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Abstract. In this paper, we present improved approximation algorithms
for the (unsplittable) Capacitated Vehicle Routing Problem (CVRP) in
general metrics. In CVRP, introduced by Dantzig and Ramser (1959), we
are given a set of points (clients) V together with a depot r in a metric
space, with each v ∈ V having a demand dv > 0, and a vehicle of bounded
capacity Q. The goal is to find a minimum cost collection of tours for the
vehicle, each starting and ending at the depot, such that each client is
visited at least once and the total demands of the clients in each tour is
at most Q. In the unsplittable variant we study, the demand of a node
must be served entirely by one tour. We present two approximation algo-
rithms for unsplittable CVRP: a combinatorial (α + 1.75)-approximation,
where α is the approximation factor for the Traveling Salesman Problem,
and an approximation algorithm based on LP rounding with approxima-
tion guarantee α + ln(2) + δ ≈ 3.194 + δ in nO(1/δ) time. Both approx-
imations can further be improved by a small amount when combined
with recent work by Blauth, Traub, and Vygen (2021), who obtained an
(α + 2 · (1− ε))-approximation for unsplittable CVRP for some constant ε
depending on α (ε > 1/3000 for α = 1.5).

Keywords: Capacitated vehicle routing · Combinatorial optimization ·
Approximation algorithm

1 Introduction

Vehicle routing problems are among the most well known and well studied
problems in Combinatorial Optimization. The goal is generally to find cost-
efficient delivery routes for delivering items from depots to clients in a network
using vehicles. The Capacitated Vehicle Routing Problem (CVRP), introduced
by Dantzig and Ramser in 1959 [12], generalizes the classic Traveling Sales-
man Problem and has numerous applications. In CVRP, we are given as input a
complete graph G = (V, E) with metric edge weights (also referred to as costs)
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c(e) ∈ R≥0, a depot r ∈ V, and a vehicle with capacity Q > 0, and wish to
compute a minimum weight/cost collection of tours, each starting and ending
at the depot and visiting at most Q customers, whose union covers all the cus-
tomers. In the more general setting, each node v is given along with a demand
d(v) ∈ Z≥1 and the goal is to find a set of tours of the minimum total cost, each
of which includes r, such that the union of the tours covers the demand at every
client and every tour serves at most Q demand.

There are three common versions of CVRP: unit, splittable, and unsplittable.
In the splittable variant, the demand of a node can be delivered using multiple
tours so each tour must also specify howmuch demand it serves at each client1.
However, in the unsplittable variant the entire demand of a clientmust be deliv-
ered by a single tour (e.g. each demand is an indivisible good of a certain size).
This obviously requires that dv ≤ Q for all clients v. The unit demand case is a
special case of the unsplittable case where every node has a unit demand, and
the demand of a client must be delivered by a single tour. It is easy to see that
the splittable demand case can be reduced to the unit demand case in pseudo-
polynomial time using multiple collocated clients of unit demands. However,
the unsplittable version is more challenging. For example, it contains the bin-
packing problem as a special case; when all clients are have distance 1 from r
and distance 0 from each other.

CVRP has also been referred to as the k-tours problem [3,4]. Both the split-
table and unsplittable versions admit constant factor approximation algorithms
inpolynomial-time.HaimovichandKan[17]showedthataheuristic, called itera-
tivepartitioning, yields an (α+ 1(1− 1/Q))-approximation for theunit demand
case if oneuses an α-approximation for the Traveling SalesmanProblem (TSP).A
similar approachproducesa2+(1− 2/Q)α)-approximation for theunsplittable
variant [2]. Despite their simplicity, these remained the best approximations for
these two variants for over 35 years. Recently, Blauth et al. [10] improved these
approximations giving an (α + 2 · (1− ε))-approximation algorithm for unsplit-
table CVRP and a (α + 1− ε)-approximation algorithm for unit demand CVRP
and splittable CVRP where ε is a constant depending only on α. For α = 3/2,
they showed ε > 1/3000. All the variants are APX-hard in general metric spaces
[25].

In this paper we make significant progress on improving the approximation
guarantee for unsplittable CVRP. More specifically we present a simple com-
binatorial algorithm with ratio 3.25, and then a 3.194-approximation algorithm
based on linear programming (LP). Our algorithms are completely independent
of the improvements by Blauth et al. [10]. By incorporating their approach, we
can further improve both ratios by a small constant ε′ > 0. However, for the
sake of simplicity we prefer to present our main results without factoring in
this last improvement.

Theorem 1. There is an approximation algorithm for the unsplittable CVRP with
ratio α + 1.75, where α is the best approximation ratio for TSP.

1 One can show using that restricting the demand served to each client by each tour to
integer quantities does not change the optimum solution cost.
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The running time of this algorithm is dominated by computing two α-
approximate TSP tours and a minimum cost matching. For example, using
the simple (combinatorial) Christofides-Serdyukov 1.5-approximation we get a
combinatorial 3.25-approximation for unsplittable CVRPwhose running time is
dominated by computing O(1) perfect matchings in graphs with O(|V|) nodes.
Computing a perfect matching in a graph with n nodes can be done in O(n3)
time [15]; hence our algorithm runs in O(|V|3) time.

If we allow greater running time, we can improve the approximation guar-
antee further by using linear programming.

Theorem 2. For any δ > 0, there is an approximation algorithm for unsplittable
CVRP with ratio ln(2) + α+ 1

1−δ and running time nO( 1δ ), where α is the best approx-
imation ratio for TSP.

Finally, we show how combining these two results with the approach in
[10] actually yields further improvements: a combinatorial (α + 1.75 − ε′)-
approximation and an LP-based (α + ln(2) + 1

1−δ − ε′)-approximation in time

nO( 1δ ), where ε′ > 0 is an absolute constant.
It is worth noting as the classical results on CVRP [2,17], our results also can

be extended to the asymmetric metric where c(u, v) is not necessarily equal to
c(v, u). For example, the analogous of Theorem 1 in the asymmetric metric is a
(β + 1.75)-approximation where β is the best approximation factor for Asym-
metric Traveling Salesman Problem.

We discuss these further improvements and the extension to the asymmetric
metric in more details in the full version of the paper [14].

1.1 Related Work

CVRP captures classic TSP when Q, the vehicle capacity, is at least the total
demand of all clients. For general metrics, Haimovich and Kan [17] considered
a simple heuristic, called tour partitioning, which starts from a TSP tour and
then splits it into tours of size at most Q by making back-and-forth trips to r at
certain points along the TSP tour. They showed this gives a (1+ (1 − 1/Q)α)-
approximation for splittable CVRP, where α is the approximation ratio for TSP.
Essentially the same algorithm yields a (2 + (1 − 2/Q)α)-approximation for
unsplittable CVRP [2]. These stood as the best-known bounds until recently,
when Blauth et al. [10] showed that given a TSP approximation α, there is
an ε > 0 such that there is an (α + 2 · (1 − ε))-approximation algorithm for
CVRP. For α = 3/2, they showed ε > 1/3000. They also describe a (α + 1− ε)-
approximation algorithm for unit demand CVRP and splittable CVRP.

For the case of trees, Labbé et al. [23] showed splittable CVRP is NP-hard,
andGolden et al. [16] showed unsplittable version is hard to approximate better
than 1.5. This is via a simple reduction from bin packing. For splittable CVRP
(again on trees), Hamaguchi et al. [18] defined a lower bound for the cost of the
optimal solution and gave a 1.5 approximation with respect to the lower bound.
Asano et al. [4] improved the approximation to (

√
41 − 1)/4 with respect to
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the same lower bound and also showed the existence of instances whose opti-
mal cost is exactly 4/3 times the lower bound. Later, Becker [5] gave a 4/3-
approximation with respect to the lower bound. Becker and Paul [9] showed a
(1, 1+ ε)-bicriteria polynomial-time approximation scheme for splittable CVRP
in trees, i.e. a PTAS but every tour serves at most (1+ ε)Q demand. Recently,
Jayaprakash and Salavatirpour [19] presented a QPTAS for unit-demand CVRP
for trees and more generally graphs of bounded treewidth, bounded doubling
metrics, or bounded highway dimension. Even more recently, building upon
ideas of [9] and [19], Mathieu and Zhou [24] have presented a PTAS for split-
table CVRP on trees.

Das and Mathieu [13] gave a quasi-polynomial-time approximation scheme
(QPTAS) for CVRP in the Euclidean plane (R2). A PTAS for when Q is
O(log n/ log log n) or Q is Ω(n) was shown by Asano et al. [4]. A PTAS for
Euclidean plane R2 for moderately large values of Q, i.e. Q ≤ 2log

δ n where
δ = δ(ε), was shown by Adamaszek et al. [1], building on the work of Das and
Mathieu [13]. For high dimensional Euclidean spaces Rd, Khachay et al. [20]
showed a PTAS when Q is O(log log1/d n). For graphs of bounded doubling
dimension, Khachay et al. [21] gave a QPTASwhen the optimal number of tours
is polylog(n) and Khachay et al. [22] gave a QPTAS when Q is polylog(n).

The next results we summarize are all for the case Q = O(1). CVRP remains
APX-hard in general metrics in this case but is polynomial-time solvable on
trees. There exists a PTAS for CVRP in the Euclidean plane (R2) (again for when
Q is fixed) as shown by Khachay et al. [20]. A PTAS for planar graphs was given
by Becker et al. [8] and a QPTAS for planar and bounded-genus graphs was
then given by Becker et al. [6]. A PTAS for graphs of bounded highway dimen-
sion and an exact algorithm for graphs with treewidth tw with running time
O(ntw·Q) was shown by Becker et al. [7]. Cohen-Addad et al. [11] showed an
efficient PTAS for graphs of bounded-treewidth, an efficient PTAS for bounded
highway dimension, an efficient PTAS for bounded genusmetrics and a QPTAS
for minor-free metrics.

Organization of the Paper: We start with definitions and preliminaries in
Sect. 2. The proof of Theorem 1 is presented in Sect. 3 and the proof of Theo-
rem 2 is presented in Sect. 4.

2 Preliminaries

For ease of exposition, we assume we have scaled all the demands and the
capacity of the vehicle so that the capacity is 1 and each d(v) ∈ (0, 1] (so
demands can be rational numbers). Also, we treat r as a separate node from
the rest of the nodes. Formally:

Definition 1 (CAPACITATED VEHICLE ROUTING). An instance (V, r, c, d) of
CAPACITATED VEHICLE ROUTING (CVRP) consists of:

– a set of clients V, where |V| = n,
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– a depot r, not in V,
– metric travel costs/distances c : (V ∪ {r}) × (V ∪ {r}) → R≥0,
– a demand dv ∈ (0, 1] for each customer v ∈ V.

A feasible solution is a collection of tours T such that

– every tour T ∈ T is a cycle containing r,
– every client belongs to exactly one tour,
– ∑

v∈T
dv ≤ 1 for all T ∈ T .

The goal is to find a feasible solution with minimum cost where the cost is the
sum of costs of the edges in the solution and denoted by c(T ) := ∑

T∈T
c(T) :=

∑
T∈T

∑
(u,v)∈T

c(u, v).

Observe we are viewing a tour T as both a set of edges comprising a cycle plus
the set of endpoints of these edges, so we may use notation like v ∈ T for a
location v and also (u, v) ∈ T for a pair of locations (u, v) appearing consecu-
tively along the tour T. It is convenient to view the depot r as having dr = 0,
for example when we sum the demand of all locations on a tour.

Fix an unsplittable CVRP instance I = (V, r, c, d) for the rest of this paper.
We use OPT to denote an optimal solution for I and opt the value of this opti-
mal solution.

Definition 2 (Feasible tours). A tour T that spans r and some clients is called feasi-
ble for I if the total demand of the clients in T is at most 1, i.e., ∑

v∈T
dv ≤ 1.

Clients are partitioned into small and big clients based on a parameter δ ∈
[0, 12 ], which will be chosen differently for our two algorithms.

Definition 3 (Small and big clients). For a fixed δ ∈ [0, 12 ], we say a client v is
small if dv ∈ [0, δ], and big otherwise.

Let D := ∑
v∈V

2 · dv · c(r, v). This is historically referred to as the radial lower

bound and the following simple well-known lemma has been used often in
previous work.

Lemma 1 (Haimovich and Kan [17]). D ≤ opt.

We also define a similar sum for small and big clients separately, i.e.,
Dsmall := ∑

v∈V:
v is small

2 · dv · c(r, v), and Dbig := ∑
v∈V:

v is big

2 · dv · c(r, v). Also define

D′
big := ∑

v∈V:
v is big

2 · c(r, v), which is the cost of serving all big clients using a sepa-

rate tour for each client.
Given a TSP tour, the algorithm by Haimovich and Kan has the vehicle

begin by randomily filling the “tank” of demand it carries with some value
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θ ∼ (0, 1]. It then travels about the TSP tour: if the tank has insufficient demand
to serve a client it travels to the depot to get enough demand to serve the client,
returns to serve the client, and then returns to the depot to refill the tank appro-
priately before resuming the tour. The probability that such a resupply trip is
performed when trying to serve a client v is dv, so the total cost of performing
these round trips is at most 2 · D ≤ 2 · opt in expectation.

One of the main driving forces behind our improvements is the following
idea. For a small client, if we think of the vehicle’s tank as only holding 1 − δ
demand and keep a reserved tank holding demand δ, then if we cannot serve a
client with the demand in the main tank, we can serve it using the reserve tank
and only make one round trip to the depot to refill both tanks before proceed-
ing. Both of our main algorithms balance this idea with approaches to handling
big clients.

We formalize this notion of using a reserve tank in Lemma 2 below. When
δ = 0 this gives the same result as in [2,17].

Lemma 2 (δ-tank Lemma). Let A be a TSP tour on V ∪ {r} and define small and
big clients based on a fixed δ ≤ 1/2. There is an algorithm that turns A into a feasible
solution for the CVRP instance with cost

c(A) +
1

1− δ
· Dsmall +

2
1− δ

· Dbig − δ

1− δ
· D′

big, (1)

and running time O(n2).

Proof We sketch the high level idea behind the proof. See the full version of the
paper [14] for the complete proof.

The idea is to reserve δ portion of the vehicle’s tank and fill out the rest with
a random amount. Then, the vehicle visits the vertices in the same order as they
appear in A. As the vehicle visits the clients (vertices), it serves their demand.
However, the vehicle might need to make some round trips to the depot to
refill. Using the reserved tank and the initial random filling, we bound the cost
of these round trips to the depot against different parts of D as shown in (1). ��

3 A Combinatorial 3.25-Approximation

In this section, we set δ := 1
3 . So v is a small client if dv ≤ 1

3 and big if
dv > 1

3 . Note that in any feasible solution, there are at most two big clients
in any single tour. Our algorithm tries two things: the first serves only big
clients by pairing them up optimally to form these tours and then runs the
classic 3.5-approximation on the small clients but using our δ-tank procedure
(see Lemma 2) for performing the tour splitting. The other simply runs the 3.5-
approximation using δ-tank tour splitting on all clients.

Let us first explain how we use matching. Consider an auxiliary graph
Gaux = (Vbig, Eaux) where Vbig ⊆ V is the set of all big clients and Eaux con-
structed as follows: for any pair of big clients u, v where du + dv ≤ 1 we add



Improved Approximations for CVRP with Unsplittable Demands 257

and edge between u and v with cost c(r, u) + c(u, v) + c(v, r). Furthermore, for
every big client v there is a loop in Gaux with cost equal to 2 · c(r, v). We com-
pute a min-cost perfect matching2 which corresponds to the cheapest way to
select tours to serve only the big clients. The precise details are presented in
Algorithm 1.

Algorithm 1. (α + 1.75)-approximation
1: The first solution is constructed as follows:
2: Compute a min-cost perfect matching M on Gaux. Let T ′ be the tours correspond-

ing to the edges in M.
3: Compute a TSP tour A on small clients and r.
4: Apply Lemma 2 to A with δ = 1

3 and let T ′′ be the resulting solution.
5: T ← T ′ ∪ T ′′

6: The second solution is constructed as follows:
7: Compute a TSP tour A on V ∪ {r}.
8: Apply Lemma 2 to A with δ = 1

3 and let F be the resulting solution.
9: Return the cheaper of the two solutions T and F .

3.1 Analysis

We begin with two simple observations.

Lemma 3 cost(M) ≤ opt.

Proof Each tour in any feasible solution contains at most two big clients. So,
after shortcutting all tours in OPT past small clients, we get tours corresponding
to a perfect matching Gaux with cost at most opt. ��

Lemma 4 cost(M) ≤ D′
big.

Proof Consider all the loops in Gaux. The cost of all the loops is exactly D′
big and

this is a matching so it is an upper bound on the minimum cost of a perfect
matching. ��

Next, we compute the cost of the first solution in the algorithm. Note that
c(T ′) = cost(M). Using an α-approximation for TSP, the cost of A is at most
α · opt: again we are using the metric property which shows opt upper bounds
the optimum TSP tour since the union of all tours in OPT is connected and
Eulerian. Finally, applying the δ-tank lemma to A results in a solution of cost at
most c(A) + 1

1−δ · Dsmall since there is no big client on A. Overall, we have

c(T ) = c(T ′) + c(T ′′) ≤ cost(M) + α · opt+ 3
2

· Dsmall . (2)

2 A set of edges M that may contain loops is a perfect matching if each node lies in
precisely one edge: so a node is either matched with another node via a normal edge
or with itself via a loop.
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Next, we compute the cost of the second solution. From the δ-tank lemma,

c(F ) = α · opt+ 3
2

· Dsmall + 3 · Dbig − 1
2

· D′
big. (3)

Combining these, we bound the cost of the solution output by the algorithm
as follows:

min{c(T ), c(F )} ≤ c(T ) + c(F )
2

=
2 · α · opt+ 3 · (Dsmall + Dbig) + cost(M)− 1

2 · D′
big

2

≤ 2 · α · opt+ 3 · D + 1
2 · cost(M)

2
≤ α · opt+ 1.5 · opt+ 0.25 · opt
= (α + 1.75) · opt,

(4)

where the second inequality follows from Lemma 4 and the last inequality fol-
lows from Lemmas 1 & 3. This finishes the proof of Theorem 1.

4 An Improved LP-Based Approximation

In this section let δ be a fixed constant in the range (0, 1/2]. Smaller δ lead to
better approximations with increased, but still polynomial, running times.

Define the small and big clients for this value δ as in Definition 3. Let Vbig be
the set of big clients. We consider the following configuration LP for big clients:
Let J be the set of all feasible tours where each tour consists of some big clients
and the depot. Note |J | is bounded by nO( 1δ ) as there can be at most 1

δ big
clients in each tour. For each T ∈ J let c(T) be the cost of tour T. For each tour
T ∈ J , we have a variable xT indicating this tour is chosen by the algorithm.

minimize: ∑
T∈J

c(T) · xT (Configuration-LP)

subject to: ∑
T∈J :
v∈T

xT ≥ 1 ∀v ∈ Vbig (5)

x ≥ 0

By shortcutting all tours in the optimum solution past small clients and
discarding tours with no big clients, we see there is an integer solution to
(Configuration-LP) with cost at most opt. Thus, the optimum LP value pro-
vides a lower bound on opt.

Our algorithm independently samples tours spanning large clients using an
optimal LP solution. After this, some large clients and all small clients remain
uncovered, we cover them using the classic 3.5-approximation but use the δ-
tank tour splitting approach. Algorithm 2 contains the full description of our
approach. With foresight, we set γ := ln(2).
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Algorithm 2. (3.194+ 1
1−δ )-approximation

1: T ← ∅. {This will be a collection of tours.}
2: Compute an optimal solution x∗ of (Configuration-LP).
3: for T ∈ J do
4: with probability min{1,γ · xT} add T to T .
5: Approximate a TSP tour A spanning {r} ∪ (V \ V(T )) where V(T ) is the vertices

covered in T .
6: Apply the δ-tank lemma to A and let T ′ be the resulting collection of tours.
7: Return T ∪ T ′.

It could be that some clients lie on multiple tours due to the randomized
rounding step. One can shortcut the tours past repeated occurrences of clients
so each client lies on exactly one tour.

4.1 Analysis

We first bound the probability of a big client not being covered in the random-
ized rounding step of Algorithm 2 (steps 3–4).

Lemma 5 For a v ∈ Vbig, Pr[v is not covered by T ] ≤ e−γ.

Proof The event that a big client v is not covered is if we do not sample any tour
T that contains v in the randomized rounding step. So

Pr[v is not covered by T ] = ∏
T∈T

(1− γ · xT) ≤ e
−γ· ∑

T∈T :v∈T
xT

≤ e−γ,

where the last bound follows from the constraint in (Configuration-LP) for v.
��
Next, we bound the expected costs of T and T ′, separately. The cost of T is
bounded as follows:

E[T ] = γ · cost(x∗) ≤ γ · opt. (6)

Using the δ-tank lemma, we bound the expected cost of T ′ but with the follow-
ing changes: in (1), we drop the negative term and we incorporate the fact that
a big client is on A with probability at most e−γ, see Lemma 5.

E[c(T ′)] ≤ c(A) +
1

1− δ
· Dsmall

+ 2 · ∑
v∈Vbig

Pr[v is not covered by T ] · dv

1− δ
· 2 · c(r, v)

= c(A) +
1

1− δ
· Dsmall + e−γ · 2

1− δ
· Dbig

= c(A) +
1

1− δ
· Dsmall +

1
1− δ

· Dbig

= c(A) +
1

1− δ
· D ≤ α · opt+ 1

1− δ
· D.

(7)
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The second equality follows from our choice of γ = ln 2. From (6) and (7), the
expected cost of the solution returned by Algorithm 2 is at most

E[c(T ∪ T ′)] ≤ ln 2 · opt+ α · opt+ 1
1− δ

· D

≤ (ln 2+ α +
1

1− δ
) · opt,

(8)

where the last inequality follows from Lemma 1. This finishes the proof of Theo-
rem 2. We briefly comment that this algorithm can be derandomized efficiently
using the method of conditional expectation since the probability a big client is
covered and its expected contribution to the δ-tank upper bound can be com-
puted efficiently even if some tours have been sampled or rejected so far. Note
there is a numerical issue in that γ · xT may not be a rational number, but this
error can be absorbed in the 1

1−δ part of the guarantee by choosing δ to be
slightly smaller.

Acknowledgements. We thank an anonymous reviewer for pointing out that our
approaches could be extended to the asymmetric metric setting.
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