
The Limits of Local Search for Weighted
k-Set Packing

Meike Neuwohner(B)

Research Institute for Discrete Mathematics, University of Bonn, Bonn, Germany

neuwohner@or.uni-bonn.de

Abstract. We consider the weighted k-Set Packing Problem, where,
given a collection S of sets, each of cardinality at most k, and a posi-
tive weight function w : S → R>0, the task is to find a sub-collection
of S consisting of pairwise disjoint sets of maximum total weight. As
this problem does not permit a polynomial-time o( k

log k
)-approximation

unless P = NP [11], most previous approaches rely on local search.
For twenty years, Berman’s algorithm SquareImp [2], which yields a
polynomial-time k+1

2
+ε-approximation for any fixed ε > 0, has remained

unchallenged. Only recently, it could be improved to k+1
2

− 1
63,700,992

+ ε
by Neuwohner [16]. In her paper, she showed that instances for which the
analysis of SquareImp is almost tight are “close to unweighted” in a cer-
tain sense. But for the unit weight variant, the best known approximation
guarantee is k+1

3
+ ε. Using this observation as a starting point, we con-

duct a more in-depth analysis of close-to-tight instances of SquareImp.
This finally allows us to generalize techniques used in the unweighted
case to the weighted setting. In doing so, we obtain approximation guar-
antees of k+εk

2
, where limk→∞ εk = 0. On the other hand, we prove that

this is asymptotically best possible in that searching for local improve-
ments of logarithmically bounded size cannot produce an approximation
ratio below k

2
.

Keywords: Weighted k-Set Packing · Local search · d-Claw free
graphs · Independent set

1 Introduction

For a positive integer k, the weighted k-Set Packing Problem is defined as follows:
Given a family S of sets each of size at most k together with a positive weight
function w : S → R>0, the task is to find a sub-collection A of S of maximum
weight such that the sets in A are pairwise disjoint. For k ≤ 2, the weighted k-
Set Packing Problem reduces to the maximum weight matching problem, which
can be solved in polynomial time [7]. However, as soon as k ≥ 3, weighted k-Set
Packing becomes NP -hard since it generalizes the optimization variant of the
NP -complete 3-dimensional-matching problem [13]. Even more, Hazan, Safra
and Schwartz [11] have shown that there cannot be a polynomial-time o

(
k

log k

)
-

approximation for weighted k-Set Packing unless P = NP .
c© Springer Nature Switzerland AG 2022
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On the positive side, a simple greedy algorithm yields an approximation
guarantee of k. In order to improve on this, the technique that has proven most
successful so far is local search. The basic idea is to start with an arbitrary
solution (e.g. the empty one) and to iteratively improve the current solution
by applying some sort of local modifications until no more of these exist. More
precisely, given a feasible solution A to the weighted k-Set Packing problem, we
call a collection X ⊆ S\A consisting of pairwise disjoint sets a local improvement
of A of size |X| if w(X) > w({a ∈ A : ∃x ∈ X : a ∩ x 	= ∅}), that is, if replacing
the collection of sets in A that intersect sets in X by the sets in X increases
the weight of the solution. Note that whenever A is sub-optimum and A∗ is
a solution of maximum weight, then A∗ \ A defines a local improvement of A.
However, if one aims at designing a polynomial-time algorithm, it is of course
infeasible to check subsets of S of arbitrarily large size.

1.1 The Unit Weight Case

For the special case of unit weights, Hurkens and Schrijver [12] showed that
searching for local improvements of arbitrary large, but constant size results
in approximation guarantees arbitrarily close to k

2 . Their paper also provides
matching lower bound examples proving their result to be tight. Since then, a
lot of progress has been made regarding the special case where w ≡ 1, which we
will also refer to as the unweighted k-Set Packing Problem. In 1995, at the cost
of a quasi-polynomial running time, Halldórsson [10] achieved an approximation
factor of k+2

3 by applying local improvements of size logarithmic in the total
number of sets. Cygan, Grandoni and Mastrolilli [6] managed to get down to an
approximation factor of k+1

3 + ε, still with a quasi-polynomial running time.
The first polynomial-time algorithm improving on the result by Hurkens and

Schrijver [12] was obtained by Sviridenko and Ward [19] in 2013. By combining
means of color coding with the algorithm presented in [10], they achieved an
approximation ratio of k+2

3 . This result was further improved to k+1
3 + ε for

any fixed ε > 0 by Cygan [5], obtaining a polynomial running time doubly
exponential in 1

ε . The best approximation algorithm for the unweighted k-Set
Packing Problem in terms of performance ratio and running time is due to
Fürer and Yu [9] from 2014. They achieve the same approximation guarantee as
Cygan [5], but a running time only singly exponential in 1

ε2 . Moreover, they show
that their result is best possible in that there exist arbitrarily large instances
that feature solutions that do not permit any local improvement of size o(|S| 1

5 ),
but that are by a factor of k+1

3 smaller than the optimum.

1.2 General Weights and the MWIS in d-Claw Free Graphs

In the weighted setting, much less is known. Arkin and Hassin [1] have shown
that unlike the unit weight case, searching for local improvements of constant
size cannot produce an approximation ratio better than k−1 for general weights.
Both papers improving on this deal with a more general problem, the Maximum
Weight Independent Set Problem (MWIS) in k + 1-claw free graphs [2,4]:
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Fig. 1. A d-claw C for d = 3.

For d ≥ 1, a d-claw C [2] is defined to be a star consisting of one center
node and a set TC of d talons connected to it (see Fig. 1). An undirected graph
G = (V,E) is said to be d-claw free if none of its induced sub-graphs forms a d-
claw. For d ≤ 3, the MWIS in d-claw free graphs can be solved in polynomial time
(see [14,18] for the unweighted, [15] for the weighted variant), while for d ≥ 4,
again no o( d

log d )-approximation algorithm is possible unless P = NP [11].
If we define an independent set X ⊆ V \ A to be a local improvement of

A if the weight of X exceeds the weight of its neighborhood in A, then most
of the previous results for the (weighted or unweighted) k-Set Packing Problem
also apply to the more general context of the MWIS in k + 1-claw free graphs.
However, it is not known how to get down to a polynomial (instead of quasi-
polynomial) running time for the algorithms in [5,19] and [9] since there is no
obvious equivalent to coloring the underlying universe.

By considering the conflict graph GS associated with an instance of weighted
k-Set Packing, one obtains a weight preserving one-to-one correspondence
between feasible solutions to the k-Set Packing Problem and independent sets
in GS . The vertices of GS are given by the sets in S and the edges represent
non-empty set intersections. It is not hard to see that GS is k + 1-claw free.

The first significant improvement over the approximation guarantee of d − 1
achieved by the greedy approach for the MWIS in d-claw free graphs was made
by Chandra and Halldórsson [4]. In each iteration, their algorithm BestImp picks
a certain type of local improvement that maximizes the ratio between the total
weight of the vertices added to and removed from the current solution. By further
scaling and truncating the weight function to ensure a polynomial number of
iterations, Chandra and Halldórsson [4] obtain a 2d

3 +ε-approximation algorithm
for the MWIS in d-claw free graphs.

1.3 Berman’s Algorithm SquareImp

For 20 years, Berman’s algorithm SquareImp [2] has been the state-of-the-art for
both the MWIS in d-claw free graphs and weighted k-Set Packing. SquareImp
proceeds by iteratively applying local improvements of the squared weight func-
tion that arise as sets of talons of claws in G, until no more exist. In doing so,
SquareImp achieves an approximation ratio of d

2 , leading to a polynomial-time
d
2 + ε-approximation algorithm for the MWIS in d-claw free graphs for any fixed
ε > 0 (and a k+1

2 + ε-approximation for weighted k-Set Packing).
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Berman [2] also provides an example for w ≡ 1 showing that his analysis is
tight. As the example uses unit weights, he concludes that applying the same
type of local improvement algorithm for a different power of the weight function
does not provide further improvements. However, as also implied by the result
in [12], while no small improvements forming the set of talons of a claw in the
input graph exist in the tight example given by Berman [2], once this additional
condition is dropped, improvements of small constant size can be found quite
easily. This observation is the basis of a recent paper by Neuwohner [16], who
managed to obtain an approximation guarantee slightly below d

2 by taking into
account a broader class of local improvements, namely all improvements of the
squared weight function of size at most (d − 1)2 + (d − 1).

2 Our Contribution

In this paper, we revisit the analysis of the algorithm SquareImp proposed by
Berman [2]. Following [16], we show that whenever the analysis is close to being
tight, the instance is locally unweighted in the sense that almost every time
when a vertex from the solution chosen by SquareImp and a vertex from any
optimum solution share an edge, their weights must be very similar. While [16]
merely focuses on one of the two major steps in Berman’s analysis, we con-
sider both of them, allowing us to derive much stronger statements concerning
the structure of instances where SquareImp does not do much better than a
d
2 -approximation. In particular, we are able to transfer techniques that are used
in the state-of-the-art works on the unweighted k-Set Packing Problem [5,9] to
a setting where vertex weights are locally similar. This is the main ingredient
for our algorithm LogImp. In addition to the type of improvements considered
by SquareImp, LogImp searches for a certain type of local improvement of log-
arithmic size. In doing so, it obtains an approximation guarantee of d−1+εd

2 for
the MWIS in d-claw free graphs for d ≥ 3, where 0 ≤ εd ≤ 1 and limd→∞ εd = 0.
While we can only guarantee a quasi-polynomial running time for the MWIS, we
manage to obtain a polynomial-time k+εk+1

2 -approximation for our main focus,
the weighted k-Set Packing Problem, by means of color coding.

We further prove this result to be asymptotically tight by providing exam-
ples which show that any local improvement algorithm that, for an arbitrarily
chosen, but fixed parameter α ∈ R, searches for local improvements of wα of size
O(log(|S|)), cannot produce an approximation guarantee better than k

2 for the
weighted k-Set Packing Problem with k ≥ 3.

The latter significantly extends the state of knowledge in terms of lower
bound examples. Even more importantly, we can finally (at least asymptotically)
answer the long-standing question of how far one can get by using pure local
search in the weighted setting. In doing so, we are also the first ones to port the
idea of searching for local improvements of logarithmic size, which has proven
very successful for unit weights [5,6,9,10,19], to the weighted setting.

The rest of this paper is organized as follows: Sect. 3 recaps some of the
definitions and main results from [2] that we will employ in the analysis of our
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local improvement algorithm LogImp in Sect. 4. Section 5 then sketches our lower
bound construction and Sect. 6 provides a brief conclusion.

3 Preliminaries

Definition 1 (Neighborhood [2]). Given an undirected graph G = (V,E) and
subsets U,W ⊆ V of its vertices, we define the neighborhood N(U,W ) of U in
W as N(U,W ) := {w ∈ W : ∃u ∈ U : {u,w} ∈ E ∨ u = w}. For u ∈ V and
W ⊆ V , we write N(u,W ) instead of N({u},W ).

Notation. Given w : V → R and U ⊆ V , we write w2(U) :=
∑

u∈U w2(u).

Definition 2 ([2]). Given an undirected graph G = (V,E), a weight function
w : V → R≥0 and an independent set A ⊆ V , we say that a vertex set B ⊆ V
improves w2(A) if B is independent in G and w2((A \ N(B,A)) ∪ B) > w2(A)
holds. For a claw C in G, we say that C improves w2(A) if TC does and call TC

a claw-shaped improvement in this case. We further define a 0-claw to consist
of a single talon and an empty center.

Note that in contrast to the introduction, we do not require a local improve-
ment B to be disjoint from A anymore. Further observe that an independent set
B improves A if and only if we have w2(B) > w2(N(B,A)).

Using the notation introduced above, Berman’s algorithm SquareImp [2] can
now be formulated as in Algorithm 1. As all weights are positive, every v 	∈ A
such that A ∪ {v} is independent constitutes the talon of a 0-claw improving
w2(A), so the algorithm returns a maximal independent set.

The main idea of the analysis of SquareImp presented in [2] is to charge the
vertices in A for preventing adjacent vertices in an optimum solution A∗ from
being included into A. The latter is done by spreading the weight of the vertices
in A∗ among their neighbors in the maximal independent set A in such a way
that no vertex in A receives more than d

2 times its own weight. The suggested
distribution of weights proceeds in two steps:

First, each vertex u ∈ A∗ invokes costs of w(v)
2 at each v ∈ N(u,A). As G

is d-claw free, no vertex v ∈ A can have more than d − 1 neighbors in A∗. This
implies that the total amount of weight v receives in this step is bounded by
|N(v,A∗)| · w(v)

2 ≤ (d − 1) · w(v)
2 .

In a second step, each vertex u ∈ A∗ sends an amount of w(u)− w(N(u,A))
2 to a

heaviest neighbor it possesses in A, which is captured by the following definition
of charges:

Definition 3 (Charges [2]). For each u ∈ A∗, pick a vertex v ∈ N(u,A) of
maximum weight and call it n(u) (recall that A is maximal).
For u ∈ A∗ and v ∈ A, define

charge(u, v) :=

{
w(u) − w(N(u,A))

2 , if v = n(u)
0 , otherwise

.
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Algorithm 1: SquareImp [2]
Input: an undirected d-claw free graph G = (V, E), w : V → R>0

Output: an independent set A ⊆ V
1 A ← ∅
2 while there exists a claw C in G that improves w2(A) do
3 A ← (A \ N(TC , A)) ∪ TC

4 return A

Algorithm 2: LogImp
Input: an undirected d-claw free graph G = (V, E), w : V → R>0

Output: an independent set A ⊆ V
1 A ← ∅
2 while there exists a claw-shaped or circular local improvement X of w2(A) do
3 A ← (A \ N(X, A)) ∪ X

4 return A

As we have already seen that each vertex v ∈ A receives at most d−1
2 · w(v)

during the first step of the weight distribution, it suffices to show that the total
amount of positive charges it has to pay is bounded by w(v)

2 . In order to prove
this, we want to exploit the fact that when SquareImp terminates, there is no
improving claw centered at v. To this end, suppose that we want to construct an
improving claw C centered at v and consider adding u ∈ N(v,A∗) to its set TC

of talons. On the one hand, this increases w2(TC) by w2(u). On the other hand,
w2(N(TC , A)) may also increase by up to w2(N(u,A)\{v}) (if our claw should be
centered at v, we have to pay for v anyways). In case w2(u) > w2(N(u,A)\{v}),
we surely want to add u to our claw, otherwise, we may choose not to. This is
captured by the definition of the contribution:

Definition 4 (Contribution [16]). Define a contribution map

contr : A∗ × A → R≥0 by setting

contr(u, v) :=

{
max

{
0, w2(u)−w2(N(u,A)\{v})

w(v)

}
, if v ∈ N(u,A)

0 , else
.

The fact that there is no improving claw directly implies that the total contri-
bution to v ∈ A is bounded by w(v). Moreover, a simple calculation shows that
2 · charge(u, v) ≤ contr(u, v) for all u ∈ N(v,A∗) [16]. This finishes the analysis
of SquareImp.

4 Our Algorithm LogImp

Our algorithm LogImp (Algorithm 2) starts with the empty solution, and then
iteratively checks for the existence of improving claws as in Berman’s algorithm
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SquareImp and another type of local improvement, which we call circular. It cor-
responds to a cycle of logarithmically bounded size in a certain auxiliary graph.
In particular, when LogImp terminates, there cannot be any further improving
claw, so we can apply the analysis of SquareImp presented in Sect. 3 to our algo-
rithm. Similar to [16], the key idea in analyzing LogImp is the following: Either
the analysis of SquareImp is far enough from being tight to achieve the desired
approximation ratio, or the instance at hand bears a certain structure that allows
us to derive the existence of a circular improvement. But this contradicts the
termination criterion of LogImp. Our main result is the following:

Theorem 5. There is a sequence (εd)d≥3 ∈ [0, 1]N≥3 with limd→∞ εd = 0 such
that LogImp yields a d−1+εd

2 -approximation for the MWIS in d-claw free graphs.

As applying the analysis of SquareImp to LogImp proves that the approximation
guarantee of LogImp is no larger than d

2 , it suffices to show that for every δ > 0,
there is d0 ≥ 3 such that for any d ≥ d0, LogImp is a d−1+δ

2 -approximation for
the MWIS in d-claw free graphs.

Fix δ > 0, denote the solution returned by LogImp by A, and let A∗ be an
optimum solution. Moreover, fix two maps n and n2 mapping each vertex in
V \ A to a heaviest neighbor in A, and each vertex in V \ A with at least two
neighbors in A to a second heaviest neighbor in A, respectively.

4.1 Classification of Vertices from A∗

We now provide a classification of the vertices in A∗ that helps us to understand
the structural properties of near-tight instances. For this purpose, we fix two
constants 0 < ε′ � √

ε′ � ε̃ < δ < 1 subject to certain inequalities (see [17]).

Lemma 6. Each u ∈ A∗ with charge(u, n(u)) > 0 is of one of the following
three types:
single: w(u)

w(n(u)) ∈ [1 − √
ε′, 1 +

√
ε′] and w(N(u,A)) ≤ (1 +

√
ε′) · w(n(u))

double: |N(u,A)| ≥ 2, w(u)
w(n(u)) ∈ [1 − √

ε′, 1 +
√

ε′], w(n2(u))
w(n(u)) ∈ [1 − √

ε′, 1] and

(2 − √
ε′) · w(n(u)) ≤ w(N(u,A)) < 2 · w(u)

contributive: contr(u, n(u)) ≥ 2 · charge(u, n(u)) + ε′
2 · w(u)

For a single vertex u, the heaviest neighbor n(u) of u in A has almost the same
weight as u and makes up almost all of N(u,A) in terms of weight. Single vertices
correspond to vertices of degree 1 to A in the unit weight case.

For a double vertex u, its two heaviest neighbors in A, n(u) and n2(u), have
roughly the same weight as u and make up most of N(u,A). Double vertices can
be thought of as having degree 2 to A.

For a contributive vertex u, we gain a constant fraction of w(u) in the analysis.

Lemma 7. Each u ∈ A∗ with charge(u, n(u)) ≤ 0 is of one of the following
three types:
payback: w(N(u,A)) ≥ (2 + ε′) · w(u)
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good: |N(u,A)| ≥ 2, w(u)
w(n(u)) ∈

[
1 − √

2ε′, 1
1−√

2ε′

]
, w(n2(u))

w(n(u)) ∈ [1 − √
2ε′, 1] and

2 · w(u) ≤ w(N(u,A)) < (2 + ε′) · w(u)
contributive: contr(u, n(u)) ≥ ε′

2 ·w(u) = max{0, 2 · charge(u, n(u))}+ ε′
2 ·w(u)

The weight of a payback vertex u is overestimated in the first step of the weight
distribution, so u can pay back ε′

2 · w(u), improving our bound on w(A∗).
For a good vertex u ∈ A∗, n(u) and n2(u) have almost the same weight as u and
make up most of N(u,A) in terms of weight. Like double vertices, good vertices
can be thought of as having degree 2 to A.

4.2 Missing, Profitable and Helpful Vertices

We now discuss the role the different types of vertices in A∗ play in our analysis.
We start by recalling that in the first step of the weight distribution in the
analysis of SquareImp, each v ∈ A pays |N(v,A∗)| · w(v)

2 , which we bound by
(d − 1) · w(v)

2 . In particular, if the number of neighbors of v in A∗ happens to be
less than d − 1 (we say that v has d − 1 − |N(v,A∗)| missing neighbors in this
case), we gain w(v)

2 for each missing neighbor of v (cf. Lemma 8).
We partition the neighbors a vertex v ∈ A has in A∗ into those that are help-

ful for v, and those that are profitable for v. While helpful vertices are those ver-
tices that would be considered neighbors of v in an unweighted approximation
of our instance, and that help us to construct local improvements of logarithmic
size, profitable vertices are the remaining neighbors that in some sense keep the
instance from being close to unweighted and hence, tight. Therefore, they improve
the analysis (i.e. our bound on w(A∗) profits from these). Formally speaking, we
say that u ∈ N(v,A∗) is helpful for v if u is single and v = n(u), or if u is double
or good and v ∈ {n(u), n2(u)}. Otherwise, we call u profitable for v.

One can show that for each profitable neighbor that a vertex v ∈ A pos-
sesses in A∗, we gain a constant fraction of w(v) in bounding w(A∗). Intu-
itively, this is because for every profitable neighbor u of v, v makes the estimate
2 · charge(u, n(u)) ≤ contr(u, n(u)) less tight. Lemma 8 formalizes the way miss-
ing and profitable neighbors improve our bound on w(A∗).

Lemma 8.

w(A∗) ≤ d

2
· w(A) −

∑
v∈A

(d − 1 − |N(v,A∗)|) · w(v)
2

−
∑
v∈A

ε′

10
· w(v) · # profitable neighbors of v.

This implies that if the total weight of vertices v ∈ A with more than d−1
4

neighbors that are not helpful, and, hence, missing or profitable for v, is at least
20

ε′·(d−1) · w(A), we obtain w(A∗) ≤ d−1
2 · w(A) and are therefore done. As a

consequence, we can assume that in terms of weight, all but a fraction of 20
ε′·(d−1)

of the vertices in A have at least 3
4 · (d − 1) helpful neighbors.
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We can further bound the number of these neighbors that are single: If we
choose ε′ small enough, each single helpful neighbor u of v contributes a large
constant fraction of w(u) and, hence, also w(v), to v = n(u). For d large enough,
no v ∈ A can therefore have more than d−1

4 neighbors that are single and helpful
for v, as this would result in an improving claw. This allows us to conclude that
the total weight of all vertices from A with at least d−1

2 neighbors in A∗ that are
helpful for them and either good or double (i.e. correspond to vertices of degree
2 to A in the unweighted setting) is at least

(
1 − 20

ε′·(d−1)

)
· w(A).

4.3 Local Improvements of Logarithmic Size

Our goal is to use these neighbors towards a local improvement of logarithmic
size. In order to get a better idea of what we are aiming at, we take a brief
detour and recapitulate how these vertices are handled in the unit weight case.
In [9], an auxiliary graph GA is constructed, the vertices of which correspond
to the vertices in the current solution A. Each vertex from an optimum solution
A∗ with exactly one neighbor in A creates a loop on that neighbor, while every
u ∈ A∗ with exactly two neighbors in A results in an edge connecting these.
Now, it is not hard to see that there is a one-to-one correspondence between
local improvements only featuring vertices from A∗ with degree one or two to A,
and sub-graphs of GA with more edges than vertices. A minimal such sub-graph
is called a binocular [3]. Now, a result by Berman and Fürer [3] comes into play:

Lemma 9 ([3]). For any s ∈ N>0, any graph G = (V,E) with |E| ≥ s+1
s · |V |

contains a binocular of size at most 4 · s · log(|V |).
In particular, Lemma 9 implies the existence of a cycle of the given size. More-
over, if the number of vertices of degree 1 or 2 to A exceeds (1 + ε) · |A|, one can
find local improvements of size O( 1ε ·log(|A|)), which is one of the key ingredients
of the result in [9].

We would like to port this approach to our weighted setting where vertex
weights are locally similar. If we could ensure that for each good or double
vertex u, its squared weight is at least as large as the average squared weight
of its neighbors n(u) and n2(u), plus the squared weight of neighbors of u in A
other than n(u) and n2(u), then we would be done since in a binocular, every
vertex has degree at least two, and there is at least one vertex of degree more
than two. However, this need not be the case in general, and even if we only
lose an ε′ fraction of the weight of each vertex involved, the total loss might
be arbitrarily large if we consider improvements of logarithmic size. In order to
overcome this issue, we have to make sure that locally, we have some additional
vertices with a positive contribution to the endpoints of the edges that we can
add to guarantee that we can make up for the slight inaccuracies caused by the
weight differences.

To this end, for v ∈ A, we consider the set of vertices Tv sending positive
charges to v (in particular, v = n(u) for all u ∈ Tv), and define B̄ to consist of
all v ∈ A for which the total contribution of Tv to v exceeds ε̃ ·w(v). (Recall that
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0 < ε′ � √
ε′ � ε̃ < δ < 1.) Then all vertices v ∈ A \ B̄ receive charges of at

most ε̃
2 · w(v). Hence, if w(B̄) ≤ 40

ε′·(d−1) · w(A), we can bound the total weight
the vertices in A receive in the second step of the weight distribution by

ε̃

2
· w(A \ B̄) +

1
2

· w(B̄) ≤
(

ε̃ +
40

ε′ · (d − 1)

)
· w(A)

2
.

For d large enough, this is at most δ · w(A)
2 , yielding the desired statement.

This means that we can assume w(B̄) > 40
ε′·(d−1) · w(A) in the following. In

particular, this means that the set B consisting of all vertices in B̄ that have
at least d−1

2 helpful neighbors that are good or double is of weight at least
w(B) ≥ w(B̄) − 20

ε′·(d−1) · w(A) > 20
ε′·(d−1) · w(A).

Our goal for the rest of the analysis is to lead this assumption to a contradic-
tion, implying that we have to be in one of the previously handled cases where
we obtain the desired approximation guarantee of d−1+δ

2 . To this end, we want
to show that the current setting implies the existence of a circular improvement.
We call a local improvement X ⊆ V \ A circular if

– ∃U ⊆ X s.t. |U | ≤ 4 · log(|V |), each u ∈ U has at least two neighbors in A
and C := (

⋃
u∈U{n(u), n2(u)}, {eu = {n(u), n2(u)}, u ∈ U}) is a cycle.

– If we let Yv := {x ∈ X \ U : n(x) = v}, then X = U ∪ ⋃
v∈V (C) Yv.

– w2(u) + 1
2

·
( ∑

z∈Yn(u)

contr(z, n(u)) · w(n(u)) +
∑

z∈Yn2(u)

contr(z, n2(u)) · w(n2(u))

)

> 1
2 · (w2(n(u)) + w2(n2(u))) + w2(N(u,A) \ {n(u), n2(u)}) for all u ∈ U .

The intuition behind this definition is the following: Similar to the unweighted
case, we build up an auxiliary graph H on the vertex set A, where each
vertex u ∈ V \ A with at least two neighbors in A induces an edge between
its two heaviest ones n(u) and n2(u). For the analysis, we will only consider
edges induced by double or good vertices from A∗, i.e. those corresponding to
vertices of degree two in the unweighted setting. The backbone of our circular
improvement is given by a cycle C of logarithmic size in H. Additionally, for
each v ∈ V (C), we can add some additional vertices u with n(u) = v that con-
tribute a positive amount to v. Now, we want to cover for the weight of each
v ∈ V (C) ⊆ N(X,A) by using the vertices corresponding to the two incident
edges in C as well as the contributions from the vertices in Yv. This means that
for each edge induced by u ∈ U , we would like w2(u), together with half of the
contributions to n(u) and n2(u), to be able to pay for all neighbors of u in A
other than n(u) and n2(u), as well as half of n(u) and n2(u), which is precisely
the last constraint.

Now, in order to find such circular improvements when w(B) > 20
ε′·(d−1) ·w(A),

we consider the auxiliary graph H ′ with vertex set A, where each double or good
vertex u induces an edge between n(u) and n2(u), provided at least one of them
is contained in B. For v ∈ B, the total contribution of Tv to v is at least ε̃ ·w(v),
whereas each good or double vertex contributes at most O(

√
ε′) · w(v) with
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√
ε′ � ε̃. Hence, each cycle C in H ′ of logarithmic size gives rise to a circular

improvement by choosing Yv to contain all of Tv except for the at most two
vertices inducing edges incident to v if v ∈ V (C) ∩ B, and setting Yv := ∅
otherwise.

To finally see that H ′ contains a cycle of logarithmic size, we use the facts that
the weighted average degree 1

w(A) ·
∑

v∈A w(v)·|δH′(v)| is at least d−1
2 · w(B)

w(A) > 10
ε′ ,

together with the fact that the weights of the endpoints of each edge only differ
by a factor close to 1, to conclude that there has to be a sub-graph of H ′ that is
dense enough to apply Lemma 9. (Note that if we had unit weights, this would
follow immediately since the average degree would be at least 10

ε′ > 2.) This
implies the existence of a circular improvement, contradicting the termination
criterion of LogImp and finishing the proof. See [17] for a more detailed analysis.

4.4 A Polynomial Running Time

To achieve a polynomial number of iterations of LogImp, we scale and truncate
the weight function as in [4] and [2]. This only results in an arbitrarily small
additive error in the approximation guarantee.

In order to search for circular improvements in polynomial time, we employ
the color coding technique in a similar fashion as in [9]. Note that this is the
only point where we need the additional structural properties of a k-Set Packing
instance (as opposed to an instance of the MWIS in k + 1-claw free graphs).
Detailed descriptions and proofs can be found in [17].

5 The Lower Bound

In this section, we show that our result is asymptotically best possible in the
sense of Theorem 10.

Theorem 10. Letk ≥ 3,α ∈ R,0 < ε < 1andC > 0.ThenforeachN0 ∈ N, there
exist an instance (S, w) of the weighted k-Set Packing Problem with |S| ≥ N0

and feasible solutions A,A∗ ⊆ S, such that for A, there is no local improvement
of size at most C · log(|S|) with respect to wα, but w(A∗) ≥ k−ε

2 · w(A).

Proof. For k ≤ 2, there is nothing to show and for α ≤ 0, we can just choose
the weights in A to be arbitrarily small. Hence, we can assume k ≥ 3 and
α > 0. Now, there is a result by Erdős and Sachs [8] telling us that for every
N0 ∈ N, there is a k-regular graph H on |V (H)| ≥ N0 vertices such that the
girth of H, i.e. the minimum length of a cycle in H, is at least log(|V (H)|)

log(k−1) − 1.
Consider the graph G with vertex set V (G) := V (H) ∪ E(H) and edge set
E(G) := {{v, e} : v ∈ e ∈ E(H)}, i.e. each edge of H is connected via edges in
G to both of its endpoints. We define S := {δG(x), x ∈ V (G)}, where δG(x) is
the set of incident edges of x in G. By k-regularity of H, |δG(v)| = k ≥ 3 for
v ∈ V (H) and |δG(e)| = 2 for e ∈ E(H), so each element of S has cardinality
at most k. By definition, G is simple, so no two vertices share more than one
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edge. As all degrees are at least two, the sets δG(x), x ∈ V (G) are pairwise
distinct. Finally, V (H) and E(H) constitute independent sets in G, implying
that A := {δG(v), v ∈ V (H)} and A∗ := {δG(e), e ∈ E(H)} each consist of
pairwise disjoint sets. We define positive weights on S by setting w(δG(v)) := 1
for v ∈ V (H) and w(δG(e)) := (1 − ε̄)

1
α , where ε̄ > 0 is chosen such that 1

ε̄ ∈ N

and (1− ε̄)
1
α ≥ 1− ε

k . By k-regularity of H, |A∗| = |E(H)| = k
2 · |V (H)| = k

2 · |A|,
so w(A∗) ≥ k−ε

2 · w(A). To see that there is no local improvement X of wα(A)
with |X| ≤ C · log(|V (G)|) = C · log(k+2

2 · |V (H)|), first note that we can w.l.o.g.
assume X ⊆ S \ A = A∗ (otherwise, consider X \ A). Then, X being a local
improvement implies that |X| > 1

1−ε̄ · |{y ∈ A : ∃x ∈ X : y ∩ x 	= ∅}| by our
choice of weights. But the sets from A that X intersects are precisely the sets
δG(v) for those vertices v ∈ V (H) that are endpoints of edges e ∈ E(H) with
δG(e) ∈ X. Hence, we have found as sub-graph J of H with

C · log
(

k + 2
2

· |V (H)|
)

≥ |X| = |E(J)| >
1

1 − ε̄
· |V (J)| ≥ (1 + ε̄) · |V (J)|,

which implies the existence of a cycle of length 4
ε̄ · log(C · log(k+2

2 · |V (H)|)) by
Lemma 9. But as a function of |V (H)|, this grows asymptotically slower than
our lower bound of log(|V (H)|)

log(k−1) − 1 on the girth, resulting in a contradiction for
N0 and, hence, |V (H)| chosen large enough. For a more detailed proof, see [17].

6 Conclusion

In this paper, we have seen how to use local search to approximate the weighted
k-Set Packing Problem with an approximation ratio that gets arbitrarily close to
k
2 as k approaches infinity. At the cost of a quasi-polynomial running time, this
result applies to the more general setting of the Maximum Weight Independent
Set Problem in d-claw free graphs, yielding approximation ratios arbitrarily close
to d−1

2 . Moreover, we have seen that this result is asymptotically best possible in
the sense that for no α ∈ R, a local improvement algorithm for the weighted k-
Set Packing Problem that considers local improvements of wα of logarithmically
bounded size can produce an approximation guarantee better than k

2 .
As a consequence, our paper seems to conclude the story of (pure) local

improvement algorithms for both the MWIS in d-claw free graphs and the
weighted k-Set Packing Problem. Hence, the search for new techniques beat-
ing the threshold of d−1

2 , respectively k
2 , is one of the next goals for research in

this area.
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