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Abstract. We study rectangle stabbing problems in which we are given
n axis-aligned rectangles in the plane that we want to stab, i.e., we want
to select line segments such that for each given rectangle there is a line
segment that intersects two opposite edges of it. In the horizontal rectan-
gle stabbing problem (Stabbing), the goal is to find a set of horizontal line
segments of minimum total length such that all rectangles are stabbed.
In general rectangle stabbing problem, also known as horizontal-vertical
stabbing problem (HV-Stabbing), the goal is to find a set of rectilin-
ear (i.e., either vertical or horizontal) line segments of minimum total
length such that all rectangles are stabbed. Both variants are NP-hard.
Chan, van Dijk, Fleszar, Spoerhase, and Wolff [5] initiated the study of
these problems by providing O(1)-approximation algorithms. Recently,
Eisenbrand, Gallato, Svensson, and Venzin [11] have presented a QPTAS
and a polynomial-time 8-approximation algorithm for Stabbing but it
is open whether the problem admits a PTAS.

In this paper, we obtain a PTAS for Stabbing, settling this question.
For HV-Stabbing, we obtain a (2 + ε)-approximation. We also obtain
PTASes for special cases of HV-Stabbing: (i) when all rectangles are
squares, (ii) when each rectangle’s width is at most its height, and (iii)
when all rectangles are δ-large, i.e., have at least one edge whose length
is at least δ, while all edge lengths are at most 1. Our result also implies
improved approximations for other problems such as generalized mini-
mum Manhattan network.

Keywords: Geometric optimization · Approximation algorithms ·
Line stabbing · Rectangles

1 Introduction

Rectangle stabbing problems are natural geometric optimization problems. Here,
we are given a set of n axis-parallel rectangles R in the two-dimensional plane.
For each rectangle Ri ∈ R, we are given points (x(i)

1 , y
(i)
1 ), (x(i)

2 , y
(i)
2 ) ∈ R

2 that
denote its bottom-left and top-right corners, respectively. Also, we denote its
width and height by wi := x

(i)
2 − x

(i)
1 and hi := y

(i)
2 − y

(i)
1 , respectively. Our goal
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is to compute a set of line segments L that stab all input rectangles. We call a
rectangle stabbed if a segment � ∈ L intersects both of its horizontal or both of
its vertical edges. We study several variants. In the horizontal rectangle stabbing
problem (Stabbing) we want to find a set of horizontal segments of minimum
total length such that each rectangle is stabbed. The general rectangle stabbing
(HV-Stabbing) problem generalizes Stabbing and involves finding a set of
axis-parallel segments of minimum total length such that each rectangle in R is
stabbed. The general square stabbing (Square-Stabbing) problem is a special
case of HV-Stabbing where all rectangles in the input instance are squares.
These problems have applications in bandwidth allocation, message scheduling
with time-windows on a direct path, and geometric network design [3,5,10].

Note that Stabbing and HV-Stabbing are special cases of weighted geomet-
ric set cover problem, where the rectangles correspond to elements and potential
line segments correspond to sets, and the weight of a set equals the length of
the corresponding segment. A set contains an element if the corresponding line
segment stabs the corresponding rectangle. This already implies an O(log n)-
approximation algorithm [9] for HV-Stabbing and Stabbing.

Chan, van Dijk, Fleszar, Spoerhase, and Wolff [5] initiated the study of
Stabbing. They proved Stabbing to be NP-hard via a reduction from pla-
nar vertex cover. Also, they presented a constant1 factor approximation algo-
rithm using decomposition techniques and the quasi-uniform sampling method
[19] for weighted geometric set cover. In particular, they showed that Stab-
bing instances can be decomposed into two disjoint laminar set cover instances
of small shallow cell complexity for which the quasi-uniform sampling yields an
O(1)-approximation using techniques from [8].

Recently, Eisenbrand, Gallato, Svensson, and Venzin [11] presented a quasi-
polynomial time approximation scheme (QPTAS) for Stabbing. This shows that
Stabbing is not APX-hard unless NP ⊆ DTIME(2poly log n). The QPTAS relies
on the shifting technique by Hochbaum and Maass [14], applied to a grid, con-
sisting of randomly shifted vertical grid lines that are equally spaced. With this
approach, the plane is partitioned into narrow disjoint vertical strips which they
then process further. Then, this routine is applied recursively. They also gave a
polynomial time dynamic programming based exact algorithm for Stabbing for
laminar instances (in which the projections of the rectangles to the x-axis yield
a laminar family of intervals). Then they provided a simple polynomial-time 8-
approximation algorithm by reducing any given instance to a laminar instance.
It remains open whether there is a PTAS for the problem.

1.1 Our Results

In this paper, we give a PTAS for Stabbing and thus resolve this open question.
Also, we extend our techniques to HV-Stabbing for which we present a polyno-
mial time (2 + ε)-approximation and PTASes for several special cases: when all

1 The constant is not explicitly stated, and it depends on a not explicitly stated
constant in [7].
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Fig. 1. A solution for an instance of Stabbing and HV-Stabbing.

input rectangles are squares, more generally when for each rectangle its width
is at most its height, and finally for δ-large rectangles, i.e., when each rectangle
has one edge whose length is within [δ, 1] and 1 is the maximum length of each
edge of any input rectangle (in each dimension).

Our algorithm for Stabbing is in fact quite easy to state: it is a dynamic
program (DP) that recursively subdivides the plane into smaller and smaller rect-
angular regions. In the process, it guesses line segments from OPT. However, its
analysis is intricate. We show that there is a sequence of recursive decomposi-
tions that yields a solution whose overall cost is (1 + ε)OPT. Instead of using a
set of equally spaced grid lines as in [11], we use a hierarchical grid with several
levels for the decomposition. In each level of our decomposition, we subdivide
the given rectangular region into strips of narrow width and guess Oε(1) line
segments from OPT inside them which correspond to the current level. One cru-
cial ingredient is that we slightly extend the segments, such that the guessed
horizontal line segments are aligned with our grid. The key consequence is that
it will no longer be necessary to remember these line segments once we have
advances three levels further in the decomposition. Also, for the guessed vertical
line segments of the current level we introduce additional (very short) horizon-
tal line segments, such that we do not need to remember them either, once we
advanced three levels more in the decomposition. Therefore, the DP needs to
remember previously guessed line segments from only the last three previous
levels and afterwards these line segments vanish. This allows us to bound the
number of arising subproblems (and hence of the DP-cells) by a polynomial.

Our techniques easily generalize to a PTAS for Square-Stabbing and to
a PTAS for HV-Stabbing if for each input rectangle its width is at most its
height, whereas the QPTAS in [11] worked only for Stabbing. We use the latter
PTAS as a subroutine in order to obtain a polynomial time (2+ε)-approximation
for HV-Stabbing – which improves on the result in [5].

Then, we extend our techniques above to the setting of δ-large rectangles of
HV-Stabbing. This is an important subclass of rectangles and are well-studied
for other geometric problems [1,15]. To this end, we first reduce the problem to
the setting in which all input rectangles are contained in a rectangular box that
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admits a solution of cost O(1/ε3). Then we guess the relatively long line seg-
ments in OPT in polynomial time. The key argument is that then the remaining
problem splits into two independent subproblems, one for the horizontal and one
for the vertical line segments in OPT. For each of those, we then apply our PTAS
for Stabbing which then yields a PTAS for HV-Stabbing if all rectangles are
δ-large.

Finally, our PTAS for Stabbing implies improved approximation ratios
for the Generalized Minimum Manhattan Network (GMMN) and x-
separated 2D-GMMN problems, of (4+ε) log n and 4+ε, respectively, by improv-
ing certain subroutines of the algorithm in [10].

Due to space limitations, many proofs had to be omitted, and we refer the
reader to the full version of this paper [16].

1.2 Further Related Work

Finke et al. [12] gave a polynomial time exact algorithm for a special case of
Stabbing where all input rectangles have their left edges lying on the y-axis.
Das et al. [10] studied a related variant in the context of the Generalized
Minimum Manhattan Network (GMMN) problem. In GMMN, we are given
a set of n terminal-pairs and the goal is to find a minimum-length rectilinear
network such that each pair is connected by a Manhattan path. They obtained
a 4-approximation for a variant of Stabbing where all rectangles intersect a
vertical line. Then they used it to obtain a (6+ε)-approximation algorithm for the
x-separated 2D-GMMN problem, a special case of 2D-GMMN, and (6+ε)(log n)-
approximation for 2-D GMMN.

Gaur et al. [13] studied the problem of stabbing rectangles by a minimum
number of axis-aligned lines and gave an LP-based 2-approximation algorithm.
Kovaleva and Spieksma [17] considered a weighted generalization of this problem
and gave an O(1)-approximation algorithm.

Stabbing and HV-Stabbing are related to geometric set cover which is a
fundamental geometric optimization problem. Brönnimann and Goodrich [4] in
a seminal paper gave an O(d log(dOPT))-approximation for unweighted geo-
metric set cover where d is the dual VC-dimension of the set system and
OPT is the value of the optimal solution. Using ε-nets, Aronov et al. [2] gave
an O(log log OPT )-approximation for hitting set for axis-parallel rectangles.
Later, Varadarajan [19] developed quasi-uniform sampling and provided sub-
logarithmic approximation for weighted set cover where sets are weighted fat
triangles or weighted disks. Chan et al. [8] generalized this to any set system
with low shallow cell complexity. Afterward, Chan and Grant [6] and Mustafa et
al. [18] have settled the APX-hardness statuses of all natural weighted geometric
set cover problems.

2 Dynamic Program

We present a dynamic program that computes a (1 + ε)-approximation to HV-
Stabbing for the case where hi ≥ wi for each rectangle Ri ∈ R. This implies
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directly a PTAS for the setting of squares for the same problem, and we will argue
that it also yields a PTAS for Stabbing. Later, we will use it as a subroutine to
obtain a (2 + ε)-approximation for HV-Stabbing and a PTAS for the setting
of δ-large rectangles of HV-Stabbing.

For a line segment �, we use the notation |�| to represent its length, and
for a set of segments L, we use notation c(L) to represent the cost of the set,
which is also the total length of the segments contained in it. We use the term
OPT interchangeably to refer to the optimal solution to the problem and also
to c(OPT), i.e., the cost of the optimal solution.

2.1 Preprocessing Step

First, we show that by some simple scaling and discretization steps we can
ensure some simple properties that we will use later. Without loss of generality
we assume that (1/ε) ∈ N and we say that a value x ∈ R is discretized if x is an
integral multiple of ε/n.

Lemma 1. For any positive constant ε < 1/3, by losing a factor (1 + O(ε)) in
the approximation ratio, we can assume for each Ri ∈ R the following properties
hold:

– ε/n ≤ wi ≤ 1,
– x

(i)
1 , x

(i)
2 are discretized and within [0, n],

– y
(i)
1 , y

(i)
2 are discretized and within [0, 4n2], and

– each horizontal line segment in the optimal solution has width at most 1/ε.

Henceforth in this paper when we refer to the set of input rectangles R, we are
referring to a set R′ that has been obtained after applying the preprocessing from
Lemma 1 to the input set R, and when we refer to OPT, we are referring to the
optimal solution to the set of rectangles R′, which is a (1+O(ε)) approximation
of the optimal solution of the input instance.

2.2 Description of the Dynamic Program

Our algorithm is based on a dynamic program (DP). It has a cell DP(S,L) for
each combination of

– a rectangular region S ⊆ [0, n] × [0, 4n2] with discretized coordinates (that is
not necessarily equal to an input rectangle in R).

– a set L of at most 3(1/ε)3 line segments, each of them horizontal or vertical,
such that for each � ∈ L we have that � ⊆ S, and all coordinates of � are
discretized.

This DP-cell corresponds to the subproblem of stabbing all rectangles in R that
are contained in S and that are not already stabbed by the line segments in
L. Therefore, the DP stores solution SOL(S,L) in the cell DP(S,L) such that
SOL(S,L) ∪ L stabs all rectangles in R that are contained in S.
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Given a DP-cell DP(S,L), our DP computes a solution for it as follows. If
L already stabs each rectangle from R that is contained in S, then we simply
define a solution SOL(S,L) := ∅ for the cell DP(S,L) and do not compute
anything further. Another simple case is when there is a line segment � ∈ L
such that S \ � is divided into two rectangular regions S1, S2 (these regions
are henceforth referred to as connected components). In this case we define
SOL(S,L) := SOL(S1,L ∩ S1) ∪ SOL(S2,L ∩ S2) ∪ {�}, where for any set of line
segments L′ and any rectangle S′ we define L′∩S′ := {�′∩S′|�′ ∈ L′∧�′∩S′ 
= ∅}.
In case that there is more than one such line segment � ∈ L then we pick one
according to some arbitrary but fixed global tie-breaking rule. We will later refer
to this as trivial operation.

Otherwise, we do each of the following operations which produces a set of
candidate solutions:

1. Add operation: Consider each set L′ of line segments with discretized coordi-
nates such that |L|∪|L′| ≤ 3ε−3 and each � ∈ L′ is contained in S and horizon-
tal or vertical. For each such set L′ we define the solution L′ ∪SOL(S,L∪L′)
as a candidate solution.

2. Line operation: Consider each vertical/horizontal line � with a discretized
vertical/horizontal coordinate such that S \ � has two connected components
S1 and S2. Let R� denote the rectangles from R that are contained in S and
that are stabbed by �. For the line � we do the following:
(a) compute an O(1)-approximate solution L(R�) for the rectangles in R�

using the polynomial time algorithm in [5].
(b) produce the candidate solution L(R�)∪SOL(S1,L∩S1)∪SOL(S2,L∩S2).

Note that in the line operation we consider entire lines, not just line segments.
We define SOL(S,L) to be the solution of minimum cost among all the candidate
solutions produced above and store it in DP(S,L).

We do the operation above for each DP-cell DP(S,L). Finally, we output
the solution SOL([0, n] × [0, 4n2], ∅), i.e., the solution corresponding to the cell
DP([0, n] × [0, 4n2], ∅).

We remark that instead of using the O(1)-approximation algorithm in [5]
for stabbing the rectangles in R�, one could design an algorithm with a better
approximation guarantee, using the fact that all rectangles in R� are stabbed
by the line �. However, for our purposes an O(1)-approximate solution is good
enough.

2.3 Definition of DP-Decision Tree

We want to show that the DP above computes a (1 + ε)-approximate solution.
For this, we define a tree T in which each node corresponds to a cell DP(S,L)
of the DP and a corresponding solution SOL(S,L) to this cell. The root node
of T corresponds to the cell DP([0, n] × [0, 4n2], ∅). Intuitively, this tree repre-
sents doing one of the possible operations above, of the DP in the root problem
DP([0, n] × [0, 4n2], ∅) and recursively one of the possible operations in each
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resulting DP-cell. The corresponding solutions in the nodes are the solutions
obtained by choosing exactly these operations in each DP-cell. Since the DP
always picks the solution of minimum total cost this implies that the computed
solution has a cost that is at most the cost of the root, c(SOL([0, n]×[0, 4n2], ∅)).

Formally, we require T to satisfy the following properties. We require that
a node v is a leaf if and only if for the corresponding DP-cell DP(S,L) the
DP directly defined that DP(S,L) = ∅ because all rectangles in R that are
contained in S are already stabbed by the segments in L. If a node v for a
DP-cell DP(S,L) has one child then we require that we reduce the problem
for DP(S,L) to the child by applying the add operation, i.e., there is a set
L′ of horizontal/vertical line segments with discretized coordinates such that
|L| ∪ |L′| ≤ 3(1/ε)3, the child node of v corresponds to the cell DP(S,L ∪ L′),
and SOL(S,L) = SOL(S,L ∪ L′) ∪ L′.

Similarly, if a node v has two children then we require that we can reduce
the problem of DP(S,L) to these two children by applying the trivial operation
or the line operation. Formally, assume that the child nodes correspond to the
subproblems DP(S1,L1) and DP(S2,L2). If there is a segment � ∈ L such that
S1∪S2∪� = S, then the applied operation was a trivial operation, and it must also
be true that L1∪L2∪{�} = L and SOL(S,L) = SOL(S1, S1∩L)∪SOL(S2, S2∩L).
If no such segment exists, then the applied operation was a line operation on
a line along the segment �, such that S1 ∪ S2 ∪ � = S, L1 ∪ L2 = L, and
SOL(S,L) = SOL(S1, S1 ∩ L) ∪ SOL(S2, S2 ∩ L) ∪ L(R�); where L(R�) is a
O(1)-approximate solution for the set of segments stabbing the set of rectangles
intersected by �.

We call a tree T with these properties a DP-decision-tree. If there exists a
DP-decision-tree with cost (1+ε)OPT, then our DP computes a solution with at
most this cost since the choices in each node of the DP-decision-tree are possible
choices of the DP in each node, and in each node the DP makes the choice that
minimizes the overall costs.

Lemma 2. If there is a DP-decision-tree T ′ for which c(SOL([0, n] ×
[0, 4n2], ∅)) ≤ (1 + ε)OPT then the DP is a (1 + ε)-approximation algorithm
with a running time of (n/ε)O(1/ε3).

We define now a DP-decision-tree for which c(SOL(S,L)) ≤ (1+ε)OPT. Assume
w.l.o.g. that 1/ε ∈ N. We start by defining a hierarchical grid of vertical lines.
Let a ∈ N0 be a random offset to be defined later. The grid lines have levels. For
each level j ∈ N0, there is a grid line {a + k · εj−2} × R for each k ∈ N. Note
that for each j ∈ N0 each grid line of level j is also a grid line of level j +1. Also
note that any two consecutive lines of some level j are exactly εj−2 units apart.

We say that a line segment � ∈ OPT is of level j if the length of � is in
(εj , εj−1] (Note that we can have vertical segments which are longer than 1/ε,
we consider these also to be of level 0). We say that a horizontal line segment of
some level j is well-aligned if both its left and its right x-coordinates lie on a grid
line of level j +3, i.e., if both of its x-coordinates are of the form a+k ·εj+1. We
say that a vertical line segment of some level j is well-aligned if both its top and
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bottom y-coordinates are integral multiples of εj+1. This would be similar to the
segment’s end points lying on an (imaginary) horizontal grid line of level j + 3.
In order to make a line segment from OPT well-aligned, it suffices to extend it
by a factor 1 + O(ε), which hence increases the cost by at most this factor.

Lemma 3. By losing a factor 1 + O(ε), we can assume that each line segment
� ∈ OPT is well-aligned.

We define the tree T by defining recursively one of the possible operations
(trivial operation, add operation, line operation) for each node v of the tree.
After applying an operation, we always add children to the processed node v
that corresponds to the subproblems that we reduce to, i.e., for a node v corre-
sponding to the subproblem DP(S,L), if we are applying the trivial (resp. line)
operation along a segment (resp. line) �, then we add children corresponding to
the DP subproblems DP(S1, S1 ∩ L) and DP(S2, S2 ∩ L), where S1 and S2 are
the connected components of S\�. Similarly if we apply the add operation on
v with the set of segments L′ then we add the child node corresponding to the
subproblem DP(S,L ∪ L′).

First level. We start with the root DP([0, n] × [0, 4n2], ∅). We apply the line
operation for each vertical line that corresponds to a (vertical) grid line of level
0. Consider one of the resulting subproblems DP(S, ∅). Suppose that there are
more than ε−3 line segments (horizontal or vertical) from OPT of level 0 inside
S. We want to partition S into smaller rectangles, such that within each of these
rectangles S′ at most O(ε−3) of these level 0 line segments start or end. This will
make it possible for us to guess them. To this end, we consider the line segments
from OPT of level 0 inside S, take their endpoints and order these endpoints
non-decreasingly by their y-coordinates. Let p1, p2, ..., pk be these points in this
order. For each k′ ∈ N with k′/ε3 ≤ k, we consider the point pk′/ε3 . Let �′ be
the horizontal line that contains pk′/ε3 . We apply the line operation to �′.

Lemma 4. Let DP(S′, ∅) be one of the subproblems after applying the operations
above. There are at most ε−3 line segments L′ (horizontal or vertical) from OPT
of level 0 that have an endpoint inside S′.

In each resulting subproblem DP(S′, ∅), for each vertical line segment � ∈ OPT
that crosses S′, i.e., such that S′ \ � has two connected components, we apply
the line operation for the line that contains �. In each subproblem DP(S′′, ∅)
obtained after this step, we apply the add operation to the line segments from
OPT of level 0 that intersects S′′ (or to be more precise, their intersection with
S′′), i.e., to the set L′ := {� ∩ S′′ | � ∈ OPT ∧ � ∩ S′′ 
= ∅ ∧ � is of level 0}.
Claim 4 implies that |L′| ≤ ε−3. In each obtained subproblem, we apply the
trivial operation until it is no longer applicable. We say that all these operations
correspond to level 0.

Subsequent levels. Next, we do a sequence of operations that correspond to levels
j = 1, 2, 3, .... Assume by induction that for some j each leaf in the current tree
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T corresponds to a subproblem DP(S,L) such that � ∩ S ∈ L for each line
segment � ∈ OPT of each level j′ < j for which � ∩ S 
= ∅. Take one of these
leaves and assume that it corresponds to a subproblem DP(S,L). We apply the
line operation for each vertical line that corresponds to a (vertical) grid line of
level j.

Consider a corresponding subproblem DP(S′,L). Suppose that there more
than ε−3 line segments (horizontal or vertical) from OPT of level j that have
an endpoint inside S′. Like above, we consider these endpoints and we order
them non-decreasingly by their y-coordinates. Let p1, p2, ..., pk be these points
in this order. For each k′ ∈ N with k′/ε3 ≤ k, we consider the point pk′/ε3 and
apply the line operation for the horizontal line �′ that contains pk′/ε3 . If for a
resulting subproblem DP(S′′,L) there is a vertical line segment � ∈ L of some
level j′ < j − 2 with an endpoint p inside S′′, then we apply the line operation
for the horizontal line that contains p.

Fig. 2. Horizontal line operations

Lemma 5. Let DP(S′,L) be one of the subproblems after applying the opera-
tions above. There are at most ε−3 line segments L′ (horizontal or vertical) from
OPT of level j that have an endpoint inside S′.

Consider a resulting subproblem DP(S′′,L). For each line segment � ∈ OPT
such that � crosses S′′, i.e., S′′ \ � has two connected components, we apply the
line operation to the line that contains �. We apply the trivial operation until it
is no longer applicable. In each subproblem DP(S′′′,L) obtained after this step,
we apply the add operation to the line segments of level j that have an endpoint
in S′′′, i.e., to the set L′ := {� ∩ S′′′ | � ∈ OPT ∧ � ∩ S′′′ 
= ∅ ∧ � is of level j}.

As an example, look at Fig. 2, with ε = 1/3. The solid lines in it are of level
0, the dashed lines of level 1, and dotted lines of level 2. Also the black lines
are vertical grid lines, the blue lines are (well-aligned) lines in OPT and the red
lines are lines along which horizontal line operations are applied. It can be seen
from this example that a segment of level j, by virtue of it being well-aligned,
will get removed by a trivial operation of level less than j + 3.
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2.4 Analysis of DP-Decision Tree

We want to prove that the resulting tree T is indeed a DP-decision-tree corre-
sponding to a solution of cost at most (1 + ε)OPT. To this end, first we need to
show that whenever we apply the add operation to a subproblem DP(S,L) for a
set L′ then |L| + |L′| ≤ 3ε−3. The key insight for this is that if we added a line
segment � ∈ OPT of some level j, then it will not be included in the respective
set L of later subproblems of level j + 3 or higher since � is well-aligned. More
precisely, if � is horizontal then its x-coordinates are aligned with the grid lines
of level j+3. Hence, if � or a part of � is contained in a set L of some subproblem
DP(S,L) for some level j +3, then we applied the trivial operation to � and thus
� “disappeared” from L (note that here by disappear we mean that the segment
does not need to be considered in L anymore, and gets added to the solution
of the DP subproblem). If � is vertical and it appears in a DP(S,L) for some
level j +3 then we applied the line operation to the horizontal lines that contain
the two endpoints of �. Afterwards, we applied the trivial operation to � until �
“disappeared” from L.

In particular, for each subproblem DP(S,L) constructed by operations of
level j, the set L can contain line segments of levels j − 2, j − 1, and j; but no
line segments of a level j′ with j′ < j − 2. Using this, we prove the following
lemma.

Lemma 6. The constructed tree T is a DP-decision-tree.

We want to show that the cost of the solution corresponding to T is at most
(1+O(ε))OPT. In fact, depending on the offset a this might or might not be true.
However, we show that there is a choice for a such that this is true (in fact, we
will show that for a random choice for a the cost will be at most (1+O(ε))OPT
in expectation). Intuitively, when we apply the line operation to a vertical grid
line � of some level j then the incurred cost is at most O(1) times the cost of
the line segments from OPT of level j or larger that stab at least one rectangle
intersected by �. A line segment �′ ∈ OPT of level j stabs such a rectangle only
if �′ is intersected by � (if �′ is horizontal) or the x-coordinate of �′ is close to �
(if �′ is vertical). Here we use that hi ≥ wi for each rectangle Ri ∈ OPT.

Thus, we want to bound the total cost over all levels j of the line segments
from OPT that are in level j and that are intersected or close to grid lines of
level j or smaller. We will show that if we choose a randomly then the total cost
of such grid lines is at most ε ·OPT in expectation. Hence, by using the constant
approximation algorithm from [5] in expectation the total cost due to all line
operations for vertical line segments is at most O(ε) · OPT.

When we apply the line operation for a horizontal line, then the cost of
stabbing the corresponding rectangles is at most the width of the rectangle S of
the current subproblem DP(S,L). We will charge this cost to the line segments
of OPT inside S of the current level or higher levels. We will argue that we can
charge each such line operation to line segments from OPT whose total width is
at least 1/ε times the width of S. This costs another O(ε) · OPT in total due to
all applications of line operations for horizontal segments.
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The add operation yields a cost of exactly OPT and the trivial operation
does not cost anything. This yields a total cost of (1 + O(ε))OPT.

Lemma 7. There is a choice for the offset a such that the solution SOL([0, n]×
[0, 4n2], ∅) in T has a cost of at most (1 + O(ε))OPT.

Proof. In the tree as defined above, the add operations are only applied on
segments from OPT, and hence the cost across all such add operations is at
most c(OPT). Similarly, the trivial operations are applied on segments which
were ‘added’ before, and hence their cost is also already accounted for. So we
are left with analyzing the cost of stabbing the rectangles which are intersected
by the lines along which we apply the line operations. We claim that for a random
offset a, this cost is O(ε · OPT), which gives us the required result.

Let us first consider any line operation of level j that is applied to a horizontal
line �. This operation would create 2 cells of width at most εj−2, one of which
either contains ε−3 endpoints of segments (horizontal or vertical) from OPT of
level j; or contains at least one vertical segment from OPT of level j′ < j − 2,
i.e., the cost of the segments from OPT with at least one endpoint in this cell is
at least ε−3 ·εj = εj−3. Since a segment of width εj−2 (width of cell) is sufficient
to stab all rectangles stabbed by �, we see that this horizontal line takes only
ε times the cost of the segments in OPT with at least one endpoint in the cell.
We charge the cost of this horizontal segment to these corresponding endpoints.
Since each such segment in OPT of level j can be charged at most twice, by
summing over all horizontal line operations over all levels we get that the cost
of such line operations is at most 2ε · OPT.

Now, let us consider the line operations applied to vertical grid lines. We wish
to bound the cost of stabbing all the rectangles intersected or close to grid lines
(will be formally defined shortly), over all levels j. This can also be stated as
bounding the cost, over all levels j, of line segments in level j of OPT (call this
set OPTj) intersected or close to grid lines of level j or smaller. For a horizontal
segment � ∈ OPTj , let I� be the indicator variable representing the event that
a grid line of level j or smaller intersects � (I� = 0 for vertical segments). Since
|�| ≤ εj−1, if we take a random offset a, we obtain that E[I�] ≤ εj−1/εj−2 = ε.
For a vertical segment � ∈ OPTj , let J� be the indicator variable representing
the event that a grid line of level j or smaller intersect the rectangle stabbed
by � (J� = 0 for horizontal segments). Since for j > 0, |�| ≤ εj−1, we know
that for the rectangle stabbed by �, the dimensions satisfy wi ≤ hi ≤ εj−1. This
means that to stab such a rectangle, � has to lie close to, i.e., within ±εj−1 of
the vertical grid line. So for a random offset a and level j > 0 we obtain that
E[J�] ≤ 2εj−1/εj−2 = 2ε. For level 0, we note that even though the vertical
segments can be very long, the maximum width of a rectangle is at most 1. So
� has to lie within ±1 of the grid line, giving us: E[J�] ≤ 2/ε−2 = 2ε2 ≤ 2ε.
With the expectations computed above, we can upper bound the expected cost
of segments in OPT intersected by vertical line operations as:



372 A. Khan et al.

E

⎡
⎣∑

j

∑
�∈OPTj

(I� + J�) · |�|
⎤
⎦ =

∑
j

∑
�∈OPTj

|�| · (E[I�] + E[J�])

≤
∑

j

∑
�∈OPTj

|�| · (ε + 2ε) = 3ε · OPT

Now, by using the α-approximation algorithm for stabbing from [5], where α is
a constant, the solution returned by our algorithm takes an additional cost of
3α · ε · OPT. ��

This gives our main theorem.

Theorem 1. There is a (1+ε)-approximation algorithm for the general rectan-
gle stabbing problem with a running time of (n/ε)O(1/ε3), assuming that hi ≥ wi

for each rectangle Ri ∈ R.

Theorem 1 has some direct implications. First, it yields a PTAS for the general
square stabbing problem.

Corollary 1. There is a PTAS for the general square stabbing problem.

Also, it yields a (2 + ε)-approximation algorithm for the general rectangle stab-
bing problem for arbitrary rectangles: we can simply split the input into rectan-
gles Ri for which hi ≥ wi holds, and those for which hi < wi holds, and output
the union of these two solutions.

Corollary 2. There is a (2 + ε)-approximation algorithm for the general rect-
angle stabbing problem with a running time of (n/ε)O(1/ε3).

Finally, it yields a PTAS for the horizontal rectangle stabbing problem: we can
take the input of that problem and stretch all input rectangles vertically such
that it is always very costly to stab any rectangle vertically (so in particular our
(1+ ε)-approximate solution would never do this). Then we apply the algorithm
due to Theorem 1.

Corollary 3. There is a (1+ε)-approximation algorithm for the horizontal rect-
angle stabbing problem with a running time of (n/ε)O(1/ε3).

3 δ-Large Rectangles

We now consider the case of δ-large rectangles for some given constant δ, i.e.,
where for each input rectangle Ri we assume that wi ≤ 1 and hi ≤ 1 and
additionally wi ≥ δ or hi ≥ δ. For this case we again give a PTAS in which we
use our algorithm due to Theorem 1 as a subroutine.

First, by losing only a factor of 1+ε, we divide the instance into independent
subproblems which are disjoint rectangular cells. For each cell Ci, we denote by
OPT(Ci) the cells from OPT that are contained in Ci and our routine ensures
that c(OPT(Ci)) ≤ O(1/ε3). Then for each cell Ci, the number of segments in
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OPT(Ci) with length longer than δ is bounded by O(1/δε3). We guess them in
polynomial time. Now, the remaining segments in OPT are all of length smaller
than δ, and hence they can stab a rectangle only along its shorter dimension.
Hence, we can divide the remaining rectangles into two disjoint sets, one with
hi ≥ wi and the other with wi > hi, and use Theorem 1 to get a 1 + ε approxi-
mation of the remaining problem.

Theorem 2. For HV-Stabbing with δ-large rectangles, there is a (1 + ε)-
approximation algorithm with a running time of (n/ε)O(1/δε3).

4 Conclusion

In this paper, we have settled the Stabbing problem by giving a PTAS for it,
and also give a (2+ ε)-approximate solution for the HV-Stabbing problem and
PTASs for some related special cases of these problems. It is not immediately
clear whether these techniques could be extended to obtain a PTAS for the HV-
Stabbing problem, or even if such a PTAS exists or not, since the question of
the APX-hardness of HV-Stabbing is still open.
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