler for pkPCFS.Setup. If there
exist simulation-extractable NIZKs with URS proving the well-formedness of the
sampler shares and the PCF public keys, there exists an actively secure public-key
PCF for (Secret, C) in the URS model.

We prove Theorem 6.8 in [ASY22, Appendix D].

References

[AJJM20] Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic
encryption in the plain model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020.
LNCS, vol. 12550, pp. 28–57. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64375-1 2

https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-030-64375-1_2


818 D. Abram et al.

[ASY22] Abram, D., Scholl, P., Yakoubov, S.: Distributed (correlation) samplers:
how to remove a trusted dealer in one round. Cryptology ePrint Archive,
Report 2022/? (2022)

[BCG+19a] Boyle, E., et al.: Efficient two-round OT extension and silent non-
interactive secure computation. In: ACM CCS 2019. ACM Press (Novem-
ber 2019)

[BCG+19b] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 16

[BCG+20a] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Corre-
lated pseudorandom functions from variable-density LPN. In: 61st FOCS.
IEEE Computer Society Press (November 2020)

[BCG+20b] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Effi-
cient pseudorandom correlation generators from ring-LPN. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 387–416.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 14

[BCGI18] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE.
In: ACM CCS 2018. ACM Press (October 2018)

[BGI+01] Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidel-
berg (2001). https://doi.org/10.1007/3-540-44647-8 1

[BGI+14a] Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S.,
Paskin-Cherniavsky, A.: Non-interactive secure multiparty computation.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
387–404. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44381-1 22

[BGI14b] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54631-0 29

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 10

[BP15] Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistin-
guishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7 16

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS,
vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 15

[Can01] Canetti, R.: Universally composable security: a new paradigm for cryp-
tographic protocols. In: Proceedings of the 42nd FOCS. IEEE Computer
Society Press (October 2001)

https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15


Distributed (Correlation) Samplers 819

[CDI05] Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom
secret-sharing and applications to secure computation. In: Kilian, J. (ed.)
TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30576-7 19

[CLTV15] Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of prob-
abilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 19

[DHRW16] Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and
its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53015-3 4

[FLS90] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In: Pro-
ceedings of the 31st FOCS. IEEE Computer Society Press (October 1990)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: Proceedings of the 54th FOCS. IEEE Computer Society Press
(October 2013)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM (4) (1986)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: Proceedings
of the 19th ACM STOC. ACM Press (May 1987)

[GO07] Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 18

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 6

[GPSZ17] Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-
exponential barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10212, pp. 156–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56617-7 6

[HIJ+17] Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.:
Non-interactive multiparty computation without correlated randomness.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 181–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 7

[HJK+16] Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry,
M.: How to generate and use universal samplers. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 715–744. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 24

[HW15] Hubacek, P., Wichs, D.: On the communication complexity of secure func-
tion evaluation with long output. In: Proceedings of the ITCS 2015. ACM
(January 2015)

[JLS21] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. In: Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, pp. 60–73, New York,
NY, USA. Association for Computing Machinery (2021)

https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1007/978-3-662-53890-6_24


820 D. Abram et al.

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Dele-
gatable pseudorandom functions and applications. In: Proceedings of the
ACM CCS 2013. ACM Press (November 2013)

[KS08] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
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